
 Chris Fregly &
 Antje Barth

Data Science
on AWS
Implementing End-to-End, Continuous AI and
Machine Learning Pipelines

Praise for Data Science on AWS

“Wow—this book will help you to bring your data science projects from idea all the way
to production. Chris and Antje have covered all of the important concepts and the

key AWS services, with plenty of real-world examples to get you started
on your data science journey."

—Jeff Barr, Vice President & Chief Evangelist,
Amazon Web Services

“It’s very rare to find a book that comprehensively covers the full end-to-end process of
model development and deployment! If you’re an ML practitioner, this book is a must!”

—Ramine Tinati, Managing Director/Chief Data Scientist
Applied Intelligence, Accenture

“This book is a great resource for building scalable machine learning solutions on AWS
cloud. It includes best practices for all aspects of model building, including training,

deployment, security, interpretability, and MLOps.”
—Geeta Chauhan, AI/PyTorch Partner Engineering Head,

Facebook AI

“The landscape of tools on AWS for data scientists and engineers can be absolutely
overwhelming. Chris and Antje have done the community a service by providing
a map that practitioners can use to orient themselves, find the tools they need to

get the job done and build new systems that bring their ideas to life.”
—Josh Wills, Author, Advanced Analytics with Spark (O’Reilly)

“Successful data science teams know that data science isn’t just modeling but needs a
disciplined approach to data and production deployment. We have an army of tools for all

of these at our disposal in major clouds like AWS. Practitioners will appreciate this
comprehensive, practical field guide that demonstrates not just how to apply

the tools but which ones to use and when.”
—Sean Owen, Principal Solutions Architect, Databricks

“This is the most extensive resource I know about ML on AWS, unequaled in breadth and
depth. While ML literature often focuses on science, Antje and Chris dive deep into the
practical architectural concepts needed to serve science in production, such as security,

data engineering, monitoring, CI/CD, and costs management. The book is state-of-the-art
on the science as well: it presents advanced concepts like Transformer architectures,

AutoML, online learning, distillation, compilation, Bayesian model tuning, and bandits. It
stands out by providing both a business-friendly description of services and concepts as
well as low-level implementation tips and instructions. A must-read for individuals and

organizations building ML systems on AWS or improving their knowledge of
the AWS AI and machine learning stack.”

—Olivier Cruchant, Principal ML Specialist Solutions Architect,
Amazon Web Services

“This book is a great resource to understand both the end-to-end machine learning
workflow in detail and how to build operationally efficient machine learning workloads at

scale on AWS. Highly recommend Data Science on AWS for anyone building
machine learning workloads on AWS!”

—Shelbee Eigenbrode, AI/ML Specialist Solutions Architect,
Amazon Web Services

“This book is a comprehensive resource for diving into data science on AWS. The authors
provide a good balance of theory, discussion, and hands-on examples to guide the reader
through implementing all phases of machine learning applications using AWS services. A
great resource to not just get started but to scale and secure end-to-end ML applications.”

—Sireesha Muppala, PhD, Principal Solutions Architect, AI/ML,
Amazon Web Services

“Implementing a robust end-to-end machine learning workflow is a daunting challenge,
complicated by the wide range of tools and technologies available; the authors do an

impressive job of guiding both novice and expert practitioners through
this task leveraging the power of AWS services.”

—Brent Rabowsky, Data Scientist, Amazon Web Services

“Using real-world examples, Chris and Antje provide indispensable and comprehensive
guidance for building and managing ML and AI applications in AWS.”

—Dean Wampler, Author, Programming Scala (O’Reilly)

"Data Science on AWS is exciting and intimidating due to the vast quantity of services and
methodologies available. This book is a welcome guide to getting machine learning into

production on the AWS platform, whether you want to do ML with AWS Lambda or with
Amazon SageMaker.”

—Noah Gift, Duke Faculty and Founder, Pragmatic AI Labs

"Data Science on AWS provides an in-depth look at the modern data science stack on
AWS. Machine learning practitioners will learn about the services, open source libraries,

and infrastructure they can leverage during each phase of the ML pipeline and how to tie
it all together using MLOps. This book is a great resource and a definite must-read

for anyone looking to level up their ML skills using AWS.”
—Kesha Williams, A Cloud Guru

“As AWS continues to generate explosive growth, the data science practitioner today
needs to know how to operate in the cloud. This book takes the practitioner through key
topics in cloud-based data science such as SageMaker, AutoML, Model Deployment, and

MLOps cloud security best practices. It’s a bookshelf must-have for those
looking to keep pace with machine learning on AWS.”
—Josh Patterson, Author, Kubeflow Operations Guide

(O’Reilly)

“AWS is an extremely powerful tool, a visionary and leader in cloud computing.
The variety of available services can be impressive, which is where this book becomes

a big deal. Antje and Chris have crafted a complete AWS guide to building
ML/AI pipelines complying with best-in-class practices. Allow yourself

to keep calm and go to production."
—Andy Petrella, CEO and Founder, Kensu

“This book is a must-have for anyone wanting to learn how to organize a data science
project in production on AWS. It covers the full journey from research to production and

covers the AWS tools and services that could be used for each step along the way.”
—Rustem Feyzkhanov, Machine Learning Engineer,

Instrumental, Amazon Web Services ML Hero

“Chris and Antje manage to compress all of AWS AI in this great book. If you plan to
build AI using AWS, this has you covered from beginning to end and more. Well done!”

—Francesco Mosconi, Author and Founder,
Zero to Deep Learning

“Chris and Antje expertly guide ML practitioners through the complex and sometimes
overwhelming landscape of managed cloud services on AWS. Because this book serves as

a comprehensive atlas of services and their interactions toward the completion of
end-to-end data science workflows from data ingestion to predictive application,

you’ll quickly find a spot for it on your desk as a vital quick reference!”
—Benjamin Bengfort, Rotational Labs

“This book covers the different AWS tools for data science as well as how to select the
right ones and make them work together.”

—Holden Karau, Author, Learning Spark and Kubeflow for
Machine Learning (O’Reilly)

“The book is easy to read and accompanied by a tested and well-managed code base. I
highly recommend it to anyone interested in data science, data engineering,

and machine learning engineering at scale.”
—Shreenidhi Bharadwaj, Senior Principal, Private Equity/
Venture Capital Advisory (M&A), West Monroe Partners

Chris Fregly and Antje Barth

Data Science on AWS
Implementing End-to-End, Continuous AI

and Machine Learning Pipelines

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-07939-2

[LSI]

Data Science on AWS
by Chris Fregly and Antje Barth

Copyright © 2021 Antje Barth and Flux Capacitor, LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jessica Haberman
Development Editor: Gary O’Brien
Production Editor: Katherine Tozer
Copyeditor: Charles Roumeliotis
Proofreader: Piper Editorial Consulting, LLC

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: O’Reilly Media, Inc.

April 2021: First Edition

Revision History for the First Edition
2021-04-07: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492079392 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Data Science on AWS, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492079392

Table of Contents

Preface. xiii

1. Introduction to Data Science on AWS. 1
Benefits of Cloud Computing 1
Data Science Pipelines and Workflows 4
MLOps Best Practices 7
Amazon AI Services and AutoML with Amazon SageMaker 10
Data Ingestion, Exploration, and Preparation in AWS 13
Model Training and Tuning with Amazon SageMaker 18
Model Deployment with Amazon SageMaker and AWS Lambda Functions 21
Streaming Analytics and Machine Learning on AWS 21
AWS Infrastructure and Custom-Built Hardware 23
Reduce Cost with Tags, Budgets, and Alerts 26
Summary 26

2. Data Science Use Cases. 29
Innovation Across Every Industry 29
Personalized Product Recommendations 30
Detect Inappropriate Videos with Amazon Rekognition 36
Demand Forecasting 38
Identify Fake Accounts with Amazon Fraud Detector 42
Enable Privacy-Leak Detection with Amazon Macie 43
Conversational Devices and Voice Assistants 44
Text Analysis and Natural Language Processing 45
Cognitive Search and Natural Language Understanding 50
Intelligent Customer Support Centers 51
Industrial AI Services and Predictive Maintenance 52
Home Automation with AWS IoT and Amazon SageMaker 53

vii

Extract Medical Information from Healthcare Documents 54
Self-Optimizing and Intelligent Cloud Infrastructure 55
Cognitive and Predictive Business Intelligence 56
Educating the Next Generation of AI and ML Developers 60
Program Nature’s Operating System with Quantum Computing 65
Increase Performance and Reduce Cost 70
Summary 73

3. Automated Machine Learning. 75
Automated Machine Learning with SageMaker Autopilot 76
Track Experiments with SageMaker Autopilot 78
Train and Deploy a Text Classifier with SageMaker Autopilot 78
Automated Machine Learning with Amazon Comprehend 91
Summary 95

4. Ingest Data into the Cloud. 97
Data Lakes 98
Query the Amazon S3 Data Lake with Amazon Athena 105
Continuously Ingest New Data with AWS Glue Crawler 109
Build a Lake House with Amazon Redshift Spectrum 111
Choose Between Amazon Athena and Amazon Redshift 118
Reduce Cost and Increase Performance 119
Summary 126

5. Explore the Dataset. 127
Tools for Exploring Data in AWS 128
Visualize Our Data Lake with SageMaker Studio 129
Query Our Data Warehouse 142
Create Dashboards with Amazon QuickSight 150
Detect Data-Quality Issues with Amazon SageMaker and Apache Spark 151
Detect Bias in Our Dataset 159
Detect Different Types of Drift with SageMaker Clarify 166
Analyze Our Data with AWS Glue DataBrew 168
Reduce Cost and Increase Performance 170
Summary 172

6. Prepare the Dataset for Model Training. 173
Perform Feature Selection and Engineering 173
Scale Feature Engineering with SageMaker Processing Jobs 187
Share Features Through SageMaker Feature Store 194
Ingest and Transform Data with SageMaker Data Wrangler 198
Track Artifact and Experiment Lineage with Amazon SageMaker 199

viii | Table of Contents

Ingest and Transform Data with AWS Glue DataBrew 204
Summary 206

7. Train Your First Model. 207
Understand the SageMaker Infrastructure 207
Deploy a Pre-Trained BERT Model with SageMaker JumpStart 212
Develop a SageMaker Model 214
A Brief History of Natural Language Processing 216
BERT Transformer Architecture 219
Training BERT from Scratch 221
Fine Tune a Pre-Trained BERT Model 223
Create the Training Script 226
Launch the Training Script from a SageMaker Notebook 232
Evaluate Models 239
Debug and Profile Model Training with SageMaker Debugger 245
Interpret and Explain Model Predictions 249
Detect Model Bias and Explain Predictions 255
More Training Options for BERT 259
Reduce Cost and Increase Performance 268
Summary 274

8. Train and Optimize Models at Scale. 277
Automatically Find the Best Model Hyper-Parameters 277
Use Warm Start for Additional SageMaker Hyper-Parameter Tuning Jobs 284
Scale Out with SageMaker Distributed Training 288
Reduce Cost and Increase Performance 296
Summary 300

9. Deploy Models to Production. 301
Choose Real-Time or Batch Predictions 301
Real-Time Predictions with SageMaker Endpoints 302
Auto-Scale SageMaker Endpoints Using Amazon CloudWatch 310
Strategies to Deploy New and Updated Models 315
Testing and Comparing New Models 319
Monitor Model Performance and Detect Drift 331
Monitor Data Quality of Deployed SageMaker Endpoints 335
Monitor Model Quality of Deployed SageMaker Endpoints 341
Monitor Bias Drift of Deployed SageMaker Endpoints 345
Monitor Feature Attribution Drift of Deployed SageMaker Endpoints 348
Perform Batch Predictions with SageMaker Batch Transform 351
AWS Lambda Functions and Amazon API Gateway 356
Optimize and Manage Models at the Edge 357

Table of Contents | ix

Deploy a PyTorch Model with TorchServe 357
TensorFlow-BERT Inference with AWS Deep Java Library 360
Reduce Cost and Increase Performance 362
Summary 367

10. Pipelines and MLOps. 369
Machine Learning Operations 369
Software Pipelines 371
Machine Learning Pipelines 371
Pipeline Orchestration with SageMaker Pipelines 375
Automation with SageMaker Pipelines 386
More Pipeline Options 391
Human-in-the-Loop Workflows 400
Reduce Cost and Improve Performance 406
Summary 407

11. Streaming Analytics and Machine Learning. 409
Online Learning Versus Offline Learning 410
Streaming Applications 410
Windowed Queries on Streaming Data 411
Streaming Analytics and Machine Learning on AWS 415
Classify Real-Time Product Reviews with Amazon Kinesis, AWS Lambda,

and Amazon SageMaker 417
Implement Streaming Data Ingest Using Amazon Kinesis Data Firehose 418
Summarize Real-Time Product Reviews with Streaming Analytics 422
Setting Up Amazon Kinesis Data Analytics 424
Amazon Kinesis Data Analytics Applications 432
Classify Product Reviews with Apache Kafka, AWS Lambda,

and Amazon SageMaker 439
Reduce Cost and Improve Performance 440
Summary 442

12. Secure Data Science on AWS. 443
Shared Responsibility Model Between AWS and Customers 443
Applying AWS Identity and Access Management 444
Isolating Compute and Network Environments 452
Securing Amazon S3 Data Access 455
Encryption at Rest 463
Encryption in Transit 467
Securing SageMaker Notebook Instances 469
Securing SageMaker Studio 471
Securing SageMaker Jobs and Models 473

x | Table of Contents

Securing AWS Lake Formation 477
Securing Database Credentials with AWS Secrets Manager 478
Governance 478
Auditability 481
Reduce Cost and Improve Performance 483
Summary 485

Index. 487

Table of Contents | xi

Preface

With this practical book, AI and machine learning (ML) practitioners will learn how
to successfully build and deploy data science projects on Amazon Web Services
(AWS). The Amazon AI and ML stack unifies data science, data engineering, and
application development to help level up your skills. This guide shows you how to
build and run pipelines in the cloud, then integrate the results into applications in
minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth
demonstrate how to reduce cost and improve performance.

• Apply the Amazon AI and ML stack to real-world use cases for natural language
processing, computer vision, fraud detection, conversational devices, and more.

• Use automated ML (AutoML) to implement a specific subset of use cases with
Amazon SageMaker Autopilot.

• Dive deep into the complete model development life cycle for a BERT-based nat‐
ural language processing (NLP) use case including data ingestion and analysis,
and more.

• Tie everything together into a repeatable ML operations (MLOps) pipeline.
• Explore real-time ML, anomaly detection, and streaming analytics on real-time

data streams with Amazon Kinesis and Amazon Managed Streaming for Apache
Kafka (Amazon MSK).

• Learn security best practices for data science projects and workflows, including
AWS Identity and Access Management (IAM), authentication, authorization,
including data ingestion and analysis, model training, and deployment.

xiii

Overview of the Chapters
Chapter 1 provides an overview of the broad and deep Amazon AI and ML stack, an
enormously powerful and diverse set of services, open source libraries, and infra‐
structure to use for data science projects of any complexity and scale.

Chapter 2 describes how to apply the Amazon AI and ML stack to real-world use
cases for recommendations, computer vision, fraud detection, natural language
understanding (NLU), conversational devices, cognitive search, customer support,
industrial predictive maintenance, home automation, Internet of Things (IoT),
healthcare, and quantum computing.

Chapter 3 demonstrates how to use AutoML to implement a specific subset of these
use cases with SageMaker Autopilot.

Chapters 4–9 dive deep into the complete model development life cycle (MDLC) for a
BERT-based NLP use case, including data ingestion and analysis, feature selection
and engineering, model training and tuning, and model deployment with Amazon
SageMaker, Amazon Athena, Amazon Redshift, Amazon EMR, TensorFlow, PyTorch,
and serverless Apache Spark.

Chapter 10 ties everything together into repeatable pipelines using MLOps with Sage‐
Maker Pipelines, Kubeflow Pipelines, Apache Airflow, MLflow, and TFX.

Chapter 11 demonstrates real-time ML, anomaly detection, and streaming analytics
on real-time data streams with Amazon Kinesis and Apache Kafka.

Chapter 12 presents a comprehensive set of security best practices for data science
projects and workflows, including IAM, authentication, authorization, network isola‐
tion, data encryption at rest, post-quantum network encryption in transit, gover‐
nance, and auditability.

Throughout the book, we provide tips to reduce cost and improve performance for
data science projects on AWS.

Who Should Read This Book
This book is for anyone who uses data to make critical business decisions. The guid‐
ance here will help data analysts, data scientists, data engineers, ML engineers,
research scientists, application developers, and DevOps engineers broaden their
understanding of the modern data science stack and level up their skills in the cloud.

The Amazon AI and ML stack unifies data science, data engineering, and application
development to help users level up their skills beyond their current roles. We show
how to build and run pipelines in the cloud, then integrate the results into applica‐
tions in minutes instead of days.

xiv | Preface

Ideally, and to get most out of this book, we suggest readers have the following
knowledge:

• Basic understanding of cloud computing
• Basic programming skills with Python, R, Java/Scala, or SQL
• Basic familiarity with data science tools such as Jupyter Notebook, pandas,

NumPy, or scikit-learn

Other Resources
There are many great authors and resources from which this book drew inspiration:

• Aurélien Géron’s Hands-on Machine Learning with Scikit-Learn, Keras, and
TensorFlow (O’Reilly) is a great hands-on guide to building intelligent ML sys‐
tems with popular tools such as Python, scikit-learn, and TensorFlow.

• Jeremy Howard and Sylvain Gugger’s Deep Learning for Coders with fastai and
PyTorch (O’Reilly) is an excellent reference for building deep learning applica‐
tions with PyTorch “without a PhD.”

• Hannes Hapke and Catherine Nelson’s Building Machine Learning Pipelines
(O’Reilly) is a fantastic and easy-to-read reference for building AutoML pipelines
with TensorFlow and TFX.

• Eric R. Johnston, Nic Harrigan, and Mercedes Gimeno-Segovia’s Programming
Quantum Computers (O’Reilly) is a great introduction to quantum computers
with easy-to-understand examples that demonstrate the quantum advantage.

• Micha Gorelick and Ian Ozsvald’s High Performance Python (O’Reilly) is an
advanced reference that reveals many valuable tips and tricks to profile and opti‐
mize Python code for high-performance data processing, feature engineering,
and model training.

• Data Science on AWS has a site dedicated to this book that provides advanced
workshops, monthly webinars, meetups, videos, and slides related to the content
in this book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Preface | xv

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.oreilly.com/library/view/deep-learning-for/9781492045519/
https://www.oreilly.com/library/view/deep-learning-for/9781492045519/
https://www.oreilly.com/library/view/building-machine-learning/9781492053187/
https://www.oreilly.com/library/view/programming-quantum-computers/9781492039679/
https://www.oreilly.com/library/view/programming-quantum-computers/9781492039679/
https://www.oreilly.com/library/view/high-performance-python/9781492055013/
https://datascienceonaws.com

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

This element signifies a tip or suggestion.

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/data-science-on-aws. Some of the code examples shown in this
book are shortened to highlight a specific implementation. The repo includes addi‐
tional notebooks not covered in this book but useful for readers to review. The note‐
books are organized by book chapter and should be easy to follow along.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Data Science on AWS by Chris
Fregly and Antje Barth (O’Reilly). Copyright 2021 Antje Barth and Flux Capacitor,
LLC, 978-1-492-07939-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xvi | Preface

https://github.com/data-science-on-aws
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/data-science-aws.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

The authors regularly share relevant blog posts, conference talks, slides, meetup
invites and workshop dates on Twitter or LinkedIn.

Follow the authors on Twitter: https://twitter.com/cfregly and https://twitter.com/
anbarth

Find the authors on LinkedIn: https://www.linkedin.com/in/cfregly and https://
www.linkedin.com/in/antje-barth

Preface | xvii

http://oreilly.com
http://oreilly.com
https://oreil.ly/data-science-aws
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
https://twitter.com/cfregly
https://twitter.com/anbarth
https://twitter.com/anbarth
https://www.linkedin.com/in/cfregly
https://www.linkedin.com/in/antje-barth
https://www.linkedin.com/in/antje-barth

Acknowledgments
We would like to thank our O’Reilly development editor, Gary O’Brien, who helped
us navigate the book-authoring process and, more importantly, made us laugh every
time we chatted. Thanks, Gary, for letting us include source code and low-level hard‐
ware specifications in Chapter 1! We’d also like to thank Jessica Haberman, senior
acquisitions editor, who offered key advice on everything from the initial book pro‐
posal to the final page count. After seven years of submitting book proposals, you
helped us raise the bar to the point where the proposal was accepted! Special thanks
to Mike Loukides and Nicole Taché from O’Reilly for your thoughtful advice early in
the book-writing process, including the chapter outline, introductions, and
summaries.

We would like to send a warm thank you to book reviewers who tirelessly reviewed—
and re-reviewed—every page in this book. The reviewers are listed here in alphabeti‐
cal order by first name: Ali Arsanjani, Andy Petrella, Brent Rabowsky, Dean Wam‐
pler, Francesco Mosconi, Hannah Marlowe, Hannes Hapke, Josh Patterson, Josh
Wills, Liam Morrison, Noah Gift, Ramine Tinati, Robert Monarch, Roy Ben-Alta,
Rustem Feyzkhanov, Sean Owen, Shelbee Eigenbrode, Sireesha Muppala, Stefan Natu,
Ted Dunning, and Tim O’Brien. Your deep technical expertise and thorough feedback
has been invaluable not just to this book but to the way we will present technical
material in the future. You helped elevate this book from good to great, and we really
enjoyed working with you all on this project.

Chris

I would like to dedicate this book to my late father, Thomas Fregly. Dad: You brought
home my first Apple computer when I was 8 years old and forever changed my life.
You helped me absorb your university calculus book at age 10 and further solidified
my strong interest in mathematics. You taught me how to read voraciously, write suc‐
cinctly, speak effectively, type quickly, and ask questions early. Watching you repair a
boat engine while stranded on Lake Michigan, I am continuously inspired to dive
deep and understand the hardware that powers my software. While walking around
your office at the Chicago Sun-Times, I learned that everybody has an interesting story
to tell, including the front-desk person, the CEO, and the maintenance staff. You said
“Hello” to everybody equally, asked about their children, listened to their stories, and
made them laugh with a funny story of your own. Holding your hand as we walked
around your university campus as a child, I learned that it’s OK to leave the sidewalk
and carve out my own path through the grass. You said, “Don’t worry, Chris, they’ll
eventually pave this path as it’s clearly the shortest path from the engineering building
to the cafeteria.” You were right, Dad. Many years later, we walked that newly paved
path as we grabbed your favorite drink, Diet Pepsi, from the cafeteria. From you, I
learned to carve out my own path through life and not always follow the crowd.

xviii | Preface

While you did not live to see Windows 95, you, quite frankly, didn’t miss much. And
yes, Mac OS finally switched to Linux. You were right on that one, as well.

I would also like to thank my coauthor, Antje Barth, for working many late nights and
weekends to help make this a fantastic book-writing experience. Even though we have
a 8–9 hour time difference between San Francisco and Düsseldorf, you always made
yourself available for virtual whiteboarding sessions, last-minute source-code
improvements, and Oxford comma discussions. We have become even better friends
because of this experience, and I could not have created such a dense and high-
quality book without you. I look forward to working with you on many future
projects to come!

Antje

I would like to thank Ted Dunning and Ellen Friedman for being great mentors and
always encouraging me to take on new challenges. Ted, you always have words of wis‐
dom to share when we talk that help me see things from a different perspective,
whether it’s been in preparing for a demo competition or advising us on how to help
our readers get the most out of this book. Ellen, I still remember how you guided me
to create compelling conference talk proposals when I started submitting talks for
O’Reilly Strata and AI conferences. And up to this day, I put extra thought into com‐
ing up with catchy titles. Unfortunately, O’Reilly rejected my proposal to title this
book Alexa, Please Train My Model.

You both lead by example when you say, “Help build a girl’s dream of what they can
accomplish.” For that same reason, I’d like to dedicate this book to all the women and
girls who are dreaming of or currently pursuing a career in technology. As long as
you believe in yourself, there is nothing stopping you from fulfilling your dreams in
this profession.

There have been so many more individuals who supported and encouraged me
throughout my professional journey. I thank you all.

I would also like to thank Chris for being a fun and insightful coauthor. From the
beginning, you always insisted on the highest standards, drove me to dive deep, and
encouraged me to be curious and ask a lot of questions. You helped simplify my code,
present my thoughts clearly, and finally accept the controversial Oxford comma!

Preface | xix

CHAPTER 1

Introduction to Data Science on AWS

In this chapter, we discuss the benefits of building data science projects in the cloud.
We start by discussing the benefits of cloud computing. Next, we describe a typical
machine learning workflow and the common challenges to move our models and
applications from the prototyping phase to production. We touch on the overall ben‐
efits of developing data science projects on Amazon Web Services (AWS) and intro‐
duce the relevant AWS services for each step of the model development workflow. We
also share architectural best practices, specifically around operational excellence,
security, reliability, performance, and cost optimization.

Benefits of Cloud Computing
Cloud computing enables the on-demand delivery of IT resources via the internet
with pay-as-you-go pricing. So instead of buying, owning, and maintaining our own
data centers and servers, we can acquire technology such as compute power, storage,
databases, and other services on an as-needed basis. Similar to a power company
sending electricity instantly when we flip a light switch in our home, the cloud provi‐
sions IT resources on-demand with the click of a button or invocation of an API.

“There is no compression algorithm for experience” is a famous quote by Andy Jassy,
CEO, Amazon Web Services. The quote expresses the company’s long-standing expe‐
rience in building reliable, secure, and performant services since 2006.

AWS has been continually expanding its service portfolio to support virtually any
cloud workload, including many services and features in the area of artificial intelli‐
gence and machine learning. Many of these AI and machine learning services stem
from Amazon’s pioneering work in recommender systems, computer vision, speech/
text, and neural networks over the past 20 years. A paper from 2003 titled “Ama‐
zon.com Recommendations: Item-to-Item Collaborative Filtering” recently won the

1

https://oreil.ly/UlCDV
https://oreil.ly/UlCDV

Institute of Electrical and Electronics Engineers award as a paper that withstood the
“test of time.” Let’s review the benefits of cloud computing in the context of data sci‐
ence projects on AWS.

Agility
Cloud computing lets us spin up resources as we need them. This enables us to
experiment quickly and frequently. Maybe we want to test a new library to run data-
quality checks on our dataset, or speed up model training by leveraging the newest
generation of GPU compute resources. We can spin up tens, hundreds, or even thou‐
sands of servers in minutes to perform those tasks. If an experiment fails, we can
always deprovision those resources without any risk.

Cost Savings
Cloud computing allows us to trade capital expenses for variable expenses. We only
pay for what we use with no need for upfront investments in hardware that may
become obsolete in a few months. If we spin up compute resources to perform our
data-quality checks, data transformations, or model training, we only pay for the time
those compute resources are in use. We can achieve further cost savings by leveraging
Amazon EC2 Spot Instances for our model training. Spot Instances let us take advan‐
tage of unused EC2 capacity in the AWS cloud and come with up to a 90% discount
compared to on-demand instances. Reserved Instances and Savings Plans allow us to
save money by prepaying for a given amount of time.

Elasticity
Cloud computing enables us to automatically scale our resources up or down to
match our application needs. Let’s say we have deployed our data science application
to production and our model is serving real-time predictions. We can now automati‐
cally scale up the model hosting resources in case we observe a peak in model
requests. Similarly, we can automatically scale down the resources when the number
of model requests drops. There is no need to overprovision resources to handle peak
loads.

Innovate Faster
Cloud computing allows us to innovate faster as we can focus on developing applica‐
tions that differentiate our business, rather than spending time on the undifferenti‐
ated heavy lifting of managing infrastructure. The cloud helps us experiment with
new algorithms, frameworks, and hardware in seconds versus months.

2 | Chapter 1: Introduction to Data Science on AWS

Deploy Globally in Minutes
Cloud computing lets us deploy our data science applications globally within
minutes. In our global economy, it is important to be close to our customers. AWS
has the concept of a Region, which is a physical location around the world where
AWS clusters data centers. Each group of logical data centers is called an Availability
Zone (AZ). Each AWS Region consists of multiple, isolated, and physically separate
AZs within a geographic area. The number of AWS Regions and AZs is continuously
growing.

We can leverage the global footprint of AWS Regions and AZs to deploy our data sci‐
ence applications close to our customers, improve application performance with
ultra-fast response times, and comply with the data-privacy restrictions of each
Region.

Smooth Transition from Prototype to Production
One of the benefits of developing data science projects in the cloud is the smooth
transition from prototype to production. We can switch from running model proto‐
typing code in our notebook to running data-quality checks or distributed model
training across petabytes of data within minutes. And once we are done, we can
deploy our trained models to serve real-time or batch predictions for millions of
users across the globe.

Prototyping often happens in single-machine development environments using
Jupyter Notebook, NumPy, and pandas. This approach works fine for small data sets.
When scaling out to work with large datasets, we will quickly exceed the single
machine’s CPU and RAM resources. Also, we may want to use GPUs—or multiple
machines—to accelerate our model training. This is usually not possible with a single
machine.

The next challenge arises when we want to deploy our model (or application) to pro‐
duction. We also need to ensure our application can handle thousands or millions of
concurrent users at global scale.

Production deployment often requires a strong collaboration between various teams
including data science, data engineering, application development, and DevOps. And
once our application is successfully deployed, we need to continuously monitor and
react to model performance and data-quality issues that may arise after the model is
pushed to production.

Developing data science projects in the cloud enables us to transition our models
smoothly from prototyping to production while removing the need to build out our
own physical infrastructure. Managed cloud services provide us with the tools to
automate our workflows and deploy models into a scalable and highly performant
production environment.

Benefits of Cloud Computing | 3

https://oreil.ly/qegDk
https://oreil.ly/qegDk

Data Science Pipelines and Workflows
Data science pipelines and workflows involve many complex, multidisciplinary, and
iterative steps. Let’s take a typical machine learning model development workflow as
an example. We start with data preparation, then move to model training and tuning.
Eventually, we deploy our model (or application) into a production environment.
Each of those steps consists of several subtasks as shown in Figure 1-1.

Figure 1-1. A typical machine learning workflow involves many complex, multidiscipli‐
nary, and iterative steps.

If we are using AWS, our raw data is likely already in Amazon Simple Storage Service
(Amazon S3) and stored as CSV, Apache Parquet, or the equivalent. We can start
training models quickly using the Amazon AI or automated machine learning
(AutoML) services to establish baseline model performance by pointing directly to
our dataset and clicking a single “train” button. We dive deep into the AI Services and
AutoML in Chapters 2 and 3.

For more customized machine learning models—the primary focus of this book—we
can start the manual data ingestion and exploration phases, including data analysis,
data-quality checks, summary statistics, missing values, quantile calculations, data
skew analysis, correlation analysis, etc. We dive deep into data ingestion and explora‐
tion in Chapters 4 and 5.

We should then define the machine learning problem type—regression, classification,
clustering, etc. Once we have identified the problem type, we can select a machine
learning algorithm best suited to solve the given problem. Depending on the algo‐
rithm we choose, we need to select a subset of our data to train, validate, and test our
model. Our raw data usually needs to be transformed into mathematical vectors to
enable numerical optimization and model training. For example, we might decide to
transform categorical columns into one-hot encoded vectors or convert text-based
columns into word-embedding vectors. After we have transformed a subset of the
raw data into features, we should split the features into train, validation, and test

4 | Chapter 1: Introduction to Data Science on AWS

feature sets to prepare for model training, tuning, and testing. We dive deep into fea‐
ture selection and transformation in Chapters 5 and 6.

In the model training phase, we pick an algorithm and train our model with our
training feature set to verify that our model code and algorithm is suited to solve the
given problem. We dive deep into model training in Chapter 7.

In the model tuning phase, we tune the algorithm hyper-parameters and evaluate
model performance against the validation feature set. We repeat these steps—adding
more data or changing hyper-parameters as needed—until the model achieves the
expected results on the test feature set. These results should be in line with our busi‐
ness objective before pushing the model to production. We dive deep into hyper-
parameter tuning in Chapter 8.

The final stage—moving from prototyping into production—often presents the big‐
gest challenge to data scientists and machine learning practitioners. We dive deep
into model deployment in Chapter 9.

In Chapter 10, we tie everything together into an automated pipeline. In Chapter 11,
we perform data analytics and machine learning on streaming data. Chapter 12 sum‐
marizes best practices for securing data science in the cloud.

Once we have built every individual step of our machine learning workflow, we can
start automating the steps into a single, repeatable machine learning pipeline. When
new data lands in S3, our pipeline reruns with the latest data and pushes the latest
model into production to serve our applications. There are several workflow orches‐
tration tools and AWS services available to help us build automated machine learning
pipelines.

Amazon SageMaker Pipelines
Amazon SageMaker Pipelines are the standard, full-featured, and most complete way
to implement AI and machine learning pipelines on Amazon SageMaker. SageMaker
Pipelines have integration with SageMaker Feature Store, SageMaker Data Wrangler,
SageMaker Processing Jobs, SageMaker Training Jobs, SageMaker Hyper-Parameter
Tuning Jobs, SageMaker Model Registry, SageMaker Batch Transform, and Sage‐
Maker Model Endpoints, which we discuss throughout the book. We will dive deep
into managed SageMaker Pipelines in Chapter 10 along with discussions on how to
build pipelines with AWS Step Functions, Kubeflow Pipelines, Apache Airflow,
MLflow, TFX, and human-in-the-loop workflows.

AWS Step Functions Data Science SDK
Step Functions, a managed AWS service, is a great option for building complex work‐
flows without having to build and maintain our own infrastructure. We can use the
Step Functions Data Science SDK to build machine learning pipelines from Python

Data Science Pipelines and Workflows | 5

environments, such as Jupyter Notebook. We will dive deeper into the managed Step
Functions for machine learning in Chapter 10.

Kubeflow Pipelines
Kubeflow is a relatively new ecosystem built on Kubernetes that includes an orches‐
tration subsystem called Kubeflow Pipelines. With Kubeflow, we can restart failed
pipelines, schedule pipeline runs, analyze training metrics, and track pipeline lineage.
We will dive deeper into managing a Kubeflow cluster on Amazon Elastic Kubernetes
Service (Amazon EKS) in Chapter 10.

Managed Workflows for Apache Airflow on AWS
Apache Airflow is a very mature and popular option primarily built to orchestrate
data engineering and extract-transform-load (ETL) pipelines. We can use Airflow to
author workflows as directed acyclic graphs of tasks. The Airflow scheduler executes
our tasks on an array of workers while following the specified dependencies. We can
visualize pipelines running in production, monitor progress, and troubleshoot issues
when needed via the Airflow user interface. We will dive deeper into Amazon Man‐
aged Workflows for Apache Airflow (Amazon MWAA) in Chapter 10.

MLflow
MLflow is an open source project that initially focused on experiment tracking but
now supports pipelines called MLflow Workflows. We can use MLflow to track
experiments with Kubeflow and Apache Airflow workflows as well. MLflow requires
us to build and maintain our own Amazon EC2 or Amazon EKS clusters, however.
We will discuss MLflow in more detail in Chapter 10.

TensorFlow Extended
TensorFlow Extended (TFX) is an open source collection of Python libraries used
within a pipeline orchestrator such as AWS Step Functions, Kubeflow Pipelines,
Apache Airflow, or MLflow. TFX is specific to TensorFlow and depends on another
open source project, Apache Beam, to scale beyond a single processing node. We will
discuss TFX in more detail in Chapter 10.

Human-in-the-Loop Workflows
While AI and machine learning services make our lives easier, humans are far from
being obsolete. In fact, the concept of “human-in-the-loop” has emerged as an impor‐
tant cornerstone in many AI/ML workflows. Humans provide important quality
assurance for sensitive and regulated models in production.

6 | Chapter 1: Introduction to Data Science on AWS

Amazon Augmented AI (Amazon A2I) is a fully managed service to develop human-
in-the-loop workflows that include a clean user interface, role-based access control
with AWS Identity and Access Management (IAM), and scalable data storage with S3.
Amazon A2I is integrated with many Amazon services including Amazon Rekogni‐
tion for content moderation and Amazon Textract for form-data extraction. We can
also use Amazon A2I with Amazon SageMaker and any of our custom ML models.
We will dive deeper into human-in-the-loop workflows in Chapter 10.

MLOps Best Practices
The field of machine learning operations (MLOps) has emerged over the past decade
to describe the unique challenges of operating “software plus data” systems like AI
and machine learning. With MLOps, we are developing the end-to-end architecture
for automated model training, model hosting, and pipeline monitoring. Using a com‐
plete MLOps strategy from the beginning, we are building up expertise, reducing
human error, de-risking our project, and freeing up time to focus on the hard data
science challenges.

We’ve seen MLOps evolve through three different stages of maturity:

MLOps v1.0
Manually build, train, tune, and deploy models

MLOps v2.0
Manually build and orchestrate model pipelines

MLOps v3.0
Automatically run pipelines when new data arrives or code changes from deter‐
ministic triggers such as GitOps or when models start to degrade in performance
based on statistical triggers such as drift, bias, and explainability divergence

AWS and Amazon SageMaker Pipelines support the complete MLOps strategy,
including automated pipeline retraining with both deterministic GitOps triggers as
well as statistical triggers such as data drift, model bias, and explainability divergence.
We will dive deep into statistical drift, bias, and explainability in Chapters 5, 6, 7, and
9. And we implement continuous and automated pipelines in Chapter 10 with vari‐
ous pipeline orchestration and automation options, including SageMaker Pipelines,
AWS Step Functions, Apache Airflow, Kubeflow, and other options including human-
in-the-loop workflows. For now, let’s review some best practices for operational excel‐
lence, security, reliability, performance efficiency, and cost optimization of MLOps.

Operational Excellence
Here are a few machine-learning-specific best practices that help us build successful
data science projects in the cloud:

MLOps Best Practices | 7

Data-quality checks
Since all our ML projects start with data, make sure to have access to high-quality
datasets and implement repeatable data-quality checks. Poor data quality leads to
many failed projects. Stay ahead of these issues early in the pipeline.

Start simple and reuse existing solutions
Start with the simplest solution as there is no need to reinvent the wheel if we
don’t need to. There is likely an AI service available to solve our task. Leverage
managed services such as Amazon SageMaker that come with a lot of built-in
algorithms and pre-trained models.

Define model performance metrics
Map the model performance metrics to business objectives, and continuously
monitor these metrics. We should develop a strategy to trigger model invalida‐
tions and retrain models when performance degrades.

Track and version everything
Track model development through experiments and lineage tracking. We should
also version our datasets, feature-transformation code, hyper-parameters, and
trained models.

Select appropriate hardware for both model training and model serving
In many cases, model training has different infrastructure requirements than
does model-prediction serving. Select the appropriate resources for each phase.

Continuously monitor deployed models
Detect data drift and model drift—and take appropriate action such as model
retraining.

Automate machine learning workflows
Build consistent, automated pipelines to reduce human error and free up time to
focus on the hard problems. Pipelines can include human-approval steps for
approving models before pushing them to production.

Security
Security and compliance is a shared responsibility between AWS and the customer.
AWS ensures the security “of ” the cloud, while the customer is responsible for secu‐
rity “in” the cloud.

The most common security considerations for building secure data science projects
in the cloud touch the areas of access management, compute and network isolation,
encryption, governance, and auditability.

8 | Chapter 1: Introduction to Data Science on AWS

We need deep security and access control capabilities around our data. We should
restrict access to data-labeling jobs, data-processing scripts, models, inference end‐
points, and batch prediction jobs.

We should also implement a data governance strategy that ensures the integrity, secu‐
rity, and availability of our datasets. Implement and enforce data lineage, which mon‐
itors and tracks the data transformations applied to our training data. Ensure data is
encrypted at rest and in motion. Also, we should enforce regulatory compliance
where needed.

We will discuss best practices to build secure data science and machine learning
applications on AWS in more detail in Chapter 12.

Reliability
Reliability refers to the ability of a system to recover from infrastructure or service
disruptions, acquire computing resources dynamically to meet demand, and mitigate
disruptions such as misconfigurations or transient network issues.

We should automate change tracking and versioning for our training data. This way,
we can re-create the exact version of a model in the event of a failure. We will build
once and use the model artifacts to deploy the model across multiple AWS accounts
and environments.

Performance Efficiency
Performance efficiency refers to the efficient use of computing resources to meet
requirements and how to maintain that efficiency as demand changes and technolo‐
gies evolve.

We should choose the right compute for our machine learning workload. For exam‐
ple, we can leverage GPU-based instances to more efficiently train deep learning
models using a larger queue depth, higher arithmetic logic units, and increased regis‐
ter counts.

Know the latency and network bandwidth performance requirements of models, and
deploy each model closer to customers, if needed. There are situations where we
might want to deploy our models “at the edge” to improve performance or comply
with data-privacy regulations. “Deploying at the edge” refers to running the model on
the device itself to run the predictions locally. We also want to continuously monitor
key performance metrics of our model to spot performance deviations early.

Cost Optimization
We can optimize cost by leveraging different Amazon EC2 instance pricing options.
For example, Savings Plans offer significant savings over on-demand instance prices,

MLOps Best Practices | 9

in exchange for a commitment to use a specific amount of compute power for a given
amount of time. Savings Plans are a great choice for known/steady state workloads
such as stable inference workloads.

With on-demand instances, we pay for compute capacity by the hour or the second
depending on which instances we run. On-demand instances are best for new or
stateful spiky workloads such as short-term model training jobs.

Finally, Amazon EC2 Spot Instances allow us to request spare Amazon EC2 compute
capacity for up to 90% off the on-demand price. Spot Instances can cover flexible,
fault-tolerant workloads such as model training jobs that are not time-sensitive.
Figure 1-2 shows the resulting mix of Savings Plans, on-demand instances, and Spot
Instances.

Figure 1-2. Optimize cost by choosing a mix of Savings Plans, on-demand instances, and
Spot Instances.

With many of the managed services, we can benefit from the “only pay for what you
use” model. For example, with Amazon SageMaker, we only pay for the time our
model trains, or we run our automatic model tuning. Start developing models with
smaller datasets to iterate more quickly and frugally. Once we have a well-performing
model, we can scale up to train with the full dataset. Another important aspect is to
right-size the model training and model hosting instances.

Many times, model training benefits from GPU acceleration, but model inference
might not need the same acceleration. In fact, most machine learning workloads are
actually predictions. While the model may take several hours or days to train, the
deployed model likely runs 24 hours a day, 7 days a week across thousands of predic‐
tion servers supporting millions of customers. We should decide whether our use
case requires a 24 × 7 real-time endpoint or a batch transformation on Spot Instances
in the evenings.

Amazon AI Services and AutoML with Amazon SageMaker
We know that data science projects involve many complex, multidisciplinary, and
iterative steps. We need access to a machine learning development environment that

10 | Chapter 1: Introduction to Data Science on AWS

supports the model prototyping stage and equally provides a smooth transition to
prepare our model for production. We will likely want to experiment with various
machine learning frameworks and algorithms and develop custom model training
and inference code.

Other times, we might want to just use a readily available, pre-trained model to solve
a simple task. Or we might want to leverage AutoML techniques to create a first base‐
line for our project. AWS provides a broad set of services and features for each sce‐
nario. Figure 1-3 shows the entire Amazon AI and machine learning stack, including
AI services and Amazon SageMaker Autopilot for AutoML.

Figure 1-3. The Amazon AI and machine learning stack.

Amazon AI Services
For many common use cases, such as personalized product recommendations, con‐
tent moderation, or demand forecasting, we can also use Amazon’s managed AI serv‐
ices with the option to fine-tune on our custom datasets. We can integrate these
“1-click” AI services into our applications via simple API calls without much (some‐
times no) machine learning experience needed.

Amazon AI Services and AutoML with Amazon SageMaker | 11

The fully managed AWS AI services are the fastest and easiest way to add intelligence
to our applications using simple API calls. The AI services offer pre-trained or auto‐
matically trained machine learning models for image and video analysis, advanced
text and document analysis, personalized recommendations, or demand forecasting.

AI services include Amazon Comprehend for natural language processing, Amazon
Rekognition for computer vision, Amazon Personalize for generating product recom‐
mendations, Amazon Forecast for demand forecasting, and Amazon CodeGuru for
automated source code reviews.

AutoML with SageMaker Autopilot
In another scenario, we might want to automate the repetitive steps of data analysis,
data preparation, and model training for simple and well-known machine learning
problems. This helps us focus our time on more complex use cases. AWS offers
AutoML as part of the Amazon SageMaker service.

AutoML is not limited to SageMaker. Many of the Amazon AI
services perform AutoML to find the best model and hyper-
parameters for the given dataset.

“AutoML” commonly refers to the effort of automating the typical steps of a model
development workflow that we described earlier. Amazon SageMaker Autopilot is a
fully managed service that applies AutoML techniques to our datasets.

SageMaker Autopilot first analyzes our tabular data, identifies the machine learning
problem type (i.e., regression, classification) and chooses algorithms (i.e., XGBoost)
to solve the problem. It also creates the required data transformation code to prepro‐
cess the data for model training. Autopilot then creates a number of diverse machine
learning model candidate pipelines representing variations of data transformations
and chosen algorithms. It applies the data transformations in a feature engineering
step, then trains and tunes each of those model candidates. The result is a ranked list
(leaderboard) of the model candidates based on a defined objective metric such as the
validation accuracy.

SageMaker Autopilot is an example of transparent AutoML. Autopilot not only
shares the data transformation code with us, but it also generates additional Jupyter
notebooks that document the results of the data analysis step and the model candi‐
date pipelines to reproduce the model training.

We can leverage SageMaker Autopilot in many scenarios. We can empower more
people in our organization to build models, i.e., software developers who might have
limited machine learning experience. We can automate model creation for simple-to-

12 | Chapter 1: Introduction to Data Science on AWS

solve machine learning problems and focus our time on the new, complex use cases.
We can automate the first steps of data analysis and data preparation and then use the
result as a baseline to apply our domain knowledge and experience to tweak and fur‐
ther improve the models as needed. The Autopilot-generated model metrics also give
us a good baseline for the model quality achievable with the provided dataset. We will
dive deep into SageMaker Autopilot in Chapter 3.

Data Ingestion, Exploration, and Preparation in AWS
We will cover data ingestion, exploration, and preparation in Chapters 4, 5, and 6,
respectively. But, for now, let’s discuss this portion of the model-development work‐
flow to learn which AWS services and open source tools we can leverage at each step.

Data Ingestion and Data Lakes with Amazon S3 and
AWS Lake Formation
Everything starts with data. And if we have seen one consistent trend in recent deca‐
des, it’s the continued explosion of data. Data is growing exponentially and is increas‐
ingly diverse. Today business success is often closely related to a company’s ability to
quickly extract value from their data. There are now more and more people, teams,
and applications that need to access and analyze the data. This is why many compa‐
nies are moving to a highly scalable, available, secure, and flexible data store, often
called a data lake.

A data lake is a centralized and secure repository that enables us to store, govern, dis‐
cover, and share data at any scale. With a data lake, we can run any kind of analytics
efficiently and use multiple AWS services without having to transform or move our
data.

Data lakes may contain structured relational data as well as semi-structured and
unstructured data. We can even ingest real-time data. Data lakes give data science and
machine learning teams access to large and diverse datasets to train and deploy more
accurate models.

Amazon Simple Storage Service (Amazon S3) is object storage built to store and
retrieve any amount of data from anywhere, in any format. We can organize our data
with fine-tuned access controls to meet our business and compliance requirements.
We will discuss security in depth in Chapter 12. Amazon S3 is designed for
99.999999999% (11 nines) of durability as well as for strong read-after-write consis‐
tency. S3 is a popular choice for data lakes in AWS.

We can leverage the AWS Lake Formation service to create our data lake. The service
helps collect and catalog data from both databases and object storage. Lake Forma‐
tion not only moves our data but also cleans, classifies, and secures access to our sen‐
sitive data using machine learning algorithms.

Data Ingestion, Exploration, and Preparation in AWS | 13

We can leverage AWS Glue to automatically discover and profile new data. AWS Glue
is a scalable and serverless data catalog and data preparation service. The service con‐
sists of an ETL engine, an Apache Hive–compatible data catalog service, and a data
transformation and analysis service. We can build data crawlers to periodically detect
and catalog new data. AWS Glue DataBrew is a service with an easy-to-use UI that
simplifies data ingestion, analysis, visualization, and transformation.

Data Analysis with Amazon Athena, Amazon Redshift, and
Amazon QuickSight
Before we start developing any machine learning model, we need to understand the
data. In the data analysis step, we explore our data, collect statistics, check for missing
values, calculate quantiles, and identify data correlations.

Sometimes we just want to quickly analyze the available data from our development
environment and prototype some first model code. Maybe we just quickly want to try
out a new algorithm. We call this “ad hoc” exploration and prototyping, where we
query parts of our data to get a first understanding of the data schema and data qual‐
ity for our specific machine learning problem at hand. We then develop model code
and ensure it is functionally correct. This ad hoc exploration and prototyping can be
done from development environments such as SageMaker Studio, AWS Glue Data‐
Brew, and SageMaker Data Wrangler.

Amazon SageMaker offers us a hosted managed Jupyter environment and an integra‐
ted development environment with SageMaker Studio. We can start analyzing data
sets directly in our notebook environment with tools such as pandas, a popular
Python open source data analysis and manipulation tool. Note that pandas uses in-
memory data structures (DataFrames) to hold and manipulate data. As many devel‐
opment environments have constrained memory resources, we need to be careful
how much data we pull into the pandas DataFrames.

For data visualizations in our notebook, we can leverage popular open source libra‐
ries such as Matplotlib and Seaborn. Matplotlib lets us create static, animated, and
interactive visualizations in Python. Seaborn builds on top of Matplotlib and adds
support for additional statistical graphics—as well as an easier-to-use programming
model. Both data visualization libraries integrate closely with pandas data structures.

The open source AWS Data Wrangler library extends the power of pandas to AWS.
AWS Data Wrangler connects pandas DataFrames with AWS services such as Ama‐
zon S3, AWS Glue, Amazon Athena, and Amazon Redshift.

AWS Data Wrangler provides optimized Python functions to perform common ETL
tasks to load and unload data between data lakes, data warehouses, and databases.
After installing AWS Data Wrangler with pip install awswrangler and importing

14 | Chapter 1: Introduction to Data Science on AWS

https://pandas.pydata.org
https://matplotlib.org
https://seaborn.pydata.org
https://oreil.ly/Q7gNs

AWS Data Wrangler, we can read our dataset directly from S3 into a pandas Data‐
Frame as shown here:

import awswrangler as wr

Retrieve the data directly from Amazon S3
df = wr.s3.read_parquet("s3://<BUCKET>/<DATASET>/"))

AWS Data Wrangler also comes with additional memory optimizations, such as read‐
ing data in chunks. This is particularly helpful if we need to query large datasets.
With chunking enabled, AWS Data Wrangler reads and returns every dataset file in
the path as a separate pandas DataFrame. We can also set the chunk size to return the
number of rows in a DataFrame equivalent to the numerical value we defined as
chunk size. For a full list of capabilities, check the documentation. We will dive
deeper into AWS Data Wrangler in Chapter 5.

We can leverage managed services such as Amazon Athena to run interactive SQL
queries on the data in S3 from within our notebook. Amazon Athena is a managed,
serverless, dynamically scalable distributed SQL query engine designed for fast paral‐
lel queries on extremely large datasets. Athena is based on Presto, the popular open
source query engine, and requires no maintenance. With Athena, we only pay for the
queries we run. And we can query data in its raw form directly in our S3 data lake
without additional transformations.

Amazon Athena also leverages the AWS Glue Data Catalog service to store and
retrieve the schema metadata needed for our SQL queries. When we define our
Athena database and tables, we point to the data location in S3. Athena then stores
this table-to-S3 mapping in the AWS Glue Data Catalog. We can use PyAthena, a
popular open source library, to query Athena from our Python-based notebooks and
scripts. We will dive deeper into Athena, AWS Glue Data Catalog, and PyAthena in
Chapters 4 and 5.

Amazon Redshift is a fully managed cloud data warehouse service that allows us to
run complex analytic queries against petabytes of structured data. Our queries are
distributed and parallelized across multiple nodes. In contrast to relational databases
that are optimized to store data in rows and mostly serve transactional applications,
Amazon Redshift implements columnar data storage, which is optimized for analyti‐
cal applications where we are mostly interested in the summary statistics on those
columns.

Amazon Redshift also includes Amazon Redshift Spectrum, which allows us to
directly execute SQL queries from Amazon Redshift against exabytes of unstructured
data in our Amazon S3 data lake without the need to physically move the data. Ama‐
zon Redshift Spectrum automatically scales the compute resources needed based on

Data Ingestion, Exploration, and Preparation in AWS | 15

https://oreil.ly/4sGjc

how much data is being received, so queries against Amazon S3 run fast, regardless of
the size of our data.

If we need to create dashboard-style visualizations of our data, we can leverage Ama‐
zon QuickSight. QuickSight is an easy-to-use, serverless business analytics service to
quickly build powerful visualizations. We can create interactive dashboards and
reports and securely share them with our coworkers via browsers or mobile devices.
QuickSight already comes with an extensive library of visualizations, charts, and
tables.

QuickSight implements machine learning and natural language capabilities to help us
gain deeper insights from our data. Using ML Insights, we can discover hidden trends
and outliers in our data. The feature also enables anyone to run what-if analysis and
forecasting, without any machine learning experience needed. We can also build pre‐
dictive dashboards by connecting QuickSight to our machine learning models built in
Amazon SageMaker.

Evaluate Data Quality with AWS Deequ and SageMaker
Processing Jobs
We need high-quality data to build high-quality models. Before we create our training
dataset, we want to ensure our data meets certain quality constraints. In software
development, we run unit tests to ensure our code meets design and quality standards
and behaves as expected. Similarly, we can run unit tests on our dataset to ensure the
data meets our quality expectations.

AWS Deequ is an open source library built on top of Apache Spark that lets us define
unit tests for data and measure data quality in large datasets. Using Deequ unit tests,
we can find anomalies and errors early, before the data gets used in model training.
Deequ is designed to work with very large datasets (billions of rows). The open
source library supports tabular data, i.e., CSV files, database tables, logs, or flattened
JSON files. Anything we can fit in a Spark data frame, we can validate with Deequ.

In a later example, we will leverage Deequ to implement data-quality checks on our
sample dataset. We will leverage the SageMaker Processing Jobs support for Apache
Spark to run our Deequ unit tests at scale. In this setup, we don’t need to provision
any Apache Spark cluster ourselves, as SageMaker Processing handles the heavy lift‐
ing for us. We can think of this as “serverless” Apache Spark. Once we are in posses‐
sion of high-quality data, we can now create our training dataset.

Label Training Data with SageMaker Ground Truth
Many data science projects implement supervised learning. In supervised learning,
our models learn by example. We first need to collect and evaluate, then provide
accurate labels. If there are incorrect labels, our machine learning model will learn

16 | Chapter 1: Introduction to Data Science on AWS

https://oreil.ly/a6cVE

from bad examples. This will ultimately lead to inaccurate predictions. SageMaker
Ground Truth helps us to efficiently and accurately label data stored in Amazon S3.
SageMaker Ground Truth uses a combination of automated and human data labeling.

SageMaker Ground Truth provides pre-built workflows and interfaces for common
data labeling tasks. We define the labeling task and assign the labeling job to either a
public workforce via Amazon Mechanical Turk or a private workforce, such as our
coworkers. We can also leverage third-party data labeling service providers listed on
the AWS Marketplace, which are prescreened by Amazon.

SageMaker Ground Truth implements active learning techniques for pre-built work‐
flows. It creates a model to automatically label a subset of the data, based on the labels
assigned by the human workforce. As the model continuously learns from the human
workforce, the accuracy improves, and less data needs to be sent to the human work‐
force. Over time and with enough data, the SageMaker Ground Truth active-learning
model is able to provide high-quality and automatic annotations that result in lower
labeling costs overall. We will dive deeper into SageMaker Ground Truth in
Chapter 10.

Data Transformation with AWS Glue DataBrew, SageMaker Data
Wrangler, and SageMaker Processing Jobs
Now let’s move on to data transformation. We assume we have our data in an S3 data
lake, or S3 bucket. We also gained a solid understanding of our dataset through the
data analysis. The next step is now to prepare our data for model training.

Data transformations might include dropping or combining data in our dataset. We
might need to convert text data into word embeddings for use with natural language
models. Or perhaps we might need to convert data into another format, from numer‐
ical to text representation, or vice versa. There are numerous AWS services that could
help us achieve this.

AWS Glue DataBrew is a visual data analysis and preparation tool. With 250 built-in
transformations, DataBrew can detect anomalies, converting data between standard
formats and fixing invalid or missing values. DataBrew can profile our data, calculate
summary statistics, and visualize column correlations.

We can also develop custom data transformations at scale with Amazon SageMaker
Data Wrangler. SageMaker Data Wrangler offers low-code, UI-driven data transfor‐
mations. We can read data from various sources, including Amazon S3, Athena,
Amazon Redshift, and AWS Lake Formation. SageMaker Data Wrangler comes with
pre-configured data transformations similar to AWS DataBrew to convert column
types, perform one-hot encoding, and process text fields. SageMaker Data Wrangler
supports custom user-defined functions using Apache Spark and even generates code
including Python scripts and SageMaker Processing Jobs.

Data Ingestion, Exploration, and Preparation in AWS | 17

SageMaker Processing Jobs let us run custom data processing code for data transfor‐
mation, data validation, or model evaluation across data in S3. When we configure
the SageMaker Processing Job, we define the resources needed, including instance
types and number of instances. SageMaker takes our custom code, copies our data
from Amazon S3, and then pulls a Docker container to execute the processing step.

SageMaker offers pre-built container images to run data processing with Apache
Spark and scikit-learn. We can also provide a custom container image if needed.
SageMaker then spins up the cluster resources we specified for the duration of the job
and terminates them when the job has finished. The processing results are written
back to an Amazon S3 bucket when the job finishes.

Model Training and Tuning with Amazon SageMaker
Let’s discuss the model training and tuning steps of our model development workflow
in more detail and learn which AWS services and open source tools we can leverage.

Train Models with SageMaker Training and Experiments
Amazon SageMaker Training Jobs provide a lot of functionality to support our model
training. We can organize, track, and evaluate our individual model training runs
with SageMaker Experiments. With SageMaker Debugger, we get transparency into
our model training process. Debugger automatically captures real-time metrics dur‐
ing training and provides a visual interface to analyze the debug data. Debugger also
profiles and monitors system resource utilization and identifies resource bottlenecks
such as overutilized CPUs or GPUs.

With SageMaker training, we simply specify the Amazon S3 location of our data, the
algorithm container to execute our model training code, and define the type and
number of SageMaker ML instances we need. SageMaker will take care of initializing
the resources and run our model training. If instructed, SageMaker spins up a dis‐
tributed compute cluster. Once the model training completes, SageMaker writes the
results to S3 and terminates the ML instances.

SageMaker also supports Managed Spot Training. Managed Spot Training leverages
Amazon EC2 Spot Instances to perform model training. Using Spot Instances, we can
reduce model training cost up to 90% compared to on-demand instances.

Besides SageMaker Autopilot, we can choose from any of the built-in algorithms that
come with Amazon SageMaker or customize the model training by bringing our own
model code (script mode) or our own algorithm/framework container.

18 | Chapter 1: Introduction to Data Science on AWS

Built-in Algorithms
SageMaker comes with many built-in algorithms to help machine learning practition‐
ers get started on training and deploying machine learning models quickly. Built-in
algorithms require no extra code. We only need to provide the data and any model
settings (hyper-parameters) and specify the compute resources. Most of the built-in
algorithms also support distributed training out of the box to support large datasets
that cannot fit on a single machine.

For supervised learning tasks, we can choose from regression and classification algo‐
rithms such as Linear Learner and XGBoost. Factorization Machines are well suited
to recommender systems.

For unsupervised learning tasks, such as clustering, dimension reduction, pattern
recognition, and anomaly detection, there are additional built-in algorithms avail‐
able. Such algorithms include Principal Component Analysis (PCA) and K-Means
Clustering.

We can also leverage built-in algorithms for text analysis tasks such as text classifica‐
tion and topic modeling. Such algorithms include BlazingText and Neural Topic
Model.

For image processing, we will find built-in algorithms for image classification and
object detection, including Semantic Segmentation.

Bring Your Own Script (Script Mode)
If we need more flexibility, or there is no built-in solution that works for our use case,
we can provide our own model training code. This is often referred to as “script
mode.” Script mode lets us focus on our training script, while SageMaker provides
highly optimized Docker containers for each of the familiar open source frameworks,
such as TensorFlow, PyTorch, Apache MXNet, XGBoost, and scikit-learn. We can add
all our needed code dependencies via a requirements file, and SageMaker will take
care of running our custom model training code with one of the built-in framework
containers, depending on our framework of choice.

Bring Your Own Container
In case neither the built-in algorithms or script mode covers our use case, we can
bring our own custom Docker image to host the model training. Docker is a software
tool that provides build-time and runtime support for isolated environments called
Docker containers.

SageMaker uses Docker images and containers to provide data processing, model
training, and prediction serving capabilities.

Model Training and Tuning with Amazon SageMaker | 19

We can use bring your own container (BYOC) if the package or software we need is
not included in a supported framework. This approach gives us unlimited options
and the most flexibility, as we can build our own Docker container and install any‐
thing we require. Typically, we see people use this option when they have custom
security requirements, or want to preinstall libraries into the Docker container to
avoid a third-party dependency (i.e., with PyPI, Maven, or Docker Registry).

When using the BYOC option to use our own Docker image, we first need to upload
the Docker image to a Docker registry like DockerHub or Amazon Elastic Container
Registry (Amazon ECR). We should only choose the BYOC option if we are familiar
with developing, maintaining, and supporting custom Docker images with an effi‐
cient Docker-image pipeline. Otherwise, we should use the built-in SageMaker
containers.

We don’t need to “burn” our code into a Docker image at build
time. We can simply point to our code in Amazon S3 from within
the Docker image and load the code dynamically when a Docker
container is started. This helps avoid unnecessary Docker image
builds every time our code changes.

Pre-Built Solutions and Pre-Trained Models with
SageMaker JumpStart
SageMaker JumpStart gives us access to pre-built machine learning solutions and pre-
trained models from AWS, TensorFlow Hub, and PyTorch Hub. The pre-built solu‐
tions cover many common use cases such as fraud detection, predictive maintenance,
and demand forecasting. The pre-trained models span natural language processing,
object detection, and image classification domains. We can fine-tune the models with
our own datasets and deploy them to production in our AWS account with just a few
clicks. We will dive deeper into SageMaker JumpStart in Chapter 7.

Tune and Validate Models with SageMaker Hyper-Parameter Tuning
Another important step in developing high-quality models is finding the right model
configuration or model hyper-parameters. In contrast to the model parameters that
are learned by the algorithm, hyper-parameters control how the algorithm learns the
parameters.

Amazon SageMaker comes with automatic model tuning and validating capabilities
to find the best performing model hyper-parameters for our model and dataset. We
need to define an objective metric to optimize, such as validation accuracy, and the
hyper-parameter ranges to explore. SageMaker will then run many model training
jobs to explore the hyper-parameter ranges that we specify and evaluate the results
against the objective metric to measure success.

20 | Chapter 1: Introduction to Data Science on AWS

There are different strategies to explore hyper-parameter ranges: grid search, random
search, and Bayesian optimization are the most common ones. We will dive deeper
into SageMaker Hyper-Parameter Tuning in Chapter 8.

Model Deployment with Amazon SageMaker and
AWS Lambda Functions
Once we have trained, validated, and optimized our model, we are ready to deploy
and monitor our model. There are generally three ways to deploy our models with
Amazon SageMaker, depending on our application requirements: SageMaker End‐
points for REST-based predictions, AWS Lambda functions for serverless predictions,
and SageMaker Batch Transform for batch predictions.

SageMaker Endpoints
If we need to optimize the model deployment for low-latency, real-time predictions,
we can deploy our model using SageMaker hosting services. These services will spin
up a SageMaker endpoint to host our model and provide a REST API to serve predic‐
tions. We can call the REST API from our applications to receive model predictions.
SageMaker model endpoints support auto-scaling to match the current traffic pattern
and are deployed across multiple AZs for high availability.

SageMaker Batch Transform
If we need to get predictions for an entire dataset, we can use SageMaker Batch Trans‐
form. Batch Transform is optimized for high throughput, without the need for real-
time, low-latency predictions. SageMaker will spin up the specified number of
resources to perform large-scale, batch predictions on our S3 data. Once the job com‐
pletes, SageMaker will write the data to S3 and tear down the compute resources.

Serverless Model Deployment with AWS Lambda
Another option to serve our model predictions are AWS Lambda functions for serv‐
erless model servers. After training the model with SageMaker, we use an AWS
Lambda function that retrieves the model from S3 and serves the predictions. AWS
Lambda does have memory and latency limitations, so be sure to test this option at
scale before finalizing on this deployment approach.

Streaming Analytics and Machine Learning on AWS
Until now, we assumed that we have all of our data available in a centralized static
location, such as our S3-based data lake. In reality, data is continuously streaming
from many different sources across the world simultaneously. In many cases, we want

Model Deployment with Amazon SageMaker and AWS Lambda Functions | 21

to perform real-time analytics and machine learning on this streaming data before it
lands in a data lake. A short time to (business) insight is required to gain competitive
advances and to react quickly to changing customer and market trends.

Streaming technologies provide us with the tools to collect, process, and analyze data
streams in real time. AWS offers a wide range of streaming technology options,
including Amazon Kinesis and Amazon Managed Streaming for Apache Kafka
(Amazon MSK). We will dive deep into streaming analytics and machine learning in
Chapter 11.

Amazon Kinesis Streaming
Amazon Kinesis is a streaming data service, which helps us collect, process, and ana‐
lyze data in real time. With Kinesis Data Firehose, we can prepare and load real-time
data continuously to various destinations including Amazon S3 and Amazon Red‐
shift. With Kinesis Data Analytics, we can process and analyze the data as it arrives.
And with Amazon Kinesis Data Streams, we can manage the ingest of data streams
for custom applications.

Amazon Managed Streaming for Apache Kafka
Amazon MSK is a streaming data service that manages Apache Kafka infrastructure
and operations. Apache Kafka is a popular open source, high-performance, fault-
tolerant, and scalable platform for building real-time streaming data pipelines and
applications. Using Amazon MSK, we can run our Apache Kafka applications on
AWS without the need to manage Apache Kafka clusters ourselves.

Streaming Predictions and Anomaly Detection
In the streaming data chapter, we will focus on analyzing a continuous stream of
product review messages that we collect from available online channels. We will run
streaming predictions to detect the sentiment of our customers, so we can identify
which customers might need high-priority attention.

Next, we run continuous streaming analytics over the incoming review messages to
capture the average sentiment per product category. We visualize the continuous
average sentiment in a metrics dashboard for the line of business (LOB) owners.

The LOB owners can now detect sentiment trends quickly and take action. We also
calculate an anomaly score of the incoming messages to detect anomalies in the data
schema or data values. In case of a rising anomaly score, we can alert the application
developers in charge to investigate the root cause.

As a last metric, we also calculate a continuous approximate count of the received
messages. This number of online messages could be used by the digital marketing
team to measure effectiveness of social media campaigns.

22 | Chapter 1: Introduction to Data Science on AWS

AWS Infrastructure and Custom-Built Hardware
A key benefit of cloud computing is the ability to try infrastructure options that
specifically match our workload. AWS provides many options for high-performance
compute, networking, and storage infrastructure for our data science projects, as
Figure 1-4 shows. Let’s see each of these options, which we will reference throughout.

Figure 1-4. AWS infrastructure options for data science and machine learning projects.

SageMaker Compute Instance Types
AWS allows us to choose from a diverse set of instance types depending on our work‐
load. Following is a list of instance types commonly used for data science use cases:

T instance type
General-purpose, burstable-performance instances when we don’t need consis‐
tently high levels of CPU but benefit from having fast CPUs when we need them

M instance type
General-purpose instances with a good balance of compute, memory, and net‐
work bandwidth

C instance type
Compute-optimized instances ideal for compute-bound workloads with high-
CPU requirements

R instance type
Memory-optimized instances optimized for workloads that benefit from storing
large datasets in memory such as Apache Spark

P, G, Inferentia, and Trainium instance types
High-performance compute instances with hardware accelerators or coproces‐
sors such as GPUs or Amazon custom-built hardware such as AWS Inferentia for
inference and AWS Trainium for training workloads

Amazon Elastic Inference Accelerator
Network-attached coprocessors used by other instance types when additional
compute power is needed for specific workloads, such as batch transformations
and inference

AWS Infrastructure and Custom-Built Hardware | 23

GPUs and Amazon Custom-Built Compute Hardware
Similar to how Amazon S3 provides storage in the cloud, Amazon Elastic Compute
Cloud (Amazon EC2) provides compute resources. We can choose from over 350
instances for our business needs and workload. AWS also offers a choice of Intel,
AMD, and ARM-based processors. The hardware-accelerated P4, P3, and G4
instance types are a popular choice for high-performance, GPU-based model train‐
ing. Amazon also provides custom-build hardware optimized for both model training
and inference.

P4d instances consist of eight NVIDIA A100 Tensor Core GPUs with 400 Gbps
instance networking and support for Elastic Fabric Adapter (EFA) with NVIDIA
GPUDirect RDMA (remote direct memory access). P4d instances are deployed in
hyperscale clusters called Amazon EC2 UltraClusters that provide supercomputer-
class performance for everyday ML developers, researchers, and data scientists. Each
EC2 UltraCluster of P4d instances gives us access to more than 4,000 NVIDIA A100
GPUs, petabit-scale nonblocking networking, and high-throughput/low-latency stor‐
age via Amazon FSx for Lustre.

P3 instances consist of up to eight NVIDIA V100 Tensor Core GPUs and deliver up
to 100 Gbps of networking throughput. P3 instances deliver up to one petaflop of
mixed-precision performance per instance. P3dn.24xlarge instances also support
EFA.

The G4 instances are a great option for cost-sensitive, small-scale training or infer‐
ence workloads. G4 instances consist of NVIDIA T4 GPUs with up to 100 Gbps of
networking throughput and up to 1.8 TB of local NVMe storage.

AWS also offers custom-built silicon for machine learning training with the AWS
Trainium chip and for inference workloads with the AWS Inferentia chip. Both AWS
Trainium and AWS Inferentia aim at increasing machine learning performance and
reducing infrastructure cost.

AWS Trainium has been optimized for deep learning training workloads, including
image classification, semantic search, translation, voice recognition, natural language
processing, and recommendation engines.

AWS Inferentia processors support many popular machine learning models, includ‐
ing single-shot detectors and ResNet for computer vision—as well as Transformers
and BERT for natural language processing.

AWS Inferentia is available via the Amazon EC2 Inf1 instances. We can choose
between 1 and 16 AWS Inferentia processors per Inf1 instance, which deliver up to
2,000 tera operations per second. We can use the AWS Neuron SDK to compile our
TensorFlow, PyTorch, or Apache MXNet models to run on Inf1 instances.

24 | Chapter 1: Introduction to Data Science on AWS

Inf1 instances can help to reduce our inference cost, with up to 45% lower cost per
inference and 30% higher throughput compared to Amazon EC2 G4 instances.
Table 1-1 shows some instance-type options to use for model inference, including
Amazon custom-built Inferentia chip, CPUs, and GPUs.

Table 1-1. EC2 instance options for model inference

Model characteristics EC2 Inf1 EC2 C5 EC2 G4
Requires low latency and high throughput at low cost X
Low sensitivity to latency and throughput X
Requires NVIDIA’s CUDA, CuDNN or TensorRT libraries X

Amazon Elastic Inference is another option to leverage accelerated compute for
model inference. Elastic Inference allows us to attach a fraction of GPU acceleration
to any Amazon EC2 (CPU-based) instance type. Using Elastic Inference, we can
decouple the instance choice for model inference from the amount of inference
acceleration.

Choosing Elastic Inference over Inf1 might make sense if we need different instance
characteristics than those offered with Inf1 instances or if our performance require‐
ments are lower than what the smallest Inf1 instance provides.

Elastic Inference scales from single-precision TFLOPS (trillion floating point opera‐
tions per second) up to 32 mixed-precision TFLOPS of inference acceleration.

Graviton processors are AWS custom-built ARM processors. The CPUs leverage 64-
bit Arm Neoverse cores and custom silicon designed by AWS using advanced 7 nm
manufacturing technology. ARM-based instances can offer an attractive price-
performance ratio for many workloads running in Amazon EC2.

The first generation of Graviton processors are offered with Amazon EC2 A1 instan‐
ces. Graviton2 processors deliver 7x more performance, 4x more compute cores, 5x
faster memory, and 2x larger caches compared to the first generation. We can find the
Graviton2 processor in Amazon EC2 T4g, M6g, C6g, and R6g instances.

The AWS Graviton2 processors provide enhanced performance for video encoding
workloads, hardware acceleration for compression workloads, and support for
machine learning predictions.

GPU-Optimized Networking and Custom-Built Hardware
AWS offers advanced networking solutions that can help us to efficiently run dis‐
tributed model training and scale-out inference.

The Amazon EFA is a network interface for Amazon EC2 instances that optimizes
internode communications at scale. EFA uses a custom-built OS bypass hardware

AWS Infrastructure and Custom-Built Hardware | 25

interface that enhances the performance of internode communications. If we are
using the NVIDIA Collective Communications Library for model training, we can
scale to thousands of GPUs using EFA.

We can combine the setup with up to 400 Gbps network bandwidth per instance and
the NVIDIA GPUDirect RDMA for low-latency, GPU-to-GPU communication
between instances. This gives us the performance of on-premises GPU clusters with
the on-demand elasticity and flexibility of the cloud.

Storage Options Optimized for Large-Scale Model Training
We already learned about the benefits of building our data lake on Amazon S3. If we
need faster storage access for distributed model training, we can use Amazon FSx for
Lustre.

Amazon FSx for Lustre offers the open source Lustre filesystem as a fully managed
service. Lustre is a high-performance filesystem, offering submillisecond latencies, up
to hundreds of gigabytes per second of throughput, and millions of IOPS.

We can link FSx for Lustre filesystems with Amazon S3 buckets. This allows us to
access and process data through the FSx filesystem and from Amazon S3. Using FSx
for Lustre, we can set up our model training compute instances to access the same set
of data through high-performance shared storage.

Amazon Elastic File System (Amazon EFS) is another file storage service that pro‐
vides a filesystem interface for up to thousands of Amazon EC2 instances. The file‐
system interface offers standard operating system file I/O APIs and enables filesystem
access semantics, such as strong consistency and file locking.

Reduce Cost with Tags, Budgets, and Alerts
Throughout the book, we provide tips on how to reduce cost for data science projects
with the Amazon AI and machine learning stack. Overall, we should always tag our
resources with the name of the business unit, application, environment, and user. We
should use tags that provide visibility into where our money is spent. In addition to
the AWS built-in cost-allocation tags, we can provide our own user-defined allocation
tags specific to our domain. AWS Budgets help us create alerts when cost is approach‐
ing—or exceeding—a given threshold.

Summary
In this chapter, we discussed the benefits of developing data science projects in the
cloud, with a specific focus on AWS. We showed how to quickly add intelligence to
our applications leveraging the Amazon AI and machine learning stack. We intro‐
duced the concept of AutoML and explained how SageMaker Autopilot offers a

26 | Chapter 1: Introduction to Data Science on AWS

transparent approach to AutoML. We then discussed a typical machine learning
workflow in the cloud and introduced the relevant AWS services that assist in each
step of the workflow. We provided an overview of available workflow orchestration
tools to build and automate machine learning pipelines. We described how to run
streaming analytics and machine learning over real-time data. We finished this chap‐
ter with an overview of AWS infrastructure options to leverage in our data science
projects.

In Chapter 2, we will discuss prominent data science use cases across industries such
as media, advertising, IoT, and manufacturing.

Summary | 27

CHAPTER 2

Data Science Use Cases

In this chapter, we show how AI and machine learning have disrupted nearly every
industry—and will continue to do so in the future. We discuss prominent use cases
across industries such as media, advertising, IoT, and manufacturing. As more and
more building blocks become available, more and more use cases become tangible.
Cloud-native developers have access to these building blocks through ready-to-use AI
services such as Amazon Rekognition, fully customizable ML services including
Amazon SageMaker, and easy-to-access quantum computers with Amazon Braket.

AI and machine learning have become truly ubiquitous thanks to recent innovations
in cloud computing, leaps in computing power, and explosions in data collection.
This democratization of AI and machine learning is fueled by an explosion of AI
services that are easy to integrate with applications, require very little maintenance,
and offer pay-as-you-go pricing.

With no required PhD in data science, we can implement product recommendations
to delight our customers, implement highly accurate forecasting models to improve
our supply chain, or build virtual assistants to simplify our customer support—all
with just a single API call! These AI services free up valuable human resources to
focus on domain-specific and product-differentiating features.

Innovation Across Every Industry
Many AI and machine learning use cases fall in one of two categories: improving
business operations or creating new customer experiences. Prominent examples that
improve business operations are AI-powered demand forecasting, resource optimiza‐
tion, and fraud detection. Examples for creating new customer experiences include
personalized product recommendations and enriched video-streaming experiences.

29

Without a doubt, AI and machine learning are driving innovation in every industry.
Here are a few examples across various industries:

Media and entertainment
Companies are delighting customers with highly engaging, personalized content.
AI also enables highly efficient and effective metadata extraction to make media
content more easily discoverable and searchable by customers and media pro‐
duction workers.

Life sciences
Companies benefit from AI and machine learning for drug discovery, clinical
trial management, drug manufacturing, digital therapeutics development, and
clinical decision support.

Financial services
AI and machine learning improve compliance, surveillance, and fraud detection.
They help to speed up document processing, create personalized pricing and
financial product recommendations, and assist in trading decisions.

Automotive
AI and machine learning power autonomous driving, navigation, and connected
vehicles.

Manufacturing
AI and machine learning support engineering design, manage supply chain
inventory, and optimize maintenance, repair, and operations. They enhance the
assembly line and underpin smart products or factories.

Gaming
The gaming industry leverages AI and machine learning to implement intelligent
auto-scaling for their game servers as demand changes throughout the day.

Let’s discuss some prominent AI use cases in more detail and see how we can start to
implement them with ready-to-use AI services from AWS.

Personalized Product Recommendations
Over recent decades, consumers have experienced more and more personalized
online product and content recommendations. Recommendations are everywhere,
including Amazon.com suggesting the next product to buy and Amazon Prime Video
recommending the next show to watch.

A lot of recommendation systems find similarities based on how customers collabo‐
rate with items in the catalog. An early implementation of such “collaborative filter‐
ing” is described in a 2003 paper by Amazon.com, “Amazon.com Recommendations:
Item-to-Item Collaborative Filtering”.

30 | Chapter 2: Data Science Use Cases

https://oreil.ly/LbrdC
https://oreil.ly/LbrdC

Today, sophisticated deep learning techniques understand customers’ needs at the
right time and within the right context. Whether we are shopping on the Ama‐
zon.com marketplace, listening to music on Prime Music, watching shows on Prime
Video, reading ebooks on the Amazon Kindle, or listening to audiobooks with Audi‐
ble, we will be presented with new personalized recommendations.

Simple recommendation systems often start as rule-based systems. As the number of
users and products increase in our system, it becomes difficult to define rules that are
specific enough to each user to provide meaningful recommendations. Broad rules
are not typically specialized enough to keep customers coming back.

Even ML-based recommendation systems may face challenges. We also have to han‐
dle new users and new items entering our system where we don’t have any data on
which to base our recommendations. This is the classic “cold start” problem and
should be addressed by anyone implementing a recommendation engine in the
modern era. Cold start is when we have little or no historical event activity to use as a
signal to build our recommender model for a given user or product.

Recommendations should also avoid the “popularity trap,” which only recommends
popular items and potentially misses delightful recommendations for nonpopular
items. This can be solved with recommender systems that explore new items using
algorithms such as multiarmed bandits, which we will discuss in Chapter 9.

Also, we’d like to handle real-time changes in a user’s intent as they are using our
application. This requires a real-time, dynamic recommendation system instead of
traditional offline, precomputed recommendations served from a database.

With such a dynamic system, customers will appreciate the relevant and timely con‐
tent—and our business will realize the following benefits from a more personalized
customer experience:

Increase in product engagement
By recommending relevant content to users, we increase the stickiness of our
website, encourage users to come back often, and give them reason to stay longer.

Increase in product conversions
Users are more likely to purchase more relevant products.

Increase in click-through rates
We will likely see higher click-through rates with personalized product updates
targeted at the individual user.

Personalized Product Recommendations | 31

Increase in revenue
When customers are served the right recommendations at the right time, compa‐
nies see an increase in revenue.

Reduction in churn
We can reduce overall churn and reduce opt-outs from interesting email
campaigns.

Over the last two decades, Amazon has continuously advanced its machine learning
research focused on personalization. The paper “Two Decades of Recommender Sys‐
tems at Amazon.com” by Smith and Linden (2017) provides a great summary of this
journey.

More insights into Amazon’s scientific research and academic pub‐
lications are available on Amazon.

Recommend Products with Amazon Personalize
Like a lot of machine learning, there is no single algorithm that addresses all those
challenges in personalization. Wouldn’t it be great if anyone could just tap into Ama‐
zon.com’s extensive experience in creating personalized product and content recom‐
mendations and add this capability to our applications? Amazon Personalize offers
exactly this.

Amazon Personalize reflects Amazon.com’s decades of experience in creating, scaling,
and managing personalization technology. Amazon Personalize makes it easy for
developers to create individualized product recommendations as well as targeted
marketing promotions. This AI service enables developers to build custom personali‐
zation models without having to deal with the complexity of managing our own
machine learning infrastructure.

To start generating recommendations, we just provide Amazon Personalize with the
continuous activity stream from our application (i.e., clicks, page views, signups, pur‐
chases) along with the inventory of the products we want to recommend, as shown in
Figure 2-1.

The activity data comprises event information about how the user interacts with the
system. Some example event activity includes user clicks, shopping cart additions,
item purchases, and movie watches. This event activity represents a strong signal to
build an effective recommendation model.

32 | Chapter 2: Data Science Use Cases

https://oreil.ly/iXEXk
https://oreil.ly/iXEXk
https://www.amazon.science

Figure 2-1. Provide the activity dataset and inventory of products to Amazon Personal‐
ize to start generating recommendations.

We can also provide additional metadata about the users and products involved in
the event activity, such as the product category, product price, user age, user location,
etc. While this additional metadata is optional, it is helpful when addressing the “cold
start” scenario where we have little or no historical event activity to use as a signal to
build our recommender model.

Additionally, Amazon Personalize has recently announced a new cold-start algorithm
that combines neural networks and reinforcement learning to provide more relevant
recommendations when little data is known about the user.

With this event activity and metadata in place, Amazon Personalize trains, tunes, and
deploys a custom recommender model for our users and products. Amazon Person‐
alize performs all steps of the machine learning pipeline, including feature engineer‐
ing, algorithm selection, model tuning, and model deploying. Once Amazon
Personalize selects, trains, and deploys the best model for our dataset, we simply call
the Amazon Personalize get_recommendations() API to generate recommendations
in real time for our users:

get_recommendations_response = personalize_runtime.get_recommendations(
 campaignArn = campaign_arn,
 userId = user_id
)

item_list = get_recommendations_response['itemList']
recommendation_list = []
for item in item_list:
 item_id = get_movie_by_id(item['itemId'])
recommendation_list.append(item_id)

Trained with the popular MovieLens dataset that contains millions of user-movie rat‐
ings, Amazon Personalize generates the following recommended movies for our
sample user:

Personalized Product Recommendations | 33

Shrek

Amelie

Lord of the Rings: The Two Towers

Toy Story 2

Good Will Hunting

Eternal Sunshine of the Spotless Mind

Spirited Away

Lord of the Rings: The Return of the King

Schindler's List

Leon: The Professional

Generate Recommendations with Amazon SageMaker
and TensorFlow
Multitask recommenders create a model that optimizes two or more objectives at the
same time. The model performs transfer learning by sharing variables between the
tasks during model training.

In the following TensorFlow example that uses the TensorFlow Recommenders
(TFRS) library, we will find a model that trains a recommender to predict ratings
(ranking task) as well as predict the number of movie watches (retrieval task):

user_model = tf.keras.Sequential([
 tf.keras.layers.experimental.preprocessing.StringLookup(
 vocabulary=unique_user_ids),
 # We add 2 to account for unknown and mask tokens.
 tf.keras.layers.Embedding(len(unique_user_ids) + 2, embedding_dimension)
])

movie_model = tf.keras.Sequential([
 tf.keras.layers.experimental.preprocessing.StringLookup(
 vocabulary=unique_movie_titles),
 tf.keras.layers.Embedding(len(unique_movie_titles) + 2, embedding_dimension)
])

rating_task = tfrs.tasks.Ranking(
 loss=tf.keras.losses.MeanSquaredError(),
 metrics=[tf.keras.metrics.RootMeanSquaredError()],
)

retrieval_task = tfrs.tasks.Retrieval(
 metrics=tfrs.metrics.FactorizedTopK(
 candidates=movies.batch(128).map(self.movie_model)
)
)

34 | Chapter 2: Data Science Use Cases

https://oreil.ly/XdDIl
https://oreil.ly/XdDIl

Generate Recommendations with Amazon SageMaker
and Apache Spark
Amazon SageMaker supports serverless Apache Spark (both Python and Scala)
through SageMaker Processing Jobs. We will use SageMaker Processing Jobs through‐
out the book to perform data-quality checks and feature transformations. However,
in this section we will generate recommendations using SageMaker Processing Jobs
with Apache Spark ML’s collaborative filtering algorithm called Alternating Least
Squares (ALS). We would use this algorithm if we already have a Spark-based data
pipeline and want to generate recommendations using that pipeline.

Here is the train_spark.py file that generates recommendations with Apache Spark
ML and ALS:

import pyspark
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.ml.recommendation import ALS
from pyspark.sql import Row

def main():
 ...
 lines = spark.read.text(s3_input_data).rdd
 parts = lines.map(lambda row: row.value.split("::"))
 ratingsRDD = parts.map(lambda p: Row(userId=int(p[0]),
 movieId=int(p[1]),
 rating=float(p[2]),
 timestamp=int(p[3])))
 ratings = spark.createDataFrame(ratingsRDD)
 (training, test) = ratings.randomSplit([0.8, 0.2])

 # Build the recommendation model using ALS on the training data
 als = ALS(maxIter=5,
 regParam=0.01,
 userCol="userId",
 itemCol="itemId",
 ratingCol="rating",
 coldStartStrategy="drop")
 model = als.fit(training)

 # Evaluate the model by computing the RMSE on the test data
 predictions = model.transform(test)
 evaluator = RegressionEvaluator(metricName="rmse",
 labelCol="rating",
 predictionCol="prediction")
 rmse = evaluator.evaluate(predictions)

 # Generate top 10 recommendations for each user
 userRecs = model.recommendForAllUsers(10)
 userRecs.show()

Personalized Product Recommendations | 35

 # Write top 10 recommendations for each user
 userRecs.repartition(1).write.mode("overwrite")\
 .option("header", True).option("delimiter", "\t")\
 .csv(f"{s3_output_data}/recommendations")

Now let’s launch the PySpark script within a serverless Apache Spark environment
running as a SageMaker Processing Job:

from sagemaker.spark.processing import PySparkProcessor
from sagemaker.processing import ProcessingOutput

processor = PySparkProcessor(base_job_name='spark-als',
 role=role,
 instance_count=1,
 instance_type='ml.r5.2xlarge',
 max_runtime_in_seconds=1200)

processor.run(submit_app='train_spark_als.py',
 arguments=['s3_input_data', s3_input_data,
 's3_output_data', s3_output_data,
],
 logs=True,
 wait=False
)

The output shows a user ID and list of recommendations (item ID, rank) sorted by
rank from most recommended to least recommended:

|userId| recommendations|
+------+--------------------+
12	[[46, 6.146928], ...
1	[[46, 4.963598], ...
6	[[25, 4.5243497],...
+------+--------------------+

Detect Inappropriate Videos with Amazon Rekognition
Computer vision is useful for many different use cases, including content moderation
of user-generated content, digital identity verification for secure login, and hazard
identification for driverless cars.

Amazon Rekognition is a high-level AI service that identifies objects, including peo‐
ple, text, and activities found in both images and videos. Amazon Rekognition uses
AutoML to train custom models to recognize objects specific to our use case and
business domain.

Let’s use Amazon Rekognition to detect violent content in videos uploaded by our
application users. For example, we want to reject videos that contain weapons by
using Amazon Rekognition’s Content Moderation API as follows:

36 | Chapter 2: Data Science Use Cases

startModerationLabelDetection = rekognition.start_content_moderation(
 Video={
 'S3Object': {
 'Bucket': bucket,
 'Name': videoName,
 }
 },
)

moderationJobId = startModerationLabelDetection['JobId']

getContentModeration = rekognition.get_content_moderation(
 JobId=moderationJobId,
 SortBy='TIMESTAMP'
)

while(getContentModeration['JobStatus'] == 'IN_PROGRESS'):
 time.sleep(5)
 print('.', end='')

 getContentModeration = rekognition.get_content_moderation(
 JobId=moderationJobId,
 SortBy='TIMESTAMP')

display(getContentModeration['JobStatus'])

Here is the output that shows the detected labels. Note the Timestamp, which repre‐
sents the offset from the start of the video, as well as the Confidence, which repre‐
sents the confidence of Amazon Rekognition’s prediction:

{'JobStatus': 'SUCCEEDED',
 'VideoMetadata': {'Codec': 'h264',
 'DurationMillis': 6033,
 'Format': 'QuickTime / MOV',
 'FrameRate': 30.0,
 'FrameHeight': 1080,
 'FrameWidth': 1920},
 'ModerationLabels': [{'Timestamp': 1999,
 'ModerationLabel': {'Confidence': 75.15272521972656,
 'Name': 'Violence',
 'ParentName': ''}},
 {'Timestamp': 1999,
 'ModerationLabel': {'Confidence': 75.15272521972656,
 'Name': 'Weapons',
 'ParentName': 'Violence'}},
 {'Timestamp': 2500,
 'ModerationLabel': {'Confidence': 87.55487060546875,
 'Name': 'Violence',
 'ParentName': ''}}]

Moderation labels in video
=======================================

Detect Inappropriate Videos with Amazon Rekognition | 37

At 1999 ms: Violence (Confidence: 75.15)
At 1999 ms: Weapons (Confidence: 75.15)
At 2500 ms: Violence (Confidence: 87.55)

We can further improve the confidence of Amazon Rekognition’s
predictions by training with our own dataset. This feature is called
“custom labels”; it’s supported by many of the Amazon AI services.

Demand Forecasting
Demand forecasting is used across many domains to predict demand in areas such as
electricity usage, supply-chain inventory, call-center staffing, cash-flow planning,
hospital-bed usage, and many other use cases. Forecasting is a time-series problem
solved with popular algorithms such as Auto-Regressive Integrated Moving Average,
Error Trend Seasonality, Non-Parametric Time Series, Prophet, and DeepAR++.

Businesses use everything from simple spreadsheets to complex time-series software
to forecast future business outcomes such as product demand, resource needs, or
financial performance. These approaches typically build forecast models using histor‐
ical time-series data with the assumption that future demand is determined by past
activity. These purely time-series approaches have a difficult time producing accurate
forecasts with irregular trends and patterns. Also, these approaches often do not fac‐
tor in important metadata that is relevant to the forecast, such as product price, prod‐
uct category, and store location.

Overforecasting can decrease efficiency and increase cost by overprovisioning
resources that remain underutilized. Underforecasting can decrease customer satis‐
faction, lower revenue by starving the system of necessary resources, and require
high-cost alternatives like paying overtime labor wages.

An effective demand forecast system demonstrates the following characteristics:

Analyze complex relationships rather than just time-series data
Combines time-series data with other metadata like product features and store
locations.

Reduce forecast prediction time from months to hours
After automatically loading, inspecting, and identifying key dataset attributes, the
system will quickly train, optimize, and deploy a custom model that fits our
dataset.

38 | Chapter 2: Data Science Use Cases

Create forecasts for many different use cases
Build forecasts for virtually every use case, including supply chain, logistics, and
finance, using a large library of algorithms to automatically determine the best fit
for our specific use case.

Keep data secure
Every data point is protected with at-rest and in-flight encryption to keep sensi‐
tive information secure and confidential.

Automatically retrain and redeploy models when needed
When new data arrives—or when model evaluation metrics fall below a certain
threshold—the model will be retrained and redeployed to improve the forecast
predictions.

Predict Energy Consumption with Amazon Forecast
Amazon Forecast is a fully managed service based on the technology that powers
Amazon.com’s demand forecasting needs, such as efficient inventory management,
immediate product fulfillment, and same-day delivery. Forecast uses machine learn‐
ing to automatically train, tune, and optimize highly specialized demand forecast
models from our dataset. We simply register our historical datasets—and related
metadata—with Forecast to start generating demand predictions. Demand forecasts
can be exported as CSVs, accessed via the AWS Console UI, or integrated into our
application through the Forecast API.

Let’s train a demand forecast model to predict individual household energy power
consumption for the next 24 hours using Forecast’s DeepAR++ algorithm and a pub‐
lic dataset from the UCI Machine Learning Repository.

Here is a snippet of the dataset, including the power consumption per customer:

timestamp value item
2014-01-01 01:00:00 38.34991708126038 client_12
2014-01-01 02:00:00 33.5820895522388 client_12
2014-01-01 03:00:00 34.41127694859037 client_12

Here is the schema that we define in Forecast to represent the public dataset:

forecast_schema ={
 "Attributes":[
 {
 "AttributeName":"timestamp",
 "AttributeType":"timestamp"
 },
 {
 "AttributeName":"target_value",
 "AttributeType":"float"

Demand Forecasting | 39

https://oreil.ly/DYLJ7

 },
 {
 "AttributeName":"item_id",
 "AttributeType":"string"
 }
]
}

Let’s register the dataset with Forecast:

response=forecast.create_dataset(
 Domain="CUSTOM",
 DatasetType='TARGET_TIME_SERIES',
 DatasetName=forecast_dataset_name,
 DataFrequency=DATASET_FREQUENCY,
 Schema = forecast_schema
)

Now let’s train the demand forecast model with Forecast:

forecast_horizon = 24 # hours

algorithm_arn = 'arn:aws:forecast:::algorithm/Deep_AR_Plus'

create_predictor_response = \
 forecast.create_predictor(PredictorName=predictor_name,
 AlgorithmArn=algorithm_arn,
 ForecastHorizon=forecast_horizon,
 PerformAutoML= False,
 PerformHPO=False,
 EvaluationParameters= {
 "NumberOfBacktestWindows": 1,
 "BackTestWindowOffset": 24
 },
 InputDataConfig= {
 "DatasetGroupArn": forecast_dataset_group_arn
 },
 FeaturizationConfig= {
 "ForecastFrequency": "H",
 "Featurizations": [{
 "AttributeName": "target_value",
 "FeaturizationPipeline":
 [{
 "FeaturizationMethodName": "filling",
 "FeaturizationMethodParameters": {
 "frontfill": "none",
 "middlefill": "zero",
 "backfill": "zero"
 }
 }]
 }]
 })

40 | Chapter 2: Data Science Use Cases

Let’s make a prediction:

forecastResponse = forecastquery.query_forecast(
 ForecastArn=forecast_arn,
 Filters={"item_id":"client_12"}
)

Predict Demand for Amazon EC2 Instances with Amazon Forecast
AWS uses Forecast to predict demand for Amazon EC2 instances within Amazon
Redshift clusters. As new data is ingested into Forecast, the Amazon Redshift control
plane queries Forecast to adjust the size of the Amazon EC2 warm pool for Amazon
Redshift, as shown in Figure 2-2.

Figure 2-2. Amazon Redshift control plane adjusts the warm-pool cache of Amazon EC2
instances using Forecast.

The steps in Figure 2-2 can be described as follows:

1. Changes to Amazon EC2 warm-pool cache demand are published to S3.
2. Forecast ingests demand data from S3 and then creates new forecast predictions.
3. A Lambda function copies the new forecast predictions to Amazon DynamoDB.
4. The Amazon EC2 cluster scaler reads the forecast predictions from DynamoDB

and adjusts the warm-pool cache size based on projected demand.

Demand Forecasting | 41

Identify Fake Accounts with Amazon Fraud Detector
Each year, tens of billions of dollars are lost to online fraud across the world. Online
companies are especially prone to bad-actor attacks trying to defraud the system by
creating fake user accounts and purchasing items with stolen credit cards. Typical
fraud detection systems that detect bad actors often rely on business rules that are
slow to adapt to the latest fraud techniques.

Effective fraud detection and privacy-leak prevention systems include the following
characteristics:

Stop bad actors before they affect our business
Flag suspicious activity before bad actors can do real harm.

High-quality fraud-detection models without a lot of data
Pre-trained algorithms can analyze even the smallest amount of historical event
data and still provide a high-quality fraud-detection model.

Let fraud teams move faster and with more control
Automatically handle the complex tasks required to build, train, tune, deploy,
and update our fraud-detection models when new event data is available.

Amazon Fraud Detector is a fully managed service that identifies potentially fraudu‐
lent online activities such as online payments and fake accounts. Amazon Fraud
Detector uses machine learning and 20 years of fraud-detection expertise from AWS
and Amazon.com.

With Amazon Fraud Detector, we create a fraud-detection model with just a few
clicks, a relatively small amount of historical data, and minimal code. We simply
upload our historical online event data, such as online transactions and account reg‐
istrations—and Amazon Fraud Detector does the rest, including training, tuning, and
deploying a custom fraud-detection model for our business.

Here is the code that trains Amazon Fraud Detector on our transaction dataset:

response = client.create_model_version(
 modelId = MODEL_NAME,
 modelType = 'ONLINE_FRAUD_INSIGHTS',
 trainingDataSource = 'EXTERNAL_EVENTS',
 trainingDataSchema = trainingDataSchema,
 externalEventsDetail = {
 'dataLocation' : S3_FILE_LOC,
 'dataAccessRoleArn': ARN_ROLE
 }
)

42 | Chapter 2: Data Science Use Cases

Here is the code to predict whether a given transaction is fraudulent:

pred = client.get_event_prediction(
 detectorId = DETECTOR_NAME,
 detectorVersionId = DETECTOR_VER,
 eventId = str(eventId),
 eventTypeName = EVENT_TYPE,
 eventTimestamp = timestampStr,
 entities = [{'entityType': ENTITY_TYPE,
 'entityId':str(eventId.int)}],
 eventVariables = record)

record["score"] = pred['modelScores'][0]['scores']\
 ["{0}_insightscore".format(MODEL_NAME)]

Here is the output of the Amazon Fraud Detector prediction showing the relevant
data, prediction outcome, and prediction confidence:

ip_address email_address state postal name phone_number score outcomes
84.138.6.238 synth1@yahoo.com LA 32733 Brandon Moran (555)784 - 5238 5.0 [approve]
194.147.250.63 synth2@yahoo.com MN 34319 Dominic Murray (555)114 - 6133 4.0 [approve]
192.54.60.50 synth3@gmail.com WA 32436 Anthony Abbott (555)780 - 7652 5.0 [approve]
169.120.193.154 synth4@gmail.com AL 34399.0 Kimberly Webb (555)588 - 4426 938.0 [review]
192.175.55.43 synth5@hotmail.com IL 33690.0 Renee James (555)785 - 8274 16.0 [approve]

Enable Privacy-Leak Detection with Amazon Macie
A well-instrumented application produces many logs and metrics to increase insight
and maintain high system uptime to avoid customer dissatisfaction. However, some‐
times these logs contain sensitive account information such as home zip codes or
credit card numbers. We need a system that monitors our data for sensitive informa‐
tion, detects access to this sensitive information, and sends notifications if unauthor‐
ized access is detected or data is leaked.

Effective systems to detect and monitor access to sensitive information have the fol‐
lowing characteristics:

Continuously assess data sensitivity and evaluate access controls
Attacker ROI math dictates that an S3 bucket with sensitive customer data and
loosely configured IAM roles is an easy target. We stay ahead of this by continu‐
ously monitoring our entire S3 environment and generating actionable steps to
respond quickly when needed.

Support many data sources
Assess data sensitivity and evaluate access controls across many different data
sources, such as S3, Amazon Relational Database Service (Amazon RDS), Ama‐
zon Aurora, emails, file shares, collaboration tools, etc.

Enable Privacy-Leak Detection with Amazon Macie | 43

Maintain regulatory compliance
In addition to monitoring and protecting sensitive data, compliance teams are
required to provide evidence that they are enforcing data security and privacy to
meet regulatory compliance requirements.

Identifying sensitive data during data migrations
When migrating large volumes of data into AWS, we want to know if the data
includes sensitive data. If so, we likely need to update the security access controls,
encryption settings, and resource tags when the data is migrated.

Amazon Macie is a fully managed security service that uses machine learning to iden‐
tify sensitive data like personally identifiable information in our AWS-based data
sources, such as S3. Macie provides visibility into where this data is stored—and who
is accessing the data. By monitoring access to sensitive data, Macie can send an alert
when it detects a leak—or risk of a leak.

Macie continuously identifies sensitive data and evaluates the security and access
controls to this data. Macie helps maintain data privacy and security across all of our
data and provides comprehensive options for scheduling our data-sensitivity and
access-control analysis to maintain our data privacy and compliance requirements.

We can schedule daily, weekly, or monthly discovery jobs to generate our findings,
including evaluation results, time stamps, and historical records of all buckets and
objects scanned for sensitive data. These findings are summarized in a standard
report compliant with data privacy and protection audits to ensure long-term data
retention. For data migrations, Macie automates the configuration of data protection
and role-based access policies as our data moves into AWS.

Conversational Devices and Voice Assistants
Whether it’s Alexa or any of those other famous home voices, all of them use state-of-
the-art deep learning technologies in the field of automatic speech recognition (ASR)
and natural language understanding (NLU) to recognize the intent of our spoken
text.

Speech Recognition with Amazon Lex
Using Amazon Lex to build conversational interfaces for voice and text, we have
access to the same deep learning technologies that power Amazon Alexa. Amazon
Lex is a fully managed service that uses ASR to convert speech to text. Amazon Lex
also uses NLU to recognize the intent of the text. We can build custom responses to a
wide set of voice and text queries, such as, “Where is the IT help desk in this office?”
and “Reserve this room for the next 30 minutes.”

44 | Chapter 2: Data Science Use Cases

Text-to-Speech Conversion with Amazon Polly
Amazon Polly is an automated text-to-speech service with dozens of human voices
across a broad set of languages, dialects, and genders. We can use Amazon Polly to
build speech-enabled applications that turn text into human-like speech for accessi‐
bility purposes, for example.

Speech-to-Text Conversion with Amazon Transcribe
Amazon Transcribe is an ASR service that makes it easy for developers to add speech-
to-text capability to their real-time and batch applications. Amazon Transcribe con‐
verts speech to text by processing audio either in batch or real time. Popular use cases
for Amazon Transcribe include creating image captions and video subtitles.

Text Analysis and Natural Language Processing
Natural language processing (NLP) is a field of artificial intelligence that focuses on
machines’ ability to read, understand, and derive meaning from human languages. It
is a field that has been studied for a very long time, with research publications dating
back to the early 1900s.

Fast-forwarding to 2021, we still experience ground-breaking NLP research with new
language models emerging nearly on a monthly basis. In later chapters, we will dis‐
cuss the evolution of NLP algorithms, discuss the novel Transformer neural-network
architecture, and dive deeper into the BERT family of NLP algorithms.

Effective text analysis and cognitive search systems have the following characteristics:

Fast time to discover
New documents should become searchable quickly and without errors that
require human correction.

Efficient processing workflows
Document-processing workflows should be automated to increase speed and
quality while reducing human effort, custom code, and cost.

Translate Languages with Amazon Translate
In today’s global economy, we need to appeal to international users by translating our
content into many localized, region-specific, multilingual versions. Popular use cases
include on-demand translation of user-generated content, real-time translations for
communication apps, and multilingual sentiment analysis of social media content.

Amazon Translate is a neural machine translation service that creates more accurate
and fluent translations than traditional statistical and rule-based translation models.

Text Analysis and Natural Language Processing | 45

Classify Customer-Support Messages with Amazon Comprehend
Customer Obsession is one of Amazon’s key leadership principles—customer focus is
important for every business and industry. And in many cases, a customer’s experi‐
ence is largely influenced by the quality of customer support. In this section, we will
use Amazon Comprehend to classify the sentiment of sample customer-support
messages.

Text classification is a popular task in the field of NLP. As described earlier, we can
use Amazon Comprehend as a fully managed NLP service to implement text classifi‐
cation without much machine learning experience.

More broadly, Amazon Comprehend can recognize important entities, key phrases,
sentiment, language, and topics from our text documents. Important entities include
names, places, items, and dates. Key phrases include “good morning,” “thank you,”
and “not happy.” Sentiment includes “positive,” “neutral,” and “negative.” Amazon
Comprehend currently supports many languages, and new languages are added
frequently.

Amazon Comprehend also supports a set of healthcare APIs called
Amazon Comprehend Medical. Amazon Comprehend Medical has
been pre-trained on extensive healthcare datasets and can identify
medical conditions, medications, tests, treatments, procedures,
anatomy, and protected health information.

Let’s take a look at how we can use Amazon Comprehend’s out-of-the-box Sentiment
Analysis API to classify sample product reviews with just a few lines of code.

First, let’s use Amazon Comprehend’s create_document_classifier() API to create
the classifier:

training_job = comprehend.create_document_classifier(
 DocumentClassifierName=comprehend_training_job_name,
 DataAccessRoleArn=iam_role_comprehend_arn,
 InputDataConfig={
 'S3Uri': comprehend_train_s3_uri
 },
 OutputDataConfig={
 'S3Uri': s3_output_job
 },
 LanguageCode='en'
)

Next, let’s use the classifier to predict the sentiment of a sample positive review with
Amazon Comprehend’s detect_sentiment() API:

txt = """I loved it! I will recommend this to everyone."""

46 | Chapter 2: Data Science Use Cases

response = comprehend.detect_sentiment(
 Text=txt
)

Here is the output:

{
 "SentimentScore": {
 "Mixed": 0.030585512690246105,
 "Positive": 0.94992071056365967,
 "Neutral": 0.0141543131828308,
 "Negative": 0.00893945890665054
 },
 "Sentiment": "POSITIVE",
 "LanguageCode": "en"
}

Next, let’s use the classifier to predict the sentiment of a sample negative review with
Amazon Comprehend’s detect_sentiment() API:

txt = """Really bad. I hope they don't make this anymore."""

response = comprehend.detect_sentiment(
 Text=txt
)

Here is the output for the negative review:

{
 "SentimentScore": {
 "Mixed": 0.030585512690246105,
 "Positive": 0.00893945890665054,
 "Neutral": 0.0141543131828308,
 "Negative": 0.94992071056365967
 },
 "Sentiment": "NEGATIVE",
 "LanguageCode": "en"
}

With Amazon Comprehend Custom Labels, we can train Amazon Comprehend to
predict custom labels specific to our dataset.

In Chapter 3, we will train a custom Amazon Comprehend model
that classifies support messages into a star rating (1–5) as a finer-
grained form of sentiment analysis. We will use the Amazon Cus‐
tomer Reviews Dataset.

Text Analysis and Natural Language Processing | 47

Extract Resume Details with Amazon Textract and Comprehend
Organizations have long struggled to process semistructured documents efficiently to
make them easy to index and search. Document processing usually requires
significant customization and configuration. Amazon Textract, a fully managed ser‐
vice to accurately extract text from a document, uses optical character recognition
(OCR) and machine learning to automatically extract information from our scanned
documents.

More than just OCR, Amazon Textract also uses NLP to parse and save the specific
words, phrases, dates, and numbers found in the document. Combined with Amazon
Comprehend, Amazon Textract can build and maintain a smart index of our docu‐
ment contents. We can also use Amazon Textract to build automated document pro‐
cessing workflows and maintain compliance for our document archives.

After scanning and parsing a PDF resume, Amazon Textract generates this text-based
version:

NAME
...
LOCATION
...
WORK EXPERIENCE
...
EDUCATION
...
SKILLS
C (Less than 1 year), Database (Less than 1 year),
Database Management (Less than 1 year),
Database Management System (Less than 1 year),
Java (Less than 1 year)
...
TECHNICAL SKILLS
Programming language: C, C++, Java
Oracle PeopleSoft
Internet of Things
Machine Learning
Database Management System
Computer Networks
Operating System worked on: Linux, Windows, Mac
...
NON-TECHNICAL SKILLS
Honest and Hard-Working
Tolerant and Flexible to Different Situations
Polite and Calm
Team-Player

48 | Chapter 2: Data Science Use Cases

Let’s train Amazon Comprehend to understand a new concept called “SKILLS” that is
specific to our resume domain:

comprehend_client = boto3.client('comprehend')

custom_recognizer_name = 'resume-entity-recognizer-'+ str(int(time.time()))

comprehend_custom_recognizer_response = \
 comprehend_client.create_entity_recognizer(
 RecognizerName = custom_recognizer_name,
 DataAccessRoleArn = iam_role_textract_comprehend_arn,
 InputDataConfig = {
 'EntityTypes': [
 {'Type': 'SKILLS'},
],
 'Documents': {
 'S3Uri': comprehend_input_doucuments
 },
 'EntityList': {
 'S3Uri': comprehend_input_entity_list
 }
 },
 LanguageCode='en'
)

Using this new Skills entity recognizer that we built with Amazon Comprehend, we
can perform entity recognition on the text-based resume that was extracted from the
PDF with Amazon Textract earlier:

Start a recognizer Job:
custom_recognizer_job_name = 'recognizer-job-'+ str(int(time.time()))

recognizer_response = comprehend_client.start_entities_detection_job(
 InputDataConfig = {
 'S3Uri': s3_test_document,
 'InputFormat': 'ONE_DOC_PER_LINE'
 },
 OutputDataConfig = {
 'S3Uri': s3_test_document_output
 },
 DataAccessRoleArn = iam_role_textract_comprehend_arn,
 JobName = custom_recognizer_job_name,
 EntityRecognizerArn = comprehend_model_response['EntityRecognizerProperties']\
 ['EntityRecognizerArn'],
 LanguageCode = 'en'
)

Text Analysis and Natural Language Processing | 49

Here is the output of our custom Amazon Comprehend entity recognizer that
includes the text, offsets within the document, entity type (SKILLS), and prediction
confidence:

Start offset End offset Confidence Text Type
9 39 0.9574943836014351 analytical and problem solving SKILLS
8 11 0.7915781756343004 AWS SKILLS
33 41 0.9749685544856893 Solution SKILLS
20 23 0.9997213663311131 SQL SKILLS
2 13 0.9996676358048374 Programming SKILLS
25 27 0.9963501364429431 C, SKILLS
28 32 0.9637213743240001 C++, SKILLS
33 37 0.9984518452247634 Java SKILLS
39 42 0.9986466628533158 PHP SKILLS
44 54 0.9993487072806023 JavaScript SKILLS

Cognitive Search and Natural Language Understanding
At one point or another, we have all struggled with finding a relevant piece of infor‐
mation buried deep in a website, enterprise content management system, corporate
wiki, or corporate file share. We also know the pain of reanswering the same fre‐
quently asked questions over and over.

Surfacing relevant and timely search results is an age-old problem that has spawned
many open source solutions, including Apache Lucene, Apache SOLR, and Elastic‐
search. These solutions are rooted in older NLP techniques created many years ago.
When interacting with these solutions, we typically issue keyword searches that, if
entered incorrectly or out of order, could result in poor search results.

Cognitive search is a modern solution to the age-old problem of discovering informa‐
tion. Rooted in modern NLU, cognitive search allows end users to issue natural lan‐
guage questions that a human would naturally ask.

Amazon Kendra uses machine learning, NLU, and cognitive search to tackle the
enterprise search problem in a modern way. Instead of issuing traditional keyword
searches that require extra effort to distill, we can ask Amazon Kendra full natural
language questions such as, “On which floor is the IT department located in this
office?” and get a specific answer such as “19th floor.”

Amazon Kendra integrates with many different data sources, including Amazon S3,
SharePoint, Salesforce, ServiceNow, Amazon RDS Databases, OneDrive, and many
more. It supports all types of data schemas, including structured, unstructured, and
semistructured. It also supports many different formats, including PDF, HTML, rich
text, Microsoft Word, and PowerPoint.

50 | Chapter 2: Data Science Use Cases

While Amazon Kendra comes out of the box with various pre-trained models opti‐
mized across multiple domains, we can train Amazon Kendra with our datasets to
improve the accuracy of the results. In addition, Amazon Kendra actively learns and
retrains itself based on end-user usage patterns, including explicit feedback such as
thumbs up and thumbs down on specific search results.

Combining Amazon Kendra and Lex, we can build a support chatbot across a broad
range of devices to help answer frequently asked questions. In this example, we also
include the popular workforce-collaboration tool Slack, as shown in Figure 2-3.

Figure 2-3. Using Slack, Amazon Lex, and Amazon Kendra to automatically answer
questions.

The following is a sample conversation where Antje is using a Slackbot to ask ques‐
tions during a live workshop. The chatbot answers commonly asked questions from
attendees. This allows hosts of the workshop to focus on more-complicated questions
that require human intervention:

Antje: “Hi there.”
Slackbot: “Hello! How can I help?”
Antje: “Do you record this workshop?”
Slackbot: “Yes, this workshop is being recorded.”
Antje: “Where do I find the recording?”
Slackbot: “The recording will be shared at https://youtube.datascienceonaws.com within
24 hours.”
Antje: “Do you know how to get started with SageMaker?”
Slackbot: “I think the answer to your question is: On the Amazon SageMaker Studio
page, under Get Started, choose Quick Start, then select Create Studio Domain.”

Intelligent Customer Support Centers
Quality customer support is important for every industry and business (as noted ear‐
lier, Customer Obsession is a key leadership principle at Amazon). In many cases,
customer support directly affects the customer’s perception of the business. Amazon
Connect is a cloud contact center solution that implements machine learning to pro‐
vide intelligent contact center features. With Connect Wisdom, customer support
agents can simply enter a question, such as “What is the exchange policy for books?”

Intelligent Customer Support Centers | 51

and Wisdom returns the most relevant information and best answer. Wisdom also
runs machine learning on live-call transcripts to automatically identify customer
issues and recommend responses to the agents.

Contact Lens for Amazon Connect adds machine learning capabilities to Amazon
Connect, a cloud contact center service based on the same technology that powers
Amazon’s customer service. Contact Lens uses speech-to-text transcription, NLP, and
cognitive search capabilities to analyze customer–agent interactions.

By automatically indexing call transcripts, Contact Lens lets us search for specific
words, phrases, and sentiment—as well as redact sensitive information from tran‐
scripts to avoid leaks. Contact Lens helps supervisors spot recurring themes with
interactions in real time, automatically trains agents to improve their customer sup‐
port skills, and continuously categorizes contacts based on keywords and phrases
used by the customer.

With Contact Lens for Amazon Connect, contact center supervisors have a single
view into customer–agent interactions, product feedback trends, and potential com‐
pliance risks. Amazon Connect replicates successful interactions, highlights product
feedback anomalies, and escalates poor customer–agent interactions to a supervisor.

Industrial AI Services and Predictive Maintenance
As part of the AWS for Industrial service portfolio, AWS offers a range of AI services
and hardware, including Amazon Lookout for Metrics, Lookout for Vision, Lookout
for Equipment, Amazon Monitron, and AWS Panorama.

We can create accurate anomaly detection models using Amazon Lookout for Met‐
rics. After uploading our data, Lookout for Metrics will automatically inspect the data
and build the anomaly detection model. If the model detects anomalies, the service
will group related anomalies together and assign a severity score. Lookout for Metrics
comes with built-in connectors to popular data sources, including Amazon S3, Ama‐
zon Redshift, Amazon CloudWatch, Amazon RDS, and a variety of SaaS applications.
The anomaly detection model leverages human-in-the-loop feedback to continuously
improve over time.

We can spot product defects using Amazon Lookout for Vision. Lookout for Vision
implements computer vision to identify visual defects in objects. It can help automate
the detection of damages to parts, identify missing components, or uncover process
issues in our manufacturing lines. Lookout for Vision already comes with a pre-
trained anomaly detection model. We simply fine-tune it to our specific images.

We can monitor the health and efficiency of our equipment using Amazon Lookout
for Equipment. We upload our historical equipment sensor data to Lookout for
Equipment, and the service will build a custom machine learning model to detect any

52 | Chapter 2: Data Science Use Cases

abnormal equipment behavior. Additionally, the service will automatically send an
alert so we can take action. Lookout for Equipment works with any time series analog
data, including sensor data such as temperature, flow rates, etc.

We can implement an end-to-end predictive maintenance use case with Amazon
Monitron, which includes equipment sensors, a gateway device to securely connect to
AWS, and a managed service to analyze the data for abnormal machine patterns.
Amazon Monitron captures the sensor data from our equipment, identifies healthy
sensor patterns, and trains a machine learning model specific to that equipment. We
can provide feedback to improve the model via an Amazon Monitron mobile app, for
example.

We can enable our on-premises cameras for computer vision via AWS Panorama,
which comes with a hardware appliance that we can connect to our network and
existing cameras. We can then deploy computer vision applications to the appliance
to process the video streams from the connected cameras. Camera device manufac‐
turers can use the AWS Panorama SDK to build new cameras that run computer
vision models at the edge.

Home Automation with AWS IoT and Amazon SageMaker
We live in a world where we estimate five billion people own some sort of mobile
device, and more than half of our internet traffic happens through mobile devices. In
addition, the industrial Internet of Things (IoT) revolution boasts many more billions
of connected sensors and devices across our homes, office buildings, factories, cars,
ships, planes, oil drills, agricultural fields, and many more.

This trend toward mobile and IoT devices also pushed computing to the edge,
whether we need to analyze and preprocess data before it is sent and ingested into
central data lakes (for data-privacy compliance reasons, for example) or improve user
experience by serving application responses faster, eliminating the latency of a round
trip to the cloud. We also see more and more machine learning happening at the
edge. And while the training of machine learning models often requires powerful
compute resources, making inferences against these models typically requires far less
computational power.

Performing inference at the edge helps to reduce latency and cost as we are saving the
round-trip time to the cloud. We can also capture and analyze the prediction results
faster, trigger some action locally, or send the analyzed data back to the cloud to
retrain and improve our machine learning models.

AWS IoT Greengrass deploys the model from S3 to the edge to make predictions with
edge-local data. AWS IoT Greengrass also syncs the model inference results back to
an S3 bucket. This prediction data can then be used to retrain and improve the

Home Automation with AWS IoT and Amazon SageMaker | 53

SageMaker model. AWS IoT Greengrass supports over-the-air deployments, runs
locally on each device, and extends AWS to those devices.

Figure 2-4 shows a home automation use case running AWS IoT Greengrass on a
local home automation server called the “edge device.” AWS IoT Greengrass deploys a
SageMaker model to the edge device and processes data received from camera, light
switches, and light bulbs using an edge version of Lambda running on the edge
device.

Figure 2-4. Home automation use case with AWS IoT Greengrass.

AWS provides a wide range of services to implement machine learning at the edge,
including AWS IoT Greengrass for model deployment to the edge, SageMaker Neo
for model optimization, and SageMaker Edge Manager for managing models at the
edge. We will dive deeper into SageMaker Neo and Edge Manager in Chapter 9.

Extract Medical Information from Healthcare Documents
In the healthcare space, AWS offers many dedicated services. The services have been
developed specifically for the characteristics and needs of healthcare data and comply
with healthcare regulations. As part of the Amazon AI HIPAA-eligible healthcare
portfolio of services, AWS offers Amazon Comprehend Medical, Amazon Transcribe
Medical, and Amazon HealthLake.

Comprehend Medical is an NLP service that has been pre-trained specifically on
medical language. Comprehend Medical automates the extraction of health data from
medical texts, such as doctors’ notes, clinical trial reports, or patient health records.

54 | Chapter 2: Data Science Use Cases

Transcribe Medical is an ASR service that has been similarly pre-trained on medical
language. We can use Transcribe Medical to transcribe medical speech into text. With
a simple API call, we can automate clinical documentation workflows or even subtitle
telemedicine.

HealthLake is a secure data lake that complies with the Fast Healthcare Interoperabil‐
ity Resources industry standard. In addition to storing, indexing, and transforming
healthcare data, Amazon HealthLake leverages machine learning to identify, under‐
stand, and extract medical information from the raw data, such as medical reports
and patient notes. We can use Amazon QuickSight, Athena, and SageMaker to run
advanced analytics and machine learning on our healthcare data.

Self-Optimizing and Intelligent Cloud Infrastructure
The Amazon AI/ML services that we have introduced so far are not the only services
that provide sophisticated machine learning. In fact, more and more existing AWS
services are being enriched with machine learning capabilities, and new machine-
learning-powered services are being introduced across a variety of use cases. Let’s
take a quick look at some of these hidden gems.

Predictive Auto Scaling for Amazon EC2
Amazon EC2, short for Elastic Compute Cloud, provides virtual server instances in
the AWS cloud. One of the challenges in running our applications on those Amazon
EC2 instances is how we make sure to scale the number of instances to serve the cur‐
rent workload, basically matching supply with demand. Luckily, there’s Amazon EC2
Auto Scaling, which helps us with exactly that. Based on changes in demand, we can
configure Amazon EC2 Auto Scaling to automatically add or remove compute
capacity. This dynamic scaling approach is still reactive, though, as it acts on moni‐
tored traffic and Amazon EC2 instance utilization metrics.

We can take this a level further to a proactive approach in combination with a service
called AWS Auto Scaling. AWS Auto Scaling provides a single interface to set up auto‐
matic scaling of multiple AWS services, including Amazon EC2. It combines dynamic
and predictive scaling. With predictive scaling, AWS uses machine learning algo‐
rithms to predict our future traffic based on daily and weekly trends and provisions
the right number of Amazon EC2 instances in advance of anticipated changes, as
shown in Figure 2-5.

Self-Optimizing and Intelligent Cloud Infrastructure | 55

Figure 2-5. Predictive scaling with AWS Auto Scaling anticipates traffic changes to pro‐
vision the right number of Amazon EC2 instances.

Anomaly Detection on Streams of Data
Streaming technologies provide us with the tools to collect, process, and analyze data
streams in real time. AWS offers a wide range of streaming technology options,
including Amazon MSK and Amazon Kinesis. While we dive deeper into streaming
analytics and machine learning with Amazon Kinesis and Apache Kafka in Chap‐
ter 10, we want to highlight Kinesis Data Analytics as a simple and powerful way to
create streaming applications with just a few lines of code.

Kinesis Data Analytics provides built-in capabilities for anomaly detection using the
Random Cut Forest (RCF) function in Kinesis Data Analytics to build a machine
learning model in real time and calculate anomaly scores for numeric values in each
message. The score indicates how different the value is compared to the observed
trend. The RCF function also calculates an attribution score for each column, which
reflects the anomaly of the data in that particular column. The sum of all attribution
scores of all columns is the overall anomaly score.

Cognitive and Predictive Business Intelligence
Many machine learning applications and models assume data being readily available
in a data lake (discussed in Chapter 4). In reality, though, much of the world’s data is
stored and processed in structured, relational databases. In order for us to apply
machine learning to this structured data, we have to either export the data or develop
a custom application to read the data before applying any machine learning. Wouldn’t
it be great if we could use machine learning straight from our business intelligence
service, our data warehouse, or our databases? Let’s see how to do this on AWS.

56 | Chapter 2: Data Science Use Cases

Ask Natural-Language Questions with Amazon QuickSight
Amazon QuickSight is a business intelligence service that performs interactive quer‐
ies and builds visualizations on data sources such as Amazon Redshift, Amazon RDS,
Amazon Athena, and Amazon S3. QuickSight can also detect anomalies, create fore‐
casts, and answer natural-language questions from our data through QuickSight ML
Insights and QuickSight Q.

QuickSight ML Insights runs the RCF algorithm to identify change in millions of
metrics, across billions of data points. ML Insights also enables forecasting based on
the observed metrics. The RCF algorithm automatically detects seasonality patterns
in our data, excludes any outliers, and imputes missing values.

With QuickSight Q, we can ask natural-language questions such as, “What are the
best-selling product categories in the US state of California?” QuickSight uses
machine learning to understand the question, apply the question to our data, and cre‐
ate a chart to answer our question, as shown in Figure 2-6. We will dive deep into
QuickSight in Chapter 5.

Figure 2-6. QuickSight Q understands natural-language questions and automatically
creates charts to answer the questions.

Train and Invoke SageMaker Models with Amazon Redshift
Amazon Redshift is a fully managed data warehouse that allows us to run complex
analytic queries against petabytes of structured data. Using Amazon Redshift ML, we
can use our data in Amazon Redshift to train models with SageMaker Autopilot as
new data arrives. SageMaker Autopilot automatically trains, tunes, and deploys a
model. We then register and invoke the model in our Amazon Redshift queries as a
user-defined function (UDF). Figure 2-7 shows how we make predictions with the

Cognitive and Predictive Business Intelligence | 57

USING FUNCTION SQL clause. We will show a more detailed example of Amazon Red‐
shift ML and SageMaker Autopilot in Chapter 3.

Figure 2-7. Amazon Redshift uses SageMaker Autopilot to train and invoke a Sage‐
Maker model as a UDF.

We can create a UDF to invoke any AWS service using Lambda
Functions. This sample UDF invokes a Lambda Function:

USING FUNCTION invoke_lambda(input VARCHAR)
RETURNS VARCHAR TYPE LAMBDA_INVOKE WITH
(lambda_name='<LAMBDA_NAME>') SELECT invoke('<INPUT>');

Invoke Amazon Comprehend and SageMaker Models from
Amazon Aurora SQL Database
Aurora, a MySQL- and PostgreSQL-compatible relational database, is natively inte‐
grated with Amazon Comprehend and Amazon SageMaker, as shown in Figure 2-8.

Figure 2-8. Aurora ML can invoke models in Amazon Comprehend and SageMaker.

58 | Chapter 2: Data Science Use Cases

We can use either built-in SQL functions (with Amazon Comprehend) or custom-
written SQL functions (with Amazon SageMaker) in our queries to apply machine
learning to the data. As shown in previous sections, we could leverage Amazon Com‐
prehend for customer sentiment analysis (built-in SQL function) on maybe a product
review or use Amazon SageMaker for any custom-developed machine learning model
integration.

Let’s say we have some sample product reviews in a relational table:

CREATE TABLE IF NOT EXISTS product_reviews (
 review_id INT AUTO_INCREMENT PRIMARY KEY,
 review_body VARCHAR(255) NOT NULL
);

INSERT INTO product_reviews (review_body)
VALUES ("Great product!");
INSERT INTO product_reviews (review_body)
VALUES ("It's ok.");
INSERT INTO product_reviews (review_body)
VALUES ("The worst product.");

Then, we can use the following built-in SQL functions to let Amazon Comprehend
return us the sentiment and confidence score:

SELECT review_body,
 aws_comprehend_detect_sentiment(review_body, 'en') AS sentiment,
 aws_comprehend_detect_sentiment_confidence(review_body, 'en') AS confidence
 FROM product_reviews;

This would show a result similar to this:

review_body sentiment confidence

Great product! POSITIVE 0.9969872489
It's ok. POSITIVE 0.5987234553
The worst product. NEGATIVE 0.9876742876

Invoke SageMaker Model from Amazon Athena
Similarly, we can use Amazon Athena, a service that lets us use SQL queries to query
data stored in Amazon S3, and invoke SageMaker machine learning models for infer‐
ence directly from those queries, as shown in Figure 2-9.

Cognitive and Predictive Business Intelligence | 59

Figure 2-9. Amazon Athena can invoke SageMaker models.

We define a UDF with the USING FUNCTION SQL statement that invokes a custom-
built Amazon SageMaker Endpoint that serves the sentiment predictions. Any subse‐
quent SELECT statement in the query can then reference the function to pass values to
the model.

Here’s a simple example:

USING FUNCTION predict_sentiment(review_body VARCHAR(65535))
 RETURNS VARCHAR(10) TYPE
 SAGEMAKER_INVOKE_ENDPOINT WITH (sagemaker_endpoint = '<ENDPOINT_NAME>')

SELECT predict_sentiment(review_body) AS sentiment
 FROM "dsoaws"."amazon_reviews_tsv"
 WHERE predict_sentiment(review_body)="POSITIVE";

Run Predictions on Graph Data Using Amazon Neptune
Amazon Neptune is a fully managed graph database that allows us to build and run
applications across highly connected datasets. Neptune ML implements graph neural
networks (GNNs) to make predictions using graph data. While algorithms such as
XGBoost are designed for traditional tabular datasets, GNNs have been specifically
designed to deal with the complexity of graphs and potentially billions of relation‐
ships. Neptune ML uses the open source Deep Graph Library and Amazon Sage‐
Maker to automatically choose, train, and deploy the best model for our graph data.

Educating the Next Generation of AI and ML Developers
Amazon and AWS offer many programs and services to help educate the next genera‐
tion of AI/ML developers. Amazon’s Machine Learning University program—used to
train Amazon employees—was released to the public in 2020. AWS Training and Cer‐
tification (T&C) offers a broad range of on-demand and classroom training courses
that help to prepare for the AWS Machine Learning specialty certification. In addi‐
tion, AWS has partnered with Udacity, Coursera, and DeepLearning.AI to create sev‐
eral Massive Open Online Courses to give hands-on experience with the Amazon AI
and machine learning stack.

60 | Chapter 2: Data Science Use Cases

https://oreil.ly/CnXwM

In this section, we discuss the deep-learning-powered AWS devices that provide a fun
and educational way to get hands-on experience with computer vision, reinforcement
learning, and generative adversarial networks (GANs).

The developer-focused device family consists of the following: AWS DeepLens, Deep‐
Racer, and DeepComposer. AWS DeepLens is a wireless, deep-learning-enabled video
camera. AWS DeepRacer is a fully autonomous 1/18th-scale race car driven by rein‐
forcement learning. And AWS DeepComposer is a musical keyboard powered by
GANs to transform our melodies into original songs.

Build Computer Vision Models with AWS DeepLens
AWS DeepLens is a deep-learning-enabled video camera that comes with a rich set of
computer vision tutorials and pre-built models. If we want to learn how to build
computer vision apps and see our first results in a matter of minutes, we can just use
one of the many sample projects that come with pre-trained models and a simple
inference function. The camera will perform local inference on the device against the
deployed model.

If we are a more experienced developer, we can build and train our custom convolu‐
tional neural network (CNN) model in any of the supported deep-learning frame‐
works, such as TensorFlow, Apache MXNet, or Caffe, and then deploy the project to
the AWS DeepLens device. Figure 2-10 shows a typical AWS DeepLens workflow.

Figure 2-10. AWS DeepLens captures input video streams, processes the stream using a
deployed model, and generates two output video streams.

AWS DeepLens is both an edge device and a camera. Therefore, AWS DeepLens runs
AWS IoT Greengrass Core and can execute its own Lambda functions. New models
are pushed to AWS DeepLens using AWS IoT Greengrass. The camera captures the
input video stream and produces two output streams: a device stream that’s passed
through as is, and a project stream that is the result of the deployed model’s processed
video frames.

Educating the Next Generation of AI and ML Developers | 61

Any project we deploy needs to contain a Lambda function to process the input video
frames, also called the Inference Lambda function. We first bundle that function
together with a Lambda runtime and a trained model. Then we deploy the project
using AWS IoT Greengrass to an AWS DeepLens device.

Learn Reinforcement Learning with AWS DeepRacer
AWS DeepRacer is a fully autonomous 1/18th-scale race car driven by reinforcement
learning. The car is equipped with two cameras, a LIDAR sensor, and an on-board
compute module. The compute module performs the inference in order to drive the
car along a track.

Reinforcement learning is applied to a variety of autonomous decision-making prob‐
lems. It gained broader popularity when the team of scientists, engineers, and
machine learning experts at DeepMind released AlphaGo, the first computer pro‐
gram that defeated a professional human Go player back in 2015.

Go is an ancient, strategic board game known for its complexity. It
was invented in China about three thousand years ago and is still
being played by amateurs and in various professional leagues
around the globe.

While AlphaGo learned the game by playing thousands of matches against human
players, the subsequent release AlphaGo Zero learned Go by just playing against
itself. This has revolutionized the field of reinforcement learning once more as it per‐
formed even better than the previous release and showed that the model was able to
discover new knowledge and apply unconventional strategies to win.

At a high level, reinforcement learning is a machine learning method that aims at
autonomous decision making by an agent to achieve a specific goal through interac‐
tions with an environment, as shown in Figure 2-11. Learning is achieved through
trial and error.

62 | Chapter 2: Data Science Use Cases

https://deepmind.com

Figure 2-11. Reinforcement learning is a machine learning method that aims at autono‐
mous decision making by an agent to achieve a specific goal through interactions with
an environment.

We will dive deeper into reinforcement learning to compare models in production
with multiarmed bandits in Chapter 9, but let’s get back to our autonomous-car rac‐
ing scenario. In our example, the agent is the AWS DeepRacer car, and the environ‐
ment consists of track layouts, traveling routes, and traffic conditions. The actions
include steer left, steer right, brake, and accelerate. Actions are chosen to maximize a
reward function, which represents the goal of reaching the destination quickly
without accidents. Actions lead to states. Figure 2-12 shows the AWS DeepRacer’s
flow of actions, rewards, and states.

Figure 2-12. AWS DeepRacer takes action based on state and reward.

We don’t even need a physical track or car to get started. We can start training our
custom reinforcement learning model in the AWS DeepRacer console and use the
AWS DeepRacer simulator to evaluate our model on a virtual track, as shown in
Figure 2-13.

Educating the Next Generation of AI and ML Developers | 63

Figure 2-13. Model evaluation using the AWS DeepRacer simulator. Source: AWS Deep‐
Racer Developer Guide.

AWS also maintains a global AWS DeepRacer League and leaderboard that ranks
vehicle performances from official AWS DeepRacer League racing events happening
throughout the year, including both physical and virtual events.

Understand GANs with AWS DeepComposer
Yes, everyone looked a bit puzzled when AWS introduced the AWS DeepComposer
device at the annual AWS re:Invent conference back in December 2019. Soon, how‐
ever, we started hearing those distinctive sounds coming from hotel hallways
throughout Las Vegas. AWS DeepComposer is a musical USB keyboard to help us
learn generative AI. It is designed to work with the AWS DeepComposer service to
turn a simple melody into an original song. An AWS DeepComposer device is shown
in Figure 2-14.

Figure 2-14. AWS DeepComposer is a musical USB keyboard that helps us learn genera‐
tive AI. Source: AWS.

64 | Chapter 2: Data Science Use Cases

https://oreil.ly/rN3dR
https://oreil.ly/rN3dR
https://oreil.ly/qk6zr

Generative AI, specifically in the form of GANs, is used to generate new content from
inputs we provide. This input can be images, text, or—yes—music. Generative AI
models automatically discover and learn patterns in data and use this knowledge to
generate new data based on the data they were trained on. GANs use two competing
algorithms, a generator and a discriminator, to generate new content, as shown in
Figure 2-15.

Figure 2-15. GANs leverage a generator and discriminator algorithm.

A generator is a CNN that learns to create new content based on the patterns of the
input data. The discriminator is another CNN that is trained to actually differentiate
between real and generated content. Both the generator and the discriminator are
trained in alternating runs to force the generator to create more and more realistic
content, while the discriminator improves at identifying synthetic content as opposed
to real content.

Applied to our music example, when we play a melody on the keyboard, AWS Deep‐
Composer can add up to three additional accompaniment tracks to create a new com‐
position. The generator network is adapted from the popular U-Net architecture used
in Computer Vision and has been trained on a publicly available dataset of Bach’s
compositions.

Program Nature’s Operating System with
Quantum Computing
Building useful quantum applications requires new skills and a radically different
approach to problem solving. Acquiring this expertise takes time and requires access
to quantum technologies and programming tools.

Amazon Braket helps us explore the potential of quantum hardware, understand
quantum algorithms, and retool for a quantum future. Figure 2-16 shows the flywheel
of quantum computing growing the ecosystem through better hardware, more devel‐
opers, and more use cases.

Program Nature’s Operating System with Quantum Computing | 65

Figure 2-16. The flywheel of quantum computing grows with Amazon Braket.

There are many similarities between today’s graphics processing units (GPUs) and
tomorrow’s quantum processing units (QPUs). GPUs revolutionized AI and machine
learning though highly parallel, digital computations. GPUs also required a different
set of skills, libraries (i.e., NVIDIA’s CUDA), and hardware to take advantage of this
massive parallelism. Additionally, GPU devices are “off-chip” relative to the CPU
devices that traditionally manage the larger computation workflow. Synchronizing
data between CPUs and GPUs requires special hardware and software to accommo‐
date the physical separation.

Similarly, QPUs perform computations through massively parallel, quantum compu‐
tations—many orders of magnitude more parallel than their digital counterparts.
Additionally, QPUs require a different set of skills, libraries, and hardware. They are
off-chip relative to CPUs and therefore require special hardware and software to per‐
form the synchronization operations similar to GPUs, as shown in Figure 2-17.

66 | Chapter 2: Data Science Use Cases

Figure 2-17. Using a QPU with a classic digital computer.

Quantum Bits Versus Digital Bits
Quantum bits (qubits) are the quantum computing equivalent of classical digital bits.
However, their state (0 or 1) is probabilistic and therefore requires a READ operation
before the value is known. This probabilistic state is referred to as “superposition”
and is a key principle behind quantum computing.

Today’s accessible quantum computers are around 70 to 100 qubits. However, a sig‐
nificant portion of these qubits are required for error correction given the relative
“noisy” environment of the quantum hardware. Cryptography, for example, requires
nearly 6,000 clean qubits to break 2048-bit RSA. Six thousand clean qubits requires
approximately 1,000,000 error-correcting, redundant qubits to adjust for the noisy
environment offered by current quantum hardware.

Quantum Supremacy and the Quantum Computing Eras
Until recently, we were in the “classically simulatable” phase where we could simulate
the performance improvements of quantum computers. However, in 2019, we
reached a point of “quantum supremacy” where we are no longer able to simulate and
measure additional performance improvements from quantum computers due to
limitations with today’s digital computers.

The current era is called Noisy Intermediate-Scale Quantum. During this era, we are
trying to correct for the noise introduced by the quantum computing environment,
which requires very specific temperature and vacuum characteristics. Similar to
error-correcting registers and RAM chips, we need error-correcting qubits and
QRAM to enter the next era, called the Error-Corrected Quantum Computer era, as
shown in Figure 2-18.

Program Nature’s Operating System with Quantum Computing | 67

Figure 2-18. Quantum computing eras.

Cracking Cryptography
It is estimated that quantum computers are only 10 or so years away from cracking
modern-day RSA cryptography. Today, cryptography is effective because we don’t
have enough computing power to perform the numeric factorization required to
crack the code.

However, with an estimated 6,000 “perfect” qubits (no error correcting needed), we
can crack the RSA code within just a few minutes. This is scary and has given rise to
“quantum-aware” or “post-quantum” cryptography such as Amazon’s s2n open source
implementation of the TLS protocol, which uses post-quantum cryptography as
opposed to classical cryptography. We dive deeper into post-quantum cryptography
in Chapter 12.

Molecular Simulations and Drug Discovery
Quantum computers have unique parallelization capabilities and can natively manip‐
ulate quantum mechanical states. Therefore, they have the potential to solve very
important problems, such as mapping the electronic structure of molecules. Quan‐
tum simulations will likely lead to discovering new materials, catalysts, drugs, and
high-temperature superconductors.

Logistics and Financial Optimizations
Optimization problems are ubiquitous across many domains, including supply chain
logistics and financial services. Finding the optimal approach from an exponential set
of possible options can saturate the resources of a classical digital computer. Quan‐
tum computers can break through this barrier and accelerate many optimization
techniques, including linear programming algorithms and Monte Carlo methods.

68 | Chapter 2: Data Science Use Cases

https://oreil.ly/o3U7G
https://oreil.ly/o3U7G

Quantum Machine Learning and AI
Unfortunately, today’s use of quantum computers in machine learning and AI is
pretty limited. We have seen some early improvements in linear algorithms, such as
support vector machines and Principal Component Analysis. We have also seen
examples where quantum research has inspired improvements in classical recom‐
mendation algorithms. In the future, error-correcting quantum computers will likely
lead to a rich class of scalable and high-performance quantum machine learning and
AI models.

Programming a Quantum Computer with Amazon Braket
Amazon Braket supports Jupyter Notebook and offers a Python SDK to allow devel‐
opers to interact with a quantum computer. Using the Python SDK, we asynchro‐
nously submit tasks to a remote QPU. This is similar to how we submitted jobs and
“rented” a shared computer back in the early days of computing to complete those
jobs. This is also similar to offloading compute from a CPU to a GPU. The key differ‐
ence, however, is that the CPU and GPU share classical digital fundamentals—the
QPU does not.

The following code demonstrates how to build a quantum circuit involving multiple
qubits. This example demonstrates how to perform “quantum teleportation” where
information (not matter) is transported from one qubit to another without using clas‐
sical digital circuits or network cables:

from braket.aws import AwsDevice
from braket.circuits import Circuit, Gate, Moments
from braket.circuits.instruction import Instruction

device = AwsDevice("arn:aws:braket:::device/qpu/ionq/ionQdevice")

Alice and Bob initially share a Bell pair.
circ = Circuit();
circ.h([0]);
circ.cnot(0,1);

Define Alice's encoding scheme.
Define four possible messages and their gates.
message = {
 "00": Circuit().i(0),
 "01": Circuit().x(0),
 "10": Circuit().z(0),
 "11": Circuit().x(0).z(0)
 }

Alice selects a message to send. Let’s choose '01'.
m = "01"

Alice encodes her message by applying the gates defined above.

Program Nature’s Operating System with Quantum Computing | 69

https://oreil.ly/H99mZ
https://oreil.ly/H99mZ

circ.add_circuit(message[m]);

Alice then sends her qubit to Bob so that Bob has both qubits.
Bob decodes Alice's message by disentangling the two qubits.
circ.cnot(0,1);
circ.h([0]);

print(circ)

OUTPUT

T : |0|1|2|3|4|
q0 : -H-C-X-C-H-
 | |
q1 : ---X---X---
T : |0|1|2|3|4|

AWS Center for Quantum Computing
AWS has partnered with Caltech to build the AWS Center for Quantum Computing,
scheduled to open in 2021. This center will focus on developing useful quantum
applications, error-correcting qubits, quantum programming models, and new quan‐
tum hardware.

Increase Performance and Reduce Cost
What if we were able to double our code speed and reduce our server-pool size by
half? We could potentially save significant money. What if we could automatically
detect operational issues in our applications and see the recommended fixes to
improve availability? Reducing application downtime is another huge cost-saving
opportunity.

In this section, we introduce the fully managed services Amazon CodeGuru
Reviewer, Amazon CodeGuru Profiler, and Amazon DevOps Guru. CodeGuru
Reviewer and Profiler help us improve code performance and reduce our resource
requirements, while Amazon DevOps Guru helps to detect operational issues and
improve application availability.

Automatic Code Reviews with CodeGuru Reviewer
Code reviews are a well-known best practice for software development. The idea is
that our code is reviewed by a more experienced set of team members to provide
feedback on code performance, quality, and security. In addition to domain expertise,
these experienced team members possess tacit knowledge of the team’s coding idioms
as well as an acute sense of code smell.

70 | Chapter 2: Data Science Use Cases

Sometimes, however, even the most experienced team member will miss subtle per‐
formance bottlenecks or mishandled exceptions. These reviewers are often focused
on domain-specific issues such as poor implementation of the domain model or mis‐
configured service integrations. Additionally, reviewers are often limited to a static
view of the code versus live metrics into the code’s runtime. CodeGuru consists of
CodeGuru Reviewer for automated code reviews and CodeGuru Profiler to monitor
code performance.

CodeGuru Reviewer automates the code-review process and makes suggestions using
machine learning models trained on millions of lines of code from hundreds of thou‐
sands of Amazon’s internal code bases as well as 10,000+ open source projects on
GitHub.

We simply point CodeGuru to our source code repository in a secure and private
manner—CodeGuru will start making suggestions. CodeGuru analyzes all pull
requests on our source code repositories and automatically flags critical defects such
as credential leaks, resource leaks, concurrency race conditions, and inefficient use of
AWS resources. It suggests changes to specific lines of code to remediate the defects,
as shown in Figure 2-19.

Figure 2-19. CodeGuru Reviewer analyzes our source code and adds suggestions to
improve performance and reduce cost.

In this case, the original code from a Lambda function was creating a new Dyna‐
moDB client on every invocation instead of creating the client once and caching it.
Without this change, we will waste unnecessary compute cycles and memory regis‐
ters as we continuously re-create the same DynamoDB client object on every

Increase Performance and Reduce Cost | 71

invocation. With this change, our Lambda functions can handle more requests per
second, which results in fewer resources and lower cost.

CodeGuru Reviewer checks for Python and Java best practices, including connection
pooling and exception handling. Reviewer includes Security Detector to detect secu‐
rity issues such as unsanitized arguments passed to OS-level Python subprocess calls.
CodeGuru Reviewer also identifies code smells, reduces technical debt, and improves
codebase maintainability.

Improve Application Performance with CodeGuru Profiler
CodeGuru Profiler can detect bottlenecks in our code at runtime by analyzing the
application runtime profile, flagging the most expensive line of code, and providing
intelligent recommendations. Profiler creates visualizations such as the flame graph
in Figure 2-20 to identify where we should spend our time to optimize performance
and save the most money.

Figure 2-20. Flame graph generated by CodeGuru Profiler to highlight performance bot‐
tlenecks in our code.

The flame graph shows the call stack in human-readable form with the exact function
names. When analyzing flame graphs, we should dive deep into any plateaus that we
find. Plateaus often indicate that a resource is stalled waiting for network or disk I/O.
Ideally, our flame graph will show a lot of narrow peaks and not a lot of plateaus.

72 | Chapter 2: Data Science Use Cases

Improve Application Availability with DevOps Guru
Amazon DevOps Guru is an ML-powered operations service that automatically
detects operational issues in applications and recommends fixes. DevOps Guru looks
at application metrics, logs, and events to identify any behavior that deviates from
normal operating patterns, such as increased response latencies, elevated error rates,
and excessive resource utilization. When such a pattern is recognized, DevOps Guru
sends an alert together with a summary of related anomalies, the potential root cause,
and a possible resolution.

Summary
In this chapter, we have shown many different use cases that can be solved with vari‐
ous AWS AI and machine learning services out of the box with little or no code.
Whether we are application developers and don’t know much about machine learning
or experienced data scientists who want to focus on the difficult machine learning
problems, the managed AI and machine learning services by Amazon are worth
exploring.

We can easily enrich our applications with ready-to-use AI services, whether our
business use case requires us to bring machine learning to the edge or we are just at
the beginning of our AI/ML journey and want to find some fun educational ways to
get started with computer vision, reinforcement learning, or GANs.

We’ve also shown some examples of how to put the high-level AI services to work,
including Amazon Personalize for recommendations and Forecast for forecast
demand.

We showed how machine learning powers a lot of existing AWS services, including
predictive Amazon EC2 auto-scaling and warm-pooling. We also explored how to
detect and prevent sensitive data leaks using Macie and prevent fraud using Amazon
Fraud Detector. We covered how to improve the customer support experience with
Amazon Contact Lens for Amazon Connect, Comprehend, Kendra, and Lex. We also
described how we can automate source code reviews and identify performance and
cost benefits using CodeGuru Reviewer, CodeGuru Profiler, and DevOps Guru.

In Chapter 3, we will discuss the concept of automated machine learning. We will
show how to build predictive models in just a few clicks with Amazon SageMaker
Autopilot and Amazon Comprehend.

Summary | 73

CHAPTER 3

Automated Machine Learning

In this chapter, we will show how to use the fully managed Amazon AI and machine
learning services to avoid the need to manage our own infrastructure for our AI and
machine learning pipelines. We dive deep into two Amazon services for automated
machine learning, Amazon SageMaker Autopilot and Amazon Comprehend, both
designed for users who want to build powerful predictive models from their datasets
with just a few clicks. We can use both SageMaker Autopilot and Comprehend to
establish baseline model performance with very low effort and cost.

Machine learning practitioners typically spend weeks or months building, training,
and tuning their models. They prepare the data and decide on the framework and
algorithm to use. In an iterative process, ML practitioners try to find the best per‐
forming algorithm for their dataset and problem type. Unfortunately, there is no
cheat sheet for this process. We still need experience, intuition, and patience to run
many experiments and find the best hyper-parameters for our algorithm and dataset.
Seasoned data scientists benefit from years of experience and intuition to choose the
best algorithm for a given dataset and problem type, but they still need to validate
their intuition with actual training runs and repeated model validations.

What if we could just use a service that, with just a single click, finds the best algo‐
rithm for our dataset, trains and tunes the model, and deploys a model to produc‐
tion? Amazon SageMaker Autopilot simplifies the model training and tuning process
and speeds up the overall model development life cycle. By spending less time on
boiler-plate life-cycle phases such as feature selection and hyper-parameter tuning
(HPT), we can spend more time on domain-specific problems.

By analyzing our data from S3, SageMaker Autopilot explores different algorithms
and configurations based on many years of AI and machine learning experience at
Amazon. SageMaker Autopilot compares various regression, classification, and deep
learning algorithms to find the best one for our dataset and problem type.

75

The model candidates are summarized by SageMaker Autopilot through a set of auto‐
matically generated Jupyter notebooks and Python scripts. We have full control over
these generated notebooks and scripts. We can modify them, automate them, and
share them with colleagues. We can select the top model candidate based on our
desired balance of model accuracy, model size, and prediction latency.

Automated Machine Learning with SageMaker Autopilot
We configure the SageMaker Autopilot job by providing our raw data in an S3 bucket
in the form of a tabular CSV file. We also need to tell SageMaker Autopilot which
column is the target. Then SageMaker Autopilot applies automated machine learning
techniques to analyze the data, identify the best algorithm for our dataset, and gener‐
ate the best model candidates.

SageMaker Autopilot analyzes and balances the dataset and splits the dataset into
train/validation sets. Based on the target attribute we are trying to predict, SageMaker
Autopilot automatically identifies the machine learning problem type, such as regres‐
sion, binary classification, or multiclass classification. SageMaker Autopilot then
compares a set of algorithms depending on the problem type. The algorithm choices
include logistic regression, linear regression, XGBoost, neural networks, and others.

SageMaker Autopilot generates code to execute a set of model pipelines specific to
each algorithm. The generated code includes data transformations, model training,
and model tuning. Since SageMaker Autopilot is transparent, we have full access to
this generated code to reproduce on our own. We can even modify the code and
rerun the pipeline anytime.

After training and tuning the generated pipelines in parallel, SageMaker Autopilot
ranks the trained models by an objective metric such as accuracy, AUC, and F1-score,
among others.

SageMaker Autopilot uses a transparent approach to AutoML. In nontransparent
approaches, as shown in Figure 3-1, we don’t have control or visibility into the chosen
algorithms, applied data transformations, or hyper-parameter choices. We point the
automated machine learning (AutoML) service to our data and receive a trained
model.

76 | Chapter 3: Automated Machine Learning

Figure 3-1. With many AutoML services, we don’t have visibility into the chosen algo‐
rithms, applied data transformations, or hyper-parameter choices.

This makes it hard to understand, explain, and reproduce the model. Many AutoML
solutions implement this kind of nontransparent approach. In contrast, SageMaker
Autopilot documents and shares its findings throughout the data analysis, feature
engineering, and model tuning steps.

SageMaker Autopilot doesn’t just share the models; it also logs all observed metrics
and generates Jupyter notebooks, which contain the code to reproduce the model
pipelines, as visualized in Figure 3-2.

Figure 3-2. SageMaker Autopilot generates Jupyter notebooks, feature engineering
scripts, and model code.

The data-analysis step identifies potential data-quality issues, such as missing values
that might impact model performance if not addressed. The Data Exploration note‐
book contains the results from the data-analysis step. SageMaker Autopilot also gen‐
erates another Jupyter notebook that contains all pipeline definitions to provide
transparency and reproducibility. The Candidate Definition notebook highlights the
best algorithms to learn our given dataset, as well as the code and configuration
needed to use our dataset with each algorithm.

Both Jupyter notebooks are available after the first data-analysis
step. We can configure Autopilot to just do a “dry run” and stop
after this step.

Automated Machine Learning with SageMaker Autopilot | 77

Track Experiments with SageMaker Autopilot
SageMaker Autopilot uses SageMaker Experiments to keep track of all data analysis,
feature engineering, and model training/tuning jobs. This feature of the broader
Amazon SageMaker family of ML services helps us organize, track, compare and
evaluate machine learning experiments. SageMaker Experiments enables model ver‐
sioning and lineage tracking across all phases of the ML life cycle.

A SageMaker Experiment consists of trials. A trial is a collection of steps that includes
data preprocessing, model training, and model tuning. SageMaker Experiments also
offers lineage tracking across S3 locations, algorithms, hyper-parameters, trained
models, and model-performance metrics.

We can explore and manage SageMaker Autopilot experiments and trials either
through the UI or using SDKs, such as the Amazon SageMaker Python SDK or the
AWS SDK for Python (Boto3).

The SageMaker SDK is a high-level, SageMaker-specific abstraction
on top of Boto3 and is the preferred choice for SageMaker model
development and management.

Train and Deploy a Text Classifier with
SageMaker Autopilot
Let’s create a SageMaker Autopilot experiment to build a custom text classifier to clas‐
sify social feedback on products that we are selling. The product feedback comes
from various online channels, such as our website, partner websites, social media,
customer support emails, etc. We capture the product feedback and want our model
to classify the feedback into star rating classes, with 5 being the best feedback and 1
being the worst.

As input data, we leverage samples from the Amazon Customer Reviews Dataset.
This dataset is a collection of over 150 million product reviews on Amazon.com from
1995 to 2015. Those product reviews and star ratings are a popular customer feature
of Amazon.com. We will describe and explore this dataset in much more detail in
Chapters 4 and 5. For now, we focus on the review_body (feature) and star_rating
(predicted label).

78 | Chapter 3: Automated Machine Learning

https://oreil.ly/nUN9I
https://oreil.ly/eiN8j
https://oreil.ly/LjXva

Train and Deploy with SageMaker Autopilot UI
The SageMaker Autopilot UI is integrated into SageMaker Studio, an IDE that pro‐
vides a single, web-based visual interface where we can perform our machine learning
development. Simply navigate to Amazon SageMaker in our AWS Console and click
SageMaker Studio. Then follow the instructions to set up SageMaker Studio and click
Open Studio.

This will take us to the SageMaker Studio UI, where we can access the SageMaker
Autopilot UI through the Experiments and trials menu. There, we can click Create
Experiment to create and configure our first SageMaker Autopilot experiment.

In preparation for our SageMaker Autopilot experiment, we use a subset of the Ama‐
zon Customer Reviews Dataset to train our model. We want to train a classifier model
to predict the star_rating for a given review_body. We created our input CSV file to
contain the star_rating as our label/target column and the review_body column,
which contains the product feedback:

star_rating,review_body
5,"GOOD, GREAT, WONDERFUL"
2,"It isn't as user friendly as TurboTax."
4,"Pretty easy to use. No issues."
…

In other scenarios, we will likely want to use more columns from our dataset and let
SageMaker Autopilot choose the most important ones through automated feature
selection. In our example, however, we keep things simple and use the star_rating
and review_body columns to focus on the steps to create the Autopilot experiment.

Next, we configure the SageMaker Autopilot experiment with a few input parameters
that define the dataset, the target column to predict, and, optionally, the problem
type, such as binary classification, multiclass classification, or regression. If we don’t
specify the problem type, SageMaker Autopilot can automatically determine the
problem type based on the values it finds in the target column:

Experiment name
A name to identify the experiment, e.g., amazon-customer-reviews.

Input data location
The S3 path to our training data, e.g., s3://<MY-S3-BUCKET>/data/
amazon_reviews_us_Digital_Software_v1_00_header.csv.

Target
The target column we want to predict, e.g., star_rating.

Output data location
The S3 path for storing the generated output, such as models and other artifacts,
e.g., s3://<MY-S3-BUCKET>/autopilot/output.

Train and Deploy a Text Classifier with SageMaker Autopilot | 79

Problem type
The machine learning problem type, such as binary classification, multiclass clas‐
sification, and regression. The default, “Auto,” allows SageMaker Autopilot to
choose for itself based on the given input data, including categorical data.

Run complete experiment
We can choose to run a complete experiment or just generate the Data Explora‐
tion and Candidate Definition notebooks as part of the data analysis phase. In
this case, SageMaker Autopilot stops after the data analysis phase and would not
run the feature engineering, model training, and tuning steps.

Let’s click Create Experiment and start our first SageMaker Autopilot job. We can
observe the progress of the job in SageMaker Studio’s Autopilot UI through prepro‐
cessing, candidate generation, feature engineering, and model tuning. Once Sage‐
Maker Autopilot completes the candidate generation phase, we can see the links to
the two generated notebooks appearing in the UI: Candidate Generation and Data
Exploration.

We can either download these files directly from the UI or automate the download
from S3 directly. We can find the generated notebooks, code, and transformed data in
the following structure:

amazon-customer-reviews/
 sagemaker-automl-candidates/
 ...
 generated_module/
 candidate_data_processors/
 dpp0.py
 dpp1.py
 ...
 notebooks/
 SageMakerAutopilotCandidateDefinitionNotebook.ipynb
 SageMakerAutopilotDataExplorationNotebook.ipynb
 ...
 data-processor-models/
 amazon-cus-dpp0-1-xxx/
 output/model.tar.gz
 amazon-cus-dpp1-1-xxx/
 output/model.tar.gz
 ...
 preprocessed-data/
 header/
headers.csv
tuning_data/
 train/
 chunk_20.csv
 chunk_21.csv
 ...
 validation/
 chunk_0.csv

80 | Chapter 3: Automated Machine Learning

 chunk_1.csv
 ...

When the feature engineering stage starts, we will see SageMaker Training Jobs
appearing in the AWS Console or within SageMaker Studio directly. Each training job
is a combination of a model candidate and the data preprocessor (dpp) code, named
dpp0 through dpp9. We can think of those training jobs as the 10 machine learning
pipelines SageMaker Autopilot builds to find the best-performing model. We can
select any of those training jobs to view the job status, configuration, parameters, and
log files. We will dive deep into feature engineering in Chapter 6 and SageMaker
Training Jobs in Chapter 7.

Once the feature-engineering stage has completed, we can view the transformed data
directly in S3 grouped by pipeline. The data has been divided into smaller chunks and
split into separate train and validation datasets, as shown in the following:

transformed-data/
 dpp0/
 rpb/
 train/
 chunk_20.csv_out
 chunk_21.csv_out
 ...
 validation/
 chunk_0.csv_out
 chunk_1.csv_out
 ...
 dpp1/
 csv/
 train/
 chunk_20.csv_out
 chunk_21.csv_out
 ...
 validation/
 chunk_0.csv_out
 chunk_1.csv_out
 ...
 ..
 dpp9/

Finally, SageMaker Autopilot runs the model-tuning stage, and we start seeing the tri‐
als appear in SageMaker Studio’s Autopilot UI. The model-tuning stage creates a
SageMaker Hyper-Parameter Tuning Job. HPT, or hyper-parameter optimization
(HPO), as it is commonly called, is natively supported by Amazon SageMaker and is
usable outside of SageMaker Autopilot for standalone HPT jobs on custom models,
as we will see in Chapter 8.

SageMaker Hyper-Parameter Tuning Jobs find the best version of a model by running
many training jobs on our dataset using the algorithm and ranges of hyper-
parameters that we specify. SageMaker supports multiple algorithms for HPT,

Train and Deploy a Text Classifier with SageMaker Autopilot | 81

including random search and Bayesian search. With random search, SageMaker
chooses random combinations of hyper-parameters from the ranges we specify. With
Bayesian search, SageMaker treats tuning as a regression problem. We will explore
SageMaker’s automatic model tuning functionality in Chapter 8.

We can find the corresponding training jobs listed in the SageMaker Training Jobs UI
or within SageMaker Studio directly. Again, we can click and inspect any of these jobs
to view the job status, configuration, parameters, and log files. Back in the SageMaker
Autopilot UI, we can inspect the trials.

The four SageMaker Autopilot trial components make up a pipeline of the following
jobs:

Processing Job
Splits the data into train and validation data and separates the header data

Training Job
Trains a batch transform model using the previously split training and validation
data with the data preprocessor code (dpp[0-9].py) for each model candidate

Batch Transform Job
Transforms the raw data into features

Tuning Job
Finds the best-performing model candidates using the previously transformed
algorithm-specific features by optimizing the algorithm configuration and
parameters

Those four components preserve the model’s lineage by tracking all hyper-
parameters, input datasets, and output artifacts. After the model-tuning step is com‐
pleted, we can find the final outputs and model candidates in the S3 bucket organized
per model-candidate pipeline:

tuning/
 amazon-cus-dpp0-xgb/
 tuning-job-1-8fc3bb8155c645f282-001-da2b6b8b/
 output/model.tar.gz
 tuning-job-1-8fc3bb8155c645f282-004-911d2130/
 output/model.tar.gz
 tuning-job-1-8fc3bb8155c645f282-012-1ea8b599/
 output/model.tar.gz
 ...
 amazon-cus-dpp3-ll/
 ...
amazon-cus-dpp-9-xgb/

Note that the pipeline name (i.e., amazon-cus-dpp0-xgb) conveniently contains infor‐
mation on the settings used (dpp0 = data preprocessor pipeline dpp0, xgb = chosen
algorithm XGBoost). In addition to programmatically retrieving the best-performing

82 | Chapter 3: Automated Machine Learning

model, we can use SageMaker Studio’s Autopilot UI to visually highlight the best
model.

Deploying this model into production is now as easy as right-clicking on the name
and selecting the Deploy model action. We just need to give our endpoint a name,
select the AWS instance type we want to deploy the model on, e.g., ml.m5.xlarge,
and define the number of instances to serve our model.

There is an overview of all AWS instance types supported by Ama‐
zon SageMaker and their performance characteristics.
Note that those instances start with ml. in their name.

Optionally, we can enable data capture of all prediction requests and responses for
our deployed model. We can now click Deploy model and watch our model endpoint
being created. Once the endpoint shows up as In Service, we can invoke the endpoint
to serve predictions.

Here is a simple Python code snippet that shows how to invoke the model deployed
to the SageMaker endpoint. We pass a sample review (“I loved it!”) and see which star
rating our model chooses. Remember, star rating 1 is the worst, and star rating 5 is
the best:

import boto3
sagemaker_runtime = boto3.client('sagemaker-runtime')
csv_line_predict = """I loved it!"""
ep_name = 'reviews-endpoint'

response = sagemaker_runtime.invoke_endpoint(
 EndpointName=ep_name,
 ContentType='text/csv',
 Accept='text/csv',
 Body=csv_line_predict)

response_body = response['Body'].read().decode('utf-8').strip()
print(response_body)

Here is the star rating that our model predicts:

"5"

Our model successfully classified the review as a 5-star rating.

Train and Deploy a Model with the SageMaker Autopilot Python SDK
In addition to using the preceding SageMaker Autopilot UI, we can also launch a
SageMaker Autopilot job using the Python SDK to train and deploy a text classifier in
just a few lines of code, as follows:

Train and Deploy a Text Classifier with SageMaker Autopilot | 83

https://oreil.ly/2AJ4c
https://oreil.ly/2AJ4c

import boto3
import sagemaker

session = sagemaker.Session(default_bucket="dsoaws-amazon-reviews")
bucket = session.default_bucket()
role = sagemaker.get_execution_role()
region = boto3.Session().region_name

sm = boto3.Session().client(service_name='sagemaker',
 region_name=region)

We can specify the number of model candidates to explore and set a maximum run‐
time in seconds for each training job and the overall SageMaker Autopilot job:

max_candidates = 3

job_config = {
 'CompletionCriteria': {
 'MaxRuntimePerTrainingJobInSeconds': 600,
 'MaxCandidates': max_candidates,
 'MaxAutoMLJobRuntimeInSeconds': 3600
 },
}

Similar to the SageMaker Autopilot UI configuration, we provide an S3 input and
output location and define the target attribute for predictions:

input_data_config = [
 {
 'DataSource': {
 'S3DataSource': {
 'S3DataType': 'S3Prefix',
 'S3Uri': 's3://<BUCKET>/amazon_reviews.csv'
 }
 },
 'TargetAttributeName': 'star_rating'
 }
]

output_data_config = {
 'S3OutputPath': 's3://<BUCKET>/autopilot/output/'
}

Next, we create our SageMaker Autopilot job. Note that we add a timestamp to the
SageMaker Autopilot job name, which helps to keep the jobs unique and easy to
track. We pass the job name, input/output configuration, job configuration, and exe‐
cution role. The execution role is part of the AWS Identity and Access Management
(IAM) service and manages service access permissions:

from time import gmtime, strftime, sleep
timestamp_suffix = strftime('%d-%H-%M-%S', gmtime())

auto_ml_job_name = 'automl-dm-' + timestamp_suffix

84 | Chapter 3: Automated Machine Learning

sm.create_auto_ml_job(AutoMLJobName=auto_ml_job_name,
 InputDataConfig=input_data_config,
 OutputDataConfig=output_data_config,
 AutoMLJobConfig=job_config,
 RoleArn=role)

The SageMaker Autopilot job has been created with a unique identifier, described as
AutoMLJobArn previously. ARN (Amazon Resource Name) is often encoded in the
form of arn:partition:service:region:account-id:resource-id. ARNs are used
across all AWS services to specify resources unambiguously.

We can poll the SageMaker Autopilot job status and check if the data analysis step has
completed:

job = sm.describe_auto_ml_job(AutoMLJobName=auto_ml_job_name)
job_status = job['AutoMLJobStatus']
job_sec_status = job['AutoMLJobSecondaryStatus']

if job_status not in ('Stopped', 'Failed'):
 while job_status in ('InProgress') and job_sec_status in ('AnalyzingData'):
 job = sm.describe_auto_ml_job(AutoMLJobName=auto_ml_job_name)
 job_status = job['AutoMLJobStatus']
 job_sec_status = job['AutoMLJobSecondaryStatus']
 print(job_status, job_sec_status)
 sleep(30)
 print("Data analysis complete")

print(job)

The code will return the following output (shortened):

InProgress AnalyzingData
InProgress AnalyzingData
...
Data analysis complete

Similarly, we can query for job_sec_status in ('FeatureEngineering') and
job_sec_status in ('ModelTuning') for the two following SageMaker Autopilot
steps.

Once the SageMaker Autopilot job has finished, we can list all model candidates:

candidates = sm.list_candidates_for_auto_ml_job(AutoMLJobName=auto_ml_job_name,
 SortBy='FinalObjectiveMetricValue')['Candidates']

for index, candidate in enumerate(candidates):
 print(str(index) + " "
 + candidate['CandidateName'] + " "
 + str(candidate['FinalAutoMLJobObjectiveMetric']['Value']))

This will generate output similar to this:

Train and Deploy a Text Classifier with SageMaker Autopilot | 85

0 tuning-job-1-655f4ef810d441d4a8-003-b80f5233 0.4437510073184967
1 tuning-job-1-655f4ef810d441d4a8-001-7c10cb15 0.29365700483322144
2 tuning-job-1-655f4ef810d441d4a8-002-31088991 0.2874149978160858

We can also retrieve the best candidate:

best_candidate = \
 sm.describe_auto_ml_job(AutoMLJobName=auto_ml_job_name)['BestCandidate']

best_candidate_identifier = best_candidate['CandidateName']

print("Candidate name: " + best_candidate_identifier)

print("Metric name: " + \
 best_candidate['FinalAutoMLJobObjectiveMetric']['MetricName'])

print("Metric value: " + \
 str(best_candidate['FinalAutoMLJobObjectiveMetric']['Value']))

This will generate output similar to this:

Candidate name: tuning-job-1-655f4ef810d441d4a8-003-b80f5233
Metric name: validation:accuracy
Metric value: 0.4437510073184967

Now, let’s deploy the best model as a REST endpoint. First, we need to create a model
object:

model_name = 'automl-dm-model-' + timestamp_suffix

model_arn = sm.create_model(Containers=best_candidate['InferenceContainers'],
 ModelName=model_name,
 ExecutionRoleArn=role)

print('Best candidate model ARN: ', model_arn['ModelArn'])

The output should look similar to this:

Best candidate model ARN:
arn:aws:sagemaker:<region>:<account_id>:model/automl-dm-model-01-16-34-00

The preceding code reveals another detail that has been hidden in the UI. When we
deploy our model as a REST endpoint, we actually deploy a whole inference pipeline.
The inference pipeline consists of three containers.

Data transformation container
This is essentially the “request handler” that converts the application inputs (e.g.,
review_body) into a format recognized by the model (i.e., NumPy arrays or ten‐
sors). The container hosts the model that SageMaker Autopilot trained for the
feature engineering step.

Algorithm container
This container hosts the actual model that serves the predictions.

86 | Chapter 3: Automated Machine Learning

Inverse label transformer container
This is the “response handler” that converts the algorithm-specific output (i.e.,
NumPy arrays or tensors) back into a format recognized by the invoker (e.g.,
star_rating).

Figure 3-3 shows an example of the inference pipeline.

Figure 3-3. SageMaker Autopilot deploys a model as an inference pipeline.

We pass our reviews as raw text, and the data transformation container converts the
text into TF/IDF vectors. TF/IDF stands for term frequency–inverse document fre‐
quency and causes more common terms to be downweighted and more unique terms
to be upweighted. TF/IDF encodes the relevance of a word to a document in a collec‐
tion of documents.

The algorithm container processes the input and predicts the star rating. Note that
the algorithm in our example returns the prediction results as a 0-based index value.
The task of the inverse label transformer container is to map the index (0,1,2,3,4) to
the correct star rating label (1,2,3,4,5).

To deploy the inference pipeline, we need to create an endpoint configuration:

EndpointConfig name
timestamp_suffix = strftime('%d-%H-%M-%S', gmtime())
epc_name = 'automl-dm-epc-' + timestamp_suffix

Endpoint name
ep_name = 'automl-dm-ep-' + timestamp_suffix
variant_name = 'automl-dm-variant-' + timestamp_suffix

ep_config = sm.create_endpoint_config(
 EndpointConfigName = epc_name,
 ProductionVariants=[{
 'InstanceType': 'ml.c5.2xlarge',
 'InitialInstanceCount': 1,
 'ModelName': model_name,

Train and Deploy a Text Classifier with SageMaker Autopilot | 87

 'VariantName': variant_name}])

create_endpoint_response = sm.create_endpoint(
 EndpointName=ep_name,
 EndpointConfigName=epc_name)

SageMaker Autopilot is now deploying the inference pipeline. Let’s query for the end‐
point status to see when the pipeline is successfully in service:

response = sm.describe_endpoint(EndpointName=autopilot_endpoint_name)
status = response['EndpointStatus']

print("Arn: " + response['EndpointArn'])
print("Status: " + status)

After a couple of minutes, the output should look similar to this:

Arn: arn:aws:sagemaker:<region>:<account_id>:endpoint/automl-dm-ep-19-13-29-52
Status: InService

We can now invoke the endpoint and run a sample prediction. We pass the review
“It’s OK.” to see which star-rating class the model predicts:

sagemaker_runtime = boto3.client('sagemaker-runtime')
csv_line_predict = """It's OK."""

response = sagemaker_runtime.invoke_endpoint(
 EndpointName=ep_name,
 ContentType='text/csv',
 Accept='text/csv',
 Body=csv_line_predict)

response_body = response['Body'].read().decode('utf-8').strip()

Let’s print the response:

response_body
'3'

Our endpoint has successfully classified this sample review as a 3-star rating.

We can check the S3 output location again for all generated models,
code, and other artifacts, including the Data Exploration notebook
and Candidate Definition notebook.

Invoking our models using the SageMaker SDK is just one option. There are many
more service integrations available in AWS. In the next section, we describe how we
can run real-time predictions from within a SQL query using Amazon Athena.

88 | Chapter 3: Automated Machine Learning

Predict with Amazon Athena and SageMaker Autopilot
Amazon Athena is an interactive query service that lets us analyze data stored in S3
using standard SQL. Since Athena is serverless, we don’t need to manage any infra‐
structure, and we only pay for the queries we run. With Athena, we can query large
amounts of data (TB+) without needing to move the data to a relational database. We
can now enrich our SQL queries with calls to a SageMaker model endpoint and
receive model predictions.

To call SageMaker from Athena, we need to define a function with the USING
FUNCTION clause, as shown in Figure 3-4. Any subsequent SELECT statement can then
reference the function to invoke a model prediction.

Figure 3-4. We can invoke a SageMaker model from Amazon Athena ML using a user-
defined function.

Here’s a simple SQL query that selects product reviews stored in an Athena table
called dsaws.product_reviews. The function predict_star_rating then calls a
SageMaker endpoint with the name reviews to serve the prediction:

USING FUNCTION predict_star_rating(review_body VARCHAR)
 RETURNS VARCHAR TYPE
 SAGEMAKER_INVOKE_ENDPOINT WITH (sagemaker_endpoint = 'reviews')

SELECT review_id, review_body,
 predict_star_rating(REPLACE(review_body, ',', ' '))
 AS predicted_star_rating
FROM dsoaws.product_reviews

Train and Deploy a Text Classifier with SageMaker Autopilot | 89

The result should look similar to this (shortened):

review_id review_body predicted_star_rating
R23CFDQ6SLMET The photographs of this book is a let down. I ... 1
R1301KYAYKX8FU This is my go-to commentary for all of my semi... 5
R1CKM3AKI920D7 I can’t believe I get to be the first to tell ... 5
RA6CYWHAHSR9H There’s Something About Christmas / Debbie Mac... 5
R1T1CCMH2N9LBJ This revised edition by Murray Straus is an ex... 1
...

This example shows how easy it is to enrich our S3 data with machine learning pre‐
diction results using a simple SQL query.

Train and Predict with Amazon Redshift ML and SageMaker Autopilot
Amazon Redshift is a fully managed data warehouse that allows us to run complex
analytic queries against petabytes of structured data. With Amazon Redshift ML, we
can use our data in Amazon Redshift to create and train models with SageMaker
Autopilot as new data arrives. Following is the code to train a text classifier model
with training data retrieved from an Amazon Redshift query. The SELECT statement
points to the data in Amazon Redshift we want to use as training data for our model.
The TARGET keyword defines the column to predict. The FUNCTION keyword defines
the function name used to invoke the model in a prediction Amazon Redshift query:

CREATE MODEL dsoaws.predict_star_rating
FROM (SELECT review_body,
 star_rating
 FROM dsoaws.amazon_reviews_tsv_2015)
TARGET star_rating
FUNCTION predict_star_rating
IAM_ROLE '<ROLE_ARN>'
SETTINGS (
 S3_BUCKET '<BUCKET_NAME>'
);

The preceding statement executes an Amazon Redshift query, exports the selected
data to S3, and triggers a SageMaker Autopilot job to generate and deploy the model.
Amazon Redshift ML then deploys the trained model and function in our Amazon
Redshift cluster called predict_star_rating.

To make predictions with our trained Amazon Customer Reviews text classifier
model, we query the review_body column in Amazon Redshift and predict the
star_rating as follows:

SELECT review_body,
 predict_star_rating(review_body) AS "predicted_star_rating"
FROM dsoaws.amazon_reviews_tsv_2015

90 | Chapter 3: Automated Machine Learning

Here are sample query results that demonstrate Amazon Redshift ML:

review_body predicted_star_rating
I love this product! 5
It’s ok. 3
This product is terrible. 1

Automated Machine Learning with Amazon Comprehend
Amazon Comprehend is a fully managed AI service for natural language processing
(NLP) tasks using AutoML to find the best model for our dataset. Amazon Compre‐
hend takes text documents as input and recognizes entities, key phrases, language,
and sentiment. Amazon Comprehend continues to improve as new language models
are discovered and incorporated into the managed service.

Predict with Amazon Comprehend’s Built-in Model
Sentiment analysis is a text classification task that predicts positive, negative, or neu‐
tral sentiment of a given input text. This is extremely helpful if we want to analyze
product reviews and identify product-quality issues from social streams, for example.

Let’s implement this text classifier with Amazon Comprehend. As input data, we lev‐
erage a subset of the Amazon Customer Reviews Dataset. We want Amazon Compre‐
hend to classify the sentiment of a provided review. The Comprehend UI is the easiest
way to get started. We can paste in any text and Amazon Comprehend will analyze
the input in real time using the built-in model. Let’s test this with a sample product
review such as “I loved it! I will recommend this to everyone.” After clicking Analyze,
we see the positive-sentiment prediction and prediction confidence score under the
Insights tab. The score tells us that Amazon Comprehend is 99% confident that our
sample review has a positive sentiment. Now let’s implement a custom model that
classifies our product reviews into star ratings again.

Train and Deploy a Custom Model with the Amazon Comprehend UI
Comprehend Custom is an example of automated machine learning that enables the
practitioner to fine-tune Amazon Comprehend’s built-in model to a specific dataset.
Let’s reuse the Amazon Customer Reviews Dataset file from the previous SageMaker
Autopilot example as our training data:

star_rating,review_body
5,"GOOD, GREAT, WONDERFUL"
2,"It isn't as user friendly as TurboTax"
4,"Pretty easy to use. No issues."
…

Automated Machine Learning with Amazon Comprehend | 91

We can use the Comprehend UI to train a custom multiclass text classifier by provid‐
ing a name for the custom classifier, selecting multiclass mode, and putting in the
path to the training data. Next, we define the S3 location to store the trained model
outputs and select an IAM role with permissions to access that S3 location. Then, we
click Train classifier to start the training process. We now see the custom classifier
show up in the UI with the status Submitted and shortly after with the status
Training.

Once the classifier shows up as Trained, we can deploy it as a Comprehend Endpoint
to serve predictions. Simply select the trained model and click Actions. Give the end‐
point a name and click Create Endpoint.In the Comprehend UI, navigate to Real-
time analysis and select the analysis type Custom. Select the custom endpoint from
the endpoint drop-down list. Amazon Comprehend can now analyze input text using
the custom text classifier model. Let’s paste in the review “Really bad. I hope they
don’t make this anymore.” and click Analyze.

We can see in the results that our custom model now classifies input text into the star
ratings from 1 to 5 (with 5 being the best rating). In this example, the model is 76%
confident that the review classifies as star-rating 2.

In just a few clicks, we trained a Comprehend Custom model on the Amazon Cus‐
tomer Reviews Dataset to predict a star rating from review text. That is the power of
Amazon AI services.

Train and Deploy a Custom Model with the Amazon
Comprehend Python SDK
We can also interact programmatically with Amazon Comprehend. Let’s use the
Amazon Comprehend Python SDK to train and deploy the custom classifier:

import boto3
comprehend = boto3.client('comprehend')

Create a unique timestamp ID to attach to our training job name
import datetime
id = str(datetime.datetime.now().strftime("%s"))

Start training job
training_job = comprehend.create_document_classifier(
 DocumentClassifierName='Amazon-Customer-Reviews-Classifier-'+ id,
 DataAccessRoleArn=iam_role_comprehend_arn,
 InputDataConfig={
 'S3Uri': 's3://<bucket>/<path>/amazon_reviews.csv'
 },
 OutputDataConfig={
 'S3Uri': 's3://<bucket>/<path>/model/outputs'
 },

92 | Chapter 3: Automated Machine Learning

 LanguageCode='en'
)

The input parameters are as follows:

DocumentClassifierName

The name of the custom model

DataAccessRoleArn

The ARN of the IAM role that grants Amazon Comprehend read access to our
input data

InputDataConfig

Specifies the format and location of the training data (S3Uri: S3 path to the train‐
ing data)

OutputDataConfig

Specifies the location of the model outputs (S3Uri: S3 path for model outputs)

LanguageCode

The language of the training data

The training job will now run for some time depending on the amount of training
data to process. Once it is finished, we can deploy an endpoint with our custom clas‐
sifier to serve predictions.

To deploy the custom model, let’s first find out the ARN of the model that we need to
reference:

model_arn = training_job['DocumentClassifierArn']

With the model_arn, we can now create a model endpoint:

inference_endpoint_response = comprehend.create_endpoint(
 EndpointName='comprehend-inference-endpoint',
 ModelArn = model_arn,
 DesiredInferenceUnits = 1
)

The input parameters are as follows:

EndpointName

A name for our endpoint.

ModelArn

The ARN of the model to which the endpoint will be attached.

Automated Machine Learning with Amazon Comprehend | 93

DesiredInferenceUnits

The desired number of inference units to be used by the model attached to this
endpoint. Each inference unit represents a throughput of one hundred characters
per second.

Once the model endpoint is successfully created and In Service, we can invoke it for
a sample prediction. To invoke the custom model, let’s find out the ARN of our
endpoint:

endpoint_arn = inference_endpoint_response["EndpointArn"]

We can now run a prediction using comprehend.classify_document() along with
text we want to classify and the ARN of our endpoint:

Sample text to classify
txt = """It's OK."""

response = comprehend.classify_document(
 Text= txt,
 EndpointArn = endpoint_arn
)

The JSON-formatted response will look similar to this:

{
 "Classes": [
 {
 "Name": "3",
 "Score": 0.977475643157959
 },
 {
 "Name": "4",
 "Score": 0.021228035911917686
 },
 {
 "Name": "2",
 "Score": 0.001270478474907577
 }
],
...
}

Our custom classifier is 97% confident that our sample review deserves a 3-star rat‐
ing. And with just a few lines of Python code, we trained an Amazon Comprehend
Custom model on the Amazon Customer Reviews Dataset to predict a star rating
from review text.

94 | Chapter 3: Automated Machine Learning

Summary
In this chapter, we discussed the concept of AutoML. We introduced SageMaker
Autopilot’s transparent approach to AutoML. SageMaker Autopilot offloads the heavy
lifting of building ML pipelines while providing full visibility into the automated pro‐
cess. We demonstrated how to invoke machine learning models from SQL queries
using Amazon Athena. We also showed how Amazon Comprehend uses AutoML to
train and deploy a custom text classification model based on the public Amazon Cus‐
tomer Reviews Dataset in just a few clicks or lines of Python code.

In the following chapters, we will dive deep into building a custom BERT-based text
classifier with Amazon SageMaker and TensorFlow to classify product reviews from
different sources, including social channels and partner websites.

Summary | 95

CHAPTER 4

Ingest Data into the Cloud

In this chapter, we will show how to ingest data into the cloud. For that purpose, we
will look at a typical scenario in which an application writes files into an Amazon S3
data lake, which in turn needs to be accessed by the ML engineering/data science
team as well as the business intelligence/data analyst team, as shown in Figure 4-1.

Figure 4-1. An application writes data into our S3 data lake for the data science,
machine learning engineering, and business intelligence teams.

Amazon Simple Storage Service (Amazon S3) is fully managed object storage that
offers extreme durability, high availability, and infinite data scalability at a very low
cost. Hence, it is the perfect foundation for data lakes, training datasets, and models.

97

We will learn more about the advantages of building data lakes on Amazon S3 in the
next section.

Let’s assume our application continually captures data (i.e., customer interactions on
our website, product review messages) and writes the data to S3 in the tab-separated
values (TSV) file format.

As a data scientist or machine learning engineer, we want to quickly explore raw data‐
sets. We will introduce Amazon Athena and show how to leverage Athena as an inter‐
active query service to analyze data in S3 using standard SQL, without moving the
data. In the first step, we will register the TSV data in our S3 bucket with Athena and
then run some ad hoc queries on the dataset. We will also show how to easily convert
the TSV data into the more query-optimized, columnar file format Apache Parquet.

Our business intelligence team might also want to have a subset of the data in a data
warehouse, which they can then transform and query with standard SQL clients to
create reports and visualize trends. We will introduce Amazon Redshift, a fully man‐
aged data warehouse service, and show how to insert TSV data into Amazon Red‐
shift, as well as combine the data warehouse queries with the less frequently accessed
data that’s still in our S3 data lake via Amazon Redshift Spectrum. Our business intel‐
ligence team can also use Amazon Redshift’s data lake export functionality to unload
(transformed, enriched) data back into our S3 data lake in Parquet file format.

We will conclude this chapter with some tips and tricks for increasing performance
using compression algorithms and reducing cost by leveraging S3 Intelligent-Tiering.
In Chapter 12, we will dive deep into securing datasets, tracking data access, encrypt‐
ing data at rest, and encrypting data in transit.

Data Lakes
In Chapter 3, we discussed the democratization of artificial intelligence and data sci‐
ence over the last few years, the explosion of data, and how cloud services provide the
infrastructure agility to store and process data of any amount.

Yet, in order to use all this data efficiently, companies are tasked to break down exist‐
ing data silos and find ways to analyze very diverse datasets, dealing with both struc‐
tured and unstructured data while ensuring the highest standards of data governance,
data security, and compliance with privacy regulations. These (big) data challenges set
the stage for data lakes.

98 | Chapter 4: Ingest Data into the Cloud

One of the biggest advantages of data lakes is that we don’t need to predefine any
schemas. We can store our raw data at scale and then decide later in which ways we
need to process and analyze it. Data lakes may contain structured, semistructured,
and unstructured data. Figure 4-2 shows the centralized and secure data lake
repository that enables us to store, govern, discover, and share data at any scale—even
in real time.

Figure 4-2. A data lake is a centralized and secure repository that enables us to store,
govern, discover, and share data at any scale.

Data lakes provide a perfect base for data science and machine learning, as they give
us access to large and diverse datasets to train and deploy more accurate models.
Building a data lake typically consists of the following (high-level) steps, as shown in
Figure 4-3:

1. Set up storage.
2. Move data.
3. Cleanse, prepare, and catalog data.
4. Configure and enforce security and compliance policies.
5. Make data available for analytics.

Each of those steps involves a range of tools and technologies. While we can build a
data lake manually from the ground up, there are cloud services available to help us
streamline this process, i.e., AWS Lake Formation.

Data Lakes | 99

Figure 4-3. Building a data lake involves many steps.

Lake Formation collects and catalogs data from databases and object storage, moves
data into an S3-based data lake, secures access to sensitive data, and deduplicates data
using machine learning.

Additional capabilities of Lake Formation include row-level security, column-level
security, and “governed” tables that support atomic, consistent, isolated, and durable
transactions. With row-level and column-level permissions, users only see the data to
which they have access. With Lake Formation transactions, users can concurrently
and reliably insert, delete, and modify rows across the governed tables. Lake Forma‐
tion also improves query performance by automatically compacting data storage and
optimizing the data layout of governed tables.

S3 has become a popular choice for data lakes, as it offers many ways to ingest our
data while enabling cost optimization with intelligent tiering of data, including cold
storage and archiving capabilities. S3 also exposes many object-level controls for
security and compliance.

On top of the S3 data lake, AWS implements the Lake House Architecture. The Lake
House Architecture integrates our S3 data lake with our Amazon Redshift data ware‐
house for a unified governance model. We will see an example of this architecture in
this chapter when we run a query joining data across our Amazon Redshift data
warehouse with our S3 data lake.

From a data analysis perspective, another key benefit of storing our data in Amazon
S3 is that it shortens the “time to insight” dramatically as we can run ad hoc queries
directly on the data in S3. We don’t have to go through complex transformation
processes and data pipelines to get our data into traditional enterprise data ware‐
houses, as we will see in the upcoming sections of this chapter.

100 | Chapter 4: Ingest Data into the Cloud

https://oreil.ly/5HBtg

Import Data into the S3 Data Lake
We are now ready to import our data into S3. We have chosen the Amazon Customer
Reviews Dataset as the primary dataset for this book.

The Amazon Customer Reviews Dataset consists of more than 150+ million cus‐
tomer reviews of products across 43 different product categories on the Amazon.com
website from 1995 until 2015. It is a great resource for demonstrating machine learn‐
ing concepts such as natural language processing (NLP), as we demonstrate through‐
out this book.

Many of us have seen these customer reviews on Amazon.com when contemplating
whether to purchase products via the Amazon.com marketplace. Figure 4-4 shows
the product reviews section on Amazon.com for an Amazon Echo Dot device.

Figure 4-4. Reviews for an Amazon Echo Dot device. Source: Amazon.com.

Describe the Dataset
Customer reviews are one of Amazon’s most valuable tools for customers looking to
make informed purchase decisions. In Amazon’s annual shareholder letters, Jeff
Bezos (founder of Amazon) regularly elaborates on the importance of “word of
mouth” as a customer acquisition tool. Jeff loves “customers’ constant discontent,” as
he calls it:

“We now offer customers…vastly more reviews, content, browsing options, and rec‐
ommendation features…Word of mouth remains the most powerful customer acquisi‐
tion tool we have, and we are grateful for the trust our customers have placed in us.
Repeat purchases and word of mouth have combined to make Amazon.com the mar‐
ket leader in online bookselling.”
–Jeff Bezos, 1997 Shareholder (“Share Owner”) Letter

Here is the schema for the dataset:

Data Lakes | 101

https://oreil.ly/jvgLz
https://oreil.ly/jvgLz
https://oreil.ly/mj8M0

marketplace
Two-letter country code (in this case all “US”).

customer_id
Random identifier that can be used to aggregate reviews written by a single
author.

review_id
A unique ID for the review.

product_id
The Amazon Standard Identification Number (ASIN).

product_parent
The parent of that ASIN. Multiple ASINs (color or format variations of the same
product) can roll up into a single product parent.

product_title
Title description of the product.

product_category
Broad product category that can be used to group reviews.

star_rating
The review’s rating of 1 to 5 stars, where 1 is the worst and 5 is the best.

helpful_votes
Number of helpful votes for the review.

total_votes
Number of total votes the review received.

vine
Was the review written as part of the Vine program?

verified_purchase
Was the review from a verified purchase?

review_headline
The title of the review itself.

review_body
The text of the review.

review_date
The date the review was written.

The dataset is shared in a public Amazon S3 bucket and is available in two file
formats:

102 | Chapter 4: Ingest Data into the Cloud

• TSV, a text format: s3://amazon-reviews-pds/tsv
• Parquet, an optimized columnar binary format: s3://amazon-reviews-pds/parquet

The Parquet dataset is partitioned (divided into subfolders) by the column
product_category to further improve query performance. With this, we can use a
WHERE clause on product_category in our SQL queries to only read data specific to
that category.

We can use the AWS Command Line Interface (AWS CLI) to list the S3 bucket con‐
tent using the following CLI commands:

• aws s3 ls s3://amazon-reviews-pds/tsv

• aws s3 ls s3://amazon-reviews-pds/parquet

The AWS CLI tool provides a unified command line interface to
Amazon Web Services. We can find more information on how to
install and configure the tool.

The following listings show us the available dataset files in TSV format and the Par‐
quet partitioning folder structure.

Dataset files in TSV format:

2017-11-24 13:49:53 648641286 amazon_reviews_us_Apparel_v1_00.tsv.gz
2017-11-24 13:56:36 582145299 amazon_reviews_us_Automotive_v1_00.tsv.gz
2017-11-24 14:04:02 357392893 amazon_reviews_us_Baby_v1_00.tsv.gz
2017-11-24 14:08:11 914070021 amazon_reviews_us_Beauty_v1_00.tsv.gz
2017-11-24 14:17:41 2740337188 amazon_reviews_us_Books_v1_00.tsv.gz
2017-11-24 14:45:50 2692708591 amazon_reviews_us_Books_v1_01.tsv.gz
2017-11-24 15:10:21 1329539135 amazon_reviews_us_Books_v1_02.tsv.gz
...
2017-11-25 08:39:15 94010685 amazon_reviews_us_Software_v1_00.tsv.gz
2017-11-27 10:36:58 872478735 amazon_reviews_us_Sports_v1_00.tsv.gz
2017-11-25 08:52:11 333782939 amazon_reviews_us_Tools_v1_00.tsv.gz
2017-11-25 09:06:08 838451398 amazon_reviews_us_Toys_v1_00.tsv.gz
2017-11-25 09:42:13 1512355451 amazon_reviews_us_Video_DVD_v1_00.tsv.gz
2017-11-25 10:50:22 475199894 amazon_reviews_us_Video_Games_v1_00.tsv.gz
2017-11-25 11:07:59 138929896 amazon_reviews_us_Video_v1_00.tsv.gz
2017-11-25 11:14:07 162973819 amazon_reviews_us_Watches_v1_00.tsv.gz
2017-11-26 15:24:07 1704713674 amazon_reviews_us_Wireless_v1_00.tsv.gz

Dataset files in Parquet format:

PRE product_category=Apparel/
 PRE product_category=Automotive/
 PRE product_category=Baby/

Data Lakes | 103

https://aws.amazon.com/cli
https://aws.amazon.com/cli

 PRE product_category=Beauty/
 PRE product_category=Books/
 ...
 PRE product_category=Watches/
 PRE product_category=Wireless/

Note that PRE stands for “prefix.” For now, we can think of prefixes as folders in S3.

It is sometimes useful to use EXPLAIN in our queries to make sure the S3 partitions are
being utilized. Spark, for example, will highlight which partitions are being used in
Spark SQL. If our query patterns change over time, we may want to revisit updating
the existing partitions—or even adding new partitions to match our business needs.

So which data format should we choose? The Parquet columnar file format is defi‐
nitely preferred when running analytics queries since many analytics queries perform
summary statistics (AVG, SUM, STDDEV, etc.) on columns of data. On the other hand,
many applications write out data in simple CSV or TSV files, e.g., application log files.
So let’s actually assume we don’t have the Parquet files ready to use as this allows us to
show us how we can easily get there from CSV or TSV files.

In a first step, let’s copy the TSV data from Amazon’s public S3 bucket into a privately
hosted S3 bucket to simulate that process, as shown in Figure 4-5.

Figure 4-5. We copy the dataset from the public S3 bucket to a private S3 bucket.

We can use the AWS CLI tool again to perform the following steps.

1. Create a new private S3 bucket:
aws s3 mb s3://data-science-on-aws

2. Copy the content of the public S3 bucket to our newly created private S3 bucket
as follows (only include the files starting with amazon_reviews_us_, i.e., skipping
any index, multilingual, and sample data files in that directory):

aws s3 cp --recursive s3://amazon-reviews-pds/tsv/ \
 s3://data-science-on-aws/amazon-reviews-pds/tsv/ \
 --exclude "*" --include "amazon_reviews_us_*"

We are now ready to use Amazon Athena to register and query the data and trans‐
form the TSV files into Parquet.

104 | Chapter 4: Ingest Data into the Cloud

Query the Amazon S3 Data Lake with Amazon Athena
Amazon Athena is an interactive query service that makes it easy to analyze data in
Amazon S3 using standard SQL. With Athena, we can query raw data—including
encrypted data—directly from our S3-based data lake. Athena separates compute
from storage and lowers the overall time to insight for our business. When we regis‐
ter an Athena table with our S3 data, Athena stores the table-to-S3 mapping. Athena
uses the AWS Glue Data Catalog, a Hive Metastore–compatible service, to store the
table-to-S3 mapping. We can think of the AWS Glue Data Catalog as a persistent
metadata store in our AWS account. Other AWS services, such as Athena and Ama‐
zon Redshift Spectrum, can use the data catalog to locate and query data. Apache
Spark reads from the AWS Glue Data Catalog, as well.

Besides the data catalog, AWS Glue also provides tools to build ETL (extract-
transform-load) workflows. ETL workflows could include the automatic discovery
and extraction of data from different sources. We can leverage Glue Studio to visually
compose and run ETL workflows without writing code. Glue Studio also provides the
single pane of glass to monitor all ETL jobs. AWS Glue executes the workflows on an
Apache Spark–based serverless ETL engine.

Athena queries run in parallel inside a dynamically scaled, serverless query engine.
Athena will automatically scale the cluster depending on the query and dataset
involved. This makes Athena extremely fast on large datasets and frees the user from
worrying about infrastructure details.

In addition, Athena supports the Parquet columnar file format with tens of millions
of partitions (i.e., by product_category, year, or marketplace) to improve the per‐
formance of our queries. For example, if we plan to run frequent queries that group
the results by product_category, then we should create a partition in Athena for
product_category. Upon creation, Athena will update the AWS Glue Data Catalog
accordingly so that future queries will inherit the performance benefits of this new
partition.

Athena is based on Presto, an open source, distributed SQL query engine designed
for fast, ad hoc data analytics on large datasets. Similar to Apache Spark, Presto uses
high-RAM clusters to perform its queries. However, Presto does not require a large
amount of disk as it is designed for ad hoc queries (versus automated, repeatable
queries) and therefore does not perform the checkpointing required for fault
tolerance.

For longer-running Athena jobs, we can listen for query-completion events using
Amazon CloudWatch Events. When the query completes, all listeners are notified
with the event details, including query success status, total execution time, and total
bytes scanned.

Query the Amazon S3 Data Lake with Amazon Athena | 105

https://oreil.ly/WKcDS

With a functionality called Athena Federated Query, we can also run SQL queries
across data stored in relational databases, such as Amazon RDS and Aurora, nonrela‐
tional databases such as DynamoDB, object storage such as Amazon S3, and custom
data sources. This gives us a unified analytics view across data stored in our data
warehouse, data lake, and operational databases without the need to actually move
the data.

We can access Athena via the AWS Management Console, an API, or an Open Data‐
base Connectivity (ODBC) or Java Database Connectivity (JDBC) driver for pro‐
grammatic access. Let’s take a look at how to use Amazon Athena via the AWS
Management Console.

Access Athena from the AWS Console
To use Amazon Athena, we first need to quickly set up the service. First, click on
Amazon Athena in the AWS Management Console. If we are asked to set up a “query
result” location for Athena in S3, specify an S3 location for the query results (e.g.,
s3://<BUCKET>/data-science-on-aws/athena/query-results.)

In the next step, we create a database. In the Athena Query Editor, we see a query
pane with an example query. We can start typing our query anywhere in the query
pane. To create our database, enter the following CREATE DATABASE statement, run the
query, and confirm that dsoaws appears in the DATABASE list in the Catalog
dashboard:

CREATE DATABASE dsoaws;

When we run CREATE DATABASE and CREATE TABLE queries in Athena with the AWS
Glue Data Catalog as our source, we automatically see the database and table meta‐
data entries being created in the AWS Glue Data Catalog.

Register S3 Data as an Athena Table
Now that we have a database, we are ready to create a table based on the Amazon
Customer Reviews Dataset. We define the columns that map to the data, specify how
the data is delimited, and provide the Amazon S3 path to the data.

Let’s define a “schema-on-read” to avoid the need to predefine a rigid schema when
data is written and ingested. In the Athena Console, make sure that dsoaws is selected
for DATABASE and then choose New Query. Run the following SQL statement to
read the compressed (compression=gzip) files and skip the CSV header
(skip.header.line.count=1) at the top of each file. After running the SQL state‐
ment, verify that the newly created table, amazon_reviews_tsv, appears on the left
under Tables:

106 | Chapter 4: Ingest Data into the Cloud

CREATE EXTERNAL TABLE IF NOT EXISTS dsoaws.amazon_reviews_tsv(
 marketplace string,
 customer_id string,
 review_id string,
 product_id string,
 product_parent string,
 product_title string,
 product_category string,
 star_rating int,
 helpful_votes int,
 total_votes int,
 vine string,
 verified_purchase string,
 review_headline string,
 review_body string,
 review_date string
) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LINES TERMINATED BY '\n'
LOCATION 's3://data-science-on-aws/amazon-reviews-pds/tsv'
TBLPROPERTIES ('compressionType'='gzip', 'skip.header.line.count'='1')

Let’s run a sample query like this to check if everything works correctly. This query
will produce the results shown in the following table:

SELECT *
FROM dsoaws.amazon_reviews_tsv
WHERE product_category = 'Digital_Video_Download' LIMIT 10

marketplace customer_id review_id product_id product_title product_category
US 12190288 R3FBDHSJD BOOAYB23D Enlightened Digital_Video_Download
...

Update Athena Tables as New Data Arrives with AWS Glue Crawler
The following code crawls S3 every night at 23:59 UTC and updates the Athena table
as new data arrives. If we add another .tar.gz file to S3, for example, we will see the
new data in our Athena queries after the crawler completes its scheduled run:

glue = boto3.Session().client(service_name='glue', region_name=region)

create_response = glue.create_crawler(
 Name='amazon_reviews_crawler',
 Role=role,
 DatabaseName='dsoaws',
 Description='Amazon Customer Reviews Dataset Crawler',
 Targets={
 'CatalogTargets': [
 {
 'DatabaseName': 'dsoaws',
 'Tables': [
 'amazon_reviews_tsv',

Query the Amazon S3 Data Lake with Amazon Athena | 107

]
 }
]
 },
 Schedule='cron(59 23 * * ? *)', # run every night at 23:59 UTC
 SchemaChangePolicy={
 'DeleteBehavior': 'LOG'
 },
 RecrawlPolicy={
 'RecrawlBehavior': 'CRAWL_EVERYTHING'
 }
)

Create a Parquet-Based Table in Athena
In a next step, we will show how we can easily convert that data into the Apache Par‐
quet columnar file format to improve query performance. Parquet is optimized for
columnar-based queries such as counts, sums, averages, and other aggregation-based
summary statistics that focus on the column values versus row information.

By storing our data in columnar format, Parquet performs sequential reads for col‐
umnar summary statistics. This results in much more efficient data access and
“mechanical sympathy” versus having the disk controller jump from row to row and
having to reseek to retrieve the column data. If we are doing any type of large-scale
data analytics, we should be using a columnar file format like Parquet. We discuss the
benefits of Parquet in the performance section.

While we already have the data in Parquet format from the public
dataset, we feel that creating a Parquet table is an important-
enough topic to demonstrate in this book.

Again, make sure that dsoaws is selected for DATABASE and then choose New Query
and run the following CREATE TABLE AS (CTAS) SQL statement:

CREATE TABLE IF NOT EXISTS dsoaws.amazon_reviews_parquet
WITH (format = 'PARQUET', \
 external_location = 's3://<BUCKET>/amazon-reviews-pds/parquet', \
 partitioned_by = ARRAY['product_category']) AS

SELECT marketplace,
 customer_id,
 review_id,
 product_id,
 product_parent,
 product_title,
 star_rating,
 helpful_votes,

108 | Chapter 4: Ingest Data into the Cloud

 total_votes,
 vine,
 verified_purchase,
 review_headline,
 review_body,
 CAST(YEAR(DATE(review_date)) AS INTEGER) AS year,
 DATE(review_date) AS review_date,
 product_category

FROM dsoaws.amazon_reviews_tsv

As we can see from the query, we’re also adding a new year column to our dataset by
converting the review_date string to a date format and then casting the year out of
the date. Let’s store the year value as an integer. After running the CTAS query, we
should now see the newly created table amazon_reviews_parquet appear as well on
the left under Tables. As a last step, we need to load the Parquet partitions. To do so,
just issue the following SQL command:

MSCK REPAIR TABLE amazon_reviews_parquet;

We can automate the MSCK REPAIR TABLE command to load the
partitions after data ingest from any workflow manager (or use an
Lambda function that runs when new data is uploaded to S3).

We can run our sample query again to check if everything works correctly:

SELECT *
FROM dsoaws.amazon_reviews_parquet
WHERE product_category = 'Digital_Video_Download' LIMIT 10

Both tables also have metadata entries in the Hive Metastore–compatible AWS Glue
Data Catalog. This metadata defines the schema used by many query and data-
processing engines, such as Amazon EMR, Athena, Redshift, Kinesis, SageMaker, and
Apache Spark.

In just a few steps, we have set up Amazon Athena to transform the TSV dataset files
into the Apache Parquet file format. The query on the Parquet files finished in a frac‐
tion of the time compared to the query on the TSV files. We accelerated our query
response time by leveraging the columnar Parquet file format and product_category
partition scheme.

Continuously Ingest New Data with AWS Glue Crawler
New data is always arriving from applications, and we need a way to register this new
data into our system for analytics and model-training purposes. AWS Glue provides
sophisticated data-cleansing and machine-learning transformations, including

Continuously Ingest New Data with AWS Glue Crawler | 109

“fuzzy” record deduplication. One way to register the new data from S3 into our AWS
Glue Data Catalog is with a Glue Crawler, as shown in Figure 4-6.

Figure 4-6. Ingest and register data from various data sources with AWS Glue Crawler.

We can trigger the crawler either periodically on a schedule or with, for example, an
S3 trigger. The following code creates the crawler and schedules new S3 folders (pre‐
fixes) to be ingested every night at 23:59 UTC:

create_response = glue.create_crawler(
 Name='amazon_reviews_crawler',
 Role=role,
 DatabaseName='dsoaws',
 Description='Amazon Customer Reviews Dataset Crawler',
 Targets={
 'CatalogTargets': [
 {
 'DatabaseName': 'dsoaws',
 'Tables': [
 'amazon_reviews_tsv',
]
 }
]
 },
 Schedule='cron(59 23 * * ? *)',
 SchemaChangePolicy={

110 | Chapter 4: Ingest Data into the Cloud

 'DeleteBehavior': 'LOG'
 },
 RecrawlPolicy={
 'RecrawlBehavior': 'CRAWL_NEW_FOLDERS_ONLY'
 }
)

This assumes that we are storing new data in new folders. Typically, we use an S3 pre‐
fix that includes the year, month, day, hour, quarter hour, etc. For example, we can
store application logs in hourly S3 folders with the following naming convention for
the S3 prefix: s3://<S3_BUCKET>/<YEAR>/<MONTH>/<DAY>/<HOUR>/. If we
want to crawl all of the data, we can use CRAWL_EVERYTHING for our RecrawlBehavior.
We can change the schedule using a different cron() trigger. We can also add a sec‐
ond trigger to start an ETL job to transform and load new data when the scheduled
Glue Crawler reaches the SUCCEEDED state.

Build a Lake House with Amazon Redshift Spectrum
One of the fundamental differences between data lakes and data warehouses is that
while we ingest and store huge amounts of raw, unprocessed data in our data lake, we
normally only load some fraction of our recent data into the data warehouse.
Depending on our business and analytics use case, this might be data from the past
couple of months, a year, or maybe the past two years. Let’s assume we want to have
the past two years of our Amazon Customer Reviews Dataset in a data warehouse to
analyze year-over-year customer behavior and review trends. We will use Amazon
Redshift as our data warehouse for this.

Amazon Redshift is a fully managed data warehouse that allows us to run complex
analytic queries against petabytes of structured data, semistructured, and JSON data.
Our queries are distributed and parallelized across multiple nodes. In contrast to rela‐
tional databases, which are optimized to store data in rows and mostly serve transac‐
tional applications, Amazon Redshift implements columnar data storage, which is
optimized for analytical applications where we are mostly interested in the data
within the individual columns.

Amazon Redshift also includes Amazon Redshift Spectrum, which allows us to
directly execute SQL queries from Amazon Redshift against exabytes of unstructured
data in our Amazon S3 data lake without the need to physically move the data. Ama‐
zon Redshift Spectrum is part of the Lake House Architecture that unifies our S3 data
lake and Amazon Redshift data warehouse—including shared security and
row-and-column-based access control. Amazon Redshift Spectrum supports various
open source storage frameworks, including Apache Hudi and Delta Lake.

Since Amazon Redshift Spectrum automatically scales the compute resources needed
based on how much data is being retrieved, queries against Amazon S3 run fast,

Build a Lake House with Amazon Redshift Spectrum | 111

regardless of the size of our data. Amazon Redshift Spectrum will use pushdown fil‐
ters, bloom filters, and materialized views to reduce seek time and increase query per‐
formance on external data stores like S3. We discuss more performance tips later in
“Reduce Cost and Increase Performance” on page 119.

Amazon Redshift Spectrum converts traditional ETL into extract-load-transform
(ELT) by transforming and cleaning data after it is loaded into Amazon Redshift. We
will use Amazon Redshift Spectrum to access our data in S3 and then show how to
combine data that is stored in Amazon Redshift with data that is still in S3.

This might sound similar to the approach we showed earlier with Amazon Athena,
but note that in this case we show how our business intelligence team can enrich their
queries with data that is not stored in the data warehouse itself. Once we have our
Redshift cluster set up and configured, we can navigate to the AWS Console and
Amazon Redshift and then click on Query Editor to execute commands.

We can leverage our previously created table in Amazon Athena with its metadata
and schema information stored in the AWS Glue Data Catalog to access our data in
S3 through Amazon Redshift Spectrum. All we need to do is create an external
schema in Amazon Redshift, point it to our AWS Glue Data Catalog, and point Ama‐
zon Redshift to the database we’ve created.

In the Amazon Redshift Query Editor (or via any other ODBC/JDBC SQL client that
we might prefer to use), execute the following command:

CREATE EXTERNAL SCHEMA IF NOT EXISTS athena FROM DATA CATALOG
 DATABASE 'dsoaws'
 IAM_ROLE '<IAM-ROLE>'
 CREATE EXTERNAL DATABASE IF NOT EXISTS

With this command, we are creating a new schema in Amazon Redshift called athena
to highlight the data access we set up through our tables in Amazon Athena:

• FROM DATA CATALOG indicates that the external database is defined in the AWS
Glue Data Catalog.

• DATABASE refers to our previously created database in the AWS Glue Data
Catalog.

• IAM_ROLE needs to point to an Amazon Resource Name (ARN) for an IAM role
that our cluster uses for authentication and authorization.

IAM is the AWS Identity and Access Management service, which enables us to man‐
age and control access to AWS services and resources in our account. With an IAM
role, we can specify the permissions a user or service is granted. In this example, the
IAM role must have at a minimum permission to perform a LIST operation on the
Amazon S3 bucket to be accessed and a GET operation on the Amazon S3 objects the
bucket contains. If the external database is defined in an Amazon Athena data

112 | Chapter 4: Ingest Data into the Cloud

catalog, the IAM role must have permission to access Athena unless CATALOG_ROLE is
specified. We will go into more details on IAM in a later section of this chapter when
we discuss how we can secure our data.

If we now select athena in the Schema dropdown menu in the Amazon Redshift
Query Editor, we can see that our two tables, amazon_reviews_tsv and
amazon_reviews_parquet, appear, which we created with Amazon Athena. Let’s run a
sample query again to make sure everything works. In the Query Editor, run the fol‐
lowing command:

SELECT
 product_category,
 COUNT(star_rating) AS count_star_rating
FROM
 athena.amazon_reviews_tsv
GROUP BY
 product_category
ORDER BY
 count_star_rating DESC

We should see results similar to the following table:

product_category count_star_rating
Books 19531329
Digital_Ebook_Purchase 17622415
Wireless 9002021
... ...

So with just one command, we now have access and can query our S3 data lake from
Amazon Redshift without moving any data into our data warehouse. This is the
power of Amazon Redshift Spectrum.

But now, let’s actually copy some data from S3 into Amazon Redshift. Let’s pull in
customer reviews data from the year 2015.

First, we create another Amazon Redshift schema called redshift with the following
SQL command:

CREATE SCHEMA IF NOT EXISTS redshift

Next, we will create a new table that represents our customer reviews data. We will
also add a new column and add year to our table:

 CREATE TABLE IF NOT EXISTS redshift.amazon_reviews_tsv_2015(
 marketplace varchar(2) ENCODE zstd,
 customer_id varchar(8) ENCODE zstd,
 review_id varchar(14) ENCODE zstd,
 product_id varchar(10) ENCODE zstd DISTKEY,
 product_parent varchar(10) ENCODE zstd,

Build a Lake House with Amazon Redshift Spectrum | 113

 product_title varchar(400) ENCODE zstd,
 product_category varchar(24) ENCODE raw,
 star_rating int ENCODE az64,
 helpful_votes int ENCODE zstd,
 total_votes int ENCODE zstd,
 vine varchar(1) ENCODE zstd,
 verified_purchase varchar(1) ENCODE zstd,
 review_headline varchar(128) ENCODE zstd,
 review_body varchar(65535) ENCODE zstd,
 review_date varchar(10) ENCODE bytedict,
 year int ENCODE az64) SORTKEY (product_category)

In the performance section, we will dive deep into the SORTKEY, DISTKEY, and ENCODE
attributes. For now, let’s copy the data from S3 into our new Amazon Redshift table
and run some sample queries.

For such bulk inserts, we can either use a COPY command or an INSERT INTO com‐
mand. In general, the COPY command is preferred, as it loads data in parallel and
more efficiently from Amazon S3, or other supported data sources.

If we are loading data or a subset of data from one table into another, we can use the
INSERT INTO command with a SELECT clause for high-performance data insertion. As
we’re loading our data from the athena.amazon_reviews_tsv table, let’s choose this
option:

INSERT
INTO
 redshift.amazon_reviews_tsv_2015
 SELECT
 marketplace,
 customer_id,
 review_id,
 product_id,
 product_parent,
 product_title,
 product_category,
 star_rating,
 helpful_votes,
 total_votes,
 vine,
 verified_purchase,
 review_headline,
 review_body,
 review_date,
 CAST(DATE_PART_YEAR(TO_DATE(review_date,
 'YYYY-MM-DD')) AS INTEGER) AS year
 FROM
 athena.amazon_reviews_tsv
 WHERE
 year = 2015

114 | Chapter 4: Ingest Data into the Cloud

We use a date conversion to parse the year out of our review_date column and store
it in a separate year column, which we then use to filter records from 2015. This is an
example of how we can simplify ETL tasks, as we put our data transformation logic
directly in a SELECT query and ingest the result into Amazon Redshift.

Another way to optimize our tables would be to create them as a sequence of time-
series tables, especially when our data has a fixed retention period. Let’s say we want
to store data of the last two years (24 months) in our data warehouse and update with
new data once a month.

If we create one table per month, we can easily remove old data by running a DROP
TABLE command on the corresponding table. This approach is much faster than run‐
ning a large-scale DELETE process and also saves us from having to run a subsequent
VACUUM process to reclaim space and resort the rows.

To combine query results across tables, we can use a UNION ALL view. Similarly, when
we need to delete old data, we remove the dropped table from the UNION ALL view.

Here is an example of a UNION ALL view across two tables with customer reviews from
years 2014 and 2015—assuming we have one table each for 2014 and 2015 data. The
following table shows the results of the query:

SELECT
 product_category,
 COUNT(star_rating) AS count_star_rating,
 year
FROM
 redshift.amazon_reviews_tsv_2014
GROUP BY
 redshift.amazon_reviews_tsv_2014.product_category,
 year
UNION
ALL SELECT
 product_category,
 COUNT(star_rating) AS count_star_rating,
 year
FROM
 redshift.amazon_reviews_tsv_2015
GROUP BY
 redshift.amazon_reviews_tsv_2015.product_category,
 year
ORDER BY
 count_star_rating DESC,
 year ASC

product_category count_star_rating year
Digital_Ebook_Purchase 6615914 2014
Digital_Ebook_Purchase 4533519 2015

Build a Lake House with Amazon Redshift Spectrum | 115

product_category count_star_rating year
Books 3472631 2014
Wireless 2998518 2015
Wireless 2830482 2014
Books 2808751 2015
Apparel 2369754 2015
Home 2172297 2015
Apparel 2122455 2014
Home 1999452 2014

Now, let’s actually run a query and combine data from Amazon Redshift with data
that is still in S3. Let’s take the data from the previous query for the years 2015 and
2014 and query Athena/S3 for the years 2013–1995 by running this command:

SELECT
 year,
 product_category,
 COUNT(star_rating) AS count_star_rating
FROM
 redshift.amazon_reviews_tsv_2015
GROUP BY
 redshift.amazon_reviews_tsv_2015.product_category,
 year
UNION
ALL SELECT
 year,
 product_category,
 COUNT(star_rating) AS count_star_rating
FROM
 redshift.amazon_reviews_tsv_2014
GROUP BY
 redshift.amazon_reviews_tsv_2014.product_category,
 year
UNION
ALL SELECT
 CAST(DATE_PART_YEAR(TO_DATE(review_date,
 'YYYY-MM-DD')) AS INTEGER) AS year,
 product_category,
 COUNT(star_rating) AS count_star_rating
FROM
 athena.amazon_reviews_tsv
WHERE
 year <= 2013
GROUP BY
 athena.amazon_reviews_tsv.product_category,
 year
ORDER BY
 product_category ASC,
 year DESC

116 | Chapter 4: Ingest Data into the Cloud

year product_category count_star_rating
2015 Apparel 4739508
2014 Apparel 4244910
2013 Apparel 854813
2012 Apparel 273694
2011 Apparel 109323
2010 Apparel 57332
2009 Apparel 42967
2008 Apparel 33761
2007 Apparel 25986
2006 Apparel 7293
2005 Apparel 3533
2004 Apparel 2357
2003 Apparel 2147
2002 Apparel 907
2001 Apparel 5
2000 Apparel 6
2015 Automotive 2609750
2014 Automotive 2350246

Export Amazon Redshift Data to S3 Data Lake as Parquet
Amazon Redshift Data Lake Export gives us the ability to unload the result of an
Amazon Redshift query to our S3 data lake in the optimized Apache Parquet colum‐
nar file format. This enables us to share any data transformation and enrichment we
have done in Amazon Redshift back into our S3 data lake in an open format. Unloa‐
ded data is automatically registered in the AWS Glue Data Catalog to be used by any
Hive Metastore–compatible query engines, including Amazon Athena, EMR, Kinesis,
SageMaker, and Apache Spark.

We can specify one or more partition columns so that unloaded data is automatically
partitioned into folders in our Amazon S3 bucket. For example, we can choose to
unload our customer reviews data and partition it by product_category.

We can simply run the following SQL command to unload our 2015 customer
reviews data in Parquet file format into S3, partitioned by product_category:

UNLOAD (
 'SELECT marketplace, customer_id, review_id, product_id, product_parent,
 product_title, product_category, star_rating, helpful_votes, total_votes,
 vine, verified_purchase, review_headline, review_body, review_date, year
 FROM redshift.amazon_reviews_tsv_2015')
TO 's3://data-science-on-aws/amazon-reviews-pds/parquet-from-redshift/2015'
IAM_ROLE '<IAM_ROLE>'

Build a Lake House with Amazon Redshift Spectrum | 117

PARQUET PARALLEL ON
PARTITION BY (product_category)

We can use the AWS CLI tool again to list the S3 folder and see our unloaded data
from 2015 in Parquet format:

aws s3 ls s3://data-science-on-aws/amazon-reviews-pds/parquet-from-redshift/2015

Share Data Between Amazon Redshift Clusters
Amazon Redshift also implements a data sharing capability that allows us to securely
share live data across Amazon Redshift clusters without the need to move data.
Instead, we create a “data share” object that specifies the data to share and the list of
Amazon Redshift clusters that are allowed to access the data. On the consuming
Amazon Redshift cluster, we create a new database from the data share object and
assign permissions to the relevant IAM users and groups to manage access to the
database. The data sharing capability is useful if we need to share data among multi‐
ple business units, or if we want to share data from a central data warehouse cluster
with additional BI and analytics clusters.

Choose Between Amazon Athena and Amazon Redshift
Amazon Athena is the preferred choice when running ad hoc SQL queries on data
that is stored in Amazon S3. It doesn’t require us to set up or manage any infrastruc‐
ture resources—we don’t need to move any data. It supports structured, unstructured,
and semistructured data. With Athena, we are defining a “schema on read”—we basi‐
cally just log in, create a table, and start running queries.

Amazon Redshift is targeted for modern data analytics on petabytes of structured
data. Here, we need to have a predefined “schema on write.” Unlike serverless Athena,
Amazon Redshift requires us to create a cluster (compute and storage resources),
ingest the data, and build tables before we can start to query but caters to perfor‐
mance and scale. So for highly relational data with a transactional nature (data gets
updated), workloads that involve complex joins, or subsecond latency requirements,
Amazon Redshift is the right choice.

Athena and Amazon Redshift are optimized for read-heavy analytics workloads; they
are not replacements for write-heavy, relational databases such as Amazon Relational
Database Service (RDS) and Aurora. At a high level, use Athena for exploratory
analytics and operational debugging; use Amazon Redshift for business-critical
reports and dashboards.

118 | Chapter 4: Ingest Data into the Cloud

Reduce Cost and Increase Performance
In this section, we want to provide some tips and tricks to reduce cost and increase
performance during data ingestion, including file formats, partitions, compression,
and sort/distribution keys. We will also demonstrate how to use Amazon S3
Intelligent-Tiering to lower our storage bill.

S3 Intelligent-Tiering
We introduced Amazon S3 in this chapter as a scalable, durable storage service for
building shared datasets, such as data lakes in the cloud. And while we keep the S3
usage fairly simple in this book, the service actually offers us a variety of options to
optimize our storage cost as our data grows.

Depending on our data’s access frequency patterns and service-level agreement (SLA)
needs, we can choose from various Amazon S3 storage classes. Table 4-1 compares
the Amazon S3 storage classes in terms of data access frequency and data retrieval
time.

Table 4-1. Comparison of Amazon S3 storage classes

From frequent access To infrequent access

S3 Standard
(default storage
class)

S3 Intelligent-
Tiering

S3 Standard-IA S3 One Zone-IA Amazon S3
Glacier

Amazon S3
Glacier Deep
Archive

General-purpose
storage
Active, frequently
accessed data
Access in
milliseconds

Data with unknown
or changing
access patterns
Access in milliseconds
Opt in for automatic
archiving

Infrequently
accessed (IA) data
Access in
milliseconds

Lower durability
(one Zvailability
zone)
Re-creatable data
Access in
milliseconds

Archive data
Access in
minutes or
hours

Long-term
archive data
Access in hours

But how do we know which objects to move? Imagine our S3 data lake has grown
over time and we possibly have billions of objects across several S3 buckets in the S3
Standard storage class. Some of those objects are extremely important, while we
haven’t accessed others maybe in months or even years. This is where S3 Intelligent-
Tiering comes into play.

Amazon S3 Intelligent-Tiering automatically optimizes our storage cost for data with
changing access patterns by moving objects between the frequent-access tier opti‐
mized for frequent use of data and the lower-cost infrequent-access tier optimized for
less-accessed data. Intelligent-Tiering monitors our access patterns and auto-tiers on
a granular object level without performance impact or any operational overhead.

Reduce Cost and Increase Performance | 119

Parquet Partitions and Compression
Athena supports the Parquet columnar format for large-scale analytics workloads.
Parquet enables the following performance optimizations for our queries:

Partitions and pushdowns
Partitions are physical groupings of data on disk to match our query patterns
(i.e., SELECT * FROM reviews WHERE product_category='Books'). Modern
query engines like Athena, Amazon Redshift, and Apache Spark will “pushdown”
the WHERE into the physical storage system to allow the disk controller to seek
once and read all relevant data in one scan without randomly skipping to differ‐
ent areas of the disk. This improves query performance even with solid state
drives (SSDs), which have a lower seek time than traditional, media-based disks.

Dictionary encoding/compression
When a small number of categorical values are stored together on disk (i.e., prod
uct_category, which has 43 total values in our dataset), the values can be com‐
pressed into a small number of bits to represent each value (i.e., Books,
Lawn_and_Garden, Software, etc.) versus storing the entire string.

Type compression
When values of a similar type (i.e., String, Date, Integer) are stored together on
disk, the values can be compressed together: (String, String), (Date, Date), (Inte‐
ger, Integer). This compression is more efficient than if the values were stored
separately on disk in a row-wise manner: (String, Date, Integer), (String, Date,
Integer)

Vectorized aggregations
Because column values are stored together on disk, the disk controller needs to
only perform one disk seek to find the beginning of the data. From that point, it
will scan the data to perform the aggregation. Additionally, modern chips/
processors offer high-performance vectorization instructions to perform calcula‐
tions on large amounts of data versus flushing data in and out of the various data
caches (L1, L2) or main memory.

See an example of row versus columnar data format in Figure 4-7.

120 | Chapter 4: Ingest Data into the Cloud

Figure 4-7. Using a columnar data format such as Parquet, we can apply various perfor‐
mance optimizations for query execution and data encoding.

Amazon Redshift Table Design and Compression
Here is the CREATE TABLE statement that we used to create the Amazon Redshift
tables:

CREATE TABLE IF NOT EXISTS redshift.amazon_reviews_tsv_2015(
 marketplace varchar(2) ENCODE zstd,
 customer_id varchar(8) ENCODE zstd,
 review_id varchar(14) ENCODE zstd,
 product_id varchar(10) ENCODE zstd DISTKEY,
 product_parent varchar(9) ENCODE zstd,
 product_title varchar(400) ENCODE zstd,
 product_category varchar(24) ENCODE raw,
 star_rating int ENCODE az64,
 helpful_votes int ENCODE zstd,
 total_votes int ENCODE zstd,
 vine varchar(1) ENCODE zstd,
 verified_purchase varchar(1) ENCODE zstd,
 review_headline varchar(128) ENCODE zstd,
 review_body varchar(65535) ENCODE zstd,
 review_date varchar(10) ENCODE bytedict,
 year int ENCODE az64) SORTKEY (product_category)

When we create a table, we can specify one or more columns as the SORTKEY. Amazon
Redshift stores the data on disk in sorted order according to the SORTKEY. Hence, we

Reduce Cost and Increase Performance | 121

can optimize our table by choosing a SORTKEY that reflects our most frequently used
query types. If we query a lot of recent data, we can specify a timestamp column as
the SORTKEY. If we frequently query based on range or equality filtering on one col‐
umn, we should choose that column as the SORTKEY. As we are going to run a lot of
queries in the next chapter filtering on product_category, let’s choose that one as our
SORTKEY.

Amazon Redshift Advisor continuously recommends SORTKEYs for
frequently queried tables. Advisor will generate an ALTER TABLE
command that we run without having to re-create the tables—
without impacting concurrent read and write queries. Note that
Advisor does not provide recommendations if it doesn’t see enough
data (queries) or if the benefits are relatively small.

We can also define a distribution style for every table. When we load data into a table,
Amazon Redshift distributes the rows of the table among our cluster nodes according
to the table’s distribution style. When we perform a query, the query optimizer redis‐
tributes the rows to the cluster nodes as needed to perform any joins and aggrega‐
tions. So our goal should be to optimize the rows distribution to minimize data
movements. There are three distribution styles from which we can choose:

KEY distribution
Distribute the rows according to the values in one column.

ALL distribution
Distribute a copy of the entire table to every node.

EVEN distribution
The rows are distributed across all nodes in a round-robin fashion, which is the
default distribution style.

For our table, we’ve chosen KEY distribution based on product_id, as this column has
a high cardinality, shows an even distribution, and can be used to join with other
tables.

At any time, we can use EXPLAIN on our Amazon Redshift queries to make sure the
DISTKEY and SORTKEY are being utilized. If our query patterns change over time, we
may want to revisit changing these keys.

In addition, we are using compression for most columns to reduce the overall storage
footprint and reduce our cost. Table 4-2 analyzes the compression used for each
Amazon Redshift column in our schema.

122 | Chapter 4: Ingest Data into the Cloud

Table 4-2. Compression types used in our Amazon Redshift table

Column Data type Encoding Explanation
marketplace varchar(2) zstd Low cardinality, too small for higher compression overhead
customer_id varchar(8) zstd High cardinality, relatively few repeat values
review_id varchar(14) zstd Unique, unbounded cardinality, no repeat values
product_id varchar(10) zstd Unbounded cardinality, relatively low number of repeat values
product_parent varchar(10) zstd Unbounded cardinality, relatively low number of repeat words
product_title varchar(400) zstd Unbounded cardinality, relatively low number of repeat words
product_category varchar(24) raw Low cardinality, many repeat values, but first SORT key is raw
star_rating int az64 Low cardinality, many repeat values
helpful_votes int zstd Relatively high cardinality
total_votes int zstd Relatively high cardinality
vine varchar(1) zstd Low cardinality, too small to incur higher compression overhead
verified_purchase varchar(1) zstd Low cardinality, too small to incur higher compression overhead
review_headline varchar(128) zstd Varying length text, high cardinality, low repeat words
review_body varchar(65535) zstd Varying length text, high cardinality, low repeat words
review_date varchar(10) bytedict Fixed length, relatively low cardinality, many repeat values
year int az64 Low cardinality, many repeat values

While AWS CEO Andy Jassy maintains “there is no compression
algorithm for experience,” there is a compression algorithm for
data. Compression is a powerful tool for the ever-growing world of
big data. All modern big data processing tools are compression-
friendly, including Amazon Athena, Redshift, Parquet, pandas, and
Apache Spark. Using compression on small values such as
varchar(1) may not improve performance. However, due to native
hardware support, there are almost no drawbacks to using
compression.

zstd is a generic compression algorithm that works across many different data types
and column sizes. The star_rating and year fields are set to the default az64 encod‐
ing applied to most numeric and date fields. For most columns, we gain a quick win
by using the default az64 encoding for integers and overriding the default lzo encod‐
ing in favor of the flexible zstd encoding for everything else, including text.

We are using bytedict for review_date to perform dictionary encoding on the
string-based dates (YYYY-MM-DD). While it seemingly has a large number of unique
values, review_date actually contains a small number of unique values because there
are only ~7,300 (365 days per year × 20 years) days in a 20-year span. This cardinality
is low enough to capture all of the possible dates in just a few bits versus using a full
varchar(10) for each date.

Reduce Cost and Increase Performance | 123

While product_category is a great candidate for bytedict dictionary encoding, it is
our first (and only, in this case) SORTKEY. As a performance best practice, the first
SORTKEY should not be compressed.

While marketplace, product_category, vine, and verified_purchase seem to be
good candidates for bytedict, they are too small to benefit from the extra overhead.
For now, we leave them as zstd.

If we have an existing Amazon Redshift table to optimize, we can run the ANALYZE
COMPRESSION command in Amazon Redshift to generate a report of suggested com‐
pression encodings as follows:

ANALYZE COMPRESSION redshift.customer_reviews_tsv_2015

The result will be a table like the following showing the % improvement in compres‐
sion if we switch to another encoding:

Column Encoding Estimated reduction (%)
marketplace zstd 90.84

customer_id zstd 38.88

review_id zstd 36.56

product_id zstd 44.15

product_parent zstd 44.03

product_title zstd 30.72

product_category zstd 99.95

star_rating az64 0

helpful_votes zstd 47.58

total_votes zstd 39.75

vine zstd 85.03

verified_purchase zstd 73.09

review_headline zstd 30.55

review_body zstd 32.19

review_date bytedict 64.1

year az64 0

We performed this analysis on a version of the CREATE TABLE that did not specify any
ENCODE attributes. By default, Amazon Redshift will use az64 for numerics/dates and
lzo for everything else (hence the 0% gain for the az64 suggestions). We can also use
the ALTER TABLE statement to change the compression used for each column.

Keep in mind that these are just suggestions and not always appropriate for our spe‐
cific environment. We should try different encodings for our dataset and query the
STV_BLOCKLIST table to compare the % reduction in physical number of blocks. For

124 | Chapter 4: Ingest Data into the Cloud

example, the analyzer recommends using zstd for our SORTKEY, product_category,
but our experience shows that query performance suffers when we compress the SORT
KEY. We are using the extra disk space to improve our query performance.

Amazon Redshift supports automatic table optimization and other self-tuning capa‐
bilities that leverage machine learning to optimize peak performance and adapt to
shifting workloads. The performance optimizations include automatic vacuum dele‐
tes, intelligent workload management, automatic table sorts, and automatic selection
of distribution and sort keys.

Use Bloom Filters to Improve Query Performance
Amazon Redshift is a distributed query engine and S3 is a distributed object store.
Distributed systems consist of many cluster instances. To improve performance of
distributed queries, we need to minimize the number of instances that are scanned
and the amount of data transferred between the instances.

Bloom filters, probabilistic and memory-efficient data structures, help answer the
question, “Does this specific cluster instance contain data that might be included in
the query results?” Bloom filters answer with either a definite NO or a MAYBE. If the
bloom filter answered with a NO, the engine will completely skip that cluster instance
and scan the remaining instances where the bloom filter answered with a MAYBE.

By filtering out rows of data that do not match the given query, bloom filters result in
huge performance gains for join queries. And since bloom filtering happens close to
the data source, data transfer is minimized between the nodes in the distributed clus‐
ter during join queries. This ultimately increases query performance for data stores
such as S3.

Amazon Redshift Spectrum actually automatically creates and manages bloom filters
on external data such as S3, but we should be aware of their importance in improving
query performance on distributed data stores. Bloom filters are a pattern used
throughout all of distributed computing, including distributed query engines.

Materialized Views in Amazon Redshift Spectrum
Materialized views provide repeatable and predictable query performance on external
data sources such as S3. They pretransform and prejoin data before SQL queries are
executed. Materialized views can be updated either manually or on a predefined
schedule using Amazon Redshift Spectrum.

Reduce Cost and Increase Performance | 125

Summary
In this chapter, we provided an overview on how we can load our data into Amazon
S3, discussed the value of an S3 data lake, and showed how we can leverage services
like Amazon Athena to run ad hoc SQL queries across the data in S3 without the need
to physically move the data. We showed how to continuously ingest new application
data using AWS Glue Crawler. We also introduced our dataset, the Amazon Customer
Reviews Dataset, which we will be using through the rest of this book.

As different use cases require data in different formats, we elaborated on how we can
use Athena to convert tab-separated data into query-optimized, columnar Parquet
data.

Data in our S3 data lake often needs to be accessed not only by the data science and
machine learning teams but also by business intelligence teams. We introduced the
Lake House Architecture based on Amazon Redshift, AWS’s petabyte-scale cloud data
warehouse. We showed how to use Amazon Redshift Spectrum to combine queries
across data stores, including Amazon Redshift and S3.

To conclude this chapter, we discussed the various data compression formats and S3
tiering options, showing how they can reduce cost and improve query performance.

In Chapter 5 we will explore the dataset in more detail. We will run queries to under‐
stand and visualize our datasets. We will also show how to detect data anomalies with
Apache Spark and Amazon SageMaker Processing Jobs.

126 | Chapter 4: Ingest Data into the Cloud

CHAPTER 5

Explore the Dataset

In the previous chapter, we demonstrated how to ingest data into the cloud with
Amazon Athena and Redshift. Amazon Athena offers ad hoc, serverless SQL queries
for data in S3 without needing to set up, scale, and manage any clusters. Amazon
Redshift provides the fastest query performance for enterprise reporting and business
intelligence workloads—particularly those involving complex SQL with multiple
joins and subqueries across many data sources, including relational databases and flat
files. We created a data-catalog mapping for our S3-based data lake in S3 using AWS
Glue Catalog. We ran ad hoc queries on our data lake with Athena. And we ran quer‐
ies on our data warehouse with Amazon Redshift.

We also had a first peek into our dataset. As we’ve learned, the Amazon Customer
Reviews Dataset consists of more than 150+ million of those customer reviews of
products across 43 different product categories on the Amazon.com website from
1995 until 2015. The dataset contains the actual customer reviews text together with
additional metadata. It comes in two formats: row-based tab-separated values (TSV)
and column-based Apache Parquet.

In this chapter, we will use the SageMaker Studio integrated development environ‐
ment (IDE) as our main workspace for data analysis and the model development life
cycle. SageMaker Studio provides fully managed Jupyter Notebook servers. With just
a couple of clicks, we can provision the SageMaker Studio IDE and start using Jupyter
notebooks to run ad hoc data analysis and launch Apache Spark–based data-quality
jobs.

We will use SageMaker Studio throughout the rest of the book to launch data process‐
ing and feature engineering jobs in Chapter 6, train models in Chapter 7, optimize
models in Chapter 8, deploy models in Chapter 9, build pipelines in Chapter 10,
develop streaming applications in Chapter 11, and secure our data science projects in
Chapter 12.

127

Let’s explore our dataset in more depth and analyze our data for correlations, anoma‐
lies, bias, imbalances, and useful business insights. The knowledge from this data
analysis and exploration will prepare us for data bias, feature selection, and feature
engineering in Chapter 6 as well as model bias, fairness, and explainability analysis in
Chapters 7 and 9.

Tools for Exploring Data in AWS
Let’s introduce some tools and services that will assist us in our data exploration task.
In order to choose the right tool for the right purpose, we will describe the breadth
and depth of tools available within AWS and use these tools to answer questions
about our Amazon Customer Reviews Dataset.

To interact with AWS resources from Jupyter notebooks running within SageMaker
Studio IDE, we leverage the AWS Python SDK Boto3 and the Python DB client PyA‐
thena to connect to Athena, the Python SQL toolkit SQLAlchemy to connect to Ama‐
zon Redshift, and the open source AWS Data Wrangler library to facilitate data
movement between pandas and Amazon S3, Athena, Redshift, Glue, and EMR.

The open source AWS Data Wrangler library is not related to Sage‐
Maker Data Wrangler. This is an unfortunate name clash. AWS
Data Wrangler is focused on general data ingestion into—and
between—AWS storage services like Amazon S3, Athena, Redshift,
etc., while SageMaker Data Wrangler is focused on ML-based data
ingestion, analysis, and transformation for reproducible pipelines.
We will describe SageMaker Data Wrangler in more detail later in
this chapter and describe when to use one over the other.

Amazon EMR supports flexible, highly distributed, data-processing and analytics
frameworks such as Apache Spark and Hadoop. Amazon EMR is a managed service
with automated cluster setup and autoscaling and supports Spot Instances. Amazon
EMR lets us run custom jobs with specific compute, memory, and storage parameters
to optimize our analytics queries. Amazon EMR Studio is a unified IDE for data pro‐
cessing on AWS. SageMaker Studio also supports Amazon EMR through EMR-
specific Jupyter kernels, including PySpark.

QuickSight is a fast, easy-to-use business intelligence service to build visualizations,
perform ad hoc analysis, and build dashboards from many data sources—across
many devices.

128 | Chapter 5: Explore the Dataset

https://oreil.ly/byebi
https://oreil.ly/DTQS8
https://oreil.ly/DTQS8
https://oreil.ly/q0DC0
https://oreil.ly/rUvry
https://oreil.ly/5Eq4H

Visualize Our Data Lake with SageMaker Studio
In this section, we will start working with the Amazon SageMaker Studio IDE, which
provides us with managed Jupyter notebooks. We will use the Amazon Customer
Reviews Dataset which we introduced in Chapter 4. Here’s another quick overview of
the dataset schema:

marketplace
Two-letter country code (in this case, just “US”).

customer_id
Random identifier used to aggregate reviews written by a single author.

review_id
Unique ID for the review.

product_id
Amazon Standard Identification Number (ASIN).

product_parent
Multiple ASINs (variations of the same product) can roll up into a single parent.

product_title
Title description of the product.

product_category
Broad product category used to group reviews.

star_rating
The review’s rating of 1 to 5 stars, where 1 is the worst and 5 is the best.

helpful_votes
Number of helpful votes for the review.

total_votes
Total number of votes for the review.

vine
Was the review written as part of the Vine program?

verified_purchase
Was the review from a verified purchase?

review_headline
Title of the review.

Visualize Our Data Lake with SageMaker Studio | 129

review_body
Actual text of the review.

review_date
Date the review was submitted.

Prepare SageMaker Studio to Visualize Our Dataset
For our exploratory data analysis in this Jupyter notebook, we will use pandas,
NumPy, Matplotlib, and Seaborn, which are probably the most commonly used libra‐
ries for data analysis and data visualization in Python. Seaborn is built on top of Mat‐
plotlib, adds support for pandas, and offers more advanced visualizations with a
streamlined API. We will also use PyAthena, the Python DB Client for Amazon
Athena, to run Athena queries right from our notebook:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format='retina'

import seaborn as sns

When using a Mac with a Retina display, make sure to specify the
retina setting for much higher-resolution images with Matplotlib
on a Mac.

Let’s define the database and table holding our Amazon Customer Reviews Dataset
information in Amazon Athena:

database_name = 'dsoaws'
table_name = 'amazon_reviews_parquet'

With that, we are now ready to run our first SQL queries right from the notebook.

Run a Sample Athena Query in SageMaker Studio
In the first example shown in the following, we will query our dataset to give us a list
of the distinct product categories. PyAthena sets up a connection to the data source.
We will then execute SQL commands with pandas, passing the SQL statement to exe‐
cute and the PyAthena connection object:

130 | Chapter 5: Explore the Dataset

https://pandas.pydata.org
https://numpy.org
https://matplotlib.org
https://oreil.ly/ysj3B
https://oreil.ly/d5wwh

PyAthena imports
from pyathena import connect

Set the Athena query results S3 bucket
s3_staging_dir = 's3://{0}/athena/staging'.format(bucket)

Set up the PyAthena connection
conn = connect(region_name=region, s3_staging_dir=s3_staging_dir)

The SQL statement to execute
sql_statement="""
SELECT DISTINCT product_category from {0}.{1}
ORDER BY product_category
""".format(database_name, table_name)

Execute the SQL statement with pandas
import pandas as pd
pd.read_sql(sql_statement, conn)

Here is the result of the read_sql() call that queries all product categories:

product_category product_category (continued)
Apparel Luggage
Automotive Major Appliances
Baby Mobile_Apps
Beauty Mobile_Electronics
Books Music
Camera Musical Instruments
Digital_Ebook_Purchase Office Products
Digital_Music_Purchase Outdoors
Digital_Software PC
Digital_Video_Download Personal_Care_Appliances
Digital_Video_Games Pet Products
Electronics Shoes
Furniture Software
Gift Card Sports
Grocery Tools
Health & Personal Care Toys
Home Video
Home Entertainment Video DVD
Home Improvement Video Games
Jewelry Watches
Kitchen Wireless
Lawn and Garden

Visualize Our Data Lake with SageMaker Studio | 131

We may need to use pandas cursors if we are working with a large
dataset that exceeds the memory available to the notebook server.
Pay attention to the file size when reading data into the DataFrame.
We can easily exceed available memory when working with large
datasets.

Dive Deep into the Dataset with Athena and SageMaker
We need to understand our data in order to prepare for the next steps of feature selec‐
tion and feature engineering. We will run queries across the data to learn about data
correlations, identify data anomalies, and class imbalances.

Let’s use Athena, SageMaker Studio, Matplotlib, and Seaborn to track down answers
to the following questions over the entire dataset:

1. Which product categories are the highest rated by average rating?
2. Which product categories have the most reviews?
3. When did each product category become available in the Amazon catalog based

on the date of the first review?
4. What is the breakdown of star ratings (1–5) per product category?
5. How have the star ratings changed over time? Is there a drop-off point for certain

product categories throughout the year?
6. Which star ratings (1–5) are the most helpful?
7. What is the distribution of review lengths (number of words)?

From this point, we will only show the Athena query and the
results. The full source code to execute and render the results is
available in the accompanying GitHub repo.

1. Which product categories are the highest rated by average rating?
Here is the SQL query that will answer this question:

SELECT product_category, AVG(star_rating) AS avg_star_rating
FROM dsoaws.amazon_reviews_parquet
GROUP BY product_category
ORDER BY avg_star_rating DESC

Let’s plot the results in a horizontal bar chart using Seaborn and Matplotlib to provide
a high-level overview of which product categories are more popular than others, on
average. We may want to consider this distribution when we select our training data‐
set in the next few chapters.

132 | Chapter 5: Explore the Dataset

Figure 5-1 shows that Amazon Gift Cards are the highest-rated product category,
with an average star rating of 4.73, followed by Music Purchase, with an average of
4.64 and Music, with an average of 4.44.

Figure 5-1. Gift Cards are the highest rated product category at the Amazon.com
marketplace.

2. Which product categories have the most reviews?
Here is the SQL query that will answer this question:

SELECT product_category,
 COUNT(star_rating) AS count_star_rating
FROM dsoaws.amazon_reviews_parquet
GROUP BY product_category
ORDER BY count_star_rating DESC

Let’s plot the result again in a horizontal bar chart using Seaborn and Matplotlib,
shown in Figure 5-2.

Visualize Our Data Lake with SageMaker Studio | 133

Figure 5-2. The Books product category has close to 20 million reviews.

We can see in Figure 5-2 that the “Books” product category has the most reviews,
with close to 20 million. This makes sense as Amazon.com initially launched as the
“Earth’s Biggest Bookstore” back in 1995.

The second most reviewed category is “Digital_Ebook_Purchase,” representing Kin‐
dle book reviews. So we notice that book reviews—whether printed or as ebooks—
still count the most reviews.

“Personal_Care_Appliances” has the least number of reviews. This could potentially
be due to the fact that the product category was added more recently.

Let’s check this out by querying for the first review in each category, which will give
us a rough timeline of product category introductions.

134 | Chapter 5: Explore the Dataset

https://oreil.ly/q11mI
https://oreil.ly/q11mI

3. When did each product category become available in the Amazon catalog?
The initial review date is a strong indicator of when each product category went live
on Amazon.com. Here is the SQL query that will answer this question:

 SELECT
 product_category,
 MIN(year) AS first_review_year
 FROM dsoaws.amazon_reviews_parquet
 GROUP BY product_category
 ORDER BY first_review_year

The result should look similar to this:

product_category first_review_year
Books 1995
Video Games 1997
Office Products 1998
Pet Products 1998
Software 1998
Gift Card 2004
Digital_Video_Games 2006
Digital_Software 2008
Mobile_Apps 2010

We can see that personal care appliances were indeed added somewhat later to the
Amazon.com catalog, but that doesn’t seem to be the only reason for the low number
of reviews. Mobile apps appear to have been added around 2010.

Let’s visualize the number of first reviews per category per year, shown in Figure 5-3.

Figure 5-3. Our dataset includes 13 first product category reviews in 1999.

We notice that a lot of our first product category reviews (13) happened in 1999.
Whether this is really related to the introduction of those product categories around

Visualize Our Data Lake with SageMaker Studio | 135

this time or is just a coincidence created by the available data in our dataset, we can’t
tell for sure.

4. What is the breakdown of star ratings (1–5) per product category?
Here is the SQL query that will answer this question:

SELECT product_category,
 star_rating,
 COUNT(*) AS count_reviews
FROM dsoaws.amazon_reviews_parquet
GROUP BY product_category, star_rating
ORDER BY product_category ASC, star_rating DESC,
 count_reviews

The result should look similar to this (shortened):

product_category star_rating count_reviews
Apparel 5 3320566
Apparel 4 1147237
Apparel 3 623471
Apparel 2 369601
Apparel 1 445458
Automotive 5 2300757
Automotive 4 526665
Automotive 3 239886
Automotive 2 147767
Automotive 1 299867
...

With this information, we can also quickly group by star ratings and count the
reviews for each rating (5, 4, 3, 2, 1):

SELECT star_rating,
 COUNT(*) AS count_reviews
FROM dsoaws.amazon_reviews_parquet
GROUP BY star_rating
ORDER BY star_rating DESC, count_reviews

The result should look similar to this:

136 | Chapter 5: Explore the Dataset

star_rating count_reviews
5 93200812
4 26223470
3 12133927
2 7304430
1 12099639

Approximately 62% of all reviews have a 5-star rating. We will come back to this rela‐
tive imbalance of star ratings when we perform feature engineering to prepare for
model training.

We can now visualize a stacked percentage horizontal bar plot, showing the propor‐
tion of each star rating per product category, as shown in Figure 5-4.

Figure 5-4. Distribution of reviews per star rating (5, 4, 3, 2, 1) per product category.

Visualize Our Data Lake with SageMaker Studio | 137

We see that 5- and 4-star ratings make up the largest proportion within each product
category. But let’s see if we can spot differences in product satisfaction over time.

5. How have the star ratings changed over time? Is there a drop-off point for certain product
categories throughout the year?
Let’s first have a look at the average star rating across all product categories over the
years. Here is the SQL query that will answer this question:

SELECT year, ROUND(AVG(star_rating), 4) AS avg_rating
FROM dsoaws.amazon_reviews_parquet
GROUP BY year
ORDER BY year;

The result should look similar to this:

year avg_rating
1995 4.6169
1996 4.6003
1997 4.4344
1998 4.3607
1999 4.2819
2000 4.2569
... ...
2010 4.069
2011 4.0516
2012 4.1193
2013 4.1977
2014 4.2286
2015 4.2495

If we plot this, as shown in Figure 5-5, we notice the general upward trend, with two
lows in 2004 and 2011.

138 | Chapter 5: Explore the Dataset

Figure 5-5. Average star rating across all product categories over time.

Let’s take a look now at our top five product categories by number of ratings
('Books', 'Digital_Ebook_Purchase', 'Wireless', 'PC', and 'Home'). Here is the
SQL query that will answer this question:

SELECT
 product_category,
 year,
 ROUND(AVG(star_rating), 4) AS avg_rating_category
FROM dsoaws.amazon_reviews_parquet
WHERE product_category IN
 ('Books', 'Digital_Ebook_Purchase', 'Wireless', 'PC', 'Home')
GROUP BY product_category, year
ORDER BY year

The result should look similar to this (shortened):

product_category year avg_rating_category
Books 1995 4.6111
Books 1996 4.6024
Books 1997 4.4339
Home 1998 4.4
Wireless 1998 4.5
Books 1998 4.3045
Home 1999 4.1429
Digital_Ebook_Purchase 1999 5.0
PC 1999 3.7917
Wireless 1999 4.1471

If we plot this now, as shown in Figure 5-6, we can see something interesting.

Visualize Our Data Lake with SageMaker Studio | 139

Figure 5-6. Average star rating over time per product category (top 5).

While books have been relatively consistent in star_rating with values between 4.1
and 4.6, the other categories are more affected by customer satisfaction. Digital ebook
purchases (Kindle books) seem to spike a lot, dropping as low as 3.5 in 2005 and ris‐
ing as high as 5.0 in 2003. This would definitely require a closer look into our dataset
to decide whether this is due to limited reviews in that time or some sort of skewed
data or if it really reflected the voice of our customers.

6. Which star ratings (1–5) are the most helpful?
Here is the SQL query that will answer this question:

SELECT star_rating,
 AVG(helpful_votes) AS avg_helpful_votes
FROM dsoaws.amazon_reviews_parquet
GROUP BY star_rating
ORDER BY star_rating DESC

The result should look similar to this:

star_rating avg_helpful_votes
5 1.672697561905362
4 1.6786973653753678
3 2.048089542651773
2 2.5066350146417995
1 3.6846412525200134

We see that customers find negative reviews more helpful than positive reviews,
which is visualized in Figure 5-7.

140 | Chapter 5: Explore the Dataset

Figure 5-7. Customers find negative reviews (1-star ratings) the most helpful.

7. What is the distribution of review lengths (number of words)?
Here is the SQL query that will answer this question:

SELECT CARDINALITY(SPLIT(review_body, ' ')) as num_words
FROM dsoaws.amazon_reviews_parquet

We can describe the resulting distribution through percentiles:

summary = df['num_words']\
 .describe(percentiles=\
 [0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00])

The summary result should look similar to this:

count 396601.000000
mean 51.683405
std 107.030844
min 1.000000
10% 2.000000
20% 7.000000
30% 19.000000
40% 22.000000
50% 26.000000
60% 32.000000
70% 43.000000
80% 63.000000
90% 110.000000
100% 5347.000000
max 5347.000000

If we plot this now, as shown in Figure 5-8, we can see that 80% of our reviews have
63 words or less.

Visualize Our Data Lake with SageMaker Studio | 141

Figure 5-8. The histogram visualizes the distribution of review lengths.

Query Our Data Warehouse
At this point, we will use Amazon Redshift to query and visualize use cases. Similar to
the Athena example, we first need to prepare our SageMaker Studio environment.

Run a Sample Amazon Redshift Query from SageMaker Studio
In the following example, we will query our dataset to give us the number of unique
customers per product category. We can use the pandas read_sql_query function to
run our SQLAlchemy query and store the query result in a pandas DataFrame:

df = pd.read_sql_query("""
 SELECT product_category, COUNT(DISTINCT customer_id) as num_customers
 FROM redshift.amazon_reviews_tsv_2015
 GROUP BY product_category
 ORDER BY num_customers DESC
""", engine)

df.head(10)

The output should look similar to this:

142 | Chapter 5: Explore the Dataset

product_category num_customers
Wireless 1979435
Digital_Ebook_Purchase 1857681
Books 1507711
Apparel 1424202
Home 1352314
PC 1283463
Health & Personal Care 1238075
Beauty 1110828
Shoes 1083406
Sports 1024591

We can see that the Wireless product category has the most unique customers pro‐
viding reviews, followed by the Digital_Ebook_Purchase and Books categories. We
are all set now to query Amazon Redshift for some deeper customer insights.

Dive Deep into the Dataset with Amazon Redshift and SageMaker
Now, let’s query our data from 2015 in Amazon Redshift for deeper insight into our
customers and find answers to the following questions:

1. Which product categories had the most reviews in 2015?
2. Which products had the most helpful reviews in 2015? How long were those

reviews?
3. How did the star ratings change during 2015? Was there a drop-off point for cer‐

tain product categories throughout the year?
4. Which customers wrote the most helpful reviews in 2015? How many reviews

did they write? Across how many categories? What was their average star rating?
5. Which customers provided more than one review for the same product in 2015?

What was their average star rating for each product?

As with the Athena examples, we will only show the Amazon Red‐
shift SQL query and the results. The full source code to execute and
render the results is available in the accompanying GitHub repo.

Let’s run the queries and find out the answers!

Query Our Data Warehouse | 143

1. Which product categories had the most reviews in 2015?
Here is the SQL query that will answer this question:

SELECT
 year,
 product_category,
 COUNT(star_rating) AS count_star_rating
FROM
 redshift.amazon_reviews_tsv_2015
GROUP BY
 product_category,
 year
ORDER BY
 count_star_rating DESC,
 year DESC

The result should look similar to this subset of data:

year product_category count_star_rating
2015 Digital_Ebook_Purchase 4533519
2015 Wireless 2998518
2015 Books 2808751
2015 Apparel 2369754
2015 Home 2172297
2015 Health & Personal Care 1877971
2015 PC 1877971
2015 Beauty 1816302
2015 Digital_Video_Download 1593521
2015 Sports 1571181
...

We notice that books are still the most reviewed product categories, but it’s actually
the ebooks (Kindle books) now. Let’s visualize the result in a horizontal bar plot, as
shown in Figure 5-9.

144 | Chapter 5: Explore the Dataset

Figure 5-9. For the year 2015, Digital_Ebook_Purchase has the most reviews.

2. Which products had the most helpful reviews in 2015?
Also, how long were those reviews? Here is the SQL query that will answer this
question:

SELECT
 product_title,
 helpful_votes,
 LENGTH(review_body) AS review_body_length,
 SUBSTRING(review_body, 1, 100) AS review_body_substring
FROM
 redshift.amazon_reviews_tsv_2015
ORDER BY
 helpful_votes DESC LIMIT 10

Query Our Data Warehouse | 145

The result should look similar to this:

product_title helpful_votes review_body_length review_body_substring
Fitbit Charge HR
Wireless Activity
Wristband

16401 2824 Full disclosure, I ordered the Fitbit Charge HR only after I
gave up on Jawbone fulfilling my preord

Kindle Paperwhite 10801 16338 Review updated September 17, 2015

As a
background, I am a retired Information Systems pro

Kindle Paperwhite 8542 9411 [[VIDEOID:755c0182976ece27e407ad23676f3ae8]]If you’re
reading reviews of the new 3rd generation Pape

Weslo Cadence G
5.9 Treadmill

6246 4295 I got the Weslo treadmill and absolutely dig it. I’m 6’2",
230 lbs. and like running outside (ab

Haribo Gummi
Candy Gold-Bears

6201 4736 It was my last class of the semester, and the final exam was
worth 30% of our grade.
After a la

FlipBelt - World’s
Best Running Belt
& Fitness Workout
Belt

6195 211 The size chart is wrong on the selection. I’ve attached a photo
so you can see what you really need.

Amazon.com eGift
Cards

5987 3498 I think I am just wasting time writing this, but this must have
happened to someone else. Something

Melanie’s
Marvelous Measles

5491 8028 If you enjoyed this book, check out these other fine titles
from the same author:

Abby’s

Tuft & Needle
Mattress

5404 4993 tl;dr: Great mattress, after some hurdles that were deftly
cleared by stellar customer service. The

Ring Wi-Fi Enabled
Video Doorbell

5399 3984 First off, the Ring is very cool. I really like it and many people
that come to my front door (sale

We see that the “Fitbit Charge HR Wireless Activity Wristband” had the most helpful
review in 2015, with a total of 16,401 votes and a decent-sized review length of 2,824
characters. It’s followed by two reviews for the “Kindle Paperwhite,” where people
were writing longer reviews of 16,338 and 9,411 characters, respectively.

3. How did the star ratings change during 2015?
Also, was there a drop-off point for certain product categories throughout the year?
Here is the SQL query that will answer this question:

SELECT
 CAST(DATE_PART('month', TO_DATE(review_date, 'YYYY-MM-DD')) AS integer)
 AS month,
 AVG(star_rating ::FLOAT) AS avg_rating
FROM redshift.amazon_reviews_tsv_2015
GROUP BY month
ORDER BY month

The result should look similar to this:

146 | Chapter 5: Explore the Dataset

month avg_rating
1 4.277998926134835
2 4.267851231035101
3 4.261042822856084
4 4.247727865199895
5 4.239633709986397
6 4.235766635971452
7 4.230284081689972
8 4.231862792031927

We notice that we only have data until August 2015. We can also spot that the average
rating is slowly declining, as we can easily see in Figure 5-10. While we don’t have a
precise explanation, this decline was likely investigated in 2015.

Figure 5-10. Average star rating throughout 2015 across all product categories.

Now let’s explore whether this is due to a certain product category dropping drasti‐
cally in customer satisfaction or is more of a trend across all categories. Here is the
SQL query that will answer this question:

SELECT
 product_category,
 CAST(DATE_PART('month', TO_DATE(review_date, 'YYYY-MM-DD')) AS integer)
 AS month,
 AVG(star_rating ::FLOAT) AS avg_rating
FROM redshift.amazon_reviews_tsv_2015
GROUP BY product_category, month
ORDER BY product_category, month

Query Our Data Warehouse | 147

The result should look similar to this (shortened):

product_category month avg_rating
Apparel 1 4.159321618698804
Apparel 2 4.123969612021801
Apparel 3 4.109944336469443
Apparel 4 4.094360325567125
Apparel 5 4.0894595692213125
Apparel 6 4.09617799917213
Apparel 7 4.097665115845663
Apparel 8 4.112790034578352
Automotive 1 4.325502388403887
Automotive 2 4.318120214368761
...

Let’s visualize the result to make it easier to spot the trends, as shown in Figure 5-11.

Figure 5-11. Average star rating over time per product category in 2015.

While the figure is a bit messy, we can see that most categories follow the same aver‐
age star rating over the months, with three categories fluctuating more than others:
“Digital Software,” “Software,” and “Mobile Electronics.” They are, however, improv‐
ing throughout the year, which is good.

148 | Chapter 5: Explore the Dataset

4. Which customers wrote the most helpful reviews in 2015?
Also, how many reviews did they write? Across how many categories? What was their
average star rating? Here is the SQL query that will answer the questions:

SELECT
 customer_id,
 AVG(helpful_votes) AS avg_helpful_votes,
 COUNT(*) AS review_count,
 COUNT(DISTINCT product_category) AS product_category_count,
 ROUND(AVG(star_rating::FLOAT), 1) AS avg_star_rating
FROM
 redshift.amazon_reviews_tsv_2015
GROUP BY
 customer_id
HAVING
 count(*) > 100
ORDER BY
 avg_helpful_votes DESC LIMIT 10;

The result should look similar to this:

customer_id avg_helpful_votes review_count product_category_count avg_star_rating
35360512 48 168 26 4.5
52403783 44 274 25 4.9
28259076 40 123 7 4.3
15365576 37 569 30 4.9
14177091 29 187 15 4.4
28021023 28 103 18 4.5
20956632 25 120 23 4.8
53017806 25 549 30 4.9
23942749 25 110 22 4.5
44834233 24 514 32 4.4

We can see the customers that wrote reviews that produced the most helpful votes on
average (with more than one hundred reviews provided) across many different cate‐
gories; the reviews generally reflected a positive sentiment.

5. Which customers provided more than one review for the same product in 2015?
Also, what was their average star rating for each product? Here is the SQL query that
will answer this question:

SELECT
 customer_id,
 product_category,
 product_title,
 ROUND(AVG(star_rating::FLOAT), 4) AS avg_star_rating,
 COUNT(*) AS review_count

Query Our Data Warehouse | 149

FROM
 redshift.amazon_reviews_tsv_2015
GROUP BY
 customer_id,
 product_category,
 product_title
HAVING
 COUNT(*) > 1
ORDER BY
 review_count DESC LIMIT 5

The result should look similar to this:

customer_id product_category product_title avg_star_rating review_count
2840168 Camera (Create a generic Title per Amazon’s

guidelines)
5.0 45

9016330 Video Games Disney INFINITY Disney Infinity: Marvel Super
Heroes (2.0 Edition) Characters

5.0 23

10075230 Video Games Skylanders Spyro’s Adventure: Character Pack 5.0 23
50600878 Digital_Ebook_Purchase The Art of War 2.35 20
10075230 Video Games Activision Skylanders Giants Single Character

Pack Core Series 2
4.85 20

Note that the avg_star_rating is not always a whole number. This means some cus‐
tomers rated the product differently over time.

It’s good to know that customer 9016330 finds the Disney Infinity: Marvel Super Her‐
oes Video Game to be 5 stars—even after playing it 23 times! Customer 50600878 has
been fascinated enough to read The Art of War 20 times, but is still struggling to find
a positive sentiment there.

Create Dashboards with Amazon QuickSight
QuickSight is a managed, serverless, and easy-to-use business analytics service that
we can leverage to quickly build powerful visualizations. QuickSight automatically
discovers the data sources in our AWS account, including MySQL, Salesforce, Ama‐
zon Redshift, Athena, S3, Aurora, RDS, and many more.

Let’s use QuickSight to create a dashboard with our Amazon Customer Reviews Data‐
set. In just a few clicks, we can have a visualization of review counts per product cate‐
gory, accessible by any device, even our mobile phone. We can automatically refresh
the dashboard after data ingestion using the QuickSight Python SDK. Using the
QuickSight UI, we can see the imbalance in our dataset, as shown in Figure 5-12.

150 | Chapter 5: Explore the Dataset

Figure 5-12. Visualizing review counts per product category in QuickSight.

The product categories Books and Digital_Ebook_Purchase have by far the most
reviews. We will analyze and address this imbalance in more detail in the next chap‐
ter, when we prepare the dataset to train our models.

Detect Data-Quality Issues with Amazon SageMaker
and Apache Spark
Data is never perfect—especially in a dataset with 150+ million rows spread across 20
years! Additionally, data quality may actually degrade over time as new application
features are introduced and others are retired. Schemas evolve, code gets old, and
queries get slow.

Since data quality is not always a priority for the upstream application teams, the
downstream data engineering and data science teams need to handle bad or missing
data. We want to make sure that our data is high quality for our downstream consum‐
ers, including the business intelligence, ML engineering, and data science teams.

Figure 5-13 shows how applications generate data for engineers, scientists, and ana‐
lysts to consume—as well as which tools and services the various teams are likely to
use when accessing that data.

Detect Data-Quality Issues with Amazon SageMaker and Apache Spark | 151

Figure 5-13. Engineers, scientists and analysts use various tools and services to access
data.

Data quality can halt a data processing pipeline in its tracks. If these issues are not
caught early, they can lead to misleading reports (i.e., double-counted revenue),
biased AI/ML models (skewed toward/against a single gender or race), and other
unintended data products.

To catch these data issues early, we use two open source libraries from AWS, Deequ
and PyDeequ. These libraries use Apache Spark to analyze data quality, detect
anomalies, and enable us to “notify the Data Scientist at 3 a.m.” about a data issue.
Deequ continuously analyzes data throughout the complete, end-to-end lifetime of
the model, from feature engineering to model training to model serving in produc‐
tion. Figure 5-14 shows a high-level overview of the Deequ architecture and
components.

Learning from run to run, Deequ will suggest new rules to apply during the next pass
through the dataset. Deequ learns the baseline statistics of our dataset at model train‐
ing time, for example, then detects anomalies as new data arrives for model predic‐
tion. This problem is classically called “training-serving skew.” Essentially, a model is
trained with one set of learned constraints, then the model sees new data that does
not fit those existing constraints. This is a sign that the data has shifted—or skewed—
from the original, expected distribution used during training.

152 | Chapter 5: Explore the Dataset

https://oreil.ly/CVaTM
https://oreil.ly/K9Ydj

Figure 5-14. Deequ’s components: constraints, metrics, and suggestions.

Since we have 150+ million reviews, we need to run Deequ on a cluster versus inside
our notebook. This is the trade-off of working with data at scale. Notebooks work fine
for exploratory analytics on small datasets but are not suitable to process large data‐
sets or train large models. We will use a notebook to kick off a Deequ Spark job on a
separate, ephemeral, and serverless Apache Spark cluster using SageMaker Processing
Jobs.

SageMaker Processing Jobs
SageMaker Processing Jobs can run any Python script—or custom Docker image—on
the fully managed, pay-as-you-go AWS infrastructure using familiar open source
tools such as scikit-learn and Apache Spark. Figure 5-15 shows the SageMaker Pro‐
cessing Job container.

Detect Data-Quality Issues with Amazon SageMaker and Apache Spark | 153

Figure 5-15. Container for an Amazon SageMaker Processing Job.

Fortunately, Deequ is a high-level API on top of Apache Spark, so we use SageMaker
Processing Jobs to run our large-scale analysis job.

Deequ is similar to TensorFlow Extended in concept—specifically,
the TensorFlow Data Validation component. However, Deequ
builds upon popular open source Apache Spark to increase usabil‐
ity, debug-ability, and scalability. Additionally, Apache Spark and
Deequ natively support the Parquet format—our preferred file for‐
mat for analytics.

Analyze Our Dataset with Deequ and Apache Spark
Table 5-1 shows just a few of the metrics that Deequ supports.

Table 5-1. Sample Deequ metrics

Metric Description Usage example
ApproxCountDistinct Approximate number of distinct values using HLL+

+
ApproxCountDistinct(“review_id”)

ApproxQuantiles Approximate quantiles of a distribution ApproxQuantiles(“star_rating”, quantiles =
Seq(0.1, 0.5, 0.9))

Completeness Fraction of non-null values in a column Completeness(“review_id”)
Compliance Fraction of rows that comply with the given column

constraint
Compliance(“top star_rating”, “star_rating >=
4.0”)

Correlation Pearson correlation coefficient Correlation(“total_votes”, “star_rating”)
Maximum Maximum value Maximum(“star_rating”)
Mean Mean value; null valuesexcluded Mean(“star_rating”)
Minimum Minimum value Minimum(“star_rating”)
MutualInformation How much information about one column can be

inferred from another column
MutualInformation(Seq(“total_votes”,
“star_rating”))

Size Number of rows in a DataFrame Size()
Sum Sum of all values of a column Sum(“total_votes”)
Uniqueness Fraction of unique values Uniqueness(“review_id”)

154 | Chapter 5: Explore the Dataset

Let’s kick off the Apache Spark–based Deequ analyzer job by invoking the PySpark
Processor and launching a 10-node Apache Spark Cluster right from our notebook.
We chose the high-memory r5 instance type because Spark typically performs better
with more memory:

s3_input_data='s3://{}/amazon-reviews-pds/tsv/'.format(bucket)
s3_output_analyze_data='s3://{}/{}/output/'.format(bucket, output_prefix)

from sagemaker.spark.processing import PySparkProcessor

processor =
 PySparkProcessor(base_job_name='spark-amazon-reviews-analyzer',
 role=role,
 framework_version='2.4',
 instance_count=10,
 instance_type='ml.r5.8xlarge',
 max_runtime_in_seconds=300)

processor.run(submit_app='preprocess-deequ-pyspark.py',
 submit_jars=['deequ-1.0.3-rc2.jar'],
 arguments=['s3_input_data', s3_input_data,
 's3_output_analyze_data', s3_output_analyze_data,
],
 logs=True,
 wait=False
)

Following is our Deequ code specifying the various constraints we wish to apply to
our TSV dataset. We are using TSV in this example to maintain consistency with the
rest of the examples, but we could easily switch to Parquet with just a one-line code
change:

dataset = spark.read.csv(s3_input_data,
 header=True,
 schema=schema,
 sep="\t",
 quote="")

Define the analyzers:

from pydeequ.analyzers import *

analysisResult = AnalysisRunner(spark) \
 .onData(dataset) \
 .addAnalyzer(Size()) \
 .addAnalyzer(Completeness("review_id")) \
 .addAnalyzer(ApproxCountDistinct("review_id")) \
 .addAnalyzer(Mean("star_rating")) \
 .addAnalyzer(Compliance("top star_rating", \
 "star_rating >= 4.0")) \
 .addAnalyzer(Correlation("total_votes", \
 "star_rating")) \

Detect Data-Quality Issues with Amazon SageMaker and Apache Spark | 155

 .addAnalyzer(Correlation("total_votes",
 "helpful_votes")) \
 .run()

Define the checks, compute the metrics, and verify check conditions:

from pydeequ.checks import *
from pydeequ.verification import *

verificationResult = VerificationSuite(spark) \
 .onData(dataset) \
 .addCheck(
 Check(spark, CheckLevel.Error, "Review Check") \
 .hasSize(lambda x: x >= 150000000) \
 .hasMin("star_rating", lambda x: x == 1.0) \
 .hasMax("star_rating", lambda x: x == 5.0) \
 .isComplete("review_id") \
 .isUnique("review_id") \
 .isComplete("marketplace") \
 .isContainedIn("marketplace", ["US", "UK", "DE", "JP", "FR"])) \
 .run()

We have defined our set of constraints and assertions to apply to our dataset. Let’s run
the job and ensure that our data is what we expect. Table 5-2 shows the results from
our Deequ job, summarizing the results of the constraints and checks that we
specified.

Table 5-2. Deequ job results

check_name columns value
ApproxCountDistinct review_id 149075190
Completeness review_id 1.00
Compliance Marketplace contained in US,UK, DE,JP,FR 1.00
Compliance top star_rating 0.79
Correlation helpful_votes,total_votes 0.99
Correlation total_votes,star_rating -0.03
Maximum star_rating 5.00
Mean star_rating 4.20
Minimum star_rating 1.00
Size * 150962278
Uniqueness review_id 1.00

We learned the following:

• review_id has no missing values and approximately (within 2% accuracy)
149,075,190 unique values.

• 79% of reviews have a “top” star_rating of 4 or higher.

156 | Chapter 5: Explore the Dataset

• total_votes and star_rating are weakly correlated.
• helpful_votes and total_votes are strongly correlated.
• The average star_rating is 4.20.
• The dataset contains exactly 150,962,278 reviews (1.27% different than Approx
CountDistinct).

Deequ supports the concept of a MetricsRepository to track these metrics over time
and potentially halt our pipeline if we detect degradation in data quality. Following is
the code to create a FileSystemMetricsRepository, start tracking our metrics with a
revised AnalysisRunner, and load our metrics for comparison:

from pydeequ.repository import *

metrics_file = FileSystemMetricsRepository.helper_metrics_file(spark,
 'metrics.json')
repository = FileSystemMetricsRepository(spark, metrics_file)
resultKey = ResultKey(spark, ResultKey.current_milli_time())

analysisResult = AnalysisRunner(spark) \
 .onData(dataset) \
 .addAnalyzer(Size()) \
 .addAnalyzer(Completeness("review_id")) \
 .addAnalyzer(ApproxCountDistinct("review_id")) \
 .addAnalyzer(Mean("star_rating")) \
 .addAnalyzer(Compliance("top star_rating", \
 "star_rating >= 4.0")) \
 .addAnalyzer(Correlation("total_votes", \
 "star_rating")) \
 .addAnalyzer(Correlation("total_votes", \
 "helpful_votes")) \
 .useRepository(repository) \
 .run()

df_result_metrics_repository = repository.load() \
 .before(ResultKey.current_milli_time()) \
 .forAnalyzers([ApproxCountDistinct("review_id")]) \
 .getSuccessMetricsAsDataFrame()

Deequ also suggests useful constraints based on the current characteristics of our
dataset. This is useful when we have new data entering the system that may differ stat‐
istically from the original dataset. In the real world, this is very common because new
data is coming in all the time.

In Table 5-3 are the checks—and the accompanying code—that Deequ suggests we
add to detect anomalies as new data arrives into the system.

Detect Data-Quality Issues with Amazon SageMaker and Apache Spark | 157

Table 5-3. Deequ suggestions for checks to be added

column check deequ_code
customer_id 'customer_id' has type Integral .hasDataType(\"customer_id\", Con

strainableDataTypes.Integral)"

helpful_votes 'helpful_votes' has no negative values .isNonNegative(\"helpful_votes\")"

review_headline 'review_headline' has less than 1%
missing values

.hasCompleteness(\"review_headline

\", lambda x: x >= 0.99, Some(\"It

should be above 0.99!\"))"

product_category 'product_category' has value range
'Books',
'Digital_Ebook_Purchase',
'Wireless', 'PC', 'Home',
'Apparel',
'Health & Personal Care',
'Beauty', 'Video DVD',
'Mobile_Apps', 'Kitchen', 'Toys',
'Sports', 'Music', 'Shoes',
'Digital_Video_Download',
'Automotive', 'Electronics',
'Pet Products',
'Office Products',
'Home Improvement',
'Lawn and Garden', 'Grocery',
'Outdoors', 'Camera',
'Video Games', 'Jewelry', 'Baby',
'Tools',
'Digital_Music_Purchase',
'Watches',
'Musical Instruments',
'Furniture',
'Home Entertainment', 'Video',
'Luggage', 'Software',
'Gift Card',
'Digital_Video_Games',
'Mobile_Electronics',
'Digital_Software',
'Major Appliances',
'Personal_Care_Appliances'

.isContainedIn(\"product_category

\", Array(\"Books\", \"Digi

tal_Ebook_Purchase\", \"Wireless\",

\"PC\", \"Home\", \"Apparel\",

\"Health & Personal Care\", \"Beauty

\", \"Video DVD\", \"Mobile_Apps\",

\"Kitchen\", \"Toys\", \"Sports\",

\"Music\", \"Shoes\", \"Digi

tal_Video_Download\", \"Automotive

\", \"Electronics\", \"Pet Products

\", \"Office Products\", \"Home

Improvement\", \"Lawn and Garden\",

\"Grocery\", \"Outdoors\", \"Camera

\", \"Video Games\", \"Jewelry\",

\"Baby\", \"Tools\", \"Digi

tal_Music_Purchase\", \"Watches\",

\"Musical Instruments\", \"Furniture

\", \"Home Entertainment\", \"Video

\", \"Luggage\", \"Software\",

\"Gift Card\", \"Digital_Video_Games

\", \"Mobile_Electronics\", \"Digi

tal_Software\", \"Major Appliances

\", \"Personal_Care_Appliances\"))"

vine 'vine' has value range 'N' for at least
99.0% of values

.isContainedIn(\"vine\", Array(\"N

\"), lambda x: x >= 0.99, Some(\"It

should be above 0.99!\"))"

In addition to the Integral type and not-negative checks, Deequ also suggests that we
constrain product_category to the 43 currently known values, including Books, Soft
ware, etc. Deequ also recognized that at least 99% of the vine values are N and < 1% of

158 | Chapter 5: Explore the Dataset

review_headline values are empty, so it recommends that we add checks for these
conditions moving forward.

Detect Bias in Our Dataset
Using just a few lines of Python code with the Seaborn library, shown in the follow‐
ing, we can identify an imbalance in the number of reviews for three sample product
categories across the five different star_rating classes in our pandas DataFrame.
Figure 5-16 visualizes this imbalance for this sample of data.

import seaborn as sns

sns.countplot(data=df,
 x="star_rating",
 hue="product_category")

Figure 5-16. The dataset is imbalanced in number of reviews across star rating classes
and product categories.

We will now use SageMaker Data Wrangler and Clarify to analyze imbalance and
other potential bias in our dataset at scale.

Generate and Visualize Bias Reports with SageMaker Data Wrangler
SageMaker Data Wrangler is integrated with SageMaker Studio and is designed
specifically for machine learning, data analysis, feature engineering, feature-
importance analysis, and bias detection. With Data Wrangler, we can specify custom
Apache Spark user-defined functions, pandas code, and SQL queries. Additionally,
Data Wrangler provides over 300 built-in data transformations for feature

Detect Bias in Our Dataset | 159

engineering and bias mitigation. We will dive deeper into SageMaker Data Wrangler
for feature engineering in Chapter 6. For now, let’s analyze the dataset with Data
Wrangler and SageMaker Clarify, a feature of Amazon SageMaker that we will use
throughout the rest of this book to evaluate bias, statistical drift/shift, fairness, and
explainability.

The SageMaker Data Wrangler service is different from the open
source AWS Data Wrangler project. AWS Data Wrangler is used
primarily for data ingestion and moving data between AWS serv‐
ices. SageMaker Data Wrangler is the preferred tool for ML-
focused data ingestion, analysis, and transformation as it maintains
full data lineage throughout the machine learning pipeline.

Let’s use SageMaker Data Wrangler to analyze class imbalance relative to the
product_category column, or “facet,” as it is commonly called in this context. Typi‐
cally, we are analyzing sensitive facets like age and race. We have chosen to analyze
the product_category facet since there may be differences in language used when
writing gift card reviews versus software reviews, for example.

Class imbalance is one example of data bias and, if not mitigated, may lead to model
bias where the model disproportionately favors an overrepresented class, such as
Gift Card, at the expense of an underrepresented class, such as Digital_Software.
This may result in higher training error for the underrepresented, disadvantaged
class.

In other words, our model may more accurately predict the star_rating for gift
cards versus software since our dataset has more gift cards reviews than software
reviews. This is often called “selection bias” for the given facet, product_category in
our case. We use SageMaker Data Wrangler and Clarify to generate a bias report with
many metrics, including class imbalance (CI), difference in positive proportion labels
(DPL), and Jensen–Shannon divergence (JS), among many others. Figure 5-17 shows
a class imbalance for a subset of our dataset relative to the Gift Card product cate‐
gory and target star_rating of 5 and 4.

This bias report shows a class imbalance of 0.45 for the Gift Card product category
facet. The class imbalance values range over the interval [-1, 1]. Values closer to 0
indicate a balanced distribution of samples relative to the facet being analyzed. Values
closer to -1 and 1 indicate an imbalanced dataset and may require balancing before
proceeding with feature selection, feature engineering, and model training.

160 | Chapter 5: Explore the Dataset

Figure 5-17. Detect class imbalance through a SageMaker Data Wrangler bias report.

In addition to detecting data bias with SageMaker Data Wrangler, SageMaker Clarify
helps select the best columns (aka “features”) for model training, detects bias in our
models after training, explains model predictions, and detects statistical drift of
model prediction inputs and outputs. Figure 5-18 shows where SageMaker Clarify is
used throughout the remaining phases of the machine learning pipeline, including
model training, tuning, and deployment.

Figure 5-18. Measure data bias, model bias, feature importance, and model explainabil‐
ity with SageMaker Clarify.

In Chapter 7, we will calculate “post-training” metrics to detect bias in our model
predictions in a similar fashion. In Chapter 9, we will calculate drift in data distribu‐
tions and model explainability on our live models in production by setting thresholds

Detect Bias in Our Dataset | 161

for various distribution-distance metrics, comparing the live metrics to a baseline set
of metrics created from our trained model before the model is deployed, and alerting
us when the thresholds are exceeded after the model is deployed.

Detect Bias with a SageMaker Clarify Processing Job
We can also run Clarify as a SageMaker Processing Job to continually analyze our
dataset at scale and calculate bias metrics as new data arrives. Following is the code to
configure and run the SageMakerClarifyProcessor job using a DataConfig to spec‐
ify our input dataset and BiasConfig to specify our product_category facet to
analyze:

from sagemaker import clarify
import pandas as pd

df = pd.read_csv('./amazon_customer_reviews_dataset.csv')
bias_report_output_path = 's3://{}/clarify'.format(bucket)

clarify_processor = clarify.SageMakerClarifyProcessor(
 role=role,
 instance_count=1,
 instance_type='ml.c5.2xlarge',
 sagemaker_session=sess)

data_config = clarify.DataConfig(
 s3_data_input_path=data_s3_uri,
 s3_output_path=bias_report_output_path,
 label='star_rating',
 headers=df.columns.to_list(),
 dataset_type='text/csv')

data_bias_config = clarify.BiasConfig(
 label_values_or_threshold=[5, 4],
 facet_name='product_category',
 facet_values_or_threshold=['Gift Card'],
 group_name=product_category)

clarify_processor.run_pre_training_bias(
 data_config=data_config,
 data_bias_config=data_bias_config,
 methods='all',
 wait=True)

We are using methods='all' to calculate all data-bias metrics during this “pre-
training” phase, but we can specify the list of metrics, including CI, DPL, JS, Kull‐
back–Leibler divergence (KL), Lp-norm (LP), total variation distance (TVD), the
Kolmogorov–Smirnov metric (KS), and conditional demographic disparity (CDD).

Once the SageMakerClarifyProcessor job finishes analyzing our dataset for bias, we
view the generated bias reports in SageMaker Studio, as shown in Figure 5-19. In

162 | Chapter 5: Explore the Dataset

addition, SageMaker Clarify generates analysis.json with bias metrics and report.ipynb
to visualize the bias metrics and share with our colleagues.

Figure 5-19. Extract from a SageMaker Clarify Bias Report generated by the SageMaker
Processing Job.

Integrate Bias Detection into Custom Scripts with SageMaker
Clarify Open Source
SageMaker also offers Clarify as a standalone, open source Python library to integrate
bias and drift detection into our custom Python scripts. Following is an example
using the smclarify Python library to detect bias and class imbalance from a Python
script using a CSV file. To install this library, use pip install smclarify:

from smclarify.bias import report
import pandas as pd

df = pd.read_csv('./amazon_customer_reviews_dataset.csv')

facet_column = report.FacetColumn(name='product_category')

label_column = report.LabelColumn(
 name='star_rating',
 data=df['star_rating'],
 positive_label_values=[5, 4]
)
group_variable = df['product_category']

report.bias_report(
 df,
 facet_column,
 label_column,
 stage_type=report.StageType.PRE_TRAINING,
 group_variable=group_variable
)

Detect Bias in Our Dataset | 163

https://oreil.ly/9qIUn

The result looks similar to this:

[{'value_or_threshold': 'Gift Card',
 'metrics': [{'name': 'CDDL',
 'description': 'Conditional Demographic Disparity in Labels (CDDL)',
 'value': -0.3754164610069102},
 {'name': 'CI',
 'description': 'Class Imbalance (CI)',
 'value': 0.4520671273445213},
 {'name': 'DPL',
 'description': 'Difference in Positive Proportions in Labels (DPL)',
 'value': -0.3679426717770344},
 {'name': 'JS',
 'description': 'Jensen-Shannon Divergence (JS)',
 'value': 0.11632161004661548},
 {'name': 'x',
 'description': 'Kullback-Leibler Divergence (KL)',
 'value': 0.3061581684888518},
 {'name': 'KS',
 'description': 'Kolmogorov-Smirnov Distance (KS)',
 'value': 0.36794267177703444},
 {'name': 'LP', 'description': 'L-p Norm (LP)', 'value': 0.5203495166028743},
 {'name': 'TVD',
 'description': 'Total Variation Distance (TVD)',
 'value': 0.36794267177703444}]},
}]

Mitigate Data Bias by Balancing the Data
We can mitigate the imbalances in our dataset by balancing the number of reviews
across star rating classes and product categories, as shown in the following.
Figure 5-20 visualizes the results for three sample product categories using Seaborn:

df_grouped_by = df.groupby(
 ["product_category", "star_rating"]
)[["product_category", "star_rating"]]

df_balanced = df_grouped_by.apply(
 lambda x: x.sample(df_grouped_by.size().min())\
 .reset_index(drop=True)
)

import seaborn as sns

sns.countplot(data=df_balanced,
 x="star_rating",
 hue="product_category")

164 | Chapter 5: Explore the Dataset

Figure 5-20. The number of reviews is now balanced across star rating classes and prod‐
uct categories.

We can rerun the bias analysis using SageMaker Clarify on the balanced dataset. The
following is a sample result for the facet value “Gift Card”:

[{'value_or_threshold': 'Gift Card',
 'metrics': [{'name': 'CDDL',
 'description': 'Conditional Demographic Disparity in Labels (CDDL)',
 'value': 0.0},
 {'name': 'CI',
 'description': 'Class Imbalance (CI)',
 'value': 0.3333333333333333},
 {'name': 'DPL',
 'description': 'Difference in Positive Proportions in Labels (DPL)',
 'value': 0.0},
 {'name': 'JS',
 'description': 'Jensen-Shannon Divergence (JS)',
 'value': 0.0},
 {'name': 'KL',
 'description': 'Kullback-Leibler Divergence (KL)',
 'value': 0.0},
 {'name': 'KS',
 'description': 'Kolmogorov-Smirnov Distance (KS)',
 'value': 0.0},
 {'name': 'LP', 'description': 'L-p Norm (LP)', 'value': 0.0},
 {'name': 'TVD',
 'description': 'Total Variation Distance (TVD)',
 'value': 0.0}]}]

We can see that all but one of the bias metrics values equal 0, which indicates an equal
distribution across the three product categories. The class imbalance metric value of

Detect Bias in Our Dataset | 165

0.33 is evenly balanced since we have three total product categories. The other two
product categories, Digital_Software and Digital_Video_Games, also have a class
imbalance metric value of 0.33, as shown in the following:

[{'value_or_threshold': 'Digital_Software',
 'metrics': [
 ...
 {'name': 'CI',
 'description': 'Class Imbalance (CI)',
 'value': 0.3333333333333333},
 ...
]}
]

[{'value_or_threshold': 'Digital_Video_Games',
 'metrics': [
 ...
 {'name': 'CI',
 'description': 'Class Imbalance (CI)',
 'value': 0.3333333333333333},
 ...
]}
]

A class imbalance metric value of 0.33 represents an evenly balanced dataset since we
are analyzing three product categories. If we analyzed four product categories, the
ideal class imbalance metric value would be 0.25 for all four product categories.

Detect Different Types of Drift with SageMaker Clarify
Statistical changes in data distributions are often called “shifts” in statistics terms or
“drifts” in applied data science terms. There are multiple types of drifts, including
“covariate,” “label shift,” and “concept shift.” Covariate shifts occur in the data distri‐
bution of model inputs (independent variables). Label shifts occur in the data distri‐
bution of model outputs (dependent variables). Concept shifts occur when the actual
definition of a label changes depending on a particular feature, such as geographical
location or age group.

Throughout the book, we use the terms drift and shift interchange‐
ably to represent changes in statistical distributions. For more
information on types of distribution drifts/shifts, see d2l.ai.

Let’s analyze concept drift by analyzing how different regions of the United States
have different names for “soft drinks.” The eastern region of the US calls soft drinks
“soda,” the northern-middle region calls them “pop,” and the southern region calls

166 | Chapter 5: Explore the Dataset

https://oreil.ly/HjtbC

them “coke.” The change in labels relative to geographical location (the concept drift)
is illustrated in Figure 5-21.

Figure 5-21. Concept shift on soft drink names in the US. Source: http://popvssoda.com.

Another example of concept drift involved one of our early book reviewers, who used
the term “beef ” to describe Chapter 9. While this term was initially interpreted as
negative by the US- and Germany-based authors of this book, we realized that the
term “beef ” means something positive in the reviewer’s geographical location and age
group. If we were building a model to classify reviews of our book, we may want to
adjust for this concept drift by factoring in the reviewers’ location and age—or per‐
haps build separate models for different locations and age.

To detect covariate and label drift, we calculate baseline statistics during model train‐
ing. We then can set thresholds using various statistical distribution-distance metrics
discussed earlier, like KL, KS, LP, L-infinity norm, and more. These metrics answer
various questions about the bias. For example, the divergence metric KL answers
“How different are the distributions of star ratings for different product categories?”
Whereas the KS metric answers “Which star ratings cause the greatest disparity per
product category?”

If the calculated drift is greater than the given threshold, SageMaker can alert us and
automatically trigger a retrain action, for example. To detect concept drift in the pre‐
dicted labels relative to a particular feature, we capture live model inputs and outputs
using SageMaker Model Monitor and send the model inputs to an offline human
labeling workflow to create the ground truth labels. We compare the captured model

Detect Different Types of Drift with SageMaker Clarify | 167

http://popvssoda.com

outputs to the ground truth labels provided by humans using SageMaker Clarify. If
the distribution of model outputs differs beyond a given threshold relative to the
ground truth labels, SageMaker can notify us and automatically trigger a model
retrain, for example. We demonstrate how to use SageMaker Model Monitor and
Clarify to monitor live predictions in Chapter 9.

Also in Chapter 9, we demonstrate how SageMaker Model Monitor samples live
model inputs and outputs, calculates model feature-importance and model-
explainability statistics, and compares these statistics to a baseline created from our
trained model. If SageMaker Model Monitor detects a shift in feature importance and
model explainability relative to the baseline, it can automatically trigger a model
retrain and notify the appropriate on-call scientist or engineer.

Analyze Our Data with AWS Glue DataBrew
We can use Glue DataBrew to analyze our data as well. While not natively integrated
with SageMaker lineage and artifact tracking, DataBrew provides a slick, interactive
visual interface to ingest and analyze data without writing any code. We can connect
data sources from data lakes, data warehouses, and databases. Let’s load the Amazon
Customer Reviews Dataset (Parquet) into DataBrew and analyze some of the
visualizations:

db.create_dataset(
 Name='amazon-reviews-parquet',
 Input={
 'S3InputDefinition': {
 'Bucket': 'amazon-reviews-pds',
 'Key': 'parquet/'
 }
 }
)

Once the dataset is created within DataBrew, we start seeing correlations and other
summary statistics, as shown in Figure 5-22. Specifically, we can see a strong correla‐
tion between helpful_votes and total_votes, while star_rating is not correlated
with either helpful_votes or total_votes.

In addition to correlations, DataBrew highlights missing cells, duplicate rows, and
class imbalances, as shown in Figure 5-23.

168 | Chapter 5: Explore the Dataset

Figure 5-22. Glue DataBrew shows correlations between dataset columns.

Figure 5-23. Glue DataBrew highlights class imbalances between star rating classes 1–5.

Analyze Our Data with AWS Glue DataBrew | 169

We can use Glue DataBrew for a lot of data analysis and transformation use cases, but
we should use SageMaker Data Wrangler for machine-learning-based workloads to
better track our data and model lineage throughout the pipeline.

Reduce Cost and Increase Performance
In this section, we want to provide some tips and tricks to reduce cost and increase
performance during data exploration. We can optimize expensive SQL COUNT queries
across large datasets by using approximate counts. Leveraging Redshift AQUA, we
can reduce network I/O and increase query performance. And if we feel our Quick‐
Sight dashboards could benefit from a performance increase, we should consider ena‐
bling QuickSight SPICE.

Use a Shared S3 Bucket for Nonsensitive Athena Query Results
By choosing a shared S3 location for Athena query results across our team, we can
reuse cached query results, improve query performance, and save on data-transfer
costs. The following code sample highlights s3_staging_dir, which can be shared
across different team members to improve the performance of commonly executed
queries by reusing cached results:

from pyathena import connect
import pandas as pd

Set the Athena query results S3 bucket
s3_staging_dir = 's3://{0}/athena/staging'.format(bucket)

conn = connect(region_name=region, s3_staging_dir=s3_staging_dir)

sql_statement="""
SELECT DISTINCT product_category from {0}.{1}
ORDER BY product_category
""".format(database_name, table_name)

pd.read_sql(sql_statement, conn)

Approximate Counts with HyperLogLog
Counting is a big deal in analytics. We always need to count users (daily active users),
orders, returns, support calls, etc. Maintaining super-fast counts in an ever-growing
dataset can be a critical advantage over competitors.

Both Amazon Redshift and Athena support HyperLogLog (HLL), a type of
“cardinality-estimation” or COUNT DISTINCT algorithm designed to provide highly
accurate counts (< 2% error) in a small amount of time (seconds) requiring a tiny
fraction of the storage (1.2 KB) to store 150+ million separate counts. HLL is a proba‐

170 | Chapter 5: Explore the Dataset

bilistic data structure that is common in counting use cases such as number of likes,
number of page visits, number of click-throughs, etc.

Other forms of HLL include HyperLogLog++, Streaming HyperLo‐
gLog, and HLL-TailCut+, among others. Count-Min Sketch and
Bloom Filters are similar algorithms for approximating counts and
set membership, respectively. Locality Sensitive Hashing (LSH) is
another popular algorithm for calculating “fuzzy” similarity met‐
rics on large datasets with a small footprint.

The way this works is that Amazon Redshift and Athena update a tiny HLL data
structure when inserting new data into the database (think of a tiny hash table). The
next time a count query arrives from a user, Amazon Redshift and Athena simply
look up the value in the HLL data structure and quickly return the value—without
having to physically scan all the disks in the cluster to perform the count.

Let’s compare the execution times of both SELECT APPROXIMATE COUNT() and SELECT
COUNT() in Amazon Redshift. Here is SELECT APPROXIMATE COUNT():

%%time
df = pd.read_sql_query("""
SELECT APPROXIMATE COUNT(DISTINCT customer_id)
FROM {}.{}
GROUP BY product_category
""".format(redshift_schema, redshift_table_2015), engine)

For this query, we should see output similar to this:

 CPU times: user 3.66 ms, sys: 3.88 ms, total: 7.55 ms
 Wall time: 18.3 s

Next up, SELECT COUNT():

%%time
df = pd.read_sql_query("""
SELECT COUNT(DISTINCT customer_id)
FROM {}.{}
GROUP BY product_category
""".format(redshift_schema, redshift_table_2015), engine)

For this query, we should see output similar to this:

 CPU times: user 2.24 ms, sys: 973 μs, total: 3.21 ms
 Wall time: 47.9 s

Note that we run the APPROXIMATE COUNT first to factor out the per‐
formance boost of the query cache. The COUNT is much slower. If
we rerun, both queries will be very fast due to the query cache.

Reduce Cost and Increase Performance | 171

We see that APPROXIMATE COUNT DISTINCT is 160% faster than regular COUNT
DISTINCT in this case. The results were approximately 1.2% different—satisfying the
< 2% error guaranteed by HLL.

Remember that HLL is an approximation and may not be suitable for use cases that
require exact numbers (e.g., financial reporting).

Dynamically Scale a Data Warehouse with AQUA for Amazon Redshift
Existing data warehouses move data from storage nodes to compute nodes during
query execution. This requires high network I/O between the nodes—and reduces
overall query performance. AQUA (Advanced Query Accelerator) is a hardware-
accelerated, distributed cache on top of our Amazon Redshift data warehouse. AQUA
uses custom, AWS-designed chips to perform computations directly in the cache.
This reduces the need to move data from storage nodes to compute nodes—therefore
reducing network I/O and increasing query performance. These AWS-designed chips
are implemented in field programmable gate arrays and help speed up data encryp‐
tion and compression for maximum security of our data. AQUA dynamically scales
out more capacity as well.

Improve Dashboard Performance with QuickSight SPICE
QuickSight is built with the “Super-fast, Parallel, In-memory Calculation Engine,” or
SPICE. SPICE uses a combination of columnar storage, in-memory storage, and
machine code generation to run low-latency queries on large datasets. QuickSight
updates its cache as data changes in the underlying data sources, including Amazon
S3 and Redshift.

Summary
In this chapter, we answered various questions about our data using tools from the
AWS analytics stack, including Athena and Amazon Redshift. We created a business
intelligence dashboard using QuickSight and deployed a SageMaker Processing Job
using open source AWS Deequ and Apache Spark to continuously monitor data qual‐
ity and detect anomalies as new data arrives. This continuous data-quality monitor‐
ing creates confidence in our data pipelines and allows downstream teams, including
data scientists and AI/ML engineers, to develop highly accurate and relevant models
for our applications to consume. We also used Glue DataBrew and SageMaker Data
Wrangler to analyze our data for correlations, anomalies, imbalances, and bias.

In Chapter 6, we will select and prepare features from our dataset to use in the model
training and optimization phases in Chapters 7 and 8, respectively.

172 | Chapter 5: Explore the Dataset

CHAPTER 6

Prepare the Dataset for Model Training

In the previous chapter, we explored our dataset using SageMaker Studio and various
Python-based visualization libraries. We gained some key business insights into our
product catalog using the Amazon Customer Reviews Dataset. In addition, we ana‐
lyzed summary statistics and performed quality checks on our dataset using Sage‐
Maker Processing Jobs, Apache Spark, and the AWS Deequ open source library.

In this chapter, we discuss how to transform human-readable text into machine-
readable vectors in a process called “feature engineering.” Specifically, we will convert
the raw review_body column from the Amazon Customer Reviews Dataset into
BERT vectors. We use these BERT vectors to train and optimize a review-classifier
model in Chapters 7 and 8, respectively. We will also dive deep into the origins of nat‐
ural language processing and BERT in Chapter 7.

We will use the review-classifier model to predict the star_rating of product reviews
from social channels, partner websites, etc. By predicting the star_rating of reviews
in the wild, the product management and customer service teams can use these pre‐
dictions to address quality issues as they escalate publicly—not wait for a direct
inbound email or phone call. This reduces the mean time to detect quality issues
down to minutes/hours from days/months.

Perform Feature Selection and Engineering
AI and machine learning algorithms are numerical-optimization methods that oper‐
ate on numbers and vectors instead of raw text and images. These vectors, often
called “embeddings,” are projected into a high-dimensional vector space. The algo‐
rithms perform optimizations in this high-dimensional vector space.

One-hot encoding is a form of embedding for categorical data in a tabular dataset.
With one-hot encoding, we represent each categorical value with a unique vector of

173

0s and 1s. The number of dimensions—the size of each vector—is equal to the num‐
ber of unique categorical values.

One of the most important aspects of AI and machine learning, feature engineering
usually requires more time than any other phase in the typical machine learning
pipeline. Feature engineering helps to reduce data dimensionality, prevent certain fea‐
tures from statistically dominating the algorithm, speed up model-training time,
reduce numerical instabilities, and improve overall model-prediction accuracy.

With many feature-engineering iterations and visualizations, we will start to really
understand our dataset, including outliers, correlations, and principal components.
Analyzing the features in the context of our models, we will also gain intuition about
which features are more important than others. Some features will improve model
performance, while other features show no improvement or reduce model
performance.

Careless feature engineering can lead to disastrous results. At worst, poor feature
engineering can lead to socially destructive models that propagate racial, gender, and
age bias. At best, poor feature engineering produces suboptimal models that make
poor movie recommendations, overstate revenue forecasts, or create excess inventory.

While domain experts can certainly help evaluate which features to include and how
they should be engineered, there are certain “latent” features hidden in our datasets
not immediately recognizable by a human. Netflix’s recommendation system is
famous for discovering new movie genres beyond the usual drama, horror, and
romantic comedy. For example, they discovered very specific genres such as “Gory
Canadian Revenge Movies,” “Sentimental Movies About Horses for Ages 11–12,”
“Romantic Crime Movies Based on Classic Literature,” and “Raunchy Mad Scientist
Comedies.”

Many of these “secret” genres were discovered using Netflix’s View‐
ing History Service, also called “VHS”—a throwback to the popular
video-tape format from the 1980s and 1990s.

At a high level, feature engineering is divided into three logical types: selection, cre‐
ation, and transformation. Not all may apply to our use case, but they should all be
considered and explored.

Feature selection identifies the data attributes that best represent our dataset. In addi‐
tion, feature selection filters out irrelevant and redundant attributes using statistical
methods. For example, if two data points are highly correlated, such as total_votes
and helpful_votes, then perhaps only one is needed to train our model. Selecting

174 | Chapter 6: Prepare the Dataset for Model Training

only one of these attributes helps to reduce feature dimensionality and train models
faster while preserving model accuracy.

Feature creation combines existing data points into new features that help improve
the predictive power of our model. For example, combining review_headline and
review_body into a single feature may lead to more accurate predictions than does
using them separately.

Feature transformation converts data from one representation to another to facilitate
machine learning. Transforming continuous values such as a timestamp into catego‐
rical “bins” like hourly, daily, or monthly helps to reduce dimensionality. While we
lose some information and granularity during the binning transformation, our mod‐
els may actually benefit from the broader generalization. Two common statistical fea‐
ture transformations are normalization and standardization. Normalization scales all
values of a particular data point between 0 and 1, while standardization transforms
the values to a mean of 0 and standard deviation of 1. Standardization is often prefer‐
red as it better handles outliers than normalization does and allows us to compare
features of different units and scales. These techniques help reduce the impact of
large-valued data points, such as number of reviews (represented in thousands), ver‐
sus small-valued data points, such as helpful_votes (represented in tens). Without
these techniques, the model could potentially favor the number of reviews over help
ful_votes given the order of magnitude difference in values.

Let’s walk through a typical feature engineering pipeline from feature selection to fea‐
ture transformation, as shown in Figure 6-1.

Figure 6-1. Steps in a typical feature engineering pipeline.

Select Training Features Based on Feature Importance
We can use SageMaker Data Wrangler’s “Quick Model” analysis to evaluate which
columns of our data are most useful when making predictions for a given label,
star_rating in our case. We simply select the data that we want Data Wrangler to
analyze along with the star_rating label that we want to predict. Data Wrangler
automatically preprocesses the data, trains a “quick model,” evaluates the model, and
calculates a feature importance score for each feature. Figure 6-2 shows the feature
importance results for our Amazon Customer Reviews Dataset using Data Wrangler’s
Quick Model analysis feature.

Perform Feature Selection and Engineering | 175

Figure 6-2. Data Wrangler’s Quick Model analysis allows us to analyze feature
importance.

Following the Quick Model analysis, the most important feature for our dataset is
review_body, with review_headline, product_title, and product_category being
next-most important.

Because we plan to use our model to classify product reviews from social channels
and partner websites “in the wild” that only have the raw review text, we have decided
to only use the review_body column to predict a star_rating. In our case, star_rat
ing is the “label,” and a transformed version of the review_body is the “feature.” The
star_rating label is the actual star_rating value, 1 through 5, from our training
dataset. This is the value that our trained model will learn to predict in Chapter 7.
The review_body feature, transformed from raw text into a series of BERT vectors, is
the input for our model-training process. Later in this chapter, we will demonstrate
how to transform the raw text into BERT vectors.

We use both the feature and the label to train our model to predict a star_rating
label from review_body text from social channels and partner websites. Following,
we view the star_rating and review_body columns as a pandas DataFrame:

df = pd.read_csv('./data/amazon_reviews_us_Digital_Software_v1_00.tsv.gz',
 delimiter='\t',
 quoting=csv.QUOTE_NONE,
 compression='gzip')

df.head(5)

176 | Chapter 6: Prepare the Dataset for Model Training

star_rating review_body
1 Poor business decision to strip away user abil...
5 Avast is an easy to use and download. I feel i...
2 Problems from the start. It has been 30 days,...
4 Works well.
3 Hard to use

Since the star_rating label is discrete and categorical (1, 2, 3, 4, 5), we will use a
“classification” algorithm. We are not treating this as a regression problem since we
are using star_rating as a categorical feature with only five possible values: 1, 2, 3, 4,
or 5. If star_rating contained continuous values, such as 3.14, 4.20, or 1.69, then we
would potentially use star_rating as a continuous feature with a regression model.

Instead of the traditional machine learning classification algorithms, we will use a
neural-network-based classification model using the Keras API with TensorFlow 2.x.
We will dive deep into model training in the next chapter. Let’s move forward and
prepare our Amazon Customer Reviews Dataset to train a model that predicts
star_rating (1–5) from review_body text.

Balance the Dataset to Improve Model Accuracy
In the previous chapter, we showed the breakdown of star_rating for all reviews in
our dataset, and we saw that approximately 62% of all reviews have a star_rating of
5, as shown in Figure 6-3.

Figure 6-3. Our dataset contains an unbalanced number of reviews by star rating.

Perform Feature Selection and Engineering | 177

If we naively train on this unbalanced dataset, our classifier may simply learn to pre‐
dict 5 for the star_rating since 62% accuracy is better than 20% random accuracy
across the 5 classes: 1, 2, 3, 4, or 5. In other words, an unbalanced training dataset
may create a model with artificially high accuracy when, in reality, it learned to just
predict 5 every time. This model would not do well in a production setting.

Some algorithms like XGBoost support a scaling factor to counter‐
act the problem of unbalanced classes. However, in general, it’s a
good idea to handle class imbalance during the feature engineering
process to avoid misusing these features later.

There are two common ways to balance a dataset and prevent bias toward a particular
class: undersampling the majority classes (star_rating 5) and oversampling the
minority classes (star_rating 2 and 3). When choosing a sampling strategy, we
should carefully consider how the sampling affects the overall mean and standard
deviation of the feature’s data distribution. We see examples of undersampling in
Figure 6-4 and oversampling in Figure 6-5.

Figure 6-4. Undersampling the majority class down to the minority class.

178 | Chapter 6: Prepare the Dataset for Model Training

Figure 6-5. Oversampling the minority class up to the majority class.

The idea is to evenly distribute data along a particular label or “class,” as it’s com‐
monly called. In our case, the class is our categorical star_rating field. Therefore, we
want our training dataset to contain a consistent number of reviews for each
star_rating: 1, 2, 3, 4, and 5. Here is the code to undersample the original dataset
using star_rating:

df_grouped_by = df.groupby(["star_rating"])

df_balanced = df_grouped_by.apply(
 lambda x: x.sample(df_grouped_by.size().min())\
 .reset_index(drop=True)
)

We now have a balanced dataset, as shown in Figure 6-6.

Figure 6-6. Balanced dataset for star_rating class.

Perform Feature Selection and Engineering | 179

One drawback to undersampling is that the training dataset size is sampled down to
the size of the smallest category. This can reduce the predictive power and robustness
of the trained models by reducing the signal from undersampled classes. In this
example, we reduced the number of reviews by 65%, from approximately 100,000 to
35,000.

Oversampling will artificially create new data for the underrepresented class. In our
case, star_rating 2 and 3 are underrepresented. One common technique is called
the Synthetic Minority Oversampling Technique, which uses statistical methods to syn‐
thetically generate new data from existing data. They tend to work better when we
have a larger dataset, so be careful when using oversampling on small datasets with a
low number of minority class examples.

Split the Dataset into Train, Validation, and Test Sets
Model development typically follows three phases: model training, model validating,
and model testing (Figure 6-7).

Figure 6-7. Phases of a typical model development life cycle.

To align with these three phases, we split the balanced data into separate train, valida‐
tion, and test datasets. The train dataset is used for model training. The validation
dataset is used to validate the model training configuration called the “hyper-
parameters.” And the test dataset is used to test the chosen hyper-parameters. For our
model, we chose 90% train, 5% validation, and 5% test, as this breakdown, shown in
Figure 6-8, works well for our dataset and model.

180 | Chapter 6: Prepare the Dataset for Model Training

Figure 6-8. Dataset splits for the typical phases of the model development life cycle.

Let’s split the data using scikit-learn’s train_test_split function, with the stratify
parameter set to the star_rating field to preserve our previous balance efforts. If we
don’t specify the stratify parameter, the split function is free to choose any data in
the given dataset, causing the splits to become unbalanced:

from sklearn.model_selection import train_test_split

Split all data into 90% train and 10% holdout
df_train, df_holdout = train_test_split(
 df_balanced,
 test_size=0.10,
 stratify=df_balanced['star_rating'])

Split holdout data into 50% validation and 50% test
df_validation, df_test = train_test_split(
 df_holdout,
 test_size=0.50,
 stratify=df_holdout['star_rating'])

In this case, we are not using k-folds cross-validation—a classic machine learning
technique that reuses each row of data across different splits, including train, valida‐
tion, and test. K-folds cross-validation is traditionally applied to smaller datasets, and,
in our case, we have a large amount of data so we can avoid the downside of k-folds:
data “leakage” between the train, validation, and test phases. Data leakage can lead to
artificially inflated model accuracy for our trained models. These models don’t per‐
form well on real-world data outside of the lab. In summary, each of the three phases,
train, validation, and test, should use separate and independent datasets, otherwise
leakage may occur.

Perform Feature Selection and Engineering | 181

On a related note, time-series data is often prone to leakage across splits. Companies
often want to validate a new model using “back-in-time” historical information
before pushing the model to production. When working with time-series data, make
sure the model does not peek into the future accidentally. Otherwise, these models
may appear more accurate than they really are.

Peeking into the future almost ended in disaster for the characters
in the movie Back to the Future. Similarly, peeking into the future
may cause trouble for our modeling efforts as well.

Additionally, we may want to keep all data for the same customer in the same split.
Otherwise, an individual’s customer data is spread across multiple splits, which could
cause problems. In this case, we would group the data by customer_id before creat‐
ing the splits. Our model does not require us to group our data by customer_id, so
we will skip this step.

When processing large datasets at scale with SageMaker, we can split the data across
multiple instances in a cluster. This is called sharding and we will demonstrate this
later when we transform our data using multiple instances in a SageMaker cluster
using scikit-learn, Apache Spark, and TensorFlow.

Transform Raw Text into BERT Embeddings
We will use TensorFlow and a state-of-the-art natural language processing (NLP) and
natural language understanding neural network architecture called BERT. We will
dive deep into BERT in a bit. At a high level—and unlike previous generations of NLP
models, such as Word2Vec—BERT captures the bidirectional (left-to-right and right-
to-left) context of each word in a sentence. This allows BERT to learn different mean‐
ings of the same word across different sentences. For example, the meaning of the
word bank is different in these two sentences: “A thief stole money from the bank
vault” and “Later, he was arrested while fishing on a river bank.”

For each review_body, we use BERT to create a feature vector within a previously
learned, high-dimensional vector space of 30,000 words, or “tokens.” BERT learned
these tokens by training on millions of documents, including Wikipedia and Google
Books.

Figure 6-9 shows how BERT converts the raw input text into the final BERT embed‐
ding, which is passed through the actual model architecture.

182 | Chapter 6: Prepare the Dataset for Model Training

https://oreil.ly/HBic8
https://oreil.ly/nKuFP

Figure 6-9. BERT converts raw input text into embeddings.

BERT first applies WordPiece tokenization to the raw input text. WordPiece is a tech‐
nique to segment words to the subword level in NLP tasks with a vocabulary dimen‐
sion of approximately 30,000 tokens. Note that BERT also adds special tokens at the
beginning of the input sequence, such as [CLS] to mark a classification task.

In a next step, BERT creates the token embedding by looking up the 768-dimensional
vector representation of any input token. The input_id is the actual ID that points to
the relevant token embedding vector. An input_mask specifies which tokens BERT
should pay attention to (0 or 1). In case we pass multiple sentences to BERT, the seg‐
ment embedding will map each token to the corresponding input sentence (0 refers
to the first sentence, 1 refers to the second sentence). Then the position embedding
keeps track of the position of each token in the input sequence (0, 1, 2, etc.). We will
learn that a very important hyper-parameter for BERT is max_seq_length, which
defines the maximum number of input tokens we can pass to BERT per sample. As
the maximum value for this parameter is 512, the position embedding is a lookup
table of dimension (512, 768).

In a final step, BERT creates the element-wise sum of the token embedding, the seg‐
ment embedding, and the position embedding. The resulting embedding of dimen‐
sion (n, 768) where n stands for the number of input tokens will be passed as the
input embedding for BERT.

Let’s use a variant of BERT called DistilBERT. DistilBERT is a lightweight version of
BERT that is 60% faster and 40% smaller while preserving 97% of BERT’s language
understanding capabilities. We use the popular Hugging Face Python library called

Perform Feature Selection and Engineering | 183

https://oreil.ly/t90gS

Transformers to perform the transformation. To install this library, simply type pip
install transformers:

from transformers import DistilBertTokenizer

tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')

tokens = tokenizer.tokenize("""I needed an antivirus application and know
 the quality of Norton products. This was a no brainer for me and I am
 glad it was so simple to get.""")

The tokenizer performs lower-casing and parses the text into a set of words contained
in the pre-trained DistilBERT vocabulary. The Transformers library uses another
popular library called WordPieces to parse the text into word tokens:

print(tokens)

['i', 'needed', 'an', 'anti', '##virus', 'application', 'and', 'know', 'the',
'quality', 'of', 'norton', 'products', '.', 'this', 'was', 'a', 'no',
'brain', '##er', 'for', 'me', 'and', 'i', 'am', 'glad', 'it', 'was', 'so',
'simple', 'to', 'get', '.']

Most BERT variants, including DistilBERT, have a concept of a “maximum sequence
length” that defines the maximum number of tokens used to represent each text
input. In our case, any reviews that end up with max_seq_length tokens (after tokeni‐
zation) will be truncated down to 64. Reviews that end up with less than 64 tokens
will be padded to a length of 64. Empirically, we have chosen 64 for the maximum
sequence length as 80% of our reviews are under 64 words, as we saw in Chapter 5,
and, while not exact, the number of words is a good indication of the number of
tokens. Below is a distribution of the number of words per review presented in
Chapter 5:

10% 2.000000
20% 7.000000
30% 19.000000
40% 22.000000
50% 26.000000
60% 32.000000
70% 43.000000
80% 63.000000 <===
90% 110.000000
100% 5347.000000

We must use this same maximum sequence length during feature engineering and
model training. So if we want to try a different value, we need to regenerate the BERT
embeddings with the updated value. If we aren’t sure which value to choose, we may
want to generate multiple versions of the embeddings using 128, 256, and 512 as the
maximum sequence length. These seem to work well for most BERT tasks. Larger val‐
ues will likely increase model training time due to higher dimensionality.

184 | Chapter 6: Prepare the Dataset for Model Training

We still have some more processing to do, however, as our DistilBERT model uses
numeric arrays of length 64 derived from the preceding text-based tokens:

input_ids

The numeric ID of the token from the BERT vocabulary

input_mask

Specifies which tokens BERT should pay attention to (0 or 1)

segment_ids

Always 0 in our case since we are doing a single-sequence NLP task (1 if we were
doing a two-sequence NLP task such as next-sentence prediction)

Fortunately, the Transformers tokenizer creates two of the three arrays for us—and
even pads and truncates the arrays as needed based on the maximum sequence
length!

MAX_SEQ_LENGTH = 64

encode_plus_tokens = tokenizer.encode_plus(
 text_input.text,
 pad_to_max_length=True,
 max_length=MAX_SEQ_LENGTH)

Convert tokens to ids from the pre-trained BERT vocabulary

input_ids = encode_plus_tokens['input_ids']
print(input_ids)

Output:

[101, 1045, 2734, 2019, 3424, 23350, 4646, 1998, 2113, 1996, 3737, 1997, 10770,
3688, 1012, 2023, 2001, 1037, 2053, 4167, 2121, 2005, 2033, 1998, 1045, 2572,
5580, 2009, 2001, 2061, 3722, 2000, 2131, 1012, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,
0,
0,
0, 0, 0, 0, 0, 0]

Specifies which tokens BERT should pay attention to (0 or 1)
input_mask = encode_plus_tokens['attention_mask']
print(input_mask)

Output:

[1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,
0,
0, 0]

Perform Feature Selection and Engineering | 185

The third array, segment_ids, is easy to generate on our own since it contains all 0s in
our case as we are performing a single-sequence classification NLP task. For two-
sequence NLP tasks such as question-and-answer, the sequence_id is either 0 (ques‐
tion) or 1 (answer):

segment_ids = [0] * MAX_SEQ_LENGTH
print(segment_ids)

Output:

[0, 0,
0,
0,
0,
0, 0]

Convert Features and Labels to Optimized TensorFlow File Format
The last step in our feature engineering journey is to store our newly engineered fea‐
tures in the TFRecord file format (.tfrecord file extension). TFRecord is a binary, light‐
weight file format optimized for TensorFlow data processing and is based on protocol
buffers (“protobufs”). TFRecords are cross-platform and cross-language—as well as
highly efficient for data processing workloads. They are encoded and optimized for
sequential, row-based access used during model training. This encoding contains fea‐
tures and labels—as well as any corresponding metadata for each example.

The term “example” in the machine learning context means a row
of data used for model training (including the label) or predicting
(predicting the label).

While TFRecord is the file format, tf.train.Example and tf.train.Feature are the
most common data structures stored within TFRecords. tf.train.Feature stores
lists of either byte, float, or int64 using tf.train.BytesList, FloatList, and
Int64List, respectively.

Here is the code to convert our features into TFRecords using the TensorFlow API:

import tensorflow as tf
import collections
tfrecord_writer = tf.io.TFRecordWriter(output_file)

tfrecord_features = collections.OrderedDict()

tfrecord_features['input_ids'] =
 tf.train.Feature(int64_list=tf.train.Int64List(
 value=input_ids))
tfrecord_features['input_mask'] =

186 | Chapter 6: Prepare the Dataset for Model Training

 tf.train.Feature(int64_list=tf.train.Int64List(
 value=input_mask))
tfrecord_features['segment_ids'] =
 tf.train.Feature(int64_list=tf.train.Int64List(
 value=segment_ids))

Target label (star_rating)
tfrecord_features['label_ids'] =
 tf.train.Feature(int64_list=tf.train.Int64List(
 value=[label_id]))

tfrecord = tf.train.Example(
 features=tf.train.Features(feature=tfrecord_features))

tfrecord_writer.write(tfrecord.SerializeToString())

tfrecord_writer.close()

tf.train.Example.SerializeToString() produces a serialized, binary, and human-
unreadable string, as follows:

[b'\n\xfe\x03\n\x96\x01\n\x0bsegment_ids\x12\x86\x01\x1a\x83\x01\n\x80\x01\n\
xb6\x01\n\tinput_ids\x12\xa8\x01\x1a\xa5\x01\n\xa2\x01e\x95\x08\x8d\x10\x8a\
x1d\xd0\x0f\xd3\x10\xf4\x07f\n\x95\x01\n\ninput_mask\x12\x01\x01\x01\x01\x01\
x01\x01\n\tlabel_ids\x12\x05\x1a\x03\n\x01\x04']

Scale Feature Engineering with SageMaker
Processing Jobs
Up until now, we’ve been working in a SageMaker Notebook on a sample of the data‐
set. Let’s move our custom Python code into a SageMaker Processing Job and scale
our feature engineering to all 150 million reviews in our dataset. SageMaker Process‐
ing Jobs will parallelize our custom scripts (aka “Script Mode”) or Docker images (aka
“Bring Your Own Container”) over many SageMaker instances in a cluster, as shown
in Figure 6-10.

Figure 6-10. SageMaker Processing Jobs can parallelize code and Docker images over
many SageMaker instances in a cluster.

Scale Feature Engineering with SageMaker Processing Jobs | 187

In a later chapter, we will automate this step with an end-to-end pipeline. For now,
let’s just focus on scaling our feature engineering step to a SageMaker cluster using
Processing Jobs.

Transform with scikit-learn and TensorFlow
Let’s balance, split, and transform the entire dataset across a cluster using TensorFlow,
scikit-learn, BERT, and SageMaker Processing Jobs, as shown in Figure 6-11.

Figure 6-11. Transform raw text into BERT embeddings with scikit-learn and Sage‐
Maker Processing Jobs.

First we configure the scikit-learn Processing Job with the version of scikit-learn, the
instance type, and number of instances for our cluster. Since the transformations are
stateless, the more instances we use, the faster the processing will happen. Note that
we are only using scikit-learn to balance and split the data. The heavy lifting is done
using TensorFlow and Transformers:

from sagemaker.sklearn.processing import SKLearnProcessor
from sagemaker.processing import ProcessingInput, ProcessingOutput

processor = SKLearnProcessor(framework_version='<SCIKIT_LEARN_VERSION>',
 role=role,
 instance_type='ml.c5.4xlarge',
 instance_count=2)

We can specify instance_type='local' in the SageMaker Process‐
ing Job to run the script either inside our notebook or on our local
laptop. This lets us “locally” run the processing job on a small sub‐
set of data in a notebook before launching a full-scale SageMaker
Processing Job.

188 | Chapter 6: Prepare the Dataset for Model Training

Next, we start the SageMaker Processing Job by specifying the location of the trans‐
formed features and sharding the data across the two instances in our Processing Job
cluster to reduce the time needed to transform the data. We specify the S3 location of
the input dataset and various arguments, such as the train, validation, and test split
percentages. We also provide the max_seq_length that we chose for BERT:

processor.run(code='preprocess-scikit-text-to-bert.py',
 inputs=[
 ProcessingInput(input_name='raw-input-data',
 source=raw_input_data_s3_uri,
 destination='/opt/ml/processing/input/data/',
 s3_data_distribution_type='ShardedByS3Key')
],
 outputs=[
 ProcessingOutput(output_name='bert-train',
 s3_upload_mode='EndOfJob',
 source='/opt/ml/processing/output/bert/train'),
 ProcessingOutput(output_name='bert-validation',
 s3_upload_mode='EndOfJob',
 source='/opt/ml/processing/output/bert/validation'),
 ProcessingOutput(output_name='bert-test',
 s3_upload_mode='EndOfJob',
 source='/opt/ml/processing/output/bert/test'),
],
 arguments=['--train-split-percentage',
 str(train_split_percentage),
 '--validation-split-percentage',
 str(validation_split_percentage),
 '--test-split-percentage',
 str(test_split_percentage),
 '--max-seq-length', str(max_seq_length)],
logs=True,
wait=False)

When the job completes, we retrieve the S3 output locations as follows:

output_config = processing_job_description['ProcessingOutputConfig']

for output in output_config['Outputs']:
 if output['OutputName'] == 'bert-train':
 processed_train_data_s3_uri = output['S3Output']['S3Uri']
 if output['OutputName'] == 'bert-validation':
 processed_validation_data_s3_uri = output['S3Output']['S3Uri']
 if output['OutputName'] == 'bert-test':
 processed_test_data_s3_uri = output['S3Output']['S3Uri']

Transform with Apache Spark and TensorFlow
Apache Spark is a powerful data processing and feature transformation engine sup‐
ported by SageMaker Processing Jobs. While Apache Spark does not support BERT
natively, we can use the Python-based BERT Transformers library within a PySpark

Scale Feature Engineering with SageMaker Processing Jobs | 189

application to scale our BERT Transformations across a distributed Spark cluster. In
this case, we are using Spark as just a distributed processing engine and Transformers
as just another Python library installed in the cluster, as shown in Figures 6-12 and
6-13.

Figure 6-12. Apache Spark cluster with multiple popular libraries installed, including
TensorFlow and BERT.

The Apache Spark ML library includes a highly parallel, distributed implementation
of term frequency–inverse document frequency (TF-IDF) for text-based feature engi‐
neering. TF-IDF, dating back to the 1980s, requires a stateful pre-training step to
count the term frequencies and build up a “vocabulary” on the given dataset. This
limits TF-IDF’s ability to learn a broader language model outside of the given dataset.

On the other hand, BERT has been pre-trained on millions of documents and gener‐
ally performs better on our natural-language dataset than TF-IDF, so we will use
BERT for the feature engineering tasks presented here.

190 | Chapter 6: Prepare the Dataset for Model Training

Figure 6-13. Transform raw text into BERT embeddings with Apache Spark.

If we prefer to use Apache Spark because we already have a Spark-based feature engi‐
neering pipeline, we can spin up a cloud-native, serverless, pay-for-what-you-use
Apache Spark cluster to create the BERT vectors from the raw review_body data
using SageMaker Processing Jobs.

We just need to provide our PySpark script, specify the instance type, and decide on
the cluster instance count—SageMaker will run our Spark job on the cluster. Since
Spark performs better with more RAM, we use a high-RAM r5 instance type:

from sagemaker.spark.processing import PySparkProcessor

processor = PySparkProcessor(base_job_name='spark-amazon-reviews-processor',
 role=role,
 framework_version='<SPARK_VERSION>',
 instance_count=2,
 instance_type='ml.r5.xlarge',
 max_runtime_in_seconds=7200)

Let’s run the Processing Job. Since Apache Spark efficiently reads and writes to S3
directly, we don’t need to specify the usual ProcessingInput and ProcessingOutput
parameters to our run() function. Instead, we use the arguments parameter to pass
in four S3 locations: one for the raw TSV files and the three S3 locations for the gen‐
erated BERT vectors for the train, validation, and test splits. We also pass the split
percentages and max_seq_length for BERT:

train_data_bert_output = 's3://{}/{}/output/bert-train'.format(bucket,
 output_prefix)
validation_data_bert_output = 's3://{}/{}/output/bert-validation'.format(bucket,
 output_prefix)
test_data_bert_output = 's3://{}/{}/output/bert-test'.format(bucket,
 output_prefix)
processor.run(submit_app='preprocess-spark-text-to-bert.py',
 arguments=['s3_input_data',

Scale Feature Engineering with SageMaker Processing Jobs | 191

 s3_input_data,
 's3_output_train_data',
 train_data_bert_output,
 's3_output_validation_data',
 validation_data_bert_output,
 's3_output_test_data',
 test_data_bert_output,
 'train_split_percentage',
 str(train_split_percentage),
 'validation_split_percentage',
 str(validation_split_percentage),
 'test_split_percentage',
 str(test_split_percentage),
 'max_seq_length',
 str(max_seq_length)
],
 outputs=[
 ProcessingOutput(s3_upload_mode='EndOfJob',
 output_name='bert-train',
 source='/opt/ml/processing/output/bert/train'),
 ProcessingOutput(s3_upload_mode='EndOfJob',
 output_name='bert-validation',
 source='/opt/ml/processing/output/bert/validation'),
 ProcessingOutput(s3_upload_mode='EndOfJob',
 output_name='bert-test',
 source='/opt/ml/processing/output/bert/test'),
],
 logs=True,
 wait=False
)

The preceding code runs in the notebook and launches the preprocess-spark-text-to-
bert.py script on the SageMaker Processing Job Cluster running Apache Spark. The
following code is a snippet from this PySpark script:

def transform(spark, s3_input_data, s3_output_train_data,
 s3_output_validation_data, s3_output_test_data):

 schema = StructType([
 StructField('marketplace', StringType(), True),
 StructField('customer_id', StringType(), True),
 StructField('review_id', StringType(), True),
 StructField('product_id', StringType(), True),
 StructField('product_parent', StringType(), True),
 StructField('product_title', StringType(), True),
 StructField('product_category', StringType(), True),
 StructField('star_rating', IntegerType(), True),
 StructField('helpful_votes', IntegerType(), True),
 StructField('total_votes', IntegerType(), True),
 StructField('vine', StringType(), True),
 StructField('verified_purchase', StringType(), True),
 StructField('review_headline', StringType(), True),

192 | Chapter 6: Prepare the Dataset for Model Training

 StructField('review_body', StringType(), True),
 StructField('review_date', StringType(), True)
])

 df_csv = spark.read.csv(path=s3_input_data,
 sep='\t',
 schema=schema,
 header=True,
 quote=None)

Here is the Spark user-defined function (UDF) to transform the raw text into BERT
embeddings using the Transformers Python library:

MAX_SEQ_LENGTH = 64
DATA_COLUMN = 'review_body'
LABEL_COLUMN = 'star_rating'
LABEL_VALUES = [1, 2, 3, 4, 5]

label_map = {}
for (i, label) in enumerate(LABEL_VALUES):
 label_map[label] = i

def convert_input(label, text):
 encode_plus_tokens = tokenizer.encode_plus(
 text,
 pad_to_max_length=True,
 max_length=MAX_SEQ_LENGTH)

 # Convert the text-based tokens to ids from the pre-trained BERT vocabulary
 input_ids = encode_plus_tokens['input_ids']
 # Specifies which tokens BERT should pay attention to (0 or 1)
 input_mask = encode_plus_tokens['attention_mask']
 # Segment ids are always 0 for single-sequence tasks
 # (or 1 if two-sequence tasks)
 segment_ids = [0] * MAX_SEQ_LENGTH

 # Label for our training data (star_rating 1 through 5)
 label_id = label_map[label]

 return {'input_ids': input_ids, 'input_mask': input_mask,
 'segment_ids': segment_ids, 'label_ids': [label_id]}

Here is the Spark code that invokes the UDF on each worker in the cluster. Note that
we are preparing to write a TFRecord, so we are setting up a PySpark schema that
matches the desired TFRecord format:

tfrecord_schema = StructType([
 StructField("input_ids", ArrayType(IntegerType(), False)),
 StructField("input_mask", ArrayType(IntegerType(), False)),
 StructField("segment_ids", ArrayType(IntegerType(), False)),
 StructField("label_ids", ArrayType(IntegerType(), False))
])

Scale Feature Engineering with SageMaker Processing Jobs | 193

bert_transformer = udf(lambda text, label: convert_input(text, label), \
 tfrecord_schema)

Next, we split the data into train, validation, and test and save the splits in S3 in the
TFRecord format:

train_df, validation_df, test_df = features_df.randomSplit(
 [
 train_split_percentage,
 validation_split_percentage,
 test_split_percentage
]
)

train_df.write.format('tfrecord').option('recordType', 'Example')\
 .save(path=s3_output_train_data)

validation_df.write.format('tfrecord').option('recordType', 'Example')\
 .save(path=s3_output_validation_data)

test_df.write.format('tfrecord').option('recordType', 'Example')\
 .save(path=s3_output_test_data)

We are using format('tfrecord') from an open source library
that implements the Apache Spark DataFrameReader and DataFra
meWriter interfaces for TFRecord. References to this library are in
this book’s GitHub repository.

Share Features Through SageMaker Feature Store
Feature engineering requires intuition, patience, trial, and error. As more teams uti‐
lize AI and machine learning to solve business use cases, the need arises for a central‐
ized, discoverable, and reusable repository of features. This type of repository is
called a Feature Store.

Feature stores are data lakes for machine learning features. Since features sometimes
require heavy compute processing, as we demonstrated earlier with our BERT fea‐
tures using SageMaker Processing Jobs, we would like to store and reuse these fea‐
tures, if possible, throughout the organization.

It is likely that different transformations are needed for the feature store targeted at
machine learning workflows with SageMaker and the data warehouse targeted at
business intelligence reports and dashboards with Amazon Redshift. For example, we
would store our BERT embeddings in the feature store, while we store cleaned and
enriched data in our data warehouse, as shown in Figure 6-14.

194 | Chapter 6: Prepare the Dataset for Model Training

Figure 6-14. Relationship between feature store, data lake, and data warehouse.

Instead of building a feature store ourselves, we can leverage a managed feature store
through Amazon SageMaker. SageMaker Feature Store can store both offline and
online features. Offline features are stored in repositories optimized for high-
throughput and batch-retrieval workloads such as model training. Online features are
stored in repositories optimized for low-latency and real-time requests such as model
inference.

Since we spent a fair amount of time generating our BERT features, we’d like to share
them with other teams in our organization. Perhaps these other teams can discover
new and improved combinations of our features that we never explored. We’d like to
use our feature store to help us safely “travel in time” and avoid leakage.

Feature stores can cache frequently-accessed features into memory to reduce model-
training times. They can also provide governance and access control to regulate and
audit our features. Last, a feature store can provide consistency between model train‐
ing and inference by ensuring the same features are present for both batch training
and real-time predicting.

Ingest Features into SageMaker Feature Store
Assume we have the following data frame, df_records, which contains the processed
BERT features using DistilBERT, with a maximum sequence length of 64:

input_ids input_mask segment_ids label_id review_id date label split_type
[101, 1045,
2734, 2019,
1000, 3424,
23350,
100...

[1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1,
1, ...

[0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, ...

4 ABCD12345 2021-01-30T20:55:33Z 5 train

Share Features Through SageMaker Feature Store | 195

input_ids input_mask segment_ids label_id review_id date label split_type
[101, 1996,
3291, 2007,
10777,
23663,
2003, 20..

[1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1,
1, ...

[0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, ...

2 EFGH12345 2021-01-30T20:55:33Z 3 train

[101, 6659,
1010, 3904,
1997, 2026,
9537,
2499...

[1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1,
1, ...

[0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, ...

0 IJKL2345 2021-01-30T20:55:33Z 1 train

We will now ingest the BERT features, df_records, into our feature store with the
feature group name reviews_distilbert_64_max_seq_length:

from sagemaker.feature_store.feature_group import FeatureGroup

reviews_feature_group_name = "reviews_distilbert_max_seq_length_64"

reviews_feature_group = FeatureGroup(name=reviews_feature_group_name,
sagemaker_session=sagemaker_session)

We need to specify the unique record identifier column, review_id, in our case. In
addition, we need to specify an event time that corresponds to the time a record was
created or updated in our feature store. In our case, we will generate a timestamp at
the time of ingestion. All records must have a unique ID and event time:

record_identifier_feature_name = "review_id"
event_time_feature_name = "date"

reviews_feature_group.load_feature_definitions(data_frame=df_records)

The SageMaker Feature Store Python SDK will auto-detect the data schema based on
input data. Here is the detected schema:

FeatureGroup(
 feature_definitions=[
 FeatureDefinition(feature_name='input_ids', \
 feature_type=<FeatureTypeEnum.STRING: 'String'>),
 FeatureDefinition(feature_name='input_mask', \
 feature_type=<FeatureTypeEnum.STRING: 'String'>),
 FeatureDefinition(feature_name='segment_ids', \
 feature_type=<FeatureTypeEnum.STRING: 'String'>),
 FeatureDefinition(feature_name='label_id', \
 feature_type=<FeatureTypeEnum.INTEGRAL: 'Integral'>),
 FeatureDefinition(feature_name='review_id', \
 feature_type=<FeatureTypeEnum.STRING: 'String'>),
 FeatureDefinition(feature_name='date', \
 feature_type=<FeatureTypeEnum.STRING: 'String'>),
 FeatureDefinition(feature_name='label', \
 feature_type=<FeatureTypeEnum.INTEGRAL: 'Integral'>),

196 | Chapter 6: Prepare the Dataset for Model Training

 FeatureDefinition(feature_name=split_type, \
 feature_type=<FeatureTypeEnum.STRING: 'String'>),
 ...
]
)

In order to create the feature group, we also need to specify the S3 bucket to store the
df_records as well as a flag to enable the online feature store option for inference:

reviews_feature_group.create(
 s3_uri="s3://{}/{}".format(bucket, prefix),
 record_identifier_name=record_identifier_feature_name,
 event_time_feature_name=event_time_feature_name,
 role_arn=role,
 enable_online_store=True)

Now let’s ingest the data into the feature store. The data is ingested into both the off‐
line and online repositories unless we specify one or the other:

reviews_feature_group.ingest(
 data_frame=df_records, max_workers=3, wait=True)

Retrieve Features from SageMaker Feature Store
We can retrieve features from the offline feature store using Athena. We can use these
features in our model training, for example:

reviews_feature_store_query = reviews_feature_group.athena_query()

reviews_feature_store_table = reviews_feature_store_query.table_name

query_string = """
SELECT review_body, input_ids, input_mask, segment_ids, label_id FROM "{}"
""".format(reviews_feature_store_query)

reviews_feature_store_query.run(query_string=query_string, ...)

Here is the output from the feature store query showing our BERT features:

review_body input_ids input_mask segment_ids label_id
I needed an
“antivirus” application
and know t...

[101, 1996, 3291,
2007, 10777,
23663, 2003, 20...

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, ...

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, ...

2

The problem with
ElephantDrive is that
it requ...

[101, 6659, 1010,
3904, 1997, 2026,
9537, 2499...

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, ...

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, ...

0

Terrible, none of my
codes work.

[101, 1045, 2734,
2019, 1000, 3424,
23350, 100...

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, ...

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, ...

4

Share Features Through SageMaker Feature Store | 197

Note that the label_id is 0-indexed. In this case, the label_id of 0 corresponds to
the star_rating class 1, 4 represents star_rating 5, etc.

We can also query a specific feature in our feature group to use for model predictions
by its record identifier as follows:

featurestore_runtime = boto3.Session()\
 .client(
 service_name='sagemaker-featurestore-runtime',
 region_name=region)

record_identifier_value = 'IJKL2345'

featurestore_runtime.get_record(
 FeatureGroupName=reviews_feature_group_name,
 RecordIdentifierValueAsString=record_identifier_value)

Ingest and Transform Data with SageMaker
Data Wrangler
Data Wrangler is SageMaker native, focuses on machine learning use cases, and pre‐
serves artifact lineage across the full model development life cycle (MDLC), including
data ingestion, feature engineering, model training, model optimization, and model
deployment. In addition to analyzing our data in Chapter 5, SageMaker Data Wran‐
gler prepares and transforms our machine-learning features with support for over
300+ built-in transformations—as well as custom SQL, pandas, and Apache Spark
code. Data Wrangler is used for many purposes, such as converting column data
types, imputing missing data values, splitting datasets into train/validation/test, scal‐
ing and normalizing columns, and dropping columns.

The data transformation steps are stored as a Data Wrangler .flow definition file and
are reused as new data arrives into the system.

We can also export the .flow Data Wrangler transformation to a SageMaker Process‐
ing Job, Pipeline, Feature Store, or raw Python script. Let’s export our Data Wrangler
flow to a SageMaker Pipeline to automate the transformation and track the lineage
with SageMaker Lineage. We will dive deeper into lineage in the next section and
SageMaker Pipelines in Chapter 10. Here is an excerpt of the code that was generated
by Data Wrangler when we export the flow to a SageMaker Pipeline:

import time
from sagemaker.workflow.parameters import (
 ParameterInteger,
 ParameterString,
)
from sagemaker.workflow.pipeline import Pipeline

with open(flow_file_name) as f:

198 | Chapter 6: Prepare the Dataset for Model Training

 flow = json.load(f)

s3_client = boto3.client("s3")
s3_client.upload_file(flow_file_name, bucket,
 f"{prefix}/{flow_name}.flow")

pipeline_name = f"datawrangler-pipeline-{int(time.time() * 10**7)}"
instance_type = ParameterString(name="InstanceType",
 default_value="ml.m5.4xlarge")
instance_count = ParameterInteger(name="InstanceCount",
 default_value=1)

step_process = Step(
 name="DataWranglerProcessingStep",
 step_type=StepTypeEnum.PROCESSING,
 step_args=processing_job_arguments
)

pipeline = Pipeline(
 name=pipeline_name,
 parameters=[instance_type, instance_count],
 steps=[step_process],
 sagemaker_session=sess
)
pipeline.create(role_arn=role)

pipeline.start()

Track Artifact and Experiment Lineage with
Amazon SageMaker
Humans are naturally curious. When presented with an object, people will likely want
to know how that object was created. Now consider an object as powerful and myste‐
rious as a predictive model learned by a machine. We naturally want to know how
this model was created. Which dataset was used? Which hyper-parameters were
chosen? Which other hyper-parameters were explored? How does this version of the
model compare to the previous version? All of these questions can be answered by
SageMaker ML Lineage Tracking and SageMaker Experiments.

As a best practice, we should track the lineage of data transformations used in our
overall MDLC from feature engineering to model training to model deployment.
SageMaker Data Wrangler automatically tracks the lineage of any data it ingests or
transforms. Additionally SageMaker Processing Jobs, Training Jobs, and Endpoints
track their lineage. We inspect the lineage at any time using either the SageMaker Stu‐
dio IDE or the SageMaker Lineage API directly. For each step in our workflow, we
store the input artifacts, the action, and the generated output artifacts. We can use the
Lineage API to inspect the lineage graph and analyze the relationships between steps,
actions, and artifacts.

Track Artifact and Experiment Lineage with Amazon SageMaker | 199

We can leverage the SageMaker Lineage API and lineage graphs for a number of pur‐
poses, such as maintaining a history of model experiments, sharing work with collea‐
gues, reproducing workflows to enhance the model, tracing which datasets were used
to train each model in production, determining where the model has been deployed,
and complying with regulatory standards and audits.

Understand Lineage-Tracking Concepts
The SageMaker Lineage Tracking API utilizes the following key concepts:

Lineage graph
The connected graph tracing our machine learning workflow end to end.

Artifacts
Represents a URI addressable object or data. Artifacts are typically inputs or out‐
puts to actions.

Actions
Represents an action taken, such as a computation, transformation, or job.

Contexts
Provides a method to logically group other entities.

Associations
A directed edge in the lineage graph that links two entities. Associations can be of
type Produced, DerivedFrom, AssociatedWith, or ContributedTo.

Lineage traversal
Starting from an arbitrary point, trace the lineage graph to discover and analyze
relationships between steps in the workflow either upstream or downstream.

Experiments
Experiment entities including trials and trial components are part of the lineage
graph. They are associated with SageMaker Lineage core components, including
artifacts, actions, and contexts.

SageMaker automatically creates the lineage tracking entities for every step in a Sage‐
Maker Pipeline, including SageMaker Processing Jobs, Training Jobs, Models, Model
Packages, and Endpoints. Each pipeline step is associated with input artifacts, actions,
output artifacts, and metadata. We will continue to build up our lineage graph as we
train, tune, and deploy our model in Chapters 7, 8, and 9. We will then tie everything
together in a pipeline with a full end-to-end lineage graph in Chapter 10.

200 | Chapter 6: Prepare the Dataset for Model Training

Show Lineage of a Feature Engineering Job
We can show the lineage information that has been captured for the SageMaker Pro‐
cessing Job used to create the BERT embeddings from the raw review text:

import time
Import sagemaker
from sagemaker.lineage.visualizer import LineageTableVisualizer

viz = LineageTableVisualizer(sagemaker.session.Session())

viz.show(processing_job_name='<sm_processing_job_name>')

The output should look similar to this:

Name/Source Direction Type Association Type Lineage Type
s3://../amazon-reviews-pds/tsv/ Input DataSet ContributedTo artifact
68331.../sagemaker-scikit-learn:0.20.0-cpu-py3 Input Image ContributedTo artifact
s3://.../output/bert-test Output DataSet Produced artifact
s3://.../output/bert-validation Output DataSet Produced artifact
s3://.../output/bert-train Output DataSet Produced artifact

SageMaker Lineage Tracking automatically recorded the input data (TSVs), output
data (TFRecords), and SageMaker container image. The association type shows that
the inputs have ContributedTo this pipeline step.

The generated training data split into train, validation, and test datasets has been
recorded as outputs of this step. The association type correctly classifies them as Pro
duced artifacts of this step.

Understand the SageMaker Experiments API
SageMaker Experiments is a valuable tool in our data science toolkit that gives us
deep insight into the model training and tuning process. With Experiments, we can
track, organize, visualize, and compare our AI and machine learning models across
all stages of the MDLC, including feature engineering, model training, model tuning,
and model deploying. Experiments are seamlessly integrated with SageMaker Studio,
Processing Jobs, Training Jobs, and Endpoints. The SageMaker Experiments API is
made up of the following key abstractions:

Experiment
A collection of related Trials. Add Trials to an Experiment that we wish to com‐
pare together.

Track Artifact and Experiment Lineage with Amazon SageMaker | 201

Trial
A description of a multistep machine learning workflow. Each step in the work‐
flow is described by a Trial Component.

Trial Component
A description of a single step in a machine learning workflow, for example, data
transformation, feature engineering, model training, model evaluation, etc.

Tracker
A logger of information about a single Trial Component.

While SageMaker Experiments are natively integrated into SageMaker, we can track
experiments from any Jupyter notebook or Python script by using the SageMaker
Experiments API and just a few lines of code.

Figure 6-15 shows three trials within a single experiment: Trials A, B, and C. All Trials
reuse the same feature-engineering Trial Component, “Prepare A,” to train three dif‐
ferent models using different hyper-parameters. Trial C provides the best accuracy, so
we deploy the model and track the deployment Trial Component, “Deploy C.”

Figure 6-15. Compare training runs with different hyper-parameters using SageMaker
Experiments.

Using the SageMaker Experiments API, we create a complete record of every step and
hyper-parameter used to re-create Models A, B, and C. At any given point in time, we
can determine how a model was trained, including the exact dataset and hyper-
parameters used. This traceability is essential for auditing, explaining, and improving
our models. We will dive deeper into tracking the model train, optimize, and deploy
steps in Chapters 7, 8, and 9, respectively. For now, let’s use the SageMaker

202 | Chapter 6: Prepare the Dataset for Model Training

Experiment API to track the lineage of our feature-engineering step. First, we create
the Experiment as follows:

import time
from smexperiments.experiment import Experiment

experiment_name = 'Experiment-{}'.format(int(time.time()))

experiment = Experiment.create(
 experiment_name=experiment_name,
 description='Amazon Customer Reviews BERT Experiment',
 sagemaker_boto_client=sm)

Next, let’s create the experiment_config parameter that we will pass to the processor
when we create our BERT embeddings. This experiment_config is used by the Sage‐
Maker Processing Job to add a new TrialComponent named prepare that tracks the
S3 locations of the raw-review inputs as well as the transformed train, validation, and
test output splits:

experiment_config = {
 'ExperimentName': experiment_name,
 'TrialName': trial.trial_name,
 'TrialComponentDisplayName': 'prepare'
}

processor.run(code='preprocess-scikit-text-to-bert.py',
 ...
 experiment_config=experiment_config)

We can use the SageMaker Experiments API to display the parameters used in our
prepare step, as shown in the following. We will continue to track our experiment
lineage through model training, hyper-parameter tuning, and model deployment in
Chapters 7, 8, and 9, respectively:

from sagemaker.analytics import ExperimentAnalytics

lineage_table = ExperimentAnalytics(
 sagemaker_session=sess,
 experiment_name=experiment_name,
 sort_by="CreationTime",
 sort_order="Ascending",
)

lineage_df = lineage_table.dataframe()
lineage_df

TrialComponentName DisplayName max_seq
_length

train_split
_percentage

validation_split
_percentage

test_split
_percentage

bert-transformation-
2021-01-09-062410-pxuy

prepare 64.0 0.90 0.05 0.05

Track Artifact and Experiment Lineage with Amazon SageMaker | 203

Ingest and Transform Data with AWS Glue DataBrew
We can use the built-in Glue DataBrew data transformations to combine, pivot, or
transpose the data. The sequence of applied data transformations is captured in a
recipe that we can apply to new data as it arrives. SageMaker Data Wrangler is prefer‐
red over Glue DataBrew for machine learning use cases as Data Wrangler is integra‐
ted with SageMaker and tracks the complete lineage across all phases of the MDLC.
While Data Wrangler focuses on the machine learning use cases and the data trans‐
formations can be exported as processing code, we can leverage Glue DataBrew for
scheduled, initial data cleaning and transformations.

The sequence of applied data transformations is captured in a recipe that we can
apply to new data as it arrives. While DataBrew is focused on traditional extract-
transform-load workflows, it includes some very powerful statistical functions to ana‐
lyze and transform data, including the text-based data in the Amazon Reviews
Customer Dataset.

Let’s create a simple recipe to remove some unused fields from our dataset by creating
a recipe called amazon-reviews-dataset-recipe in the DataBrew UI. After export‐
ing recipe.json from the UI we can programmatically drop the columns using the
DataBrew Python SDK. Here is the recipe.json that drops unused columns from our
dataset:

[
 {
 "Action": {
 "Operation": "DELETE",
 "Parameters": {
 "sourceColumns": "[\"marketplace\",\"customer_id\", \
 \"product_id\",\"product_parent\",\"product_title\", \
 \""total_votes\",\"vine\",\"verified_purchase\", \
 \"review_headline\",\"year\"]"
 }
 }
 }
]

We need to create a DataBrew project for our dataset and recipe:

project_name = 'amazon-customer-reviews-dataset-project'
recipe_name='amazon-customer-reviews-dataset-recipe'

response = db.create_project(
 Name=project_name,
 DatasetName=dataset_name,
 RecipeName=recipe_name,
 Sample={
 'Size': 500,
 'Type': 'FIRST_N'

204 | Chapter 6: Prepare the Dataset for Model Training

 },
 RoleArn=<ROLE_ARN>
)

Now let’s call the DataBrew Python SDK to create a transformation job based on the
recipe.json listed earlier:

job_name = 'amazon-customer-reviews-dataset-recipe-job'

response = db.create_recipe_job(
 Name=job_name,
 LogSubscription='ENABLE',
 MaxCapacity=10,
 MaxRetries=0,
 Outputs=[
 {
 'Format': 'CSV',
 'PartitionColumns': [],
 'Location': {
 'Bucket': <S3_BUCKET>,
 'Key': <S3_PREFIX>
 },
 'Overwrite': True
 },
],
 ProjectName=project_name,
 RoleArn=<IAM_ROLE>,
 Timeout=2880
)

We start the data transformation job as follows:

response = db.start_job_run(
 Name=job_name
)

DataBrew keeps track of the lineage of each data transformation step, as shown in
Figure 6-16.

Once the DataBrew job completes, we have our transformed data in S3. Here is a
sample of the data as a pandas DataFrame:

star_rating review_body
5 After attending a few Qigong classes, I wanted...
4 Krauss traces the remarkable transformation in...
4 Rebecca, a dental hygienist, receives a call a...
5 Good characters and plot line. I spent a pleas...

Ingest and Transform Data with AWS Glue DataBrew | 205

Figure 6-16. Glue DataBrew lineage shows the data transformation steps applied to the
dataset.

Summary
In this chapter, we explored feature engineering using a real-world example of trans‐
forming raw Amazon Customer Reviews into machine learning features using BERT
and TensorFlow. We described how to use SageMaker Data Wrangler to select fea‐
tures and perform transformations on our data to prepare for model training. And
we demonstrated how to track and analyze the lineage of transformations using the
SageMaker Lineage and Experiment APIs. We also showed how to use Glue Data‐
Brew as another option for data analysis and transformation outside of SageMaker.

In Chapter 7, we will use these features to train a review-classification model to pre‐
dict the star_rating from review text captured in the wild from social channels,
partner websites, and other sources of product reviews. We will dive deep into vari‐
ous model-training and deep-learning options, including TensorFlow, PyTorch,
Apache MXNet, and even Java! We demonstrate how to profile training jobs, detect
model biases, and explain model predictions with SageMaker Debugger.

206 | Chapter 6: Prepare the Dataset for Model Training

CHAPTER 7

Train Your First Model

In the previous chapter, we used SageMaker Processing Jobs to transform a raw data‐
set into machine-usable features through the “feature engineering” process. In this
chapter, we use these features to train a custom review classifier using TensorFlow,
PyTorch, BERT, and SageMaker to classify reviews “in the wild” from social channels,
partner websites, etc. We even show how to train a BERT model with Java!

Along the way, we explain key concepts like the Transformers architecture, BERT,
and fine-tuning pre-trained models. We also describe the various training options
provided by SageMaker, including built-in algorithms and “bring-your-own” options.
Next, we discuss the SageMaker infrastructure, including containers, networking, and
security. We then train, evaluate, and profile our models with SageMaker. Profiling
helps us debug our models, reduce training time, and reduce cost. Lastly, we provide
tips to further reduce cost and increase performance when developing models with
SageMaker.

Understand the SageMaker Infrastructure
Largely container based, SageMaker manages the infrastructure and helps us focus on
our specific machine learning task. Out of the box, we can directly leverage one of
many built-in algorithms that cover use cases such as natural language processing
(NLP), classification, regression, computer vision, and reinforcement learning. In
addition to these built-in algorithms, SageMaker also offers pre-built containers for
many popular AI and machine learning frameworks, such as TensorFlow, PyTorch,
Apache MXNet, XGBoost, and scikit-learn. Finally, we can also provide our own
Docker containers with the libraries and frameworks of our choice. In this section,
we go into more detail about the SageMaker infrastructure, including environment
variables, S3 locations, security, and encryption.

207

https://oreil.ly/hmyQz

We can choose to train on a single instance or on a distributed cluster of instances.
Amazon SageMaker removes the burden of managing the underlying infrastructure
and handles the undifferentiated heavy lifting for us.

Introduction to SageMaker Containers
When running a training job, SageMaker reads input data from Amazon S3, uses that
data to train a model, and finally writes the model artifacts back to Amazon S3.
Figure 7-1 illustrates how SageMaker uses containers for training and inference.
Starting from the bottom left, training data from S3 is made available to the Model
Training instance container, which is pulled from Amazon Elastic Container Registry.
The training job persists model artifacts back to the output S3 location designated in
the training job configuration. When we are ready to deploy a model, SageMaker
spins up new ML instances and pulls in these model artifacts to use for batch or real-
time model inference.

Figure 7-1. SageMaker containers, inputs, and outputs. Source: Amazon SageMaker
Workshop.

208 | Chapter 7: Train Your First Model

https://oreil.ly/eu9G1
https://oreil.ly/eu9G1

Much like a software framework, SageMaker provides multiple “hot spots” for our
training script to leverage. There are two hot spots worth highlighting: input/output
data locations and environment variables.

SageMaker provides our container with locations for our training input and output
files. For example, a typical training job reads in data files, trains the model, and
writes out a model file. Some AI and machine learning frameworks support model
checkpointing in case our training job fails or we decide to use a previous checkpoint
with better predictive performance than our latest model. In this case, the job can
restart from where it left off. These input, output, and checkpoint files must move in
and out of the ephemeral Docker container from/to more durable storage like S3.
Otherwise, when the training job ends and the Docker container goes away, the data
is lost.

While seemingly simple, this mapping is a very critical piece in the training perfor‐
mance puzzle. If this layer mapping is not optimized, our training times will suffer
greatly. Later, we will discuss a SageMaker feature called Pipe Mode that specifically
optimizes the movement of data at this layer. Figure 7-2 shows the mapping of the file
location inside the Docker container to the S3 location outside the container.

Figure 7-2. The container file locations are mapped to S3 locations.

SageMaker automatically provides our container with many predefined environment
variables, such as the number of GPUs available to the container and the log level.
Our training script can use these SageMaker-injected environment variables to mod‐
ify the behavior of our training job accordingly. Here is a subset of the environment

Understand the SageMaker Infrastructure | 209

variables that SageMaker passes through to our script from a Jupyter notebook,
script, pipeline, etc.:

SM_MODEL_DIR

Directory containing the training or processing script as well as dependent libra‐
ries and assets (/opt/ml/model)

SM_INPUT_DIR

Directory containing input data (/opt/ml/input)

SM_INPUT_CONFIG_DIR

Directory containing the input configuration (/opt/ml/input/config)

SM_CHANNELS

S3 locations for splits of data, including “train,” “validation,” and “test”

SM_OUTPUT_DATA_DIR

Directory to store evaluation results and other nontraining-related output assets
(/opt/ml/output/data)

SM_HPS

Model hyper-parameters used by the algorithm

SM_CURRENT_HOST

Unique hostname for the current instance

SM_HOSTS

Hostnames of all instances in the cluster

SM_NUM_GPUS

Number of GPUs of the current instance

SM_NUM_CPUS

Number of CPUs of the current instance

SM_LOG_LEVEL

Logging level used by the training scripts

SM_USER_ARGS

Additional arguments specified by the user and parsed by the training or pro‐
cessing script

The _DIR variables map are the local filepaths internal to the Docker container run‐
ning our training code. These map to external input and output file locations in S3,
for example, provided by SageMaker and specified by the user when the training job
is started. However, our training script references the local paths when reading input
or writing output.

210 | Chapter 7: Train Your First Model

Increase Availability with Compute and Network Isolation
Network isolation is also important from a high-availability standpoint. While we
usually discuss high availability in terms of microservices and real-time systems, we
should also strive to increase the availability of our training jobs.

Our training scripts almost always include pip installing Python libraries from
PyPI or downloading pre-trained models from third-party model repositories (or
“model zoos”) on the internet. By creating dependencies on external resources, our
training job now depends on the availability of those third-party services. If one of
these services is temporarily down, our training job may not start.

At Netflix, we “burned” all dependencies into our Docker images
and Amazon Machine Images (AMIs) to remove all external
dependencies and achieve higher availability. It was absolutely criti‐
cal to reduce external dependencies during rapid scale-out events
and failover scenarios.

To improve availability, it is recommended that we reduce as many external depen‐
dencies as possible by copying these resources into our Docker image or into our own
S3 bucket. This has the added benefit of reducing network latency and starting our
training jobs faster. The following IAM policy will not start SageMaker Training Jobs
with network isolation disabled. If we do not enable network isolation, the training
job will fail immediately, which is exactly what we want to enforce:

{
 "Sid": "SageMakerNetworkIsolation",
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateTrainingJob"
],
 "Resource": "*",
 "Condition": {
 "Bool": {
 "sagemaker:NetworkIsolation": "false"
 }
 }
}

Computer and network isolation also improve security and reduce the risk of attack‐
ers gaining access to our data. As a security best practice, all SageMaker components
should be used in a Virtual Private Cloud (VPC) without direct internet connectivity.
This requires that we carefully configure IAM roles, VPC Endpoints, subnets, and
security groups for least-privilege access policies for Amazon S3, SageMaker, Red‐
shift, Athena, CloudWatch, and any other AWS service used by our data science
workflows. In Chapter 12, we will dive deeper into using compute isolation, network
isolation, VPC Endpoints, and IAM policies to secure our data science environments.

Understand the SageMaker Infrastructure | 211

Deploy a Pre-Trained BERT Model with
SageMaker JumpStart
SageMaker JumpStart provides access to pre-built machine learning solutions and
pre-trained models from AWS, TensorFlow Hub, and PyTorch Hub across many use
cases and tasks, such as fraud detection, predictive maintenance, demand forecasting,
NLP, object detection, and image classification, as shown in Figure 7-3.

Figure 7-3. Deploy pre-trained models with SageMaker JumpStart.

SageMaker JumpStart is useful when we want to quickly test a solution or model on
our dataset and generate a baseline set of evaluation metrics. We can quickly rule out
models that do not work well with our data and, conversely, dive deeper into the solu‐
tions and models that do work well.

Let’s fine-tune a pre-trained BERT model with the Amazon Customer Reviews Data‐
set and deploy the model to production in just a few clicks within SageMaker Studio,
as shown in Figure 7-4.

212 | Chapter 7: Train Your First Model

Figure 7-4. SageMaker JumpStart lets us fine-tune and deploy a pre-trained BERT
model with just a few clicks.

After fine-tuning the chosen BERT model with the Amazon Customer Reviews Data‐
set, SageMaker JumpStart deploys the model so we can start making predictions right
away:

import json
import boto3

text1 = 'i simply love this product'
text2 = 'worst product ever'

label_map = {0: "1", 1: "2", 2: "3", 3: "4", 4: "5"}

def query_endpoint(encoded_text):
 endpoint_name = 'jumpstart-tf-tc-bert-en-uncased-l-12-h-768-a-12-2'
 client = boto3.client('runtime.sagemaker')
 response = client.invoke_endpoint(
 EndpointName = endpoint_name,
 ContentType = 'application/x-text',
 Body = encoded_text)
 model_predictions = json.loads(response['Body'].read())['predictions'][0]
 return model_predictions

for text in [text1, text2]:
 model_predictions = query_endpoint(text.encode('utf-8'))
 class_index = model_predictions.index(max(model_predictions))

Deploy a Pre-Trained BERT Model with SageMaker JumpStart | 213

The output will look similar to this:

Review text: 'i simply love this product'
Predicted star_rating: 5

Review text: 'worst product ever'
Predicted star_rating: 1

Develop a SageMaker Model
Just as Amazon.com provides many options to customers through the Amazon.com
Marketplace, Amazon SageMaker provides many options for building, training, tun‐
ing, and deploying models. We will dive deep into model tuning in Chapter 8 and
deploying in Chapter 9. There are three main options depending on the level of cus‐
tomization needed, as shown in Figure 7-5.

Figure 7-5. SageMaker has three options to build, train, optimize, and deploy our model.

Built-in Algorithms
SageMaker provides built-in algorithms that are ready to use out of the box across a
number of different domains, such as NLP, computer vision, anomaly detection, and
recommendations. Simply point these highly optimized algorithms at our data and
we will get a fully trained, easily deployed machine learning model to integrate into
our application. These algorithms, shown in the following chart, are targeted toward
those of us who don’t want to manage a lot of infrastructure but rather want to reuse
battle-tested algorithms designed to work with very large datasets and used by tens of
thousands of customers. Additionally, they provide conveniences such as large-scale
distributed training to reduce training times and mixed-precision floating-point sup‐
port to improve model-prediction latency.

214 | Chapter 7: Train Your First Model

Classification

• Linear learner
• XGBoost
• KNN

Computer vision

• Image classification
• Object detection
• Semantic segmentation

Working with text

• BlazingText
• Supervised
• Unsupervised

Regression

• Linear learner
• XGBoost
• KNN

Anomaly detection

• Random cut forests
• IP insights

Topic modeling

• LDA
• NTM

Sequence translation

• Seq2Seq

Recommendation

• Factorization machines

Clustering

• KMeans

Feature reduction

• PCA
• Object2Vec

Forecasting

• DeepAR

Bring Your Own Script
SageMaker offers a more customizable option to “bring your own script,” often called
Script Mode. Script Mode lets us focus on our training script, while SageMaker pro‐
vides highly optimized Docker containers for each of the familiar open source frame‐
works, such as TensorFlow, PyTorch, Apache MXNet, XGBoost, and scikit-learn, as
shown in Figure 7-6.

Figure 7-6. Popular AI and machine learning frameworks supported by Amazon
SageMaker.

This option is a good balance of high customization and low maintenance. Most of
the remaining SageMaker examples in this book will utilize Script Mode with Tensor‐
Flow and BERT for NLP and natural language understanding (NLU) use cases, as
shown in Figure 7-7.

Develop a SageMaker Model | 215

Figure 7-7. SageMaker Script Mode with BERT and TensorFlow is a good balance of
high customization and low maintenance.

Bring Your Own Container
The most customizable option is “bring your own container.” This option lets us
build and deploy our own Docker container to SageMaker. This Docker container
can contain any library or framework. While we maintain complete control over the
details of the training script and its dependencies, SageMaker manages the low-level
infrastructure for logging, monitoring, injecting environment variables, injecting
hyper-parameters, mapping dataset input and output locations, etc. This option is
targeted toward a more low-level machine learning practitioner with a systems back‐
ground—or scenarios where we need to use our own Docker container for compli‐
ance and security reasons. Converting an existing Docker image to run within
SageMaker is simple and straightforward—just follow the steps listed in this AWS
open source project.

A Brief History of Natural Language Processing
In the previous chapter, we transformed raw Amazon Customer Reviews into BERT
feature vectors to ultimately build a review classifier model to predict the star_rat
ing from review_body text. Before we build our natural language model, we want to
provide some background on NLP.

In 1935, a famous British linguist, J. R. Firth, said the following: “The complete mean‐
ing of a word is always contextual, and no study of meaning apart from context can
be taken seriously.” Fast forward 80 years to 2013: word vectors, or “word embed‐
dings,” began to dominate language representations, as shown in Figure 7-8. These
word embeddings capture the contextual relationships between words in a set of
documents, or “corpus,” as it is commonly called.

216 | Chapter 7: Train Your First Model

https://oreil.ly/7Rn86
https://oreil.ly/7Rn86

Figure 7-8. Evolution of NLP algorithms and architectures.

Word2Vec and GloVe are two of the popular NLP algorithms from the past decade.
They both use contextual information to create vector representations of our text data
in a vector space that lets us perform mathematical computations such as word simi‐
larity and word differences.

FastText continues the innovation of contextual NLP algorithms and builds word
embeddings using subword tokenization. This allows FastText to learn non-English
language models with relatively small amounts of data compared to other models.
Amazon SageMaker offers a built-in, pay-as-you-go SageMaker algorithm called
BlazingText that uses an implementation of FastText optimized for AWS. This algo‐
rithm was shown in “Built-in Algorithms” on page 214.

There are some drawbacks to this generation of NLP models, however, as they are all
forms of static word embeddings. While static embeddings capture the semantic
meanings of words, they don’t actually understand high-level language concepts. In
fact, once the embeddings are created, the actual model is often discarded after train‐
ing (i.e., Word2Vec, GloVe) and simply preserve the word embeddings to use as fea‐
tures for classical machine learning algorithms such as logistic regression and
XGBoost.

ELMo preserves the trained model and uses two long short-term memory (LSTM)
network branches: one to learn from left to right and one to learn from right to left.
The context is captured in the LSTM state and updated after every word in both net‐
work branches. Therefore ELMo does not learn a true bidirectional contextual repre‐
sentation of the words and phrases in the corpus, but it performs very well
nonetheless.

A Brief History of Natural Language Processing | 217

An LSTM is a special type of recurrent neural network (RNN) that
selectively chooses which information to remember and which
information to forget. This allows the LSTM to utilize memory and
compute efficiently, avoid the vanishing gradient problem, and
maintain very good predictive power. A gated recurrent unit is
another variant of an RNN that is simpler than LSTM and per‐
forms very well. However, ELMo specifically uses LSTM.

GPT and the newer GPT-2 and GPT-3 models (GPT-n) preserve the trained model
and use a neural network architecture called the “Transformer” to learn the contex‐
tual word representations. Transformers were popularized along with their attention-
mechanism counterpart in the 2017 paper titled “Attention Is All You Need”.
Transformers offer highly parallel computation to enable higher throughput, better
performance, and more-efficient utilization of compute resources. LSTM and ELMo
do not support parallel computations.

The GPT-n transformer uses a directional, left-to-right “masked self-attention” mech‐
anism to learn the left-to-right contextual representation, as shown in Figure 7-9.
This prevents the model from peeking ahead to see the next words in the sentence.
Even with this limitation, GPT-n performs very well on text generation tasks because
of this left-to-right mechanism.

Figure 7-9. GPT-n’s masked self-attention mechanism.

In 2018, a new neural network-based algorithm for NLP was released called Bidirec‐
tional Encoder Representations from Transformers (BERT). BERT has revolutionized
the field of NLP and NLU and is now widely used throughout the industry at Face‐
book, LinkedIn, Netflix, Amazon, and many other AI-first companies. BERT builds
on the highly parallelizable Transformer architecture and adds true bidirectional self-
attention that looks both forward and backward. BERT’s self-attention mechanism
improves upon the GPT-n backward-looking, masked self-attention mechanism.

218 | Chapter 7: Train Your First Model

https://oreil.ly/mHHL0

BERT Transformer Architecture
At its core, the BERT Transformer architecture uses an attention mechanism to “pay
attention” to specific and interesting words or phrases as it traverses the corpus.
Specifically, the BERT transformer uses “self-attention” to attend every token in the
data to all other tokens in the input sequence. Additionally, BERT uses “multiheaded
attention” to handle ambiguity in the meanings of words, also called polysemy (Greek
poly = many, sema = sign). An example of attention is shown in Figure 7-10 where the
word it attends highly to the word movie as well as the words funny and great, though
to a lesser degree than the word movie.

Figure 7-10. The “self-attention” mechanism attends every token in the data to all other
tokens in the input sequence.

Without this bidirectional attention, an algorithm would potentially create the same
embedding for the word bank for the following two sentences: “A thief stole money
from the bank vault” and “Later, he was arrested while fishing on a river bank.” Note
that the word bank has a different meaning in each sentence. This is easy for humans
to distinguish because of our lifelong, natural “pre-training,” but this is not easy for a
machine without similar pre-training. BERT distinguishes between these two words
(tokens) by learning different vectors for each token in the context of a specific
(sequence). The learned token vector is called the “input token vector representation,”
and the learned sentence vector is called the “pooled text vector representation.”

BERT’s transformer-based sequence model consists of several transformer blocks
stacked upon each other. The pre-trained BERTBase model consists of 12 such trans‐
former blocks, while the BERTLarge model consists of 24 transformer blocks. Each
transformer block implements a multihead attention layer and a fully connected feed-
forward layer. Each layer is wrapped with a skip connection (residual connection)
and a layer normalization module.

We add another layer to fine-tune the model to a specific NLP task. For text classifi‐
cation, we would add a classifier layer. After the training data is processed by all

BERT Transformer Architecture | 219

transformer blocks, the data passes through the fine-tuning layer and learns parame‐
ters specific to our NLP task and dataset. Figure 7-11 shows the BERT architecture.

Figure 7-11. BERT model architecture.

Let’s have a closer look at how BERT implements attention. We can think of attention
as the process of assigning a weight to the input tokens based on their importance to
the NLP task to solve. In more mathematical terms, attention is a function that takes
an input sequence X and returns another sequence Y, composed of vectors of the
same length of those in X. Each vector in Y is a weighted average of the vectors in X,
as shown in Figure 7-12.

Figure 7-12. Attention is the weighted average of the input vectors.

The weights express how much the model attends to each input vector in X when
computing the weighted average. So how does BERT calculate the attention weights?

220 | Chapter 7: Train Your First Model

A compatibility function assigns a score to each pair of words indicating how
strongly they attend to one another. In a first step, the model creates a query vector
(for the word that is paying attention) and a key vector (for the word being paid
attention to) as linear transformations from the actual value vector. The compatibility
score is then calculated as the dot product of the query vector of one word and the
key vector of the other. The score is then normalized by applying the softmax func‐
tion. The result is the attention weight, as shown in Figure 7-13.

Figure 7-13. Attention weights are the normalized dot product of the query and key
vectors.

Training BERT from Scratch
While we can use BERT as is without training from scratch, it’s useful to know how
BERT uses word masking and next sentence prediction—in parallel—to learn and
understand language.

Masked Language Model
As BERT sees new text, it masks 15% of the words in each sentence, or “sequence,” in
BERT terminology. BERT then predicts the masked words and corrects itself (aka
“updates the model weights”) when it predicts incorrectly. This is called the Masked
Language Model or Masked LM. Masking forces the model to learn the surrounding
words for each sequence, as shown in Figure 7-14.

Figure 7-14. BERT Masked LM masks 15% of input tokens and learns by predicting the
masked tokens—correcting itself when it predicts the wrong word.

Training BERT from Scratch | 221

To be more concrete, BERT is trained by forcing it to predict masked words (actually
tokens) in a sentence. For example, if we feed in the contents of this book, we can ask
BERT to predict the missing word in the following sentence: “This book is called
Data ____ on AWS.” Obviously, the missing word is “Science.” This is easy for a
human who has been pre-trained on millions of documents since birth, but is not
easy for a machine—not without training, anyway.

Next Sentence Prediction
At the same time BERT is masking and predicting input tokens, it is also performing
next sentence prediction (NSP) on pairs of input sequences. Both of these training
tasks are optimized together to create a single accuracy score for the combined train‐
ing efforts. This results in a more robust model capable of performing word- and
sentence-level predictive tasks.

To perform NSP, BERT randomly chooses 50% of the sentence pairs and replaces one
of the two sentences with a random sentence from another part of the document.
BERT then predicts if the two sentences are a valid sentence pair or not, as shown in
Figure 7-15. BERT will correct itself when it predicts incorrectly.

Figure 7-15. During training, BERT performs masking and NSP in parallel on pairs of
input sequences.

For more details on BERT, check out the 2018 paper, “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding”.

In most cases, we don’t need to train BERT from scratch. Neural networks are
designed to be reused and continuously trained as new data arrives into the system.
Since BERT has already been pre-trained on millions of public documents from
Wikipedia and the Google Books Corpus, the vocabulary and learned representations
are transferable to a large number of NLP and NLU tasks across a wide variety of
domains.

Training BERT from scratch requires a lot of data and compute, but it allows BERT to
learn a representation of the custom dataset using a highly specialized vocabulary.
Companies like Amazon and LinkedIn have pre-trained internal versions of BERT
from scratch to learn language representations specific to their domain. LinkedIn’s

222 | Chapter 7: Train Your First Model

https://oreil.ly/LP4yX
https://oreil.ly/LP4yX

variant of BERT, for example, has learned a language model specific to job titles,
resumes, companies, and business news.

Fine Tune a Pre-Trained BERT Model
ELMo, GPT/GPT-2, and BERT preserve certain trained models known as “pre-
trained models.” Pre-trained on millions of documents across many different
domains, these models are good at not only predicting missing words, but also at
learning the meaning of words, sentence structure, and sentence correlations. Their
ability to generate meaningful, relevant, and realistic text is phenomenal and scary.
Let’s dive deeper into BERT’s pre-trained models.

BERT’s pre-trained models are, like most neural network models, just point-in-time
snapshots of the model weights learned from the data seen to date. And like most
models, BERT becomes even more valuable with more data.

The core BERT pre-trained models come in “base” and “large” variants that differ by
number of layers, attention heads, hidden units, and parameters, as shown in the fol‐
lowing table. We see very good performance with the smaller model with only 12
attention heads and 110 million parameters.

 Layers Hidden units Parameters
BERT base 12 768 110M
BERT large 24 1024 340M

Additionally, the community has created many pre-trained versions of BERT using
domain and language-specific datasets, including PatentBERT (US patent data), Clin‐
icalBERT (healthcare data), CamemBERT (French language), GermanBERT (German
language), and BERTje (Dutch language).

These BERT variants were pre-trained from scratch because the default BERT mod‐
els, trained on English versions of Wikipedia and Google Books, do not share the
same vocabulary as the custom datasets—e.g., French for CamemBERT, and health‐
care terminology for ClinicalBERT. When training from scratch, we can reuse BERT’s
neural network transformer architecture but throw out the pre-trained base model
weights learned from Wikipedia and Google Books.

For our Amazon Customer Reviews Dataset, we can safely reuse the default BERT
models because they share a similar vocabulary and language representation. There is
no doubt that training BERT from scratch to learn the specific Amazon.com product
catalog would improve accuracy on some tasks, such as entity recognition. However,
the default BERT models perform very well on our review text, so we will keep things
simple and “fine-tune” a default BERT model to create a custom text classifier using
our Amazon Customer Reviews Dataset.

Fine Tune a Pre-Trained BERT Model | 223

Let’s reuse the language understanding and semantics learned by the pre-trained
BERT model to learn a new, domain-specific NLP task using the Amazon Customer
Reviews Dataset. This process, called “fine-tuning,” is shown in Figure 7-16.

Figure 7-16. We can fine-tune a pre-trained BERT model for a domain-specific task
using a custom dataset.

The simplicity and bidirectional nature of the BERT self-attention mechanism allow
us to fine-tune the base BERT models to a wide range of out-of-the-box, “down‐
stream” NLP/NLU tasks, including text classification to analyze sentiment, entity rec‐
ognition to detect a product name, and next sentence prediction to provide answers
to natural language questions, as shown in Figure 7-17.

Figure 7-17. We can fine-tune the default BERT models to many “downstream” NLP and
NLU tasks.

Since fine-tuning is a supervised training process (versus pre-training, which is unsu‐
pervised), masking and next sentence prediction do not happen during fine-tuning—

224 | Chapter 7: Train Your First Model

only during pre-training. As a result, fine-tuning is very fast and requires a relatively
small number of samples, or reviews, in our case. This translates to lower processing
power, lower cost, and faster training/tuning iterations.

Remember that we can use SageMaker JumpStart to try out these pre-trained models
quickly and establish their usefulness as a solution for our machine learning task. By
quickly fine-tuning the pre-trained BERT model to our dataset, we can determine if
BERT is a good fit or not.

Since we already generated the BERT embeddings from the raw review_body text in
Chapter 6, we are ready to go! Let’s fine-tune BERT to create a custom text classifier
that predicts star_rating from review_body using our dataset, as shown in
Figure 7-18.

Figure 7-18. We can fine-tune a BERT model to create a custom text classifier with our
reviews dataset.

We can use this classifier to predict the sentiment of an incoming customer service
email or Twitter comment, for example. So when a new email or comment enters the
system, we first classify the email as negative (star_rating 1), neutral (star_rating
3), or positive (star_rating 5). This can help us determine the urgency of the
response—or help us route the message to the right person, as shown in Figure 7-19.

Figure 7-19. We can fine-tune BERT to classify review text into star_rating categories
of 1 (worst) through 5 (best).

Fine Tune a Pre-Trained BERT Model | 225

Create the Training Script
Let’s create a training script called tf_bert_reviews.py that creates our classifier using
TensorFlow and Keras. We will then pass the features generated from the previous
chapter into our classifier for model training.

Setup the Train, Validation, and Test Dataset Splits
In the last chapter, we used SageMaker Processing Jobs to transform raw Amazon
Customer Reviews into BERT embeddings, as shown in Figure 7-20.

Figure 7-20. BERT embeddings as inputs for model training with TensorFlow.

In this section, we load the train, validation, and test datasets to feed into our model
for training. We will use TensorFlow’s TFRecordDataset implementation to load the
TFRecords in parallel and shuffle the data to prevent the model from learning the pat‐
tern in which the data is presented to the model.

In AI and machine learning, randomness is celebrated. Proper
shuffling of the training data will provide enough randomness to
prevent the model from learning any patterns about how the data is
stored on disk and/or presented to the model. “Bootstrapping” is a
common technique to describe random sampling with replace‐
ment. Bootstrapping adds bias, variance, confidence intervals, and
other metrics to the sampling process.

In Chapter 6, we created a SageMaker Processing Job to transform the raw
review_body column into BERT embeddings using the Hugging Face Transformers
library. This Processing Job stores the embeddings in S3 using a TensorFlow-
optimized TFRecord file format, which we will use in our training job. Let’s create a

226 | Chapter 7: Train Your First Model

helper function to load, parse, and shuffle the TFRecords. We should recognize the
input_ids, input_mask, segment_ids, and label_ids field names from the previous
chapter:

def file_based_input_dataset_builder(channel,
 input_filenames,
 pipe_mode,
 is_training,
 drop_remainder,
 batch_size,
 epochs,
 steps_per_epoch,
 max_seq_length):

 dataset = tf.data.TFRecordDataset(input_filenames)
 dataset = dataset.repeat(epochs * steps_per_epoch * 100)
 dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)

 name_to_features = {
 "input_ids": tf.io.FixedLenFeature([max_seq_length], tf.int64),
 "input_mask": tf.io.FixedLenFeature([max_seq_length], tf.int64),
 "segment_ids": tf.io.FixedLenFeature([max_seq_length], tf.int64),
 "label_ids": tf.io.FixedLenFeature([], tf.int64),
 }

 def _decode_record(record, name_to_features):
 """Decodes a record to a TensorFlow example."""
 record = tf.io.parse_single_example(record, name_to_features)
 return record

 dataset = dataset.apply(
 tf.data.experimental.map_and_batch(
 lambda record: _decode_record(record, name_to_features),
 batch_size=batch_size,
 drop_remainder=drop_remainder,
 num_parallel_calls=tf.data.experimental.AUTOTUNE))

 dataset.cache()

 if is_training:
 dataset = dataset.shuffle(seed=42,
 buffer_size=steps_per_epoch * batch_size,
 reshuffle_each_iteration=True)

 return dataset

If is_training is true, we are in the training phase. During the training phase, we
want to shuffle the data between iterations. Otherwise, the model may pick up on pat‐
terns about how the data is stored on disk and presented to the model—i.e., first all
the 5s, then all the 4s, 3s, 2s, 1s, etc. To discourage the model from learning this

Create the Training Script | 227

pattern, we shuffle the data. If is_training is false, then we are in either the valida‐
tion or test phase, and we can avoid the shuffle overhead and iterate sequentially.

Let’s read in the training, validation, and test datasets using the helper function cre‐
ated earlier:

Training Dataset
train_data_filenames = glob(os.path.join(train_data,
 '*.tfrecord'))
train_dataset = file_based_input_dataset_builder(
 channel='train',
 input_filenames=train_data_filenames,
 pipe_mode=pipe_mode,
 is_training=True,
 drop_remainder=False,
 batch_size=train_batch_size,
 epochs=epochs,
 steps_per_epoch=train_steps_per_epoch,
 max_seq_length=max_seq_length)\
 .map(select_data_and_label_from_record)

Validation Dataset
validation_data_filenames = glob(os.path.join(validation_data,
 '*.tfrecord'))
validation_dataset = file_based_input_dataset_builder(
 channel='validation',
 input_filenames=validation_data_filenames,
 pipe_mode=pipe_mode,
 is_training=False,
 drop_remainder=False,
 batch_size=validation_batch_size,
 epochs=epochs,
 steps_per_epoch=validation_steps,
 max_seq_length=max_seq_length)\
 .map(select_data_and_label_from_record)

We will soon pass these train, validation, and test datasets to our model training pro‐
cess. But first, let’s set up the custom reviews classifier using TensorFlow, Keras,
BERT, and Hugging Face.

Set Up the Custom Classifier Model
Soon, we will feed the review_body embeddings and star_rating labels into a neural
network to fine-tune the BERT model and train the custom review classifier, as
shown in Figure 7-21. Note that the words shown in the figure may be broken up into
smaller word tokens during tokenization. For illustrative purposes, however, we show
them as full words.

228 | Chapter 7: Train Your First Model

Figure 7-21. Classify reviews into star rating 1 (worst) through 5 (best) using our custom
classifier.

For this, we use the Keras API with TensorFlow 2.x to add a neural classifier layer on
top of the pre-trained BERT model to learn the star_rating (1–5). Remember that
we are using a relatively lightweight variant of BERT called DistilBERT, which
requires less memory and compute but maintains very good accuracy on our dataset.
To reduce the size of the model, DistilBERT, a student neural network, was trained by
a larger teacher neural network in a process called knowledge distillation, as shown in
Figure 7-22.

Figure 7-22. Knowledge distillation trains a student model from a teacher model.

Let’s load DistilBertConfig, map our 1-indexed star_rating labels to the 0-
indexed internal classes, and load our pre-trained DistilBERT model as follows:

Create the Training Script | 229

from transformers import DistilBertConfig
from transformers import TFDistilBertForSequenceClassification

CLASSES=[1, 2, 3, 4, 5]

config = DistilBertConfig.from_pretrained('distilbert-base-uncased',
 num_labels=len(CLASSES),
 id2label={
 0: 1, 1: 2, 2: 3, 3: 4, 4: 5
 },
 label2id={
 1: 0, 2: 1, 3: 2, 4: 3, 5: 4
 })

transformer_model = TFDistilBertForSequenceClassification.from_pretrained(
 "distilbert-base-uncased", config=config
)

It’s important to highlight that the from_pretrained() function calls will download a
large model from the Hugging Face service. We should consider downloading this
model to our own S3 bucket and pass the S3 URI to the from_pretrained() function
calls. This small change will decouple us from the Hugging Face service, remove a
potential single point of failure, enable network isolation, and reduce the start time of
our model training jobs. Next, let’s set up our inputs and model layers:

input_ids = tf.keras.layers.Input(shape=(max_seq_length,),
 name='input_ids',
 dtype='int32')
input_mask = tf.keras.layers.Input(shape=(max_seq_length,),
 name='input_mask',
 dtype='int32')

embedding_layer = transformer_model.distilbert(input_ids,
 attention_mask=input_mask)[0]
X = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(50,
 return_sequences=True,
 dropout=0.1,
 recurrent_dropout=0.1))(embedding_layer)
X = tf.keras.layers.GlobalMaxPool1D()(X)
X = tf.keras.layers.Dense(50, activation='relu')(X)
X = tf.keras.layers.Dropout(0.2)(X)
X = tf.keras.layers.Dense(len(CLASSES), activation='softmax')(X)

model = tf.keras.Model(inputs=[input_ids, input_mask], outputs = X)

for layer in model.layers[:3]:
 layer.trainable = not freeze_bert_layer

We have chosen not to train the BERT layers by specifying trainable=False. We do
this on purpose to keep the underlying BERT model from changing—focusing only
on training our custom classifier. Training the BERT layer will likely improve our

230 | Chapter 7: Train Your First Model

accuracy, but the training job will take longer. Since our accuracy is pretty good
without training the underlying BERT model, we focus only on training the classifier
layer. Next, let’s add a Keras-based neural classifier to complete our neural network
and prepare for model training:

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric=tf.keras.metrics.SparseCategoricalAccuracy('accuracy')

optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate, epsilon=epsilon)

model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

model.summary()

Here is the output of the model summary showing the breakdown of trainable and
nontrainable parameters:

__
Layer (type) Output Shape Param #
==
input_ids (InputLayer) [(None, 64)] 0
__
input_mask (InputLayer) [(None, 64)] 0
__
distilbert (TFDistilBertMainLay ((None, 64, 768),) 66362880
__
bidirectional (Bidirectional) (None, 64, 100) 327600
__
global_max_pooling1d (GlobalMax (None, 100) 0
__
dense (Dense) (None, 50) 5050
__
dropout_19 (Dropout) (None, 50) 0
__
dense_1 (Dense) (None, 5) 255
==
Total params: 66,695,785
Trainable params: 332,905
Non-trainable params: 66,362,880
__

Train and Validate the Model
At this point, we have prepared our train, validation, and test datasets as input data
and defined our custom classifier model. Let’s pull everything together and invoke the
fit() function on our model using the train_dataset and validation_dataset.

By passing validation_dataset, we are using the Keras API with TensorFlow 2.x to
perform both training and validation simultaneously:

Create the Training Script | 231

train_and_validation_history = model.fit(train_dataset,
 shuffle=True,
 epochs=5,
 ...
 validation_data=validation_dataset)

We set shuffle=True to shuffle our dataset and epochs=5 to run through our dataset
five times. The number of epochs (pronounced “eh-puhks”) is configurable and tuna‐
ble. We will explore model tuning in the next chapter.

Save the Model
Now, let’s save the model with the TensorFlow SavedModel format used by our pre‐
dictive applications:

model.save('./tensorflow/', save_format='tf')

In Chapter 9, we will use the model saved in ./tensorflow/ with TensorFlow Serving
to deploy our models and serve review-classification predictions at scale using Sage‐
Maker Batch Transform (offline, batch) and SageMaker Endpoints (online, real time).

Launch the Training Script from a SageMaker Notebook
Let’s walk through the steps needed to run our training script from a SageMaker
Notebook. Later, we will run this same script from an automated pipeline. For now,
we run the script from the notebook. First, we will set up the metrics needed to moni‐
tor the training job. We’ll then configure our algorithm-specific hyper-parameters.
Next, we’ll select the instance type and number of instances in our cluster. And
finally, we will launch our training job.

Define the Metrics to Capture and Monitor
We can create a metric from anything that our training script prints or logs to the
console. Let’s assume that our TensorFlow model emits the following log lines with
the training loss and training accuracy (loss, accuracy) as well as the validation loss
and validation accuracy (val_loss, val_accuracy):

5000/10000 [>....................] - loss: 0.1420 - accuracy: 0.800103
6000/10000 [>....................] - loss: 0.1081 - accuracy: 0.939455
...
10000/10000 [>....................] - val_loss: 0.1420 - val_accuracy: 0.512193

Next, we define four regular expressions to populate four metrics by parsing the val‐
ues from the log lines. If we upgrade the framework—or switch to a new framework
—these regular expressions may need adjusting. We will know when this happens
because we will no longer see the correct model metrics in our CloudWatch
dashboards:

232 | Chapter 7: Train Your First Model

metrics_definitions = [
 {'Name': 'train:loss', 'Regex': 'loss: ([0-9\\.]+)'},
 {'Name': 'train:accuracy', 'Regex': 'accuracy: ([0-9\\.]+)'},
 {'Name': 'validation:loss', 'Regex': 'val_loss: ([0-9\\.]+)'},
 {'Name': 'validation:accuracy', 'Regex': 'val_accuracy: ([0-9\\.]+)'},
]

Configure the Hyper-Parameters for Our Algorithm
It’s important to note that “parameters” (aka “weights”) are what the model learns
during training and that “hyper-parameters” are how the model learns the parame‐
ters. Every algorithm supports a set of hyper-parameters that alter the algorithm’s
behavior while learning the dataset. Hyper-parameters can be anything from the
depth of a decision tree to the number of layers in our neural network.

Hyper-parameter selection involves the usual trade-offs between latency and accu‐
racy. For example, a deeper neural network with lots of layers may provide better
accuracy than a shallow neural network, but the deeper network may lead to higher
latency during inference as prediction time increases with each layer in the network.

While most hyper-parameters have suitable defaults based on empirical testing, they
are highly tunable. In fact, there’s an entire subfield within machine learning dedica‐
ted to hyper-parameter tuning/hyper-parameter optimization.

We will dive deep into the art and science of hyper-parameter selection and optimiza‐
tion in Chapter 8 to find the best combination of hyper-parameters. For now, we set
these hyper-parameters manually using our experience and intuition—as well as
some lightweight, ad hoc empirical testing with our specific dataset and algorithm:

epochs=500
learning_rate=0.00001
epsilon=0.00000001
train_batch_size=128
validation_batch_size=128
train_steps_per_epoch=100
validation_steps=100
test_steps=100
train_volume_size=1024
use_xla=True
use_amp=True
freeze_bert_layer=True

When evaluating an algorithm, we should seek to understand all of the available
hyper-parameters. Setting these hyper-parameters to suboptimal values can make or
break a data science project. This is why the subfield of hyper-parameter optimization
is so important.

Launch the Training Script from a SageMaker Notebook | 233

Select Instance Type and Instance Count
The choice of instance type and instance count depends on our workload and budget.
Fortunately AWS offers many different instance types, including AI/ML-optimized
instances with ultra-fast GPUs, terabytes of RAM, and gigabits of network band‐
width. In the cloud, we can easily scale up our training jobs to larger instances with
more memory and compute or scale out to tens, hundreds, or even thousands of
instances with just one line of code.

Let’s train with a p4d.24xlarge instance type with 8 NVIDIA Tesla A100 GPUs, 96
CPUs, 1.1 terabytes of RAM, 400 gigabits per second of network bandwidth, and 600
gigabytes per second of inter-GPU communication using NVIDIA’s NVSwitch “mesh”
network hardware, as shown in Figure 7-23.

Figure 7-23. Mesh communication between GPUs on a single instance.

To save cost, we would normally start small and slowly ramp up the compute resour‐
ces needed for our specific workload to find the lowest-cost option. This is com‐
monly called “right-sizing our cluster.” Empirically, we found that this instance type
works well with our specific model, dataset, and cost budget. We only need one of
these instances for our example, so we set the train_instance_count to 1, as follows:

train_instance_type='ml.p4.24xlarge'
train_instance_count=1

234 | Chapter 7: Train Your First Model

We can specify instance_type='local' in our SageMaker Train‐
ing Job to run the script either inside our notebook or on our local
laptop. See “Reduce Cost and Increase Performance” on page 268
for more information.

It’s important to choose parallelizable algorithms that benefit from multiple cluster
instances. If our algorithm is not parallelizable, we should not add more instances
because they will not be used. And adding too many instances may actually slow
down our training job by creating too much communication overhead between the
instances. Most neural-network-based algorithms like BERT are parallelizable and
benefit from a distributed cluster when training or fine-tuning on large datasets.

Putting It All Together in the Notebook
Here is our Jupyter notebook that sets up and invokes the TensorFlow training job
using SageMaker Script Mode:

from sagemaker.tensorflow import TensorFlow

epochs=500
learning_rate=0.00001
epsilon=0.00000001
train_batch_size=128
validation_batch_size=128
test_batch_size=128
train_steps_per_epoch=100
validation_steps=100
test_steps=100
train_instance_count=1
train_instance_type='ml.p4d.24xlarge'
train_volume_size=1024
use_xla=True
use_amp=True
freeze_bert_layer=False
enable_sagemaker_debugger=True
enable_checkpointing=False
enable_tensorboard=True
input_mode='File'
run_validation=True
run_test=True
run_sample_predictions=True
max_seq_length=64

hyperparameters={'epochs': epochs,
 'learning_rate': learning_rate,
 'epsilon': epsilon,
 'train_batch_size': train_batch_size,
 'validation_batch_size': validation_batch_size,
 'test_batch_size': test_batch_size,
 'train_steps_per_epoch': train_steps_per_epoch,

Launch the Training Script from a SageMaker Notebook | 235

 'validation_steps': validation_steps,
 'test_steps': validation_steps,
 'use_xla': use_xla,
 'use_amp': use_amp,
 'max_seq_length': max_seq_length,
 'freeze_bert_layer': freeze_bert_layer,
 'run_validation': run_validation,
 'run_sample_predictions': run_sample_predictions}

estimator = TensorFlow(entry_point='tf_bert_reviews.py',
 instance_count=train_instance_count,
 instance_type=train_instance_type,
 volume_size=train_volume_size,
 py_version='<PYTHON_VERSION>',
 framework_version='<TENSORFLOW_VERSION>',
 hyperparameters=hyperparameters,
 metric_definitions=metrics_definitions,
 max_run=7200 # seconds)

Lastly, we call the estimator.fit()method with the train, validation, and test dataset
splits to start the training job from the notebook as follows:

from sagemaker.inputs import TrainingInput

s3_input_train_data =
 TrainingInput(s3_data=processed_train_data_s3_uri,
 distribution='ShardedByS3Key')

s3_input_validation_data =
 TrainingInput(s3_data=processed_validation_data_s3_uri,
 distribution='ShardedByS3Key')

s3_input_test_data =
 TrainingInput(s3_data=processed_test_data_s3_uri,
 distribution='ShardedByS3Key')

estimator.fit(inputs={'train': s3_input_train_data,
 'validation': s3_input_validation_data,
 'test': s3_input_test_data
 },
 wait=False)

Download and Inspect Our Trained Model from S3
Let’s use the AWS CLI to download our model from S3 and inspect it with Tensor‐
Flow’s saved_model_cli script:

aws s3 cp s3://$bucket/$training_job_name/output/model.tar.gz \
 ./model.tar.gz
mkdir -p ./model/
tar -xvzf ./model.tar.gz -C ./model/
saved_model_cli show --all --dir ./model/tensorflow/saved_model/0/

236 | Chapter 7: Train Your First Model

OUTPUT

signature_def['serving_default']:
 The given SavedModel SignatureDef contains the following input(s):
 inputs['input_ids'] tensor_info:
 dtype: DT_INT32
 shape: (-1, 64)
 name: serving_default_input_ids:0
 inputs['input_mask'] tensor_info:
 dtype: DT_INT32
 shape: (-1, 64)
 name: serving_default_input_mask:0
 The given SavedModel SignatureDef contains the following output(s):
 outputs['dense_1'] tensor_info:
 dtype: DT_FLOAT
 shape: (-1, 5)
 name: StatefulPartitionedCall:0

We see that the model expects two input vectors of size 64, the max_seq_length for
the input_ids and input_mask vectors, and returns one output vector of size 5, the
number of classes for the star_rating 1–5. The output represents a confidence dis‐
tribution over the five classes. The most-confident prediction will be our
star_rating prediction.

Let’s use saved_model_cli to make a quick prediction with sample data (all zeros) to
verify that the model inputs are sufficient. The actual input and output values do not
matter here. We are simply testing the network to make sure the model accepts two
vectors of the expected input size and returns one vector of the expected output size:

saved_model_cli run --dir '$tensorflow_model_dir' \
 --tag_set serve \
 --signature_def serving_default \
 --input_exprs \ 'input_ids=np.zeros((1,64));input_mask=np.zeros((1,64))'

OUTPUT

Result for output key dense_1:
[[0.5148565 0.50950885 0.514237 0.5389632 0.545161]]

Show Experiment Lineage for Our SageMaker Training Job
Once the hyper-parameter tuning job has finished, we can analyze the results directly
in our notebook or through SageMaker Studio.

Let’s summarize the experiment lineage up to this point. In Chapter 8, we will tune
our hyper-parameters and extend our experiment lineage to include hyper-parameter
optimization. In Chapter 9, we will deploy the model and further extend our experi‐
ment lineage to include model deployment. We will then tie everything together in an
end-to-end pipeline with full lineage tracking in Chapter 10:

Launch the Training Script from a SageMaker Notebook | 237

from sagemaker.analytics import ExperimentAnalytics

lineage_table = ExperimentAnalytics(
 sagemaker_session=sess,
 experiment_name=experiment_name,
 metric_names=['validation:accuracy'],
 sort_by="CreationTime",
 sort_order="Ascending",
)

lineage_table.dataframe()

TrialComponentName DisplayName max_seq_length learning_rate train_accuracy ...
TrialComponent-2021-01-09-062410-pxuy prepare 64.0 NaN NaN ...
tensorflow-training-2021-01-09-06-24-12-989 train 64.0 0.00001 0.9394 ...

Show Artifact Lineage for Our SageMaker Training Job
We can show the artifact lineage information that has been captured for our Sage‐
Maker Training Job used to fine-tune our product review classifier:

import time
Import sagemaker
from sagemaker.lineage.visualizer import LineageTableVisualizer

viz = LineageTableVisualizer(sagemaker.session.Session())
df = viz.show(training_job_name='<TRAINING_JOB_NAME>')

The output should look similar to this:

Name/source Direction Type Association type Lineage type
s3://.../output/bert-test Input DataSet ContributedTo artifact
s3://.../output/bert-validation Input DataSet ContributedTo artifact
s3://.../output/bert-train Input DataSet ContributedTo artifact
76310.../tensorflow-training:2.3.1-gpu-py37 Input Image ContributedTo artifact
s3://.../output/model.tar.gz Output Model Produced artifact

SageMaker Lineage Tracking automatically recorded the input data, output artifacts,
and SageMaker container image. The Association Type shows that the inputs have
ContributedTo this pipeline step. Let’s continue to build up our model lineage graph
as we tune and deploy our model in Chapters 8 and 9. We will then tie everything
together in an end-to-end pipeline with full lineage tracking in Chapter 10.

238 | Chapter 7: Train Your First Model

Evaluate Models
After we have trained and validated our model, we can use the remaining holdout
dataset—the test dataset—to perform our own predictions and measure the model’s
performance. Testing the model with the test dataset helps us evaluate how well the
model generalizes on unseen data. Therefore, we should never use the holdout test
dataset for training or validation. Based on the test results, we may need to modify
our algorithm, hyper-parameters, or training data. Additionally, more training data—
and more diverse feature engineering—may help improve our evaluation results.

Following is the code to evaluate the model using Keras API within TensorFlow—
similar to how we trained and validated the model in the previous section:

test_batch_size = 128
test_steps = 1000

test_data_filenames = glob(os.path.join(test_data, '*.tfrecord'))

test_dataset = file_based_input_dataset_builder(
 channel='test',
 input_filenames=test_data_filenames,
 pipe_mode=pipe_mode,
 is_training=False,
 drop_remainder=False,
 batch_size=test_batch_size,
 epochs=epochs,
 steps_per_epoch=test_steps,
 max_seq_length=max_seq_length)\
 .map(select_data_and_label_from_record)

test_history = model.evaluate(test_dataset,
 steps=test_steps,
 callbacks=callbacks)
print(test_history)

The test_history contains the test_loss and test_accuracy, respectively:

[0.17315794393, 0.50945542373]

Run Some Ad Hoc Predictions from the Notebook
We can also run some cursory predictions from the notebook to quickly satisfy our
curiosity about the model’s health. Here’s a snippet of relevant code to run sample
predictions:

import pandas as pd
import numpy as np

from transformers import DistilBertTokenizer

tokenizer =

Evaluate Models | 239

 DistilBertTokenizer.from_pretrained('distilbert-base-uncased')

def predict(text):
 encode_plus_tokens = tokenizer.encode_plus(
 text,
 pad_to_max_length=True,
 max_length=max_seq_length,
 truncation=True,
 return_tensors='tf')

 input_ids = encode_plus_tokens['input_ids']

 input_mask = encode_plus_tokens['attention_mask']

 outputs = model.predict(x=(input_ids, input_mask))

 prediction = [{"label": config.id2label[item.argmax()], \
 "score": item.max().item()} for item in outputs]

 return prediction[0]

predict('This is great!')
predict('This is OK.')
predict('This is terrible.')

The following output shows the predicted label (1–5) as well as the confidence for
each predicted label. In this case, the model is 92% confident that the label is 5 for
the review text “This is great!”:

{'label': 5, 'score': 0.92150515}
{'label': 3, 'score': 0.2807838}
{'label': 1, 'score': 0.48466408}

Analyze Our Classifier with a Confusion Matrix
A confusion matrix is a visual way of evaluating a classifier’s performance. Let’s create
a confusion matrix to visually inspect the test results by comparing the predicted and
actual values. We start by reading in the holdout test dataset that includes the raw
review_body text:

import csv

df_test_reviews = pd.read_csv(
 './data/holdout_test.tsv.gz',
 delimiter='\t',
 quoting=csv.QUOTE_NONE,
 compression='gzip')[['review_body', 'star_rating']]

df_test_reviews = df_test_reviews.sample(n=100,000)

240 | Chapter 7: Train Your First Model

Next, we use the predict function to calculate the predicted y_test dataset. We’ll
compare this to the observed values, y_actual, using the following code:

y_test = df_test_reviews['review_body'].map(predict)

y_actual = df_test_reviews['star_rating']

This results in the confusion matrix shown in Figure 7-24.

Figure 7-24. Confusion matrix showing the true (actual) labels and predicted labels.

Visualize Our Neural Network with TensorBoard
TensorBoard is an open source visualization and exploration tool maintained by the
TensorFlow community to provide insight into TensorFlow model training. Sage‐
Maker captures and saves the TensorBoard metrics in S3 during model training. We
can then visualize these metrics directly from our SageMaker Studio notebook using
the S3 location of the saved TensorBoard metrics, as shown in Figure 7-25.

Evaluate Models | 241

Figure 7-25. TensorBoard showing loss and accuracy over time.

We can also inspect our neural network, as shown in Figure 7-26.

Figure 7-26. TensorBoard showing the TensorFlow graph for BERT.

242 | Chapter 7: Train Your First Model

To run TensorBoard from a SageMaker Notebook, simply install it with pip install
tensorboard, point to the TensorBoard logs in S3, and start the process from a note‐
book terminal as follows:

S3_REGION=<REGION> tensorboard --port 6006 \
 --logdir s3://$bucket/$training_job_name/debug-output/events

Using our browser, we can securely navigate to TensorBoard running in our Sage‐
Maker Notebook as follows:

https://<NOTEBOOK_NAME>.notebook.<REGION>.sagemaker.aws/proxy/6006/

The 6006 port was chosen by one of the Google engineers who cre‐
ated TensorBoard. The port is the term “goog” upside down!

Monitor Metrics with SageMaker Studio
After training, we should evaluate a model’s performance using metrics such as accu‐
racy to determine if the model achieves our business objective. In our example, we
want to measure if our model correctly predicts the star_rating from the
review_body. Note that we performed training and validation in the same Keras step.

We can visualize our training and validation metrics directly with SageMaker Studio
throughout the training process, as shown in Figure 7-27. We visually see overfitting
happening very early, so we likely want to stop the training job early to save money.

Evaluate Models | 243

Figure 7-27. Monitor training and validation metrics directly within SageMaker Studio.

Monitor Metrics with CloudWatch Metrics
We can also visualize our model metrics in CloudWatch alongside system metrics like
CPU, GPU, and memory utilization. Figure 7-28 shows the train and validation accu‐
racy metrics alongside the system metrics in CloudWatch.

244 | Chapter 7: Train Your First Model

Figure 7-28. Dashboard of training and validation accuracy metrics in CloudWatch.

Debug and Profile Model Training with
SageMaker Debugger
During training, we can use SageMaker Debugger to provide full insight into model
training by monitoring, recording, and analyzing the state of each model training job
—without any code changes. We can use SageMaker Debugger to stop our training
job early to save money when we detect certain conditions like overfitting.

With SageMaker Debugger, we can interactively and visually explore the data cap‐
tured during training, including tensor, gradient, and resource utilization. SageMaker
Debugger captures this debugging and profiling information for both single-instance
training jobs as well as multi-instance, distributed training clusters.

Debug and Profile Model Training with SageMaker Debugger | 245

Detect and Resolve Issues with SageMaker Debugger
Rules and Actions
Combined with CloudWatch Events, SageMaker Debugger can trigger an alert if a
particular rule condition is met, such as bad training data, vanishing gradients, and
exploding gradients. Bad data includes NaNs and nulls. Vanishing gradients occur
when really small values are multiplied by other really small values and the result is
too small for our float data type to store. Exploding gradients are the opposite of
vanishing gradients. They occur when really large values are multiplied by other
really large values and the result can’t be represented by the 32 bits of our float data
type. Both vanishing and exploding gradients can occur in deep neural networks
given the number of matrix multiplications happening throughout the layers. As
small numbers are multiplied by other small numbers, they will eventually approach
zero and no longer be representable with a 32-bit float.

If SageMaker Debugger triggers an alert at 3 a.m., for example, SageMaker can auto‐
matically stop the training job. SageMaker can also send an email or text message to
the on-call data scientist to investigate the issue. The data scientist would then use
SageMaker Debugger to analyze the training run, visualize the tensors, review the
CPU and GPU system metrics, and determine the root cause of the alert.

In addition to vanishing and exploding gradients, SageMaker Debugger also supports
built-in rules for common debugging scenarios, such as loss_not_decreasing,
overfit, overtraining, and class_imbalance. SageMaker launches an evaluation
job for each SageMaker rule specified. We can also provide our own rules by provid‐
ing a Docker image and implementation of the Rule framework.

Following is the code to create two rules to detect when the training loss stops
decreasing at an adequate rate (loss_not_decreasing) and when the model starts to
overtrain as the validation loss increases after a number of steps of normally
decreasing behavior. These are both signals to “early stop” the training job, reduce the
cost of the overall training job, avoid overfitting our model to the training dataset,
and allow the model to generalize better on new, unseen data. Rules are configured
with thresholds to define when the rules should trigger—as well as the Action to take
when the rules are triggered:

from sagemaker.debugger import Rule
from sagemaker.debugger import rule_configs
from sagemaker.debugger import CollectionConfig
from sagemaker.debugger import DebuggerHookConfig

actions=rule_configs.ActionList(
 rule_configs.StopTraining(),
 rule_configs.Email("<EMAIL_ADDRESS>"),
 rule_configs.SMS("<PHONE_NUMBER>")
)

246 | Chapter 7: Train Your First Model

rules=[
 Rule.sagemaker(
 base_config=rule_configs.loss_not_decreasing(),
 rule_parameters={
 'collection_names': 'losses,metrics',
 'use_losses_collection': 'true',
 'num_steps': '10',
 'diff_percent': '50'
 },
 collections_to_save=[
 CollectionConfig(name='losses',
 parameters={
 'save_interval': '10',
 }),
 CollectionConfig(name='metrics',
 parameters={
 'save_interval': '10',
 })
],
 actions=actions
),
 Rule.sagemaker(
 base_config=rule_configs.overtraining(),
 rule_parameters={
 'collection_names': 'losses,metrics',
 'patience_train': '10',
 'patience_validation': '10',
 'delta': '0.5'
 },
 collections_to_save=[
 CollectionConfig(name='losses',
 parameters={
 'save_interval': '10',
 }),
 CollectionConfig(name='metrics',
 parameters={
 'save_interval': '10',
 })
],
 actions=actions
)
]

We also need to create a debugger hook to use with the Keras API within TensorFlow
2.x as follows:

hook_config = DebuggerHookConfig(
 hook_parameters={
 'save_interval': '10', # number of steps
 'export_tensorboard': 'true',
 'tensorboard_dir': 'hook_tensorboard/',
 })

Debug and Profile Model Training with SageMaker Debugger | 247

Then we need to set the rules and debugger hook in our Estimator as follows:

from sagemaker.tensorflow import TensorFlow
estimator = TensorFlow(entry_point='tf_bert_reviews.py',
 ...
 rules=rules,
 debugger_hook_config=hook_config,
 ...
)

Profile Training Jobs
Let’s configure some ProfileRules to analyze CPU, GPU, network, and disk I/O met‐
rics—as well as generate a ProfilerReport for our training job. Here, we are adding
more to our existing rules list from the debugging section:

from sagemaker.debugger import Rule
from sagemaker.debugger import rule_configs
from sagemaker.debugger import ProfilerRule

rules=[
Rule.sagemaker(...),
 ProfilerRule.sagemaker(rule_configs.ProfilerReport()),
 ProfilerRule.sagemaker(rule_configs.BatchSize()),
 ProfilerRule.sagemaker(rule_configs.CPUBottleneck()),
 ProfilerRule.sagemaker(rule_configs.GPUMemoryIncrease()),
 ProfilerRule.sagemaker(rule_configs.IOBottleneck()),
 ProfilerRule.sagemaker(rule_configs.LoadBalancing()),
 ProfilerRule.sagemaker(rule_configs.LowGPUUtilization()),
 ProfilerRule.sagemaker(rule_configs.OverallSystemUsage()),
 ProfilerRule.sagemaker(rule_configs.StepOutlier())
]

We then need to create a ProfilerConfig and pass it to our Estimator as follows:

from sagemaker.debugger import ProfilerConfig, FrameworkProfile

profiler_config = ProfilerConfig(
 system_monitor_interval_millis=500,
 framework_profile_params=FrameworkProfile(
 local_path="/opt/ml/output/profiler/",
 start_step=5,
 num_steps=10)
)

from sagemaker.tensorflow import TensorFlow

estimator = TensorFlow(entry_point='tf_bert_reviews.py',
 source_dir='src',
 ...
 py_version='<PYTHON_VERSION>',
 framework_version='<TENSORFLOW_VERSION>',
 hyperparameters={...},

248 | Chapter 7: Train Your First Model

 rules=rules,
 debugger_hook_config=hook_config,
 profiler_config=profiler_config,

Figure 7-29 shows a profile report generated by SageMaker Debugger during our
training run. This report includes a suggestion to increase our batch size to improve
GPU utilization, speed up our training job, and reduce cost.

Figure 7-29. SageMaker Debugger deep profiling analyzes model training jobs.

Interpret and Explain Model Predictions
We can also use SageMaker Debugger to track gradients, layers, and weights during
the training process. We will use this to monitor the BERT attention mechanism dur‐
ing model training. By understanding how the model is learning, we can better iden‐
tify model bias and potentially explain model predictions. To do this, we need to
capture tensors, including the attention scores, query vectors, and key vectors as
SageMaker Debugger “collections.” This information can then be used to plot the
attention heads and individual neurons in the query and key vectors. Let’s create our
DebuggerHookConfig and a CollectionConfig using regex to capture the attention
tensors at a particular interval during training:

debugger_hook_config = DebuggerHookConfig(
 s3_output_path=s3_bucket_for_tensors,
 collection_configs=[
 CollectionConfig(
 name="all",
 parameters={
 "include_regex":
 ".*multiheadattentioncell0_output_1|.*key_output|.*query_output",
 "train.save_steps": "0",

Interpret and Explain Model Predictions | 249

 "eval.save_interval": "1"}
)]
)

We also add the following lines in the training script’s validation loop to record the
string representation of input tokens:

if hook.get_collections()['all'].save_config\
 .should_save_step(modes.EVAL, hook.mode_steps[modes.EVAL]):

 hook._write_raw_tensor_simple("input_tokens", input_tokens)

To visualize the results, we create a trial pointing to the captured tensors:

from smdebug.trials import create_trial
trial = create_trial(path)

We will use a script that plots the attention head using Bokeh, an interactive visualiza‐
tion library:

from utils import attention_head_view, neuron_view
from ipywidgets import interactive

Let’s get the tensor names of the attention scores:

tensor_names = []

for tname in sorted(trial.tensor_names(regex='.*multiheadattentioncell0_output_1'):
 tensor_names.append(tname)

The tensor names should look similar to this since we are using a BERT model with
12 attention heads:

['bertencoder0_transformer0_multiheadattentioncell0_output_1',
 'bertencoder0_transformer10_multiheadattentioncell0_output_1',
 'bertencoder0_transformer11_multiheadattentioncell0_output_1',
 'bertencoder0_transformer1_multiheadattentioncell0_output_1',
 'bertencoder0_transformer2_multiheadattentioncell0_output_1',
 'bertencoder0_transformer3_multiheadattentioncell0_output_1',
 'bertencoder0_transformer4_multiheadattentioncell0_output_1',
 'bertencoder0_transformer5_multiheadattentioncell0_output_1',
 'bertencoder0_transformer6_multiheadattentioncell0_output_1',
 'bertencoder0_transformer7_multiheadattentioncell0_output_1',
 'bertencoder0_transformer8_multiheadattentioncell0_output_1',
 'bertencoder0_transformer9_multiheadattentioncell0_output_1']

250 | Chapter 7: Train Your First Model

https://oreil.ly/ZTxLN

Next we iterate over the available tensors and retrieve the tensor values:

steps = trial.steps(modes.EVAL)
tensors = {}

for step in steps:
 print("Reading tensors from step", step)
 for tname in tensor_names:
 if tname not in tensors:
 tensors[tname]={}
 tensors[tname][step] = trial.tensor(tname).value(step, modes.EVAL)
num_heads = tensors[tname][step].shape[1]

Next, we retrieve the query and key output tensor names:

ayers = []
layer_names = {}

for index, (key, query) in enumerate(
 zip(trial.tensor_names(regex='.*key_output_'),
 trial.tensor_names(regex='.*query_output_'))):

 layers.append([key,query])
 layer_names[key.split('_')[1]] = index

We also retrieve the string representation of the input tokens:

input_tokens = trial.tensor('input_tokens').value(0, modes.EVAL)

We are now ready to plot the attention head showing the attention scores between
different tokens. The thicker the line, the higher the score. Let’s plot the first 20
tokens using the following code, summarized in Figure 7-30:

n_tokens = 20
view = attention_head_view.AttentionHeadView(input_tokens,
 tensors,
 step=trial.steps(modes.EVAL)[0],
layer='bertencoder0_transformer0_multiheadattentioncell0_output_1',
 n_tokens=n_tokens)

Interpret and Explain Model Predictions | 251

Figure 7-30. Attention-head view for the first 20 tokens. Source: “Visualizing Attention
in Transformer-Based Language Representation Models”.

Next, we retrieve the query and key vector tensors:

queries = {}
steps = trial.steps(modes.EVAL)

for step in steps:
 print("Reading tensors from step", step)

 for tname in trial.tensor_names(regex='.*query_output'):
 query = trial.tensor(tname).value(step, modes.EVAL)
 query = query.reshape((query.shape[0], query.shape[1], num_heads, -1))
 query = query.transpose(0,2,1,3)
 if tname not in queries:
 queries[tname] = {}
 queries[tname][step] = query

keys = {}
steps = trial.steps(modes.EVAL)

for step in steps:
 print("Reading tensors from step", step)

 for tname in trial.tensor_names(regex='.*key_output'):
 key = trial.tensor(tname).value(step, modes.EVAL)

252 | Chapter 7: Train Your First Model

https://oreil.ly/v6a5S
https://oreil.ly/v6a5S

 key = key.reshape((key.shape[0], key.shape[1], num_heads, -1))
 key = key.transpose(0,2,1,3)
 if tname not in keys:
 keys[tname] = {}
 keys[tname][step] = key

With the tensor values at hand, we can plot a detailed neuron view:

view = neuron_view.NeuronView(input_tokens,
 keys=keys,
 queries=queries,
 layers=layers,
 step=trial.steps(modes.EVAL)[0],
 n_tokens=n_tokens,
 layer_names=layer_names)

The resulting visualization is shown in Figure 7-31.

Figure 7-31. Neuron view of query and key vectors. Source: “Visualizing Attention in
Transformer-Based Language Representation Models”.

The darker the color in this visualization, the more the neurons influenced the atten‐
tion scores.

Interpret and Explain Model Predictions | 253

https://oreil.ly/v6a5S
https://oreil.ly/v6a5S

As mentioned, the visualization of BERT attention can help to identify the root cause
for incorrect model predictions. There is an active debate in the industry right now
whether or not attention can be used for model explainability. A more popular
approach to model explainability is gradient-based toolkits that generate saliency
maps, such as AllenNLP Interpret. The saliency maps identify which input tokens
had the biggest influence on a model prediction and might be a more straightforward
approach to NLP model explainability. Let’s use the AllenNLP demo website to create
a saliency map when predicting the sentiment of the following review text: “a very
well-made, funny and entertaining picture.” Figure 7-32 shows the top 10 most
important words that led to the “Positive” prediction.

Figure 7-32. Visualization of the top 10 most important words to a sentiment analysis
prediction using AllenNLP Interpret.

We can integrate AllenNLP saliency maps into our Python applications by installing
AllenNLP using pip install allennlp. In the following, we are calculating the inte‐
grated gradients, a measure of the influence that each token has on a prediction. We
are specifically using a variant of BERT called RoBERTa, but AllenNLP supports
many variants of BERT:

from pprint import pprint
from allennlp.predictors.predictor import Predictor
from allennlp.interpret.saliency_interpreters import IntegratedGradient

predictor = Predictor.from_path(
"https://.../allennlp-public-models/sst-roberta-large-2020.06.08.tar.gz"
)

integrated_gradient_interpreter = IntegratedGradient(predictor)

sentence = "a very well-made, funny and entertaining picture."

integrated_gradient_interpretation = \

254 | Chapter 7: Train Your First Model

https://oreil.ly/wJLRh
https://oreil.ly/WzARH
https://oreil.ly/wJLRh

 integrated_gradient_interpreter.saliency_interpret_from_json(inputs)

pprint(integrated_gradient_interpretation)

The output looks as follows:

{'instance_1': {'grad_input_1': [0.10338538634781776,
 0.19893729477254535,
 0.008472852427212439,
 0.0005615125409780962,
 0.01615882936970941,
 0.19841675479930443,
 0.06983715792756516,
 0.02557800239689324,
 0.06044705677145928,
 0.16507210055696683,
 0.1531329783765724]}}

Detect Model Bias and Explain Predictions
Even with an unbiased dataset, there is still the potential to train a biased model. This
sounds surprising, but there are certain hyper-parameters that may favor particular
facets of input features differently than other facets of the same feature. Additionally,
we should be careful when fine-tuning with pre-trained models that are biased. BERT,
for example, is biased because of the type of data that it was trained on. Due to the
model’s ability to learn from context, BERT picks up the statistical properties of the
Wikipedia training data, including any expressed bias and social stereotypes. As we
are fighting to reduce bias and stereotypes in our society, we should also implement
mechanisms to detect and stop this bias from propagating into our models.

SageMaker Clarify helps us to detect bias and evaluate model fairness in each step of
our machine learning pipeline. We saw in Chapter 5 how to use SageMaker Clarify to
detect bias and class imbalances in our dataset. We now use SageMaker Clarify to
analyze our trained model.

For post-training bias analysis, SageMaker Clarify integrates with SageMaker Experi‐
ments. SageMaker Clarify will look into the training data, the labels, and the model
predictions and run a set of algorithms to calculate common data and model bias
metrics. We can also use SageMaker Clarify to explain model predictions by analyz‐
ing feature importances.

Detect Bias with a SageMaker Clarify Processing Job
Similar to the pre-training bias analysis, we can run SageMaker Clarify as a Process‐
ing Job to calculate post-training data and model bias metrics. Calculating post-
training bias metrics does require a trained model because the analysis now includes
the data, labels, and model predictions. We define our trained model in ModelConfig

Detect Model Bias and Explain Predictions | 255

and specify the model prediction format in ModelPredictedLabelConfig. SageMaker
Clarify performs the post-training bias analysis by comparing the model predictions
against the labels in the training data with respect to the chosen facet.

The provided training data must match the model’s expected inference inputs plus
the label column. We have chosen to train our model with just review_body as the
single input feature. However, for this example, we have added product_category as
a second feature and retrained our model. We use product_category as the facet to
analyze for bias and imbalance across gift cards, digital software, and digital video
games:

from sagemaker import clarify

clarify_processor = clarify.SageMakerClarifyProcessor(
 role=role,
 instance_count=1,
 instance_type='ml.c5.2xlarge',
 sagemaker_session=sess)

bias_report_output_path = 's3://{}/clarify'.format(bucket)

data_config = clarify.DataConfig(
 s3_data_input_path=train_dataset_s3_uri,
 s3_output_path=bias_report_output_path,
 label='star_rating',
 headers=['product_category', 'review_body'],
 dataset_type='text/csv')

bias_config = clarify.BiasConfig(
 label_values_or_threshold=[5,4]
 facet_name='product_category',
 facet_values_or_threshold=['Gift Card'],
 group_name='product_category')

In ModelConfig we define our trained model and specify the instance type and count
for a shadow endpoint, which SageMaker Clarify creates:

model_config = clarify.ModelConfig(
 model_name=model_name,
 instance_type='ml.m5.4xlarge',
 instance_count=1,
 content_type='text/csv',
 accept_type='application/jsonlines')

ModelPredictedLabelConfig defines how to parse and read the model predictions.
We can specify label, probability, probability_threshold, and label_headers. If
our model returns a JSON output such as {"predicted_label": 5}, we could parse
the prediction result by setting label='predicted_label'. If the model output
matches the provided label type and format from the training data, we can simply
leave it as is:

256 | Chapter 7: Train Your First Model

predictions_config = clarify.ModelPredictedLabelConfig(label='predicted_label')

clarify_processor.run_post_training_bias(
 data_config=data_config,
 data_bias_config=bias_config,
 model_config=model_config,
 model_predicted_label_config=predictions_config,
 methods=['DPPL', 'DI', 'DCA', 'DCR', 'RD', \
 'DAR', 'DRR', 'AD', 'CDDPL', 'TE'],
 wait=True)

In methods we can select which post-training bias metrics to calculate.

In our example, we could analyze whether our model predicts more negative star rat‐
ings for a specific product category (facet) value, such as Digital Software, com‐
pared to another facet value, such as Gift Cards. One of the corresponding bias
metrics to check would be difference in conditional rejection (DCR), which compares
the labels to the predicted labels for each facet (product_category) for negative clas‐
sifications (rejections). In this case, we could define star_rating==5 and
star_rating==4 as the positive outcomes and the other classes as negative outcomes.

Post-training metrics include difference in positive proportions in
predicted labels, disparate impact, difference in conditional accept‐
ance, difference in conditional rejection, recall difference, differ‐
ence in acceptance rate, difference in rejection rates, accuracy
difference, treatment equality, conditional demographic disparity
in predicted labels, and counterfactual fliptest.

SageMaker Clarify starts the post-training bias analysis by validating the provided
configuration inputs and output parameters. SageMaker Clarify then creates an
ephemeral, shadow SageMaker model endpoint and deploys the trained model. The
processing job then calculates the defined bias metrics. Table 7-1 shows the calculated
post-training bias metrics for our model. Once the job completes, SageMaker Clarify
generates the output files and deletes the shadow endpoint.

Table 7-1. Post-training bias metrics analysis results

name description value
AD Accuracy difference (AD) -0.25
CDDPL Conditional demographic disparity in predicted labels (CDDPL) -0.333333
DAR Difference in acceptance rates (DAR) -0.444444
DCA Difference in conditional acceptance (DCA) -0.333333
DCR Difference in conditional rejection (DCR) -1.27273
DI Disparate impact (DI) 2.22222
DPPL Difference in positive proportions in predicted labels (DPPL) -0.55

Detect Model Bias and Explain Predictions | 257

name description value
DRR Difference in rejection rates (DRR) -0.909091
RD Recall difference (RD) -0.166667
TE Treatment equality (TE) -0.25

In addition, SageMaker Clarify generates analysis.json with bias metrics and
report.ipynb to visualize the bias metrics and share with our colleagues. The process‐
ing job also generates a bias baseline that we will use with SageMaker Model Monitor
to detect drifts in bias on live model endpoints. We will describe this in more detail in
Chapter 9.

Feature Attribution and Importance with SageMaker
Clarify and SHAP
SageMaker Clarify also supports SHAP, a concept from game theory applied to
machine learning content, to determine the contribution that each feature makes to a
model’s prediction. We can use this information to select features or create new fea‐
ture combinations. Following is the code to perform feature attribution and model
explainability with a SageMaker Clarify Processing Job:

from sagemaker import clarify

shap_config = clarify.SHAPConfig(
 baseline=[shap_dataset.iloc[0].values.tolist()],
 num_samples=15,
 agg_method='mean_abs')

explainability_output_path = 's3://{}/clarify'.format(bucket)

explainability_data_config = clarify.DataConfig(
 s3_data_input_path=train_dataset_s3_uri,
 s3_output_path=explainability_output_path,
 label='star_rating',
 headers=['product_category', 'review_body'],
 dataset_type='text/csv')

clarify_processor.run_explainability(
 data_config=explainability_data_config,
 model_config=model_config,
 model_score='predicted_label',
 explainability_config=shap_config)

In addition to analysis.json and report.ipynb, the processing job generates explana‐
tions_shap/out.csv with SHAP values for each feature and predicted label in the data‐
set. Here is a relevant snippet from analysis.json for the feature attributions and
explanations:

258 | Chapter 7: Train Your First Model

 "explanations": {
 "kernel_shap": {
 "star_rating": {
 "global_shap_values": {
 "product_category": 0.04999999999999998,
 "review_body": 1.3833333333333333
 },
 "expected_value": 2.0
 }
 }
 }

We can also see the aggregated SHAP value for each feature visualized in SageMaker
Studio, as shown in Figure 7-33. This represents the importance of each feature
toward the prediction.

Figure 7-33. SageMaker Studio showing feature importance.

The processing job also generates an explainability baseline that we will use with
SageMaker Model Monitor to detect drifts in feature attribution and model explaina‐
bility on live model endpoints. We will describe this in more detail in Chapter 9.

More Training Options for BERT
While this book uses a lot of TensorFlow examples, SageMaker supports other popu‐
lar AI and machine learning frameworks, including PyTorch and Apache MXNet, as
we will discuss in the next few sections. We will also demonstrate how to train deep
learning models with Java using AWS’s open source Deep Java Library. This is useful
for enterprises looking to integrate deep learning into their Java-based applications.

More Training Options for BERT | 259

https://djl.ai

Convert TensorFlow BERT Model to PyTorch
In some cases, we may want to try out a different framework to see if we see better
training or inference performance. Since we are using the popular Transformers
library for BERT, we can convert our model from TensorFlow to PyTorch in just a few
lines of code:

Import the PyTorch version of DistilBert (without the TF prefix)
from transformers import DistilBertForSequenceClassification

Using from_tf=True to load the model from TensorFlow to PyTorch
loaded_pytorch_model =
 DistilBertForSequenceClassification.from_pretrained(
 tensorflow_model_path, from_tf=True)

Save the model as PyTorch
loaded_pytorch_model.save_pretrained(pytorch_models_dir)

We can also convert a PyTorch model to TensorFlow. This is a fea‐
ture of the Transformers library and will not work for non-
Transformers-based PyTorch and TensorFlow models.

After converting the model, we have a PyTorch version of the same model that we
trained with TensorFlow—using the same weights. We will deploy this PyTorch
model using the TorchServe runtime in Chapter 9. TorchServe was built and opti‐
mized by AWS, Facebook, and the PyTorch Community to serve PyTorch model pre‐
dictions and scale across AWS’s elastic infrastructure:

print(loaded_pytorch_model)

OUTPUT

DistilBertForSequenceClassification(
 (distilbert): DistilBertModel(
 (embeddings): Embeddings(
 (word_embeddings): Embedding(30522, 768, padding_idx=0)
 (position_embeddings): Embedding(512, 768)
 (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
 (transformer): Transformer(
 (layer): ModuleList(
 (0): TransformerBlock(
 (attention): MultiHeadSelfAttention(
 (dropout): Dropout(p=0.1, inplace=False)
 (q_lin): Linear(in_features=768, out_features=768, bias=True)
 (k_lin): Linear(in_features=768, out_features=768, bias=True)
 (v_lin): Linear(in_features=768, out_features=768, bias=True)

260 | Chapter 7: Train Your First Model

 (out_lin): Linear(in_features=768, out_features=768, bias=True)
)
 (sa_layer_norm): LayerNorm((768,), eps=1e-12, \
 elementwise_affine=True)
 (ffn): FFN(
 (dropout): Dropout(p=0.1, inplace=False)
 (lin1): Linear(in_features=768, out_features=3072, bias=True)
 (lin2): Linear(in_features=3072, out_features=768, bias=True)
)
 (output_layer_norm): LayerNorm((768,), eps=1e-12, \
 elementwise_affine=True)
)
 ...
)
)
)
 (pre_classifier): Linear(in_features=768, out_features=768, bias=True)
 (classifier): Linear(in_features=768, out_features=5, bias=True)
 ...
)

Train PyTorch BERT Models with SageMaker
PyTorch is a popular deep-learning framework with a large community of contribu‐
tors from many companies like Facebook and AWS. PyTorch is natively supported by
SageMaker, including distributed model training, debugging, profiling, hyper-
parameter tuning, and model inference endpoints. Following are snippets of code
that train a DistilBERT PyTorch model on SageMaker and save the code to S3 to
deploy in Chapter 9. The complete code is available in the GitHub repository for this
book:

from sagemaker.pytorch import PyTorch

estimator = PyTorch(
 entry_point='train.py',
 source_dir='src',
 role=role,
 instance_count=train_instance_count,
 instance_type=train_instance_type,
 volume_size=train_volume_size,
 py_version='<PYTHON_VERSION>',
 framework_version='<PYTORCH_VERSION>',
 hyperparameters=hyperparameters,
 metric_definitions=metric_definitions,
 input_mode=input_mode,
 debugger_hook_config=debugger_hook_config
)

estimator.fit(inputs={'train': s3_input_train_data,
 'validation': s3_input_validation_data,
 'test': s3_input_test_data

More Training Options for BERT | 261

 },
 experiment_config=experiment_config,
 wait=False)

Following is the Python train.py script that sets up the network and trains the model.
Notice that we are using the PyTorch DistilBertForSequenceClassification and
not the TensorFlow TFDistilBertForSequenceClassification, which uses a TF pre‐
fix to differentiate the implementation:

import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
import torch.utils.data

PRE_TRAINED_MODEL_NAME = 'distilbert-base-uncased'

tokenizer = DistilBertTokenizer.from_pretrained(
 PRE_TRAINED_MODEL_NAME)

config = DistilBertConfig.from_pretrained(PRE_TRAINED_MODEL_NAME,
 num_labels=len(CLASS_NAMES),
 id2label={0: 1, 1: 2, 2: 3, 3: 4, 4: 5},
 label2id={1: 0, 2: 1, 3: 2, 4: 3, 5: 4}
)
config.output_attentions=True

model = DistilBertForSequenceClassification.from_pretrained(
 PRE_TRAINED_MODEL_NAME, config=config)

device = torch.device('cuda' if use_cuda else 'cpu')
model.to(device)

ds_train = ReviewDataset(
 reviews=df_train.review_body.to_numpy(),
 targets=df_train.star_rating.to_numpy(),
 tokenizer=tokenizer,
 max_seq_len=max_seq_len
)

train_data_loader = DataLoader(
 ds_train,
 batch_size=batch_size,
 shuffle=True
)

loss_function = nn.CrossEntropyLoss()
optimizer = optim.Adam(params=model.parameters(), lr=args.lr)
for epoch in range(args.epochs):
for i, (sent, label) in enumerate(train_data_loader):
 model.train()
 optimizer.zero_grad()

262 | Chapter 7: Train Your First Model

 sent = sent.squeeze(0)
 if torch.cuda.is_available():
 sent = sent.cuda()
 label = label.cuda()
 output = model(sent)[0]
 _, predicted = torch.max(output, 1)

 loss = loss_function(output, label)
 loss.backward()
 optimizer.step()
...
torch.save(model.state_dict(), save_path)

Train Apache MXNet BERT Models with SageMaker
MXNet is another popular deep-learning framework used heavily within Amazon
and AWS for many different use cases, including demand forecast, shipping logistics,
infrastructure resource optimization, natural language processing, computer vision,
fraud detection, and much more. MXNet is natively supported by SageMaker, includ‐
ing distributed training, debugging, profiling, hyper-parameter tuning, and model
inference endpoints. Following is the code to train a BERT model with MXNet:

from sagemaker.mxnet import MXNet

estimator = MXNet(
 entry_point='train.py',
 source_dir='src',
 role=role,
 instance_count=train_instance_count,
 instance_type=train_instance_type,
 volume_size=train_volume_size,
 py_version='<PYTHON_VERSION>',
 framework_version='<MXNET_VERSION>',
 hyperparameters=hyperparameters,
 metric_definitions=metric_definitions,
 input_mode=input_mode,
 debugger_hook_config=debugger_hook_config
)

estimator.fit(inputs={'train': s3_input_train_data,
 'validation': s3_input_validation_data,
 'test': s3_input_test_data
 },
 experiment_config=experiment_config,
 wait=False)

Train BERT Models with PyTorch and AWS Deep Java Library
While Python and C are the dominant languages for data science, there are scenarios
that require integration with the billions of lines of Java code that have been written

More Training Options for BERT | 263

since Java’s inception in the 1990s. Additionally, a lot of big data frameworks such as
Apache Hadoop, Spark, and ElasticSearch are implemented in Java. Following are a
series of code snippets that demonstrate how to train a BERT model with PyTorch
using AWS Deep Learning Java that invokes TensorFlow, PyTorch, and Apache
MXNet libraries from Java using the Java Native Interface. These examples are
derived from the Deep Java Library GitHub repository.

First, let’s define a sizable amount of imports:

import ai.djl.*;
import ai.djl.engine.Engine;
import ai.djl.basicdataset.CsvDataset;
import ai.djl.basicdataset.utils.DynamicBuffer;
import ai.djl.modality.nlp.SimpleVocabulary;
import ai.djl.modality.nlp.bert.BertFullTokenizer;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.repository.zoo.*;
import ai.djl.training.*;
import ai.djl.training.dataset.Batch;
import ai.djl.training.dataset.RandomAccessDataset;
import ai.djl.training.evaluator.Accuracy;
import ai.djl.training.listener.CheckpointsTrainingListener;
import ai.djl.training.listener.TrainingListener;

Next, we define a Java class to transform raw text into BERT embeddings:

final class BertFeaturizer implements CsvDataset.Featurizer {
 private final BertFullTokenizer tokenizer;
 private final int maxLength; // the cut-off length

 public BertFeaturizer(BertFullTokenizer tokenizer, int maxLength) {
 this.tokenizer = tokenizer;
 this.maxLength = maxLength;
 }

 @Override
 public void featurize(DynamicBuffer buf, String input) {
 SimpleVocabulary vocab = tokenizer.getVocabulary();
 // convert sentence to tokens (toLowerCase for uncased model)
 List<String> tokens = tokenizer.tokenize(input.toLowerCase());
 // trim the tokens to maxLength
 tokens = tokens.size() > maxLength ?
 tokens.subList(0, maxLength) : tokens;
 // BERT embedding convention "[CLS] Your Sentence [SEP]"
 buf.put(vocab.getIndex("[CLS]"));
 tokens.forEach(token -> buf.put(vocab.getIndex(token)));
 buf.put(vocab.getIndex("[SEP]"));
 }
}

264 | Chapter 7: Train Your First Model

https://oreil.ly/eVeQY

Let’s define a function to retrieve our Amazon Customer Reviews Dataset. For this
example, we use the Digital_Software product category:

CsvDataset getDataset(int batchSize, BertFullTokenizer tokenizer, int maxLength){
 String amazonReview =
 "https://s3.amazonaws.com/amazon-reviews-
pds/tsv/amazon_reviews_us_Digital_Software_v1_00.tsv.gz";
 float paddingToken = tokenizer.getVocabulary().getIndex("[PAD]");
 return CsvDataset.builder()
 .optCsvUrl(amazonReview) // load from Url
 .setCsvFormat(CSVFormat.TDF.withQuote(null).withHeader())
 .setSampling(batchSize, true) // make sample size and random access
 .addFeature(
 new CsvDataset.Feature(
 "review_body", new BertFeaturizer(tokenizer,
 maxLength)))
 .addLabel(
 new CsvDataset.Feature(
 "star_rating", (buf, data) ->
 buf.put(Float.parseFloat(data) - 1.0f)))
 .optDataBatchifier(
 PaddingStackBatchifier.builder()
 .optIncludeValidLengths(false)
 .addPad(0, 0, (m) ->
 m.ones(new Shape(1)).mul(paddingToken))
 .build())
 .build();
}

Now we retrieve a pre-trained DistilBERT PyTorch model from the Deep Java Library
model zoo:

String modelUrls =
 "https://resources.djl.ai/test-models/traced_distilbert_wikipedia_uncased.zip";
}

Criteria<NDList, NDList> criteria = Criteria.builder()
 .optApplication(Application.NLP.WORD_EMBEDDING)
 .setTypes(NDList.class, NDList.class)
 .optModelUrls(modelUrls)
 .optProgress(new ProgressBar())
 .build();
ZooModel<NDList, NDList> embedding = ModelZoo.loadModel(criteria);

Let’s construct our model to fine-tune DistilBERT with our Amazon Customer
Reviews Dataset:

Predictor<NDList, NDList> embedder = embedding.newPredictor();
Block classifier = new SequentialBlock()
 // text embedding layer
 .add(
 ndList -> {
 NDArray data = ndList.singletonOrThrow();

More Training Options for BERT | 265

 NDList inputs = new NDList();
 long batchSize = data.getShape().get(0);
 float maxLength = data.getShape().get(1);

 if ("PyTorch".equals(Engine.getInstance().getEngineName())) {
 inputs.add(data.toType(DataType.INT64, false));
 inputs.add(data.getManager().full(data.getShape(), 1,
 DataType.INT64));
 inputs.add(data.getManager().arange(maxLength)
 .toType(DataType.INT64, false)
 .broadcast(data.getShape()));
 } else {
 inputs.add(data);
 inputs.add(data.getManager().full(new Shape(batchSize),
 maxLength));
 }
 // run embedding
 try {
 return embedder.predict(inputs);
 } catch (TranslateException e) {
 throw new IllegalArgumentException("embedding error", e);
 }
 })
 // classification layer
 .add(Linear.builder().setUnits(768).build()) // pre classifier
 .add(Activation::relu)
 .add(Dropout.builder().optRate(0.2f).build())
 .add(Linear.builder().setUnits(5).build()) // 5 star rating
 .addSingleton(nd -> nd.get(":,0")); // Take [CLS] as the head
Model model = Model.newInstance("AmazonReviewRatingClassification");
model.setBlock(classifier);

Finally, let’s tie everything together, transform our dataset into BERT embeddings, set
up a Checkpoint callback listener, and train our BERT-based review classifier with
Java!

// Prepare the vocabulary
SimpleVocabulary vocabulary = SimpleVocabulary.builder()
 .optMinFrequency(1)
 .addFromTextFile(embedding.getArtifact("vocab.txt"))
 .optUnknownToken("[UNK]")
 .build();
// Prepare dataset
int maxTokenLength = 64; // cutoff tokens length
int batchSize = 128;

BertFullTokenizer tokenizer = new BertFullTokenizer(vocabulary, true);

CsvDataset amazonReviewDataset = getDataset(batchSize, tokenizer, maxTokenLength);

RandomAccessDataset[] datasets = amazonReviewDataset.randomSplit(0.9, 0.1);
RandomAccessDataset trainingSet = datasets[0];

266 | Chapter 7: Train Your First Model

RandomAccessDataset validationSet = datasets[1];

CheckpointsTrainingListener listener =
 new CheckpointsTrainingListener("build/model");
 listener.setSaveModelCallback(
 trainer -> {
 TrainingResult result = trainer.getTrainingResult();
 Model model = trainer.getModel();
 // track for accuracy and loss
 float accuracy = result.getValidateEvaluation("Accuracy");
 model.setProperty("Accuracy", String.format("%.5f", accuracy));
 model.setProperty("Loss", String.format("%.5f",
 result.getValidateLoss()));
 });
DefaultTrainingConfig config =
 new DefaultTrainingConfig(Loss.softmaxCrossEntropyLoss())
 .addEvaluator(new Accuracy())
 .optDevices(Device.getDevices(1)) // train using single GPU
 .addTrainingListeners(TrainingListener.Defaults.logging("build/model"))
 .addTrainingListeners(listener);

int epoch = 2;

Trainer trainer = model.newTrainer(config);
trainer.setMetrics(new Metrics());
Shape encoderInputShape = new Shape(batchSize, maxTokenLength);
// initialize trainer with proper input shape
trainer.initialize(encoderInputShape);
EasyTrain.fit(trainer, epoch, trainingSet, validationSet);
System.out.println(trainer.getTrainingResult());

model.save(Paths.get("build/model"), "amazon-review.param");

We can run some sample predictions using a custom Translator class that uses a
DistilBERT tokenizer to transform raw text into BERT embeddings:

class MyTranslator implements Translator<String, Classifications> {

 private BertFullTokenizer tokenizer;
 private SimpleVocabulary vocab;
 private List<String> ranks;

 public MyTranslator(BertFullTokenizer tokenizer) {
 this.tokenizer = tokenizer;
 vocab = tokenizer.getVocabulary();
 ranks = Arrays.asList("1", "2", "3", "4", "5");
 }

 @Override
 public Batchifier getBatchifier() {return new StackBatchifier();}

 @Override
 public NDList processInput(TranslatorContext ctx, String input) {

More Training Options for BERT | 267

 List<String> tokens = tokenizer.tokenize(input);
 float[] indices = new float[tokens.size() + 2];
 indices[0] = vocab.getIndex("[CLS]");
 for (int i = 0; i < tokens.size(); i++) {
 indices[i+1] = vocab.getIndex(tokens.get(i));
 }
 indices[indices.length - 1] = vocab.getIndex("[SEP]");
 return new NDList(ctx.getNDManager().create(indices));
 }

 @Override
 public Classifications processOutput(TranslatorContext ctx, NDList list)
 {
 return new Classifications(ranks, list.singletonOrThrow().softmax(0));
 }
}

String review = "It works great, but takes too long to update";
Predictor<String, Classifications> predictor =
 model.newPredictor(new MyTranslator(tokenizer));

System.out.println(predictor.predict(review));

OUTPUT

4

Reduce Cost and Increase Performance
In this section, we provide tips on how to improve performance and reduce costs by
using hardware- and infrastructure-level optimizations such as reduced precision and
Spot Instances. Additionally, we describe how to stop training jobs early when they
stop improving.

Use Small Notebook Instances
As a best practice, we should do all of our heavy GPU-based computations in a Sage‐
Maker Processing, Training, or Batch Transform Job instead of our notebook. This
helps us save money since we can use a smaller instance type for our longer-running
notebook instance. If we find ourselves using a GPU instance type for our SageMaker
Notebooks, we can likely save money by switching to a cheaper notebook instance
type and moving our GPU-based computations into a SageMaker Training or Pro‐
cessing Job so that we only pay for the GPU for the duration of the Training or
Processing Job.

268 | Chapter 7: Train Your First Model

Test Model-Training Scripts Locally in the Notebook
We can specify instance_type='local' in our SageMaker Training Job to run the
script either inside a SageMaker Notebook—or on our local laptop. This lets us
“locally” run the training job on a small subset of data in a notebook before launching
a full-scale SageMaker Training Job. If we run in the notebook, we should remember
that we are limited to the memory and compute resources of the notebook instance.
Therefore, we should only run for one or two epochs using a small batch size on a
subset of the training dataset when training inside of a notebook instance.

Profile Training Jobs with SageMaker Debugger
Profiler provides valuable insight into bottlenecks of our training jobs and provides
useful recommendations to fix those bottlenecks. Oftentimes, we are not actually
compute bound but rather I/O bound. SageMaker Debugger helps identify these less-
intuitive bottlenecks with actual data to help us increase resource utilization, decrease
training times, and reduce cost. In this example, SageMaker Debugger identified a
CPU bottleneck and suggests that we add more data loaders or enable more aggres‐
sive data prefetching:

CPUBottleneck - Issue Found
CPU bottlenecks can happen when data preprocessing is very compute intensive.
You should consider increasing the number of data-loader processes or apply
pre-fetching.
Number of times the rule triggered: 16
Number of violations: 8090
Number of datapoints: 62020
Rule parameters:
threshold: 50%
cpu_threshold: 90%
gpu_threshold: 10%
patience: 1000

SageMaker Debugger also suggests using a smaller instance or increasing the batch
size since our GPU utilization is low:

BatchSize - Issue Found
Run on a smaller instance type or increase batch size
Number of times the rule triggered: 4072
Number of violations: 4072
Number of datapoints: 62012
Rule parameters:
cpu_threshold_p95: 70%
gpu_threshold_p95: 70%
gpu_memory_threshold_p95: 70%
patience: 1000
window: 500
LowGPUUtilization - Issue Found
Check for bottlenecks, minimize blocking calls, change distributed training

Reduce Cost and Increase Performance | 269

strategy, increase batch-size.
Number of times the rule triggered: 4072
Number of violations: 4072
Number of datapoints: 62013
Rule parameters:
threshold_p95: 70%
threshold_p5: 10%
window: 500
patience: 1000

Start with a Pre-Trained Model
Fine-tuning a pre-trained model like BERT can save us lots of time and money by
letting us avoid tasks that have already been done for us. In some cases where our
domain uses a vastly different language model than an option like BERT, we may
need to train a model from scratch. However, we should try these pre-trained models
first and see how far they get us.

Use 16-Bit Half Precision and bfloat16
Most models store parameters and perform calculations using full 32-bit numerical
precision. Intuitively, if we reduce the precision to 16-bit or “reduced” or “half ” preci‐
sion, we would not only reduce the footprint of the stored parameters by half but also
increase computation performance by 2x as the chip can perform two 16-bit calcula‐
tions on the same 32-bit hardware.

Another reduced precision 16-bit float, bfloat16, is a truncated version of float32
that preserves the 8-bit exponent portion of a float32 but leaves only 7 bits for the
fraction. Note that bfloat is not IEEE compliant; however it is natively supported in
modern chips from ARM, Intel, Google, and Amazon. Figure 7-34 shows a compari‐
son of float16, float32, and bfloat16, including the number of bits used to repre‐
sent the exponent and fraction.

There are downsides to reduced precision, however. While the training times go
toward zero in this perfect world, so can accuracy and numeric instability. By reduc‐
ing the numerical precision to 16 bits, our model may not learn as well as a 32-bit
model. Additionally, we may experience more frequent vanishing gradients as the
model only has 16 bits to represent the parameters and gradients. So the chance of
the value going to 0 is much higher than using 32 bits. bfloat16 reduces the chance
of vanishing gradients by preserving the dynamic range of a float32 through the 8-
bit exponent. We can also use loss-scaling policies to reduce the potential for vanish‐
ing gradients.

270 | Chapter 7: Train Your First Model

Figure 7-34. Comparison of float16, float32, and bfloat. Source: Wikipedia.

When deploying models to tiny devices with limited memory, we may need to reduce
precision to 8 bit, 4 bit, or even 1 bit for our floats. The challenge is preserving accu‐
racy at this lower precision.

Mixed 32-Bit Full and 16-Bit Half Precision
The choice of 32 bit or 16 bit is yet another hyper-parameter to optimize. Some algo‐
rithms and datasets may be more sensitive to reduced precision than others. How‐
ever, there is a middle ground called “mixed” precision that stores the parameters in
32 bits with “full precision” to maintain numerical stability but performs the calcula‐
tions using 16-bit operations in “half precision.” Ideally, half precision would lead to
2x speed-up in operations utilizing half the memory. However, in practice we see less-
than-ideal improvements due to overhead.

TensorFlow and Keras offer native mixed-precision support at the network-layer
level. Here, we set the global policy for all layers using an automatic mixed-precision
“policy” that allows the framework to decide which layers and operations should uti‐
lize 16-bit half precision:

import tf.keras.mixed_precision.Policy

policy = mixed_precision.Policy('mixed_float16')
mixed_precision.set_policy(policy)

This is effectively a “turbo button” for model training; however, we should treat this
like any other hyper-parameter and tune it for our specific dataset and algorithm.

Reduce Cost and Increase Performance | 271

https://oreil.ly/8W544

Quantization
In the future chapter on model deployment, we will describe how to reduce the preci‐
sion of a model from 32 bit to 16 bit after training to reduce the size of the model and
speed up the computations. The quantization process uses statistical methods—roo‐
ted in audio signal processing—to preserve the dynamic range of the parameter val‐
ues. While not required, we can modify our training script to be “quantization-aware”
and prepare the model for the post-training quantization. This helps to preserve
model accuracy after quantizing.

Use Training-Optimized Hardware
AWS Trainium is a training-optimized chip designed to accelerate model-training
workloads for popular deep learning frameworks, including TensorFlow, PyTorch,
and Apache MXNet. AWS Trainium uses the AWS Neuron SDK and supports auto‐
casting of 32-bit full-precision floating points to 16-bit bfloats to increase through‐
put and reduce cost.

Spot Instances and Checkpoints
If we are using an algorithm that supports checkpointing, such as TensorFlow,
PyTorch, and Apache MXNet, we can use Spot Instances with SageMaker Training
Jobs to save cost. Spot Instances are cheaper than on-demand instances. To train with
Spot Instances, we specify use_spot_instances=True in our estimator, as shown
here:

checkpoint_s3_uri = 's3://<BUCKET>/<CHECKPOINT_PREFIX/'

estimator = TensorFlow(entry_point='tf_bert_reviews.py',
 source_dir='src'
 use_spot_instances=True,
 max_wait=120, # seconds,
 checkpoint_s3_uri=checkpoint_s3_uri,
 ...

Spot Instances may be terminated while the training job is running. Using the
max_wait parameter, SageMaker will wait max_wait seconds for new Spot Instances
to replace the previously terminated Spot Instances. After max_wait seconds, the job
will end. The latest checkpoint is used to begin training from the point in time when
the Spot Instances were terminated.

Figure 7-35 shows an example of one Spot Instance replaced at Time 0 and three Spot
Instances replaced at Time 1. However, the replacement cadence is driven by supply
and demand of Spot Instances and is somewhat difficult to predict. Single-instance
training jobs that use checkpoints can also benefit from Spot Instance savings.

272 | Chapter 7: Train Your First Model

Figure 7-35. Use checkpoints to continue training when spot instances are replaced.

Our script then leverages the provided checkpoint location to save a checkpoint using
a Keras ModelCheckpoint as follows:

checkpoint_path = '/opt/ml/checkpoints'

checkpoint_callback = ModelCheckpoint(
 filepath=os.path.join(checkpoint_path, 'tf_model_{epoch:05d}.h5'),
 save_weights_only=False,
 verbose=1,
 monitor='val_accuracy')

callbacks.append(checkpoint_callback)

To load the model, our script uses the checkpoint location to load the model as
follows:

def load_checkpoint_model(checkpoint_path):
 import glob
 import os

 glob_pattern = os.path.join(checkpoint_path, '*.h5')
 print('glob pattern {}'.format(glob_pattern))

 list_of_checkpoint_files = glob.glob(glob_pattern)
 print('List of checkpoint files {}'.format(list_of_checkpoint_files))

Reduce Cost and Increase Performance | 273

 latest_checkpoint_file = max(list_of_checkpoint_files)
 loaded_model = TFDistilBertForSequenceClassification.from_pretrained(
 latest_checkpoint_file,
 config=config)

if os.listdir(checkpoint_path):
 model = load_checkpoint_model(checkpoint_path)

Early Stopping Rule in SageMaker Debugger
SageMaker Debugger supports a number of built-in actions to execute when a rule
fires. For example, the StopTraining() action reduces cost by stopping a training job
when the objective metric (e.g., accuracy) plateaus and no longer improves with addi‐
tional training. The plateau is detected by a rule such as overfit. We configure the
rule in terms of relative change over a given time or number of steps. For example, if
our accuracy does not improve by 1% over one thousand steps, we want to stop the
training job and save some money.

The StopTraining() action will end the training job abruptly when the rule is trig‐
gered. Similar to using Spot Instances, we should use checkpoints, specifically the last
checkpoint before the job was stopped early.

Summary
In this chapter, we trained our first model using the Keras API within TensorFlow 2.x,
BERT, and Amazon SageMaker. We dove deep into the SageMaker infrastructure,
model development SDKs, and SageMaker Training Jobs. We trained a model using
SageMaker, described security best practices, and explored some cost-saving and
performance-improvement tips.

We also learned how BERT’s Transformer neural-network architecture has revolu‐
tionized the field of NLP and NLU by using a bidirectional approach to learn a con‐
textual representation of the words in a corpus. We demonstrated how to fine-tune a
pre-trained BERT model to build a domain-specific text classifier for product
reviews. This is in contrast to the previous generation of NLP models such as
Word2Vec, GloVe, and ELMo that either (1) learn only in one direction at a time, (2)
throw away the original model and preserve only the learned embeddings, or (3) use
complex recurrent neural network (RNNs) architectures that require a large amount
of memory and compute.

In Chapter 8, we will retrain our model using different configurations and hyper-
parameters in a process called hyper-parameter optimization or hyper-parameter
tuning. Through this process, we will find the best model and hyper-parameter com‐
bination that provides the highest accuracy. We will optimize models even further to
take advantage of hardware optimizations provided by our target deployment

274 | Chapter 7: Train Your First Model

hardware, such as NVIDIA GPUs or AWS Inferentia chips. In Chapter 9, we will
deploy and monitor our model in production. In Chapter 10, we build an end-to-end
pipeline for our model with SageMaker Pipelines, AWS Step Functions, Apache Air‐
flow, Kubeflow, and other open source options.

Summary | 275

CHAPTER 8

Train and Optimize Models at Scale

Peter Drucker, one of Jeff Bezos’s favorite business strategists, once said, “If you can’t
measure it, you can’t improve it.” This quote captures the essence of this chapter,
which focuses on measuring, optimizing, and improving our predictive models.

In the previous chapter, we trained a single model with a single set of hyper-
parameters using Amazon SageMaker. We also demonstrated how to fine-tune a pre-
trained BERT model to build a review-text classifier model to predict the sentiment of
product reviews in the wild from social channels, partner websites, etc.

In this chapter, we will use SageMaker Experiments to measure, track, compare, and
improve our models at scale. We also use SageMaker Hyper-Parameter Tuning to
choose the best hyper-parameters for our specific algorithm and dataset. We also
show how to perform distributed training using various communication strategies
and distributed file systems. We finish with tips on how to reduce cost and increase
performance using SageMaker Autopilot’s hyper-parameter-selection algorithm,
SageMaker’s optimized pipe to S3, and AWS’s enhanced-networking hardware.

Automatically Find the Best Model Hyper-Parameters
Now that we understand how to track and compare model-training runs, we can
automatically find the best hyper-parameters for our dataset and algorithm using a
scalable process called hyper-parameter tuning (HPT) or hyper-parameter optimiza‐
tion (HPO). SageMaker natively supports HPT jobs. These tuning jobs are the build‐
ing blocks for SageMaker Autopilot, discussed in Chapter 3.

We have already learned that hyper-parameters control how our machine learning
algorithm learns the model parameters during model training. When tuning our
hyper-parameters, we need to define an objective to optimize, such as model

277

accuracy. In other words, we need to find a set of hyper-parameters that meets or
exceeds our given objective.

After each HPT run, we evaluate the model performance and adjust the hyper-
parameters until the objective is reached. Doing this manually is very time-
consuming as model tuning often requires tens or hundreds of training jobs to
converge on the best combination of hyper-parameters for our objective. SageMaker’s
HPT jobs speed up and scale out the optimization process by running multiple train‐
ing jobs in parallel using a given tuning strategy, as shown in Figure 8-1.

Figure 8-1. SageMaker HPT supports common tuning strategies.

SageMaker supports the random-search and Bayesian hyper-parameter optimization
strategies. With random search, we randomly keep picking combinations of hyper-
parameters until we find a well-performing combination. This approach is very fast
and very easy to parallelize, but we might miss the best set of hyper-parameters as we
are picking randomly from the hyper-parameter space. With Bayesian optimization,
we treat the task as a regression problem.

Similar to how our actual model learns the model weights that minimize a loss func‐
tion, Bayesian optimization iterates to find the best hyper-parameters using a surro‐
gate model and acquisition function that performs an informed search over the
hyper-parameter space using prior knowledge learned during previous optimization
runs. Bayesian optimization is usually more efficient than manual, random, or grid
search but requires that we perform some optimizations sequentially (versus in paral‐
lel) to build up the prior knowledge needed to perform the informed search across
the hyper-parameter space.

What about grid search? With grid search, we would evaluate a grid of every possible
hyper-parameter combination in our hyper-parameter space. This approach is often
inefficient and takes orders of magnitude longer to complete relative to the random
search and Bayesian optimization strategies. At the time of this writing, SageMaker

278 | Chapter 8: Train and Optimize Models at Scale

HPT does not support the inefficient grid search optimization strategy. Instead, we
recommend using the random-search and Bayesian optimization strategies.

Set Up the Hyper-Parameter Ranges
Let’s use SageMaker HPT to find the best hyper-parameters for our BERT-based
review classifier from the previous chapter. First, let’s create an optimize experiment
tracker and associate it with our experiment:

from smexperiments.tracker import Tracker

tracker_optimize = Tracker.create(display_name='optimize-1',
 sagemaker_boto_client=sm)

optimize_trial_component_name =
 tracker_optimize.trial_component.trial_component_name

trial.add_trial_component(tracker_optimize.trial_component)

To keep this example simple and avoid a combinatorial explosion of trial runs, we will
freeze most hyper-parameters and explore only a limited set for this particular opti‐
mization run. In a perfect world with unlimited resources and budget, we would
explore every combination of hyper-parameters. For now, we will manually choose
some of the following hyper-parameters and explore the rest in our HPO run:

epochs=500
epsilon=0.00000001
train_batch_size=128
validation_batch_size=128
test_batch_size=128
train_steps_per_epoch=100
validation_steps=100
test_steps=100
use_xla=True
use_amp=True
freeze_bert_layer=True

Next, let’s set up the hyper-parameter ranges that we wish to explore. We are choosing
these hyper-parameters based on intuition, domain knowledge, and algorithm docu‐
mentation. We may also find research papers useful—or other prior work from the
community. At this point in the life cycle of machine learning and predictive analyt‐
ics, we can almost always find relevant information on the problem we are trying to
solve.

If we still can’t find a suitable starting point, we should explore ranges logarithmically
(versus linearly) to help gain a sense of the scale of the hyper-parameter. There is no
point in exploring the set [1, 2, 3, 4] if our best hyper-parameter is orders of magni‐
tude away in the 1,000s, for example.

Automatically Find the Best Model Hyper-Parameters | 279

SageMaker Autopilot is another way to determine a baseline set of hyper-parameters
for our problem and dataset. SageMaker Autopilot’s hyper-parameter selection pro‐
cess has been refined on many thousands of hours of training jobs across a wide
range of datasets, algorithms, and use cases within Amazon.

SageMaker HPT supports three types of parameter ranges: categorical, continuous,
and integer. Categorical is used for discrete sets of values (e.g., product_category).
Continuous is used for floats, and Integer is used for integers. We can also specify
the scaling type for each type of hyper-parameter ranges. The scaling type can be set
to Linear, Logarithmic, ReverseLogarithmic, or Auto, which allows SageMaker to
decide. Certain hyper-parameters are better suited to certain scaling types. Here, we
are specifying that the SageMaker Tuning Job should explore the continuous hyper-
parameter, learning_rate, between the given range using a linear scale:

from sagemaker.tuner import ContinuousParameter

hyperparameter_ranges = {
 'learning_rate': ContinuousParameter(0.00001, 0.00005,
 scaling_type='Linear'),
}

If we do not have a suitable range for exploring a particular hyper-
parameter—even after researching other algorithms that address
the problem similar to ours—we can start with the Logarithmic
scaling type for that hyper-parameter and narrow in on a range to
subsequently explore linearly with the Linear scaling type.

Finally, we need to define the objective metric that the HPT job is trying to optimize
—in our case, validation accuracy. Remember that we need to provide the regular
expression (regex) to extract the metric from the SageMaker container logs. We chose
to also collect the training loss, training accuracy, and validation loss for informa‐
tional purposes:

objective_metric_name = 'validation:accuracy'

metrics_definitions = [
 {'Name': 'train:loss', 'Regex': 'loss: ([0-9\\.]+)'},
 {'Name': 'train:accuracy', 'Regex': 'accuracy: ([0-9\\.]+)'},
 {'Name': 'validation:loss', 'Regex': 'val_loss: ([0-9\\.]+)'},
 {'Name': 'validation:accuracy', 'Regex': 'val_accuracy: ([0-9\\.]+)'}]

Run the Hyper-Parameter Tuning Job
We start by creating our TensorFlow estimator as in the previous chapter. Note that
we are not specifying the learning_rate hyper-parameter in this case. We will pass
this as a hyper-parameter range to the HyperparameterTuner in a moment:

280 | Chapter 8: Train and Optimize Models at Scale

from sagemaker.tensorflow import TensorFlow

hyperparameters={'epochs': epochs,
 'epsilon': epsilon,
 'train_batch_size': train_batch_size,
 'validation_batch_size': validation_batch_size,
 'test_batch_size': test_batch_size,
 'train_steps_per_epoch': train_steps_per_epoch,
 'validation_steps': validation_steps,
 'test_steps': test_steps,
 'use_xla': use_xla,
 'use_amp': use_amp,
 'max_seq_length': max_seq_length,
 'freeze_bert_layer': freeze_bert_layer,
}

estimator = TensorFlow(entry_point='tf_bert_reviews.py',
 source_dir='src',
 role=role,
 instance_count=train_instance_count,
 instance_type=train_instance_type,
 py_version='<PYTHON_VERSION>',
 framework_version='<TENSORFLOW_VERSION>',
 hyperparameters=hyper_parameters,
 metric_definitions=metrics_definitions,
)

Next, we can create our HPT job by passing the TensorFlow estimator, hyper-
parameter range, objective metric, tuning strategy, number of jobs to run in parallel/
total, and an early stopping strategy. SageMaker will use the given optimization strat‐
egy (i.e., “Bayesian” or “Random”) to explore the values within the given ranges:

objective_metric_name = 'validation:accuracy'

tuner = HyperparameterTuner(
 estimator=estimator,
 objective_type='Maximize',
 objective_metric_name=objective_metric_name,
 hyperparameter_ranges=hyperparameter_ranges,
 metric_definitions=metrics_definitions,
 max_jobs=100,
 max_parallel_jobs=10,
 strategy='Bayesian',
 early_stopping_type='Auto'
)

In this example, we are using the Bayesian optimization strategy with 10 jobs in par‐
allel and 100 total. By only doing 10 at a time, we give the Bayesian strategy a chance
to learn from previous runs. In other words, if we did all 100 in parallel, the Bayesian
strategy could not use prior information to choose better values within the ranges
provided.

Automatically Find the Best Model Hyper-Parameters | 281

By setting early_stopping_type to Auto, SageMaker will stop the tuning job if the
tuning job is not going to improve upon the objective metric. This helps save time,
reduces the potential for overfitting to our training dataset, and reduces the overall
cost of the tuning job.

Let’s start the tuning job by calling tuner.fit() using the train, validation, and test
dataset splits:

s3_input_train_data =
 TrainingInput(s3_data=processed_train_data_s3_uri,
 distribution='ShardedByS3Key')

s3_input_validation_data =
 TrainingInput(s3_data=processed_validation_data_s3_uri,
 distribution='ShardedByS3Key')

s3_input_test_data =
 TrainingInput(s3_data=processed_test_data_s3_uri,
 distribution='ShardedByS3Key')

tuner.fit(inputs={'train': s3_input_train_data,
 'validation': s3_input_validation_data,
 'test': s3_input_test_data
 },
 include_cls_metadata=False)

Analyze the Best Hyper-Parameters from the Tuning Job
Following are results of the tuning job to determine the best hyper-parameters. This
tuning job resulted in a final training accuracy of 0.9416 for the best candidate, which
is higher than 0.9394, the accuracy from Chapter 7 using a set of manually chosen
hyper-parameter values:

from sagemaker.analytics import HyperparameterTuningJobAnalytics

hp_results = HyperparameterTuningJobAnalytics(
 sagemaker_session=sess,
 hyperparameter_tuning_job_name=tuning_job_name
)

df_results = hp_results.dataframe()
df_results

282 | Chapter 8: Train and Optimize Models at Scale

freeze_bert_
layer

learning_
rate

train_batch_
size

TrainingJob
Name

TrainingJob
Status

FinalObjective
Value

TrainingElapsed
TimeSeconds

“False” 0.000017 “128” tensorflow-
training-
210109-0222-003-
cf95cdaa

Completed 0.9416 11245.0

…
“False” 0.000042 “128” tensorflow-

training-
210109-0222-004-
48da4bab

Stopped 0.8056 693.0

Given the results of this tuning job, the best combination of hyper-parameters is
learning_rate 0.000017, train_batch_size 128, and freeze_bert_layer False.
SageMaker stopped a job early because its combination of hyper-parameters was not
improving the training-accuracy objective metric. This is an example of SageMaker
saving us money by intelligently stopping jobs early when they are not adding value
to our business objective.

Show Experiment Lineage for Our SageMaker Tuning Job
Once the HPT job has finished, we can analyze the results directly in our notebook or
through SageMaker Studio.

First, let’s update the experiment lineage to include the best hyper-parameters and
objective metrics found by our HPT job:

best_learning_rate = df_results.sort_values('FinalObjectiveValue',
 ascending=0).head(1)['learning_rate']

tracker_optimize.log_parameters({
 'learning_rate': best_learning_rate
})

best_accuracy = df_results.sort_values('FinalObjectiveValue',
 ascending=0).head(1)['FinalObjectiveValue']

tracker_optimize.log_metrics({
 'train:accuracy': best_accuracy
})

tracker_optimize.trial_component.save()

Now, let’s summarize the experiment lineage up to this point. In Chapter 9, we will
deploy the model and further extend our experiment lineage to include model
deployment. We will then tie everything together in an end-to-end pipeline with full
lineage tracking in Chapter 10:

Automatically Find the Best Model Hyper-Parameters | 283

from sagemaker.analytics import ExperimentAnalytics

lineage_table = ExperimentAnalytics(
 sagemaker_session=sess,
 experiment_name=experiment_name,
 metric_names=['train:accuracy'],
 sort_by="CreationTime",
 sort_order="Ascending",
)

lineage_table.dataframe()

TrialComponentName DisplayName max_seq_length learning_rate train_accuracy …
TrialComponent-2021-01-09-062410-pxuy prepare 64.0 NaN NaN …
tensorflow-training-
2021-01-09-06-24-12-989

train 64.0 0.00001 0.9394 …

TrialComponent-2020-06-12-193933-bowu optimize-1 64.0 0.000017 0.9416 …

In this example, we have optimized the hyper-parameters of our TensorFlow BERT
classifier layer. SageMaker HPT also supports automatic HPT across multiple algo‐
rithms by adding a list of algorithms to the tuning job definition. We can specify dif‐
ferent hyper-parameters and ranges for each algorithm. Similarly, SageMaker
Autopilot uses multialgorithm tuning to find the best model across different algo‐
rithms based on our problem type, dataset, and objective function.

Use Warm Start for Additional SageMaker
Hyper-Parameter Tuning Jobs
Once we have our best candidate, we can choose to perform yet another round of
hyper-parameter optimization using a technique called “warm start.” Warm starting
reuses the prior results from a previous HPT job—or set of jobs—to speed up the
optimization process and reduce overall cost. Warm start creates a many-to-many
parent–child relationship. In our example, we perform a warm start with a single par‐
ent, the previous tuning job, as shown in Figure 8-2.

284 | Chapter 8: Train and Optimize Models at Scale

Figure 8-2. Use warm start to start an additional HPT job from a previous tuning job.

Warm start is particularly useful when we want to change the tunable hyper-
parameter ranges from the previous job or add new hyper-parameters. Both scenarios
use the previous tuning job to find the best model faster. The two scenarios are imple‐
mented with two warm start types: IDENTICAL_DATA_AND_ALGORITHM and
TRANSFER_LEARNING.

If we choose IDENTICAL_DATA_AND_ALGORITHM, the new tuning job uses the same
input data and training image as the parent job. We are allowed to update the tunable
hyper-parameter ranges and the maximum number of training jobs. We can also add
previously fixed hyper-parameters to the list of tunable hyper-parameters and vice
versa—as long as the overall number of fixed plus tunable hyper-parameters remains
the same. Upon completion, a tuning job with this strategy will return an additional
field, OverallBestTrainingJob, containing the best model candidate, including this
tuning job as well as the completed parent tuning jobs.

If we choose TRANSFER_LEARNING, we can use updated training data and a different
version of the training algorithm. Perhaps we collected more training data since the
last optimization run—and now we want to rerun the tuning job with the updated
dataset. Or perhaps a newer version of the algorithm has been released and we want
to rerun the optimization process.

Use Warm Start for Additional SageMaker Hyper-Parameter Tuning Jobs | 285

Run HPT Job Using Warm Start
We need to configure the tuning job with WarmStartConfig using one or more of the
previous HPT jobs as parents. The parent HPT jobs must have finished with one of
the following success or failure states: Completed, Stopped, or Failed. Recursive
parent–child relationships are not supported. We also need to specify the WarmStart
Type. In our example, we will use IDENTICAL_DATA_AND_ALGORITHM as we plan to only
modify the hyper-parameter ranges and not use an updated dataset or algorithm
version.

Let’s start with the setup of WarmStartConfig:

from sagemaker.tuner import WarmStartConfig
from sagemaker.tuner import WarmStartTypes

warm_start_config = WarmStartConfig(
 warm_start_type=WarmStartTypes.IDENTICAL_DATA_AND_ALGORITHM,
 parents={tuning_job_name})

Let’s define the fixed hyper-parameters that we are not planning to tune:

epochs=500
epsilon=0.00000001
train_batch_size=128
validation_batch_size=128
test_batch_size=128
train_steps_per_epoch=100
validation_steps=100
test_steps=100
use_xla=True
use_amp=True
freeze_bert_layer=False

from sagemaker.tensorflow import TensorFlow

hyperparameters={'epochs': epochs,
 'epsilon': epsilon,
 'train_batch_size': train_batch_size,
 'validation_batch_size': validation_batch_size,
 'test_batch_size': test_batch_size,
 'train_steps_per_epoch': train_steps_per_epoch,
 'validation_steps': validation_steps,
 'test_steps': test_steps,
 'use_xla': use_xla,
 'use_amp': use_amp,
 'max_seq_length': max_seq_length,
 'freeze_bert_layer': freeze_bert_layer
}

estimator = TensorFlow(entry_point='tf_bert_reviews.py',
 source_dir='src',
 role=role,

286 | Chapter 8: Train and Optimize Models at Scale

 instance_count=train_instance_count,
 instance_type=train_instance_type,
 volume_size=train_volume_size,
 py_version='<PYTHON_VERSION>',
 framework_version='<TENSORFLOW_VERSION>',
 hyperparameters=hyperparameters,
 metric_definitions=metrics_definitions,
)

While we can choose to tune more hyper-parameters in this warm-start tuning job,
we will simply modify the range of our learning_rate to narrow in on the best value
found in the parent tuning job:

from sagemaker.tuner import IntegerParameter
from sagemaker.tuner import ContinuousParameter
from sagemaker.tuner import CategoricalParameter

hyperparameter_ranges = {
 'learning_rate': ContinuousParameter(0.00015, 0.00020,
 scaling_type='Linear')}

Now let’s define the objective metric, create the HyperparameterTuner with the pre‐
ceding warm_start_config, and start the tuning job:

objective_metric_name = 'validation:accuracy'

tuner = HyperparameterTuner(
 estimator=estimator,
 objective_type='Maximize',
 objective_metric_name=objective_metric_name,
 hyperparameter_ranges=hyperparameter_ranges,
 metric_definitions=metrics_definitions,
 max_jobs=50,
 max_parallel_jobs=5,
 strategy='Bayesian',
 early_stopping_type='Auto',
 warm_start_config=warm_start_config
)

Finally, let’s configure the dataset splits and start our tuning job:

s3_input_train_data =
 TrainingInput(s3_data=processed_train_data_s3_uri,
 distribution='ShardedByS3Key')

s3_input_validation_data =
 TrainingInput(s3_data=processed_validation_data_s3_uri,
 distribution='ShardedByS3Key')

s3_input_test_data =
 TrainingInput(s3_data=processed_test_data_s3_uri,
 distribution='ShardedByS3Key')

Use Warm Start for Additional SageMaker Hyper-Parameter Tuning Jobs | 287

tuner.fit({'train': s3_input_train_data,
 'validation': s3_input_validation_data,
 'test': s3_input_test_data},
 },
 include_cls_metadata=False)

Analyze the Best Hyper-Parameters from the Warm-Start Tuning Job
Following are results of the tuning job to determine the best hyper-parameters. The
tuning job resulted in a best-candidate training accuracy of 0.9216, which is lower
than 0.9416, the best-candidate training accuracy of the parent HPT job. After updat‐
ing our experiment lineage with the warm-start HPT results, we will move forward
with the hyper-parameters of the candidate that generated the highest training accu‐
racy of 0.9416 from the parent tuning job.

TrialComponentName DisplayName max_seq_length learning_rate train_accuracy …
TrialComponent-2021-01-09-062410-pxuy prepare 64.0 NaN NaN …
tensorflow-training-
2021-01-09-06-24-12-989

train 64.0 0.00001 0.9394 …

TrialComponent-2021-01-09-193933-bowu optimize-1 64.0 0.000017 0.9416 …
TrialComponent-2021-01-09-234445-dep optimize-2 64.0 0.000013 0.9216 …

In this example, we have optimized the hyper-parameters of our TensorFlow BERT
classifier layer. SageMaker HPT also supports automatic HPT across multiple algo‐
rithms by adding a list of algorithms to the tuning job definition. We can specify dif‐
ferent hyper-parameters and ranges for each algorithm. Similarly, SageMaker
Autopilot uses multialgorithm tuning to find the best model across different algo‐
rithms based on our problem type, dataset, and objective function.

The warm-start tuning job did not beat the accuracy of the parent tuning job’s best
candidate. Therefore, the hyper-parameter found from the parent tuning is still the
best candidate in this example.

Scale Out with SageMaker Distributed Training
Most modern AI and machine learning frameworks support some form of dis‐
tributed processing to scale out the computation. Without distributed processing, the
training job is limited to the resources of a single instance. While individual instance
types are constantly growing in capabilities (RAM, CPU, and GPU), our modern
world of big data requires a cluster to power continuous data ingestion, real-time
analytics, and data-hungry machine learning models.

288 | Chapter 8: Train and Optimize Models at Scale

Let’s run a distributed training job to build our reviews classifier model using the
TensorFlow 2.x Keras API, BERT, and SageMaker’s native distributed-training sup‐
port for TensorFlow.

While we do not include a PyTorch example in this chapter, Sage‐
Maker absolutely supports distributed PyTorch. Review our Git‐
Hub repository for the PyTorch and BERT examples. Additionally,
the Hugging Face Transformers library natively supports SageMak‐
er’s distributed training infrastructure for both TensorFlow and
PyTorch.

Choose a Distributed-Communication Strategy
Any distributed computation requires that the cluster instances communicate and
share information with each other. This cluster communication benefits from higher-
bandwidth connections between the instances. Therefore, the instances should be
physically close to each other in the cloud data center, if possible. Fortunately, Sage‐
Maker handles all of this heavy lifting for us so we can focus on creating our review
classifier and address our business problem of classifying product reviews in the wild.
SageMaker supports distributed computations with many distributed-native frame‐
works, including Apache Spark, TensorFlow, PyTorch, and APache MXNet.

While most modern AI and machine learning frameworks like
TensorFlow, PyTorch, and Apache MXNet are designed for dis‐
tributed computations, many classic data science libraries such as
scikit-learn and pandas do not natively support distributed com‐
munication protocols or distributed datasets. Dask is a popular
runtime to help scale certain scikit-learn models to multiple nodes
in a cluster.

“Parameter server” is a primitive distributed training strategy supported by most dis‐
tributed machine learning frameworks. Remember that parameters are what the algo‐
rithm is learning. Parameter servers store the learned parameters and share them
with every instance during the training process. Since parameter servers store the
state of the parameters, SageMaker runs a parameter server on every instance for
higher availability, as shown in Figure 8-3.

Scale Out with SageMaker Distributed Training | 289

Figure 8-3. Distributed communication with parameter servers.

Running stateful parameter servers on every instance helps SageMaker recover from
failure situations or when Spot Instances are terminated and replaced during the
training process.

Another common distributed communication strategy rooted in parallel computing
and message-passing interfaces (MPI) is “all-reduce.” All-reduce uses a ring-like com‐
munication pattern, as shown in Figure 8-4, and increases overall training efficiency
for very large clusters where the communication overhead between parameter servers
becomes overwhelming.

Figure 8-4. All-reduce distributed communication strategy.

290 | Chapter 8: Train and Optimize Models at Scale

SageMaker’s all-reduce distributed training strategy is compatible with Horovod, a
popular all-reduce and MPI implementation commonly used to scale TensorFlow and
PyTorch training jobs to multiple instances in a cluster. If we are currently using Hor‐
ovod for distributed training, we can easily transition to SageMaker’s all-reduce strat‐
egy. For our example, we will use SageMaker’s built-in distributed all-reduce
communication strategy.

Choose a Parallelism Strategy
There are two main types of parallelism when performing distributed computations:
data parallelism and model parallelism. Most of us are already familiar with data par‐
allelism from classical map-reduce data-processing tools like Apache Spark that split
up the dataset into “shards” and place them on separate instances. Each instance pro‐
cesses its split separately in the “map” phase, then combines the results in the
“reduce” phase. Data parallelism is required when our dataset cannot fit on a single
instance, as in the case with most modern big data processing and distributed
machine learning. Figure 8-5 shows how data parallelism splits up the data onto dif‐
ferent instances for the model to process separately.

Figure 8-5. Sharding a dataset across multiple instances for distributed training with
data parallelism.

Model parallelism does the opposite and splits the processing onto separate instances
and processes the entire dataset separately on each instance. It is quite a bit more
complicated and is typically required when our model is too large to fit into the
resources of a single instance due to memory constraints. Figure 8-6 shows how

Scale Out with SageMaker Distributed Training | 291

model parallelism splits up the model onto different instances and processes the full
dataset with each “model shard.”

Figure 8-6. Sharding a model across multiple instances for distributed training with
model parallelism.

SageMaker natively supports both data parallelism and model parallelism. For our
BERT model, we will use data parallelism since our model fits into a single instance,
so we will shard our dataset across the different instances, train on each shard, and
combine the results through the all-reduce communication strategy built in to Sage‐
Maker distributed training.

Choose a Distributed File System
Typically, our distributed training clusters communicate directly with S3 to read and
write our data. However, some frameworks and tools are not optimized for S3
natively—or only support POSIX-compatible filesystems. For these scenarios, we can
use FSx for Lustre (Linux) or Amazon FSx for Windows File Server to expose a
POSIX-compatible filesystem on top of S3. This extra layer also provides a crucial
cache-performance benefit that reduces training times to reasonable levels for larger
datasets.

Amazon FSx for Lustre is a high-performance, POSIX-compatible filesystem that
natively integrates with S3. FSx for Lustre is based on the open source Lustre filesys‐
tem designed for highly scalable, highly distributed, and highly parallel training jobs
with petabytes of data, terabytes per second of aggregate I/O throughput, and consis‐
tent low latency.

292 | Chapter 8: Train and Optimize Models at Scale

There is also Amazon FSx for Windows File Server, which provides a Windows-
compatible filesystem that natively integrates with S3 as well. However, we have
chosen to focus on FSx for Lustre as our examples are Linux based. Both filesystems
are optimized for machine learning, analytics, and high-performance computing
workloads using S3. And both filesystems offer similar features.

FSx for Lustre is a fully managed service that simplifies the complexity of setting up
and managing the Lustre filesystem. Mounting an S3 bucket as a filesystem in
minutes, FSx for Lustre lets us access data from any number of instances concurrently
and caches S3 objects to improve performance of iterative machine learning work‐
loads that pass over the dataset many times to fit a high-accuracy model. Figure 8-7
shows how SageMaker uses FSx for Lustre to provide fast, shared access to our S3
data and accelerate our training and tuning jobs.

Figure 8-7. SageMaker uses FSx for Lustre to increase training and tuning job
performance.

Our SageMaker training cluster instances access a file in FSx for Lustre using /mnt/
data/file1.txt. FSx for Lustre translates this request and issues a GetObject request to
S3. The file is cached and returned to the cluster instance. If the file has not changed,
subsequent requests will return from FSx for Lustre’s cache. Since training data does
not typically change during a training job run, we see huge performance gains as we
iterate through our dataset over many training epochs.

Once we have set up the FSx for Lustre filesystem, we can pass the location of the FSx
for Lustre filesystem into the training job as follows:

estimator = TensorFlow(entry_point='tf_bert_reviews.py',
 source_dir='src',
 instance_count=train_instance_count,

Scale Out with SageMaker Distributed Training | 293

 instance_type=train_instance_type,
 subnets=['subnet-1', 'subnet-2']
 security_group_ids=['sg-1'])

fsx_data = FileSystemInput(file_system_id='fs-1',
 file_system_type='FSxLustre',
 directory_path='/mnt/data,
 file_system_access_mode='ro')

estimator.fit(inputs=fsx_data)

Note that we need to specify the subnets and security_group_ids used when we
created our FSx for Lustre filesystem. We will dive deep into networking and security
in Chapter 12.

Another option for distributed training is Amazon Elastic File System (Amazon EFS).
Amazon EFS is compatible with industry-standard Network File System protocols
but optimized for AWS’s cloud-native and elastic environment, including networking,
access control, encryption, and availability. In this section, we adapt our distributed
training job to use both FSx for Lustre (Linux) and Amazon EFS. Amazon EFS pro‐
vides centralized, shared access to our training datasets across thousands of instances
in a distributed training cluster, as shown in Figure 8-8.

Figure 8-8. Amazon EFS with SageMaker.

SageMaker Studio uses Amazon EFS to provide centralized, shared,
and secure access to code and notebooks across all team members
with proper authorization.

294 | Chapter 8: Train and Optimize Models at Scale

Data stored in Amazon EFS is replicated across multiple Availability Zones, which
provides higher availability and read/write throughput. The Amazon EFS filesystem
will scale out automatically as new data is ingested.

Assuming we have mounted and populated the Amazon EFS filesystem with training
data, we can pass the Amazon EFS mount into the training job using two different
implementations: FileSystemInput and FileSystemRecordSet.

This example shows how to use the FileSystemInput implementation:

estimator = TensorFlow(entry_point='tf_bert_reviews.py',
 source_dir='src',
 instance_count=train_instance_count,
 instance_type=train_instance_type,
 subnets=['subnet-1', 'subnet-2']
 security_group_ids=['sg-1'])

efs_data = FileSystemInput(file_system_id='fs-1',
 file_system_type='EFS',
 directory_path='/mnt/data,
 file_system_access_mode='ro')

estimator.fit(inputs=efs_data)

Note that we need to specify the subnets and security_group_ids used when we
created our Amazon EFS filesystem. We will dive deep into networking and security
in Chapter 12.

For our example, we will use FSx for Lustre because of its S3-caching capabilities,
which greatly increases our training performance.

Launch the Distributed Training Job
SageMaker, following cloud-native principles, is inherently distributed and scalable in
nature. In the previous chapter, we were using a single instance by specifying
train_instance_count=1. Here, we will increase the train_instance_count and
specify the distribution parameter in our TensorFlow estimator to enable Sage‐
Maker distributed training, as shown in the following:

train_instance_count=3
train_instance_type='ml.p4d.24xlarge'

from sagemaker.tensorflow import TensorFlow

estimator = TensorFlow(entry_point='tf_bert_reviews.py',
 source_dir='src',
 instance_count=train_instance_count,
 instance_type=train_instance_type,
 ...
 py_version='<PYTHON_VERSION>',

Scale Out with SageMaker Distributed Training | 295

 framework_version='<TENSORFLOW_VERSION>',
 distribution={'smdistributed':{
 'dataparallel':{
 'enabled': True
 }
 }
)

SageMaker automatically passes the relevant cluster information to TensorFlow to
enable the all-reduce strategy and use distributed TensorFlow.

SageMaker also passes the same cluster information to enable dis‐
tributed PyTorch and Apache MXNet, but we are only showing
TensorFlow in this example.

Reduce Cost and Increase Performance
In this section, we discuss various ways to increase cost-effectiveness and perfor‐
mance using some advanced SageMaker features, including SageMaker Autopilot for
baseline hyper-parameter selection, ShardedByS3Key to distribute input files across
all training instances, and Pipe mode to improve I/O throughput. We also highlight
AWS’s enhanced networking capabilities, including the Elastic Network Adapter
(ENA) and Elastic Fabric Adapter (EFA) to optimize network performance between
instances in our training and tuning cluster.

Start with Reasonable Hyper-Parameter Ranges
By researching the work of others, we can likely find a range of hyper-parameters that
will narrow the search space and speed up our SageMaker HPT jobs. If we don’t have
a good starting point, we can use the Logarithmic scaling strategy to determine the
scale within which we should explore. Just knowing the power of 10 can make a big
difference in reducing the time to find the best hyper-parameters for our algorithm
and dataset.

Shard the Data with ShardedByS3Key
When training at scale, we need to consider how each instance in the cluster will read
the large training datasets. We can use a brute-force approach and copy all of the data
to all of the instances. However, with larger datasets, this may take a long time and
potentially dominate the overall training time. For example, after performing feature
engineering, our tokenized training dataset has approximately 45 TFRecord “part”
files, as shown in the following:

296 | Chapter 8: Train and Optimize Models at Scale

part-algo-1-amazon_reviews_us_Apparel_v1_00.tfrecord
...
part-algo-2-amazon_reviews_us_Digital_Software_v1_00.tfrecord
part-algo-4-amazon_reviews_us_Digital_Video_Games_v1_00.tfrecord
...
part-algo-9-amazon_reviews_us_Sports_v1_00.tfrecord

Rather than load all 45 part files onto all instances in the cluster, we can improve
startup performance by placing only 15 part files onto each of the 3 cluster instances
for a total of 45 part files spread across the cluster. This is called “sharding.” We will
use a SageMaker feature called ShardedByS3Key that evenly distributes the part files
across the cluster, as shown in Figure 8-9.

Figure 8-9. Using ShardedByS3Key distribution strategy to distribute the input files
across the cluster instances.

Here we set up the ShardedByS3Key distribution strategy for our S3 input data
including the train, validation, and test datasets:

s3_input_train_data =
 sagemaker.s3_input(s3_data=processed_train_data_s3_uri,
 distribution='ShardedByS3Key')

Reduce Cost and Increase Performance | 297

s3_input_validation_data =
 sagemaker.s3_input(s3_data=processed_validation_data_s3_uri,
 distribution='ShardedByS3Key')

s3_input_test_data =
 sagemaker.s3_input(s3_data=processed_test_data_s3_uri,
 distribution='ShardedByS3Key')

Next, we call fit() with the input map for each of our dataset splits, including train,
validation, and test:

estimator.fit(inputs={'train': s3_input_train_data,
 'validation': s3_input_validation_data,
 'test': s3_input_test_data
 })

In this case, each instance in our cluster will receive approximately 15 files for each of
the dataset splits.

Stream Data on the Fly with Pipe Mode
In addition to sharding, we can also use a SageMaker feature called Pipe mode to
load the data on the fly and as needed. Up until now, we’ve been using the default
File mode, which copies all of the data to all the instances when the training job
starts. This creates a long pause at the start of the training job as the data is copied.
Pipe mode provides the most significant performance boost when using large data‐
sets in the 10, 100, or 1,000 GB range. If our dataset is smaller, we should use File
mode.

Pipe mode streams data in parallel from S3 directly into the training processes run‐
ning on each instance, which provides significantly higher I/O throughput than File
mode. By streaming only the data that is needed when it’s needed, our training and
tuning jobs start quicker, complete faster, and use less disk space overall. This directly
leads to lower cost for our training and tuning jobs.

Pipe mode works with S3 to pull the rows of training data as needed. Under the
hood, Pipe mode is using Unix first-in, first-out (FIFO) files to read data from S3 and
cache it locally on the instance shortly before the data is needed by the training job.
These FIFO files are one-way readable. In other words, we can’t back up or skip ahead
randomly.

Here is how we configure our training job to use Pipe mode:

estimator = TensorFlow(entry_point='tf_bert_reviews.py',
 source_dir='src',
 instance_count=train_instance_count,
 instance_type=train_instance_type,

298 | Chapter 8: Train and Optimize Models at Scale

 ...
 input_mode='Pipe')

Since Pipe mode wraps our TensorFlow Dataset Reader, we need to change our
TensorFlow code slightly to detect Pipe mode and use the PipeModeDataset wrapper:

 if input_mode == 'Pipe':
 from sagemaker_tensorflow import PipeModeDataset

 dataset = PipeModeDataset(channel=channel,
 record_format='TFRecord')
 else:
 dataset = tf.data.TFRecordDataset(input_filenames)

Enable Enhanced Networking
Training at scale requires super-fast communication between instances in the cluster.
Be sure to select an instance type that utilizes ENA and EFA to provide high network
bandwidth and consistent network latency between the cluster instances.

ENA works well with the AWS deep learning instance types, including the C, M, P,
and X series. These instance types offer a large number of CPUs, so they benefit
greatly from efficient sharing of the network adapter. By performing various
network-level optimizations such as hardware-based checksum generation and
software-based routing, ENA reduces overhead, improves scalability, and maximizes
consistency. All of these optimizations are designed to reduce bottlenecks, offload
work from the CPUs, and create an efficient path for the network packets.

EFA uses custom-built, OS-level bypass techniques to improve network performance
between instances in a cluster. EFA natively supports MPI, which is critical to scaling
high-performance computing applications that scale to thousands of CPUs. EFA is
supported by many of the compute-optimized instance types, including the C and P
series.

While not much concrete data exists to verify, some practitioners have noticed a per‐
formance improvement when running distributed SageMaker jobs in a Virtual Pri‐
vate Cloud (VPC). This is likely attributed to reduced network latency between
cluster instances running in the same VPC. If our training jobs are particularly
latency-sensitive, we might want to try running our training jobs in a VPC. We dive
deep into VPCs and SageMaker in Chapter 12.

Reduce Cost and Increase Performance | 299

Summary
In this chapter, we used SageMaker Experiments and HPT to track, compare, and
choose the best hyper-parameters for our specific algorithm and dataset. We explored
various distributed communication strategies, such as parameter servers and all-
reduce. We demonstrated how to use FSx for Lustre to increase S3 performance and
how to configure our training job to use the Amazon EFS. Next, we explored a few
ways to reduce cost and increase performance using SageMaker Autopilot’s hyper-
parameter selection feature and SageMaker’s optimized data loading strategies like
ShardedByS3Key and Pipe mode. Last, we discussed the enhanced networking fea‐
tures for compute-optimized instance types, including the ENA and EFA.

In Chapter 9, we will deploy our models into production using various rollout, A/B
testing, and multiarmed bandit strategies. We will discuss how to integrate model
predictions into applications using real-time REST endpoints, offline batch jobs, and
edge devices. We demonstrate how to auto-scale our endpoints based on built-in and
custom CloudWatch metrics. We also dive deep into using SageMaker Model Moni‐
tor to detect drifts in data distributions, model bias, and model explainability of our
live SageMaker Endpoints.

300 | Chapter 8: Train and Optimize Models at Scale

CHAPTER 9

Deploy Models to Production

In previous chapters, we demonstrated how to train and optimize models. In this
chapter, we shift focus from model development in the research lab to model deploy‐
ment in production. We demonstrate how to deploy, optimize, scale, and monitor
models to serve our applications and business use cases.

We deploy our model to serve online, real-time predictions and show how to run off‐
line, batch predictions. For real-time predictions, we deploy our model via Sage‐
Maker Endpoints. We discuss best practices and deployment strategies, such as
canary rollouts and blue/green deployments. We show how to test and compare new
models using A/B tests and how to implement reinforcement learning with multi‐
armed bandit (MAB) tests. We demonstrate how to automatically scale our model
hosting infrastructure with changes in model-prediction traffic. We show how to
continuously monitor the deployed model to detect concept drift, drift in model
quality or bias, and drift in feature importance. We also touch on serving model pre‐
dictions via serverless APIs using Lambda and how to optimize and manage models
at the edge. We conclude the chapter with tips on how to reduce our model size,
reduce inference cost, and increase our prediction performance using various hard‐
ware, services, and tools, such as the AWS Inferentia hardware, SageMaker Neo ser‐
vice, and TensorFlow Lite library.

Choose Real-Time or Batch Predictions
We need to understand the application and business context to choose between real-
time and batch predictions. Are we trying to optimize for latency or throughput?
Does the application require our models to scale automatically throughout the day to
handle cyclic traffic requirements? Do we plan to compare models in production
through A/B tests?

301

If our application requires low latency, then we should deploy the model as a real-
time API to provide super-fast predictions on single prediction requests over HTTPS,
for example. We can deploy, scale, and compare our model prediction servers with
SageMaker Endpoints using the REST API protocol with HTTPS and JSON, as
shown in Figure 9-1.

Figure 9-1. Deploy model as a real-time REST endpoint.

For less-latency-sensitive applications that require high throughput, we should deploy
our model as a batch job to perform batch predictions on large amounts of data in S3,
for example. We will use SageMaker Batch Transform to perform the batch predic‐
tions along with a data store like Amazon RDS or DynamoDB to productionize the
predictions, as shown in Figure 9-2.

Figure 9-2. Deploying our model as a batch job to perform batch predictions on large
amounts of data in S3 using SageMaker Batch Transform.

Real-Time Predictions with SageMaker Endpoints
In 2002, Jeff Bezos, founder of Amazon, wrote a memo to his employees later called
the “Bezos API Mandate.” The mandate dictated that all teams must expose their
services through APIs—and communicate with each other through these APIs. This
mandate addressed the “deadlock” situation that Amazon faced back in the early
2000s in which everybody wanted to build and use APIs, but nobody wanted to spend
the time refactoring their monolithic code to support this idealistic best practice. The

302 | Chapter 9: Deploy Models to Production

mandate released the deadlock and required all teams to build and use APIs within
Amazon.

Seen as the cornerstone of Amazon’s success early on, the Bezos
API Mandate is the foundation of Amazon Web Services as we
know it today. APIs helped Amazon reuse their internal ecosystem
as scalable managed services for other organizations to build upon.

Following the Bezos API Mandate, we will deploy our model as a REST API using
SageMaker Endpoints. SageMaker Endpoints are, by default, distributed containers.
Applications invoke our models through a simple RESTful interface, as shown in
Figure 9-3, which shows the model deployed across multiple cluster instances and
Availability Zones for higher availability.

Figure 9-3. Application invoking our highly available model hosted on a REST endpoint.

Deploy Model Using SageMaker Python SDK
There are two ways to deploy the model using the SageMaker Python SDK. We can
call deploy() on a model object, or we can call deploy() on the SageMaker estimator
object that we used to train the model.

We can also deploy models to SageMaker that were not trained
using SageMaker. This is often called “bring your own model.”

Following is the code for deploying our TensorFlow-and-BERT-based review classi‐
fier model trained with SageMaker:

Real-Time Predictions with SageMaker Endpoints | 303

from sagemaker.tensorflow.model import TensorFlowModel

tensorflow_model = TensorFlowModel(
 name=tensorflow_model_name,
 source_dir='code',
 entry_point='inference.py',
 model_data=<TENSORFLOW_MODEL_S3_URI>,
 role=role,
 framework_version='<TENSORFLOW_VERSION>')

tensorflow_model.deploy(endpoint_name=<ENDPOINT_NAME>,
 initial_instance_count=1,
 instance_type='ml.m5.4xlarge',
 wait=False)

Next is the inference.py specified earlier. This Python script contains the input_han
dler() and output_handler() functions that convert raw JSON to and from Tensor‐
Flow tensors. These functions are critical pieces of the prediction request/response
process.

The input_handler() function converts the JSON containing raw review text into
BERT-embedding tensors using DistilBertTokenizer. These embeddings are con‐
verted to tensors and used as inputs to the TensorFlow model:

def input_handler(data, context):
 data_str = data.read().decode('utf-8')

 jsonlines = data_str.split("\n")

 transformed_instances = []

 for jsonline in jsonlines:
 review_body = json.loads(jsonline)["features"][0]
 encode_plus_tokens = tokenizer.encode_plus(
 review_body,
 pad_to_max_length=True,
 max_length=max_seq_length,
 truncation=True)

 input_ids = encode_plus_tokens['input_ids']

 input_mask = encode_plus_tokens['attention_mask']

 transformed_instance = {
 "input_ids": input_ids,
 "input_mask": input_mask
 }

 transformed_instances.append(transformed_instance)

 transformed_data = {
 "signature_name":"serving_default",

304 | Chapter 9: Deploy Models to Production

 "instances": transformed_instances
 }

 transformed_data_json = json.dumps(transformed_data)

 return transformed_data_json

The output_handler() converts the TensorFlow response from a tensor into a JSON
response with the predicted label (star_rating) and the prediction confidence:

def output_handler(response, context):
 response_json = response.json()

 outputs_list = response_json["predictions"]

 predicted_classes = []

 for outputs in outputs_list:
 predicted_class_idx = tf.argmax(outputs, axis=-1, output_type=tf.int32)
 predicted_class = classes[predicted_class_idx]

 prediction_dict = {}
 prediction_dict["predicted_label"] = predicted_class

 jsonline = json.dumps(prediction_dict)

 predicted_classes.append(jsonline)

 predicted_classes_jsonlines = "\n".join(predicted_classes)

 response_content_type = context.accept_header

 return predicted_classes_jsonlines, response_content_type

Track Model Deployment in Our Experiment
We also want to track the deployment within our experiment for data lineage:

from smexperiments.trial import Trial
trial = Trial.load(trial_name=trial_name)

from smexperiments.tracker import Tracker
tracker_deploy = Tracker.create(display_name='deploy',
 sagemaker_boto_client=sm)

deploy_trial_component_name = tracker_deploy.trial_component.trial_component_name

Attach the 'deploy' Trial Component and Tracker to the Trial
trial.add_trial_component(tracker_deploy.trial_component)

Track the Endpoint Name
tracker_deploy.log_parameters({
 'endpoint_name': endpoint_name,

Real-Time Predictions with SageMaker Endpoints | 305

})

Must save after logging
tracker_deploy.trial_component.save()

Analyze the Experiment Lineage of a Deployed Model
Let’s use the Experiment Analytics API to show us the lineage of our model in pro‐
duction, including feature engineering, model training, hyper-parameter optimiza‐
tion, and model deployment. We will tie everything together in an end-to-end
pipeline with full lineage tracking in Chapter 10, but let’s analyze the experiment line‐
age up to this point:

from sagemaker.analytics import ExperimentAnalytics

lineage_table = ExperimentAnalytics(
 sagemaker_session=sess,
 experiment_name=experiment_name,
 metric_names=['validation:accuracy'],
 sort_by="CreationTime",
 sort_order="Ascending",
)

lineage_table.dataframe()

TrialComponentName DisplayName max_seq_length learning_rate train_accuracy endpoint_name
TrialComponent-
2021-01-09-062410-pxuy

prepare 64.0 NaN NaN

tensorflow-training-
2021-01-09-06-24-12-989

train 64.0 0.00001 0.9394

TrialComponent-
2021-01-09-193933-bowu

optimize-1 64.0 0.000017 0.9416

TrialComponent-
2021-01-09214921-dgtu

deploy NaN NaN NaN tensorflow-
training-
2021-01-09-06-
24-12-989

Invoke Predictions Using the SageMaker Python SDK
Here is some simple application code to invoke our deployed model endpoint and
classify raw product reviews into star_rating 1–5:

import json
from sagemaker.tensorflow.model import TensorFlowPredictor
from sagemaker.serializers import JSONLinesSerializer
from sagemaker.deserializers import JSONLinesDeserializer

predictor =
 TensorFlowPredictor(endpoint_name=tensorflow_endpoint_name,

306 | Chapter 9: Deploy Models to Production

 sagemaker_session=sess,
 model_name='saved_model',
 model_version=0,
 content_type='application/jsonlines',
 accept_type='application/jsonlines',
 serializer=JSONLinesSerializer(),
 deserializer=JSONLinesDeserializer())

inputs = [
 {"features": ["This is great!"]},
 {"features": ["This is OK."]}
 {"features": ["This is bad."]}
]

predicted_classes = predictor.predict(inputs)

for predicted_class in predicted_classes:
 print(predicted_class)

OUTPUT

{"predicted_label": 5}
{"predicted_label": 3}
{"predicted_label": 1}

Now let’s predict on a sample batch of raw product reviews using a pandas Data‐
Frame:

import pandas as pd

df_reviews = pd.read_csv('./data/amazon_reviews_us_Digital_Software_v1_00.tsv.gz',
 delimiter='\t',
 quoting=csv.QUOTE_NONE,
 compression='gzip')
df_sample_reviews = df_reviews[['review_body']].sample(n=100)

def predict(review_body):
 inputs = [
 {"features": [review_body]}
]
 predicted_classes = predictor.predict(inputs)
 return predicted_classes[0]['predicted_label']

df_sample_reviews['predicted_class'] = \
df_sample_reviews['review_body'].map(predict)

The output shows the predicted class for star_rating 1–5.

Real-Time Predictions with SageMaker Endpoints | 307

review_body predicted_class
“This is great!” 5
“This is OK.” 3
“This is terrible.” 1

Invoke Predictions Using HTTP POST
When we productionize models as microservices, we need to decide how to make our
predictions available to client applications. Assuming we have the proper authentica‐
tion credentials and HTTP headers, we can invoke a model as a SageMaker Endpoint
directly using the following HTTP request/response syntax.

HTTP request syntax:

POST /endpoints/<EndpointName>/invocations HTTP/1.1
Content-Type: ContentType
Accept: Accept
X-Amzn-SageMaker-Custom-Attributes: <CustomAttributes>
X-Amzn-SageMaker-Target-Model: <TargetModel>
X-Amzn-SageMaker-Target-Variant: <TargetVariant>
X-Amzn-SageMaker-Inference-Id: <InferenceId>

This is great!

HTTP response syntax:

HTTP/1.1 200
Content-Type: ContentType
x-Amzn-Invoked-Production-Variant: <InvokedProductionVariant>
X-Amzn-SageMaker-Custom-Attributes: <CustomAttributes>

{'label': 5, 'score': 0.92150515}

In this example, we implemented the input_handler() and output_handler() func‐
tions using a single inference.py script. For more complex request and response han‐
dling, we can deploy each function in its own container using SageMaker Inference
Pipelines, as we see in the next section.

Create Inference Pipelines
An inference pipeline is a sequence of steps deployed on a single endpoint. Following
our example, we could deploy the request handler as its own scikit-learn container
(step1), followed by the TensorFlow/BERT model in its own TensorFlow Serving
container (step2), and succeeded by the response handler as its own scikit-learn con‐
tainer (step3), as shown in Figure 9-4.

308 | Chapter 9: Deploy Models to Production

Figure 9-4. Inference pipeline with three steps.

We can also deploy ensembles of models across different AI and machine learning
frameworks, including TensorFlow, PyTorch, scikit-learn, Apache Spark ML, etc.
Each step is a sequence of HTTPS requests between the containers controlled by
SageMaker. One step’s response is used as the prediction request for the next step and
so on. The last step returns the final response back to the inference pipeline, which
returns the response back to the calling application. The inference pipeline is fully
managed by SageMaker and can be used for real-time predictions as well as batch
transforms.

To deploy an inference pipeline, we create a PipelineModel with a sequence of steps,
including the request handler, model prediction, and response handler. We can then
call deploy() on the PipelineModel, which deploys the inference pipeline and
returns the endpoint API:

Define model name and endpoint name
model_name = 'inference-pipeline-model'
endpoint_name = 'inference-pipeline-endpoint'

Create a PipelineModel with a list of models to deploy in sequence
pipeline_model = PipelineModel(
 name=model_name,
 role=sagemaker_role,
 models=[
 request_handler,
 model,
 response_handler])

Deploy the PipelineModel
pipeline_model.deploy(
 initial_instance_count=1,

Real-Time Predictions with SageMaker Endpoints | 309

 instance_type='ml.c5.xlarge',
 endpoint_name=endpoint_name)

pipeline_model.deploy() returns a predictor, as shown in the single-model exam‐
ple. Whenever we make an inference request to this predictor, make sure we pass the
data that the first container expects. The predictor returns the output from the last
container.

If we want to run a batch transform job with the PipelineModel, just follow the steps
of creating a pipeline_model.transformer() object and call transform():

transformer = pipeline_model.transformer(
 instance_type='ml.c5.xlarge',
 instance_count=1,
 strategy='MultiRecord',
 max_payload=6,
 max_concurrent_transforms=8,
 accept='text/csv',
 assemble_with='Line',
 output_path='<S3_OUTPUT_PATH>')

transformer.transform(
 data='<S3_PATH_TO_DATA>',
 content_type='text/csv',
 split_type='Line')

The preceding example demonstrates how to create steps from a series of Python
scripts. With SageMaker Inference Pipelines, we can also provide our own Docker
containers for each step.

Invoke SageMaker Models from SQL and Graph-Based Queries
AWS provides deep integration between the Amazon AI, machine learning, and ana‐
lytics services. Amazon Redshift, Athena, and Aurora can execute predictive SQL
queries with models deployed as SageMaker Endpoints. Neptune can execute graph-
based queries with SageMaker Endpoints, as well.

Auto-Scale SageMaker Endpoints Using
Amazon CloudWatch
While we can manually scale using the InstanceCount parameter in EndpointCon
fig, we can configure our endpoint to automatically scale out (more instances) or
scale in (less instances) based on a given metric like requests per second. As more
requests come in, SageMaker will automatically scale our model cluster to meet the
demand.

In the cloud, we talk about “scaling in” and “scaling out” in addition to the typical
“scaling down” and “scaling up.” Scaling in and out refers to removing and adding

310 | Chapter 9: Deploy Models to Production

instances of the same type, respectively. Scaling down and up refers to using smaller
or bigger instance types, respectively. Larger instances have more CPUs, GPUs, mem‐
ory, and network bandwidth, typically.

It’s best to use homogenous instance types when defining our cluster. If we mix
instance types, we may have difficulty tuning the cluster and defining scaling policies
that apply consistently to every instance in the heterogeneous cluster. When trying
new instance types, we recommend creating a new cluster with only that instance
type and comparing each cluster as a single unit.

Define a Scaling Policy with AWS-Provided Metrics
In this example, we use SageMakerVariantInvocationsPerInstance, the AWS-
provided CloudWatch metric, to automatically scale our model endpoint when we
reach a certain threshold of invocations per instance. In the next section, we will use a
custom auto-scaling metric:

autoscale = boto3.Session().client(
 service_name='application-autoscaling',
 region_name=region)

autoscale.register_scalable_target(
 ServiceNamespace='sagemaker',
 ResourceId="endpoint/" + tensorflow_endpoint_name + "/variant/AllTraffic",
 ScalableDimension='sagemaker:variant:DesiredInstanceCount',
 MinCapacity=1,
 MaxCapacity=2,
 RoleARN=role,
 SuspendedState={
 'DynamicScalingInSuspended': False,
 'DynamicScalingOutSuspended': False,
 'ScheduledScalingSuspended': False
 }
)

autoscale.put_scaling_policy(
 PolicyName='bert-reviews-autoscale-policy',
 ServiceNamespace='sagemaker',
 ResourceId="endpoint/" + tensorflow_endpoint_name + "/variant/AllTraffic",
 ScalableDimension='sagemaker:variant:DesiredInstanceCount',
 PolicyType='TargetTrackingScaling',
 TargetTrackingScalingPolicyConfiguration={
 'TargetValue': 1000.0,
 'PredefinedMetricSpecification': {
 'PredefinedMetricType': 'SageMakerVariantInvocationsPerInstance',
 },
 'ScaleOutCooldown': 60,
 'ScaleInCooldown': 300,
 }
)

Auto-Scale SageMaker Endpoints Using Amazon CloudWatch | 311

We can see a spike in the InvocationsPerInstance metric in CloudWatch after we
send a large amount of traffic to our endpoint, as shown in Figure 9-5, as well as a
spike in CPU and memory utilization, as shown in Figure 9-6.

Figure 9-5. Spike in the InvocationsPerInstance metric.

Figure 9-6. Spike in CPUUtilization, DiskUtilization, and MemoryUtilization
from increased prediction traffic.

This causes an alarm that triggers a scale-out event from one instance to two instan‐
ces to handle the spike in prediction traffic by sharing the traffic across two instances.
Figure 9-7 shows the positive effect of adding an additional instance to the endpoint
cluster. As the number of InvocationsPerInstance decreases, so does the CPU and
memory utilization.

312 | Chapter 9: Deploy Models to Production

Figure 9-7. The number of InvocationsPerInstance decreases when we add a second
instance to the endpoint cluster.

Define a Scaling Policy with a Custom Metric
Netflix is known to use a custom auto-scaling metric called “starts per second” or
SPS. A start is recorded every time a user clicks “play” to watch a movie or TV show.
This was a key metric for auto-scaling because the more “Starts per Second,” the more
traffic we would start receiving on our streaming control plane.

Assuming we are publishing the StartsPerSecond metric, we can use this custom
metric to scale out our cluster as more movies are started. This metric is called a “tar‐
get tracking” metric, and we need to define the metric name, target value, model
name, variant name, and summary statistic. The following scaling policy will begin
scaling out the cluster if the aggregate StartsPerSecond metric exceeds an average of
50% across all instances in our model-serving cluster:

{
 "TargetValue": 50,
 "CustomizedMetricSpecification":
 {
 "MetricName": "StartsPerSecond",
 "Namespace": "/aws/sagemaker/Endpoints",
 "Dimensions": [
 {"Name": "EndpointName", "Value": "ModelA" },
 {"Name": "VariantName","Value": "VariantA"}
],
 "Statistic": "Average",
 "Unit": "Percent"
 }
}

When using custom metrics for our scaling policy, we should pick a metric that meas‐
ures instance utilization, decreases as more instances are added, and increases as
instances are removed.

Auto-Scale SageMaker Endpoints Using Amazon CloudWatch | 313

Tuning Responsiveness Using a Cooldown Period
When our endpoint is auto-scaling in or out, we likely want to specify a “cooldown”
period in seconds. A cooldown period essentially reduces the responsiveness of the
scaling policy by defining the number of seconds between iterations of the scale
events. We may want to scale out quickly when a spike of traffic comes in, but we
should scale in slowly to make sure we handle any temporary dips in traffic during
rapid scale-out events. The following scaling policy will take twice as long to scale in
as it does to scale out, as shown in the ScaleInCooldown and ScaleOutCooldown
attributes:

{
 "TargetValue": 60.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType":
 "SageMakerVariantInvocationsPerInstance"
 },
 "ScaleInCooldown": 600,
 "ScaleOutCooldown": 300
}

Auto-Scale Policies
There are three main types of scaling policies to choose from when setting up auto-
scaling for our SageMaker Endpoints:

Target tracking
Specify a single metric and AWS auto-scales as needed; for example, “keep
InvocationsPerInstance = 1000.” This strategy requires the least configura‐
tion.

Simple
Trigger on a metric at a given threshold with a fixed amount of scaling; for exam‐
ple, “when InvocationsPerInstance > 1000, add 1 instance.” This strategy
requires a bit of configuration but provides more control over the target-tracking
strategy.

Step scaling
Trigger on a metric at various thresholds with configurable amounts of scaling at
each threshold; for example, “when InvocationsPerInstance > 1000, add 1
instance, InvocationsPerInstance > 2000, add 5 instances,” etc. This strategy
requires the most amount of configuration but provides the most amount of con‐
trol for situations such as spiky traffic.

314 | Chapter 9: Deploy Models to Production

Strategies to Deploy New and Updated Models
We can test and deploy new and updated models behind a single SageMaker End‐
point with a concept called “production variants.” These variants can differ by hard‐
ware (CPU/GPU), by data (comedy/drama movies), or by region (US West or
Germany North). We can safely shift traffic between the model variants in our end‐
point for canary rollouts, blue/green deployments, A/B tests, and MAB tests. Using
these deployment strategies, we can minimize the risks involved when pushing new
and updated models to production.

Split Traffic for Canary Rollouts
Since our data is continuously changing, our models need to evolve to capture this
change. When we update our models, we may choose to do this slowly using a “can‐
ary rollout,” named after the antiquated and morbid process of using a canary to
detect whether a human could breathe in a coal mine. If the canary survives the coal
mine, then the conditions are good and we can proceed. If the canary does not sur‐
vive, then we should make adjustments and try again later with a different canary.
Similarly, we can point a small percentage of traffic to our “canary” model and test if
the model services. Perhaps there is a memory leak or other production-specific issue
that we didn’t catch in the research lab.

The combination of the cloud instance providing compute, memory, and storage and
the model container application is called a “production variant.” The production var‐
iant defines the instance type, instance count, and model. By default, the SageMaker
Endpoint is configured with a single production variant, but we can add multiple var‐
iants as needed.

Here is the code to setup a single variant, VariantA, at a single endpoint receiving
100% of the traffic across 20 instances:

endpoint_config = sm.create_endpoint_config(
 EndpointConfigName='my_endpoint_config_name',
 ProductionVariants=[
 {
 'VariantName': 'VariantA',
 'ModelName': 'ModelA',
 'InstanceType':'ml.m5.large',
 'InitialInstanceCount': 20,
 'InitialVariantWeight': 100,
 }
])

After creating a new production variant for our canary, we can create a new endpoint
and point a small amount of traffic (5%) to the canary and point the rest of the traffic
(95%) to our existing variant, as shown in Figure 9-8.

Strategies to Deploy New and Updated Models | 315

Figure 9-8. Splitting 5% traffic to a new model for a canary rollout.

Following is the code to create a new endpoint, including the new canary VariantB
accepting 5% of the traffic. Note that we are specifying 'InitialInstanceCount': 1
for the new canary, VariantB. Assuming that 20 instances handle 100% of the current
traffic, then each instance likely handles approximately 5% of the traffic. This 5%
matches the amount of traffic we wish to send to the new canary instance. If we
wished to send 10% traffic to the new canary, for example, we would choose 'Initia
lInstanceCount': 2 to support 10% of the canary traffic. This assumes that we are
using the same instance type for the new canary. If choosing a different instance type,
we may need more or less instances to handle the % traffic load:

updated_endpoint_config=[
 {
 'VariantName': 'VariantA',
 'ModelName': 'ModelA',
 'InstanceType':'ml.m5.large',
 'InitialInstanceCount': 20,
 'InitialVariantWeight': 95,
 },
 {
 'VariantName': 'VariantB',
 'ModelName': 'ModelB',
 'InstanceType':'ml.m5.large',
 'InitialInstanceCount': 1,
 'InitialVariantWeight': 5,
 }
])

sm.update_endpoint(
 EndpointName='my_endpoint_name',

316 | Chapter 9: Deploy Models to Production

 EndpointConfigName='my_endpoint_config_name'
)

Canary rollouts release new models safely to a small percentage of users for initial
production testing in the wild. They are useful if we want to test in live production
without affecting the entire user base. Since the majority of traffic goes to the existing
model, the cluster size of the canary model can be relatively small since it’s only
receiving 5% of the traffic. In the preceding example, we are only using a single
instance for the canary variant.

Shift Traffic for Blue/Green Deployments
If the new model performs well, we can proceed with a blue/green deployment to
shift all traffic to the new model, as shown in Figure 9-9. Blue/green deployments
help to reduce downtime in case we need to roll back to the old deployment. With a
blue/green deployment, we spin up a full clone of the existing model-server cluster
using the new canary model. We then shift all the traffic from the old cluster (blue)
over to the new cluster (green), as shown in Figure 9-9. Blue/green deployments pre‐
vent the partial-deployment scenario where some of the instances are running the
new canary model and some are running the existing model. This partial-deployment
scenario is very hard to debug and manage at scale.

Figure 9-9. Shift traffic to model variant B for blue/green deployments.

Following is the code to update our endpoint and shift 100% of the traffic to the suc‐
cessful canary model, VariantB. Note that we have also increased the size of the new
cluster to match the existing cluster since the new cluster is now handling all of the
traffic:

Strategies to Deploy New and Updated Models | 317

updated_endpoint_config=[
 {
 'VariantName': 'VariantA',
 'ModelName': 'ModelA',
 'InstanceType':'ml.m5.large',
 'InitialInstanceCount': 20,
 'InitialVariantWeight': 0,
 },
 {
 'VariantName': 'VariantB',
 'ModelName': 'ModelB',
 'InstanceType':'ml.m5.large',
 'InitialInstanceCount': 20,
 'InitialVariantWeight': 100,
 }
])

sm.update_endpoint_weights_and_capacities(
 EndpointName='my_endpoint_name',
 DesiredWeightsAndCapacities=updated_endpoint_config
)

We will keep the old cluster with VariantA idle for 24 hours, let’s say, in case our can‐
ary fails unexpectedly and we need to roll back quickly to the old cluster. After 24
hours, we can remove the old environment and complete the blue/green deployment.
Here is the code to remove the old model, VariantA, by removing VariantA from the
endpoint configuration and updating the endpoint:

updated_endpoint_config=[
 {
 'VariantName': 'VariantB',
 'ModelName': 'ModelB',
 'InstanceType':'ml.m5.large',
 'InitialInstanceCount': 20,
 'InitialVariantWeight': 100,
 }
])

sm.update_endpoint(
 EndpointName='my_endpoint_name',
 EndpointConfigName='my_endpoint_config_name'
)

While keeping the old cluster idle for a period of time—24 hours, in our example—
may seem wasteful, consider the cost of an outage during the time needed to roll back
and scale out the previous model, VariantA. Sometimes the new model cluster works
fine for the first few hours, then degrades or crashes unexpectedly after a nighttime
cron job, early morning product catalog refresh, or other untested scenario. In these
cases, we were able to immediately switch traffic back to the old cluster and conduct
business as usual.

318 | Chapter 9: Deploy Models to Production

Testing and Comparing New Models
We can test new models behind a single SageMaker Endpoint using the same “pro‐
duction variant” concept described in the previous section on model deployment. In
this section, we will configure our SageMaker Endpoint to shift traffic between the
models in our endpoint to compare model performance in production using A/B and
MAB tests.

When testing our models in production, we need to define and track the business
metrics that we wish to optimize. The business metric is usually tied to revenue or
user engagement, such as orders purchased, movies watched, or ads clicked. We can
store the metrics in any database, such as DynamoDB, as shown in Figure 9-10. Ana‐
lysts and scientists will use this data to determine the winning model from our tests.

Figure 9-10. Tracking business metrics to determine the best model variant.

Continuing with our text-classifier example, we will create a test to maximize the
number of successfully labeled customer service messages. As customer service
receives new messages, our application will predict the message’s star_rating (1–5)
and route 1s and 2s to a high-priority customer service queue. If the representative
agrees with the predicted star_rating, they will mark our prediction as successful
(positive feedback); otherwise they will mark the prediction as unsuccessful (negative
feedback). Unsuccessful predictions could be routed to a human-in-the-loop work‐
flow using Amazon A2I and SageMaker Ground Truth, which we discuss in more
detail in Chapter 10. We will then choose the model variant with the most successful
number of star_rating predictions and start shifting traffic to this winning variant.
Let’s dive deeper into managing the experiments and shifting the traffic.

Testing and Comparing New Models | 319

Perform A/B Tests to Compare Model Variants
Similar to canary rollouts, we can use traffic splitting to direct subsets of users to dif‐
ferent model variants for the purpose of comparing and testing different models in
live production. The goal is to see which variants perform better. Often, these tests
need to run for a long period of time (weeks) to be statistically significant.
Figure 9-11 shows two different recommendation models deployed using a random
50/50 traffic split between the two variants.

Figure 9-11. A/B testing with two model variants by splitting traffic 50/50.

While A/B testing seems similar to canary rollouts, they are focused on gathering
data about different variants of a model. A/B tests are targeted to larger user groups,
take more traffic, and run for longer periods of time. Canary rollouts are focused
more on risk mitigation and smooth upgrades.

For fine-grained traffic routing based on IP address, HTTP head‐
ers, query string, or payload content, use an Application Load Bal‐
ancer in front of the SageMaker Endpoints.

320 | Chapter 9: Deploy Models to Production

One example for a model A/B test could be streaming music recommendations. Let’s
assume we are recommending a playlist for Sunday mornings. We might want to test
if we can identify specific user groups that are more likely to listen to powerful wake-
up beats (model A) or that prefer smooth lounge music (model B). Let’s implement
this A/B test using Python. We start with creating a SageMaker Endpoint
configuration that defines a separate production variant for Model A and Model B.
We initialize both production variants with the identical instance types and instance
counts:

import time
timestamp = '{}'.format(int(time.time()))

endpoint_config_name = '{}-{}'.format(training_job_name, timestamp)

variantA = production_variant(model_name='ModelA',
 instance_type="ml.m5.large",
 initial_instance_count=1,
 variant_name='VariantA',
 initial_weight=50)

variantB = production_variant(model_name='ModelB',
 instance_type="ml.m5.large",
 initial_instance_count=1,
 variant_name='VariantB',
 initial_weight=50)

endpoint_config = sm.create_endpoint_config(
 EndpointConfigName=endpoint_config_name,
 ProductionVariants=[variantA, variantB]
)

endpoint_name = '{}-{}'.format(training_job_name, timestamp)

endpoint_response = sm.create_endpoint(
 EndpointName=endpoint_name,
 EndpointConfigName=endpoint_config_name)

After we have monitored the performance of both models for a period of time, we
can shift 100% of the traffic to the better-performing model, Model B in our case.
Let’s shift our traffic from a 50/50 split to a 0/100 split, as shown in Figure 9-12.

Testing and Comparing New Models | 321

Figure 9-12. A/B testing traffic shift from 50/50 to 0/100.

Following is the code to shift all traffic to VariantB and ultimately remove VariantA
when we are confident that VariantB is working correctly:

updated_endpoint_config = [
 {
 'VariantName': 'VariantA',
 'DesiredWeight': 0,
 },
 {
 'VariantName': 'VariantB',
 'DesiredWeight': 100,
 }
]

sm.update_endpoint_weights_and_capacities(
 EndpointName='my_endpoint_name',
 DesiredWeightsAndCapacities=updated_endpoint_config
)

updated_endpoint_config=[
 {
 'VariantName': 'VariantB',
 'ModelName': 'ModelB',
 'InstanceType':'ml.m5.large',
 'InitialInstanceCount': 2,
 'InitialVariantWeight': 100,
 }
])

sm.update_endpoint(

322 | Chapter 9: Deploy Models to Production

 EndpointName='my_endpoint_name',
 EndpointConfigName='my_endpoint_config_name'
)

Reinforcement Learning with Multiarmed Bandit Testing
A/B tests are static and must run for a period of time—sometimes weeks or months—
before they are considered statistically significant. During this time, we may have
deployed a bad model variant that is negatively affecting revenue. However, if we stop
the test early, we ruin the statistical significance of the experiment and cannot derive
much meaning from the results. In other words, our model may have performed
poorly initially but may actually have been a better model overall if the experiment
had run longer. A/B tests are static and do not allow us to dynamically shift traffic
during an experiment to minimize the “regret” caused by a poor-performing model.
They also do not allow us to add or remove model variants during the lifetime of the
experiment.

A more dynamic method for testing different model variants is called MABs. Named
after a slot machine that can quickly take our money, these mischievous bandits can
actually earn us quite a bit of money by dynamically shifting traffic to the winning
model variants much sooner than with an A/B test. This is the “exploit” part of the
MAB. At the same time, the MAB continues to “explore” the nonwinning model
variants just in case the early winners were not the overall best model variants. This
dynamic pull between “exploit and explore” is what give MABs their power. Based on
reinforcement learning (RL), MABs rely on the feedback positive-negative mecha‐
nism to choose an “action.”

In our case, the MAB chooses the model variant based on the current reward metrics
and the chosen exploit-explore strategy. The RL-based MAB acts as the primary Sage‐
Maker Endpoint and dynamically routes prediction traffic to the available BERT-
based SageMaker Endpoints, as shown in Figure 9-13.

Testing and Comparing New Models | 323

Figure 9-13. Find the best BERT model using RL and MABs.

There are various MAB exploration strategies, including epsilon greedy, Thompson
sampling, bagging, and online cover. Epsilon greedy uses a fixed exploit-explore
threshold, while Thompson sampling uses a more sophisticated and dynamic thres‐
hold based on prior information—a technique rooted in Bayesian statistics. Bagging
uses an ensemble approach by training on random subsets of data to generate a set of
policies to ensemble. Online cover is, in theory, the optimal exploration algorithm
based on the paper “Taming the Monster: A Fast and Simple Algorithm for Contex‐
tual Bandits”. Like bagging, online cover trains a set of policies on different subsets of
the dataset. Unlike bagging, however, online cover trains the set of policies to result in
a diverse set of predictions for a more sophisticated and complete exploration
strategy.

SageMaker natively supports popular RL libraries, including Vowpal Wabbit, Ray,
Coach, Unity, and others. Additionally, we can use any other reinforcement library by
building our own Docker image for SageMaker to deploy and manage. In our exam‐
ple, we will use Vowpal Wabbit and the online-cover exploration strategy. Our Vow‐
pal Wabbit–based MAB is continuously trained on the latest reward metrics and will
adjust the prediction traffic to send more traffic to the winning BERT-based model,
as shown in Figure 9-14, where Model 2 starts to receive more traffic as it accumu‐
lates more rewards.

324 | Chapter 9: Deploy Models to Production

https://oreil.ly/ZNyKH
https://oreil.ly/ZNyKH

Figure 9-14. MAB dynamically shifting traffic to the “winning” model variant.

Figure 9-15 shows a complete, end-to-end production implementation of MABs in
AWS using the Vowpal Wabbit RL framework, SageMaker, Amazon Kinesis Firehose,
S3 for persistent storage, and Athena for application queries.

Testing and Comparing New Models | 325

Figure 9-15. Complete, end-to-end implementation of MABs and RL on AWS.

We are continuously training our MAB with the Vowpal Wabbit RL framework as
new reward data flows into the system from our applications. New versions of the
MAB models are continuously deployed as SageMaker Endpoints. We can dynami‐
cally add and remove model variants from testing because of the dynamic nature of
MABs. This is something that we cannot do with traditional A/B tests, where we need
to keep all model variants fixed for the lifetime of the experiment.

Following is a subset of the configuration for our MAB model using the native Vow‐
pal Wabbit integration with SageMaker, DynamoDB, and Kinesis. This configuration
also highlights the hyper-parameters used by the online-cover exploration strategy,

326 | Chapter 9: Deploy Models to Production

including the number of subpolicies to train as well as the counterfactual analysis
(CFA) strategy to use:

resource:
 shared_resource:
 experiment_db:
 table_name: "BanditsExperimentTable" # Status of an experiment
 model_db:
 table_name: "BanditsModelTable" # Status of trained models
 join_db:
 table_name: "BanditsJoinTable" # Status of reward ingestion
image: "sagemaker-rl-vw-container:vw-<VW_VERSION>"
<VOWPAL_WABBIT_VERSION>-<CPU_OR_GPU>" # Vowpal Wabbit container
algor: # Vowpal Wabbit algorithm parameters
 algorithms_parameters:
 exploration_policy: "cover"
 num_policies: 3 # number of online cover policies to create
 num_arms: 2
 cfa_type: "dr" # supports "dr", "ips"

We have chosen to train three subpolicies when deciding which action to take (which
BERT model to invoke)—as well as the doubly robust (DR) CFA method. For more
information on these hyper-parameters, see the Vowpal Wabbit documentation and
the GitHub repository associated with this book.

Following is a snippet from the SageMaker Training Job logs as the bandit model is
continuously trained on new reward data arriving to the system. In this case, six hun‐
dred new rewards were picked up:

/usr/bin/python train-vw.py --cfa_type dr --epsilon 0.1 --exploration_policy
cover --num_arms 2 --num_policies 3
INFO:root:channels ['pretrained_model', 'training']
INFO:root:hps: {'cfa_type': 'dr', 'epsilon': 0.1, 'exploration_policy':
'cover', 'num_arms': 2, 'num_policies': 3}
INFO:root:Loading model from /opt/ml/input/data/pretrained_model/vw.model
INFO:VW CLI:creating an instance of VWModel
INFO:VW CLI:successfully created VWModel
INFO:VW CLI:command: ['vw', '--cb_explore', '2', '--cover', '3', '-i',
'/opt/ml/input/data/pretrained_model/vw.model', '-f', '/opt/ml/model/vw.model',
'--save_resume', '-p', '/dev/stdout']
INFO:VW CLI:Started VW process!
INFO:root:Processing training data: [PosixPath('/opt/ml/input/data/training/local-
joined-data-1605218616.csv')]
finished run
number of examples = 600
INFO:root:Model learned using 600 training experiences.
INFO Reporting training SUCCESS

Let’s assume we want to compare two BERT models: BERT Model 1 and BERT Model
2. We will reuse the model we trained in Chapter 7 for BERT Model 1. This model
had a training accuracy of close to 93% and a validation accuracy around 50%. Given

Testing and Comparing New Models | 327

https://oreil.ly/lDikQ

that random chance to predict the five categories is 20%, 50% is not that bad. For
BERT Model 2, we train a model that achieves slightly less training and validation
accuracy around 40%.

We deploy the two BERT models and a fresh MAB. After running these models in
production, we analyze the latest probabilities used by the MAB to choose either
Model 1 or Model 2. Action probability is a measurement of the probability that
selecting either Model 1 or Model 2 is the best choice given the current reward infor‐
mation and context. The mean action probability for BERT Model 1 is 0.743 and for
BERT Model 2 is 0.696. BERT Model 1 is favored in this case as measured by the
higher action probability. Figure 9-16 shows the plot of the action probability used by
the MAB for all predictions.

Figure 9-16. MAB action probability.

Sample probability is a measurement of the probability that the bandit will choose
Model 1 or Model 2 given the exploration policy, current reward information, and
context. The combination of the action probability and sample probability deter‐
mines which BERT Model the bandit will use to classify the review test. The mean
sample probability our bandit uses for BERT Model 1 is 0.499, and for BERT Model 2
it is 0.477. BERT Model 1 is favored in this case as measured by the higher sample
probability.

Figure 9-17 shows the sample probability used by the MAB to choose between BERT
Model 1 and BERT Model 2 across all predictions.

328 | Chapter 9: Deploy Models to Production

Figure 9-17. MAB sample probability.

We also notice a shift in traffic between the two variants, as shown in Figure 9-18.
Model 2 starts with all of the traffic but slowly receives less traffic as the MAB begins
to favor Model 1 due to higher rewards, which leads to a higher sample probability.

Figure 9-18. Traffic split between BERT Model 1 and BERT Model 2.

We see that BERT Model 1, the incumbent model, has an advantage over the chal‐
lenger model, BERT Model 2. In this case, we choose to keep Model 1 in production
and not replace it with BERT Model 2.

Testing and Comparing New Models | 329

Let’s analyze reward versus regret and make sure our model is exploiting and explor‐
ing appropriately and not giving up too much during the exploration process. We
assign a reward of 1 if the model predicts the star_rating correctly and a reward of
0 if the model predicts incorrectly. Therefore, the reward is tied to model accuracy.
The mean reward is 0.472, which is, not coincidentally, a blend of the validation accu‐
racies of BERT Model 1 and BERT Model 2 that we trained in Chapter 7. Figure 9-19
shows a plot of the rolling one hundred mean reward across all predictions.

Figure 9-19. Rolling one hundred mean reward of our experiment.

All of these plots indicate that the bandit initially explores the action space by sending
traffic to both BERT Model 1 and BERT Model 2, finds an early winner, and exploits
BERT Model 2 up to around 230 predictions. It then starts exploring again until
around 330 predictions, when it begins to exploit up BERT Model 2 again up to the
500th prediction, where it likely would have begun exploring again.

This trade-off between exploit and explore is controlled by the chosen exploration
policy and is the key differentiator between A/B and MAB tests. With an aggressive
exploration policy, we will see the bandit explore the space and reduce the mean
reward. Here, we are using the self-tuning online-cover exploration policy.

Bandits help us minimize the regret of deploying a poor-performing model in pro‐
duction and give us near-real-time insight into our BERT model performance on
real-world data. If one of our BERT models is performing poorly, we can remove the
model from the experiment—or even add new model variants that the bandit will
begin exploring using the exploration policy that we selected.

We can tune our Vowpal Wabbit bandit model using the hyper-parameters described
in the framework’s documentation. For more information on the Vowpal Wabbit

330 | Chapter 9: Deploy Models to Production

hyper-parameters for the online-cover exploration policy, see the Vowpal Wabbit
documentation.

We can also provide historical data to pre-train the RL model before initially deploy‐
ing to production. This seeds our model with action and sample probabilities that
may potentially reduce the regret caused by the initial exploration phase when the RL
model is learning the action and sample space from scratch.

Remember that this is just an example of predictions over a few minutes. We likely
want to run the experiment longer to gain more insight into which model is better for
our application and use case.

Monitor Model Performance and Detect Drift
The world continues to change around us. Customer behavior changes relatively
quickly. The application team is releasing new features. The Netflix catalog is swelling
with new content. Fraudsters are finding clever ways to hack our credit cards. A con‐
tinuously changing world requires continuous retraining and redeploying of our pre‐
dictive models to adjust for these real-world drift scenarios.

In Chapter 5, we discussed various types of drift that may cause model performance
to degrade. By automatically recording SageMaker Endpoint inputs (features) and
outputs (predictions), SageMaker Model Monitor automatically detects and measures
drift against a provided baseline. SageMaker Model Monitor then notifies us when
the drift reaches a user-specified threshold from a baseline learned on our trained
model and specified during model deployment.

SageMaker Model Monitor calculates drift using statistical methods such as Kull‐
back–Leibler divergence and L-infinity norm. For L-infinity norm, for example, Sage‐
Maker Model Monitor supports linf_simple and linf_robust. The linf_simple
method is based on the maximum absolute difference between the cumulative distri‐
bution functions of two distributions. The linf_robust method is based on
linf_simple but is used when there are not enough samples. The linf_robust for‐
mula is based on the two-sample Kolmogorov–Smirnov test.

Enable Data Capture
SageMaker Model Monitor analyzes our model predictions (and their inputs) to
detect drift in data quality, model quality, model bias, or feature attribution. In a first
step, we need to enable data capture for a given endpoint, as shown in Figure 9-20.

Monitor Model Performance and Detect Drift | 331

https://oreil.ly/lDikQ
https://oreil.ly/lDikQ

Figure 9-20. Enable data capture for a given endpoint.

Following is the code to enable data capture. We can define all configuration options
in the DataCaptureConfig object. We can choose to capture the request payload, the
response payload, or both with this configuration. The capture config applies to all
model production variants of the endpoint:

from sagemaker.model_monitor import DataCaptureConfig

data_capture_config = DataCaptureConfig(
 enable_capture=True,
 sampling_percentage=100,
 destination_s3_uri='<S3_PATH>')

Next, we pass the DataCaptureConfig in the model.deploy()call:

predictor = model.deploy(
 initial_instance_count=1,
 instance_type='ml.m5.xlarge',
 endpoint_name=endpoint_name,
 data_capture_config=data_capture_config)

We are now capturing all inference requests and prediction results in the specified S3
destination.

Understand Baselines and Drift
In Chapter 5, we explored our dataset and visualized the distribution of reviews for
each product_category and star_rating. We will use this data to create baseline
distribution metrics to compare with live distributions seen by our SageMaker Model
Endpoints. Figure 9-21 shows the number of reviews per product category.

332 | Chapter 9: Deploy Models to Production

Figure 9-21. The number of reviews per product category in our data is an example
baseline for input feature distribution.

This represents the baseline distribution of the product_category input features used
to train our model. SageMaker Model Monitor captures the actual model-input dis‐
tribution seen by our SageMaker Model Endpoints, compares against that baseline
distribution used during training, and produces a drift metric that measures the cova‐
riate shift in our model-input distribution.

If the measure drift exceeds a threshold that we specify, SageMaker Model Monitor
would notify us and potentially retrain and redeploy an updated version of the model
trained on the latest distribution of input data. Figure 9-22 shows the baseline distri‐
bution of data for each product_category and star_rating from Chapter 5.

Monitor Model Performance and Detect Drift | 333

Figure 9-22. The distribution of star_rating labels in our training data is an example
baseline for target distribution.

We can detect covariate shifts in model-input distribution using SageMaker Model
Monitor’s data-quality monitoring feature. And we can also detect concept shifts
using SageMaker Model Monitor’s model-quality monitoring feature that compares
live predictions against ground truth labels for the same model inputs captured by
SageMaker Model Monitor on live predictions. These ground truth labels are pro‐
vided by humans in an offline human-in-the-loop workflow using, for example,
Amazon A2I and SageMaker Ground Truth, as described in Chapter 3.

In addition, SageMaker Model Monitor’s model-quality feature can monitor, meas‐
ure, and detect drifts in model bias, feature importance, and model explainability.
Each drift is measured relative to a baseline generated from our trained model. These
baselines are provided to each SageMaker Endpoint deployed with SageMaker Model
Monitor enabled.

334 | Chapter 9: Deploy Models to Production

Monitor Data Quality of Deployed SageMaker Endpoints
Our model learns and adapts the statistical characteristics of our training data. If the
statistical characteristics of the data that our online model receives drifts from that
baseline, the model quality will degrade. We can create a data-quality baseline using
Deequ, as discussed in Chapter 5. Deequ analyzes the input data and creates schema
constraints and statistics for each input feature. We can identify missing values and
detect covariate shifts relative to that baseline. SageMaker Model Monitor uses Deequ
to create baselines for data-quality monitoring.

Create a Baseline to Measure Data Quality
A data-quality baseline helps us detect drift in the statistical characteristics of online
model inputs from the provided baseline data. We typically use our training data to
create the first baseline, as shown in Figure 9-23.

Figure 9-23. Create a data-quality baseline from training data.

The training dataset schema and the inference dataset schema must match exactly,
including the number of features and the order in which they are passed in for infer‐
ence. We can now start a SageMaker Processing Job to suggest a set of baseline con‐
straints and generate statistics of the data as follows:

from sagemaker.model_monitor import DefaultModelMonitor
from sagemaker.model_monitor.dataset_format import DatasetFormat

my_default_monitor = DefaultModelMonitor(
 role=role,
 instance_count=1,
 instance_type='ml.m5.xlarge',
 volume_size_in_gb=20,
 max_runtime_in_seconds=3600,

Monitor Data Quality of Deployed SageMaker Endpoints | 335

)

my_default_monitor.suggest_baseline(
baseline_dataset='s3://my_bucket/path/some.csv',
 dataset_format=DatasetFormat.csv(header=True),
 output_s3_uri='s3://my_bucket/output_path/',
 wait=True
)

After the baseline job has finished, we can explore the generated statistics:

import pandas as pd

baseline_job = my_default_monitor.latest_baselining_job

statistics = pd.io.json.json_normalize(
baseline_job.baseline_statistics().body_dict["features"])

Here is an example set of statistics for our review_body prediction inputs:

"name" : "Review Body",
 "inferred_type" : "String",
 "numerical_statistics" : {
 "common" : {
 "num_present" : 1420,
 "num_missing" : 0
 }, "data" : [["I love this item.", "This item is OK", …]]

We can explore the generated constraints as follows:

constraints = pd.io.json.json_normalize(
baseline_job.suggested_constraints().body_dict["features"])

Here is an example of the constraints defined for our review_body prediction inputs:

{
 "name" : "Review Body",
 "inferred_type" : "String",
 "completeness" : 1.0
}

In this example, the constraint would raise an alarm if there are missing values for
review_body. With the baseline, we can now create and schedule data-quality moni‐
toring jobs.

Schedule Data-Quality Monitoring Jobs
SageMaker Model Monitor gives us the ability to continuously monitor the data col‐
lected from the endpoints on a schedule. We can create the schedule with the Create
MonitoringSchedule API defining a periodic interval. Similar to the data-quality
baseline job, SageMaker Model Monitor starts a SageMaker Processing Job, which
compares the dataset for the current analysis with the baseline statistics and

336 | Chapter 9: Deploy Models to Production

constraints. The result is a violation report. In addition, SageMaker Model Monitor
sends metrics for each feature to CloudWatch, as shown in Figure 9-24.

Figure 9-24. SageMaker Model Monitor gives us the ability to continuously monitor the
data collected from the endpoints on a schedule.

We can use my_default_monitor.create_monitoring_schedule() to create a model
monitoring schedule for an endpoint. In the configuration of the monitoring sched‐
ule, we point to the baseline statistics and constraints and define a cron schedule:

from sagemaker.model_monitor import DefaultModelMonitor
from sagemaker.model_monitor import CronExpressionGenerator

mon_schedule_name = 'my-model-monitor-schedule'

my_default_monitor.create_monitoring_schedule(
 monitor_schedule_name=mon_schedule_name,
 endpoint_input=predictor.endpoint,
 output_s3_uri=s3_report_path,
 statistics=my_default_monitor.baseline_statistics(),
 constraints=my_default_monitor.suggested_constraints(),
 schedule_cron_expression=CronExpressionGenerator.hourly(),
 enable_cloudwatch_metrics=True,
)

Monitor Data Quality of Deployed SageMaker Endpoints | 337

SageMaker Model Monitor now runs at the scheduled intervals and analyzes the cap‐
tured data against the baseline. The job creates a violation report and stores the
report in Amazon S3, along with a statistics report for the collected data.

Once the monitoring job has started its executions, we can use list_executions() to
view all executions:

executions = my_monitor.list_executions()

The SageMaker Model Monitor jobs should exit with one of the following statuses:

Completed
The monitoring execution completed and no violations were found.

CompletedWithViolations
The monitoring execution completed, but constraint violations were found.

Failed
The monitoring execution failed, maybe due to incorrect role permissions or
infrastructure issues.

Stopped
The job exceeded the specified maximum runtime or was manually stopped.

We can create our own custom monitoring schedules and proce‐
dures using preprocessing and postprocessing scripts. We can also
build our own analysis container.

Inspect Data-Quality Results
With the monitoring data collected and continuously compared against the data-
quality baseline, we are now in a much better position to make decisions about how
to improve the model. Depending on the model monitoring results, we might decide
to retrain and redeploy the model. In this final step, we visualize and interpret the
data-quality monitoring results, as shown in Figure 9-25.

338 | Chapter 9: Deploy Models to Production

Figure 9-25. Visualize and interpret the data-quality monitoring results.

Let’s query for the location for the generated reports:

report_uri=latest_execution.output.destination
print('Report Uri: {}'.format(report_uri))

Next, we can list the generated reports:

from urllib.parse import urlparse

s3uri = urlparse(report_uri)
report_bucket = s3uri.netloc
report_key = s3uri.path.lstrip('/')

print('Report bucket: {}'.format(report_bucket))
print('Report key: {}'.format(report_key))

s3_client = boto3.Session().client('s3')

result = s3_client.list_objects(Bucket=report_bucket,
 Prefix=report_key)

report_files = [report_file.get("Key") for report_file in
 result.get('Contents')]

Monitor Data Quality of Deployed SageMaker Endpoints | 339

print("Found Report Files:")
print("\n ".join(report_files))

Output:

s3://<bucket>/<prefix>/constraint_violations.json
s3://<bucket>/<prefix>/constraints.json
s3://<bucket>/<prefix>/statistics.json

We already looked at constraints.json and statistics.json, so let’s analyze the violations:

violations =
my_default_monitor.latest_monitoring_constraint_violations()

violations = pd.io.json.json_normalize(
 violations.body_dict["violations"])

Here are example violations for our review_body inputs:

 {
 "feature_name" : "review_body",
 "constraint_check_type" : "data_type_check",
 "description" : "Value: 1.0 meets the constraint requirement"
 }, {
 "feature_name" : "review_body",
 "constraint_check_type" : "baseline_drift_check",
 "description" : "Numerical distance: 0.2711598746081505 exceeds
 numerical threshold: 0"
 }

To find the root cause of this data-quality drift, we want to examine the model inputs
and examine any upstream application bugs (or features) that may have been recently
introduced. For example, if the application team adds a new set of product categories
that our model was not trained on, the model may predict poorly for those particular
product categories. In this case, SageMaker Model Monitor would detect the covari‐
ate shift in model inputs, notify us, and potentially retrain and redeploy the model.

As an extreme example, let’s say that the application team started to feature emojis as
the primary review mechanism. Given that our review classifier has not been trained
on a vocabulary that includes emojis, the model may predict poorly on reviews that
contain emojis. In this case, SageMaker Model Monitor would notify us of the change
in review-language distribution. We could then retrain and redeploy an updated
model that understands the emoji language.

340 | Chapter 9: Deploy Models to Production

Monitor Model Quality of Deployed SageMaker Endpoints
We can also use SageMaker Model Monitor to detect drift in model quality metrics
such as accuracy. SageMaker Model Monitor compares the online model predictions
with provided ground truth labels. Model-quality monitoring can be used to detect
concept drift.

Input data is captured by SageMaker Model Monitor using the real-time data capture
feature. This data is saved into S3 and labeled by humans offline. A Model Quality Job
then compares the offline data at a schedule that we define. If the model quality
decays, SageMaker Model Monitor will notify us and potentially retrain and redeploy
the model, including the ground truth data labeled by humans. Note that the availa‐
bility of the ground truth labels might be delayed because of the required human
interaction. Figure 9-26 shows the high-level overview of model-quality drift detec‐
tion using offline, ground-truth labels provided by a human workforce.

Figure 9-26. Comparing model predictions to ground-truth data labels generated from a
human workforce offline.

Here, the Model Quality Job compares the actual, ground truth star_rating chosen
by the human with the predicted star_rating from the model endpoint. The job
calculates a confusion matrix and the standard multiclass classification metrics,
including accuracy, precision, recall, etc.:

Monitor Model Quality of Deployed SageMaker Endpoints | 341

"multiclass_classification_metrics" : {
 "confusion_matrix" : {
 ...
 },
 "accuracy" : {
 "value" : 0.6288167938931297,
 "standard_deviation" : 0.00375663881299405
 },
 ...
 }

Before we start monitoring the model quality, we need to create a baseline.

Create a Baseline to Measure Model Quality
The model quality baseline job compares the model’s predictions with provided
ground truth labels we store in S3. The baseline job then calculates the relevant model
quality metrics and suggests applicable constraints to identify drift.

We start with the creation of a ModelQualityMonitor as follows:

from sagemaker.model_monitor import ModelQualityMonitor

model_quality_monitor = ModelQualityMonitor(
 role=role,
 instance_count=1,
 instance_type='ml.m5.xlarge',
 volume_size_in_gb=20,
 max_runtime_in_seconds=1800,
 sagemaker_session=sess
)

Then, we can start the baseline job with suggest_baseline as follows:

job = model_quality_monitor.suggest_baseline(
 job_name=baseline_job_name,
 baseline_dataset=baseline_dataset_uri,
 dataset_format=DatasetFormat.csv(header=True),
 output_s3_uri = baseline_results_uri,
 problem_type='MulticlassClassification',
 inference_attribute= 'prediction',
 probability_attribute= 'probability',
 ground_truth_attribute= 'star_rating')

Once the job completes, we can review the suggested constraints in the con‐
straints.json file in the specified S3 output path. In our example, the file will contain
the suggested constraints for our multiclass classification model. Make sure to review
the constraints and adjust them if needed. We will then pass the constraints as a
parameter when we schedule the model-quality monitoring job:

{
 "version" : 0.0,

342 | Chapter 9: Deploy Models to Production

 "multiclass_classification_constraints" : {
 "weighted_recall" : {
 "threshold" : 0.5714285714285714,
 "comparison_operator" : "LessThanThreshold"
 },
 "weighted_precision" : {
 "threshold" : 0.6983172269629505,
 "comparison_operator" : "LessThanThreshold"
 },
 ...
}

Schedule Model-Quality Monitoring Jobs
Model-quality monitoring jobs follow the same scheduling steps as data-quality mon‐
itoring jobs. One difference to keep in mind is that the model-quality monitoring
jobs assume the availability of ground truth labels for the captured predictions. As
humans need to provide the ground truth labels, we need to deal with potential
delays. Therefore, model-quality monitor jobs provide additional StartOffset and
EndOffset parameters, which subtract the specified offset from the job’s start and end
time, respectively.

For example, if we start providing the ground truth labels one day after the data cap‐
ture, we could grant a window of three days for the ground truth data to be labeled by
specifying a StartOffset with -P3D and an EndOffset with -P1D for the monitoring
job. Assuming the ground truth data is labeled in that time, the job will analyze data
starting three days ago up to one day ago. The job then merges the ground truth
labels with the captured model predictions and calculates the distribution drift.

We can create the model-quality monitoring job as follows:

sm = boto3.Session().client(service_name='sagemaker', region_name=region)

sm.create_model_quality_job_definition(
 JobDefinitionName=<NAME>,
 ModelQualityBaselineConfig={...},
 ModelQualityAppSpecification={...},
 ModelQualityJobInput={...
 'EndpointInput': {...},
 'GroundTruthS3Input': {...},
 ModelQualityJobOutputConfig={...},
 JobResources={...}
 NetworkConfig={...},
 RoleArn=<IAM_ROLE_ARN>)

And we define the monitoring schedule for our ModelQualityMonitor as follows:

model_quality_monitor.create_monitoring_schedule(
 endpoint_input=<ENDPOINT_NAME>,
 ground_truth_input=<S3_INPUT_PATH>,

Monitor Model Quality of Deployed SageMaker Endpoints | 343

 problem_type='MulticlassClassification',
 record_preprocessor_script=<S3_PRE_SCRIPT_PATH>,
 post_analytics_processor_script=<S3_POST_SCRIPT_PATH>,
 output_s3_uri=<S3_OUTPUT_PATH>,
 constraints=<S3_CONSTRAINTS_PATH>,
 monitor_schedule_name=<NAME>,
 schedule_cron_expression=<SCHEDULE>,
 enable_cloudwatch_metrics=True)

The ModelQualityMonitor now runs at the scheduled intervals and compares the
model-quality metrics based on the captured data and ground truth labels against the
baseline. We can inspect the constraint violation reports in Amazon S3.

Inspect Model-Quality Monitoring Results
ModelQualityMonitor stores the constraint violations in Amazon S3. We can com‐
pare the baseline and observed model-quality metrics directly in SageMaker Studio,
as shown in Figure 9-27, or programmatically inspect the constraint violations using
the following code. The baseline average accuracy is on top, and the current average
accuracy is on bottom.

Figure 9-27. SageMaker Studio Endpoint details show charts of model-quality metrics
such as average accuracy.

import pandas as pd

latest_exec = model_quality_monitor.list_executions()[-1]

report_uri =
 latest_exec.describe()\
 ["ProcessingOutputConfig"]["Outputs"][0]["S3Output"]["S3Uri"]

pd.options.display.max_colwidth = None

344 | Chapter 9: Deploy Models to Production

violations =
 latest_exec.constraint_violations().body_dict["violations"]
pd.json_normalize(violations)

Monitor Bias Drift of Deployed SageMaker Endpoints
Even though we cleared our training data of bias and took action to mitigate bias in
our trained models, bias can still be introduced in deployed models. This happens if
the data that our model sees has a different distribution compared to the training
data. New data can also cause our model to assign different weights to input features.
SageMaker Clarify integrates with SageMaker Model Monitor to help us to detect bias
drift in our deployed models.

Create a Baseline to Detect Bias
SageMaker Clarify continuously monitors the bias metrics of our deployed models
and raises an alarm if those metrics exceed defined thresholds. We start with the cre‐
ation of a ModelBiasMonitor as follows:

from sagemaker.model_monitor import ModelBiasMonitor

model_bias_monitor = ModelBiasMonitor(
 role=role,
 sagemaker_session=sagemaker_session,
 max_runtime_in_seconds=1800,
)

Similar to detecting post-training model bias with SageMaker Clarify in Chapter 7,
we need to specify the DataConfig, the BiasConfig, and the ModelConfig, which
points to the model used for inference. The ModelPredictedLabelConfig specifies
again how to parse the model predictions:

from sagemaker import clarify

data_config = clarify.DataConfig(
 s3_data_input_path=validation_dataset,
 s3_output_path=model_bias_baselining_job_result_uri,
 label='star_rating',
 headers=['review_body', 'product_category', ...],
 dataset_type='text/csv')

bias_config = clarify.BiasConfig(
 label_values_or_threshold=[5, 4]
 facet_name='product_category',
 facet_values_or_threshold=['Gift Card'],
 group_name='product_category')

Monitor Bias Drift of Deployed SageMaker Endpoints | 345

model_config = clarify.ModelConfig(
 model_name=model_name,
 instance_type='ml.m5.4xlarge',
 instance_count=1,
 content_type='text/csv',
 accept_type='application/jsonlines')

predictions_config = clarify.ModelPredictedLabelConfig(label='predicted_label')

With this configuration, we can create and start the model bias baselining job:

model_bias_monitor.suggest_baseline(
 model_config=model_config,
 data_config=data_config,
 bias_config=bias_config,
 model_predicted_label_config=model_predicted_label_config,
)

By calling suggest_baseline() we start a SageMaker Clarify Processing Job to gen‐
erate the constraints. Once the job completes and we have our bias baseline, we can
create a bias-drift monitoring job and schedule.

Schedule Bias-Drift Monitoring Jobs
The monitor will automatically pick up the results from the baseline job as its model
bias analysis configuration. We can also create the analysis configuration manually if
we haven’t run a baseline job:

model_bias_monitor.create_monitoring_schedule(
 analysis_config=analysis_config,
 output_s3_uri=s3_report_path,
 endpoint_input=EndpointInput(
 endpoint_name=endpoint_name,
 destination="/opt/ml/processing/input/endpoint",
 start_time_offset="-PT1H",
 end_time_offset="-PT0H",
 probability_threshold_attribute=<THRESHOLD>,
),
 ground_truth_input=ground_truth_upload_path,
 schedule_cron_expression=schedule_expression,
)

Note that the model bias monitor makes use of the provided ground truth label data
as well. The bias monitoring job merges the ground truth labels with the captured
model predictions and uses the combined data as its validation dataset. The bias drift
monitor results are stored in Amazon S3 again.

346 | Chapter 9: Deploy Models to Production

Inspect Bias-Drift Monitoring Results
We inspect the bias and drift results for each monitored endpoint in SageMaker Stu‐
dio, as shown in Figure 9-28, or programmatically with the following code:

schedule_desc = model_bias_monitor.describe_schedule()

exec_summary = schedule_desc.get("LastMonitoringExecutionSummary")

if exec_summary and exec_summary["MonitoringExecutionStatus"] in
 ["Completed", "CompletedWithViolations"]:

 last_exec = model_bias_monitor.list_executions()[-1]
 last_exec_report_uri = last_exec.output.destination
 last_exec_report_files =
 sorted(S3Downloader.list(last_exec_report_uri))

 last_exec = None

Figure 9-28. SageMaker Studio Endpoint details show bias-drift monitoring results.

If the bias-drift monitor detected any violations compared to its baseline, we can list
the violations as follows:

if last_exec:
 model_bias_violations = last_exec.constraint_violations()
if model_bias_violations:
 print(model_bias_violations.body_dict)

Monitor Bias Drift of Deployed SageMaker Endpoints | 347

Monitor Feature Attribution Drift of Deployed
SageMaker Endpoints
Similarly to model bias drift, SageMaker Clarify monitors the features contributing to
the predictions over time. Feature attributions help to explain model predictions. If
the ranking of feature attributions changes, SageMaker Clarify raises a feature attri‐
bution drift alarm. SageMaker Clarify implements a model-agnostic method called
SHAP to analyze global and local feature importances. SHAP has been inspired by
game theory and generates multiple datasets that differ by just one feature. SHAP
uses the trained model to receive the model predictions for each of the generated
datasets. The algorithm compares the results against pre-calculated baseline statistics
to infer the importance of each feature toward the prediction target.

Create a Baseline to Monitor Feature Attribution
The feature attribution baseline job can leverage the same dataset used for the model
bias baseline job:

model_explainability_data_config = DataConfig(
 s3_data_input_path=validation_dataset,
 s3_output_path=model_explainability_baselining_job_result_uri,
 label='star_rating',
 headers=['review_body', product_category', ...],
 dataset_type='text/csv')

SageMaker Clarify implements SHAP for model explanation. Hence, we need to pro‐
vide a SHAPConfig as follows:

Using the mean value of test dataset as SHAP baseline
test_dataframe = pd.read_csv(test_dataset, header=None)
shap_baseline = [list(test_dataframe.mean())]

shap_config = SHAPConfig(
 baseline=shap_baseline,
 num_samples=100,
 agg_method="mean_abs",
 save_local_shap_values=False,
)

shap_baseline needs to contain a list of rows to be used as the baseline dataset, or an
S3 object URI to the baseline dataset. The data should only contain the feature col‐
umns and no label column. num_samples specifies the number of samples used in the
Kernel SHAP algorithm. agg_method defines the aggregation method for global
SHAP values. We can choose between mean_abs (mean of absolute SHAP values),
median (median of all SHAP values), and mean_sq (mean of squared SHAP values).

We can then start the feature attribution baselining job as follows:

348 | Chapter 9: Deploy Models to Production

model_explainability_monitor.suggest_baseline(
 data_config=model_explainability_data_config,
 model_config=model_config,
 explainability_config=shap_config,
)

By calling suggest_baseline() we start a SageMaker Clarify Processing Job to gen‐
erate the constraints. Once the baselining job completes, we can view the suggested
constraints as follows:

model_explainability_constraints =
 model_explainability_monitor.suggested_constraints()

We can now create a feature attribution drift monitoring job and schedule.

Schedule Feature Attribution Drift Monitoring Jobs
The monitor will automatically pick up the results from the baseline job as its feature
attribution analysis configuration. We can also create the analysis configuration man‐
ually if we haven’t run a baseline job:

model_explainability_monitor.create_monitoring_schedule(
 output_s3_uri=s3_report_path,
 endpoint_input=endpoint_name,
 schedule_cron_expression=schedule_expression,
)

Inspect Feature Attribution Drift Monitoring Results
We can inspect the feature attribution drift monitoring results as follows:

schedule_desc = model_explainability_monitor.describe_schedule()

exec_summary = schedule_desc.get("LastMonitoringExecutionSummary")

if exec_summary and exec_summary["MonitoringExecutionStatus"] in \
 ["Completed", "CompletedWithViolations"]:

 last_exec = model_explainability_monitor.list_executions()[-1]
 last_exec_report_uri = last_exec.output.destination

 last_exec_report_files = sorted(S3Downloader.list(last_exec_report_uri))

else:
 last_exec = None

If the feature attribution drift monitor detected any violations compared to its base‐
line, we can list the violations as follows:

if last_exec:
 explainability_violations = last_exec.constraint_violations()

Monitor Feature Attribution Drift of Deployed SageMaker Endpoints | 349

 if explainability_violations:
 print(explainability_violations.body_dict)

We can also find the explainability results for each monitored endpoint in SageMaker
Studio in the endpoint details, as shown in Figure 9-29. In addition, we can see a
chart that visualizes the change in the top 10 features, as shown in Figure 9-30.

Figure 9-29. SageMaker Studio Endpoint details show model explainability monitoring
results showing “No Issues” when generating the report.

Figure 9-30. SageMaker Studio Endpoint details show the change in the top 10 features,
with review_body, review_headline, product_category, product_title, and
total_votes as the top 5.

Now that we have detailed monitoring of our models in place, we can build addi‐
tional automation. We could leverage the SageMaker Model Monitor integration into
CloudWatch to trigger actions on baseline drift alarms, such as model updates, train‐
ing data updates, or an automated retraining of our model.

350 | Chapter 9: Deploy Models to Production

Perform Batch Predictions with SageMaker
Batch Transform
Amazon SageMaker Batch Transform allows us to make predictions on batches of
data in S3 without setting up a REST endpoint. Batch predictions are also called “off‐
line” predictions since they do not require an online REST endpoint. Typically meant
for higher-throughput workloads that can tolerate higher latency and lower freshness,
batch prediction servers typically do not run 24 hours per day like real-time predic‐
tion servers. They run for a few hours on a batch of data, then shut down—hence the
term “batch.” SageMaker Batch Transform manages all of the resources needed to
perform the inferences, including the launch and termination of the cluster after the
job completes.

For example, if our movie catalog only changes a few times a day, we can likely just
run one batch prediction job each night that uses a new recommendation model
trained with the day’s new movies and user activity. Since we are only updating the
recommendations once in the evening, our recommendations will be a bit stale
throughout the day. However, our overall cost is minimized and, even more impor‐
tantly, stays predictable.

The alternative is to continuously retrain and redeploy new recommendation models
throughout the day with every new movie that joins or leaves our movie catalog. This
could lead to excessive model training and deployment costs that are difficult to con‐
trol and predict. These types of continuous updates typically fall under the “trending
now” category of popular websites like Facebook and Netflix that offer real-time con‐
tent recommendations. We explore these types of continuous models when we dis‐
cuss streaming data analytics.

Select an Instance Type
Similar to model training, the choice of instance type often involves a balance
between latency, throughput, and cost. Always start with a small instance type and
then increase only as needed. Batch predictions may benefit from GPUs more than
real-time endpoint predictions since GPUs perform much better with large batches of
data. However, we recommend trying CPU instances first to set the baseline for
latency, throughput, and cost. Here, we are using a cluster of high-CPU instances:

instance_type='ml.c5.18xlarge'
instance_count=5

Set Up the Input Data
Let’s specify the input data. In our case, we are using the original TSVs that are stored
as gzip compressed text files:

Perform Batch Predictions with SageMaker Batch Transform | 351

Specify the input data
input_csv_s3_uri =
 's3://{}/amazon-reviews-pds/tsv/'.format(bucket)

We specify MultiRecord for our strategy to take advantage of our multiple CPUs. We
specify Gzip as the compression type since our input data is compressed using gzip.
We’re using TSVs, so text/csv is a suitable accept_type and content_type. And
since our rows are separated by line breaks, we use Line for assemble_with and
split_type:

strategy='MultiRecord'
compression_type='Gzip'
accept_type='text/csv'
content_type='text/csv'
assemble_with='Line'
split_type='Line'

Tune the SageMaker Batch Transform Configuration
When we start the batch transform job, our code runs in an HTTP server inside the
TensorFlow Serving inference container. Note that TensorFlow Serving natively sup‐
ports batches of data on a single request.

Let’s leverage TensorFlow Serving’s built-in batching feature to batch multiple records
to increase prediction throughput—especially on GPU instances that perform well on
batches of data. Set the following environment variables to enable batching:

batch_env = {
 # Configures whether to enable record batching.
 'SAGEMAKER_TFS_ENABLE_BATCHING': 'true',

 # Name of the model - this is important in multi-model deployments
 'SAGEMAKER_TFS_DEFAULT_MODEL_NAME': 'saved_model',

 # Configures how long to wait for a full batch, in microseconds.
 'SAGEMAKER_TFS_BATCH_TIMEOUT_MICROS': '50000', # microseconds

 # Corresponds to "max_batch_size" in TensorFlow Serving.
 'SAGEMAKER_TFS_MAX_BATCH_SIZE': '10000',

 # Number of seconds for the SageMaker web server timeout
 'SAGEMAKER_MODEL_SERVER_TIMEOUT': '3600', # Seconds

 # Configures number of batches that can be enqueued.
 'SAGEMAKER_TFS_MAX_ENQUEUED_BATCHES': '10000'
}

352 | Chapter 9: Deploy Models to Production

Prepare the SageMaker Batch Transform Job
We can inject preprocessing and postprocessing code directly into the Batch Trans‐
form Container to customize the prediction flow. The preprocessing code is specified
in inference.py and will transform the request from raw data (i.e., review_body text)
into machine-readable features (i.e., BERT tokens). These features are then fed to the
model for inference. The model prediction results are then passed through the post‐
processing code from inference.py to convert the model prediction into human-
readable responses before saving to S3. Figure 9-31 shows how SageMaker Batch
Transform works in detail.

Figure 9-31. Offline predictions with SageMaker Batch Transform. Source: Amazon
SageMaker Developer Guide.

Let’s set up the batch transformer to use our inference.py script that we will show in a
bit. We are specifying the S3 location of the classifier model that we trained in a pre‐
vious chapter:

batch_model = Model(entry_point='inference.py',
 source_dir='src_tsv',
 model_data=<TENSORFLOW_MODEL_S3_URI>,
 role=role,
 framework_version='<TENSORFLOW_VERSION>',
 env=batch_env)

batch_predictor = batch_model.transformer(
 strategy=strategy,
 instance_type=instance_type,
 instance_count=instance_count,

Perform Batch Predictions with SageMaker Batch Transform | 353

 accept=accept_type,
 assemble_with=assemble_with,
 max_concurrent_transforms=max_concurrent_transforms,
 max_payload=max_payload, # This is in Megabytes
 env=batch_env)

Following is the inference.py script used by the Batch Transform Job defined earlier.
This script has an input_handler for request processing and output_handler for
response processing, as shown in Figure 9-32.

Figure 9-32. Preprocessing request handler and postprocessing response handler.

The preprocessing handler, input_handler, and the postprocessing handler, out
put_handler, are similar to the functions used for the SageMaker REST Endpoint
earlier. The input_handler function converts batches of raw text into BERT tokens
using the Transformer library. SageMaker then passes this batched output from the
input_handler into our model, which produces batches of predictions. The predic‐
tions are passed through the output_handler function, which converts the prediction
into a JSON response. SageMaker then joins each prediction within a batch to its spe‐
cific line of input. This produces a single, coherent line of output for each row that
was passed in.

Run the SageMaker Batch Transform Job
Next we will specify the input data and start the actual Batch Transform Job. Note
that our input data is compressed using gzip as Batch Transform Jobs support many
types of compression:

batch_predictor.transform(data=input_csv_s3_uri,
 split_type=split_type,
 compression_type=compression_type,
 content_type=content_type,
 join_source='Input',

354 | Chapter 9: Deploy Models to Production

 experiment_config=experiment_config,
 wait=False)

We specify join_source='Input' to force SageMaker to join our prediction with the
original input before writing to S3. And while not shown here, SageMaker lets us
specify the exact input features to pass into this batch transformation process using
InputFilter and the exact data to write to S3 using OutputFilter. This helps to
reduce overhead, reduce cost, and improve batch prediction performance.

If we are using join_source='Input' and InputFilter together, SageMaker will join
the original inputs—including the filtered-out inputs—with the predictions to keep
all of the data together. We can also filter the outputs to reduce the size of the predic‐
tion files written to S3. The whole flow is shown in Figure 9-33.

Figure 9-33. Filtering and joining inputs to reduce overhead and improve performance.

Perform Batch Predictions with SageMaker Batch Transform | 355

Review the Batch Predictions
Once the Batch Transform Job completes, we can review the generated comma-
separated .out files that contain our review_body inputs and star_rating predictions
as shown here:

amazon_reviews_us_Digital_Software_v1_00.tsv.gz.out
amazon_reviews_us_Digital_Video_Games_v1_00.tsv.gz.out

Here are a few sample predictions:

'This is the best movie I have ever seen', 5, 'Star Wars'
'This is an ok, decently-funny movie.', 3, 'Spaceballs'
'This is the worst movie I have ever seen', 1, 'Star Trek'

At this point, we have performed a large number of predictions and generated
comma-separated output files. With a little bit of application code (SQL, Python,
Java, etc.), we can use these predictions to power natural-language-based applications
to improve the customer service experience, for example.

AWS Lambda Functions and Amazon API Gateway
We can also deploy our models as serverless APIs with Lambda. When a prediction
request arrives, the Lambda function loads the model and executes the inference
function code. Models can be loaded directly from within the Lambda function or
from a data store like Amazon S3 and EFS. Lambda functions are callable from many
AWS services, including Amazon Simple Queue Service and S3, to effectively imple‐
ment event-based predictions.

We can use the “provisioned concurrency” feature of Lambda to pre-load the model
into the function and greatly improve prediction latency. Amazon API Gateway pro‐
vides additional support for application authentication, authorization, caching, rate-
limiting, and web application firewall rules. Figure 9-34 shows how we implement
serverless inference with Lambda and API Gateway.

Figure 9-34. Serverless inference with AWS Lambda.

356 | Chapter 9: Deploy Models to Production

Optimize and Manage Models at the Edge
We can leverage Amazon SageMaker Neo Compilation Jobs to optimize our model
for specific hardware platforms such as AWS Inferentia, NVIDIA GPUs, Intel CPUs,
and ARM CPUs. SageMaker Neo frees us from manually tuning our models to spe‐
cific hardware and software configurations found in different CPU and GPU
architectures, or edge device platforms with limited compute and storage resources.
The SageMaker Neo compiler converts models into efficient and compact formats
using device-specific instruction sets. These instructions perform low-latency
machine learning inference on the target device directly.

In 2019, AWS made SageMaker Neo open source to allow pro‐
cessor vendors, device manufacturers, and software developers to
collaborate and bring ML models to a diverse set of hardware-
optimized platforms.

Once the model is compiled by SageMaker Neo, SageMaker Edge Manager crypto‐
graphically signs the model, packages the model with a lightweight runtime, and
uploads the model package to an S3 bucket in preparation for deployment. Sage‐
Maker Edge Manager manages models across all registered edge devices, tracks
model versions, collects health metrics, and periodically captures model inputs and
outputs to detect model drift and degradation.

Deploy a PyTorch Model with TorchServe
TorchServe is an open source collaboration between AWS, Facebook, and the
PyTorch community. With TorchServe, we can serve PyTorch models in production
as REST endpoints similar to TensorFlow Serving. SageMaker provides native Torch‐
Serve integration, which allows us to focus on the business logic of the prediction
request versus the infrastructure code.

Similar to the TensorFlow Serving–based SageMaker Endpoint we created earlier, we
need to provide a Python-based request and response handler called inference.py to
transform raw review text from the REST request from JSON to PyTorch input BERT
vectors. Additionally, inference.py needs to transform the PyTorch star_rating clas‐
sification response back into JSON to return to the calling application. The following
is a relevant snippet from inference.py:

def model_fn(model_dir):
 model_path = '{}/{}'.format(model_dir, MODEL_NAME)
 device = torch.device(
 'cuda' if torch.cuda.is_available() else 'cpu')
 config = DistilBertConfig.from_json_file(
 '/opt/ml/model/code/config.json')

Optimize and Manage Models at the Edge | 357

https://oreil.ly/CkO1f

 model = DistilBertForSequenceClassification.from_pretrained(
 model_path,config=config)
 model.to(device)
 return model

def predict_fn(input_data, model):
 model.eval()
 data_str = input_data.decode('utf-8')
 jsonlines = data_str.split("\n")

 predicted_classes = []

 for jsonline in jsonlines:
 review_body = json.loads(jsonline)["features"][0]

 encode_plus_token = tokenizer.encode_plus(
 review_body,
 max_length=max_seq_length,
 add_special_tokens=True,
 return_token_type_ids=False,
 pad_to_max_length=True,
 return_attention_mask=True,
 return_tensors='pt',
 truncation=True)

 input_ids = encode_plus_token['input_ids']
 attention_mask = encode_plus_token['attention_mask']

 output = model(input_ids, attention_mask)

 softmax_fn = nn.Softmax(dim=1)
 softmax_output = softmax_fn(output[0])
 print("softmax_output: {}".format(softmax_output))

 _, prediction = torch.max(softmax_output, dim=1)

 predicted_class_idx = prediction.item()
 predicted_class = classes[predicted_class_idx]

 prediction_dict = {}
 prediction_dict['predicted_label'] = predicted_class

 jsonline = json.dumps(prediction_dict)

 predicted_classes.append(jsonline)

 predicted_classes_jsonlines = '\n'.join(predicted_classes)

 return predicted_classes_jsonlines

Let’s deploy our model as a SageMaker Endpoint with our inference.py request/
response handler:

358 | Chapter 9: Deploy Models to Production

class StarRatingPredictor(Predictor):
 def __init__(self, endpoint_name, sagemaker_session):
 super().__init__(endpoint_name,
 sagemaker_session=sagemaker_session,
 serializer=JSONLinesSerializer(),
 deserializer=JSONLinesDeserializer())

model = PyTorchModel(model_data=<PYTORCH_MODEL_S3_URI>,
 name=pytorch_model_name,
 role=role,
 entry_point='inference.py',
 source_dir='code-pytorch',
 framework_version='<PYTORCH_VERSION>',
 predictor_cls=StarRatingPredictor)

predictor = model.deploy(initial_instance_count=1,
 instance_type='ml.m5.4xlarge',
 endpoint_name=pytorch_endpoint_name,
 wait=False)

Now we can make a prediction by passing review text to our review classifier
endpoint:

import json

inputs = [
 {"features": ["This is great!"]},
 {"features": ["This is OK."]}
 {"features": ["This is bad."]}
]

predicted_classes = predictor.predict(inputs)

for predicted_class in predicted_classes:
 print(predicted_class)

OUTPUT

{'predicted_label': 5}
{'predicted_label': 3}
{'predicted_label': 1}

Deploy a PyTorch Model with TorchServe | 359

TensorFlow-BERT Inference with AWS Deep Java Library
Let’s import the required Java libraries from AWS Deep Java Library (DJL):

import ai.djl.*;
import ai.djl.engine.*;
import ai.djl.inference.*;
import ai.djl.modality.*;
import ai.djl.modality.nlp.*;
import ai.djl.modality.nlp.bert.*;
import ai.djl.ndarray.*;
import ai.djl.repository.zoo.*;
import ai.djl.translate.*;
import ai.djl.training.util.*;
import ai.djl.util.*;

Next, let’s download the pre-trained DistilBERT TensorFlow model:

String modelUrl =
"https://resources.djl.ai/demo/tensorflow/amazon_review_rank_classification.zip";
DownloadUtils.download(modelUrl,
 "build/amazon_review_rank_classification.zip",
 new ProgressBar());
Path zipFile = Paths.get("build/amazon_review_rank_classification.zip");
Path modelDir = Paths.get("build/saved_model");
if (Files.notExists(modelDir)) {
 ZipUtils.unzip(Files.newInputStream(zipFile), modelDir);
}

Next, we set up the BERT Tokenizer and define the Translator to transform raw text
into BERT embeddings:

// Prepare the vocabulary
Path vocabFile = modelDir.resolve("vocab.txt");
SimpleVocabulary vocabulary = SimpleVocabulary.builder()
 .optMinFrequency(1)
 .addFromTextFile(vocabFile)
 .optUnknownToken("[UNK]")
 .build();
BertFullTokenizer tokenizer = new BertFullTokenizer(vocabulary, true);
int maxTokenLength = 64; // cutoff tokens length

class MyTranslator implements Translator<String, Classifications> {

 private BertFullTokenizer tokenizer;
 private SimpleVocabulary vocab;
 private List<String> ranks;
 private int length;

 public MyTranslator(BertFullTokenizer tokenizer, int length) {
 this.tokenizer = tokenizer;
 this.length = length;
 vocab = tokenizer.getVocabulary();

360 | Chapter 9: Deploy Models to Production

 ranks = Arrays.asList("1", "2", "3", "4", "5");
 }

 @Override
 public Batchifier getBatchifier() {
 return new StackBatchifier();
 }

 @Override
 public NDList processInput(TranslatorContext ctx, String input) {
 List<String> tokens = tokenizer.tokenize(input);
 long[] indices = new long[length];
 long[] mask = new long[length];
 long[] segmentIds = new long[length];
 int size = Math.min(length, tokens.size());
 for (int i = 0; i < size; i++) {
 indices[i + 1] = vocab.getIndex(tokens.get(i));
 }
 Arrays.fill(mask, 0, size, 1);
 NDManager m = ctx.getNDManager();
 return new NDList(m.create(indices),
 m.create(mask),
 m.create(segmentIds));
 }

 @Override
 public Classifications processOutput(TranslatorContext ctx, NDList list) {
 return new Classifications(ranks, list.singletonOrThrow().softmax(0));
 }
}

Last, we load the model and make some predictions with BERT and Java!

MyTranslator translator = new MyTranslator(tokenizer, maxTokenLength);

Criteria<String, Classifications> criteria = Criteria.builder()
 .setTypes(String.class, Classifications.class)
 .optModelPath(modelDir) // Load model form model directory
 .optTranslator(translator) // use custom translaotr
 .build();

ZooModel<String, Classifications> model = ModelZoo.loadModel(criteria);

String review = "It works great, but it takes too long to update";

Predictor<String, Classifications> predictor = model.newPredictor();
predictor.predict(review);

OUTPUT

5

TensorFlow-BERT Inference with AWS Deep Java Library | 361

Reduce Cost and Increase Performance
In this section, we describe multiple ways to reduce cost and increase performance by
packing multiple models into a single SageMaker deployment container, utilizing
GPU-based Elastic Inference Accelerators, optimizing our trained model for specific
hardware, and utilizing inference-optimized hardware such as the AWS Inferentia
chip.

Delete Unused Endpoints and Scale In Underutilized Clusters
SageMaker Endpoints are long-running resources and are easy to leave running after
a successful blue/green deployment, for example. We should remove unused resour‐
ces as soon as possible. We can set up CloudWatch alerts to notify us when a Sage‐
Maker Endpoint is not receiving invocations. Similarly, we should remember to scale
in a SageMaker Endpoint cluster if the cluster is overprovisioned and underutilized.

Deploy Multiple Models in One Container
If we have a large number of similar models that we can serve through a shared serv‐
ing container—and don’t need to access all the models at the same time—we can
deploy multiple models within a single SageMaker Endpoint. When there is a long
tail of ML models that are infrequently accessed, using one endpoint can efficiently
serve inference traffic and enable significant cost savings.

Each of the SageMaker Endpoints can automatically load and unload models based
on traffic and resource utilization. For example, if traffic to Model 1 goes to zero and
Model 2 traffic spikes, SageMaker will dynamically unload Model 1 and load another
instance of Model 2. We can invoke a specific model variant by specifying the target
model name as a parameter in our prediction request, as shown in Figure 9-35.

Figure 9-35. Invoke a specific model within a SageMaker Endpoint that hosts multiple
models.

This lets us train two different category-specific TensorFlow models—Digital_Soft

ware and Gift_Card, for example—and deploy them to a single endpoint for conve‐

362 | Chapter 9: Deploy Models to Production

nience and cost-savings purposes. Here is code to deploy the two models into a single
SageMaker Endpoint.

For TensorFlow, we need to package the models as follows:

└── multi
 ├── model1
 │ └── <version number>
 │ ├── saved_model.pb
 │ └── variables
 │ └── ...
 └── model2
 └── <version number>
 ├── saved_model.pb
 └── variables
 └── ...

from sagemaker.tensorflow.serving import Model, Predictor

For endpoints with multiple models, we should set the default
model name in this environment variable.
If it isn't set, the endpoint will work, but the model
it will select as default is unpredictable.
env = {
 'SAGEMAKER_TFS_DEFAULT_MODEL_NAME': 'model1' # <== This must match the directory
}

model_data = '{}/multi.tar.gz'.format(multi_model_s3_uri)
model = Model(model_data=model_data,
 role=role,
 framework_version='<TENSORFLOW_VERSION>',
 env=env)

Attach a GPU-Based Elastic Inference Accelerator
Elastic Inference Accelerator (EIA) is a low-cost, dynamically attached, GPU-
powered add-on for SageMaker instances. While standalone GPU instances are a
good fit for model training on large datasets, they are typically oversized for smaller-
batch inference requests, which consume small amounts of GPU resources.

While AWS offers a wide range of instance types with different GPU, CPU, network
bandwidth, and memory combinations, our model may use a custom combination.
With EIAs, we can start by choosing a base CPU instance and add GPUs until we find
the right balance for our model inference needs. Otherwise, we may be forced to opti‐
mize one set of resources like CPU and RAM but underutilize other resources like
GPU and network bandwidth.

Here is the code to deploy our same model but with EIA:

import time
timestamp = '{}'.format(int(time.time()))

Reduce Cost and Increase Performance | 363

endpoint_config_name = '{}-{}'.format(training_job_name, timestamp)

variantA = production_variant(model_name='ModelA',
 instance_type="ml.m5.large",
 initial_instance_count=1,
 variant_name='VariantA',
 initial_weight=50,
 accelerator_type='ml.eia2.medium')

variantB = production_variant(model_name='ModelB',
 instance_type="ml.m5.large",
 initial_instance_count=1,
 variant_name='VariantB',
 initial_weight=50)

endpoint_config = sm.create_endpoint_config(
 EndpointConfigName=endpoint_config_name,
 ProductionVariants=[variantA, variantB]
)

endpoint_name = '{}-{}'.format(training_job_name, timestamp)

endpoint_response = sm.create_endpoint(
 EndpointName=endpoint_name,
 EndpointConfigName=endpoint_config_name)

Optimize a Trained Model with SageMaker Neo and TensorFlow Lite
SageMaker Neo takes a trained model and performs a series of hardware-specific
optimizations, such as 16-bit quantization, graph pruning, layer fusing, and constant
folding for up to 2x model-prediction speedups with minimal accuracy loss. Sage‐
Maker Neo works across popular AI and machine learning frameworks, including
TensorFlow, PyTorch, Apache MXNet, and XGBoost.

SageMaker Neo parses the model, optimizes the graph, quantizes tensors, and gener‐
ates hardware-specific code for a variety of target environments, including Intel x86
CPUs, NVIDIA GPUs, and AWS Inferentia, as shown in Figure 9-36.

Figure 9-36. SageMaker Neo delivers model compilation as a service.

364 | Chapter 9: Deploy Models to Production

SageMaker Neo supports TensorFlow Lite (TFLite), a lightweight, highly optimized
TensorFlow runtime interpreter and code generator for small devices with limited
memory and compute resources. SageMaker Neo uses the TFLite converter to per‐
form hardware-specific optimizations for the TensorFlow Lite runtime interpreter, as
shown in Figure 9-37.

Figure 9-37. TFLite interpreter. Source: TensorFlow.

We can choose to optimize for small size (tf.lite.Optimize.OPTIMIZE_FOR_SIZE),
optimize for low latency (tf.lite.OPTIMIZE_FOR_LATENCY), or balance size and per‐
formance (tf.lite.Optimize.DEFAULT). Here is the TFLite code that performs 16-bit
quantization on a TensorFlow model with a balance between size and performance:

import tensorflow as tf

converter = tf.lite.TocoConverter.from_saved_model('./tensorflow/')
converter.post_training_quantize = True
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_model = converter.convert()
tflite_model_path = './tflite/tflite_optimized_model.tflite'
model_size = open(tflite_model_path, "wb").write(tflite_model)

Here is the prediction code that leads to an order-of-magnitude speedup in predic‐
tion time due to the quantization:

import numpy as np
import tensorflow as tf

Reduce Cost and Increase Performance | 365

https://oreil.ly/QWiV8

Load TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model_path=tflite_model_path)
interpreter.allocate_tensors()

Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

Test model on random input data.
input_shape = input_details[0]['shape']
input_data = np.array(np.random.random_sample(input_shape),
dtype=np.float32)

interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()

output_data = interpreter.get_tensor(output_details[0]['index'])
print('Prediction: %s' % output_data)

OUTPUT
5

Use Inference-Optimized Hardware
AWS Inferentia, is an inference-optimized chip used by the Amazon “Inf ” instance
types. The chip accelerates 16-bit and 8-bit floating-point operations generated by the
AWS Neuron compiler to optimize our model for the AWS Inferentia chip and Sage‐
Maker Neo and Neuron runtimes (see in Figure 9-38).

Figure 9-38. SageMaker Neuron compiler and Neo runtime for the AWS Inferentia chip.

366 | Chapter 9: Deploy Models to Production

Summary
In this chapter, we moved our models out of the research lab and into the end-user
application domain. We showed how to measure, improve, and deploy our models
using real-world, production-ready fundamentals such as canary rollouts, blue/green
deployments, and A/B tests. We demonstrated how to perform data-drift, model-
drift, and feature-attribution-drift detection. In addition, we performed batch trans‐
formations to improve throughput for offline model predictions. We closed out with
tips on how to reduce cost and improve performance using SageMaker Neo, Tensor‐
Flow Lite, SageMaker Multimodel Endpoints, and inference-optimized hardware
such as EIA and AWS Inferentia.

In Chapter 10, we bring the feature engineering, model training, model validation,
and model deploying steps into a single, unified, and end-to-end automated pipeline
using SageMaker Pipelines, AWS Step Functions, Apache Airflow, Kubeflow, and var‐
ious other open source options.

Summary | 367

CHAPTER 10

Pipelines and MLOps

In previous chapters, we demonstrated how to perform each individual step of a typi‐
cal ML pipeline, including data ingestion, analysis, and feature engineering—as well
as model training, tuning, and deploying.

In this chapter, we tie everything together into repeatable and automated pipelines
using a complete machine learning operations (MLOps) solution with SageMaker
Pipelines. We also discuss various pipeline-orchestration options, including AWS
Step Functions, Kubeflow Pipelines, Apache Airflow, MLFlow, and TensorFlow
Extended (TFX).

We will then dive deep into automating our SageMaker Pipelines when new code is
committed, when new data arrives, or on a fixed schedule. We describe how to rerun
a pipeline when we detect statistical changes in our deployed model, such as data drift
or model bias. We will also discuss the concept of human-in-the-loop workflows,
which can help to improve our model accuracy.

Machine Learning Operations
The complete model development life cycle typically requires close collaboration
between the application, data science, and DevOps teams to successfully production‐
ize our models, as shown in Figure 10-1.

369

Figure 10-1. Productionizing machine learning applications requires collaboration
between teams.

Typically, the data scientist delivers the trained model, the DevOps engineer manages
the infrastructure that hosts the model as a REST API, and the application developer
integrates the REST API into their applications. Each team must understand the
needs and requirements of the other teams in order to implement an efficient work‐
flow and smooth hand-off process.

MLOps has evolved through three stages of maturity:

MLOps v1.0
Manually build, train, tune, and deploy models

MLOps v2.0
Manually build and orchestrate model pipelines

MLOps v3.0
Automatically run pipelines when new data arrives or code changes from deter‐
ministic triggers such as GitOps or when models start to degrade in performance
based on statistical triggers such as drift, bias, and explainability divergence

In this chapter, we describe how SageMaker supports the complete MLOps strategy,
including pipeline orchestration, deterministic automation from changes in data or
code, and statistical automation from changes in drift, bias, or explainability.

370 | Chapter 10: Pipelines and MLOps

Software Pipelines
In the early 2000s, software practitioners started to use continuous integration (CI)
and continuous delivery (CD) to automatically build, test, and deploy their software
modules directly and safely to production. CI and CD facilitated a low-friction col‐
laboration between the DevOps engineers and software engineers. Prior to CI and
CD, software engineers would hand their code “over the wall” to the DevOps engi‐
neer, who pushed the software to production after confirming successful integration
test results in preproduction staging environments and coordinating with quality
assurance (QA) teams, etc. An example software pipeline is shown in Figure 10-2.

Figure 10-2. Simple application deployment pipeline.

Jenkins is a popular open source tool for managing software pipelines. With its rich
plug-in architecture, Jenkins can orchestrate complex CI/CD software pipelines and
provide in-depth reports on the health of the pipeline at any point during the pipeline
execution. For large code bases, pipeline execution can span many days, and compo‐
nents can fail for a variety of reasons. Jenkins provides mechanisms to restart any
failed components and keep the pipeline running. Human intervention is often
required, however. Jenkins supports manual, human-in-the-loop feedback as well.

In addition to restarts, sophisticated pipeline orchestration engines such as Jenkins
support component caching strategies as well to improve pipeline execution perfor‐
mance. For example, if our pipeline fails during the integration test step because a
remote system is unavailable, the orchestration engine can detect which pipeline
steps have already run, reuse the cached results if no dependencies have changed,
retry the failed step, and continue the pipeline to completion.

Machine Learning Pipelines
While CI and CD pipelines were built primarily to automate the software develop‐
ment cycle and improve the quality of application releases, they can also improve
machine learning releases. ML engineers and data scientists seek to consistently and
repeatedly train, test, and deploy models into production with little friction. This lets
us spend more time on building and experimenting with new models versus man‐
ually retraining and redeploying existing models with the latest datasets.

Similar to CI and CD to efficiently update and improve software in production,
machine learning pipelines automatically perform continuous training and CD for
machine learning to efficiently update and improve models in production. Automa‐

Software Pipelines | 371

ted, reproducible, and parameterized pipelines help to maintain and track framework
versions, container runtimes, and hardware throughout the entire process, from fea‐
ture ingestion and feature engineering to model training and deployment.

Using automated ML pipelines instead of manual, one-off Python scripts will help to
reduce subtle bugs that may creep into any step of the pipeline. For example, small
changes to an upstream application may introduce data-quality issues such as star
ratings outside the bounded and discrete value range between 1 (worst) and 5 (best).

While the model may appear to train successfully with poor-quality data, the model
could negatively affect our business if pushed to production. By automating the data-
quality checks before model training, we could raise a pipeline exception, notify the
application team of the bad data, and save the cost of training a bad model.

We can also combine ML pipelines with artifact and experiment tracking for model
reproducibility and auditing. Artifact tracking provides the lineage of deployed mod‐
els all the way back to the original dataset version used during model training.
Experiment tracking records the hyper-parameters used during training as well as the
training results, such as model accuracy. The SageMaker Experiments and Lineage
APIs are integrated throughout SageMaker to handle these scenarios.

Verifiable ML pipelines can help solve the problem of model degradation. Model deg‐
radation is a relatively common and underengineered scenario due to the complexity
of monitoring models in production. Degrading model predictions results in poorly
classified reviews and missed business opportunities.

By continually monitoring our model predictions with SageMaker Model Monitor
and Clarify, we can detect shifts in data distributions, model bias, and model explain‐
ability—triggering a pipeline to retrain and deploy a new review-classifier model.

Figure 10-3 shows a sample machine learning pipeline mapped to AWS services,
including S3, Data Wrangler, and SageMaker.

Figure 10-3. Machine learning pipeline mapped to AWS services.

372 | Chapter 10: Pipelines and MLOps

Once the pipeline is running smoothly, we can increase velocity of experimentation
by adding simultaneous pipelines to deploy multiple versions of the same model into
production, as shown in Figure 10-4. This could be used for online A/B/C or multi‐
armed bandit (MAB) tests.

Figure 10-4. Training, tuning, and deploying multiple versions of the same model to
improve experimentation velocity.

Components of Effective Machine Learning Pipelines
There are still many machine learning pipelines that include a high-friction step
where the data scientist hands their model “over the wall” to the DevOps engineer or
ML engineer to deploy. Machine learning pipelines are ripe for the type of revolution
that stunned the software engineering community in the early 2000s.

Effective machine learning pipelines hide the details of the pipeline implementation
and allow data science practitioners to focus on their business-specific, data science
problem. Machine learning is continuous. The more we automate the process, the
more we are free to solve additional business problems. Otherwise, we find ourselves
manually rerunning one-off scripts every time new data arrives. While running a
script is fairly simple, monitoring or restarting the script requires cognitive load that
we could likely apply to higher-value tasks.

The ability to go from “ad hoc Jupyter notebook” to “repeatable machine learning
pipeline” to “production cluster” is still a complex, error-prone, and underengineered
workflow. However, we will provide some options on how to minimize the complex‐
ity and reduce errors with AWS.

Machine Learning Pipelines | 373

Effective ML pipelines should include the following:

• Data-focused tasks such as data ingestion, data versioning, data-quality checking,
data preprocessing, and feature engineering

• Model-building tasks such as model training, model-quality checking, and model
versioning

• Automated model deployment, model scaling, model explaining, and bias
detection

• Experiment and lineage tracking to work backward and reproduce any model
version from scratch

• Automatic pickup of new data as it arrives (S3 PutObject event) and retraining—
or perhaps automation using a cron-like timer (every night at midnight)

• Feedback mechanism to continuously improve the model in accordance with our
business objectives and key results, such as increasing customer satisfaction by
10% in the next 12 months

In our experience, data-quality issues are the number-one cause of bad ML pipelines.
In Chapter 5, we demonstrated how to use the AWS Deequ open source library to
perform data-quality checks on our data as “step 0” of the ML pipeline. Without con‐
sistent and expected quality, our ML pipeline will, at best, fail quickly and minimize
cost. At worst, poor-quality data will produce poor-quality models that may include
bias and negatively impact our business.

In the beginning phases of ML exploration, we may not need a pipeline. The rigidity
of a pipeline may seem too limiting. Pipelines are often deployed when we are ready
to start training models regularly. If we are rapidly experimenting with many differ‐
ent types of features, models, and hyper-parameters, we may want to stay in the
research lab until we are ready to automate for the long term and gain the benefits of
regular pipeline executions, including data-quality checking, lineage tracking, and
infrastructure scaling. However, even the simplest pipeline can help improve our
model exploration.

Steps of an Effective Machine Learning Pipeline
The following is a collection of steps that make up an effective, modern machine
learning pipeline. We will demonstrate how to perform each of these steps in AWS
using SageMaker Pipelines, AWS Step Functions, Airflow, Kubeflow, and other open
source options in the upcoming sections.

374 | Chapter 10: Pipelines and MLOps

Data ingestion and versioning
Read the raw dataset from a data source such as a database, S3, or stream. Trans‐
form the dataset into a format that will be used in the next steps of the pipeline
(i.e., CSV, Parquet, etc.) and version both the raw and transformed datasets.

Data analysis and validation
Analyze the quality and bias of the ingested dataset. Validate that the data is
ready for the next pipeline steps.

Feature engineering
Transform the dataset into features such as BERT embeddings used by the next
pipeline steps. Balance and split the dataset into train, validation, and test splits.
Publish the features to a feature store to be used for both training and inference
by the entire organization.

Model training and tuning
Train a model using the features created in the previous pipeline step as well as a
set of hyper-parameters specific to the model’s algorithm, analyze the accuracy of
the model and hyper-parameters using the known validation dataset split, and
repeat with different sets of hyper-parameters until the model accuracy is suffi‐
cient.

Model evaluation
Test the trained model using the known test dataset split, calculate additional
metrics such as a confusion matrix and area under the curve, validate the model
bias on different segments of the test dataset split (e.g., different product cate‐
gories), and retrain and retune to reduce or remove bias.

Model version and deployment
Version the trained model along with the hyper-parameters and dataset splits and
deploy the model into production as a real-time endpoint or batch prediction
job.

Model feedback and skew detection
Analyze the model performance against business metrics (e.g., revenue increases,
successful fraud detections, etc.), detect training-serving skew by analyzing the
model inputs and outputs (predictions) relative to the training data baseline, and
retrain the model if skew is detected.

Pipeline Orchestration with SageMaker Pipelines
SageMaker Pipelines is the most complete way to implement AI and machine learn‐
ing pipelines on AWS. Let’s build a pipeline for our BERT-based review classifier and
perform many of the steps described in previous chapters, including data ingestion,
feature engineering, model training, and model deployment, as shown in Figure 10-5.

Pipeline Orchestration with SageMaker Pipelines | 375

Figure 10-5. Using SageMaker Pipeline to train, validate, create, and register our trained
BERT model.

Let’s set up the pipeline programmatically using the SageMaker Python SDK to define
each of the steps discussed earlier.

Create an Experiment to Track Our Pipeline Lineage
First, we create an experiment and trial to track and compare our pipeline runs:

import time
from smexperiments.experiment import Experiment

experiment_name = 'Experiment-{}'.format(int(time.time()))

experiment = Experiment.create(
 experiment_name=experiment_name,
 description='Amazon Customer Reviews BERT Pipeline Experiment',
 ...)

trial_name = 'trial-{}'.format(int(time.time()))

trial = Trial.create(trial_name=trial_name,
 experiment_name=experiment_name,
 ...)

376 | Chapter 10: Pipelines and MLOps

Define Our Pipeline Steps
The first step of our pipeline is to transform the raw review text into BERT features
using a SageMaker Processing Job. We will reuse the same processor from Chapter 6
but wrap it in a ProcessingStep from the SageMaker Pipeline Python SDK:

experiment_config_prepare = {
 'ExperimentName': experiment_name,
 'TrialName': trial_name,
 'TrialComponentDisplayName': 'prepare'
}

from sagemaker.processing import ProcessingInput, ProcessingOutput
from sagemaker.workflow.steps import ProcessingStep

processing_step = ProcessingStep(
 name='Processing',
 code='preprocess-scikit-text-to-bert-feature-store.py',
 processor=processor,
 inputs=processing_inputs,
 outputs=processing_outputs,
 job_arguments=['--train-split-percentage', \
 str(train_split_percentage.),
 '--validation-split-percentage', \
 str(validation_split_percentage.),
 '--test-split-percentage', \
 str(test_split_percentage.),
 '--max-seq-length', \
 str(max_seq_length.),
 '--balance-dataset', \
 str(balance_dataset.),
 '--feature-store-offline-prefix', \
 str(feature_store_offline_prefix.),
 '--feature-group-name', \
 str(feature_group_name)
]
)

Now let’s train our model using the output from the previous feature-engineering
processing step. We will use the same estimator from Chapter 7 but wrap it in a
TrainingStep from the SageMaker Pipeline Python SDK:

from sagemaker.inputs import TrainingInput
from sagemaker.workflow.steps import TrainingStep

experiment_config_train = {
 'ExperimentName': experiment_name,
 'TrialName': trial_name,
 'TrialComponentDisplayName': 'train'
}

training_step = TrainingStep(

Pipeline Orchestration with SageMaker Pipelines | 377

 name='Train',
 estimator=estimator,
 inputs={
 'train': TrainingInput(
 s3_data=\
 processing_step.properties.ProcessingOutputConfig.Outputs[
 'bert-train'
].S3Output.S3Uri,
 content_type='text/csv'
),
 'validation': TrainingInput(
 s3_data=\
 processing_step.properties.ProcessingOutputConfig.Outputs[
 'bert-validation'
].S3Output.S3Uri,
 content_type='text/csv'
),
 'test': TrainingInput(
 s3_data=\
 processing_step.properties.ProcessingOutputConfig.Outputs[
 'bert-test'
].S3Output.S3Uri,
 content_type='text/csv'
)
 }
)

Next, let’s add a step to evaluate our model using a SageMaker Processing Job to cal‐
culate the model test accuracy with evaluate_model_metrics.py and write the results to
a file called evaluation.json in S3. This file will be used by the next steps to condition‐
ally register and prepare the model for deployment:

from sagemaker.workflow.properties import PropertyFile

experiment_config_evaluate = {
 'ExperimentName': experiment_name,
 'TrialName': trial_name,
 'TrialComponentDisplayName': 'evaluate'
}

evaluation_report = PropertyFile(
 name='EvaluationReport',
 output_name='metrics',
 path='evaluation.json'
)

from sagemaker.sklearn.processing import SKLearnProcessor

evaluation_processor = SKLearnProcessor(
 framework_version='<SCIKIT_LEARN_VERSION>',
 role=role,
 ...)

378 | Chapter 10: Pipelines and MLOps

evaluation_step = ProcessingStep(
 name='Evaluation',
 processor=evaluation_processor,
 code='evaluate_model_metrics.py',
 inputs=[
 ProcessingInput(
 source=\
 training_step.properties.ModelArtifacts.S3ModelArtifacts,
 destination='/opt/ml/processing/input/model'
),
 ProcessingInput(
 source=raw_input_data_s3_uri,
 destination='/opt/ml/processing/input/data'
)
],
 outputs=[
 ProcessingOutput(output_name='metrics',
 s3_upload_mode='EndOfJob',
 source='/opt/ml/processing/output/metrics/'),
],
 job_arguments=[
 '--max-seq-length', \
 str(max_seq_length.default_value),
],
 property_files=[evaluation_report],
 experiment_config=experiment_config_evaluate
)

The evaluate_model_metrics.py file downloads the model, runs a set of test predic‐
tions, and writes the results to evaluation.json, as shown in the following code:

def predict(text):
 encode_plus_tokens = tokenizer.encode_plus(
 text,
 pad_to_max_length=True,
 max_length=args.max_seq_length,
 truncation=True,
 return_tensors='tf')

 input_ids = encode_plus_tokens['input_ids']

 input_mask = encode_plus_tokens['attention_mask']
 outputs = model.predict(x=(input_ids, input_mask))
 scores = np.exp(outputs) / np.exp(outputs).sum(-1, keepdims=True)

 prediction = [{"label": config.id2label[item.argmax()],
 "score": item.max().item()} for item in scores]

 return prediction[0]['label']
...

df_test_reviews = pd.read_csv(

Pipeline Orchestration with SageMaker Pipelines | 379

 test_data_path,
 delimiter='\t',
 quoting=csv.QUOTE_NONE,
 compression='gzip')[['review_body', 'star_rating']]

y_test = df_test_reviews['review_body'].map(predict)
y_actual = df_test_reviews['star_rating']

accuracy = accuracy_score(y_true=y_test, y_pred=y_actual)

metrics_path = os.path.join(args.output_data, 'metrics/')

os.makedirs(metrics_path, exist_ok=True)

report_dict = {
 "metrics": {
 "accuracy": {
 "value": accuracy,
 },
 },
}

evaluation_path = "{}/evaluation.json".format(metrics_path)
with open(evaluation_path, "w") as f:
 f.write(json.dumps(report_dict))

Let’s register our trained model with the SageMaker Model Registry. Once the model
is registered, our pipeline requires a manual-approval step to deploy the model to
staging. We first need to capture the evaluation metrics generated from the previous
evaluation step in a ModelMetrics Python object named model_metrics, as shown in
the following:

from sagemaker.model_metrics import MetricsSource, ModelMetrics

model_metrics = ModelMetrics(
 model_statistics=MetricsSource(
 s3_uri="{}/evaluation.json".format(
 evaluation_step.arguments["ProcessingOutputConfig"]\
["Outputs"][0]["S3Output"]["S3Uri"]
),
 content_type="application/json"
)
)

Let’s pass model_metrics and create the RegisterModel step using the estimator
from the previous TrainingStep. We can limit the instance types for both SageMaker
Endpoints and Batch Transform Jobs by specifying lists for inference_instances
and transform_instances, respectively:

from sagemaker.workflow.step_collections import RegisterModel

inference_image_uri = sagemaker.image_uris.retrieve(

380 | Chapter 10: Pipelines and MLOps

 framework="tensorflow",
 region=region,
 version="<TENSORFLOW_VERSION>",
 py_version="<PYTHON_VERSION>",
 instance_type=deploy_instance_type,
 image_scope="inference"
)

register_step = RegisterModel(
 name="RegisterModel",
 estimator=estimator,
 image_uri=inference_image_uri,
 model_data=
 training_step.properties.ModelArtifacts.S3ModelArtifacts,
 content_types=["application/jsonlines"],
 response_types=["application/jsonlines"],
 inference_instances=["ml.m5.4xlarge"],
 transform_instances=["ml.c5.18xlarge"],
 model_package_group_name=model_package_group_name,
 model_metrics=model_metrics
)

Now we will write the CreateModelStep to wrap the SageMaker Model used by both
our SageMaker Endpoint and Batch Transform Jobs:

from sagemaker.model import Model

model = Model(
 name=<MODEL_NAME>,
 image_uri=inference_image_uri,
 model_data=
 training_step.properties.ModelArtifacts.S3ModelArtifacts,
 ...
)

from sagemaker.inputs import CreateModelInput

create_inputs = CreateModelInput(
 instance_type="ml.m5.4xlarge",
)

from sagemaker.workflow.steps import CreateModelStep

create_step = CreateModelStep(
 name="CreateModel",
 model=model,
 inputs=create_inputs,
)

Let’s add a ConditionStep to compare the evaluation accuracy metrics against a
threshold. Our pipeline will register, create, and prepare the model for deployment
only if the model accuracy exceeds the given threshold of 95%, as shown here:

Pipeline Orchestration with SageMaker Pipelines | 381

from sagemaker.workflow.conditions import ConditionGreaterThanOrEqualTo

from sagemaker.workflow.condition_step import (
 ConditionStep,
 JsonGet,
)

minimum_accuracy_condition = ConditionGreaterThanOrEqualTo(
 left=JsonGet(
 step=evaluation_step,
 property_file=evaluation_report,
 json_path="metrics.accuracy.value",
),
 right=0.95 # 95% accuracy
)

minimum_accuracy_condition_step = ConditionStep(
 name="AccuracyCondition",
 conditions=[minimum_accuracy_condition],
 # success, continue with model registration
 if_steps=[register_step, create_step],
 # fail, end the pipeline
 else_steps=[],
)

Configure the Pipeline Parameters
Before creating our pipeline, we must define parameter placeholders to use across all
steps in our pipeline with ParameterInteger, ParameterString, and Parameter
Float from the SageMaker Pipelines Python SDK. These are merely placeholders for
now because we are defining the pipeline. When we start the pipeline, we will specify
the exact value to use for each parameter—or use the default_value if a value is not
provided:

from sagemaker.workflow.parameters import (
 ParameterInteger,
 ParameterString,
 ParameterFloat,
)

input_data = ParameterString(
 name="InputData",
 default_value=raw_input_data_s3_uri,
)
...
max_seq_length = ParameterInteger(
 name="MaxSeqLength",
 default_value=64,
)
...
learning_rate = ParameterFloat(

382 | Chapter 10: Pipelines and MLOps

 name="LearningRate",
 default_value=0.00001,
)
...

Create the Pipeline
Next, we create the pipeline using all of the previously defined steps. This includes
the processing_step, training_step, evaluation_step, as well as the
minimum_accuracy_condition_step, which conditionally calls the register_step
and create_step if the model achieves a minimum accuracy of 95% during model
evaluation:

pipeline = Pipeline(
 name=<PIPELINE_NAME>,
 parameters=[
 input_data, # InputData
 ...
 max_seq_length, # MaxSeqLength
 ...
 learning_rate, # LearningRate
 ...
],
 steps=[processing_step, training_step, evaluation_step, \
 minimum_accuracy_condition_step]
)

pipeline.create(role_arn=role)

Start the Pipeline with the Python SDK
Finally, we start the Pipeline by providing the desired parameter values, including
the S3 location of the reviews dataset, maximum sequence length of the BERT tokens,
and learning rate of the TensorFlow gradient-descent optimizer:

execution = pipeline.start(
 InputData=raw_input_data_s3_uri,
 MaxSeqLength=64,
 LearningRate=0.000012,
 ...
)

Start the Pipeline with the SageMaker Studio UI
We can also trigger a SageMaker Pipeline execution through the SageMaker Studio
UI, as shown in Figure 10-6. The Studio UI presents input fields for each of the
parameters defined in our Pipeline object.

Pipeline Orchestration with SageMaker Pipelines | 383

Figure 10-6. Start a pipeline execution through SageMaker Studio UI.

Approve the Model for Staging and Production
We can approve models through the SageMaker Model Registry either manually
through the SageMaker Studio UI or programmatically through our notebook.
Approving the model will automatically deploy the model to a staging environment
for testing. Our pipeline then requires a separate approval to move the model from
staging to production if testing is successful. We can programmatically approve the
model to staging using the following code:

for execution_step in execution.list_steps():
 if execution_step['StepName'] == 'RegisterModel':
 model_package_arn =
 execution_step['Metadata']['RegisterModel']['Arn']
 break

model_package_update_response = sm.update_model_package(
 ModelPackageArn=model_package_arn,

384 | Chapter 10: Pipelines and MLOps

 ModelApprovalStatus="Approved",
)

Review the Pipeline Artifact Lineage
We can review the artifact lineage directly either through the SageMaker Studio UI or
programmatically in our notebook with the Python SDK. Following is the code to list
the artifacts across all steps, including feature engineering, model training, evalua‐
tion, approval, and deployment:

import time
from sagemaker.lineage.visualizer import LineageTableVisualizer

viz = LineageTableVisualizer(sagemaker.session.Session())
for execution_step in reversed(execution.list_steps()):
 if execution_step['StepName'] == 'Processing':
 processing_job_name=
 execution_step['Metadata']['ProcessingJob']['Arn']\
 .split('/')[-1]
 display(viz.show(processing_job_name=processing_job_name))
 else:
 display(viz.show(pipeline_execution_step=execution_step))
 time.sleep(5)

The output is similar to the following table:

 Name/source Direction Type Association type Lineage type
0 preprocess-scikit-text-to-bert-feature-store.py Input DataSet ContributedTo artifact
1 s3://.../amazon-reviews-pds/tsv/ Input DataSet ContributedTo artifact
2 68331...om/sagemaker-scikit-learn:0.23-1-cpu-py3 Input Image ContributedTo artifact
3 s3://.../output/bert-test Output DataSet Produced artifact
4 s3://.../output/bert-validation Output DataSet Produced artifact
5 s3://.../output/bert-train Output DataSet Produced artifact
6 s3://.../output/bert-test Input DataSet ContributedTo artifact
7 s3://.../output/bert-validation Input DataSet ContributedTo artifact
8 s3://.../output/bert-train Input DataSet ContributedTo artifact
9 76310.../tensorflow-training:2.3.1-cpu-py37 Input Image ContributedTo artifact
10 model.tar.gz Output Model Produced artifact
11 model.tar.gz Input Model ContributedTo artifact
12 76310.../tensorflow-inference:2.1.0-cpu Input Image ContributedTo artifact
13 bert-reviews-1610437484-1-

Approved-1610443150-aws-model-group
Input Approval ContributedTo action

14 bert-reviews-1610437484-1-
Approved-1610443150-aws-endpoint

Output ModelDeployment ContributedTo action

15 bert-reviews-1610437484-1-aws-model-group Output ModelGroup AssociatedWith context

Pipeline Orchestration with SageMaker Pipelines | 385

Review the Pipeline Experiment Lineage
Using the SageMaker Experiments API, we can show the experiment lineage of our
pipeline through all steps of the pipeline, including feature engineering, model train‐
ing, evaluation, and deployment, as shown in the following:

from sagemaker.analytics import ExperimentAnalytics

experiment_analytics = ExperimentAnalytics(
 experiment_name=experiment_name,
)

experiment_analytics.dataframe()

TrialComponentName DisplayName max_seq_
length

learning_
rate

train_
accuracy

test_
accuracy

endpoint_
name

pipelines-0tsa93mahu8v-
processing-kch2vw03qc-aws-
processing-job

prepare 64.0 NaN NaN NaN

pipelines-0tsa93mahu8v-Train-
tlvC7YdBl9-aws-training-job

train 64.0 0.000017 0.9416 NaN

pipelines-1daa23hlku3v-
processing-hkc9w0v0q-aws-
processing-job

evaluate 64.0 NaN NaN 0.9591

TrialComponent-2021-01-
09214921-dgtu

deploy NaN NaN NaN NaN bert-reviews-
1610437484-
endpoint

Automation with SageMaker Pipelines
There are two main ways to automatically start a pipeline: event-based triggers and
time-based triggers. Event-based triggers will start a pipeline when a particular event
occurs, for example, when a new train.py is committed to our Git-based code reposi‐
tory. This is often called “GitOps” automation. We can also start a new pipeline when
new data arrives into S3 from a PutObject event. Time-based triggers will start the
pipeline on a schedule, such as every week, every two days, or every four hours. Let’s
discuss how to implement GitOps, S3, and time-based triggers to automatically start a
SageMaker Pipeline.

GitOps Trigger When Committing Code
SageMaker implements GitOps pipeline automation through SageMaker Projects.
SageMaker Projects come with pre-built MLOps templates that automate the model-
building and deployment pipelines. We can customize the templates, or create our
own templates, as needed.

386 | Chapter 10: Pipelines and MLOps

We can create our own project by selecting one of the pre-built MLOps templates
provided by SageMaker or by using our own custom template that we provide. The
MLOps templates use AWS CloudFormation to automatically set up all required
components for our GitOps automation workflow with SageMaker Pipelines. The
MLOps template also sets up a trigger to run the pipeline each time we commit new
code to the code repositories.

There are two main components of our MLOps template for SageMaker Pipelines:
modelbuild and modeldeploy. The modelbuild component builds and registers the
model. The modeldeploy component deploys the model to staging and production.
Deploying the model to production requires a second manual approval step, as
shown in Figure 10-7.

Figure 10-7. MLOps pipeline to deploy models to both staging and production with man‐
ual approvals.

The separation of modelbuild and modeldeploy allows for a separation of responsi‐
bility and access control. For example, the data scientist may be responsible for the
modelbuild phase to push the model into staging, while the DevOps team is respon‐
sible for the modeldeploy phase to push the model into production.

S3 Trigger When New Data Arrives
As new data arrives into the system—directly from an application or through data
streaming services like Kinesis Streams and Managed Streaming for Apache Kafka—
we may want to continuously run our pipeline and update our models to include the
new data. While it’s perfectly acceptable to manually run our pipelines every week,
day, or even hour, we can easily automate the pipeline as new data lands in S3 from an
upstream application, as shown in Figure 10-8.

Automation with SageMaker Pipelines | 387

Figure 10-8. Automatically start a SageMaker Pipeline when new data arrives in S3.

First, we need to be notified when new data arrives in S3 by enabling AWS CloudTrail
data-event logging on our S3 bucket:

watched_bucket_arn=<S3_BUCKET_ARN_TO_WATCH>

event_selector=\
'\'[{ "ReadWriteType": "WriteOnly", "IncludeManagementEvents":true, \
 "DataResources": \
 [{ "Type": "AWS::S3::Object", \
 "Values": ["' + watched_bucket_arn + '"]
 }]
 }]\''

!aws cloudtrail put-event-selectors \
 --trail-name $trail_name \
 --event-selectors $event_selector

Next, we will create an Amazon EventBridge rule to trigger the SageMaker Pipeline
every time new files are uploaded to the S3 bucket using an EventBridge rule that
matches both the S3 PutObject and CompleteMultipartUpload. Here is the Python
code to enable this behavior:

events = boto3.client('events')
watched_bucket=<S3_BUCKET_NAME_TO_WATCH>

pattern = {
 "source": [
 "aws.s3"
],
 "detail-type": [
 "AWS API Call via CloudTrail"
],
 "detail": {
 "eventSource": [
 "s3.amazonaws.com"

388 | Chapter 10: Pipelines and MLOps

],
 "eventName": [
 "PutObject",
 "CompleteMultipartUpload",
 "CopyObject"
],
 "requestParameters": {
 "bucketName": [
 "{}".format(watched_bucket)
]
 }
 }
}

response = events.put_rule(
 Name='S3-Trigger',
 EventPattern=json.dumps(pattern),
 State='ENABLED',
 Description='Triggers an event on S3 PUT',
 EventBusName='default'
)

Lastly, we associate the rule with an AWS Lambda function to start our pipeline when
the rule is matched:

response = events.put_targets(
 Rule='S3-Trigger',
 EventBusName='default',
 Targets=[
 {
 'Id': '1',
 'Arn': lambda_arn,
 'RoleArn': iam_role_eventbridge_arn,
 }
]
)

Here is an excerpt of the AWS Lambda function used to trigger our SageMaker
pipeline:

sm = boto3.client('sagemaker', region_name=region)

timestamp = int(time.time())

def lambda_handler(event, context):
 response = sm.start_pipeline_execution(
 PipelineName=<PIPELINE_NAME>,
 PipelineExecutionDisplayName='<PIPELINE_EXECUTION_DISPLAY_NAME>',
 PipelineParameters=[
 ...
]
)

Automation with SageMaker Pipelines | 389

Anytime a new file is uploaded to this S3 bucket, EventBridge will trigger the rule and
start our pipeline execution. We can use the lambda_handler function’s event vari‐
able to find out the exact file that was uploaded and, perhaps, incrementally train our
model on just that new file. Depending on our use case, we may not want to start a
new pipeline for every file uploaded to S3. However, this is a good starting point to
build our own rules and triggers from many AWS services.

At the time of this writing, there was no native integration between
EventBridge and SageMaker Pipelines, so we need to use a Lambda
function shim. However, there will likely be native integration by
the time this book is published, so we may be able to skip the
Lambda function and integrate EventBridge directly with Sage‐
Maker Pipelines.

Time-Based Schedule Trigger
We may want to trigger our pipeline on batches of data over a specific period of time,
such as hourly, daily, monthly, etc. Similar to configuring a cron job, we can create an
EventBridge rule to run our pipeline on a schedule. We can specify the schedule using
familiar cron syntax or by defining a fixed rate, such as every hour. Or we can pro‐
grammatically define the schedule using the AWS Python SDK for EventBridge. The
following code triggers the pipeline to run every hour:

events = boto3.client('events')

response = events.put_rule(
 Name='Hourly_Time_Based_Trigger',
 ScheduleExpression='rate(1 hour)',
 State='ENABLED',
 Description='Hourly Time-Based Trigger',
 EventBusName='default'
)

Statistical Drift Trigger
We can also start a new pipeline if SageMaker Model Monitor detects data-quality
drift, model-quality drift, bias drift, or explainability drift relative to a given baseline
or ground truth set of predicted labels. We can create baselines for data quality, model
quality, model bias, and feature importances and monitor our deployed models with
SageMaker Model Monitor, as discussed in Chapter 9.

Model Monitor captures the real-time model predictions and analyzes the data distri‐
butions for model inputs and model outputs in comparison to the baseline thresholds
learned from the training data. This helps us to detect statistical changes such as
covariate shift or concept drift that may trigger a new pipeline execution to retrain
the model.

390 | Chapter 10: Pipelines and MLOps

Model Monitor integrates with SageMaker Clarify. With Clarify, SageMaker continu‐
ously monitors the deployed models for changes in model bias and feature importan‐
ces. We define a confidence range of bias metrics for our models based on the offline
training data. We continually monitor the confidence intervals seen in the model’s
online predictions. If the observed confidence interval doesn’t overlap with the
defined confidence range, SageMaker Clarify will trigger a bias-drift alert that we can
use to start a new pipeline. Similarly, if the changes in feature importances cross a
defined threshold, SageMaker Clarify will trigger a feature attribution drift alert,
which we can use to start a new pipeline.

More Pipeline Options
While SageMaker Pipelines is the standard way to implement AI and machine learn‐
ing pipelines on AWS, we also present AWS Step Functions and various open source
options such as Kubeflow Pipelines, Apache Airflow, TFX, and MLflow. These tools
provide great support for AWS data stores, including Amazon S3, Athena, EMR, EFS,
and FSx for Lustre.

AWS Step Functions and the Data Science SDK
Step Functions is a great option for building complex workflows without having to
build and maintain our own infrastructure. While Step Functions were not specifi‐
cally designed for machine learning, they provide great flexibility and deep integra‐
tion with many AWS services, and expose the Step Functions Data Science SDK.

Figure 10-9 shows a Step Function Pipeline that was built to orchestrate the same
BERT-based review-classifier pipeline shown in the SageMaker Pipelines section.

Figure 10-9. Step Function Pipeline to orchestrate our BERT-based pipeline on
SageMaker.

Here is an excerpt from the Step Function configuration for the training step of our
pipeline. The complete code is in the GitHub repository associated with this book:

 "Training": {
 "AlgorithmSpecification": {
 "TrainingImage": "<TENSORFLOW_IMAGE_URI>".format(region),
 "TrainingInputMode": "{}".format(input_mode)
 },
 "HyperParameters": {
 "epochs": "{}".format(epochs),

More Pipeline Options | 391

 "learning_rate": "{}".format(learning_rate),
 "epsilon": "{}".format(epsilon),
 ...
}
 }
}

Kubeflow Pipelines
Kubeflow is a popular machine learning ecosystem built on Kubernetes that includes
an orchestration subsystem called Kubeflow Pipelines. While Kubeflow requires us to
build and maintain our own Amazon EKS clusters, it is well supported in AWS, as
shown in Figure 10-10.

Figure 10-10. Kubeflow is well supported on AWS due to tight integration with Amazon
EKS.

With Kubeflow, we can run distributed training jobs, analyze training metrics, track
pipeline lineage, restart failed pipelines, and schedule pipeline runs. The conventions
used in Kubeflow are well defined and well supported by a large community of open
source contributors across many organizations. If we are already using Kubernetes,
Kubeflow may be a good option to manage our pipelines.

392 | Chapter 10: Pipelines and MLOps

While managing Kubernetes is fun to some folks—including the authors of this book
—it is a distraction from everyday data science and engineering tasks. The authors of
this book have spent many nights and weekends troubleshooting Kubernetes-level
issues—time that could have been spent engineering more features and training bet‐
ter models.

Because of Kubeflow’s tight integration with Kubernetes, almost every question about
managing and scaling a Kubeflow cluster can be answered by reviewing Kubernetes
and Amazon EKS features. Here are some examples:

Question: “How do I monitor the GPUs in my Kubeflow training jobs?”
Answer: “The same way you monitor other system resources in Kubernetes on AWS:
Prometheus, Grafana, and CloudWatch.”
Question: “How do I auto-scale my Kubeflow REST endpoints?”
Answer: “The same way you auto-scale other Kubernetes resources on AWS: Horizon‐
tal Pod Autoscaling, Cluster Autoscaling, and CloudWatch.”
Question: “Does Kubeflow support Spot Instances?”
Answer: “Yes, because Amazon EKS supports Spot Instances.”

It’s worth noting that when using Spot Instances to train a model
with Kubeflow, we must use a framework that tolerates the Spot
Instances leaving the cluster (during a training job) as they are
replaced when new Spot Instances become available. When the
Spot Instances are replaced, they are removed from the cluster and
appear as failed instances to the training job. Modern frameworks
such as TensorFlow, PyTorch, and Apache MXNet support instance
failures but require extra code and configuration to perform the
checkpointing needed to efficiently recover from the failure and
continue training. We demonstrated the TensorFlow code and
SageMaker configuration for checkpointing in Chapter 8.

Let’s create an open source Kubeflow pipeline that trains a BERT model using man‐
aged Amazon SageMaker and the same Amazon Customer Reviews Dataset from the
previous chapters, as shown in Figure 10-11.

More Pipeline Options | 393

Figure 10-11. Kubeflow pipeline orchestrating our BERT-based pipeline on SageMaker.

First, we import the SageMaker Components for Kubeflow Pipelines Python library
and supporting assets to use in our Kubeflow Pipeline. The following YAML can be
found on GitHub:

sagemaker_process_op = components.load_component_from_url(\
 'components/aws/sagemaker/process/component.yaml')

sagemaker_train_op = components.load_component_from_url(
 'components/aws/sagemaker/train/component.yaml')

sagemaker_model_op = components.load_component_from_url(
 'components/aws/sagemaker/model/component.yaml')

sagemaker_deploy_op = components.load_component_from_url(
 'components/aws/sagemaker/deploy/component.yaml')

Now let’s set up the S3 locations of the raw training data:

394 | Chapter 10: Pipelines and MLOps

https://oreil.ly/Uh4Ls

def processing_input(input_name,
 s3_uri,
 local_path,
 s3_data_distribution_type):
 return {
 "InputName": input_name,
 "S3Input": {
 "LocalPath": local_path,
 "S3Uri": s3_uri,
 "S3DataType": "S3Prefix",
 "S3DataDistributionType": s3_data_distribution_type,
 "S3InputMode": "File",
 },
 }

Let’s define the S3 locations of the transformed features:

def processing_output(output_name, s3_uri,
 local_path, s3_upload_mode):
 return {
 "OutputName": output_name,
 "S3Output": {
 "LocalPath": local_path,
 "S3Uri": s3_uri,
 "S3UploadMode": s3_upload_mode
 },
 }

Let’s define the actual Kubeflow Pipeline using the Kubeflow Pipelines Python SDK:

@dsl.pipeline(
 name="BERT Pipeline",
 description="BERT Pipeline",
)
def bert_pipeline(role=role,
 bucket=bucket,
 region=region,
 raw_input_data_s3_uri=<RAW_DATA_S3_URI>):

Let’s transform the raw input data to BERT features:

 # Training input and output location based on bucket name
 process = sagemaker_process_op(
 ...
 container_arguments=['--train-split-percentage',
 str(train_split_percentage),
 '--validation-split-percentage',
 str(validation_split_percentage),
 '--test-split-percentage',
 str(test_split_percentage),
 '--max-seq-length',
 str(max_seq_length),
 '--balance-dataset',
 str(balance_dataset)])

More Pipeline Options | 395

Let’s train the model:

 hyperparameters={
 'epochs': '{}'.format(epochs),
 'learning_rate': '{}'.format(learning_rate),
 'epsilon': '{}'.format(epsilon),
 ...
 }
 hyperparameters_json = json.dumps(hyperparameters)

 training = sagemaker_train_op(
 hyperparameters=hyperparameters_json,
 ...
).after(process)

Deploy the BERT model as a REST-based SageMaker Endpoint:

 create_model = sagemaker_model_op(
 model_name=training.outputs["job_name"],
 model_artifact_url=training.outputs["model_artifact_url"],
 ...
)

 deploy_model = sagemaker_deploy_op(
 variant_name_1='AllTraffic',
 model_name_1=create_model.output,
 instance_type_1=deploy_instance_type,
 initial_instance_count_1=deploy_instance_count
)

Let’s compile and run the Kubeflow Pipeline, which results in a deployed SageMaker
Endpoint with our BERT model:

kfp.compiler.Compiler().compile(bert_pipeline, 'bert-pipeline.zip')

client = kfp.Client()

experiment = client.create_experiment(name='kubeflow')

my_run = client.run_pipeline(experiment.id,
 'bert-pipeline',
 'bert-pipeline.zip')

Let’s invoke the SageMaker Endpoint and get a star rating prediction from the review
text:

sm_runtime =
boto3.Session(region_name=region).client('sagemaker-runtime')

review = "This is great!".encode('utf-8')

response = sm_runtime.invoke_endpoint(
 EndpointName=endpoint_name,
 ContentType='application/jsonlines',

396 | Chapter 10: Pipelines and MLOps

 Body=review)

json.loads(response['Body'].read().decode())

OUTPUT
{'predicted_label': 5}

Apache Airflow
Apache Airflow is a very mature and popular option initially developed to orchestrate
data engineering and extract-transform-load (ETL) pipelines for analytics workloads.
However, Airflow has expanded into the machine-learning space as a viable pipeline
orchestrator. Amazon supports Amazon Managed Workflows for Apache Airflow to
reduce the operational burden of running Airflow clusters on AWS.

With a large library of third-party plug-ins and native integration with many AWS
services, Amazon MWAA is a great option for managing pipelines on AWS with Air‐
flow. If we are already using Airflow for our data engineering and ETL pipelines, Air‐
flow may be a good option to orchestrate our machine learning pipelines.
Figure 10-12 shows our BERT-based review-classifier pipeline implemented as an
Apache Airflow directed acyclic graph (DAG) using Amazon MWAA and SageMaker.

Figure 10-12. Amazon MWAA orchestrating our BERT-based pipeline on SageMaker.

Let’s demonstrate how to build an Airflow DAG with SageMaker to orchestrate our
BERT-based machine learning pipeline. First, we need to define the Airflow DAG:

More Pipeline Options | 397

import airflow
from airflow import DAG

default_args = {
 'owner': 'airflow',
 'provide_context': True
}

dag = DAG('bert_reviews',
 default_args=default_args,
 schedule_interval='@once')

Next, let’s transform the raw data into BERT features:

from airflow.contrib.operators.sagemaker_processing_operator \
 import SageMakerProcessingOperator
from sagemaker.workflow.airflow import processing_config

process_config = processing_config(estimator=estimator,
 inputs=input_data_s3_uri,
 outputs=output_data_s3_uri)

process_op = SageMakerProcessingOperator(
 task_id='process',
 config=process_config,
 wait_for_completion=True,
 dag=dag)

Let’s train the model:

import sagemaker
from sagemaker.tensorflow import TensorFlow

estimator = TensorFlow(
 entry_point='tf_bert_reviews.py',
 source_dir='src',
 role=role,
 instance_count=train_instance_count,
 instance_type=train_instance_type,
 volume_size=train_volume_size,
 use_spot_instances=True,
 # Seconds to wait for spot instances to become available
 max_wait=7200,
 checkpoint_s3_uri=checkpoint_s3_uri,
 py_version='<PYTHON_VERSION>',
 framework_version='<TENSORFLOW_VERSION>',
 hyperparameters={
 'epochs': epochs,
 'learning_rate': learning_rate,
 'epsilon': epsilon,
 ...
 },
 input_mode=input_mode,
 metric_definitions=metrics_definitions,

398 | Chapter 10: Pipelines and MLOps

 rules=rules,
 debugger_hook_config=hook_config,
 max_run=7200, # number of seconds
)

from airflow.contrib.operators.sagemaker_training_operator \
 import SageMakerTrainingOperator
from sagemaker.workflow.airflow import training_config

train_config = training_config(estimator=estimator,
 inputs=training_data_s3_uri)

train_op = SageMakerTrainingOperator(
 task_id='train',
 config=train_config,
 wait_for_completion=True,
 dag=dag)

Now let’s deploy the model:

from airflow.contrib.operators.sagemaker_model_operator \
 import SageMakerModelOperator
from sagemaker.workflow.airflow import model_config

model_op = SageMakerModelOperator(
 task_id='model',
 config=model_config,
 wait_for_completion=True,
 dag=dag)

from airflow.contrib.operators.sagemaker_endpoint_operator \
 import SageMakerEndpointOperator

from sagemaker.workflow.airflow import endpoint_config

deploy_op = SageMakerEndpointOperator(
 task_id='deploy',
 config=endpoint_config,
 wait_for_completion=True,
 dag=dag)

Let’s define the pipeline:

init.set_downstream(process_op)
processing_op.set_downstream(train_op)
train_op.set_downstream(model_op)
model_op.set_downstream(deploy_op)

More Pipeline Options | 399

MLflow
MLflow is an open source project that offers experiment tracking and multiframe‐
work support including Apache Spark, but limited workflow support. While MLflow
has some nice features, it requires us to build and maintain our own Amazon EC2 or
EKS clusters. If we need a lightweight, simple way to track experiments and run sim‐
ple workflows, MLflow may be a good choice.

TensorFlow Extended
TFX is an open source collection of Python libraries used within a pipeline orchestra‐
tor such as Kubeflow Pipelines, Apache Airflow, and MLflow. At a very high level,
TFX is a collection of Python libraries that addresses every step of the machine learn‐
ing pipeline. Most used within the TensorFlow community, TFX does have limited
support for other frameworks, such as scikit-learn. If we are already using Tensor‐
Flow and looking to add some structure to our process, TFX may be a good choice
for us. However, to scale, tune, and manage TFX beyond a single node, we should
understand Apache Beam, which powers TFX’s distributed data processing. Apache
Beam has a bit of a learning curve but is pretty straightforward once you dive into it.
Figure 10-13 shows the different libraries and components of TFX.

Figure 10-13. TFX libraries and components.

Human-in-the-Loop Workflows
While AI and machine learning services make our lives easier, humans are far from
being obsolete. In fact, the concept of “human-in-the-loop” has emerged as an impor‐
tant cornerstone in many AI/ML workflows. Humans provide necessary quality
assurances before pushing sensitive or regulated models into production. We can also
leverage human intelligence by “crowdsourcing” data labeling tasks to humans.

We describe two services, Amazon A2I and SageMaker Ground Truth, that demon‐
strate how humans and AI can work successfully together. Amazon A2I enables

400 | Chapter 10: Pipelines and MLOps

machine learning practitioners to integrate human review workflows into their appli‐
cations. SageMaker Ground Truth leverages human workforces combined with an
active learning approach to create accurate training datasets.

Improving Model Accuracy with Amazon A2I
Amazon A2I is a fully managed service to develop human-in-the-loop workflows,
which include a user interface, role-based access control with IAM, and data storage
with S3. Amazon A2I is integrated with services such as Amazon Rekognition for
content moderation and Amazon Textract for form-data extraction. Figure 10-14
illustrates an Amazon A2I workflow to review model predictions from Amazon
Comprehend. We can also use Amazon A2I with Amazon SageMaker and custom
ML models.

Figure 10-14. Amazon Augmented AI workflow to review model predictions.

In this example, Amazon Comprehend receives input data in a prediction request.
We set a confidence threshold that defines when to involve the human reviewers. If
the model’s prediction meets the confidence threshold, Amazon A2I will send the
prediction result directly to the client application. In case the model is unable to make
a high-confidence prediction, Amazon A2I sends the task to human reviewers.

In our example of classifying product reviews, a low-confidence prediction could
wrongly classify negative reviews as neutral or positive reviews. Our business may be
negatively affected if we do not have an automated way to fix these low-confidence
predictions and improve our model.

We may also want to randomly audit a sample of all predictions—both low and high
confidence. This could be important for models that make critical decisions, for
example in the healthcare/medical sector. In such situations, we probably want to
have humans review and audit high-confidence predictions as well to make sure the
model performs correctly.

Human-in-the-Loop Workflows | 401

Amazon A2I consolidates the human reviewer results and sends the final prediction
response to the client application. Amazon A2I can also store the human review
results in S3, which we could use as new training data.

Amazon A2I introduces a few new terms: Worker Task Template, Flow Definition,
and Human Loop. The Worker Task Template defines the Human Task UI for the
worker. This UI displays input data and instructions for workers. The Flow Defini‐
tion defines the human review workflow. The definition contains the chosen work‐
force and provides information about how to accomplish the review task. The
Human Loop represents the actual human review workflow. Once the human loop is
triggered, Amazon A2I sends the human review tasks to the workers as specified in
the flow definition.

Let’s define some sample product reviews that we will send to Amazon Comprehend:

sample_reviews = [
 'I enjoy this product',
 'I am unhappy with this product',
 'It is okay',
 'sometimes it works'
]

We also define a prediction confidence score threshold of 70%, which works well for
our use case. If our model returns a prediction with a lower confidence score, Ama‐
zon A2I will trigger the human loop and our workforce team receives a task:

human_loops_started = []

CONFIDENCE_SCORE_THRESHOLD = 0.70

for sample_review in sample_reviews:
 # Call the Comprehend Custom model
 response = comprehend.classify_document(
 Text=sample_review,
 EndpointArn=comprehend_endpoint_arn)

 star_rating = response['Classes'][0]['Name']
 confidence_score = response['Classes'][0]['Score']

 print(f'Processing sample_review: \"{sample_review}\"')

 # Our condition for when we want to engage a human for review
 if (confidence_score < CONFIDENCE_SCORE_THRESHOLD):

 humanLoopName = str(uuid.uuid4())
 inputContent = {
 'initialValue': star_rating,
 'taskObject': sample_review
 }
 start_loop_response = a2i.start_human_loop(
 HumanLoopName=humanLoopName,

402 | Chapter 10: Pipelines and MLOps

 FlowDefinitionArn=flowDefinitionArn,
 HumanLoopInput={
 'InputContent': json.dumps(inputContent)
 }
)

 human_loops_started.append(humanLoopName)

 print(f'Confidence score of {confidence_score} for star rating of \
 {star_rating} is less than the threshold of \
 {CONFIDENCE_SCORE_THRESHOLD}')
 print(f'Confidence score of {confidence_score} for star rating of \
 {star_rating} is above threshold of \
 {CONFIDENCE_SCORE_THRESHOLD}')
 print('No human loop created. \n')

If we run this code, we will see the following responses:

Processing sample_review: "I enjoy this product"
Confidence score of 0.8727718591690063 for star rating of 3 is
 above threshold of 0.7
No human loop created.

Processing sample_review: "I am unhappy with this product"
Confidence score of 0.8727718591690063 for star rating of 3 is
 above threshold of 0.7
*** ==> Starting human loop with name: 72331439-0df9-4190-a42b-3e4048efb0a9

Processing sample_review: "It is okay"
Confidence score of 0.9679936170578003 for star rating of 4 is
 above threshold of 0.7
No human loop created.

Processing sample_review: "sometimes it works"
Confidence score of 0.6361567974090576 for star rating of 3 is
 less than the threshold of 0.7
*** ==> Starting human loop with name: e7994a4c-57bf-4578-aa27-dc5fb8c11d36

We see that two predictions didn’t meet our confidence threshold and started human
loops. When the assigned worker logs into the review system, the worker sees the
submitted review tasks.

With Augmented AI, we can choose between a public or private workforce. Public
workforces integrate with the Amazon Mechanical Turk service with hundreds of
thousands of human labelers that have been pre-screened by Amazon. We can also
use third-party, pre-screened workforce providers listed on the AWS Marketplace. Or
we create private workforces with co-workers or employees.

The instructions are “Classify Reviews into Star Ratings Between 1 (Worst) and 5
(Best).” The worker sees the input data “sometimes it works” and might classify this as
a 3-star rating. Note that we can assign a single task to more than one human
reviewer to mitigate human bias. Amazon A2I consolidates multiple responses per

Human-in-the-Loop Workflows | 403

task using weighted reviewer scores. Once all review tasks are completed, the UI
clears the task from the worker’s UI. We can use this newly labeled data in S3 to build
a continuous pipeline for training and improving our Comprehend Custom model,
as shown in Figure 10-15.

Figure 10-15. Continuous training pipeline to improve model predictions.

The more accurate our model becomes, the less reviews are sent to our workers. This
concept is also called “active learning” and is implemented in SageMaker Ground
Truth.

Active-Learning Feedback Loops with SageMaker Ground Truth
Active learning starts with a human labeling workflow and then transitions to self-
labeling after enough samples have been seen. The active learning feedback loop is
used to continuously retrain the model and improve the confidence of future label
predictions. Active learning helps to scale the data labeling process by handling the
high-confidence predictions and free up the workforce to focus on the low-
confidence predictions that require specialized human intelligence.

Amazon SageMaker Ground Truth is an Augmented AI workflow implementation
for automatic data labeling. With enough data, SageMaker Ground Truth combines
human review workflows with active learning. As the human workforce labels more
and more data, SageMaker Ground Truth proactively trains a model to join the work‐
force and perform automated labeling of new data as it arrives. If the model is not
confident, the data is sent to the human workforce for review. Figure 10-16 illustrates
the SageMaker Ground Truth workflow and transition from manual to automated
labeling.

404 | Chapter 10: Pipelines and MLOps

Figure 10-16. SageMaker Ground Truth uses active learning to augment human data
labeling.

SageMaker Ground Truth offers pre-built labeling workflows and task templates to
process images, text, and video. We can also define a custom workflow. In the follow‐
ing example, we will create an active learning pipeline for images. SageMaker Ground
Truth will actively create a new object detection model beneath the covers as it sees
more and more human labels. SageMaker Ground Truth uses this new model to auto‐
matically detect objects in the images with increasing accuracy. This allows humans
to focus on labeling images that are more difficult to classify. Figure 10-17 shows a
sample worker UI in SageMaker Ground Truth to detect and label objects in each
image.

Figure 10-17. Sample worker UI in SageMaker Ground Truth.

Human-in-the-Loop Workflows | 405

Reduce Cost and Improve Performance
Most pipeline orchestration engines support some type of step caching to avoid reex‐
ecuting steps that have not changed. This is called pipeline “step caching.” And
because pipelines typically build upon other primitives such as SageMaker Training
Jobs, we will highlight the Spot Instance cost savings for SageMaker Training Jobs
used by our SageMaker Pipeline.

Cache Pipeline Steps
In some cases, we can reuse the results of previously successful pipeline steps and
avoid running the step again. SageMaker Pipelines supports step caching by checking
for previously successful step executions for the same input artifacts and parameters.
Other orchestrators support pipeline step caching as well, including Kubeflow
Pipelines.

To enable step caching in SageMaker Pipelines, we provide a cache configuration to
each step upon creation, as shown in the following for the feature-engineering Proces
singStep. If SageMaker Pipelines detects that the raw dataset and processing parame‐
ters have not changed, SageMaker Pipelines will skip the step execution, reuse the
generated BERT embeddings, and continue with the pipeline:

from sagemaker.workflow.steps import CacheConfig

cache_config_prepare = CacheConfig(
 enable_caching=True,
 expire_after=<EXPIRE_TIME>
)

experiment_config_prepare = {
 'ExperimentName': experiment_name,
 'TrialName': trial_name,
 'TrialComponentDisplayName': 'prepare'
}

processing_step = ProcessingStep(
 name='Processing',
 code='preprocess-scikit-text-to-bert-feature-store.py',
 processor=processor,
 inputs=processing_inputs,
 outputs=processing_outputs,
 job_arguments=[...],
 experiment_config=experiment_config_prepare,
 cache_config=cache_config_prepare
)

406 | Chapter 10: Pipelines and MLOps

Use Less-Expensive Spot Instances
SageMaker Pipelines build upon SageMaker primitives like Training Jobs, which sup‐
port Spot Instances. We demonstrated how to enable Spot Instances for SageMaker
Training Jobs in Chapter 7. Remember to also enable checkpointing when training
with Spot Instances, as shown in the following when defining our estimator:

checkpoint_s3_uri = 's3://<BUCKET>/<CHECKPOINT_PREFIX>/'

estimator = TensorFlow(
 entry_point='tf_bert_reviews.py',
 source_dir='src',
 use_spot_instances=True,
 checkpoint_s3_uri=checkpoint_s3_uri,
 ...
)

training_step = TrainingStep(
 name='Train',
 estimator=estimator,
 ...
)

Summary
In this chapter, we described how effective machine learning pipelines help improve
model quality and free up human resources to focus on higher-level tasks. We identi‐
fied the key components to an effective machine learning pipeline, such as data-
quality checks upon data ingestion and model validation after model training. We
demonstrated how to orchestrate pipelines using SageMaker Pipelines and various
other options, including AWS Step Functions, Kubeflow Pipelines, Apache Airflow,
MLflow, and TFX.

We showed how to implement pipeline automation with SageMaker Pipelines. We
discussed event-based triggers such as code commits and new data arriving to S3 to
start a pipeline execution. And we learned how to set up time-based schedules and
statistical triggers to automatically run a pipeline execution. We showed how to use
human-in-the-loop workflows to automate data labeling, how to improve model
accuracy using Amazon Augmented AI, and how to implement active-learning feed‐
back loops with SageMaker Ground Truth.

With this knowledge on how to create repeatable and automated pipelines, we are
now fully equipped to move our data science projects from experimentation into pro‐
duction. We increase productivity and ensure repeatability by automating all steps in
the model development and model deployment workflow. We improve reliability by
implementing GitOps practices to enforce consistency and quality. And we achieve
auditability by keeping track of all pipeline steps and executions with SageMaker

Summary | 407

Experiments and input/output artifacts with ML Lineage Tracking. We can also
maintain high-quality models by automatically checking for changes to the statistical
properties of our datasets, models, predictions, and explanations.

In Chapter 11, we extend our analytics and machine learning to streaming data. We
will calculate real-time summary statistics, detect anomalies, and train models on
continuous streams of product review data.

408 | Chapter 10: Pipelines and MLOps

CHAPTER 11

Streaming Analytics and Machine Learning

In the previous chapters, we assumed that we have all of our data available in a cen‐
tralized static location, such as our S3-based data lake. Real-world data is continu‐
ously streaming from many different sources across the world simultaneously. We
need to perform machine learning on streams of data for use cases such as fraud pre‐
vention and anomaly detection where the latency of batch processing is not accepta‐
ble. We may also want to run continuous analytics on real-time data streams to gain
competitive advantage and shorten the time to business insights.

In this chapter, we move from our customer reviews training dataset into a real-world
scenario. We will focus on analyzing a continuous stream of product review messages
that we collect from all available online channels. Customer-product feedback
appears everywhere, including social media channels, partner websites, and customer
support systems. We need to capture this valuable customer sentiment about our
products as quickly as possible to spot trends and react fast.

With streaming analytics and machine learning, we are able to analyze continuous
data streams such as application logs, social media feeds, ecommerce transactions,
customer support tickets, and product reviews. For example, we may want to detect
quality issues by analyzing real-time product reviews.

In a first step, we will analyze the sentiment of the customer, so we can identify which
customers might need high-priority attention. Next, we will run continuous stream‐
ing analytics over the incoming review messages to capture the average sentiment per
product category. We will visualize the continuous average sentiment in a metrics
dashboard for the line of business (LOB) owners. The LOB owners can now detect
sentiment trends quickly and take action. We will also calculate an anomaly score of
the incoming messages to detect anomalies in the data schema or data values. In case
of a rising anomaly score, we will alert the application developers in charge to investi‐
gate the root cause. As a last metric, we will also calculate a continuous approximate

409

count of the received messages. This number of online messages could be used by the
digital marketing team to measure effectiveness of social media campaigns.

This chapter provides examples of both descriptive analytics (summary statistics) and
predictive analytics using the BERT-based SageMaker models that we trained, tuned,
and deployed in the previous chapters.

Online Learning Versus Offline Learning
In Chapter 9, we demonstrated how to perform near-real-time “online learning” by
continuously training a reinforcement-learning model using real-time reward data
from an example customer review application. Online, or incremental, machine
learning is a small subset of machine learning and somewhat difficult to adapt to clas‐
sical offline algorithms to effectively train online. With online learning, new data is
incorporated into the model without requiring a complete retrain with the full
dataset.

In general, linear algorithms such as linear regression, logistic regression, and
K-Means Clustering are a bit easier to train with real-time data because of the rela‐
tively simple mathematics behind them. Scikit-learn supports incremental learning
using the partial_fit() functions on certain linear algorithms. Apache Spark sup‐
ports streaming versions of linear regression and K-Means Clustering.

Deep learning algorithms are also capable of online learning as well, since they con‐
tinuously make small adjustments to the learned weights using mini-batches of new
data. In fact, any time we train a deep learning model from an existing model check‐
point or pre-trained model (versus random initial weights), we are essentially per‐
forming online, incremental training—albeit relatively slowly as the data is usually
presented to the algorithm from disk and not from a stream.

Streaming Applications
Streaming application data is not like traditional application data typically handled by
REST APIs and relational databases. The 3 Vs that characterize big data also apply to
streaming data: volume, velocity, and variety. The data, typically small and potentially
with a different structure, comes in large quantities—and much more quickly than
typical application data. The overhead of REST APIs and referential integrity of rela‐
tional databases usually can’t keep up with the performance requirements of high-
volume and high-velocity streaming applications that may consume semistructured
or unstructured data.

Distributed streaming systems such as Apache Kafka and Amazon Kinesis require
multiple instances to communicate across a network to scale and share the load of
processing high-volume and high-velocity streams. Since multiple instances are

410 | Chapter 11: Streaming Analytics and Machine Learning

required to communicate across a network, the instances can sometimes process the
data at different paces based on network stalls, hardware failures, and other unexpec‐
ted conditions. As such, distributed streaming systems cannot guarantee that data
will be consumed from the stream in the same order that it was placed onto the
stream—often called “total order.”

Streaming applications need to adjust for this lack of total order guarantee and main‐
tain their own concept of order. While we don’t cover total-order guarantee in great
detail in this chapter, it is something to consider when building streaming applica‐
tions. Some distributed streaming systems allow us to enable total order, but total
order will negatively impact performance and may negate the benefits of building a
streaming application.

Streaming technologies provide us with the tools to collect, process, and analyze data
streams in real time. AWS offers a wide range of streaming-technology options,
including Amazon MSK and the Kinesis services. With Kinesis Data Firehose, we can
prepare and load the data continuously to a destination of our choice. With Kinesis
Data Analytics, we can process and analyze the data as it arrives using SQL or Apache
Flink applications. Apache Flink, written in Scala and Java, provides advanced
streaming-analytics features, including checkpoints for reduced downtime and paral‐
lel executions for increased performance.

With Kinesis Data Streams, we can manage the ingest of data streams for custom
applications. And with Kinesis Video Streams, we can capture and store video
streams for analytics. AWS Glue Data Catalog helps us define and enforce the schema
of structured-streaming data. We can use a self-describing file format like Apache
Avro with AWS Glue Data Catalog, Kafka, and Kinesis to maintain structured data
throughout our streaming applications.

Windowed Queries on Streaming Data
Descriptive streaming analytics is usually bound by windows to process—either by
time or by number of input records. For example, we can specify a 30-second window
or 1,000 input records.

If we implement a time-based window, our input records need to contain a time‐
stamp column. Kinesis Data Analytics automatically adds a timestamp column called
ROWTIME that we can use in our SQL queries to define time-based windows.

Kinesis Data Analytics supports three different types of windows: Stagger Windows,
Tumbling Windows, and Sliding Windows. Later, we will use windowed queries to
implement our streaming analytics and machine learning use cases with streaming
product-review data.

Windowed Queries on Streaming Data | 411

Stagger Windows
Stagger windows are time-based windows that open as new data arrives and are the
recommended way to aggregate data since they reduce late or out-of-order data.
Hence, stagger windows are a great choice if we need to analyze groups of data that
arrive at inconsistent times but should be aggregated together. We specify a partition
key to identify which records belong together. The stagger window will open when
the first event matching the partition key arrives. To close the window, we specify a
window age, which is measured from the time the window opened. We define a stag‐
ger window with the Kinesis-specific SQL clause WINDOWED BY. The stagger window
takes partition keys and window length as parameters:

...
FROM <stream-name>
WHERE <... optional statements...>
WINDOWED BY STAGGER(
 PARTITION BY <partition key(s)>
 RANGE INTERVAL '1' MINUTE
);

The partition key could be the time our product review message appeared, together
with the product category:

PARTITION BY FLOOR(message_time TO MINUTE), product_category

The resulting stagger window is shown in Figure 11-1.

Figure 11-1. Stagger windows.

412 | Chapter 11: Streaming Analytics and Machine Learning

In this example, we see four data records arriving:

ROWTIME message_time product_category
11:00:20 11:00:10 BOOKS
11:00:30 11:00:20 BOOKS
11:01:05 11:00:55 BOOKS
11:01:15 11:01:05 BOOKS

Let’s assume we are calculating a count over the data records per product category in
our SQL query. The one-minute stagger window would aggregate the records like
this:

ROWTIME message_time product_category count
11:01:20 11:00:00 BOOKS 3
11:02:15 11:01:00 BOOKS 1

Our stagger window is grouping on a one-minute interval. The window opens when
we receive the first message for each product category. In the case of BOOKS, this is
happening at a ROWTIME of 11:00:20. The one-minute window expires at 11:01:20.
When this happens, one record is emitted with the results that fall into this one-
minute window (based on ROWTIME and message_time). The count in this example
would be 3. The fourth data record has a message_time outside of the one-minute
window and is aggregated separately. This happens because message_time is specified
in the partition key. For example, the partition key for message_time in the first win‐
dow is 11:00.

Tumbling Windows
Tumbling windows process the streaming data records in nonoverlapping windows
and are best suited for distinct time-based windows that open and close at regular
intervals. Here, each data record belongs to a specific window and is only processed
once, as shown in Figure 11-2.

Aggregation queries using the GROUP BY SQL clause process rows in a tumbling
window:

SELECT ...
FROM <stream-name>
GROUP BY <column>,
 STEP(<stream-name>.ROWTIME BY INTERVAL '60' SECOND);

Windowed Queries on Streaming Data | 413

Figure 11-2. Tumbling windows.

In this example, the tumbling window is a time-based, one-minute window. We
group the records by ROWTIME. The STEP function rounds down the ROWTIME to the
nearest minute. Note that STEP can round values down to an arbitrary interval,
whereas the FLOOR function can only round time values down to a whole-time unit,
such as an hour, minute, or second.

Sliding Windows
Sliding windows aggregate data continuously using a fixed interval and fixed size.
They continuously slide with time. We can create sliding windows with an explicit
WINDOW clause instead of a GROUP BY clause and the interval can be time based or row
based. Sliding windows can overlap, and a data record can be part of multiple win‐
dows. If a data record is part of multiple windows, the records get processed in each
window, as shown in Figure 11-3.

Figure 11-3. Sliding windows.

414 | Chapter 11: Streaming Analytics and Machine Learning

The following example creates a one-minute sliding window:

SELECT ...
FROM <stream-name>
WINDOW W1 AS (
 PARTITION BY <column>
 RANGE INTERVAL '1' MINUTE PRECEDING);

We can also define sliding windows based on number of rows:

SELECT ...
FROM <stream-name>
WINDOW
 last2rows AS (PARTITION BY <column> ROWS 2 PRECEDING),
 last10rows AS (PARTITION BY <column> ROWS 10 PRECEDING);

In this example, we create a 2-row sliding window and a 10-row sliding window. The
2-row sliding window will overlap the 10-row sliding window. Such a scenario is use‐
ful if we calculate average metrics over different-sized record batches.

Now that we have a better understanding of how to work with windowed queries, let’s
implement our online product reviews example using AWS.

Streaming Analytics and Machine Learning on AWS
We will use the Kinesis services to implement our online product reviews example.
For simplicity, let’s assume the streaming team already parsed the social media feed
messages and attached a unique review ID and the relevant product category to each
message.

We begin with the ingest of those messages. We set up a Kinesis Data Firehose deliv‐
ery stream, which receives the messages and continuously delivers them to an S3
location, as shown in the Ingest and Store Messages column in Figure 11-4.

We also want to enrich the messages with the customer sentiment. We can leverage
our fine-tuned BERT-based model from the previous chapters to classify the mes‐
sages into star ratings, as shown in the Detect Customer Sentiment column of
Figure 11-4. The star rating will act as a proxy metric for sentiment. We can map a
predicted star rating of 4 to 5 to a positive sentiment, the star rating of 3 to a neutral
sentiment, and a star rating of 1 to 2 to a negative sentiment.

Streaming Analytics and Machine Learning on AWS | 415

Figure 11-4. Streaming data architecture for online product review messages.

Next, we want to analyze our messages. We set up Kinesis Data Analytics to process
our sentiment-enriched messages, as shown in the Analyze and Calculate Metrics col‐
umn in Figure 11-4. Kinesis Data Analytics enables us to run SQL queries on stream‐
ing data. Kinesis Data Analytics SQL is based on the ANSI 2008 SQL standard with
extensions to process streaming data.

We define a SQL query that continuously calculates the average star rating to reflect
the change in sentiment and push the results to a real-time metrics dashboard, as
shown in the Visualize and Consume Metrics column in Figure 11-4. We define
another SQL query that continuously calculates an anomaly score based on the mes‐
sage data to catch any unexpected schema or data values. For example, we suddenly
receive a star rating of 100, which doesn’t exist. The application parsing the messages
must have an error. In that case, we want to notify the team in charge to investigate
the possible root cause and fix the issue. In a third SQL query, we continuously calcu‐
late an approximate count of messages that could be consumed by an application
from the digital marketing team to evaluate and steer social media campaigns.

The SQL queries run continuously over our data stream of incoming product review
messages. We can define mini-batches of streaming data records via time-based or
row-based windows. We can limit our SQL query to just those mini-batches (win‐
dows) of streaming data records when calculating averages and approximate counts
for each batch. This type of SQL query is called a windowed query.

416 | Chapter 11: Streaming Analytics and Machine Learning

Classify Real-Time Product Reviews with Amazon Kinesis,
AWS Lambda, and Amazon SageMaker
We set up a Kinesis Data Firehose delivery stream to receive and transform the real-
time messages from our customers, as shown in Figure 11-5.

Figure 11-5. Receive and transform data records with Kinesis Data Firehose.

1. We receive the real-time input data and predict the star rating to derive the cus‐
tomer sentiment. The sentiment can be used to quickly identify customers who
might need our high-priority attention.

2. Kinesis Firehose allows us to transform our data records with the help of a
Lambda function. We build a Lambda function that receives the Firehose data
records and sends the review message to a SageMaker Endpoint that hosts our
fine-tuned BERT-based model.

3. The model predicts the star_rating, which our Lambda function adds to the
original data record; the function then returns the new record back to our Fire‐
hose delivery stream.

4. The Firehose delivery stream then delivers the transformed data records to an S3
bucket we specify. Kinesis Firehose also allows us to keep a backup of the original
data records. We can deliver those backup data records to another S3 bucket.

Classify Real-Time Product Reviews with Amazon Kinesis, AWS Lambda, and Amazon SageMaker | 417

Implement Streaming Data Ingest Using Amazon
Kinesis Data Firehose
Kinesis Data Firehose is a fully managed service for delivering real-time streaming
data to destinations such as Amazon S3, Redshift, Elasticsearch, or any custom HTTP
endpoint.

As a data source, we can select DirectPut or a Kinesis Data Stream. With DirectPut
we can send data directly to the delivery stream or retrieve data from AWS IoT,
CloudWatch Logs, or CloudWatch Events. We will choose DirectPut in our example.

Create Lambda Function to Invoke SageMaker Endpoint
Before we create our Kinesis Firehose delivery stream, we need to create the Lambda
function to invoke our SageMaker Endpoint. Lambda functions help scale our
Python code by providing a simple mechanism to dynamically increase or decrease
the number of Python-based Lambda functions—each running its own Python inter‐
preter—as the streaming load increases or decreases. This is similar in concept to
scaling Python on a single instance by adding more processes and interpreters run‐
ning on the instance. This auto-scaling feature of Lambda functions is similar to the
auto-scaling feature of SageMaker Endpoints that we presented in Chapter 9.

We create a Lambda function that receives data records from the Kinesis Firehose
delivery stream. In addition to Kinesis metadata such as the recordID, each data
record consists of the review_id, the product_category, and the actual
review_body. We parse the review_body and send it to the specified SageMaker End‐
point. We receive the prediction result, add it to our data record, and return the
modified data record with the original recordID to Kinesis Data Firehose.

Following is an excerpt from the Python code for our Lambda function that invokes
the SageMaker Endpoint as new data is pushed to the Kinesis Stream:

ENDPOINT_NAME = os.environ['ENDPOINT_NAME']
runtime = boto3.client('runtime.sagemaker')

def lambda_handler(event, context):
outputs = []

for record in event['records']:
 ...
 inputs = [
 {"features": [review_body]}
]

 response = runtime.invoke_endpoint(
 EndpointName=ENDPOINT_NAME,
 ContentType='application/jsonlines',

418 | Chapter 11: Streaming Analytics and Machine Learning

 Accept='application/jsonlines',
 Body=json.dumps(inputs).encode('utf-8')
)
 ...

 output_record = {
 'recordId': record['recordId'],
 'result': 'Ok',
 'data': ...
 }
 outputs.append(output_record)

 return {'records': outputs}

We can create the Lambda function directly in the AWS Console or programmatically
using the Python SDK as follows:

lam = boto3.Session().client(service_name='lambda',
 region_name=region)

response = lam.create_function(
 FunctionName=<FUNCTION_NAME>,
 Runtime='<PYTHON_VERSION>',
 Role=<IAM_ROLE>
 Handler='<FUNCTION_NAME>.lambda_handler',
 Code={
 'ZipFile': code
 },
 Description='InvokeQuery SageMaker Endpoint.',
 Timeout=300,
 MemorySize=128,
 Publish=True
)

We can update the Lambda function with an environment variable referencing the
SageMaker model endpoint to invoke:

response = lam.update_function_configuration(
 FunctionName=<FUNCTION_NAME>,
 Environment={
 'Variables': {
 'ENDPOINT_NAME': <ENDPOINT_NAME>
 }
 }
)

We can now create our Kinesis Data Firehose Delivery Stream.

Create the Kinesis Data Firehose Delivery Stream
We configure the delivery stream type as DirectPut so that we can put our product
reviews directly on the stream. Also, to store the streaming data records, we define

Implement Streaming Data Ingest Using Amazon Kinesis Data Firehose | 419

the ExtendedS3DestinationConfiguration pointing to the S3 bucket. We add the
Lambda function, which calls the SageMaker Endpoint and adds the predicted star
rating to our data in ProcessingConfiguration. We specify another S3 bucket in
S3BackupConfiguration to back up the original product reviews (before
transformation).

Here is the code to programmatically create the Kinesis Data Firehose delivery stream
with all the above-mentioned configurations:

firehose = boto3.Session().client(service_name='firehose', region_name=region)

response = firehose.create_delivery_stream(
 DeliveryStreamName=<FIREHOSE_NAME>,
 DeliveryStreamType='DirectPut',
 ExtendedS3DestinationConfiguration={
 'RoleARN': <KINESIS_ROLE_ARN>,
 'BucketARN': <S3_BUCKET_ARN>,
 'Prefix': 'kinesis-data-firehose/',
 ...
 'ProcessingConfiguration': {
 'Enabled': True,
 'Processors': [{
 'Type': 'Lambda',
 'Parameters': [
 {
 'ParameterName': 'LambdaArn',
 'ParameterValue': '<LAMBDA_ARN>:$LATEST'
 },
 ...
]
 }]
 },
 'S3BackupMode': 'Enabled',
 'S3BackupConfiguration': {
 'RoleARN': <KINESIS_ROLE_ARN>,
 'BucketARN': <BACKUP_S3_BUCKET_ARN>,
 'Prefix': 'kinesis-data-firehose-source-record/',
 ...
 },
 ...
 }
)

We need to wait a few seconds for the delivery stream to become active. Then, we
can put some live messages on our Kinesis Data Firehose delivery stream and see the
results.

420 | Chapter 11: Streaming Analytics and Machine Learning

Put Messages on the Stream
To simulate our continuous stream of online product review messages, we can read in
our sample customer reviews from the Amazon Customer Reviews Dataset and send
messages containing the review_id, product_category, and review_body to Kinesis
Data Firehose as follows:

import boto3
import csv
import pandas as pd

firehose = boto3.Session().client(service_name='firehose', region_name=region)

Read in sample reviews
df =
 pd.read_csv('./data/amazon_reviews_us_Digital_Software_v1_00.tsv.gz',
 delimiter='\t',
 quoting=csv.QUOTE_NONE,
 compression='gzip')

Generate 500 online messages
step = 1
for start_idx in range(0, 500, step):
 end_idx = start_idx + step

 # Create message (review_id, product_category, review_body)
 df_messages = df[['review_id',
 'product_category',
 'review_body']][start_idx:end_idx]

 reviews_tsv = df_messages.to_csv(sep='\t',
 header=None,
 index=False)

 # Put messages on Firehose
 response = firehose.put_record(
 Record={
 'Data': reviews_tsv.encode('utf-8')
 },
 DeliveryStreamName=<FIREHOSE_NAME>
)

Once the messages arrive, Firehose calls InvokeSageMakerEndpointFromKinesis, the
specified Lambda function, to transform the data. We can see the original message
format, which contains the review_id, product_category, and review_body:

['R1066MVAFC477L', 'Digital_Software', "It's good"]

Our Lambda function that parses the review_body, "It's good", sends the
review_body to the SageMaker Endpoint, receives the endpoint response, and
decodes the star_rating prediction result of 5.

Implement Streaming Data Ingest Using Amazon Kinesis Data Firehose | 421

In the last step, the Lambda function adds the star rating to the original data record
and returns it back to Kinesis Data Firehose:

R1066MVAFC477L 5 Digital_Software It's good

We can also check the specified S3 bucket destination for Kinesis Data Firehose.
Here, we should find the transformed data records:

And indeed, at s3://<bucket>/kinesis-data-firehose/<year>/<month>/<day>/<hour>
we find a file with the following (shortened) output:

...
R2EI7QLPK4LF7U 5 Digital_Software So far so good
R1W5OMFK1Q3I3O 3 Digital_Software Needs a little more work.....
RPZWSYWRP92GI 1 Digital_Software Please cancel.
R2WQWM04XHD9US 5 Digital_Software Works as Expected!
...

These are our transformed data records. We also configured Firehose to back up our
source data records. Similarly, we can check the S3 bucket we specified for the
backup:

s3://<bucket>/kinesis-data-firehose-source-record/<year>/<month>/<day>/<hour>

And we find another file with the source records similar to this:

...
R2EI7QLPK4LF7U Digital_Software So far so good
R1W5OMFK1Q3I3O Digital_Software Needs a little more work.....
RPZWSYWRP92GI Digital_Software Please cancel.
R2WQWM04XHD9US Digital_Software Works as Expected!
...

Note the missing star rating. The star rating is missing here, as this is the originally
received product review message. This data represents the product review message
before we invoked our BERT-based model (via the Lambda function) to predict and
add the star rating to the streaming data record. We keep this original data as a
backup.

This shows that the streaming data ingest and data transformation with Kinesis Data
Firehose works. Now let’s move on to the next step.

Summarize Real-Time Product Reviews with
Streaming Analytics
The first business metric we want to continuously calculate is the average sentiment
per product category. We could push the results to a real-time metrics dashboard. In
our sample implementation, we will publish the average star rating (as a proxy metric
for sentiment) to Amazon CloudWatch. The LOB owners can now detect sentiment
trends quickly and take action.

422 | Chapter 11: Streaming Analytics and Machine Learning

Another business metric we continuously calculate is an anomaly score based on the
message data to catch any unexpected schema or data values. In case of an application
error, we want to notify the team in charge to investigate the possible root cause and
fix it fast. For our implementation, we will use the Amazon Simple Notification Ser‐
vice (Amazon SNS) to send the calculated anomaly scores via email. Amazon SNS is a
fully managed service to send SMS, email, and mobile push notifications.

As a last metric, we continuously calculate an approximate count of product review
messages that can be consumed by the digital marketing team to evaluate and steer
online campaigns. For our implementation, we will deliver the approximate count as
a stream of continuous records to a Kinesis Data Stream. The digital marketing team
could develop a custom application that reads the data records off the Kinesis Data
Stream and processes the records as needed.

Figure 11-6 shows our evolved streaming data use case implementation.

Figure 11-6. Analyze a continuous stream of product review messages with Kinesis Data
Analytics.

Summarize Real-Time Product Reviews with Streaming Analytics | 423

Setting Up Amazon Kinesis Data Analytics
We will set up a Kinesis Data Analytics application to analyze our product review
messages. Kinesis Data Analytics enables us to run SQL queries on streaming data.

We will use the Kinesis Data Firehose delivery stream as an input source for the Kine‐
sis Data Analytics application. We will then develop a Kinesis Data Analytics applica‐
tion to execute SQL queries to calculate the average sentiment of the incoming
messages, the anomaly score, and the approximate count.

Similar to Kinesis Data Firehose, we have the option to preprocess the incoming
streaming data. We will reuse our existing Lambda function to invoke the SageMaker
Endpoint and receive the star rating for our incoming messages. The star rating will
act again as our proxy metric for sentiment.

Why not reuse the transformed data records from Kinesis Firehose
that already contain the star rating? Those transformed records get
delivered straight to the S3 destination bucket. We only receive the
source data records from the Firehose delivery stream in Kinesis
Data Analytics.

Kinesis Data Analytics supports various destinations to send the analytics results to.
We will set up two Lambda functions and an Kinesis Data Stream as destinations. We
can leverage the Lambda functions to integrate with Amazon CloudWatch and Ama‐
zon SNS. Let’s implement the needed components for this architecture, starting with
the destinations.

Create a Kinesis Data Stream to Deliver Data to a Custom Application
Kinesis Data Streams are used to ingest large amounts of data in real time, store the
data, and make the data available to consumer applications. The unit of data stored by
Kinesis Data Streams is a data record. A data stream represents a group of data
records. The data records in a data stream are distributed into shards. A shard has a
sequence of data records in a stream. When we create a stream, we specify the num‐
ber of shards for the stream. The total capacity of a stream is the sum of the capacities
of its shards. We can increase or decrease the number of shards in a stream as needed.

In the context of streaming data, we often speak of producers and consumers. A pro‐
ducer is an application or service that generates data. A consumer is an application or
service that receives the streaming data for further processing. Figure 11-7 shows the
high-level architecture of a Kinesis Data Stream.

424 | Chapter 11: Streaming Analytics and Machine Learning

Figure 11-7. The Kinesis Data Stream architecture consists of data producers and con‐
sumers with data records distributed into shards.

Note that data is only stored temporarily in Kinesis Data Streams. The default data
retention period for a Kinesis Data Stream is currently limited to 24 hours. However,
we can increase the data retention period for long-term retention of up to one year. A
longer retention period can help address compliance requirements without the need
to move the data to longer-term storage like S3. The higher retention time helps in
back-pressure scenarios as well, where the consumers cannot keep up with the pro‐
ducers during an unexpected increase in data pushed to the stream. In this case,
Kinesis stores the streaming data until the consumers scale out to handle the spike—
or the volume of data decreases and the consumers can catch up. A longer retention
period also allows us to train models more quickly with online data directly from
Kinesis—or combine the online Kinesis data with offline data in S3.

In our example, the Kinesis Data Stream will receive the results from our approxi‐
mate count of messages, hence the producer is the Kinesis Data Analytics application.
The consumer could be any custom application. In our example, we suggested an
application from the digital marketing team. Figure 11-8 highlights the current step
in our architecture that we are about to implement.

Setting Up Amazon Kinesis Data Analytics | 425

Figure 11-8. A Kinesis Data Stream is used as the Kinesis Data Analytics destination for
the approximate count.

Here’s the code to create the Kinesis Data Stream:

kinesis = boto3.Session().client(service_name='kinesis',
 region_name=region)

kinesis.create_stream(
 StreamName=<STREAM_NAME>,
 ShardCount=<SHARD_COUNT>
)

We need to wait a few minutes for the Kinesis Data Stream to become active.

We can programmatically check for the status of the stream and wait for the stream to
become active with the following code:

import time

status = ''
while status != 'ACTIVE':
 r = kinesis.describe_stream(StreamName=<STREAM_NAME>)
 description = r.get('StreamDescription')
 status = description.get('StreamStatus')
 time.sleep(5)

Next, let’s create an Lambda function that acts as the Kinesis Data Analytics destina‐
tion for our anomaly score.

Create AWS Lambda Function to Send Notifications via Amazon SNS
In our Kinesis Data Analytics application, we will calculate an anomaly score for the
data. In case the anomaly score rises, we want to notify the application developers to
investigate and fix the issue. To send out notifications, we leverage Amazon SNS. We

426 | Chapter 11: Streaming Analytics and Machine Learning

will send an email to the team in charge with the latest anomaly score calculated
across our incoming messages.

As Amazon SNS is not directly supported as a Kinesis Data Analytics destination, we
create another Lambda function as a proxy destination. Figure 11-9 highlights the
step in our architecture that we are about to implement.

Figure 11-9. An Lambda function is used as the Kinesis Data Analytics destination for
the anomaly score.

Here is the code to create our Amazon SNS topic:

import boto3

sns = boto3.Session().client(service_name='sns', region_name=region)

response = sns.create_topic(
 Name=<SNS_TOPIC_NAME>,
)

sns_topic_arn = response['TopicArn']

Following is an excerpt from our Lambda function code, push_notification_to_sns.py,
which records the highest anomaly score from the batch of input records and pub‐
lishes the score to an Amazon SNS topic:

import boto3
import base64
import os

SNS_TOPIC_ARN = os.environ['SNS_TOPIC_ARN']
sns = boto3.client('sns')

def lambda_handler(event, context):
 output = []
 highest_score = 0
 ...

Setting Up Amazon Kinesis Data Analytics | 427

 r = event['records']

 for record in event['records']:
 try:
 payload = base64.b64decode(record['data'])
 text = payload.decode("utf-8")
 score = float(text)
 if (score != 0) and (score > highest_score):
 highest_score = score
 output.append({'recordId': record['recordId'], \
 'result': 'Ok'})
 ...

 if (highest_score != 0):
 sns.publish(TopicArn=SNS_TOPIC_ARN, \
 Message='New anomaly score: {}'\
 .format(str(highest_score)), \
 Subject='New Reviews Anomaly Score Detected')

 return {'records': output}

Similar to the previous Lambda function, we can create this Lambda function pro‐
grammatically and update the function with an environment variable set to our Ama‐
zon SNS Topic ARN.

We can subscribe to the Amazon SNS topic to receive the Amazon SNS notifications
as follows:

response = sns.subscribe(
 TopicArn=sns_topic_arn,
 Protocol='email',
 Endpoint='<EMAIL_ADDRESS>',
)

We have one more Lambda function to implement.

Create AWS Lambda Function to Publish Metrics to
Amazon CloudWatch
In our Kinesis Data Analytics application, we will also calculate the average sentiment
over windows of streaming messages. We want to publish the average sentiment
results as a custom metric to CloudWatch. Again, we will use the star rating as our
proxy metric for sentiment. As CloudWatch is not directly supported as a Kinesis
Data Analytics destination, we need another Lambda function as a proxy destination.
Figure 11-10 highlights the step in our architecture that we are about to implement.

428 | Chapter 11: Streaming Analytics and Machine Learning

Figure 11-10. An Lambda function is used as the Kinesis Data Analytics destination for
average star rating.

Following is an excerpt from our Lambda function code, deliver_metrics_to_cloud‐
watch.py, to publish the average star rating as a custom metric to CloudWatch:

client = boto3.client('cloudwatch')

def lambda_handler(event, context):
 output = []
 ...

 for record in event['records']:
 payload = base64.b64decode(record['data'])
 datapoint = float(payload)

 client.put_metric_data(
 Namespace='kinesis/analytics/AVGStarRating',
 MetricData=[
 {
 'MetricName': 'AVGStarRating',
 'Dimensions': [
 {
 'Name': 'Product Category',
 'Value': 'All'
 },
],
 'Value': datapoint,
 'StorageResolution': 1
 }
]
)

Setting Up Amazon Kinesis Data Analytics | 429

 output.append({'recordId': record['recordId'], 'result': 'Ok'})
 ...

 return {'records': output}

After we create the Lambda function, we have all Kinesis Data Analytics application
destinations in place and can now create the Kinesis Data Analytics application.

Transform Streaming Data in Kinesis Data Analytics
Similar to the data transformation feature in Kinesis Data Firehose, we can transform
the incoming streaming data in Kinesis Data Analytics. We can use an Lambda func‐
tion to transform, convert, enrich, or filter our streaming data. This step is executed
before the Data Analytics application creates a schema for the data stream. In our
example, we will reuse the Lambda function we created for the Kinesis Data Firehose
data transformation. We will use the function to enrich our messages again with the
star rating. Figure 11-11 visualizes the details of this step.

Figure 11-11. Preprocess streaming data in Kinesis Data Analytics.

The workflow looks as follows:

1. We receive the product review messages on the Kinesis Data Firehose delivery
stream, which delivers the records to S3.

430 | Chapter 11: Streaming Analytics and Machine Learning

2. We set up the Kinesis Data Analytics application with the Firehose delivery
stream as the input stream. The application receives the product review messages
from the Firehose delivery stream and sends them to a Lambda function for pre‐
processing.

3. We are reusing the Lambda function InvokeSageMakerEndpointFromKinesis,
which invokes the BERT-based model hosted on a SageMaker Endpoint to pre‐
dict the star rating based on the review text in our product review message.

4. The Lambda function receives the predicted star rating from our model and
attaches it to the product review message.

5. The Lambda function returns the product review message enriched with the star
rating to the Kinesis Data Analytics application. The enriched product review
messages are now used as the input for all subsequent SQL queries.

As we already have the Lambda function in place, we can continue to develop the
SQL queries for our application.

Understand In-Application Streams and Pumps
An important concept in Kinesis Data Analytics applications is in-application
streams and pumps. In our example, we will use the Firehose delivery stream as an
input to our Data Analytics application. This input stream needs to be mapped to an
in-application stream in the Data Analytics application. Once the mapping is done,
the data continuously flows from the input stream into the in-application stream. We
can think of the in-application stream as a table that we can then query using SQL
statements. As we are not really dealing with a table, but with a continuous data flow,
we call it a stream.

Note that Kinesis Data Analytics in-application streams only exist within the analyt‐
ics application. They store the intermediate results of our SQL query. If we want to
process the results outside of the application, we need to map the in-application
stream to a supported Kinesis Data Analytics destination. Therefore, we set up three
different destinations to capture the results of our in-application streams.

Here is an example for how to create an in-application stream (MY_STREAM) with three
columns:

CREATE OR REPLACE STREAM "MY_STREAM" (
 "column1" BIGINT NOT NULL,
 "column2" INTEGER,
 "column3" VARCHAR(64));

To insert data into this stream, we need a pump. Think of a pump as a continuously
running insert query that inserts data from one in-application stream into another in-
application stream.

Setting Up Amazon Kinesis Data Analytics | 431

Here’s an example that creates a pump (MY_PUMP) and inserts data into MY_STREAM by
selecting data records from another INPUT_STREAM:

CREATE OR REPLACE PUMP "MY_PUMP" AS
INSERT INTO "MY_STREAM" ("column1",
 "column2",
 "column3")
SELECT STREAM inputcolumn1,
 inputcolumn2,
 inputcolumn3
FROM "INPUT_STREAM";

Let’s assume that the input stream (our Firehose delivery stream) in our Data Analyt‐
ics application is called SOURCE_SQL_STREAM_001.

Amazon Kinesis Data Analytics Applications
Let’s create three in-application streams to calculate the average star_rating, anom‐
aly score, and approximate count of messages.

Calculate Average Star Rating
Our first in-application stream is called AVG_STAR_RATING_SQL_STREAM. We calculate
the average star rating over a five-second tumbling window of received messages
using the GROUP BY statement, which specifies INTERVAL ‘5’.

Here is the SQL code to implement this:

CREATE OR REPLACE STREAM "AVG_STAR_RATING_SQL_STREAM" (
 avg_star_rating DOUBLE);

CREATE OR REPLACE PUMP "AVG_STAR_RATING_SQL_STREAM_PUMP" AS
INSERT INTO "AVG_STAR_RATING_SQL_STREAM"
SELECT STREAM AVG(CAST("star_rating" AS DOUBLE)) AS avg_star_rating
FROM "SOURCE_SQL_STREAM_001"
GROUP BY
STEP("SOURCE_SQL_STREAM_001".ROWTIME BY INTERVAL '5' SECOND);

Detect Anomalies in Streaming Data
The second in-application stream is called ANOMALY_SCORE_SQL_STREAM. We leverage
a built-in RANDOM_CUT_FOREST implementation to calculate an anomaly score across a
sliding window of messages.

The random cut forest (RCF) implementation in Kinesis Data Analytics is based on
the “Robust Random Cut Forest Based Anomaly Detection on Streams” research
paper, coauthored by AWS. The paper details using RCF for online learning with
real-time data streams. However, AWS offers RCF for offline batch training using a
built-in SageMaker algorithm. RCF is also used for anomaly detection in QuickSight.

432 | Chapter 11: Streaming Analytics and Machine Learning

https://oreil.ly/0pDkv
https://oreil.ly/0pDkv

The RANDOM_CUT_FOREST function in Kinesis Data Analytics builds a machine learn‐
ing model to calculate an anomaly score for numeric values in each message. The
score indicates how different the value is compared to the observed trend. The func‐
tion also calculates an attribution score for each column, which reflects how anoma‐
lous the data in that particular column is. The sum of all attribution scores of all
columns is the overall anomaly score.

As RANDOM_CUT_FOREST works on numeric values, we will calculate the anomaly score
based on the star rating. The only required parameter for the RANDOM_CUT_FOREST
function is a pointer to our input stream, which we define with the CURSOR function.
Here is the SQL code to implement this:

CREATE OR REPLACE STREAM "ANOMALY_SCORE_SQL_STREAM" (
 anomaly_score DOUBLE);

CREATE OR REPLACE PUMP "ANOMALY_SCORE_STREAM_PUMP" AS
INSERT INTO "ANOMALY_SCORE_SQL_STREAM"
SELECT STREAM anomaly_score
FROM TABLE(RANDOM_CUT_FOREST(
 CURSOR(SELECT STREAM "star_rating"
 FROM "SOURCE_SQL_STREAM_001")
)
);

Calculate Approximate Counts of Streaming Data
The third in-application stream is called APPROXIMATE_COUNT_SQL_STREAM. We calcu‐
late an approximate count over a five-second tumbling window of incoming mes‐
sages. Kinesis Data Analytics has a built-in function to calculate an approximate
count using COUNT_DISTINCT_ITEMS_TUMBLING, with the tumbling window size set to
five seconds. The function uses the HyperLogLog algorithm, which stores a large
number of approximate counts in a small data structure.

The following SQL code implements the approximate count of distinct items of the
review_id column over a five-second tumbling window:

CREATE OR REPLACE STREAM "APPROXIMATE_COUNT_SQL_STREAM"(
number_of_distinct_items BIGINT);

CREATE OR REPLACE PUMP "APPROXIMATE_COUNT_STREAM_PUMP" AS
INSERT INTO "APPROXIMATE_COUNT_SQL_STREAM"
SELECT STREAM number_of_distinct_items
FROM TABLE(COUNT_DISTINCT_ITEMS_TUMBLING(
CURSOR(SELECT STREAM "review_id" FROM "SOURCE_SQL_STREAM_001"),'review_id', 5)
);

Amazon Kinesis Data Analytics Applications | 433

Create Kinesis Data Analytics Application
We are now fully equipped to create our Kinesis Data Analytics application, so let’s
first create a combined SQL statement that contains our three SQL queries to calcu‐
late the average star rating, detect anomalies, and calculate the approximate count of
streaming data over a given window size. We pass this combined SQL query as the
ApplicationCode when we create the application. Here is the code:

in_app_stream_name = 'SOURCE_SQL_STREAM_001' # Firehose input stream
window_seconds = 5

sql_code = '''
 CREATE OR REPLACE STREAM "AVG_STAR_RATING_SQL_STREAM" (
 avg_star_rating DOUBLE);
 CREATE OR REPLACE PUMP "AVG_STAR_RATING_SQL_STREAM_PUMP" AS
 INSERT INTO "AVG_STAR_RATING_SQL_STREAM"
 SELECT STREAM AVG(CAST("star_rating" AS DOUBLE))
AS avg_star_rating
 FROM "{}"
 GROUP BY
 STEP("{}".ROWTIME BY INTERVAL '{}' SECOND);

 CREATE OR REPLACE STREAM "ANOMALY_SCORE_SQL_STREAM"
(anomaly_score DOUBLE);
 CREATE OR REPLACE PUMP "ANOMALY_SCORE_STREAM_PUMP" AS
 INSERT INTO "ANOMALY_SCORE_SQL_STREAM"
 SELECT STREAM anomaly_score
 FROM TABLE(RANDOM_CUT_FOREST(
 CURSOR(SELECT STREAM "star_rating"
 FROM "{}"
)
)
);

 CREATE OR REPLACE STREAM "APPROXIMATE_COUNT_SQL_STREAM"
(number_of_distinct_items BIGINT);
 CREATE OR REPLACE PUMP "APPROXIMATE_COUNT_STREAM_PUMP" AS
 INSERT INTO "APPROXIMATE_COUNT_SQL_STREAM"
 SELECT STREAM number_of_distinct_items
 FROM TABLE(COUNT_DISTINCT_ITEMS_TUMBLING(
 CURSOR(SELECT STREAM "review_id" FROM "{}"),
 'review_id',
 {}
)
);
 '''.format(in_app_stream_name,
 in_app_stream_name,
 window_seconds,
 in_app_stream_name,
 in_app_stream_name,
 window_seconds)

434 | Chapter 11: Streaming Analytics and Machine Learning

Next, let’s create the Kinesis Data Analytics application. We set the application input
to our Firehose delivery stream and configure the InputProcessingConfiguration
to call our Lambda function invoking the BERT-based model. We then define the
InputSchema to match our enriched product review messages with review_id,
star_rating, product_category, and review_body.

For the application outputs, we reference the in-application stream names of our
three SQL queries and define the destinations. We set the destinations
AVG_STAR_RATING_SQL_STREAM and ANOMALY_SCORE_SQL_STREAM to the correspond‐
ing Lambda functions. We connect the APPROXIMATE_COUNT_SQL_STREAM to the Kine‐
sis Data Stream destination. Here is the code that creates the Kinesis Data Application
and references the sql_code defined earlier:

kinesis_analytics = \
 boto3.Session().client(service_name='kinesisanalytics',
 region_name=region)

response = kinesis_analytics.create_application(
 ApplicationName=kinesis_data_analytics_app_name,
 Inputs=[
 {
 'NamePrefix': 'SOURCE_SQL_STREAM',
 'KinesisFirehoseInput': {
 ...
 },
 'InputProcessingConfiguration': {
 'InputLambdaProcessor': {
 ...
 }
 },
 'InputSchema': {
 'RecordFormat': {
 'RecordFormatType': 'CSV',
 'MappingParameters': {
 'CSVMappingParameters': {
 'RecordRowDelimiter': '\n',
 'RecordColumnDelimiter': '\t'
 }
 }
 },
 'RecordColumns': [
 {
 'Name': 'review_id',
 ...
 },
 {
 'Name': 'star_rating',
 ...
 },
 {

Amazon Kinesis Data Analytics Applications | 435

 'Name': 'product_category',
 ...
 },
 {
 'Name': 'review_body',
 ...
 }
]
 }
 },
],
 Outputs=[
 {
 'Name': 'AVG_STAR_RATING_SQL_STREAM',
 'LambdaOutput': {
 ...
 },
 'DestinationSchema': {
 'RecordFormatType': 'CSV'
 }
 },
 {
 'Name': 'ANOMALY_SCORE_SQL_STREAM',
 'LambdaOutput': {
 ...
 },
 'DestinationSchema': {
 'RecordFormatType': 'CSV'
 }
 },
 {
 'Name': 'APPROXIMATE_COUNT_SQL_STREAM',
 'KinesisStreamsOutput': {
 ...
 },
 'DestinationSchema': {
 'RecordFormatType': 'CSV'
 }
 }
],
 ApplicationCode=sql_code
)

Start the Kinesis Data Analytics Application
After creating a Kinesis Data Analytics application, we have to explicitly start the
application to receive and process the data. Here is the code to start our Kinesis Data
Analytics application:

input_id =
 response['ApplicationDetail']['InputDescriptions'][0]['InputId']

436 | Chapter 11: Streaming Analytics and Machine Learning

response = kinesis_analytics.start_application(
 ApplicationName=kinesis_data_analytics_app_name,
 InputConfigurations=[
 {
 'Id': input_id,
 'InputStartingPositionConfiguration': {
 'InputStartingPosition': 'NOW'
 }
 }
]
)

Put Messages on the Stream
Once the application is running, we can test our streaming pipeline by putting mes‐
saging onto the stream. In order to simulate our continuous stream of online product
review messages, we reuse our code from earlier. We read in our sample customer
reviews from the Amazon Customer Reviews Dataset and send messages containing
the review_id, product_category, and review_body to Kinesis Data Firehose. Our
Kinesis Data Analytics application is configured to use the Firehose delivery stream
as an input source.

Let’s review the results from our Data Analytics application. If we open the Kinesis
Data Analytics application in the AWS console, we can see the source and destination
configurations, as shown in Figures 11-12 and 11-13.

Figure 11-12. Kinesis Data Analytics application, source configuration.

The Firehose delivery stream gets mapped to the in-application stream
SOURCE_SQL_STREAM_001. We also perform preprocessing of our input records with
the Lambda function InvokeSageMakerEndpointFromKinesis.

Figure 11-13. Kinesis Data Analytics application, destination configuration.

Amazon Kinesis Data Analytics Applications | 437

The destination configuration shows the correct mapping from our three in-
application streams AVG_STAR_RATING_SQL_STREAM, ANOMALY_SCORE_SQL_STREAM, and
APPROXIMATE_COUNT_SQL_STREAM to their corresponding destinations.

From that console, we can also open the real-time analytics dashboard to see our SQL
query execution results as messages arrive. If we select the Source tab, we can see the
incoming messages, as shown in Figure 11-14. The messages are already preprocessed
by our Lambda function and contain the star rating.

Figure 11-14. Input stream of messages.

If we select the Real-time analytics tab, we can see the results of our three in-
application streams, including average star ratings, number of distinct items, and
anomaly scores, as shown in Figure 11-15.

Figure 11-15. In-application stream results for ANOMALY_SCORE_SQL_STREAM.

Finally, let’s review our destinations. If we navigate to CloudWatch Metrics, we can
find our custom metric AVGStarRating. We can add the metric to a graph and see the
real-time sentiment trend of incoming messages. Our Amazon SNS topic also
received the latest anomaly score and notified the application team via email.

438 | Chapter 11: Streaming Analytics and Machine Learning

Classify Product Reviews with Apache Kafka, AWS
Lambda, and Amazon SageMaker
Amazon MSK is a fully managed service for an Apache Kafka distributed streaming
cluster. We can create a Lambda function to invoke our SageMaker Endpoint using
data from the Amazon MSK stream as prediction input and enrich our Kafka stream
with the prediction output. This is similar to how our Kinesis stream triggered a
Lambda function that invoked our SageMaker Endpoint with data from the Kinesis
stream as prediction input and enriched our Kinesis stream with the prediction out‐
put. Figure 11-16 shows how to receive and transform data records with Amazon
MSK, and we can describe the steps as follows:

Figure 11-16. Receive and transform data records with Amazon MSK.

1. We receive the real-time input data and predict the star rating to derive the cus‐
tomer sentiment.

2. Amazon MSK allows us to transform our data records with the help of an
Lambda function. We build a Lambda function that receives the Kafka data
records and sends the review message to a SageMaker Endpoint that hosts our
fine-tuned BERT-based model.

3. The model predicts the star_rating, which our Lambda function adds to the
original data record; the function then returns the new record back to our Kafka
stream.

4. The Kafka stream then delivers the transformed data records to an S3 bucket
using an Amazon S3 sink connector for Kafka.

Classify Product Reviews with Apache Kafka, AWS Lambda, and Amazon SageMaker | 439

To set this up, we need to create an Amazon MSK cluster, a Kafka input topic (input
stream) for the model inputs, and a Kafka output topic (output stream) for the model
predictions. Next, we need to create a Lambda event source mapping using the Ama‐
zon MSK Python API create_event_source_mapping() to map our Kafka input
stream to the input of the Lambda function that invokes our SageMaker Endpoint
and writes the prediction to the Kafka output stream.

Here is the code to create the event source mapping between the Amazon MSK clus‐
ter and the Lambda function through the reviews topic:

response = client.create_event_source_mapping(
 EventSourceArn='<MSK_CLUSTER_ARN>',
 FunctionName='<LAMBDA_FUNCTION_NAME>',
 Enabled=True,
 Topics=[
 'reviews',
]
)

Reduce Cost and Improve Performance
We can further optimize the streaming data architecture for cost and performance.
For example, Lambda functions are eligible for Compute Savings Plans, which offer a
discount for one- or three-year term compute usage commitments. There are a cou‐
ple of ways to reduce cost with Kinesis services. One best practice is to aggregate
smaller data records into one PUT request. We can also consider Kinesis Firehose ver‐
sus Data Streams to save money. We can improve the performance of Kinesis Data
Streams by enabling enhanced fan-out (EFO).

Aggregate Messages
The cost of Kinesis Data Streams is based on the provisioned number of shards and
our message PUT payloads in units of 25 KB. A best practice to reduce cost is to aggre‐
gate smaller messages into one PUT request. We can implement this technique with
the Kinesis Producer Library (KPL). KPL aggregates and compresses multiple logical
data records into one Kinesis data record, which we can then put efficiently into the
stream.

Consider Kinesis Firehose Versus Kinesis Data Streams
Kinesis Data Firehose is best for use cases that require zero administration and can
tolerate some data processing latency. Firehose provides near-real-time processing. It
is fully managed by AWS and automatically scales to match the throughput require‐
ments. We can also batch and compress the data to minimize the storage footprint at
the destination. With Firehose, we only pay for the data that is processed.

440 | Chapter 11: Streaming Analytics and Machine Learning

Kinesis Data Streams is best for use cases that require custom processing for each
incoming record. It provides real-time processing. We have to manage the through‐
put capacity of our Kinesis Data Stream ourselves. The cost of Kinesis Data Streams is
based on the processed data and the number of shards provisioned to meet our
throughput needs.

If we choose to serve trained models using Lambda functions, we
can connect a Kinesis Data Stream directly to the Lambda function.
Lambda functions read the records directly from the Kinesis Data
Stream and perform the prediction synchronously using the event
data as the prediction input.

Enable Enhanced Fan-Out for Kinesis Data Streams
Without EFO, all consumers are contending for the read-throughput limit of each
shard. This limits the number of consumers per stream and requires fanning out to
additional streams in order to scale to a large number of consumers, as shown in
Figure 11-17.

Figure 11-17. Scaling consumers without EFO using multiple streams.

With EFO, each shard–consumer combination can leverage its own dedicated, full
read-throughput limit. Figure 11-18 shows the dedicated shard–consumer pipes with
full read throughput.

Reduce Cost and Improve Performance | 441

Figure 11-18. Scaling consumers with EFO using a single stream with dedicated, full-
throughput shard–consumer connections.

In order to enable EFO, we use the functions register_stream_consumer() and sub
scribe_to_share() from the Kinesis Data Streams Python API. When registering
our consumers with EFO, Kinesis Data Streams will push data to the consumer using
the highly parallel, nonblocking HTTP/2 protocol. This push mechanism results in
more reactive, low-latency, and high-performance streaming applications that scale to
a large number of consumers.

Summary
In this chapter, we showed how to perform streaming analytics and machine learning
with streaming data. We set up an end-to-end streaming data pipeline using Kinesis
streaming technologies to capture our product reviews, perform descriptive analytics,
and apply predictive machine learning. We calculated summary statistics over the
continuous flow of product reviews, performed anomaly detection on the streaming
data, and enriched the data with predictions from our BERT-based SageMaker model.
We visualized the results in a CloudWatch Metrics dashboard, sent email notifications
to alert teams, and made results available to additional applications.

In Chapter 12, we will discuss how to secure data science and machine learning
projects on AWS. After introducing the AWS shared responsibility model and discus‐
sing common security considerations, we will highlight security best practices for
Amazon SageMaker in the context of access management, compute and network iso‐
lation, encryption, governance, and auditability.

442 | Chapter 11: Streaming Analytics and Machine Learning

CHAPTER 12

Secure Data Science on AWS

It is important to maintain least-privilege security at all layers, from network to appli‐
cation, and throughout the entire data science workflow, from data ingestion to
model deployment. In this chapter, we reinforce that security is the top priority at
AWS and often called “job zero” or “priority zero.” We discuss common security con‐
siderations and present best practices to build secure data science and machine learn‐
ing projects on AWS. We will describe preventive controls that aim to stop events
from occurring as well as detective controls to quickly detect potential events. We also
identify responsive and corrective controls that help to remediate security violations.

The most common security considerations for building secure data science projects
in the cloud touch the areas of access management, compute and network isolation,
and encryption. Let’s first discuss these more general security best practices and
security-first principles. Then we will apply these practices and principles to secure
our data science environment from notebooks to S3 buckets using both network-level
security and application security. We also discuss governance and audibility best
practices for compliance and regulatory purposes.

Shared Responsibility Model Between AWS
and Customers
AWS implements the shared responsibility model, through which they provide a
global secure infrastructure and foundational compute, storage, networking and data‐
base services, as well as a range of security services that we can use to secure anything
we build and run on top of these services.

Security and compliance is a shared responsibility between AWS and the customer.
AWS ensures the security “of ” the cloud, while the customer is responsible for secu‐
rity “in” the cloud, as shown in Figure 12-1.

443

Figure 12-1. Security is a shared responsibility between AWS and the customer. Source:
Amazon.

AWS protects the AWS cloud infrastructure that runs the AWS services. This includes
all the components, from the host operating systems and virtualization layers down
to the physical security of the facilities in which the AWS services run. The effective‐
ness of AWS security is regularly tested and verified by third-party auditors. We can
access on-demand security and compliance reports and select online agreements via
AWS Artifact.

In return, AWS customers are responsible to ensure the security in the cloud. The
scope of the customer responsibilities is determined by the specific AWS service. In
addition, customers can choose from a variety of security services and features to
build secure and compliant applications in the AWS cloud.

Applying AWS Identity and Access Management
IAM is a service that helps us to manage access to AWS resources. IAM controls who
has access (authentication) to the environment and what permissions authenticated
users have (authorization). We can use IAM to define users, groups of users, and
roles. IAM implements the concept of principals, actions, resources, and conditions.
This defines which principals can perform which actions on which resources and
under which conditions.

We control access to specific resources by creating IAM policies and attaching them
to IAM identities or AWS resources. Depending on different job roles or functions,

444 | Chapter 12: Secure Data Science on AWS

https://oreil.ly/DgY3n
https://oreil.ly/XFfgU

we may want to grant different permissions to users. For example, some developers
might just need to launch notebooks for ad hoc data exploration. Data scientists most
likely require permissions to data stores, training jobs, and experiments. Data engi‐
neers and machine-learning engineers might need permissions to build repeatable
data and model pipelines. DevOps teams require access to model deployments and
performance monitors.

Amazon SageMaker leverages IAM for role-based access controls. We can also map
any existing users/groups/roles from the AWS Directory Service, our enterprise user
directory, or a web identity provider (called federated users).

IAM Users
We can create individual IAM users for people accessing our AWS account. Each user
will have unique security credentials. We can also assign IAM users to IAM groups
with defined access permissions (i.e., for specific job functions), and the IAM users
inherit those permissions.

IAM Policies
Access permissions are defined using IAM policies. It’s a standard security best prac‐
tice to only grant least privilege by only granting the specific permissions required to
perform a given task.

IAM User Roles
A more preferred way to delegate access permissions is via IAM roles. In contrast to
an IAM user, which is uniquely associated with one person, a role can be assumed by
anyone who needs it and provides us with only temporary security credentials for the
duration of the role session. IAM service roles control which actions a service can
perform on our behalf. IAM user roles are assumed by individual users.

The best practice is to create separate IAM user roles for individual job roles, such as
the DataScientistRole, MLEngineerRole, DataEngineeringRole, MLOpsEngineering
Role, etc. This allows for fine-grained and distinct policies for the different roles in
the model-development life cycle.

IAM Service Roles
IAM service roles are assumed by AWS services. The best practice is to create separate
service roles for distinct services and separate roles for distinct tasks per service. For
Amazon SageMaker, we could separate service roles as follows:

Applying AWS Identity and Access Management | 445

SageMakerNotebookExecutionRole

The role assumed by a SageMaker notebook instance or SageMaker Studio Appli‐
cation, defining access permissions to SageMaker training or model hosting serv‐
ices

SageMakerProcessingRole

The role assumed by SageMaker Processing Jobs, defining access to S3 buckets
for data input/output

SageMakerTrainingRole

The role assumed by SageMaker Training or Tuning Jobs, defining permissions
during model training/tuning

SageMakerModelRole

The role assumed by the model hosting inference container on a SageMaker End‐
point, defining permissions during model inference

Figure 12-2 shows the data scientist IAM user role and the various SageMaker IAM
service roles discussed.

Figure 12-2. Sample IAM user and service roles for Amazon SageMaker.

When defining user and service permissions via IAM policies, we should always
assign the least privilege needed to perform the task at hand.

446 | Chapter 12: Secure Data Science on AWS

Specifying Condition Keys for IAM Roles
We can use IAM condition keys to specify guardrails within our policies. When a
principal calls a service API to create a resource, for example, the request information
is compared to the conditions defined in the principal’s IAM policy. If the condition
statement passes, the API call succeeds; if the condition statement fails, the request
will be denied. Condition statements generally look like this:

"Condition": {
 "{condition-operator}": {
 "{condition-key}": "{condition-value}"
 }
}

And here is a sample condition policy statement that denies uploads of any unen‐
crypted objects to S3:

"Statement": [{
 "Sid": "DenyUnencryptedObjectUploads",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::<bucket_name>/*",
 "Condition": {
 "StringNotEquals": {
 "S3:x-amz-server-side-encryption": "aws:kms"
 }
 }
 }]

SageMaker supports global condition keys and also adds a few service-specific condi‐
tion keys. The global condition context keys start with an aws: prefix. SageMaker
supports the following global condition keys:

aws:RequestTag/${TagKey}

Compares the tag key-value pair that was passed in the request with the tag pair
specified in the policy

aws:ResourceTag/${TagKey}

Compares the tag key-value pair that is specified in the policy with the key-value
pair attached to the resource

aws:SourceIp

Compares the requester’s IP address with the IP address specified in the policy

aws:SourceVpc

Checks whether the request comes from the Amazon Virtual Private Cloud
(Amazon VPC) specified in the policy

Applying AWS Identity and Access Management | 447

aws:SourceVpce

Compares the Amazon VPC endpoint identifier of the request with the endpoint
ID specified in the policy

aws:TagKeys

Compares the tag keys in the request with the keys specified in the policy

SageMaker adds service-specific condition keys that start with a sagemaker: prefix as
follows:

sagemaker:AcceleratorTypes

Uses a specific Amazon Elastic Inference accelerator when creating or updating
notebook instances and when creating endpoint configurations

sagemaker:DirectInternetAccess

Controls direct internet access from notebook instances

sagemaker:FileSystemAccessMode

Specifies the access mode of the directory associated with the input data channel
(Amazon EFS or FSx)

sagemaker:FileSystemDirectoryPath

Specifies the filesystem directory path associated with the resource in the training
and hyper-parameter tuning (HPT) request

sagemaker:FileSystemId

Specifies the filesystem ID associated with the resource in the training and HPT
request

sagemaker:FileSystemType

Specifies the filesystem type associated with the resource in the training and HPT
request

sagemaker:InstanceTypes

Specifies the list of all instance types for notebook instances, training jobs, HPT
jobs, batch transform jobs, and endpoint configurations for hosting real-time
inferencing

sagemaker:InterContainerTrafficEncryption

Controls inter-container traffic encryption for distributed training and HPT jobs

sagemaker:MaxRuntimeInSeconds

Controls costs by specifying the maximum length of time, in seconds, that the
training, HPT, or compilation job can run

448 | Chapter 12: Secure Data Science on AWS

sagemaker:ModelArn

Specifies the Amazon Resource Name (ARN) of the model associated for batch
transform jobs and endpoint configurations for hosting real-time inferencing

Sagemaker:NetworkIsolation

Enables network isolation when creating training, HPT, and inference jobs

sagemaker:OutputKmsKey

Specifies the AWS KMS key to encrypt output data stored in Amazon S3

sagemaker:RequestTag/${TagKey}

Compares the tag key-value pair that was passed in the request with the tag pair
that is specified in the policy

sagemaker:ResourceTag/${TagKey}

Compares the tag key-value pair that is specified in the policy with the key-value
pair that is attached to the resource

sagemaker:RootAccess

Controls root access on the notebook instances

sagemaker:VolumeKmsKey

Specifies an AWS KMS key to encrypt storage volumes when creating notebook
instances, training jobs, HPT jobs, batch transform jobs, and endpoint configura‐
tions for hosting real-time inferencing

sagemaker:VPCSecurityGroupIds

Lists all Amazon VPC security group IDs associated with the elastic network
interface (ENI) that Amazon SageMaker creates in the Amazon VPC subnet

sagemaker:VPCSubnets

Lists all Amazon VPC subnets where Amazon SageMaker creates ENIs to com‐
municate with other resources like Amazon S3

Enable Multifactor Authentication
SageMaker also supports multifactor authentication MFA. MFA adds extra security as
it requires users to provide a second, unique authentication from an AWS-supported
MFA mechanism. Supported MFA mechanisms include virtual MFA devices, U2F
security keys, hardware MFA devices, or SMS text message–based MFAs.

As a best practice, we should enable MFA for users with administrator access. We
should also add MFA as a second step of authorization—in addition to IAM policies
—to prevent destructive operations such as the termination and deletion of resources.
This is useful when compliance and governance policies require models to be stored
for a period of time before deletion.

Applying AWS Identity and Access Management | 449

Least Privilege Access with IAM Roles and Policies
IAM policies control access to AWS resources. We attach IAM policies to IAM identi‐
ties or AWS resources to define permissions of the identity or resource. By default, an
IAM user or role starts without any permissions. An administrator has to grant per‐
missions to that IAM user or role. When the user is part of a group, the user inherits
the group’s permissions.

We can define a pool of IAM policies as needed and then assign policies to our IAM
identities as applicable. Figure 12-3 shows a sample many-to-many relationship of
IAM policies to IAM users/groups/roles.

Figure 12-3. Relationship between IAM policies and IAM users/roles.

There are different types of policies, including identity-based and resource-based pol‐
icies. Identity-based policies are JSON policy documents we attach to an IAM user/
group/role. The policy defines the permissions for the user/group/role.

Resource-Based IAM Policies
Resource-based policies are JSON policy documents we attach to an AWS resource,
such as S3 buckets. In the case of resource-based policies, the policy controls access to
the resource, i.e., who is allowed to access the S3 bucket under what conditions.

Note that resource-based policies require a principal (who is allowed to perform
actions on that resource and under what conditions). Principals can be AWS
accounts, IAM users, IAM roles, federated users, or other AWS services.

450 | Chapter 12: Secure Data Science on AWS

Here is an example of a resource-based IAM policy. The following S3 bucket policy
requires MFA to access the bucket. This is accomplished via the aws:MultiFactor
AuthAge condition key:

{
 "Version": "2012-10-17",
 "Id": "123",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::<SAMPLE_BUCKET>/*",
 "Condition": { "Null": { "aws:MultiFactorAuthAge": true }}
 }
]
 }

If Amazon S3 receives a bucket access request with MFA, aws:MultiFactorAuthAge
carries a numeric value responding to the number of seconds since the temporary
credential has been created. If the key is null, the credential wasn’t created via an
MFA device, and the access request will be denied.

Identity-Based IAM Policies
Here is an example of an identity-based IAM policy that could be attached to a Data
Scientist IAM role. The policy grants the role access to a specific S3 bucket and Sage‐
Maker Studio environments:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:Abort*",
 "s3:DeleteObject",
 "s3:Get*",
 "s3:List*",
 "s3:PutAccelerateConfiguration",
 "s3:PutBucketCors",
 "s3:PutBucketLogging",
 "s3:PutBucketNotification",
 "s3:PutBucketTagging",
 "s3:PutObject",
 "s3:Replicate*",
 "s3:RestoreObject"
],
 "Resource": [
 "arn:aws:s3:::<BUCKET_NAME>/*"

Applying AWS Identity and Access Management | 451

]
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreatePresignedDomainUrl",
 "sagemaker:DescribeDomain",
 "sagemaker:ListDomains",
 "sagemaker:DescribeUserProfile",
 "sagemaker:ListUserProfiles",
 "sagemaker:*App",
 "sagemaker:ListApps"
],
 "Resource": "*"
 },
]
}

Isolating Compute and Network Environments
We can isolate our development, staging, and production environments by creating
separate accounts and separate VPCs within each account. This gives us the compute
and network isolation needed to deploy our Amazon SageMaker, S3, CloudWatch,
Redshift, and other AWS resources in a least-privilege and internet-free manner.
Without compute and network isolation, we are at risk of leaking data outside of our
network and into the wrong hands. Additionally, we are at risk of outside attackers
viewing data on our compute nodes or inspecting packets on our network.

Virtual Private Cloud
We can specify allowed network communications to/from our VPCs via route tables.
Route tables contain rules (“routes”) that define where to send network traffic from
our virtual private cloud’s (VPC) subnets or gateways.

A VPC consists of one or more subnets. A VPC is a regional service and our VPC can
span one or all of the Availability Zones (AZs) in the selected region by creating one
or more subnets attached to an AZ. We can also add one or more subnets in each of
the AZs. Subnets are defined as a range of IP addresses. For each subnet, we can fur‐
ther specify allowed communications to/from our Amazon EC2 instances, such as
our SageMaker notebook instances, via Security Groups. VPCs can also be peered
together to form secure connections within accounts and between accounts. Many
popular SaaS products use VPC peering between the host and customer account.

Figure 12-4 shows the relationship between VPCs and related components, such as
gateways, route tables, subnets, security groups, and instances.

452 | Chapter 12: Secure Data Science on AWS

Figure 12-4. Relationship between a VPC and related components.

VPC Endpoints and PrivateLink
VPC Endpoints allow us to connect to services powered by the AWS PrivateLink eco‐
system, including most AWS services as well as third-party AWS Partner and Market‐
place offerings. The owner of the service is the “service provider.” The consumer of
the service is the “service consumer.”

A VPC Endpoint is an ENI placed into a specific subnet accessible through a private
IP address. We can control the network communications for that ENI via VPC secu‐
rity groups. To control access to the resources behind a VPC Endpoint, we specify
VPC Endpoint policies.

We can create VPC Endpoints to make a private connection between our VPC and
AWS resources, such as Amazon S3, SageMaker, Redshift, Athena, and CloudWatch.
Without a VPC Endpoint, we are accessing these services over the public internet
securely, not with a private tunnel, as shown in Figure 12-5. This is why we should
use VPC Endpoints to access services that we use, as shown in Figure 12-6.

Isolating Compute and Network Environments | 453

Figure 12-5. Without VPC Endpoints, our private VPC accesses AWS services through
the public internet in a secure but public tunnel.

Figure 12-6. With VPC Endpoints, our private VPC communicates with AWS services
through a secure and private tunnel.

454 | Chapter 12: Secure Data Science on AWS

Fortunately, most services, including Amazon S3, SageMaker, Redshift, Athena, and
CloudWatch, support VPC Endpoints. But we should be cautious when integrating
with third-party AWS Partner or Marketplace services that do not offer VPC End‐
points. The connections will be secure, but they will not be private unless using a
VPC Endpoint.

Limiting Athena APIs with a VPC Endpoint Policy
We can create a VPC Endpoint Policy to only allow certain API calls for certain
resources. For example, let’s lock down an Athena VPC Endpoint to only a specific
workgroup and set of Athena APIs with a resource-based policy as follows:

{
 "Statement": [{
 "Principal": "*",
 "Effect": "Allow",
 "Action": [
 "athena:StartQueryExecution",
 "athena:RunQuery",
 "athena:GetQueryExecution",
 "athena:GetQueryResults",
 "athena:CancelQueryExecution",
 "athena:ListWorkGroups",
 "athena:GetWorkGroup",
 "athena:TagResource"
],
 "Resource": [
 "arn:aws:athena:<REGION>:<ACCOUNT_ID>:workgroup/<WORKGROUP>"
]
 }]
}

Securing Amazon S3 Data Access
In today’s world, keeping data secure and safe is a top priority. By default, all Amazon
S3 resources are private so only the resource owner, an AWS account that created it,
can access the resource. The resource owner can optionally grant access permissions
to others by writing an access policy.

Amazon S3 integrates with AWS IAM for security and access management. We have
learned that we can provide identity-based IAM policies, specifying what actions are
allowed or denied on what AWS resource (i.e., the S3 bucket) by the IAM user/group/
role the policy is attached to. We can also provide resource-based IAM policies, such
as S3 bucket policies, which define the permissions by specific principals on the
bucket. Without securing data access, we are at risk of sensitive data being exposed to
the wrong audience.

Securing Amazon S3 Data Access | 455

Generally, we would use IAM identity-based policies if we need to define permissions
for more than just S3, or if we have a number of S3 buckets, each with different per‐
missions requirements. We might want to keep access control policies in the IAM
environment.

We would use S3 bucket policies if we need a simple way to grant cross-account
access to our S3 environment without using IAM roles, or if we reach the size limit
for our IAM policy. We might want to keep access control policies in the S3
environment.

Note that we can apply both IAM identity-based policies defining permissions for a
bucket as well as an S3 bucket policy for the same bucket. The resulting authorization
would be the least privilege from the union of all defined permissions.

When we create S3 buckets for our data science and machine learning projects, we
should consider creating separate buckets to match our data classification and data
access control needs. In heavily regulated industries that must comply with standards
and controls, such as the Payment Card Industry, we should align our S3 buckets with
separate accounts that also comply with the same standards and controls. In this case,
our sensitive and raw datasets would only be accessible from the compliant accounts,
while the nonsensitive, transformed, and masked datasets would be accessible from
the data science account, for example.

As a best practice, we should also consider creating separate buckets for different
teams, feature stores, model artifacts, and automation pipelines. In addition, we
should enable S3 bucket-versioning to keep multiple versions of an object or recover
from unintended user actions. With versioned S3 buckets, we can also enable S3
Object Lock, which will enforce “write-once-read-many” to ensure that an object
does not change—and is not deleted—after it is written. This is required to satisfy
compliance regulations in financial and healthcare industries.

In other scenarios, we need to be able to delete specific user data on request. For
example, we might need to comply with the “right to be forgotten” rule, which is an
important pillar in many data protection regulations, such as General Data Protection
Regulation.

Depending on which data store we use, there are various ways to implement this. For
example, using Amazon Redshift Spectrum with the data stored in S3, we can copy
the external table, which requires data deletion to a temporary Amazon Redshift
table. We then delete the affected records and write the temporary table back to S3,
overwriting the key name. In a final step, we delete the temporary Amazon Redshift
table. If we need to scale and automate the data-deletion procedure, we could leverage
Apache Spark to load the data from the data source into a temporary table, remove
the data to be forgotten, and rewrite the data back to the original data store.

456 | Chapter 12: Secure Data Science on AWS

In cases where models have been trained and deployed using the data to be forgotten,
we need to trace the lineage forward from the data to find all models trained with that
data. After removing the data—and depending on the details of the data-protection
regulation, we may need to retrain and redeploy the model to truly “forget” the user
and delete their data.

Require a VPC Endpoint with an S3 Bucket Policy
Building on our discussion of IAM roles and VPC Endpoints, we can lock down
access to specific S3 buckets by requiring a VPC Endpoint using an S3 Bucket Policy
as follows:

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Principal": "*",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::<s3-bucket-name>/*",
 "arn:aws:s3:::<s3-bucket-name>"
],
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpce": "<S3_VPC_ENDPOINT_ID>"
 }
 }
 }
]
}

Limit S3 APIs for an S3 Bucket with a VPC Endpoint Policy
We can also attach a policy to a VPC Endpoint for S3 and only allow a subset of S3
APIs on a specific S3 bucket as follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",

Securing Amazon S3 Data Access | 457

 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::<S3_BUCKET_NAME>",
 "arn:aws:s3:::<S3_BUCKET_NAME>/*"
]
 }
]
}

Restrict S3 Bucket Access to a Specific VPC with an S3 Bucket Policy
Instead of completely locking down the S3 bucket, we could restrict access to a speci‐
fied VPC as follows:

{
 "Version": "2008-10-17",
 "Statement": [{
 "Effect": "Deny",
 "Principal": "*",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::<BUCKET_NAME>"
],
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpc": <vpc_id>
 }
 }
 }]
}

With this S3 bucket policy attached to the S3 bucket, all access requests from outside
of the specified source VPC are denied.

We can verify that the access is denied as follows:

!aws s3 ls s3://<BUCKET_NAME>

We will receive an error message similar to this:

An error occurred (AccessDenied) when calling the ListObjectsV2 operation

Limit S3 APIs with an S3 Bucket Policy
We can limit the S3 API operations for a specific bucket by specifying the following
S3 Bucket Policy that denies the ListBucket API to the given bucket:

{
 'Version': '2012-10-17',
 'Statement': [{

458 | Chapter 12: Secure Data Science on AWS

 'Sid': '',
 'Effect': 'Deny',
 'Principal': '*',
 'Action': [
 's3:ListBucket'
],
 'Resource': [
 'arn:aws:s3:::<BUCKET_NAME>'
]
 }]
}

We can verify that the access is denied as follows:

!aws s3 ls s3://<BUCKET_NAME>

We will receive an error message similar to this:

An error occurred (AccessDenied) when calling the ListObjectsV2 operation

Restrict S3 Data Access Using IAM Role Policies
The following example shows how we can restrict access to our S3 buckets using an
identity-based IAM policy:

{
 'Version': '2012-10-17',
 'Statement': [{
 'Sid': '',
 'Effect': 'Deny',
 'Action': [
 's3:ListBucket'
],
 'Resource': [
 'arn:aws:s3:::<BUCKET_NAME>'
]
 }]
}

We can verify that the access is denied as follows:

!aws s3 ls s3://<BUCKET_NAME>

We will receive an error message similar to this:

An error occurred (AccessDenied) when calling the ListObjectsV2 operation

Restrict S3 Bucket Access to a Specific VPC with an IAM Role Policy
We could restrict access to the S3 bucket to a specified VPC as follows:

{
 'Version': '2012-10-17',
 'Statement': [{

Securing Amazon S3 Data Access | 459

 'Sid': '',
 'Effect': 'Deny',
 'Action': [
 's3:ListBucket'
],
 'Resource': [
 'arn:aws:s3:::<BUCKET_NAME>'
],
 'Condition': {
 'StringNotEquals': {
 'aws:sourceVpc': <VPC_ID>
 }
 }
 }]
}

With this IAM policy attached to a role, all ListBucket requests initiated with this
role must come from within the VPC or they will be denied.

We can verify that the access is denied as follows:

!aws s3 ls s3://<BUCKET_NAME>

We will receive an error message similar to this:

An error occurred (AccessDenied) when calling the ListObjectsV2 operation

Restrict S3 Data Access Using S3 Access Points
Amazon S3 Access Points simplify access control for large, shared buckets such as
data lakes. Traditionally, we accessed our S3 buckets through a unique bucket host
name and defined access control with a combination of IAM policies and a single
bucket policy. We can imagine that for shared datasets and a growing number of
users, teams, and applications that needed access, this could quickly end up as a com‐
plex environment for us to maintain.

Amazon S3 Access Points simplify managing data access by providing a customized
path into a bucket, each with a unique hostname and IAM access policy that enforces
the specific permissions and network controls for any request made through the
access point. This is particularly useful for managing access to shared datasets.

We can also require that all access points be restricted to a VPC, providing an extra
level of security by basically firewalling our data to within our private networks.

Let’s assume we have our sample S3 bucket called data-science-on-aws with prefixes
(subfolders) called feature-store and data-warehouse. Our data science team needs
read/write access to the feature store data, and our business intelligence team needs
read access to the data-warehouse data stored in that bucket.

Figure 12-7 shows how that scenario would look without the use of S3 Access Points.

460 | Chapter 12: Secure Data Science on AWS

Figure 12-7. Accessing objects in Amazon S3 without S3 Access Points using a unique
bucket host name.

A single S3 bucket policy would have maybe looked like this:

"Sid":”PrefixBasedAccessDataScience",
"Effect":"Allow",
"Principal":{"AWS":”arn:aws:iam::123456789012:group/ds},
"Action":["s3:GetObject","s3:PutObject"],
"Resource":"arn:aws:s3:::data-science-on-aws/feature-store/*"
...
"Sid":”TagBasedAccessBusinessIntelligence",
"Effect":"Allow",
"Principal":{"AWS":”arn:aws:iam::123456789012:group/bi},
"Action":["s3:GetObject"],
"Resource":"arn:aws:s3:::data-science-on-aws/data-warehouse/*”
...

Now let’s see how we can simplify this with the use of S3 Access Points. The following
sample command shows how to create Access Points called ap1-ds and ap2-bi via
the AWS CLI command on our sample bucket called data-science-on-aws:

aws s3control create-access-point \
 --name ap1-ds \
 --account-id 123456789012 \
 --bucket data-science-on-aws

aws s3control create-access-point \
 --name ap2-bi \
 --account-id 123456789012 \
 --bucket data-science-on-aws

Securing Amazon S3 Data Access | 461

In an access point policy, we then grant the IAM group for our Data Scientist team
(“ds”) in account 123456789012 permissions to GET and PUT objects with the prefix
feature-store/ through access point ap1-ds, and the IAM group for our Business
Intelligence team (“bi”) permissions to GET objects with the prefix data-warehouse/
through access point ap2-bi:

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:group/ds"
 },
 "Action": ["s3:GetObject", "s3:PutObject"],
 "Resource":
"arn:aws:s3:us-east-1:123456789012:accesspoint/ap1-ds/
object/feature-store/*"
 }]
}

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:group/bi"
 },
 "Action": ["s3:GetObject"],
 "Resource":
"arn:aws:s3:us-east-1:123456789012:accesspoint/ap2-bi/
object/data-warehouse/*"
 }]
}

Figure 12-8 shows how we can manage access to our S3 objects with S3 Access Points.

462 | Chapter 12: Secure Data Science on AWS

Figure 12-8. Accessing objects in Amazon S3 using S3 Access Points.

An AWS CLI request to an object in that bucket through the S3 Access Point would
then look like this (if we are in the us-east-1 region and have the access permissions):

aws s3api get-object \
 --key sample_us.tsv \
 --bucket arn:aws:s3:us-east-1:123456789012:accesspoint/
ap1-ds feature-store/raw/sample_us.tsv

We can also access the objects in an Amazon S3 bucket with an access point using the
AWS Management Console, AWS SDKs, or the S3 REST APIs. For an application or
user to be able to access objects through an access point, both the access point and the
underlying bucket must permit the request.

Encryption at Rest
Without encryption, data is readable by anybody who obtains access. All data should
be encrypted as an extra layer of protection in case data ends up leaking into the
malicious hands of an attacker—either internal or external to our organization.

SageMaker natively integrates with AWS Key Management Service (AWS KMS) to
encrypt our data at rest using symmetric or asymmetric customer master keys
(CMKs). CMKs, the primary AWS KMS resource, are a logical representation of a
master key and include metadata such as the ID, description, creation date, and key
state.

Encryption at Rest | 463

There are three types of CMKs: customer-managed, AWS-managed, and AWS-
owned. They differ based on who manages the key, who can access the key metadata,
how often the keys are automatically rotated, and how the keys are scoped across
accounts. The summary is shown in Table 12-1.

Table 12-1. Different types of CMKs

Type of CMK Can view CMK
metadata

Can manage
CMK

Used only for our
AWS account

Automatic rotation

Customer-managed CMK Yes Yes Yes Optional every 365 days (1 year)
AWS-managed CMK Yes No Yes Required every 1095 days (3

years)
AWS-owned CMK No No No Varies

We should enable default encryption for all storage volumes, including Amazon S3,
Amazon EC2 instance disks, network-attached Amazon Elastic Block Store (Amazon
EBS), and distributed Amazon EFS. Additionally, it is recommended that we use deny
policies to prevent uploads of unencrypted data to these storage volumes. We should
encrypt all data artifacts, including notebooks, transformed features, trained models,
batch predictions, and endpoint predictions. Also, we shouldn’t forget to encrypt
Docker images stored in Amazon ECR—as well as temporary “scratch” local storage
and Amazon EBS volumes used during data processing and model training.

Create an AWS KMS Key
We start by creating a key with the AWS KMS to encrypt the storage volumes used in
our SageMaker examples:

kms = boto3.Session().client(service_name='kms', region_name=region)

key_response = kms.create_key()

key_id = key_response['KeyMetadata']['KeyId']

Encrypt the Amazon EBS Volumes During Training
The following sample shows how to use an AWS KMS key with a SageMaker Training
Job to encrypt the SageMaker instance’s Amazon EBS volume:

estimator = TensorFlow(entry_point='tf_bert_reviews.py',
 role=role,
 instance_count=1,
 instance_type='ml.p4d.24xlarge',
 framework_version='<TENSORFLOW_VERSION>,
 volume_kms_key=key_id)

estimator.fit(inputs)

464 | Chapter 12: Secure Data Science on AWS

Encrypt the Uploaded Model in S3 After Training
The following sample shows how to use encryption during a SageMaker Training Job
using an AWS KMS key to encrypt the generated output assets, including our trained
model in S3:

estimator = TensorFlow(
 entry_point='tf_bert_reviews.py',
 source_dir='src',
 role=role,
 instance_count=1,
 instance_type='ml.p4d.24xlarge',
 framework_version='<TENSORFLOW_VERSION>,
 output_kms_key=key_id<KMS_KEY_ID>)

estimator.fit(inputs)

Store Encryption Keys with AWS KMS
AWS KMS is a managed service that enables us to easily create and control the keys
used for cryptographic operations. There are two ways to use AWS KMS with Ama‐
zon S3 to implement data-at-rest encryption. We can use server-side encryption to
protect our data with a master key, or we can use an AWS KMS CMK with the Ama‐
zon S3 Encryption Client to protect our data on the client side.

If we select server-side encryption, we can choose between the following options:

SSE-S3
Requires that Amazon S3 manage the data and master encryption keys

SSE-C
Requires that we manage the encryption key

SSE-KMS
Requires that AWS manage the data key but that we manage the CMK in AWS
KMS

Enforce S3 Encryption for Uploaded S3 Objects
To require server-side encryption of all objects in a particular Amazon S3 bucket
(enforcing data-at-rest encryption), we can use a bucket policy. For example, the fol‐
lowing bucket policy denies upload object (s3:PutObject) permission to everyone if
the request does not include the x-amz-server-side-encryption header requesting
server-side encryption with SSE-KMS:

{
 "Version": "2012-10-17",
 "Id": "DenyIncorrectEncryptionalgorithmAES256",
 "Statement": [

Encryption at Rest | 465

 {
 "Sid": "DenyUnencryptedObjectUploads",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::<bucket_name>/*",
 "Condition": {
 "StringNotEquals": {
 "S3:x-amz-server-side-encryption": "aws:kms"
 }
 }
 }
]
}

In this case, S3 will encrypt every object before storing it and decrypt every object
after retrieving it. This encrypt and decrypt process is done seamlessly behind the
scenes. When we upload an object, we can specify the AWS KMS CMK using the
header x-amz-server-side-encryption-aws-kms-key-id. If the header is not
present in the request, Amazon S3 assumes the AWS-managed CMK.

Enforce Encryption at Rest for SageMaker Jobs
The following IAM policy will not allow a SageMaker Job to be created without Ama‐
zon EBS volume encryption:

{
 "Sid": "SageMakerJobVolumeEncryption",
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateTrainingJob"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "sagemaker:VolumeKmsKey": "true"
 }
 }
}

Enforce Encryption at Rest for SageMaker Notebooks
The following IAM policy will not allow a SageMaker Notebook instance to be cre‐
ated without Amazon EBS volume encryption:

{
 "Sid": "SageMakerNotebookVolumeEncryption",
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateNotebookInstance",
 "sagemaker:UpdateNotebookInstance"

466 | Chapter 12: Secure Data Science on AWS

],
 "Resource": "*",
 "Condition": {
 "Null": {
 "sagemaker:VolumeKmsKey": "true"
 }
 }
}

Enforce Encryption at Rest for SageMaker Studio
The following IAM policy will not allow a SageMaker Studio domain to be created
without Amazon EFS volume encryption:

{
 "Sid": "SageMakerStudioVolumeEncryption",
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateDomain"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "sagemaker:HomeEfsFileSystemKmsKey": "true"
 }
 }
}

Encryption in Transit
By default, all public AWS API calls are made over secure Transport Layer Security
(TLS)–encrypted tunnels. This means that all network traffic is encrypted in transit,
by default, between SageMaker and S3, for example. Without this encryption, data
can be inspected by an attacker as it travels across the network in plain text. Remem‐
ber that attacks can come from both inside and outside the organization.

For data in transit, SageMaker supports inter-container encryption for distributed
training and HPT jobs. The information passed between training instances generally
consists of model weights and other metadata versus training data itself, but enabling
this setting can help meet regulatory requirements and add data protections.

Post-Quantum TLS Encryption in Transit with KMS
AWS KMS supports a quantum-resistant or “post-quantum” option for exchanging
TLS encryption keys. While classic TLS cipher suite implementation is good enough
to prevent brute force attacks on the key-exchange mechanism today, it will not be
strong enough in the near future when large-scale quantum computers become
accessible.

Encryption in Transit | 467

AWS KMS offers many key-exchange algorithm options for post-quantum TLS
encryption, including Kyber, Bit Flipping Key Encapsulation, and Supersingular Iso‐
geny Key Encapsulation. Figure 12-9 shows the difference between Classical TLS 1.2
and Post-Quantum TLS 1.2.

Figure 12-9. Classical and post-quantum TLS 1.2.

These post-quantum key exchange mechanisms will affect performance as they
require extra computational overhead. Therefore, we should always test the perfor‐
mance of these algorithms thoroughly before deploying to production.

Encrypt Traffic Between Training-Cluster Containers
For distributed model training jobs, we can optionally encrypt internal network traf‐
fic between containers of our distributed-training clusters. While inter-container
encryption can increase the training time, we should enable this setting to prevent
sensitive data leakage.

Here is an example of how to encrypt inter-container communication with the
encrypt_inter_container_traffic=True flag:

from sagemaker.tensorflow import TensorFlow

estimator = TensorFlow(entry_point='tf_bert_reviews.py',
 source_dir='src',
 role=role,
 instance_count=2,
 instance_type='ml.p4d.24xlarge',
 framework_version='<TENSORFLOW_VERSION>',
 encrypt_inter_container_traffic=True)

468 | Chapter 12: Secure Data Science on AWS

https://oreil.ly/TPVel
https://bikesuite.org
https://sike.org
https://sike.org

Enforce Inter-Container Encryption for SageMaker Jobs
The following policy will not allow SageMaker Training Jobs to run unless inter-
container traffic encryption is enabled:

{
 "Sid": "SageMakerInterContainerTrafficEncryption",
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateTrainingJob"
],
 "Resource": "*",
 "Condition": {
 "Bool": {
 "sagemaker:InterContainerTrafficEncryption": "false"
 }
 }
}

Securing SageMaker Notebook Instances
By running our SageMaker notebook instances inside of our VPC, we create the net‐
work and compute isolation needed to prevent our sensitive notebooks from being
accessed from outside the organization. Remember that notebooks, unlike typical
software source files, often contain outputs such as visualizations and summary sta‐
tistics that describe our datasets. These are just as sensitive as the data itself.

If we want to implement centralized, governed, and self-service
access to SageMaker notebook instances for our data science teams,
we could use the AWS Service Catalog to define the SageMaker
notebook instance as a product and preconfigure all required secu‐
rity policies.

When we create a SageMaker notebook instance, we can connect it to our private
VPC by specifying subnet IDs and security groups as follows:

sm.create_notebook_instance(
 NotebookInstanceName='dsoaws',
 InstanceType='ml.t3.medium',
 SubnetId='<SUBNET_ID>',
 SecurityGroupIds=[
 '<SECURITY_GROUP_IDS>',
],
 RoleArn='arn:aws:iam::<ACCOUNT_ID>:role/service-role/<ROLE_NAME>',
 KmsKeyId='<KEY_ID>',
 DirectInternetAccess='Disabled',
 VolumeSizeInGB=10,
 RootAccess='Disabled'
)

Securing SageMaker Notebook Instances | 469

Deny Root Access Inside SageMaker Notebooks
Note that the example also specifies the SageMaker Execution IAM role and the KMS
key to encrypt the attached volumes, disables direct internet access from the note‐
books, and disables root access for users. If we want to restrict users from creating
notebook instances with root access enabled, we could attach the following IAM pol‐
icy to the SageMaker Execution role:

{
 "Sid": "DenyRootAccess",
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateNotebookInstance",
 "sagemaker:UpdateNotebookInstance"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:RootAccess": [
 "Enabled"
]
 }
 }
}

Disable Internet Access for SageMaker Notebooks
Another best practice is to disable internet access from/to our VPCs that have access
to our data. We can provide any external project dependencies via a separate, shared
service VPC. This VPC could, for example, host a PyPI mirror with our approved
Python packages.

The following example IAM policy will not allow SageMaker notebook instances to
be created with direct internet access enabled:

{
 "Sid": "PreventDirectInternet",
 "Effect": "Deny",
 "Action": "sagemaker:CreateNotebookInstance",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:DirectInternetAccess": [
 "Enabled"
]
 }
 }
}

470 | Chapter 12: Secure Data Science on AWS

Securing SageMaker Studio
By locking down SageMaker Studio to our VPC, we are preventing outside attackers
from accessing notebooks that contain sensitive data, such as visualizations and sum‐
mary statistics that describe our datasets. SageMaker Studio also supports IAM and
single-sign-on (SSO) authentication and authorization mechanisms. Using IAM and
SSO, we can restrict Studio access to a limited number of individuals or groups using
the least-privilege security principle. Without IAM and SSO authentication and
authorization, malicious attackers could gain access to our notebooks and other Stu‐
dio assets.

Require a VPC for SageMaker Studio
We can require SageMaker Studio access from our VPC by setting the parameter
AppNetworkAccessType to VpcOnly. This deployment setting will create an ENI
through which the resources in our VPC can communicate with the SageMaker Stu‐
dio services using a VPC Endpoint. We can further control the communication by
applying security groups to the ENI created by the VPC Endpoint.

The following example IAM policy will not allow a SageMaker Studio domain to be
created outside of a private VPC:

{
 "Sid": "PreventDirectInternetforStudio",
 "Effect": "Allow",
 "Action": "sagemaker:CreateDomain",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sagemaker:AppNetworkAccessType": [
 "VpcOnly"
]
 }
 }
}

With VpcOnly mode, all SageMaker Studio traffic is routed through the specified VPC
and subnets. The default setting is PublicInternetOnly, which sends all non-
Amazon EFS traffic through the AWS-managed service VPC, which has internet
access enabled.

Securing SageMaker Studio | 471

We define the IAM role for SageMaker Studio during domain creation. We can spec‐
ify a private VPC for network communication via AppNetworkAccessType=VpcOnly
and provide the relevant subnet IDs and the VPC ID. We can also pass a KMS key to
encrypt the Amazon EFS volume set up by SageMaker Studio.

Here is an example of how to programmatically create the SageMaker Studio domain,
a user profile, and the SageMaker Studio app with the mentioned settings:

sagemaker.create_domain(DomainName='default',
 AuthMode='IAM',
 DefaultUserSettings={
 'ExecutionRole': <ROLE_ARN>,
 'SecurityGroups': <SECURITY_GROUP_IDS>,
 },
 SubnetIds='<SUBNET_IDS>',
 VpcId='<VPC_ID>',
 AppNetworkAccessType='VpcOnly',
 KmsKeyId='<EFS_KMS_KEY_ID>')

sagemaker.create_user_profile(DomainId=domain_id,
 UserProfileName='default')

sagemaker.create_app(DomainId=domain_id,
 UserProfileName='default',
 AppType='JupyterServer',
 AppName='default')

SageMaker Studio Authentication
SageMaker Studio supports two modes to authenticate users: SSO and IAM. In SSO
mode, we map federated identity pools to users. In IAM mode, SageMaker Studio is
fully integrated with AWS IAM and follows our IAM users, roles, and policy configu‐
rations. We authenticate with SageMaker Studio running in a SageMaker service
account and platform VPC with private tunnels to our private account and VPC, as
shown in Figure 12-10.

472 | Chapter 12: Secure Data Science on AWS

Figure 12-10. High-level network architecture for SageMaker Studio across the user VPC
and SageMaker platform VPC.

Securing SageMaker Jobs and Models
We can also define permissions for SageMaker Jobs using service-level IAM roles to
restrict permissions of IAM users/groups/roles, similar to the guardrails we discussed
to restrict data access to our S3 buckets. We can restrict SageMaker Jobs to only have
access to specific resources, such as S3 buckets or other data sources. Furthermore,
we can require that SageMaker Jobs run in a private VPC to provide the compute and
network isolation required to prevent external attackers from accessing data stored
on the compute nodes or traveling across the network.

Require a VPC for SageMaker Jobs
In the context of SageMaker, we can specify IAM policies that require SageMaker to
create resources without a VPC. Here is an example of such an IAM policy:

{
 "Sid": "SageMakerJobsVPC",
 "Effect": "Deny",

Securing SageMaker Jobs and Models | 473

 "Action": [
 "sagemaker:CreateTrainingJob"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "sagemaker:VpcSubnets": "true",
 "sagemaker:VpcSecurityGroupIds": "true"
 }
 }
}

Here is an example of how to connect SageMaker Training Jobs to our private VPC
by providing subnets and security_group_ids to our SageMaker Training Job:

from sagemaker.tensorflow import TensorFlow

estimator = TensorFlow(
 entry_point='tf_bert_reviews.py',
 source_dir='src',
 role=role,
 instance_count=1,
 instance_type='ml.p4d.24xlarge',
 py_version='<PYTHON_VERSION>',
 framework_version='<TENSORFLOW_VERSION>',
 hyperparameters={...},
 subnets=[
 "<SUBNET_ID>"
],
 security_group_ids=[
 "<SECURITY_GROUP_ID>"
]
)

With this configuration, SageMaker will create the ENI to connect the training con‐
tainers to our specified VPC.

We can enforce the specific VPC configuration via an IAM policy such as this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SageMakerJobsVPC",
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateTrainingJob"
],
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "sagemaker:VpcSecurityGroupIds":
 "<SECURITY_GROUP_IDS>",

474 | Chapter 12: Secure Data Science on AWS

 "sagemaker:VpcSubnets": [
 "<SUBNET_ID>",
 "<SUBNET_ID>"
]
 }
 }
 }
]
}

Before we can run our training job within a VPC, we need to make sure that the VPC
has access to S3 through an S3 VPC endpoint (or NAT device) set up within our
VPC. This includes configuring subnet route tables, security groups, and network
access control lists (ACLs). If we don’t do this, we will see an error like this:

UnexpectedStatusException: Error for Training job: Failed. Reason: ClientError:
Data download failed:Please ensure that the subnet's route table has a route to
an S3 VPC endpoint or a NAT device, both the security groups and the subnet's
network ACL allow outbound traffic to S3.

With the example IAM policy, we are explicitly denying model creation as well as the
creation of SageMaker Autopilot Jobs, Training Jobs, Processing Jobs, or Hyper-
Parameter Tuning Jobs unless deployed with the specified VPC subnet IDs and secu‐
rity groups.

Let’s run a Training Job without specifying the matching VPC parameters:

from sagemaker.tensorflow import TensorFlow

estimator = TensorFlow(
 entry_point='tf_bert_reviews.py',
 source_dir='src',
 role=role,
 instance_count=1,
 instance_type='ml.p4d.24xlarge',
 py_version='<PYTHON_VERSION>',
 framework_version='<TENSORFLOW_VERSION>',
 hyperparameters={...},
)

estimator.fit(inputs={...})

We will see a client error like this:

ClientError: An error occurred (AccessDeniedException) when calling the
CreateTrainingJob operation: User: arn:aws:sts::<ACCOUNT_ID>:assumed-role/<ROLE>/
SageMaker is not authorized to perform: sagemaker:CreateTrainingJob on resource:
arn:aws:sagemaker:<REGION>:<ACCOUNT_ID>:training-job/<JOB>
with an explicit deny

Figure 12-11 shows how the SageMaker Training Job started and stopped at 17:56
UTC.

Securing SageMaker Jobs and Models | 475

Figure 12-11. SageMaker Training Job stopped because it doesn’t comply with policies.

Require Network Isolation for SageMaker Jobs
If we need to completely isolate our model training jobs, we can enable network isola‐
tion for the containers performing model training. In this case, the container is
restricted from all outbound network communication (including API calls to Ama‐
zon S3) and can only communicate with the local Amazon EBS volume. All required
input and output data for the training job will have to be stored on the container’s
local Amazon EBS volumes, which should be encrypted.

Additionally, no AWS credentials are made available to the container runtime envi‐
ronment when network isolation is enabled. If we run a distributed training job, net‐
work communication is limited to the containers of the training cluster, which also
can be encrypted.

Running SageMaker Jobs in network isolation mode is a strong protection against
data-exfiltration risks. However, network isolation is not required to restrict traffic to
specific AWS resources, such as S3 from within our VPC. For this, we use VPC sub‐
net and security group configurations.

The following example policy will deny SageMaker Job creation if network isolation is
disabled:

{
 "Sid": "SageMakerNetworkIsolation",
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateTrainingJob"
],
 "Resource": "*",
 "Condition": {
 "Bool": {
 "sagemaker:NetworkIsolation": "false"
 }
 }
}

476 | Chapter 12: Secure Data Science on AWS

If we try to access any resources outside of the container, we will see the following
NoCredentialsError:

botocore.exceptions.NoCredentialsError: Unable to locate credentials

While the training containers cannot access S3 directly because of the network isola‐
tion, the SageMaker runtime can still copy the data between S3 and the underlying
SageMaker instance where the training job containers are running. The container still
has access to the training data through the /opt/ml/input/ directory mounted by Sage‐
Maker after copying the S3 data to the training instance. Similarly, the trained model
will be placed in /opt/ml/output/, which SageMaker will copy to S3, as shown in
Figure 12-12.

Figure 12-12. Network isolation does not prevent SageMaker from mounting data from
S3 into the training containers.

We can further limit the SageMaker runtime’s S3 access through additional IAM or S3
Bucket Policies. Additionally, network-isolation mode can be used in combination
with a VPC, in which case the download/upload of data is routed via the VPC subnet.
The model training containers would continue to be isolated, though, without access
to resources in our VPC or the internet.

Securing AWS Lake Formation
AWS Lake Formation provides fine-grained access control to rows and columns of
data for a given principal. With Lake Formation, we specify permissions on tables,
rows, and columns versus S3 buckets, prefixes, and objects. With the Lake Formation
“Data Permissions” UI, we can analyze all policies granted to users in a single view.

Lake Formation monitors and logs all data-access events in real time. We can sub‐
scribe to receive alerts when sensitive data is accessed. In addition to reviewing real-
time dashboards and alerts, we can export data-access logs for offline auditing and
reporting.

Securing AWS Lake Formation | 477

Securing Database Credentials with AWS Secrets Manager
We should never use hard-coded, clear-text credentials in our scripts, applications, or
notebooks. By exposing usernames, passwords, and API keys, we create security vul‐
nerabilities, which lead to malicious attacks and data breaches. Instead, we should
store and retrieve our credentials from AWS Secrets Manager.

Secrets Manager encrypts secrets using AWS KMS and leverages AWS IAM policies
to control access to the stored credentials. In addition to manually rotating creden‐
tials, we can also rotate credentials on a schedule using Secrets Manager. Many AWS
databases are integrated with Secrets Manager, including Amazon RDS, Aurora, and
Redshift. For these databases, we specify the unique ARN when executing our query.
AWS then retrieves and validates the credentials in the background without exposing
any usernames, passwords, or API keys.

Governance
We discussed several mechanisms to implement and enforce configurations that help
us to comply with our organizational security policies. The examples showed controls
specific to IAM users, roles, and policies within one AWS account. If we want to
implement security and governance across AWS accounts and regions, we can lever‐
age AWS Organizations, AWS Config, and multiaccount environments.

With AWS Organizations we can define service control policies (SCPs), which give us
centralized control over the maximum available permissions for all accounts in our
organization. If we need to set up new, secure, multiaccount AWS environments, we
can use AWS Control Tower.

We can use AWS Config to evaluate AWS resource configurations across our accounts
against best practices and our custom policies. AWS Config is an example of a detec‐
tive control to alert us if configurations are out of compliance.

We can then apply the multiaccount setup to improve governance and security of our
data science projects by, for example, separating the model deployment workflow
across data science, staging, and production environments.

Secure Multiaccount AWS Environments with AWS Control Tower
AWS Control Tower enables us to set up and govern new, secure, multiaccount AWS
environments in just a few clicks. Using AWS Control Tower, we can automate the
setup of our AWS environment with best-practices blueprints for multiaccount struc‐
ture, identity, access management, and account provisioning workflow. For example,
we may want to disallow all public access to all S3 buckets, buckets that are not
encrypted, or buckets that have versioning disabled.

478 | Chapter 12: Secure Data Science on AWS

Manage Accounts with AWS Organizations
AWS Organizations is an account management service that allows us to consolidate
multiple AWS accounts into one organization. We can then centrally manage all
accounts mapped to this organization.

If we need to group specific AWS accounts, we can create organizational units (OUs),
add the relevant accounts, and attach different policies to each OU. Figure 12-13
shows how we can group individual accounts into OUs and attach policies.

Figure 12-13. AWS Organization with OUs, member accounts, and policies.

Enforce Account-Level Permissions with SCPs
AWS Organizations allow us to specify SCPs to define permissions for member
accounts in the organization. We can leverage SCPs to implement and enforce the
discussed security controls across AWS accounts.

We can leverage SCPs to restrict access to AWS services, resources, and individual
API actions for users and roles in each mapped AWS member account. Note that
these restrictions will even take precedence over administrators of member accounts.
In other words, SCPs give us a centralized control over the maximum available per‐
missions for all accounts in the organization.

We can leverage SCPs as a guardrail or to define limits on the actions that the mem‐
ber account’s administrator can grant to the individual account’s IAM user and roles.
We still have to create IAM policies and attach the policies to IAM users/roles in the
member accounts. The resulting permissions are the intersection between what is
allowed by the SCP and the member account’s IAM policies.

Governance | 479

Building upon condition keys for IAM, the following example defines an SCP to
enforce encryption with a specific KMS key for all SageMaker Training Jobs created
in the mapped AWS member accounts:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EncryptSageMakerTraining",
 "Effect": "Deny",
 "Action": "sagemaker:CreateTrainingJob",
 "Resource": [
 "*"
],
 "Condition": {
 "ArnNotEquals": {
 "sagemaker:OutputKmsKey": [
 arn:aws:kms:<REGION>:<ACCOUNT_ID>:key/<KMS_KEY_ID>"
]
 }
 }
 }
]
}

Let’s start a SageMaker Training Job in one of the attached member accounts without
specifying the given KMS key:

estimator = TensorFlow(
 entry_point='tf_bert_reviews.py',
 role=role,
 train_instance_count=1,
 train_instance_type='ml.p4d.24xlarge',
 framework_version='<TENSORFLOW_VERSION>'
)

Here, we see the training job will fail with the expected AccessDeniedException:

ClientError: An error occurred (AccessDeniedException) when calling the
CreateTrainingJob operation: User: arn:aws:sts::<ACCOUNT_ID>:assumed-role/<ROLE>/
SageMaker is not authorized to perform: sagemaker:CreateTrainingJob on resource:
arn:aws:sagemaker:<REGION>:<ACCOUNT_ID>:training-job/<JOB>
with an explicit deny

To fix this, we will start the same Training Job with the specified KMS key, and the
training job will start successfully:

estimator = TensorFlow(
 entry_point='tf_bert_reviews.py',
 role=role,
 train_instance_count=1,
 train_instance_type='ml.p4d.24xlarge',
 framework_version='<TENSORFLOW_VERSION>',

480 | Chapter 12: Secure Data Science on AWS

 subnets=<SUBNETS>,
 security_group_ids=<SECURITY_GROUP_IDS>,
 ouput_kms_key="<KMS_KEY_ID>"
)

estimator.fit(inputs)

Here, we see the SageMaker Training Job starts successfully using the KMS key
provided:

arn:aws:iam:<ACCOUNT_ID>:role/service-role/<ROLE_NAME> \
 2020-10-30 16:04:01 Starting - Starting the training job.
training job.

Implement Multiaccount Model Deployments
We can leverage AWS Control Tower, AWS Organizations, and AWS Config to set up
and manage multiple AWS accounts. To improve governance and security for model
deployments, we should create separate AWS accounts for our data scientists, as well
as for staging and for production environments. A simple AWS Organizations struc‐
ture that defines the corresponding OUs and mapped AWS accounts could look like
this:

ROOT
├── DATA_SCIENCE_MULTI_ACCOUNT_DEPLOYMENTS (OU)
│ ├── <AWS_ACCOUNT_DATA_SCIENCE>
│ ├── STAGING (OU)
│ │ └── <AWS_ACCOUNT_STAGING>
│ └── PRODUCTION (OU)
│ └── <AWS_ACCOUNT_PRODUCTION>

The data scientist should be able to freely build, train, and tune models in the data
science account. Once a trained model qualifies for deployment, the data scientist
approves the model, which deploys the model into the staging environment. The
staging environment could be used by the DevOps team to run unit and integration
tests before deploying the model into the production environment. In Chapter 10, we
discussed how Amazon SageMaker Projects automate our model deployment pipe‐
lines across the data science, staging, and production environments. We can adapt the
SageMaker Projects templates to any custom multiaccount setup.

Auditability
Besides implementing security controls, we also need to audit our environment by
logging activities, collecting events, and tracking user activities and API calls. Audita‐
bility is a major requirement for implementing compliance frameworks and pro‐
cesses. There are several AWS services and features available to implement
auditability. We can tag resources and leverage CloudWatch Logs and CloudTrail to
receive logs and track API calls.

Auditability | 481

Tag Resources
We can add tags to any of our AWS resources. Resource tagging can be used as a
mechanism for auditability. For example, we could enforce our SageMaker Studio
applications to contain a specific team or project identifier via condition keys in our
IAM policy as shown here:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": ”EnforceAppTag",
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateApp”
],
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringLike": {
 "aws:RequestTag/Project": "development"
 }
 }
 }
]
}

If we attach this IAM policy to the principal belonging to the “development” project,
the IAM user or role cannot create applications tagged with another project.

Log Activities and Collect Events
Amazon SageMaker automatically logs all API calls, events, data access, and interac‐
tions during our model development process. We can track and trace the interactions
down to individual users and IP addresses.

We can leverage CloudWatch Logs to monitor, store, and access our SageMaker log
files. Logs from SageMaker Studio notebooks, SageMaker Processing, or Model
Training Jobs are also captured as CloudWatch events. We can keep track of metrics
and create customized dashboards using CloudWatch Metrics. We can set up notifi‐
cations or actions when a metric reaches a specified threshold. Note that SageMaker
container logs and metrics are delivered to our CloudWatch environment, while the
underlying infrastructure logs are retained by the SageMaker service platform.

482 | Chapter 12: Secure Data Science on AWS

Track User Activity and API Calls
We can track individual user activity and API calls with CloudTrail. CloudTrail will
also show API calls that SageMaker instances make on our behalf, including the
assumed IAM role. If we need to map the activities to each user, we need to create a
separate IAM role for each user in each SageMaker service that assumes the role.

All captured API call logs are delivered to an Amazon S3 bucket that we specify. The
API logs include the user and account identities for each API call, the source IP
addresses, and the timestamps of the API calls.

Reduce Cost and Improve Performance
We can reduce KMS cost by reducing the number of KMS API calls required by our
application. In addition, we can reduce SageMaker cost by using IAM policies to limit
the instance types available to our users.

Limit Instance Types to Control Cost
We may want to allow only CPU instances types for our long-lived, real-time model
endpoints in production—saving the GPUs for our relatively short-lived, compute-
intensive, batch training jobs. The following policy limits the instance types to CPU-
based instances when creating a SageMaker Model Endpoint:

{
 "Sid": "LimitSageMakerModelEndpointInstances",
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateEndpoint"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringNotLike": {
 "sagemaker:InstanceTypes": [
 "ml.c5.large",
 "ml.m5.large"
]
 }
 }
}

We can also limit the instance types used for SageMaker notebook instances and
SageMaker Studio domains. Since notebook instances and SageMaker Studio are
long-lived resources, we may want to limit the instance types to CPU-based instances
since the GPU-based heavy lifting of SageMaker Training Jobs should happen on a
SageMaker cluster and not in our notebook. The following policies will limit the
instance types of long-lived SageMaker notebook instances and SageMaker Studio

Reduce Cost and Improve Performance | 483

applications to help control cost and encourage better utilization of the more expen‐
sive GPU instances:

{
 "Sid": "LimitSageMakerNotebookInstanceTypes",
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateNotebookInstance"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringNotLike": {
 "sagemaker:InstanceTypes": [
 "ml.c5.large",
 "ml.m5.large",
 "ml.t3.medium"
]
 }
 }
}
{
 "Sid": "LimitSageMakerStudioInstanceTypes",
 "Effect": "Deny",
 "Action": [
 "sagemaker:CreateApp"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringNotLike": {
 "sagemaker:InstanceTypes": [
 "ml.c5.large",
 "ml.m5.large",
 "ml.t3.medium"
]
 }
 }
}

Quarantine or Delete Untagged Resources
To control cost, we should tag every resource to properly track and monitor our
spending. We can enforce tags using the “required-tags” rule with the AWS Config
service. This rule checks if a resource has the required tags. If the resource does not
have the required tag, it can be quarantined or deleted to save cost.

Use S3 Bucket KMS Keys to Reduce Cost and Increase Performance
We can reduce cost for encryption by using S3 Bucket Keys, which decreases the
number of API calls to the AWS KMS service when new objects are uploaded. We can
add an S3 Bucket Key to our bucket with the following code:

484 | Chapter 12: Secure Data Science on AWS

response = client.put_bucket_encryption(
 Bucket=<BUCKET_NAME>,
 ServerSideEncryptionConfiguration={
 'Rules': [
 {
 'ApplyServerSideEncryptionByDefault': {
 'SSEAlgorithm': 'aws:kms',
 'KMSMasterKeyID': <KMS_KEY_ID>
 },
 'BucketKeyEnabled': True
 },
]
 }
)

Summary
In this chapter, we started by discussing how AWS cloud security is “job zero” and
“priority zero.” We introduced the relevant security concepts and AWS security serv‐
ices and features we can leverage—as well as the AWS shared-responsibility security
model. We showed how to build secure data science and machine learning projects
on AWS. We described how to implement preventive and detective controls that stop
events from occurring—as well as responsive and corrective controls that helped to
remediate security violations.

We described best practices in the area of compute and network isolation, authentica‐
tion and authorization, encryption, and governance, as well as auditability and com‐
pliance. We learned how to protect our data by implementing access control with
AWS IAM and restrict network access using VPCs. We highlighted some important
concepts we should leverage to secure our data and showed specific examples of how
to add different levels of security to our S3 data access and SageMaker Jobs. We
showed how the use of S3 Access Points can help manage access to data in shared S3
buckets (aka our S3 data lake). We described data-at-rest encryption with AWS KMS
and encryption-in-transit with traditional and post-quantum cryptography. Next, we
discussed mechanisms to implement governance and auditability. Last, we finished
the chapter by sharing tips on how to reduce cost and improve performance with the
AWS security services.

Summary | 485

Index

Symbols
16-bit half precision, 270
32-bit full precision, 271

A
A/B tests, 320
active learning, 404
aggregate messages, 440
algorithms (see also BERT)

Alternating Least Squares (ALS), 35
Blazing Text, 217
brief history of, 216
built into SageMaker, 19, 214-216
checkpointing and, 272
classification, 177
cold-start in Amazon Personalize, 33
DeepAR++, 39
ELMo, 217
finding best hyper-parameters for, 277
finding the best, 76-77
HyperLogLog (HLL), 170, 433
Kernel SHAP, 348
online cover, 324
RCF (random cut forest), 57, 432
zstd, 123

AllenNLP Interpret, 254
Alternating Least Squares (ALS) algorithm, 35
Amazon AI and machine learning stack (see

also data science projects; use cases)
additional resources, xv
introduction to

AWS services overview, 10-13
benefits of cloud computing, 1-3
data analysis, 14-16

data evaluation, 16
data ingestion, 13
data labeling, 16
data transformation, 17
infrastructure and custom-built hard‐

ware, 23-26
MLOps best practices, 7-10
model deployment, 21
model training and tuning, 18-21
pipelines and workflows, 4-7
streaming analytics and machine learn‐

ing, 21
prerequisites to learning, xv

Amazon API Gateway, 356
Amazon Athena

choosing between Athena and Redshift, 118
Federated Query, 106
improving performance

approximate counts, 170
shared S3 buckets, 170

invoking SageMaker models from, 59
predictions with SageMaker Autopilot, 89
Query Editor, 106
querying data lakes with, 105-109
visualizing data lakes with

deep data exploration, 132-141
sample Athena query, 130
sample query in SageMaker Studio, 130

Amazon Augmented AI, 401-404
Amazon Aurora, 58
Amazon CloudWatch (see CloudWatch)
Amazon CodeGuru, 70-72
Amazon Comprehend, 46, 58, 91-94
Amazon Connect, 51

487

Amazon DevOps Guru, 73
Amazon EC2 (Elastic Computer Cloud)

Amazon EC2 Auto Scaling, 55
predicting demand for, 41

Amazon EKS (Elastic Kubernetes Service), 392
Amazon EMR Studio, 128
Amazon Forecast, 39
Amazon Fraud Detector, 42
Amazon FSx, 292
Amazon HealthLake, 55
Amazon Kendra, 50
Amazon Lex, 44, 50
Amazon Lookout, 52
Amazon Macie, 44
Amazon Managed Workflows for Apache Air‐

flow (Amazon MWAA), 397
Amazon MSK (Amazon Managed Streaming

for Apache Kafka), 56, 439
Amazon Neptune, 60
Amazon Personalize, 32
Amazon Polly, 45
Amazon Redshift

Advanced Query Accelerator (AQUA), 172
building lake houses, 111-118
choosing between Athena and Redshift, 118
improving performance

approximate counts, 170
dynamic scaling, 172

Query Editor, 112
querying data warehouses

deep data exploration, 143-150
running sample query from SageMaker

Studio, 142
table design and compression, 121-125
training and invoking SageMaker models,

57
training and predicting with SageMaker

Autopilot, 90
Amazon Redshift Spectrum, 111, 125
Amazon Rekognition, 36-38
Amazon S3 (Simple Storage Service)

benefits of, 13, 97
importing data into S3, 101
intelligent-tiering, 119
limiting S3 APIs with S3 Bucket policy, 458
querying data lakes with Athena, 105-109
securing data access

limiting S3 APIs with VPC Endpoint
policy, 457

overview of, 455
restricting S3 bucket access with IAM

role policies, 459
restricting S3 bucket access with S3

Bucket Policy, 458
restricting S3 data access with IAM role

policies, 459
restricting S3 data access with S3 Access

Points, 460
VPC Endpoint with S3 Bucket Policy,

457
shared S3 buckets, 170

Amazon S3 Access Points, 460
Amazon SageMaker (see SageMaker)
Amazon Simple Notification Service (SNS) ,

423, 426
Amazon Transcribe, 45
Amazon Translate, 45
“Amazon.com Recommendations: Item-to-Item

Collaborative Filtering”, 1, 30
analytics workloads, 397
anomaly detection

calculating anomaly scores, 423
in streaming data, 56, 432

Apache Airflow, 6, 397
Apache Kafka, 439
Apache MXNet, 263
Apache Parquet columnar file format, 108, 120
Apache Spark

detecting quality issues with, 151-159
product recommendations, 35
support for with MLflow, 400
transforming raw text into BERT embed‐

dings, 189
application availability, 73
Application Load Balancer, 320
approximate counts, 170
ARN (Amazon Resource Name), 85, 478
auditability, 481
auto-scaling, 55, 310-314
automatic speech recognition (ASR), 44
AutoML (automated machine learning)

Amazon Comprehend
benefits of, 91
custom models with Comprehend

Python SDK, 92
custom models with Comprehend UI, 91
predict with built-in model, 91

488 | Index

nontransparent versus transparent
approaches to, 76

overview of AWS services, 12
SageMaker Autopilot

benefits of, 75
overview of SageMaker Autopilot jobs,

76
tracking experiments, 78

SageMaker Autopilot text classifier
input data, 78
predict with Athena, 89
train and deploy with SageMaker Auto‐

pilot Python SDK, 83-88
train and deploy with SageMaker Auto‐

pilot UI, 79-83
train and predict with Amazon Redshift

ML, 90
availability, improving, 211
AWS Auto Scaling, 55
AWS Center for Quantum Computing, 70
AWS CLI tool, 103
AWS Config, 478, 481
AWS Control Tower, 478
AWS Data Wrangler, 128, 160
AWS Deep Java Library (DJL), 263, 360
AWS DeepComposer, 64
AWS DeepLens, 61
AWS DeepRacer, 62-64
AWS Directory Service, 445
AWS Identity and Access Management (IAM)

compute and network isolation, 211
execution role, 84
IAM policies, 445
IAM service roles, 445
IAM user roles, 445
IAM users, 445
identity-based policies, 451
least privilege access, 450
multifactor authentication (MFA), 449
overview of, 444
resource-based policies, 450
specifying condition keys, 447
specifying permissions, 112

AWS IoT Greengrass, 53
AWS Key Management Service (AWS KMS),

463
AWS Key Management Service (KMS), 467,

478, 483
AWS Lambda, 356, 417, 426, 439

AWS Organizations, 478
AWS Panorama, 52
AWS PrivateLink, 453
AWS Regions, 3
AWS Secrets Manager, 478
AWS Step Functions, 391
AWS Training and Certification (T&C), 60
AWS Trainium, 272
AZs (Availability Zones), 3

B
baseline distribution metrics, 332
batch predictions

versus real-time, 301-302
using SageMaker Batch Transform, 351-356

Bayesian optimization, 278
BERT (Bidirectional Encoder Representations

from Transformers)
additional training options

converting TensorFlow to PyTorch, 260
training Apache MXNet with Sage‐

Maker, 263
training PyTorch with SageMaker, 261
training with PyTorch and AWS Deep

Java Library, 263
benefits of, 182
brief history of algorithms, 218
creating training scripts, 226-232
custom classifiers, 225
debugging models, 245-249
deploying pre-trained BERT models, 212
evaluating models, 239-244
launching training script, 232-238
TensorFlow-BERT inference, 360
training BERT from scratch, 221
transformer architecture, 219-221
transforming raw text into BERT embed‐

dings, 182-186
using pre-trained BERT models, 223-225

BERT attention mechanism, 249
best practices

code reviews, 70
cost optimization, 9
development phases of MLOps, 7
operational excellence, 7
performance efficiency, 9
reliability, 9
security, 8

Bezos' API Mandate, 302

Index | 489

Bezos, Jeff, 101, 302
bfloat16, 270
bias detection

dangers of careless feature engineering, 174
generating and visualizing bias reports,

159-166
identifying imbalances, 159, 177, 249
monitoring bias drift of deployed endpoints,

345-347
with SageMarker Clarify Processing Jobs,

255
bidirectional attention, 219
BlazingText algorithm, 217
bloom filters, 125
blue/green deployments, 317
bootstrapping, 226
Boto3, 128
bottlenecks, 269
Braket, 65, 69
bring your own container (BYOC), 216
business intelligence, 56-60

C
caching, 406
canary rollouts, 315
cardinality-estimation, 170
chatbots, 50
checkpoints, 272
cipher suites, 467
class imbalance, 160, 177
cloud computing

AWS global secure infrastructure, 443
benefits of, 1-3
cloud contact centers, 52
ingesting data into the cloud

building lake houses, 111-118
choosing between Athena and Redshift,

118
continuously ingesting new data, 109
data lake basics, 98-104
overview of, 97
querying data lakes with Athena,

105-109
reducing cost and increasing perfor‐

mance, 119-125
scaling in and scaling out, 310
self-optimizing cloud infrastructure, 55

CloudWatch
alerts for unused resources, 362

auto-scaling SageMaker Endpoints, 310-314
publishing metrics to, 428
summarizing real-time product reviews, 422
visualizing model metrics, 244

CloudWatch Events, 105
CMKs (customer master keys), 463
code examples, obtaining and using, xvi
code reviews, 70
CodeGuru Profiler, 72
CodeGuru Reviewer, 70
cognitive search, 50
cold start problem, 31
collections, 249
columnar file format, 108
comments and questions, xvii
compliance, 443
Comprehend Custom, 91
Comprehend Medical API, 46, 54
Comprehend Python SDK, 92
compression algorithms, 121-125
compute isolation, 211, 452-455
computer vision

Amazon Rekognition, 36-38
AWS DeepLens, 61
uses for, 36

concept drift, 341
condition keys, 447
confusion matrix, 240
Connect Wisdom, 51
Contact Lens, 52
containers

bring your own container (BYOC), 216
deploying multiple models in one, 362
pre-built SageMaker containers, 207
SageMaker containers for training and

inference, 208
continuous delivery (CD), 371
continuous integration (CI), 371
continuous training, 371
conversational devices, 44
corpus, 216
costs

cost optimization best practices, 9
reducing during data exploration, 170-172
reducing during data ingestion, 119-125
reducing during model deployment,

362-366
reducing during model training, 268-274
reducing during scaling, 296-299

490 | Index

reducing during streaming analysis, 440
reducing in MLOps, 406
reducing with fully managed services, 70-73
reducing with tags, budgets, and alerts, 26
security and, 483

counting use cases, 170
credentials, 478
cryptography, 68
Customer Obsession, 46, 51
customer support, 51
customer support messages, 46
customer–agent interactions, 52

D
dashboards

using Amazon Redshift for, 118
benefits of QuickSight for, 16
creating with QuickSight, 150
improving performance with QuickSight

SPICE, 172
metrics dashboards for LOB owners, 22

data capture, 331
data dimensionality, 174
data ingestion and analysis

basic process, 13-18
exploring datasets

analyzing with Glue DataBrew, 168
creating dashboards, 150
detecting bias, 159-166
detecting drift, 166-168
detecting quality issues, 151-159
querying data warehouses, 142-150
reducing cost and increasing perfor‐

mance, 170-172
tools for, 128
visualizing data lakes with SageMaker

Studio, 129-141
ingesting data into the cloud

building lake houses, 111-118
choosing between Athena and Redshift,

118
continuously ingesting new data, 109
data lake basics, 98-104
overview of, 97
querying data lakes with Athena,

105-109
reducing cost and increasing perfor‐

mance, 119-125
preparing data for model training

ingesting and transforming data with
AWS Glue DataBrew, 204-205

ingesting and transforming data with
SageMaker Data Wrangler, 198

overview of, 173
performing feature selection and engi‐

neering, 173-186
scaling feature engineering, 187-194
sharing features, 194
tracking artifact and experiment lineage,

199-203
data lakes

benefits of, 98
building, 99
versus data warehouses, 111
describing datasets, 101-104
importing data into S3, 101
for machine learning features, 194
securing, 477
visualizing with SageMaker Studio, 129-141

data parallelism, 291
data preprocessor (dpp) code, 81
data science projects (see also Amazon AI and

machine learning stack)
AWS infrastructure and custom-built hard‐

ware, 23-26
AWS services overview, 10-13
benefits of cloud computing for, 1-3
data analysis, 14-16
data evaluation, 16
data ingestion, 13
data labeling, 16
data transformation, 17
MLOps best practices, 7-10
model deployment, 21
model training and tuning, 18-21
pipelines and workflows, 4-7
streaming analytics and machine learning,

21
Data Science SDK, 391
data science use cases (see use cases)
data warehouses

building, 111-118
dynamic scaling, 172
querying, 142-150

Data Wrangler (see AWS Data Wrangler; Sage‐
Maker Data Wrangler)

data-quality baselines, 335
database credentials, 478

Index | 491

deadlock situation, 302
debugging, 245-249
DeepAR++ algorithm, 39
Deequ, 16, 152, 154-159, 335
demand forecasting

characteristics of effective systems, 38
dangers of over and underforecasting, 38
energy consumption with Amazon Forecast,

39
predicting demand for Amazon EC2 instan‐

ces, 41
uses for, 38

distributed training, 288-296
drift, detecting, 166-168, 331-334, 345-347
Drucker, Peter, 277
drug discovery, 68

E
early stopping rule, 274
edge device platforms, 357
ELMo algorithm, 217
embeddings, 173
ENA (Elastic Network Adapter), 299
encryption

at rest, 463-467
in transit, 467

enhanced fan-out (EFO), 441
enhanced networking, 299
errata, xvii
ETL (extract-transform-load) workflows, 105,

112, 204, 397
event-based trigers, 386
EventBridge rules, 390
explainability baseline, 259
external dependencies, 211

F
fake accounts, 42
Fast Healthcare Interoperability Resources, 55
FastText algorithm, 217
feature attribution, 258
feature attribution drift, 348-350
feature engineering

balancing datasets to improve accuracy,
177-180

benefits of, 174
converting features and labels to Tensor‐

Flow format, 186
dangers of careless, 174

with AWS Glue DataBrew, 204-205
latent features, 174
with SageMaker Data Wrangler, 198
scaling with SageMaker Processing Jobs,

187-194
selecting features based on importance,

175-177
sharing features, 194-198
splitting datasets, 180-182
tracking artifact and experiment lineage,

199-203
transforming raw text into BERT embed‐

dings, 182-186
types of, 174
typical pipeline for, 175

Feature Stores, 194-198
feedback loops, 404
financial optimizations, 68
forecasting (see demand forecasting)
fraud detection, 42-43
frequently requested features, 195
full precision, 271

G
gated recurrent units, 218
generative adversarial networks (GANs), 64
GitOps automation, 386
GloVe algorithm, 217
Glue Crawler, 107, 109
Glue Data Catalog, 105, 109
Glue DataBrew, 168-170, 204-205
Glue Studio, 105
governance, 478-481
GPT algorithm, 218
graph data, running predictions on, 60

H
half precision, 270
hardware, Amazon custom-built, 23-26
healthcare data, 54
high-availability, 211
high-dimensional vector space, 173
home automation, 53
human-in-the-loop workflows

Amazon Augmented AI, 401-404
benefits of, 400
Ground Truth, 404

hyper-parameter optimization (HPO), 233, 277
hyper-parameter selection algorithm, 280

492 | Index

hyper-parameter tuning (HPT), 81, 233, 277,
284

hyper-parameters, 180, 233
HyperLogLog (HLL), 170

I
identity and access management (see AWS

Identity and Access Management)
identity-based policies, 451
images and videos, analyzing with Amazon

Rekognition, 36-38
in-application streams, 431
industrial AI services, 52
inference pipelines, 308
inference-optimized hardware, 366
Inferentia, 366
infrastructure

avoiding need to manage your own, 75
AWS global secure infrastructure, 443
AWS infrastructure and custom-built hard‐

ware, 23-26
intelligent cloud infrastructure, 55

intelligent cloud infrastructure, 55
intelligent-tiering, 119
interactive queries, 57, 89
interactive query service, 105
IoT (Internet of Things), 53

J
Jassy, Andy, 1, 123
Jenkins, 371
job zero, 443
JSON policy documents, 450

K
k-folds cross-validation, 181
key-exchange mechanism, 467
Kinesis Data Analytics

anomaly detection, 56
applications

calculating approximate counts of
streaming data, 433

calculating average star ratings, 432
creating, 434
detecting anomalies in streaming data,

432
putting messages on the stream, 437
starting, 436

overview of, 424
processing sentiment-enriched messages,

416
set up

creating Kinesis Data Stream, 424
publishing metrics to Cloudwatch, 428
sending notifications, 426
transforming streaming data, 430
understanding in-application streams

and pumps, 431
windowed queries

Sliding Windows, 414
Stagger Windows, 412
Tumbling Windows, 413

Kinesis Data Firehose, 415, 418-422, 440
Kinesis Data Streams

approximate counts, 423
enhanced fan-out for, 441
versus Kinesis Firehose, 440

Kinesis Producer Library (KPL), 440
Kolmogorov–Smirnov test, 331
Kubeflow Pipelines, 392
Kubernetes, 392
Kullback–Leibler divergence, 331

L
L-infinity norm, 331
Lake Formation, 99, 477
Lake House Architecture, 100
Lambda functions, 356, 418
language translation, 45
least privilege access, 450
lineage tracking, 199-203
logistic regression algorithm, 217
logistics, 68
LSTM (long short-term memory), 217

M
machine learning (ML)

pipelines for, 371-375
popular frameworks, 215

machine learning operations (MLOps) (see also
pipelines)
benefits of automated pipelines, 372
best practices, 7-10
three phases of, 370

machine learning projects (see data science
projects)

Machine Learning University, 60-65

Index | 493

Masked Language Model (Masked LM), 221
Massive Open Online Courses, 60
materialized views, 125
Matplotlib, 14, 130
MDLC (model development life cycle)

preserving artifact lineage across, 198
team collaboration in, 369
three phases of, 180

mean time to detect, 173
metrics, post-training, 257
mixed precision, 271
MLflow, 400
model deployment

auto-scaling using CloudWatch, 310-314
benefits of cloud computing for, 3
deploying new and updated models,

315-318
deploying PyTorch models, 357
Lambda functions and API Gateway, 356
monitoring bias drift of deployed endpoints,

345-347
monitoring data quality of deployed end‐

points, 335-340
monitoring feature attribution drift of

deployed endpoints, 348-350
monitoring model quality of deployed end‐

points, 341-344
monitoring performance and detecting

drift, 331-334
optimizing and managing models at the

edge, 357
overview of, 21
performing batch predictions, 351-356
real-time or batch predictions, 301-302
real-time predictions with SageMaker End‐

points, 302-310
reducing cost and increasing performance,

362-366
TensorFlow-BERT inference, 360
testing and comparing new models, 319-331

A/B tests to compare variants, 320
reinforcement learning with multiarmed

bandit testing, 323
model development (see data ingestion and

analysis; model deployment; model training
and tuning)

model explainability, 254
model parallelism, 291
model quality baselines, 342

model training and tuning
Amazon Augmented AI for improved accu‐

racy, 401-404
Amazon Comprehend

custom models with Comprehend
Python SDK, 92

custom models with Comprehend UI, 91
at scale

distributed training, 288-296
finding best model hyper-parameters,

277-284
reducing cost and increasing perfor‐

mance, 296-299
using warm start technique, 284-288

custom review classifier
BERT training options, 259-267
brief history of NLP, 216-221
creating training scripts, 226-232
debugging and profile model training,

245-249
detecting model bias and explaining pre‐

dictions, 255-259
developing SageMaker models, 214-216
evaluating models, 239-244
interpreting and explaining model pre‐

dictions, 249-255
launching training scripts, 232-238
pre-trained BERT models, 212-214
reducing cost and increasing perfor‐

mance, 268-274
SageMaker infrastructure, 207-211
training BERT from scratch, 221-223
using pre-trained BERT models, 223-225

overview of, 5, 18-21
SageMaker Autopilot text classifier

predict with Athena, 89
using SageMaker Autopilot Python SDK,

83-88
using SageMaker Autopilot UI, 79-83
train and invoke with Amazon Redshift,

57
train and predict with Amazon Redshift,

90
molecular simulations, 68
multiarmed bandits (MABs), 323-331
multifactor authentication (MFA), 449
multiheaded attention, 219

494 | Index

N
network isolation, 211, 452-455, 476
new and updated models

deploying
shift traffic for blue/green deployments,

317
split traffic for canary rollouts, 315

testing and comparing
A/B tests to compare variants, 320
overview of, 319
reinforcement learning with multiarmed

bandit testing, 323
next sentence prediction (NSP), 222
NLP (natural language processing)

Amazon Comprehend, 91-94
brief history of, 216-221
use cases for, 45-50

NLU (natural language understanding), 44, 50
Noisy Intermediate-Scale Quantum, 67
NumPy, 130

O
offline learning, 410
one-hot encoding, 173
online learning, 410
open source libraries

Apache Airflow, 6, 397
Apache MXNet, 263
Apache Spark, 35, 151-159, 189, 400
AWS Data Wrangler, 128, 160
Deequ, 16, 152, 154-159, 335
Kubeflow Pipelines, 6, 392
Matplotlib, 14, 130
MLflow, 6, 400
NumPy, 130
PyAthena, 128
PyDeequ, 152
PyTorch, 260, 263, 357
SageMaker Clarify, 163, 255
scikit-learn, 188
Seaborn, 14, 130, 159
TFX (TensorFlow Extended), 6, 400

oversampling, 180

P
pandas, 130
parallelism, 291
parameters, 233

Parquet-based tables, 108, 120
pay-as-you-go pricing, 1, 29, 153, 217, 268
performance efficiency

best practices, 9
feature stores, 195
increasing during data exploration, 170-172
increasing during data ingestions, 119-125
increasing during model deployment,

362-366
increasing during model training, 268-274
increasing during scaling, 296-299
increasing during streaming analysis, 440
increasing in MLOps, 406
increasing with fully managed services, 70
monitoring performance, 331-334
security and, 483

personally identifiable information, 44
pipelines

human-in-the-loop workflows, 400-405
inference pipelines, 308
introduction to

Amazon SageMaker, 5
Apache Airflow, 6
AWS Step Functions, 5
customized models, 4
example of typical, 4
human-in-the-loop workflows, 6
Kubeflow Pipelines, 6
ML problem types and algorithms, 4
MLflow Workflows, 6
model deployment, 5
model training and tuning, 5
TFX (TensorFlow Extended), 6

machine learning pipelines, 371-375
reducing cost and increasing performance,

406
repeatable and automated

Apache Airflow, 397
AWS Step Functions, 391
Kubeflow, 392
MLflow, 400
SageMaker Pipelines for automation,

386-391
SageMaker Pipelines for orchestration,

375-386
TFX (TensorFlow Extended), 400

software pipelines, 371
typical pipeline for feature engineering, 175

polysemy, 219

Index | 495

POSIX-compatible filesystems, 292
post-quantum TLS encryption, 467
post-training metrics, 257
pre-trained models, 270
prediction latency, 356
predictive maintenance, 52
Presto, 105
priority zero, 443
privacy leaks, 43
product recommendations

Amazon Personalize, 32-34
Amazon SageMaker and Apache Spark, 35
Amazon SageMaker and TensorFlow, 34
benefits of personalized, 31
cold start problem, 31
early systems, 30
modern systems, 31
popularity traps, 31

production variants, 315
prototyping, 3
provisioned concurrency, 356
pumps, 431
PyAthena, 128
PyDeequ, 152
PyTorch

converting TensorFlow BERT models to,
260

deploying models with TorchServe, 357
training BERT with SageMaker, 261

Q
quality issues, detecting in data, 151-159
quantization, 272
quantum applications, 65-70
quantum bits (qubits), 67
quantum supremacy, 67
quantum-resistant security, 467
queries

interactive, 57, 89
windowed, 411-415

questions and comments, xvii
Quick Model analysis feature, 175
QuickSight

asking natural-language questions with, 57
benefits of, 16, 128
creating dashboards with, 150
data analysis with, 14
improving dashboard performance with

SPICE, 172

R
random-search optimization, 278
randomness, 226
RCF (random cut forest) algorithm, 57, 432
real-time predictions

versus batch predictions, 301-302
with SageMaker Endpoints, 302-310
summarizing product reviews, 422

recommendation systems (see product recom‐
mendations)

recurrent neural networks (RNNs), 218
reinforcement learning (RL), 62-64, 323
reliability, 9
resource tagging, 482, 484
resource-based policies, 450, 455
resources, removing unused, 362
RoBERTa, 254
"Robust Random Cut Forest Based Anomaly

Detection on Streams", 432

S
S3 Intelligent-Tiering, 119
SageMaker

benefits of, 208
built-in algorithms, 207
compute instance types, 23
developing models, 214-216
home automation with, 53
infrastructure

containers for training and inference,
208-210

increased availability, 211
pre-built containers, 207

invoking models from Athena, 59
invoking models from Aurora SQL data‐

base, 58
overview of, 12
product recommendations

with Apache Spark, 35
with TensorFlow, 34

role-based access controls, 445
training and invoking models with Amazon

Redshift, 57
SageMaker Autopilot

benefits of, 75
hyper-parameter selection algorithm, 280
overview of SageMaker Autopilot jobs, 76
text classifier example

input data, 78

496 | Index

predict with Athena, 89
train and deploy with SageMaker Auto‐

pilot Python SDK, 83-88
train and deploy with SageMaker Auto‐

pilot UI, 79-83
train and predict with Amazon Redshift

ML, 90
tracking experiments with, 78
transparent approach of, 76

SageMaker Batch Transform, 351-356
SageMaker Clarify

detecting bias and class imbalances, 162-164
detecting bias drift in deployed endpoints,

345-347
detecting bias with, 255
detecting types of drift with, 166-168
feature attribution and importance with,

258
monitoring feature attribution drift of

deployed endpoints, 348-350
SageMaker Data Wrangler

versus AWS Data Wrangler, 128
feature engineering with, 175
generating and visualizing bias reports,

159-166
ingesting and transforming data with, 198

SageMaker Debugger
debugging and profile model training,

245-249
early stopping rule, 274
interpreting and explaining predictions,

249-255
profiling training jobs with, 269

SageMaker Edge Manager, 357
SageMaker Endpoints

auto-scaling using CloudWatch, 310-314
classifying product reviews, 439
classifying real-time product reviews, 417
deleting unused, 362
deploying new and updated models,

315-318
invoking with Lambda function, 418
real-time predictions with, 302-310
reducing cost and increasing performance,

362-366
SageMaker Experiments, 78, 199-203, 277, 372
SageMaker Feature Store, 194-198
SageMaker Ground Truth, 404
SageMaker Hyper-Parameter Tuning (HPT)

distributed training, 288
finding best hyper-parameter, 277-284
using warm start technique, 284-288

SageMaker Hyper-Parameter Tuning (HPT)
Job, 233

SageMaker Hyper-Parameter Tuning Job, 81
SageMaker Jobs

encryption at rest, 466
encryption in transit, 469
securing, 473-477

SageMaker JumpStart, 212
SageMaker ML Lineage Tracking, 199-203
SageMaker Model Monitor

detecting and measuring drift, 331-334
monitoring data quality of deployed end‐

points, 335-340
monitoring model quality of deployed end‐

points, 341-344
SageMaker Neo, 364
SageMaker Neo Compilation Jobs, 357
SageMaker Notebooks

encryption at rest, 466
securing instances, 469

SageMaker Pipelines
integration capabilities, 5
pipeline automation with

event- versus time-based triggers, 386
GitOps trigger when committing code,

386
S3 trigger when new data arrives, 387
statistical drift triggers, 390
time-based schedule triggers, 390

pipeline orchestration with
approving models for staging and pro‐

duction, 384
configuring pipeline parameters, 382
creating pipelines, 383
defining pipeline steps, 377
reviewing pipeline artifact lineage, 385
reviewing pipeline experiment lineage,

386
starting pipelines with Python SDK, 383
starting pipelines with SageMaker Studio

UI, 383
steps included in, 375
tracking pipeline lineage, 376

reducing cost and increasing performance,
406

SageMaker Processing Jobs

Index | 497

benefits of, 153
detecting bias with, 162
detecting bias with SageMaker Clarify, 255
scaling feature engineering with, 187-194
scheduling data-quality monitoring, 336

SageMaker Studio
benefits of, 127
detecting quality issues

analyzing with Deequ and Apache Spark,
154-159

catching issues early, 151
SageMaker Processing Jobs, 153

encryption at rest, 467
monitoring metrics with, 243
querying data warehouses

deep data exploration, 143-150
running sample Amazon Redshift query,

142
securing, 471
starting pipelines with, 383
training and deploying with SageMaker

Autopilot UI, 79
visualizing data lakes

deep data exploration, 132-141
preparing SageMaker Studio, 130
running sample Athena query, 130
schema overview, 129

saliency maps, 254
scanned documents, 54
schema on read, 118
schema on write, 118
scikit-learn, 188
Seaborn, 14, 130, 159
search problems, 50
Secrets Manager, 478
security

auditability, 481
AWS Identity Access Management (IAM)

IAM policies, 445
IAM service roles, 445
IAM user roles, 445
IAM users, 445
identity-based policies, 451
least privilege access, 450
multifactor authentication (MFA), 449
overview of, 444
resource-based policies, 450
specifying condition keys, 447

best practices, 8

compute and network isolation, 211,
452-455

database credentials, 478
encryption at rest, 463-467
encryption in transit, 467
fraudulent activity, 42
governance, 478-481
identifying and preventing privacy leaks, 43
importance of, 443
Lake Formation, 477
reducing cost and increasing performance,

483
S3 data access

limiting S3 APIs with S3 Bucket policy,
458

limiting S3 APIs with VPC Endpoint
policy, 457

overview of, 455
restricting S3 bucket access with IAM

role policies, 459
restricting S3 bucket access with S3

Bucket Policy, 458
restricting S3 data access with IAM role

policies, 459
restricting S3 data access with S3 Access

Points, 460
VPC Endpoint with S3 Bucket Policy,

457
SageMaker Notebooks, 469
SageMaker Studio, 471
shared model of, 443

self-attention, 219
sentiment analysis

classifying social feedback, 78-91
predicting with Amazon Comprehend, 91
use cases for, 46

Sentiment Analysis API, 46
service control policies (SCPs), 478
SHAP, 258, 348-350
sharding, 182, 189, 291
shift (see drift)
Slack, 50
sliding windows, 414
software pipelines, 371
speech recognition, 44
speech-to-text conversion, 45
SPICE (Super-fast, Parallel, In-memory Calcu‐

lation Engine), 172
split traffic, for canary rollouts, 315

498 | Index

Spot Instances, 272, 393, 407
SQL queries, 106
SQLAlchemy, 128
stagger windows, 412
starts per second (SPS), 313
statistical drift triggers, 390
statistical functions, 204
step caching, 406
storage classes, 119
streaming analytics

anomaly detection, 56
benefits of, 409
classifying product reviews, 439
classifying real-time product reviews, 417
Kinesis Data Analytics applications, 432-438
Kinesis Data Analytics set up, 424-432
and machine learning on AWS, 415
online versus offline learning, 410
overview of, 21
reducing cost and increasing performance,

440
streaming applications, 410
streaming data ingest, 418-422
summarizing real-time product reviews, 422
use cases for, 409
windowed queries on streaming data,

411-415
Synthetic Minority Oversampling Technique,

180

T
tables

creating Parquet-based, 108
in data lakes, 100
design and compression in Amazon Red‐

shift, 121-125
optimizing, 115
registering S3 data as Athena tables, 106
table-to-S3 mapping, 105
updating as new data arrives, 107
viewing table metadata, 106

TensorBoard, 241
TensorFlow

converting features and labels to TFRecord
file format, 186

product recommendations with SageMaker,
34

transforming raw text into BERT embed‐
dings, 189

TensorFlow Data Validation (TFDV), 154
TensorFlow Lite, 364
term frequency–inverse document frequency

(TF-IDF), 190
test datasets, 180
text analysis

classifying social feedback, 78-91
predictions with Amazon Comprehend, 91
use cases for, 45-50

text-to-speech conversion, 45
TFRecord file format, 186
TFX (TensorFlow Extended), 6, 154, 400
time-based triggers, 386, 390
time-based windows, 411
time-series data, 182
tokenization, 217
TorchServe, 357
traffic

shifting for blue/green deployments, 317
splitting for canary rollouts, 315

training datasets, 180
training-optimized chips, 272
Transcribe Medical, 54
Transformer neural network, 218
transformer-based sequence model, 219
Transformers library, 260
translation, 45
Transport Layer Security (TLS), 467
triggers, event- versus time-based, 386
“Two Decades of Recommender Systems at

Amazon.com" (Smith and Linden), 32

U
undersampling, 180
use cases

cognitive and predictive business intelli‐
gence, 56-60

cognitive search and natural language
understanding, 50

computer vision, 36
conversational devices, 44
counting use cases, 170
customer support, 51
demand forecasting, 38-41
educating next generation of developers,

60-65
fraud detection, 42-44
healthcare, 54
home automation, 53

Index | 499

identifying and preventing privacy leaks, 43
increasing performance and reducing costs,

70-73
industrial predictive maintenance, 52
innovation across every industry, 29
Internet of Things (IoT), 53
product recommendations, 30-36
quantum computing, 65-70
self-optimizing cloud infrastructure, 55
text analysis and natural language process‐

ing, 45-50

V
validation datasets, 180
videos (see images and videos)
virtual private clouds (VPCs), 211, 452
visualizations

bias reports, 159-166
with CodeGuru Profiler, 72
creating dashboards with QuickSight, 150
open source libraries for, 14
querying data warehouses, 142-150
with QuickSight, 57
visualizing data lakes with SageMaker Stu‐

dio, 129-141

voice assistants, 44
VPC Endpoints, 453

W
warm start technique, 284-288
weights, 233
windowed queries

sliding windows, 414
stagger windows, 412
time-based windows, 411
tumbling windows, 413

word embeddings, 216
word of mouth, 101
word vectors, 216
Word2Vec algorithm, 217

X
XGBoost algorithm, 217

Z
zstd algorithm, 123

500 | Index

About the Authors
Chris Fregly is a principal developer advocate for AI and machine learning at AWS,
based in San Francisco. He regularly speaks at AI and machine learning conferences
around the world, including the O’Reilly AI Superstream Series. Previously, Chris was
founder at PipelineAI, solutions engineer at Databricks, and software engineer at
Netflix. Chris has been focused on building AI and machine learning pipelines with
AWS for the past decade.

Antje Barth is a senior developer advocate for AI and machine learning at AWS,
based in Düsseldorf, Germany. Antje is cofounder of the Düsseldorf chapter of
Women in Big Data and frequently speaks at AI and machine learning conferences
and meetups around the world. She also chairs and curates content for O’Reilly AI
Superstream events. Previously, Antje was an engineer at Cisco and MapR focused on
data center infrastructures, big data, and AI applications.

Colophon
The bird on the cover of Data Science on AWS is a northern pintail drake (Anas
acuta). These large ducks cover the northern hemisphere in the breeding seasons
(spring and summer), and migrate to the south for the winter.

Northern pintails are sexually dimorphic—only the males have the characteristic 4-
inch-long central tail feathers. An average northern pintail weighs about 2 pounds
and measures 21 to 25 inches long. They can live more than 20 years in the wild. In
the spring, hens lay 7 to 9 cream-colored eggs and incubate them for about 3 weeks.
The birds eat mostly plant matter, like seeds, roots, and grains, as well as some animal
matter, including insects, mollusks, and crustaceans.

Northern pintail populations have seen some decline, but the IUCN Red List consid‐
ers the species well-protected, classifying it of Least Concern. Many of the animals on
O’Reilly’s covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from British Birds. The cover fonts are Gilroy Semibold and Guardian Sans. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Copyright
	Table of Contents
	Preface
	Overview of the Chapters
	Who Should Read This Book
	Other Resources
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Data Science on AWS
	Benefits of Cloud Computing
	Agility
	Cost Savings
	Elasticity
	Innovate Faster
	Deploy Globally in Minutes
	Smooth Transition from Prototype to Production

	Data Science Pipelines and Workflows
	Amazon SageMaker Pipelines
	AWS Step Functions Data Science SDK
	Kubeflow Pipelines
	Managed Workflows for Apache Airflow on AWS
	MLflow
	TensorFlow Extended
	Human-in-the-Loop Workflows

	MLOps Best Practices
	Operational Excellence
	Security
	Reliability
	Performance Efficiency
	Cost Optimization

	Amazon AI Services and AutoML with Amazon SageMaker
	Amazon AI Services
	AutoML with SageMaker Autopilot

	Data Ingestion, Exploration, and Preparation in AWS
	Data Ingestion and Data Lakes with Amazon S3 and AWS Lake Formation
	Data Analysis with Amazon Athena, Amazon Redshift, and Amazon QuickSight
	Evaluate Data Quality with AWS Deequ and SageMaker Processing Jobs
	Label Training Data with SageMaker Ground Truth
	Data Transformation with AWS Glue DataBrew, SageMaker Data Wrangler, and SageMaker Processing Jobs

	Model Training and Tuning with Amazon SageMaker
	Train Models with SageMaker Training and Experiments
	Built-in Algorithms
	Bring Your Own Script (Script Mode)
	Bring Your Own Container
	Pre-Built Solutions and Pre-Trained Models with SageMaker JumpStart
	Tune and Validate Models with SageMaker Hyper-Parameter Tuning

	Model Deployment with Amazon SageMaker and AWS Lambda Functions
	SageMaker Endpoints
	SageMaker Batch Transform
	Serverless Model Deployment with AWS Lambda

	Streaming Analytics and Machine Learning on AWS
	Amazon Kinesis Streaming
	Amazon Managed Streaming for Apache Kafka
	Streaming Predictions and Anomaly Detection

	AWS Infrastructure and Custom-Built Hardware
	SageMaker Compute Instance Types
	GPUs and Amazon Custom-Built Compute Hardware
	GPU-Optimized Networking and Custom-Built Hardware
	Storage Options Optimized for Large-Scale Model Training

	Reduce Cost with Tags, Budgets, and Alerts
	Summary

	Chapter 2. Data Science Use Cases
	Innovation Across Every Industry
	Personalized Product Recommendations
	Recommend Products with Amazon Personalize
	Generate Recommendations with Amazon SageMaker and TensorFlow
	Generate Recommendations with Amazon SageMaker and Apache Spark

	Detect Inappropriate Videos with Amazon Rekognition
	Demand Forecasting
	Predict Energy Consumption with Amazon Forecast
	Predict Demand for Amazon EC2 Instances with Amazon Forecast

	Identify Fake Accounts with Amazon Fraud Detector
	Enable Privacy-Leak Detection with Amazon Macie
	Conversational Devices and Voice Assistants
	Speech Recognition with Amazon Lex
	Text-to-Speech Conversion with Amazon Polly
	Speech-to-Text Conversion with Amazon Transcribe

	Text Analysis and Natural Language Processing
	Translate Languages with Amazon Translate
	Classify Customer-Support Messages with Amazon Comprehend
	Extract Resume Details with Amazon Textract and Comprehend

	Cognitive Search and Natural Language Understanding
	Intelligent Customer Support Centers
	Industrial AI Services and Predictive Maintenance
	Home Automation with AWS IoT and Amazon SageMaker
	Extract Medical Information from Healthcare Documents
	Self-Optimizing and Intelligent Cloud Infrastructure
	Predictive Auto Scaling for Amazon EC2
	Anomaly Detection on Streams of Data

	Cognitive and Predictive Business Intelligence
	Ask Natural-Language Questions with Amazon QuickSight
	Train and Invoke SageMaker Models with Amazon Redshift
	Invoke Amazon Comprehend and SageMaker Models from Amazon Aurora SQL Database
	Invoke SageMaker Model from Amazon Athena
	Run Predictions on Graph Data Using Amazon Neptune

	Educating the Next Generation of AI and ML Developers
	Build Computer Vision Models with AWS DeepLens
	Learn Reinforcement Learning with AWS DeepRacer
	Understand GANs with AWS DeepComposer

	Program Nature’s Operating System with Quantum Computing
	Quantum Bits Versus Digital Bits
	Quantum Supremacy and the Quantum Computing Eras
	Cracking Cryptography
	Molecular Simulations and Drug Discovery
	Logistics and Financial Optimizations
	Quantum Machine Learning and AI
	Programming a Quantum Computer with Amazon Braket
	AWS Center for Quantum Computing

	Increase Performance and Reduce Cost
	Automatic Code Reviews with CodeGuru Reviewer
	Improve Application Performance with CodeGuru Profiler
	Improve Application Availability with DevOps Guru

	Summary

	Chapter 3. Automated Machine Learning
	Automated Machine Learning with SageMaker Autopilot
	Track Experiments with SageMaker Autopilot
	Train and Deploy a Text Classifier with SageMaker Autopilot
	Train and Deploy with SageMaker Autopilot UI
	Train and Deploy a Model with the SageMaker Autopilot Python SDK
	Predict with Amazon Athena and SageMaker Autopilot
	Train and Predict with Amazon Redshift ML and SageMaker Autopilot

	Automated Machine Learning with Amazon Comprehend
	Predict with Amazon Comprehend’s Built-in Model
	Train and Deploy a Custom Model with the Amazon Comprehend UI
	Train and Deploy a Custom Model with the Amazon Comprehend Python SDK

	Summary

	Chapter 4. Ingest Data into the Cloud
	Data Lakes
	Import Data into the S3 Data Lake
	Describe the Dataset

	Query the Amazon S3 Data Lake with Amazon Athena
	Access Athena from the AWS Console
	Register S3 Data as an Athena Table
	Update Athena Tables as New Data Arrives with AWS Glue Crawler
	Create a Parquet-Based Table in Athena

	Continuously Ingest New Data with AWS Glue Crawler
	Build a Lake House with Amazon Redshift Spectrum
	Export Amazon Redshift Data to S3 Data Lake as Parquet
	Share Data Between Amazon Redshift Clusters

	Choose Between Amazon Athena and Amazon Redshift
	Reduce Cost and Increase Performance
	S3 Intelligent-Tiering
	Parquet Partitions and Compression
	Amazon Redshift Table Design and Compression
	Use Bloom Filters to Improve Query Performance
	Materialized Views in Amazon Redshift Spectrum

	Summary

	Chapter 5. Explore the Dataset
	Tools for Exploring Data in AWS
	Visualize Our Data Lake with SageMaker Studio
	Prepare SageMaker Studio to Visualize Our Dataset
	Run a Sample Athena Query in SageMaker Studio
	Dive Deep into the Dataset with Athena and SageMaker

	Query Our Data Warehouse
	Run a Sample Amazon Redshift Query from SageMaker Studio
	Dive Deep into the Dataset with Amazon Redshift and SageMaker

	Create Dashboards with Amazon QuickSight
	Detect Data-Quality Issues with Amazon SageMaker and Apache Spark
	SageMaker Processing Jobs
	Analyze Our Dataset with Deequ and Apache Spark

	Detect Bias in Our Dataset
	Generate and Visualize Bias Reports with SageMaker Data Wrangler
	Detect Bias with a SageMaker Clarify Processing Job
	Integrate Bias Detection into Custom Scripts with SageMaker Clarify Open Source
	Mitigate Data Bias by Balancing the Data

	Detect Different Types of Drift with SageMaker Clarify
	Analyze Our Data with AWS Glue DataBrew
	Reduce Cost and Increase Performance
	Use a Shared S3 Bucket for Nonsensitive Athena Query Results
	Approximate Counts with HyperLogLog
	Dynamically Scale a Data Warehouse with AQUA for Amazon Redshift
	Improve Dashboard Performance with QuickSight SPICE

	Summary

	Chapter 6. Prepare the Dataset for Model Training
	Perform Feature Selection and Engineering
	Select Training Features Based on Feature Importance
	Balance the Dataset to Improve Model Accuracy
	Split the Dataset into Train, Validation, and Test Sets
	Transform Raw Text into BERT Embeddings
	Convert Features and Labels to Optimized TensorFlow File Format

	Scale Feature Engineering with SageMaker Processing Jobs
	Transform with scikit-learn and TensorFlow
	Transform with Apache Spark and TensorFlow

	Share Features Through SageMaker Feature Store
	Ingest Features into SageMaker Feature Store
	Retrieve Features from SageMaker Feature Store

	Ingest and Transform Data with SageMaker Data Wrangler
	Track Artifact and Experiment Lineage with Amazon SageMaker
	Understand Lineage-Tracking Concepts
	Show Lineage of a Feature Engineering Job
	Understand the SageMaker Experiments API

	Ingest and Transform Data with AWS Glue DataBrew
	Summary

	Chapter 7. Train Your First Model
	Understand the SageMaker Infrastructure
	Introduction to SageMaker Containers
	Increase Availability with Compute and Network Isolation

	Deploy a Pre-Trained BERT Model with SageMaker JumpStart
	Develop a SageMaker Model
	Built-in Algorithms
	Bring Your Own Script
	Bring Your Own Container

	A Brief History of Natural Language Processing
	BERT Transformer Architecture
	Training BERT from Scratch
	Masked Language Model
	Next Sentence Prediction

	Fine Tune a Pre-Trained BERT Model
	Create the Training Script
	Setup the Train, Validation, and Test Dataset Splits
	Set Up the Custom Classifier Model
	Train and Validate the Model
	Save the Model

	Launch the Training Script from a SageMaker Notebook
	Define the Metrics to Capture and Monitor
	Configure the Hyper-Parameters for Our Algorithm
	Select Instance Type and Instance Count
	Putting It All Together in the Notebook
	Download and Inspect Our Trained Model from S3
	Show Experiment Lineage for Our SageMaker Training Job
	Show Artifact Lineage for Our SageMaker Training Job

	Evaluate Models
	Run Some Ad Hoc Predictions from the Notebook
	Analyze Our Classifier with a Confusion Matrix
	Visualize Our Neural Network with TensorBoard
	Monitor Metrics with SageMaker Studio
	Monitor Metrics with CloudWatch Metrics

	Debug and Profile Model Training with SageMaker Debugger
	Detect and Resolve Issues with SageMaker Debugger Rules and Actions
	Profile Training Jobs

	Interpret and Explain Model Predictions
	Detect Model Bias and Explain Predictions
	Detect Bias with a SageMaker Clarify Processing Job
	Feature Attribution and Importance with SageMaker Clarify and SHAP

	More Training Options for BERT
	Convert TensorFlow BERT Model to PyTorch
	Train PyTorch BERT Models with SageMaker
	Train Apache MXNet BERT Models with SageMaker
	Train BERT Models with PyTorch and AWS Deep Java Library

	Reduce Cost and Increase Performance
	Use Small Notebook Instances
	Test Model-Training Scripts Locally in the Notebook
	Profile Training Jobs with SageMaker Debugger
	Start with a Pre-Trained Model
	Use 16-Bit Half Precision and bfloat16
	Mixed 32-Bit Full and 16-Bit Half Precision
	Quantization
	Use Training-Optimized Hardware
	Spot Instances and Checkpoints
	Early Stopping Rule in SageMaker Debugger

	Summary

	Chapter 8. Train and Optimize Models at Scale
	Automatically Find the Best Model Hyper-Parameters
	Set Up the Hyper-Parameter Ranges
	Run the Hyper-Parameter Tuning Job
	Analyze the Best Hyper-Parameters from the Tuning Job
	Show Experiment Lineage for Our SageMaker Tuning Job

	Use Warm Start for Additional SageMaker Hyper-Parameter Tuning Jobs
	Run HPT Job Using Warm Start
	Analyze the Best Hyper-Parameters from the Warm-Start Tuning Job

	Scale Out with SageMaker Distributed Training
	Choose a Distributed-Communication Strategy
	Choose a Parallelism Strategy
	Choose a Distributed File System
	Launch the Distributed Training Job

	Reduce Cost and Increase Performance
	Start with Reasonable Hyper-Parameter Ranges
	Shard the Data with ShardedByS3Key
	Stream Data on the Fly with Pipe Mode
	Enable Enhanced Networking

	Summary

	Chapter 9. Deploy Models to Production
	Choose Real-Time or Batch Predictions
	Real-Time Predictions with SageMaker Endpoints
	Deploy Model Using SageMaker Python SDK
	Track Model Deployment in Our Experiment
	Analyze the Experiment Lineage of a Deployed Model
	Invoke Predictions Using the SageMaker Python SDK
	Invoke Predictions Using HTTP POST
	Create Inference Pipelines
	Invoke SageMaker Models from SQL and Graph-Based Queries

	Auto-Scale SageMaker Endpoints Using Amazon CloudWatch
	Define a Scaling Policy with AWS-Provided Metrics
	Define a Scaling Policy with a Custom Metric
	Tuning Responsiveness Using a Cooldown Period
	Auto-Scale Policies

	Strategies to Deploy New and Updated Models
	Split Traffic for Canary Rollouts
	Shift Traffic for Blue/Green Deployments

	Testing and Comparing New Models
	Perform A/B Tests to Compare Model Variants
	Reinforcement Learning with Multiarmed Bandit Testing

	Monitor Model Performance and Detect Drift
	Enable Data Capture
	Understand Baselines and Drift

	Monitor Data Quality of Deployed SageMaker Endpoints
	Create a Baseline to Measure Data Quality
	Schedule Data-Quality Monitoring Jobs
	Inspect Data-Quality Results

	Monitor Model Quality of Deployed SageMaker Endpoints
	Create a Baseline to Measure Model Quality
	Schedule Model-Quality Monitoring Jobs
	Inspect Model-Quality Monitoring Results

	Monitor Bias Drift of Deployed SageMaker Endpoints
	Create a Baseline to Detect Bias
	Schedule Bias-Drift Monitoring Jobs
	Inspect Bias-Drift Monitoring Results

	Monitor Feature Attribution Drift of Deployed SageMaker Endpoints
	Create a Baseline to Monitor Feature Attribution
	Schedule Feature Attribution Drift Monitoring Jobs
	Inspect Feature Attribution Drift Monitoring Results

	Perform Batch Predictions with SageMaker Batch Transform
	Select an Instance Type
	Set Up the Input Data
	Tune the SageMaker Batch Transform Configuration
	Prepare the SageMaker Batch Transform Job
	Run the SageMaker Batch Transform Job
	Review the Batch Predictions

	AWS Lambda Functions and Amazon API Gateway
	Optimize and Manage Models at the Edge
	Deploy a PyTorch Model with TorchServe
	TensorFlow-BERT Inference with AWS Deep Java Library
	Reduce Cost and Increase Performance
	Delete Unused Endpoints and Scale In Underutilized Clusters
	Deploy Multiple Models in One Container
	Attach a GPU-Based Elastic Inference Accelerator
	Optimize a Trained Model with SageMaker Neo and TensorFlow Lite
	Use Inference-Optimized Hardware

	Summary

	Chapter 10. Pipelines and MLOps
	Machine Learning Operations
	Software Pipelines
	Machine Learning Pipelines
	Components of Effective Machine Learning Pipelines
	Steps of an Effective Machine Learning Pipeline

	Pipeline Orchestration with SageMaker Pipelines
	Create an Experiment to Track Our Pipeline Lineage
	Define Our Pipeline Steps
	Configure the Pipeline Parameters
	Create the Pipeline
	Start the Pipeline with the Python SDK
	Start the Pipeline with the SageMaker Studio UI
	Approve the Model for Staging and Production
	Review the Pipeline Artifact Lineage
	Review the Pipeline Experiment Lineage

	Automation with SageMaker Pipelines
	GitOps Trigger When Committing Code
	S3 Trigger When New Data Arrives
	Time-Based Schedule Trigger
	Statistical Drift Trigger

	More Pipeline Options
	AWS Step Functions and the Data Science SDK
	Kubeflow Pipelines
	Apache Airflow
	MLflow
	TensorFlow Extended

	Human-in-the-Loop Workflows
	Improving Model Accuracy with Amazon A2I
	Active-Learning Feedback Loops with SageMaker Ground Truth

	Reduce Cost and Improve Performance
	Cache Pipeline Steps
	Use Less-Expensive Spot Instances

	Summary

	Chapter 11. Streaming Analytics and Machine Learning
	Online Learning Versus Offline Learning
	Streaming Applications
	Windowed Queries on Streaming Data
	Stagger Windows
	Tumbling Windows
	Sliding Windows

	Streaming Analytics and Machine Learning on AWS
	Classify Real-Time Product Reviews with Amazon Kinesis, AWS Lambda, and Amazon SageMaker
	Implement Streaming Data Ingest Using Amazon Kinesis Data Firehose
	Create Lambda Function to Invoke SageMaker Endpoint
	Create the Kinesis Data Firehose Delivery Stream
	Put Messages on the Stream

	Summarize Real-Time Product Reviews with Streaming Analytics
	Setting Up Amazon Kinesis Data Analytics
	Create a Kinesis Data Stream to Deliver Data to a Custom Application
	Create AWS Lambda Function to Send Notifications via Amazon SNS
	Create AWS Lambda Function to Publish Metrics to Amazon CloudWatch
	Transform Streaming Data in Kinesis Data Analytics
	Understand In-Application Streams and Pumps

	Amazon Kinesis Data Analytics Applications
	Calculate Average Star Rating
	Detect Anomalies in Streaming Data
	Calculate Approximate Counts of Streaming Data
	Create Kinesis Data Analytics Application
	Start the Kinesis Data Analytics Application
	Put Messages on the Stream

	Classify Product Reviews with Apache Kafka, AWS Lambda, and Amazon SageMaker
	Reduce Cost and Improve Performance
	Aggregate Messages
	Consider Kinesis Firehose Versus Kinesis Data Streams
	Enable Enhanced Fan-Out for Kinesis Data Streams

	Summary

	Chapter 12. Secure Data Science on AWS
	Shared Responsibility Model Between AWS and Customers
	Applying AWS Identity and Access Management
	IAM Users
	IAM Policies
	IAM User Roles
	IAM Service Roles
	Specifying Condition Keys for IAM Roles
	Enable Multifactor Authentication
	Least Privilege Access with IAM Roles and Policies
	Resource-Based IAM Policies
	Identity-Based IAM Policies

	Isolating Compute and Network Environments
	Virtual Private Cloud
	VPC Endpoints and PrivateLink
	Limiting Athena APIs with a VPC Endpoint Policy

	Securing Amazon S3 Data Access
	Require a VPC Endpoint with an S3 Bucket Policy
	Limit S3 APIs for an S3 Bucket with a VPC Endpoint Policy
	Restrict S3 Bucket Access to a Specific VPC with an S3 Bucket Policy
	Limit S3 APIs with an S3 Bucket Policy
	Restrict S3 Data Access Using IAM Role Policies
	Restrict S3 Bucket Access to a Specific VPC with an IAM Role Policy
	Restrict S3 Data Access Using S3 Access Points

	Encryption at Rest
	Create an AWS KMS Key
	Encrypt the Amazon EBS Volumes During Training
	Encrypt the Uploaded Model in S3 After Training
	Store Encryption Keys with AWS KMS
	Enforce S3 Encryption for Uploaded S3 Objects
	Enforce Encryption at Rest for SageMaker Jobs
	Enforce Encryption at Rest for SageMaker Notebooks
	Enforce Encryption at Rest for SageMaker Studio

	Encryption in Transit
	Post-Quantum TLS Encryption in Transit with KMS
	Encrypt Traffic Between Training-Cluster Containers
	Enforce Inter-Container Encryption for SageMaker Jobs

	Securing SageMaker Notebook Instances
	Deny Root Access Inside SageMaker Notebooks
	Disable Internet Access for SageMaker Notebooks

	Securing SageMaker Studio
	Require a VPC for SageMaker Studio
	SageMaker Studio Authentication

	Securing SageMaker Jobs and Models
	Require a VPC for SageMaker Jobs
	Require Network Isolation for SageMaker Jobs

	Securing AWS Lake Formation
	Securing Database Credentials with AWS Secrets Manager
	Governance
	Secure Multiaccount AWS Environments with AWS Control Tower
	Manage Accounts with AWS Organizations
	Enforce Account-Level Permissions with SCPs
	Implement Multiaccount Model Deployments

	Auditability
	Tag Resources
	Log Activities and Collect Events
	Track User Activity and API Calls

	Reduce Cost and Improve Performance
	Limit Instance Types to Control Cost
	Quarantine or Delete Untagged Resources
	Use S3 Bucket KMS Keys to Reduce Cost and Increase Performance

	Summary

	Index
	About the Authors
	Colophon

