

Data Engineering
with AWS

Learn how to design and build cloud-based data
transformation pipelines using AWS

Gareth Eagar

BIRMINGHAM—MUMBAI

Data Engineering with AWS
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Publishing Product Manager: Reshma Raman

Senior Editor: Mohammed Yusuf Imaratwale

Content Development Editor: Sean Lobo

Technical Editor: Rahul Limbachiya

Copy Editor: Safis Editing

Project Coordinator: Aparna Ravikumar Nair

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Production Designer: Alishon Mendonca

First published: December 2021

Production reference: 1251121

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN: 978-1-80056-041-3

www.packt.com

http://www.packt.com

Contributors

About the author
Gareth Eagar has worked in the IT industry for over 25 years, starting in South Africa,
then working in the United Kingdom, and now based in the United States. In 2017, he
started working at Amazon Web Services (AWS) as a solution architect, working with
enterprise customers in the NYC metro area. Gareth has become a recognized subject
matter expert for building data lakes on AWS, and in 2019 he launched the Data Lake
Day educational event at the AWS Lofts in NYC and San Francisco. He has also delivered
a number of public talks and webinars on topics relating to big data, and in 2020 Gareth
transitioned to the AWS Professional Services organization as a senior data architect,
helping customers architect and build complex data pipelines.

Additional contributors
Disha Umarwani is a Data and ML Engineer at Amazon Web Services (AWS). She works
with AWS heath care and life science customers to design, architect and build analytics
and ML solutions on the AWS cloud. Disha specializes in services like AWS Glue, Amazon
EMR, and AWS Step functions.

Praful Kava is a Senior Specialist Solutions Architect at Amazon Web Services (AWS).
He guides customers in designing and engineering cloud-scale analytics pipelines on
AWS. Outside work, Praful enjoys travelling with his family and exploring new hiking
trails.

Natalie Rabinovich is a Senior Solutions Architect at Amazon Web Services (AWS).
She has extensive experience in data center infrastructure, data storage, and big data and
analytics. Natalie helps organizations design reliable and cost-effective cloud solutions.

About the reviewers
Praveen Gupta is currently a data engineering manager and has over 17 years of
experience in the IT industry. Praveen started his career as an ETL/reporting developer
working on traditional RDBMSes and reporting tools. Since 2014, he has been working on
the AWS cloud on projects related to data science/machine learning and building complex
data engineering pipelines on AWS. He specializes in data ingestion, big data processing,
reporting, and building massive data warehouses at the petabyte scale for his customers,
helping his customers make data-driven decisions. Praveen has an undergraduate degree
in computer science and a master’s degree in computer science from UIUC, USA. Praveen
lives in Portland, USA with his wife and 8-year-old daughter.

Mradul Saraf is a data engineer at an American multinational conglomerate that focuses
on e-commerce, cloud computing, digital streaming, and artificial intelligence. It is
one of the Big Five companies in the US. He has over four years of experience in data
engineering, big data, and cloud computing. He holds a Bachelor of Technology degree in
computer science from Maulana Azad National Institute of Technology, Bhopal. He has
experience of architecture, analysis, design, development, implementation, maintenance,
and support, along with experience of developing strategic methods for deploying big data
technologies to efficiently meet big data processing requirements across multiple domains.

Preface

Section 1: AWS Data Engineering Concepts
and Trends

1
An Introduction to Data Engineering

Technical requirements 4
The rise of big data as a
corporate asset 4
The challenges of ever-growing
datasets 5
Data engineers – the big data
enablers 7
Understanding the role of the data
engineer 8
Understanding the role of the data
scientist 8
Understanding the role of the
data analyst 9

Understanding other common
data-related roles 9

The benefits of the cloud when
building big data analytic
solutions 10
Hands-on – creating and
accessing your
AWS account 11
Creating a new AWS account 12
Accessing your AWS account 15

Summary 19

2
Data Management Architectures for Analytics

Technical requirements 22
The evolution of data
management for analytics 22
Databases and data warehouses 23

Dealing with big, unstructured data 24
A lake on the cloud and a house on
that lake 25

Table of Contents

ii Table of Contents

Understanding data
warehouses and data marts –
fountains of truth 27
Distributed storage and massively
parallel processing 29
Columnar data storage and efficient
data compression 30
Dimensional modeling in data
warehouses 32
Understanding the role of data marts 36
Feeding data into the warehouse – ETL
and ELT pipelines 37

Building data lakes to tame the
variety and volume of big data 40

Data lake logical architecture 42

Bringing together the best
of both worlds with the lake
house architecture 45
Data lakehouse implementations 46
Building a data lakehouse on AWS 47

Hands-on – configuring the AWS
Command Line Interface tool
and creating an S3 bucket 48
Installing and configuring the AWS CLI 49
Creating a new Amazon S3 bucket 50

Summary 50

3
The AWS Data Engineer's Toolkit

Technical requirements 52
AWS services for ingesting data 52
Overview of Amazon Database
Migration Service (DMS) 52
Overview of Amazon Kinesis for
streaming data ingestion 54
Overview of Amazon MSK for
streaming data ingestion 59
Overview of Amazon AppFlow for
ingesting data from SaaS services 60
Overview of Amazon Transfer Family
for ingestion using FTP/SFTP protocols 61
Overview of Amazon DataSync for
ingesting from
on-premises storage 62
Overview of the AWS Snow family of
devices for large data transfers 63

AWS services for
transforming data 64
Overview of AWS Lambda for light
transformations 64
Overview of AWS Glue for serverless
Spark processing 65
Overview of Amazon EMR for Hadoop
ecosystem processing 69

AWS services for orchestrating
big data pipelines 71
Overview of AWS Glue workflows for
orchestrating Glue components 71
Overview of AWS Step Functions for
complex workflows 73
Overview of Amazon managed
workflows for Apache Airflow 75

Table of Contents iii

AWS services for
consuming data 77
Overview of Amazon Athena for SQL
queries in the data lake 77
Overview of Amazon Redshift
and Redshift Spectrum for data
warehousing and data lakehouse
architectures 78
Overview of Amazon QuickSight for
visualizing data 81

Hands-on – triggering an AWS
Lambda function when a new
file arrives in an S3 bucket 83
Creating a Lambda layer containing
the AWS Data Wrangler library 83
Creating new Amazon S3 buckets 85
Creating an IAM policy and role for
your Lambda function 86
Creating a Lambda function 88
Configuring our Lambda function to be
triggered by an S3 upload 93

Summary 96

4
Data Cataloging, Security, and Governance

Technical requirements 98
Getting data security and
governance right 98
Common data regulatory requirements 99
Core data protection concepts 100
Personal data 101
Encryption 101
Anonymized data 102
Pseudonymized data/tokenization 102
Authentication 103
Authorization 104
Putting these concepts together 104

Cataloging your data to avoid
the data swamp 105
How to avoid the data swamp 106

The AWS Glue/Lake Formation
data catalog 108

AWS services for data
encryption and security
monitoring 110
AWS Key Management Service (KMS) 111
Amazon Macie 112
Amazon GuardDuty 112

AWS services for managing
identity and permissions 113
AWS Identity and Access Management
(IAM) service 113
Using AWS Lake Formation to manage
data lake access 116

Hands-on – configuring Lake
Formation permissions 118
Creating a new user with
IAM permissions 119
Transitioning to managing fine-grained
permissions with AWS Lake Formation 123

Summary 129

iv Table of Contents

Section 2: Architecting and Implementing
Data Lakes and Data Lake Houses

5
Architecting Data Engineering Pipelines

Technical requirements 134
Approaching the data
pipeline architecture 134
Architecting houses and architecting
pipelines 135
Whiteboarding as an information-
gathering tool 136
Conducting a whiteboarding session 137

Identifying data consumers
and understanding their
requirements 138
Identifying data sources and
ingesting data 140
Identifying data
transformations and
optimizations 142
File format optimizations 142

Data standardization 143
Data quality checks 143
Data partitioning 143
Data denormalization 143
Data cataloging 144
Whiteboarding data transformation 144

Loading data into data marts 146
Wrapping up the whiteboarding
session 147
Hands-on – architecting a
sample pipeline 149
Detailed notes from the project "Bright
Light" whiteboarding meeting of GP
Widgets, Inc 150

Summary 156

6
Ingesting Batch and Streaming Data

Technical requirements 158
Understanding data sources 158
Data variety 159
Data volume 163
Data velocity 163
Data veracity 164
Data value 164
Questions to ask 165

Ingesting data from a
relational database 165
AWS Database Migration Service (DMS) 166
AWS Glue 166
Other ways to ingest data from a
database 167
Deciding on the best approach for
ingesting from a database 169

Ingesting streaming data 171

Table of Contents v

Amazon Kinesis versus Amazon
Managed Streaming for Kafka (MSK) 171

Hands-on – ingesting data
with AWS DMS 174
Creating a new MySQL database
instance 175
Loading the demo data using an
Amazon EC2 instance 177
Creating an IAM policy and role
for DMS 179

Configuring DMS settings and
performing a full load from MySQL
to S3 181
Querying data with Amazon Athena 184

Hands-on – ingesting
streaming data 186
Configuring Kinesis Data Firehose for
streaming delivery to Amazon S3 186
Configuring Amazon Kinesis Data
Generator (KDG) 187
Adding newly ingested data to the
Glue Data Catalog 190
Querying the data with Amazon Athena 191

Summary 191

7
Transforming Data to Optimize for Analytics

Technical requirements 194
Transformations – making raw
data more valuable 194
Cooking, baking, and data
transformations 195
Transformations as part of a pipeline 196

Types of data transformation
tools 196
Apache Spark 196
Hadoop and MapReduce 197
SQL 198
GUI-based tools 199

Data preparation
transformations 200
Protecting PII data 200
Optimizing the file format 201

Optimizing with data partitioning 202
Data cleansing 203

Business use case transforms 205
Data denormalization 205
Enriching data 207
Pre-aggregating data 207
Extracting metadata from
unstructured data 208

Working with change data
capture (CDC) data 209
Traditional approaches – data upserts
and SQL views 210
Modern approaches – the
transactional data lake 211

Hands-on – joining datasets
with AWS Glue Studio 214

vi Table of Contents

Creating a new data lake zone – the
curated zone 214
Creating a new IAM role for the Glue job 215
Configuring a denormalization
transform using AWS Glue Studio 217

Finalizing the denormalization
transform job to write to S3 222
Create a transform job to join
streaming and film data using AWS
Glue Studio 224

Summary 227

8
Identifying and Enabling Data Consumers

Technical requirements 230
Understanding the impact of
data democratization 230
A growing variety of data consumers 231

Meeting the needs of business
users with data visualization 232
AWS tools for business users 233

Meeting the needs of data
analysts with structured
reporting 235
AWS tools for data analysts 236

Meeting the needs of data
scientists and ML models 239
AWS tools used by data scientists to
work with data 239

Hands-on – creating data
transformations with AWS Glue
DataBrew 242
Configuring new datasets for AWS Glue
DataBrew 242
Creating a new Glue DataBrew project 243
Building your Glue DataBrew recipe 245
Creating a Glue DataBrew job 248

Summary 250

9
Loading Data into a Data Mart

Technical requirements 252
Extending analytics with data
warehouses/data marts 252
Cold data 252
Warm data 253
Hot data 255

What not to do – anti-patterns
for a data warehouse 256

Using a data warehouse as a
transactional datastore 256
Using a data warehouse as a data lake 256
Using data warehouses for real-time,
record-level use cases 257
Storing unstructured data 257

Redshift architecture review
and storage deep dive 258
Data distribution across slices 258
Redshift Zone Maps and sorting data 261

Table of Contents vii

Designing a high-performance
data warehouse 262
Selecting the optimal Redshift
node type 262
Selecting the optimal table distribution
style and sort key 263
Selecting the right data type
for columns 263
Selecting the optimal table type 268

Moving data between a data
lake and Redshift 272
Optimizing data ingestion in Redshift 272
Exporting data from Redshift to the
data lake 274

Hands-on – loading data into
an Amazon Redshift cluster and
running queries 275
Uploading our sample data to
Amazon S3 276
IAM roles for Redshift 277
Creating a Redshift cluster 280
Creating external tables for querying
data in S3 282
Creating a schema for a local
Redshift table 287
Running complex SQL queries against
our data 288

Summary 292

10
Orchestrating the Data Pipeline

Technical requirements 294
Understanding the core
concepts for pipeline
orchestration 294
What is a data pipeline, and how do
you orchestrate it? 295
How do you trigger a data pipeline
to run? 297
How do you handle the failures of a
step in your pipeline? 298

Examining the options for
orchestrating pipelines in AWS 299
AWS Data Pipeline for managing ETL
between data sources 300
AWS Glue Workflows to orchestrate
Glue resources 301
Apache Airflow as an open source
orchestration solution 303
Pros and cons of using MWAA 305

AWS Step Function for a serverless
orchestration solution 306
Pros and cons of using AWS
Step Function 308
Deciding on which data pipeline
orchestration tool to use 309

Hands-on – orchestrating a
data pipeline using AWS Step
Function 311
Creating new Lambda functions 311
Creating an SNS topic and subscribing
to an email address 313
Creating a new Step Function state
machine 314
Configuring AWS CloudTrail and
Amazon EventBridge 319

Summary 324

viii Table of Contents

Section 3: The Bigger Picture: Data
Analytics, Data Visualization, and
Machine Learning

11
Ad Hoc Queries with Amazon Athena

Technical requirements 328
Amazon Athena – in-place SQL
analytics for the data lake 329
Tips and tricks to optimize
Amazon Athena queries 330
Common file format and layout
optimizations 330
Writing optimized SQL queries 334

Federating the queries of
external data sources with
Amazon Athena Query
Federation 337
Querying external data sources using
Athena Federated Query 338

Managing governance and
costs with Amazon Athena
Workgroups 341
Athena Workgroups overview 341
Enforcing settings for groups of users 342
Enforcing data usage controls 343

Hands-on – creating an Amazon
Athena workgroup and
configuring Athena settings 344
Hands-on – switching
Workgroups and running
queries 347
Summary 352

12
Visualizing Data with Amazon QuickSight

Technical requirements 354
Representing data visually for
maximum impact 355
Benefits of data visualization 356
Popular uses of data visualizations 356

Understanding Amazon
QuickSight's core concepts 361
Standard versus enterprise edition 361
SPICE – the in-memory storage and
computation engine for QuickSight 362

Ingesting and preparing data
from a variety of sources 364
Preparing datasets in QuickSight
versus performing ETL outside of
QuickSight 365

Creating and sharing visuals
with QuickSight analyses
and dashboards 367
Visual types in Amazon QuickSight 368

Table of Contents ix

Understanding QuickSight's
advanced features – ML Insights
and embedded dashboards 372
Amazon QuickSight ML Insights 372
Amazon QuickSight embedded
dashboards 375

Hands-on – creating a simple
QuickSight visualization 376
Setting up a new QuickSight account
and loading a dataset 376
Creating a new analysis 379

Summary 385

13
Enabling Artificial Intelligence and Machine Learning

Technical requirements 388
Understanding the value of ML
and AI for organizations 389
Specialized ML projects 389
Everyday use cases for ML and AI 391

Exploring AWS services for ML 392
AWS ML services 393

Exploring AWS services for AI 398
AI for unstructured speech and text 399
AI for extracting metadata from
images and video 403
AI for ML-powered forecasts 405
AI for fraud detection and
personalization 406

Hands-on – reviewing reviews
with Amazon Comprehend 407
Setting up a new Amazon SQS
message queue 407
Creating a Lambda function for calling
Amazon Comprehend 408
Adding Comprehend permissions for
our IAM role 411
Adding a Lambda function as a trigger
for our SQS message queue 412
Testing the solution with Amazon
Comprehend 413

Summary 415
Further reading 416

14
Wrapping Up the First Part of Your Learning Journey

Technical requirements 418
Looking at the data analytics
big picture 418
Managing complex data environments
with DataOps 420

Examining examples of real-
world data pipelines 422

A decade of data wrapped up for
Spotify users 423
Ingesting and processing streaming
files at Netflix scale 424

Imagining the future – a look at
emerging trends 428
ACID transactions directly on data
lake data 429

x Table of Contents

More data and more
streaming ingestion 429
Multi-cloud 430
Decentralized data engineering teams,
data platforms, and a data mesh
architecture 430
Data and product thinking convergence 432
Data and self-serve platform design
convergence 432

Implementations of the data mesh
architecture 433

Hands-on – cleaning up your
AWS account 434
Reviewing AWS Billing to identify the
resources being charged for 435
Closing your AWS account 437

Summary 439

Other Books You May Enjoy
Index

Preface
We live in a world where the amount of data being generated is constantly increasing.
While a few decades ago, an organization may have had a single database that could store
everything they needed to track, today most organizations have tens, hundreds, or even
thousands of databases, along with data warehouses, and perhaps a data lake. And these
data stores are being fed from an increasing number of data sources (transaction data, web
server log files, IoT and other sensors, and social media, to name just a few).

It is no surprise that we hear more and more companies talk about being data-driven in
their decision making. But in order for an organization to be truly data-driven, they need
to be masters of managing and drawing insights from these ever-increasing quantities and
types of data. And to enable this, organizations need to employ people with specialized
data skills.

Doing a search on LinkedIn for jobs related to data returns over 1.5 million results (and
that is just for the United States!). The job titles include roles such as data engineers (with
185,000 results), data scientists (120,000 results), and data architects (75,000 results).

While this book will not magically make you a data engineer, it has been designed to
accelerate your journey toward data engineering on AWS. By the end of this book, you
will not only have learned some of the core concepts around data engineering, but you
will also have a good understanding of the wide variety of tools available in AWS for
working with data. You will also have been through numerous hands-on exercises, gaining
practical experience with things such as ingesting streaming data, transforming and
optimizing data, building visualizations, and even drawing insights from data using AI.

Who this book is for
This book has been designed for two groups of people; firstly, those people looking to get
started with a career in data engineering, and who want to learn core data engineering
concepts. This book introduces many different aspects of data engineering, providing
a comprehensive high-level understanding of, and practical hands-on experience with,
different focus areas of data engineering.

xii Preface

Secondly, this book is for those people who may already have an established career
focused on data, but who are new to the cloud, and to AWS in particular. For these
people, this book provides a clear understanding of many of the different AWS services
for working with data and gets them hands-on experience with a variety of these AWS
services.

What this book covers
Each of the chapters in this book takes the approach of introducing important concepts
and key AWS services and then providing a hands-on exercise related to the topic of the
chapter:

Chapter 1, An Introduction to Data Engineering, reviews the challenges of ever-increasing
datasets, and the role of the data engineer in working with data in the cloud.

Chapter 2, Data Management Architectures for Analytics, introduces foundational concepts
and technologies related to big data processing.

Chapter 3, The AWS Data Engineer's Toolkit, provides an introduction to a wide range of
AWS services that are used for ingesting, processing, and consuming data.

Chapter 4, Data Cataloging, Security, and Governance, covers the all-important topics of
keeping data secure, ensuring good data governance, and the importance of cataloging
your data.

Chapter 5, Architecting Data Engineering Pipelines, provides an approach for
whiteboarding the high-level design of a data engineering pipeline.

Chapter 6, Ingesting Batch and Streaming Data, looks at the variety of data sources that
we may need to ingest from and examines AWS services for ingesting both batch and
streaming data.

Chapter 7, Transforming Data to Optimize for Analytics, covers common transformations
for optimizing datasets and for applying business logic.

Chapter 8, Identifying and Enabling Data Consumers, is about better understanding the
different types of data consumers that a data engineer may work to prepare data for.

Chapter 9, Loading Data into a Data Mart, focuses on the use of data warehouses as a data
mart and looks at moving data between a data lake and data warehouse. This chapter also
does a deep dive into Amazon Redshift, a cloud-based data warehouse.

Chapter 10, Orchestrating the Data Pipeline, looks at how various data engineering tasks
and transformations can be put together in a data pipeline, and how these can be run and
managed with pipeline orchestration tools such as AWS Step Functions.

Preface xiii

Chapter 11, Ad Hoc Queries with Amazon Athena, does a deeper dive into the Amazon
Athena service, which can be used for running SQL queries directly on data in the data
lake, and beyond.

Chapter 12, Visualizing Data with Amazon QuickSight, discusses the importance of being
able to craft visualizations of data, and how the Amazon QuickSight service enables this.

Chapter 13, Enabling Artificial Intelligence and Machine Learning, reviews how AI and ML
are increasingly important for gaining new value from data, and introduces some of the
AWS services for both ML and AI.

Chapter 14, Wrapping Up the First Part of Your Learning Journey, concludes the book
by looking at the bigger picture of data analytics, including real-world examples of data
pipelines and a review of emerging trends in the industry.

To get the most out of this book
Basic knowledge of computer systems and concepts, and how these are used within
large organizations, is helpful prerequisite knowledge for this book. However, no data
engineering-specific skills or knowledge is required. Also, a familiarity with cloud
computing fundamentals and core AWS systems will make it easier to follow along,
especially with the hands-on exercises, but detailed step-by-step instructions are included
for each task.

All hands-on exercises make use of cloud-based services, so beyond using a supported
web browser with a stable internet connection, there are no additional hardware or
software requirements.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

xiv Preface

Things change fast in the computing industry, and this is clearly seen within the cloud
industry. AWS is constantly rolling out new services, as well as improvements for existing
services, and some of these improvements lead to changes in the user interface provided
via the AWS console.

As a result, some of the screenshots included in this book may not look identical to what
you are seeing in the AWS console when completing hands-on exercises. Or, you may
find that a specific screen has additional options beyond what is shown in the screenshot
in this book. It is unlikely that these changes will prevent you from following along with
the step-by-step instructions in this book, but anything that may significantly impact a
hands-on exercise will be addressed with a note for that chapter in this book's GitHub
repository. Therefore, please refer to the GitHub repository as you complete the hands-on
exercises for each chapter. In addition to notes about any significant console changes, the
GitHub repository also includes copies of code contained in this book and other useful
resources.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Data-Engineering-with-AWS. If there's an
update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800560413_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in the text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as
another disk in your system."

https://github.com/PacktPublishing/Data-Engineering-with-AWS
https://github.com/PacktPublishing/Data-Engineering-with-AWS
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800560413_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560413_ColorImages.pdf

Preface xv

A block of code is set as follows:

import boto3

import awswrangler as wr

from urllib.parse import unquote_plus

Any command-line input or output is written as follows:

$ aws s3 cp test.csv s3://dataeng-landing-zone-initials/
testdb/csvparquet/test.csv

Bold: Indicates a new term, an important word, or words that you see on screen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Select
System info from the Administration panel."

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata and fill in the
form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com

xvi Preface

Share Your Thoughts
Once you've read Data Engineering with AWS, we'd love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book
and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1-800-56041-9

Section 1:
AWS Data

Engineering
Concepts and Trends

To start with, we examine why data is so important to organizations today, and introduce
foundational concepts of data engineering, including coverage of governance and security
topics. We also learn about the AWS services that form part of the data engineer’s toolkit,
and get hands-on with creating an AWS account and using services such as Amazon S3,
AWS Lambda, and AWS Identity and Access Management (IAM).

This section comprises the following chapters:

• Chapter 1, An Introduction to Data Engineering

• Chapter 2, Data Management Architectures for Analytics

• Chapter 3, The AWS Data Engineer’s Toolkit

• Chapter 4, Data Cataloging, Security, and Governance

1
An Introduction to

Data Engineering
Data engineering is a fast-growing career path, and a role in high demand, as data
becomes ever more critical to organizations of all sizes. For those that enjoy the challenge
of putting together the "puzzle pieces" that build out complex data pipelines to ingest raw
data, and to then transform and optimize that data for various data consumers, it can be
a really rewarding career.

In this chapter, we look at the many ways that data has become an important and valuable
corporate asset. We also review some of the challenges that organizations face as they deal
with increasing volumes of data, and how data engineers can use cloud-based services to
help overcome these challenges. We then set the foundations for the rest of the hands-on
activities in this book by providing step-by-step details on creating a new Amazon Web
Services (AWS) account.

4 An Introduction to Data Engineering

Throughout this book, we are going to cover a number of topics that teach the
fundamentals of developing data engineering pipelines on AWS, but we'll get started
in this chapter with these topics:

• The rise of big data as a corporate asset

• The challenges of ever-growing datasets

• The role of the data engineer as a big data enabler

• The benefits of the cloud when building big data analytic solutions

• Hands-on - create or access an AWS account for following along with the hands-on
activities in this book

Technical requirements
You can find the code files of this chapter in the GitHub repository using the following
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter01

The rise of big data as a corporate asset
You don't need to look too far or too hard these days to hear about how big data and data
analytics are transforming organizations and having an impact on society as a whole.
We hear about how companies such as TikTok analyze large quantities of data to make
personalized recommendations about which clip to show a user next. Also, we know how
Amazon recommends products a customer may be interested in based on their purchase
history. We read headlines about how big data could revolutionize the healthcare industry,
or how stock pickers turn to big data to find the next breakout stock performer when the
markets are down.

The most valuable companies in the US today are companies that are masters of managing
huge data assets effectively, with the top five most valuable companies in Q4 2021 being
the following:

• Microsoft

• Apple

• Alphabet (Google)

• Amazon

• Tesla

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter01
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter01

The challenges of ever-growing datasets 5

For a long time, it was companies that managed natural gas and oil resources, such as
ExxonMobil, that were high on the list of the most valuable companies on the US stock
exchange. Today, ExxonMobil will often not even make the list of the top 30 companies. It
is no wonder that the number of job listings for people with skillsets related to big data is
on the rise.

There is also no doubt that data, when harnessed correctly and optimized for maximum
analytic value, can be a game-changer for an organization. At the same time, those
companies that are unable to effectively utilize their data assets risk losing a competitive
advantage to others that do have a comprehensive data strategy and effective analytic and
machine learning programs.

Organizations today tend to be in one of the following three states:

• They have an effective data analytics and machine learning program that
differentiates them from their competitors.

• They are conducting proof of concept projects to evaluate how analytic and
machine learning programs can help them achieve a competitive advantage.

• Their leaders are having sleepless nights worrying about how their competitors are
using analytics and machine learning programs to achieve a competitive advantage
over them.

No matter where an organization currently is in their data journey, if they have been
in existence for a while, they have likely faced a number of common data-related
challenges. Let's look at how organizations have typically handled the challenge of
ever-growing datasets.

The challenges of ever-growing datasets
Organizations have many assets, such as physical assets, intellectual property, the
knowledge of their employees, and trade secrets. But for too long, organizations did
not fully recognize that they had another extremely valuable asset, and they failed to
maximize the use of it—the vast quantities of data that they had gathered over time.

That is not to say that organizations ignored these data assets, but rather, due to the
expense and complex nature of storing and managing this data, organizations tended
to only keep a subset of data.

6 An Introduction to Data Engineering

Initially, data may have been stored in a single database, but as organizations, and their
data requirements, grew, the number of databases exponentially increased. Today, with
the modern application development approach of microservices, companies commonly
have hundreds, or even thousands, of databases. Faced with many data silos, organizations
invested in data warehousing systems that would enable them to ingest data from multiple
siloed databases into a central location for analytics. But due to the expense of these
systems, there were limitations on how much data could be stored, and some datasets
would either be excluded or only aggregate data would be loaded into the data warehouse.
Data would also only be kept for a limited period of time as data storage for these systems
was expensive, and therefore it was not economical to keep historical data for long
periods. There was also a lack of widely available tools and compute power to enable
the analysis of extremely large, comprehensive datasets.

As an organization continued to grow, multiple data warehouses and data marts would
be implemented for different business units or groups, and organizations still lacked a
centralized, single-source-of-truth repository for their data. Organizations were also faced
with new types of data, such as semi-structured or even unstructured data, and analyzing
these datasets with traditional tooling was a challenge.

As a result, new technologies were invented that were able to better work with very large
datasets and different data types. Hadoop was a technology created in the early 2000s
at Yahoo as part of a search engine project that wanted to index 1 billion web pages.
Over the next few years, Hadoop, and the underlying MapReduce technology, became
a popular way for all types of companies to store and process much larger datasets.
However, running a Hadoop cluster was a complex and expensive operation requiring
specialized skills.

The next evolution for big data processing was the development of Spark (later taken on
as an Apache project and now known as Apache Spark), a new processing framework for
working with big data. Spark showed significant increases in performance when working
with large datasets due to the fact that it did most processing in memory, significantly
reducing the amount of reading and writing to and from disks. Today, Apache Spark is
often regarded as the gold standard for processing large datasets and is used by a wide
array of companies, although there are still a lot of Hadoop MapReduce clusters in
production in many companies.

Data engineers – the big data enablers 7

In parallel with the rise of Apache Spark as a popular big data processing tool was the rise
of the concept of data lakes—an approach that uses low-cost object storage as a physical
storage layer for a variety of data types, provides a central catalog of all the datasets, and
makes that data available for processing with a wide variety of tools, including Apache
Spark. AWS uses the following definition when talking about data lakes:

A data lake is a centralized repository that allows you to store all your
structured and unstructured data at any scale. You can store your data

as-is, without having to first structure the data, and run different types of
analytics—from dashboards and visualizations to big data processing, real-

time analytics, and machine learning to guide better decisions.
You can find this definition here: https://aws.amazon.com/big-data/
datalakes-and-analytics/what-is-a-data-lake/.

Having looked at how data analytics became an essential tool in organizations, let's now
look at the roles that enable maximizing the value of data for a modern organization.

Data engineers – the big data enablers
Amid the increasing recognition of data as a valuable corporate asset and the introduction
of new technologies to store and process vast amounts of data, there has been an increase
in the opportunities and roles available for data-related careers.

Let's look at a sample use case, where a sales manager for a consumer goods organization
wants to better understand which alternative products a customer considers before
purchasing their product. In addition, they also want to have a better way of predicting
product demand by category based on external factors, such as the expected weather.

Achieving the desired outcomes as specified by the sales manager will require bringing in
data from multiple internal and external sources. Datasets that could be relevant to this
scenario may include the following:

• Customer, product, and order relational databases

• Web server logs from the consumer-facing storefront

• Third-party sales data from online marketplaces where relevant products are sold
(such as Amazon.com)

• Other relevant third-party datasets that may influence sales (for example,
weather-related data)

Multiple teams would need to be involved in the project, with the following three roles
playing a primary part in implementing the required solution.

https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/
https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/
http://Amazon.com

8 An Introduction to Data Engineering

Understanding the role of the data engineer
The role of a data engineer is to do the following:

• Design, implement, and maintain the pipelines that enable the ingestion of raw data
into a storage platform.

• Transform that data to be optimized for analytics.

• Make that data available for various data consumers using their tool of choice.

In our scenario, the data engineer will first need to design the pipelines that ingest data
from the various internal and external sources. To achieve this, they will use a variety of
tools (more on that in future chapters), depending on the source system and whether it
will be scheduled batch ingestion or real-time streaming ingestion.

The data engineer is also responsible for transforming the raw input datasets to optimize
them for analytics, using various techniques (as discussed later in this book). The data
engineer must also create processes to verify the quality of data, add metadata about the
data to a data catalog, and manage the life cycle of code related to data transformation.

Finally, the data engineer may need to assist in integrating various data consumption tools
with the transformed data, enabling data analysts and data scientists to use their preferred
tools to draw insights from the data.

The data engineer uses tools such as Apache Spark, Apache Kafka, and Presto, as well
as other commercially available products, to build the data pipeline and optimize data
for analytics.

The data engineer is much like a civil engineer for a new residential development. The civil
engineer is responsible for designing and building the roads, bridges, train stations, and so
on to enable commuters to easily commute in and out of the development, while the data
engineer is responsible for designing and building the infrastructure required to bring
data into a central source and for optimizing the data for use by various data consumers.

Understanding the role of the data scientist
The role of a data scientist is to draw complex insights and make predictions based on
various datasets, using machine learning and artificial intelligence. The data scientist will
combine a number of skills, including computer science, statistics, analytics, and math,
in order to help an organization answer complex questions and make informed decisions
using data.

Data engineers – the big data enablers 9

Data scientists need to understand the raw data and know how to use that data to develop
and train complex machine learning models that will help recognize patterns in the data
and predict future trends. In our scenario, the data scientist may build a machine learning
model that uses past sales data, correlated with weather information for each day in the
reporting period. They can then design and train this model to help business users get
predictions on the likely top-selling categories for future dates based on the expected
weather forecast.

Where the data engineer is like a civil engineer building infrastructure for a new
development, the data scientist is developing cars, airplanes, and other forms of transport
used to move in and out of the development. Data scientists create machine learning
models that enable data consumers and business analysts to draw new insights and
predictions from data.

Understanding the role of the data analyst
The role of a data analyst is to examine and combine multiple datasets in order to help a
business understand trends in the data and to make more informed business decisions.
While a data scientist develops models that make future predictions or identifies
non-obvious patterns in data, the data analyst works with well-structured and modeled
data to understand current conditions and to highlight recent patterns from the data.

A data analyst may answer questions such as which menu item sold best in different
geographic regions over the past month, or which medical procedure had the best
outcome for patients of different ages. These insights help an organization make better
decisions for the future.

In our scenario, the data analyst may run complex queries against the different datasets
that are available (such as an orders database or web server logs), joining together subsets
of data from each source to gain new insights. For example, the data analyst may create a
report highlighting which alternate products are most often browsed by a customer before
a specific product is purchased. The data analyst may also make use of advanced machine
learning models developed by the data scientists to gain further valuable insights.

Where the data engineer is like a civil engineer building infrastructure, and the data
scientist is developing means of transportation, the data analyst is like a skilled pilot,
using their expertise to get users to their end destination.

Understanding other common data-related roles
Organizations may have other role titles and job descriptions for data-related positions,
but generally, these will be a subset of the roles described in the preceding sections.

10 An Introduction to Data Engineering

For example, a big data architect could be a subset of the data engineer role, focused
on designing the architecture for big data pipelines, but not building the actual pipelines.
Or, a data visualization developer may be focused on building out visualizations using
business intelligence tools, but this is effectively a subset of the data analyst role.

Larger organizations tend to have more focused job roles, while in a smaller organization
a single person may take on the role of data engineer, data scientist, and data analyst.

In this book, we will focus on the role of the data engineer, and dive deep into how a
data engineer is able to build complex data pipelines using the power of cloud computing
services. Let's now look at how cloud computing has simplified how organizations are able
to build and scale out big data processing solutions.

The benefits of the cloud when building big
data analytic solutions
For a long time, organizations relied on complex systems that they would run in their
own data centers to help them capture, store, and process large amounts of data. But over
the last decade, there has been a trend of an increasing amount of data that organizations
want to store and analyze, and on-premises systems have struggled to scale to keep up
with demand. Scaling up these traditional tools for managing ever-increasing datasets
has been expensive, complex, and time-consuming, and organizations have been seeking
alternative solutions to cope with the increasing data volumes.

Ever since Amazon launched AWS in 2006, organizations have been realizing the
benefits of running their workloads in the cloud. Cloud computing enables scalability,
cost efficiency, security, and automation, which most companies find impossible to
achieve within their own data centers, and this applies to the area of data analytics as
well. One of the first AWS services was Amazon Simple Storage Service (Amazon S3),
a cloud-based object store that offers essentially unlimited scalability at low cost, and yet
provides durability and availability that most data center managers could only dream
of achieving. Today, Amazon S3 has become the physical storage layer for thousands
of data lake projects, and a wide ecosystem of analytic tools has been created to work with
the service.

Successful data engineers need to understand the tools available in the cloud for building
out complex data analytic projects and understand which set of tools is best to achieve
the outcome needed for their project. In this book, you will learn more about AWS tools
for working with big data, and you will gain hands-on experience in developing a data
engineering pipeline in AWS.

Hands-on – creating and accessing your AWS account 11

To get started, you will either need an existing AWS account or you will need to create
a new AWS account so that you can follow along with the practical examples. Follow
along with the next section as we provide step-by-step instructions for creating a new
AWS account.

Hands-on – creating and accessing your
AWS account
The projects in this book require you to access an AWS account with administrator
privileges. If you already have administrator privileges for an AWS account and know
how to access the AWS Management Console, you can skip this section and move on
to Chapter 2, Data Marts, Data Lakes, and the Data Lakehouse.

If you are making use of a corporate AWS account, you will want to check with your AWS
cloud operations team to ensure that your account has administrative privileges. Even if
your daily-use account does not allow full administrative privileges, your cloud operations
team may be able to create a sandbox account for you.

What is a sandbox account?
A sandbox account is an account isolated from your corporate production
systems with relevant guardrails and governance in place, and is used by many
organizations to provide a safe space for teams or individual developers to
experiment with cloud services.

If you cannot get administrative access to a corporate account, you will need to create
a personal AWS account or work with your cloud operations team to request specific
permissions needed to complete each section. Where possible, we will provide links to
AWS documentation that will list the required permissions, but the full details of the
required permissions will not be covered directly in this book.

Important note about the costs associated with the hands-on tasks in this book
If you are creating a new personal account or using an existing personal
account, you will incur and be responsible for AWS costs as you follow along
in this book. While some services may fall under AWS free-tier usage, some of
the services covered in this book will not. We strongly encourage you to set up
budget alerts within your account and to regularly check your billing console.

See the AWS documentation on monitoring your usage and costs at
https://docs.aws.amazon.com/awsaccountbilling/
latest/aboutv2/monitoring-costs.html.

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/monitoring-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/monitoring-costs.html

12 An Introduction to Data Engineering

Creating a new AWS account
To create a new AWS account, you will need the following things:

• An email address (or alias) that has not been used before to register an AWS
account

• A phone number that can be used for important account verification purposes

• Your credit or debit card, which will be charged for AWS usage outside of the
Free Tier

Tip regarding the phone number you use when registering
It is important that you keep your contact details up to date for your AWS
account, as if you lose access to your account, you will need access to the
email address and phone number registered for the account. If you expect
that your contact number may change in the future, consider registering a
virtual number that you will always be able to access and that you can forward
to your primary number. One such service that enables this is Google Voice
(http://voice.google.com).

The following steps will guide you through creating a new AWS account:

1. Navigate to the AWS landing page at http://aws.amazon.com.
2. Click on the Create an AWS Account link.
3. Provide an email address, specify a secure password (one that you have not used

elsewhere), and provide a name for your account.

Tip about reusing an existing email address
Some email systems support adding a + sign followed by a few characters
to the end of the username portion of your email address in order to
create a unique email address that still goes to your same mailbox. For
example, atest.emailaddress@gmail.com and atest.
emailaddress+dataengineering@gmail.com will both go to
the primary email address inbox. If you have used your primary email address
previously to register an AWS account, you can use this tip to provide a unique
email address during registration, but still have emails delivered to your
primary account.

4. Select Professional or Personal for the account type (note that the functionality
and tools available are the same no matter which one you pick).

http://voice.google.com
http://aws.amazon.com

Hands-on – creating and accessing your AWS account 13

Figure 1.1 – Contact information during AWS account sign-up

5. Provide the requested personal information and then after reviewing the terms of
the AWS Customer Agreement, click the checkbox if you agree to the terms, and
then click on Create Account and Continue.

6. Provide a credit or debit card for payment information and select Verify and Add.

14 An Introduction to Data Engineering

7. Provide a phone number for a verification text or call, enter the characters shown
for the security check, and complete the verification.

Figure 1.2 – Confirming your identity during AWS account sign-up

Hands-on – creating and accessing your AWS account 15

8. Select a support plan.
9. You will receive a notification that your account is being activated. This usually

completes in a few minutes, but it can take up to 24 hours. Check your email to
confirm account activation.

What to do if you don't receive a confirmation email within 24 hours
If you do not receive an email confirmation within 24 hours confirming
that your account has been activated, follow the troubleshooting steps
provided by AWS Premium Support at https://aws.amazon.
com/premiumsupport/knowledge-center/create-and-
activate-aws-account/.

Accessing your AWS account
Once you have received the confirmation email confirming that your account has been
activated, follow these steps to access your account and to create a new admin user:

1. Access the AWS console login page at http://console.aws.amazon.com.
2. Make sure Root user is selected, and then enter the email address that you used

when creating the account.
3. Enter the password that you set when creating the account.

Best practices for securing your account
When you log in using the email address you specified when registering the
account, you are logging in as the account's root user. It is a recommended best
practice that you do not use this login for your day-to-day activities, but rather
only use this when performing activities that require the root account, such
as creating your first Identity and Access Management (IAM) user, deleting
the account, or changing your account settings. For more information, see
https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_root-user.html.

It is also strongly recommended that you enable Multi-Factor Authentication
(MFA) on this and other administrative accounts. To enable this, see
https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_credentials_mfa_enable_virtual.html.

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
http://console.aws.amazon.com
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html

16 An Introduction to Data Engineering

In the following steps, we are going to create a new IAM administrative user account:

1. In the AWS Management Console, confirm which Region you are currently in.
You can select any region, such as the Region closest to you geographically.

Important note about pricing differences in AWS Regions
Note that pricing for AWS services differs from Region to Region, so take
this into account when selecting a Region to use for the exercises in this book
and make sure you are always in the same Region when working through the
exercises.

In the following screenshot, the user is in the Ohio Region (also known as
us-east-2):

Figure 1.3 – AWS Management Console

2. In the search bar in the top middle of the screen, type in IAM and press Enter. This
brings up the console for IAM.

3. On the left-hand side menu, click Users and then Add user.
4. Provide a username and select both Programmatic access as well as AWS

Management Console access.

Hands-on – creating and accessing your AWS account 17

5. Set a password for the console, and select whether to force a password change on
the next login, then click Next: Permissions.

Figure 1.4 – Creating a new user in the AWS Management Console

6. For production accounts, it is best practice to grant permissions with a policy of
least privilege, giving each user only the permissions they specifically require to
perform their role. However, AWS managed policies can be used to cover common
use cases in test accounts, and so to simplify the setup of our test account, we will
use the AdministratorAccess managed policy. This policy gives full access to all
AWS resources in the account.

On the Set permissions screen, select Attach existing policies directly. From the
list of policies, select AdministratorAccess. Then, click Next: Tags.

18 An Introduction to Data Engineering

7. Optionally, specify tags (key-value pairs), then click Next: Review.
8. Review the settings, and then click Create user.
9. Take note of the URL to sign in to your account.
10. Take note of the access key ID and secret access key as you will need these later.

This is the only opportunity you will have to record the secret access key so it is
important to safely record this information now:

Figure 1.5 – Successful creation of new IAM user

Important note about protecting your account
Make sure you protect this information as anyone who has access to your
access key ID and secret access key is able to perform full administrative
functions in your account, including deploying resources that you will be
responsible for paying for.

For the remainder of the tutorials in this book, you should log in using the URL provided
and the username and password you set for your IAM user. You should also strongly
consider enabling MFA for this account, a recommended best practice for all accounts
with administrator permissions.

Summary 19

Summary
In this chapter, we reviewed how data is becoming ever more important for organizations
looking to gain new insights and competitive advantage, and introduced some of the core
big data processing technologies. We also looked at the key roles related to managing,
processing, and analyzing large datasets, and highlighted how cloud technologies enable
organizations to better deal with the increasing volume, variety, and velocity of data.

In our first hands-on exercise, we provided step-by-step instructions for creating a new
AWS account that can be used throughout the remainder of this book as we develop our
own data engineering pipeline.

In the next chapter, we dig deeper into current approaches, tools, and frameworks that are
commonly used to manage and analyze large datasets, including data warehouses, data
marts, data lakes, and a relatively new concept, the data lake house. We also get hands-on
with AWS again, this time installing and configuring the AWS Command-Line Interface
(CLI) tool and creating an Amazon S3 bucket.

2
Data Management

Architectures for
Analytics

In Chapter 1, An Introduction to Data Engineering, we looked at the challenges
introduced by ever-growing datasets, and how the cloud can help solve these analytical
challenges. However, there are many different cloud services, open source frameworks,
and architectures that can be used in analytical projects, depending on business
requirements and objectives.

In this chapter, we will discuss how analytical technologies have evolved and introduce
the key technologies and concepts that are foundational for building modern analytical
architectures, irrespective of whether you build them on AWS or elsewhere.

If you have experience as a data engineer and have worked with enterprise data
warehouses before, you may want to skim through the sections of this chapter, and then
do the hands-on exercise at the end of this chapter. However, if you are new to data
engineering and do not have experience with big data analytics, then the content in this
chapter is important as it will provide an understanding of concepts that we will build
on in the rest of this book.

22 Data Management Architectures for Analytics

In this chapter, we will cover the following topics:

• The evolution of data management for analytics

• An introduction to data warehouses, data marts, and ETL/ELT pipelines

• An overview of data lake architecture and concepts

• A deeper dive into an emerging architecture, the data lakehouse

• Hands-on – configuring the AWS Command Line Interface tool and creating
an S3 bucket

Technical requirements
To complete the hands-on exercises included in this chapter, you will need access to an
AWS account where you have administrator privledges (as covered in Chapter 1, An
Introduction to Data Engineering).

You can find the code files of this chapter in the GitHub repository using the following
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter02

The evolution of data management for
analytics
Innovations in data management and processing over the last several decades have laid the
foundations of modern-day analytic systems. When you look at the analytics landscape of
a typical mature organization, you will find the footprints of many of these innovations in
their data analytics platforms. As a data engineer, you may come across analytic pipelines
that were built using technologies from different generations, and you may be expected
to understand them. Therefore, it is important to be familiar with some of the key
developments in analytics over time, as well as to understand the foundational concepts
of analytical data storage, data management, and data pipelines.

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter02
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter02

The evolution of data management for analytics 23

Databases and data warehouses
Data processing and analytic systems have evolved over several decades. In the 1980s, the
focus was on batch processing, where data would be processed in nightly runs on large
mainframe computers.

In the 1990s, the use of databases exploded, and organizations found themselves with tens,
or even hundreds, of databases supporting different business processes. Generally, these
databases were for transactional processing, and the ability to perform analytics across
systems was very limited.

As a result, in the 1990s, data warehouses become a popular tool where data could be
ingested from multiple databases systems into a central repository, and the data warehouse
could focus on running analytic reports.

The data warehouse was designed to store well-integrated, highly structured, highly
curated, and highly trusted data. Data would be ingested on a regular basis from other
highly structured sources, but before entering the data warehouse, the data would go
through a significant amount of preprocessing, validation, and transformations. Any
changes to the data warehouse schema, or the need to ingest new data sources, would
require a significant effort to plan the schema and related processes.

Over the last few decades, businesses and consumers have rapidly adopted web and
mobile technologies, and this has resulted in rapid growth in data sources, data volumes,
and options to analyze an increasing amount of data. In parallel, organizations have
realized the business value of insights they can gain by combining data from their internal
systems with external data from their partners, the web, social media, and third-party
data providers. To process increasingly larger data volumes and increased demands to
support new consumers, data warehouses have evolved through multiple generations
of technology and architectural innovations.

Early data warehouses were custom-built using common relational databases on powerful
servers, but they required IT teams to manage host servers, storage, software, and
integrations with data sources. These were difficult to manage, and so in the mid-2000s,
there was an emergence of purpose-built hardware appliances designed as modular data
warehouse appliances built for terabyte- and petabyte-scale big data processing. These
appliances contained new hardware and software innovations and were delivered as
easy to install and manage units from popular vendors such as Oracle, Teradata, IBM
Netezza, Pivotal Greenplum, and others.

24 Data Management Architectures for Analytics

Dealing with big, unstructured data
While data warehouses have steadily evolved over the last 25+ years to support increasing
volumes of highly structured data, there has been exponential growth in semi-structured
and unstructured data produced by modern digital platforms (such as mobile and web
applications, sensors, IoT devices, social media, and audio and video media platforms).
These platforms produce data at a high velocity, and in much larger volumes than
data produced by traditional structured sources. To gain a competitive advantage by
transforming customer experience and business operations, it has become essential for
organizations to gain deeper insights from these new data sources. Data warehouses are
good at storing and managing flat, structured data from traditional sources as a set of
tables, organized as a relational schema. However, they are not well suited to handling
the huge volumes of high velocity semi-structured and unstructured data, which are
becoming increasingly popular.

As a result, in the early 2010s, new technologies for big data processing became
popular. Hadoop, an open source framework for processing large datasets on clusters
of computers, became the leading way to work with big data. These clusters contain tens
of hundreds of machines with attached disk volumes that can hold tens of thousands of
terabytes of data managed under a single distributed filesystem known as the Hadoop
Distributed File System (HDFS).

Many organizations deployed Hadoop distributions from providers such as Cloudera,
Hortonworks, MapR, and IBM to large clusters of computers in their data centers. These
Hadoop packages include cluster management utilities, as well as pre-configured and
pre-integrated open source distributed data processing frameworks such as map-reduce,
Hive, Spark, and Presto. Distributed data processing frameworks such as Apache
Spark have also been built to process a wide variety of structured, semi-structured, and
unstructured data, and can provide very high throughput at hundreds of terabytes by
distributing processing across thousands of machines in a cluster.

However, building and scaling on-premises Hadoop and Spark clusters typically requires
a large upfront capital investment in machines and storage. The ongoing management of
the cluster and big data processing pipelines requires a team of specialists that includes
the following:

• Hadoop administrators specialized in cluster hardware and software

• Data engineers specialized in processing frameworks such as Spark, Hive,
and Presto

As the volume of data grows, new machines and storage continually need to be added
to the cluster.

The evolution of data management for analytics 25

Big data teams managing on-premises clusters typically spend a significant percentage
of their time managing and upgrading the cluster's hardware and software, as well as
optimizing workloads.

A lake on the cloud and a house on that lake
Over the last decade, organizations have been increasingly adopting public cloud
infrastructure to reap the benefits of the following:

• On-demand capacity

• Limitless and elastic scaling

• Global footprint

• Usage-based cost models

• Freedom from managing hardware

Through both infrastructure and software as service models, cloud providers such as
Amazon Web Services (AWS), Google Compute Cloud (GCP), and Microsoft Azure
are enabling organizations to build new applications, as well as migrate their on-premises
workloads to the public cloud.

Since AWS made Amazon Redshift available in 2013, leading cloud providers have
started providing data warehouses as a cloud-native service. Over time, cloud data
warehouses have rapidly expanded their feature sets to exceed those of high-performance,
on-premises data warehousing appliances. Besides no upfront investment, petabyte scale,
and high performance, cloud data warehouse services provide elastic capacity scaling,
variable cost, and freedom from infrastructure management.

Since the arrival of cloud data warehouse services, the number of organizations building
their data warehouses in the cloud has been accelerating. In the last 5 years alone,
thousands of organizations have either built new warehouses or migrated their existing
data warehouses and analytics workloads from on-premises vendor products and
appliances to cloud data warehousing services (such as Amazon Redshift, Snowflake,
Google BigQuery, and Azure Synapse).

Many organizations have deployed both data warehouses and big data clusters in their
data centers to manage and analyze structured and semi-structured data, respectively.
They have also had to build and manage data movement pipelines to support the use cases
that require integrating data from both data warehouses and big data clusters. Often, silos
and data movement have made it difficult to have a single source of truth, which has led
to delays in getting the required insights.

26 Data Management Architectures for Analytics

Another trend in recent years has been the adoption of highly durable, inexpensive,
and virtually limitless cloud object stores. Cloud object stores, such as Amazon S3, can
store hundreds of petabytes of data at a fraction of the cost of on-premises storage, and
they support storing data regardless of its source, format, or structure. They also provide
native integrations with hundreds of cloud-native and third-party data processing and
analytics tools.

These new cloud object stores have enabled organizations to build a new, more integrated
analytics data management approach, called the data lake architecture. A data lake
architecture makes it possible to create a single source of truth by bringing together a
variety of data of all sizes and types (structured, semi-structured, unstructured) in one
place: a central, highly scalable repository built using inexpensive cloud storage. In the last
few years, thousands of organizations have built a data lake using cloud technologies, and
that trend is accelerating.

Instead of lifting and shifting existing data warehouses and Hadoop clusters to the cloud,
many organizations are refactoring their previously on-premises workloads to build an
integrated cloud data lake. In this approach, all the data is ingested and processed in the
data lake to build a single source of truth, and then a subset of the hot data is loaded into
the dimensional schemas of a cloud data warehouse to support lower latency access.

A new trend we have seen over the last few years is cloud providers adding capabilities to
their analytics services that support the emergence of a newer data analytics architecture,
called lake house architecture, or data lakehouse. The lake house architecture approach
is geared to natively integrate the best capabilities of data lakes and data warehousing,
including the following:

• Ability to quickly ingest any type of data

• Storing and processing petabytes of unstructured, semi-structured, and
structured data

• Support for ACID transactions (the ability to concurrently read, insert, update,
and delete records in a dataset managed by the data lakehouse)

• Low latency data access

• Ability to consume data with a variety of tools, including SQL, Spark, machine
learning frameworks, and business intelligence tools

Several competing data lakehouse offerings are currently being developed by various
companies, but notable among them are Redshift Spectrum and Lake Formation on
AWS, Synapse on Microsoft Azure cloud, and Databricks Delta Lake.

Understanding data warehouses and data marts – fountains of truth 27

We will cover the data lakehouse architecture in more detail in the Bringing together
the best of both worlds with a data lakehouse section, but first, we dive deeper into data
warehousing concepts.

Understanding data warehouses and data
marts – fountains of truth
An Enterprise Data Warehouse (EDW) is the central data repository that contains
structured, curated, consistent, and trusted data assets that are organized into a well-
modeled schema. The data assets in an EDW are made up of all the relevant information
about key business domains and are built by integrating data sourced from the following
places:

• Run-the-business applications (ERPs, CRMs, Line of Business applications) that
support all the key business domains across the enterprise.

• External data sources such as data from partners and third parties.

An enterprise data warehouse provides business users and decision-makers with an easy-
to-use, central platform that helps them find and analyze a well-modeled, well-integrated,
single version of truth about various business subject areas such as customer, product,
sales, marketing, supply chain, and more. Business users analyze data in the warehouse to
measure business performance, find current and historical business trends, find business
opportunities, and understand customer behavior.

In the remainder of this section, we will review the foundational concepts of a data
warehouse by discussing a typical data management architecture with an EDW at
the center, as depicted in the following diagram. Typically, a data warehouse-centric
architecture includes the following:

• A data warehouse (and optionally multiple subject-focused data marts)

• Data warehouse integrations with various data sources, across business domains

• Data warehouse integrations with end user analytics tools and systems consuming
the data stored in the warehouse

28 Data Management Architectures for Analytics

The following diagram shows how an enterprise data warehouse fits into an analytics
architecture:

Figure 2.1 – Enterprise data warehousing architecture

At the center of our architecture is the enterprise data warehouse, which hosts a set of data
assets that contain current and historical data about key business subject areas. On the
left-hand side, we have our source systems and an ETL pipeline to load the data into the
warehouse. On the right-hand side, we can see several systems/applications that consume
data from the data warehouse.

In the next couple of sections, we'll look at how modern cloud-native data warehouses,
such as Amazon Redshift, leverage parallel processing and columnar storage to store and
process petabytes of data. Amazon Redshift provides very high query throughput while
processing high data volumes.

Understanding data warehouses and data marts – fountains of truth 29

Distributed storage and massively parallel processing
In the following diagram, we can see the underlying architecture of an Amazon
Redshift cluster:

Figure 2.2 – MPP architecture of an Amazon Redshift cluster

As we can see, an Amazon Redshift cluster contains several compute resources, along with
their associated disk storage. There are two types of nodes in a Redshift cluster:

• One leader node, which interfaces with client applications, receives and parses
queries, and coordinates query execution on compute nodes

• Multiple compute nodes, which store warehouse data and run query execution
steps in parallel.

30 Data Management Architectures for Analytics

Each compute node has its own independent processors, memory, and storage volumes
that are isolated from other compute nodes in the cluster (this is called a shared-nothing
architecture). Data is stored in a distributed fashion across compute nodes. The cluster
can easily be scaled up to store and process petabytes of data by simply adding more
compute nodes to the cluster (horizontal scaling).

Cloud data warehouses implement a distributed query processing architecture called
Massively Parallel Processing (MPP) to accelerate queries on massive volumes of data.
In this approach, the cluster leader node compiles the incoming client query into a
distributed execution plan. It then coordinates the execution of segments of compiled
query code on multiple compute nodes of the data warehouse cluster, in parallel. Each
compute node executes assigned query segments on its respective portion (stored locally
on the node) of the distributed dataset. To optimize MPP throughput, datasets may be
evenly distributed across the nodes to ensure participation of the maximum number
of cluster nodes in parallel query processing. To accelerate distributed MPP joins, most
commonly joined datasets are distributed across cluster nodes by common join keys,
so that matching slices of tables being joined end up on the same compute nodes.

Columnar data storage and efficient data compression
In addition to providing massive storage and cluster computing, modern data warehouses
also boost query performance through column-oriented storage and data compression.
In this section, we'll examine how this works, but first, let's understand how traditional
Online Transaction Processing (OLTP) databases store their data.

OLTP applications typically work with entire rows that include all columns of the table
(for example, read/write a sales record or look up a catalog record). To serve OLTP
applications, backend databases need to efficiently read and write full rows to the disk.
To speed up full row lookups and updates, OLTP databases use a row-oriented layout
to store table rows on the disk. In a row-oriented physical data layout, all the column
values of a given row are co-located, as depicted in the following diagram:

Understanding data warehouses and data marts – fountains of truth 31

Figure 2.3 – Row-oriented storage layout

Most analytics queries that business users run against a data warehouse are written to
answer a specific question and typically include grouping and the aggregations (such as
sum, average, mean) of a narrow set of columns from fact and dimension tables (these
typically contain many more columns than the narrow set of columns included in the
query). Analytics queries typically need to scan through a large number of rows but
need data from only a narrow set of columns that the query cares about. A row-oriented
physical data layout forces analytics queries to scan a large number of full rows (all
columns), even though they need only a subset of the columns from these rows. Analytics
queries on a row-oriented database can thus require a much higher number of disk I/O
operations than necessary.

Modern data warehouses store data on disks using a column-oriented physical layout. This
is more suitable for analytical query processing, which only requires a subset of columns
per query. While storing a table's data in a column-oriented physical layout, a data
warehouse breaks a table into groups of rows, called row chunks/groups. It then takes a
row chunk at a time and lays out data from that row chunk, one column at a time, so that
all the values for a column (that is, for that row chunk) are physically co-located on the
disk, as depicted in the following diagram:

Figure 2.4 – Column-oriented storage layout

32 Data Management Architectures for Analytics

Data warehouses repeat this for all the row chunks of the table. In addition to storing
tables as row chunks and using a column-oriented physical layout on disks, data
warehouses also maintain in-memory maps of locations of these chunks. Modern data
warehouses use these in-memory maps to pin-point column locations on the disk and
read the physically co-located values of the column. This enables the query engine to
retrieve data for only the narrow set of columns needed for a given analytics query. By
doing this, disk I/O is significantly reduced compared to what would be required to run
the same query on a row-oriented database.

Most modern data warehouses compress the data before storing it on the disk. In addition
to saving storage space, compressed data requires much lower disk I/O to read and write
data to the disk. Compression algorithms provide much better compression ratios when
all the values being compressed have the same data type and have a larger percentage of
duplicates. Since column-oriented databases lay out values of the same column (hence
the same data type, such as strings or integers) together, data warehouses achieve good
compression ratios, resulting in faster read/writes and smaller on-disk footprints.

Dimensional modeling in data warehouses
Data assets in the warehouse are typically stored as relational tables that are organized
into widely used dimensional models, such as a star or snowflake schema. Storing data in
a warehouse using a dimensional model makes it easier to retrieve and filter relevant data,
and it also makes analytic query processing flexible, simple, and performant.

Let's dive deeper into two widely used data warehouse modeling techniques and see
how we can organize sales domain entities as an example. Note that this example is
just a subsection of a much larger data warehouse schema.

The following diagram illustrates how data in a sales subject area can be organized using
a star schema:

Understanding data warehouses and data marts – fountains of truth 33

Figure 2.5 – Sales data entities organized as a star schema

34 Data Management Architectures for Analytics

In the preceding diagram, the data entities are organized like a star, with the Sales
fact table forming the middle of the star and the dimension tables forming the
corners. A fact table stores the granular numeric measurements/metrics (such as price
or quantity, in our example) of a business subject area such as Sales. The dimension
tables, surrounding the fact tables, store the context under which fact measurements
were captured. Each dimension table essentially provides the attributes of the contextual
entity such as who (employee, customer), what (product), where (store, city, state), and
when (sales date/time, quarter, year, weekday).

In a star schema, fact tables contain foreign key columns to store pointers to
the related rows in the dimension tables. Dimensional attributes are key to finding
and aggregating measurements stored in the fact tables in a data warehouse. Business
analysts typically slice, dice, and aggregate facts from different dimensional perspectives
to generate business insights about the subject area represented by the star schema. They
can find out answers to questions such as, what is the total volume of a given product sold
over a given period? What is the total revenue in a given product category? Which store
sells the greatest number of products in a given category?

In a star schema, while data for a subject area is normalized by splitting measurements
and context information into separate fact and dimension tables, individual dimension
tables are typically kept denormalized so that all the related attributes of a dimensional
topic can be found in a single table. This makes it easier to find all the related attributes
of a dimensional topic in a single table (fewer joins, simpler to understand model), but
for larger dimension tables, a denormalized approach can lead to data duplication and
inconsistencies within the dimension table. Large denormalized dimension tables can
also be slow to update.

One approach you can follow to work around these issues is a slightly modified type of
schema, the snowflake schema, as shown in the following diagram:

Understanding data warehouses and data marts – fountains of truth 35

Figure 2.6 – Sales data entities organized as a snowflake schema

The challenges of inconsistencies and duplication in a star schema can be addressed by
snowflaking (basically normalizing) each dimension table into multiple related dimension
tables (normalizing the original product dimension into product and product
category dimensions, for example). This continues until each dimension table contains
only attributes with direct correlation to the table's primary key. The highly normalized
model resulting from this snowflaking is called a snowflake schema.

36 Data Management Architectures for Analytics

The snowflake schema can be designed by extending the star schema or can be built from
the ground up by ensuring that each dimension is highly normalized and connected to
the related dimension tables, thus forming a hierarchy. A snowflake schema can reduce
redundancy and minimize disk space compared to a star schema, which often contains
duplicate records. However, on the other hand, the snowflake schema may necessitate
complex joins to answer business queries and may slow down query performance.

Understanding the role of data marts
Data warehouses contain data from all relevant business domains and have a
comprehensive but complex schema. Data warehouses are designed for the cross-domain
analysis that's required to inform strategic business decisions. However, organizations
often also have a narrower set of users who want to focus on a particular line of business,
department, or business subject area. These users prefer to work with a repository that
has a simple-to-learn schema, and only the subset of data that focuses on the area they
are interested in. Organizations typically build data marts to serve these users.

A data mart is focused on a single business subject repository (for example, marketing,
sales, or finance) and is typically created to serve a narrower group of business users, such
as a single department. A data mart often has a set of denormalized fact tables organized
in a much simpler schema compared to that of an enterprise data warehouse. Simpler
schemas and a reduced amount of data volume make data marts faster to build, simpler
to understand, and easier to use for end users. A data mart can be created in one of the
following formats:

• Top down: Data is taken from an existing data warehouse and focuses on a slice
of business subject data.

• Bottom up: Data is sourced directly from run-the-business applications related
to a business domain of interest.

Both data warehouses and data marts provide an integrated view of data from multiple
sources, but they differ in the scope of data they store. Data warehouses provide a central
store of data for the entire business and cover all business domains. Data marts serve a
specific division, or business function, by providing an integrated view of a subject area
relevant to that business function.

Understanding data warehouses and data marts – fountains of truth 37

So far, we have discussed various aspects of data warehouses and data marts, including
the central data repositories of our Enterprise data warehousing architecture from
Figure 2.1. Now, let's look at the components in our architecture that feed data to
central data repositories.

Feeding data into the warehouse – ETL and ELT
pipelines
To bring data into the warehouse (and optionally, data marts), organizations typically
build data pipelines that do the following:

• Extract data from source systems.

• Transform source data by validating, cleaning, standardizing, and curating it.

• Load the transformed source data into the enterprise data warehouse schema,
and optionally a data mart as well.

In these pipelines, the first step is to extract data from source systems, but the next two
steps can either take on a Transform-Load or Load-Transform sequence.

The data warehouses of a modern organization typically need to be fed data from a diverse
set of sources, such as ERP and CRM application databases, files stored on Network
Attached Storage (NAS) arrays, SaaS applications, and external partner applications. The
components that are used to implement the Extract step of both ETL and ELT pipelines
typically need to connect to these sources and handle diverse data formats (including
relational tables, flat files, and continuous streams of records).

The decision as to whether to build an Extract-Transform-Load (ETL) or Extract-Load-
Transform (ELT) data pipeline is based on the following:

• The complexity of the required data transformations.

• The speed at which source data needs to be made available for analysis in the data
warehouse after it's produced in the source system.

38 Data Management Architectures for Analytics

The following diagram shows a typical ETL pipeline for loading data into a
data warehouse:

Figure 2.7 – ETL pipeline

An ETL pipeline extracts data from various sources and stores it in a staging area first
(a system outside the warehouse). Transformation operations are then performed on
staged data to validate it, clean it, standardize it, structure it, and convert it into a form
suitable so that it can be loaded into the data warehouse (and optionally, data marts). The
transformed data from the staging area is then loaded into the warehouse's dimensional
schema. An ETL approach to building a data pipeline is typically used when the following
are true:

• Source database technologies and formats are different from those of the data
warehouse

• Data volumes are small to moderate

• Data transformations are complex and compute-intensive

Understanding data warehouses and data marts – fountains of truth 39

In an ETL pipeline, transformations are performed outside the data warehouse using
custom scripts, a cloud-native ETL service such as AWS Glue, or a specialized ETL
tool from a commercial vendor such as Informatica, Talend, DataStage, Microsoft,
or Pentaho.

On the other hand, an ELT pipeline extracts data (typically, highly structured data) from
various sources and loads it as-is (matching the sources systems' data structures) into a
staging area within the data warehouse. The database engine powering the data warehouse
is then used to perform transformation operations on the staged data to make it ready for
consumption.

The following diagram shows a typical ELT pipeline:

Figure 2.8 – ELT pipeline

40 Data Management Architectures for Analytics

The ELT approach allows for rapidly loading large amounts of source data into the
warehouse. Furthermore, the MPP architecture of modern data warehouses can
significantly accelerate the transform steps in ELT pipelines. The ELT approach is
typically leveraged when the following are true:

• Data sources and the warehouse have similar database technologies, making it
easier to directly load source data into the staging tables in the warehouse.

• A large volume of data needs to be quickly loaded into the warehouse.

• All the required transformation steps can be executed using the native SQL
capabilities of the warehouse's database engine.

In this section, we learned how data warehouses can store and process petabytes of
structured data. Modern data warehouses provide high-performance processing using
compute parallelism, columnar physical data layout, and dimensional data models such
as star or snowflake schemas.

The data management architectures in modern organizations need capabilities that
can store and analyze exploding volumes of semi-structured and unstructured data,
in addition to handling structured data from traditional sources. In the next section,
we'll learn about a new architecture, called data lakes, that today's leading organizations
typically implement to store, process, and analyze structured, semi-structured, and
unstructured data.

Building data lakes to tame the variety and
volume of big data
Along with the rise of new data types and increasing data volumes, we have seen an
increase in the ways that organizations look to draw insights from data. Machine
learning in particular has become a popular tool for analytics, enabling organizations
to automatically extract metadata from unstructured data sources, which can then be
analyzed with traditional analytic tools:

• Creating automated transcripts of call center audio recordings

• Using natural language processing (NLP) algorithms to extract sentiment data
from text

• Identifying objects, people, and expressions in an image

Building data lakes to tame the variety and volume of big data 41

As we saw in the previous section, enterprise data warehouses have been the go-to
repositories for storing highly structured tabular data sourced from traditional run-the-
business transactional applications. But the lack of a well-defined tabular structure makes
unstructured and semi-structured data unsuitable for storing in typical data warehouses.
Also, while they are good for use cases that need SQL-based processing, data warehouses
are limited to processing data using only SQL, and SQL is not the right tool for all data
processing requirements. For example, extracting metadata from unstructured data,
such as audio files or images, is best suited for specialized machine learning tools.

Most traditional data warehouses also tightly couple compute and storage. If you need
additional compute power, you need to add a processing node that also includes storage.
If you need additional storage, you add a processing node that also includes additional
compute power. With these systems, you always add compute and storage together, even
if you only need one of those additional resources.

On the other hand, a cloud data lake is a central, highly scalable repository in the cloud
where an organization can manage exabytes of various types of data, such as the following:

• Structured data (row-column-based tables)

• Semi-structured data (such as JSON and XML files, log records, and sensor data
streams)

• Unstructured data (such as audio, video streams, Word/PDF documents, and
emails)

Data from any of these sources can be quickly loaded into the data lake as-is (keeping the
original source format and structure). Unlike with data warehouses, data does not need to
be converted into a standard structure.

A cloud data lake also natively integrates with cloud analytic services that are decoupled
from data lake storage and enables diverse analytic tools, including SQL, code-based tools
(such as Apache Spark), specialized machine learning tools, and business intelligence
visualization tools.

In the next section, we will dive deeper into the architecture of a typical data lake.

42 Data Management Architectures for Analytics

Data lake logical architecture
Let's take a closer look at the architecture of a cloud-native data lake by looking at its
logical architecture, as shown in the following diagram:

Figure 2.9 – Data lake logical layered architecture

We can visualize a data lake architecture as a set of independent components organized
into five logical layers. A layered, component-oriented data lake architecture can evolve
to incorporate innovations in data management and analytics methods, as well as to make
use of new tools. This keeps the data lake responsive to new data sources and changing
requirements. In the following sections, we will dive deeper into these layers.

The storage layer and storage zones
At the center of the data lake architecture is the storage layer, which provides virtually
unlimited, low-cost storage that can store a variety of datasets, irrespective of their
structure or format.

Building data lakes to tame the variety and volume of big data 43

The storage layer is organized into different zones, with each zone having a specific
purpose. Data moves through the various zones of the data lake, with new, modified
copies of the data in each zone as the data goes through various transformations. There
are no hard rules about how many zones there should be, or the names of zones, but the
following zones are commonly found in a typical data lake:

• Landing/raw zone: This is the zone where the ingestion layer writes data, as-is,
from the source systems. The landing/raw zone permanently stores the raw data
from source.

• Clean/transform zone: The initial data processing of data in the landing/raw zone,
such as validating, cleaning, and optimizing datasets, writes data into the clean/
transform zone. The data here is often stored in optimized formats such as Parquet,
and it is often partitioned to accelerate query execution and downstream processing.
Data in this zone may also have had PII information removed, masked, or replaced
with tokens.

• Curated/enriched zone: The data in the clean/transformed zone may be further
refined and enriched with business-specific logic and transformations, and this data
is written to the curated/enriched zone. This data is in its most consumable state
and meets all organization standards (cleanliness, file formats, schema). Data here
is typically partitioned, cataloged, and optimized for the consumption layer.

Depending on the business requirements, some data lakes may include more or fewer
zones than the three highlighted here. For example, a very simple data lake may just have
two zones (the raw and curated zones), while some data lakes may have five or more zones
to handle intermediate stages or specific requirements.

Cataloging and search layer
A data lake typically hosts a large number of datasets (potentially thousands) from a
variety of internal and external sources. These datasets are used by several users across
the organization, and these users need the ability to search for available datasets and
review the schema and other metadata of those datasets. The cataloging and search layer
provides this metadata (schema, partitioning information, categorization, ownership, and
more) about the datasets hosted in the storage layer. The cataloging layer can also track
changes that have been made to the schemas of the datasets in the lake. This layer should
also provide a search capability to simplify the task of finding a required dataset among
the many datasets held in the lake.

44 Data Management Architectures for Analytics

Ingestion layer
The ingestion layer is responsible for connecting to diverse types of data sources and
bringing their data into the storage layer of the data lake. This layer contains several
independent components, each purpose-built to connect to a data source with a distinct
profile in terms of the following:

• Data structure (structured, semi-structured, unstructured)

• Data delivery type (table rows, data stream, data file)

• Data production cadence (batch, streaming)

This component-oriented composition of the ingestion layer provides the flexibility to
simply add new components to match a new data source's distinct profile.

A typical ingestion layer may contain several components (tools) for connecting to and
ingesting from the various data sources. Examples include Amazon Database Migration
Services (DMS) for ingesting from various databases, and Amazon Kinesis Firehose to
ingest streaming data into the data lake. An overview of these tools, and many others, will
be covered in Chapter 3, The AWS Data Engineers Toolkit, and we will dive deep into the
ingestion layer in Chapter 6, Ingesting Batch and Streaming Data.

Processing layer
Once the ingestion layer brings data from a source system into the landing zone, it
is the processing layer that makes it ready for consumption by data consumers. The
processing layer transforms the data in the lake through various stages of data cleanup,
standardization, and enrichment. Along the way, the processing layer stores transformed
data in the different zones – writing it into the clean zone and then the curated zone, and
then ensuring that the data catalog gets updated.

The components in the ingestion and processing layers are used to create ELT pipelines.
In these pipelines, the ingestion layer components extract data from the source and load
it into the data lake, and then the processing layer components transform it to make it
suitable for consumption by components in the consumption layer.

Bringing together the best of both worlds with the lake house architecture 45

Consumption layer
Once data has been ingested and processed to make it consumption-ready, it can
be analyzed using several techniques, such as interactive query processing, business
intelligence dashboarding, and machine learning. To perform analytics on data in the lake,
the consumption layer provides purpose-built tools. The tools in the consumption layer
can natively access data from the storage layer, and the schema can be accessed from the
catalog layer (to apply schema-on-read to the lake-hosted data).

Data lake architecture summary
In this section, we learned about data lake architectures, and how they can enable
organizations to manage and analyze vast amounts of structured, unstructured,
and semi-structured data.

Analytics platforms at a typical organization need to serve warehousing style structured
data analytics use cases (such as complex queries and BI dashboarding), as well as
use cases that require managing and analyzing vast amounts of unstructured data.
Organizations typically end up building both a data warehouse and a data lake.

In the next section, we will look at an emerging data management and analytics
architecture that's often referred to as the lake house architecture, or the data lakehouse.
This architecture natively integrates data warehouses and data lakes and unlocks the best
of both worlds.

Bringing together the best of both worlds with
the lake house architecture
In today's highly digitized world, data about customers, products, operations, and the
supply chain can come from many sources and can have a diverse set of structures. To gain
deeper and more complete data-driven insights about a business topic (such as the customer
journey, customer retention, product performance, and more), organizations need to
analyze all the relevant topic data of all the structures from all the sources, together.

Organizations collect and analyze structured data in data warehouses, and they build data
lakes to manage and analyze unstructured data. Historically, organizations have built data
warehouse and data lake solutions in isolation from each other, with each having its own
separate data ingestion, storage, processing, and governance layers. Often, these disjointed
efforts to build separate data warehouse and data lake ecosystems have ended up creating
data and processing silos, data integration complexity, excessive data movement, and data
consistency issues. These, in turn, have led to delays and increased costs in gaining deeper
insights that only come when you combine and analyze all the relevant data.

46 Data Management Architectures for Analytics

In this section, we will look at a recently emerging cloud-native architecture, called
lake house architecture. This new architecture approach enables organizations to collect,
manage, process, and analyze all of their structured and unstructured data in a simple
and integrated fashion. The data lakehouse architecture combines the best features of
both the data warehouse and data lake worlds, and also provides a unified interface to
enable access to all topic relevant data, of all structures, in an integrated way.

Data lakehouse implementations
Over the last 2 to 3 years, various cloud providers, software providers, and open source
organizations have been building new products to enable this move toward a data lakehouse
architecture. The implementation approaches to a data lakehouse (also sometimes referred
to as data lakehouse) vary across different platform providers:

• Databricks has introduced an offering called Databricks Delta Lake. Delta Lake
provides a storage layer that enables ACID transactions directly in the data lake.
With this functionality, records can be inserted, updated, and deleted for tables
in the data lake, something that was previously not easily available.

• Apache Hudi is a relatively new open source project that enables users to perform
insert, update, and delete operations on data in the data lake, without needing to
build their own custom solutions.

• Microsoft Azure has added a capability called Polybase to their warehouse service,
known as Azure Synapse Analytics. Polybase allows Azure Synapse Analytics users
to include data stored in Azure Blob storage, Azure Data Lake Store, and Hadoop
to help process their T-SQL queries.

• Amazon Web Services (AWS) has added several new capabilities, including new
features in Redshift Spectrum and Lake Formation, to enable building a data
lakehouse architecture on AWS. This includes the ability to read data lake tables
in S3 from Amazon Redshift, as well as to perform inserts, updates, and deletes
on data lake tables using Lake Formation governed tables.

In the rest of this section, we'll look at an implementation architecture of a data lakehouse
on AWS.

Bringing together the best of both worlds with the lake house architecture 47

Building a data lakehouse on AWS
Two components that provide the key foundations for building a lake house architecture
in AWS are Amazon Redshift Spectrum and AWS Lake Formation. The following diagram
shows a data lake architecture with these two components:

Figure 2.10 – Data lakehouse on AWS

Redshift Spectrum is a feature of the Amazon Redshift data warehouse service that
enables Redshift to read data stored in S3. Redshift Spectrum is essentially a query
processing layer that uses Amazon-managed compute nodes to natively query structured
and semi-structured data hosted in data lake storage (S3). Spectrum enables an Amazon
Redshift data warehouse to present a single unified interface, where users can run SQL
statements that combine data from both Redshift (data warehouse) and S3 (data lake).
Spectrum thus enables users to query all the data in the lake house using a single
SQL interface.

48 Data Management Architectures for Analytics

Lake Formation provides the central lake house catalog where users and analytics services
can search, discover, and retrieve metadata for a dataset. The central lake house catalog
is automatically kept up to date with metadata from all the lake house datasets by using
the catalog automation capability provided by AWS Glue. Glue can be configured to
periodically crawl through the lake house storage and discover datasets, extract their
metadata (such as location, schema, format, partition information, and more), and then
store this metadata as a table in the central Lake Formation catalog. The metadata of a
table in the catalog can be used by AWS analytics services, such as Amazon Athena,
to locate a corresponding dataset in the lake house storage and apply schema-on-read
to that dataset during query execution.

In addition to adding Redshift Spectrum and Lake Formation capabilities, AWS has also
enabled various cloud services in the processing and consumption layers to be able to
access all lake house data using either Redshift SQL or an Apache Spark interface. For
example, AWS Glue (which provides a serverless Apache Spark environment) and Amazon
EMR (a managed Spark environment) include native Spark plugins that can access Redshift
tables, in addition to objects in S3 buckets, all in the same job. Amazon Athena supports
query federation, which enables Athena to query data in the data lake, as well as data stored
in other engines such as Amazon Redshift or an Amazon RDS database.

AWS has also enhanced the AWS Lake Formation service to support governed tables.
With governed tables, users can run transactional queries against data stored in the table,
including inserts, updates, and deletes. In addition to this, with governed tables, users can
time travel, which means they can query a table and specify a specific time, and the results
that are returned will represent the data as it was at the specified point in time.

In future chapters, the hands-on exercises will cover various tasks related to ingesting,
transforming, and querying data in the data lake, but in this chapter, we are still setting up
some of the foundational tasks. In the next section, we will work through the process of
installing and configuring the AWS Command Line Interface (CLI), and we will create
an Amazon S3 bucket.

Hands-on – configuring the AWS Command
Line Interface tool and creating an S3 bucket
In Chapter 1, An Introduction to Data Engineering, you created an AWS account and
an AWS administrative user, and then ensured you could access your account. As part of
the process of creating the administrative user, you took note of the Access Key ID and
Secret Access Key, both of which are needed for authenticating programmatic access to
your account.

In this chapter, we will use those keys to configure the AWS CLI. We will also use the CLI
to create an Amazon S3 bucket (a storage container in the Amazon S3 service).

Hands-on – configuring the AWS Command Line Interface tool and creating an S3 bucket 49

Installing and configuring the AWS CLI
To configure the AWS CLI, you will need an Access Key ID and Secret Access Key for
an IAM administrative user.

The following steps will install the AWS CLI and configure it for use in the hands-on
sections throughout the remainder of this book:

1. Download the appropriate AWS CLI installer for your platform (Mac, Windows,
or Linux) from https://aws.amazon.com/cli/.

2. Run the installer to complete the installation of the AWS CLI.
3. To configure the CLI, run aws configure at the Command Prompt and provide

the AWS Access Key ID and AWS Secret Access Key for your IAM Administrative
user. Also, provide a default region – in the examples in this book, we will use
us-east-2 (Ohio), but you can use a different region if it supports all the services
and features covered in this book. For Default output format, press Enter to
leave it as the default, as shown in the following command block:

$ aws configure

AWS Access Key ID [None]: AKIAX9LFIEPF3KKQUI

AWS Secret Access Key [None]:
neKLcXPXlabP9C90a0qeBkWZAbnbM4ihesP9N1u3

Default region name [None]: us-east-2

Default output format [None]: ENTER

Creating a new profile
If you already have the AWS CLI configured and associated with a different
IAM user account, you have the option of configuring multiple profiles, each
one associated with a different IAM user. To do this, run the configure
command with the profile argument, specifying a name for the
profile. For example, you could run aws configure --profile
dataengbook, and then provide the details for the IAM administrative
user we created in Chapter 1, An Introduction to Data Engineering. Then, when
running through the tutorials in this book, make sure you always specify the
profile created here. For example, to list the S3 buckets in your account using
the dataengbook profile you just created, you would run aws s3 ls
-- profile dataengbook.

Thus, we have installed and configured the AWS CLI. Next, we will see how to create a
new Amazon S3 bucket.

https://aws.amazon.com/cli/

50 Data Management Architectures for Analytics

Creating a new Amazon S3 bucket
To confirm that we have configured the CLI correctly, we will create a new S3 bucket using
the AWS CLI.

Amazon Simple Storage Service (S3) is an object storage service that offers near
unlimited capacity with high levels of durability and availability. To store data in S3,
you need to create a bucket. Once created, the bucket can store any number of objects.

Each S3 bucket needs to have a globally unique name, and it is recommended that the
name be DNS compliant. For more information on rules for bucket names, see https://
docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html.

To create an S3 bucket using the AWS CLI, run the following command at the
Command Prompt:

$ aws s3 mb s3://<bucket-name>

Remember that the bucket name you specify here must be globally unique. If you attempt
to create a bucket using a name that another AWS account has used, you will see an error
similar to the following:

$ aws s3 mb s3://test-bucket

make_bucket failed: s3://test-bucket An error occurred
(BucketAlreadyExists) when calling the CreateBucket operation:
The requested bucket name is not available. The bucket
namespace is shared by all users of the system. Please select a
different name and try again.

If your aws s3 mb command returned a message similar to the following, then
congratulations! Your AWS CLI has been successfully configured:

make_bucket: <bucket-name>

Summary
In this chapter, we learned about the foundational architectural concepts that are typically
applied when designing real-life analytics data management and processing solutions. We
also discussed three analytics data management architectures that you would find most
commonly used across organizations today: data warehouse, data lake, and data lakehouse.

In the next chapter, we will provide an overview of several AWS services that are used in
the creation of these architectures – from services for ingesting data, to services that help
perform data transformation, to services that are designed for querying and analyzing data.

https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html

3
The AWS Data

Engineer's Toolkit
Back in 2006, Amazon launched Amazon Web Services (AWS) to offer on-demand
delivery of IT resources over the internet, essentially creating the cloud computing
industry. Ever since then, AWS has been innovating at an incredible pace, continually
launching new services and features to offer broad and deep functionality across a wide
range of IT services.

Traditionally organizations built their own big data processing systems in their data
centers, implementing commercial or open source solutions designed to help them make
sense of ever-increasing quantities of data. However, these systems were often complex
to install, requiring a team of people to maintain, optimize, and update, and scaling these
systems was a challenge, requiring large infrastructure spend and significant delays while
waiting for hardware vendors to install new compute and storage systems.

Cloud computing has enabled the removal of many of these challenges, including the
ability to launch fully configured software solutions at the push of a button and having
these systems automatically updated and maintained by the cloud vendor. Organizations
also benefit from the ability to scale out by adding resources in minutes, all the while only
paying for what was used, rather than having to make large upfront capital investments.

52 The AWS Data Engineer's Toolkit

Today, AWS offers around 200 different services, including a number of analytics services
that can be used by data engineers to build complex data analytic pipelines. There are
often multiple AWS services that could be used to achieve a specific outcome, and the
challenge for data architects and engineers is to balance the pros and cons of a specific
service, evaluating it from multiple perspectives, before determining the best fit for the
specific requirements.

In this chapter, we introduce a number of these AWS managed services commonly used
for building big data solutions on AWS, and in later chapters, we will look at how you can
architect complex data engineering pipelines using these services. As you go through this
chapter, you will learn about the following topics:

• AWS services for ingesting data

• AWS services for transforming data

• AWS services for orchestrating big data pipelines

• AWS services for consuming data

• Hands-on - an AWS Lambda function when a new file arrives in an S3 bucket

Technical requirements
You can find the code files of this chapter in the GitHub repository using the following
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter03

AWS services for ingesting data
The first step in building big data analytic solutions is to ingest data from a variety of
sources into AWS. In this section, we introduce some of the core AWS services designed
to help with this; however, this should not be considered a comprehensive review of every
possible way to ingest data into AWS.

Don't feel overwhelmed by the number of services we cover in this section! We will
explore approaches for deciding on the right service for your specific use case in later
chapters, but it is important to have a good understanding of the available tools upfront.

Overview of Amazon Database Migration Service (DMS)
One of the most common ingestion use cases is to sync data from a traditional database
system into an analytic pipeline, either landing the data in an Amazon S3-based data lake,
or in a data warehousing system such as Amazon Redshift.

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter03
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter03

AWS services for ingesting data 53

Amazon DMS is a versatile tool that can be used to migrate existing database systems
to a new database engine, such as migrating an existing Oracle database to an Amazon
Aurora with PostgreSQL compatibility database. But from an analytics perspective,
Amazon DMS can also be used to run continuous replication from a number of common
database engines into an Amazon S3 data lake.

As discussed previously, data lakes are often used as a means of bringing in data from
multiple different data sources into a centralized location to enable an organization to get
the big picture across different business units and functions. As a result, there is often a
requirement to perform continuous replication of a number of production databases into
Amazon S3.

For our use case, we want to sync our production customer, products, and order databases
into the data lake. Using DMS, we can do an initial load of data from the databases into
S3, specifying the format that we want the file written out in (CSV or Parquet), and the
specific ingestion location in S3.

At the same time, we can also set up a DMS task to do ongoing replication from the source
databases into S3 once the full load completes. With transactional databases, the rows in
a table are regularly updated, such as if a customer changes their address or telephone
number. When querying the database using SQL, we can see the updated information,
but in most cases, there is no practical method to track changes to the database using
only SQL. Because of this, DMS uses the database transaction log files from the database
to track updates to rows in the database and writes out the target file in S3 with an extra
column added (Op) that indicates which operation is reflected in the row – an insert,
update, or deletion. The process of tracking and recording these changes is commonly
referred to as Change Data Capture (CDC).

Picture a situation where you have a source table with a schema of custid, lastname,
firstname, address, and phone, and the following sequence of events happens:

• A new customer is added with all fields completed.

• The phone number was entered incorrectly, so the record has the phone
number updated.

• The customer record is then deleted from the database.

We would see the following in the CDC file that was written out by DMS:

I, 9335, Smith, John, "1 Skyline Drive, NY, NY", 201-555-9012

U, 9335, Smith, John, "1 Skyline Drive, NY, NY", 201-555-9034

D, 9335, Smith, John, "1 Skyline Drive, NY, NY", 201-555-9034

54 The AWS Data Engineer's Toolkit

The first row in the file shows us that a new record was inserted into the table (represented
by the I in the first column). The second row shows us that a record was updated
(represented by the U in the first column). And finally, the third entry in the file indicates
that this record was deleted from the table (represented by the D in the first column).

We would then have a separate update process that would run to read the updates and
apply those updates to the full load, creating a new point-in-time snapshot of our source
database. The update process would be scheduled to run regularly, and each time it runs
it would apply the latest updates as recorded by DMS to the previous snapshot, creating
a new point-in-time snapshot. We will review this kind of update job and approach in
more detail in Chapter 7, Transforming Data to Optimize for Analytics.

When to use: Amazon DMS simplifies migrating from one database engine to a different
database engine, or syncing data from an existing database to Amazon S3 on an ongoing
basis.

When not to use: If you're looking to sync an on-premises database to the same engine
in AWS, it is often better to use native tools from that database engine. DMS is primarily
designed for heterogeneous migrations (that is, from one database engine to a different
database engine).

Overview of Amazon Kinesis for streaming data
ingestion
Amazon Kinesis is a managed service that simplifies the process of ingesting and
processing streaming data in real time, or near real time. There are a number of different
use cases that Kinesis can be used for, including ingestion of streaming data (such as log
files, website clickstreams, or IoT data), as well as video and audio streams.

Depending on the specific use case, there are a number of different services that you
can select from that form part of the overall Kinesis service. Before we go into more
detail about these services, review the following summary of the various Amazon
Kinesis services:

• Kinesis Data Firehose: Ingests streaming data, buffers for a configurable period,
then writes out to a limited set of targets (S3, Redshift, Elasticsearch, Splunk,
and others)

• Kinesis Data Streams: Ingests real-time data streams, processing the incoming
data with a custom application and low latency

AWS services for ingesting data 55

• Kinesis Data Analytics: Reads data from a streaming source and uses SQL
statements or Apache Flink code to perform analytics on the stream

• Kinesis Video Streams: Processes streaming video or audio streams, as well as
other time-serialized data such as thermal imagery and RADAR data

Amazon Kinesis Agent
In addition to the AWS Kinesis services, AWS also provides an agent to easily consume
data from a file and write that data out in a stream to either Kinesis Data Streams or
Kinesis Data Firehose.

The Amazon Kinesis Agent is available on GitHub as a Java application under the
Amazon Software License (https://github.com/awslabs/amazon-kinesis-
agent), as well as in a version for Windows (Amazon Kinesis Agent for Microsoft
Windows).

The agent can be configured to monitor a set of files, and as new data is written to the
file, the agent buffers the data (configurable for a duration of between 1 second and
15 minutes) and then writes the data to Kinesis. The agent handles retry on failure,
as well as file rotation and checkpointing.

An example of a typical use case is a scenario where you want to analyze events happening
on your website in near real time. The Kinesis Agent can be configured to monitor the
Apache web server log files on your web server, convert each record from the Apache
access log format to JSON format, and then write records out reflecting all website activity
every 30 seconds to Kinesis, where Kinesis Data Analytics can be used to analyze events
and generate custom metrics based on a tumbling 5-minute window.

When to use: The Amazon Kinesis Agent is ideal for when you want to stream data to
Kinesis that is being written to a file in a separate process (such as log files).

When not to use: If you have a custom application where you want to emit streaming
events (such as a mobile application, or IoT device) you may want to consider using
the Amazon Kinesis Producer Library (KPL), or the AWS SDK, to integrate sending
streaming data directly with your application.

Amazon Kinesis Firehose
Amazon Kinesis Firehose is designed to enable you to easily ingest data in near real time
from streaming sources and write out that data to common targets, including Amazon S3,
Amazon Redshift, Amazon Elasticsearch, as well as third-party services (such as Splunk,
Datadog, and New Relic).

https://github.com/awslabs/amazon-kinesis-agent
https://github.com/awslabs/amazon-kinesis-agent

56 The AWS Data Engineer's Toolkit

With Kinesis Firehose, you can easily ingest data from streaming sources, process or
transform the incoming data, and deliver that data to a target such as Amazon S3 (among
others). A common use case for data engineering purposes is to ingest website clickstream
data from the Apache web logs on a web server and write that data out to an S3 data lake
(or a Redshift data warehouse).

In this example, you could install the Kinesis Agent on the web server and configure it
to monitor the Apache web server log files. Based on the configuration of the agent,
on a regular schedule the agent would write records from the log files to the Kinesis
Firehose endpoint.

The Kinesis Firehose endpoint would buffer the incoming records, and either after a
certain time (1-15 minutes) or based on the size of incoming records (1 MB–128 MB) it
would write out a file to the specified target. Kinesis Firehose requires you to specify both
a size and a time, and whichever is reached first will trigger the writing out of the file.

When writing files to Amazon S3, you also have the option of transforming the incoming
data to Parquet or ORC format, or to perform custom transforms of the incoming data
stream using an Amazon Lambda function.

When to use: Amazon Kinesis Firehose is the ideal choice for when you want to receive
streaming data, buffer that data for a period, and then write the data to one of the
targets supported by Kinesis Firehose (such as Amazon S3, Amazon Redshift, Amazon
Elasticsearch, or a supported third-party service).

When not to use: If your use case requires very low latency processing of incoming
streaming data (that is, immediate reading of received records), or you want to use a
custom application to process your incoming records or deliver records to a service not
supported by Amazon Kinesis Firehose, then you may want to consider using Amazon
Kinesis Data Streams or Amazon Managed Streaming for Apache Kafka (MSK) instead.

Amazon Kinesis Data Streams
While Kinesis Firehose buffers incoming data before writing it to one of its supported
targets, Kinesis Data Streams provides increased flexibility for how data is consumed and
makes the incoming data available to your streaming applications with very low latency
(AWS indicates data is available to consuming applications within 70 milliseconds of the
data being written to Kinesis).

AWS services for ingesting data 57

Companies such as Netflix use Kinesis Data Streams to ingest terabytes of log data every
day, enriching their networking flow logs by adding in additional metadata, and then
writing the data to an open source application for performing near real-time analytics
on the health of their network.

You can write to Kinesis Data Streams using the Kinesis Agent, or you can develop your
own custom applications using the AWS SDK or the KPL, a library that simplifies writing
data records with high throughput to a Kinesis data stream.

The Kinesis Agent is the simplest way to send data to Kinesis Data Streams if your data
can be supported by the agent (such as when writing out log files), while the AWS SDK
provides the lowest latency, and the Amazon KPL provides the best performance and
simplifies tasks such as monitoring and integration with the Kinesis Client Library (KCL).

There are also multiple options available for creating applications to read from your
Kinesis data stream, including the following:

• Using other Kinesis services (such as Kinesis Firehose or Kinesis Data Analytics).

• Running custom code using the AWS Lambda service (a serverless environment
for running code without provisioning or managing servers).

• Setting up a cluster of Amazon EC2 servers to process your streams. If using a
cluster of Amazon EC2 servers to process your stream, you can use the KCL to
handle many of the complex tasks associated with using multiple servers to process
a stream, such as load balancing, responding to instance failures, checkpointing
records that have been processed, and reacting to resharding (increasing or
decreasing the number of shards used to process streaming data).

When to use: Amazon Kinesis Data Streams is ideal for use cases where you want to
process incoming data as it is received, or you want to create a high-availability cluster
of servers to process incoming data with a custom application.

When not to use: If you have a simple use case that requires you to write data to specific
services in near real time, you should consider Kinesis Firehose if it supports your target
destination. If you are looking to migrate an existing Apache Kafka cluster to AWS, then
you may want to consider migrating to Amazon MSK. If Apache Kafka supports third-
party integration that would be useful to you, you may want to consider Amazon MSK.

58 The AWS Data Engineer's Toolkit

Amazon Kinesis Data Analytics
Amazon Kinesis Data Analytics simplifies the process of processing streaming data, using
either standard SQL queries or an Apache Flink application.

An example of a use case for Kinesis Data Analytics is to analyze incoming clickstream
data from an e-commerce website to get near real-time insight into the sales of a product.
In this use case, an organization may want to know how the promotion of a specific
product is impacting sales to see whether the promotion is being effective, and Kinesis
Data Analytics can enable this using relatively simple SQL queries to process records
being sent from their web server clickstream logs. This enables the business to quickly
get answers to questions such as "how many sales of product x have there been in each
5-minute period since our promotion went live?"

When to use: If you want to use SQL expressions to analyze data or extract key metrics
over a rolling time period, Kinesis Data Analytics significantly simplifies this task. If you
have an existing Apache Flink application that you want to migrate to the cloud, consider
running the application using Kinesis Data Analytics.

Amazon Kinesis Video Streams
Amazon Kinesis Video Streams can be used to process time-bound streams of
unstructured data such as video, audio, and RADAR data.

Kinesis Video Streams takes care of provisioning and scaling the compute infrastructure
that is required to ingest streaming video (or other types of media files) from potentially
millions of sources. Kinesis Video Streams enables playback of video for live and
on-demand viewing and can be integrated with other Amazon API services to enable
applications such as computer vision and video analytics.

Appliances such as video doorbell systems, home security cameras, and baby monitors
can stream video through Kinesis Video Analytics, simplifying the task of creating full-
featured applications to support these appliances.

When to use: When creating applications that use a supported source, Kinesis Video
Streams significantly simplifies the process of ingesting streaming media data and
enabling live or on-demand playback.

AWS services for ingesting data 59

Note about AWS service reliability
AWS services are known to be extremely reliable, and generally significantly
exceed the uptime and reliability of what most organizations can achieve in
their own data centers. However, as Werner Vogels (Amazon's CTO) has been
known to say, "Everything fails all the time."

In November 2020, the Amazon Kinesis service running out of data centers
in the Northern Virginia region (us-east-1) experienced a period of a number
of hours where there were increased error rates for users of the service. During
this time, many companies reported having their services affected, including
Roomba vacuum cleaners, Ring doorbells, The Washington Post newspaper,
Roku, and others.

This is a clear reminder that while AWS services generally offer extremely high
levels of availability, if you require absolutely minimal downtime you need to
design the ability to fail-over to a different AWS Region in your architecture.

Overview of Amazon MSK for streaming data ingestion
Apache Kafka is a popular open source distributed event streaming platform that enables
an organization to create high-performance streaming data pipelines and applications,
and Amazon MSK (Managed Streaming for Apache Kafka) is a managed version of
Apache Kafka available from AWS.

While Apache Kafka is a popular choice for organizations, it can be a challenge to install,
scale, update, and manage in an on-premises environment, often requiring specialized
skills. To simplify these tasks, AWS offers Amazon MSK, which enables an organization
to deploy an Apache Kafka cluster with a few clicks in the console, and reduces the
management overhead by automatically monitoring cluster health and replacing
failed components.

When to use: Amazon MSK is an ideal choice if your use case is a replacement for an
existing Apache Kafka cluster, or if you want to take advantage of the many third-party
integrations from the open source Apache Kafka ecosystem.

When not to use: Amazon Kinesis may be a better streaming solution if you are creating
a new solution from scratch, as Kinesis is serverless and you only pay for data throughput
(whereas with Amazon MSK you pay for the cluster, whether you are sending data
through it or not).

60 The AWS Data Engineer's Toolkit

Overview of Amazon AppFlow for ingesting data from
SaaS services
Amazon AppFlow can be used to ingest data from popular SaaS services, and to transform
and write the data out to common analytic targets, such as Amazon S3, Amazon Redshift,
and Snowflake (a popular cloud data warehousing solution), as well as being able to write
to some SaaS services.

For example, AppFlow can be used to ingest lead data from Marketo, a developer of
marketing automation solutions, where your organization may capture details about a new
lead. Using AppFlow, you can create a flow that will automatically create a new Salesforce
contact record whenever a new Marketo lead is created.

From a data engineering perspective, you can create flows that will automatically write
out new opportunity records created in Salesforce into your S3 data lake or Redshift data
warehouse, enabling you to join those opportunity records with other datasets to perform
advanced analytics.

AppFlow can be configured to run on a schedule, or in response to specific events, and
can filter data, mask data, validate data, and perform calculations from data fields in
the source.

While it is expected that new integrations will be added over time, as of the time of
publication of this book the following integrations were supported by Amazon AppFlow:

• AWS services:

 � Amazon EventBridge (a serverless event bus that ingests data and routes it
to targets)

 � Amazon Redshift (a cloud-based data warehousing service)

 � Amazon S3 (an object storage service, often used as the storage layer for analytic
data lakes)

 � Amazon Honeycode (a managed service for building mobile and web applications
with no programming required)

 � Amazon Lookout for Metrics (a machine learning service for identifying outliers
in business and operational metrics and determining their root cause)

AWS services for ingesting data 61

• Third-party services:

 � Amplitude (a product analytics toolset)

 � Datadog (an application monitoring service)

 � Dynatrace (an applications and infrastructure monitoring service)

 � Google Analytics (a service for monitoring and tracking website traffic)

 � Infor Nexus (an on-demand global supply chain management platform)

 � Marketo (marketing automation software to help engage customers and
prospects)

 � Salesforce (customer relationship management and related services)

 � ServiceNow (a platform for managing digital workflows)

 � Singular (a marketing analytics and ETL solution)

 � Slack (a channel-based messaging platform)

 � Snowflake (a cloud-based data warehouse solution)

 � Trend Micro (a workload security solution)

 � Upsolver (a service for turning event streams into analytics-ready data)

 � Veeva (a cloud computing service focused on pharmaceutical and life
sciences companies)

 � Zendesk (a customer service and helpdesk platform)

When to use: Amazon AppFlow is an ideal choice for ingesting data into AWS if one of
your data sources is a supported SaaS.

Overview of Amazon Transfer Family for ingestion
using FTP/SFTP protocols
The Amazon Transfer Family provides a fully managed service that enables file transfers
directly into and out of Amazon S3 using common file transfer protocols, including
FTP and SFTP.

62 The AWS Data Engineer's Toolkit

Many organizations today still make use of these protocols to exchange data with other
organizations. For example, a real-estate company may receive the latest MLS (Multi-
Listing Service) files from an MLS provider via SFTP. In this case, the real-estate company
would have configured a server running SFTP, and created an SFTP user account that the
MLS provider can use to connect to the server and transfer the files.

With Amazon Transfer for SFTP, the real-estate company could easily migrate to the
managed AWS service, replicating the account setup that exists for their MLS provider
on their on-premises server with an account in their Amazon Transfer service. With
little to no change on the side of the provider, when future transfers are made via the
managed AWS service, these would be written directly into Amazon S3, making the data
immediately accessible to data transformation pipelines created for the Amazon S3-based
data lake.

When to use: If an organization currently receives data via FTP, SFTP, or FTPS, they should
consider migrating to the managed version of this service offered by Amazon Transfer.

Overview of Amazon DataSync for ingesting from
on-premises storage
There is often a requirement to ingest data from existing on-premises storage systems, and
Amazon DataSync simplifies this process while offering high performance and stability
for the data transfers.

Network File System (NFS) and Server Message Block (SMB) are two common
protocols that are used to allow computer systems to access files stored on a different
system. With DataSync, you can easily ingest and replicate data from file servers that
use either of these protocols. DataSync also supports ingesting data from on-premises
object-based storage systems that are compatible with core AWS S3 API calls.

DataSync can write to multiple targets within AWS, including Amazon S3, making it an
ideal way to sync data from on-premises storage into your AWS S3 data lake. For example,
if you have a solution running in your data center that writes out end-of-day transactions
to a file share, DataSync can ensure that the data is synced to your S3 data lake. Another
common use case is to transfer large amounts of historical data from an on-premises
system into your S3 data lake.

AWS services for ingesting data 63

When to use: Amazon DataSync is a good choice when you're looking to ingest current
or historical data from compatible on-premises storage systems to AWS over a network
connection.

When not to use: For very large historical datasets where sending the data over a network
connection is not practical, you should consider using the Amazon Snow family of
devices. If you want to perform preprocessing of data, such as converting Apache web
server log files to JSON, consider using Amazon Kinesis Agent to preprocess the data and
then send data to Amazon S3 via Amazon Kinesis Firehose.

Overview of the AWS Snow family of devices for large
data transfers
For use cases where there are very large datasets that need to be ingested into AWS, and
either a lack of a good network connection or just the sheer size of the dataset makes
it impractical to transfer via a network connection, the AWS Snow family of devices
can be used.

The AWS Snow family of devices are ruggedized devices that can be shipped to a location
and attached to a network connection in the local data center. Data can be transferred
over the local network, and the device is then shipped back to AWS where the data will be
transferred to Amazon S3. All the devices offer encryption of data at rest, and most of the
devices also offer compute ability, enabling edge computing use cases.

There are multiple devices available for different use cases, as summarized here:

• AWS Snowcone: Lightweight (4.5 lb/2.1 kg) device with 8 TB of usable storage

• AWS Snowball Edge Optimized (for Data Transfer): Mediumweight (49.7 lb/22.5
kg) device with 80 TB of usable storage

• AWS Snowmobile: Large 45-foot ruggedized shipping container pulled by a semi-
trailer truck. Capacity of up to 100 PB

64 The AWS Data Engineer's Toolkit

AWS services for transforming data
Once your data is ingested into an appropriate AWS service, such as Amazon S3, the next
stage of the pipeline needs to transform the data to optimize it for analytics and to make
it available to your data consumers.

Some of the tools we discussed in the previous section for ingesting data into AWS can
perform light transformations as part of the ingestion process. For example, Amazon
DMS can write out data in Parquet format (a format optimized for analytics), as can
Kinesis Firehose. However, heavier transformations are often required to fully optimize
your data for a differing set of analytic tasks and diverse data consumers, and in this
section, we will examine some of the core AWS services that can be used for this.

Overview of AWS Lambda for light transformations
AWS Lambda provides a serverless environment for executing code and is one of AWS's
most popular services. You can trigger your Lambda function to execute your code in
multiple ways, including through integration with over 140 other AWS services, and you
only pay for the duration that your code executes, billed in 1-millisecond increments,
and based on the amount of memory that you allocate for your function.

In the data engineering world, a common use case for Lambda is for performing
validation or light processing and transformation of incoming data. For example, if you
have incoming CSV files being sent by one of your partners throughout the day, you can
trigger a Lambda function to run each time a new file is received, have your code validate
that the file is a valid CSV file, perform some computation on one of the columns and
update a database with the result, and then move the file into a different bucket where
a batch process will later process all files received for the day.

With the ability to run for up to 15 minutes, and with a maximum memory configuration
of 10 GB, it is possible to do more advanced processing as well. For example, you may
receive a ZIP file containing hundreds of XML files, and in your Lambda function you
want to unzip the file, and then for each file you want to validate that it is valid XML,
perform calculations on fields in the file to update various other systems, concatenate the
contents of all the files, and write that out in Parquet format in a different zone of your
data lake.

AWS services for transforming data 65

Lambda is also massively parallel, meaning that it can easily scale for highly concurrent
workloads. In the preceding example of processing CSV files as they arrive in an S3
bucket, if hundreds of files were all delivered within a period of just a few seconds, a
separate Lambda instance would be spun up for each file, and AWS would automatically
handle the scaling of the Lambda functions to enable this. By default, you can have 1,000
concurrent Lambda executions within an AWS Region for your account, but you can work
with AWS support to increase this limit into the hundreds of thousands.

AWS Lambda supports many different languages, including Python, which has become
one of the most popular languages for data engineering-related tasks.

Overview of AWS Glue for serverless Spark processing
AWS Glue has multiple components that could have been split into multiple separate
services, but these components can all work together, and so AWS has grouped them
together into the AWS Glue family. In this section, we look at the core Glue components
related to data processing.

Serverless ETL processing
At the heart of AWS Glue is a serverless environment providing either a Python
engine (known as Glue Python shell) or an Apache Spark engine for performing data
transformations and processing. Python can be used for performing transformations
on small to medium datasets, while Apache Spark enables optimal processing for very
large datasets:

• Apache Spark is an open source engine for distributed processing of large datasets
across a cluster of compute nodes, which makes it ideal for taking a large dataset,
splitting the processing work among the nodes in the cluster, and then returning a
result. As Spark does all processing in memory, it is highly efficient and performant
and has become the tool of choice for many organizations looking for a solution for
processing large datasets.

• Python, which runs on a single node, has become an extremely popular language
for performing data engineering-related tasks in scenarios where the power of a
multi-node cluster is not required.

66 The AWS Data Engineer's Toolkit

The following diagram depicts the two different Glue engines – a single-node Glue Python
shell on the left, and a multi-node Glue Apache Spark cluster on the right:

Figure 3.1 – Glue Python shell and Glue Spark engines

Both engines can work with data that resides in Amazon S3, and with the AWS Glue Data
Catalog. Both engines are serverless from the perspective of a user, meaning a user does
not need to deploy or manage servers, a user just needs to specify the number of Data
Processing Units (DPUs) that they want to power their job. Glue ETL jobs are charged
based on the number of DPUs configured, as well as the amount of time that the underlying
code executes for in the environment.

While AWS Glue does provide additional Spark libraries and functionality to simplify
some common ETL tasks, their use is optional, and existing Spark code can be easily
run as is with AWS Glue.

AWS Glue also supports Spark Streaming, an extension of the core Spark API designed
to process live data streams.

AWS Glue Data Catalog
To complement the ETL processing functionality described previously, AWS Glue also
includes a data catalog that can be used to provide a logical view of data stored physically
on a disk, and objects in the catalog can then be directly referenced from your ETL code.

AWS services for transforming data 67

In a scenario where you use DMS to replicate your Human Resources (HR) database to
S3, you will end up with a prefix (directory) in S3 for each table from the source database.
In this directory, there will generally be multiple files containing the data from the source
table – for example, 20 CSV files containing the rows from the source employee table.

The Glue catalog can provide a logical view of this dataset, and capture additional
metadata about the dataset, in the data catalog. For example, the data catalog consists of a
number of databases at the top level (such as the HR database), and each database contains
one or more tables (such as the Employee table), and each table contains metadata,
such as the column headings and data types for each column (such as employee_id,
lastname, firstname, address, and dept), as well as references to the S3 location
for the data that makes up that table.

In the following screenshot, we see a bucket that contains objects under the prefix
hr/employees and a number of CSV files that contain data imported from the
employee database:

Figure 3.2 – Amazon S3 bucket with CSV files making up the Employee table

68 The AWS Data Engineer's Toolkit

The screenshot of the following AWS Glue Data Catalog shows us the logical view of this
data. We can see that this is the employee table, and it references the S3 location shown in
the preceding screenshot. In this logical view, we can see that the employee table is in the HR
database, and we can see the columns and data types that are contained in the CSV files:

Figure 3.3 – AWS Glue Data Catalog showing a logical view of the Employee table

The AWS Glue Data Catalog is a Hive metastore-compatible catalog, and all you really
need to know about that statement is that it means that the AWS Glue catalog works
with a variety of other services and third-party products that can integrate with Hive
metastore-compatible catalogs.

Within the AWS ecosystem, a number of services can use the AWS Glue Data Catalog. For
example, Amazon Athena uses the AWS Glue Data Catalog to enable users to run SQL
queries directly on data in Amazon S3, and Amazon EMR and the AWS Glue ETL engine
use the catalog to enable users to reference catalog objects (such as databases and tables)
directly in their ETL code.

AWS services for transforming data 69

AWS Glue crawlers
AWS Glue crawlers are processes that can examine a data source (such as a path in
an S3 bucket) and automatically infer the schema and other information about that
data source, so that the AWS Glue Data Catalog can be automatically populated with
relevant information.

For example, we could point an AWS Glue Crawler at the S3 location where DMS
replicated the Employee table of our HR database. When the Glue Crawler runs, it
examines a portion of each of the files in that location, identifies the file type (CSV,
Parquet), uses a classifier to infer the schema of the file (column headings
and types), and then adds that information into a database in the Glue catalog.

Note that you can also add databases and tables to the Glue catalog using the Glue API,
or via SQL statements in Athena, so using Glue crawlers to automatically populate the
catalog is optional.

Overview of Amazon EMR for Hadoop ecosystem
processing
Amazon EMR provides a managed platform for running popular open source big data
processing tools, such as Apache Spark, Apache Hive, Apache Hudi, Apache HBase,
Presto, Pig, and others. Amazon EMR takes care of the complexities of deploying these
tools and managing the underlying clustered Amazon EC2 compute resources.

You may have noticed in the previous paragraph that Amazon EMR can be used to run
Apache Spark, and you might be wondering why AWS has two services that effectively
offer the same big data processing engine. While either service can be used to perform big
data processing using the Apache Spark engine, there are important differences.

For a start, AWS Glue offers a serverless environment for running Apache Spark, whereas
with Amazon EMR you need to specify the detailed configuration of the cluster you want
to run Apache Spark. And, ultimately, this is probably one of the biggest differentiators
between the services.

If your use case would benefit from being able to more finely tune the environment where
Apache Spark runs, then Amazon EMR would be a better fit as it provides more options
for specifying the configuration of the compute cluster and Spark settings than AWS Glue
allows. Also, with AWS Glue you pay a slightly higher cost for an equivalent sized server
than you would with Amazon EMR, but AWS Glue requires far less understanding or
experience with regard to running an Apache Spark environment, and as a result, Glue
requires much less configuration to get your Apache Spark code running.

70 The AWS Data Engineer's Toolkit

There may also be workloads where you want a permanently running Apache Spark
environment, which you can get with Amazon EMR at a lower cost. However, one of the
benefits of using the cloud for your big data processing requirements is that you can run
transient clusters that are spun up to run a specific job, and then shut down – and this is
possible with both solutions.

In summary, if you have a team that has experience of running Apache Spark
environments, and your use case requires clusters that are fine-tuned as far as compute
power and Apache Spark settings go, then Amazon EMR may be the way to go. But if you
have a simpler use case and just want to be able to take your Apache Spark code and get
it running to process your data with minimal configuration, then AWS Glue may be best
suited.

The other important differentiator is that Amazon EMR offers many additional
frameworks and tools for big data processing. So, if you're migrating an environment that
uses Apache Hive, Presto, or other toolsets supported in EMR, then Amazon EMR would
be a great fit.

The following diagram shows an EMR cluster, including some of the open source projects
that can be run on the cluster:

Figure 3.4 – High-level overview of an EMR cluster

AWS services for orchestrating big data pipelines 71

Each EMR cluster requires a master node, and at least one core node (a worker node that
includes local storage), and then optionally a number of task nodes (worker nodes that do
not have any local storage).

AWS services for orchestrating big data
pipelines
As discussed in Chapter 2, Data Management Architectures for Analytics, a data pipeline
can be built to bring in data from source systems, and then transform that data, often
moving the data through multiple stages, further transforming or enriching the data
as it moves through each stage.

An organization will often have tens or hundreds of pipelines that work independently
or in conjunction with each other on different datasets and perform different types of
transformations. Each pipeline may use multiple services to achieve the goals of the
pipeline and orchestrating all the varying services and pipelines can be complex. In this
section, we look at a number of AWS services that help with this orchestration task.

Overview of AWS Glue workflows for orchestrating
Glue components
In the AWS services for transforming data section, we covered AWS Glue, a service that
includes a number of components. As a reminder, they are as follows:

• A serverless Apache Spark or Python shell environment for performing ETL
transformations

• The Glue data catalog, which provides a centralized logical representation
(database and tables) of the data in an Amazon S3 data lake

• Glue crawlers, which can be configured to examine files in a specific location,
automatically infer the schema of the file, and add the file into the AWS Glue
data catalog

AWS Glue workflows are a functionality within the AWS Glue service and have been
designed to help orchestrate the various AWS Glue components. A workflow consists of
an ordered sequence of steps that can run Glue crawlers and Glue ETL jobs (Spark or
Python shell).

72 The AWS Data Engineer's Toolkit

The following diagram shows a visual representation of a simple Glue workflow that can
be built in the AWS Glue console:

Figure 3.5 – AWS Glue workflow

This workflow orchestrates the following tasks:

• It runs a Glue Crawler to add newly ingested data from the raw zone of the data lake
into the Glue data catalog.

• Once the Glue Crawler completes, it triggers a Glue ETL job to convert the raw CSV
data into Parquet format, and writes to the curated zone of the data lake.

• When the Glue job is complete, it triggers a Glue Crawler to add the newly
transformed data in the curated zone, into the Glue data catalog.

Each step of the workflow can retrieve and update the state information about the
workflow. This enables one step of a workflow to provide state information that can be
used by a subsequent step in the workflow. For example, a workflow may run multiple
ETL jobs, and each ETL job can update state information, such as the location of files that
it outputted, that will be available to be used by subsequent workflow steps.

The preceding diagram is an example of a relatively simple workflow, but AWS Glue
workflows are capable of orchestrating much more complex workflows. However, it is
important to note that Glue workflows can only be used to orchestrate Glue components,
which are ETL jobs and Glue crawlers.

AWS services for orchestrating big data pipelines 73

If you only use AWS Glue components in your pipeline, then AWS Glue workflows are
well suited to orchestrate your data transformation pipelines. But if you have a use case
that needs to incorporate other AWS services in your pipeline (such as AWS Lambda),
then keep reading to learn about other available options.

Overview of AWS Step Functions for complex
workflows
Another option for orchestrating your data transformation pipelines is AWS Step
Functions, a service that enables you to create complex workflows that can be integrated
with many AWS services.

Step Functions is serverless, meaning that you do not need to deploy or manage
any infrastructure, and you pay for the service based on your usage, not on fixed
infrastructure costs.

With Step Functions, you use JSON to define a state machine using a structured language
known as the Amazon States Language. Alternatively, you can use Step Functions
Workflow Studio to create a workflow using a visual interface that supports drag and
drop. The resulting workflow can run multiple tasks, can run different branches based on
a choice, can enter a wait state where you specify a delay before the next step is run, can
loop back to previous steps, as well as various other things that can be done to control the
workflow.

When you start a state machine, you include JSON data as input text that will be passed to
the first state in the workflow. The first state in the workflow uses the input data, performs
the function it is configured to do (such as running a Lambda function using the input
passed into the state machine), modifies the JSON data, and then passes the modified
JSON data to the next state in the workflow.

You can trigger a step function using Amazon EventBridge (such as on a schedule or in
response to something else triggering an EventBridge event event) or can trigger the step
function on-demand by calling the Step Functions API.

74 The AWS Data Engineer's Toolkit

The following is an example of a Step Functions state machine:

Figure 3.6 – AWS Step Functions state machine

This state machine performs the following steps:

1. A CloudWatch event is triggered whenever a file is uploaded to a particular Amazon
S3 bucket, and the CloudWatch event starts our state machine, passing in a JSON
object that includes the location of the newly uploaded file.

2. The first step, Process Incoming File, runs a Glue Python shell job that takes the
location of the uploaded file as input and processes the incoming file (for example,
converting from CSV to Parquet format). The output of the Python function
indicates whether the file processing succeeded or failed, and if succeeded it also
includes the S3 path where the Parquet file was written. This information is included
in the JSON passed to the next step.

3. The Did Job Succeed? step is of type Choice. It examines the JSON data passed to
the step, and if the jobStatus field is set to succeeded, it branches to Run AWS
Glue Crawler. If the jobStatus field is set to failed, it branches to Job Failed.

AWS services for orchestrating big data pipelines 75

4. In the Run AWS Glue Crawler step, a Lambda function is triggered, which in
turn triggers an AWS Glue Crawler to run against the location where the previous
Lambda function had written the Parquet file. Note that Step Functions can directly
trigger the running of a Glue job but currently does not support directly running
a Glue Crawler, which is why we use a Lambda function to trigger the Crawler.

5. The Job Failed step stops the execution of the state machine and marks the
execution as a failure.

6. Outside of the dotted line box in Figure 3.6 we can perform error handling. We
have a catch statement in our state machine that detects whether the state machine
execution is in an error state, and if it is, it runs the Error step.

7. In the Error step, a Lambda function is triggered that sends out a notification
to the data engineering team to indicate that file processing failed.

Overview of Amazon managed workflows for Apache
Airflow
Apache Airflow is a popular open source solution for orchestrating complex data
engineering workflows. It was created by Airbnb in 2014 to help their internal teams
manage their increasingly complex workflows and became a top-level Apache project
in 2019.

Airflow enables users to create processing pipelines programmatically (using the Python
programming language) and provides a user interface to monitor the execution of the
workflows. Complex workflows can be created, and Airflow includes support for a wide
variety of integrations, including integrations with services from AWS, Microsoft Azure,
Google Cloud Platform, and others.

However, installing and configuring Apache Airflow in a way that can support the
resilience and scaling required for large production environments is complex, and
maintaining and updating the environment can be challenging. As a result, AWS created
Managed Workflows for Apache Airflow (MWAA), which enables users to easily
deploy a managed version of Apache Airflow that can automatically scale out additional
workers as demand on the environment increases, and scale in the number of workers
as demand decreases.

76 The AWS Data Engineer's Toolkit

An MWAA environment consists of the following components:

• Scheduler: The scheduler runs a multithreaded Python process that controls what
tasks need to be run, and where and when to run those tasks.

• Worker/executor: The worker/s execute/s tasks. Each MWAA environment
contains at least one worker, but when configuring the environment, you can specify
the maximum number of additional workers that should be made available. MWAA
automatically scales out the number of workers up to that maximum, but will also
automatically reduce the number of workers as tasks are completed and if no new
tasks need to run. The workers are linked to your VPC (the private network in
your AWS account).

• Meta-database: This runs in the MWAA service account and is used to track the
status of tasks.

• Web server: The web server also runs in the MWAA service account and provides a
web-based interface that users can use to monitor and execute tasks.

Note that even though the meta-database and web server run in the MWAA service
account, there are separate instances of these for every MWAA environment, and there are
no components of the architecture that are shared between different MWAA environments.

When migrating from an on-premises environment where you already run Apache
Airflow, or if your team already has Apache Airflow skills, then the MWAA service should
be considered for managing your data processing pipelines and workflows in AWS.
However, it is important to note that while this is a managed service (meaning that AWS
deploys the environment for you and upgrades the Apache Airflow software), it is not a
serverless environment.

With MWAA, you select a core environment size (small, medium, or large), and are
charged based on the environment size, plus a charge for the amount of storage used by
the meta-database and for any additional workers you make use of. Whether you run one
5-minute job per day, or run multiple simultaneous jobs 24 hours a day, 7 days a week, the
charge for your core environment will remain the same. With serverless environments,
such as Amazon Step Functions, billing is based on a consumption model, so there is no
underlying monthly charge.

AWS services for consuming data 77

AWS services for consuming data
Once the data has been transformed and optimized for analytics, the various data
consumers in an organization need easy access to the data via a number of different
types of interfaces. Data scientists may want to use standard SQL queries to query the
data, while data analysts may want to both query the data in place using SQL and also
load subsets of the data into a high-performance data warehouse for low-latency, high-
concurrency queries and scheduled reporting. Business users may prefer accessing data
via a visualization tool that enables them to view data represented as graphs, charts, and
other types of visuals.

In this section, we introduce a number of AWS services that enable different types of data
consumers to work with our optimized datasets. We don't cover all services that can be
used to consume data in this section, but instead highlight the primary services relevant
to the data engineering role.

Overview of Amazon Athena for SQL queries in the
data lake
Amazon Athena is a serverless solution for using standard SQL queries to query data
that exists in a data lake, or in other data sources. As soon as a dataset has been written
to Amazon S3 and cataloged in the AWS Glue Data Catalog, users can run complex SQL
queries against the data without needing to set up or manage any infrastructure.

What is SQL?
Structured Query Language (SQL) is a standard language used to query
relational datasets. A person proficient in SQL can draw information out of
very large relational datasets easily and quickly, combining different tables,
filtering results, and performing aggregations.

Data scientists and data analysts frequently use SQL to explore and better understand
datasets that may be useful to them. Enabling these data consumers to query the data in
an Amazon S3 data lake, without needing to first load the data into a traditional database
system, increases productivity and flexibility for these data consumers.

78 The AWS Data Engineer's Toolkit

Many tools are designed to interface with data via SQL, and these tools often connect
to the SQL data source using either a JDBC or ODBC database connection. Amazon
Athena enables a data consumer to query datasets in the data lake (or other connected
data sources) through the AWS Management Console interface, or through a JDBC or
ODBC driver.

Graphical SQL query tools, such as SQL Workbench, can connect to Amazon Athena
via the JDBC driver, and you can programmatically connect to Amazon Athena and run
SQL queries in your code through the ODBC driver.

Athena Federated Query, a feature of Athena, enables you to build connectors so that
Athena can query other data sources, beyond just the data in an S3 data lake. Amazon
provides a number of pre-built open source connectors for Athena, enabling you to
connect Athena to sources such as Amazon DynamoDB (a NoSQL database), as well
as other Amazon-managed relational database engines, and even Amazon CloudWatch
Logs, a centralized logging service. Using this functionality, a data consumer can run a
query using Athena that gets active orders from Amazon DynamoDB, references that data
against the customer database running on PostgreSQL, and then brings in historical order
data for that customer from the S3 data lake – all in a single SQL statement.

Overview of Amazon Redshift and Redshift
Spectrum for data warehousing and data lakehouse
architectures
Data warehousing is not a new concept or technology (as we discussed in Chapter 2,
Data Management Architectures for Analytics), but Amazon Redshift was the first cloud-
based data warehouse to be created. Launched in 2012, it was AWS's fastest-growing
service by 2015, and today there are tens of thousands of customers that use it.

A Redshift data warehouse is designed for reporting and analytic workloads, commonly
referred to as Online Analytical Processing (OLAP) workloads. Redshift provides a
clustered environment that enables all the compute nodes in the cluster to work with
portions of the data involved in a SQL query, helping to provide the best performance
for scenarios where you are working with data that has been stored in a highly structured
manner, and you need to do complex joins across multiple large tables on a regular basis.
As a result, Redshift is an ideal query engine for reporting and visualization services that
need to work with large datasets.

AWS services for consuming data 79

A typical SQL query that runs against a Redshift cluster would be likely to retrieve data
from hundreds or thousands, or even millions, of rows in the database, often performing
complex joins between different tables, and likely doing calculations such as aggregating,
or averaging, certain columns of data. The queries run against the data warehouse will
often be used to answer questions such as "What was the average sale amount for sales in
our stores last month, broken down by each ZIP code of the USA?", or "Which products,
across all of our stores, have seen a 20% increase in sales between Q4 last year and Q1
of this year?".

In a modern analytic environment, a common use case for a data warehouse would be to
load a subset of data from the data lake into the warehouse, based on which data needs to
be queried most frequently and which data needs to be used for queries requiring the best
possible performance.

In this scenario, a data engineer may create a pipeline to load customer, product, sales,
and inventory data into the data warehouse on a daily basis. Knowing that 80% of the
reporting and queries will be on the last 12 months of sales data, the data engineer
may also design a process to remove all data that's more than 12 months old from
the data warehouse.

But what about the 20% of queries that need to include historical data that's more than
12 months old? That's where Redshift Spectrum comes in, a feature of Amazon Redshift
that enables a user to write a single query that queries data that has been loaded into the
data warehouse, as well as data that exists outside the data warehouse, in the data lake. To
enable this, the data engineer can configure the Redshift cluster to connect with the AWS
Glue Data Catalog, where all the databases and tables for our data lake are defined. Once
that has been configured, a user can reference both internal Redshift tables and tables
registered in the Glue data catalog.

80 The AWS Data Engineer's Toolkit

The following diagram shows the Redshift and Redshift Spectrum architecture:

Figure 3.7 – Redshift architecture

In the preceding diagram, we can see that a user connects to the Redshift leader node (via
JDBC or ODBC). This node does not query data directly but is effectively the central brain
behind all the queries that do run on the cluster. In a scenario where a user is running a
query that needs to query both current (last 12 months of) sales data, as well as historical
sales data, the process works as follows:

1. Using a SQL client, the user makes a connection and authenticates with the Redshift
leader node, and sends through a SQL statement that queries both the current_
sales table (a table in which the data exists within the Redshift cluster and contains
the past 12 months of sales data) and the historical_sales table (a table that is
registered in the Glue data catalog, and where the data files are located in the Amazon
S3 data lake, which contains historical sales data going back 10 years).

2. The leader node analyzes and optimizes the query, compiles a query plan, and
pushes individual query execution plans to the compute nodes in the cluster.

AWS services for consuming data 81

3. The compute nodes query data they have locally (for the current_sales table)
and query the AWS Glue Data Catalog to gather information on the external
historical_sales table. Using the information they gathered, they can
optimize queries for the external data and push those queries out to the Redshift
Spectrum layer.

4. Redshift Spectrum is outside of a customer's Redshift cluster and is made up of
thousands of worker nodes (Amazon EC2 compute instances) in each AWS Region.
These worker nodes are able to scan, filter, and aggregate data from the files in
Amazon S3, and then stream results back to the Amazon Redshift cluster.

5. The Redshift cluster performs final operations to join and merge data, and then
returns the results to the user's SQL client.

Overview of Amazon QuickSight for visualizing data
"A picture is worth a thousand words" is a common saying, and is a sentiment that most
business users would strongly agree with. Imagine for a moment that you are a busy sales
manager, and it's Monday morning and you need to quickly determine how your various
sales territories performed last quarter before your 9 a.m. call.

Your one option is to receive a detailed spreadsheet showing the specific sales figures
broken down by territory and segment, as per Figure 3.8:

Figure 3.8 – SALES Table showing sales data by territory and segment

82 The AWS Data Engineer's Toolkit

The other option you have is to receive a graphical representation of the data in the form
of a bar graph, as shown in Figure 3.9. Within the interface, you can filter data by territory
and market segment, and also drill down to get more detailed information:

Figure 3.9 – Sample graph showing sales data by territory and segment

Most people would prefer the graphical representation of the data, as they can easily
visually compare sales between quarters, segments, and territories, or identify the top sales
territory and segment with just a glance. As a result, the use of business intelligence tools,
which provide visual representations of complex data, is extremely popular in the business
world.

Amazon QuickSight is a service from AWS that enables the creation of these types of
complex visualizations, but beyond just providing static visuals, the charts created by
QuickSight enable users to filter data and drill down to get further details. For example,
our sales manager could filter the visual to just see the numbers from Q4, or to just see
the enterprise segment. The user could also drill down into the Q4 data for the enterprise
segment in the West territory to see sales by month, for example.

Amazon QuickSight is serverless, which means there are no servers for the organization
to set up or manage, and there is a simple monthly fee based on the user type (either an
author, who can create new visuals, or a reader, who can view visuals created by authors).

A data engineer can configure QuickSight to access data from a multitude of sources,
including accessing data in an Amazon S3-based data lake via integration with Amazon
Athena.

Hands-on – triggering an AWS Lambda function when a new file arrives in an S3 bucket 83

In the next section, we wrap up the chapter by getting hands-on with building a simple
transformation that converts a CSV file into Parquet format, using Lambda to perform the
transformation.

Hands-on – triggering an AWS Lambda
function when a new file arrives in an S3
bucket
In the hands-on portion for this chapter, we're going to configure an S3 bucket to
automatically trigger a Lambda function whenever a new file is written to the bucket. In
the Lambda function, we're going to make use of an open source Python library called
AWS Data Wrangler, created by AWS Professional Services to simplify common ETL
tasks when working in an AWS environment. We'll use the AWS Data Wrangler library to
convert a CSV file into Parquet format, and then update the AWS Glue Data Catalog.

Creating a Lambda layer containing the AWS Data
Wrangler library
Lambda layers allow your Lambda function to bring in additional code, packaged as a
.zip file. In our use case, the Lambda layer is going to contain the AWS Data Wrangler
Python library, which we can then attach to any Lambda function where we want to use
the library.

To create a Lambda layer, do the following:

1. Access the 2.10.0 version of the AWS Data Wrangler library in GitHub at
https://github.com/awslabs/aws-data-wrangler/releases. Under
Assets, download the awswrangler-layer-2.10.0-py3.8.zip file to your
local drive.

2. Log in to the AWS Management Console as the administrative user you created
in Chapter 1, An Introduction to Data Engineering (https://console.aws.
amazon.com).

3. Make sure that you are in the region that you have chosen for performing the
hands-on sections in this book. The examples in this book use the us-east-2
(Ohio) region.

4. In the top search bar of the AWS console, search for and select the Lambda service.
5. In the left-hand menu, under Additional Resources, select Layers, and then click

on Create layer.

https://github.com/awslabs/aws-data-wrangler/releases
https://console.aws.amazon.com
https://console.aws.amazon.com

84 The AWS Data Engineer's Toolkit

6. Provide a name for the layer (for example, awsDataWrangler210_python38),
an optional description, and then upload the .zip file you downloaded from
GitHub. For Compatible runtimes – optional, select Python 3.8 and then click
Create. The following screenshot shows the configuration for this step:

Figure 3.10 – Creating and configuring an AWS Lambda layer

By creating a Lambda layer for the AWS Data Wrangler library, we can use AWS Data
Wrangler in any of our Lambda functions just by ensuring this Lambda layer is attached
to the function.

Hands-on – triggering an AWS Lambda function when a new file arrives in an S3 bucket 85

Creating new Amazon S3 buckets
In this step, we create new Amazon S3 buckets. In a subsequent step, we will create a
Lambda function that is automatically triggered whenever a new file is uploaded to the
source bucket and writes out a transformed version of that file to the target bucket. As
discussed in Chapter 2, Data Management Architectures for Analytics, it is common for
data lakes to have multiple zones for the data to move through. In this section, we create
a bucket to be our landing zone (for ingestion of raw files), and a clean zone (for files that
have undergone initial processing and optimization).

To create the new Amazon S3 buckets, follow these steps:

1. Log in to the AWS Management Console as the administrative user you created
in Chapter 1, An Introduction to Data Engineering (https://console.aws.
amazon.com), and ensure you are in the region you have chosen for performing
the hands-on sections in this book.

2. In the top search bar, search for and select the S3 service, and then click on
Create bucket.

3. Provide a name for your source bucket (for example, dataeng-landing-zone-
<initials>). This is where we will upload a file later and have it trigger our
Lambda function.

Remember that bucket names need to be globally unique (not just unique within
your account), so if you receive an error when creating the bucket, modify your
bucket name to ensure it is unique (such as adding additional letters or numbers
to your initials).

4. Ensure that your bucket is being created in the region you have chosen to use for
the exercises in this book.

5. Accept all other defaults and click Create bucket.

Repeat these steps, but this time we create an Amazon S3 bucket for writing out our newly
transformed files, so provide a bucket name similar to the following: dataeng-clean-
zone-<initials>.

https://console.aws.amazon.com
https://console.aws.amazon.com

86 The AWS Data Engineer's Toolkit

Creating an IAM policy and role for your Lambda
function
In this section, we are setting up a Lambda function to be triggered every time a new file
is uploaded to a specific Amazon S3 bucket. For this to work, we need to ensure that our
Lambda function has the following permissions:

• Read our source S3 bucket (for example, dataeng-landing-zone-
<initials>)

• Write to our target S3 bucket (for example, dataeng-clean-zone-
<initials>)

• Write logs to Amazon CloudWatch

• Access to all Glue API actions (to enable the creation of new databases and tables)

To create a new AWS IAM role with these permissions, follow these steps:

1. From the Services dropdown, select the IAM service, and in the left-hand menu,
select Policies and then click on Create policy.

2. By default, the Visual editor tab is selected, so click on JSON to change to the
JSON tab.

3. Provide the JSON code from the following code blocks, replacing the boilerplate
code. Note that you can also copy and paste this policy by accessing the policy
on this book's GitHub page. Note that if doing a copy and paste from the GitHub
copy of this policy, you must replace dataeng-landing-zone-<initials>
with the name of the source bucket you created in the previous step and replace
dataeng-clean-zone-<initials> with the name of the target bucket you
created in the previous step.

This first block of the policy configures the policy document and provides
permissions for using CloudWatch log groups, log streams, and log events:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "logs:PutLogEvents",

 "logs:CreateLogGroup",

 "logs:CreateLogStream"

Hands-on – triggering an AWS Lambda function when a new file arrives in an S3 bucket 87

],

 "Resource": "arn:aws:logs:*:*:*"

 },

This next block of the policy provides permissions for all Amazon S3 actions
(get and put) that are in the Amazon S3 bucket specified in the resource section
(in this case, our clean-zone and landing-zone buckets). Make sure you replace
dataeng-clean-zone-<initials> and dataeng-landing-zone-
<initials> with the name of the S3 buckets you created in a previous step:

 {

 "Effect": "Allow",

 "Action": [

 "s3:*"

],

"Resource": [

 "arn:aws:s3:::dataeng-landing-zone-
INITIALS/*",

 "arn:aws:s3:::dataeng-landing-zone-
INITIALS",

 "arn:aws:s3:::dataeng-clean-zone-
INITIALS/*",

 "arn:aws:s3:::dataeng-clean-zone-
INITIALS"

]

 },

In the final statement of the policy, we provide permissions to use all AWS Glue
actions (create job, start job, and delete job). Note that in a production environment,
you should limit the scope specified in the resource section:

 {

 "Effect": "Allow",

 "Action": [

 "glue:*"

],

 "Resource": "*"

 }

88 The AWS Data Engineer's Toolkit

]

}

4. Click on Next Tags, and then Next: Review.
5. Provide a name for the policy, such as DataEngLambdaS3CWGluePolicy, and

then click Create policy.
6. In the left-hand menu, click on Roles and then Create role.
7. For trusted entity, ensure AWS service is selected, and for service, select Lambda

and then click Next: Permissions. In Step 4 of the next section (Creating a Lambda
function), we will assign this role to our Lambda function.

8. Under Attach permissions, select the policy we just created (for example,
DataEngLambdaS3CWGluePolicy) by searching and then clicking in the tick
box. Then click Next: Tags.

9. Provide any tags you would like associated with this policy (optional) and click
Next: Review.

10. Provide a role name, such as DataEngLambdaS3CWGlueRole, and click
Create role.

Creating a Lambda function
We are now ready to create our Lambda function that will be triggered whenever a
CSV file is uploaded to our source S3 bucket. The uploaded CSV file will be converted
to Parquet, written out to the target bucket, and added to the Glue catalog using AWS
Data Wrangler:

1. In the AWS console, from the Services dropdown, select the Lambda service, and
in the left-hand menu select Functions and then click Create function.

2. Select Author from scratch and provide a function name (such as
CSVtoParquetLambda).

3. For Runtime, select Python 3.8 from the drop-down list.

Hands-on – triggering an AWS Lambda function when a new file arrives in an S3 bucket 89

4. Expand Change default execution role and select Use an existing role. From
the drop-down list, select the role you created in the previous section (such as
DataEngLambdaS3CWGlueRole):

Figure 3.11 – Creating and configuring a Lambda function

90 The AWS Data Engineer's Toolkit

5. Do not change any of the advanced settings and click Create function.
6. Click on Layers in the first box, and then click Add a layer in the second box.
7. Select Custom layers, and from the dropdown, select the AWS Data Wrangler layer

you create in a previous step (such as aawsDataWrangler210_python38).
Select the latest version and then click Add:

Figure 3.12 – Adding an AWS Lambda layer to an AWS Lambda function

8. Click on your function name (such as CSVtoParquetLambda) in the first block,
and then scroll down to the Code Source section. The following code can be
downloaded from this book's GitHub repository. Make sure to replace any existing
code in lambda_function with this code.

Hands-on – triggering an AWS Lambda function when a new file arrives in an S3 bucket 91

In the first few lines of code, we import boto3 (the AWS Python SDK),
awswrangler (which is part of the AWS Data Wrangler library that we added as
a Lambda layer), and a function from the urllib library called unquote_plus:

import boto3

import awswrangler as wr

from urllib.parse import unquote_plus

We then define our main function, lambda_handler, which is called when the
Lambda function is executed. The event data contains information such as the S3
object that was uploaded and was the cause of the trigger that ran this function.
From this event data, we get the S3 bucket name and the object key. We also set the
Glue catalog db_name and table_name based on the path of the object that was
uploaded.

def lambda_handler(event, context):

 # Get the source bucket and object name as passed to
the Lambda function

 for record in event['Records']:

 bucket = record['s3']['bucket']['name']

 key = unquote_plus(record['s3']['object']['key'])

 # We will set the DB and table name based on the last
two elements of

 # the path prior to the file name. If key = 'dms/
sakila/film/LOAD01.csv',

 # then the following lines will set db to sakila and
table_name to 'film'

 key_list = key.split("/")

 print(f'key_list: {key_list}')

 db_name = key_list[len(key_list)-3]

 table_name = key_list[len(key_list)-2]

92 The AWS Data Engineer's Toolkit

We now print out some debug type information that will be captured in our
Lambda function logs. This includes information such as the Amazon S3 bucket
and key that we are processing. We then set the output_path value here, which
is where we are going to write the Parquet file that this function creates. Make sure
to change the output_path value of this code to match the name of the target S3
bucket you created earlier:

 print(f'Bucket: {bucket}')

 print(f'Key: {key}')

 print(f'DB Name: {db_name}')

 print(f'Table Name: {table_name}')

 input_path = f"s3://{bucket}/{key}"

 print(f'Input_Path: {input_path}')

 output_path = f"s3://dataeng-clean-zone-INITIALS/{db_
name}/{table_name}"

 print(f'Output_Path: {output_path}')

We can then use the AWS Data Wrangler library (defined as wr in our function)
to read the CSV file that we received. We read the contents of the CSV file into a
pandas DataFrame we are calling input_df. We also get a list of current Glue
databases, and if the database we want to use does not exist, we create it:

 input_df = wr.s3.read_csv([input_path])

 current_databases = wr.catalog.databases()

 wr.catalog.databases()

 if db_name not in current_databases.values:

 print(f'- Database {db_name} does not exist ...
creating')

 wr.catalog.create_database(db_name)
 else:

 print(f'- Database {db_name} already exists')

Hands-on – triggering an AWS Lambda function when a new file arrives in an S3 bucket 93

Finally, we can use the AWS Data Wrangler library to create a Parquet file
containing the data we read from the CSV file. For the S3 to Parquet function,
we specify the name of the dataframe (input_df) that contains the data we
want to write out in Parquet format. We also specify the S3 output path, the Glue
database, and the table name:

 result = wr.s3.to_parquet(

 df=input_df,

 path=output_path,

 dataset=True,

 database=db_name,

 table=table_name,

 mode="append")

 print("RESULT: ")

 print(f'{result}')

 return result

9. Click on Deploy.
10. Click on the Configuration tab, and on the left-hand side click on General

configuration. Click the Edit button and modify the Timeout to be 1 minute (the
default timeout of 3 seconds is likely to be too low to convert some files from CSV
to Parquet format).

Configuring our Lambda function to be triggered by
an S3 upload
Our final task is to configure the Lambda function so that whenever a CSV file is
uploaded to our landing zone bucket, the Lambda function runs and converts the
file to Parquet format:

1. In the Function Overview box of our Lambda function, click on Add trigger.
2. For Trigger configuration, select the Amazon S3 service from the drop-down list.
3. For Bucket, select your landing zone bucket (for example, dataeng-landing-

zone-<initials>).

94 The AWS Data Engineer's Toolkit

4. We want our rule to trigger whenever a new file is created in this bucket, no matter
what method is used to create it (Put, Post, or Copy), so select All object create
events from the list.

5. For suffix, enter .csv. This will configure the trigger to only run the Lambda
function when a file with a .csv extension is uploaded to our landing-zone bucket.

6. Acknowledge the warning about Recursive invocation that can happen if you set
up a trigger on a specific bucket to run a Lambda function, and then you get your
Lambda function to create a new file in that same bucket and path. This is a good
time to double-check and make sure that you are configuring this trigger on the
LANDING ZONE bucket (for example, dataeng-landing-zone-<initials>)
and not the target CLEAN ZONE bucket that our Lambda function will write to:

Figure 3.13 – Configuring an S3-based trigger for an AWS Lambda function

Hands-on – triggering an AWS Lambda function when a new file arrives in an S3 bucket 95

7. Click Add to create the trigger.
8. Create a simple CSV file called test.csv that you can use to test the trigger.

Ensure that the first line has column headings, as per the following example:

Name,favorite_num

Gareth,23

Tracy,28

Chris,16

Emma,14

Ensure you create the file with a standard text editor, and not Word processing
software (such as Microsoft Word) or any other software that will add additional
formatting to the file.

9. Upload your test file to your source S3 bucket by running the following on the
command line. Make sure to replace dataeng-landing-zone-initials
with the name of the source bucket you created previously:

aws s3 cp test.csv s3://dataeng-landing-zone-initials/
testdb/csvparquet/test.csv

10. If everything has been configured correctly, your Lambda function will have been
triggered and will have written out a Parquet-formatted file to your target S3 bucket
and created a Glue database and table. You can access the Glue service in the AWS
Management Console to ensure that a new database and table have been created
and can run the following command at the command prompt to ensure that a
Parquet file has been written to your target bucket. Make sure to replace dataeng-
clean-zone-initials with the name of your target S3 bucket:

aws s3 ls s3://dataeng-clean-zone-initials/testdb/
csvparquet/

The result of this command should display the Parquet file that was created by the
Lambda function.

96 The AWS Data Engineer's Toolkit

Summary
In this chapter, we covered a lot! We reviewed a range of AWS services at a high level,
including services for ingesting data from a variety of sources, services for transforming
data, and services for consuming and working with data.

We then got hands-on, building a solution in our AWS account that converted a file from
CSV format to Parquet format and registered the data in the AWS Glue Data Catalog.

In the next chapter, we cover a really important topic that all data engineers need to have
a good understanding of and that needs to be central to every project that a data engineer
works on, and that is security and governance.

4
Data Cataloging,

Security, and
Governance

There is probably no more important topic to cover in a book that deals with data than
data security and governance (and the related topic of data cataloging). Having the most
efficient data pipelines, the fastest data transformations, and the best data consumption
tools is not worth much if the data is not kept secure. Also, data storage must comply with
local laws for how the data should be handled, and the data needs to be cataloged so that
it is discoverable and useful to the organization.

Sadly, it is not uncommon to read about data breaches and poor data handling by
organizations, and the consequences of this can include reputational damage to the
organization, as well as potentially massive penalties imposed by the government.

In this chapter, we will do a deeper dive into the important considerations around best
practices for handling data responsibly. We will cover the following topics:

• Getting data security and governance right

• Cataloging your data to avoid the data swamp

• The AWS Glue/Lake Formation data catalog

98 Data Cataloging, Security, and Governance

• AWS services for data encryption and security monitoring

• AWS services for managing identity and permissions

• Hands-on – configuring Lake Formation permissions

Technical requirements
To complete the hands-on exercises included in this chapter, you will need an AWS
account where you have access to a user with administrator privileges (as covered in
Chapter 1, An Introduction to Data Engineering).

You can find the code files of this chapter in the GitHub repository using the following
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter04

Getting data security and governance right
Data security dictates how an organization should protect data to ensure that data is
stored securely (such as in an encrypted state) and that access by unauthorized entities is
prevented. For example, all the things an organization does to prevent falling victim to a
ransomware attack, or having their data stolen and sold on the dark web, falls under data
security.

Data governance, on the other hand, is related to ensuring that only people that need
access to specific datasets have that access (such as ensuring that data is not just generally
open to all users of a system without considering whether they need access to that data
to perform their job). Governance also applies to ensuring that an organization only uses
and processes data on individuals in approved ways and that organizations provide data
disclosures as required by law.

Not providing adequate protection and security of an organization's data, or not
complying with relevant governance laws, can end up being a very expensive mistake
for an organization.

According to an article on CSO Online titled The biggest data breach fines, penalties,
and settlements so far (https://www.csoonline.com/article/3410278/
the-biggest-data-breach-fines-penalties-and-settlements-so-
far.html), penalties and expenses related to data breaches have cost companies over
$1.3 billion.

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter04
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter04
https://www.csoonline.com/article/3410278/the-biggest-data-breach-fines-penalties-and-settlements-so-far.html
https://www.csoonline.com/article/3410278/the-biggest-data-breach-fines-penalties-and-settlements-so-far.html
https://www.csoonline.com/article/3410278/the-biggest-data-breach-fines-penalties-and-settlements-so-far.html

Getting data security and governance right 99

For example, Equifax, the credit agency firm, had a data breach in 2017 that exposed
the personal and financial information of nearly 150 million people. As a result, Equifax
agreed to pay at least $575 million in a settlement with several United States government
agencies, and U.S. States.

But beyond financial penalties, a data breach can also do incalculable damage to an
organization's reputation and brand. Once you lose the trust of your customers, it can be
very difficult to earn that trust back.

Beyond data breaches where personal data is stolen from an organization's system, failure
to comply with local regulations can also be costly. There are an increasing number of laws
that define under what conditions a company may collect, store, and process personal
information. Not complying with these laws can result in significant penalties for an
organization, even in the absence of a data breach.

For example, Google was hit with a fine of more than $50 million for failing to adequately
comply with aspects of a European regulation known as the General Data Protection
Regulation (GDPR). Google appealed the decision, but in 2020, the decision was
upheld by the courts, leaving the penalty on Google in place.

Common data regulatory requirements
No matter where you operate in the world, there are very likely several regulations
concerning data privacy and protection that you need to be aware of, and plan for,
as a data engineer. A small selection of these include the following:

• The General Data Protection Regulation (GDPR) in the European Union

• The existing California Consumer Privacy Act (CCPA) and the recently passed
California Privacy Rights Act (CPRA) in California, USA

• The Personal Data Protection Bill (PDP Bill) in India

• The Protection of Personal Information Act (POPIA) in South Africa

These laws can be complex and cover many different areas, which is far beyond the scope
of this book. However, generally, they involve individuals having the right to know what
data a company holds about them; ensuring adequate protection of personal information
that the organization holds; enforcing strict controls around data being processed; and
in some cases, the right of an individual to request their data being deleted from an
organization's system.

In the case of GDPR, an organization is subject to the regulations if they hold data on any
resident of the European Union, even if the organization does not have a legal presence in
the EU.

100 Data Cataloging, Security, and Governance

In addition to these broad data protection and privacy regulations, many regulations
apply additional requirements to specific industries or functions. Let's take a look at
some examples:

• The Health Insurance Portability and Accountability Act (HIPAA), which applies
to organizations that store an individual's healthcare and medical data

• The Payment Card Industry Data Security Standard (PCI DSS), which applies
to organizations that store and process credit card data

Understanding what these regulations require and how best to comply with them is often
complex and time-consuming. While, in this chapter, we will look at general principles
that can be applied to protect data used in analytic pipelines, this chapter is not intended
as a guide on how to comply with any specific regulation.

GDPR specifies that in certain cases, an organization must appoint a Data Protection
Officer (DPO). The DPO is responsible for training staff involved in data processing and
conducting regular audits, among other responsibilities.

If your organization has a DPO, ensure you set up a time to meet with the DPO to fully
understand the regulations that may apply to your organization and how this may affect
analytic data. Alternatively, work with your Chief Information Security Officer (CISO)
to ensure your organization seeks legal advice on which data regulations may apply.

If you must participate in a compliance audit for an analytic workload running in AWS,
review the AWS Artifact (https://aws.amazon.com/artifact/) service, a self-
service portal for on-demand access to AWS's compliance reports.

Core data protection concepts
There are several concepts and terminology related to protecting data that are important
for a data engineer to understand. In this section, we will briefly define some of these.

Personally identifiable information (PII)
Personally identifiable information (PII) is a term commonly used in North America
to reference any information that can be used to identify an individual. This can refer
to either the information on its own being able to identify an individual or where the
information can be combined with other linkable information to identify an individual.
It includes information such as full name, social security number, IP address, and
photos or videos.

PII also covers data that provides information about a specific aspect of an individual
(such as a medical condition, location, or political affiliation).

https://aws.amazon.com/artifact/

Getting data security and governance right 101

Personal data
Personal data is a term that is defined in GDPR and is considered to be similar to, but
broader than, the definition of PII. Specifically, GDPR defines personal data as follows:

"Any information relating to an identified or identifiable natural person
("data subject"); an identifiable natural person is one who can be identified,

directly or indirectly, in particular by reference to an identifier such as a
name, an identification number, location data, an online identifier or to

one or more factors specific to the physical, physiological, genetic, mental,
economic, cultural or social identity of that natural person."

GDPR, Article 4, Definitions (https://eur-lex.europa.eu/legal-content/
EN/TXT/HTML/?uri=CELEX:32016R0679#d1e1374-1-1).

Encryption
Encryption is a mathematical technique of encoding data using a key in such a way that
the data becomes unrecognizable and unusable. An authorized user who has the key
used to encrypt the data can use the key to decrypt the data and return it to its original
plaintext form.

Encrypted data may be able to be decrypted by a hacker without the key through the use
of advanced computational resources, skills, and time. However, a well-designed and
secure encryption algorithm increases the difficulty of decrypting the data without the
key, increasing the security of the encrypted data.

There are two important types of encryption and both should be used for all data
and systems:

• Encryption in transit: This is the process of encrypting data as it moves between
systems. For example, a system that migrates data from a database to a data lake
should ensure that the data is encrypted before being transmitted, that the source
and target endpoints are authenticated, and the data can then be decrypted at the
target for processing. This helps ensure that if someone can intercept the data
stream during transmission, that the data is encrypted and therefore unable to be
read and used by the person who intercepted the data. A common way to achieve
this is to use the Transport Layer Security (TLS) protocol for all communications
between systems.

• Encryption at rest: This is the encryption of data that is written to a storage
medium, such as a disk. After each phase of data processing, all the data that is
persisted to disk should be encrypted.

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679#d1e1374-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679#d1e1374-1-1

102 Data Cataloging, Security, and Governance

Encryption (in transit and at rest) is a key tool for improving the security of your data, but
other important tools should also be considered, as covered in the subsequent sections.

Anonymized data
Anonymized data is data that has been altered in such a way that personal data is
irreversibly de-identified, rendering it impossible for any PII data to be identified. For
example, this could involve replacing PII data with randomly generated data, in such a
way that the randomization cannot be reversed to recreate the original data.

Another way anonymization can be applied is to remove most of the PII data so that only
a few attributes that may be considered PII remains, but with enough PII data removed
to make it difficult to identify an individual. However, this contains risk, as it is often
still possible to identify an individual even with only minimal data. A well-known study
(https://dataprivacylab.org/projects/identifiability/paper1.
pdf) found that with just ZIP code, gender, and date of birth information, 87% of the
population in the United States can be uniquely identified.

Pseudonymized data/tokenization
Pseudonymized data is data that has been altered in such a way that personal data is
de-identified. While this is similar to the concept of anonymized data, the big difference
is that with pseudonymized data, the original PII data can still be accessed.

Pseudonymized data is defined by GDPR as data that cannot be attributed to a specific
data subject without the use of separately kept "additional information."

There are multiple techniques for creating pseudonymized data. For example, you can
replace a full name with a randomly generated token, a different name (so that it looks
real but is not), a hash representing the name, and more. However, whichever technique
is used, it must be possible to still access the original data.

One of the most popular ways to do this is to have a tokenization system generate a
unique, random token that replaces the PII data.

For example, when a raw dataset is ingested into the data lake, the first step may be to
pass the data through the tokenization system. This system will replace all PII data in the
dataset with an anonymous token, and will record each real_data | token substitution in
a secure database. Once the data has been transformed, if a consumer requires access and
is authorized to access the PII data, they can pass the dataset to the tokenization system
to be detokenized (that is, have the tokens replaced with the original, real values).

https://dataprivacylab.org/projects/identifiability/paper1.pdf
https://dataprivacylab.org/projects/identifiability/paper1.pdf

Getting data security and governance right 103

The benefit of a tokenization system is that the generated token is random and does
not contain any reference to the original value, and there is no way to determine the
original value just from the token. If there is a data breach that can steal a dataset with
tokenized data, there is no way to perform reverse engineering on the token to find the
original value.

However, the tokenization system itself contains all the PII data, along with the associated
tokens. If an entity can access the tokenized data and is also able to comprise the
tokenization system, they will have access to all PII data. Therefore, it is important that
the tokenization system is completely separate from the analytic systems containing the
tokenized data, and that the tokenization system is protected properly.

On the other hand, hashing is generally considered the least secure method of de-identifying
PII data, especially when it comes to data types with a limited set of values, such as social
security numbers and names.

Hashing uses several popular hashing algorithms to create a hash of an original value.
An original value, such as the name "John Smith," will always return the same hash value
for a specific algorithm.

However, all possible social security numbers and most names have been passed through
popular hashing algorithms and lookup tables have been created, known as rainbow
tables. Using these rainbow tables, anyone can take a hashed name or social security
number and quickly identify the original value.

For example, if you use the SHA-256 hashing algorithm, the original value of "John Smith"
will always return "ef61a579c907bbed674c0dbcbcf7f7af8f851538eef7b8e58c5bee0b8cfdac4a".

If you used the SHA-256 hashing algorithm to de-identify your PII data, it would be
very easy for a malicious actor to determine that the preceding value referenced "John
Smith" (just try Googling the preceding hash and see how quickly the name John Smith
is revealed). While there are approaches to improving the security of a hash (such as
salting the hash by adding a fixed string to the start of the value), it is still generally not
recommended to use hashing for any data that has a well-known, limited set of values,
or values that could be guessed.

Authentication
Authentication is the process of validating that a claimed identity is that identity.
A simple example is when you log in to a Google Mail (Gmail) account. You provide
your identity (your Gmail email address) and then validate that it is you by providing
something only you should know (your password), and possibly also a second factor
of authentication (by entering the code that is texted to your cell phone).

104 Data Cataloging, Security, and Governance

Authentication does not specify what you can access but does attempt to validate that
you are who you say you are. Of course, authentication systems are not foolproof. Your
password may have been compromised on another website, and if you had the same
password for your Gmail account, someone could use that to impersonate you. If you
have multi-factor authentication (MFA) enabled, you receive a code on your phone or
a physical MFA device that you need to enter when logging in, and that helps to further
secure and validate your identity.

Federated identity is a concept related to authentication and means that responsibility
for authenticating a user is done by another system. For example, when logging in to the
AWS Management Console, your administrator could set up a federated identity so that
you use your Active Directory credentials to log in via your organization's access portal,
and the organization's Active Directory server authenticates you. Once authenticated,
the Active Directory server confirms to the AWS Management Console that you have
been successfully authenticated as a specific user. This means you do not need a separate
username and password to log in to the AWS system, but that you can use your existing
Active Directory credentials to be authenticated to an identity in AWS.

Authorization
Authorization is the process of authorizing access to a resource based on a validated
identity. For example, when you log in to your Google account (where you are
authenticated by your password, and perhaps a second factor such as a code that is texted
to your phone), you may be authorized to access that identity's email, and perhaps also
the Google Calendar and Google Search history for that identity.

For a data analytics system, once you validate your identity with authentication, you need
to be authorized to access specific datasets. A data lake administrator can, for example,
authorize you to access data that is in the Conformed Zone of the data lake, but not grant
you access to data in the Raw Zone.

Putting these concepts together
Getting data protection and governance right does not happen by itself. It is important that
you plan for and thoughtfully execute the process of protecting and governing your data.
This will involve using some of the concepts introduced previously, such as the following:

• Making sure PII data is replaced with a token as the first processing step after
ingestion (and ensuring that the tokenization system is secure).

• Encrypting all data at rest with a well-known and reliable encryption algorithm
and ensuring that all connections use secure encrypted tunnels (such as by using
the TLS protocol for all communications between systems).

Cataloging your data to avoid the data swamp 105

• Implementing federated identities where user authorization for analytic systems
is performed via a central corporate identity provider, such as Active Directory.
This ensures that, for example, when a user leaves the company and their Active
Directory account is terminated, their access to analytic systems in AWS is
terminated as a result.

• Implementing least privilege access, where users are authorized for the minimum
level of permissions that they need to perform their job.

This is also not something that a data engineer should do in isolation. You should work
with your organization's security and governance teams to ensure you understand any
legal requirements for how to process and secure your analytical data. You should also
regularly review, or audit, the security policies in place for your analytic systems and data.

Cataloging your data to avoid the data swamp
Even if you do protect your data correctly and handle it as required by local regulations,
if you do not make it easy for your users to find your analytic datasets and understand
more about those datasets, your analytic data can become a liability.

You have probably heard about swamps, even if you have never actually been to one.
Generally, swamps are known to be wet areas that smell pretty bad, and where some
trees and other vegetation may grow, but the area is generally not fit to be used for most
purposes (unless, of course, you're an ogre similar to Shrek, and you make your home in
the swamp!).

In contrast to a swamp, when most people think about a lake, they picture beautiful
scenery with clean water, a beautiful sunset, and perhaps a few ducks gently floating on
the water. Most people would hate to find themselves in a swamp if they thought they
were going to visit a beautiful lake.

In the world of data lakes, as a data engineer, you want to provide an experience that is
much like the pure and peaceful lake described previously, and you want to avoid your
users finding that the lake looks more like a swamp. However, if you're not careful, your
data lake can become a data swamp, where there are lots of different pieces of data around,
but no one is sure what data is there. Then, when they do happen to find some data, they
don't know where the data came from or whether it can be trusted. Ultimately, a data
swamp can be a dumping ground for data that is not of much use to anyone.

106 Data Cataloging, Security, and Governance

How to avoid the data swamp
With some careful upfront planning and the right tools and policies, it is possible to avoid
the data swamp and instead offer your users a well-structured, easy-to-navigate data lake.

Avoiding the data swamp is easy in theory – you just need two important things:

• A data catalog that can be used to keep a searchable record of all the datasets in
the data lake

• Policies that ensure useful metadata is added to all the entries in the data catalog

While that may sound pretty straightforward, the implementation details matter and
things are not always as simple in real life. You need to have well-structured policies to
ensure all datasets are cataloged, and that a defined set of metadata is always captured
along with those datasets. Ensuring this is successfully enforced will often require the
buy-in of senior leadership in the organization.

Data catalogs
A data catalog enables business users to easily find datasets that may be useful to them,
and to better understand the context around the dataset through metadata.

Broadly speaking, there are two types of data catalogs – business catalogs and technical
catalogs. However, many catalog tools offer aspects of both business and technical catalogs.

Technical catalogs are those that map data files in the data lake to a logical representation
of those files in the form of databases and tables. In Chapter 3, The AWS Data Engineers
Toolkit, we covered the AWS Glue service, which is an example of a data catalog tool with
a technical focus.

The Hive Metastore is a well-known catalog that stores technical metadata for Hive tables
(such as the table schema, location, and partition information). These are primarily
technical attributes of the table, and the AWS Glue data catalog is an example of a
Hive-compatible Metastore (meaning analytic services designed to work with a Hive
Metastore catalog can use the Glue catalog).

A technical catalog enables an analytic service to understand the schema of the dataset
(the physical location of the files that make up the dataset, the columns in a dataset, and
the data type for each column, for example). This enables the analytic service to run
queries against the data.

In contrast to technical catalogs, some tools are designed primarily as a business catalog.
A business catalog focuses on enabling business metadata regarding the datasets to be
captured and providing a catalog that is easy to search.

Cataloging your data to avoid the data swamp 107

For example, with a business catalog, you may capture details about the following:

• The owner of the dataset

• The business unit that the data relates to

• The source system(s) that the data comes from

• The confidentiality classification of the data (sensitive, confidential, PII, and so on)

• How often the data is updated (hourly, daily, or weekly)

• How this dataset is related to other datasets

Most catalog tools offer a combination of both business and technical catalog
functionality, although generally, they focus on one aspect more than the other. For
example, the Glue data catalog is a Hive Metastore-compatible catalog that captures
information about the underlying physical files and partitions. However, the Glue catalog
is also able to capture other properties of the data. For example, the Glue catalog can
capture key/values about a table, and this can be used to record the data owner, whether
the table contains PII data, and more.

Popular data catalog solutions outside of AWS include the Collibra Data Catalog and
the Informatica Enterprise Data Catalog.

Organizational policies for capturing metadata
While a catalog provides the ability to capture technical and business metadata about
the data, it is up to the organization to enforce policies that ensure the right details are
captured about each dataset.

For example, a policy needs to be enforced that ensures that all the data that is added
to the data lake is captured in the data catalog. If data is added to the data lake and not
captured in the catalog, you can very quickly end up with a data swamp – lots of data
in the data lake but users are unable to find or understand the context of the data that
is there.

If the technical data is captured in the data catalog but there is no policy to enforce the
capture of business data, you can still end up with a data swamp. If you have hundreds
of datasets in the data catalog with technical data but no business context, then it is
difficult for users to get value from the data. Users will not have any information about
the source of the data or the details of the dataset owner for them to reach out to with
additional questions.

Ultimately, you want to have a catalog that users can search to find datasets, and then have
users be able to examine the metadata to understand the business context of the data.

108 Data Cataloging, Security, and Governance

The AWS Glue/Lake Formation data catalog
As discussed previously, the AWS Glue catalog is a technical data catalog that can capture
some business attributes using key/value tags. For example, you can have a key called
data_owner and an associated value as a tag on each table in the catalog.

Within AWS, there are two services for interacting with the data catalog. So far, we have
only discussed the AWS Glue service, but the AWS Lake Formation service also provides
an interface for the same catalog.

It is important to understand that there is only a single data catalog, but that both Glue and
Lake Formation provide an interface to the catalog. For example, if you set zone:curated
as a table property on the film_category table in curatedzonedb using the Glue
console, you will see that same property set when viewing the table using Lake Formation.

Here, we can see the table details for the film_category table in the AWS Glue
console, and we can see that one of the tags on this dataset is zone:curated:

Figure 4.1 – AWS Glue console showing table properties

If we look at the same table in the Lake Formation catalog, we can also see that the
zone:curated table property is shown:

The AWS Glue/Lake Formation data catalog 109

Figure 4.2 – AWS Lake Formation console showing table properties

The Lake Formation console does provide a more modern design, and also provides
some additional functionality that is not possible with the Glue interface. This includes
the following:

• The ability to add key/value properties at the column level (with AWS Glue, you can
only add properties at the table level)

• The ability to configure access permissions at the database, table, and column level
(more on this later in this chapter)

The data catalog can be referenced by various analytical tools to work with data in the
data lake. For example, Amazon Athena can reference the data catalog to enable users to
run queries against databases and tables in the catalog. Athena uses the catalog to get the
following information, which is required to query data in the data lake:

• The Amazon S3 location where the underlying data files are stored

• Metadata that indicates the file format type for the underlying files (such as CSV
or Parquet)

• Details of the serialization library, which should be used to serialize the
underlying data

110 Data Cataloging, Security, and Governance

• Metadata that provides information about the data type for each column in
the dataset

• Information about any partitions that are used for the dataset

A data engineer must help put automation in place to ensure that all the datasets that are
added to a data lake are cataloged and that the appropriate metadata is added.

In Chapter 3, The AWS Data Engineers Toolkit, we discussed AWS Glue Crawlers,
a process that can be run to examine a data source, infer the schema of the data source,
and then automatically populate the Glue data catalog with information on the dataset.

A data engineer should consider building workflows that make use of Glue Crawlers
to run after new data is ingested, to have the new data automatically added to the data
catalog. Or, when a new data engineering job is being bought into production, a check
can be put in place to make sure that the Glue API is used to update the data catalog
with details of the new data.

Automated methods should also be used to ensure that relevant metadata is added to the
catalog whenever new data is created, such as by putting a method in place to ensure that
the following metadata is added, along with all the new datasets:

• Data source

• Data owner

• Data sensitivity (public, general, sensitive, confidential, PII, and so on)

• Data lake zone (raw zone, transformed zone, enriched zone)

• Cost allocation tag (business unit name, department, and so on)

Putting this type of automation in place helps ensure that you continue to build a data lake
without inadvertently letting the data lake became a data swamp.

AWS services for data encryption and security
monitoring
Previously, we discussed common data protection concepts, such as data encryption.
Now, we will look at some of the AWS services that can be used to help protect and
secure our data.

AWS services for data encryption and security monitoring 111

AWS Key Management Service (KMS)
AWS KMS simplifies the process of creating and managing security keys for encrypting
and decrypting data in AWS. The AWS KMS service is a core service in the AWS
ecosystem, enabling users to easily manage data encryption across several AWS services.

There are a large number of AWS services that can work with AWS KMS to enable data
encryption, including the following AWS analytical services:

• Amazon AppFlow

• Amazon Athena

• Amazon EMR

• Amazon Kinesis Data Streams/Kinesis Firehose/Kinesis Video Streams

• Amazon Managed Streaming for Kafka (MSK)

• Amazon Managed Workflows for Apache Airflow (MWAA)

• Amazon Redshift

• Amazon S3

• AWS Data Migration Service (DMS)

• AWS Glue/Glue DataBrew

• AWS Lambda

The full list of compatible services can be found at https://aws.amazon.com/kms/
features/#AWS_Service_Integration.

Permissions can be granted to users to make use of the keys for encrypting and decrypting
data, and all use of AWS KMS keys is logged in the AWS CloudTrail service. This enables
an organization to easily audit the use of keys to encrypt and decrypt data.

For example, with Amazon S3, you can enable Amazon S3 Bucket Keys, which configures
an S3 Bucket Key to encrypt all new objects in the bucket with an AWS KMS Key. This
is significantly less expensive than using Server Side Encryption – KMS (SSE-KMS) to
encrypt each object in a bucket with a unique key.

To learn more about configuring Amazon S3 Bucket Keys, see https://docs.aws.
amazon.com/AmazonS3/latest/userguide/bucket-key.html.

It is important that you carefully protect your KMS keys and that you put safeguards in
place to prevent a KMS key from being accidentally (or maliciously) deleted. If a KMS
key is deleted, any data that has been encrypted with that key is effectively lost and
cannot be decrypted.

https://aws.amazon.com/kms/features/#AWS_Service_Integration
https://aws.amazon.com/kms/features/#AWS_Service_Integration
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html

112 Data Cataloging, Security, and Governance

Because of this, you must schedule the deletion of your KMS keys and specify a waiting
period of between 7 and 30 days before the key is deleted. During this waiting period, the
key cannot be used, and you can configure a CloudWatch alarm to notify you if anyone
attempts to use the key.

If you use AWS Organizations to manage multiple AWS accounts as part of an organization,
you can create a Service Control Policy (SCP) to prevent any user (even an administrative
user) from deleting KMS keys in child accounts.

Amazon Macie
Amazon Macie is a managed service that uses machine learning, along with pattern
matching, to discover and protect sensitive data. Amazon Macie identifies sensitive data,
such as PII data, in an Amazon S3 bucket and provides alerts to warn administrators
about the presence of such sensitive data. Macie can also be configured to launch an
automated response to the discovery of sensitive data, such as a step function that runs
to automatically remediate the potential security risk.

Macie can identify items such as names, addresses, and credit card numbers that exist
in files on S3. These items are generally considered to be PII data, and as discussed
previously, these should ideally be tokenized before data processing. Macie can also be
configured to recognize custom sensitive data types to alert the user on sensitive data that
may be unique to a specific use case.

Amazon GuardDuty
While Amazon GuardDuty is not directly related to analytics on AWS, it is a powerful
service that helps protect an AWS account. GuardDuty is an intelligent threat detection
service that uses machine learning to monitor your AWS account and provide proactive
alerts about malicious activity and unauthorized behavior.

GuardDuty analyzes several AWS generated logs, including the following:

• CloudTrail S3 data events (a record of all actions taken on S3 objects)

• CloudTrail management events (a record of all usage of AWS APIs within
an account)

• VPC flow logs (a record of all network traffic within an AWS VPC)

• DNS logs (a record of all DNS requests within your account)

By continually analyzing these logs to identify unusual access patterns or data access,
Amazon GuardDuty can proactively alert you to potential issues, and also helps you
automate your response to threats.

AWS services for managing identity and permissions 113

AWS services for managing identity and
permissions
We previously defined authentication as the process of validating that a claimed identity
is that identity, and authorization as the process of authorizing access to a resource, based
on a validated identity.

Within AWS, there are several ways to authenticate an identity, and for analytics on AWS,
there are two primary ways to manage which identities can access which resources.

AWS Identity and Access Management (IAM) service
AWS IAM is a service that provides both authentication and authorization for the
AWS Console, command-line interface (CLI), and application programming interface
(API) calls.

AWS IAM also supports a federation of identities, meaning that you can configure IAM
to use another identity provider for authentication, such as Active Directory or Okta.

Note that this section is not intended as a comprehensive guide to Identity and Access
Management on AWS, but it does provide information on foundational concepts that
are important for anyone working within the AWS cloud to understand. For a deeper
understanding of the AWS IAM service, refer to the AWS Identity and Access Management
user guide (https://docs.aws.amazon.com/IAM/latest/UserGuide/
introduction.html).

Several IAM identities are important to understand:

• AWS account root user: When you create an AWS account, you provide an email
address to be associated with that account, and that email address becomes the
root user of the account. You can log in to the AWS Management Console using the
root user, and this user has full access to all the resources in the account. However,
it is strongly recommended that you do not use this identity to log in and perform
everyday tasks, but rather create an IAM user for everyday use.

• IAM User: This is an identity that you create and can be used to log in to the AWS
Console, run CLI commands, or make API calls. An IAM user has a login name and
password that's used for Console access and can have up to two associated access
keys that can be used to authenticate this identity when using the AWS CLI or API.
While you can associate IAM policies directly with an IAM user, the recommended
method to provide access to AWS resources is to make the user part of a group that
has relevant IAM policies attached.

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

114 Data Cataloging, Security, and Governance

• IAM User Groups: An IAM group is used to provide permissions that can be
associated with multiple IAM users. You provide permissions (via IAM policies) to
an IAM group, and all the members of that group then inherit those permissions.

• IAM roles: An IAM role can be confusing at first as it is similar to an IAM user.
However, an IAM role does not have a username or password and you cannot
directly log in or identify as an IAM role. However, an IAM user can assume the
identity of an IAM role, taking on the permissions assigned to that role. An IAM
Role is also used in identity federation, where a user is authenticated by an external
system, and that user identity is then associated with an IAM role. Finally, an IAM
role can also be used to provide permissions to AWS resources (for example, to
provide permissions to an AWS Lambda function so that the Lambda function can
access specific AWS resources).

To grant authorization to access AWS resources, you can attach an IAM policy to an
IAM user, IAM group, or IAM role. These policies grant, or deny, access to specific AWS
resources, and can also make use of conditional statements to further control access.

These identity-based policies are JSON documents that specify the details of access to
an AWS resource. These policies can either be configured within the AWS Management
Console, or the JSON documents can be created by hand.

There are three types of identity-based policies that can be utilized:

• AWS managed policies: These are policies that are created and managed
by AWS and provide permissions for common use cases. For example, the
AdministratorAccess managed policy provides full access to every service
and resource in AWS, while the DatabaseAdministrator policy provides
permissions for setting up, configuring, and maintaining databases in AWS.

• Customer-managed policies: These are policies that you create and manage to
provide more precise control over your AWS resources. For example, you can create
a policy and attach it to specific IAM users/groups/roles that provide access to a list
of specific S3 buckets and limit that access to only be valid during specific hours of
the day or for specific IP addresses.

• Inline policies: These are policies that are written directly for a specific user, group,
or role. These policies are tied directly to the user, group, or role, and therefore apply
to one specific entity only.

AWS services for managing identity and permissions 115

The following policy is an example of a customer-managed policy that grants read access
to a specific S3 bucket:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "s3:ListBucket"

],

 "Resource": "arn:aws:s3::: de-landing-zone"

 },

 {

 "Effect": "Allow",

 "Action": [

 "s3:GetObject"

],

 "Resource": ["arn:aws:s3::: de-landing-zone/*"]

 }

]

}

The policy takes the form of a JSON document. In this instance, the policy does
the following:

• Allow access (you can also create policies that Deny access).

• Allows access for action of s3:GetObject and s3:ListBucket, meaning
authorization is given to run the Amazon S3 GetBucket and ListBucket
actions (via the Console, CLI, or API).

• For ListBucket, the resource is set as the de-landing-zone bucket. For
GetObject, the resource is set as de-landing-zone/*. This results in the
principal being granted access to list the de-landing-zone bucket, and read
access to all the objects inside the de-landing-zone bucket.

116 Data Cataloging, Security, and Governance

You could further limit this policy to only be allowed if the user was connecting from
a specific IP address, at a certain time of day, or various other limitations. For example,
to limit this permission to users from a specific IP address, you could add the following
to the policy:

"Condition": {

 "IpAddress": {

 "aws:SourceIp": [

 "12.13.15.16/32",

 "45.44.43.42/32"

]

 }

 }

Once you have created a customer-managed policy, you can attach the policy to specific
IAM groups, IAM roles, or IAM users.

Traditional data lakes on AWS used IAM policies to control access to data in an Amazon
S3-based data lake. For example, a policy would be created to grant access to different
zones of the data lake, and then that policy would be attached to different IAM users,
groups, or roles.

However, when creating a large data lake that may contain multiple buckets or S3 prefixes
that relate to specific business units, it can be challenging to manage S3 permissions
through these JSON policies. Each time a new data lake location is created, the data
engineer would need to make sure that the JSON policy document was updated to
configure permissions for the new location.

To make managing large S3-based data lakes easier, AWS introduced a new service called
AWS Lake Formation, which enables permissions for the data lake to be controlled by
the data lake administrator from within the AWS Management Console (or via the AWS
CLI or AWS API).

Using AWS Lake Formation to manage data lake access
AWS Lake Formation is a service that simplifies setting up and managing a data lake. And
a big part of the Lake Formation service is the ability to manage access (authorization)
to data lake databases and tables without having to manage fine-grained access through
JSON-based policy documents in the IAM service.

AWS services for managing identity and permissions 117

Lake Formation enables a data lake administrator to grant fine-grained permissions on
data lake databases, tables, and columns using the familiar database concepts of grant and
revoke for permissions management. A data lake administrator, for example, can grant
SELECT permissions (effectively READ permission) for a specific data lake table to a
specific IAM user or role.

Lake Formation permissions management is another layer of permissions that is useful for
managing fine-grained access to data lake resources, but it works with IAM permissions
and does not replace IAM permissions. A recommended way to do this is to apply broad
permissions to a user in an IAM policy, but then apply fine-grained permissions with
Lake Formation.

Permissions management before Lake Formation
Before the release of the Lake Formation service, all data lake permissions were managed
at the Amazon S3 level using IAM policy documents written in JSON. These policies
would control access to resources such as the following:

• The data catalog objects in the Glue data catalog (such as permissions to access
Glue databases and tables)

• The underlying physical storage in Amazon S3 (such as the Parquet or CSV files in
an Amazon S3 bucket)

• Access to analytical services (such as Amazon Athena or AWS Glue)

For example, the IAM policy would provide several Glue permissions, including the
ability to read catalog objects (such as Glue tables and table partitions) and the ability
to search tables. However, the resources section of the policy would restrict these
permissions to the specific databases and tables that the user should have access to.

The policy would also have a section that provided permissions to the underlying S3 data.
For each table that a user needed to access in the Glue data catalog, they would need both
Glue data catalog permissions for the catalog objects, as well as Amazon S3 permissions
for the underlying files.

The last part of the IAM policy would also require the user to have access to relevant
analytical tools, such as permissions to access the Amazon Athena service.

Permissions management using AWS Lake Formation
With AWS Lake Formation, permissions management is changed so that broad access
can be provided to Glue catalog objects in the IAM policy, and fine-grained access is
controlled via AWS Lake Formation permissions.

118 Data Cataloging, Security, and Governance

With Lake Formation, data lake users do not need to be granted direct permissions on
underlying S3 objects as the Lake Formation service can provide temporary credentials
to compatible analytic services to access the S3 data.

It is important to note that Lake Formation permissions access only works with
compatible analytic services, which, at the time of writing, includes the following
AWS services:

• Amazon Athena

• Amazon QuickSight

• Apache Spark running on Amazon EMR

• Amazon Redshift Spectrum

• AWS Glue

If using these compatible services, AWS Lake Formation is a simpler way to manage
permissions for your data lake. The data lake user still needs an associated IAM policy that
grants them access to the AWS Glue service, the Lake Formation service, and any required
analytic engines (such as Amazon Athena). However, at the IAM level, the user can be
granted access to all AWS Glue objects. The Lake Formation permissions layer can then
be used to control which specific Glue catalog objects can be accessed by the user.

As the Lake Formation service passes temporary credentials to compatible analytic
services to read data from Amazon S3, data lake users no longer need any direct
Amazon S3 permissions to be provided in their IAM policies.

Hands-on – configuring Lake Formation
permissions
In this hands-on section, we will use the AWS Management Console to configure Lake
Formation permissions.

However, before we implement Lake Formation permissions, we're going to create a new
data lake user and configure their permissions using just IAM permissions. We'll then
go through the process of updating a Glue database and table to use Lake Formation
permissions, and then grant Lake Formation permissions to our data lake user.

Configuring the Glue Crawler
While not covered in this chapter, we will provide a hands-on section with
details on how to configure the Glue crawler in Chapter 6, Ingesting Batch and
Streaming Data.

Hands-on – configuring Lake Formation permissions 119

Creating a new user with IAM permissions
To start, let's create a new IAM user that will become our data lake user. We will initially
use IAM to grant our data lake user the following permissions:

• Permission to access a specific database and table in the Glue data catalog

• Permission to use the Amazon Athena service to run SQL queries against the
data lake

First, let's create a new IAM policy that grants the required permissions for using Athena
and Glue, but limits those permissions to only CleanZoneDB in the Glue catalog. To do
this, we're going to copy the Amazon-managed policy for Athena Full Access, but we
will modify the policy to limit access to just a specific Glue database, and we will add S3
permissions to the policy. Let's get started:

1. Log in to the AWS Management Console and access the IAM service using this link:
https://console.aws.amazon.com/iam/home.

2. On the left-hand side, click on Policies, and then for Filter Policies, type
in Athena.

3. From the filtered list of policies, expand the AmazonAthenaFullAccess policy.
4. Click inside the JSON policy box and copy the entire policy to your computer

clipboard.

Figure 4.3 – Copying the text of the AmazonAthenaFullAccess policy

5. At the top of the page, click on Create policy.

https://console.aws.amazon.com/iam/home

120 Data Cataloging, Security, and Governance

6. The visual editor is selected by default, but since we want to create a JSON policy
directly, click on the JSON tab.

7. Paste the Athena full access policy that you copied to the clipboard in step 4 into the
policy, overwriting and replacing any text currently in the policy.

8. Look through the policy to identify the section that grants permissions for several
Glue actions (glue:CreateDatabase; glue:DeleteDatabase; glue:getDatabase, and
so on). This section currently lists the resource that it applies to as *, meaning that
the user would have access to all databases and tables in the Glue catalog. In our use
case, we want to limit permissions to just the Glue CleanZoneDB database (which
was created in the hands-on section of Chapter 3, The AWS Data Engineers Toolkit).
Replace the resource section of the section that provides Glue access with the
following, which will limit access to the required DB only, although it also includes
all tables in that database:

 "Resource": [

 "arn:aws:glue:*:*:catalog",

 "arn:aws:glue:*:*:database/cleanzonedb",

 "arn:aws:glue:*:*:database/cleanzonedb*",

 "arn:aws:glue:*:*:table/cleanzonedb/*"

]

The following screenshot shows how this looks when applied to the policy:

Figure 4.4 – Updated policy with limited permissions for Glue resources

Hands-on – configuring Lake Formation permissions 121

9. Immediately after the section that provides Glue permissions, we can add new
permissions for accessing the S3 location where our CleanZoneDB data resides.
Add the following section to provide these permissions, making sure to replace
<initials> with the unique identifier you used when creating the bucket in
Chapter 3, The AWS Data Engineers Toolkit:

 {

 "Effect": "Allow",

 "Action": [

 "s3:GetBucketLocation",

 "s3:GetObject",

 "s3:ListBucket",

 "s3:ListBucketMultipartUploads",

 "s3:ListMultipartUploadParts",

 "s3:AbortMultipartUpload",

 "s3:PutObject"

],

 "Resource": [

 "arn:aws:s3:::dataeng-clean-zone-
<initials>/*"

]

 },

Here is a screenshot showing the S3 permissions added to the policy:

Figure 4.5 – S3 permissions added to the policy

122 Data Cataloging, Security, and Governance

10. Once you have pasted in the new S3 permissions, click on Next:Tags at the bottom
right of the screen.

11. Optionally, add any tags for this policy, and then click on Next: Review.
12. For Name, provide a policy name of AthenaAccessCleanZoneDB and click

Create policy.

Now that we have created an IAM policy for providing the required permissions to the
Glue catalog and S3 buckets, we can create a new IAM user and attach our new policy
to the new data lake user.

Follow these steps to create the new IAM user:

1. On the left-hand side, click on Users, and then click Add user.
2. For User name, enter datalake-user.
3. For Access type, select AWS Management Console access.
4. For Console password, select Custom password and enter a secure password.
5. Clear the checkbox for Require password reset and then click Next: Permissions.
6. Select Attach existing policies directly and search for the policy you created in the

previous step (AthenaAccessCleanZoneDB). Click the policy checkbox and
then click Next: Tags.

7. Optionally, add any tags and click Next: Review.
8. Review the configuration and click Create user.
9. Click on Close to close the Add user dialog.

Now, let's create a new Amazon S3 bucket that we can use to capture the results of any
Amazon Athena queries that we run:

1. In the AWS Management Console, use the top search bar to search for and select
the S3 service.

2. Click on Create bucket.
3. For Bucket name, enter aws-athena-query-results-dataengbook-

<initials>. Replace <initials> with your initials or some other unique identifier.
4. Ensure AWS Region is set to the region you have been using for the other exercises

in this book.
5. Leave the others as their defaults and click on Create bucket.

Hands-on – configuring Lake Formation permissions 123

We can now verify that our new datalake-user only has access to CleanZoneDB and
that the user can run Athena queries on the table in this database:

1. Sign out of the AWS Management Console, and then sign in again using the new
user you just created, datalake-user.

2. From the top search bar, search for and select the Athena service.
3. Before you can run an Athena query, you need to set up a query result location

in Amazon S3. This is the S3 bucket and prefix where all the query results will be
written to. From the top right of the Athena console, click on Settings.

4. For Query result location, enter the S3 path you created in the previous Step
3 (for example, s3://aws-athena-query-results-dataengbook-
<initials>/).

5. Click on Save.
6. In the New Query window, run the following SQL query: select * from

cleanzonedb.csvparquet.
7. If all permissions have been configured correctly, the results of the query should be

displayed in the lower window. The file we created shows names and ages.
8. Log out of the AWS Management Console since we need to be logged in as our

regular user, not datalake-user.

We have now set up permissions for our data lake using IAM policies to manage
fine-grained access control, as was always done before the launch of the AWS Lake
Formation service. In the next section, we will transition to using Lake Formation
to manage fine-grained permissions on data lake objects.

Transitioning to managing fine-grained permissions
with AWS Lake Formation
In the initial setup, we configured permissions for our data lake user to be able to run
SQL queries using Amazon Athena, and we restricted their access to just cleanzonedb
using an IAM permissions policy.

In this section, we are going to modify cleanzonedb and the tables in that database
to make use of the Lake Formation permissions model.

124 Data Cataloging, Security, and Governance

Activating Lake Formation permissions for a database and table
As a reminder, Lake Formation adds a layer of permissions that work in addition to the
IAM policy permissions. By default, every database and table in the catalog has a special
permission enabled that effectively tells Lake Formation to just use IAM permissions
and to ignore any permissions that may have been granted in Lake Formation. This is
sometimes called the Pass-Through permission as it allows security checks to be validated
at the IAM level, but then passes through Lake Formation without doing any additional
permission checks.

With our initial setup, we granted Glue data catalog permissions to datalake-user in
an IAM policy. This policy allowed the user to access the cleanzonedb database, as well
as all the tables in that database. Let's have a look at how permissions are set up on the
cleanzonedb database and tables in Lake Formation:

1. Log in to AWS Management Console and search for the Lake Formation
service in the top search bar. Make sure you are logged in as your regular user, and
not as datalake-user, which you created earlier in this chapter.

2. The first time you access the Lake Formation service, a pop-up box will prompt you
to choose initial users and roles to be Lake Formation data lake administrators. By
default, Add myself should be selected. Click Get started to add your current user
as a data lake admin.

Figure 4.6 – Adding your user as a Lake Formation administrator

3. Once selected, you should be taken to the Lake Formation Data lake
administrators screen, where you can confirm that your user has been added as
a data lake administrator.

Hands-on – configuring Lake Formation permissions 125

4. On the left-hand side of the Lake Formation console, click on Databases. In the list
of databases, click on the cleanzonedb database.

5. This screen displays details of cleanzonedb. Click on Actions, and then View
permissions.

6. On the View permissions screen, we can see that two permissions have been
assigned for this database. The first one is DataEngLambdaS3CWGlueRole, and
this IAM role has been granted full permissions on the database. The reason for this
is that DataEngLambdaS3CWGlueRole was the role that was assigned to the
Lambda function that we used to create the database back in Chapter 3, The AWS
Data Engineers Toolkit, so it is automatically granted these permissions.

Figure 4.7 – Lake Formation permissions for the cleanzonedb database
The other permission that we can see is for the IAMAllowedPrincipals group.
This is the pass-through permission we mentioned previously, which effectively
means that permissions at the Lake Formation layer are ignored. If this special
permission was not assigned, only DataEngLambdaS3CWGlueRole would be
able to access the database. However, because the permission has been assigned,
any user who has been granted permissions to this database through an IAM policy,
such as datalake-user, will be able to successfully access the database.

126 Data Cataloging, Security, and Governance

7. To enable Lake Formation permissions on this database, we can remove the
IAMAllowedPrincipals permission from the database. To do this, click the
selector box for the IAMAllowedPrincipals permission and click Revoke.
On the pop-up box, click on Revoke.

Figure 4.8 – Revoking the pass-through permission on cleanzonedb

8. We now want to do the same thing for our CSVParquet table in the
database. To do this, click on Databases in the left-hand menu, then click on
cleanzonedb. From the top right, click on View tables. Click the selector for the
CSVParquet table and click on Actions/View Permissions. Click the selector for
IAMAllowedPrincipals and click on Revoke. On the pop-up window, click on
Revoke. This removes the special Pass-Through permission from the table.

Hands-on – configuring Lake Formation permissions 127

Optional – checking permissions
If you want to see what effect this has, you can log out of the AWS Console
and log in again as datalake-user. Now, when you try to run a query on
the CSVParquet table using Athena, you will receive an error message as Lake
Formation permissions are in effect, and your datalake-user has not
been granted permissions to access the table yet.

Granting Lake Formation permissions
By removing the IAMAllowedPrincipals permission from the cleanzonedb database
and the CSVParquet table, we have effectively enabled Lake Formation permissions on
those resources. Now, if any principal needs to access that database or table, they need
both IAM permissions, as well as Lake Formation permissions.

If we had enabled Lake Formation permissions on all databases and tables, then we could
modify our user's IAM policy permissions to give them access to all data catalog objects.
We can do this because we would know that they would only be able to access those
databases and tables where they had been granted specific Lake Formation permissions.

We previously created an edited copy of the AmazonAthenaFullAccess managed
IAM policy to limit user access to specific data catalog databases and tables in the
IAM policy. However, if all databases and tables had the IAMAllowedPrincipals
permission removed and specific permissions granted to users instead, then we could
apply the generic AmazonAthenaFullAccess policy.

We also previously provided access to the underlying S3 files using an IAM policy.
However, when using Lake Formation permissions, compatible analytic tools are granted
access to the underlying S3 data using temporary credentials provided by Lake Formation.
Therefore, once Lake Formation permissions have been activated, we can remove
permissions to the underlying S3 data from our user's IAM policy. Then, when using
a compatible tool such as Amazon Athena, we know that Lake Formation will grant
Athena temporary credentials to access the underlying S3 data.

Here, we will add specific Lake Formation permissions for our datalake-user to
access the CleanZoneDB database and the CSVParquet table:

1. Ensure you are logged in as your regular user (the one you made a data lake admin
earlier) and access the Lake Formation console.

2. Click on CleanZoneDB, and then click View tables.
3. Click on the CSVParquet table, and then click Actions/Grant.
4. From the IAM users and roles dropdown, click on the datalake-user principal.

128 Data Cataloging, Security, and Governance

5. Under Columns, click on Exclude columns and then select Age as the column
to exclude.

6. For Table permissions, mark the permission for Select.
7. Click on Grant at the bottom of the screen.

In the preceding steps, we granted our datalake-user Select permissions on
the CSVParquet table. However, we put in a column limitation, which means that
datalake-user will not be able to access the Age column. Enabling column-level
permissions is not something that would be possible if we were just using IAM-level
permissions, as column-level permissions is a Lake Formation-specific feature.

Now, if you log in to the AWS Management Console as datalake-user and run
the same Athena query we ran previously (select * from cleanzonedb.
csvparquet), your permissions will enable the required access.

Figure 4.9 – Running an Athena query with Lake Formation permissions

Note that in the results of the query, the Age column is not included as we specifically
excluded this column when granting permissions on this table to our datalake-user.

In this section, we transitioned to using Lake Formation for managing data lake permissions
for the cleanzonedb database. We expanded IAM permissions to provide coarse-grained
permissions to Glue catalog objects, but then added fine-grained permissions in Lake
Formation to limit cleanzonedb access to just our datalake-user.

Summary 129

Summary
In this chapter, we reviewed important concepts around data security and governance,
including how a data catalog can be used to help prevent your data lake from becoming
a data swamp.

Data encryption at rest and in transit, and tokenization of PII data, are important concepts
for a data engineer to understand to protect data in the data lake, and a service such as
AWS Lake Formation is a useful tool for easily managing authorization for datasets.

In the next chapter, we will take a step back and look at the bigger picture of how a data
engineer can architect a data pipeline. We will begin exploring how to understand the
needs of our data consumers, learn more about our data sources, and decide on the
transformations that are required to transform raw data into useful data for analytics.

Section 2:
Architecting and

Implementing
Data Lakes and Data

Lake Houses
In this section of the book, we examine an approach for architecting a high-level data
pipeline and then dive into the specifics of data ingestion and transformation. We also
examine different types of data consumers, learn about the important role of data marts
and data warehouses, and finally put it all together by orchestrating data pipelines. We
get hands-on with various AWS services for data ingestion (Amazon Kinesis and DMS),
transformation (AWS Glue Studio), consumption (AWS Glue DataBrew), and pipeline
orchestration (Step Functions).

This section comprises the following chapters:

• Chapter 5, Architecting Data Engineering Pipelines

• Chapter 6, Ingesting Batch and Streaming Data

• Chapter 7, Transforming Data to Optimize for Analytics

• Chapter 8, Identifying and Enabling Data Consumers

• Chapter 9, Loading Data into a Data Mart

• Chapter 10, Orchestrating the Data Pipeline

5
Architecting

Data Engineering
Pipelines

Having gained an understanding of data engineering principles, the core concepts, and the
available AWS tools, we can now put these together in the form of a data pipeline. A data
pipeline is the process that ingests data from multiple sources, optimizes and transforms
the data, and makes it available to data consumers. An important function of the data
engineering role is the ability to design, or architect, these pipelines.

In this chapter, we will cover the following topics:

• Approaching the task of architecting a data pipeline

• Identifying data consumers and understanding their requirements

• Identifying data sources and ingesting data

• Identifying data transformations and optimizations

• Loading data into data marts

• Wrapping up the whiteboarding session

• Hands-on – architecting a sample pipeline

134 Architecting Data Engineering Pipelines

Technical requirements
For the hands-on portion of this lab, we will design a high-level pipeline architecture. You
can perform this activity on an actual whiteboard, a piece of paper, or using a free online
tool called diagrams.net. If you want to make use of this online tool, make sure you can
access the tool at http://diagrams.net.

You can find the code files of this chapter in the GitHub repository using the following
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter05

Approaching the data pipeline architecture
Before we get into the details of the individual components that will go into the
architecture, it is helpful to get a 10,000 ft view of what we're trying to do.

A common mistake when starting a new data engineering project is to try and do
everything at once, and to create a solution that covers all use cases. A better approach is
to identify an initial, specific use case, and to start the project while focusing on that one
outcome, but keeping the bigger picture in mind.

This can be a significant challenge, and yet it is really important to get this balance right.
While you need to focus on an achievable outcome that can be completed within a
reasonable time frame, you also need to ensure that you're building within a framework
that can be used for future projects. If each business unit tackles the challenge of data
analytics independently, with no corporate-wide analytics initiative, it will be difficult to
unlock the value of corporate-wide data.

The ideal project will include sponsorship from the highest levels of the organization but
will identify a limited scope project for building an initial framework. This project, when
completed, can be used as an internal case study to drive forward additional analytic
projects.

In the 1989 film Field of Dreams, a farmer (played by Kevin Costner) hears a voice saying

"If you build it, he will come."
Everyone in the town thinks he is crazy when he ends up sacrificing his crops to build
a baseball field, but when he does, several long-dead baseball players come to the field to
play. In business, a common mantra has become the following:

"If you build it, they will come."

http://diagrams.net
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter05
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter05

Approaching the data pipeline architecture 135

This implies that if you build something really good, you will find customers for it. But
this is not a recommended approach for building data analytic solutions.

Some organizations may have hundreds, or even thousands, of data sources, and many
of those data sources may be useful for centralized analytics. But that doesn't mean we
should attempt to immediately ingest them all into our analytics platform so that we
can see how the business may use them. When organizations have taken this approach,
embarking on multi-year-long projects to build out large analytic solutions covering many
different initiatives, these have often failed.

Rather, once executive sponsorship has been gained and an initial project with limited
scope has been identified, the data engineer can begin the process of designing a data
pipeline for the project.

Architecting houses and architecting pipelines
If you were to build a new house, you would identify an appropriate piece of land, and
then contract an architect to work with you to create the plans for the building. The
architect would do several things:

• Discuss your requirements with you (how you want to use the home, what materials
you would like, how many bedrooms, bathrooms, and so on).

• Gather information on the land where you will be building (size of the land, slope,
and so on).

• Determine the type of materials that are best suited for building that environment.

As part of this, the architect may create a rough sketch showing the high-level plan. Once
that high-level plan is agreed upon, the architect can gather more detailed information
and then create a detailed architecture plan. This plan would include the layout of the
rooms, and then where the shower, toilet, lights, and so on would go, and based on that,
where the plumbing and electrical lines would run.

136 Architecting Data Engineering Pipelines

For a data engineer creating the architecture for a data pipeline, a similar approach
can be used:

• Gather information from project sponsors and data consumers on their
requirements. Learn what their objectives are, what types of tools they want to use
to consume the data, required data transformations, and so on.

• Gather information on the available data sources. This may include what systems
store the raw data, what format that data is in, who the system and data owner are,
and so on.

• Determine what types of tools are available and may be best suited for these
requirements.

A useful way to gather this information is to conduct a whiteboarding session with the
relevant stakeholders.

Whiteboarding as an information-gathering tool
Running a whiteboarding session with relevant stakeholders enables the data engineer to
develop a high-level plan for the data pipeline, and helps gather the information required
to start working on the detailed design. The purpose of the whiteboarding exercise is not
to work out all the technical details and finalize the specific services and tools that will
be used. Rather, the purpose is to agree with stakeholders on the overall approach for the
pipeline and to gather the information that's required for the detailed design.

In this book, we will be using an architectural approach, where we ingest data into an
Amazon S3-based data lake. Data is initially ingested into a raw zone, and then we
transform and optimize the data using several tools to move the data through different
data lake zones. As we covered in Chapter 2, Data Management Architectures for Analytics,
a data lake has multiple zones that the data moves through. Typically, these include zones
such as raw, transformed, conformed, and enriched, but can also include zones such as
staging and inference (for data science purposes). There is no specific number of zones
that a data lake requires as zones should be based on business requirements, but for our
whiteboarding session, we will show three zones.

Depending on data consumption requirements, we may then load subsets of the data into
various data marts (such as Amazon Redshift, a cloud data warehouse service), making
the data available to data consumers via various services.

The following diagram illustrates a high-level overview of the primary components of a
typical data pipeline and the approach to developing the high-level pipeline architecture:

Approaching the data pipeline architecture 137

Figure 5.1 – High-level overview of a data pipeline architecture

When approaching the design of the pipeline, we can use the following sequence (which is
also reflected by the numbers in the preceding diagram):

1. Understanding the business objectives and who the data consumers are and their
requirements

2. Determining the types of tools that data consumers will use to access the data
3. Understanding which potential data sources may be available
4. Determining the types of toolsets that will be used to ingest data
5. Understanding the required data transformations at a high level to take the raw data

and prepare it for data consumers

As you can see, we should always work backward when designing a pipeline. That is, we
should start with the data consumers and their requirements, and then work from there to
design our pipeline.

Conducting a whiteboarding session
Once an initial project has been identified, the data engineer should bring together
relevant stakeholders for a workshop to whiteboard the high-level approach. Ideally, all
stakeholders should meet in person, have a whiteboard available, and should plan for a
half-day workshop. Stakeholders should include a group of people that can answer the
following questions:

• Who is the executive sponsor and what are the business value and objectives for the
project?

• Who is going to be working directly with the data (the data consumers)? What types
of tools are the data consumers likely to use to access the data?

138 Architecting Data Engineering Pipelines

• What are the relevant raw data sources?

• At a high level, what types of transformations are required to transform and
optimize the raw data?

The data engineer needs to understand the business objectives, and not just gather
technical information during this workshop. A good place to start is to ask for a business
sponsor to provide an overview of current challenges, and to review the expected business
outcomes, or objectives, for the project. Also, ask about any existing solutions or related
projects, and gaps or issues with those current solutions.

Once the team has a good understanding of the business value, the data engineer can
begin whiteboarding to put together the high-level design. We work backward from
our understanding of the business value of the project, which involves learning how
the end-state data will be used to provide business value, and who the consumers of the
data will be. From there, we can start understanding the raw data sources that will be
needed to create the end-state data, and then develop a high-level plan for the types of
transformations that may be required.

Let's start by identifying who our data consumers are and understanding their
requirements.

Identifying data consumers and
understanding their requirements
A typical organization is likely to have multiple different categories, or types, of data
consumers. We discussed some of these roles in Chapter 1, An Introduction to Data
Engineering, but let's review these again:

• Business users: A business user generally wants to access data via interactive
dashboards and other visualization types. For example, a sales manager may want
to see a chart showing last week's sales by sales rep, geographic area, or top product
categories.

• Business applications: In some use cases, the data pipeline that the data engineer
builds will be used to power other business applications. For example, Spotify,
the streaming music application, provides users with an in-app summary of their
listening habits at the end of each year (top songs, top genres, total hours of music
streamed, and so on). Read the following Spotify blog post to learn more about
how the Spotify data team enabled this: https://engineering.atspotify.
com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-
decade-of-data/.

https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-of-data/
https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-of-data/
https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-of-data/

Identifying data consumers and understanding their requirements 139

• Data analyst: A data analyst is often tasked with doing more complex data analysis,
digging deeper into large datasets to answer specific questions. For example, across
all customers, you may be wondering which products are most popular by different
age or socio-economic demographics. Or, you may be wondering what percentage
of customers have browsed the company's e-commerce store more than 5 times,
for more than 10 minutes at a time, in the last 2 weeks but have not purchased
anything. These users generally use structured query languages such as SQL.

• Data scientist: A data scientist is tasked with creating machine learning models
that can identify non-obvious patterns in large datasets, or make predictions about
future behavior based on historical data. To do this, data scientists need access to
large quantities of diverse datasets that they may refine further.

During the whiteboarding workshop, the data engineer should ask questions to
understand who the data consumers are for the identified project. As part of this, it is
important to also understand the types of tools each data consumer is likely to want to use
to access the data.

As information is discovered, it can be added to the whiteboard, as illustrated in the
following diagram:

Figure 5.2 – Whiteboarding data consumers and data access

140 Architecting Data Engineering Pipelines

In this example, we can see that we have identified three different data consumers – a data
analyst team, a data science team, and various business users. We have also identified the
following:

• That the data analysts want to use ad hoc SQL queries to access the data

• That the data science team wants to use both ad hoc SQL queries and specialized
machine learning tools to access the data

• That the business users want to use a Business Intelligence (BI) data visualization
tool to access the data

It is useful to ask whether there are any existing corporate standard tools that the data
consumer must use, but it is not important to finalize the toolsets at this point. For
example, we should take note if a team already has experience with Tableau (a common
BI application) and whether they want to use it for data visualization reporting. But if they
have not identified a specific toolset they will use, that can be finalized at a later stage.

Once we have a good understanding of who the data consumers are for the project,
and the types of tools they want to use to work with the data, we can move on to the
next stage of whiteboarding, which is to examine the available data sources and means to
ingest the data.

Identifying data sources and ingesting data
With an understanding of the overall business goals for the project, and having identified
our data consumers, we can start exploring the available data sources.

While most data sources will be internal to the organization, some projects may require
enriching organization-owned data with other third-party data sources. Today, there are
many data marketplaces where diverse datasets can be subscribed to, or in some cases,
accessed for free. When discussing data sources, both internal and external datasets
should be considered.

The team that has been included in the workshop should include people that understand
the data sources required for the project. Some of the information that the data engineer
needs to gather about these data sources includes the following:

• Details about the source system containing the data (is the data in a database, in
files on a server, existing files on Amazon S3, coming from a streaming source, and
so on)?

• If this data is internal data, who is the owner of the source system within the
business? Who is the owner of the data?

Identifying data sources and ingesting data 141

• What frequency does the data need to be ingested on (continuous streaming/
replication, loading data every few hours, loading data once a day)?

• Optionally, discuss some potential tools that could be used for data ingestion.

• What is the raw/ingested format of the data (CSV, JSON, native database format,
and so on)?

• Does the data source contain PII or other types of data that is subject to governance
controls? If so, what controls need to be put in place to protect the data?

As information is discovered, it can be captured on the whiteboard, as illustrated in the
following diagram:

Figure 5.3 – Whiteboarding data sources and data ingestion

During the whiteboarding process, additional notes should be captured to provide
more context or detail about the requirements. These can be captured directly on the
whiteboard or captured separately.

142 Architecting Data Engineering Pipelines

In this example, we have identified three different data sources – customer data from
a MySQL database, opportunity information from Salesforce, and near-real-time sales
metrics from the organization's mobile application. We have also identified the following:

• The business team that owns each source system and the business team that owns
the data

• The velocity of ingesting the data (how often each data source needs to be ingested)

• Potential services that can be used to ingest the data

When discussing ingestion tools, it may be worthwhile to capture potential tools if you
have a good idea of which tool may be suitable. However, the objective of this session
is not to come up with a final architecture and decision on all technical components.
Additional sessions (as discussed later in this book) will be used to thoroughly evaluate
potential toolsets against requirements and should be done in close consultation with
source system owners.

During this whiteboarding session, we have been working backward, first identifying the
data consumers, and then the data sources we plan to use. At this point, we can move on
to the next phase of whiteboarding, which is to examine some of the data transformations
that we plan to use to optimize the data for analytics.

Identifying data transformations and
optimizations
In a typical data analytics project, we ingest data from multiple data sources and then
perform transforms on those datasets to optimize them for the required analytics.

In Chapter 7, Transforming Data to Optimize for Analytics we will do a deeper dive into
typical transformations and optimizations, but we will provide a high-level overview of
the most common transformations here.

File format optimizations
CSV, XML, JSON, and other types of plaintext files are commonly used to store structured
and semi-structured data. These file formats are useful when manually exploring data, but
there are much better, binary-based file formats to use for computer-based analytics. A
common binary format that is optimized for read-heavy analytics is the Apache Parquet
format. A common transformation is to convert plaintext files into an optimized format,
such as Apache Parquet.

Identifying data transformations and optimizations 143

Data standardization
When building out a pipeline, we often load data from multiple different data sources,
and each of those data sources may have different naming conventions for referring to
the same item. For example, a field containing someone's birth date may be called DOB,
dateOfBirth, birth_date, and so on. The format of the birth date may also be stored as mm/
dd/yy, dd/mm/yyyy, or in a multitude of other formats.

One of the tasks we may want to do when optimizing data for analytics is to standardize
column names, types, and formats. By having a corporate-wide analytic program,
standard definitions can be created and adopted across all analytic projects in the
organization.

Data quality checks
Another aspect of data transformation may be the process of verifying data quality and
highlighting any ingested data that does not meet the expected quality standards.

Data partitioning
A common optimization strategy for analytics is to partition the data, grouping the data
at the physical storage layer by a field that is often used in queries. For example, if data
is often queried by a date range, then data can be partitioned by a date field. If storing
sales data, for example, all the sales transactions for a specific month would be stored in
the same Amazon S3 prefix (which is much like a directory). When a query is run that
selects all the data for a specific day, the analytic engine only needs to read the data in the
directory that's storing data for the relevant month.

Data denormalization
In traditional relational database systems, the data is normalized, meaning that each
table contains information on a specific focused topic, and associated, or related,
information is contained in a separate table. The tables can then be linked through
the use of foreign keys.

For data lakes, combining the data from multiple tables into a single table can often
improve query performance. Data denormalization takes two (or more) tables and creates
a new table with data from both tables.

144 Architecting Data Engineering Pipelines

Data cataloging
Another important component that we should include in the transformation section of
our pipeline architecture is the process of cataloging the dataset. During this process,
we ensure all the datasets in the data lake are referenced in the data catalog and can add
additional business metadata.

Whiteboarding data transformation
For the whiteboarding session, we do not need to determine all the details of the required
transformations, but it is useful to agree on the main transformations for the high-level
pipeline design.

Some of the information that the data engineer needs to gather about expected data
transformations during the whiteboarding session includes the following:

• Is there an existing set of standardized column name definitions and formats
that can be referenced? If not, who will be responsible for creating these standard
definitions?

• What additional business metadata should be captured for datasets? For example,
data owner, cost allocation tags, data sensitivity, and so on.

• What format should optimized files be stored in? Apache Parquet is a common
format, but you need to validate that the tools used by the data consumers can work
with files in Apache Parquet format.

• Is there an obvious field that the data should be partitioned by?

• Are other required data transformations obvious at this point? For example, if
you're ingesting data from a relational database, should the data be denormalized?

• What data transformation engines/skills does the team have? For example, does the
team have experience creating Spark jobs using PySpark?

As information is discovered, it can be captured on the whiteboard, as illustrated in the
following diagram:

Identifying data transformations and optimizations 145

Figure 5.4 – Whiteboarding data transformation

In this example, we are creating a data lake with three zones – the landing zone, the clean
zone, and the curated zone (as previously discussed in Chapter 2, Data Management
Architectures for Analytics):

• Raw files are ingested into the landing zone and will be in plaintext formats such as
CSV and XML. When the files are ingested, information about the files is captured
in the data catalog, along with additional business metadata (data owner, data
sensitivity, and so on).

• We haven't identified a specific data transformation engine at this point, but we did
capture a note indicating that the team does have previous experience with creating
Spark ETL jobs using PySpark. This means that AWS Glue may be a good solution
for data transformation, but we will do further validation of this at a later stage.

• As part of our pipeline, we will have a process to run data quality checks on the data
in the landing zone. If the quality checks pass, we will standardize the data (uniform
column names and data types) and convert the files into Apache Parquet format,
writing out the new files in the clean zone. Again, we will add the newly written-out
files to our data catalog, including relevant business metadata.

• Another piece of our pipeline will now perform additional transformations on the
data, as per the specific use case requirements. For example, data from a relational
database will be denormalized, and tables can be enriched with additional data. We
will write out the transformed data to the curated zone, partitioning the files by date
as they are written out. Again, we will add the newly written-out files to our data
catalog, including the relevant business metadata.

146 Architecting Data Engineering Pipelines

It's important to remember that the goal of this session is not to work out all the technical
details, but rather to create a high-level overview of the pipeline. In the preceding
diagram, we did not specify that AWS Glue will be the transformation engine. We know
that AWS Glue may be a good fit, but it's not important to make that decision now.

We have indicated a potential partitioning strategy based on date, but this is also
something that will need further validation. To determine the best partitioning strategy,
you need a good understanding of the queries that will be run against the dataset. In
this whiteboarding session, it is unlikely that there will be time to get into those details,
but after the initial discussion, this appeared to be a good way to partition data, so we
included it.

Having determined transformations for our data, we will move on to the last step of the
whiteboarding process, which is determining whether we are going to require any data
marts.

Loading data into data marts
Many tools can work directly with data in the data lake, as we covered in Chapter 3,
The AWS Data Engineer's Toolkit. These include tools for ad hoc SQL queries (Amazon
Athena), data processing tools (such as Amazon EMR and AWS Glue), and even
specialized machine learning tools (such as Amazon SageMaker).

These tools read data directly from Amazon S3, but there are times where a use case may
require much lower latency, higher performance reads of the data. Or, there may be times
where the use of highly structured schemas may best meet the analytic requirements of
the use case. In these cases, loading data from the data lake into a data mart makes sense.

In analytic environments, a data mart is most often a data warehouse system (such as
Amazon Redshift), but it could also be a relational database system (such as Amazon RDS
MySQL), depending on the use case's requirements. In either case, the system will have
local storage (often high-speed flash drives) and local compute power, offering the best
performance when needing to query across large datasets, and specifically where queries
require joining across many tables.

As part of the whiteboarding session, you should spend some time discussing whether
a data mart may be best suited for loading a subset of the data. For example, if you expect
a large number of users to use your BI tool (for data visualizations), you may spend some
time discussing which data will be used the most by these teams. You could then include
a note about loading a subset of the data into a data warehouse system and connecting the
data visualization tool to the data warehouse in your whiteboarding session.

Wrapping up the whiteboarding session 147

Wrapping up the whiteboarding session
After completing the whiteboarding session, you should have a high-level overview
architecture that illustrates the main components of the pipeline that you plan to build.
At this point, there will still be a lot of questions that have been left unanswered and there
will not be a lot of specific detail. However, the high-level architecture should be enough
to get broad agreement from stakeholders on the proposed plans for the project. It should
have also provided you with enough information that you can start on a detailed design
and set up follow-up sessions as required.

Some of the information that you should have after the session includes the following:

• A good understanding of who the data consumers for this project will be

• For each category of data consumer, a good idea of what type of tools they would
use to access the data (SQL, visualization tools, and so on)

• An understanding of the internal and external data sources that will be used

• For each data source, an understanding of the requirements for data ingestion
frequency (daily, hourly, or near-real-time streaming, for example)

• For each data source, a list of who owns the data, and who owns the source system
containing the data

• A high-level understanding of likely data transformations

• An understanding of whether loading a subset of data into a data warehouse or
other data marts may be required

After the session, you should create a final high-level architecture diagram and include
notes from the meeting. These notes should be distributed to all participants to request
their approval and agreement on moving forward with the project based on the draft
architecture.

Once an agreement has been reached on the high-level approach, additional sessions will
be needed with the different teams to capture additional details and fully examine the
requirements.

148 Architecting Data Engineering Pipelines

The final high-level architecture diagram, based on the scenario we have been looking at
in this chapter, may look as follows:

Figure 5.5 – High-level architecture whiteboard

In addition to our high-level architecture diagram on the whiteboard, we would have
also captured associated notes about the various architecture components during the
discussion. The notes that were captured for the scenario we discussed in this chapter may
look like this:

Figure 5.6 – Notes associated with our whiteboarding

Now that you understand the theory of how to conduct a whiteboarding session, it's time
to get some practical hands-on experience. This next section provides details about a
fictional whiteboarding session and allows you to practice your whiteboarding skills.

Hands-on – architecting a sample pipeline 149

Hands-on – architecting a sample pipeline
For the hands-on portion of this chapter, you will review the detailed notes from
a whiteboarding session held for the fictional company GP Widgets Inc. As you go
through the notes, you should create a whiteboard architecture, either on an actual
whiteboard or on a piece of poster board. Alternatively, you can create the whiteboard
using a free online design tool, such as the one available at http://diagrams.net.

As a starting point for your whiteboarding session, you can use the following template.
You can recreate this on your whiteboard or poster board, or you can access the
diagrams.net template for this via the GitHub site for of this book:

Figure 5.7 – Generic whiteboarding template

Note that the three zones included in the template (landing zone, clean zone, and curated
zone) are commonly used for data lakes. However, some data lakes may only have two
zones, while others may have four or more zones. The number of zones is not a hard rule
but rather based on the requirements of the use case you are designing for.

As you go through the meeting notes, fill out the relevant sections of the template. In
addition to drawing the components and flow for the pipeline, you should also capture
notes relating to the whiteboard components, as per the example in Figure 5.6 At the end
of this chapter, you can compare the whiteboard you have created with the one that the
data engineer lead for GP Widgets has created.

By completing this exercise, you will gain hands-on experience in whiteboarding a data
pipeline and learn how to identify keys points about data consumers, data sources, and
required transformations.

http://diagrams.net

150 Architecting Data Engineering Pipelines

Detailed notes from the project "Bright Light"
whiteboarding meeting of GP Widgets, Inc
Here is a list of attendees participating in the meeting:

Attendees
• Ronna Parish, VP of marketing

• Chris Taylor, VP of enterprise sales

• Terry Winship, data analytics team manager

• James Dadd, data science team manager

• Owen McClave, database team manager

• Natalie Rabinovich, web server team manager

• Shilpa Mehta, data engineer lead

Meeting notes
Shilpa (SM) started the meeting by asking everyone to introduce themselves and then
provided a summary of the meeting objectives:

• Plan out a high-level architecture for a new project to bring improved analytics to
the marketing teams. During the discussion, Shilpa will whiteboard a high-level
architecture.

• They reinforced that not all the technical details would be worked out in this
meeting, but looking for agreement from all the stakeholders with a high-level
approach and design is critical.

• Already agreed that the project will be built in the AWS cloud.

Shilpa asked Ronna (marketing manager) to provide an overview of the marketing team
requirements for project Bright Light:

• Project Bright Light is intended to improve the visibility that the marketing team has
into real-time customer behavior, as well as longer-term customer trends, through
the use of data analytics.

• The marketing team wants to give marketing specialists real-time insights into
interactions on the company's e-commerce website. Some examples of these
visualizations include a heatmap to show website activity in different geographic
locations; redemptions of coupons by product category; top ad campaign referrals,
and spend by ZIP code in the previous period versus the current period.

Hands-on – architecting a sample pipeline 151

• All visualizations should enable the user to select a custom period, be able to filter
on custom fields, and also be able to drill down from summary information into
detailed information. Data should be refreshed on at least an hourly basis, but more
often would be better.

The data analyst team supporting the marketing department will run more complex
investigations of current and historical trends:

• Identify the top 10% of customers over the past x days by spend and identify their
top product categories for use in marketing promotions.

• Determine the average time a customer spends on the website, and the number of
products they browse versus the number of products they purchase.

• Identify the top returned products over the past day/month/week.

• Compare the sales by ZIP code this month versus sales by ZIP code in the same
month 1 year ago, grouped by product category.

• For each customer, keep a running total of their number of widget purchases
(grouped by category), average spend per sale, average spend per month, the
number of coupons applied, and the total coupon value.

We have tasked our data science team with building a machine learning model that can
predict a widget's popularity based on the weather in a specific location:

• Research highlights how weather can impact e-commerce sales and the sales of
specific products; for example, the types of widgets that customers are likely to buy
on a sunny day compared to a cold and rainy day.

• The marketing team wants to target our advertising campaigns and optimize our
ad spend and real-time marketing campaigns based on the current and forecasted
weather at a certain ZIP code.

• We regularly add new widgets to our catalog, so the model must be updated at least
once a day based on the latest weather and sales information.

• In addition to helping with marketing, the manufacturing and logistics teams
have expressed interest in this model to help optimize logistics and inventory for
different warehouses around the country based on 7-day weather forecasts.

152 Architecting Data Engineering Pipelines

James Dadd (data science team manager) spoke about some of the requirements for
his team:

• They would need ad hoc SQL access to weather, website clickstream logs, and
sales data for at least the last year.

• They have determined that a provider on AWS Data Exchange offers historical and
forecast weather information for all US ZIP codes. There is a subscription charge
for this data and the marketing team is working on allocating a budget for this. Data
would be delivered daily via AWS Data Exchange in CSV format.

• James indicated he had not had a chance to speak with the database and website
admin teams about getting access to their data yet.

• The team currently uses SparkML for a lot of their machine learning projects, but
they are interested in cloud-based tools that may help them speed up delivery and
collaboration for their machine learning products. They also use SQL queries to
explore datasets.

Terry Winship (data analytics team manager) indicated that her team specializes in using
SQL to gain complex insights from data:

• Based on her initial analysis, her team would need access to the customer, product,
returns, and sales databases, as well as clickstream data from the web server logs.

• Her team has experience in working with on-premises data warehouses and
databases. She has been reading up about data lakes and so long as the team can use
SQL to query the data, they are open to using different technologies.

• She also has specialists on her team that can create the visualizations for the
marketing team to use. This team primarily has experience with using Tableau for
visualizations, but the marketing team does not have licenses for using Tableau.
There would be a learning curve if a different visualization tool is used but they are
open to exploring other options.

• Terry indicated that a daily update of data from the databases should be sufficient
for what they need, but that they would need near-real-time streaming for the
clickstream web server log files so that they could provide the most up-to-date
reports and visualizations.

Hands-on – architecting a sample pipeline 153

Shilpa asked Owen McClave (database team manager) to provide an overview of the
databases sources that the data science and data analytics teams would need:

• Owen indicated that all their databases run on-premises and run Microsoft SQL
Server 2016, Enterprise Edition.

• Owen said he doesn't know much about AWS and has some concerns about
providing administrative access for his databases to the cloud since he does not
believe the cloud is secure. However, he said that ultimately, it is up to the data
owners to approve whether the data can be copied to the cloud. If approved, he will
work with the cloud team to enable data syncing in the cloud, so long as there is no
negative impact on his databases.

• Chris Taylor (VP of sales) is the data owner for the databases that have been
discussed today (customer, product, returns, and sales data).

Shilpa asked Chris Taylor (VP of sales) to provide input on the use of sales data for the
project:

• Chris indicated that this analytics project has executive sponsorship from senior
management and visibility by the board of directors.

• He indicated that sales data can be stored in the cloud, so long as the security team
review and approve it.

Shilpa indicated that AWS has a tool called Database Migration Service that can be used
to replicate data from a relational database, such as SQL Server 2016, to Amazon S3 cloud
storage. She said she would set up a meeting with Owen to discuss the requirements for
this tool in more detail at a later point as there are also various other options.

Shilpa requested that Natalie Rabinovich (web server team manager) provide more
information on the web server log files that will be important for this project:

• Natalie indicated that they currently run the e-commerce website on-premises on
Linux servers running Apache HTTP Server.

• A load balancer is used to distribute traffic between four different web servers.
Each server stores its clickstream web server logs locally.

• The log files are plaintext files in Apache web log format.

• Shilpa indicated that AWS has an agent called the Kinesis Agent that could be
used to read the log files and stream their contents to the AWS cloud. She queried
whether it would be possible to install this agent on the Apache web servers.

154 Architecting Data Engineering Pipelines

• Natalie indicated that it should be fine, but they would need more details and would
need to test it in a development environment before installing it on the production
servers.

• Shilpa asked who the data owner was. Natalie indicated that the marketing team
owns the web server clickstream logs from a business perspective.

Shilpa led a discussion on the potential data transformations that may be required on the
data that is ingested for this project:

• Based on the description from James, it appears that data should be made available
daily in CSV format and can be loaded directly into the raw zone of the data lake.

• Using a tool such as Amazon DMS, we can load data from the databases into the
raw zone of the data lake in Parquet format.

• The Kinesis Agent can convert the Apache HTTP Server log files into JSON format,
and stream these to Kinesis Firehose. Firehose can then perform basic validation of
the log (using Lambda), convert the log into Parquet format, and write directly to
the clean zone.

• Shilpa indicated that an initial transformation could perform basic data quality
checks on incoming database data, add contextual information as new columns
(such as ingestion time), and then write the file to the clean zone of the data lake.

• Shilpa explained that partitioning datasets helps optimize both the performance
and cost of queries. She indicated that partitions should be based on how the data is
queried and led a discussion on the topic. After some discussion, it was agreed that
partitioning the database and weather by day (yyyyy/mm/dd) and web server logs
by hour (yyyy/mm/dd/hh) may be a good partitioning strategy, but this would be
investigated further and confirmed in future discussions.

• A second transformation could then be run against the data in the clean zone,
performing tasks such as denormalizing the relational datasets, joining tables
into optimized tables, enriching data with weather data, or performing any other
required business logic. This optimized data would be written to the curated zone
of the data lake. AWS Glue or Amazon EMR could potentially be used to perform
these transformations.

• As each dataset is loaded, and then the transformed data is written out to the next
zone, the data will be added to the data catalog. Once data has been added to the
data catalog, authorized users will be able to query the data using SQL queries,
enabled by a tool such as Amazon Athena. Additional metadata could be added at
this point, including items such as data owner, source system, data sensitivity level,
and so on.

Hands-on – architecting a sample pipeline 155

• Shilpa indicated that she will arrange future meetings with the various teams to
discuss the business metadata that must be added.

• Shilpa wrapped up the meeting with a brief overview of the whiteboard and
committed to providing a copy of the whiteboard architecture and notes to all
attendees for further review and comment. She also indicated that she would
schedule additional meetings with smaller groups of people to dive deep into
specific aspects of the proposed architecture to do additional validation.

Shilpa used a whiteboard in the meeting room to sketch out a rough architecture, and
then after the meeting, she created the following diagram to show the architecture:

Figure 5.8 – Completed whiteboard architecture for project Bright Light

Shilpa also added some notes to go with the whiteboard and sent out both the whiteboard
architecture and the notes to the meeting attendees:

Figure 5.9 – Completed whiteboard notes for project Bright Light

156 Architecting Data Engineering Pipelines

Compare the whiteboard you created to the whiteboard created by Shilpa, and note the
differences. Are there things that Shilpa missed on her whiteboard or notes? Are there
things that you missed on your whiteboard or notes?

The exercises in this chapter allowed you to get hands-on with data architecting and
whiteboarding. We will wrap up this chapter by providing a summary, and then do a
deeper dive into the topics of data ingestion, transformation, and data consumption in the
next few chapters.

Summary
In this chapter, we reviewed an approach to developing data engineering pipelines by
identifying a limited-scope project, and then whiteboarding a high-level architecture
diagram. We looked at how we could have a workshop, in conjunction with relevant
stakeholders in the organization, to discuss requirements and plan the initial architecture.

We approached this task by working backward. We started by identifying who the data
consumers of the project would be and learning about their requirements. Then, we
looked at which data sources could be used to provide the required data and how those
data sources could be ingested. We then reviewed, at a high level, some of the data
transformations that would be required for the project to optimize the data for analytics.

In the next chapter, we will take a deeper dive into the AWS services for ingesting batch
and streaming data as part of our data engineering pipeline.

6
Ingesting Batch and

Streaming Data
Having developed a high-level architecture of our data pipeline, we can now dive deep
into the varied components of the architecture. We will start with data ingestion so that in
the hands-on section of this chapter, we can ingest data that we can use for the hands-on
activities in future chapters.

Data engineers are often faced with the challenge of the five Vs of data. These are the
variety of data (the diverse types and formats of data); the volume of data (the size of
the dataset); the velocity of the data (how quickly the data is generated and needs to be
ingested); the veracity or validity of the data (the quality, completeness, and credibility of
data); and finally, the value of data (the value that the data can provide the business with).

In this chapter, we will look at several different types of data sources and examine the
various tools available within AWS for ingesting data from these sources. We will also
look at how to decide between multiple different ingestion tools to ensure you are using
the right tool for the job. In the hands-on portion of this chapter, we will ingest data from
both streaming and batch sources.

In this chapter, we will cover the following topics:

• Understanding varied data sources

• Ingesting data from database sources

158 Ingesting Batch and Streaming Data

• Ingesting data from streaming sources

• Hands-on – ingesting data from a database source

• Hands-on – ingesting data from a streaming source

Technical requirements
In the hands-on sections of this chapter, we will use the Amazon DMS service to ingest
data from a database source, and then we will ingest streaming data using Amazon
Kinesis. To ingest data from a database, you need IAM permissions that allow your user to
create an RDS database, an EC2 instance, a DMS instance, and a new IAM role and policy.

For the hands-on section on ingesting streaming data, you will need IAM permissions
to create a Kinesis Data Firehose instance, as well as permissions to deploy a
CloudFormation template. The CloudFormation template that is deployed will create IAM
roles, a Lambda function, as well as Amazon Cognito users and other Cognito resources.

To query the newly ingested data, you will need permissions to create an AWS Glue
Crawler and permissions to use Amazon Athena to query data.

You can find the code files of this chapter in the GitHub repository using the following
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter06

Understanding data sources
Over the past decade, the amount and the variety of data that gets generated each year
has significantly increased. Today, industry analysts talk about the volume of global data
generated in a year in terms of zettabytes (ZB), a unit of measurement equal to a billion
terabytes (TB). By some estimates, a little over 1 ZB of data existed in the world in 2012, and
yet by the end of 2020, there would have been an estimated 59 ZB of data consumed globally.

In our pipeline whiteboarding session (covered in Chapter 5, Architecting Data
Engineering Pipelines) we identified several data sources that we wanted to ingest and
transform to best enable our data consumers. For each of these data sources that is
identified in a whiteboarding session, you need to develop an understanding of the
variety, volume, velocity, veracity, and value of data.

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter06
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter06

Understanding data sources 159

Data variety
In the past decade, the variety of data that has been used in data analytics projects has
greatly increased. If all data was simply relational data in a database (and there was a time
when nearly all data was like this), it would be relatively easy to transfer into data analytic
solutions. But today, organizations find value, and often competitive advantage, by being
able to analyze many other types of data (web server log files, photos, videos, and other
media, geolocation data, sensor, and other IoT data, and so on).

For each data source in a pipeline, the data engineer needs to determine what type of data
will be ingested. Data is typically categorized as being of one of three types, as we examine
in the following subsections.

Structured data
Structured data is data that has been organized according to a data model, and is
represented as a series of rows and columns. Each row represents a record, with the
columns making up the fields of each record.

Each column in a structured data file contains data of a specific type (such as strings or
numbers), and every row has the same number and type of columns. The definition of
which columns are contained in each record, and the data type for each column, is known
as the data schema.

Common data sources that contain structured data include the following:

• Relational Database Management Systems (RDBMSes) such as MySQL,
PostgreSQL, SQL Server, and Oracle

• Delimited files such as Comma Separated Values (CSV) files or Tab Separated
Values (TSV) files

• Spreadsheets such as Microsoft Excel files in xls format

• Data from online forms

160 Ingesting Batch and Streaming Data

The data shown in the following table is an example of structured data. In this case, it is
data on the calorie content of several foods from the USA MyPyramid Food Raw Data,
available at https://catalog.data.gov/dataset/mypyramid-food-raw-
data. This data extract has been sorted to show some of the highest calorie content foods
in the dataset:

Figure 6.1 – An example of structured data

Structured data can be easily ingested into analytic systems, including Amazon S3-based
data lakes, and data marts such as an Amazon Redshift data warehouse.

Semi-structured data
Semi-structured data shares many of the same attributes as structured data, but the
structure, or schema, does not need to be strictly defined. Generally, semi-structured data
contains internal tags that identify data elements, but each record may contain different
elements or fields.

Some of the data types in the unstructured data may be of a strong type, such as an
integer value, while other elements may contain items such as free-form text. Common
semi-structured formats include JSON and XML file formats.

The data that follows is part of a semi-structured JSON formatted file for product
inventory. In this example, we can see that we have two items – a set of batteries and
a pair of jeans:

[{

 "sku": 10001,

 "name": "Duracell – Copper Top AA Alkaline Batteries
- long lasting, all-purpose 16 Count",

 "price": 12.78,

https://catalog.data.gov/dataset/mypyramid-food-raw-data
https://catalog.data.gov/dataset/mypyramid-food-raw-data

Understanding data sources 161

 "category": [{

 "id": "5443",

 "name": "Home Goods"

 }

],

 "manufacturer": "Duracell",

 "model": "MN2400B4Z"

 },

 {

 "sku": 10002,

 "name": "Levi's Men's 505 Jeans Fit Pants",

 "type": "Clothing",

 "price": 39.99,

 "fit_type": [{

 "id": 855,

 "description": "Regular"

 },

 {

 "id": 902,

 "description": "Big and Tall"

 }

],

 "size": [{

 "id": 101,

 "waist": 32,

 "length": 32

 },

 {

 "id": 102,

 "waist": 30,

 "length": 32

 }

],

 "category": [{

 "id": 3821,

 "name": "Jeans"

 }, {

162 Ingesting Batch and Streaming Data

 "id": 6298,

 "name": "Men's Fashion"

 }],

 "manufacturer": "Levi",

 "model": "00505-4891"

 }

]

While most of the fields are common between the two items, we can see that the pair of
jeans includes attributes for fit_type and size, which are not relevant to batteries. You
will also notice that the first item (the batteries) only belongs to a single category, while
the jeans are listed in two categories.

Capturing the same information in a structured data type, such as CSV, would be much
more complex. CSV is not well suited to a scenario where different records have a different
number of categories, for example, or for where some records have additional attributes
(such as fit_type or size). JSON is structured in a hierarchical format (where
data can be nested, such as for category, fit_type, and size) and this provides
significant flexibility.

Storing data in a semi-structured format, such as JSON, is commonly used for
a variety of different use cases, such as working with IoT data, as well as for web
and mobile applications.

Unstructured data
As a category, unstructured data covers many different types of data where the data does
not have a predefined structure or schema. This can range from free-form data (such as
text data in a PDF or word processing file or emails) to media files (such as photos, videos,
satellite images, or audio files).

Some unstructured data can be analyzed directly, although generally not very efficiently,
unless using specialized tools. For example, it is generally not efficient to search against
large quantities of free-form text in a traditional database, although there are specialized
tools that can be used for this purpose (such as Amazon ElasticSearch).

However, some types of unstructured data cannot be directly analyzed with data analytic
tools at all. For example, data analytic tools are unable to directly analyze image or video
files. This does not mean that we cannot use these types of files in our analytic projects,
but to make them useful for analytics, we need to process them further.

Understanding data sources 163

A large percentage of the data that's generated today is considered unstructured data, and
in the past few years, a lot of effort has been put into being able to make better use of this
type of data. For example, we can use image recognition tools to extract metadata from an
image or video file that can then be used in analytics. Or, we could use natural language
processing tools to analyze free-form text reviews on a website to determine customer
sentiment for different products.

Refer to Chapter 13 Enabling Artificial Intelligence and Machine Learning, for an example
of how Amazon Comprehend can be used to extract sentiment analysis from product
reviews.

Data volume
The next attribute of data that we need to understand for each of our data sources relates
to the volume of data. For this, we need to understand both the total size of the existing
data that needs to be ingested, as well as the daily/monthly/yearly growth of data.

For example, we may want to ingest data from a database that includes a one-time ingest
of 10 years of historical data totaling 2.2 TB in size. We may also find that data from this
source generates around 30 GB of new data per month (or an average of 1 GB per day
of new data). Depending on the network connection between the source system and the
AWS target system, it may be possible to transfer the historical data over the network,
but if we have limited bandwidth, we may want to consider using one of the devices in
the Amazon Snow family of devices. For example, we could load data onto an Amazon
Snowball device that is shipped to our data center and then send the device back to AWS,
where AWS will load the data into S3 for us.

Understanding the volume of historical and future data also assists us in doing the initial
sizing of AWS services for our use case, and helps us budget better for the associated costs.

Data velocity
Data velocity describes the speed at which we expect to ingest and process new data from
the source system into our target system.

For ingestion, some data may be loaded on a batch schedule once a day, or a few times a
day (such as receiving data from a partner on a scheduled basis). Meanwhile, other data
may be streamed from the source to the target continually (such as when ingesting IoT
data from thousands of sensors).

164 Ingesting Batch and Streaming Data

As an example, according to a case study on the AWS website, the BMW group uses AWS
services to ingest data from millions of BMW and MINI vehicles, processing terabytes of
anonymous telemetry data every day. To read more about this, refer to the AWS case study
titled BMW Group Uses AWS-Based Data Lake to Unlock the Power of Data (https://
aws.amazon.com/solutions/case-studies/bmw-group-case-study/).

We need to have a good understanding of both how quickly our source data is generated
(on a schedule or via real-time streaming data), as well as how quickly we need to process
the incoming data (does the business only need insights from the data 24 hours after it is
ingested, or is the business looking to gather insights in near-real-time?).

The velocity of data affects both how we ingest the data (such as through a streaming
service such as Amazon Kinesis), as well how we process the data (such as whether we run
scheduled daily Glue jobs, or use Glue streaming to continually process incoming data).

Data veracity
Data veracity considers various aspects of the data we're ingesting, such as the quality,
completeness, and accuracy of the data.

As we discussed previously, data we ingest may have come from a variety of sources, and
depending on how the data is generated, the data may be incomplete or inconsistent. For
example, data from IoT sensors where the sensor went offline for a while may be missing
a period of data. Or, data captured from user forms or spreadsheets may contain errors or
missing values.

We need to be aware of the veracity of the data we ingest so that we can ensure we take
these items into account when processing the data. For example, some tools can help
backfill missing data with averages, as well as tools that can help detect and remediate
fields that contain invalid data.

Data value
Ultimately, all the data that's ingested and processed is done for a single purpose – finding
ways to provide new insights and value to the business. While this is the last of the five
V's that we will discuss, it is the most important one to keep in mind when thinking of
the bigger picture of what we are doing with data ingestion and processing.

We could ingest terabytes of data and clean and process the data in multiple ways, but if
the end data product does not bring value to the business, then we have wasted both time
and money.

https://aws.amazon.com/solutions/case-studies/bmw-group-case-study/
https://aws.amazon.com/solutions/case-studies/bmw-group-case-study/

Ingesting data from a relational database 165

When considering the data we are ingesting, we need to ensure we keep the big picture
in mind. We need to make sure that it is worth ingesting this data, and also understand
how this data may add value to the business, either now or in the future.

Questions to ask
In Chapter 5, Architecting Data Engineering Pipelines, we held a workshop during which
we identified some likely data sources needed for our data analytics project, but now, we
need to dive deeper to gather additional information.

We need to identify who owns each data source that we plan to ingest, and then do a deep
dive with the data source owner and ask questions such as the following:

• What is the format of the data (relational database, NoSQL database, semi-structured
data such as JSON or XML, unstructured data, and so on)?

• How much historical data is available?

• What is the total size of the historical data?

• How much new data is generated on a daily/weekly/monthly basis?

• Does the data currently get streamed somewhere, and if so, can we tap into the
stream of data?

• How frequently is the data updated (constantly, such as with a database or
streaming source, or on a scheduled basis such as at the end of the day or
when receiving a daily update from a partner)?

• How will this data source be used to add value to the business, either now or in
the future?

Learning more about the data will help you determine the best service to use to ingest the
data, and help with initial sizing of services, and estimating a budget.

Ingesting data from a relational database
A common source of data for analytical projects is data that comes from a relational
database system such as MySQL, PostgreSQL, SQL Server, or an Oracle database.
Organizations often have multiple siloed databases, and they want to bring the data
from these varied databases into a central location for analytics.

166 Ingesting Batch and Streaming Data

It is common for these projects to include ingesting historical data that already exists in
the database, as well as for syncing ongoing new and changed data from the database.
There are a variety of tools that can be used to ingest from database sources, as we will
discuss in this section.

AWS Database Migration Service (DMS)
The primary AWS service for ingesting data from a database is AWS Database Migration
Service (DMS), though there are other ways to ingest data from a database source. As a
data engineer, you need to evaluate both the source and the target to determine which
ingestion tool will be best suited.

AWS DMS is primarily intended for doing either a one-off ingestion of historical data
from a database, or for replicating data from a relational database on an ongoing basis.
When using AWS DMS, the target is either a different database engine or an Amazon
S3-based data lake. In this section, we will focus on ingesting data from a relational
database to an Amazon S3-based data lake.

We introduced the AWS DMS service in Chapter 3, The AWS Data Engineer's Toolkit, so
make sure you have read the Overview of Amazon Database Migration Service (DMS)
section in that chapter to get a good understanding of how the service works.

Note that AWS DMS is a managed service, but it is not a serverless service. DMS
provisions one or more EC2 servers as replication instances. These replication instances
connect to the source database, read data from the source, prepare the data for loading
into the target, and then connect to the target and write the data.

AWS Glue
AWS Glue, a Spark processing engine that we introduced in Chapter 3, The AWS
Data Engineer's Toolkit, can make connections to several data sources. This includes
connections to JDBC sources, enabling Glue to connect to many different database
engines, and through those connections transfer data for further processing.

AWS Glue is well suited to certain use cases related to ingesting data from databases.
Let's take a look at some of them.

Full one-off loads from one or more tables
AWS Glue can be configured to make a JDBC connection to a database and download
data from tables. Glue effectively does a select (*) from the table, reading the table
contents into the memory of the Spark server. At that point, you can use Spark to write
out the data to Amazon S3, optionally in an optimized format such as Apache Parquet.

Ingesting data from a relational database 167

Initial full loads from a table, and subsequent loads of new records
AWS Glue has a concept called bookmarks, which enables Glue to keep track of which
data was previously processed, and then on subsequent runs only process new data. Glue
does this by having you identify a column (or multiple columns) in the table that will
serve as a bookmark key. The values in this bookmark key must always increase in value,
although gaps are allowed.

For example, if you have an audit table that has a transaction ID column that sequentially
increases for each new transaction, then this would be a good fit for ingesting data with
AWS Glue while using the bookmark functionality.

The first time the job runs, it will load all records from the table and store the highest value
for the transaction ID column in the bookmark. For illustration purposes, let's assume the
highest value on the initial load was 944,872. The next time the job runs, it effectively does
a select * from audit_table where transaction_id > 944872.

Note that this process is unable to detect updated or deleted rows in the table, so it is not
well suited to all use cases. An audit table, or similar types of tables where data is always
added to the table but existing rows are never updated or deleted, is the optimal use case
for this functionality.

Creating AWS Glue jobs with AWS Lake Formation
AWS Lake Formation includes several blueprints to assist in automating some common
ingestion tasks. One of these ingestion blueprints allows you to use AWS Glue to ingest
data from a database source. With a few clicks in the Lake Formation console, you
can configure your ingest requirements (one-off versus scheduled, full table load or
incremental load with bookmarks, and so on). Once configured, Lake Formation creates
the Glue Job for ingesting from the database source, the Glue Crawlers for adding newly
ingested data into the Glue data catalog, and Glue Workflow for orchestrating the different
components.

Other ways to ingest data from a database
There are several other approaches for ingesting data from a database to an Amazon
S3-based data lake that we will cover briefly in this section.

168 Ingesting Batch and Streaming Data

Amazon EMR provides a simple way to deploy several common Hadoop framework tools,
and some of these tools are useful for ingesting data from a database. For example, you
can run Apache Spark on Amazon EMR and use a JDBC driver to connect to a relational
database to load data into the data lake (in a similar way to our discussion around using
AWS Glue to connect to a database). Alternatively, in Amazon EMR, you can deploy
Apache Sqoop, a popular tool for transferring data between relational database systems
and Hadoop.

If you are running MariaDB, MySQL, or PostgreSQL on Amazon Relational Database
Service (RDS), you can use RDS functionality to export a database snapshot to Amazon
S3. This is a fully managed process that writes out all tables from the snapshot to Amazon
S3 in Apache Parquet format. This is the simplest way to move data into Amazon S3 if you
are using one of the supported database engines on RDS.

There are also several third-party commercial tools, many containing advanced features,
that can be used to move data from a relational database to Amazon S3 (although these
often come at a premium price). This includes tools such as Qlik Replicate (previously
known as Attunity), a well-known tool for moving data between a wide variety of sources
and targets (including relational databases, data warehouses, streaming sources, enterprise
applications, cloud providers, and legacy platforms such as DB2, RMS, and so on).

You may also find that your database engine contains tools for directly exporting data in
a flat format that can then be transferred to Amazon S3. Some database engines also have
more advanced tools, such as Oracle GoldenGate, a solution that can generate Change
Data Capture (CDC) data as a Kafka stream. Note, however, that these tools are often
licensed separately and can add significant additional expense. For an example of using
Oracle GoldenGate to generate CDC data that has been loaded into an S3 data lake, search
for the AWS blog post titled Extract Oracle OLTP data in real time with GoldenGate and
query from Amazon Athena: https://aws.amazon.com/blogs/big-data/
extract-oracle-oltp-data-in-real-time-with-goldengate-and-
query-from-amazon-athena/.

Reminder About CDC
We introduced the concept of CDC in Chapter 3, The AWS Data Engineer's
Toolkit, but it is an important concept, so here is a reminder. When rows in a
relational database are deleted or updated, there is no practical way to capture
those changes using standard database query tools (such as SQL). But when
replicating data from a database to a new source, it is important to be able to
identify those changes so that they can be applied to the target. This process of
identifying and capturing these changes (new inserts, updates, and deletes) is
referred to as CDC.

https://aws.amazon.com/blogs/big-data/extract-oracle-oltp-data-in-real-time-with-goldengate-and-query-from-amazon-athena/
https://aws.amazon.com/blogs/big-data/extract-oracle-oltp-data-in-real-time-with-goldengate-and-query-from-amazon-athena/
https://aws.amazon.com/blogs/big-data/extract-oracle-oltp-data-in-real-time-with-goldengate-and-query-from-amazon-athena/

Ingesting data from a relational database 169

Deciding on the best approach for ingesting from
a database
While all these tools can be used in one way or another to ingest data from a database,
there are several points to consider when deciding on the best approach for your specific
use case.

Size of the database
If the total size of the database tables you want to load is large (many tens of GBs or
larger), then doing a full nightly load would not be a good approach. The full load could
take a significant amount of time to run and puts a heavy load on the source system while
running. In this scenario, a better approach is to do an initial load from the database and
then constantly sync updates from the source using CDC.

For very large databases, you can use AWS DMS with an Amazon Snowball device to load
data to the Snowball device in your data center. Once the data has been loaded, you return
the device to AWS, and they will load it to Amazon S3. AWS DMS will capture all CDC
changes while the Snowball device is being transferred back to AWS so that once the data
is loaded, you can create an ETL job to apply changes to the full data load.

For smaller databases where you do not need to capture changes in near-real-time, you
can consider using AWS Glue (or native database tools) to load the entire database to
Amazon S3 on a scheduled basis. This will often be the simplest and most cost-effective
method, but it is not right for every use case.

Database load
If you have a database with a consistent production load at all times, you will want
to minimize the additional load you place on the server to sync to the data lake. In
this scenario, you can use DMS to do an initial full load, ideally from a read replica
of your database if it's supported as a source by DMS. For ongoing replication, DMS
can use database log files to identify CDC changes, and this places a lower load on
database resources.

Whenever you do a full load from a database (whether you're using AWS DMS, AWS
Glue, or another solution), there will be a heavier load on the database as a full read of all
tables is required. You need to consider this load and, where possible, use a replica of your
database for the full load.

If a smaller database is running on Amazon RDS, the best solution would be to use the
export to S3 from snapshot functionality of RDS, if it's supported for your database
engine. This solution places no load on your source database.

170 Ingesting Batch and Streaming Data

Data ingestion frequency
Some analytic use cases are well suited to analyzing data that is ingested on a fixed
schedule (such as every night). However, some use cases will want to have access
to new data as fast as possible.

If your use case requires access to data coming from a database source as soon as possible,
then using a service such as AWS DMS to ingest CDC data is the best approach. However,
remember that CDC data just indicates what data has changed (new rows inserted,
existing rows updated or deleted), so you still require a process to apply that to the
existing data to enable querying for the most up-to-date state.

If your use case allows for regularly scheduled updates, such as nightly, you can do a
scheduled full load (if the database's size and performance impacts allow), or you can have
a nightly process to apply the CDC data that was collected during the day to the previous
snapshot of data.

In Chapter 7, Transforming Data to Optimize for Analytics, we will review several
approaches for applying CDC data to an existing dataset.

Technical requirements and compatibility
When evaluating different approaches and tools for ingesting data from a database source,
it is very important to involve the database owner and admin team upfront to technically
evaluate the proposed solution.

A data engineering team may decide on a specific toolset upfront, based on their
requirements and their broad understanding of compatibility with the source systems.
However, at the time of implementation, they may discover that the source database team
objects to certain security or technical requirements of the solution, and this can lead to
significant project delays.

For example, AWS DMS supports CDC for several MySQL versions. However, DMS does
require that binary logging is enabled on the source system with specific configuration
settings for CDC to work.

Another example is that AWS DMS does not support server-level audits when SQL Server
2008/2008 R2 is used as a source. Certain commands related to enabling this functionality
will cause DMS to fail.

It is critical to get the buy-in of the database owner and admin team before finalizing
a solution. All of these requirements and limitations are covered in the AWS DMS
documentation (and other solutions or products should have similar documentation
covering their requirements). Reviewing these requirements, in detail, with the admin
team up front is critical to the success of the project.

Ingesting streaming data 171

In the next section, we will take a similar look at tools and approaches for ingesting data
from streaming sources.

Ingesting streaming data
An increasingly common source of data for analytic projects is data that is continually
generated and needs to be ingested in near-real-time. Some common sources of this type
of data are as follows:

• Data from IoT devices (such as smartwatches, smart appliances, and so on)

• Telemetry data from various types of vehicles (cars, airplanes, and so on)

• Sensor data (from manufacturing machines, weather stations, and so on)

• Live gameplay data from mobile games

• Mentions of the company brand on various social media platforms

For example, Boeing, the aircraft manufacturer, has a system called Airplane Health
Management (AHM) that collects in-flight airplane data and relays it in real time to
Boeing systems. Boeing processes the information and makes it immediately available
to airline maintenance staff via a web portal.

In this section, we will look at several tools and services for ingesting streaming data,
as well as things to consider when planning for streaming ingestion.

Amazon Kinesis versus Amazon Managed Streaming
for Kafka (MSK)
The two primary services for ingesting streaming data within AWS are Amazon Kinesis
and Amazon MSK. Both of these services were described in Chapter 3, The AWS
Engineer's Toolkit, so ensure you have read those sections before proceeding.

In summary, both Amazon Kinesis and Amazon MSK are services from AWS that offer
pub-sub message processing. That is, producers create messages that are written to the
streaming service (Kinesis or MSK), and consumers subscribe to receive messages from
the service. This is commonly used as a way to decouple applications producing streaming
data from applications that are consuming data. Both services can scale up to handle
millions of messages per second.

In this section, we will examine some of the primary differences between the two services
and look at some of the factors that contribute to deciding which service is right for your
use case.

172 Ingesting Batch and Streaming Data

Serverless services versus managed services
Amazon Kinesis is a serverless service, meaning that you never need to make decisions
about, manage, or know anything about the underlying servers that run the service. With
Kinesis Data Streams, for example, you configure the number of shards for your stream,
and AWS automatically configures the required compute infrastructure (a shard in Kinesis
is the base throughput unit of a Kinesis data stream). With Amazon Kinesis Data Firehose,
you don't even need to specify the number of shards to be provisioned, as Kinesis Data
Firehose automatically scales up and down in response to message throughput changes
without requiring any configuration.

Amazon MSK is a managed service, meaning AWS manages the infrastructure for you,
but you still need to be aware of and make decisions about the underlying compute
infrastructure and software. For example, you need to select from a list of instance types
to power your MSK cluster, configure VPC network settings, and also fine-tune a range
of Kafka configuration settings. You also need to select the version of Kafka that you want
to use with the service.

As a serverless service, Kinesis is much quicker and easier to set up and configure than
Amazon MSK. However, Amazon MSK provides a lot more options for configuring and
fine-tuning the underlying software.

If you have a team with existing skills in using Apache Kafka, and you need to
fine-tune the performance of the stream, then you may want to consider MSK. If you're
just getting started with streaming and your use case does not have a requirement to
fine-tune performance, then Amazon Kinesis may be a better option.

Open source flexibility versus proprietary software with strong
AWS integration
Amazon MSK is a managed version of Apache Kafka, a popular open source solution.
Amazon Kinesis is proprietary software created by AWS, although there are some
limited open source elements, such as the Kinesis Agent.

Ingesting streaming data 173

With Apache Kafka, there is a large community of contributors to the software, and a
large ecosystem providing a diverse range of connectors and integrations. Kafka provides
out-of-the-box integration with hundreds of event sources and event sinks (including
AWS services such as Amazon S3, but also many other popular products, such as
PostgreSQL, Elasticsearch, and others).

With Amazon Kinesis, AWS provides strong integration with several AWS services,
such as Amazon S3, Amazon Redshift, and Amazon Elasticsearch. Kinesis also provides
integration with a limited set of external services such as Splunk and DataDog through
Amazon Kinesis Data Firehose.

When deciding between the two services, ensure that you consider the types of
integrations your use case requires and how that matches with the out-of-the-box
functionality of either Kinesis or MSK.

At-least-once messaging versus exactly once messaging
When working with streaming technologies, some use cases have specific requirements
around how many times messages may be processed by data consumers. Amazon Kinesis
and Apache Kafka (and therefore Amazon MSK) provide different guarantees around
message processing.

Amazon Kinesis provides an at least once message processing guarantee. This effectively
guarantees that every message generated by a producer will be delivered to a consumer for
processing. However, in certain scenarios, a message may be delivered more than once
to a consuming application, introducing the possibility of data duplication.

With Apache Kafka (and therefore Amazon MSK), as of version 0.11, the ability to
configure your streams for exactly once message processing was introduced. When
you configure your Apache Kafka stream, you can configure the: processing.
guarantee=exactly_once setting to enable this.

With Amazon Kinesis, you need to build the logic for anticipating and appropriately
handling how individual records are processed multiple times in your application. AWS
provides guidance on this in the Kinesis documentation, in the Handling Duplicate
Records section.

174 Ingesting Batch and Streaming Data

If your use case calls for a guarantee that all messages will be delivered to the processing
application exactly once, then you should consider Amazon MSK. Amazon Kinesis is still
an option, but you will need to ensure your application handles the possibility of receiving
duplicate records.

Single processing engine versus niche tools
Apache Kafka is most closely compared to Amazon Kinesis Data Streams as both provide
a powerful way to consume streaming messages. While both can be used to process
a variety of data types, Amazon Kinesis does include several distinct sub-services for
specialized use cases.

For example, if your use case involves ingesting streaming audio or video data, then
Amazon Kinesis Video Streams is custom-designed to simplify this type of processing.
Or, if you have a simple use case of wanting to write out ingested streaming data to targets
such as Amazon S3, Amazon Elasticsearch, or Amazon Redshift (as well as some third-
party services), then Amazon Kinesis Data Firehose makes this task simple.

Deciding on a streaming ingestion tool
There are several factors to consider when deciding on which AWS service to use for
processing your streaming data, as we covered in this section. Amazon Kinesis requires
less upfront configuration and has fewer ongoing maintenance tasks, and it also has a
subset of services for special use cases. Because of this, you should evaluate your use case
against the various Kinesis services and see if one of these will meet your current and
expected future requirements. If your use case has specific requirements, such as exactly
once message delivery, the ability to fine-tune the performance of the stream, or needs
integration with third-party products not directly available in Kinesis, then consider
Amazon MSK.

In the next few sections, you will get hands-on with ingesting data from a database using
AWS DMS and then ingesting streaming data using Amazon Kinesis.

Hands-on – ingesting data with AWS DMS
As we discussed earlier in this chapter, AWS DMS can be used to replicate a database into
an Amazon S3-based data lake (among other uses). Follow the steps in this section to do
the following:

• Create a new MySQL database instance in your account.

• Load a MySQL demo database using an EC2 instance.

Hands-on – ingesting data with AWS DMS 175

• Set up a DMS replication instance and configure endpoints and tasks.

• Run the DMS full-load.

• Run a Glue Crawler to add the tables that were newly loaded into S3 into the
data catalog.

• Query the data with Amazon Athena.

Note
The following steps assume the use of your AWS account's default VPC and
security group. You will need to modify the steps as needed if you're not using
the default.

Creating a new MySQL database instance
First, we will create a new MySQL database using the default easy create settings for a free
tier eligible database instance:

1. Log into the AWS Management Console (https://console.aws.amazon.
com).

2. In the top search bar, search for and select RDS to access the RDS console.
3. In the left-hand menu, click on databases.
4. Click Create database.
5. For the database creation method, select Easy Create.
6. For Engine type, select MySQL.
7. For DB instance size, select Free tier (db.t2.micro).
8. For DB instance identifier, provide a name, such as dataeng-mysql-1.
9. For Master password, provide a password and ensure you can recall the password

you set here as this will be needed later.

https://console.aws.amazon.com
https://console.aws.amazon.com

176 Ingesting Batch and Streaming Data

10. Click Create database:

Figure 6.2 – A portion of the Create database screen

11. Click on the name of the database you just created and take note of the Endpoint
property (which is the database instance's hostname) under Connectivity & Security.

12. Note that it may take a few minutes for the database to be created before the endpoint
URL is displayed

In this section, we created a new MySQL database instance. In the next section, we will
create an EC2 instance to load some demo data into the database.

Hands-on – ingesting data with AWS DMS 177

Loading the demo data using an Amazon EC2 instance
We want to create a demo database in MySQL that we will then load into Amazon S3
using AWS DMS. To load demo data into the database, we're going to use an Amazon
EC2 instance:

1. In the AWS Management Console, search for and select EC2 using the top
search bar.

2. In the left-hand menu, click on Instances.
3. At the top right, click on Launch instances.
4. Select Amazon Linux 2 AMI (HVM), SSD Volume Type.
5. For Instance type, select t2.micro and then select Next: Configure Instance Details.
6. For Configure instance details, make sure that Auto-assign Public IP is set

to Enable.
7. At the bottom of the page is a section for User data. Paste the following bash script

into this section; the script will be run when the instance starts for the first time.

Make sure you replace <PASSWORD> with the password you set in Step 9 of the
Creating a new MySQL database instance section and replace <HOST> with the
name of your MySQL database instance endpoint you took note of in Step 11 of
the Creating a new MySQL database instance section:

#!/bin/bash

yum install -y mariadb

curl https://downloads.mysql.com/docs/sakila-db.zip -o
sakila.zip

unzip sakila.zip

cd sakila-db

mysql --host=<HOST> --user=admin --password=<PASSWORD> -f
< sakila-schema.sql

mysql --host=<HOST> --user=admin --password=<PASSWORD> -f
< sakila-data.sql

The bash script does the following:
 � Installs MariaDB (which includes a MySQL client to enable us to connect

to our MySQL server).
 � Downloads the Sakila demo database from the MySQL website, and then unzips

the file and changes to the sakila-db directory.

178 Ingesting Batch and Streaming Data

 � Connects to MySQL and runs the SQL content in the sakila-schema.sql file,
which creates the Sakila schema (database and tables, views, and so on).

 � Connects to MySQL again and runs the SQL content in the sakila-data.sql
file, which inserts the demo data into the tables in the Sakila database.

8. Click Next: Add storage and leave all the default settings as-is.
9. Click Next: Add Tags. Click Add Tag and set Key to Name and Value to

dataeng-book-ec2.
10. Click Next: Configure Security Group and for Assign a security group, choose to

Select an existing security group.
11. Select the security group named default.
12. Click Review and Launch.
13. Click Launch.
14. In the pop-up window, select Create a new key pair and provide a name for your new

key pair (such as dataeng-book-key). Then, click Download Key Pair and ensure
you save the key pair file in a location that you can easily access from the command
line.

15. Click Launch Instances:

Figure 6.3 – Creating an EC2 instance and specifying the key pair

16. Click View Instances.

When the instance launches, it will run the script in the user data to load the Sakila demo
database on our MySQL server.

Hands-on – ingesting data with AWS DMS 179

Creating an IAM policy and role for DMS
In this section, we will create an IAM policy and role that will allow DMS to write to our
target S3 bucket:

1. In the AWS Management Console, search for and select IAM using the top
search bar.

2. In the left-hand menu, click on Policies and then click Create policy.
3. By default, Visual editor is selected, so change to a text entry by clicking on the

JSON tab.
4. Replace the boilerplate code in the text box with the following policy definition.

Make sure you replace <initials> in the bucket name with the correct
landing-zone bucket name you created in Chapter 3, The AWS Data Engineers
Toolkit:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "s3:*"

],

 "Resource": [

 "arn:aws:s3:::dataeng-landing-zone-
<initials>",

 "arn:aws:s3:::dataeng-landing-zone-
<initials>/*"

]

 }

]

}

This policy grants permissions for all S3 operations (get, put, and so on) on, and in,
dataeng-landing-zone-<initials> bucket.

5. Click Next: Tags, and then click Next: Review.

180 Ingesting Batch and Streaming Data

6. Provide a descriptive policy name, such as
DataEngDMSLandingS3BucketPolicy and click Create policy:

Figure 6.4 – Creating an IAM policy to grant S3 permissions

7. In the left-hand menu, click on Roles and then click Create role.
8. For Select type of trusted entity, make sure AWS service is selected.
9. From the list of services, select DMS and then click Next: Permissions.
10. Search for and select the policy you created in Step 6, and then click Next: Tags.
11. Click Next: Review.

Hands-on – ingesting data with AWS DMS 181

12. Provide a descriptive role name, such as DataEngDMSLandingS3BucketRole,
and click Create role:

Figure 6.5 – Creating an IAM role to allow DMS to write to S3

13. Click on the newly created role and copy and paste the Role ARN property
somewhere that you can easily access it; it will be required in the next section.

Now that we have created the required IAM permissions, we will create a DMS replication
instance, as well as other required DMS resources (such as source and target endpoints,
as well as a database migration task).

Configuring DMS settings and performing a full load
from MySQL to S3
In this section, we will create a DMS replication instance (a managed EC2 instance that
connects to the source endpoint, retrieves data, and writes to the target endpoint), and
also configure the source and target endpoints. We will then create a database migration
task that provides the configuration settings for the migration.

In the following steps, you will configure DMS and start the full load job:

1. In the AWS Management Console, search for DMS using the top search bar and
click on Database Migration Service.

2. In the left-hand menu, click on Replication Instances.
3. At the top of the page, click on Creation replication instance.

182 Ingesting Batch and Streaming Data

4. Provide a Name for the replication instance; for example, mysql-s3-replication.
5. For Instance class, select dms.t3.micro.
6. For Allocated storage, enter 10 (the database we are replicating is very small,

so 10 GB is enough space).
7. In the VPC dropdown, select the default VPC.
8. For Multi AZ select 'Dev or test workload (Single-AZ)
9. Leave everything else as the defaults and click Create.
10. In the left-hand menu, click on Endpoints.
11. At the top right, click on Create endpoint.
12. For Endpoint type, select Source endpoint and then click the box for Select

RDS DB Instance.
13. For RDS Instance, use the drop-down list to select the MySQL database you

created previously.
14. Under Endpoint configuration, for Access to endpoint database, select Provide

access information manually.
15. For Password, provide the password that you set for the database in Step 9 of the

Creating a new MySQL database instance section.
16. Select Create endpoint at the bottom right.
17. Now that we have created the source endpoint, we can create the target endpoint

by clicking on Create endpoint at the top right.
18. For Endpoint type, select Target endpoint.
19. For Endpoint identifier, type in a name for the endpoint, such as s3-landing-

zone-sakilia-csv.
20. For Target engine, select Amazon S3 from the drop-down list.
21. For Service access role ARN, enter the Amazon Resource Name (ARN) for the

IAM role you recorded in Step 13 of the previous section.
22. For Bucket name, provide the name of the landing zone bucket you created in

Chapter 3, The AWS Data Engineers Toolkit (for example, dataeng-landing-
zone-<initials>).

23. For Bucket folder, enter sakila-db.

Hands-on – ingesting data with AWS DMS 183

24. Expand Endpoint settings, and click on Add new setting. Select 'AddColumnName'
from the settings list, and for value type True.

Figure 6.6 – AWS DMS S3 target endpoint

25. Click Create Endpoint.
26. On the left-hand side, click Database migration tasks, and then click Create task.
27. For Task identifier, provide a descriptive name for the task, such as dataeng-

mysql-s3-sakila-task.

184 Ingesting Batch and Streaming Data

28. For Replication instance, select the instance you created in Step 4 of the previous
section, such as mysql-s3-replication.

29. For Source database endpoint, select the source endpoint you created in Step 11 of
the previous section, such as dataeng-mysql-1.

30. For Target database endpoint, select the target endpoint you created in Step 17 of
the previous section, such as dataeng-s3-clean-sakila-parquet.

31. For Migration type, select Migrate existing data from the dropdown. This does a
one-time migration from the source to the target.

32. Leave the defaults for Task settings as-is.
33. For Table mappings, under Selection rules, click Add new selection rule.
34. For Schema, select Enter a schema. Leave Schema name and Table name set as %.
35. Leave the defaults for Selection rules and all other sections as-is and click

Create task.
36. Once the task has been created, the full load will be automatically initiated and the

data will be loaded from your MySQL instance to Amazon S3. Click on the task
identifier and review the Table statistics tab to monitor your progress.

Our previously configured S3 event for all CSV files written to the landing zone bucket
will be triggered for each file that DMS loads. This will run the Lambda function we
created in Chapter 3 which will create a new Parquet version of each file in the CLEAN
ZONE bucket. This will also register each table in the AWS Glue data catalog.

Querying data with Amazon Athena
The Lambda function that was run for each CSV file created by DMS, also registers each
new Parquet file as part of a table in the AWS Glue Database.

We can now query the newly ingested data using the Amazon Athena service. .

1. First we need to create a new Amazon S3 folder to store the results of our Athena
queries. In the AWS Management Console, search for and select S3 using the top
search bar.

2. Click on Create bucket, and for Bucket name enter athena-query-results-
<INITIALS>. Make sure the AWS Region is set to the region you have been using
for the previous hands-on exercises. Leave all other defaults, and click on Create
bucket.

3. In the AWS Management Console, search for and select Athena using the top
search bar.

Hands-on – ingesting data with AWS DMS 185

4. Expand the left-hand panel, and click on Query Editor.
5. On the Athena dashboard page, click on Explore the query editor, and then click on

the Settings tab.
6. Click on Manage on the settings tab, and for Location of query result provide the

path of the bucket we just created, and then click Save.
7. Return to the Editor tab, and then in the Database dropdown on the left-hand side,

select sakila from the
drop-down list.

8. In the New query window, run the select * from film limit 20; query.
9. This query returns the results of the first 20 fictional films in the Sakila database.
10. Our DMS replication instance does have a low cost per hour while it is running. So,

now that we have completed our database replication to Amazon S3 and confirmed
the success of this task by querying data with Athena, we can delete the replication
instance. Open up the DMS service, and on the left-hand side click on Database
migration tasks. We need to delete the task before we can delete the associated
replication instance, so select the task, and from the Actions menu click Delete, and
then confirm deletion in the pop-up box.

11. Once the replication task has been deleted, on the left-hand side, click on
Replication instances. Select the replication instance you created earlier, and
then from the Actions menu, select Delete. Confirm that you want to delete the
replication instance by clicking on Delete in the pop-up box.

Congratulations! You have successfully replicated a MySQL database into your S3-based
data lake. To learn more about ingesting data from MySQL to Amazon S3, see the
following AWS documentation:

• Using Amazon S3 as a target for AWS Database Migration Service (https://
docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.
S3.html)

• Using a MySQL-compatible database as a source for AWS DMS (https://docs.
aws.amazon.com/dms/latest/userguide/CHAP_Source.MySQL.html)

Now that we have got hands-on with ingesting batch data from a database into our
Amazon S3 data lake, let's look at one of the ways to ingest streaming data into our
data lake.

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.S3.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.S3.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.S3.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.MySQL.html

186 Ingesting Batch and Streaming Data

Hands-on – ingesting streaming data
Earlier in this chapter, we looked at two options for ingesting streaming data into AWS,
namely Amazon Kinesis and Amazon MSK. In this section, we will use the serverless
Amazon Kinesis service to ingest streaming data. To generate streaming data, we will
use the open source Amazon Kinesis Data Generator (KDG) In this section:

• Configure Amazon Kinesis Data Firehose to ingest streaming data, and write the
data out to Amazon S3.

• Configure Amazon KDG to create a fake source of streaming data.

To get started, let's configure a new Kinesis Data Firehose to ingest streaming data and
write it out to our Amazon S3 data lake.

Configuring Kinesis Data Firehose for streaming
delivery to Amazon S3
Kinesis Data Firehose is designed to enable you to easily ingest data from streaming
sources, and then write that data out to a supported target (such as Amazon S3, which we
will do in this exercise). Let's get started:

1. In the AWS Management Console, search for and select Kinesis using the top
search bar.

2. The Kinesis landing page provides links to create new streams using the Kinesis
features of Kinesis Data Streams, Kinesis Data Firehose, or Kinesis Data Analytics.
Select the Kinesis Data Firehose service, and then click on Create delivery stream.

3. In this exercise, we are going to use the KDG to send data directly to Firehose,
so for Source, select Direct PUT from the drop-down list. For Destination, select
Amazon S3 from the drop-down list.

4. For Delivery stream name, enter a descriptive name, such as dataeng-
firehose-streaming-s3.

5. For Transform records with AWS Lambda, leave the default of Disabled as-is. This
functionality can be used to run data validation tasks or perform light processing
on incoming data with AWS Lambda, but we want to ingest the data without any
processing, so we will leave this disabled.

6. For Convert record format, we will also leave the default of Disabled as-is. This
can be used to convert incoming data into Apache Parquet or Apache ORC format.
However, to do this, we would need to specify the schema of the incoming data
upfront. We are going to ingest our data without changing the file format, so we
will leave this disabled.

Hands-on – ingesting streaming data 187

7. For S3 bucket, select the Landing Zone bucket you created previously; for example,
dataeng-landing-zone-<initials>.

8. By default, Kinesis Data Firehose writes the data into S3 with a prefix to split
incoming data by YYYY/MM/dd/HH. For our dataset, we want to load streaming
data into a streaming prefix, and we only want to split data by the year
and month that it was ingested. Therefore, we must set S3 bucket prefix to
streaming/!{timestamp:yyyy/MM/}. For more information on custom
prefixes, see https://docs.aws.amazon.com/firehose/latest/dev/
s3-prefixes.html.

9. If we set a custom prefix for incoming data, we must also set a custom error
prefix. Set S3 bucket error output prefix to !{firehose:error-output-
type}/!{timestamp:yyyy/MM/}.

10. Expand the Buffer hints, compression and encryption section
11. The S3 buffer conditions allow us to control the parameters for how long Kinesis

buffers incoming data, before writing it out to our target. We specify both a buffer
size (in MB) and a buffer interval (in seconds), and whichever is reached first will
trigger Kinesis to write to the target. If we used the maximum buffer size of 128
MB and a maximum buffer interval of 900 seconds (15 minutes), we would see the
following behavior. If we receive 1 MB of data per second, Kinesis Data Firehose
will trigger after approximately 128 seconds (when 128 MB of data has been
buffered). On the other hand, if we receive 0.1 MB of data per second, Kinesis Data
Firehose will trigger after the 900-second maximum buffer interval. For our use
case, we will set Buffer size to 1 MB and Buffer interval to 60 seconds.

12. For all the other settings, leave the default settings as-is and click on Create delivery
stream.

13. Our Kinesis Data Firehose stream is now ready to receive data. So, in the next
section, we will generate some data to send to the stream using the KDG (KDG)
tool.

Configuring Amazon Kinesis Data Generator (KDG)
Amazon KDG is an open source tool from AWS that can be used to generate customized
data streams and can send that data to Kinesis Data Streams or Kinesis Data Firehose.

The Sakila database we previously loaded was for a company that produced classic movies
and rented those out of their DVD stores. The DVD rental stores went out of business
years ago, but the owners have now made their classic movies available for purchase and
rental through various streaming platforms.

https://docs.aws.amazon.com/firehose/latest/dev/s3-prefixes.html
https://docs.aws.amazon.com/firehose/latest/dev/s3-prefixes.html

188 Ingesting Batch and Streaming Data

The company receives information about their classic movies being streamed from their
distribution partners in real time, in a standard format. Using KDG, we will simulate the
streaming data that's received from partners, including the following:

• Streaming timestamp

• Whether the customer rented, purchased, or watched the trailer

• film_id that matches the Sakila film database

• The distribution partner name

• Streaming platform

• The state that the movie was streamed in

KDG is a collection of HTML and JavaScript files that run directly in your browser and
can be accessed as a static site in GitHub. To use KDG, you need to create an Amazon
Cognito user in your AWS account, and then use that user to log into KDG on the
GitHub account.

AWS had created an Amazon CloudFormation template that you can deploy in your AWS
account to create the required Amazon Cognito user. This CloudFormation template
creates an AWS Lambda function in your account to perform the required setup.

Follow these steps to deploy the CloudFormation template, create the required Cognito
user, and configure the KDG:

1. Open the KDG help page in your browser by going to
https://awslabs.github.io/amazon-kinesis-data-generator/
web/help.html.

2. Read the information about how the CloudFormation template works to create
Cognito credentials in your account. When you're ready, click on the Create a
Cognito user with CloudFormation button.

3. The AWS Management Console will open to the CloudFormation Create Stack
page. When opening the link, the region may default to Oregon (us-west-2-), so if
necessary, change region to the region you are using for the exercises in this book,
and then accept the CloudFormation defaults and click Next.

4. On the Specify stack details page, provide a Username and Password for your
Cognito user and click Next.

5. For Configure stack options, leave all the default settings as-is and click Next.
6. Review the details of the stack to be created, and then click the box to acknowledge

that AWS CloudFormation may create IAM resources. Click Create stack.

https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html
https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html

Hands-on – ingesting streaming data 189

Refresh the web page and monitor it until the stack's status is CREATE_COMPLETE.
7. Once the stack has been successfully deployed, go to the Outputs tab and take note

of the KinesisDataGeneratorUrl value. Click on the link and open
a new tab.

8. Use the username and password you set as parameters for the CloudFormation
template to log into the Amazon KDG portal.

9. Set Region to be the same region where you created the Kinesis Data Firehose
delivery stream.

10. For Stream/delivery stream, from the dropdown, select the Kinesis Data Firehose
stream you created in the previous section.

11. For Records per second, set this as a constant of 10 records per second.
12. For the record template, we want to generate records that simulate what we

receive from our distribution partners. Paste the following into the template
section of the KDG:

{

 "timestamp":"{{date.now}}",

 "eventType":"{{random.weightedArrayElement(

 {

 "weights": [0.3,0.1,0.6],

 "data": ["rent","buy","trailer"]

 }

)}}",

 "film_id":{{random.number(

 {

 "min":1,

 "max":1000

 }

)}},

 "distributor":"{{random.arrayElement(

 ["amazon prime", "google play", "apple itunes",
"vudo", "fandango now", "microsoft", "youtube"]

)}}",

 "platform":"{{random.arrayElement(

 ["ios", "android", "xbox", "playstation", "smart
tv", "other"]

)}}",

190 Ingesting Batch and Streaming Data

 "state":"{{address.state}}"

}

13. Click Send data to start sending streaming data to your Kinesis Data Firehose
delivery stream. Because of the configuration that we specified for our Firehose
stream, the data we are sending is going to be buffered for 60 seconds, and then a
batch of data written to our Landing Zone S3 bucket. This will continue for as long
as we leave the KDG running.

14. Allow KDG to send data for 5-10 minutes, and then click on Stop Sending Data to
Kinesis.

During the time that the KDG was running, it will have created enough data for us to use
in later chapters, where we will join this data with data we migrated from our MySQL
database.

We can now use a Glue crawler to create a table in our data catalog for the newly ingested
streaming data.

Adding newly ingested data to the Glue Data Catalog
In this section, we will run a Glue crawler to examine the newly ingested data, infer the
schema, and automatically add the data to the Glue catalog. Once we do this, we can
query the newly ingested data using services such as Amazon Athena. Let's get started:

1. In the AWS Management Console, search for and select Glue using the top search
bar.

2. In the left-hand menu, click on Crawlers.
3. Click on Add crawler.
4. Enter a descriptive name for Crawler name, such as dataeng-streaming-

crawler.
5. Leave the defaults for Specify crawler source type as-is and click on Next.
6. For Add a data store, enter the path for the new data in Include Path (or click

the folder icon to browse your S3 folders and select from there). For Include Path,
the folder should be similar to s3://dataeng-landing-zone-<initials>/
streaming.

7. Click Next, then for Add another data store, leave the default of No as-is and click
Next.

Summary 191

8. For Choose an IAM role, leave the default to create a new IAM role as-is and enter
a suffix for the IAM role (such as glue-crawler-streaming-data-role).
Then, click Next.

9. For Create a schedule for this crawler, leave the default of Run on-demand as-is
and click Next.

10. For Configure the crawler's output, click on Add database to create a new Glue
catalog database for storing streaming data tables.

11. On the Add database page, provide a descriptive database name, such as
streaming-db, and click on Create. Then, click Next.

12. Review the Glue crawler settings and click Finish.
13. Select your new crawler from the list and click Run crawler.

When the crawler finishes running, it should have created a new table for the newly
ingested streaming data.

Querying the data with Amazon Athena
Now that we have ingested out new streaming data and added the data to the AWS Glue
data catalog using the AWS Glue crawler, we can query the data using Amazon Athena:

1. In the AWS Management Console, search for and select Athena using the top
search bar.

2. On the left-hand side, from the Database drop-down list, select the database you
created in the previous step (such as streaming-db).

3. In the query window, type in select * from streaming limit 20.

The result of the query should show 20 records from the newly ingested streaming data,
matching the pattern that we specified for KDG. Note how the Glue Crawler automatically
added the YYYY and MM prefixes we created as partitions.

Summary
In this chapter, we reviewed several ways to ingest common data types into AWS. We
reviewed how AWS DMS can be used to replicate a relational database to S3, and how
Amazon Kinesis and Amazon MSK can be used to ingest streaming data.

192 Ingesting Batch and Streaming Data

In the hands-on section of this chapter, we used both the AWS DMS and Amazon Kinesis
services to ingest data and then used AWS Glue to add the newly ingested data to the data
catalog and query the data with Amazon Athena.

In the next chapter, Chapter 7, Transforming Data to Optimize for Analytics, we will review
how we can transform the ingested data to optimize it for analytics, a core task for data
engineers.

7
Transforming Data

to Optimize for
Analytics

In previous chapters, we covered how to architect a data pipeline and common ways of
ingesting data into a data lake. We now turn to the process of transforming raw data in
order to optimize the data for analytics and to create value for an organization.

Transforming data to optimize for analytics and to create value for an organization is one
of the key tasks for a data engineer, and there are many different types of transformations.
Some transformations are common and can be generically applied to a dataset, such as
converting raw files to Parquet format and partitioning the dataset. Other transformations
use business logic in the transformations and vary based on the contents of the data and
the specific business requirements.

194 Transforming Data to Optimize for Analytics

In this chapter, we review some of the engines that are available in AWS for performing
data transformations and also discuss some of the more common data transformations.
However, this book focuses on the broad range of tasks that a data engineer is likely to
work on, so it is not intended as a deep dive into Apache Spark, nor is it intended as
a guide to writing PySpark or Scala code. However, there are many other great books
and online resources focused purely on teaching Apache Spark, and you are encouraged
to investigate these, as knowing how to code and optimize Apache Spark is a common
requirement for data engineers.

The topics we cover in this chapter include the following:

• An overview of how transformations can create new valuable datasets
• A look at the different types of transformation engines available
• Common data-preparation transformations
• Common business use case transformations
• How to handle change data capture (CDC) data
• Hands-on: Building transformations with AWS Glue Studio and Apache Spark

Technical requirements
For the hands-on tasks in this chapter, you need access to the AWS Glue service,
including AWS Glue Studio. You also need to be able to create a new S3 bucket and
new IAM policies.

You can find the code files of this chapter in the GitHub repository using the following
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter07

Transformations – making raw data
more valuable
As we have discussed in various places throughout this book, data can be one of the most
valuable assets that an organization owns. However, raw, siloed data has limited value on
its own, and we unlock the real value of an organization's data when we combine various
raw datasets and transform that data through an analytics pipeline.

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter07
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter07

Transformations – making raw data more valuable 195

Cooking, baking, and data transformations
Look at the following list of food items and consider whether you enjoy eating them:

• Sugar
• Butter
• Eggs
• Milk

For many people, these are pretty standard food items, and some (like the eggs and milk)
may be consumed on their own, while others (like the sugar and the butter) are generally
consumed with something else, such as adding sugar to your coffee or tea, or spreading
butter on bread.

But, if you take those items and add a few more (like flour and baking powder) and
combine all the items in just the right way, you could bake yourself a delicious cake, which
would not resemble the raw ingredients at all. In the same way, our individual datasets
have value to the part of the organization that they come from, but if we combine these
datasets in just the right way, we can create something totally new and different.

Now, if you happen to be having a party to celebrate something, your guests will
appreciate the cake far more than they would appreciate just having the raw ingredients
laid out! But if your goal was to provide breakfast for your friends, you may instead
choose to fry the eggs, make some toast and spread the butter on the toast, and offer
the milk and sugar to your guests for them to add to their coffee.

In both cases, you're using some common raw ingredients, then adding some additional
items, and finally using different utilities to prepare the food (an oven for the cake and a
stovetop for the fried eggs). How you combine the raw ingredients, and what you combine
them with, depends on whether you're inviting friends over for breakfast or whether
you're throwing a party and want to celebrate with a cake.

In the same way, data engineers can use the same raw datasets, combine them with
additional datasets, process them with different analytics engines, and create totally new
and different datasets. How they combine the datasets, and which analytics engine they
use, depends on what they're trying to create, which of course ultimately depends on
what the business purpose is.

196 Transforming Data to Optimize for Analytics

Transformations as part of a pipeline
In Chapter 5, Architecting Data Engineering Pipelines, we developed a high-level design
for our data pipeline. We first looked at how we could work with various business users
to understand what their requirements were (to keep our analogy going, whether they
wanted a cake or breakfast). After that, we looked at three broad areas on which we
gathered initial information, namely the following:

• Data consumers: Who was going to be consuming the data we created and what
tools would they use for data gathering (our guests)?

• Data sources: Which data sources did we have access to that we could use to create
our new dataset (our raw ingredients)?

• Data transformations: We reviewed, at a high level, the types of transformations
that may be required in our pipeline in order to prepare and join our datasets
(the recipe for making a cake or for fried eggs).

We now need to develop a low-level design for our pipeline transformations, which will
include determining the types of transformations we need to perform, as well as which
data transformation tools we will use. In the next section, we begin by looking at the
types of transformation engines that are available.

Types of data transformation tools
As we covered in Chapter 3, The AWS Data Engineer's Toolkit, there are a number of
AWS services that can be used for data transformation. We reviewed a number of these
services in Chapter 3, The AWS Data Engineer's Toolkit, so make sure to review that
chapter, but in this section, we will look more broadly at the different types of data
transformation engines.

Apache Spark
Apache Spark is an in-memory engine for working with large datasets, providing a
mechanism to split a dataset among multiple nodes in a cluster for efficient processing.
Spark is an extremely popular engine to use for processing and transforming big datasets,
and there are multiple ways to run Spark jobs within AWS.

Types of data transformation tools 197

With Apache Spark, you can either process data in batches (such as on a daily basis or
every few hours) or process near real-time streaming data using Spark Streaming. In
addition, you can use Spark SQL to process data using standard SQL and Spark ML for
applying machine learning techniques to your data. With Spark GraphX, you can work
with highly interconnected points of data to analyze complex relationships, such as for
social networking applications.

Within AWS, you can run Spark jobs using multiple AWS services. AWS Glue provides a
serverless way to run Spark, and Amazon EMR provides a managed service for deploying
a cluster for running Spark. In addition, you can use AWS container services (ECS or
EKS) to run a Spark engine in a containerized environment or use a managed service
from an AWS partner, such as Databricks.

Hadoop and MapReduce
Apache Hadoop is a framework consisting of multiple open source software packages for
working with large datasets and can scale from running on a single server to running on
thousands of nodes. Before Apache Spark, tools within the Hadoop framework – such as
Hive and MapReduce – were the most popular way to transform and process large datasets.

Apache Hive provides a SQL-type interface for working with large datasets, while
MapReduce provides a code-based approach to processing large datasets. Hadoop
MapReduce is used in a similar way to Apache Spark, with the biggest difference being
that Apache Spark does all processing in memory. Apache MapReduce on the other
hand makes extensive use of traditional disk-based reads and writes to interim storage
during processing.

For use cases with massive datasets that cannot be economically processed in memory,
Hadoop MapReduce may be better suited. However, for many use cases, Apache Spark
provides significant performance benefits, as well as the ability to handle streaming data,
access to machine learning libraries, and an API for graph computation with GraphX.

While Apache Spark has become the leading big data processing solution in recent years,
there are many legacy Hadoop systems still being used to process data on a daily basis.
In addition to Apache Hive, one of the other Hadoop tools is the Hadoop Distributed
File System (HDFS), and this is still commonly used as the ingest and target storage for
Apache Spark processing jobs.

Within AWS, you can run a number of Hadoop tools using the managed Amazon EMR
service. Amazon EMR simplifies the process of deploying Hadoop-based tools and
supports multiple Hadoop tools, including Hive, HBase, Yarn, Tez, Pig, and many others.

198 Transforming Data to Optimize for Analytics

SQL
Structured Query Language (SQL) is another common method used for data
transformation. The advantage of SQL is that SQL knowledge and experience are
widely available, making it an accessible form of performing transformations for many
organizations. However, a code-based approach to transformations (such as using Apache
Spark) can be a more powerful and versatile way of performing transformations.

When deciding on a transformation engine, a data engineer needs to understand the skill
sets available in the organization, as well as the toolsets and ultimate target for the data.
If you are operating in an environment that has a heavy focus on SQL, with SQL skill sets
being widely available and Spark and other skill sets being limited, then using SQL for
transformation may make sense (although GUI-based tools can also be considered).

However, if you are operating in an environment that has complex data processing
requirements, and where latency and throughput requirements are high, it may be
worthwhile to invest in skilling up to use modern data processing approaches, such as Spark.

While we mostly focus on data lakes as the target for our data in this book, there are times
where the target for our data transformations may be a data warehousing system, such
as Amazon Redshift or Snowflake. In these cases, an Extract, Load, Transform (ELT)
approach may be used, where raw data is loaded into the data warehouse (the Extract and
Load portion of ELT), and then the transformation of data is performed within the data
warehouse using SQL.

Alternatively, toolsets such as Apache Spark may be used with SQL, through Spark SQL.
This provides a way to use SQL for transformations while using a modern data processing
engine to perform the transformations, rather than using a data warehouse. This
allows the data warehouse to be focused on responding to end-user queries, while data
transformation jobs are offloaded to an Apache Spark cluster. In this scenario, we use an
ETL approach, where data is extracted to intermediatory storage, Apache Spark is used
to transform the data, and data is then loaded into a different zone of the data lake, or
into a data warehouse.

Tools such as AWS Glue Studio provide a visual interface that can be used to design ETL
jobs, including jobs that use SQL statements to perform complex transformations. This
helps users who do not have Spark coding skills to run SQL-based transforms using the
power of the Apache Spark engine.

Types of data transformation tools 199

GUI-based tools
Another popular method of performing data transformation is through the use of
GUI-based tools that significantly simplify the process of creating transformation jobs.
There are a number of cloud and commercial products that are designed to provide a
drag and drop-type approach to creating complex transformation pipelines, and these
are widely used.

These tools generally do not provide the versatility and performance that you can get
from designing transformations with code, but they do make the design of ETL-type
transformations accessible to those without advanced coding skills. Some of these tools
can also be used to automatically generate transformation code (such as Apache Spark
code), providing a good starting point for a user to further develop the code, reducing
ETL job development time.

Within AWS, the Glue DataBrew service is designed as a visual data preparation tool,
enabling you to easily apply transformations to a set of files. With Glue DataBrew, a
user can select from a library of over 250 common transformations and apply relevant
transformations to incoming raw files. With this service, a user can clean and normalize
data to prepare it for analytics or machine learning model development through an
easy-to-use visual designer, without needing to write any code.

Another AWS service that provides a visual approach to ETL design is AWS Glue Studio,
a service that provides a visual interface to developing Apache Spark transformations.
This can be used by people who do not have any current experience with Spark but can
also be used by those who do know Spark, as a starting point for developing their own
custom transforms. With AWS Glue Studio, you can create complex ETL jobs that join
and transform multiple datasets, and then review the generated code and further refine
it if you have the appropriate coding skills.

Outside of AWS, there are also many commercial products that provide a visual approach
to ETL design. Popular products include tools from Informatica, Matillion, Stitch,
Talend, Panoply, Fivetran, and many others.

As we have covered in this section, there are multiple approaches and engines that can be
used for performing data transformation. However, whichever engine or interface is used,
there are certain data transformations that are commonly used to prepare and optimize
raw datasets, and we'll look at some of these in the next section.

200 Transforming Data to Optimize for Analytics

Data preparation transformations
The first set of transformations that we look at are those that help prepare the data for
further transformations later in the pipeline. These transformations are designed to apply
relatively generic optimizations to individual datasets that we are ingesting into the data
lake. For these optimizations, you may need some understanding of the source data
system and context, but, generally, you do not need to understand the ultimate business
use case for the dataset.

Protecting PII data
Often, datasets that we ingest may contain personally identifiable information (PII) data,
and there may be governance restrictions on which PII data can be stored in the data lake.
As a result, we need to have a process that protects the PII data as soon as possible after it
is ingested.

There are a number of common approaches that can be used here (such as tokenization or
hashing), each with its own advantages and disadvantages, as we discussed in more detail
in Chapter 4, Cataloging, Security, and Governance. But whichever strategy is used, the
purpose is to remove the PII data from the raw data and replace it with a value, or token,
in a way that enables us to still use the data for analytics.

This type of transformation is generally the first transformation performed for data
containing PII, and in many cases, it is done in a different zone of the data lake, designed
specifically for handling PII data. This zone will have strict controls to restrict access for
general data lake users, and the best practice would be to have the anonymizing process
run in a totally separate AWS account. Once the transformation has anonymized the PII
data, the anonymized files will be copied into the general data lake raw zone in the main
processing account.

Depending on the method used to transform PII data for anonymization, there may be
multiple different toolsets that can be used. This includes open source libraries to create
an Apache Spark job to do the anonymization, and, as you already know, that could be
run on AWS Glue or Amazon EMR. If your requirements are just for a simple SHA-256
hash of a column, you can achieve this by creating a new table using Amazon Athena,
as outlined in the AWS blog post Anonymize and manage data in your data lake with
Amazon Athena and AWS Lake Formation. Note, however, that an SHA-256 hash is often
not regarded as a secure way of anonymizing data – for example, a court in Germany
ruled that using an SHA-256 hash to anonymize data was not sufficient to comply with
privacy requirements. For a more secure way to anonymize data, or for more complex use
cases, you can use purpose-built managed services from commercial vendors that run in
AWS, such as PK Privacy from the company PKWARE.

Data preparation transformations 201

Optimizing the file format
Within modern data lake environments, there are a number of file formats that can be
used that are optimized for data analytics. From an analytics perspective, the most popular
file format currently is Apache Parquet.

Parquet files are columnar-based, meaning that the contents of the file are physically stored
to have data grouped by columns, rather than grouped by rows as with most file formats.
(CSV files, for example, are physically stored to be grouped by rows.) As a result, queries that
select a set of specific columns (rather than the entire row) do not need to read through all
the data in the Parquet file to return a result, leading to performance improvements.

Parquet files also contain metadata about the data they store. This includes schema
information (the data type for each column), as well as statistics such as the minimum and
maximum value for a column contained in the file, the number of rows in the file, and so on.

A further benefit of Parquet files is that they are optimized for compression. A 1 TB
dataset in CSV format could potentially be stored as 130 GB in Parquet format once
compressed. Parquet supports multiple compression algorithms, although Snappy is
the most widely used compression algorithm.

These optimizations result in significant savings, both in terms of storage space used and
for running queries.

For example, the cost of an Amazon Athena query is based on the amount of compressed
data scanned (at the time of writing, this cost was $5 per TB of scanned data). If only
certain columns are queried of a Parquet file, then between the compression and only
needing to read the data chunks for the specific columns, significantly less data needs
to be scanned to resolve the query.

In a scenario where your data table is stored across perhaps hundreds of Parquet files in a
data lake, the analytics engine is able to get further performance advantages by reading the
metadata of the files. For example, if your query is just to count all the rows in a table, this
information is stored in the Parquet file metadata, so the query doesn't need to actually
scan any of the data. For this type of query, you will see that Athena indicates that 0 KB
of data was scanned, therefore there is no cost for the query.

Or, if your query is for where the sales amount is above a specific value, the analytics
engine can read the metadata for a column to determine the minimum and maximum
values stored in the specific data chunk. If the value you are searching for is higher than
the maximum value recorded in the metadata, then the analytics engine knows that it
does not need to scan that specific column data chunk. This results in both cost savings
and increased performance for queries.

202 Transforming Data to Optimize for Analytics

Because of these performance improvements and cost savings, a very common
transformation is to convert incoming files from their original format (such as CSV,
JSON, XML, and so on) into the analytics-optimized Parquet format.

Optimizing with data partitioning
Another common approach for optimizing datasets for analytics is to partition the data,
which relates to how the data files are organized in the storage system for a data lake.

Hive partitioning splits the data from a table to be grouped together in different folders,
based on one or more of the columns in the dataset. While you can partition the data in
any column, a common partitioning strategy that works for many datasets is to partition
based on date.

For example, suppose you had sales data for the past four years from around the country,
and you had columns in the dataset for Day, Month and Year. In this scenario, you
could select to partition the data based on the Year column. When the data was written
to storage, all the data for each of the past few years would be grouped together with the
following structure:

datalake_bucket/year=2021/file1.parquet

datalake_bucket/year=2020/file1.parquet

datalake_bucket/year=2019/file1.parquet

datalake_bucket/year=2018/file1.parquet

If you then run a SQL query and include a WHERE Year = 2018 clause, for example,
the analytics engine only needs to open up the single file in the datalake_bucket/
year=2018 folder. Because less data needs to be scanned by the query, it costs less and
completes quicker.

Deciding on which column to partition by requires that you have a good understanding
of how the dataset will be used. If you partition your dataset by year but a majority of
your queries are by the business unit (BU) column across all years, then the partitioning
strategy would not be effective.

Queries you run that do not use the partitioned columns may also end up causing those
queries to run slower if you have a large number of partitions. The reason for this is that
the analytics engine needs to read data in all partitions, and there is some overhead in
working between all the different folders. If there is no clear common query pattern,
it may be better to not even partition your data. But if a majority of your queries use a
common pattern, then partitioning can provide significant performance and cost benefits.

Data preparation transformations 203

You can also partition across multiple columns. For example, if you regularly process data
at the day level, then you could implement the following partition strategy:

datalake_bucket/year=2021/month=6/day=1/file1.parquet

This significantly reduces the amount of data to be scanned when queries are run at
the daily level and also works for queries at the month or year level. However, another
warning regarding partitioning is that you want to ensure that you don't end up with a
large number of small files. The optimal size of Parquet files in a data lake is 128 MB–1
GB. The Parquet file format can be split, which means that multiple nodes in a cluster
can process data from a file in parallel. However, having lots of small files requires a lot
of overhead for opening, reading metadata, scanning data, and closing each file, and can
significantly impact performance.

Partitioning is an important data optimization strategy and is based on how the data is
expected to be used, either for the next transformation stage or for the final analytics
stage. Determining the best partitioning strategy requires that you understand how the
data will be used next.

Data cleansing
Optimizing the data format and partitioning data are transformation tasks that work
on the format and structure of the data but do not directly transform the data. Data
cleansing, however, is a transformation that alters parts of the data.

Data cleansing is often one of the first tasks to be performed after ingesting data and
helps ensure that the data is valid, accurate, consistent, complete, and uniform. Source
datasets may be missing values in some rows, have duplicate records, have inconsistent
column names, use different formats, and so on. The data cleansing process works to
resolve these issues on newly ingested raw data to better prepare the data for analytics.
While some data sources may be nearly completely clean on ingestion (such as data from
a relational database), other datasets are more likely to contain data needing cleansing,
such as data from web forms, surveys, manually entered data, or Internet of Things (IoT)
data from sensors.

204 Transforming Data to Optimize for Analytics

Some common data transformation tasks for data cleansing include the following:

• Ensuring consistent column names: When ingesting data from multiple datasets,
you may find that the same data in different datasets have different column names.
For example, one dataset may have a column called date_of_birth, while
another dataset has a column called birthdate. In this case, a cleansing task
may be to rename the date_of_birth column heading to birthdate.

• Changing column data type: It is important to ensure that a column has a
consistent data type for analytics. For example, a certain column may be intended
to contain integers, but due to a data entry error, one record in the column may
contain a string. When running data analytics on this dataset, having a string in the
column may cause the query to fail. In this case, your data cleansing task needs to
replace all string values in a column that should contain integers with a null value,
which will enable the query to complete successfully.

• Ensuring a standard column format: Different data sources may contain data
in a different format. A common example of this is for dates, where one system
may format the date as MM-DD-YYYY, while another system contains the data
as DD-MM-YYYY. In this case, the data cleansing task will convert all columns
in MM-DD-YYYY into the format of DD-MM-YYYY, or whatever your corporate
standard is for analytics.

• Removing duplicate records: With some data sources, you may receive duplicate
records (such as when ingesting streaming data, where only-once delivery is not
always guaranteed). A data cleansing task may be required to identify and either
remove, or flag, duplicate records.

• Providing missing values: Some data sources may contain missing values in some
records, and there are a number of strategies to clean this data. The transformation
may replace missing values with a valid value, which could be the average, or
median, or the values for that column, or potentially just an empty string or a null.
Alternatively, the task may remove any rows that have missing values for a specific
column. How to handle missing values depends on the specific dataset and the
ultimate analytics use case.

There are many other common tasks that may be performed as part of data cleansing.
Within AWS, the Glue DataBrew service has been designed to provide an easy way to
cleanse and normalize data using a visual design tool and includes over 250 common
data cleansing transformations.

Once we have our raw datasets optimized for analytics, we can move on to looking at
transforming our datasets to meet business objectives.

Business use case transforms 205

Business use case transforms
In a data lake environment, you generally ingest data from many different source systems
into a landing, or raw, zone. You then optimize the file format and partition the dataset, as
well as applying cleansing rules to the data, potentially now storing the data in a different
zone, often referred to as the clean zone. At this point, you may also apply updates to the
dataset with CDC-type data and create the latest view of the data, which we examine in the
next section.

The initial transforms we covered in the previous section could be completed without
needing to understand too much about how the data is going to ultimately be used by the
business. At that point, we were still working on individual datasets that will be used by
downstream transformation pipelines to ultimately prepare the data for business analytics.

But at some point, you, or another data engineer working for a line of business, are going
to need to use a variety of these ingested data sources to deliver value to the business for a
specific use case. After all, the whole point of the data lake is to bring varied data sources
from across the business into a central location, to enable new insights to be drawn from
across these datasets.

The transformations that we discuss in this section work across multiple datasets, to enrich,
denormalize, and aggregate the data, based on the specific business use case requirements.

Data denormalization
Source data systems, especially those from relational database systems, are mostly going
to be highly normalized. This means that the source tables have been designed to contain
information about a specific individual entity or topic. Each table will then link to other
topics with related information through the use of foreign keys.

For example, you would have one table for customers and a separate table for salespeople.
A record for a customer will include an identifier for the salesperson that works with that
customer (such as sales_person_id). If you want to get the name of the salesperson
that supports a specific customer, you could run a SQL query that joins the two tables.
During the join, the system queries the customer table for the specific customer record
and determines the sales_person_id value that is part of the record for that customer.
The system then queries the sales_person table, finding the record with that
sales_person_id, and can then access the name of the salesperson from there.

206 Transforming Data to Optimize for Analytics

Our normalized customer table may look as follows:

Figure 7.1 – Normalized customer table

And our normalized sales_person table may look as follows:

Figure 7.2 – Normalized Sales_Person table

Structuring tables this way has write-performance advantages for Online Transaction
Processing (OLTP) systems and also helps to ensure referential integrity of the database.
Normalized tables also consume less disk space, since data is not repeated across multiple
tables. This was a bigger benefit in the early days of databases when storage was limited
and expensive, but it is not a significant benefit today with low-cost object storage systems
such as Amazon S3.

When it comes to running Online Analytics Processing (OLAP) queries, having to
join data across multiple tables does incur a performance hit. Therefore, data is often
denormalized for analytics purposes.

If we had a use case that required us to regularly query customers with their salesperson
details, we may want to create a new table that is a denormalized version of our customer
and sales_person tables.

The denormalized customer table may look as follows:

Figure 7.3 – Denormalized customer table

With this table, we can now make a single query that does not require any joins in order
to determine the details for a salesperson for a specific customer.

While this was a simple example of a denormalization use case, an analytics project may
have tens or even hundreds of similar denormalization transforms. A denormalization
transform may also join data from multiple source tables and may end up creating very
wide tables.

Business use case transforms 207

It is important to spend time to understand the use case requirements and how the data
will be used, and then determine the right table structure and required joins.

Performing these kinds of denormalization transforms can be done with Apache Spark,
GUI-based tools, or SQL. AWS Glue Studio can also be used to design these kinds of
table joins using a visual interface.

Enriching data
Similar to the way we joined two tables in the previous example for denormalization
purposes, another common transformation is to join tables for the purpose of enriching
the original dataset.

Data that is owned by an organization is valuable but can often be made even more
valuable by combining data the organization owns with data from third parties, or with
data from other parts of the business. For example, a company that wants to market credit
cards to consumers may purchase a database of consumer credit scores to match against
their customer database, or a company that knows that its sales are impacted by weather
conditions may purchase historical and future weather forecast data to help them analyze
and forecast sales information.

AWS provides a data marketplace with the AWS Data Exchange service, a catalog of
datasets available via paid subscription, as well as a number of free datasets. AWS Data
Exchange currently contains over 1,000 datasets that can be easily subscribed to. Once you
subscribe to a dataset, the Data Exchange API can be used to load data directly into your
Amazon S3 landing zone.

In these scenarios, you would ingest the third-party dataset to the landing zone of your
data lake, and then run a transformation to join the third-party dataset with company-
owned data.

Pre-aggregating data
One of the benefits of data lakes is that they provide a low-cost environment for storing
large datasets, without needing to preprocess the data or determine the data schema
up front. You can ingest data from a wide variety of data sources and store the detailed
granular raw data for a long period inexpensively. Then, over time, as you find you have
new questions you want to ask of the data, you have all the raw data available to work with
and can run ad-hoc queries against the data.

208 Transforming Data to Optimize for Analytics

However, as the business develops specific questions they want to regularly ask of the data,
the answers to these questions may not be easy to obtain through ad-hoc SQL queries. As
a result, you may create transform jobs that run on a scheduled basis to perform the heavy
computation that may be required to gain the required information from the data.

For example, you may create a transform job that creates a denormalized version of your
sales data that includes, among others, columns for the store number, city, and state for
each transaction. You may then have a pre-aggregation transform that runs daily to read
this denormalized sales data (which may contain tens of millions of rows per day and tens
or hundreds of columns) and compute sales, by category, at the store, city, and state level,
and write these out to new tables. You may have hundreds of store managers that need
access to store-level data at the category level via a BI visualization tool, but because we
have pre-aggregated the data into new tables, the computation does not need to be run
every time a report is run.

Extracting metadata from unstructured data
As we have discussed previously, a data lake may also contain unstructured data, such
as audio or image files. While these files cannot be queried directly with traditional
analytical tools, we can create a pipeline that uses Machine Learning (ML) and Artificial
Intelligence (AI) services to extract metadata from these unstructured files.

For example, a company that employs real-estate agents (realtors) may capture images
of all houses for sale. One of their data engineers could create a pipeline that uses an AI
service such as Amazon Rekognition to automatically identify objects in the image and
to identify the type of room (kitchen, bedroom, and so on). This captured metadata could
then be used in traditional analytics reporting.

Another example is a company that stores audio recordings of customer service phone
calls. A pipeline could be built that uses an AI tool such as Amazon Transcribe to create
transcripts of the calls, and then a tool such as Amazon Comprehend could perform
sentiment analysis on the transcript. This would create an output that indicates whether
customer sentiment was positive, negative, or neutral for each call. This data could
be joined with other data sources to develop a target list of customers to send specific
marketing communication.

Working with change data capture (CDC) data 209

While unstructured data such as audio and image files may at first appear to have no
benefit in an analytics environment, with modern AI tools valuable metadata can be
extracted from many of these sources. This metadata in turn becomes a valuable dataset
that can be combined with other organizational data, in order to gather new insights
through innovative analytics projects.

While we have only highlighted a few common transforms, there are literally hundreds of
different transforms that may be used in an analytics project. Each business is unique and
has unique requirements, and it is up to an organization's data teams to understand which
data sources are available, and how these can be cleaned, optimized, combined, enriched,
and otherwise transformed, to help answer complex business questions.

Another aspect of data transformation is the process of applying updates to an existing
dataset in the data lake, and we examine strategies for doing this in the next section.

Working with change data capture (CDC) data
One of the most challenging aspects of working within a data lake environment is the
processing of updates to existing data, such as with change data capture (CDC) data. We
have discussed CDC data previously, but as a reminder, this is data that contains updates
to an existing dataset.

A good example of this is data that comes from a relational database system. After the
initial load of data is completed to the data lake, a system (such as Amazon DMS) can
read the database transaction logs and write all future database updates to Amazon S3.
For each row written to Amazon S3, the first column of the CDC file would contain one
of the following characters (see the section on Amazon DMS in Chapter 3, The AWS Data
Engineer's Toolkit, for an example of a CDC file generated by Amazon DMS):

• I – Insert: This indicates that this row contains data that was a new insert to the table.

• U – Update: This indicates that this row contains data that updates an existing
record in the table.

• D – Delete: This indicates that this row contains data for a record that was deleted
from the table.

Traditionally though, it has not been possible to execute updates or deletes to individual
records within the data lake. Remember that Amazon S3 is an object storage service, so
you can delete and replace a file but you cannot edit or just replace a portion of a file.

210 Transforming Data to Optimize for Analytics

If you just append the new records to the existing data, you will end up with multiple
copies of the same record, with each record reflecting the state of that record at a specific
point in time. This can be useful to keep the history of how a record has changed over
time, and so sometimes a transform job will be created to append the newly received data
to the relevant table in the data lake for this purpose (potentially adding in a timestamp
column that reflects the CDC data-ingestion time for each row). At the same time, we
want our end users to be able to work with a dataset that only contains the current state
of each data record.

There are two common traditional approaches to handling updates to data in a data lake.

Traditional approaches – data upserts and SQL views
One of the traditional approaches to dealing with CDC data is to run a transform job, on a
schedule, that effectively merges the new CDC data with the existing dataset, keeping only
the latest records. This is commonly referred to as performing an upsert (a combination
of update and insert).

One way to do this is to create a transform in Spark that reads in existing data to
one DataFrame, reads the new data into a different DataFrame, and then merges the
DataFrames using custom logic, based on the specific dataset. The transform can then
overwrite the existing data or write data to a new date-based partition, creating a new
snapshot of the source system. A certain number of snapshots can be kept, enabling
data consumers to query data from different points in time.

These transforms can end up being complex, and it is challenging to create a transform
that is generic across all source datasets. Also, when overwriting the existing dataset with
the updated dataset, there can be disruptions for data consumers that are trying to read
from the dataset while the update is running. And as the dataset grows, the length of
time and compute resources required to read in the full dataset in order to update it can
become a major challenge. There are various strategies for dealing with these challenges,
but they are complex, and for a long time, each organization facing these challenges had
to implement its own complex solutions.

In order to create a solution that could be used across multiple different datasets, one
common approach is to create a configuration table that captures details about source
tables. This config table contains information such as a column that should be considered
the primary key and a list of columns on which to partition the output. When the
transform job runs, it reads the configuration table in order to integrate that table's
specific settings with the logic in the transform job.

Working with change data capture (CDC) data 211

AWS has a blog post that provides a solution for using AWS DMS to capture CDC data
from source databases and then runs a Glue job to apply the latest updates to the existing
dataset. This blog post also creates a DynamoDB table to store configuration data on
the source tables, and the solution can be deployed into an existing account using the
provided AWS CloudFormation template. For more information, see the AWS blog
post titled Load ongoing data lake changes with AWS DMS and AWS Glue.

An alternative approach is to use Athena views to create a virtualized table that shows the
latest state of the data. An Athena view is a query that runs whenever the virtual table is
queried, using a SELECT query that is defined in the view. The view definition will join
the source (the current table) and the table with the new CDC data, and return a result
that reflects the latest state of the data.

Creating a view that combines the existing data and the new CDC data enables consumers
to query the latest state of the data, without needing to wait for a daily transform job to
run to consolidate the datasets. However, performance will degrade over time as the CDC
data table grows, so it is advisable to also have a daily job that will run to consolidate the
new CDC data into the existing dataset. Creating and maintaining these views can be
fairly complex, especially when combined with a need to also have a daily transform to
consolidate the datasets.

For many years, organizations have faced the challenge of building and maintaining
custom solutions like these to deal with CDC data and other data lake updates.
However, in recent years, a number of new offerings have been created to address
these requirements more generically, as we see in the next section.

Modern approaches – the transactional data lake
Over the past few years, the concept of a transactional data lake has become popular, and
a number of different companies and organizations have created new table formats to
support the goal of transactional data lakes. When we refer to a transactional data lake,
we are referencing the ability of a data lake to contain properties that were previously
only available in a traditional database, such as the ability to update and delete individual
records. In addition, many of these new solutions also provide support for schema
evolution and time travel (the ability to query data as it was at a previous point in time).

212 Transforming Data to Optimize for Analytics

Technically, these new table formats bring ACID semantics to the data lake:

• Atomicity: An expectation that data written will either be written as a full
transaction or will not be written at all, and the dataset will be returned to its
state prior to the transaction on failure

• Consistency: The expectation that even if a failure occurs, the dataset will
stay consistent

• Isolation: The expectation that one transaction on the dataset will not be affected
by another transaction that is requested at the same time

• Durability: The expectation that once a successful transaction has been completed,
this transaction will be durable (it will be permanent, even if there is a later
system failure)

Now, this does not mean that these modern data lake solutions can replace existing
OLTP-based databases. You are not going to suddenly see retailers dump their
PostgreSQL, MySQL, or SQL Server databases that run their customer relationship
management (CRM) systems and instead use a data lake for everything.

Rather, data lakes are still intended as an analytical platform, but these new solutions do
significantly simplify the ability to apply changes to existing records, as well as the ability
to delete records from a large dataset. These solutions also help to ensure data consistency
as multiple teams potentially work on the same datasets. There is still latency involved
with these types of transactions, but much of the complexity involved with consolidating
new and updates to a dataset, and providing a consistent, up-to-date view of data with
lower latency, is handled by these solutions.

Let's have a brief look at some of the most common offerings for these new styles of
transactional data lakes.

AWS Lake Formation governed tables
In December 2020, AWS announced the public preview of new functionality for Lake
Formation with the introduction of governed tables. This new Amazon S3 table type has
been designed to support ACID transactions within an S3-based data lake environment.
When a table is created and configured as a governed table, Lake Formation handles the
complexities of allowing multiple users to simultaneously and reliably insert, delete, and
modify records across these tables. In addition, Lake Formation works behind the scenes
to automatically compact and optimize the files behind the table on a regular basis.

Working with change data capture (CDC) data 213

Apache Hudi
Apache Hudi started out as a project within Uber (the ride-sharing company) to provide
a framework for developing low-latency and high-efficiency data pipelines for their large
data lake environment. They subsequently donated the project to the Apache Software
Foundation, which in turn made it a top-level project in 2020. Today, Apache Hudi is
a popular option for building out transactional data lakes that support the ability to
efficiently upsert new/changed data into a data lake, as well as to easily query tables and
get the latest updates returned. AWS supports running Apache Hudi within the Amazon
EMR managed service.

Apache Iceberg
Apache Iceberg was created by engineers at Netflix and Apple, and is designed as an
open-table format for very large datasets. The code was donated to the Apache Software
Foundation and became a top-level project in May 2020.

Iceberg supports schema evolution, time travel for querying at a point in time, atomic
table changes (to ensure that data consumers do not see partial or uncommitted changes),
and support for multiple simultaneous writers.

In August 2021, a new start-up, Tabular, was formed by the creators of Iceberg to build
a cloud-native data platform powered by Apache Iceberg. At the time of writing, the
platform has not yet been launched, but the founders have secured Series A funding
for their start-up.

Databricks Delta Lake
Databricks, a company formed by the original creators of Apache Spark, have developed
their own approach to providing a transactional data lake, which has become popular
over the past few years. This solution, called Delta Lake, is an open-format storage layer
for streaming and batch operations that provides ACID transactions for inserts, updates,
and deletes. In addition, Delta Lake supports time travel, which enables a query to retrieve
data as it was at any point in time. Databricks have open sourced this solution and made
it available on GitHub at https://github.com/delta-io/delta.

In addition to the open source version of Delta Lake, Databricks also offers a fully
supported commercial version of Delta Lake that is popular with large enterprises.
For more information on Delta Lake, see https://databricks.com/product/
delta-lake-on-databricks.

https://github.com/delta-io/delta
https://databricks.com/product/delta-lake-on-databricks
https://databricks.com/product/delta-lake-on-databricks

214 Transforming Data to Optimize for Analytics

Handling updates to existing data in a data lake has been a challenge for as long as data
lakes have been in existence. Over the years, some common approaches emerged to
handle these challenges, but each organization had to effectively reinvent the wheel to
implement its own solution.

Now, with a number of companies recently creating solutions to provide a more
transactional-type data lake that simplifies the process of inserting, updating, and
deleting data, it makes sense to explore these solutions, as outlined in this section.

So far in this chapter, we have covered data preparation transformations, business use case
transforms, and how to handle CDC-type updates for a data lake. Now we get hands-on
with data transformation using AWS Glue Studio.

Hands-on – joining datasets with AWS
Glue Studio
For our hands-on exercise in this chapter, we are going to use AWS Glue Studio to create
an Apache Glue job that joins the streaming data with the data we migrated from our
MySQL database in the previous chapter.

Creating a new data lake zone – the curated zone
As discussed in Chapter 2, Data Management Architecture for Analytics, it is common
to have multiple zones in the data lake, containing different copies of our data as it gets
transformed. So far, we have ingested raw data into the landing zone and then converted
some of those datasets into Parquet format, written out in the clean zone. In this chapter,
we will be joining multiple datasets together and will write out the new dataset to the
curated zone of our data lake. The curated zone is intended to store data that has been
transformed and is ready for consumption by data consumers:

1. Log into the AWS Management Console (https://console.aws.amazon.
com).

2. In the top search bar, search for and select S3 to access the S3 console.
3. In the top right, click on Create bucket.
4. For bucket name, enter dataeng-curated-zone-<initials>, replacing

<initials> with your initials as you did for the landing zone and clean zone.
5. Ensure the region is set to the region you have been using for the other hands-on

exercises. For the examples in this book, we use us-east-2 (Ohio).

https://console.aws.amazon.com
https://console.aws.amazon.com

Hands-on – joining datasets with AWS Glue Studio 215

6. Accept all other defaults and click Create bucket.
7. In the top search bar, search for and select Glue to access the Glue console.
8. On the left-hand side, select Databases, and then click Add database.
9. For Database name, type curatedzonedb, and then click Create.

We have now created a new curated zone for our data lake, and in the next step, we will
create a new IAM role to provide the permissions needed for our Glue transformation
job to run.

Creating a new IAM role for the Glue job
When we configure the Glue job using Glue Studio, we will need to specify an IAM role
that has the following permissions:

• Read our source S3 bucket (for example, dataeng-landing-zone-
<initials> and dataeng-clean-zone-<initials>)

• Write to our target S3 bucket (for example, dataeng-curated-zone-
<initials>)

• Access to Glue temporary directories

• Write logs to Amazon CloudWatch

• Access to all Glue API actions (to enable the creation of new databases and tables)

To create a new AWS IAM Role with these permissions, follow these steps:

1. In the top search bar of the AWS Management Console, search for and select
the IAM service, and in the left-hand menu, select Policies, and then click on
Create policy.

2. By default, the Visual editor tab is selected, so click on JSON to change to the
JSON tab.

3. Provide the JSON code from the following code blocks, replacing the boilerplate
code. Note that you can also copy and paste this policy by accessing the policy on
this book's GitHub page. If doing a copy and paste from the GitHub copy of this
policy, you must replace <initials> in bucket names with the unique identifier
you used when creating the buckets.

216 Transforming Data to Optimize for Analytics

The first block of the policy configures the policy document and provides
permissions to get objects from Amazon S3 that are in the Amazon S3 buckets
specified in the resource section. Make sure you replace <initials> with the
unique identifier you have used in your bucket names:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "s3:GetObject"

],

 "Resource": [

 "arn:aws:s3:::dataeng-landing-zone-
<initials>/*",

 "arn:aws:s3:::dataeng-clean-zone-
<initials>/*"

]

 },

4. This next block of the policy provides permissions for all Amazon S3 actions (get,
put, and so on) that are in the Amazon S3 bucket specified in the resource section
(in this case, our curated zone bucket). Make sure you replace <initials> with
the unique identifier you have used in your bucket names:

 {

 "Effect": "Allow",

 "Action": [

 "s3:*"

],

 "Resource": "arn:aws:s3:::dataeng-curated-
zone-<initials>/*"

 }

]

}

5. Click on Next: tags and then click on Next: Review.

Hands-on – joining datasets with AWS Glue Studio 217

6. Provide a name for the policy, such as DataEngGlueCWS3CuratedZoneWrite,
and then click Create policy.

7. In the left-hand menu, click on Roles and then Create role.
8. For Trusted entity, ensure AWS service is selected, and for service select Glue,

and then click Next: Permissions. Listing Glue as a trusted entity for this role
enables the AWS Glue service to assume this role to run transformations.

9. Under Attach permissions policies, select the policy we just created (for example,
DataEngGlueCWS3CuratedZoneWrite) by searching and then clicking in the
tick box.

10. Also, search for AWSGlueServiceRole and click on the tick box to select this
role. This managed policy provides access to temporary directories used by Glue,
as well as CloudWatch logs and Glue resources.

11. Then, click Next: Tags.
12. Provide any tags you would like associated with this policy (optional) and click

Next: Review.
13. Provide a role name, such as DataEngGlueCWS3CuratedZoneRole, and click

Create role.

We have now created the permissions required for our Glue job to be able to access
the required resources, so we can now move on to building our transformation using
Glue Studio.

Configuring a denormalization transform using AWS
Glue Studio
We are now ready to create an Apache Spark job to denormalize the film data that we
migrated from our MySQL database. The dataset we migrated is normalized currently
(as expected for data coming from a relational database), so we want to denormalize
some of the data to use in future transforms.

218 Transforming Data to Optimize for Analytics

Ultimately, we want to be able to analyze various data points about our new streaming
library of classic movies. One of the data points we want to understand is which categories
of movies are the most popular, but to find the name of a category associated with a
specific movie, we need to query three different tables in our source dataset. The tables
are as follows:

• film: This table contains details of each film in our classic movie library, including
film_id, title, description, release_year, and rating. However, this table does
not contain any information about the category that the film is in.

• category: This table contains the name of each category of film (such as action,
comedy, drama, and so on), as well as category_id. However, this table does not
contain any information that links a category with a film.

• film_category: This table is designed to provide a link between a specific
film and a specific category. Each row contains a film_id value and associated
category_id.

When analyzing the incoming streaming data about viewers streaming our movies, we
don't want to have to do joins on each of the above tables to determine the category of
movie that was streamed. So, in this first transform job that we are going to create, we
denormalize this group of tables so that we end up with a single table that includes the
category for each film in our film library.

To build the denormalization job using AWS Glue Studio, follow these steps:

1. In the AWS Management Console, use the top search bar to search for and select the
Glue service.

2. In the left-hand menu, under the ETL section, click on AWS Glue Studio. Expand
the left-hand panel, and click on Jobs.

3. Select the option for Visual with a blank canvas, and click Create.
4. Click on the Source dropdown, and then select S3.
5. On the right-hand side, under Data source properties – S3, ensure Data Catalog

table is selected, and from the dropdown select the sakila database.
6. For the Table dropdown, select film_category.
7. Click on the Node properties tab in the transform designer and set Name to S3 –

Film-Category.

Hands-on – joining datasets with AWS Glue Studio 219

At this point, the Glue Studio screen should look as follows:

Figure 7.4 – Glue Studio with first S3 data source

8. Repeat steps 4-7, adding another S3 source for the film table, and under Node
properties, set the Name to S3 - Film. Once done, your Glue studio screen should
look as follows:

Figure 7.5 – Glue Studio with two S3 data sources

9. In the Designer window, click on the Transform dropdown and select the
Join transform.

220 Transforming Data to Optimize for Analytics

10. The Join transform requires two "parent" nodes – the two tables that we want to
join. To set the parent nodes, click on Node properties, and use the Node parents
dropdown to select the S3 – Film and S3 – Film-Category tables.

11. You will see a red check-mark on the Transform tab, indicating an issue that
needs to be resolved. Click on the Transform tab, and you will see a warning
about both tables having a column with the same name. Glue Studio offers to
automatically resolve the issue by adding a custom prefix to the columns in the
right-hand table (film_category). Click on Resolve it to have Glue Studio
automatically add a new transform that renames the columns in the right-hand
table (film_category).

12. There are a number of different join types that Glue Studio supports. Review the
Join type drop-down list to understand the differences. For our use case, we want
to join all the rows from our left-hand table (film) with matching rows from the
right-hand table (film_category). The resulting table will have rows for every
film, and each row will also include information from the film_category table
– in this case, the category_id value for each film. For Join type, select Left join,
and then click Add condition. We want to match the film_id field from the film
table with the film_id field from the film_category table. Remember though
that we had Glue Studio automatically rename the fields in the film_category
table, so for the film_category table, select the (right) film_id field.

Once done, your Glue Studio screen should look as follows:

Figure 7.6 – Glue Studio after first table join

Hands-on – joining datasets with AWS Glue Studio 221

13. Let's provide a name for the temporary table created as a result of the join. On the
Node properties tab, change the name to Join – Film-Category_ID.

14. We don't need all the data that is in our temporary Join – Film-Category_ID
table, so we can now use the Glue ApplyMapping transform to drop the columns
we don't need, rename fields, and so on. From the Transform menu, select
ApplyMapping.

15. Some of the fields that are related to our original data from when these movies
were rented out from our DVD stores are not relevant to our new streaming
business, so we can drop those now. At the same time, we can drop some of the
fields from our film_category table, as the only column we need from that
table is category_id. Select the Drop checkbox for the following columns:

 � rental_duration

 � rental_rate

 � replacement_cost

 � last_update

 � (right) film_id

 � (right) last_update

16. We can now add a transform, which will join the results of the ApplyMapping
transform with our category table, adding the name of the category for each film.
To add the Category table into our transform, from the Source drop-down menu,
select S3. For Database, select sakila, and for Table, select Category.
To provide a descriptive name, on the Node properties tab, change the Name
to S3 – Category.

17. We can now add our final transformation. From the Transform drop-down menu,
select Join.

18. We always need two tables for a join, so from the Node properties tab, use the
Node parents to add the ApplyMapping transform as a parent of the join, and
change Name to Join – Film-Category.

19. On the Transform tab, select Left join for Join type, and then click Add condition.
From the S3 – Category table, select the category_id field, and from the
ApplyMapping table, select the (right) category_id field.

222 Transforming Data to Optimize for Analytics

20. Now we will add one last ApplyMapping transform, again remove unneeded fields,
and rename fields where appropriate. From the Transform dropdown, select
ApplyMapping. Click the checkbox next to the following columns in order to
drop them:

 � last_update

 � (right) category_id

Then, for the Source key value of name, change Target key to be category_
name, as this is a more descriptive name for this field.

In this section, we configured our Glue job for the transform steps required to denormalize
our film and category data. In the next section, we will complete the configuration of our
Glue job by specifying where we want our new denormalized table to be written.

Finalizing the denormalization transform job to write
to S3
To finalize the configuration of our transform job using Glue Studio, we now need to
specify the target where we want to write out our data to:

1. Add a target by clicking on the Target drop-down, and selecting Amazon S3
2. On the Data target properties – S3 tab, select Parquet for Format, and Snappy

for Compression type. Click on Browse S3 for S3 Target Location and select the
dataeng-curated-zone-<initials> bucket. Add a prefix after the bucket of
/filmdb/film_category/.

3. For Data Catalog update options, select Create a table in the Data Catalog, and
on subsequent runs, update the schema and add new partitions.

4. For Database, select curatedzonedb from the drop-down list.
5. For Table name, type in film_category. Note that Spark requires lowercase

table and column names, and that the only special character supported by Athena is
the underscore character, which is why we use this rather than a hyphen.

Hands-on – joining datasets with AWS Glue Studio 223

Our Data target properties – S3 configuration should look as follows:

Figure 7.7 – Data target properties – S3 configuration

Note about partition keys
Our sample dataset is very small (just 1,000 film records), but imagine for
a moment that we were trying to create a similar table, including category
information, for all the books ever published. According to an estimate from
Google in 2010, there were nearly 130 million books that they planned to scan
into a digital format. If our intention was to query all this book data to gather
information on the books by category, then we would add a partition key, and
specify category_name as a partition. When the data was written to S3, it
would be grouped into different prefixes based on the category name, and this
would significantly increase performance when we queried books by category.

224 Transforming Data to Optimize for Analytics

6. We can now provide a name and permissions configuration for our job. In the top
left, change from the Visual tab to the Job details tab.

7. Set the name of the job to be Film Category Denormalization.
8. For IAM Role, from the dropdown select the role we created previously

(DataEngGlueCWS3CuratedZoneRole).
9. For Requested number of workers, change this to 2. This configuration item

specifies the number of nodes configured to run our Glue job, and since our dataset
is small,
we can use the minimum number of nodes.

10. For Job bookmark, change the setting to Disable. A job bookmark is a feature of
Glue that tracks which files have been previously processed so that a subsequent
run of the job does not process the same files again. For our testing purposes, we
may want to process our test data multiple times, so we disable the bookmark.

11. For Number of retries, change this to 0. If our job fails to run, we don't want it
to automatically repeat.

12. Leave all other defaults, and in the top right, click on Save. Then, click on Run
to run the transform job.

13. Click on the Runs tab in order to monitor the job run. You can also change to the
Script tab if you want to view the Spark code that AWS Glue Studio generated.

14. When the job completes, navigate to Amazon S3 and review the output location
to validate that the files were created. Also, navigate to the AWS Glue console to
confirm that the new table was created in curatedzonedb.

In the preceding steps, we denormalized data related to our catalog of films and their
categories, and we can now join data from this new table with our streaming data.

Create a transform job to join streaming and film data
using AWS Glue Studio
In this section, we're going to use AWS Glue Studio to create another transform, this time
to join the table containing all streams of our movies, with the denormalized data about
our film catalog:

1. In the AWS Management Console, use the top search bar to search for and select the
Glue service.

2. In the left-hand menu, under the ETL section, click on AWS Glue Studio.
3. Click on Create and manage jobs, then select Blank graph, and click Create.

Hands-on – joining datasets with AWS Glue Studio 225

4. Click on the Source dropdown, and then select S3.
5. On the right-hand side, under Data source properties – S3, ensure Data Catalog

table is selected, and from the dropdown select the curatedzonedb database.
6. For the Table dropdown, select film_category.
7. Click on the Node properties tab in the transform designer, and set Name to

S3 – Film_Category.
8. Repeat steps 5–7, adding another S3 source for the streaming table from the

streamingdb database, and setting the name to S3 - Streaming.
9. From the Transform dropdown, add an ApplyMapping transform for the

S3 – Streaming data source.
10. Change the name of the film_id key to film_id_streaming and under

Node properties set the name to ApplyMapping – Streaming.
11. From the Transform dropdown, add a Join transform and set Join type to

Left join.
12. Under Node properties, add the S3 – Film-Category data source as a node parent.
13. Under the Transform tab, for Join conditions, click on Add condition.

Select film_id_streaming for the left-hand table, and film_id for the
right-hand table.

Your Glue Studio visual designer should look as follows:

Figure 7.8 – Glue Studio interface showing the first join

226 Transforming Data to Optimize for Analytics

14. Click on the Target drop-down, and select Amazon S3. For Format, select Parquet
from the dropdown, and for Compression type, select Snappy.

15. For S3 Target Location, click Browse S3, select the dataeng-curatedzone-
<initials> bucket, and click Choose. Add a prefix after the bucket of /
streaming/streaming-films/.

16. For Data Catalog update options, select Create a table in the Data Catalog,
and on subsequent runs, update the schema and add new partitions.

17. For Database, select curatedzonedb from the drop-down list.
18. For Table name, type in streaming_films.

Our Data Target Properties – S3 configuration should look as follows:

Figure 7.9 – Glue Studio interface showing target configuration

Summary 227

19. We can now provide a name and permissions configuration for our job. In the top
left, change from the Visual tab to the Job details tab.

20. Set the name of the job to be Streaming Data Film Enrichment.
21. For IAM Role, from the dropdown select the role we created previously

(DataEngGlueCWS3CuratedZoneRole).
22. For Number of workers, change this to 2.
23. For Job bookmark, change the setting to Disable.
24. For Number of retries, change this to 0.
25. Leave all other defaults, and in the top right click on Save. Then click on Run to run

the transform job.
26. Click on the Runs tab in order to monitor the job run.
27. When the job completes, navigate to Amazon S3 and review the output location

to validate that the files were created. Also, navigate to the AWS Glue console to
confirm that the new table was created in curatedzonedb.

We have now created a single table that contains a record of all streams of our classic
movies, along with details about each movie, including the category of the movie. This
table can be efficiently queried to analyze streams of our classic movies to determine
the most popular movie and movie category, and we can break this down by state and
other dimensions.

Summary
In this chapter, we've reviewed a number of common transformations that can be applied
to raw datasets, covering both generic transformations used to optimize data for analytics
and the business transforms to enrich and denormalize datasets.

This chapter is built on previous chapters in this book. We started by looking at how
to architect a data pipeline, then reviewed ways to ingest different data types into a data
lake, and in this chapter, we reviewed common data transformations.

In the next chapter, we will look at common types of data consumers and learn more
about how different data consumers want to access data in different ways and with
different tools.

8
Identifying and

Enabling Data
Consumers

A data consumer can be defined as a person, or application, within an organization that
needs access to data. Data consumers can vary from staff that pack shelves and need to
know stock levels, to the CEO of an organization that needs data to make a decision on
which projects to invest in. A data consumer can also be a system that needs data from a
different system.

Everything a data engineer does is to make datasets useful and accessible to data
consumers, which, in turn, enables the business to gain useful insights from their data.
This means delivering the right data, via the right tools, to the right people or applications,
at the right time, to enable the business to make informed decisions.

Therefore, when designing a data engineering pipeline (as covered in Chapter 5,
Architecting Data Engineering Pipelines), data engineers should start by understanding
business objectives, including who the data consumers are and what their requirements
are.

230 Identifying and Enabling Data Consumers

We can then work backward from these requirements to ensure that we use the
appropriate tools to ingest data at the required frequency (streaming or batch, for
example). We can also ensure that we create transformation pipelines that transform
raw data sources into data that meets the consumer's specific requirements. And finally,
understanding our data consumers will guide us in selecting a target location and format
for our transformed data that is compatible with the tools that best enable our data
consumers.

Maintaining an understanding of how the data is consumed, as well as knowledge of any
downstream dependencies, will also help data engineers support different types of data
consumers as they work with a variety of datasets.

In this chapter, we will do a deep dive into data consumers by covering the following
topics:

• Understanding the impact of data democratization

• Meeting the needs of business users with data visualization

• Meeting the needs of data analysts with structured reporting

• Meeting the needs of data scientists and ML models

• Hands-on – transforming data using AWS Glue DataBrew

Technical requirements
For the hands-on exercise in this chapter, you will need permission to use the AWS Glue
DataBrew service. You will also need to have access to the AWS Glue Data Catalog and
any underlying Amazon S3 locations for the databases and tables that were created in the
previous chapters.

You can find the code files of this chapter in the GitHub repository using the following
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter08

Understanding the impact of data
democratization
At a high level, business drivers have not changed significantly over the past few decades.
Organizations are still interested in understanding market trends, customer behavior,
increasing customer retention, improving product quality, and improving speed to
market. However, the analytics landscape, the teams and individual roles that deliver
business insights, and the tools that are used to deliver business value have evolved.

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter08
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter08

Understanding the impact of data democratization 231

Data democratization – the enhanced accessibility of data for a growing audience of
users, in a timely and cost-efficient manner – has become a standard expectation for most
businesses. Today's varied data consumers expect to be able to get access to the right data
promptly using their tool of choice to consume the data.

In fact, as datasets increase in volume and velocity, their gravity will attract more
applications and consumers. This is based on the concept of data gravity, a term coined by
Dave McCrory, which suggests that data has mass. That is, as datasets increase in size, they
attract more users and become more difficult to move.

To not be inhibited by a dataset's mass, a modern data pipeline should be based on a
storage solution that allows users to interact with data in place, minimizing any heavy
lifting and latency associated with moving data. And, due to data democratization and
the existence of data gravity, both analytic teams and business users require access to
more data, and a greater variety of data, at a faster rate to stay competitive. In effect,
organizations have an increasing thirst for data.

A growing variety of data consumers
Over the past few years, we have seen an increase in the number and type of data
consumers within an organization, and these data consumers are constantly looking for
new data sources and tools. As a result, in today's modern organizations, we can expect to
find a wide variety of data consumers – from traditional business users and data analysts
to data scientists, machine-to-machine applications, as well as new types of business users.

Beyond just the ability to run SQL queries and generate scheduled reports based on a
pre-existing dataset, we see data analysts that also want the ability to do ad hoc data
cleansing and exploration, as well as the ability to join structured data with semi-
structured data or metadata extracted from unstructured data. For example, they may
want to evaluate sales trends concerning social media.

And business users now expect dashboards to be refreshed with real, or near-real-time,
data. They also want these dashboards to be accessible from anywhere, on a plethora of
mobile devices. Furthermore, they are interested in more than just sales or ERP data.
Analysts and business users are interested in social media data to identify consumer
trends, and insurance and real estate companies are looking for data to be extracted
from documents (such as medical reports or property appraisals). In the manufacturing
industry, a variety of data consumers want access to data that's been collected from
machines, devices, and vehicles for use cases such as proactively anticipating maintenance
requirements.

232 Identifying and Enabling Data Consumers

Data consumers are also no longer limited to individual humans or teams. We are seeing a
growing need for business applications to access data, be fed data, or be triggered based on
an event or trend in the data. Call centers are interested in real-time transcripts of audio
calls for sentiment analysis and tagging calls for manager review. They are also looking
at applications and integrations that would use real-time call transcriptions, or full-text
analysis of corporate documents, to reduce the time agents spend searching for answers.
Engagement platforms are mapping the customer journey and using every event delivery
(for example, email opened or email ignored) to tailor the customer experience.

Finally, the availability and importance of data scientists is a growing need and role
in many companies. They develop machine learning (ML) models that can identify
non-obvious patterns in large datasets or make predictions about future behavior
based on historical data. Data scientists usually require access to a large volume of raw,
non-aggregated data. They also require enough data to train a machine learning model
and test the model for accuracy.

Let's take a deeper dive into some of the different types of data consumers that we can find
in today's organizations. We will also look at how data engineers can help enable each of
these data consumers.

Meeting the needs of business users with data
visualization
Some roles within an organization, such as data analysts, have always had easy access
to data. For a long time, these roles were effectively gatekeepers of the data, and any
"ordinary" business users that had custom data requirements would need to go through
the data gatekeepers.

However, over the past few years, the growth of big data has expanded the thirst and need
for custom data among a growing number of business users. Business users are no longer
willing to tolerate having to go through long, formal processes to access the data they
need to make decisions. Instead, users have come to demand easier, and more immediate,
access to wider sets of data.

Meeting the needs of business users with data visualization 233

To remain competitive, organizations need to ensure that they enable all the decision-
makers in their business to have easy and direct access to the right data. At the same
time, organizations need to ensure that good data governance is in place, and that data
consumers only have access to the data they need (as we discussed in Chapter 4, Data
Cataloging, Security, and Governance). Data engineers are key to enabling this.

AWS tools for business users
Business users have mixed skill sets, ranging from those that are Excel power users and
are comfortable with concepts such as pivot tables, to executives who want easy access to
dashboards that provide visualizations that summarize complex data.

As a data engineer, you need to be able to provide solutions that meet the needs of these
diverse business users. Within AWS, the primary tool that's used by business users is
Amazon QuickSight, a cloud-based Business Intelligence (BI) application. QuickSight
enables the creation of easy-to-access visualizations, but also provides functionality for
advanced users to dig deeper into the data while providing strong security and governance
controls. Amazon QuickSight is cloud-based and can easily be provisioned for hundreds,
or even thousands, of users in an organization.

A quick overview of Amazon QuickSight
We will do a deep dive into Amazon QuickSight in Chapter 12, Visualizing Data with
Amazon QuickSight, but in this section, we will have a brief look at some of the primary
ways that business users can use this tool.

Amazon QuickSight provides interactive access to data for business users, with many
different types and styles of charts supported. A dashboard can display data from multiple
different data sources, and users can filter data, sort data, and even drill down into specific
aspects of a dataset.

234 Identifying and Enabling Data Consumers

Business users can elect to receive dashboards via regular emails or can access and
interact with dashboards on-demand via the QuickSight portal or the QuickSight mobile
app. Dashboards can also be embedded into existing web portals and apps, making these
rich data visualizations accessible via existing tools that business users have access to.

Figure 8.1 – A sample QuickSight dashboard

While some users may have previously used spreadsheets to explore datasets using
custom-built charts and pivot tables, QuickSight can provide the same functionality but in
a much easier-to-use way. QuickSight also provides security, governance, and auditability,
which is not possible when users share ad hoc spreadsheets.

QuickSight can use data from many different sources, including directly from an S3-based
data lake, databases (such as Redshift, MySQL, and Oracle), SaaS applications (including
Salesforce, ServiceNow, Jira, and others), as well as numerous other sources.

Meeting the needs of data analysts with structured reporting 235

As a data engineer, you may be involved in helping set up QuickSight and may need to
configure access to the various data sources. QuickSight users with relevant access can
combine different data sources directly, thereby enabling them to build the visualizations
the business requires without going through traditional data gatekeepers. However,
there may also be times where you are asked to create new datasets in a data lake or
data warehouse (such as Redshift or Snowflake) so that QuickSight users can access the
required data without needing to combine and transform datasets themselves.

We are now going to move on and explore a different type of data consumer – the data
analyst. But for a deeper dive into QuickSight, including a hands-on exercise on creating a
QuickSight visual, refer to Chapter 12, Visualizing Data with Amazon QuickSight.

Meeting the needs of data analysts with
structured reporting
While business users make use of data to make decisions related to their job in an
organization, a data analysts' full-time job is all about the data – analyzing datasets and
drawing out insights for the business.

If you look at various job descriptions for data analysts, you may see a fair amount of
variety, but some elements will be common across most descriptions. These include the
following:

• Cleansing data and ensuring data quality when working with ad hoc data sources.

• Developing a good understanding of their specific part of the business (sometimes
referred to as becoming a domain specialist for their part of the organization). This
involves understanding what data matters to their part of the organization, which
metrics are important, and so on.

• Interpreting data to draw out insights for the organization (this may include
identifying trends, highlighting areas of concern, and performing statistical analysis
of data). The data analyst also needs to present the information they've gathered, as
well as their conclusions, to business leaders.

• Creating visualizations using powerful BI software (such as Amazon QuickSight)
that other business users can then interact with.

• Doing an ad hoc analysis of data using structured query languages such as SQL.

236 Identifying and Enabling Data Consumers

A data analyst is often tasked with doing complex data analysis to answer specific business
questions. Examples, as described earlier in this book, include identifying which products
are the most popular by different age or socio-economic demographics. Another example
is what percentage of customers have browsed the company's e-commerce store more than
5 times, for more than 10 minutes at a time, in the last 2 weeks, but have not purchased
anything.

At times, a data analyst may make use of data in the data lake that has already been
through formal data engineering pipelines, which means it has been cleaned and checked
for quality. At other times, a data analyst may need to ingest new raw data, and in these
cases, they may be responsible for data cleansing and performing quality checks on the
data.

Some of the work a data analyst does may be to use ad hoc SQL queries to answer very
specific queries for a certain project, while at other times they may create reports, or
visualizations, that run on a scheduled basis to provide information to business users.

AWS tools for data analysts
Data analysts may use a variety of tools as they work with diverse datasets. This includes
using query languages, such as SQL, to explore data in a data warehouse such as Redshift
or data in a traditional database. A data analyst may also use advanced toolsets such as
Python or R to perform data manipulation and exploration. Visual transformation tools
may also be used by the data analyst to cleanse and prepare data when working with ad
hoc data sources that have not been through formal data engineering pipelines.

Data analysts also use BI tools, such as Amazon QuickSight, to create advanced
visualizations for business users. We covered Amazon QuickSight previously, so let's
explore some of the other tools in AWS that can be used by data analysts.

Amazon Athena
Amazon Athena is a service that enables users to run complex SQL queries against a
variety of data sources. This can be used to perform ad hoc exploration of data, enabling
the data analyst to learn more about the data and test out different queries.

Using Athena, a data analyst can run queries that join data from across tables in different
data sources. For example, using Athena, you can run a single query that brings data in
from S3 and join that with data from Redshift.

In Chapter 11, Ad Hoc Queries with Amazon Athena, we will do a deeper dive into the
Athena service.

Meeting the needs of data analysts with structured reporting 237

AWS Glue DataBrew
Data analysts often need to use new sources of data to answer new questions and may
need to perform some data transformation on these datasets. While creating these new
insights, the data analyst may work closely with business users to develop the reports,
visualizations, metrics, or other data as needed. Part of this iterative process may involve
creating ad hoc transformation pipelines to ingest, cleanse, join, and transform data.

Once the deliverable has been finalized (data sources identified, transformations
determined, and so on), the data analyst may work with their data engineering team to
formalize the pipeline. This is a recommended best practice to ensure that all pipelines
are contained in a source control system, are part of formal deployment processes, and so
on. As such, data engineers should work closely with data analysts, and always be ready to
help formalize the ad hoc pipelines that a data analyst may create and that the business has
come to depend on.

One of the AWS tools that is very popular with data analysts is the AWS Glue DataBrew
service. Using DataBrew, data analysts can easily cleanse new data sources and transform
and join data from different tables to create new datasets. This can all be done with the
Glue DataBrew visual interface, without the data analyst needing to write any code:

Figure 8.2 – The AWS Glue DataBrew visual transform designer

238 Identifying and Enabling Data Consumers

Glue DataBrew can connect to many different data sources, including Redshift and
Snowflake, JDBC databases, S3, Glue/Lake Formation tables, as well as other Amazon
services such as AWS Data Exchange and Amazon AppFlow. DataBrew also includes over
250 built-in transforms that can be used by data analysts to easily perform common data
cleansing tasks and transformations. In the hands-on section of this chapter, you will get
to use some of these built-in transforms.

Running Python or R in AWS
Some data analysts have advanced coding skills that they put to use to explore and
visualize data using popular programming languages such as Python and R. These
languages include many functions for statistically analyzing datasets and creating
advanced visualizations.

Python code can be run using multiple services in AWS, including the following:

• AWS Lambda: Can run Python code in a serverless environment, for up to a
maximum of 15 minutes of runtime

• AWS Glue Python Shell: Can run Python code in a serverless environment, with
no limit on how long it runs

• Amazon EC2: A compute service where you can install Python and run Python
code

RStudio, a popular IDE which can be used for creating data analytic projects based on the
R programming language, can also be run using multiple services in AWS.

• RStudio can be run on Amazon EC2 compute instances, enabling data analysts to
create R-based projects for data analysis. See the AWS blog titled Running R on AWS
(https://aws.amazon.com/blogs/big-data/running-r-on-aws/)
for more information on how to set this up.

• If you're working with very large datasets, RStudio can also be run on Amazon
EMR, which uses multiple compute nodes to process large datasets. See the
AWS blog titled Statistical Analysis with Open-Source R and RStudio on Amazon
EMR (https://aws.amazon.com/blogs/big-data/statistical-
analysis-with-open-source-r-and-rstudio-on-amazon-emr/) for
more information on how to use R with Amazon EMR.

https://aws.amazon.com/blogs/big-data/running-r-on-aws/
https://aws.amazon.com/blogs/big-data/statistical-analysis-with-open-source-r-and-rstudio-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/statistical-analysis-with-open-source-r-and-rstudio-on-amazon-emr/

Meeting the needs of data scientists and ML models 239

Data engineers can help enable data analysts that have strong Python or R skills by
helping them configure these coding environments in AWS. Data engineers can also help
formalize data transformation pipelines in those cases where a data analyst has created
an ad hoc pipeline for processing, that the business has subsequently come to use on an
ongoing basis.

While data analysts are primarily responsible for deriving insights out of data that reflect
current trends, as well as the current state of the business, data scientists generally use data
to predict future trends and requirements. In the next section, we will dive deeper into the
role of the data scientist.

Meeting the needs of data scientists and ML
models
Over the past decade, the field of ML has significantly expanded, and the majority of
larger organizations now have data science teams that use ML techniques to help drive
the objectives of the organization.

Data scientists use advanced mathematical concepts to develop ML models that can be
used in various ways, including the following:

• Identifying non-obvious patterns in data (based on the results of a blood test, what
is the likelihood that this patient has a specific type of cancer?)

• Predicting future outcomes based on historical data (is this consumer, with these
specific attributes, likely to default on their debt?)

• Extracting metadata from unstructured data (in this image of a person, are they
smiling? Are they wearing sunglasses? Do they have a beard?)

Many types of ML approaches require large amounts of raw data to train the machine
learning model (teaching the model about patterns in data). As such, data scientists can
be significant consumers of data in modern organizations.

AWS tools used by data scientists to work with data
Data scientists will use a wide variety of tools with many different purposes, such as tools
for developing ML models, tools for fine-tuning those models, and tools for preparing
data to train ML models.

240 Identifying and Enabling Data Consumers

Amazon SageMaker is a suite of tools that helps data scientists and developers with the
many different steps required to build, train, and deploy ML models. In this section, we
will only focus on the tools that are used in data preparation, but in Chapter 13, Enabling
Artificial Intelligence and Machine Learning, we will do a deeper dive into some of the
other AWS tools related to ML and AI.

SageMaker Ground Truth
Most ML models today rely on training the model using labeled data. That is, a dataset
that includes the attribute that we are trying to predict is available to help train our model.

Let's use an example of a data scientist named Luna that is looking to create an ML model
to identify if an image was of a dog or a cat. To train the model, Luna would need loads
of pictures of dogs and cats and would need each image to be labeled to indicate whether
it was a picture of a dog or a cat. Once Luna has this information, she could train her ML
model to recognize both dogs and cats.

For our example, let's imagine that Luna was able to acquire a set of 10,000 images of
dogs and cats, but the images are unlabeled, which means they cannot be used to train the
model. And it would take weeks for Luna to go through the 10,000 images on her own to
label each one correctly.

Luckily, Luna has heard about SageMaker Ground Truth, a fully managed service for
labeling datasets. Ground Truth uses its own ML model to automatically label datasets,
and when it comes across data that it cannot confidently label, it can route that data
to a team of human data labelers to be manually labeled. You can route data to either
your pre-selected team of data labelers or make use of the over 500,000 independent
contractors that are part of the Amazon Mechanical Turk program and have them label
the data according to your instructions.

Using Amazon Ground Truth, Luna can quickly and accurately get her 10,000 images of
dogs and cats labeled, ready to help train her ML model.

SageMaker Data Wrangler
It has been estimated that data scientists can spend up to 70% of their time cleaning and
preparing raw data to be used to train ML models. To simplify and speed up this process,
AWS announced SageMaker Data Wrangler at their re:Invent conference in 2020.

Meeting the needs of data scientists and ML models 241

In most organizations, there will be formal datasets that data engineering teams have
prepared for consumption by the organization. However, the specific data that a data
scientist needs for training a specific model may not be available in this repository, may
not be in the required format, or may not contain the granular level of data that is needed.
To best enable data scientists to be self-sufficient without needing to depend on other
teams, many organizations enable their data science teams to directly ingest and process
raw data.

Data Wrangler supports directly ingesting data from sources, including Amazon S3,
Athena, Redshift, as well as the Snowflake data warehouse. Once imported, a data scientist
can use the SageMaker Studio interface to transform the data, selecting from a library
of over 300 built-in data transformations. Data Wrangler also supports writing custom
transformations using PySpark and popular Python libraries such as pandas.

Once a Data Wrangler flow has been created in the SageMaker Studio visual interface, a
user can export the Data Wrangler flow into a Jupyter Notebook and run it is as a Data
Wrangler job, or even export the code as Python code and run it elsewhere.

SageMaker Clarify
SageMaker Clarify is a tool for examining raw data to identify potential bias in data that
is going to be used to train ML models. For example, let's say that you were developing a
new ML model to detect credit risk for new customers. If your proposed training dataset
contains data mostly on middle-aged people, then the resulting ML model may be less
accurate when making predictions for younger or older people.

SageMaker Clarify has been integrated with SageMaker Data Wrangler, enabling users
to evaluate their datasets for potential bias as part of the data preparation process. Users
can specify the attributes that they want to evaluate for bias (such as gender or age) and
SageMaker Clarify will use several built-in algorithms to detect potential bias. SageMaker
Clarify also provides a visual report with details on the measurements and potential bias
identified.

So far, we have had a look at several types of data consumers that are common in
organizations. Now, we will look at this chapter's hands-on exercise – creating a simple
data transformation using AWS Glue DataBrew.

242 Identifying and Enabling Data Consumers

Hands-on – creating data transformations
with AWS Glue DataBrew
In Chapter 7, Transforming Data to Optimize for Analytics, we used AWS Glue Studio to
create a data transformation job that took in multiple sources to create a new table. In this
chapter, we discussed how AWS Glue DataBrew is a popular service for data analysts, so
we'll now make use of Glue DataBrew to transform a dataset.

Differences between AWS Glue Studio and AWS Glue DataBrew
Both AWS Glue Studio and AWS Glue DataBrew provide a visual interface for
designing transformations, and in many use cases either tool could be used
to achieve the same outcome. However, Glue Studio generates Spark code
that can be further refined in a code editor and can be run in any compatible
environment. Glue DataBrew does not generate code that can be further
refined, and Glue DataBrew jobs can only be run within the Glue DataBrew
service. Glue Studio has fewer built-in transforms, and the transforms it does
include are generally aimed at data engineers. Glue DataBrew has over 250
built-in transforms, and these are generally aimed at data analysts.

In this hands-on task, we will be playing the role of a data analyst that has been tasked
with creating a mailing list that can be used to send marketing material to the customers
of our now-closed video store, to make them aware that our catalog of movies is now
available for streaming.

Configuring new datasets for AWS Glue DataBrew
To start with, we're going to access the Glue DataBrew console and connect to two existing
S3-based data sources (the customer and address tables that we ingested from our MySQL
database in Chapter 6, Ingesting Batch and Streaming Data):

1. Log into the AWS Management Console and access the Glue service at https://
console.aws.amazon.com/databrew.

2. From the left-hand side menu, click on Datasets.
3. Click on Connect new dataset.
4. Provide a Dataset name for the customer table (such as customer-dataset).
5. In the Connect to new dataset section of the window, click on Data Catalog S3

tables on the left-hand side. Then, click on sakila from the list of Glue databases:

https://console.aws.amazon.com/databrew
https://console.aws.amazon.com/databrew

Hands-on – creating data transformations with AWS Glue DataBrew 243

Figure 8.3 – Glue DataBrew – Dataset console

6. From the list of tables, click the selector for the customer table, and then click
Create dataset at the bottom right.

7. Repeat Steps 1 – 6, but this time, name the dataset address-dataset, select Data
Catalog S3 tables and sakila again, but select the address table, and then Create
dataset.

Now that we have configured the two datasets we plan to use, we will start creating the
transform steps in a new DataBrew project.

Creating a new Glue DataBrew project
Now, let's create a new Glue DataBrew project where we can join our customer and
address tables, and then clean the dataset:

1. In the AWS Glue DataBrew console, click on Projects from the left-hand side menu.
Then, click Create project.

2. For Project name, provide a name (such as customer-mailing-list).
3. Under Recipe details, leave the default of Create new recipe as-is.

244 Identifying and Enabling Data Consumers

4. Under Select a dataset, select customer-dataset:

Figure 8.4 – Creating a new Glue DataBrew project (1)

5. Under Permissions, from the drop-down list, select Create new IAM role.
6. For New IAM role suffix, provide a suitable suffix, such as dataengbook.
7. At the bottom right, click on Create project:

Hands-on – creating data transformations with AWS Glue DataBrew 245

Figure 8.5 – Creating a new Glue DataBrew project (2)

Note that there are session costs associated with Glue DataBrew projects ($1.00 per
30-minute session). However, at the time of writing, AWS was offering the first 40 sessions
at no charge to new Glue DataBrew customers. For the current pricing, see https://
aws.amazon.com/glue/pricing/.

Building your Glue DataBrew recipe
We can now use the interactive Glue DataBrew project session to build out a recipe for our
transformation (a recipe is the steps that are taken to transform our data). Note that it may
take a few minutes before the session is provisioned and ready.

https://aws.amazon.com/glue/pricing/
https://aws.amazon.com/glue/pricing/

246 Identifying and Enabling Data Consumers

In the interactive project session window, as shown in the following screenshot, we can
see a sample of our customer table data and a panel to the right that allows us to build our
recipe:

Figure 8.6 – AWS Glue DataBrew interactive project session

For our recipe, we want to join this data with our address table, and then make the
following changes to the dataset to create a mailing list for our marketing team:

• Change the first_name and last_name columns to capital case.

• Change the email addresses so that they're all in lowercase.

Follow these steps to create the recipe:

1. Click on Add step in the recipe panel on the right-hand side of the console.
2. Scroll down through the list of transformations and select Join multiple datasets.
3. From the Select dataset dropdown, select address-dataset. Dataset metadata, as

well as a sample of the dataset, will be displayed. Click on Next at the bottom right.
4. For Select join type, select Left join. This takes all the rows in our left-hand table

(the customer table) and joins each row with the matching row in the address table,
based on the join keys we specify.

5. For Join keys, for Table A, select address_id. For Table B, also select address_
id.

Hands-on – creating data transformations with AWS Glue DataBrew 247

6. Under Column list, deselect all the columns, and then select only the following
columns (these will be the only columns that our marketing team needs for the
mailing list):

A. Table A, customer_id
B. Table A, first_name
C. Table A, last_name
D. Table A, email
E. Table B, address
F. Table B, district
G. Table B, postal_code

7. Click Finish.

We will now see a preview of our new table, with the customer and address tables
joined, and only the columns selected previously showing.

You may notice that our customer list includes addresses from many different
countries (look at some of the entries under the district column), and yet we
don't have a column for the country. This is because our original data source (a
MySQL database) was highly normalized. The address table has a city_id field,
and we could have included that and then joined our new dataset with the city table
to include the city name and country_id fields. However, we would need to have
joined that dataset with the country table (joining on the country_id column) to
get the country name. We will not be covering those steps here, but feel free to give
that a try on your own.

All the first names and last names were captured in all uppercase in the original data
source (MySQL), so let's transform these into capital case.

8. In the Recipe panel, click on Add step icon next to Applied steps.
9. From the list of transforms, scroll down and select the FORMAT / Change to

capital case transform.
10. For Source column, select the first_name column. Ensure that Format column

to has Capital case selected and then click Apply.
11. Repeat Steps 7 – 9, but this time select the last_name column as Source column.
12. Repeat Steps 7 – 9, but this time select the FORMAT / Change to lowercase

transform and select the email column as the Source column.

248 Identifying and Enabling Data Consumers

Your Glue DataBrew recipe should look as follows:

Figure 8.7 – Completed Glue DataBrew recipe

With that, we have created our recipe and been able to preview the results of our
transform. Our final step will be to run our recipe in a Glue DataBrew job and write out
the results to Amazon S3 so that we can provide the mailing list file to our marketing
team.

Creating a Glue DataBrew job
In this final section of our hands-on activity, we will run our recipe in a job and write the
results of our transform to a file in Amazon S3:

1. In the AWS Glue DataBrew console, click on Jobs from the left-hand side menu.
Then, click Create job.

2. For Job name, provide a name for your job (such as mailing-list-job).
3. For Job input, select Project, and then select your customer-mailing-list project.
4. For Job output settings, leave the default settings as-is (output to Amazon S3, with

CSV set as the file type, the delimiter as a comma, and no compression).
5. For S3 location, select a location (such as s3://dataeng-clean-zone-

<initial>/mailing-list).

Hands-on – creating data transformations with AWS Glue DataBrew 249

6. For Permissions, select the role that was created previously in this exercise (such as
AWSGlueDataBrewServiceRole-dataengbook).

7. For Permissions, select Create new IAM role and provide a suffix (such as mailing-
list-job). By having Glue DataBrew create a new role for this job, DataBrew will
automatically provide write access to the location you specified for S3 output.

8. Click Create and run job.

When the job finishes running, the Job run history screen will be displayed, showing the
status of the job:

Figure 8.8 – Job run history screen showing the job's status

Click on 1 output in the Output column to view the S3 destination that you selected for
this job. Click on S3 destination path to open a new browser tab showing the output's
location in the S3 console. Download the CSV file and open it with a text editor or
spreadsheet application to verify the results.

In this hands-on exercise, you created a new Glue DataBrew job that joined two tables
(customer and address). You then ran various transforms on the dataset to format the
columns as needed by the marketing team and created a new CSV output file in Amazon
S3.

250 Identifying and Enabling Data Consumers

Summary
In this chapter, we explored a variety of data consumers that you are likely to find in most
organizations, including business users, data analysts, and data scientists. We briefly
examined their roles, and then looked at the types of AWS services that each of them is
likely to use to work with data.

In the hands-on section of this chapter, we took on the role of a data analyst, tasked
with creating a mailing list for the marketing department. We used data that had been
imported from a MySQL database into S3 in a previous chapter, joined two of the tables
from that database, and transformed the data in some of the columns. Then, we wrote the
newly transformed dataset out to Amazon S3 as a CSV file.

In the next chapter, Loading Data into a Data Mart, we will look at how data from a data
lake can be loaded into a data warehouse, such as Amazon Redshift.

9
Loading Data into a

Data Mart
While the data lake enables a significant amount of analytics to happen inside it, there
are several use cases where a data engineer may need to load data into an external data
warehouse, or data mart, to enable a set of data consumers.

As we reviewed in Chapter 2, Data Management Architectures for Analytics, a data lake
is a single source of truth across multiple lines of business, while a data mart contains a
subset of data of interest to a particular group of users. A data mart could be a relational
database, a data warehouse, or a different kind of data store.

Data marts serve two primary purposes. First, they provide a database with a subset of the
data in the data lake, optimized for specific types of queries (such as for a specific business
function). In addition, they also provide a higher-performing, lower latency query engine,
which is often required for specific analytic use cases (such as for powering business
intelligence applications).

252 Loading Data into a Data Mart

In this chapter, we will focus on data warehouses and data marts and cover the
following topics:

• Extending analytics with data warehouses/data marts

• What not to do – anti-patterns for a data warehouse

• Redshift architecture review and storage deep dive

• Designing a high-performance data warehouse

• Moving data between the data lake and Redshift

• Hands-on – loading data into an Amazon Redshift cluster and running queries

Technical requirements
For the hands-on exercises in this chapter, you will need permissions to create a new IAM
role, as well as permissions to create a Redshift cluster.

You can find the code files of this chapter in the GitHub repository using the following
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter09

Extending analytics with data warehouses/
data marts
Tools such as Amazon Athena (which we will do a deeper dive into in Chapter 11, Ad Hoc
Queries with Amazon Athena) allow us to run SQL queries directly on data in the data
lake. And while this enables us to query very large datasets that exist on Amazon S3, the
performance of these queries is generally lower than the performance you get when running
queries against data on a high-performance disk that is local to the compute engine.

Not all queries require this kind of high performance, and we can categorize our queries
and data into three categories. Let's take a look.

Cold data
This is data that is not frequently accessed, but it is mandatory to store it for long periods
for compliance and governance reasons, or historical data that is stored to enable future
research and development (such as for training machine learning models).

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter09
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter09

Extending analytics with data warehouses/data marts 253

An example of this is the logs from a banking website. Unless there is a breach, or the
customer requests account access history, there is a good chance that after a while,
we may not need to query this data again.

Another example is detailed data from a range of sensors in a factory. This data may not
be queried actively after 30 days, but we want to keep this data available in case there is a
future machine learning project where it would be useful to train the machine learning
model with rich, historical data.

In AWS, cold data can be stored in the Amazon S3 service, which provides different
classes of storage based on your requirements. The following classes of S3 storage are
commonly used for cold data, and S3 life cycle rules can be used to move data into these
classes automatically after a certain time. For example, you can move certain datasets
from warm storage to one of the following cold storage classes:

• Amazon S3 Glacier (S3 Glacier): This storage class is intended for long-term
storage where access to the data may be required a few times a year, and immediate
access is not required. Data can be retrieved from S3 Glacier in minutes to hours
(with different price points for the retrieval based on how quickly the data is
required). Data in S3 Glacier cannot be directly queried with Amazon Athena
or Glue jobs – it must be retrieved and stored in a regular storage class before it
can be queried.

• Amazon S3 Glacier Deep Archive (S3 Glacier Deep Archive): This storage class
is the lowest cost storage for long-term data retention and is intended for data that
may be retrieved once or twice a year. Data in this storage class can be retrieved
within 12 hours.

Selecting the appropriate class of S3 storage for your data is important. Storing cold data
that is infrequently accessed outside of the Glacier class means you are paying more for
that storage than needed, and this is not frugal. Significant savings can be achieved by
storing cold data in an appropriate storage class.

Warm data
Warm data is data that is accessed relatively often but does not require extremely low
latency for retrieval. This is data that needs to be queried on-demand, such as data that
is used in daily ETL jobs, or data used for ad hoc querying and data discovery.

An example of this kind of data is data that is ingested in our raw data lake zone daily,
such as data from our SAP or another transactional database system. This data will be
processed by our ETL jobs daily, and data will be written out to the transformed zone.

254 Loading Data into a Data Mart

Generally, data in the transformed zone will still be batch processed for further business
transforms, before being moved to the curated zone. All of these zones would likely fall
into the category of warm data.

In AWS, warm data can also be stored in the Amazon S3 service, but would most likely be
stored in the standard storage class. The following classes of S3 storage are commonly used
for warm data requirements:

• Amazon S3 Standard (S3 Standard): The S3 Standard storage class provides
immediate access to data with performance that is ideal for ETL jobs and ad hoc
SQL queries with Amazon Athena or Redshift Spectrum. With S3 Standard, costs
are based on the amount of data stored, and there are no per-GB data retrieval costs
(although there is a cost for API GET calls).

• Amazon S3 Standard-Infrequent Access (S3 Standard-IA): This storage class
offers the same immediate access to data, as well as the same fast retrieval speed,
as Amazon S3 Standard. With S3 Standard-IA, the cost per GB for storage is lower
than S3 Standard, but there is a per-GB cost for retrieving data. Data in this class
can be directly accessed via Glue jobs, Amazon Athena, Redshift Spectrum,
and more.

• Amazon S3 Intelligent-Tiering (S3 Intelligent Tiering): This storage class is
useful when you are unsure of data access patterns. With Intelligent Tiering, data is
automatically moved from the Standard tier to the Infrequent Access tier if the data
object has not been accessed in 30 days. Optionally, you can enable archive tiering
as well, in which case objects that haven't been accessed in 90 days will be moved
to S3 Glacier, and after 180 consecutive days without access will be moved to S3
Glacier Deep Archive.

Each of these storage classes has different pricing plans. S3 Standard's cost is based on
storage and API calls (put, copy, get, and more), while S3 Standard Infrequent Access also
has a cost per GB of data retrieved. S3 Intelligent Tiering does not have a cost per GB for
data retrieved, but it does have a small monitoring and automation cost per object. For
more details on pricing, see https://aws.amazon.com/s3/pricing/.

When you know the access patterns for your data, you should select either the S3 Standard
or S3 Standard-Infrequent Access class. However, if you are unsure of data access patterns,
you should strongly consider storing the data in the S3 Intelligent Tiering class and allow
the Amazon S3 service to automatically move data between classes based on how the data
is accessed by your data consumers.

https://aws.amazon.com/s3/pricing/

Extending analytics with data warehouses/data marts 255

Hot data
Hot data is data that is highly critical for day-to-day analytics enablement in an
organization. This is data that is likely accessed multiple times per day and low-latency,
high-performance access to the data is critical.

An example of this kind of data would be data used by a business intelligence application
(such as Amazon QuickSight or Tableau). This could be data that is used to show
manufacturing and sales of products at different sites, for example. This is often the kind
of data that is used by end user data consumers in the organization, as well as by business
analysts that need to run complex data queries. This data may also be used in constantly
refreshing dashboards that provide critical business metrics and KPIs used by senior
executives in the organization.

In AWS, several services can be used to provide high-performance, low-latency access to
data. These include the RDS database engines, the NoSQL DynamoDB database, as well
as Elasticsearch (for searching full-text data). However, from an analytic perspective, the
most common targets for hot data are Amazon Redshift or Amazon QuickSight SPICE
(which stands for Super-fast, Parallel, In-memory Calculation Engine):

• Amazon Redshift is a super-fast cloud-native data warehousing solution that
provides high-performance, low-latency access to data stored in the data warehouse.

• Amazon QuickSight is a business intelligence tool from Amazon for creating
dashboards. With Amazon QuickSight, you have the option of reading data from
sources such as Amazon Redshift or loading data directly into the QuickSight
in-memory database engine (SPICE) for optimal high-performance, low-latency
access.

As we mentioned previously, AWS offers purpose-built storage engines for different
data types/temperatures. The decision on which engine to use is generally based on
a cost versus performance trade-off.

In many cases, data is time-sensitive. There may be a business application that needs to
report on historical statistics, current trends, and a zoomed-in view of the previous few
months of data. Some of this data may also need to be refreshed frequently. This requires
a data engineer to process the data, clean and massage it, and then load a subset of the
data to a high-performing engine, such as Amazon Redshift.

In this chapter, we are going to focus on using Amazon Redshift as a high-performance data
mart for hot data access. Data lakes are a great option from a cost and scalability perspective
for storing large amounts of data and being the ultimate source of truth. However, data
warehouses provide an application-specific approach to querying large-scale structured
and semi-structured data with the best performance and lowest latency.

256 Loading Data into a Data Mart

What not to do – anti-patterns for a data
warehouse
While there are many good ways to use a data warehouse for analytics, there are some
things that organizations may be tempted to do that are not good for a data warehouse.

Let's take a look at some of the ways of using a data warehouse that should be avoided.

Using a data warehouse as a transactional datastore
Data warehouses are designed to be optimized for online analytical processing (OLAP)
queries, so they should not be used for online transaction processing (OLTP) queries
and use cases.

While there are mechanisms to update or delete data from a data warehouse, a data
warehouse is primarily designed for append-only queries. There are also other features
of transactional databases (such as MySQL or PostgreSQL) that are available in Redshift
– such as the concept of primary and foreign keys – but these are used for performance
optimization and query planning and are not enforced by Redshift.

Using a data warehouse as a data lake
Data warehouses offer increased performance by having high-performance storage
directly attached to the compute engine. A data warehouse is also able to scale to store
vast amounts of data, and while primarily designed to support structured data, they are
also able to offer some support for semi-structured data.

However, data warehouses, by design, require upfront thought about schema and table
structure. They are also not designed to store unstructured data (such as images and
audio), and they only support SQL for data querying and transformation. As data
warehouses include a compute engine, their cost is also higher than storing data in
low-cost object storage.

In contrast, with data lakes, you can store all the data on low-cost object storage and can
ingest data without needing to design an appropriate schema structure first. You can also
analyze the dataset directly (using tools such as Amazon Athena) and transform the data
with a wide range of tools (SQL and Spark, for example), and then bring just the required
data into the data warehouse.

What not to do – anti-patterns for a data warehouse 257

The goal is to avoid storing unnecessary data in a data warehouse. Data warehouses are
supposed to store curated datasets with well-defined schemas, and should only store hot
data that is needed for high-performance, low-latency queries.

Using data warehouses for real-time, record-level use
cases
Data warehouses are optimized to load data in batches and are not well-suited to ingesting
data as individual records. As such, a data warehouse should not be used as a direct target
for large amounts of IoT data (or other real-time data sources), for example.

If there is a requirement to load this kind of data in Redshift, it would be recommended
to buffer the data and load the data in batches to Redshift. One way to do this would be
by sending the data to Kinesis Firehose in real time, where Kinesis Firehose could then
buffer the data for up to 15 minutes, or up to 128 MB of data, whichever comes first. Once
the buffer is full, Kinesis can instruct Redshift to load the batch of data. However, in most
cases, you would still need to design the schema/table structure upfront, whereas with
data lakes, you can ingest data directly, without needing any schema design.

Storing unstructured data
While some data warehouses (such as Amazon Redshift) can store semi-structured data
(such as JSON data), data warehouses should not be used to store unstructured data such
as images, videos, and other media content.

You should always consider which data engine may be best for a specific data type before
just defaulting to storing the data in a data warehouse. For example, Health Care FHIR
data has a heavily nested JSON structure. While it is possible to store and query this in
Amazon Redshift, you may want to consider using a solution designed for that specific
data type, such as Amazon HealthLake.

Now that we have reviewed some of the ways that a data warehouse should not be used,
let's dig deeper into the Redshift architecture.

258 Loading Data into a Data Mart

Redshift architecture review and storage
deep dive
In this section, we will take a deeper dive into the architecture of Redshift clusters, as well
as into how data in tables is stored across Redshift nodes. This in-depth look will help you
understand and fine-tune Redshift's performance, though we will also cover how many of
the design decisions affecting table layout can be automated by Redshift.

In Chapter 2, Data Management Architectures for Analytics, we briefly discussed how the
Redshift architecture uses leader and compute nodes. Each compute node contains a certain
amount of compute power (CPUs and memory), as well as a certain amount of local storage.
When configuring your Redshift cluster, you can add multiple compute nodes, depending on
your compute and storage requirements. Note that to provide fault tolerance and improved
durability, the compute nodes have 2.5 - 3x the stated node storage capacity (for example, if
addressable storage capacity is listed as 2.56 TB, the actual underlying storage may be closer
to 7.5TB).

Every compute node is split into either 2, 4, or 16 slices, depending on the cluster type
and size. Each slice is allocated a portion of the node's memory and storage and works
as an independent worker, but working in parallel with the other slices.

The slices store different columns of data for large tables, as distributed by the leader node.
The data for each column is persisted as 1 MB immutable blocks, and each column can
grow independently.

When a user runs a query against Redshift, the leader node creates a query plan,
allocates work for each slice, and then the slices execute the work in parallel. When each
slice completes its work, it passes the results back to the leader node for final aggregation
or sorting and merging. However, this means that a query is only as good as its
slowest partition.

Data distribution across slices
Let's have a look at how data is distributed across slices in Redshift:

Redshift architecture review and storage deep dive 259

Figure 9.1 – Data distribution across slices on a compute node

In the preceding diagram, we can see that column2 is distributed across Slice1-Disk1,
Slice1-Disk2, and Slice2-Disk1. To increase data throughput and query performance,
data should be spread evenly across slices to avoid I/O bottlenecks. If most of the data for
a specific table were on one node, that node would end up doing all the heavy lifting and
diminish the point of parallelism. Redshift supports multiple distribution styles, including
EVEN, KEY, and ALL (and can automatically select the best distribution style, as we will
discuss later in this chapter). The distribution style that's selected for a specific table
determines which slice a row in a column will be stored on.

One of the most common operations when performing analytics is the JOIN operation.
Let's look at an example where we have two tables, one of which is a small dimension table
(2-3 million rows) and the other is a very large fact table (potentially with hundreds of
millions of rows).

260 Loading Data into a Data Mart

The small dimension table can easily fit into the storage of a single node, while the
large table needs to be spread across multiple nodes. One of the biggest impacts on
performance regarding a JOIN query is when data needs to be shuffled (copied) around
between nodes. To avoid this and to optimize JOIN performance, the smaller dimension
table can be stored on all the slices of the cluster by specifying an ALL distribution style.
For the larger table, data can be equally distributed across all the slices in a round-robin
fashion by specifying an EVEN distribution style. By doing this, every slice will have a
full copy of the small dimension table and it can directly join that with the subset of data
it holds for the large fact table, without needing to shuffle the dimension data from
other slices.

While this can be ideal for query performance, the ALL distribution style does have some
overhead with regards to the amount of storage space used by the cluster, as well as a
negative performance impact for data loads.

An alternative approach that can be used to optimize joins, especially if both tables being
joined are large, is to ensure that the same slice stores the rows for both tables that will
need to be joined. A way to achieve this is by using the KEY distribution style, where a
hash value of one of the columns will determine which row of each table will be stored
on which slice.

For example, let's say that we have a table that stores details about all of the products
we sell, and that this table contains a product_id column. Let's also say we have a
different table that contains details of all sales, and that it also contains a column called
product_id.

In our queries, we often need to join these tables on the product_id column. By
distributing the data for both tables based on the value of the product_id column, we
can help ensure that all the rows that need to be joined are on the same slice. Redshift
would determine the hash value of, for example, product_id "DLX5992445". Then,
all the rows, from both tables, that contain that product_id would be stored on the
same slice.

For grouping and aggregation queries, you also want to reduce data shuffling (copying
data from one node to another to run a specific query) to save network I/O. This can also
be achieved by using the KEY distribution style to keep records with the same key on the
same slice. In this scenario, you would specify the column used in the GROUP BY clause
as the key to distribute the data on.

Redshift architecture review and storage deep dive 261

However, if we queried one of these tables with a WHERE filter on the product_id
column, then this distribution would create a bottleneck, as all the data that needed to
be returned from the query would be on one slice. As such, you should avoid specifying
a KEY distribution on a column that is commonly used in a WHERE clause. Finally, the
column that's used for KEY distribution should always be one with high cardinality and
normal distribution of data to avoid hot partitions and data skew.

While this can be very complex, Redshift can automatically optimize configuration
items such as distribution styles, as we will discuss later in this chapter in the Designing
a high-performance data warehouse section.

Redshift Zone Maps and sorting data
The time it takes a query to return results is also impacted by hardware factors – specifically,
the amount of disk seek and disk access time:

• Disk seek is the time it takes a hard drive to move the read head from one block
to another (as such, it does not apply to nodes that use SSD drives).

• Disk access is the latency in reading and writing stored data on disk blocks and
transferring the requested data back to the client.

To reduce data access latency, Redshift stores in-memory metadata about each disk
block on the leader node in what is called Zone Maps. For example, Zone Maps store
the minimum and maximum values for the data of each column that is stored within
a specific 1 MB data block. Based on these Zone Maps, Redshift knows which blocks
contain data relevant to a query, so it can skip reading blocks that do not contain data
needed for the query. This helps optimize query performance by magnitudes by reducing
the number of reads.

Zone Maps are most effective when the data on blocks is sorted. When defining a
table, you can optionally define one or more sort keys, which determines how data is
sorted within a block. When choosing multiple sort keys, you can either have a priority
order of keys using a compound sort key or give equal priority to each sort key using
an interleaved sort key. The default sort key type is a compound sort key, and this is
recommended for most scenarios.

Sort keys should be on columns that are frequently used with range filters or columns
where you regularly compute aggregations. While sort keys can help significantly increase
query performance by improving the effectiveness of Zone Maps, they can harm the
performance of ingest tasks. In the next section, we will look at how Redshift simplifies
some of these difficult design decisions by being able to automatically optimize a table's
sort key.

262 Loading Data into a Data Mart

Designing a high-performance data warehouse
When you're looking to design a high-performing data warehouse, multiple factors need
to be considered. These include items such as cluster type and sizing, compression types,
distribution keys, sort keys, data types, and table constraints.

As part of the design process, you will need to consider several trade-offs, such as cost
verse performance or the size of storage verse performance. Business requirements and
the available budget will often drive these decisions.

Beyond decisions about infrastructure and storage, the logical schema design also plays
a big part in optimizing the performance of the data warehouse. Often, this will be an
iterative process, where you start with an initial schema design that you refine over time to
optimize for increased performance.

Selecting the optimal Redshift node type
There are different types of nodes available, each with different combinations of CPU,
memory, storage capacity, and storage type. The following are the three families of
node types:

• RA3 nodes: When used with managed storage, you can decouple compute and
storage since you pay a per-hour compute fee and a separate fee based on how much
managed storage you use over the month. Storage is a combination of local SSD
storage and data stored in S3.

• DC2 nodes: These are designed for compute-intensive workloads and feature a fixed
amount of local SSD storage per node. With DC2 nodes, compute and storage are
coupled (meaning that to increase either compute or storage, you need to add a new
node containing both compute and storage).

• DS2 nodes: These are legacy nodes that offer compute with attached large hard disk
drives. With DS2 nodes, compute and storage is also coupled.

AWS recommends that small data warehouses (under 1 TB in size) use DC2 nodes, while
larger data warehouses make use of the RA3 nodes with managed storage. The DS2 node
type is a legacy node type that is not generally recommended for use when creating a new
Redshift cluster.

When creating a new Redshift cluster in the console, you have the option of entering
information about your data's size, type of data, and data retention, which will provide
a recommend node type and the number of nodes for your workload.

Designing a high-performance data warehouse 263

Selecting the optimal table distribution style and
sort key
In the early days of Redshift, users had to specifically select the distribution style and sort
key that they wanted to use for each table. When a Redshift cluster was not performing
as well as expected, it would often turn out that the underlying issue was having a
non-optimal distribution style and/or sort key.

As a result, Amazon introduced new functionality that enabled Redshift to use advanced
artificial intelligence methods to monitor queries being run on the cluster, and to
automatically apply the optimal distribution style and/or sort key. Optimizations can be
applied to tables within a few hours of a minimum number of queries being run.

If you create a new table and do not specify a specific distribution style or sort key,
Redshift sets both of those settings to AUTO. Smaller tables will initially be set to have
an ALL distribution style, while larger tables will have an EVEN distribution style.

If a table starts small but grows over time, Redshift automatically adjusts the distribution
style to EVEN. Over time, as Redshift analyses the queries being run on the cluster,
it may further adjust the table distribution style to be KEY-based.

Similarly, Redshift analyzes queries being run to determine the optimal sort key for
a table. The goal of this optimization is to optimize the data blocks that are read from
the disk during a table scan.

It is strongly recommended that you allow Redshift to manage distribution and sort
key optimizations for your table automatically, but you do have the power to manually
configure these settings if you have a unique use case.

Selecting the right data type for columns
Every column in a Redshift table is associated with a specific data type, and this data type
ensures that the column will comply with specific constraints. This helps enforce the types
of operations that can be performed on the values in the column.

For example, an arithmetic operation such as sum can only be performed on numeric
data types. If you needed to perform a sum operation on a column type that was defined
as a character or string type, you would need to cast it to a numeric type. This can have
an impact on query performance, so it needs to be taken into consideration.

There are broadly six data types that Amazon Redshift currently supports. Let's take
a look.

264 Loading Data into a Data Mart

Character types
Character data types are equivalent to string data types in programming languages and
relational databases and are used to store text.

There are two primary character types:

• CHAR(n), CHARACTER(n), and NCHAR(n): These are fixed-length character
strings that support single-byte characters only. Data is stored with trailing white
spaces at the end to convert the string into a fixed length. If you defined a column
as CHAR(8), for example, data in this column would be stored as follows:

CHAR(8)

"ABC "

"DEF "

However, the trailing whitespace is ignored during queries. For example, if you're
querying the length of one of the aforementioned records, it would return a result
of 3, not 8. Also, if you're querying the table for records matching "ABC", the
trailing space would again be ignored and the record would be returned.

• VARCHAR(n) and NVARCHAR(n): These are variable-length character strings
that support multi-byte characters. When creating this data type, to determine the
correct length to specify, you should multiply the number of bytes per character,
with the maximum number of characters you need to store.

A column with VARCHAR(8), for example, can store up to 8 single-byte characters,
4 two-byte characters, or 2 four-byte characters. To calculate the value of n for
VARCHAR, multiply the number of bytes per character by the number of characters.
As this data type is for variable-length strings, the data is not padded with trailing
white space.

When deciding on the character type, if you need to store multi-byte characters, then
you should always use the VARCHAR data type. For example, the Euro symbol (€) is
represented by a 3-byte character, so this should not be stored in a CHAR column.

However, if your data can always be encoded with single-byte characters and always
a fixed length, then use the fixed-width CHAR data type. An example of this is columns
that store phone numbers or IP addresses.

Designing a high-performance data warehouse 265

AWS recommends that you always use the smallest possible column size rather than
providing a very large value, for convenience, as using an unnecessarily large length can
have a performance impact for complex queries. However, there is a trade-off because if
the value is too small, you will find that queries may fail if the data you attempt to insert
is larger than the length specified. Therefore, consider what may be the largest potential
value you need to store for a column and use that when defining the column.

Numeric types
Number data types in Redshift include integers, decimals, and floating-point numbers.
Let's look at the primary numeric types.

Integer types
Integer types are used to store whole numbers, and there are a few options based on the
size of the integer you need to store:

• SMALLINT/INT2: These integers have a range of -32,768 to +32,767.

• INTEGER/INT/INT4: These integers have a range of -2147483648 to +2147483647.

• BIGINT/INT8: These integers have a range of – 9223372036854775808 to
+9223372036854775807.

You should always use the smallest possible integer type that will be able to store all
expected values. For example, if you're storing the age of a person, you should use
SMALLINT, while if you're storing a count of product inventory where you expect to have
hundreds of thousands of units to potentially a few million units on hand, you should use
the INTEGER type.

Decimal type
The DECIMAL type allows you to specify the precision and scale you need to store.
Precision indicates the total number of digits on both sides of the decimal point, while
the scale indicates the number of digits on the right-hand side of the decimal point. You
define the column by specifying DECIMAL(precision, scale).

Creating a column and specifying a type as DECIMAL(7,3) would enable values in the
range of -9999.999 to +9999.999.

The DECIMAL type is useful for storing the results of complex calculations where you
want full control over the accuracy of the results.

266 Loading Data into a Data Mart

Floating-point types
These numeric types are used to store values with variable precision. The floating-point
types are known as inexact types, which means you may notice a slight discrepancy when
storing and reading back a specific value, as some values are stored as approximations. If
you need to ensure exact calculations, you should use the DECIMAL type instead.

The two floating-point types that are supported in Redshift are as follows:

• REAL/FLOAT4: These support values of up to 6 digits of precision.

• DOUBLE PRECISION/FLOAT8/FLOAT: These support values of up to 15 digits
of precision.

This data type is used to avoid overflow errors for values that are mathematically within
range, but the string length exceeds the range limit. When you insert values that exceed
the precision for that type, the values are truncated. For a column of the REAL type (which
supports up to 6 digits of precision), if you insert 7876.7876, it would be stored as 7876.78.
Or, if you attempted to insert a value of 787678.7876, it would be stored as 787678.

Datetime types
These types are equivalent to simple date, time, or timestamp columns in programming
languages. The following datetime types are supported in Redshift:

• DATE: This column type supports storing a date without any associated time. Data
should always be inserted enclosed in double quotation marks.

• TIME/TIMEZ: This column type supports storing a time of day without any
associated date. TIMEZ is used to specify the time of day with the time zone, with
the default time zone being Coordinated Universal Time (UTC). Time is stored
with up to six-digit precision for fractional seconds.

• TIMESTAMP/TIMESTAMPZ: This column type is a combination of DATE
followed by TIME/TIMEZ. If you insert a date without a time value, or only a
partial time value, into this column type, any missing values will be stored as 00.
For example, a TIMESTAMP of 2021-05-23 will be stored as 20121-05-23
00:00:00.

Designing a high-performance data warehouse 267

Boolean type
The Boolean type is used to store single-byte literals with a True or False state or
UNKNOWN. When inserting data into a Boolean type field, the valid set of specifiers for
True are {TRUE, 't', 'true', 'y', 'yes', '1'}. The valid set of specifiers
for False are {FALSE 'f' 'false' 'n' 'no' '0'}. And if a column has a NULL
value, it is considered UNKNOWN.

Regardless of what literal string was used to insert a column of the Boolean type, the data
is always stored and displayed as t for true and f for false.

HLLSKETCH type
The HLLSKETCH type is a complex data type that stores the results of what is known
as the HyperLogLog algorithm. This algorithm can be used to estimate the cardinality
(number of unique values) in a large multiset very efficiently. Estimating the number of
unique values is a useful analytic function that can be used to map trends over time.

For example, if you run a large social media website with hundreds of millions of people
visiting every day, to track trends, you may want to calculate how many unique visitors
you have each day, each week, or each month. Using traditional SQL to perform this
calculation would be impractical as the query would take too long and would require
an extremely large amount of memory.

This is where algorithms such as the HyperLogLog algorithm come in. Again, there is a
trade-off, as you do give up some level of accuracy in exchange for a much more efficient
way of getting a good estimate of cardinality (generally, the error range is expected to be
between 0.01 – 0.6%). Using this algorithm means you can now work with extremely
large datasets, and calculate the estimated unique values with minimal memory usage
and within a reasonable time.

Redshift stores the result of the HyperLogLog algorithm in a data type called
HLLSKETCH. You could have a daily query that runs to calculate the approximate unique
visitors to your website each day and store that in an HLLSKETCH data type. Then, each
week, you could use Redshift's built-in aggregate and scalar functions on the HLLSKETCH
values to combine multiple HLLSKETCH values to calculate weekly totals.

SUPER type
To support semi-structured data (such as arrays and JSON data) more efficiently in
Redshift, Amazon provides the SUPER data type. You can load up to 1 MB of data into
a column that is of the SUPER type, and then easily query the data without needing
to impose a schema first.

268 Loading Data into a Data Mart

For example, if you're loading JSON data into a SUPER data type column, you don't need
to specify the data types of the attributes in the JSON document. When you query the
data, dynamic typing is used to determine the data type for values in the JSON document.

The SUPER data type offers significantly increased performance for querying
semi-structured data versus unnesting the full JSON document and storing it in columns.
If the JSON document contains hundreds of attributes, the increase in performance can
be significant.

Selecting the optimal table type
Redshift supports several different types of tables. Making use of a variety of table types
for different purposes can help significantly increase query performance. Here, we will
look at the different types of tables and discuss how each type can affect performance.

Coupling storage and compute – local Redshift tables
The most common and default table type in Redshift is a table that is permanently
stored on the disk local to a compute node and is automatically replicated for fault
tolerance purposes.

One of the biggest advantages of a lake house architecture is the performance
enhancement of placing hot data on high-performance local drives, along with
high-network bandwidth and a large high-speed cache, as available in Redshift.

Redshift stores data in a columnar data format, which is optimized for analytics, and
uses compression algorithms to reduce disk lookup time when a query is run. By using
machine learning-based automatic optimizations related to table maintenance tasks
such as vacuum, table sort, selection of distribution, and sort keys, as well as workload
management, Redshift can turbo-charge query performance.

While the best performance is gained by coupling compute and storage, it can result
in an unnecessary increase in cost when you need to scale out either just compute or
storage. To solve this, Amazon introduced RA3 nodes with Redshift Managed storage,
which provides the best of both worlds. RA3 nodes offer tightly coupled compute with
high-performance SSD storage, as well as additional S3-based storage that can be scaled
separately. No changes need to be made to workflows to use these nodes, as Redshift
automatically manages the movement of data between the local storage and S3 managed
storage based on data access patterns.

Designing a high-performance data warehouse 269

External tables for querying data in Amazon S3
To take advantage of our data lake (which we consider to be our single source of truth),
Redshift supports the concept of external tables. These tables are effectively schema objects
in Redshift that point to database objects in the AWS Glue data catalog (or optionally an
Amazon EMR Hive Metastore).

Once we have created the external schema in Redshift that points to a specific database
in the Glue data catalog, we can then query any of the tables that belong to that database,
and Redshift Spectrum will access the data from the underlying Amazon S3 files. Note
that while Redshift Spectrum does offer impressive performance for reading large datasets
from Amazon S3, it will generally not be quite as fast as reading that same dataset if it
were stored on a local disk on the Redshift compute nodes.

By accessing the data directly from our S3 data lake, we avoid replicating multiple copies
of the data across our data warehouse clusters. However, we still get to take advantage of
the Massive Parallel Processing (MPP) query engine in Redshift to query the data. With
Redshift Spectrum, we can still get impressive performance while directly accessing our
single source of truth data lake data, without needing to constantly load and refresh data
lake datasets into Redshift.

When running queries in Redshift, we are free to run complex joins on data between local
and external tables. We can also query data (or a subset of data) from an external S3 table,
and then write that data out to a local Redshift table when we want to make a specific
dataset, or portion of a dataset, available locally in Redshift for optimal query performance.

A common use case for Redshift Spectrum is where a company knows that 80% of their
queries access data generated in the past 12 months, but that 20% of their queries rely on
also accessing historical data from the past 5 years. In this scenario, the past 12 months of
data can be loaded into Redshift on a rolling basis and queried with optimal performance.
However, the smaller portion of queries that need historical data can read that data from
the data lake using Redshift Spectrum, with the understanding that reading historical data
may not be quite as fast as reading data from the past 12 months.

Another common use case for external tables is to enable Redshift to read data from file
formats that are not natively supported in Redshift, such as Amazon ION, Grok, RCFile,
and Sequence files.

270 Loading Data into a Data Mart

An important point to keep in mind when planning your use of external tables is that
Redshift Spectrum charges are based on the amount of data that's scanned by a query,
whereas Redshift cluster charges are fixed, based on the cluster node's type and storage.
Also, query performance, while impressive, may not match the performance when
querying data stored locally in the cluster. Therefore, you should consider loading
frequently queried data directly into Redshift local storage, rather than only relying
on external tables. This is especially true for datasets that are used for things such as
constantly refreshing dashboards, or datasets that are frequently queried by a large
group of users.

In the hands-on section of this chapter, we will configure a Redshift Spectrum external
table and load data from that table into our Redshift cluster.

Temporary staging tables for loading data into Redshift
Redshift, like many other data warehousing systems, supports the concept of a temporary
table. Temporary tables are session-specific, meaning that they are automatically dropped
at the end of a session and are unrecoverable.

However, temporary tables can significantly improve the performance of some operations
as temporary tables are not replicated in the same way permanent tables are, and inserting
data into temporary tables does not trigger automatic cluster incremental backup
operations. One of the common uses of temporary tables (also sometimes referred
to as staging tables) is for updating and inserting data into existing tables.

Traditional transactional databases support an operation called an UPSERT, which is
useful for Change Data Capture (CDC). An UPSERT transaction reads new data and
checks if there is an existing matching record based on the primary key. If there is an
existing record, the record is updated with the new data, and if there is no existing
record, a new record is created.

While Redshift does support the concept of primary keys, this is for informational
purposes and is only used by the query optimizer. Redshift does not enforce unique
primary keys or foreign key constraints. As a result, the UPSERT SQL clause is not
supported natively in Redshift.

If you read in new data and insert that data into a table where there is a matching existing
record, this may result in a duplicate record being inserted. As a result, you may end up
with multiple versions of the same record, with a number of those records being out
of date.

Designing a high-performance data warehouse 271

An alternative approach for handling CDC operations in Redshift is to load the new data
into a temporary table, and then perform an INNER JOIN of the temporary table with the
existing table. See Performing a merge operation by replacing existing rows (https://
docs.aws.amazon.com/redshift/latest/dg/merge-replacing-
existing-rows.html) in the Amazon Redshift documentation for more details on
how to achieve this.

Data caching using Redshift materialized views
Data warehouses are often used as the backend query engine for business intelligence
solutions. A visualization tool such as Amazon QuickSight (which we will discuss in
more detail in Chapter 12, Visualizing Data with Amazon QuickSight) can be used to build
dashboards based on data stored in Amazon Redshift.

The dashboards are accessed by different business users to visualize, filter, and drill down
into different datasets. Often, the queries that are needed to create a specific visualization
will need to reference and join data from multiple Redshift tables, and potentially perform
aggregations and other calculations on the data.

Instead of having to rerun the same query over and over as different users access the
dashboards, you can effectively cache the query results by creating what is called a
materialized view.

Materialized views increase query performance by orders of magnitude by precomputing
expensive operations such as join results, arithmetic calculations, and aggregations, and
then storing the results of the query in a view. The BI tool can then be configured to query
the view, rather than querying the tables directly. From the perspective of the BI tool,
accessing the materialized view is the same as accessing a table.

However, note that the materialized views are not updated when the underlying data
tables are updated, and a refresh materialized view Redshift SQL statement
needs to be run to refresh the view after full or incremental loads of the underlying tables.

A common use case for materialized views would be to store the results of the advanced
queries and calculations needed to aggregate sales by store daily. Each night, the day's
sales can be loaded into Redshift from the data lake, and on completion of the data ingest,
a materialized view can be created or refreshed. In this way, the complex calculations and
joins required to determine sales by store are run just once, and when users query the
data via their BI tool, they access the results of the query through the materialized view.

Now that we've looked at the types of tables that are supported in Redshift, let's look at the
best practices involved in ingesting data into Redshift.

https://docs.aws.amazon.com/redshift/latest/dg/merge-replacing-existing-rows.html
https://docs.aws.amazon.com/redshift/latest/dg/merge-replacing-existing-rows.html
https://docs.aws.amazon.com/redshift/latest/dg/merge-replacing-existing-rows.html

272 Loading Data into a Data Mart

Moving data between a data lake and Redshift
Moving data between a data lake and a data warehouse, such as Amazon Redshift, is a
common requirement for many use cases. Data may be cleansed and processed with Glue
ETL jobs in the data lake, for example, and then hot data can be loaded into Redshift so
that it can be queried via BI tools with optimal performance.

In the same way, there are certain use cases where data may be further processed in the
data warehouse, and this newly processed data then needs to be exported back to the
data lake so that other users and processes can consume this data.

In this section, we will examine some best practices and recommendations for both
ingesting data from the data lake and for exporting data back to the data lake.

Optimizing data ingestion in Redshift
While there are various ways that you can insert data into Redshift, the recommended
way is to bulk ingest data using the Redshift COPY command. The COPY command
enables optimized data to be ingested from the following sources:

• Amazon S3

• Amazon DynamoDB

• Amazon Elastic Map Reduce (EMR)

• Remote SSH hosts

When running the COPY command, you need to specify an IAM role, or the access key
and secret access key of an IAM user, that has relevant permissions to read the source
(such as Amazon S3), as well as the required Redshift permissions. AWS recommends
creating and using an IAM role with the COPY command.

When reading data from Amazon S3, Amazon EMR, or from a remote host via SSH, the
COPY command supports various formats, including CSV, Parquet, Avro, JSON, ORC,
and many others.

To take advantage of the multiple compute nodes in a cluster when ingesting files into
Redshift, you should aim to match the number of ingest files with the number of slices
in the cluster. Each slice of the cluster can ingest data in parallel with all the other slices
in the cluster, so matching the number of files to the number of slices results in the
maximum performance for the ingest operation, as shown in the following diagram:

Moving data between a data lake and Redshift 273

Figure 9.2 – Slices in a Redshift compute node

If you have one large ingest file, it should be split into multiple files, with each file having a
size between 1 MB and 1 GB (after compression). To determine how many slices you have
in your cluster, refer to the AWS documentation on Redshift cluster configuration.

For example, if you had a cluster with 4 x ra3.4xlarge nodes, you would have 16
slices (there are 4 slices per ra3.4xlarge node). If your ingest file was 64 GB in size,
you should split the file into 64 x 1 GB files, and each of the slices in the cluster would
then ingest a total of four files.

Note that when using the COPY command to ingest data, the COPY operation is treated as
a single transaction across all files. If one of our 64 files failed to be copied, the entire copy
would be aborted and the transaction would be rolled back.

While it is possible to use INSERT statements to add rows to a table, adding single rows,
or just a few rows, using INSERT statements is not recommended. Adding data to a table
using INSERT statements is significantly slower than using the COPY command to ingest
data. If you do need to add data using INSERT statements, you can insert multiple rows
with a single statement using multi-row insert, by specifying multiple comma-separated
rows. You should add as many rows as possible with a single INSERT statement to
improve performance and maximize how data blocks are stored.

When loading data from an Amazon EMR cluster, you can use the COPY command in
Redshift and specify the EMR cluster ID and the HDFS path where the data should be
loaded from. However, before doing this, you need to configure the nodes in the EMR
cluster to accept SSH requests from your Redshift cluster, and you need to ensure the
appropriate Security Groups have been configured to allow connections between Redshift
and the EMR nodes.

274 Loading Data into a Data Mart

Alternatively, you can directly load data into Redshift from a Spark application running on
EMR using the Spark-Redshift JDBC driver. In the background, the Spark DataFrame you
are loading is written to a temporary S3 bucket, and then a COPY command is executed to
load the data into Redshift. You can also read data from Redshift into a Spark DataFrame
by using the Spark-Redshift JDBC driver.

When using AWS Glue, you can configure a Glue connection for your Redshift cluster.
This uses built-in drivers within Glue to connect to your Redshift cluster, in a similar
way to using the Spark-Redshift JDBC driver in Amazon EMR.

Exporting data from Redshift to the data lake
Similar to how the COPY command can be used to ingest data to Redshift, you can use
the UNLOAD command to copy data from a Redshift cluster to Amazon S3.

To maximize the performance of UNLOAD, Redshift uses multiple slices in the cluster to
write out data to multiple files. Each file that is written can be a maximum size of 6.2 GB,
although there is an option to specify a smaller maximum file size (and this also gives
some control over the number of files that are written out). Depending on the size
of the dataset you are unloading, it would generally be recommended to specify
a MAXFILESIZE option of 1 GB.

When running the unload command, you specify a SELECT query to determine what
data will be unloaded. To unload a full single table, you would specify SELECT * from
TABLENAME in your UNLOAD statement. However, you could use more advanced queries
in the UNLOAD statement, such as a query that joins multiple tables, or a query that uses
a WHERE clause to unload only a subset of the data in a table. It is recommended that you
specify an ORDER BY clause in the query, especially if you plan to load the data back into
Redshift.

By default, data is unloaded in a pipe-delimited text format, but unloading data in Parquet
format is also supported. For most use cases where you're exporting data to a data lake, it
is recommended to specify the Parquet format for the unloaded data. The Parquet format
is optimized for analytics, is compressed (so it uses less storage space in S3), and the
unload performance can be up to twice as fast when unloading in Parquet format versus
unloading in text format.

Hands-on – loading data into an Amazon Redshift cluster and running queries 275

If you're performing an UNLOAD on a specific dataset regularly, you can use the
ALLOWOVERWRITE option to allow Redshift to overwrite any existing files in the specified
path. Alternatively, you can use the CLEANPATH option to remove any existing files in the
specified path before writing data out.

Another best practice recommendation for unloading large datasets to a data lake is to
specify the PARTITION option and to provide one or more columns that the data should
be partitioned by. When writing out partitioned data, Redshift will use the standard Hive
partitioning format. For example, if you partition your data by the year and month
columns, the data will be written out as follows:

s3://unload_bucket_name/prefix/year=2021/month=July/000.parquet

When using the PARTITION option with the CLEANPATH option, Redshift will only
delete files for the specific partitions that it writes out to.

Now that you have a good understanding of the Redshift architecture and some of the
important considerations for optimizing the performance of your Redshift cluster, it is
time to get hands-on with Redshift.

Hands-on – loading data into an Amazon
Redshift cluster and running queries
In our Redshift hands-on exercise, we're going to create a new Redshift cluster and set up
Redshift Spectrum so that we can query data in external tables on Amazon S3. We'll then
use Redshift Spectrum to read data from S3 and load a subset of that data into a local table
in Redshift, after which we'll run some complex queries.

In this exercise, we will be setting up a Redshift cluster for a travel agency. Agents need
to ensure that they can find the best deal for accommodation in New York City and Jersey
City that is close to specific popular tourist attractions, such as the Freedom Tower and
the Empire State Building.

276 Loading Data into a Data Mart

Uploading our sample data to Amazon S3
For this exercise, we will use a dataset from an organization called Inside Airbnb
(http://insideairbnb.com/about.html) that provides Airbnb data
under the Creative Commons Attribution 4.0 International License (https://
creativecommons.org/licenses/by/4.0/) license, which means that the data
can be shared and adapted, as long as attribution is given.

For this exercise, we will use the Inside Airbnb data for New York City and Jersey City.
Let's get started:

1. Download the Jersey City and New York City listings.csv Summary
Information and metrics for listings from http://insideairbnb.com/
get-the-data.html. Rename each file so that you can identify the Jersey
City and New York City listings (for example, ny-listings.csv and
jc-listings.csv).

2. Copy the listing files to the data lake's Landing Zone, creating a partition for each
city, as follows. Remember to replace the Landing Zone path with the name of the
bucket you created in Chapter 3, The AWS Data Engineers Toolkit:

aws s3 cp jc-listings.csv s3://dataeng-landing-zone-
initials/listings/city=jersey_city/jc-listings.csv

aws s3 cp ny-listings.csv s3://dataeng-landing-zone-
initials/listings/city=new_york_city/ny-listings.csv

3. To verify that the files have been uploaded correctly, we can use S3 Select to
directly query uploaded files. Open the Amazon S3 console and navigate to the
<bucket>/city=jersey_city/jc-listings.csv file. Select the file and,
from the Actions menu, click on Query with S3 Select. Leave all the options as
their defaults and click Run SQL query:

http://insideairbnb.com/about.html
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://insideairbnb.com/get-the-data.html
http://insideairbnb.com/get-the-data.html

Hands-on – loading data into an Amazon Redshift cluster and running queries 277

Figure 9.3 – Running SQL Select against the Airbnb Jersey City listings file
Repeat this again but select <bucket>/city=new_york_city/
ny-listings.csv instead.

Having uploaded our listings file to the data lake, we now need to create the IAM roles
that our Redshift cluster will use, and then create the cluster.

IAM roles for Redshift
For our Redshift cluster to be able to create EC2 networking resources behind the scenes,
our Redshift cluster needs permissions to access specific EC2 networking resources. When
we create the first Redshift cluster in our account, Redshift will automatically create an IAM
service-linked role called AWSServiceRoleForRedshift and attach the managed
policy called AmazonRedshiftServiceLinkedRolePolicy to the role, providing
the required permissions. Therefore, we do not need to create this role manually.

278 Loading Data into a Data Mart

Amazon Redshift Spectrum enables our cluster to read data that is in our Amazon
S3-based data lake directly, without needing to load the data into the cluster directly.
Redshift Spectrum uses the AWS Glue data catalog, so it requires AWS Glue permissions
in addition to Amazon S3 permissions. If you are operating in an AWS region where AWS
Glue is not supported, then Redshift Spectrum uses the Amazon Athena catalog, so you
would require Amazon Athena permissions.

To create the IAM role that grants the required Redshift Spectrum permissions, follow
these steps:

1. Navigate to the AWS IAM Management console, click on Roles on the left-hand
side, and click on Create role.

2. Ensure that AWS service is selected for Select type of trusted entity, and then
select the Redshift service from the list of services. For Select your use case, select
Redshift – Customizable. Click on Next: Permissions.

3. Attach the following three policies to the role:

 � AmazonS3FullAccess

 � AWSGlueConsoleFullAccess

 � AmazonAthenaFullAccess

Important Note About Permissions
The preceding policies provide broad access to various AWS services, including
full access to all S3 files in your account. If you are using an account created
specifically for the hands-on exercises in this book, or you are using a limited
sandbox account provided by your organization, then these permissions may
be safe. However, in an AWS account that is shared with others, such as a
corporate production account, then you should not use these policies. Instead,
you should create new policies that, for example, limit access to only the S3
buckets that are used in the hands-on exercises. Using full access policies, as we
have here, is not a good security practice for shared or production accounts.

Then, click on Next: Tags and then Next: Review.

Hands-on – loading data into an Amazon Redshift cluster and running queries 279

4. Provide a Role name, such as AmazonRedshiftSpectrumRole. Make sure that
the three policies listed in Step 3 are included and that Trusted entities is set to
AWS service: redshift.amazonaws.com. Once confirmed, click Create role:

Figure 9.4 – Creating an IAM Role for Redshift Spectrum

5. Search for the role you just created and click on the role's name. On the Summary
screen, take note of Role ARN as this will be needed later.

Now that we have created an IAM role that provides the permissions needed for Redshift
Spectrum to access the required resources, we can move on to creating our cluster.

280 Loading Data into a Data Mart

Creating a Redshift cluster
We are now ready to create our Redshift cluster and attach the IAM policy for Redshift
Spectrum to the cluster. Let's get started:

Important Note about Redshift Costs
At the time of writing, AWS offers a free Redshift trial, enabling you to create
and test out a new Redshift cluster for up to 2 months at no charge. However,
this is only available if your organization has not previously created a Redshift
cluster. If your account is part of an organization that has previously created an
Amazon Redshift cluster, you are not eligible for the free trial and your usage of
Redshift will be billed for. For a single dc2.large node, the cost at the time
of writing would be $182.50 per month. If you are eligible for the free trial but
you leave your Redshift cluster running beyond the free trial time limit, you
will be charged for the cluster. For more information, see https://aws.
amazon.com/redshift/free-trial/.

1. Navigate to the Amazon Redshift console at https://console.aws.amazon.
com/redshiftv2/ and click on Create cluster.

2. You can change, or keep, the default Redshift cluster name (redshift-
cluster-1), but make sure to select Free trial for What are you planning to use
this cluster for?.

3. Leave the default Admin user name (awsuser) as-is, but provide an Admin user
password. Make sure you can recall this password later as it will be needed in future
steps. Click on Create cluster.

4. Wait until your cluster is listed with a Status of Available, and then click on the
cluster's name:

https://aws.amazon.com/redshift/free-trial/
https://aws.amazon.com/redshift/free-trial/
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Hands-on – loading data into an Amazon Redshift cluster and running queries 281

Figure 9.5 – Created Redshift cluster

5. Click on the Properties tab, scroll down to the Cluster permissions section, and
click the Attach IAM roles button.

6. Select the role you created previously for Redshift Spectrum (such as
AmazonRedshiftSpectrumRole) and click on the Associate IAM role button.
Then, click on Save changes.

Note that it may take a few minutes for the permissions modification to be applied.
Click on Clusters on the left-hand side menu, and wait until Status changes from
Available - Modifying, to just Available. Once the change has been fully applied, you
can continue and test the Redshift connection. .

7. On the left-hand side of the Redshift console, click on Editor, and then click on
Connect to database.

8. Leave the default of Create a new connection as-is and set Authentication to
Temporary credentials. Make sure your cluster is selected from the drop-down list,
and then enter dev for Database name and awsuser for Database user. Then,
click Connect.

9. Once connected, ensure dev is set for Select database and public is set for Select
schema. Then, in the query editor, run select * from sales limit 10 and
click Run.

282 Loading Data into a Data Mart

The preceding query should have returned 10 rows from the sample database that was
loaded when we created our trial Redshift cluster.

Now that we have created and verified our Redshift cluster, we can create the external
tables that will enable us to query data in S3.

Creating external tables for querying data in S3
To query data in Amazon S3 using Redshift Spectrum, we need to define a database,
schema, and table.

Note that Amazon Redshift and AWS Glue use the term database differently. In Amazon
Redshift, a database is a top-level container that contains one or more schemas, and each
schema can contain one or more tables. When you use the Redshift query editor, you
specify the name of the database that you want to connect to, and any objects you create
are created in that database. When you query a table, you specify the schema name along
with the table name.

However, in AWS Glue, there is no concept of a schema, just a database, and tables are
created in the database.

With the command shown in the following steps, we can create a new Redshift schema,
defined as an external schema (meaning objects created in the schema will be defined in
the AWS Glue catalog), and we specify that we want to create a new database in the Glue
catalog called accommodations. For Redshift to be able to write to the Glue data catalog
and to access objects in S3, we need to specify the ARN for the Redshift Spectrum role
that we previously created:

1. Run the following command in the Redshift query editor to create a new external
schema called spectrum_schema, and to also create a new database in the Glue
catalog called accommodations. Make sure to replace the iam_role ARN with the
ARN you recorded previously when you created an IAM role for Redshift Spectrum:

create external schema spectrum_schema

from data catalog

database 'accommodation'

iam_role 'arn:aws:iam::1234567890:role/
AmazonRedshiftSpectrumRole'

create external database if not exists;

Note that because we made a connection to the dev database in Redshift previously,
the external schema is created as an object in the dev database.

Hands-on – loading data into an Amazon Redshift cluster and running queries 283

2. We can now define an external table that will be registered in our Glue data catalog
under our accommodations database. When defining the table, we specify the
columns that exist, the column that we have partitioned our data by (city), the
format of the files (text, comma delimited), and the location in S3 where the text
files were uploaded. Make sure to replace the bucket name of the S3 location with
the name of the bucket you created:

CREATE EXTERNAL TABLE spectrum_schema.listings(

 listing_id INTEGER,

 name VARCHAR(100),

 host_id INT,

 host_name VARCHAR(100),

 neighbourhood_group VARCHAR(100),

 neighbourhood VARCHAR(100),

 latitude Decimal(8,6),

 longitudes Decimal(9,6),

 room_type VARCHAR(100),

 price SMALLINT,

 minimum_nights SMALLINT,

 number_of_reviews SMALLINT,

 last_review DATE,

 reviews_per_month NUMERIC(8,2),

 calculated_host_listings_count SMALLINT,

 availability_365 SMALLINT)

partitioned by(city varchar(100))

row format delimited

fields terminated by ','

stored as textfile

location 's3://dataeng-landing-zone-initials/listings/';

284 Loading Data into a Data Mart

3. Verify that the table was created correctly by selecting spectrum_schema from
the dropdown on the left-hand side and by expanding the listings table to view the
defined columns:

Figure 9.6 – External table in the Redshift console

4. We now need to add the specific partitions that we created, which we can do
by running the following two commands in the Redshift query editor. Make sure
to update the location so that it references your bucket name:

alter table spectrum_schema.listings add

partition(city='jersey_city')

location 's3://dataeng-landing-zone-initials/listings/
city=jersey_city/'

alter table spectrum_schema.listings add

partition(city='new_york_city')

location 's3:// dataeng-landing-zone-initials /listings/
city=new_york_city/'

Hands-on – loading data into an Amazon Redshift cluster and running queries 285

5. Verify that the table and partitions have been created correctly by viewing them
in the AWS Glue console. Open AWS Glue console in a new browser window and
click on Databases via the left-hand side navigation menu.

6. Click on the Glue database we created earlier called accommodation, and then
click on Tables in accommodation.

7. Click on the listings table, which will list the columns as we define them:

Figure 9.7 – Viewing the listings table in the AWS Glue console

286 Loading Data into a Data Mart

8. Click on the View Partitions button to view the partitions that have been defined:

Figure 9.8 – Viewing table partitions in the AWS Glue console
Note that instead of defining the table manually in the Redshift console and adding
the partitions, we could have used a Glue Crawler to crawl the S3 location and
automatically add the table and partitions to the Glue data catalog. If we had done
that, we would have still needed to create the Redshift external schema and define
the database, but we would not have had to specify the column details for the table.

9. To confirm that everything has been set up correctly, we can query the data using
both Redshift Spectrum and Amazon Athena. In the Redshift query editor, run the
following query:

select * from spectrum_schema.listings limit 100;

Note that when querying the table in Redshift, we query based on <redshift_
external_schema_name>.<table_name>.

10. Open the Amazon Athena console in a new browser window and run the
following query:

select * from accommodation.listings limit 100;

Note that when querying the table with Athena, we query based on
<glue_database_name>.<table_name>.

Now that we have configured Redshift Spectrum to be able to read the files we uploaded to
Amazon S3, we can design a Redshift table to store just the data we need locally.

Hands-on – loading data into an Amazon Redshift cluster and running queries 287

Creating a schema for a local Redshift table
With Redshift Spectrum, we pay for each query we run, based on the amount of data
scanned. If we have a hot dataset that is going to be queried regularly, we may want to
move required data into a local Redshift table so that we are not charged for every query.
Depending on the types of queries we run, we may also find that the performance of queries
against data stored locally is better than querying data on Amazon S3 via Redshift Spectrum.

If we wanted to load the full dataset from Amazon S3 into Redshift, we could use the
Redshift COPY command to read the data from S3 and load it into a local table. However,
we only want to query a subset of the data in our Amazon S3 files, so in this exercise,
we will use Redshift Spectrum to read in just the required data and write it out to a local
Redshift table. Let's get started:

1. First, we must create a new Redshift schema to store our local tables. Run the
following command in the Redshift query editor:

create schema if not exists accommodation_local;

2. We can now create a new local table that contains just the fields that we require for
our use case. Run the following in the Redshift query editor to create the new table:

CREATE TABLE dev.accommodation_local.listings(

 listing_id INTEGER,

 name VARCHAR(100),

 neighbourhood_group VARCHAR(100),

 neighbourhood VARCHAR(100),

 latitude Decimal(8,6),

 longitudes Decimal(9,6),

 room_type VARCHAR(100),

 price SMALLINT,

 minimum_nights SMALLINT,

 city VARCHAR(40))

distkey(listing_id)

sortkey(price);

With the preceding command, we have created a new local table in our dev
database, and in accommodation_local schema, called listings. We defined
the various columns, specified that we want the table distributed across the compute
nodes of our cluster based on listing_id, and then specified that we want the
table sorted on the price column.

288 Loading Data into a Data Mart

3. To load data from our external Spectrum table into our new local table, we can run
the following query:

INSERT into accommodation_local.listings

(SELECT listing_id,

 name,

 neighbourhood_group,

 neighbourhood,

 latitude,

 longitudes,

 room_type,

 price,

 minimum_nights

FROM spectrum_schema.listings);

This query inserts data into our new local table, based on a query of the data in our external
Spectrum schema. We just select the columns that we need for our planned queries.

Running complex SQL queries against our data
We can now run some advanced queries against the local listings table we just loaded data
into. Our goal here is to be able to easily identify Airbnb listings in the New York City and
Jersey City areas that are close to specific tourist attractions. We will split our query into
different parts to explain what each part is doing:

1. The first part of our query, which you can paste into the Redshift query editor,
is as follows:

WITH touristspots_raw(name,lon,lat) AS (

(SELECT 'Freedom Tower', -74.013382,40.712742) UNION

(SELECT 'Empire State Building', -73.985428, 40.748817)),

touristspots (name,location) AS (SELECT name,

ST_Point(lon, lat) FROM touristspots_raw)

select name, location from touristspots

Hands-on – loading data into an Amazon Redshift cluster and running queries 289

This part of the query creates a new temporary table called touristspots_raw,
and inserts the names and longitude and latitude of two popular New York City
tourist attractions. It then uses a Redshift function called ST_Point to convert the
longitude and latitude of the tourist attractions into point geometry (which can
be used in distance calculations). This portion of the query results in a new virtual
table called touristspots that has two fields – name and location.

2. Now, we want to convert the latitude and longitude of the values in our
accommodation table into point geometry. We can do this with the following
query, which you can run in the Redshift query editor (note that each block below
should be on a single line in the Redshift query editor, so if copying and pasting be
careful of inserted line breaks)

WITH accommodation(listing_id, name, room_type,
location) AS (SELECT listing_id, name, room_type, ST_
Point(longitudes, latitude) from accommodation_local.
listings)

select listing_id, name, room_type, location from
accommodation

This query creates a new temporary table called accommodation with data from
our listings table, but again, it uses the ST_Point function to convert longitude
and latitude into point geometry, as a field called location.

3. Now, we can combine the preceding two queries in a modified form and add the
final part of our query. This query will calculate the distance between a listing from
our listings table containing Airbnb data, and either the Freedom Tower or Empire
State Building. Then, we can sort the result by distance and return the 100 closest
listings. Run the following query in the Redshift query editor:

WITH touristspots_raw(name,lon,lat) AS (

 (SELECT 'Freedom Tower', -74.013382,40.712742) UNION

 (SELECT 'Empire State Building', -73.985428, 40.748817)

),

touristspots(name,location) AS (

 SELECT name, ST_Point(lon, lat)

 FROM touristspots_raw),

accommodation(listing_id, name, room_type, price,
location) AS

(

 SELECT listing_id, name, room_type, price,

 ST_Point(longitudes, latitude)

290 Loading Data into a Data Mart

 FROM accommodation_local.listings)

SELECT

 touristspots.name as tourist_spot,

 accommodation.listing_id as listing_id,

 accommodation.name as location_name,

 (ST_DistanceSphere(touristspots.location,

accommodation.location) / 1000)::decimal(10,2) AS

distance_in_km,

 accommodation.price AS price,

 accommodation.room_type as room_type

FROM touristspots, accommodation

WHERE tourist_spot like 'Empire%'

ORDER BY distance_in_km

LIMIT 100;

In this final query, we combined our previous queries (to create two temporary
tables – touristspots and accommodation) and we added new statements.
We used the Redshift ST_DistanceSphere function to calculate the distance
between a tourist spot and one of our listings, and then we converted the result
into a decimal data type with two decimal places and named that column
distance_in_km.

We then used a WHERE clause to filter out results to just the Empire State Building,
sorted (or ordered) the result by distance, and limited the query to just the first
100 results.

4. As our agents will be regularly running these queries to find the right Airbnb listing
for our customers, we can create a materialized view that contains all of our listings,
along with the distance between the listing and both the Empire State Building and
the Freedom Tower. This will save us from having to calculate the distance each
time the query is run. Run the following in the Redshift query editor to create the
materialized view:

CREATE MATERIALIZED VIEW listings_touristspot_distance_
view AS

WITH touristspots_raw(name,lon,lat) AS (

 (SELECT 'Freedom Tower', -74.013382,40.712742) UNION

 (SELECT 'Empire State Building', -73.985428, 40.748817)

),

touristspots(name,location) AS (

Hands-on – loading data into an Amazon Redshift cluster and running queries 291

 SELECT name, ST_Point(lon, lat)

 FROM touristspots_raw),

accommodation(listing_id, name, room_type, price,
location) AS

(

 SELECT listing_id, name, room_type, price,

 ST_Point(longitudes, latitude)

 FROM accommodation_local.listings)

SELECT

 touristspots.name as tourist_spot,

 accommodation.listing_id as listing_id,

 accommodation.name as location_name,

 (ST_DistanceSphere(touristspots.location,

accommodation.location) / 1000)::decimal(10,2) AS
distance_in_km,

 accommodation.price AS price,

 accommodation.room_type as room_type

FROM touristspots, accommodation

In a system where there are a lot of queries with complex calculations, creating
materialized views can help manage the CPU and memory pressure on the system.

5. Now, we can query the view we have created by running the following in the
Redshift query editor:

select * from listings_touristspot_distance_view where
tourist_spot like 'Empire%' order by distance_in_km limit
100

This query returns the top 100 listings that are closest to the Empire State Building.
You do not need to calculate the distance for each point as part of the query.

In these hands-on exercises, we created a Redshift cluster, ingested data, and ran several
queries. Feel free to experiment with other queries, such as loading in the latitude and
longitude for other tourist spots, and finding a query that finds listings for a certain
room type or within a specific price range.

292 Loading Data into a Data Mart

Summary
In this chapter, we learned how a cloud data warehouse can be used to store hot data to
optimize performance and manage costs. We reviewed some common "anti-patterns"
for data warehouse usage before diving deep into the Redshift architecture to learn more
about how Redshift optimizes data storage across nodes.

We then reviewed some of the important design decisions that need to be made when
creating an optimized schema in Redshift, before reviewing ingested unloaded from
Redshift.

Then, we performed a hands-on exercise where we created a new Redshift cluster,
configured Redshift Spectrum to query data from Amazon S3, and then loaded a
subset of data from S3 into Redshift. We then ran some complex queries to calculate the
distance between two points before creating a materialized view with the results of our
complex query.

In the next chapter, we will discuss how to orchestrate various components of our data
engineering pipelines.

10
Orchestrating the

Data Pipeline
Throughout this book, we have been discussing various services that can be used by
data engineers to ingest and transform data, as well as make it available for consumers.
We looked at how we could ingest data via Amazon Kinesis Data Firehose and Amazon
Database Migration Service, and how we could run AWS Lambda and AWS Glue
functions to transform our data. We also discussed the importance of updating a data
catalog as new datasets are added to a data lake, and how we can load subsets of data into
a data mart for specific use cases.

For the hands-on exercises, we made use of various services, but for the most part, we
triggered these services manually. However, in a real production environment, it would
not be acceptable to have to manually trigger these tasks, so we need a way to automate
various data engineering tasks. This is where data pipeline orchestration tools come in.

Modern-day ETL applications are designed with a modular architecture to facilitate the
use of the best purpose-built tool to complete a specific task. A data engineering pipeline
(also sometimes referred to as a workflow) stitches all of these components together to
create an ordered execution of related tasks.

294 Orchestrating the Data Pipeline

To build our pipeline, we need an orchestration engine to define and manage the sequence
of tasks, as well as the dependencies between tasks. The orchestration engine also needs to
be intelligent enough to perform different actions based on the failure or success of a task
and should be able to define and execute tasks that run in parallel, as well as tasks that run
sequentially.

In this chapter, we will look at how to manage data pipelines with different orchestration
engines. First, we will examine some of the core concepts of pipeline orchestration and
then review several different options within AWS for orchestrating data pipelines. In the
hands-on activity for this chapter, we will orchestrate a data pipeline using the AWS Step
Function service.

In this chapter, we will cover the following topics:

• Understanding the core concepts for pipeline orchestration

• Examining the options for orchestrating pipelines in AWS

• Hands-on – orchestrating a data pipeline using AWS Step Function

Technical requirements
To complete the hands-on exercises in this chapter, you will need an AWS account where
you have access to a user with administrator privileges (as covered in Chapter 1, An
Introduction to Data Engineering). We will make use of various AWS services, including
AWS Lambda, AWS Step Function, and Amazon Simple Notification Service (SNS).

You can find the code files of this chapter in the GitHub repository using the following
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter10

Understanding the core concepts for pipeline
orchestration
In Chapter 5, Architecting Data Engineering Pipelines, we architected a high-level overview
of a data pipeline. We examined potential data sources, discussed the types of data
transformations that may be required, and looked at how we could make transformed data
available to our data consumers.

Then, we examined the topics of data ingestion, transformation, and how to load
transformed data into data marts in more detail in the subsequent chapters. As we
discussed previously, these steps are often referred to as an extract, transform, load
(ETL) process.

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter10
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter10

Understanding the core concepts for pipeline orchestration 295

We have now come to the part where we need to combine the individual steps involved
in our ETL processes to operationalize and automate how we process data. But before we
look deeper at the AWS services for enabling this, let's examine some of the key concepts
around pipeline orchestration.

What is a data pipeline, and how do you orchestrate
it?
A simple definition is that a data pipeline is a collection of data processing tasks that need
to be run in a specific order. Some tasks may need to run sequentially, while other tasks
may be able to run in parallel. You could also refer to the sequencing of these tasks as a
Workflow.

Data pipeline orchestration refers to automating the execution of tasks involved in a data
pipeline Workflow, managing dependencies between the different tasks, and ensuring that
the pipeline runs when it is meant to.

Think of the data pipeline as the smallest entity for performing a specific task against a
dataset. For example, if you are receiving data from a partner regularly, your first data
pipeline may involve validating that the data that's received is valid, and then converting
the data file into an optimized format, such as Parquet. If you have hundreds of partners
sending you data files, then this same pipeline may run for each of those partners.

You may also have a second data pipeline that runs at a specific time of day that validates
that the data from all your partners has been received, and then runs a Spark job to join
the datasets and enrich the data with additional proprietary data.

Once that data pipeline finishes running, you may have a third pipeline that loads the
newly enriched data into a data warehouse.

While you could place all of these steps in a single data pipeline, it is a recommended best
practice to split pipelines into the smallest logic grouping of steps. In our example, our
first step is getting newly received files converted into Parquet format, but we only want to
do that if we can confirm that the file that's been received is valid. As such, we group those
two tasks into a single pipeline. The goal of our second pipeline is to join the files we have
received and enrich the new file with additional data, but we must also include a step to
validate and report on whether all the expected partner files were received.

296 Orchestrating the Data Pipeline

What is a directed acrylic graph?
When talking about data pipelines, you may hear the term directed acyclic graph,
commonly referred to as DAG. If you Google this term, you may find a lot of complex
mathematical explanations of what a DAG is. This is because this term does not only apply
to data pipelines, but is used to define many different types of ordered processes. For
example, DAGs are also used to design compilers.

A simple explanation of a DAG is that it represents connections between nodes, with the
flow between nodes always occurring in only one direction and never looping back to an
earlier node (acyclic means not a cycle).

The following diagram shows a simple DAG:

Figure 10.1 – A simple example of a directed acyclic graph

If this DAG represented a data pipeline, then the following would take place:

• When event A completes, it triggers event B and event C.

• When event B completes, it triggers event F.

• When events B and C are complete, they trigger event D.

• When event D completes, it triggers event E.

In the preceding example, event F could never loop back to event A, B, or C as that would
break the acyclic part of the DAG definition.

No rule says that data pipelines have to be defined as DAGs, although certain
orchestration tools do require this. For example, Apache Airflow (which we will discuss in
more detail later in this chapter) requires pipelines to be defined as a DAG, and if there is
a cycle in a pipeline definition where a node loops back to a previous node, this would not
run. However, AWS Step Function does allow for loop cycles in the definition of a state
machine, so Step Function-based pipelines do not enforce that the pipeline should be a
DAG.

Understanding the core concepts for pipeline orchestration 297

How do you trigger a data pipeline to run?
There are two primary types of triggers for a pipeline – schedule-based pipelines and
event-based pipelines.

Traditionally, pipelines were all triggered on a schedule. This could be once a day, or
every hour, or perhaps even every 15 minutes. This is still a common approach, especially
for batch-orientated pipelines. In our example pipeline, the second pipeline could be an
example of a scheduled pipeline that runs once per day to join and enrich partner files
that are received throughout the day.

Today, however, a lot of pipelines are created to be event-driven. In other words, the
pipeline is triggered in response to some specific event being completed. Event-based
Workflows are useful for reducing the latency between data becoming available and the
pipeline processing that data. For example, if you expect that you will have received the
data files you need at some point between 4 A.M. and 6 A.M., you could schedule the
pipeline to run at 6 A.M. However, if all the data is available by 5 A.M. on some days,
using an event-based trigger can get your pipeline running earlier.

In our earlier example of a pipeline, the first pipeline would be an event-driven pipeline
that runs in response to a partner having uploaded a new file. Within AWS, there is strong
support for creating event-driven activities, such as triggering an event (which could be a
pipeline) based on a file being written to a specific Amazon S3 bucket.

Using manifest files as pipeline triggers
A manifest is often used to refer to a list of cargo carried by ship, or other transport
vehicles. The manifest document may be reviewed by agents at a border crossing or port
to validate what is being transported.

In the world of data pipelines, a common concept is to create a manifest file that contains
information about other files that form part of a batch of files.

In our data pipeline example of receiving files from our partners, we may find that the
partner sends hundreds of small CSV files in a batch every hour. We may decide that we
do not want to run our pipeline on each file that we receive, but that we want to process all
the small CSV files of a batch together and convert them into a single Parquet file.

In this case, we could instruct our partners to send a manifest file at the end of each
batch of files that they send to us. This manifest file would list the name of each file that's
transferred, as well as potentially some validation data, such as file size, or a calculated
SHA-256 hash of the file.

298 Orchestrating the Data Pipeline

We could then configure our S3 event notification to only trigger when a file that begins
with the name manifest is written to our bucket. When this happens, we will trigger
our pipeline to run, and perhaps the first step in our pipeline would be to read the
manifest file, and then for each file listed in the manifest, verify that it exists. We could
also calculate an SHA-256 hash of the file, and verify that it matches what is listed in the
manifest. Once the files have been verified, we could run our ETL job to read in all the
files and write the files out in Parquet format.

This process would still be considered an event-driven pipeline, even though we are
not responding to every file upload event, just the completion of a batch of uploads, as
represented in the manifest file.

How do you handle the failures of a step in your
pipeline?
As part of the orchestration process to automate processing of steps in a pipeline, we need
to ensure that failures are handled correctly. As part of this, it is also important that log
files related to each step of the pipeline are easily accessible. In this section, we will look at
some important concepts for failure handling and logging.

Common reasons for failure in data pipelines
There are many reasons why a specific step in a data pipeline may fail. Some common
reasons for errors include the following:

• Data quality issues: If one of the steps in your pipeline is expecting to receive CSV
files to process, but instead receives a file in JSON format that it does not know how
to process, this would lead to a hard failure (that is, a failure that your job cannot
recover from until the data quality issue is resolved).

• Code errors: When you update a job, it is possible to introduce a syntax, or logic,
error into the code. Testing your code before deploying it into production is very
important, but there may be times when your testing does not catch a specific error.
This would also be a hard failure, requiring you to redeploy fixed code.

• Endpoint errors: One of the steps in your pipeline may need to either read or write
data to or from a specific endpoint (such as reading a file in S3 or writing data into
a data warehouse). Sometimes, these errors may be due to a temporary problem,
such as a temporary network error, and this could be considered a soft failure (that
is, one that may be overcome by retrying). At other times, the error may be a hard
failure, such as your job not being configured with the correct permissions to access
the endpoint.

Examining the options for orchestrating pipelines in AWS 299

• Dependency errors: Data pipelines generally consist of multiple steps with
complex dependencies. This includes dependencies within the pipeline, as well as
dependencies between different pipelines. If your job is dependent on a previous
step, then the job it is dependent on is referred to as an upstream job. If your job
fails, any jobs that depend on it are considered downstream jobs. Dependency
errors can be hard failures (such as an upstream job or pipeline having a hard
failure) or soft failures (the upstream job is taking longer than expected to complete,
but if you retry your step, it may complete later).

Hard failures generally interrupt processing (and also likely cause failures in downstream
jobs) until someone takes a specific action to resolve the error. Soft failures (such as
intermittent networking issues), however, can benefit from having a good retry strategy, as
we will discuss next.

Pipeline failure retry strategies
When you're designing your pipeline, you should consider implementing a retry
strategy for failed steps. Many orchestration tools (such as Apache Airflow and AWS
Step Function) will allow you to specify the number of retries, the interval between retry
attempts, as well as a backoff rate.

The retry backoff rate (also known as exponential backoff) causes the time between retry
attempts to be increased on each retry. With AWS Step Function, for example, you can
specify a BackOffRate value that will multiply the delay between retries by that value.
For example, if you specify a retry interval of 10 seconds and a backoff rate of 1.5, Step
Function will wait 15 seconds (10 seconds x 1.5) for the second retry, 22.5 seconds (15
seconds x 1.5) for the third retry, and so on.

Having reviewed some of the core concepts of data pipelines and orchestration, we can
now examine the tools that are available in AWS for creating and orchestrating pipelines.

Examining the options for orchestrating
pipelines in AWS
As you will have noticed throughout this book, AWS offers many different building
blocks for architecting solutions. When it comes to pipeline orchestration, AWS provides
native serverless orchestration engines with AWS Data Pipeline and AWS Step Function,
a managed open source project with Amazon Managed Workflows for Apache Airflow
(MWAA), and service-specific orchestration with AWS Glue Workflows.

300 Orchestrating the Data Pipeline

There are pros and cons to using each of these solutions, depending on your use case. And
when you're making a decision, there are multiple factors to consider, such as the level
of management effort, the ease of integration with your target ETL engine, logging, error
handling mechanisms, and cost and platform independence.

In this section, we'll examine each of the four pipeline orchestration options.

AWS Data Pipeline for managing ETL between data
sources
AWS Data Pipeline is one of the oldest services that AWS has for creating and
orchestrating data pipelines, having been originally released in 2012.

Using AWS Data Pipeline, you can extract, transform, and load data between certain AWS
data sources – even on-premises data sources. To use this service, you define your data
sources, schedule transform activities, and select a data target for writing to. Data Pipeline
will then manage the scheduling of the pipeline, automatically provision the required
AWS resources (such as an EMR cluster), and enable you to monitor pipelines with
configurable retry logic and alerting.

The following AWS data services are supported as sources and targets by Data Pipeline:

• Amazon DynamoDB

• Amazon Relational Database System

• Amazon Redshift

• Amazon S3

In addition to these data sources, Data Pipeline is also able to read and write to other
JDBC data stores, such as an on-premises database.

The following compute services can be used to run jobs to transform your data:

• Amazon EC2

• Amazon EMR

• On-premises compute resources (by installing the Java-based Data Pipeline task
runner software)

Examining the options for orchestrating pipelines in AWS 301

If you review the AWS documentation for the Data Pipeline service, you may notice that
there have not been many recent updates to the service. For example, the last update
to the documentation was in 2018 (as per https://docs.aws.amazon.com/
datapipeline/latest/DeveloperGuide/DocHistory.html), the default EC2
instance in most regions is the m1 instance family (although newer generations, such as
m5 instances, can be used), and the task runner software is only supported by Java 1.6 and
Java 1.8 versions. Also, the Data Pipeline service is only supported in five AWS regions
(Northern Virginia, Oregon, Sydney, Tokyo, and Ireland).

Because of these limitations, it is generally recommended to use the newer AWS services
for building and orchestrating data pipelines.

AWS Glue Workflows to orchestrate Glue resources
In Chapter 3, The AWS Data Engineers Toolkit, we introduced the AWS Glue Workflows
service. As a reminder, this is a part of the AWS Glue service and can be used to build a
data pipeline consisting of Glue components (Glue Crawlers and Glue Spark or Python
jobs).

For use cases where you are creating a data pipeline that only uses AWS Glue components,
the use of Glue Workflows can be a good fit. For example, you could create the following
pipeline using Glue Workflows:

• Run a Glue Crawler to add CSV files that have been ingested into a new partition to
the Glue Data Catalog.

• Run a Glue Spark job to read the new data using the catalog, and then transform the
CSV files into Parquet files.

• Run another Glue Crawler to add the newly transformed Parquet files to the Glue
Data Catalog.

• Run two Glue jobs in parallel. One Glue job aggregates data and writes the results
into a DynamoDB table. The other Glue job creates a newly enriched dataset that
joins the new data to an existing reference set of data.

• Run another Glue Crawler to add the newly enriched dataset to the Glue Catalog.

• Run a Glue Python Shell job to send a notification about the success or failure of the
job.

https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/DocHistory.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/DocHistory.html

302 Orchestrating the Data Pipeline

While a fairly complex data pipeline can be created using Glue Workflows (as shown
here), many use cases require the use of other AWS services, such as EMR for running
Hive jobs or writing files to an SQS queue. While Glue Workflows don't support
integration with non-Glue services directly, it is possible to run a Glue Python Shell job
that uses the Boto3 library to interact with other AWS services. However, this is not as
feature-rich or as obvious to monitor as interacting with those services directly.

Monitoring and error handling
Glue Workflows includes a graphical UI that can be used to monitor job progress. With
the UI, you can see whether any step in the pipeline has failed, and you can also resume
the Workflow from a specific step once you have resolved the issue that caused the error.
While Glue Workflows does not include a retry mechanism as part of the Workflow
definition, you can specify the number of retries in the properties of individual Glue jobs.

CloudWatch Events provides a real-time stream of change events that can be generated
by some AWS services, including AWS Glue. While, at the time of writing, Glue does not
generate any events from Glue Workflows, events are generated from individual Glue jobs.
For example, there is a Glue Job State Change event that is generated for Glue jobs that
reflects one of the following states: SUCCEEDED, FAILED, TIMEOUT, or STOPPED.

Using Amazon EventBridge, you can automate actions to take place when a new event and
status you are interested in is generated. For example, you can create an EventBridge rule
that picks up Glue Job FAILED events, then triggers a Lambda function to run, and sends
an email notification with details of the failure.

Triggering Glue Workflows
When you create a Glue Workflow, you can select the mechanism that will cause the
Workflow to run. There are three ways that a Glue Workflow run can be started.

If set to on-demand, the Workflow will only run when it's started manually from the
console, or when it's started using the Glue API or CLI.

If set to scheduled, you can specify a frequency for running the job, such as hourly, daily,
monthly, or for specific days of the week (such as Mondays to Fridays). Alternatively, you
can set a custom schedule using a cron expression, which uses a string to set a frequency
to run. For example, if you set the cron expression to */30 8-16 * * 2-6, the
Workflow will run every 30 minutes between 8 A.M and 4:59 P.M., Mondays to Fridays.

Glue Workflows also support an event-driven approach, where the Workflow is triggered
in response to an EventBridge event. With this approach, you can configure an Amazon
EventBridge rule to send events to Glue Workflows, such as an S3 PutObject event for a
specific S3 bucket and prefix.

Examining the options for orchestrating pipelines in AWS 303

When configuring your Workflow, you can also specify triggering criteria where you
specify that you only want the Workflow to run after a certain number of events are
received, optionally specifying a maximum amount of time to wait for those events.

For example, if you have a business partner that sends many small CSV files throughout
the day, you may not want to process each file individually, but rather process a batch of
files. For this use case, you can configure the Workflow to trigger once 100 events have
been received and specify a time delay of 3,600 seconds (1 hour).

This time delay starts when the first unprocessed event is received. If the specified number
of events is not received within the time delay you entered, the Workflow will start anyway
and process the events that have been received.

If you receive 100 events between 8 A.M. and 8:40 A.M., the first run of the Workflow will
be triggered at 8:40 A.M. If you receive only 75 events between 8:41 A.M. and 9:41 A.M.,
the Workflow will run a second time at 9:41 A.M. anyway and process the 75 received
events since the time delay of 1 hour has been reached.

Functionality such as the ability to easily restart a Workflow from a specific step, as well
as the ability to batch events before triggering the running of a Workflow, makes Glue
Workflows a good data pipeline orchestration solution for pipelines that only use the
Glue service. However, if you are looking for a more comprehensive solution that can also
orchestrate other AWS services and on-premises tools, then you should consider AWS
Step Function or Apache Airflow, which we will discuss next.

Apache Airflow as an open source orchestration
solution
Apache Airflow is a piece of open sourced orchestration software, originally developed at
Airbnb, that provides functionality for authoring, monitoring, and scheduling Workflows.
Some of the features available in Airflow include stateful scheduling, a rich user interface,
core functionality for logging, monitoring, and alerting, and a code-based approach to
authoring pipelines.

Within AWS, a managed version of Airflow is available as a service called Amazon
Managed Workflows for Apache Airflow (MWAA). This service simplifies the process of
getting started with Airflow, as well as the ongoing maintenance of Airflow infrastructure
since the underlying infrastructure is managed by AWS. Like other AWS managed
services, AWS ensures the scalability, availability, and security of the Airflow software and
infrastructure. Please refer to the overview of Amazon MWAA in Chapter 3, The Data
Engineers Toolkit, for more information on the architecture of this managed service.

304 Orchestrating the Data Pipeline

When deploying the managed MWAA service in AWS, you can choose from multiple
supported versions of Apache Airflow. At the time of writing, Airflow v1.10.12 and
Airflow v2.0.2 are supported in the managed service.

Core concepts for creating Apache Airflow pipelines
Apache Airflow uses a code-based (Python) approach to authoring pipelines. This means
that to work with Airflow, you do need some Python programming skills. However,
having pipelines as code is a natural fit for saving pipeline resources in a source control
system, and it also helps with creating automated tests for pipelines.

The following are some of the core concepts that are used to create Airflow pipelines.

Directed acyclic graphs (DAGs)
We introduced the concept of a directed acyclic graph (DAG) earlier in this chapter. In
the context of Airflow, a data pipeline is created as a DAG (using Python to define the
DAG), and the DAG provides the tasks in the pipeline and the dependencies between
tasks.

In the Airflow user interface, you can also view a pictorial representation of the DAG –
the pipeline tasks and their dependencies, with tasks represented as nodes and arrows
showing the dependencies between tasks.

Airflow Connections and Hooks
Airflow Hooks define how to connect to remote source and target systems, such as a
database, or a system such as Zendesk. This hook contains the code that controls the
connection to the remote system, and while Airflow includes several built-in Hooks, it
also lets you define custom hooks. Built-in hooks include hooks for Amazon S3, HTTP
systems, various databases (such as Oracle, MySQL, and Postgres), as well as systems such
as Slack, Presto, and Hive.

Open source contributors can also create and share hooks, and this includes hooks for
AWS services such as Athena, DynamoDB, Firehose, and Glue, as well as for non-AWS
services such as Google BigQuery, DataBricks, Jenkins, and many others.

A related concept is Airflow Connections, which defines the URL/hostname, username,
and password that is used to make a connection to a remote system.

Hooks and Connections contain the code to connect to and authenticate with remote
systems, keeping that code separate from pipeline definitions.

Examining the options for orchestrating pipelines in AWS 305

Airflow Tasks
Airflow Tasks defines the basic unit of work that a DAG performs. Each task is defined in
a DAG with upstream and downstream dependencies, which defines the order in which
the tasks should run.

When a DAG runs, the tasks in the DAG move through various states, from None to
Scheduled, to Queued, to Running, and finally to Success or Failed.

Airflow Operators
Airflow Operators provide predefined task templates that provide a pre-built interface
for performing a specific task. Airflow includes several built-in core operators (such as
BashOperator and PythonOperator, which execute a bash command or Python
function). There is also an extensive collection of additional operators that are released
separately from Airflow Core (such as JdbcOperator, S3FileTransformOperator,
S3toRedshiftTransfer, and DockerOperator).

Airflow Sensors
Airflow Sensors provides a special type of Airflow operator that is designed to wait until a
specific action takes place. The sensor will regularly check whether the activity it is waiting
on has been completed, and can be configured to time out after a certain period.

Using Airflow Sensors enables you to create event-driven pipelines. For example, you
could use S3KeySensor, which waits for a specific key to be present at an S3 path and, once
present, triggers a specific DAG to run.

Pros and cons of using MWAA
One of the key differentiators for Airflow is active development support from the open
source community, with over 1,500 contributors. As a result of this active community,
Airflow supports a wide range of integrations with many different services, including
services from AWS, Google, and Microsoft Azure cloud. If your pipelines need integration
with lots of services from multiple providers, then the number of supported integrations
in Airflow is one of the most significant benefits you will find from using Airflow.

Airflow is also a mature service, with built-in functionality for retrying tasks, alerting on
failures, and scaling to handle large and complex Workflows. It has a well-developed UI
for monitoring and managing pipelines. Airflow is widely used and proven across many
large enterprises, such as Airbnb.

306 Orchestrating the Data Pipeline

The managed version of Airflow that is available from AWS significantly simplifies
the time and effort for deploying an Airflow environment. AWS also provides built-in
functionality for scaling Airflow workers, automatically adding or removing additional
workers based on demand.

However, you do need to have some Python skills to use Airflow, so the learning curve
for using Airflow may be higher than when using an orchestration tool that provides a
graphical user interface for creating pipelines. Airflow also has a certain amount of fixed
infrastructure that is used for delivering the service, and this comes with an associated
fixed cost. So, whether your Airflow environment is actively running a pipeline, or
whether it is idle for hours between pipeline runs, there is an ongoing cost for the
environment.

Now, let's look at the final option within AWS for orchestrating data pipelines: the AWS
Step Function service.

AWS Step Function for a serverless orchestration
solution
AWS Step Function is a comprehensive serverless orchestration service that uses a
low-code approach to develop data pipelines and serverless applications. Step Function
provides a powerful visual design tool that allows you to create pipelines with a simple
drag and drop approach. Or, if you prefer, you can define your pipeline using Amazon
States Language (ASL) directly using JSON.

AWS has built optimized, easy-to-use integrations between many different AWS services
and Step Function. For example, you can easily add a step that runs a Lambda function
and select the name of the Lambda function to run from a drop-down list.

Step Function also makes it easy to specify how to handle the failure of a state with custom
retry policies, lets you specify catch blocks to catch specific errors, and takes custom
actions based on the error.

For services where AWS has not built an optimized integration, you can still run the
service by using the AWS SDK integration built into Step Function. For example, there is
no direct Step Function integration for running Glue Crawlers, but you can add a state
that calls the Glue StartCrawler API and specify the parameters that are needed by
that API call.

Step Function also includes strong support for error handling and has a visual interface
for monitoring the status of a Step Function state machine run. However, Step Function
does not currently support the ability to restart a state machine from a specific step.

Examining the options for orchestrating pipelines in AWS 307

A sample Step Function state machine
With Step Function, you create a state machine that defines the various tasks that make
up your data pipeline. Each task is considered a state within the state machine, and you
can also have states that control the flow of your pipeline, such as a choice state that
executes a branch of the pipeline, or a wait state to pause the pipeline for a certain period.

When you're executing a Step Function state machine, you can pass in a payload that can
be accessed by each state. Each state can also add additional data to the payload, such as a
status code indicating whether a task succeeded or failed.

The following diagram shows a sample state machine in Step Function:

Figure 10.2 – Sample Step Function state machine

308 Orchestrating the Data Pipeline

In this state machine definition, we can see the following states:

1. We start with a Task state that executes a Lambda function that validates a manifest
file that has been received (ensuring all the files listed in the manifest exist, for
example).

2. We then have another Task state, this time to execute a Glue Job that will convert
the files we received from CSV format into Parquet format.

3. Our next step is another Task state. This time, the task executes a Glue crawler to
update our data catalog with the new Parquet dataset we have generated.

4. We then enter a Parallel state, which is used to create parallel branches of execution
in our state machine. In this case, we're executing a Lambda function (to summarize
data from the Parquet file and store the results in a DynamoDB table) and then
trigger a Glue job to enrich our new Parquet dataset with additional data.

5. We then enter a Choice state. The choice state specifies rules that get evaluated to
determine what to do next. In this case, if our Lambda and Glue jobs succeeded,
we end the state machine with a Success state. If either of them failed, we run a
Lambda function to send a failure notification, and we end the state machine with a
Fail state.

The visual editor that can be used in the console to create a state machine ultimately ends
up generating an Amazon States Language (ASL) JSON file that contains the definition
of the pipeline. You can store the JSON definition file for your data pipeline in a source
control system, and then use the JSON file in a CI/CD pipeline to deploy your Step
Function state machine.

Pros and cons of using AWS Step Function
AWS Step Function provides a native AWS solution for defining and orchestrating
pipelines that are easy to use with a powerful visual design tool. Step Function is offered
as a serverless service, which means that you only pay for the service while actively using
it; you do not have any infrastructure to manage or even any infrastructure decisions to
make.

Examining the options for orchestrating pipelines in AWS 309

AWS offers Step Function as a highly available service within a region, and even provides
an SLA indicating that AWS will make commercially reasonable efforts to make AWS Step
Function available with a monthly uptime percentage for each AWS region, during any
monthly billing cycle, of at least 99.9%. For more information on this SLA, see https://
aws.amazon.com/step-functions/sla/.

However, Step Function does not natively let you resume a pipeline from its point of
failure, which tools such as Apache Airflow do offer. Also, while Step Function is very
well integrated with AWS services and lets you orchestrate even on-premises workloads, if
you are looking for an orchestration tool with strong integration to non-AWS third-party
services, then Apache Airflow has the strongest offering for that.

In the hands-on exercises for this chapter, you will get the opportunity to build out a data
pipeline using AWS Step Function. However, before we do that, let's summarize your
choices for data pipeline orchestration within AWS.

Deciding on which data pipeline orchestration tool to
use
As we have discussed in this chapter, there are multiple options for creating and
orchestrating data pipelines within AWS. And while we have looked at four different
options offered by AWS directly, there are countless other options from AWS partners that
could also be considered.

For less complex environments that only use the services supported by either AWS Data
Pipeline or AWS Glue Workflows, these services can be a good choice. However, for larger
and more complex environments, it is worth examining both Amazon MWAA and AWS
Step Function.

https://aws.amazon.com/step-functions/sla/
https://aws.amazon.com/step-functions/sla/

310 Orchestrating the Data Pipeline

The following tables show a comparison of Step Function and Amazon MWAA based on
several different key attributes:

Figure 10.3 – Comparison of AWS Step Function and Amazon MWAA

Now, let's get hands-on with AWS Step Function and see how this service can let us
visually build pipelines.

Hands-on – orchestrating a data pipeline using AWS Step Function 311

Hands-on – orchestrating a data pipeline using
AWS Step Function
In this section, we will get hands-on with the AWS Step Function service, which can be
used to orchestrate data pipelines. The pipeline we're going to orchestrate is relatively
simple, but Step Function can also be used to orchestrate far more complex pipelines with
many steps. To keep things simple, we will only use Lambda functions to process our data,
but you could replace Lambda functions with Glue jobs in production pipelines that need
to process large amounts of data.

For our Step Function state machine, we are going to start by using a Lambda function
that checks the extension of an incoming file to determine the type of file. Once
determined, we'll pass that information on to the next state, which is a CHOICE state. If it
is a file type we support, we'll call a Lambda function to process the file, but if it's not, we'll
send out a notification, indicating that we cannot process the file.

If the Lambda function fails, we'll send a notification to report on the failure; otherwise,
we will end the state machine with a SUCCESS status.

Creating new Lambda functions
Before we can create our Step Function, we need to create the Lambda functions that we
will be orchestrating. We will create three separate Lambda functions in this section.

Using a Lambda function to determine the file extension
Our first Lambda function will check the extension of any file that's uploaded to an
Amazon S3 bucket. Then, it will return it that to the state machine. Let's get started:

1. Log in to AWS Management Console and navigate to the AWS Lambda service at
https://console.aws.amazon.com/lambda/home.

2. Ensure that you are in the region that you have been using for all the exercises in
this book.

3. Click on Create function.
4. Select Author from scratch. Then, for Function name, enter dataeng-check-

file-ext.
5. For Runtime, select Python 3.9. Leave the defaults for Architecture and

Permissions as-is and click Create function.

https://console.aws.amazon.com/lambda/home

312 Orchestrating the Data Pipeline

6. In the Code source block, replace any existing code with the following code. This
code receives an EventBridge event when a new S3 file is uploaded and uses the
metadata included within the event to determine the extension of the file:

import urllib.parse

import json

import os

print('Loading function')

def lambda_handler(event, context):

 print("Received event: " + json.dumps(event,
indent=2))

 # Get the object from the event and show its content
type

 bucket = event['detail']['requestParameters']
['bucketName']

 key = urllib.parse.unquote_plus(event['detail']
['requestParameters']['key'], encoding='utf-8')

 filename, file_extension = os.path.splitext(key)

 print(f'File extension is: {file_extension}')

 payload = {

 "file_extension": file_extension,

 "bucket": bucket,

 "key": key

 }

 return payload

7. Click the Deploy button above the code block section to save and deploy our
Lambda function.

Now, we can create a second Lambda function that will process the file we received.
However, for this exercise, the code in this Lambda function will randomly generate
failures.

Hands-on – orchestrating a data pipeline using AWS Step Function 313

Lambda to randomly generate failures
For this Lambda function, we will use a random number generator to determine whether
to cause an error in the Lambda function or to succeed. We will do this by generating a
random number that will be either 0, 1, or 2 and then dividing our random number by
10. When the random number is 0, we will get a "divide by zero" error from our function.
Let's get started:

1. Repeat Steps 1 to 5 of the previous section to create the first Lambda function, but
this time, for Function name, enter dataeng-random-failure-generator.

2. In the Code source block, replace any existing code with the following code:

from random import randint

def lambda_handler(event, context):

 print('Processing')

 #Our ETL code to process the file would go here

 value = randint(0, 2)

 # We now divide 10 by our random number.

 # If the random number is 0, our function will fail

 newval = 10 / value

 print(f'New Value is: {newval}')

 return(newval)

3. Click the Deploy button above the code block section.

We now have two Lambda functions that we can orchestrate in our Step Function state
machine. But before we create the state machine, we have a few additional resources to
create.

Creating an SNS topic and subscribing to an email
address
If there is a failure in our state machine, we want to be able to send an email notification
about the failure. We can use the SNS service to send an email. To do this, we need to
create an SNS topic that we will send the notification to. Then, we can subscribe one or
more email addresses to that topic. Let's get started:

1. Navigate to the Amazon SNS service at https://console.aws.amazon.
com/sns.

2. Ensure that you are in the region that you have been using for all the exercises in
this book.

https://console.aws.amazon.com/sns
https://console.aws.amazon.com/sns

314 Orchestrating the Data Pipeline

3. In the menu on the left-hand side, click on Topics, then Create topic.
4. For Type, select Standard.
5. For Name, enter dataeng-failure-notification.
6. Leave all the other items as-is and click on Create topic.
7. In the Topic details section, click Create subscription.
8. For Protocol, select Email.
9. For Endpoint, enter your email address. Then, click on Create subscription.
10. Access your email and look for an email from no-reply@sns.amazonaws.com. Click

the Confirm subscription link in that email. You need to do this to receive future
email notifications from Amazon SNS.

We now have an SNS topic with a confirmed email subscription that can receive SNS
notifications.

Creating a new Step Function state machine
Now, we can orchestrate the various components that we have created so far (our two
Lambda functions and the SNS topic we will use for sending messages):

1. Navigate to the Amazon Step Function service at https://console.aws.
amazon.com/states/home.

2. Ensure that you are in the region that you have been using for all the exercises in
this book.

3. Click on Create state machine.
4. Leave the default of Design your Workflow visually as-is and set the type to

Standard. Then, click Next.
5. This will show a visual editor with a Start block and an End block. Drag the AWS

Lambda Invoke block into the visual designer, between the Start and End blocks.
6. On the right-hand side of the screen, set State name to Check File

Extension.
7. Under API Parameters, use the drop-down list to select the Lambda function that

extracts the file extension (such as dataeng-check-file-ext).
8. Click on the Output tab, click the selector for Filter output with OutputPath,

and provide a value of $.Payload. Selecting this option configures our Check
File Extension state to have an output of whatever was returned by our Lambda
function (in our case, we have configured our Lambda function to return some
JSON that contains the S3 bucket, object, and file extension of the file to process).

https://console.aws.amazon.com/states/home
https://console.aws.amazon.com/states/home

Hands-on – orchestrating a data pipeline using AWS Step Function 315

Figure 10.4 – Building out a Step Function state machine

9. On the left-hand side, click on the Flow tab. Then, drag the Choice state to between
the Lambda Invoke function and the End state. We use the Choice state to branch
out our pipeline to run different processes, based on the output of a previous state.
In this case, our pipeline will do different things depending on the extension of the
file we are processing.

10. On the right-hand side, under Configuration for our new choice state, click the
Pencil Edit icon next to Rule #1 and then click Add conditions.

11. On the pop-up screen, under Variable, enter $.file_extension (our Lambda
function returned some JSON, including a JSON path of file_extension that
contains a string with the extension of the file we are processing). Set Operator to
matches string and for value, enter .csv. Then, click Save conditions.

12. On the left-hand side, switch back to the Actions tab and drag the AWS Lambda
Invoke state to the Rule #1 box in the flow diagram.

13. For our new Lambda Invoke state for Rule #1, set State name to Process CSV
(since our Choice function is going to invoke this Lambda for any file that has an
extension of .csv, as we set in Step 11).

316 Orchestrating the Data Pipeline

14. Under API Parameters, use the dropdown to set Function name to our second
Lambda function (dataeng-random-failure-generator). In a real pipeline,
we would have a Lambda function (or Glue job) that would read the CSV file that
was provided as input and process the file. In a real pipeline, we may have also
added additional rules to our Choice state for other file types (such as XLS or JPG)
and had different Lambda functions or Glue jobs invoked to handle each file type.

However, in this exercise, we are only focusing on how to orchestrate pipelines, so
our Lambda function code is designed to simply divide 10 by a random number,
resulting in random failures when the random number is 0.

15. On the left-hand side, switch back to the Flow tab and drag the Pass state to the
Default rule box leading from our Choice state. The default rule is used if the
output of our Lambda function does not match any of the other rules. In this case,
our only other rule is for handling files with a .csv extension, so if a file has any
other extension besides .csv, the default rule will be used.

16. On the right-hand side, for the Pass state configuration, change State name to
Pass – Invalid File Ext. Then, click on the Output tab and paste the
following into the Result textbox:

{

 "Error": "InvalidFileFormat"

}

The Pass state is used in a state machine to modify the data that is passed to the
next state. In this case, we want to pass an error message about the file format being
invalid to the next state in our pipeline.

Ensure that the selector for Add original input to output using ResultPath is
selected and that the dropdown is set to Combine original input with result. In the
textbox, enter $.Payload.

17. If we receive an InvalidFileFormat error, we want to send a notification using the
Amazon SNS service. To do so, on the left-hand side, under the Actions tab, drag
the Amazon SNS Publish state to below our Pass - Invalid File Ext state.

On the right-hand side, on the Configuration tab for the SNS Publish state,
under API Parameters, set Topic to our previously created SNS topic (dataeng-
failure-notification). Your state machine should now look as follows:

Hands-on – orchestrating a data pipeline using AWS Step Function 317

Figure 10.5 – The current status of our Step Function state machine

18. We can now add error handling for our Process CSV state. Click on the Process
CSV state and, on the right-hand side, click on the Error handling tab. Under
Catch errors, click on the + Add new catcher button. For Errors, select States.
ALL, for Fallback state, select our SNS Publish state, and for result path, enter
$.Payload. This configuration means that if our Lambda function fails for any
reason (States.ALL), we will add the error message to our JSON under a Payload
key and pass this to our SNS notification state.

318 Orchestrating the Data Pipeline

19. On the left-hand side, click on the Flow tab and drag Success state under the
Process CSV state. Then, drag Fail state under the SNS Publish state. We are
doing this as we want our Step Function to show as having failed if, for any reason,
something failed and we ended up sending a failure notification using SNS. Your
finalized state should look as follows:

Figure 10.6 – The final status of our Step Function state machine

20. At the top right, click on Next. This screen shows the JSON Amazon States
Language code that has been generated for your state machine. Click on Next.

21. For State machine name, enter ProcessFilesStateMachine. Leave all the
other settings as-is and click Create state machine.

With that, we have created our pipeline orchestration using Step Function. Now, we want
to create an event-driven Workflow for triggering the Step Function. In the next section,
we will create a new EventBridge rule that will trigger our state machine whenever a new
file is uploaded to a specific S3 bucket.

Hands-on – orchestrating a data pipeline using AWS Step Function 319

The Amazon EventBridge service is a serverless event bus that can be used to build event-
driven Workflows. EventBridge can detect events from various AWS services (such as
a new file being uploaded to S3) and can be configured to trigger a variety of different
targets in response to an event. In our case, we will configure our Step Function as a target.

Configuring AWS CloudTrail and Amazon EventBridge
The AWS CloudTrail service is used to log the activities that are performed in an AWS
account in near-real time. For example, when a new file is uploaded to Amazon S3, a
CloudTrail event can be logged with details of the activity that took place.

Amazon EventBridge can monitor CloudTrail logs to detect certain events and respond
to those. In the case of Amazon S3, however, object-level data events are not logged in
CloudTrail by default, so we will need to configure our S3 bucket to generate CloudTrail
data events.

Configuring Amazon S3 data events
For this exercise, we want to detect new files being created in our S3 Clean Zone bucket
and have that trigger our Step Function state machine. The following steps will take you
through the process of configuring CloudTrail data events:

1. Navigate to the Amazon CloudTrail service at https://console.aws.
amazon.com/cloudtrail/home.

2. Ensure that you are in the region that you have been using for all the exercises in
this book.

3. Expand the left panel and click on Dashboard.
4. Under Trails, click on Create trail.
5. For Trail name, enter s3-data-events.
6. Under Customer managed AWS KMS key, enter s3-data-events-key for

AWS KMS alias.
7. Leave all the other options as-is and click Next.
8. For Event type, deselect Management events and select Data events instead.
9. Under Data event: S3, deselect the Read and Write options for All current and

future S3 buckets.

https://console.aws.amazon.com/cloudtrail/home
https://console.aws.amazon.com/cloudtrail/home

320 Orchestrating the Data Pipeline

10. Under Individual bucket selection, enter (or browse for) the name of your clean-
zone bucket (such as dataeng-clean-zone-<initials>). Deselect Read,
leaving only Write events selected. Then, click on Next.

11. After reviewing the summary screen, click on Create trail.

With the preceding steps, we have configured CloudTrail to record a log of all Write type
events to our clean-zone bucket. In the next section, we will create a new EventBridge
event that will detect Write events to the clean-zone bucket and trigger our Step Function
in response.

Create an EventBridge rule for triggering our Step Function state
machine
Our final task, before testing our pipeline, is to configure the EventBridge rule that will
trigger our Step Function state machine. Let's get started:

1. Navigate to the Amazon EventBridge service at https://console.aws.
amazon.com/events/home.

2. Ensure that you are in the region that you have been using for all the exercises in
this book.

3. From the left-hand panel, click on Rules. Then, click on Create rule.
4. For the rule's name, enter dataeng-s3-trigger-rule.
5. Under Define pattern, select Event pattern, and then select Pre-defined pattern by

service.
6. For Service provider, select AWS. For Service name, select Simple Storage Service

(S3). For Event type, select Object level operations.
7. Select Specific operations. Then, from the drop-down list, select the PutObject,

CopyObject, and CompleteMultipartUpload operations.
8. Select Specific bucket(s) by name and enter the name of your clean-zone bucket

(for example, dataeng-clean-zone-<initials>):

https://console.aws.amazon.com/events/home
https://console.aws.amazon.com/events/home

Hands-on – orchestrating a data pipeline using AWS Step Function 321

Figure 10.7 – Specifying the event pattern for an EventBridge rule

9. Scroll down to Select targets and for Target, select Step Function state machine
from the drop-down list.

322 Orchestrating the Data Pipeline

10. For State machine, select ProcessFileStateMachine, which we created previously.
11. Leave all the other settings as-is and click Create.

With that, we have put together an event-driven Workflow to orchestrate a data pipeline
using Amazon Step Function. Our last task is to test our pipeline.

Testing our event-driven data orchestration pipeline
To test our pipeline, we need to upload a file to our clean-zone S3 bucket. Once the file has
been uploaded, the rule we created in Amazon EventBridge will cause our Step Function
state machine to be triggered:

1. Navigate to the Amazon S3 service at https://s3.console.aws.amazon.
com/s3.

2. From the list of buckets, click on the dataeng-clean-zone-<initials> bucket.
3. Optionally, create a new folder in this bucket for testing.
4. Click on Upload, then Add files. Browse your computer for a file with a CSV

extension (if you cannot find one, create a new, empty file and make sure that the
file is saved with an extension of CSV).

5. Leave the other settings as-is and click Upload.
6. Navigate to the AWS Step Function service at https://console.aws.

amazon.com/states.
7. Click on the state machine we created earlier (ProcessFilesStateMachine).

From the list of Executions, see whether the state machine Succeeded or Failed.
Click on the Name property of the execution for more details.

8. Reupload the same .csv file (multiple times if necessary) and notice how some
executions succeed and some fail. The random number generator has a 66% chance
of generating the number 1 or 2 and a 33% chance of generating the number
0. When the number 0 is generated, the function will fail, so throughout many
executions, approximately one-third should fail.

The following diagram shows an example of what our state machine looks like after
an execution where 0 was generated as a random number, causing the Lambda
function to fail:

https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://console.aws.amazon.com/states
https://console.aws.amazon.com/states

Hands-on – orchestrating a data pipeline using AWS Step Function 323

Figure 10.8 – An example of a state machine run when the random number generator generated a 0,
resulting in a failed state machine

9. After a failed execution, check the email address that you specified when you
configured the Amazon SNS notification service. If you previously confirmed your
SNS subscription, you should receive an email each time the state machine fails.

10. Now, upload another file to the same Amazon S3 bucket, but ensure that this
file has an extension other than .csv (for example, PDF). When you're viewing
the execution details for your state machine, you should see that the choice state
proceeded to the Pass – Invalid File Ext state and then also published an SNS
notification to your email.

In the hands-on activity for this chapter, we created a serverless pipeline that we
orchestrated using the AWS Step Function service. Our pipeline was configured to be
event-driven via the Amazon EventBridge service, which let us trigger the pipeline in
response to a new file being uploaded to a specific Amazon S3 bucket.

324 Orchestrating the Data Pipeline

This was a fairly simple example of a data pipeline. However, AWS Step Function can
be used to orchestrate far more complex data pipelines, with advanced error handling
and retries. For more information on advanced error handling, see the AWS blog titled
Handling Errors, Retries, and Adding Alerting to Step Function state machine Executions
(https://aws.amazon.com/blogs/developer/handling-errors-
retries-and-adding-alerting-to-step-function-state-machine-
executions/).

Summary
In this chapter, we looked at a critical part of a data engineers' job: designing and
orchestrating data pipelines. First, we examined some of the core concepts around data
pipelines, such as scheduled and event-based pipelines, and how to handle failures and
retries.

We then looked at four different AWS services that can be used for creating and
orchestrating data pipelines. This included Amazon Data Pipeline, AWS Glue Workflows,
Amazon Managed Workflows for Apache Airflow (MWAA), and AWS Step Function. We
discussed some of the use cases for each of these services, as well as the pros and cons of
them.

Then, in the hands-on section of this chapter, we built an event-driven pipeline. We used
two AWS Lambda functions for processing and an Amazon SNS topic for sending out
notifications about failure. Then, we put these pieces of our data pipeline together into
a state machine orchestrated by AWS Step Function. We also looked at how to handle
errors.

So far, we have looked at how to design the high-level architecture for a data pipeline and
examined services for ingesting, transforming, and consuming data. In this chapter, we
put some of these concepts together in the form of an orchestrated data pipeline.

In the remaining chapters of this book, we will take a deeper dive into some of the
services for data consumption, including services for ad hoc SQL queries, services for data
visualization, as well as an overview of machine learning and artificial intelligence services
for drawing additional insights from our data.

In the next chapter, we will do a deeper dive into the Amazon Athena service, which is
used for ad hoc data exploration, using the power of SQL.

https://aws.amazon.com/blogs/developer/handling-errors-retries-and-adding-alerting-to-step-function-state-machine-executions/
https://aws.amazon.com/blogs/developer/handling-errors-retries-and-adding-alerting-to-step-function-state-machine-executions/
https://aws.amazon.com/blogs/developer/handling-errors-retries-and-adding-alerting-to-step-function-state-machine-executions/

Section 3:
The Bigger Picture:

Data Analytics, Data
Visualization, and
Machine Learning

In Section 3 of the book, we examine the bigger picture of data analytics in modern
organizations. We learn about the tools that data consumers commonly use to work with
data transformed by data engineers, and briefly look into how machine learning (ML)
and artificial intelligence (AI) can draw rich insights out of data. We also get hands-on
with tools for running ad hoc SQL queries on data in the data lake (Amazon Athena),
for creating data visualizations (Amazon QuickSight), and for using AI to derive insights
from data (Amazon Comprehend). We then conclude by looking at data engineering
examples from the real world and explore some emerging trends in data engineering.

This section comprises the following chapters:

• Chapter 11, Ad Hoc Queries with Amazon Athena

• Chapter 12, Visualizing Data with Amazon QuickSight

• Chapter 13, Enabling Artificial Intelligence and Machine Learning

• Chapter 14, Wrapping Up the First Part of Your Learning Journey

11
Ad Hoc Queries with

Amazon Athena
In Chapter 8, Identifying and Enabling Varied Data Consumers, we explored a variety
of data consumers. Now, we will start examining the AWS services that some of these
different data consumers may want to use, starting with those that need to use SQL
to run ad hoc queries on data in the data lake.

SQL syntax is widely used for querying data in a variety of databases, and it is a skill that
is easy to find. As a result, there is significant demand from various data consumers for
the ability to query data that is in the data lake using SQL, without having to first move
the data into a dedicated traditional database.

Amazon Athena is a serverless, fully managed service that lets you use SQL to directly
query data in the data lake, as well as query various other databases. It requires no setup,
and the cost is based purely on the amount of data that is scanned to complete the query.

In this chapter, we will do a deep dive into Athena, examining how Athena can be used
to query data directly in the data lake, query data from other data sources with Query
Federation, and how Athena provides workgroup functionality to help with governance
and cost management.

328 Ad Hoc Queries with Amazon Athena

In this chapter, we will cover the following topics:

• An introduction to Amazon Athena

• Tips and tricks to optimize Amazon Athena queries

• Federating the queries of external data sources with Amazon Athena Query
Federation

• Managing governance and costs with Amazon Athena Workgroups

• Hands-on – creating an Amazon Athena workgroup and configuring Athena settings

• Hands-on – switching Workgroups and running queries

Technical requirements
In the hands-on sections of this chapter, you will perform administrative tasks related to
Amazon Athena (such as creating a new Athena workgroup) and run Athena queries. As
mentioned at the start of this book, we strongly recommend that, for the exercises in this
book, you use a sandbox account where you have full administrative permissions.

For this chapter, at a minimum, you will need permissions to manage Athena Workgroups,
permissions to run Athena queries, access to the AWS Glue data catalog for databases and
tables to be queried, and read access to the relevant underlying S3 storage.

A user that has the AmazonAthenaFullAccess and AmazonS3ReadOnlyAccess policies
attached should have sufficient permissions for the exercises in this chapter. However,
note that a user with these roles will have access to all S3 objects in the account, all Glue
resources, all Athena permissions, as well as various other permissions, so this should only
be granted to users in a sandbox account. Such broad privileges should be avoided for
users in production accounts.

You can find the code files of this chapter in the GitHub repository using the following
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter11

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter11
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter11

Amazon Athena – in-place SQL analytics for the data lake 329

Amazon Athena – in-place SQL analytics for
the data lake
Structured Query Language (SQL) was invented at IBM in the 1970s but has remained
an extremely popular language for querying data throughout the decades. Every day,
millions of people across the world use SQL directly to explore data in a variety of
databases, and many more use applications (whether business applications, mobile
applications, or others) that, under the covers, use SQL to query a database.

Over the years, the American National Standards Institute (ANSI) has created various
versions of an ANSI-SQL standard that database vendors can use to build ANSI-SQL-
compliant databases. Database vendors often declare that their database is compatible
with a large subset of ANSI-SQL, meaning that different database engines support
different aspects of the ANSI-SQL standard.

Facebook, the social media network, has very large datasets and complex data analysis
requirements and found that existing tools in the Hadoop ecosystem were not able to
meet their needs. As a result, Facebook created an internal solution for being able to run
SQL queries on their very large datasets, using standard ANSI SQL semantics, and in 2013,
Facebook released this as an open source solution called Presto.

In late 2016, AWS announced the launch of Amazon Athena, a new service that would
enable customers to directly query structured and semi-structured data that exists in
Amazon S3. In the launch announcement, Amazon indicated that Athena was a managed
version of Presto, with full standard SQL support. This provided the power of the Presto
SQL analytics engine as a serverless service to AWS customers.

SQL is broadly broken into two parts:

• Data Definition Language (DDL), which is used to create and modify
database objects.

• Data Manipulation Language (DML), which is used to query and manipulate data.

In 2021, AWS upgraded the Amazon Athena engine to v2, which is based on HiveQL for
DDL statements, and Presto version 0.217 for DML statements.

Amazon Athena requires a Hive-compatible data catalog that provides the metadata for
the data being queried. The catalog provides a logical view (databases that contain tables,
which consist of rows, along with columns of a specific data type), and this maps to
physical files stored in Amazon S3. Athena originally had its own data catalog, but today,
it requires the use of the AWS Glue data catalog as its Hive compatible data store.

330 Ad Hoc Queries with Amazon Athena

Amazon Athena makes it easy to quickly start querying data in an Amazon S3-based data
lake, but there are some important things to keep in mind to optimize SQL queries with
Amazon Athena, as we will discuss in the next section.

Tips and tricks to optimize Amazon Athena
queries
When raw data is ingested into the data lake, we can immediately create a table for that
data in the AWS Glue data catalog (either using a Glue crawler or by running DDL
statements with Athena to define the table). Once the table has been created, we can start
exploring the table by using Amazon Athena to run SQL queries against the data.

However, raw data is often ingested in plaintext formats such as CSV or JSON. And
while we can query the data in this format for ad hoc data exploration, if we need to run
complex queries against large datasets, these raw formats are not efficient to query. There
are also ways that we can optimize the SQL queries that we write to make the best use of
the underlying Athena query engine.

Amazon Athena's cost is based on the amount of compressed data that is scanned to
resolve the query, so anything that can be done to reduce the amount of data scanned
improves query performance and reduces query cost.

In this section, we will review several ways that we can optimize our analytics for
increased performance and reduced cost.

Common file format and layout optimizations
The most impactful and easiest transformations that a data engineer can apply to raw files
are those that transform the raw files into an optimized file format, and that structure the
layout of files in an optimized way.

Transforming raw source files to optimized file formats
As we discussed in Chapter 7, Transforming Data to Optimize for Analytics, file formats
such as Apache Parquet are designed for analytics and are much more performant than
raw data formats such as CSV or JSON. So, transforming your raw source files into a
format such as Parquet is one of the most important things a data engineer can do to
improve the performance of Athena queries. Review the Optimizing the file format section
of Chapter 7, Transforming Data to Optimize for Analytics, for a more comprehensive look
at the benefits of Apache Parquet files.

Tips and tricks to optimize Amazon Athena queries 331

In Chapter 7, Transforming Data to Optimize for Analytics we reviewed how the AWS Glue
service can be used to transform your files into optimized formats. However, Amazon
Athena can also transform files using a concept called Create Table As Select (CTAS).
With this approach, you run a CTAS statement using Athena, and this instructs Athena to
create a new table based on a SQL select statement against a different table.

In the following example, customers_csv is the table that was created on the data we
imported from a database to our data lake, and the data is in CSV format. If we want to
create a Parquet version of this table so that we can effectively query it, we could run the
following SQL statement using Athena:

CREATE TABLE customers_parquet

WITH (

 format = 'Parquet',

 parquet_compression = 'SNAPPY')

AS SELECT *

FROM customers_csv;

The preceding statement will create a new table called customers_parquet. The
underlying files for this table will be in Parquet format and compressed using the
Snappy compression algorithm. The contents of the new table will be the same as the
customers_csv table since our query specified SELECT *, meaning select all data.

If you are bringing in specific datasets regularly (such as every night), then in most
scenarios, it would make sense to configure and schedule an AWS Glue job to perform
the conversion to Parquet format. But if you're doing ad hoc exploratory work on various
datasets, or a one-time data load from a system, then you may want to consider using
Amazon Athena to perform the transformation. Note that there are some limitations in
using Amazon Athena to perform these types of transforms, so refer to the Considerations
and Limitations for CTAS Queries (https://docs.aws.amazon.com/athena/
latest/ug/considerations-ctas.html) page in the Amazon Athena
documentation for more details.

Partitioning the dataset
This is also a concept that we covered in more detail in Chapter 7, Transforming Data to
Optimize for Analytics but we will discuss it again now briefly as, after using an optimized
file format such as Parquet, this is the next most impactful thing you can do to increase
the performance of your analytic queries. Review the Optimizing with Data Partitioning
section of Chapter 7, Transforming Data to Optimize for Analytics, for more details on
partitioning.

https://docs.aws.amazon.com/athena/latest/ug/considerations-ctas.html
https://docs.aws.amazon.com/athena/latest/ug/considerations-ctas.html

332 Ad Hoc Queries with Amazon Athena

A common data partitioning strategy is to partition files by columns related to date. For
example, in our sales table, we could have a YEAR column, a MONTH column, and a DAY
column that reflect the year, month, and day of a specific sales transaction, respectively.
When the data is written to S3, all sales data related to a specific day will be written out
to the same S3 prefix path.

Our partitioned dataset may look as follows:

/datalake/transform_zone/sales/YEAR=2021/MONTH=9/DAY=29/sales1.
parquet

/datalake/transform_zone/sales/YEAR=2021/MONTH=9/DAY=30/sales1.
parquet

/datalake/transform_zone/sales/YEAR=2021/MONTH=10/DAY=1/sales1.
parquet

/datalake/transform_zone/sales/YEAR=2021/MONTH=10/DAY=2/sales1.
parquet

Note
The preceding partition structure is a simple example because generally, with
large datasets, you would expect to have multiple Parquet files in each partition.

Partitioning provides a significant performance benefit when you filter the results of your
query based on one or more partitioned columns using the WHERE clause. For example, if
a data analyst needs to query the total sales for the last day of September 2021, they could
run the following query:

select sum(SALE_AMOUNT) from SALES where YEAR = '2021' and
MONTH = '9' and DAY = '30'

Based on our partitioning strategy, the preceding query would only need to read the
file (or files) in the single S3 prefix of /datalake/transform_zone/sales/
YEAR=2021/MONTH=9/DAY=30.

Even if we want to query the data for a full month or year, we still significantly reduce the
number of files that need to be scanned, compared to having to scan all the files for all the
years if we did not partition our data.

As covered in Chapter 7, Transforming Data to Optimize for Analytics, you can specify one
or more columns to partition by when writing out data using Apache Spark. Alternatively,
you can use Amazon Athena CTAS statements to create a partitioned dataset. However,
note that a single CTAS statement in Athena can only create a maximum of 100 partitions.

Tips and tricks to optimize Amazon Athena queries 333

Other file-based optimizations
Using an optimized file format (such as Apache Parquet) and partitioning your data
are generally the two strategies that will have the biggest positive impact on analytic
performance. However, several other strategies can fine-tune performance, which we
will cover here briefly.

Optimizing file size: It is important to avoid having a large number of small files if you
want to optimize your analytic queries. For each file in S3, the analytic engine (in this case,
Amazon Athena) needs to do the following:

• Open the file.

• Read the Parquet metadata to determine whether the query needs to scan the
contents of the file.

• Scan the contents of the file if the file contains data needed for the query.

• Close the file.

There can be significant Input/Output (I/O) overhead in listing out very large numbers
of files and then processing each file. Airbnb has an interesting blog post on Medium
(https://medium.com/airbnb-engineering/on-spark-hive-and-
small-files-an-in-depth-look-at-spark-partitioning-strategies-
a9a364f908) that explains an issue they had where one of their data pipeline jobs ended
up creating millions of files, and how this caused significant outages for them.

To optimize for analytics, you should aim for file sizes of between 128 MB and 1,024 MB.

Bucketing: Bucketing is a concept that is related to partitioning. However, with bucketing,
you group rows of data together in a specified number of buckets, based on the hash
value of a column (or columns) that you specify. Currently, Athena is not compatible
with the bucketing implementation that's used in Spark, so you should use Athena CTAS
statements to bucket your data. Refer to the Amazon Athena documentation on Bucketing
versus Partitioning for more information (https://docs.aws.amazon.com/
athena/latest/ug/bucketing-vs-partitioning.html).

Partition Projection: In scenarios where you have a very large number of partitions, there
can be a significant overhead for Athena to read all the information about partitions from
the Glue catalog. To improve performance, you can configure partition projection, where
you provide a configuration pattern to reflect your partitions. Athena can then use this
configuration information to determine possible partition values, without needing to read
the partition information from the catalog.

https://medium.com/airbnb-engineering/on-spark-hive-and-small-files-an-in-depth-look-at-spark-partitioning-strategies-a9a364f908
https://medium.com/airbnb-engineering/on-spark-hive-and-small-files-an-in-depth-look-at-spark-partitioning-strategies-a9a364f908
https://medium.com/airbnb-engineering/on-spark-hive-and-small-files-an-in-depth-look-at-spark-partitioning-strategies-a9a364f908
https://docs.aws.amazon.com/athena/latest/ug/bucketing-vs-partitioning.html
https://docs.aws.amazon.com/athena/latest/ug/bucketing-vs-partitioning.html

334 Ad Hoc Queries with Amazon Athena

For example, if you have a column called YEARMONTH that you partition on, and you
have data going back to 2005, you could configure the partition projection range as
200501,NOW and the partition projection format as yyyyMM. Athena would then be
able to determine all possible valid partitions for that period without needing to read
the partition information from the Glue catalog. For more information on partition
projection, see the AWS documentation titled Partition Projection with Amazon Athena
(https://docs.aws.amazon.com/athena/latest/ug/partition-
projection.html).

In addition to the file and layout optimizations, there are also ways to write SQL queries
so that the queries are optimized for the Presto analytic engine. We will cover some of
these optimizations in the next section.

Writing optimized SQL queries
The way that SQL queries are written can also have a significant impact on the
performance of the query.

In this section, we will review the top three best practices that will help provide optimal
performance of queries. It's recommended that, as a data engineer, you share these best
practices with data analysts and others using Athena to run queries.

That said, there are other ways, beyond the three best practices we will outline here, to
go deep into query optimization. For example, you (or your end user data analysts) can
use the EXPLAIN statement as part of an Athena query to view the logical execution plan
of a specific SQL statement. You can then make modifications to your SQL statement
and review the EXPLAIN query plan to understand how that changes the underlying
execution plan. For more information, see the AWS Athena documentation titled Using
the EXPLAIN Statement in Athena: https://docs.aws.amazon.com/athena/
latest/ug/athena-explain-statement.html.

We don't have space to cover these additional query optimization techniques in
this chapter. However, the AWS documentation provides a deeper dive into these
optimizations, so for more information, please refer to the AWS Athena documentation
titled Performance Tuning in Athena: Performance Tuning in Athena

https://docs.aws.amazon.com/athena/latest/ug/partition-projection.html
https://docs.aws.amazon.com/athena/latest/ug/partition-projection.html
https://docs.aws.amazon.com/athena/latest/ug/athena-explain-statement.html
https://docs.aws.amazon.com/athena/latest/ug/athena-explain-statement.html

Tips and tricks to optimize Amazon Athena queries 335

Selecting only the specific columns that you need
When exploring data, it is common to run queries that select all columns by specifying
the start of the query as select *. However, remember that the Parquet format that
we recommend for analytics is a columnar-based file format, meaning that data stored
on disk is grouped by columns rather than rows. When you specify a specific column to
query, the analytic engine (such as Athena) can read the data for that column only.

If you have a table with a lot of columns, specifying just the columns that are important
to your query can significantly increase the performance of your query. This is because
Athena does not need to process the data for all columns. Since Athena's cost is based
on the amount of data that's scanned, selecting just specific columns can also result in
significant cost savings.

Take a scenario where you have a table with 150 columns, but your specific query only
needs data from 15 of the columns. In this scenario, Athena would scan approximately
10% of the dataset, compared to a query that uses a select * to query all columns.

Using approximate aggregate functions
The Presto database engine (and therefore Athena) supports a wide variety of functions
and operators that can be used in queries. These include functions that can be used
in calculations against large datasets in a data lake. They are used for tasks such as
the following:

• Working out the sum of all sales for this month compared to last month

• Calculating the average number of orders per store

• Determining the total number of unique users that accessed our e-commerce store
yesterday

• Other advanced statistical calculations

For some calculations, you may need to get a fully accurate calculation, such as when
determining sales figures for formal financial reporting. At other times, you may just need
an approximate calculation, such as for getting an estimate on how many unique visitors
came to our website yesterday.

For those scenarios, where you can tolerate some deviation in the result, Presto provides
approximate aggregate functions, and these offer significant performance improvements
compared to the equivalent fully accurate version of the function.

336 Ad Hoc Queries with Amazon Athena

For example, if we needed to calculate the approximate number of unique users that
browsed our e-commerce store in the past 7 days, and we could tolerate a standard deviation
of 2.3% in the result, we could use the approx._distinct function, as follows:

SELECT

 approx_distinct(userid)

FROM

 estore_log

WHERE

 visit_time > to_iso8601(current_timestamp – interval '7'
day)

For more information on supported Presto functions in Athena, including approximate
functions, refer to the Athena documentation titled Presto Functions in Amazon Athena:
https://docs.aws.amazon.com/athena/latest/ug/presto-functions.
html

Using regular expressions instead of using the like operator
A common way to select rows of data that match a specific pattern is to use the like
operator, as shown in the following query:

select

 category_name, count(category_name)

from

 film_category

where

 category_name like 'Comedy' or category_name like 'Drama'
or category_name like 'Music' or category_name like 'New'

group by

 category_name

The preceding query returns the selected categories (Comedy, Drama, Music, and New)
along with the count of how many movies are in each of the categories.

An alternative approach to using the like operator is to use regular expressions for pattern
matching, and this can both simplify the statement as well as increase the performance of
the query.

https://docs.aws.amazon.com/athena/latest/ug/presto-functions.html
https://docs.aws.amazon.com/athena/latest/ug/presto-functions.html

Federating the queries of external data sources with Amazon Athena Query Federation 337

The following query returns the same results as our previous query, but it uses the
regexpr_like operator instead, and also includes regular expression syntax (?i) to
make the pattern matching case insensitive:

select

 category_name, count(category_name)

from

 film_category

where

 regexp_like(category_name, '(?i)^comedy|drama|music|new')

group by

 category_name

Using regexp_like instead of a regular like is recommended to improve query
performance, especially in scenarios where you need to do several comparisons that
would require many like operators.

Now that we have reviewed some of the important factors that can affect Athena's
performance, we can look at more advanced features in Athena, such as the ability to
federate queries, which we will discuss next.

Federating the queries of external data
sources with Amazon Athena Query
Federation
As we've discussed several times in this book, Athena lets you query data that has been
loaded into the data lake using standard SQL semantics. But since the launch of Athena,
AWS has added additional functionality to enhance Athena to make it an even more
powerful query engine.

One of those major enhancements, which became available in 2021 with Athena query
engine v2, was the ability to run federated queries, which we will look at next.

338 Ad Hoc Queries with Amazon Athena

Querying external data sources using Athena
Federated Query
Query federation, also sometimes referred to as data virtualization, is the process of
querying multiple external data sources, in different database engines or other systems,
through a single SQL query statement. In November 2019, AWS announced the preview
of Federated Query in Amazon Athena, which enables a single Athena query to query
data in data lakes, as well as data from external sources.

Data lakes are designed to collect data from multiple systems in an organization and bring
it into centralized storage, where the data can be combined in ways that unlock value for
the business.

However, it is not practical to bring every single dataset that an organization has created
into the centralized storage of the data lake. For some datasets, the organization either
does not need to keep all historical data for a dataset, or the data is currently in a system
that already stores historical data. In these scenarios, it may make more sense to query
the source dataset directly and combine data from the source with data in the data lake
on the fly.

If a dataset needs to be queried by multiple teams, is queried often, and queries need to
return very large amounts of data, then it may be best to load that dataset directly into the
data lake. Also, if you need to repeatedly query a system that is already under a relatively
heavy load, you can reduce that load by loading data from the system to the data lake in
off-peak hours, rather than running federated queries during peak times.

But if you're performing ad hoc queries, or if the data only needs to be queried by a small
number of teams with a relatively low frequency of querying, then using the Athena
Federated Query functionality to access the data makes sense. Several people have run
performance testing with Athena Federated Query and have proven the ability to query
many tens of thousands of records per second.

For example, Athena Federated Query could enable a data analyst to run a single SQL
query that combines the following datasets:

• Master customer data in Amazon S3

• Current order information in Amazon Aurora

• Shipment tracking data in Amazon DynamoDB

• Product catalog data in Amazon Redshift:

Federating the queries of external data sources with Amazon Athena Query Federation 339

Figure 11.1 – Amazon Athena query federation

Another use case would be if you do a nightly load of data from an external system into
your data lake, but a few of your queries need to be able to reference some real-time data.
For example, if supplier order information was loaded into the data lake each night, but
you had a query that needed to calculate the total number of orders for a specific supplier
for the year up to the present time, your query could do the following:

• Read supplier order information from the S3 data lake for all orders from the
beginning of the year up until yesterday.

• Read any orders from today from your SAP HANA system.

There are many other potential use cases where data processing can be simplified
by having the ability to use pure SQL to read and manipulate data from multiple
systems. Rather than having to read independently from multiple systems, and then
programmatically process the data, data processing is simplified by processing the data
with a single SQL query.

340 Ad Hoc Queries with Amazon Athena

Pre-built connectors and custom connectors
Athena Federated Query uses code running in AWS Lambda to connect to and query
data, as well as metadata, from the external systems. When a query runs that uses a
connected data source, Athena invokes the relevant Lambda function/s to read metadata,
identifies parts of the tables that need to be read, and launches multiple Lambda functions
to read the data in parallel.

AWS has open sourced several connectors that enable federated queries against many
popular data sources, including the following:

• A JDBC connector for connecting to sources such as MySQL, Postgres,
and Redshift.

• A DynamoDB connector for reading from the Amazon-managed NoSQL database.

• A Redis connector for reading data from Redis instances.

• A CloudWatch logs and CloudWatch metrics connector, enabling you to query
your application log files and metrics using SQL.

• An AWS CMDB connector that integrates with several AWS services to enable
SQL queries against your AWS resources. Integrated services include EC2, RDS,
EMR, and S3.

The full list of connectors can be found on, and downloaded from, the AWS Labs Athena
Query Federation GitHub page at https://github.com/awslabs/aws-athena-
query-federation/wiki/Available-Connectors.

In addition to the connectors made available by AWS, anyone can create custom
connectors to connect to external systems. If you can make a network connection from
AWS Lambda to the target system, whether on-premises or in the cloud, you could
potentially create an Athena Federated Query connector for that system.

Third-party companies are also able to create connectors for Athena Federated Query.
For example, a company called Trianz has created connectors for Terradata, Snowflake,
Google BigQuery, Cloudera, Oracle, and other systems.

To learn more about building custom connectors, see the Athena Query Federation
GitHub page titled Amazon Athena Query Federation SDK: https://github.
com/awslabs/aws-athena-query-federation/blob/master/athena-
federation-sdk/README.md

So far, we have looked at the core Athena functionality for querying data inside and
outside of the data lake. Now, let's take a look at some of the Athena functionality for
managing governance and costs.

https://github.com/awslabs/aws-athena-query-federation/wiki/Available-Connectors
https://github.com/awslabs/aws-athena-query-federation/wiki/Available-Connectors
https://github.com/awslabs/aws-athena-query-federation/blob/master/athena-federation-sdk/README.md
https://github.com/awslabs/aws-athena-query-federation/blob/master/athena-federation-sdk/README.md
https://github.com/awslabs/aws-athena-query-federation/blob/master/athena-federation-sdk/README.md

Managing governance and costs with Amazon Athena Workgroups 341

Managing governance and costs with Amazon
Athena Workgroups
Athena costs are based on the amount of data that is scanned by a query, and in the first
section of this chapter, we looked at some of the ways that data can be optimized so that
queries would scan less data, and therefore reduce costs.

However, some of those optimizations are based on writing efficient SQL queries, and it's
not unusual for organizations to be concerned that users are going to accidentally run
SQL queries that are not optimized and end up scanning massive amounts of data. As
such, organizations want a way to control the amount of data that's scanned by different
users or teams.

Organizations also have concerns around governance and security. Some of these
concerns include the following:

• Athena saves the results of all queries, as well as associated metadata, on S3. These
results could contain confidential information, so organizations want to ensure this
data is protected.

• Multiple teams in an organization may use Athena in the same AWS account, and
organizations want items such as query history to be stored separately for each
team.

Athena Workgroups overview
To help organizations manage these governance concerns, AWS introduced the concept
of Athena Workgroups. Workgroups are a resource type that enables the separation of
query execution and query history between different users, teams, or systems.

In the Athena console, users can save queries that they frequently run, and a list of
historical queries that they have run are also available. However, these lists only show
queries for the Workgroup where the query is run, so splitting up teams or projects into
different Workgroups ensures that query history and saved queries are visible only to the
specific team associated with the workgroup.

Workgroups also enable an organization to control the amount of data that's scanned
(and therefore Athena costs) for each Workgroup. In addition, Workgroups can also be
used to enforce several settings, including the S3 path for query results, and can control
whether query results are encrypted or not.

342 Ad Hoc Queries with Amazon Athena

Enforcing settings for groups of users
One of the primary uses of Athena Workgroups is to separate groups of different Athena
users and to enforce settings for each group. These could be separate Workgroups for each
team, separate Workgroups for different applications, or separate Workgroups for different
types of users.

Workgroups enable an administrator to enforce various settings for each different group
of users or different projects or use cases. By default, each user can control several settings,
but Workgroups enable an administrator to override the users' settings, forcing them
to use the Workgroup settings.

The following are the configuration items that an administrator can enforce for members
of a Workgroup:

• Query Result Location: This is the S3 path where the results of Athena queries will
be written. Users can set a query result location, but if this is set for the workgroup
and Override client-side settings is set on the Workgroup, then this location will be
used for all the queries that are run in this Workgroup.

This enables an organization to control where query result files are stored in S3,
and the organization can set strict access control options on this location to prevent
unauthorized users from gaining access to query results.

For example, each team can be assigned a different Workgroup, and their IAM
access policy can be configured to only allow read access to their query results.

• Encrypt Query Results: This option can be used to enforce that query results
are encrypted, helping organizations keep in line with their corporate security
requirements.

• Metrics: You can choose to send metrics to CloudWatch logs, which will reflect
items such as the number of successful queries, the query runtime, and the amount
of data that's been scanned for all the queries that are run within this workgroup.

• Override client-side settings: If this item is not enabled, then users can configure
their user settings for things such as query result location, and whether query results
are encrypted. Therefore, it is important to enable this setting to ensure that query
results are protected and corporate governance standards are met.

• Requester pays S3 buckets: When creating a bucket in Amazon S3, one of the
options that's available is to configure the bucket so that the user that queries the
bucket pays for the API access costs. By default, Athena will not allow queries
against buckets that have been configured for requester pays, but you can allow
this by enabling this item.

Managing governance and costs with Amazon Athena Workgroups 343

• Tags: You can provide as many key:value tags as needed to help with items such
as cost allocation, or for controlling access to a Workgroup. For example, you may
have two Workgroups that have different settings for the query output location,
based on different projects or use cases. You could provide a tag with the name
of the team and then, through IAM policies, provide team members access to all
Workgroups that are tagged with their team name.

For examples of how to manage access to Workgroups using tags or workgroup names,
see the Amazon Athena documentation titled Tag-Based IAM Access Control Policies
(https://docs.aws.amazon.com/athena/latest/ug/tags-access-
control.html).

In addition to using Workgroups to enforce different settings for different groups of users
or use cases, Workgroups can also be used to manage costs by limiting the amount of data
that's scanned.

Enforcing data usage controls
As Athena pricing is based on the amount of data scanned (at the time of writing, the cost
is $5 per TB of data scanned), limiting the amount of data that's scanned helps manage
costs. To enable this, Athena Workgroups includes functionality for data usage controls,
and two types of controls can be implemented.

Per query data usage control
You can configure the maximum amount of data that can be scanned by a single query
using per query data usage controls. If a user runs a query and Athena ends up trying to
scan more data than what's allowed in the control, the query is canceled. However, note
that the AWS account is still billed for the amount of data that was scanned up until the
query was canceled.

As a practical example, you may have a group of users that are relatively inexperienced
with SQL and want to have a sandbox environment where they can run ad hoc queries
safely. In this scenario, you could create an Athena Workgroup called sandbox and
configure these users to have access to the sandbox Workgroup. You could configure the
Workgroup to have a per-query limit of 100 GB, for example, which would ensure that
no individual query would cost more than $0.50.

Per query data limits are useful for scenarios where you want to have hard control over the
amount of data that's scanned by each query. However, this control is restrictive in that it
automatically cancels any query that exceeds the specified amount of data that's scanned.
An alternative option for controlling costs is to configure Workgroup data usage controls.

https://docs.aws.amazon.com/athena/latest/ug/tags-access-control.html
https://docs.aws.amazon.com/athena/latest/ug/tags-access-control.html

344 Ad Hoc Queries with Amazon Athena

Workgroup data usage controls
With Workgroup data usage controls, you have the flexibility to configure the maximum
amount of data that's scanned by the entire workgroup, within a specified period. And
instead of it being a hard cancel of the query, workgroup data usage controls use Amazon
Simple Notification Service (SNS) to trigger actions when the limit is exceeded.

For example, you can configure a workgroup data usage control for a maximum data scan
of 3 TB per day. Then, you can configure an SNS topic that will email an administrator
to inform them if the data scanned limit for the workgroup has been exceeded.

However, since multiple targets can be triggered by an SNS message, you can also do
things such as automate a programmatic action when the limit you have set is reached.
For example, you can create a Lambda function that can programmatically disable the
workgroup, which would prevent any additional queries from being run in the Workgroup.

Now, let's get hands-on with Athena by creating and configuring a new workgroup, as well
as running some SQL queries.

Hands-on – creating an Amazon Athena
workgroup and configuring Athena settings
In this section, we're going to create and configure a new Athena Workgroup and learn
more about how Workgroups can help separate groups of users:

1. Log into AWS Management Console and access the Athena service using this link:
https://console.aws.amazon.com/athena.

2. Expand the left-hand menu, and click on Workgroups to access the workgroup
management page.

https://console.aws.amazon.com/athena

Hands-on – creating an Amazon Athena workgroup and configuring Athena settings 345

Figure 11.2 – Athena Console showing Workgroups

3. On the Workgroup management page, click on Create workgroup and enter the
following values for our new Workgroup. For the items not listed here, leave the
defaults as-is:

 � Workgroup name: Provide a descriptive name for the Workgroup, such as
datalake-user-sandbox.

 � Description: Optionally, provide a description for this Workgroup, such as
Sandbox Workgroup for new datalake-users.

 � Query result location: In the hands-on exercises in Chapter 4, Data Cataloging,
Security, and Governance, we created a bucket to store our Athena query results
in (named aws-athena-query-results-dataengbook-<initials>).
Click the Browse S3 button next to Query result location, and select the
previously created query result bucket selector, and then click Choose. To make
the location of our query results unique for this Workgroup, add the Workgroup
name to the end of the path. For example, the full path should be something like
s3://aws-athena-query-results-dataengbook-xxxxx/datalake-
user-sandbox/. Make sure that you include the trailing slash at the end of the
path.

346 Ad Hoc Queries with Amazon Athena

 � Encrypt Query Results: Tick this box to ensure that our query results are
encrypted. When you select this, you will see several options for controlling the
type of encryption. For our purposes, select SSE-S3 for Encryption type (this
specifies that we want to use S3 Server-Side Encryption rather than our own
unique KMS encryption key).

 � Override client-side settings: If we want to prevent our users from changing
items such as the query result's location or encryption settings, we need to ensure
that we select this option.

4. In the Per query data usage control section, we can specify a Data limit to limit the
scan size for individual queries run in this workgroup. If a query scans more than
this amount of data, the query will be canceled. Set the Data limit size to 10 GB.

Figure 11.3 – Athena Workgroup – Per query data usage control

5. Optionally add any Tags you want to specify, and then click on Create workgroup.

Hands-on – switching Workgroups and running queries 347

We can also set a Workgroup data usage control to manage the total amount of data that
is scanned by all users of the Workgroup over a specific period. We are not going to cover
this now, but if you would like to explore setting this up, refer to the AWS documentation
titled Setting Data Usage Controls Limits: https://docs.aws.amazon.com/
athena/latest/ug/workgroups-setting-control-limits-cloudwatch.
html

Hands-on – switching Workgroups and running
queries
By default, all users operate in the primary Workgroup, but users can switch between any
workgroup that they have access to. You can control Workgroup access via IAM policies,
as detailed in the AWS documentation titled IAM Policies for Accessing Workgroups :
https://docs.aws.amazon.com/athena/latest/ug/workgroups-iam-
policy.html

In the previous section, we created and configured a new Workgroup, so we can now run
some SQL queries and explore Athena's functionality further:

1. In the left-hand menu, click on Query editor. Once in the Query editor, use the
Workgroup drop-down list selector to change to the your newly created sandbox
workgroup.

Figure 11.4 – Switching Workgroups in the Athena Console

https://docs.aws.amazon.com/athena/latest/ug/workgroups-setting-control-limits-cloudwatch.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-setting-control-limits-cloudwatch.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-setting-control-limits-cloudwatch.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-iam-policy.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-iam-policy.html

348 Ad Hoc Queries with Amazon Athena

2. A pop-up dialog may appear for you to acknowledge that all the queries that are run
in this Workgroup will use the settings we configured previously. This is because
we chose to Overwrite client-side settings when creating the workgroup. Click
Acknowledge to confirm this.

3. In the Query editor, let's run our first query to determine which category of films is
most popular with our streaming viewers. We're going to query the streaming_
films table, which was the denormalized table we created in Chapter 7,
Transforming Data to Optimize for Analytics. On the left-hand side of the Athena
query editor, select the curatedzonedb database from the dropdown, and then
run the following query in the query editor:

SELECT category_name,

 count(category_name) streams

FROM streaming_films

GROUP BY category_name

ORDER BY streams DESC

This query performs the following tasks:
 � It selects the category name and a count of the total number of entries of that

category in the table, and then it renames the count of queries column to create
a new column heading of streams.

 � It selects this data from the streaming_films table. Since we selected the
curatedzonedb from the dropdown on the left-hand side, Athena automatically
assumes that the table we are querying is in that selected database, so we don't
need to specifically reference curatedzonedb in our query, although we could.

 � Then, it groups the results by category_name, meaning that one record will be
returned per category.

 � Finally, it sorts the results by the streaming column, in descending order, so
that the first result is the category with the highest number of streams. In the
following screenshot, we can see that Sports was the most popular category
from our streaming catalog:

Hands-on – switching Workgroups and running queries 349

Figure 11.5 – Athena query for the top streaming categories
Note that the data in the streaming_films table was randomly generated by
the Kinesis Data Generator utility in Chapter 6, Ingesting Streaming and Batch Data,
so your results regarding the top category may be different.

4. If we have a query that we think we may want to run regularly (such as seeing the
top category each day), we can save the query so that we don't need to retype it each
time we want to run it. To do so, just click on the Save as button below the query.

5. Provide a name for the query (such as Overall-Top-Streaming-
Categories) and a description (such as Returns a list of all
categories, sorted by highest number of views). Then, click Save
query.

350 Ad Hoc Queries with Amazon Athena

6. Now, let's modify our query slightly to find out which State streamed the most
movies out of our streaming catalog. Click on the plus (+) sign to open a new query
window and enter the following query:

SELECT state,

 count(state) count

FROM streaming_films

GROUP BY state

ORDER BY count desc

Running this query using the data I generated returns the following results. We can see
that our catalog of films was most popular with viewers in Louisiana Again, though,
your results may be different due to the random data we generated using the Kinesis Data
Generator:

Figure 11.6 – Athena Query Editor showing the total streams per state
Click on Save as and provide a name and description for this query.

Hands-on – switching Workgroups and running queries 351

7. Close the currently open query tabs, and then, via the top Athena menu, click on
Saved queries. Here, we can see the list of queries that we have previously saved,
and we can easily select a query from the list if we want to run that query again.
Note that saved queries are saved as part of the Workgroup, so any of our team
members that have access to this Workgroup will also be able to access any queries
that we have saved. If you click on one of the saved queries, it will open the query
in a New query tab.

8. At the top of the Athena menu, click on Recent queries Here, we can see a list of all
the recent queries that have been run in this Workgroup. There are several actions
we can take:

Figure 11.7 – Amazon Athena - Recent queries tab
These actions are as follows:

A. If we want to rerun a query, we can click on the Execution ID of the query and it
will open the query in a new query window.

B. To download the results that the query generated as a CSV file, click on
Download Results. Remember that query results are always stored on S3
in the location set for Query Result Location.

C. To see the details of why a query failed, click on Failed under the Status column.
A pop-up box will provide details of the error message that caused the failure.

Note that the Recent queries tab keeps a record of all the queries that have been run in
the past 45 days.

In these hands-on exercises, you configured an Athena workgroup and made use of
that workgroup to run several queries. You also learned how to save queries and view
query history.

352 Ad Hoc Queries with Amazon Athena

Summary
In this chapter, we had a deeper look at the Amazon Athena service, which is an
AWS-managed version of Apache Presto. We looked at how to optimize our data
and queries to increase query performance and reduce costs.

Then, we explored how Athena can be used as a SQL query engine – not only for data in
an Amazon S3 data lake but also for external data sources such as other database systems,
data warehouses, and even CloudWatch logs using Athena Query Federation.

Finally, we explored Athena Workgroups, which let us manage governance and costs.
Workgroups can be used to enforce specific settings for different teams or projects,
and can also be used to limit the amount of data that's scanned by queries.

In the next chapter, we will take a deeper dive into another Amazon tool for data
consumers as we look at how we can create rich visualizations and dashboards
using Amazon QuickSight.

12
Visualizing Data

with Amazon
QuickSight

In Chapter 11, Ad Hoc Queries with Amazon Athena, we looked at how Amazon Athena
enables data analysts to run ad hoc queries against data in the data lake using the power of
SQL. And while SQL is an extremely powerful tool for querying large datasets, often, the
quickest way to understand a summary of a dataset is to visualize the data in graphs and
dashboards.

In this chapter, we will do a deeper dive into Amazon QuickSight, a Business
Intelligence (BI) tool that enables the creation of rich visualizations that summarize data,
with the ability to filter and drill down into datasets in numerous ways.

In smaller organizations, a data engineer may be tasked with setting up and configuring
a BI tool that data consumers can use. Things may be different in larger organizations,
where there may be a dedicated team to manage the BI system. However, it is still
important for a data engineer to understand how these systems work, as these systems will
be consuming data that the data engineer will have played a part in creating.

354 Visualizing Data with Amazon QuickSight

The purpose of BI tools is to enable users to quickly understand complex datasets by
enabling the exploration of data visually. And while we will focus on Amazon QuickSight
in this chapter, many of the concepts in this chapter can be applied to other popular BI
applications, such as Tableau, Microsoft Power BI, and Qlik.

Amazon QuickSight is a serverless BI solution and is fully managed by AWS.
Organizations don't need to pay for any infrastructure costs, but rather pay a fixed amount
per QuickSight user on a subscription basis.

In this chapter, we will cover the following topics:

• Representing data visually for maximum impact

• Understanding Amazon QuickSight's core concepts

• Ingesting and preparing data from a variety of sources

• Creating and sharing visuals with QuickSight analyses and dashboards

• Understanding QuickSight's advanced features – ML Insights and embedded
dashboards

• Hands-on – creating a simple QuickSight visualization

Technical requirements
At the end of this chapter, you will get hands-on by creating a QuickSight visual from
scratch. To complete the steps in the hands-on section, you will need the appropriate user
permissions to sign up for a QuickSight subscription.

If you have administrator permissions for your AWS account, these permissions should
be sufficient to sign up for a QuickSight subscription. If not, you will need to work with
your IAM security team to create a custom policy. See the AWS documentation titled IAM
Policy Examples for Amazon QuickSight and refer to the All Access for
Standard Edition example policy as a reference.

At the time of writing, Amazon QuickSight includes a free trial subscription for 30 days
for new QuickSight subscriptions. If you do not intend to use QuickSight past these 30
days, ensure that your user is also granted the quicksight:Unsubscribe permission
so that you can unsubscribe from QuickSight after completing the hands-on section.

Note that the All Access for Standard Edition example policy has a specific deny for the
unsubscribe permission, so this may need to be modified based on your requirements.
Work with your security team to implement a custom IAM policy.

Representing data visually for maximum impact 355

You can find the code files of this chapter in the GitHub repository using the following
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter12

Representing data visually for maximum
impact
Data lakes are designed to capture large amounts of raw data and enable the processing of
that data to draw out new insights that provide business value. The insights that are gained
from a data lake can be represented in many ways, such as reports that summarize sales
data and top sales items, machine learning (ML) models that can predict future trends,
and visualizations and dashboards that effectively summarize data. Each of these ways of
representing data offers different benefits, depending on the business purpose:

• If you're a data analyst that needs to report sales figures, profit margins, inventory
levels, and other data for each category of product the company produces, you
would probably want access to detailed tabular data. You would want the power of
SQL to run powerful queries against the data to draw varied insights so that you can
provide this data to different departments within the organization.

• If you're a logistics manager and are responsible for supplying all your retail stores
with the correct amount of inventory, you would want your data science team to
develop an ML model that can predict inventory requirements for each store. The
model could take in raw data from the data lake and predict how much inventory
each store may require.

• If you're a sales manager for a specific product category, you need to have an
updated view of sales for the products in your category at all times. You need to be
able to determine which products are selling well, and which marketing campaigns
are most effective. Seeing a visual representation of relevant data provides you
with the most effective way to quickly understand the product and campaign's
performance at a high level.

Having raw, granular data available to an organization is important, but when you need
to make decisions quickly based on that data, having a visual representation of the data is
critical.

It is not practical to identify trends or outliers in a dataset by examining a spreadsheet
containing 10,000 rows. However, if you aggregate and summarize the data into a well-
designed visual representation of the data, it becomes very easy to identify those trends
and outliers.

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter12
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter12

356 Visualizing Data with Amazon QuickSight

Benefits of data visualization
A well-designed visual representation of data can reflect multiple different datasets in a
single picture. It can do so in a way that enables the consumer of the visual to immediately
gain insights that would take significant time and effort to gather from raw data.

There is a common fact often mentioned in articles on the internet that people can process
images 60,000 times faster than they can process text. As it turns out, this is just an
often-repeated claim with no evidence to back it up. However, while the number may be
exaggerated, the basic claim that the human brain can process images quicker than text is
without a doubt true.

And you don't need to look too far to validate this claim. For example, look at the rise
of visual-based social media sites such as Instagram and Pinterest, or how people use
emojis and animated GIFs to quickly and effectively communicate how they feel about
something.

In the same way, we can use the power of visuals (images, graphs, word clouds, and many
other types) to effectively communicate data from our data lake in a way that makes it
easy for the consumer of the visual to quickly draw insights from the data.

Let's examine some common uses of visualizations that enable a user to quickly
understand complex information.

Popular uses of data visualizations
Visualizations can be used to draw insights from many different types of data, in various
ways. In this section, we look at a few examples of some common types of visualizations to
demonstrate the impact of a well-designed visual.

Trends over time
A common usage of analytic tools is to crunch through raw data to help surface trends,
or changes in the data, over time. For example, we may want to understand how our
spending on the AWS platform is changing over time, as this can help identify areas where
we need to focus on cost optimizations. A line graph can be a useful way to illustrate
changes in data over a certain period.

Representing data visually for maximum impact 357

The following diagram was created using a popular spreadsheet application and provides a
visual of raw Amazon S3 spend per month, over 9 months, for a fictional company:

Figure 12.1 – Line chart showing data over a certain period

In this visualization, we can see that our Tier1-Requests cost (middle line) significantly
decreased from January to March. These costs are for API calls for operations such as
PUT, COPY, POST, and LIST. Before February, we used to ingest a large number of small
files, resulting in millions of PUT requests when writing these files to Amazon S3. After
changing our transformation pipeline to write out fewer, larger files, this visualization
clearly shows how those costs decreased.

358 Visualizing Data with Amazon QuickSight

In the visualization, we can also see that in March, our storage consumption (top line)
significantly decreased. This makes sense as, during March, our fictional company had a
project to implement Amazon S3 life cycle rules that deleted older versions of data from
S3.

Showing summarized data over a certain period in a visual format makes it much easier to
track and understand trends in our data, as well as to spot anomalies.

Data over a geographic area
In our first example, we looked at how we could graph trends over time, but another really
useful visualization is to look at trends over a geographic area. There are many uses for
this type of visualization, such as the following:

• Understanding the popularity of a certain product in different geographic regions.

• Quickly visualizing hotspots for the spread of an infectious disease (such as flu
outbreaks) in different geographic regions.

• Visualizing the population sizes of different cities in different regions.

• Showing differences in temperature in different geographic areas.

These types of charts are often known as geospatial charts, although they go by many
different names. The chart may also come in different formats, but a common format is to
use circles of different sizes on the map, with the size of each circle representing the value
of one of the columns in the dataset (the larger the value, the bigger the circle). Circles
may also be different colors to represent different rows in the dataset.

For example, the following chart (created with Amazon QuickSight) uses city population
data from https://simplemaps.com/data/world-cities. In this chart, we have
filtered the data to show all cities with a population above 3 million people, and the size of
the circle represents the relative population size. In the hands-on section of this chapter,
you will use Amazon QuickSight to recreate this chart so that you can interact with the
chart (filter for different values and so on):

https://simplemaps.com/data/world-cities

Representing data visually for maximum impact 359

Figure 12.2 – Map chart showing data by geographic region

The preceding diagram of a map chart enables us to quickly understand which parts of the
world have the most populated cities, and which parts are less populated. The same type of
chart could be used to show the spread of disease, vaccination rates, poverty levels, water
quality, or just about any other data that is associated with a specific location.

Heat maps to represent the intersection of data
Another common use of visualization tools is to understand the relationship between
different sets of data. Often, we may have a gut feeling that there could be a correlation
between two different datasets, but it is only when we explore the data more fully that we
can understand those relationships.

360 Visualizing Data with Amazon QuickSight

As a very simple example, we would probably suspect that sales of ice cream, water, and
other cold goods would be more popular in the summer months and that the sales of
coffee, hot chocolate, and soup would be more popular in the winter months:

Figure 12.3 – Heat map showing product sales by category and month

The preceding diagram shows a heat map that plots the relationship between sales in
different categories, by month. The darker squares illustrate a higher sales value, while the
lighter squares represent lower sales values.

As you can see, the sales of both coffee and water are strong throughout the year, but we
can see that water has higher sales in the Northern Hemisphere summer (months 6 – 9),
while coffee has higher sales in winter (months 11 – 2). Another insight we can gain
quickly is that sales of ice are very low in the winter months and only have strong sales
for a few summer months of the year (months 6 – 10). What other insights can you gain
about sales of hot chocolate, ice cream, and soup by examining the heat map?

While this example may have been a fairly simple one, there are many other relationships
between datasets that are not always as obvious, and heat maps can be useful to highlight
these relationships visually.

Understanding Amazon QuickSight's core concepts 361

We do not have sufficient space in this chapter to cover all the many varied types of charts
that can be used to visually represent data, but as we continue into the other sections of
this chapter, we will explore some other common chart types along the way. In the next
section, we are going to dive deeper into Amazon QuickSight's core concepts.

Understanding Amazon QuickSight's core
concepts
At its core, QuickSight lets us ingest data from a wide variety of sources, perform some
filtering or other transformation tasks on the data, and then create dashboards with
multiple types of visuals that can be easily shared with others.

The QuickSight service is fully managed by AWS, and there are no upfront costs for using
the service. Instead, the service uses a pricing model of a monthly cost per user and offers
both Standard and Enterpise Editions. QuickSight also includes a powerful in-memory
storage and computation engine to enable the best performance for working with a variety
of data sources.

In this section, we'll examine the differences between the standard and enterprise
editions of QuickSight and also do a deeper dive into SPICE, the in-memory storage and
computation engine.

Standard versus enterprise edition
The Standard Edition of QuickSight is useful for those that are just starting to explore
the power of a BI tool and enables users to create visualizations from a variety of sources.
However, for larger organizations, the Enterprise Edition of QuickSight provides several
additional features that most large organizations would want to make use of.

The following is a subset of some of the additional functionality available in the enterprise
edition, but refer to the Amazon QuickSight pricing page for full details on the differences
between the versions. The following features are only available in the enterprise edition:

• Integration with Active Directory (AD) and the ability to use AD groups for
management of QuickSight resources

• The ability to embed dashboards into custom applications

• The ability to email reports to QuickSight users on a schedule

• Fine-grained access control over AWS data sources (such as S3 and Athena)

362 Visualizing Data with Amazon QuickSight

• Automatic insight generation using ML Insights

• Encryption of data at rest

Another benefit of the Enterprise Edition of QuickSight is that pricing is lower for those
users that just need to access and interact with created visualizations (readers), but do not
need to author new visuals from scratch (authors).

With the enterprise edition, there is a fixed monthly cost for users that have the author
role, while users with the reader role are charged per session. Each session provides access
to QuickSight dashboards for a user for up to 30 minutes after they have logged in. During
this time, readers can fully interact with the dashboards (filtering data, doing drill-downs
into data, and so on). At the time of writing, a session costs $0.30, and there is a maximum
monthly cost of $5 per reader, no matter how many sessions are used. In comparison, the
Standard Edition has a fixed cost (at the time of writing) of $9 per user and all users have
full read and author capabilities. Refer to the QuickSight pricing page (https://aws.
amazon.com/quicksight/pricing/) for the current pricing for your region, as
pricing may change occasionally.

SPICE – the in-memory storage and computation
engine for QuickSight
Like many other BI tools, Amazon QuickSight provides a storage engine for storing
imported data and performing rapid calculations on that data. In QuickSight, SPICE is
the acronym that's used to reference this engine, and it stands for Super-fast, Parallel,
In-memory, Calculation Engine. When you're creating a new dataset in QuickSight, you
can select whether to perform direct queries of the dataset, or whether you want to import
data into SPICE.

If you choose to query the dataset, then each time the visualization is accessed, QuickSight
will make a connection to the data source (such as an Amazon RDS MySQL database) and
query the data. This ensures that the dashboard always reflects the latest data. However,
there is some latency in making the connection to the data source and retrieving data.

Alternatively, you can choose to import data into the SPICE engine. That way, when the
visualization is accessed, QuickSight can read the data directly from SPICE, and this can
significantly improve performance.

https://aws.amazon.com/quicksight/pricing/
https://aws.amazon.com/quicksight/pricing/

Understanding Amazon QuickSight's core concepts 363

You also have the option of scheduling a refresh of the data in SPICE so that QuickSight
will regularly connect to the data source and retrieve the latest data to store in SPICE.
With both the standard and enterprise editions of QuickSight, you can schedule the
refresh to be done daily, weekly, or monthly. With the enterprise edition of QuickSight,
however, you gain the additional option of performing incremental refreshes, and the
ability to refresh data as often as every 15 minutes. You can also use an API call to trigger
the refresh of SPICE data, enabling you to build an event-driven strategy for refreshing
SPICE data. For more information, see the AWS blog post titled Event-driven refresh
of SPICE datasets in Amazon QuickSight at https://aws.amazon.com/blogs/
big-data/event-driven-refresh-of-spice-datasets-in-amazon-
quicksight/.

Note
There is a 2-minute timeout for generating visuals in QuickSight. Therefore, if
your direct query takes 2 minutes or longer to perform the query and generate
the visualization, a timeout will occur. In these cases, you either need to
improve the performance of the query (filtering data, only selecting specific
columns, and so on) or you should import the data into SPICE.

If you're using a data source (such as Amazon Athena or Amazon Redshift Spectrum) that
charges for each query, importing the data into SPICE can help reduce costs. Storing the
data in SPICE means you only pay for the query when the data is initially loaded, as well
as for when the data is refreshed. With a direct query, you would pay for the query each
time the visualization is accessed.

Managing SPICE capacity
Your account is granted 10 GB of SPICE storage for every paid user that has the author
role (this would be every user in the Standard Edition, and users with the Author role in
the enterprise edition). SPICE storage is shared by all QuickSight users in an account and
is on a per-region basis.

For example, if you have QuickSight enterprise edition and you have 10 users with the
Author role and 100 users with the Reader role, all in the Northern Virginia (us-east-1)
region, then your QuickSight account in us-east-1 would have 100 GB of SPICE storage
available.

https://aws.amazon.com/blogs/big-data/event-driven-refresh-of-spice-datasets-in-amazon-quicksight/
https://aws.amazon.com/blogs/big-data/event-driven-refresh-of-spice-datasets-in-amazon-quicksight/
https://aws.amazon.com/blogs/big-data/event-driven-refresh-of-spice-datasets-in-amazon-quicksight/

364 Visualizing Data with Amazon QuickSight

If additional SPICE storage is needed, you can purchase additional SPICE capacity. For
example, if you needed 130 GB of total SPICE storage for the datasets you wanted to
import, you could purchase an additional 30 GB of capacity each month. At the time of
writing, additional SPICE capacity for the Enterprise Edition is charged at $0.38 per GB.

There are also limits on the size of a single dataset in SPICE. At the time of writing,
datasets are limited to a maximum of 500 million rows, or 500 GB, for QuickSight
enterprise edition. For the Standard Edition, the limit is 25 million rows or 25 GB of data.
There are also other limits for each dataset (such as the number of columns and the length
of column names), so ensure you refer to the latest QuickSight documentation for updated
information on these limits.

Now that we have reviewed the core Amazon QuickSight concepts, let's move on and
review QuickSight's functionality for importing and preparing data.

Ingesting and preparing data from a variety of
sources
Amazon QuickSight can use other AWS services as a source, as well as on-premises
databases, imported files, and even some Software as a Service (SaaS) applications.

For example, you can easily connect to Oracle, Microsoft SQL Server, Postgres, and
MySQL databases, either running as part of the Amazon RDS managed database service
or as instances running on Amazon EC2, or in your own data centers. You can also
connect to data warehouse systems such as Amazon Redshift, Snowflake, and Teradata.
Other AWS services are also supported as data sources, including Amazon S3, Amazon
Athena, Amazon ElasticSearch Service, Amazon Aurora, and AWS IoT Analytics.

In addition to these traditional data sources, QuickSight can also connect to various SaaS
offerings, including ServiceNow, Jira, Adobe Analytics, Salesforce, GitHub, and Twitter.

Data stored in files, such as a Microsoft Excel Spreadsheet (XLSX files), JSON documents,
and CSV files, can also be imported into QuickSight. These files can be directly uploaded
through the QuickSight console, or they can be imported from Amazon S3.

The rich variety of potential data sources for QuickSight is shown in the following
screenshot:

Ingesting and preparing data from a variety of sources 365

Figure 12.4 – Data sources that can be imported into Amazon QuickSight

For data sources not directly supported, you can use other ingestion methods (such as
those discussed in Chapter 6, Ingesting Batch and Streaming Data) to ingest data into your
S3-based data lake. You can then create visualizations of that data by using the Amazon
Athena data source integration to enable QuickSight to query the data.

Preparing datasets in QuickSight versus performing
ETL outside of QuickSight
QuickSight includes functionality for performing data transformations on imported data.
For example, you can do the following:

• Join two different datasets.

• Exclude specific fields.

• Filter data.

• Change the data type or name of a field.

• Create a new calculated field.

All of these data preparation tasks can be done using a simple visual interface.

366 Visualizing Data with Amazon QuickSight

If you select to join two different datasets, then you need to import the data into SPICE.
However, if you're just working with a single data source, the transformations you specify
will be applied when the data is read from the data source.

Ultimately, you need to decide on whether you should perform data transformation and
joins in QuickSight, or whether you should perform those transformations outside of
QuickSight. For example, you could join two datasets, drop unneeded columns, change
the data types and column names, and create new calculated fields using tools such as
AWS Glue, AWS Glue DataBrew, or AWS Glue Studio.

There are several factors to consider when making this decision, including the following:

• If this dataset may be used outside of QuickSight, such as for queries using Amazon
Athena, then it makes sense to perform the ETL with other tools before using the
dataset in QuickSight.

• If the required transformations are relatively simple and the resulting dataset will
only be used in QuickSight, then you may choose to perform the transformation
using QuickSight. This could include transforms such as adding additional
calculated fields, changing the names or data types of a few columns, dropping a few
columns, and so on.

The decision about where to perform data transformations can be complex, and it may not
be an easy decision. However, an important factor to take into account is the controls that
may be in place for formal data pipelines, versus those for more informal transformations
(such as those performed by data analysts using tools such as Amazon QuickSight).

If you have strong governance controls around your formal data engineering pipelines
(such as code reviews and change control), then you may choose to ensure that all the
transformations are done within formal processes. However, you need to balance this
against ensuring that you don't tie up your end user teams in formal processes that slow
the business down.

Often, you need to balance the two sides – ensuring that your business teams have the
flexibility to perform minor transformations using tools such as QuickSight, while
also ensuring that new datasets or visualizations that business users may use to make
important business decisions have the correct governance controls around them.

Creating and sharing visuals with QuickSight analyses and dashboards 367

It is not always easy to find this balance, and there are no specific rules that apply
universally when making this decision. Therefore, much thought needs to be given to
this decision to find the right balance between enabling the business to make decisions
quickly, without being constrained by overly formal processes for even minor data
transformations.

The business ultimately needs to take the time required to put in place governance and
controls that communicate the types of ad hoc data transformations that data analysts and
others can perform. These policies should also make it clear as to when transformations
need to be performed within formal processes by data engineering teams.

Creating and sharing visuals with QuickSight
analyses and dashboards
Once a dataset has been imported (and optionally transformed), you can create
visualizations of this data using QuickSight analyses. This is the tool that is used by
QuickSight authors to create new dashboards, with these dashboards containing one or
more visualizations that can be shared with others in the business.

When you create a new analysis/dashboard, you choose one or more datasets to include
in the analysis (up to a maximum of 50 datasets per dashboard). Each analysis consists of
one or more sheets (or tabs, much like browser tabs) that display a group of visualizations.
You can have up to 20 sheets (tabs) per dashboard, and each sheet can have up to 30
visualizations.

Once you have created an analysis (consisting of multiple visuals, optionally across
multiple sheets), you can choose to publish the analysis as a dashboard. When you're
publishing a dashboard, you can select various parameters related to how readers can
interact with the dashboard, including the following:

• If they can apply their ad hoc filters to the data in the dashboard

• If they can download data in the dashboard as a CSV file

• If they can perform drill-down and drill-up actions (when supported in a
dashboard)

• If they can sort the data

Once the dashboard has been published, you can select who to share the dashboard with.
You can either share the dashboard with everyone in the account (providing them with
read access to the dashboard) or you can select specific users and groups to share with.

368 Visualizing Data with Amazon QuickSight

By default, when you create a new analysis, the analysis contains a single sheet, with a
single empty visualization that is set to a type of AutoGraph:

Figure 12.5 – Amazon QuickSight – New Analysis screen

QuickSight supports many different types of visualizations (as can be seen in the Visual
types section of the preceding screenshot). Let's dive deeper into some of these visual
types.

Visual types in Amazon QuickSight
In this section, we will discuss several data visualization types supported by Amazon
QuickSight. There are many different types of visualizations that are supported, and
we will not cover all of them here, so check out the Amazon QuickSight documentation
(https://docs.aws.amazon.com/quicksight/latest/user/working-
with-visual-types.html) for a full list of supported visualizations.

https://docs.aws.amazon.com/quicksight/latest/user/working-with-visual-types.html
https://docs.aws.amazon.com/quicksight/latest/user/working-with-visual-types.html

Creating and sharing visuals with QuickSight analyses and dashboards 369

AutoGraph for automatic graphing
While this is not an actual type of visual, you can select AutoGraph as a visual type to let
QuickSight automatically choose the visual type for you. Based on the number of fields
you select, and the data type of each field that is selected, QuickSight automatically uses
the most appropriate visual type for your data. This is often a good way to start exploring
your data if you're unsure of the specific type of graph you want to use.

Line, geospatial, and heat maps
Earlier in this chapter. we discussed three common types of visualizations:

• Line charts: Displays data as a series of data points and is often used to plot data
over a certain period

• Geospatial charts: Displays data points overlayed on a map, combining geospatial
data with other data

• Heat maps: Displays data in a chart with values represented by darker or lighter
colors

All three of these types of charts (and variations of these charts) are supported by Amazon
QuickSight and can be used to create rich visualizations from many different data sources.

Bar charts
Bar charts are a common visualization type, and QuickSight supports multiple types
of bar charts. For example, you can have a simple bar chart showing a single value for a
dimension (such as sales per region) or a multi-measure bar chart that shows multiple
measures for a dimension (such as sales goal and achieved sales per region).

There are also additional bar chart types that are supported, such as stacked bar charts and
clustered bar charts. Bar charts can be displayed horizontally or vertically.

370 Visualizing Data with Amazon QuickSight

Custom visual types
QuickSight lets you include several custom visuals within a dashboard, including the
following:

• Custom images (such as a company or product logo)

• Custom videos

• An online form

• An embedded web page

Note that when you're embedding custom content in an analysis/dashboard, you need to
specify the HTTP URL of the resource. Also, while QuickSight does include functionality
for emailing dashboards to users, embedded custom visual types (pictures, videos, forms,
and web pages) will not be displayed in the email copy of a dashboard.

There are also other limitations to using embedded content. For example, the web content
needs to support opening the content in an iFrame; otherwise, the content may not
appear in QuickSight. When you're looking to embed content into a QuickSight analysis/
dashboard, you should look for content that has an embeddable URL (which is often
available when you choose to share content).

Key Performance Indicators
A Key Performance Indicator (KPI) is often used to show progress against a specific goal.
For example, you may have a goal of achieving a specific amount of revenue in a quarter.

A KPI visual could display the current revenue as a percentage of the target revenue in a
visual. A dashboard showing this KPI (or multiple KPIs) can help management keep track
of how the business is performing based on several key metrics.

In QuickSight, a KPI displays a comparison of two values and includes a progress bar
indicating the percentage difference of the values:

Creating and sharing visuals with QuickSight analyses and dashboards 371

Figure 12.6 – Dashboard with KPI visuals

In the preceding screenshot, a sales manager can quickly view how their organization is
performing against several key metrics. This chart shows that revenue is nearly at 80%
of the target, new customers are at 90% of the target, and that they are within 11% of the
target maximum customer cancellations for that period.

Tables as visuals
There may be use cases where you want to display the raw data of a table on a dashboard,
without converting the data into a specific visual.

QuickSight supports displaying tables directly within an analysis/dashboard and supports
up to 200 columns in the visual. However, directly displaying raw table data should ideally
only be done with small tables, where you display just a limited amount of raw data.

372 Visualizing Data with Amazon QuickSight

Other visual types
There are many other types of charts that are supported in QuickSight, and new types are
added over time. These include the following common chart types:

• Pie charts

• Box plots

• Gauge charts

• Histograms

• Pivot tables

• Sankey diagrams

• Tree maps

• Word clouds

Not all the supported visual types have been listed in this chapter, so to review the full
list of supported visual types, see the Amazon QuickSight documentation titled Working
with Visual Types in Amazon QuickSight: https://docs.aws.amazon.com/
quicksight/latest/user/working-with-visual-types.html.

As we have discussed in this section, QuickSight lets us create many different types of
visuals and publish and then share those visuals as dashboards. However, QuickSight
also includes advanced functionality that can automatically reveal new insights in your
data and lets you embed dashboards into custom applications, as we will see in the next
section.

Understanding QuickSight's advanced
features – ML Insights and embedded
dashboards
The enterprise edition of Amazon QuickSight includes two advanced features that can
help you draw out additional insights from your data, and that can enable you to widely
share your data by embedding dashboards into applications.

Amazon QuickSight ML Insights
QuickSight ML Insights uses the power of machine learning algorithms to automatically
uncover insights and trends, forecast future data points, and identify anomalies in your
data.

https://docs.aws.amazon.com/quicksight/latest/user/working-with-visual-types.html
https://docs.aws.amazon.com/quicksight/latest/user/working-with-visual-types.html

Understanding QuickSight's advanced features – ML Insights and embedded dashboards 373

All of these ML Insights can be easily added to an analysis/dashboard without the author
needing to have any machine learning experience or any real understanding of the
underlying ML algorithms. However, for those who are interested in the underlying ML
algorithms used by QuickSight, Amazon provides comprehensive documentation on
this topic. Review the Amazon QuickSight documentation titled Understanding the ML
Algorithim Used by Amazon QuickSight for more information: https://docs.aws.
amazon.com/quicksight/latest/user/concept-of-ml-algorithms.
html.

However, to make use of ML Insights, there are specific requirements for your data,
such as having at least one metric and one category dimension. For ML forecasting, the
more historical data you have the better. For example, if you want to forecast based on
daily data, you need at least 38 daily data points, or to forecast on quarters, you need at
least 35 quarterly data points. The full details on the data requirements are documented
in the Amazon QuickSight documentation titled Dataset Requirements for Using ML
Insights with Amazon QuickSight: https://docs.aws.amazon.com/quicksight/
latest/user/ml-data-set-requirements.html.

Let's examine some of the different types of ML Insights in more detail.

Amazon QuickSight autonarratives
Autonarratives provide natural language insights into your data, providing you with an
easy-to-read summary of what is displayed in a visual. Effectively, autonarratives enables
you to provide a plainly stated summary of your data, as the following autonarrative
examples show:

• Year-to-date revenue decreased by 4.6% from $906,123 to $864,441 compared to the
same period last year. We are at 89.3% achievement for the YTD goal and 77.9%
achievement for the annual goal.

• Daily revenue for Accessories / Cell Phone Covers on September 3, 2021 was higher
than expected at $3,461.21.

You can add a variety of autonarratives to an analysis, such as bottom-ranked items,
growth rate, anomaly detection, top movers, and many others. For the full list of available
autonarratives, see the Amazon QuickSight documentation titled Insights that include
autonarratives: https://docs.aws.amazon.com/quicksight/latest/user/
auto-narratives.html.

https://docs.aws.amazon.com/quicksight/latest/user/concept-of-ml-algorithms.html
https://docs.aws.amazon.com/quicksight/latest/user/concept-of-ml-algorithms.html
https://docs.aws.amazon.com/quicksight/latest/user/concept-of-ml-algorithms.html
https://docs.aws.amazon.com/quicksight/latest/user/ml-data-set-requirements.html
https://docs.aws.amazon.com/quicksight/latest/user/ml-data-set-requirements.html
https://docs.aws.amazon.com/quicksight/latest/user/auto-narratives.html
https://docs.aws.amazon.com/quicksight/latest/user/auto-narratives.html

374 Visualizing Data with Amazon QuickSight

ML-powered anomaly detection
Amazon QuickSight can perform anomaly detection across millions of metrics contained
in your data, identify non-obvious trends, and highlight outliers in the data. These types
of insights are difficult to draw out of data without using the power of modern ML
algorithms.

You can add an autonarrative widget to an analysis and specify the type as being
anomalies. Then, you can configure several settings related to how QuickSight detects
outliers in the data and can set a schedule for when outliers are calculated (ranging from
once an hour to once a month). You can also configure QuickSight to analyze the top
items that contributed to the anomaly.

Once an anomaly has been detected, you can choose to explore the anomalies on the
insight. This opens a screen where you can change various settings related to anomaly
detection, enabling you to explore different types of anomalies in the dataset.

ML-powered forecasting
Amazon QuickSight can use the power of ML algorithms to provide reliable forecasts
against your data. When you create a visual that uses a date field and contains up to three
metrics, you can select an option in the widget to add a forecast of future values.

QuickSight will automatically analyze historical data using an ML model and graph out
future predicted values for each metric. You can also configure the forecast properties by
setting items such as forecast length (how many future periods to forecast and how much
historical data to analyze).

The machine learning model that's used by QuickSight for forecasting automatically
excludes data that it identifies as outliers and automatically fills in any missing values. For
example, if you had a short spike in sales due to a promotion, QuickSight could exclude
that spike when calculating the forecast. Or, if there were a few days where historical
data was missing, QuickSight could automatically determine likely values for the missing
period.

It is important to remember that the QuickSight ML Insight features (including
autonarratives, anomaly detection, and forecasting) are available in the Enterprise Edition
of QuickSight, and will not be available if you only have a Standard Edition subscription.

In this section, we looked at how QuickSight enables you to draw out powerful new
insights from your data. In the next section, we will look at another popular feature of
the enterprise edition of QuickSight, a feature that enables you to easily distribute your
published dashboards more widely.

Understanding QuickSight's advanced features – ML Insights and embedded dashboards 375

Amazon QuickSight embedded dashboards
For use cases where you don't want your users to have to log into QuickSight via the AWS
Management Console or QuickSight portal, you can embed QuickSight directly into your
applications or website.

You can embed either the full console experience (including authoring tools for creating
new analyses and managing datasets) or embed published dashboards only. Embedded
dashboards have the full interactive capabilities that they do in the console, which means
that users can filter and sort data, and even drill down into data (so long as the author
enabled those levels of interactivity when they published the dashboard).

Embedding for registered QuickSight users
QuickSight supports several authentication methods, including AD SAML 2.0, as well
as SSO using AWS Single Sign-on (or other identity providers such as Okta, Auth0, and
PingOne).

As such, your users can authenticate with your existing website or HTML-based
application using one of the supported authentication methods and, using that identity,
map to an existing QuickSight user. If that user has not accessed QuickSight before, a new
QuickSight user will be created for the user.

You can elect to either embed the full console experience or only embed dashboards.
Users will be able to open any dashboards that their QuickSight user has been given access
to.

With the QuickSight embedding experience, you can optionally customize the display
theme using your branding. This enables the embedded QuickSight objects to appear as a
direct part of your application, rather than looking like an embedded external application.
However, even when you have a customized theme, the embedded QuickSight application
does display a Powered by QuickSight label.

Embedding for unauthenticated users
For use cases where your users do not authenticate with your website or application, you
still have the option of embedding QuickSight dashboards for anonymous user access.

To enable anonymous access, you need to purchase reader session capacity pricing. This
offers a set number of QuickSight sessions per month, or per year (depending on your
plan), and these sessions can be consumed by anonymous users. The bonus of purchasing
an annual plan for QuickSight sessions is that the Powered by QuickSight label can be
removed from embedded resources.

376 Visualizing Data with Amazon QuickSight

An example use case for this functionality is for a local government health department
that wants to share the latest information on a virus outbreak with their community. The
health department could embed an Amazon QuickSight dashboard into their website that
is linked to the latest data on the spread of the virus.

Users accessing the website could interact with the dashboard, filtering data for their
specific location, sorting data, or even downloading a CSV version of the data for their
additional analysis. These users would not need to log into the health department
website to access the dashboard, and the health department could use an annual plan for
reader session capacity. For more information on pricing for reader session plans, see
the Amazon QuickSight pricing page: https://aws.amazon.com/quicksight/
pricing/.

Having learned more about QuickSight's core functionality, let's get hands on by creating a
QuickSight visualization and publishing a dashboard.

Hands-on – creating a simple QuickSight
visualization
Earlier in this chapter, we discussed how data can be represented over a geographic
area. We used the example of data containing information on the population of world
cities, and how we could use that to easily visualize how large cities are geographically
distributed. The example visual in Figure 12.2 showed cities with a population of over 3
million people, displayed on top of a map of the world.

For the hands-on section of this chapter, we are going to recreate that visual using
Amazon QuickSight.

Setting up a new QuickSight account and loading a
dataset
Before we start creating a new dashboard, we need to download a sample dataset of
world city populations. We are going to use the basic dataset available from https://
simplemaps.com/, which is freely distributed under the Creative Commons Attribution
4.0 license (https://creativecommons.org/licenses/by/4.0/):

1. Use the following link to download the basic dataset from simplemaps.com:
https://simplemaps.com/data/world-cities. If the file downloaded is
a ZIP file, make sure to extract the actual city data CSV file.

2. Log into the AWS Management Console and use the top search bar to search for,
and open, the QuickSight service.

https://aws.amazon.com/quicksight/pricing/
https://aws.amazon.com/quicksight/pricing/
https://simplemaps.com/
https://simplemaps.com/
https://creativecommons.org/licenses/by/4.0/
https://simplemaps.com/data/world-cities

Hands-on – creating a simple QuickSight visualization 377

3. If you have not used QuickSight before in this account, you will be prompted with a
Sign up for QuickSight button. Click the button to start the signup process.

4. The default page opens to QuickSight enterprise edition. For this exercise, only the
Standard Edition is needed, so click on Standard at the top right of the screen:

Figure 12.7 – Setting up a new QuickSight account

378 Visualizing Data with Amazon QuickSight

5. For Authentication method, select Use IAM federated identities only, and then
select your preferred AWS region. Under Account info, provide a unique name
for your QuickSight account (such as data-engineering-<initials>)
and provide a Notification email address that can be used to send QuickSight
notifications to you. Leave all other settings as-is and click Finish:

Figure 12.8 – Configuring a new QuickSight account

6. After a while, you should receive a message confirming that you have signed up for
Amazon QuickSight. Click on the Go to Amazon QuickSight link, and then click
through the welcome screens, which provide an overview of Amazon QuickSight's
functionality.

7. From the left-hand side menu, click on Datasets to go to the dataset management
screen. On this screen, you will see several pre-loaded sample datasets:

Hands-on – creating a simple QuickSight visualization 379

Figure 12.9 – Pre-loaded datasets for a new QuickSight account

8. Click on New dataset to create a new dataset. On the new dataset screen, click on
Upload a file.

9. When you're prompted to provide the file to upload, navigate to where you
downloaded the World Cities data from simplymaps.com (in Step 1 of this exercise)
and upload the worldcities.csv CSV file.

10. Once the file has been uploaded, you will be presented with a popup to confirm the
file upload settings. Click on Next.

11. On the next screen, click on Visualize. This will open a new analyses screen where
you can create your analysis/dashboard based on the World Cities dataset.

Now that we have subscribed to QuickSight, downloaded our World Cities dataset, and
uploaded the dataset into QuickSight, we are ready to create our first visual.

Creating a new analysis
We are now on the analysis authoring page for QuickSight. Using this interface, we can
build out new analyses consisting of multiple visualizations and, optionally, containing
multiple sheets (tabs). Then, we can publish our analysis as a dashboard that can be
consumed by QuickSight readers.

380 Visualizing Data with Amazon QuickSight

The following screenshot shows the analysis workspace after importing our
worldcities.csv dataset:

Figure 12.10 – The different parts of a new QuickSight analysis

In this screenshot, we can see the following components of the analysis workspace. Note
that the numbers in this section correspond to the component number shown in the
preceding screenshot:

1. A popup message indicating that the dataset import is complete. This shows us that
approximately 41,000 rows were ingested into the SPICE storage engine. You can
click on the X button to close the popup.

2. A list of fields in our selected dataset (worldcities.csv).
3. A list of different types of charts that we can use in our visuals (bar, pie, heat map,

and so on).
4. The sheet bar, which shows us our current sheet (Sheet 1). Clicking the + sign

would enable us to create additional sheets (much like tabs in a browser). We can
also rename sheets.

Hands-on – creating a simple QuickSight visualization 381

5. The visual display area. Once we select a chart type and add some fields to the
visual, the chart will be displayed here. Notice that the size of the visual area can be
dragged to be larger or smaller, and we can click on + Add in the top menu bar if we
want to add additional visuals to this sheet.

To create our map of the world showing cities with populations greater than 3 million
people, perform the following steps:

1. In the Visual types box, find and select the Points on map visual type.
2. From Fields list, drag lat into the Geospatial field well (at the top of the visual-

designed workspace), and then drag lng into the same Geospatial field well.
Make sure that you drag lng either above or below lat; otherwise, you will end up
replacing the existing lat field.

3. Drag population into the Size field well and drag city into the Color field well.

Your visual designer should look as follows at this point:

Figure 12.11 – Creating a new Points on Map visual

382 Visualizing Data with Amazon QuickSight

At this point, our visual is displaying population data for all 41,000 cities in the
dataset. However, for our use case, we only want to display data for cities that have
a population of above 3 million people. Perform the following steps to filter the data
to just cities with a population above a certain size.

4. From the left-hand side QuickSight menu, click on Filter, and then click Create
one... (as shown in the following screenshot):

Figure 12.12 – Configuring a filter for a visual

5. In the popup that shows the list of fields, click on the population field. This displays
a filters list with population showing as the only filter.

6. From the filters list, click on population. Change the Equals dropdown to Greater
than or equal to and enter a value of 3000000, as shown in the following
screenshot. Then, click on Apply:

Hands-on – creating a simple QuickSight visualization 383

Figure 12.13 – Editing the filter for a visual

Our visual now displays only those cities that have a population of 3 million people or
more. Note how you can position the mouse over a city to get a popup of the city's name,
along with its latitude, longitude, and population details.

You can also modify the following aspects of the visual:

• Drag the corners of the visual to increase the size of the visual.

• Experiment with the visual by changing the filter on population size (for example,
change the filter to 5 million people).

• Zoom in and out on the map to size the map to display just the parts of the map you
want to show.

• Double-click on the title of the visual to change the title.

• Click the down arrow next to the title of the sheet (by default, Sheet 1) and rename
the sheet (for example, changing the name to City Populations).

384 Visualizing Data with Amazon QuickSight

The completed visual now looks as follows:

Figure 12.14 – A completed visual showing cities with a population of over 3 million people

We could now share this analysis as a dashboard, making the visual available to a set of
QuickSight users that we select.

In the hands-on section of this chapter, you signed up for a new QuickSight account
and imported a new file-based dataset that contained information on world cities. This
included geospatial data (latitude and longitude), as well as the size of the population of
the city. Then, you created a new visual based on this data, filtering the data to only show
cities with a population of 3 million or more people.

Important – Avoiding Future QuickSight Subscription Costs
If you do not intend to use QuickSight after the initial 30-day subscription,
ensure that you unsubscribe from QuickSight to avoid future subscription
charges. For more information, see the AWS documentation titled Canceling
your Amazon QuickSight subscription and closing the account (https://
docs.aws.amazon.com/quicksight/latest/user/
closing-account.html).

https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html
https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html
https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html

Summary 385

Summary
In this chapter, you learned more about the Amazon QuickSight service, a BI tool that is
used to create and share rich visualizations of data.

We discussed the power of visually representing data, and then explored core Amazon
QuickSight concepts. We looked at how various data sources can be used with QuickSight,
how data can optionally be imported into the SPICE storage engine, and how you can
perform some data preparation tasks using QuickSight.

We then did a deeper dive into the concepts of analyses (where new visuals are authored)
and dashboards (published analyses that can be shared with data consumers). As part
of this, we also examined some of the common types of visualizations available in
QuickSight.

We then looked at some of the advanced features available in QuickSight, including ML
Insights (which uses machine learning to detect outliers in data and forecast future data
trends), as well as embedded dashboards (which enable you to embed either the full
QuickSight console or dashboards directly into your websites and applications).

We wrapped up this chapter with a hands-on section that took you through the steps of
configuring QuickSight within your AWS account and creating a new visualization.

In the next chapter, we will do a deeper dive into some of the many AWS machine
learning and artificial intelligence services that are available. We will also review how
these services can be used to draw new insights and context out of existing structured and
unstructured datasets.

13
Enabling Artificial

Intelligence and
Machine Learning

For a long time, organizations could only dream of the competitive advantage they
would get if they could accurately forecast demand for their products, personalize
recommendations for their customers, and automate complex tasks.

And yet, advancements in machine learning (ML) over the past decade or so have made
many of these things, and much more, a reality.

ML describes the process of training computers in a way that mimics how humans learn
to perform several tasks. ML uses a variety of advanced algorithms and, in most cases,
large amounts of data to develop and train an ML model. This model can then be used to
examine new data and automatically draw insights from that data.

ML offers a wide range of interesting use cases that are expected to have a growing
impact on many different aspects of life. For example, scientists are using ML to analyze
a patient's retina scan to identify early signs of Alzheimer's disease. It is also the power of
ML, and specifically computer vision, that is enabling advances in self-driving vehicles so
that a car can navigate itself along a highway or, in the future, even navigate complicated
city streets unaided.

388 Enabling Artificial Intelligence and Machine Learning

While not as exciting perhaps, organizations have been using the power of ML more
and more over the past decade to improve things such as fraud detection, or to predict
whether a consumer with a specific set of attributes is likely to default on a loan.

AWS offers several services to help developers build their own custom advanced ML
models, as well as a variety of pretrained models that can be used for specific purposes.
In this chapter, we'll examine why artificial intelligence (AI) and ML matter to
organizations, and we'll review a number of the AWS AI and ML services, as well as how
these services use different types of data.

In this chapter, we will cover the following topics:

• Understanding the value of ML and AI for organizations

• Exploring AWS services for ML

• Exploring AWS services for AI

• Hands-on – reviewing the reviews with Amazon Comprehend

Before we get started, review the following Technical requirements section, which lists the
prerequisites for performing the hands-on activity at the end of this chapter.

Technical requirements
In the last section of this chapter, we will go through a hands-on exercise that uses
Amazon SQS and AWS Lambda, to send some text to the Amazon Comprehend service
so that we can extract insights from it.

As with the other hands-on activities in this book, if you have access to an administrator
user in your AWS account, you should have the permissions needed to complete these
activities. If not, you will need to ensure that your user is granted access to create Amazon
SQS and AWS Lambda resources, as well as at least read-only permissions for Amazon
Comprehend APIs.

You can find the code files of this chapter in the GitHub repository using the following
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter13

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter13
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter13

Understanding the value of ML and AI for organizations 389

Understanding the value of ML and AI for
organizations
More and more companies, of all sizes, are in various stages in the journey of discovering
how ML and AI can positively impact their business. While initially, only the largest
of organizations had the money and expertise to invest in ML projects, over time, the
required technology has become more affordable and more accessible to non-specialist
developers.

Cloud providers, such as AWS, have played a big part in making ML and AI technology
more accessible to a wider group of users. Today, a developer with no previous ML
education or experience can use a service such as Amazon Lex to create a customer
service chatbot. This chatbot will allow customers to ask questions using natural language,
rather than having to select from a menu of preset choices. Not all that long ago, anyone
wanting to create a chatbot like this would have needed a Ph.D. in ML!

Many large organizations still look to build up data science teams with specialized AI
and ML education and experience, and these developers are often involved in cutting-
edge research and development. However, organizations of just about any size can use
non-specialist developers to harness the power of ML to improve customer experience,
financial forecasting, and other aspects of their business.

Let's have a look at some of the ways that ML is having an impact on different types of
organizations.

Specialized ML projects
Large organizations in specialized industries make use of advanced ML technologies to
develop cutting-edge ML advances. In this section, we'll have a look at a few examples of
these technologies.

Medical clinical decision support platform
Cerner, a health information technology services company, has built an ML-powered
clinical decision support system to help hospitals streamline their workflows. This
solution, built on AWS, uses ML models to predict how busy an emergency room may
get on any given day, or time. This helps ensure that the right patients are prioritized for
care, that patients are discharged at the right time, and that real-time data is used to create
a Centralized Operations Center dashboard. This dashboard provides critical, near-
real-time information on important metrics for managing hospital workflows, as well as
predictions for what these metrics may look like over time.

390 Enabling Artificial Intelligence and Machine Learning

Cerner has built their Cerner Machine Learning Ecosystem platform using Amazon
SageMaker, as well as other AWS services. As with just about all ML projects, getting the
right data to train the ML model is critical, and data engineers play an important role
in this. In addition, data engineers are needed to build pipelines that enable near-real-
time data to be ingested from multiple sources and fed into the platform. If the pipeline
fails to ingest the right data at the right frequency, then the ML models cannot make the
predictions that an organization may have come to depend on.

To learn more about the Cerner clinical decision support system, you can
watch a pre-recorded webinar, available at https://www.youtube.com/
watch?v=TZB8W7BL0eo.

Early detection of diseases
One of the areas of ML and AI that has massive potential for impacting a significant
number of people is the early detection of serious diseases.

A November 2020 article in the international peer-reviewed journal Nature, titled
Artificial intelligence is improving the detection of lung cancer (https://www.nature.
com/articles/d41586-020-03157-9), provides an in-depth look into how AI
is positively impacting the medical field. In this article, the author (Elizabeth Svoboda)
provides an example of how a deep learning ML model was able to correctly detect the
early stages of lung cancer on CT scans 94% of the time, which was better than a panel of
six veteran radiologists.

With many terminal diseases, early detection can make a significant difference in the
outcome for the patient. For example, early detection, combined with appropriate medical
interventions, can significantly increase the chance of survival beyond 5 years for certain
cancer patients.

Making sports safer
Another area that ML is having an impact on is improving the safety of athletes for
competitive sports. For example, the National Football League (NFL) in the United
States is using Amazon AI and ML services to derive new insights into player injuries,
rehabilitation, and recovery.

NFL has started a project that uses Amazon SageMaker to develop a deep learning
model to track players on a field, and then detect and classify significant injury events
and collisions. There is an expectation that these advanced ML models, along with vast
quantities of relevant data (including video data), can be used to significantly improve
player safety over time.

https://www.youtube.com/watch?v=TZB8W7BL0eo
https://www.youtube.com/watch?v=TZB8W7BL0eo
https://www.nature.com/articles/d41586-020-03157-9
https://www.nature.com/articles/d41586-020-03157-9

Understanding the value of ML and AI for organizations 391

To learn more about how NFL is using ML to improve player safety, you can watch a short
video on YouTube from the AWS re:Invent 2020 conference titled AWS re:Invent 2020
– Jennifer Langton of the NFL on using AWS to transform player safety (https://www.
youtube.com/watch?v=hXxfCn4tGp4).

Having had a look at a few specialized use cases, let's look at how everyday businesses are
using ML and AI to impact their organizations and customers.

Everyday use cases for ML and AI
Just about every business, ranging from those with tens of employees to those with
thousands of employees, is finding ways to improve through the use of ML and AI
technologies.

One of the big reasons for this is that ML and AI have become more democratized over
the past few years. Whereas ML and AI were once solely the domains of experts with
years of experience in the field, today, a developer without specialized ML experience can
harness the power of these technologies in impactful ways.

Let's have a look at a few examples of how ML and AI are widely used across different
business sectors.

Forecasting
Just about every organization needs to do forecasting to anticipate a variety of factors
that influence their business. This includes financial forecasting (such as sales and profit
margin), people forecasting (such as employee turnover, and how many staff are needed
for a particular shift), and inventory forecasting (such as how many units we are likely to
sell, how many units we need to manufacture next month, and so on).

Forecasting uses historical data over a period (often referred to as time series data) and
attempts to predict likely future values over time. Forecasting has been around since long
before ML, but traditional forecasts often lacked accuracy due to things such as irregular
trends in historical data. Traditional forecasting also often failed to take into account
variable factors, such as weather, promotions, and more.

ML has introduced new approaches and techniques to forecasting that offer increased
accuracy and the ability to take several variable factors into account. AWS offers several
services that help bring the power of ML to forecasting problems, as we will discuss later
in this chapter.

https://www.youtube.com/watch?v=hXxfCn4tGp4
https://www.youtube.com/watch?v=hXxfCn4tGp4

392 Enabling Artificial Intelligence and Machine Learning

Personalization
Personalization is all about tailoring communication and content for a specific customer
or subscriber. A good example of personalization is the effort Netflix has invested in to
provide personalized recommendations about other shows a specific subscriber may be
interested in watching, based on the shows they have watched in the past.

Other examples of where ML is used to power personalized recommendations are the
recommended products on the Amazon.com storefront, as well as the recommended
travel destinations on booking.com.

Natural language processing
Natural language processing (NLP) is a branch of AI/ML that is used to analyze human
language and draw automated insights and context from the text.

A great example of NLP is the Alexa virtual assistant from Amazon. Users can speak to
Alexa using natural language, and Alexa uses NLP algorithms to understand what the
user is asking. While voice recognition systems have been around for a long time, these
generally required users to say very specific phrases for the system to understand them.
With modern NLP approaches, 10 different users could ask the same question in 10
slightly different ways, and the system would be able to understand what is being asked.

Image recognition
Another area where ML is having an impact on many businesses is through the use of
image recognition ML models. With these models, images can be analyzed by the model
to recognize objects within them. This can be used for many different types of tasks, such
as ensuring employees are wearing appropriate safety gear, or as part of the process of
validating the identity of a customer. These models are also able to automatically label
images based on what is in the image, such as the breed of dog in a collection of dog
photos.

Now that we have reviewed some examples of the typical use cases for ML and AI, we can
do a deeper dive into some of the AWS services that enable these use cases.

Exploring AWS services for ML
AWS has three broad categories of ML and AI services, as illustrated in the following
diagram (note that only a small sample of AI and ML services are included in this
diagram, due to space constraints):

Exploring AWS services for ML 393

Figure 13.1 – Amazon ML/AI stack

In the preceding diagram, we can see a subset of the services that AWS offers in each
category – Artificial Intelligence Services, Machine Learning Services, and Machine
Learning Frameworks and Infrastructure.

At the ML framework level, AWS provides Amazon Machine Images (AMIs) and prebuilt
Docker containers that have popular deep learning ML frameworks pre-installed and
optimized for the AWS environment. While these are useful for advanced use cases that
require custom ML environments, these use cases are beyond the scope of this book.

For more information on these ML frameworks, refer to the AWS documentation on
AWS Deep Learning AMIs (https://aws.amazon.com/machine-learning/
amis/) and AWS Deep Learning Containers (https://aws.amazon.com/machine-
learning/containers/).

In the remainder of this chapter, we will explore some of the services in the AWS ML
services and AWS AI services categories.

AWS ML services
While working in the Machine Learning Frameworks and Infrastructure layer (as
shown in the preceding diagram) requires advanced ML skills and experience, AWS
makes developing ML models more accessible in the Machine Learning Services layer.

https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/machine-learning/containers/

394 Enabling Artificial Intelligence and Machine Learning

In this layer, Amazon SageMaker enables users to prepare, build, train, tune, deploy, and
manage ML models, without needing to manage the underlying infrastructure. SageMaker
is designed to simplify each step of building an ML model for both data scientists and
everyday developers.

SageMaker includes several underlying tools to help with each of the stages of building an
ML model.

SageMaker in the ML preparation phase
Several capabilities within SageMaker simplify and speed up the tasks involved in
preparing to build an ML model. We covered these services in Chapter 8, Identifying and
Enabling Data Consumers, so review that chapter for more information, but here is a quick
reminder of these services.

Amazon SageMaker Ground Truth
The majority of ML models learn by being trained on labeled data. That is, the model is
effectively given data that includes the attribute the model is designed to predict. Once
trained, the model can then predict data where the attribute to be predicted is missing. For
example, to train a model that can identify different breeds of dogs in a photo, you would
train the model using photos of dogs that are labeled with the breed of dog. Once trained,
you could provide a picture of a dog and the model could predict the breed.

SageMaker Ground Truth is a service that uses both ML and/or human curators to label
data; for example, labeling the breed of a dog in a photo. This significantly speeds up the
process of preparing data to use to train new ML models.

Amazon SageMaker Data Wrangler
The SageMaker Data Wrangler service is a visual data preparation tool that data scientists
can use to prepare raw data for ML use. The service enables data scientists to select
relevant datasets, explore the data, and then select from over 300 built-in transformations
that they can easily apply to the dataset, without writing any code.

SageMaker Data Wrangler also includes visualization templates that enable you to
preview the results of transformations in SageMaker Studio, a full-fledged integrated
development environment (IDE) for ML.

Amazon SageMaker Clarify
When training an ML model with a training dataset, the dataset may be biased through
either a concentration of specific data or because it is missing specific data.

Exploring AWS services for ML 395

For example, if a dataset is intended to be used to predict responses from people with a
wide age range, but the training dataset primarily contains data from people aged 35 –
55, then predictions may be inaccurate for both younger people (under 35) and/or older
people (over 55).

The same could be applied to datasets that tend to concentrate on a specific gender, sexual
orientation, married versus un-married, or just about any other attribute. To help avoid
this type of potential bias in a dataset, SageMaker Clarify can examine specified attributes
in a dataset and use advanced algorithms to highlight the existence of potential bias.

SageMaker in the ML build phase
Once data has been labeled and prepared, a data scientist can move on to building ML
models. The following capabilities in SageMaker are used to build new ML models.

SageMaker Studio notebooks
Data scientists typically use notebooks to develop the code for their ML models. A
notebook is an interactive web-based environment where developers can run their code
and immediately see the results of the running code. An interactive notebook is backed by
a compute engine that runs a kernel where notebook code is executed.

With SageMaker Studio Notebooks, you can quickly launch a new notebook, backed
by an EC2 instance type of your choosing. The notebook environment uses Amazon
Elastic File System (EFS), which is network-based storage that persists beyond the life
of the instance running the notebook. This enables you to easily start and stop different
notebook instances, and have your notebook project files available in each notebook
instance.

SageMaker Studio Notebooks also enables users to easily share notebooks, enabling
collaborative work between data scientists on a team. In addition, SageMaker Studio
Notebooks provides sample projects that can be used as a starting point for developing a
new model.

SageMaker Autopilot
For developers that do not have extensive ML experience, SageMaker Autopilot can be
used to automatically build, train, and tune several different ML models, based on your
data.

The developer needs to provide a tabular dataset (rows and columns) and then indicate
which column value they want to predict. This could be predicting a number (such as
expected spend), a binary category (fraud or not fraud), or a multi-label category (such as
favorite fruit, which could be banana, peach, pear, and so on).

396 Enabling Artificial Intelligence and Machine Learning

SageMaker Autopilot will then build, train, and tune several ML models and provide a
model leaderboard to show the results of each model. Users can view each of the models
that were generated and explore the results that were generated by each model. From here,
a user can select the model that best meets their requirements and deploy it.

SageMaker JumpStart
SageMaker JumpStart provides several preselected end-to-end solutions, ML models,
and other resources to help developers and data scientists get their ML projects up and
running quickly.

By using these prebuilt resources, developers can easily deploy solutions and models
with all the infrastructure components managed for them. Once deployed, the model
can be opened with SageMaker Studio Notebooks, and the model can be tested through a
notebook environment.

Prebuilt solutions include sample datasets that can be used to test the model, and you
can also provide your own dataset to further train and tune the model. Some examples of
prebuilt solutions available in JumpStart include the following:

• Churn prediction

• Credit risk prediction

• Computer vision

• Predictive maintenance

For more information on SageMaker JumpStart, including an example of how a
solution can easily be deployed, see the AWS blog post by Julien Simon titled Amazon
SageMaker JumpStart Simplifies Access to Pre-built Models and Machine Learning Solutions
(https://aws.amazon.com/blogs/aws/amazon-sagemaker-jumpstart-
simplifies-access-to-prebuilt-models-and-machine-learning-
models/).

SageMaker in the ML training and tuning phase
Once you have built an ML model, you need to train the model on a sample dataset,
and then further tune and refine the model until you get the results that meet your
requirements.

https://aws.amazon.com/blogs/aws/amazon-sagemaker-jumpstart-simplifies-access-to-prebuilt-models-and-machine-learning-models/
https://aws.amazon.com/blogs/aws/amazon-sagemaker-jumpstart-simplifies-access-to-prebuilt-models-and-machine-learning-models/
https://aws.amazon.com/blogs/aws/amazon-sagemaker-jumpstart-simplifies-access-to-prebuilt-models-and-machine-learning-models/

Exploring AWS services for ML 397

Training a model is core functionality that's built into SageMaker. You point SageMaker to
the location of your training data in Amazon S3, and then specify the type and quantity of
SageMaker ML instances you want to use for the training job. SageMaker will provision a
distributed compute cluster and perform the training, outputting the results to Amazon
S3. The training cluster will then be automatically removed.

SageMaker can also automatically tune your ML model by testing the model with
thousands of different combinations of algorithm parameters to determine which
combination of parameters provides the most accurate results. This process is referred
to as hyperparameter tuning, and with SageMaker, you can specify the range of
hyperparameters that you want to test.

To keep track of the results of different training jobs, SageMaker also includes something
called SageMaker Experiments.

SageMaker Experiments
This process of tracking different ML experiments can be made significantly easier using
SageMaker Experiments. This feature of SageMaker automatically tracks items such as
inputs, parameters, and configurations, and stores the result of each experiment. This
helps reduce the overhead and time needed to identify the best performing combinations
for your ML model.

When running a training job on SageMaker, you can pass in an extra parameter, defining
the name of the experiment. By doing this, all the inputs and outputs of the job will be
automatically logged.

This data can then be loaded into a pandas DataFrame (a popular Python data structure
for working with data), and you can use the built-in analytics features of pandas to
analyze your results. Amazon SageMaker Studio also includes integration with SageMaker
Experiments, enabling you to run queries on experiments data, and view leaderboards
and metrics.

SageMaker in the ML deployment and management phase
Once you have prepared your data, developed your model, and then trained and tuned the
model, you are finally ready to deploy the model. There are several different ways that you
can select to deploy the model using SageMaker.

For example, if you want to get predictions on a large dataset, you can use SageMaker's
batch transform process. Using this, you point SageMaker to the dataset on S3, select
the type of compute instance you want to use to power the transform, and then run the
transform job, which will make a prediction for each record in the dataset and write out
the transformed dataset to S3.

398 Enabling Artificial Intelligence and Machine Learning

Alternatively, you can deploy an endpoint for your model that can be used by your
applications to pass data to the model to get an ML-powered prediction in real time. For
example, you can pass information to the endpoint of a specific credit card transaction
(date, time, location, vendor, amount, and so on), and the ML model can predict whether
this is a fraudulent or genuine transaction.

ML models can become less accurate over time due to changing trends in your customer
base, for example, or because of data quality issues in upstream systems. To help monitor
and manage this, you can use SageMaker Model Monitor.

SageMaker Model Monitor
SageMaker Model Monitor can be configured to continuously monitor the quality of
your ML models and can send notifications when there are deviations in the model's
quality. Model Monitor can detect issues with items such as data quality, model quality,
and bias drift.

To resolve issues with model quality, a user may take steps such as retraining the
model using updated data or investigating potential quality issues with upstream data
preparation systems.

Having briefly covered some of the extensive functionality available for creating custom
models using Amazon SageMaker, let's look at some of the AWS AI services that provide
prebuilt ML models as a service.

Exploring AWS services for AI
While Amazon SageMaker simplifies building custom ML models, there are many use
cases where a custom model is not required, and a generalized ML model will meet
requirements.

For example, if you need to translate from one language into another, that will most
likely not require a customized ML model. Existing, generalized models, trained for the
languages you are translating between, would work.

You could use SageMaker to develop a French to English translation model, train the
model, and then host the model on a SageMaker inference endpoint. But that would take
time and would have compute costs associated with each phase of development (data
preparation, notebooks, training, and inference).

Exploring AWS services for AI 399

Instead, it would be massively simpler, quicker, and cheaper to use an AI service such as
Amazon Translate, which already has a model trained for this task. This service provides
a simple API that can be used to pass in text in one language and receive a translation in a
target language. And there would be no ongoing compute costs or commitments – just a
small per-character cost for the translation (currently $ 0.000015 per character).

Also, AWS is constantly working to improve the underlying ML algorithms, monitoring
data quality, and maintaining the availability of the API endpoints, at no additional cost to
you. And if you do need to customize the model (for example, based on specific industry
terminology, or a preferred style or tone for the translation), you can provide additional
training data for customized translations, although this comes at a slightly higher cost
(currently $0.00006 per character).

These types of AI services have gained in popularity over the past few years, and all of the
major cloud providers now offer a range of pretrained ML models as a service. We don't
have space in this chapter to cover all of the AWS AI services, but we'll look at a few of the
most popular services in this section.

We started with Amazon Translate as an example of an AWS AI service, so now, let's
explore some of the other AI offerings from AWS.

AI for unstructured speech and text
One of the primary benefits of a data lake is the ability to store all types of data, including
unstructured data such as PDF documents, as well as audio and video files, in the data
lake. And while this type of data can be easily ingested and stored in the data lake, the
challenge for the data engineer is in how to process and make use of this data.

For example, a large enterprise company may have hundreds of thousands of invoices
from a variety of vendors, and they may want to perform analysis or fraud detection on
those. Or a busy call center may want to automatically transcribe recorded customer calls
to perform sentiment analysis and identify unhappy customers.

For these use cases, AWS offers several AI services designed to extract metadata from text
or speech sources to make this data available for additional analysis.

Amazon Transcribe for converting speech into text
Amazon Transcribe is an AWS AI service that can produce text transcription from
audio and video files. This can be used to generate subtitles for a video file, to provide a
transcription of a recording of a meeting or speech, or to get a transcript of a customer
service call.

400 Enabling Artificial Intelligence and Machine Learning

Transcribe uses automatic speech recognition (ASR), a deep learning process, to enable
highly accurate transcriptions from audio files, including the ability to identify different
speakers in the transcript. Transcribe can also detect and remove sensitive personal
information (such as credit card numbers or email addresses) from transcripts, as well
as words that you don't want to be included in a transcription (such as curses or swear
words). Transcribe can also generate a new audio file that replaces these unwanted words
with silence.

A data engineer can build a pipeline that processes audio or video files with Transcribe,
ensuring that text transcripts from audio sources are generated shortly after new audio
sources are ingested into the data lake. Other ML models or AWS AI services can also be
built into the pipeline to further analyze the transcript to generate additional metadata.

Amazon Transcribe also includes functionality targeted at specific types of audio. For
example, Amazon Transcribe Medical uses an ML model specifically trained to identify
medical terminologies such as medicine names, diseases, and conditions. And Amazon
Transcribe Call Analytics has been specifically designed to understand customer service
and sales calls, as well as to identify attributes such as agent and customer sentiment,
interruptions, and talk speed.

Amazon Textract for extracting text from documents
Amazon Textract is an AI service that can be used to automatically extract text from
unstructured documents, such as PDF or image files. Whether the source document is a
scan of printed text or a form that includes printed text and handwriting, Textract can be
used to create a semi-structured document for further analysis.

A data engineer may be tasked, for example, with building a pipeline that automatically
analyzes uploaded expense receipts to extract relevant information. This may include
storing that information in semi-structured files in the data lake, or a different target such
as DynamoDB or a relational database.

For example, the following screenshot shows a portion of a hotel receipt bill contained in a
PDF file:

Exploring AWS services for AI 401

Figure 13.2 – Extract from a PDF document of a hotel invoice

Most traditional analytic tools would not be able to process this data contained within a
PDF file, but when this file is sent to the Amazon Textract service, a semi-structured file
can be created containing relevant data. For example, the ML model powering Textract
can extract information from the preceding table as a CSV file that can be further
analyzed in a data engineering pipeline.

The following table shows the CSV file when opened in a spreadsheet application:

Figure 13.3 – CSV formatted data extracted from a PDF invoice

Textract has been designed to work well with various types of documents, including
documents that contain handwritten notes. For example, a medical intake form at a
doctor's office, where patients fill out the form by hand, can be sent to Textract to extract
data from the form for further processing.

Amazon Comprehend for extracting insights from text
We have looked at how Amazon Transcribe can create electronic text from speech, as well
as how Amazon Textract can create semi-structured documents from scanned documents
and images. Now, let's look at how to extract additional insights from text.

402 Enabling Artificial Intelligence and Machine Learning

Amazon Comprehend is an AI service that uses advanced ML models to generate
additional insights from text documents, such as sentiment, topics, place names, and
more. With Comprehend, you can build a near-real-time pipeline that passes in 1 – 25
documents in a single API call for analysis or build a batch pipeline that configures
Comprehend to analyze all documents in an S3 bucket.

When you call the API or run an asynchronous batch job, you specify the type of
comprehension that you want in the results. For example, you can have Comprehend
analyze text to detect the dominant language, entities, key phrases, PII data, sentiment, or
topics (each type of comprehension has a different API call).

Comprehend can be used for several use cases, such as identifying important entities
in lengthy legal contracts (such as location, people, and companies), or understanding
customer sentiment when customers interact with your call center. As a data engineer, you
may be tasked with building a pipeline that uses Amazon Transcribe to convert the audio
of recorded customer service calls into text, and then run that text through Comprehend
to capture insight into customer sentiment for each call.

Another use case could be to analyze social media posts to identify which organizations
were being referenced in a post, and what the sentiment of the review was. For example,
we could analyze the following fictional post made to a social media platform:

"I went to Jack's Cafe last Monday, and the pancakes were amazing! You should try this
place, it's new in downtown Westwood. Our server, Regina, was amazing."

When Amazon Comprehend analyzes this text, it returns the following insights:

• Entities detected:

 � Jack's café, Organization, 93% confidence

 � Westwood, Location, 71% confidence

 � Regina, Person, 99% confidence

 � last Monday, Date, 94% confidence

• Sentiment:

 � Positive, 99% confidence

As we can see from the previous results, Comprehend can accurately detect entities
and sentiment. At the end of this chapter, we will go through an exercise with Amazon
Comprehend to determine customer sentiment from online reviews, which will allow you
to get hands-on with how Amazon Comprehend works.

Exploring AWS services for AI 403

Note that there is also a specialty version of Comprehend, called Amazon Comprehend
Medical, that has been designed to extract medical information from electronic text,
such as medical conditions, medications, treatments, and protected health information.
You can also train a Comprehend custom entity detection model using your data to
recognize specialized entities (such as a model trained to recognize different makes and
models of cars and motorbikes).

AI for extracting metadata from images and video
In the previous section, we reviewed AI services for processing text – including audio
transcribed into text (Amazon Transcribe), images and scanned documents converted
into text (Amazon Textract), and insights drawn out of electronic text (Amazon
Comprehend).

In this section, we will change focus and look at how we can extract insights out of videos
and images using the power of AI.

Amazon Rekognition
Amazon Rekognition uses the power of pretrained ML models to extract metadata from
images and videos, enabling users to get rich insights from this unstructured content.

With traditional data warehouses and databases, the ability to store unstructured data,
such as images and videos, was very limited. In addition, until recently, it was difficult to
extract rich metadata from these unstructured sources, without having humans manually
label data. And, as you can imagine, this was a very time-consuming and error-prone
process.

For organizations that stored a lot of images or videos, they needed to manually build
catalogs to tag the media appropriately. For example, these organizations would need
someone to manually identify celebrities in photos or add labels to an image to tag what
was shown in the image.

As ML technologies advanced, these organizations could build and train ML models to
automatically tag images (or stills from a video), but this still required deep expertise and
an extensive labeled catalog for training the ML model.

With new AI services, such as Amazon Rekognition, vendors do the hard work
of building and training the ML models, and users can then use a simple API to
automatically extract metadata from images. And, with Amazon Rekognition Video,
users can also gain these insights from video files. When passed a video file for analysis,
the results that are returned include a timestamp of where the object was detected,
enabling an index of identified objects to be created.

404 Enabling Artificial Intelligence and Machine Learning

For example, the following photo could be sent to the Amazon Rekognition service to
automatically identify elements in the photo:

Figure 13.4 – Photo of a dog and a Jeep in the snow

When passed to Amazon Rekognition, the service can automatically identify objects in
the photo. The following is a partial list of the identified objects (with the confidence level
of the ML model shown in brackets):

• Outdoors (99.6%)

• Snow (99.2%)

• Blizzard (99.2%)

• Winter (99.2%)

• Wheel (95.3%)

• Dog (93.6%)

• Car (90.8%)

Exploring AWS services for AI 405

A data engineer could use this type of service to build a data pipeline that ingests images
and/or video, and then calls the Amazon Rekognition service for each file, building an
index of objects in each file, and storing that in DynamoDB, for example.

The AI services we have discussed so far are used to extract data from unstructured files
such as PDF scans and image and video files. Now, let's take a look at AWS AI services
that can be used to make predictions based on semi-structured data.

AI for ML-powered forecasts
A common business need is to forecast future values, whether these be the number of
staff an entertainment venue is likely to need next month, or how much revenue an
organization is likely to receive on a specific product line over the next 12 months.

For many years, organizations would use formulas to forecast future values, based on
historical data that they had built up. However, these formulas often did not take into
account seasonal trends and other third-party factors that could significantly influence the
actual values that are realized.

Modern forecasting tools, such as Amazon Forecast, can provide significantly more
accurate forecasts by using the power of ML.

Amazon Forecast
Amazon Forecast is a powerful AI service for predicting future time series data, based
on complex relationships between multiple datasets. Using Forecast, a developer can train
and build a customized forecast ML model, without needing ML expertise.

To train the custom model, a user would provide historical data for the attribute that
they want to predict (for example, daily sales at each store over the past 12 months). In
addition, they can include related datasets, such as a dataset listing the total number of
daily visitors to each store.

If the primary dataset also includes geolocation data (identifying, for example, the
location of the store) and timezone data, Amazon Forecast can automatically use weather
information to help further improve prediction accuracy. For example, the model can
take into account how the weather has affected sales in the past, and use the latest 14-day
weather forecast to optimize predictions for the upcoming period based on the weather
forecast.

406 Enabling Artificial Intelligence and Machine Learning

A data engineer may be involved in building a pipeline that uses Amazon Forecast. The
following could be some of the steps in a pipeline that the data engineer architects and
implements:

• Use an AWS Glue job to create an hourly aggregation of sales for each store, storing
the results in Amazon S3.

• Use AWS Step Functions to call Lambda functions that clean up previous
predictions, and generate new predictions based on the latest data. Use a Lambda
function to create an export job to export the newly generated predictions to
Amazon S3.

• Use Amazon AppFlow to load the newly generated predictions from Amazon S3 to
Amazon Redshift for further analysis.

Refer to the AWS blog post titled Automating your Amazon Forecast workflow with
Lambda, Step Functions, and CloudWatch Events rule (https://aws.amazon.
com/blogs/machine-learning/automating-your-amazon-forecast-
workflow-with-lambda-step-functions-and-cloudwatch-events-
rule/) for more details on building a pipeline that incorporates Amazon Forecast.

AI for fraud detection and personalization
The AI services we discussed previously are often incorporated into data engineering
pipelines as these services are useful for advanced analytics (such as extracting metadata
from images, text transcripts from audio files, or making forecasts). However, other AI
services are often used as a part of transactional systems, rather than data engineering
pipelines, which we will briefly look at in this section.

Amazon Fraud Detector
Amazon Fraud Detector is an AI service that helps organizations detect potentially
fraudulent transactions and fake account registrations.

Fraud Detector enables an organization to upload its historical data regarding fraudulent
transactions. It then adds this to a model trained with fraud data from Amazon and AWS
to optimize fraud detection.

Using Fraud Detector, an organization can build fraud prediction into their checkout
process, getting a prediction within milliseconds as part of the checkout process.

https://aws.amazon.com/blogs/machine-learning/automating-your-amazon-forecast-workflow-with-lambda-step-functions-and-cloudwatch-events-rule/
https://aws.amazon.com/blogs/machine-learning/automating-your-amazon-forecast-workflow-with-lambda-step-functions-and-cloudwatch-events-rule/
https://aws.amazon.com/blogs/machine-learning/automating-your-amazon-forecast-workflow-with-lambda-step-functions-and-cloudwatch-events-rule/
https://aws.amazon.com/blogs/machine-learning/automating-your-amazon-forecast-workflow-with-lambda-step-functions-and-cloudwatch-events-rule/

Hands-on – reviewing reviews with Amazon Comprehend 407

Amazon Personalize
Amazon Personalize is an AI service that helps organizations provide personalized
recommendations to their customers. Using Personalize, developers can easily integrate
personalized product recommendations, marketing initiatives, and other ML-powered
personal recommendations into existing customer-facing systems.

With Personalize, developers can design systems that capture live events from users (such
as data extracted from a website click-stream) and combine this with historical user
profile information to recommend the most relevant items for a user. This can be used
to recommend other products a customer may be interested in, or the next movie or TV
show a customer may like to watch.

Having reviewed several AWS AI services, let's get hands-on with using one of these
services: Amazon Comprehend.

Hands-on – reviewing reviews with Amazon
Comprehend
Imagine that you work for a large hotel chain and have been tasked with developing a
process for identifying negative reviews that have been posted on your website. This will
help the customer service teams follow up with the customer.

If your company was getting hundreds of reviews every day, it would be time-consuming
to have someone read the entire review every time a new review was posted. Luckily, you
have recently heard about Amazon Comprehend, so you decide to develop a small Proof
of Concept (PoC) test to see whether Amazon Comprehend can help.

If your PoC is successful, you will want to have a decoupled process that receives reviews
once they have been posted, calls Amazon Comprehend to determine the sentiment of
the review, and then takes a follow-up action if the review is negative or mixed. Therefore,
you decide to build your PoC in the same way, using Amazon Simple Queue Service
(SQS) to receive reviews and have this trigger a Lambda function to perform analysis with
Comprehend.

Setting up a new Amazon SQS message queue
Create a new Amazon SQS message queue for receiving reviews by following these steps:

1. Log into AWS Management Console and navigate to the Amazon SQS service at
https://console.aws.amazon.com/sqs/v2/.

2. Click on Create queue.

https://console.aws.amazon.com/sqs/v2/

408 Enabling Artificial Intelligence and Machine Learning

3. Leave the default of a Standard queue as-is and provide a queue Name (such as
website-reviews-queue):

Figure 13.5 – Creating a new Amazon SQS message queue

4. Leave all other options as their default values and click on Create queue at the
bottom of the page.

Now that our queue has been created, we want to create a Lambda function that will read
items from the queue and submit the website review text to Amazon Comprehend for
analysis.

Creating a Lambda function for calling Amazon
Comprehend
The following steps will create a new Lambda function for calling Amazon Comprehend
to analyze the text that's passed in from the SQS queue:

1. In the Amazon Management Console, navigate to the AWS Lambda service at
https://us-east-2.console.aws.amazon.com/lambda/.

2. Click on Create function.
3. Select the option to Author from scratch.
4. Provide a Function name value (such as website-reviews-analysis-

function) and select the most recent version of Python for Runtime.

https://us-east-2.console.aws.amazon.com/lambda/

Hands-on – reviewing reviews with Amazon Comprehend 409

5. For Execution role, select Create a new role from AWS policy templates.
6. Provide a Role name value (such as website-reviews-analysis-role).
7. For Policy templates, search for SQS and add Amazon SQS poller permissions.
8. Leave everything else as the defaults and click on Create function.

Having created our function, we can add our custom code, which will receive the
SQS message, extract the review text from the message, and then send it to Amazon
Comprehend for sentiment and entity analysis.

9. Replace Code source in Lambda with the following block of code:

import boto3

import json

comprehend = boto3.client(service_name='comprehend',

 region_name='us-east-2')

def lambda_handler(event, context):

 for record in event['Records']:

 payload = record["body"]

 print(str(payload))

In this preceding block of code, we imported the required libraries and initialized
the Comprehend API, which is part of boto3. Make sure that you modify the
preceding Comprehend API initialization code to reflect the region you are using
for these exercises. Then, we defined our Lambda function and read in the records
that we received from Amazon SQS. Finally, we loaded body of record into a
variable called payload.

Continue your Lambda function with the following block of code:
 print('Calling DetectSentiment')

 response = comprehend.detect_sentiment(

 Text=payload, LanguageCode='en')

 sentiment = response['Sentiment']

 sentiment_score = response['SentimentScore']

 print(f'SENTIMENT: {sentiment}')

 print(f'SENTIMENT SCORE: {sentiment_score}')

410 Enabling Artificial Intelligence and Machine Learning

In this preceding block of code, we called the Comprehend API for sentiment
detection, passed in the review text (payload), and specified that the text
is in English. In the response we receive from Comprehend, we extracted
the sentiment property (positive, mixed, or negative), as well as the
SentimentScore property.

Now, let's look at our last block of code:
 print('Calling DetectEntities')

 response = comprehend.detect_entities(

 Text=payload, LanguageCode='en')

 print(response['Entities'])

 for entity in response['Entities']:

 entity_text = entity['Text']

 entity_type = entity['Type']

 To the PD: Please add this to the next line
in p-regular style

To correctly print over two lines we need the following code:

 print(f'ENTITY: {entity_text},'

 f'ENTITY TYPE: {entity_type}')

 ENTITY TYPE: {entity_type}')

 return

In this final part of our code, we called the Comprehend API for entity detection,
again passing in the same review text (payload). Multiple entities may be detected
in the text, so we looped through the response and printed out some information
about each entity.

Then, we returned without any error, which indicates success, which means the
message will be deleted from the SQS message queue. Note that for a production
implementation of this code, you would want to add error-catching code to raise an
exception if there were any issues when calling the Comprehend API.

10. Click Deploy in the Lambda console to deploy your code.

Now, we just need to add permissions to our Lambda function to access the Comprehend
API and add our function as a trigger for our SQS queue. Then, we can test it out.

Hands-on – reviewing reviews with Amazon Comprehend 411

Adding Comprehend permissions for our IAM role
When we created our Lambda function, we were able to select from a preset list of
common permissions to add permission for our Lambda function to poll an SQS message
queue. However, our function also needs to call the Comprehend API, so let's add
permission for that as well:

1. In AWS Lambda console, with your website reviews analysis function open, click
on the Configuration tab along the top, and then the Permissions tab on the left.

2. The name of the role you specified when creating the Lambda function will be
shown as a link. Click on Role name (such as website-reviews-analysis-
role) to open the IAM console so that we can edit the permissions:

Figure 13.6 – Lambda Permissions > Configuration tab > Execution role

3. In the IAM console, click on Attach policies.
4. Search for a policy called ComprehendReadOnly, which has sufficient permissions

to enable us to call the Comprehend API from our Lambda function.

412 Enabling Artificial Intelligence and Machine Learning

5. Select the tick box for ComprehendReadOnly, and then click on Attach policy:

Figure 13.7 – Finding and selecting the required Comprehend permissions in IAM

We are just about ready to test our function. Our last step is to link our SQS queue and
our Lambda function.

Adding a Lambda function as a trigger for our SQS
message queue
With the following steps, we'll configure our Lambda function to be able to pick up new
messages that are added to our SQS message queue for processing:

1. Navigate back to the Amazon SQS message queue console at https://
us-east-2.console.aws.amazon.com/sqs/v2/home.

2. Click on the name of the SQS queue you previously created (such as website-
reviews-queue).

3. Click on the Lambda triggers tab, and then click Configure Lambda function
trigger.

4. Make sure that Region is set to the region you have been using for the exercises in
this chapter, and then select your Lambda function from the drop-down list.

5. Click Save to link your SQS queue and Lambda function.

And with that, we are now ready to test out our solution and see how Amazon
Comprehend performs.

https://us-east-2.console.aws.amazon.com/sqs/v2/home
https://us-east-2.console.aws.amazon.com/sqs/v2/home

Hands-on – reviewing reviews with Amazon Comprehend 413

Testing the solution with Amazon Comprehend
Using the following steps, test the solution and get Amazon Comprehend to analyze the
text you have provided for both sentiment and entity detection:

1. Ensure that you are still on the Amazon SQS console and that your SQS queue is
open.

2. At the top right, click on Send and receive messages:

Figure 13.8 – Amazon SQS queue detail view
We can now send a message directly to our SQS queue, which will trigger our
Lambda function to process the message and send it to Amazon Comprehend.
When moved to production, we would build integration into our website to
automatically send all new reviews to our Amazon SQS message queue as the
reviews are posted.

3. Paste the following text (or your own, similar text) into the Message Body section
of Send and receive messages:

"I recently stayed at the Kensington Hotel in downtown Cape Town and was very
impressed. The hotel is beautiful, the service from the staff is amazing, and the sea
views cannot be beaten. If you have the time, stop by Mary's Kitchen, a coffee shop
not far from the hotel, to get a coffee and try some of their delicious cakes and baked
goods."

414 Enabling Artificial Intelligence and Machine Learning

Then, click on the Send message option at the top right.
4. To view the results of the Comprehend analysis, we can review the output of our

Lambda function in CloudWatch Logs. If it's not already open in a separate browser
tab, open a new browser tab and navigate back to your Lambda function. Click
on the Monitor tab, and then click View logs in CloudWatch. This will open the
CloudWatch console in a new browser tab.

The CloudWatch console should have opened at the log group for your Lambda
function (for example, the log group named /aws/lambda/website-
reviews-analysis-functions). Click on the latest log stream to open the
log:

Figure 13.9 – Amazon CloudWatch logs for our Lambda function
In the CloudWatch logs, you can see the output of our Lambda function. This
includes the text that was analyzed, the sentiment (POSITIVE), the sentiment
score, as well as the three entities Comprehend detected in our text (the hotel and
coffee shop names, and the city location).

5. Go back to your browser tab for the SQS console and modify the review text with
a negative review. You can either write your own fictional negative review or copy
and paste a negative review that you find via Google. Send the message via SQS
and review the analysis results in CloudWatch to see how Comprehend detects the
negative sentiment, and see which other entities Comprehend can detect.

Summary 415

After testing and validating that Amazon Comprehend can reliably detect sentiment from
published reviews, you may decide to move forward with implementing this solution in
production. If you do decide to do this, you could use Amazon Step Functions to build
a workflow that runs a Lambda function to do the sentiment analysis. Then, depending
on the results (positive, negative, neutral, or mixed), the Step Function state machine
could run different Lambda functions based on the next steps (such as sending a negative
review to customer service to follow up with the customer or sending a mixed review to a
manager to decide on the next steps).

With this hands-on exercise, you got to experiment with how Amazon Comprehend can
detect both sentiment and entitles in written text. If you have time, you can explore the
functionality of other Amazon AI services directly in the console. This includes Amazon
Rekognition, Amazon Transcribe, Amazon Textract, and Amazon Translate.

Summary
In this chapter, you learned more about the broad range of AWS ML and AI services
and had the opportunity to get hands-on with Amazon Comprehend, an AI service for
extracting insights from written text.

We discussed how ML and AI services can apply to a broad range of use cases, both
specialized (such as detecting cancer early) and general (business forecasting or
personalization).

We examined different AWS services related to ML and AI. We looked at how different
Amazon SageMaker capabilities can be used to prepare data for ML, build models, train
and fine-tune models, and deploy and manage models. SageMaker makes building custom
ML models much more accessible to developers without existing expertise in ML.

We then looked at a range of AWS AI services that provide prebuilt and trained models for
common use cases. We looked at services for transcribing text from audio files (Amazon
Transcribe), for extracting text from forms and handwritten documents (Amazon
Textract), for recognizing images (Amazon Rekognition), and for extracting insights from
text (Amazon Comprehend). We also briefly discussed other business-focused AI services,
such as Amazon Forecast and Amazon Personalize.

We're near the end of a journey that has had us look, at a high level, at several tasks,
activities, and services that are part of the life of a data engineer. In the next chapter,
we will conclude this book by looking at some additional examples of data engineering
pipelines, and briefly introduce other topics that a data engineer may wish to explore for
further learning.

416 Enabling Artificial Intelligence and Machine Learning

Further reading
To learn more about the impact that ML is having on the medical field regarding
automatically detecting serious diseases, check out these articles:

• Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis:
Principles and Recent Advances (https://ieeexplore.ieee.org/
document/9363896)

• AI Algorithm Can Accurately Predict Risk, Diagnose Alzheimer's Disease
(https://www.bumc.bu.edu/busm/2020/05/04/ai-algorithm-can-
accurately-predict-risk-diagnose-alzheimers-disease/)

• Implementing AI models has made critical disease diagnosis easy (https://www.
analyticsinsight.net/implementing-ai-models-has-made-
critical-disease-diagnosis-easy/)

• Apple hiring machine learning scientist for early disease detection (https://www.
healthcareitnews.com/news/apple-hiring-machine-learning-
scientist-early-disease-detection)

The organizations behind these articles and headlines use advanced ML principles and
technologies to further advance medical diagnosis. It's still early days in this field, and this
will be an interesting space to watch over the next few years.

https://ieeexplore.ieee.org/document/9363896
https://ieeexplore.ieee.org/document/9363896
https://www.bumc.bu.edu/busm/2020/05/04/ai-algorithm-can-accurately-predict-risk-diagnose-alzheimers-disease/
https://www.bumc.bu.edu/busm/2020/05/04/ai-algorithm-can-accurately-predict-risk-diagnose-alzheimers-disease/
https://www.analyticsinsight.net/implementing-ai-models-has-made-critical-disease-diagnosis-easy/
https://www.analyticsinsight.net/implementing-ai-models-has-made-critical-disease-diagnosis-easy/
https://www.analyticsinsight.net/implementing-ai-models-has-made-critical-disease-diagnosis-easy/
https://www.healthcareitnews.com/news/apple-hiring-machine-learning-scientist-early-disease-detection
https://www.healthcareitnews.com/news/apple-hiring-machine-learning-scientist-early-disease-detection
https://www.healthcareitnews.com/news/apple-hiring-machine-learning-scientist-early-disease-detection

14
Wrapping Up the
First Part of Your
Learning Journey

In this book, we have explored many different aspects of the data engineering role by
learning more about common architecture patterns, understanding how to approach
designing a data engineering pipeline, and getting hands-on with many different AWS
services commonly used by data engineers (for data ingestion, data transformation, and
orchestrating pipelines).

We examined some of the important issues surrounding data security and governance and
discussed the importance of a data catalog to avoid a data lake turning into a data swamp.
We also reviewed data marts and data warehouses and introduced the concept of a data
lake house.

We learned about data consumers – the end users of the product that's produced by
data engineering pipelines – and looked into some of the tools that they use to consume
data (including Amazon Athena for ad hoc SQL queries and Amazon QuickSight for
data visualization). Then, we briefly explored the topic of machine learning (ML) and
artificial intelligence (AI) and learned about some of the AWS services that are used in
these fields.

418 Wrapping Up the First Part of Your Learning Journey

In this chapter, we're going to introduce some important real-world concepts to help
manage the data infrastructure/pipeline development process, have a look at some
examples of real-world data pipelines, and discuss some emerging trends in the field. We'll
then look at how to clean up your AWS account in the hands-on portion of this chapter.

In this chapter, we will cover the following topics:

• Looking at the data analytics big picture

• Examining examples of real-world data pipelines

• Imagining the future – a look at emerging trends

• Hands-on – cleaning up your AWS account

Technical requirements
There are no specific technical requirements for the hands-on section of this chapter as we
will just be cleaning up resources that we have created throughout this book. Optionally,
however, there will be a section that covers deleting your AWS account. If you choose to
do this, you will need access to the account's root user to log in with the email address that
was used to create the account.

You can find the code files of this chapter in the GitHub repository using the following
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter14

Looking at the data analytics big picture
This book was never intended as a deep dive into one specific area of data engineering,
although there are many other great books and resources out there that do focus on a
single area (such as a deep dive on Spark programming, or on how to use Kafka to ingest
streaming data).

Because of this broad topic coverage, you have probably already begun to form a good
idea of the different aspects of the bigger picture of data analytics. While it is quite
common for data engineering roles to focus on just writing data transform jobs, or
just managing the infrastructure to ingest and process streaming data, it is helpful to
understand how this integrates with data warehouses/data marts, how different data
consumers use data, and how ML and AI fit into the bigger data picture, as we have
reviewed in this book.

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter14
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter14

Looking at the data analytics big picture 419

We have also been focusing on the tasks from the perspective of a single data engineer, but
in reality, most data engineers will work as part of a larger team. There may be different
teams, or team members, focused on different aspects of the data engineering pipeline, but
all team members need to work together.

In most organizations, there are also likely to be multiple environments, such as a
development environment, a test/quality assurance (QA) environment, and a production
environment. The data infrastructure and pipelines must be deployed and tested in the
development environment first, and then any updates should be pushed to a test/QA
environment for automated testing, before finally being approved for deployment in the
production environment.

In the following diagram, we can see that there are multiple teams responsible for different
aspects of data engineering resources. We can also see that the data engineering resources
are duplicated across multiple different environments (which would generally be different
AWS accounts), such as the development environment, test/QA environment, and
production environment. Each organization may structure its teams and environments a
little differently, but this is an example of the complexity of data engineering in real life:

Figure 14.1 – Data engineering teams and environments

It is a challenge to work in these kinds of complex environments, and an organized
approach is required to be successful. Part of understanding the bigger picture of data
analytics is to understand these types of challenges and how to overcome them, as we will
look at in this section.

420 Wrapping Up the First Part of Your Learning Journey

Managing complex data environments with DataOps
DataOps is a set of processes and principles that can be applied to manage how changes to
data infrastructure (including pipelines) are deployed to a production environment. The
purpose of DataOps is to bring repeatability and reliability to the process of transforming
data to increase its value, as well as to make it production-ready for use by data consumers
in the shortest possible time and with the highest data quality possible.

The opposite of DataOps would be entirely manual processes for making changes to data
infrastructure that can vary each time a change is made, and with no formal controls for
testing and approving changes that are made in a production environment, or for ensuring
data quality.

DataOps builds on the well-known DevOps processes and principles for software
engineering and applies similar processes to data. We don't have time in this book to do
a deep dive into DataOps, but we will introduce some of the important concepts here and
encourage you to read up more on this topic.

Data infrastructure and pipelines as source control-managed code
One of the big benefits of running workloads in the cloud is the ability to automate all
the aspects of infrastructure deployment. While traditionally, you may think of code as
being software engineering code, such as mobile phone or web applications, infrastructure
deployments can also be encapsulated in code.

Infrastructure as Code (IaC) refers to the process of using code, or definition
templates, to control the deployment and configuration of infrastructure. In AWS, the
AWS CloudFormation (CFN) service uses template files to specify the definition and
configuration of infrastructure that you want to deploy to an AWS account.

With CloudFormation, you create a template file (using either YAML or JSON formatted
text) that specifies the details of the resources you want to deploy.

For example, you can create a CFN template that can be used to automatically deploy the
following resources into an AWS account:

• An S3 bucket that is configured to block public access

• An EventBridge rule to monitor files being written to that bucket and triggers a
Lambda function when a new file is written

• An SNS topic that is used for sending failure notifications

Looking at the data analytics big picture 421

• A Lambda function that validates the new file that is received, and then launches a
Step Function state machine

• A state machine that launches a Glue job to process the file, which then runs a Glue
crawler to update the Glue catalog and sends an SNS notification if anything fails

Once you have created the template definition file, you can commit that file to a source
code repository, such as AWS CodeCommit, Azure DevOps (ADO), BitBucket, or
GitLab. The source code repository enables other team members to access and modify
the template file you committed, and the source code system helps manage changes and
conflicts in different versions of the template file.

In the same way, code that's used for data transformation jobs (such as Python, PySpark,
or Scala code) or orchestration jobs (such as Step Function state machine definition files)
can also be committed to a source control repository.

Continuous integration/continuous delivery
Continuous integration (CI) refers to automated processes that are run when a new
version of a file is committed to a source control repository. These automated processes
are used to build the code when required (such as building a JAR file) and integrate the
newly committed code into existing code that makes up the target system.

For example, when a new Python file is committed to the source control repository,
automated tests can be done to validate that the code in the pipeline meets certain quality
standards, syntax style requirements, and more. At this stage, unit tests can also be run
to test the quality of the code (a simple test to make sure that the code works as expected
– such as ensuring that a specific function returns the expected output, based on a given
input).

Some organizations prefer to run the automated test process on every commit to the
repository, and in others, the tests will only be run when a pull request is raised to merge
new code from a developer's branch into a main branch of the repository.

Continuous delivery (CD) refers to the process of automatically deploying code changes
into target environments, generally with additional automated end-to-end testing. For
example, after code is merged from a developer's branch into a main branch of the
repository, the full repository may be deployed into a test environment. In this test
environment, automated tests will run that do end-to-end testing (such as ingesting files,
running transformation pipelines, and validating output files).

422 Wrapping Up the First Part of Your Learning Journey

While in some cases, CD processes may be triggered whenever a pull request finishes
merging code from developer branches into the main repository, some organizations
prefer to kick off this process manually (although in this case, it could not strictly be called
CD).

For example, an organization may choose to do a once-daily, or even weekly, deployment
of all merged code changes into the test environment. Once testing has been completed,
they will then manually kick off the process to deploy the updated code into the
production environment. However, the processes to deploy the code and perform
validation testing will still be automated. There will also be automated processes to roll
back the changes to the previous version in case of failure.

DataOps brings source control repositories and CI/CD processes together as part of an
agile approach to developing and deploying data infrastructure, transformation pipelines,
and orchestration. The teams that develop the code (whether transformation code or
infrastructure code) are also responsible for overseeing the process of deploying code to
the production environment and managing any issues that arise.

We have only briefly introduced the core concepts of DataOps, but there is much more to
learn, and there are many good online resources that can enable you to dive deeper into
this topic.

In the next section, we will look at some real-life examples of complex data engineering
pipelines.

Examining examples of real-world data
pipelines
The data pipeline examples that we have used in this book have been based on common
types of transformations and pipelines, but they have been relatively simple examples. As
you can imagine, in large organizations, the types of data pipelines that are built can be a
lot more complex and may end up processing extremely large sets of data.

In this section, we will examine two examples of more complex data engineering pipelines
from two very well-known organizations – Spotify and Netflix. Both of these companies
have public blogs that cover software and data engineering, and the details provided about
their pipelines in this section have been taken from the public information that's been
made available in a variety of blog posts and articles.

Examining examples of real-world data pipelines 423

A decade of data wrapped up for Spotify users
Every year, for the past few years, the music streaming service Spotify has used the
extensive data they have on their user's listening history to generate interesting stats
for each user. This information is made available to each user at the end of the year and
includes information such as how many minutes of Spotify audio they streamed that year,
as well as their top artist, top track, and top genre for the year.

This information is marketed to users as Spotify Wrapped, which is a massive
undertaking for multiple teams at Spotify, including marketing, frontend app engineering,
and, of course, data engineering.

While Spotify has been presenting the Spotify Wrapped feature for several years, in 2019,
they decided to add a new feature by reporting on a user's listening trends for each year
of the past decade (2010 – 2019). In an official Spotify blog post, Spotify Unwrapped:
How we bought you a decade of data (https://engineering.atspotify.
com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-
of-data/), the Spotify data engineering team revealed some of the behind-the-scenes
work they did to aggregate user data by year, over 10 years.

In this blog post, the data engineering team talks about some challenges they faced with
the wrapped project in 2018, and how they had to work closely with Google (their cloud
provider) to be able to achieve the required processing scale. For 2019, they were planning
to do something similar to 2018, but they had more users (totaling 248 million monthly
active users) and were planning to do this for 10 years of listening history. As a result, they
used the lessons they had learned from their 2018 experience to modify their approach for
2019.

Spotify considers each statistic they want to report for an individual user (such as top
artist or top track) as a separate data story. So, to meet the scale requirements for a decade
of data, they decided to persist intermediate data and final data for Spotify Wrapped
2019 in Google BigTable (a NoSQL database that is somewhat similar to Amazon
DynamoDB). For every Spotify user, they had a row in BigTable with a column for each
data story, for each year of the decade. This was a significant change from how they had
processed and collected different data stories for each user in previous years, but this led
to a significantly improved process as data was now pre-grouped and collated per user in
BigTable.

They could then write separate jobs for most data stories (decoupling the data stories
from each other) and run these individually, but could also run multiple different data
story jobs in parallel. The output of each of these data story jobs would then be saved to
the same userid row in BigTable. End-of-decade top statistics could then be aggregated
directly from the data in BigTable.

https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-of-data/
https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-of-data/
https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-of-data/

424 Wrapping Up the First Part of Your Learning Journey

The key takeaways that we can learn from this example are as follows:

• It is good to iterate on data engineering pipelines and continually reevaluate the
architecture and approach you use to identify better ways to do things.

• Breaking down large jobs into smaller, decoupled jobs can lead to improved
efficiencies. Keep a modular design for your jobs and avoid the temptation to create
a single job that does everything.

• Be versatile and flexible in the tools you use. While we did not have space to cover
NoSQL databases in any significant way in this book, a NoSQL database may be an
ideal target for storing some of the output from your big data processing jobs. For
example, DynamoDB was designed to handle billions of rows of data in a table, as
well as enable extremely fast access to individual rows from that large dataset.

Data engineers are often challenged to come up with innovative new ways to draw insights
out of extremely large datasets, as demonstrated in this real-world example from Spotify.
Now, let's look at another real-life data processing example, this time from Netflix.

Ingesting and processing streaming files at Netflix
scale
Netflix, the world's leading streaming video platform with over 200 million subscribers
worldwide, predominantly uses AWS for its compute infrastructure. As you can imagine,
it takes a lot of compute power and many different microservices and applications to
support a user base of that size.

Monitoring and understanding how network traffic flows between all the different Netflix
microservices, across many separate AWS accounts, is key for the following:

• Maintaining a resilient service

• Understanding dependencies between services

• Troubleshooting when things do go wrong

• Identifying ways to improve the user experience

One of the features of the Amazon Virtual Private Cloud (VPC) service is the ability to
generate VPC FlowLogs, which capture details on network traffic between all network
interfaces in a VPC (a private cloud-based network environment in an AWS account).

Examining examples of real-world data pipelines 425

However, most AWS services make use of dynamic IP addresses, meaning that the IP
address that's used by a system can frequently change. So, while VPC FlowLogs provide
rich information on network communications between IP addresses, if you don't know
which applications or services had the IP addresses being reported on at that time, the
flow logs are largely meaningless.

Enriching VPC FlowLogs with application information
To have data that was meaningful, Netflix determined that they needed to enrich VPC
FlowLogs with information about which application was using a specific IP address at the
point in time recorded in the VPC flow log. To capture this information, Netflix created
an internal system called Sonar that uses CloudWatch Events, Netflix Events, API calls,
and various other methods to capture a stream of IP change events.

In 2017, AWS featured the Netflix solution for this in a case study on their website titled
Netflix & Amazon Kinesis Data Streams Case Study (https://aws.amazon.com/
solutions/case-studies/netflix-kinesis-data-streams/). In this case
study, it was explained that Netflix used a large Kinesis Data Streams cluster (of up to
1,000 shards) to process incoming VPC FlowLogs. An internal Netflix application known
as Dredge was created to read incoming data from the Kinesis Data Stream, as well as
enrich the VPC flow log data with application metadata from the Sonar stream of IP
change events, identifying the applications or microservices involved with each VPC flow
log record. This enriched data was then loaded into an open source, high-performance,
real-time analytics database called Druid, where users could efficiently analyze network
data for troubleshooting and to gain improved insights into network performance.

Amazon VPC enhancements and changing the architecture

In the cloud, things change frequently, and AWS is constantly enhancing its services
and adding additional services in response to customer feedback. In August 2018, AWS
enhanced the VPC Flow Logs service so that logs could be delivered directly to Amazon
S3, without needing to be processed via Kinesis first.

In May 2020, Netflix posted a public blog post titled How Netflix is able to enrich VPC
Flow Logs at Hyper Scale to provide Network Insight (https://netflixtechblog.
com/hyper-scale-vpc-flow-logs-enrichment-to-provide-network-
insight-e5f1db02910d). This blog post shows how Netflix has changed its
architecture to make the best use of the updated functionality in the VPC Flow Logs
feature.

https://aws.amazon.com/solutions/case-studies/netflix-kinesis-data-streams/
https://aws.amazon.com/solutions/case-studies/netflix-kinesis-data-streams/
https://netflixtechblog.com/hyper-scale-vpc-flow-logs-enrichment-to-provide-network-insight-e5f1db02910d
https://netflixtechblog.com/hyper-scale-vpc-flow-logs-enrichment-to-provide-network-insight-e5f1db02910d
https://netflixtechblog.com/hyper-scale-vpc-flow-logs-enrichment-to-provide-network-insight-e5f1db02910d

426 Wrapping Up the First Part of Your Learning Journey

In this blog post, Netflix talks about a common pattern that they have for processing
newly uploaded S3 files. When a new file is uploaded to S3, it is possible to configure an
action to take place in response to the newly uploaded file (as we did in Chapter 3, The
AWS Data Engineer's Toolkit, where we triggered a Lambda function to transform a CSV
file into Parquet format whenever a new CSV file was uploaded to a specific S3 bucket
prefix).

Netflix commonly uses this pattern to write details of newly uploaded files to an Amazon
SQS queue, and they can then read events from the queue to process the newly arrived
files. This enables them to decouple the S3 event from the action that they wish to perform
in response to this event.

In this case, Netflix intended to read through the entries on the SQS queue and use the
file size information included in the event notification to determine the number of newly
ingested VPC flow log files to process in a batch (which they refer to as a mouthful of
files). They intended to use an Apache Spark job that would enrich the VPC flow log with
application metadata based on the IP addresses recorded in each record. They would tune
the Apache Spark job to optimally process a certain amount of data, which is why they
would read the file size information contained in the SQS messages to create an optimally
sized mouthful of files to send to the Spark job.

With the Amazon SQS service, messages are read from the queue and processed. If the
processing is successful, the processed messages are deleted from the queue. During
this processing time, the messages are considered to be in flight and will be hidden from
the queue so that no other application attempts to process the same files. If something
goes wrong and the files are not successfully processed and deleted from the queue, the
messages will become visible again after a certain amount of time (known as the visibility
timeout period) so that they can be picked up by an application again for processing.

In the case of Netflix, they would send a mouthful of files to an Apache Spark job, and
once the Spark job successfully processed the messages, the messages would be deleted
from the queue.

However, the Amazon SQS service has a limit on the number of files that can be
considered to be in flight at any point (the default quota limit is 120,000 messages). Netflix
found that because the Spark jobs would take a little while to process the files, they were
regularly ending up with 120,000 or more messages in flight. As a result, they came up
with an innovative way to work around this by using two different SQS queues.

Examining examples of real-world data pipelines 427

Working around Amazon SQS quota limits
The re-architected Netflix solution reads the SQS queue containing the S3 events and runs
a process to create a mouthful of files (evaluating each file's size to create a batch that is
the optimal size for their Spark jobs). This process can complete very quickly as it does not
need to read or process the files, just read the metadata contained in the SQS messages to
group a mouthful of files to be processed by a Spark job.

The output of the first job writes a message to a second SQS queue, and each message
contains the list of files in a single mouthful. While the blog does not provide any
indication of how many files may usually be contained in a mouthful of files, if we
assumed it was, on average, around 10 files, it would reduce the number of messages on
the second SQS queue by 90%. If a mouthful of files was, on average, 100 files, then the
number of messages written to the secondary SQS queue would be reduced by 99%.

The Netflix blog does not provide enough details to be able to describe the exact
architecture of the solution, but the following diagram shows an example of a potential
architecture for this solution (this may not be the architecture that Netflix implemented):

Figure 14.2 – A potential architecture for VPC Flow Logs processing and enriching

In the preceding diagram, we have VPC Flow Logs configured to write to an Amazon
S3 bucket in each account where we want to monitor network activity. We have also
configured an EventBridge rule in each account that analyzes CloudTrail log files to pick
up S3 write events from the VPC flow log bucket. When a write event is detected in the
CloudTrail log file, an action is taken to write the S3 event message to an EventBridge bus
in a central account.

428 Wrapping Up the First Part of Your Learning Journey

In the central account, an EventBridge rule detects the S3 events from the source accounts
and takes an action to write each S3 event message to an Amazon SQS queue. A Lambda
function has been configured that reads messages from the Amazon SQS queue and uses
the file size metadata contained in the message to create a batch of files of an optimal size
(called a mouthful of files by Netflix). The list of files in the batch is written to a separate
SQS queue as a single message. This Lambda function can complete and remove messages
from the first SQS queue very quickly as it is only processing metadata in the SQS
messages, not reading/writing S3 files, and running a Glue job to enrich the files.

A separate Lambda function processes the much smaller number of messages in the
secondary SQS queue by reading the list of files in the mouthful. The list of files is passed
to a Glue job that runs Spark code to enrich the VPC Flow Logs files in this mouthful with
data from other sources. Enriched files are written to S3 and/or a database system such as
RDS.

The key takeaways that we can learn from this example are as follows:

• It is important to know what the AWS quotas/limits are for the services that you
use. Some limits can be raised by contacting AWS support, but some limits are hard
limits that cannot be increased.

• It is important to stay up to date with what's new announcements from AWS. AWS
regularly launches new services, as well as major new features, for existing services.

As shown in this blog post, sometimes, new features from AWS can help you significantly
simplify existing architectures and reduce costs (based on this blog post, it would seem
that Netflix may no longer need their 1,000-shard Kinesis Data Streams cluster to process
VPC FlowLogs).

In the next section, we will look at upcoming trends and what the future may hold for data
engineers.

Imagining the future – a look at emerging
trends
Technology seems to progress at an increasing velocity. For decades, relational databases
from vendors such as Oracle were the primary technology for managing all data. Today,
there is a wide range of different database types that can be used, depending on the use
case (such as graph databases for highly connected datasets, or NoSQL databases for low-
latency reading and writing for very large tables).

Imagining the future – a look at emerging trends 429

It was also not all that long ago that Hadoop MapReduce was the state-of-the-art
technology for processing very large datasets, but today, most new projects would choose
Apache Spark over a MapReduce implementation. And even Apache Spark itself has
progressed from its initial release, with Spark 3.0 being released in June 2020. We have
also seen the introduction of Spark Streaming, Spark ML, and Spark GraphX for
different use cases.

No one can tell for certain what the next big thing will be, but in this section, we will look
at a few emerging concepts and technologies, as well as expected trends, that are likely to
be of relevance to data engineers.

ACID transactions directly on data lake data
A trend that is developing currently is the atomicity, consistency, isolation, durability
(ACID) properties for data lake tables, which provide consistency for dataset transactions
(concurrent reads and writes). In addition, a lot of these new technologies incorporate the
ability to update or delete individual records from a table in the data lake. Before these
new technologies were introduced, the lack of ACID transactions and the ability to update
and delete records in data lakes was a significant challenge, and each implementation of a
data lake would need to create approaches to work around this challenge.

We discussed these emerging technologies in more detail in Chapter 7, Transforming Data
to Optimize for Analytics. Refer to the Modern approaches – the transactional data lake
section for more information on these new technologies, including Databricks Delta
Lake, Amazon Lake Formation Governed Tables, and Apache Hudi.

More data and more streaming ingestion
A trend that is not new, but that is expected to continue over the next few years, is that of
the increasing generation of new data. Not all newly generated data will be stored for long
periods, but forecasts do indicate continued growth in stored data.

It is expected that more and more organizations will also adopt data lakes, in addition to
existing data warehouse solutions. And with drivers such as increased ML and AI projects,
you can expect the amount of data to be ingested, cleansed, and processed to continue
increasing significantly.

Another trend we are seeing with data lakes is more and more data ingestion sources
becoming streaming-based, rather than batch-based. Batch-based ingestion and
processing are unlikely to go away anytime soon, but over time, streaming data is likely to
become a larger percentage of ingested data compared to batch ingestion.

430 Wrapping Up the First Part of Your Learning Journey

Some of the drivers of this increase in streaming data sources include the following:

• IoT data, such as data from sensors and wearable devices

• Point-of-Sale (PoS) devices that deliver real-time transaction data to data lakes

• Event-based workflows, such as the Netflix example of a stream of recorded
changes to IP addresses

• Ingestion of real-time internet-based data, such as social media feeds, product
reviews, weather forecasts, website scraping, and other sources

Refer to Chapter 6, Ingesting Batch and Streaming Data, for more information on AWS
services for data ingestion. Also, consider doing a deeper dive into popular streaming
technologies such as Amazon Kinesis, Spark Streaming, Apache Kafka, and Apache Flink.

Multi-cloud
While this book focuses on data engineering using AWS services, there is a trend for many
larger companies to adopt a multi-cloud strategy, where they use more than one cloud
provider for services.

Having a multi-cloud strategy can introduce numerous challenges across information
technology (IT) teams, including challenges for data engineering teams that need to
work with data stored with different cloud providers. Another challenge for IT teams and
data engineers is the need to learn the different service implementations for each cloud
provider (for example, AWS, Azure, and Google Cloud each offer a managed Apache
Spark environment, but the implementation details are different for each provider).

There are many different reasons for organizations wanting to adopt a multi-cloud
strategy, but the pros and cons need to be carefully thought through. However, in many
cases, data engineers will have no option but to take up the challenge of becoming
comfortable with working in multiple different cloud provider environments.

Decentralized data engineering teams, data platforms,
and a data mesh architecture
Since the dawn of computer departments in companies, there has been a constant back
and forth between centralizing processing and decentralizing processing.

Imagining the future – a look at emerging trends 431

At the start, mainframes were a good example of centralized IT systems, where all
processing was done by a central team. Then, in the '90s, there was a move to have
departmental servers and systems, with decision-making done at the department level.
This led to siloed systems and databases, which led to the introduction of data warehouses
(and later, data lakes), to bring data back into a central place.

In many cases, data engineers would work for a centralized team, and they would be
responsible for ingesting data from all the departments into the central data warehouse, as
well as any processing that was required of the data. They could then load a subset of the
processed data back into a data mart, which data analysts in the departmental teams could
then work with to analyze the data.

But, once again, there is a noticeable trend to move this centralized control of data back to
a decentralized model, although this time with a twist.

In May 2019, Zhamak Dehghani, a principal technology consultant at ThoughtWorks,
wrote a blog post (https://martinfowler.com/articles/data-monolith-
to-mesh.html) that got a lot of people rethinking the approach of a centralized data
engineering team. In this blog post, Dehghani introduces the concept of a dash mesh
architecture.

We don't have the space to do a deep dive into this architecture shift in this book, so you
are encouraged to read the original blog post mentioned previously, as well as subsequent
blog posts by Dehghani, on this topic. However, we will outline the basic concepts here.

Domain-orientated data decomposition and ownership
In the original blog post, Dehghani argues that instead of data flowing from business
domains into a centrally owned data lake, individual business domains should host and
serve analytic information related to their domain to others in the business.

When referring to a business domain here, we are talking about the team in the business
that owns the relevant operational data. For example, in a real-estate business, you may
have a team that is responsible for all property listings. They gather the details for each
property and make this operational data available to other parts of the business through
an API (such as a getListingPrice API call, which returns the listing price of a
property).

Traditionally, those teams may have then made the database that contains all the
listings available as a source for a centralized data engineering team to ingest from. This
centralized data engineering team would then be responsible for ingesting from the
database, ensuring data quality, creating daily snapshots of current listings, aggregating
listing data, and more.

https://martinfowler.com/articles/data-monolith-to-mesh.html
https://martinfowler.com/articles/data-monolith-to-mesh.html

432 Wrapping Up the First Part of Your Learning Journey

However, Dehghani makes the point that the team that owns the operational data should
also be the owner of the analytics data related to that domain. This could involve, for
example, making a daily snapshot of all the listings available to other teams, or creating a
stream of change events related to listings (new listing, removed listing, modified listing,
and so on).

Data and product thinking convergence
For the data mesh model to be successful, Dehghani proposes that domain data teams
need to apply product thinking to the datasets they provide. That is, they should look
at the analytic data they create for others in the business to consume, as a product they
are offering. They need to learn about what their consumers want out of the data they
generate (much like a product manager would solicit feedback and requirements from
customers to develop their product roadmap).

These domain data teams also need to ensure that they make their data discoverable by
other data consumers in the business, and accessible in a way that meets organizational
standards. The domain data team should also provide metadata, such as schema
information, to best enable their data consumers to work with the provided data assets.

To achieve this, data domain teams will need new roles, such as data product owners and
data engineers, on the domain team (rather than just having centralized data engineers
that do not have specific domain knowledge).

Data and self-serve platform design convergence
While this approach uses a decentralized design for the ownership of domain data, this
does not mean that a centralized data processing platform cannot be used with a data
mesh architecture.

You don't want each domain team creating infrastructure for data engineering processing,
data storage, orchestration, and so on. Therefore, you may still have a centralized team
that builds data infrastructure as a platform. However, this platform should be data
domain agnostic – that is, it should not include any domain-specific logic. This platform
should also provide data services to domain teams in a way that they can self-serve, so
they should not need the help of the data platform team to create a new data engineering
pipeline.

Imagining the future – a look at emerging trends 433

The centralized data platform should do things such as the following:

• Providing big data processing systems, such as a managed Spark environment that
domain data teams can easily access

• Providing a central catalog where domain data teams can publish their available
datasets

• Implementing corporate governance standards and controls (such as how to identify
and manage PII data, tokenize data, and so on)

• Providing an access control system that allows other domain teams to request access
to a specific dataset, get approval for access from the data owner, and then grant
access to the domain data

This overview of data mesh concepts does not cover all the aspects of each concept, so it
is strongly encouraged that you read the original blog post, as well as other articles and
resources, related to the data mesh architecture.

Implementations of the data mesh architecture
As with most new concepts or approaches that are proposed, the actual implementation
of the concept in the real world may vary greatly. As organizations look to implement or
migrate to a data mesh architecture, some organizations may focus on specific aspects of
the architecture initially or may implement a simpler version of the architecture.

For example, an organization may use a centralized team to create a data platform that
very much resembles a traditional data lake. However, instead of centralizing a team of
data engineers, they will encourage each business unit that wants to use the platform to
employ its own team of data engineers.

The central platform team will provide Amazon S3 storage buckets, as well as their
associated access controls, for each business unit team. They will also provide a framework
for ingesting data into S3 using DMS, and for processing and orchestrating data pipelines
using Lambda, Glue, and Step Functions. They will provide access to tools such as
Amazon Athena for ad hoc data exploration and AWS Lake Formation for centralized
cataloging.

434 Wrapping Up the First Part of Your Learning Journey

Each business unit will be responsible for processing raw data and transforming and
enriching the data. If a different business unit wants access to that enriched data, the
centralized team will have created forms in ServiceNow (a software solution for managing
business workflows) that can be used to request access to the data. ServiceNow will route
the request for access to the business unit that owns the data, and when the request is
approved, the centralized team will have an automated process to grant access. Each
business unit may use a separate AWS account, so the automated process for granting
access may leverage AWS Lake Formation cross-account access functionality to grant
access to the target business unit account.

While this solution may not reflect a data mesh architecture in the same way that
Dehghani envisioned it, it still employs concepts of a data mesh architecture. Primarily,
it still achieves one of the important goals of a data mesh – moving data ownership and
processed domain data out of centralized teams and into domain teams, while creating a
domain-agnostic centralized data platform.

Having looked at some practical implementations of real-world data engineering –
including DataOps for pipeline deployment and management, examples of real-world data
pipelines, and emerging trends and concepts – we will now move on to our final hands-on
section of this book.

Hands-on – cleaning up your AWS account
In the hands-on section of Chapter 1, An Introduction to Data Engineering, we went
through how to create a new AWS account. If you created a new account at that point,
and have used that account to work through the exercises in this book, you may want to
delete that account, now that you have reached the final chapter of this book. We'll include
instructions on how to do that here.

However, if this was your first AWS account, you may decide that you want to keep the
account open so that you can continue to explore and learn more about AWS using other
resources. If that is you, we'll include some instructions on how to check your account
billing to detect which resources are still being charged for.

Hands-on – cleaning up your AWS account 435

Reviewing AWS Billing to identify the resources being
charged for
In this section, we will go through how to review your AWS billing console to determine
which resources you are being charged for:

1. Log in to the AWS Billing console using the following link: https://console.
aws.amazon.com/billing/home.

2. On the right-hand side of the Billing & Cost Management Dashboard page, there
will be a visual showing Month-to-Date Spend by Service:

Figure 14.3 – Billing & Cost Management Dashboard
In the preceding screenshot, you can see that I have spent $12.96 so far this month,
while at the bottom left, you can see that the forecast for the full month is a total of
$14.82.

I did not cancel my QuickSight subscription after completing the exercises in
Chapter 12, Visualizing Data with Amazon QuickSight, and my free 30-day trial
ended. If I wanted to cancel my QuickSight subscription now to avoid any future
charges after this month, I could follow the instructions in Canceling your Amazon
QuickSight subscription and closing the account (https://docs.aws.amazon.
com/quicksight/latest/user/closing-account.html).

https://console.aws.amazon.com/billing/home
https://console.aws.amazon.com/billing/home
https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html
https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html

436 Wrapping Up the First Part of Your Learning Journey

3. I can also see charges for Elastic Compute Cloud and Relational Database Service.
I am not sure what these charges relate to, so to investigate this further, I can click
on Bill Details at the top right, above the pie chart visualization of my spending for
this month:

Figure 14.4 – AWS Bill Details view
Using the Bill Details view, I can expand the Elastic Compute Cloud (EC2) and
Relational Database Service (RDS) sections for more information.

Here, I can see that the EC2 charges were incurred in the US-East (Ohio) region
and that the charges relate to General Purpose SSD provisioned storage. I can now
go to the EC2 console, where I will see that I have four EC2 instances that I have
stopped (so they are not incurring any charges) but that each of them has attached
disk volumes that continue to incur costs, even when the instances are stopped. If
I wanted to ensure that I do not get billed for these in the future, I could terminate
the instances, which will permanently delete the volumes.

Hands-on – cleaning up your AWS account 437

Looking back at the Bill Details screen, I can see that the RDS charges all relate
to backups that I have created. Even though I terminated the RDS instances I had
previously launched, I chose to create and store a backup copy of the databases on
termination, so I will continue to incur costs related to those backups. If I wanted to
stop any future billing, I could delete the RDS snapshots if they're no longer needed.

If I canceled my QuickSight subscription, terminated my EC2 instances, and deleted my
RDS snapshots, I could continue using my AWS account without incurring additional
charges for those items. However, it is strongly recommended that you regularly
check the billing console and set billing alarms to alert you of spending above the
limit you've set. For more information, see https://docs.aws.amazon.com/
AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_
with_cloudwatch.html.

Closing your AWS account
If you decide that you want to close your AWS account, you can do so with the following
steps.

Before proceeding, make sure that you have read the Considerations before you close your
AWS account section of the AWS documentation at https://docs.aws.amazon.
com/awsaccountbilling/latest/aboutv2/close-account.html. Now, let's
get started:

1. Log into your AWS account as the root user of the account (that is, using the email
address and password you registered when you opened the account). Use the
following link to log in: https://console.aws.amazon.com.

If you're prompted for an IAM username and password, click on the link for Sign in
using root user email.

2. Enter your root user email address and password when prompted.
3. Open the billing console with the following link: https://console.aws.

amazon.com/billing/home#/.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/close-account.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/close-account.html
https://console.aws.amazon.com
https://console.aws.amazon.com/billing/home#/
https://console.aws.amazon.com/billing/home#/

438 Wrapping Up the First Part of Your Learning Journey

4. In the top-right corner, select the dropdown next to your account number (or
account alias, if set). From this dropdown, select My account:

Figure 14.5 – Accessing the My Account screen in the AWS Management Console

5. Scroll to the bottom of the My Account page. Read and ensure you understand
the text next to each checkbox, and if you understand and agree, click the relevant
checkboxes. Then, click Close Account:

Figure 14.6 – The AWS Close Account confirmation page

6. In the pop-up box, click Close Account to confirm that you want to close your
account.

Summary 439

Subsequently, if you change your mind about closing your account, it may still be possible
to reopen your account within 90 days of choosing to close it. To do so, contact AWS
support.

Summary
Data engineering is an exciting role to be in and promises to continue to offer interesting
challenges, constant learning opportunities, and increasing importance in helping
organizations draw out the maximum value that they can from their data assets. And the
cloud is an exciting place to build data engineering pipelines.

Also, AWS has a proven track record in listening to their customers and continuing to
innovate based on their customer requirements. Things move quickly with AWS services,
so hold on tight for the ride.

If you're new to data engineering on AWS, then this book is just the start of what could be
a long and interesting journey for you. There is much more to be learned than what could
ever be captured in a single book, or even a volume of books. Much of what you will learn
will be through practical experience and things you learn on the job, as well as from other
data engineers.

But this book, and other books like it, as well as resources such as podcasts, YouTube
videos, and blogs, are all useful vehicles along your journey. Let the end of this book be
just the end of the first chapter of your learning journey about data engineering with AWS.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

442 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Serverless Analytics with Amazon Athena

Anthony Virtuoso, Mert Turkay Hocanin, Aaron Wishnick

ISBN: 9781800562349

• Secure and manage the cost of querying your data
• Use Athena ML and User Defined Functions (UDFs) to add advanced features to your

reports
• Write your own Athena Connector to integrate with a custom data source
• Discover your datasets on S3 using AWS Glue Crawlers
• Integrate Amazon Athena into your applications
• Setup Identity and Access Management (IAM) policies to limit access to tables and databases

in Glue Data Catalog
• Add an Amazon SageMaker Notebook to your Athena queries
• Get to grips with using Athena for ETL pipelines

https://www.packtpub.com/product/serverless-analytics-with-amazon-athena/9781800562349

Other Books You May Enjoy 443

Scalable Data Streaming with Amazon Kinesis

Tarik Makota, Brian Maguire, Danny Gagne, Rajeev Chakrabarti

ISBN: 9781800565401

• Get to grips with data streams, decoupled design, and real-time stream processing
• Understand the properties of KFH that differentiate it from other Kinesis services
• Monitor and scale KDS using CloudWatch metrics
• Secure KDA with identity and access management (IAM)
• Deploy KVS as infrastructure as code (IaC)
• Integrate services such as Redshift, Dynamo Database, and Splunk into Kinesis

https://www.packtpub.com/product/scalable-data-streaming-with-amazon-kinesis/9781800565401

444

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Data Engineering with AWS, we'd love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-800-56041-9
https://packt.link/r/1-800-56041-9

Index

A
ACID transactions

atomicity 212
consistency 212
durability 212
isolation 212
on data lake data 429

Airflow Connections 304
Airflow Hooks 304
Airflow Operators 305
Airflow Sensors 305
Airflow Tasks 305
Airplane Health Management (AHM) 171
Amazon AppFlow

about 406
data, ingesting from SaaS services 60, 61

Amazon Athena
about 48, 200, 236, 327, 329, 353
data, querying with 191
file format optimization 330
layout optimization 330
overview, for SQL queries

in data lake 77
tips and tricks, to optimize queries 330

AmazonAthenaFullAccess 328
Amazon Athena Query Federation

queries of external data
sources, federating 337

Amazon Athena Workgroups
costs, managing 341
creating 344-346
data usage controls, enforcing 343
governance, managing 341
settings, enforcing for

group of users 342
Amazon Comprehend

about 208
insights, extracting from text 402, 403
reviews, reviewing 407
solution, testing 413-415

Amazon Comprehend Medical 403
Amazon Database Migration Service

(DMS) 44, 52-54, 209
Amazon DataSync

overview for ingesting, from
on-premise storage 62, 63

Amazon DynamoDB 78
Amazon EC2 238
Amazon Elastic File System (EFS) 395

446 Index

Amazon Elastic Map Reduce (EMR)
about 69, 168, 197, 273
for Hadoop ecosystem processing 69, 70

Amazon EventBridge
configuring 319

Amazon Forecast 405
Amazon Fraud Detector 406
Amazon GuardDuty 112
Amazon HealthLake 257
Amazon Kinesis

overview, for streaming
data ingestion 54

versus Amazon Managed Streaming
for Kafka (MSK) 171-174

Amazon Kinesis Agent 55
Amazon Kinesis Data Analytics 58
Amazon Kinesis Data Generator (KDG)

configuring 187-190
Amazon Kinesis Data Streams 56, 57
Amazon Kinesis Firehose 44, 55
Amazon Kinesis Producer

Library (KPL) 55
Amazon Kinesis services

Kinesis Data Analytics 55
Kinesis Data Firehose 54
Kinesis Data Streams 54
Kinesis Video Steams 55

Amazon Kinesis Video Streams 58
Amazon Lake Formation

Governed Tables 429
Amazon Lex 389
Amazon Machine Images (AMIs) 393
Amazon Macie 112
Amazon Managed Streaming for

Apache Kafka (MSK)
about 56
overview, for streaming

data ingestion 59

Amazon Managed Workflows
for Apache Airflow 75, 76

Amazon Managed Workflows for
Apache Airflow (MWAA)

about 299, 303, 309
cons 306
pros 305

Amazon Personalize 407
Amazon QuickSight

about 82, 236, 255, 353
core concepts 361
data visualization 81, 82
embedded dashboards 375
embedding, for registered

QuickSight users 375
embedding, for unauthenticated

users 375
enterprise edition 361, 362
overview 233-235
standard edition 361
visual types 368

Amazon QuickSight Autonarratives 373
Amazon QuickSight ML Insights 372
Amazon Redshift 25, 52, 198, 255
Amazon Redshift cluster

nodes, types 29
Amazon Redshift Spectrum

for data lakehouse architectures 78-81
for data warehousing 78-81

Amazon Rekognition 208, 403, 404
Amazon Rekognition Video 403
Amazon Relational Database

Service (RDS) 168
Amazon S3 bucket

creating 50, 85
reference link 50

Amazon S3 Bucket Keys
reference link 111

Index 447

Amazon S3 data events
configuring 319, 320

Amazon S3 data lake 53
Amazon S3 Glacier (S3 Glacier) 253
Amazon S3 Glacier Deep Archive 253
Amazon S3 Intelligent-Tiering 254
AmazonS3ReadOnlyAccess 328
Amazon S3 Standard (S3 Standard) 254
Amazon S3 Standard-

Infrequent Access 254
Amazon SageMaker 240, 390
Amazon SageMaker Clarify 394
Amazon SageMaker Data Wrangler 394
Amazon SageMaker Ground Truth 394
Amazon Simple Notification

Service (SNS) 344
Amazon Simple Queue Service (SQS) 407
Amazon Simple Storage

Service (Amazon S3)
about 10
external tables, creating for

querying data 282-286
sample data, uploading to 276

Amazon SQS message queue
setting up 407, 408

Amazon SQS quota limits 427, 428
Amazon States Language (ASL) 73, 306
Amazon Textract

text, extracting from
documents 400, 401

Amazon Transcribe
about 208
speech, converting into text 399

Amazon Transcribe Call Analytics 400
Amazon Transcribe Medical 400

Amazon Transfer Family
about 61
for ingestion, with FTP/

SFTP protocols 62
Amazon Translate 399
Amazon VPC

enhancements 425
American National Standards

Institute (ANSI) 329
analysis

creating 379-384
analytics

extending, with data warehouses/
data marts 252

anonymized data 102
Apache 6
Apache Airflow

about 75
as open source orchestration

solution 303
Apache Airflow pipelines

creating, core concepts 304
Apache Flink code 55
Apache HBase 69
Apache Hudi 213, 429
Apache Iceberg 213
Apache Kafka 8
approximate aggregate functions

using 335
artificial intelligence (AI)

about 208, 388
for fraud detection and

personalization 406
for ML-powered forecasts 405
for organizations 389
for unstructured speech and text 399
metadata, extracting from

images and video 403

448 Index

Athena Federated Query
about 78
external data sources, querying 338, 339

Athena settings
configuring 344, 345

Athena views 211
authentication 103
authorization 104
AutoGraph

about 368
for automatic graphing 369

automatic speech recognition (ASR) 400
AWS

about 25
data lakehouse, building on 47, 48
Python, running in 238
R, running in 238

AWS account
accessing 11, 15-18
cleaning up 434
closing 437, 438
creating 11-15

AWS account root user 113
AWS AI services 398, 399
AWS Artifact

reference link 100
AWS Billing

reviewing 435-437
AWS CloudFormation (CFN) service 420
AWS CloudTrail

configuring 319
AWS CloudWatch 73
AWS CMDB connector 340
AWS CodeCommit 421
AWS Command-Line Interface (CLI)

configuring 49
installation link 49
installing 49

AWS Database Migration
Service (DMS) 166

AWS Data Exchange service 207
AWS Data Pipeline

ETL, managing between
data sources 300

AWS Data Wrangler library
used, for creating Lambda layer 83, 84

AWS Deep Learning AMIs
reference link 393

AWS Deep Learning Containers
reference link 393

AWS documentation, usage and cost
reference link 11

AWS Glue
about 166, 197
for serverless Spark processing 65
use cases 166, 167

AWS Glue catalog 108
AWS Glue console

table properties 108
AWS Glue Crawlers 69
AWS Glue DataBrew

about 237, 238
datasets, configuring for 242, 243
data transformations, creating 242

AWS Glue data catalog 66-68, 328
AWS Glue jobs

about 406
creating, with AWS Lake Formation 167

AWS Glue Python Shell 238
AWS Glue Studio

about 198, 199
datasets, joining with 214
denormalization transform,

configuring with 217-222
used, for creating transform job 224-227
versus AWS Glue DataBrew 242

Index 449

AWS Glue Workflows
error handling 302
event-driven approach 302
Glue resources, orchestrating 301
job progress, monitoring 302
overview, for orchestrating

Glue components 71-73
triggering 302, 303

AWS Identity and Access
Management (IAM) 113

AWS Key Management
Service (KMS) 111

AWS Lake Formation
about 108
fine-grained permissions, managing 123
permissions management 117, 118
using, to manage data lake access 116

AWS Lake Formation console
functionalities 109
table properties 108

AWS Lake Formation governed tables 212
AWS Lambda

about 238
for light transformations 64, 65

AWS Lambda function
triggering, in S3 bucket 83

AWS managed policies 114
AWS Management Console

URL 214
AWS ML services 392, 394
AWS Premium Support

reference link 15
AWS S3 API calls 62
AWS SDK 55
AWS services

for data encryption 110
for security monitoring 110
identity, managing 113

permissions, managing 113
AWS services, for big data pipelines

orchestration 71
AWS services, for data consumption 77
AWS services, for data ingestion 52
AWS services, for data transformation 64
AWS Snowball Edge 63
AWS Snowcone 63
AWS Snow family of devices

for large data transfers 63
AWS Snowmobile 63
AWS Step Functions

about 73, 406
cons 309
data pipeline, orchestrating 311
for complex workflows 73-75
pros 308
serverless orchestration solution 306

AWS tools
for business users 233

AWS tools, for data analysts
about 236
Amazon Athena 236
AWS Glue DataBrew 237, 238

AWS tools, for data scientists
about 239
SageMaker Clarify 241
SageMaker Data Wrangler 240, 241
SageMaker Ground Truth 240

Azure DevOps (ADO) 421
Azure Synapse 25
Azure Synapse Analytics 46

B
bar charts 369
batch-based ingestion 429

450 Index

big data
rising, as corporate asset 4, 5

big data architect 10
big data processing 24
BitBucket 421
BI tools 354
bookmarks 167
bucketing 333
business applications 138
business catalog 107
Business Intelligence (BI) 140
business unit (BU) 202
business use case transforms

about 205
data denormalization 205, 206
data enriching 207
metadata, extracting from

unstructured data 208, 209
pre-aggregation transform 207

business users
about 138, 232
AWS tools 233
needs, meeting with data

visualization 232

C
California Consumer Privacy

Act (CCPA) 99
California Privacy Rights Act (CPRA) 99
cataloging and search layer 43
CDC file

Delete 209
Insert 209
Update 209

Centralized Operations Center
dashboard 389

Change Data Capture (CDC)
about 53, 168
example 209
modern approaches 211
traditional approaches 210, 211
working with 209, 210

chatbot 389
Chief Information Security

Officer (CISO) 100
cloud

benefits, when building big data
analytic solutions 10, 11

Cloudera 24, 340
cloud object stores

adopting 26
CloudWatch logs 340
CloudWatch metrics connector 340
cold data 252, 253
Collibra Data Catalog 107
columnar data storage 30-32
Comma Separated Values (CSV) files 159
complex data environments

managing, with DataOps 420
complex SQL queries

running 288-291
compound sort key 261
Comprehend permissions

adding, for IAM role 412
consumption layer 45
continuous delivery (CD) 421
continuous integration (CI) 421
core concepts, for creating Apache

Airflow pipelines
about 304
Airflow Connections 304
Airflow Hooks 304
Airflow Operators 305
Airflow Sensors 305

Index 451

Airflow Tasks 305
directed acyclic graph (DAG) 304

costs
managing, with Amazon Athena

Workgroups 341
Create Table As Select (CTAS) 331
custom connectors 340
customer-managed policies 114
customer relationship management

(CRM) systems 212
custom visuals types 370

D
dashboards 234
data

cataloging, to avoid data swamp 105
enriching 207
exporting, from Redshift

to data lake 274
feeding, into warehouse 37-40
ingesting 140, 364
ingesting, from database 167, 168
ingesting, from relational database 165
loading, into Amazon

Redshift cluster 275
loading, into data marts 146
moving, between data lake

and Redshift 272
preparing 364
product thinking convergence 432
querying, with Amazon Athena 191
querying, with external tables

in Amazon S3 282-286
self-serve platform design

convergence 432

data analysts
about 9, 10, 139, 235
AWS tools 236
needs, meeting with structured

reporting 235, 236
data analyst team 151
data analytics 418
data assets 27
database

about 23
Lake Formation permissions,

activating for 124-126
Database Migration Service 153
Databricks 197
Databricks Delta Lake

about 46, 213, 429
reference link 213

data cataloging 144
data catalogs

about 106
business catalog 107
technical catalog 106

data cleansing 203
data compression 30-32
data consumers

about 196, 229
identifying 138-140
types 231, 232

Data Definition Language (DDL) 329
data democratization

impact 230, 231
data denormalization 143, 205
data engineer 7, 8, 10, 229
data engineering

environments 419
teams 419

data governance 98
data gravity 231

452 Index

data infrastructure
as source control-managed

code 420, 421
data, ingesting with AWS DMS

data, querying with Athena 185
demo data, loading with Amazon

EC2 instance 177, 178
DMS settings, configuring 181-184
full load, performing from

MySQL to S3 181-184
Glue crawler, creating 185
IAM policy, creating 179-181
IAM role, creating 179-181
MySQL database instance,

creating 175, 176
steps 174

data ingestion
optimizing, in Redshift 272-274

data ingestion, from database
best approach 169, 170

data lake architecture 26
data lakehouse

about 26
building, on AWS 47, 48
implementing 46

data lake logical architecture
about 42, 45
cataloging and search layer 43
consumption layer 45
ingestion layer 44
processing layer 44
storage layer 42, 43
storage zones 42, 43

data lakes
about 7, 40
access, managing with AWS

Lake Formation 116

building, to tame variety and
volume of big data 40, 41

clean/transform zone 43
curated/enriched zone 43
landing/raw zone 43

data management
evolution, for analytics 22

Data Manipulation Language (DML) 329
data marts

about 27, 36
analytics, extending 252
creating, formats 36

data mesh architecture
implementations 433

DataOps
about 420
complex data environments,

managing 420
data optimizations

identifying 142
data partitioning

about 143
optimizing with 202, 203

data pipeline
about 295
architecting 149
as source control-managed

code 420, 421
failure retry strategies 299
failures of step, handling 298
reasons, for failure 298, 299
triggering, to run 297

data pipeline architecture 134
data pipeline orchestration 295
data pipeline orchestration tool

selecting 309, 310
data platforms 431

Index 453

data preparation transformations
about 200
data cleansing 203
data partitioning, optimizing

with 202, 203
file format, optimizing 201
PII data, protecting 200

Data Processing Units (DPUs) 66
data protection 100
Data Protection Officer (DPO) 100
data quality checks 143
data regulatory

requirements 99, 100
data science team 151, 239
data scientist

about 8, 9, 139
AWS tools 239
needs, meeting 239

data security 98
dataset

configuring, for AWS Glue
DataBrew 242, 243

loading 376-379
partitioning 331, 332

datasets, joining with AWS Glue Studio
about 214
curated zone, creating 214
data lake zone, creating 214
denormalization transform,

configuring 217-222
denormalization transform

job, finalizing 222, 224
IAM role, creating for Glue job 215-217
transform job, creating for joining

streams and film data 224-227
datasets, preparing in QuickSight

versus ETL outside of
QuickSight 365, 366

data sources
about 158, 196
identifying 140

data standardization 143
data swamp

avoiding 106
data transformation

about 193, 196
as part of data pipeline 196
baking example 195
cooking example 195
creating, with AWS Glue DataBrew 242
identifying 142
raw data, making valuable 194

data transformation tasks, data cleansing
column data type, changing 204
consistent column names, ensuring 204
duplicate records, removing 204
missing values, providing 204
standard column format, ensuring 204

data transformation tools
about 196
Apache Spark 196
GUI-based tools 199
Hadoop 197
MapReduce 197
SQL 198

data type, for columns
Boolean type 267
character types 264
datetime types 266
decimal type 265
floating-point types 266
HLLSKETCH type 267
integer types 265
numeric types 265
SUPER type 267

454 Index

data value 164
data variety 159
data velocity 163
data veracity 164
data virtualization 338
data visualization

benefits 356
for maximum impact 355
needs of business users, meeting 232

data visualization developer 10
data visualization, uses

about 356
data, over geographic area 358, 359
heat maps, to represent intersection

of data 359, 360
trends, over time 356, 357

data volume 163
data warehouses

about 23, 27
analytics, extending 252
dimensional modeling 32-36
using, as data lake 256
using, for real-time and record-

level use cases 257
using, as transactional datastore 256

DC2 nodes 262
decentralized data engineering teams 431
denormalization 206
denormalization transform

configuring, with AWS Glue
Studio 218-222

finalizing, for writing to S3 222-224
directed acyclic graph (DAG)

about 296, 304
example 296

disk access 261

disk seek 261
distributed storage 29, 30
domain-orientated data

decomposition 431
domain-orientated data ownership 431
Dredge 425
Druid 425
DynamoDB 211
DynamoDB connector 340

E
ECS 197
EKS 197
encryption 101
encryption at rest 101
encryption in transit 101
Enterprise Data Warehouse (EDW) 27
event-based pipelines 297
EventBridge rule

creating, to trigger Step Function
state machine 320-322

event-driven data orchestration pipeline
testing 322, 323

ever-growing datasets
challenges 5, 6

EXPLAIN statement 334
exponential backoff 299
external data sources

querying, with Athena Federated
Queries 338, 339

external tables
creating, for querying data in

Amazon S3 282-286
Extract-Load-Transform (ELT) 37, 39
Extract-Transform-Load (ETL) 37, 38
ExxonMobil 5

Index 455

F
Facebook 329
Federated Query 338
file-based optimizations 333
file format optimizations 142, 201
fine-grained permissions

managing, with AWS Lake
Formation 123

Fivetran 199
forecasting 391

G
General Data Protection

Regulation (GDPR) 99
geospatial charts 358, 369
GitLab 421
Glue crawler 330
Glue DataBrew

about 199
job, creating 248, 249
project, creating 243, 244
recipe, building 245-247

Glue Data Catalog
ingested data, adding to 190, 191

Glue job
configuring 215-217

Glue Python Shell 65
Google BigQuery 25, 340
Google BigTable 423
Google Compute Cloud (GCP) 25
Google Voice

URL 12
governance

managing, with Amazon Athena
Workgroups 341

governed tables 212
GUI-based tools 199

H
Hadoop 6, 24, 197
Hadoop Distributed File System

(HDFS) 24, 197
Hadoop distributions 24
Hadoop MapReduce 429
HBase 197
Health Insurance Portability and

Accountability Act (HIPAA) 100
heat maps 369
high-performance data

warehouse, designing
about 262
data type for columns, selecting 263
optimal Redshift node type,

selecting 262
optimal table distribution style

and sort key, selecting 263
optimal table type, selecting 268

Hive 24, 197
Hive Metastore 68, 106
Hive partitioning 202
horizontal scaling 30
Hortonworks 24
hot data 255
houses

architecting 135
hyperparameter tuning 397

I
IAM permissions

new user, creating 119-123

456 Index

IAM policy
creating, for Lambda function 86-88

IAM role
about 114
Comprehend permissions,

adding for 412
creating, for Lambda function 86-88
for Redshift 277, 279

IAM User 113
IAM User Groups 114
IBM 24, 329
Identity and Access Management

(IAM) 15
identity-based policies

AWS managed policies 114
customer-managed policies 114
inline policies 114

image recognition 392
Informatica 199
Informatica Enterprise Data Catalog 107
Infrastructure as Code (IaC) 420
ingested data

adding, to Glue Data Catalog 190, 191
ingestion layer 44
inline policies 114
interleaved sort key 261
Internet of Things (IoT) 203

J
JDBC connector 340
JDBC database connection 78

K
Key Performance Indicator (KPI) 370
Kinesis Agent 153
Kinesis Client Library (KCL) 57

Kinesis Data Generator 350
Kinesis Data Streams cluster 425
Kinesis Firehose

configuring, for streaming delivery
to Amazon S3 186, 187

L
Lake Formation 48, 212
Lake Formation permissions

activating, for database 124-126
activating, for table 124-126
configuring 118
granting 127, 128

lake house architecture 26
Lambda function

adding, as trigger for SQS
message queue 412

configuring, to trigger by
S3 upload 93, 95

creating 88-93, 311
creating, for calling Amazon

Comprehend 408-410
IAM policy and role, creating 86-88
using, to determine file

extension 311, 312
using, to randomly generate failures 313

Lambda layer
creating, with AWS Data

Wrangler library 83, 84
line charts 369
Load-Transform sequence 37
local Redshift table

schema, creating 287

Index 457

M
machine learning (ML)

about 239, 387
for organizations 389

Managed Workflows for Apache
Airflow (MWAA) 75

manifest 297
manifest files

using, as pipeline triggers 297, 298
MapR 24
map-reduce 24
MapReduce 6, 197
marketing specialists 150
Marketo 60
Massively Parallel Processing

(MPP) 29, 30
materialized view 271
Matillion 199
metadata

extracting, from unstructured
data 208, 209

Microsoft Azure 25
ML and AI, use cases

about 391
forecasting 391
image recognition 392
natural language processing (NLP) 392
personalization 392

ML models, needs
meeting 239

ML-powered anomaly detection 374
ML-powered forecasting 374
modern approaches, CDC data

about 211
Apache Hudi 213
Apache Iceberg 213

AWS Lake Formation
governed tables 212

Databricks Delta Lake 213
transactional data lakes 211

multi-cloud strategy 430
Multi-Factor Authentication

(MFA) 15, 104
Multi-Listing Service (MLS) 62
MWAA environment, components

meta database 76
scheduler 76
web server 76
worker/ execute tasks 76

N
natural language processing (NLP) 392
Network Attached Storage (NAS) 37
Network File System (NFS) 62

O
ODBC database connection 78
Online Analytical Processing (OLAP) 78
Online Analytics Processing (OLAP) 206
Online Transaction Processing

(OLTP) 30, 206
optimal table type

data caching, with Redshift
materialized views 271

external tables, for querying data
in Amazon S3 269, 270

selecting 268
storage and compute, coupling 268
temporary staging table, for loading

data into Redshift 270, 271

458 Index

optimized file formats
raw source files, transforming

to 330, 331
optimized SQL queries

writing 334
Oracle 340, 428
organizational policies

for metadata capture 107

P
Panoply 199
Parquet 201, 295, 330
Parquet files

about 201
benefits 201

partitioning 203
partition keys 223
partition projection 333
Payment Card Industry Data Security

Standard (PCI DSS) 100
permissions management

before Lake Formation 117
with AWS Lake Formation 117, 118

per query data usage control 343
personal data 101
Personal Data Protection

Bill (PDP Bill) 99
personalization 392
Personally identifiable information

(PII) 100, 200
Pig 69, 197
PII data

protecting 200
pipeline orchestration

core concepts 294
pipelines

architecting 135

designing 137
options for orchestrating, in AWS 299

pipeline triggers
manifest files, using as 297, 298

Polybase 46
pre-aggregation transform 207, 208
pre-built connectors 340
Presto 8, 24, 69
Presto SQL analytics engine 329
processing layer 44
profile

creating 49
proof of concept test 407
Protection of Personal Information

Act (POPIA) 99
pseudonymized data 102
public cloud infrastructure

adopting, benefits 25
Python

about 65, 236
running, in AWS 238

Q
Query Federation 338
QuickSight account

setting up 376-379
QuickSight Analyses 367
QuickSight pricing page

reference link 362

R
R

about 236
running, in AWS 238

RA3 nodes 262
raw data 330

Index 459

raw source files
transforming, to optimized

file formats 330, 331
real-world data pipelines

examples, examining 422
Redis connector 340
Redshift

data, exporting to data lake 274
data ingestion, optimizing 272-274
IAM roles 277, 279
Zone Maps 261

Redshift architecture
data distribution, across slices 258-261
review 258
storage 258

Redshift cluster
creating 280-282

Redshift Managed storage 268
Redshift Spectrum 47, 275
regular expressions

using 336, 337
relational database

data, ingesting from 165
Relational Database Management

Systems (RDBMSes) 159
replication instances 166
retry backoff rate 299
root user 15
row chunks/groups 31
row-oriented physical data layout 30
RStudio 238

S
S3 bucket

AWS Lambda function, triggering 83

SaaS services
Amazon AppFlow, overview for

ingesting data 60, 61
SageMaker

in ML build phase 395
in ML deployment and

management phase 397, 398
in ML preparation phase 394
in ML training and tuning

phase 396, 397
SageMaker Autopilot 395
SageMaker Clarify 241
SageMaker Data Wrangler 240, 241
SageMaker Experiments 397
SageMaker Ground Truth 240
SageMaker JumpStart 396
SageMaker Model Monitor 398
SageMaker Studio 394
SageMaker Studio notebooks 395
sample data

uploading, to Amazon S3 276
sample Step Function state

machine 307, 308
sandbox 343
sandbox account 11
schedule-based pipelines 297
schema

creating, for local Redshift table 287
schema evolution 211
select * 335
semi-structured data 160, 162
serverless ETL processing 65, 66
Server Message Block (SMB) 62
Server Side Encryption - KMS

(SSE-KMS) 111
Service Control Policy (SCP) 112
ServiceNow 434
SHA-256 hash 200

460 Index

shared-nothing architecture 30
simple QuickSight visualization

creating 376
Snowflake 25, 198, 340
snowflake schema 34-36
SNS topic

creating 313, 314
Sonar 425
source code repository 421
Spark 6, 8, 24, 196, 332, 429
Spark GraphX 197, 429
Spark ML 197, 429
Spark SQL 197, 198
Spark Streaming 66, 197, 429
specialized ML projects

about 389
early detection, of diseases 390
medical clinical decision

support platform 389
sports safety 390

SPICE capacity
managing 363, 364

Spotify Wrapped feature 423
SQL queries

running 347-351
SQL Workbench 78
star schema 34
Step Function state machine

creating 314-318
storage layer 42, 43
streaming data

ingesting 171, 186
streaming files

ingesting and processing, at
Netflix scale 424, 425

streaming ingestion 429
structured data 159, 160

Structured Query Language
(SQL) 77, 198, 329

structured reporting
needs of data analysts, meeting 235, 236

Super-fast, Parallel, In-memory,
Calculation Engine (SPICE) 362, 363

T
tables

as visuals 371
Lake Formation permissions,

activating for 124-126
Tab Separated Values (TSV) files 159
Tabular 213
Talend 199
technical catalog 106
terabytes (TB) 158
Terradata 340
test/quality assurance (QA)

environment 419
Tez 197
time travel 211
tokenization system 102
traditional approaches, CDC

data 210, 211
transactional data lakes 211
transform job

creating, for joining streams
and film data 224-227

Transform-Load sequence 37
Transport Layer Security (TLS) 101
Trianz 340

Index 461

U
unstructured data

about 24, 162, 399
storing 257

upsert 210
user

creating, with IAM permissions 119-123

V
Virtual Private Cloud (VPC) 424
visuals

creating 367
sharing 367

visual types, Amazon QuickSight
about 368, 372
AutoGraph for automatic graphing 369
bar charts 369
custom visual types 370
geospatial charts 369
heat maps 369
Key Performance Indicators

(KPIs) 370, 371
line charts 369
tables 371

VPC Flow Logs
about 424
enriching, with application

information 425

W
warehouse

data, feeding 37-40
warm data 253, 254
WHERE clause 332

whiteboard architecture
for project Bright Light 155

whiteboarding
as information-gathering tool 136

whiteboarding data ingestion 141, 142
whiteboarding data sources 141, 142
whiteboarding data

transformation 144, 145
whiteboarding session

conducting 137, 138
wrapping up 147, 148

whiteboard notes
for project Bright Light 156

Workgroup data usage controls 344
Workgroups

switching 347-351

Y
Yahoo 6
Yarn 197

Z
zettabytes (ZB) 158

	Cover
	Title page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1:
AWS Data Engineering Concepts and Trends
	Chapter 1: An Introduction to Data Engineering
	Technical requirements
	The rise of big data as a corporate asset
	The challenges of ever-growing datasets
	Data engineers – the big data enablers
	Understanding the role of the data engineer
	Understanding the role of the data scientist
	Understanding the role of the data analyst
	Understanding other common data-related roles

	The benefits of the cloud when building big data analytic solutions
	Hands-on – creating and accessing your
AWS account
	Creating a new AWS account
	Accessing your AWS account

	Summary

	Chapter 2: Data Management Architectures for Analytics
	Technical requirements
	The evolution of data management for analytics
	Databases and data warehouses
	Dealing with big, unstructured data
	A lake on the cloud and a house on that lake

	Understanding data warehouses and data marts – fountains of truth
	Distributed storage and massively parallel processing
	Columnar data storage and efficient data compression
	Dimensional modeling in data warehouses
	Understanding the role of data marts
	Feeding data into the warehouse – ETL and ELT pipelines

	Building data lakes to tame the variety and volume of big data
	Data lake logical architecture

	Bringing together the best of both worlds with the lake house architecture
	Data lakehouse implementations
	Building a data lakehouse on AWS

	Hands-on – configuring the AWS Command Line Interface tool and creating an S3 bucket
	Installing and configuring the AWS CLI
	Creating a new Amazon S3 bucket

	Summary

	Chapter 3: The AWS Data Engineer's Toolkit
	Technical requirements
	AWS services for ingesting data
	Overview of Amazon Database Migration Service (DMS)
	Overview of Amazon Kinesis for streaming data ingestion
	Overview of Amazon MSK for streaming data ingestion
	Overview of Amazon AppFlow for ingesting data from SaaS services
	Overview of Amazon Transfer Family for ingestion using FTP/SFTP protocols
	Overview of Amazon DataSync for ingesting from
on-premises storage
	Overview of the AWS Snow family of devices for large data transfers

	AWS services for transforming data
	Overview of AWS Lambda for light transformations
	Overview of AWS Glue for serverless Spark processing
	Overview of Amazon EMR for Hadoop ecosystem processing

	AWS services for orchestrating big data pipelines
	Overview of AWS Glue workflows for orchestrating Glue components
	Overview of AWS Step Functions for complex workflows
	Overview of Amazon managed workflows for Apache Airflow

	AWS services for consuming data
	Overview of Amazon Athena for SQL queries in the data lake
	Overview of Amazon Redshift and Redshift Spectrum for data warehousing and data lakehouse architectures
	Overview of Amazon QuickSight for visualizing data

	Hands-on – triggering an AWS Lambda function when a new file arrives in an S3 bucket
	Creating a Lambda layer containing the AWS Data Wrangler library
	Creating new Amazon S3 buckets
	Creating an IAM policy and role for your Lambda function
	Creating a Lambda function
	Configuring our Lambda function to be triggered by
an S3 upload

	Summary

	Chapter 4: Data Cataloging, Security, and Governance
	Technical requirements
	Getting data security and governance right
	Common data regulatory requirements
	Core data protection concepts
	Personal data
	Encryption
	Anonymized data
	Pseudonymized data/tokenization
	Authentication
	Authorization
	Putting these concepts together

	Cataloging your data to avoid the data swamp
	How to avoid the data swamp

	The AWS Glue/Lake Formation data catalog
	AWS services for data encryption and security monitoring
	AWS Key Management Service (KMS)
	Amazon Macie
	Amazon GuardDuty

	AWS services for managing identity and permissions
	AWS Identity and Access Management (IAM) service
	Using AWS Lake Formation to manage data lake access

	Hands-on – configuring Lake Formation permissions
	Creating a new user with IAM permissions
	Transitioning to managing fine-grained permissions with AWS Lake Formation

	Summary

	Section 2: Architecting and Implementing
Data Lakes and Data Lake Houses
	Chapter 5: Architecting Data Engineering Pipelines
	Technical requirements
	Approaching the data pipeline architecture
	Architecting houses and architecting pipelines
	Whiteboarding as an information-gathering tool
	Conducting a whiteboarding session

	Identifying data consumers and understanding their requirements
	Identifying data sources and ingesting data
	Identifying data transformations and optimizations
	File format optimizations
	Data standardization
	Data quality checks
	Data partitioning
	Data denormalization
	Data cataloging
	Whiteboarding data transformation

	Loading data into data marts
	Wrapping up the whiteboarding session
	Hands-on – architecting a sample pipeline
	Detailed notes from the project "Bright Light" whiteboarding meeting of GP Widgets, Inc

	Summary

	Chapter 6: Ingesting Batch and Streaming Data
	Technical requirements
	Understanding data sources
	Data variety
	Data volume
	Data velocity
	Data veracity
	Data value
	Questions to ask

	Ingesting data from a relational database
	AWS Database Migration Service (DMS)
	AWS Glue
	Other ways to ingest data from a database
	Deciding on the best approach for ingesting from
a database

	Ingesting streaming data
	Amazon Kinesis versus Amazon Managed Streaming for Kafka (MSK)

	Hands-on – ingesting data with AWS DMS
	Creating a new MySQL database instance
	Loading the demo data using an Amazon EC2 instance
	Creating an IAM policy and role for DMS
	Configuring DMS settings and performing a full load from MySQL to S3
	Querying data with Amazon Athena

	Hands-on – ingesting streaming data
	Configuring Kinesis Data Firehose for streaming delivery to Amazon S3
	Configuring Amazon Kinesis Data Generator (KDG)
	Adding newly ingested data to the Glue Data Catalog
	Querying the data with Amazon Athena

	Summary

	Chapter 7: Transforming Data to Optimize for Analytics
	Technical requirements
	Transformations – making raw data
more valuable
	Cooking, baking, and data transformations
	Transformations as part of a pipeline

	Types of data transformation tools
	Apache Spark
	Hadoop and MapReduce
	SQL
	GUI-based tools

	Data preparation transformations
	Protecting PII data
	Optimizing the file format
	Optimizing with data partitioning
	Data cleansing

	Business use case transforms
	Data denormalization
	Enriching data
	Pre-aggregating data
	Extracting metadata from unstructured data

	Working with change data capture (CDC) data
	Traditional approaches – data upserts and SQL views
	Modern approaches – the transactional data lake

	Hands-on – joining datasets with AWS
Glue Studio
	Creating a new data lake zone – the curated zone
	Creating a new IAM role for the Glue job
	Configuring a denormalization transform using AWS Glue Studio
	Finalizing the denormalization transform job to write to S3
	Create a transform job to join streaming and film data using AWS Glue Studio

	Summary

	Chapter 8: Identifying and Enabling Data Consumers
	Technical requirements
	Understanding the impact of data democratization
	A growing variety of data consumers

	Meeting the needs of business users with data visualization
	AWS tools for business users

	Meeting the needs of data analysts with structured reporting
	AWS tools for data analysts

	Meeting the needs of data scientists and ML models
	AWS tools used by data scientists to work with data

	Hands-on – creating data transformations with AWS Glue DataBrew
	Configuring new datasets for AWS Glue DataBrew
	Creating a new Glue DataBrew project
	Building your Glue DataBrew recipe
	Creating a Glue DataBrew job

	Summary

	Chapter 9: Loading Data into a Data Mart
	Technical requirements
	Extending analytics with data warehouses/data marts
	Cold data
	Warm data
	Hot data

	What not to do – anti-patterns for a data warehouse
	Using a data warehouse as a transactional datastore
	Using a data warehouse as a data lake
	Using data warehouses for real-time, record-level use cases
	Storing unstructured data

	Redshift architecture review and storage
deep dive
	Data distribution across slices
	Redshift Zone Maps and sorting data

	Designing a high-performance data warehouse
	Selecting the optimal Redshift node type
	Selecting the optimal table distribution style and
sort key
	Selecting the right data type for columns
	Selecting the optimal table type

	Moving data between a data lake and Redshift
	Optimizing data ingestion in Redshift
	Exporting data from Redshift to the data lake

	Hands-on – loading data into an Amazon Redshift cluster and running queries
	Uploading our sample data to Amazon S3
	IAM roles for Redshift
	Creating a Redshift cluster
	Creating external tables for querying data in S3
	Creating a schema for a local Redshift table
	Running complex SQL queries against our data

	Summary

	Chapter 10: Orchestrating the Data Pipeline
	Technical requirements
	Understanding the core concepts for pipeline orchestration
	What is a data pipeline, and how do you orchestrate it?
	How do you trigger a data pipeline to run?
	How do you handle the failures of a step in your pipeline?

	Examining the options for orchestrating pipelines in AWS
	AWS Data Pipeline for managing ETL between data sources
	AWS Glue Workflows to orchestrate Glue resources
	Apache Airflow as an open source orchestration solution
	Pros and cons of using MWAA
	AWS Step Function for a serverless orchestration solution
	Pros and cons of using AWS Step Function
	Deciding on which data pipeline orchestration tool to use

	Hands-on – orchestrating a data pipeline using AWS Step Function
	Creating new Lambda functions
	Creating an SNS topic and subscribing to an email address
	Creating a new Step Function state machine
	Configuring AWS CloudTrail and Amazon EventBridge

	Summary

	Section 3:
The Bigger Picture: Data Analytics, Data Visualization, and Machine Learning
	Chapter 11: Ad Hoc Queries with Amazon Athena
	Technical requirements
	Amazon Athena – in-place SQL analytics for the data lake
	Tips and tricks to optimize Amazon Athena queries
	Common file format and layout optimizations
	Writing optimized SQL queries

	Federating the queries of external data sources with Amazon Athena Query Federation
	Querying external data sources using Athena Federated Query

	Managing governance and costs with Amazon Athena Workgroups
	Athena Workgroups overview
	Enforcing settings for groups of users
	Enforcing data usage controls

	Hands-on – creating an Amazon Athena workgroup and configuring Athena settings
	Hands-on – switching Workgroups and running queries
	Summary

	Chapter 12: Visualizing Data with Amazon QuickSight
	Technical requirements
	Representing data visually for maximum impact
	Benefits of data visualization
	Popular uses of data visualizations

	Understanding Amazon QuickSight's core concepts
	Standard versus enterprise edition
	SPICE – the in-memory storage and computation engine for QuickSight

	Ingesting and preparing data from a variety of sources
	Preparing datasets in QuickSight versus performing ETL outside of QuickSight

	Creating and sharing visuals with QuickSight analyses and dashboards
	Visual types in Amazon QuickSight

	Understanding QuickSight's advanced features – ML Insights and embedded dashboards
	Amazon QuickSight ML Insights
	Amazon QuickSight embedded dashboards

	Hands-on – creating a simple QuickSight visualization
	Setting up a new QuickSight account and loading a dataset
	Creating a new analysis

	Summary

	Chapter 13: Enabling Artificial Intelligence and Machine Learning
	Technical requirements
	Understanding the value of ML and AI for organizations
	Specialized ML projects
	Everyday use cases for ML and AI

	Exploring AWS services for ML
	AWS ML services

	Exploring AWS services for AI
	AI for unstructured speech and text
	AI for extracting metadata from images and video
	AI for ML-powered forecasts
	AI for fraud detection and personalization

	Hands-on – reviewing reviews with Amazon Comprehend
	Setting up a new Amazon SQS message queue
	Creating a Lambda function for calling Amazon Comprehend
	Adding Comprehend permissions for our IAM role
	Adding a Lambda function as a trigger for our SQS message queue
	Testing the solution with Amazon Comprehend

	Summary
	Further reading

	Chapter 14: Wrapping Up the First Part of Your Learning Journey
	Technical requirements
	Looking at the data analytics big picture
	Managing complex data environments with DataOps

	Examining examples of real-world data pipelines
	A decade of data wrapped up for Spotify users
	Ingesting and processing streaming files at Netflix scale

	Imagining the future – a look at emerging trends
	ACID transactions directly on data lake data
	More data and more streaming ingestion
	Multi-cloud
	Decentralized data engineering teams, data platforms, and a data mesh architecture
	Data and product thinking convergence
	Data and self-serve platform design convergence
	Implementations of the data mesh architecture

	Hands-on – cleaning up your AWS account
	Reviewing AWS Billing to identify the resources being charged for
	Closing your AWS account

	Summary

	About Packt
	Other Books YouMay Enjoy
	Index

