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Preface
We live in a world where the amount of data being generated is constantly increasing. 
While a few decades ago, an organization may have had a single database that could store 
everything they needed to track, today most organizations have tens, hundreds, or even 
thousands of databases, along with data warehouses, and perhaps a data lake. And these 
data stores are being fed from an increasing number of data sources (transaction data, web 
server log files, IoT and other sensors, and social media, to name just a few). 

It is no surprise that we hear more and more companies talk about being data-driven in 
their decision making. But in order for an organization to be truly data-driven, they need 
to be masters of managing and drawing insights from these ever-increasing quantities and 
types of data. And to enable this, organizations need to employ people with specialized 
data skills. 

Doing a search on LinkedIn for jobs related to data returns over 1.5 million results (and 
that is just for the United States!). The job titles include roles such as data engineers (with 
185,000 results), data scientists (120,000 results), and data architects (75,000 results). 

While this book will not magically make you a data engineer, it has been designed to 
accelerate your journey toward data engineering on AWS. By the end of this book, you 
will not only have learned some of the core concepts around data engineering, but you 
will also have a good understanding of the wide variety of tools available in AWS for 
working with data. You will also have been through numerous hands-on exercises, gaining 
practical experience with things such as ingesting streaming data, transforming and 
optimizing data, building visualizations, and even drawing insights from data using AI. 

Who this book is for
This book has been designed for two groups of people; firstly, those people looking to get 
started with a career in data engineering, and who want to learn core data engineering 
concepts. This book introduces many different aspects of data engineering, providing 
a comprehensive high-level understanding of, and practical hands-on experience with, 
different focus areas of data engineering. 
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Secondly, this book is for those people who may already have an established career 
focused on data, but who are new to the cloud, and to AWS in particular. For these 
people, this book provides a clear understanding of many of the different AWS services 
for working with data and gets them hands-on experience with a variety of these AWS 
services. 

What this book covers
Each of the chapters in this book takes the approach of introducing important concepts 
and key AWS services and then providing a hands-on exercise related to the topic of the 
chapter:

Chapter 1, An Introduction to Data Engineering, reviews the challenges of ever-increasing 
datasets, and the role of the data engineer in working with data in the cloud.

Chapter 2, Data Management Architectures for Analytics, introduces foundational concepts 
and technologies related to big data processing.

Chapter 3, The AWS Data Engineer's Toolkit, provides an introduction to a wide range of 
AWS services that are used for ingesting, processing, and consuming data.

Chapter 4, Data Cataloging, Security, and Governance, covers the all-important topics of 
keeping data secure, ensuring good data governance, and the importance of cataloging 
your data.

Chapter 5, Architecting Data Engineering Pipelines, provides an approach for 
whiteboarding the high-level design of a data engineering pipeline.

Chapter 6, Ingesting Batch and Streaming Data, looks at the variety of data sources that 
we may need to ingest from and examines AWS services for ingesting both batch and 
streaming data.

Chapter 7, Transforming Data to Optimize for Analytics, covers common transformations 
for optimizing datasets and for applying business logic.

Chapter 8, Identifying and Enabling Data Consumers, is about better understanding the 
different types of data consumers that a data engineer may work to prepare data for.

Chapter 9, Loading Data into a Data Mart, focuses on the use of data warehouses as a data 
mart and looks at moving data between a data lake and data warehouse. This chapter also 
does a deep dive into Amazon Redshift, a cloud-based data warehouse.

Chapter 10, Orchestrating the Data Pipeline, looks at how various data engineering tasks 
and transformations can be put together in a data pipeline, and how these can be run and 
managed with pipeline orchestration tools such as AWS Step Functions.
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Chapter 11, Ad Hoc Queries with Amazon Athena, does a deeper dive into the Amazon 
Athena service, which can be used for running SQL queries directly on data in the data 
lake, and beyond.

Chapter 12, Visualizing Data with Amazon QuickSight, discusses the importance of being 
able to craft visualizations of data, and how the Amazon QuickSight service enables this.

Chapter 13, Enabling Artificial Intelligence and Machine Learning, reviews how AI and ML 
are increasingly important for gaining new value from data, and introduces some of the 
AWS services for both ML and AI.

Chapter 14, Wrapping Up the First Part of Your Learning Journey, concludes the book 
by looking at the bigger picture of data analytics, including real-world examples of data 
pipelines and a review of emerging trends in the industry.

To get the most out of this book
Basic knowledge of computer systems and concepts, and how these are used within 
large organizations, is helpful prerequisite knowledge for this book. However, no data 
engineering-specific skills or knowledge is required. Also, a familiarity with cloud 
computing fundamentals and core AWS systems will make it easier to follow along, 
especially with the hands-on exercises, but detailed step-by-step instructions are included 
for each task. 

All hands-on exercises make use of cloud-based services, so beyond using a supported 
web browser with a stable internet connection, there are no additional hardware or 
software requirements.

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code from the book's GitHub repository (a link is available in the next 
section). Doing so will help you avoid any potential errors related to the copying and 
pasting of code.



xiv     Preface

Things change fast in the computing industry, and this is clearly seen within the cloud 
industry. AWS is constantly rolling out new services, as well as improvements for existing 
services, and some of these improvements lead to changes in the user interface provided 
via the AWS console.

As a result, some of the screenshots included in this book may not look identical to what 
you are seeing in the AWS console when completing hands-on exercises. Or, you may 
find that a specific screen has additional options beyond what is shown in the screenshot 
in this book. It is unlikely that these changes will prevent you from following along with 
the step-by-step instructions in this book, but anything that may significantly impact a 
hands-on exercise will be addressed with a note for that chapter in this book's GitHub 
repository. Therefore, please refer to the GitHub repository as you complete the hands-on 
exercises for each chapter. In addition to notes about any significant console changes, the 
GitHub repository also includes copies of code contained in this book and other useful 
resources.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Data-Engineering-with-AWS. If there's an 
update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800560413_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in the text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as 
another disk in your system."

https://github.com/PacktPublishing/Data-Engineering-with-AWS
https://github.com/PacktPublishing/Data-Engineering-with-AWS
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800560413_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560413_ColorImages.pdf
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A block of code is set as follows:

import boto3 

import awswrangler as wr 

from urllib.parse import unquote_plus 

Any command-line input or output is written as follows:

$ aws s3 cp test.csv s3://dataeng-landing-zone-initials/ 
testdb/csvparquet/test.csv

Bold: Indicates a new term, an important word, or words that you see on screen. For 
instance, words in menus or dialog boxes appear in bold. Here is an example: "Select 
System info from the Administration panel."

Tips or Important Notes 
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at 
customercare@packtpub.com and mention the book title in the subject of your 
message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata and fill in the 
form.

Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
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Share Your Thoughts
Once you've read Data Engineering with AWS, we'd love to hear your thoughts! Please 
click here to go straight to the Amazon review page for this book 
and share your feedback.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.

https://packt.link/r/1-800-56041-9


Section 1:  
AWS Data 

Engineering 
Concepts and Trends

To start with, we examine why data is so important to organizations today, and introduce 
foundational concepts of data engineering, including coverage of governance and security 
topics. We also learn about the AWS services that form part of the data engineer’s toolkit, 
and get hands-on with creating an AWS account and using services such as Amazon S3, 
AWS Lambda, and AWS Identity and Access Management (IAM). 

This section comprises the following chapters:

• Chapter 1, An Introduction to Data Engineering

• Chapter 2, Data Management Architectures for Analytics

• Chapter 3, The AWS Data Engineer’s Toolkit

• Chapter 4, Data Cataloging, Security, and Governance





1
An Introduction to 

Data Engineering
Data engineering is a fast-growing career path, and a role in high demand, as data 
becomes ever more critical to organizations of all sizes. For those that enjoy the challenge 
of putting together the "puzzle pieces" that build out complex data pipelines to ingest raw 
data, and to then transform and optimize that data for various data consumers, it can be  
a really rewarding career. 

In this chapter, we look at the many ways that data has become an important and valuable 
corporate asset. We also review some of the challenges that organizations face as they deal 
with increasing volumes of data, and how data engineers can use cloud-based services to 
help overcome these challenges. We then set the foundations for the rest of the hands-on 
activities in this book by providing step-by-step details on creating a new Amazon Web 
Services (AWS) account. 
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Throughout this book, we are going to cover a number of topics that teach the 
fundamentals of developing data engineering pipelines on AWS, but we'll get started  
in this chapter with these topics: 

• The rise of big data as a corporate asset

• The challenges of ever-growing datasets

• The role of the data engineer as a big data enabler

• The benefits of the cloud when building big data analytic solutions

• Hands-on - create or access an AWS account for following along with the hands-on 
activities in this book

Technical requirements
You can find the code files of this chapter in the GitHub repository using the following 
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter01

The rise of big data as a corporate asset
You don't need to look too far or too hard these days to hear about how big data and data 
analytics are transforming organizations and having an impact on society as a whole. 
We hear about how companies such as TikTok analyze large quantities of data to make 
personalized recommendations about which clip to show a user next. Also, we know how 
Amazon recommends products a customer may be interested in based on their purchase 
history. We read headlines about how big data could revolutionize the healthcare industry, 
or how stock pickers turn to big data to find the next breakout stock performer when the 
markets are down.

The most valuable companies in the US today are companies that are masters of managing 
huge data assets effectively, with the top five most valuable companies in Q4 2021 being 
the following:

• Microsoft

• Apple

• Alphabet (Google)

• Amazon

• Tesla

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter01
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter01
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For a long time, it was companies that managed natural gas and oil resources, such as 
ExxonMobil, that were high on the list of the most valuable companies on the US stock 
exchange. Today, ExxonMobil will often not even make the list of the top 30 companies. It 
is no wonder that the number of job listings for people with skillsets related to big data is 
on the rise.

There is also no doubt that data, when harnessed correctly and optimized for maximum 
analytic value, can be a game-changer for an organization. At the same time, those 
companies that are unable to effectively utilize their data assets risk losing a competitive 
advantage to others that do have a comprehensive data strategy and effective analytic and 
machine learning programs.

Organizations today tend to be in one of the following three states:

• They have an effective data analytics and machine learning program that 
differentiates them from their competitors.

• They are conducting proof of concept projects to evaluate how analytic and 
machine learning programs can help them achieve a competitive advantage.

• Their leaders are having sleepless nights worrying about how their competitors are 
using analytics and machine learning programs to achieve a competitive advantage 
over them.

No matter where an organization currently is in their data journey, if they have been  
in existence for a while, they have likely faced a number of common data-related 
challenges. Let's look at how organizations have typically handled the challenge of  
ever-growing datasets. 

The challenges of ever-growing datasets
Organizations have many assets, such as physical assets, intellectual property, the 
knowledge of their employees, and trade secrets. But for too long, organizations did 
not fully recognize that they had another extremely valuable asset, and they failed to 
maximize the use of it—the vast quantities of data that they had gathered over time.

That is not to say that organizations ignored these data assets, but rather, due to the 
expense and complex nature of storing and managing this data, organizations tended  
to only keep a subset of data.
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Initially, data may have been stored in a single database, but as organizations, and their 
data requirements, grew, the number of databases exponentially increased. Today, with 
the modern application development approach of microservices, companies commonly 
have hundreds, or even thousands, of databases. Faced with many data silos, organizations 
invested in data warehousing systems that would enable them to ingest data from multiple 
siloed databases into a central location for analytics. But due to the expense of these 
systems, there were limitations on how much data could be stored, and some datasets 
would either be excluded or only aggregate data would be loaded into the data warehouse. 
Data would also only be kept for a limited period of time as data storage for these systems 
was expensive, and therefore it was not economical to keep historical data for long 
periods. There was also a lack of widely available tools and compute power to enable  
the analysis of extremely large, comprehensive datasets.

As an organization continued to grow, multiple data warehouses and data marts would 
be implemented for different business units or groups, and organizations still lacked a 
centralized, single-source-of-truth repository for their data. Organizations were also faced 
with new types of data, such as semi-structured or even unstructured data, and analyzing 
these datasets with traditional tooling was a challenge.

As a result, new technologies were invented that were able to better work with very large 
datasets and different data types. Hadoop was a technology created in the early 2000s 
at Yahoo as part of a search engine project that wanted to index 1 billion web pages. 
Over the next few years, Hadoop, and the underlying MapReduce technology, became 
a popular way for all types of companies to store and process much larger datasets. 
However, running a Hadoop cluster was a complex and expensive operation requiring 
specialized skills. 

The next evolution for big data processing was the development of Spark (later taken on 
as an Apache project and now known as Apache Spark), a new processing framework for 
working with big data. Spark showed significant increases in performance when working 
with large datasets due to the fact that it did most processing in memory, significantly 
reducing the amount of reading and writing to and from disks. Today, Apache Spark is 
often regarded as the gold standard for processing large datasets and is used by a wide 
array of companies, although there are still a lot of Hadoop MapReduce clusters in 
production in many companies. 
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In parallel with the rise of Apache Spark as a popular big data processing tool was the rise 
of the concept of data lakes—an approach that uses low-cost object storage as a physical 
storage layer for a variety of data types, provides a central catalog of all the datasets, and 
makes that data available for processing with a wide variety of tools, including Apache 
Spark. AWS uses the following definition when talking about data lakes:

A data lake is a centralized repository that allows you to store all your 
structured and unstructured data at any scale. You can store your data 

as-is, without having to first structure the data, and run different types of 
analytics—from dashboards and visualizations to big data processing, real-

time analytics, and machine learning to guide better decisions.
You can find this definition here: https://aws.amazon.com/big-data/
datalakes-and-analytics/what-is-a-data-lake/.

Having looked at how data analytics became an essential tool in organizations, let's now 
look at the roles that enable maximizing the value of data for a modern organization. 

Data engineers – the big data enablers
Amid the increasing recognition of data as a valuable corporate asset and the introduction 
of new technologies to store and process vast amounts of data, there has been an increase 
in the opportunities and roles available for data-related careers. 

Let's look at a sample use case, where a sales manager for a consumer goods organization 
wants to better understand which alternative products a customer considers before 
purchasing their product. In addition, they also want to have a better way of predicting 
product demand by category based on external factors, such as the expected weather.

Achieving the desired outcomes as specified by the sales manager will require bringing in 
data from multiple internal and external sources. Datasets that could be relevant to this 
scenario may include the following:

• Customer, product, and order relational databases

• Web server logs from the consumer-facing storefront

• Third-party sales data from online marketplaces where relevant products are sold 
(such as Amazon.com)

• Other relevant third-party datasets that may influence sales (for example,  
weather-related data)

Multiple teams would need to be involved in the project, with the following three roles 
playing a primary part in implementing the required solution.  

https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/
https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/
http://Amazon.com
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Understanding the role of the data engineer
The role of a data engineer is to do the following:

• Design, implement, and maintain the pipelines that enable the ingestion of raw data 
into a storage platform.

• Transform that data to be optimized for analytics.

• Make that data available for various data consumers using their tool of choice. 

In our scenario, the data engineer will first need to design the pipelines that ingest data 
from the various internal and external sources. To achieve this, they will use a variety of 
tools (more on that in future chapters), depending on the source system and whether it 
will be scheduled batch ingestion or real-time streaming ingestion. 

The data engineer is also responsible for transforming the raw input datasets to optimize 
them for analytics, using various techniques (as discussed later in this book). The data 
engineer must also create processes to verify the quality of data, add metadata about the 
data to a data catalog, and manage the life cycle of code related to data transformation.  

Finally, the data engineer may need to assist in integrating various data consumption tools 
with the transformed data, enabling data analysts and data scientists to use their preferred 
tools to draw insights from the data.  

The data engineer uses tools such as Apache Spark, Apache Kafka, and Presto, as well  
as other commercially available products, to build the data pipeline and optimize data  
for analytics. 

The data engineer is much like a civil engineer for a new residential development. The civil 
engineer is responsible for designing and building the roads, bridges, train stations, and so 
on to enable commuters to easily commute in and out of the development, while the data 
engineer is responsible for designing and building the infrastructure required to bring 
data into a central source and for optimizing the data for use by various data consumers. 

Understanding the role of the data scientist
The role of a data scientist is to draw complex insights and make predictions based on 
various datasets, using machine learning and artificial intelligence. The data scientist will 
combine a number of skills, including computer science, statistics, analytics, and math, 
in order to help an organization answer complex questions and make informed decisions 
using data. 
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Data scientists need to understand the raw data and know how to use that data to develop 
and train complex machine learning models that will help recognize patterns in the data 
and predict future trends. In our scenario, the data scientist may build a machine learning 
model that uses past sales data, correlated with weather information for each day in the 
reporting period. They can then design and train this model to help business users get 
predictions on the likely top-selling categories for future dates based on the expected 
weather forecast. 

Where the data engineer is like a civil engineer building infrastructure for a new 
development, the data scientist is developing cars, airplanes, and other forms of transport 
used to move in and out of the development. Data scientists create machine learning 
models that enable data consumers and business analysts to draw new insights and 
predictions from data. 

Understanding the role of the data analyst
The role of a data analyst is to examine and combine multiple datasets in order to help a 
business understand trends in the data and to make more informed business decisions. 
While a data scientist develops models that make future predictions or identifies 
non-obvious patterns in data, the data analyst works with well-structured and modeled 
data to understand current conditions and to highlight recent patterns from the data. 

A data analyst may answer questions such as which menu item sold best in different 
geographic regions over the past month, or which medical procedure had the best 
outcome for patients of different ages. These insights help an organization make better 
decisions for the future.

In our scenario, the data analyst may run complex queries against the different datasets 
that are available (such as an orders database or web server logs), joining together subsets 
of data from each source to gain new insights. For example, the data analyst may create a 
report highlighting which alternate products are most often browsed by a customer before 
a specific product is purchased. The data analyst may also make use of advanced machine 
learning models developed by the data scientists to gain further valuable insights.

Where the data engineer is like a civil engineer building infrastructure, and the data 
scientist is developing means of transportation, the data analyst is like a skilled pilot,  
using their expertise to get users to their end destination. 

Understanding other common data-related roles
Organizations may have other role titles and job descriptions for data-related positions, 
but generally, these will be a subset of the roles described in the preceding sections. 
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For example, a big data architect could be a subset of the data engineer role, focused  
on designing the architecture for big data pipelines, but not building the actual pipelines. 
Or, a data visualization developer may be focused on building out visualizations using 
business intelligence tools, but this is effectively a subset of the data analyst role.

Larger organizations tend to have more focused job roles, while in a smaller organization 
a single person may take on the role of data engineer, data scientist, and data analyst. 

In this book, we will focus on the role of the data engineer, and dive deep into how a  
data engineer is able to build complex data pipelines using the power of cloud computing 
services. Let's now look at how cloud computing has simplified how organizations are able 
to build and scale out big data processing solutions.

The benefits of the cloud when building big 
data analytic solutions
For a long time, organizations relied on complex systems that they would run in their 
own data centers to help them capture, store, and process large amounts of data. But over 
the last decade, there has been a trend of an increasing amount of data that organizations 
want to store and analyze, and on-premises systems have struggled to scale to keep up 
with demand. Scaling up these traditional tools for managing ever-increasing datasets 
has been expensive, complex, and time-consuming, and organizations have been seeking 
alternative solutions to cope with the increasing data volumes.

Ever since Amazon launched AWS in 2006, organizations have been realizing the  
benefits of running their workloads in the cloud. Cloud computing enables scalability,  
cost efficiency, security, and automation, which most companies find impossible to 
achieve within their own data centers, and this applies to the area of data analytics as 
well. One of the first AWS services was Amazon Simple Storage Service (Amazon S3), 
a cloud-based object store that offers essentially unlimited scalability at low cost, and yet 
provides durability and availability that most data center managers could only dream  
of achieving. Today, Amazon S3 has become the physical storage layer for thousands  
of data lake projects, and a wide ecosystem of analytic tools has been created to work with 
the service.

Successful data engineers need to understand the tools available in the cloud for building 
out complex data analytic projects and understand which set of tools is best to achieve 
the outcome needed for their project. In this book, you will learn more about AWS tools 
for working with big data, and you will gain hands-on experience in developing a data 
engineering pipeline in AWS. 
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To get started, you will either need an existing AWS account or you will need to create  
a new AWS account so that you can follow along with the practical examples. Follow  
along with the next section as we provide step-by-step instructions for creating a new 
AWS account. 

Hands-on – creating and accessing your  
AWS account
The projects in this book require you to access an AWS account with administrator 
privileges. If you already have administrator privileges for an AWS account and know  
how to access the AWS Management Console, you can skip this section and move on  
to Chapter 2, Data Marts, Data Lakes, and the Data Lakehouse. 

If you are making use of a corporate AWS account, you will want to check with your AWS 
cloud operations team to ensure that your account has administrative privileges. Even if 
your daily-use account does not allow full administrative privileges, your cloud operations 
team may be able to create a sandbox account for you. 

What is a sandbox account?
A sandbox account is an account isolated from your corporate production 
systems with relevant guardrails and governance in place, and is used by many 
organizations to provide a safe space for teams or individual developers to 
experiment with cloud services.

If you cannot get administrative access to a corporate account, you will need to create 
a personal AWS account or work with your cloud operations team to request specific 
permissions needed to complete each section. Where possible, we will provide links to 
AWS documentation that will list the required permissions, but the full details of the 
required permissions will not be covered directly in this book.

Important note about the costs associated with the hands-on tasks in this book
If you are creating a new personal account or using an existing personal 
account, you will incur and be responsible for AWS costs as you follow along 
in this book. While some services may fall under AWS free-tier usage, some of 
the services covered in this book will not. We strongly encourage you to set up 
budget alerts within your account and to regularly check your billing console. 

See the AWS documentation on monitoring your usage and costs at 
https://docs.aws.amazon.com/awsaccountbilling/
latest/aboutv2/monitoring-costs.html.

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/monitoring-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/monitoring-costs.html


12     An Introduction to Data Engineering

Creating a new AWS account
To create a new AWS account, you will need the following things:

• An email address (or alias) that has not been used before to register an AWS 
account

• A phone number that can be used for important account verification purposes

• Your credit or debit card, which will be charged for AWS usage outside of the  
Free Tier

Tip regarding the phone number you use when registering
It is important that you keep your contact details up to date for your AWS 
account, as if you lose access to your account, you will need access to the 
email address and phone number registered for the account. If you expect 
that your contact number may change in the future, consider registering a 
virtual number that you will always be able to access and that you can forward 
to your primary number. One such service that enables this is Google Voice 
(http://voice.google.com).

The following steps will guide you through creating a new AWS account:

1. Navigate to the AWS landing page at http://aws.amazon.com.
2. Click on the Create an AWS Account link.
3. Provide an email address, specify a secure password (one that you have not used 

elsewhere), and provide a name for your account.

Tip about reusing an existing email address
Some email systems support adding a + sign followed by a few characters 
to the end of the username portion of your email address in order to 
create a unique email address that still goes to your same mailbox. For 
example, atest.emailaddress@gmail.com and atest.
emailaddress+dataengineering@gmail.com will both go to 
the primary email address inbox. If you have used your primary email address 
previously to register an AWS account, you can use this tip to provide a unique 
email address during registration, but still have emails delivered to your 
primary account.

4. Select Professional or Personal for the account type (note that the functionality 
and tools available are the same no matter which one you pick).

http://voice.google.com
http://aws.amazon.com
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Figure 1.1 – Contact information during AWS account sign-up

5. Provide the requested personal information and then after reviewing the terms of 
the AWS Customer Agreement, click the checkbox if you agree to the terms, and 
then click on Create Account and Continue.

6. Provide a credit or debit card for payment information and select Verify and Add.
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7. Provide a phone number for a verification text or call, enter the characters shown 
for the security check, and complete the verification.

Figure 1.2 – Confirming your identity during AWS account sign-up
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8. Select a support plan.
9. You will receive a notification that your account is being activated. This usually 

completes in a few minutes, but it can take up to 24 hours. Check your email to 
confirm account activation.

What to do if you don't receive a confirmation email within 24 hours
If you do not receive an email confirmation within 24 hours confirming 
that your account has been activated, follow the troubleshooting steps 
provided by AWS Premium Support at https://aws.amazon.
com/premiumsupport/knowledge-center/create-and-
activate-aws-account/.

Accessing your AWS account
Once you have received the confirmation email confirming that your account has been 
activated, follow these steps to access your account and to create a new admin user:

1. Access the AWS console login page at http://console.aws.amazon.com.
2. Make sure Root user is selected, and then enter the email address that you used 

when creating the account.
3. Enter the password that you set when creating the account.

Best practices for securing your account
When you log in using the email address you specified when registering the 
account, you are logging in as the account's root user. It is a recommended best 
practice that you do not use this login for your day-to-day activities, but rather 
only use this when performing activities that require the root account, such 
as creating your first Identity and Access Management (IAM) user, deleting 
the account, or changing your account settings. For more information, see 
https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_root-user.html.

It is also strongly recommended that you enable Multi-Factor Authentication 
(MFA) on this and other administrative accounts. To enable this, see 
https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_credentials_mfa_enable_virtual.html.

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
http://console.aws.amazon.com
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html
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In the following steps, we are going to create a new IAM administrative user account:

1. In the AWS Management Console, confirm which Region you are currently in.  
You can select any region, such as the Region closest to you geographically. 

Important note about pricing differences in AWS Regions
Note that pricing for AWS services differs from Region to Region, so take 
this into account when selecting a Region to use for the exercises in this book 
and make sure you are always in the same Region when working through the 
exercises.  

In the following screenshot, the user is in the Ohio Region (also known as  
us-east-2):

Figure 1.3 – AWS Management Console

2. In the search bar in the top middle of the screen, type in IAM and press Enter. This 
brings up the console for IAM.

3. On the left-hand side menu, click Users and then Add user.
4. Provide a username and select both Programmatic access as well as AWS 

Management Console access.
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5. Set a password for the console, and select whether to force a password change on 
the next login, then click Next: Permissions.

Figure 1.4 – Creating a new user in the AWS Management Console

6. For production accounts, it is best practice to grant permissions with a policy of 
least privilege, giving each user only the permissions they specifically require to 
perform their role. However, AWS managed policies can be used to cover common 
use cases in test accounts, and so to simplify the setup of our test account, we will 
use the AdministratorAccess managed policy. This policy gives full access to all 
AWS resources in the account.  

On the Set permissions screen, select Attach existing policies directly. From the 
list of policies, select AdministratorAccess. Then, click Next: Tags.
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7. Optionally, specify tags (key-value pairs), then click Next: Review.
8. Review the settings, and then click Create user.
9. Take note of the URL to sign in to your account.
10. Take note of the access key ID and secret access key as you will need these later. 

This is the only opportunity you will have to record the secret access key so it is 
important to safely record this information now:

Figure 1.5 – Successful creation of new IAM user

Important note about protecting your account
Make sure you protect this information as anyone who has access to your 
access key ID and secret access key is able to perform full administrative 
functions in your account, including deploying resources that you will be 
responsible for paying for.

For the remainder of the tutorials in this book, you should log in using the URL provided 
and the username and password you set for your IAM user. You should also strongly 
consider enabling MFA for this account, a recommended best practice for all accounts 
with administrator permissions.
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Summary
In this chapter, we reviewed how data is becoming ever more important for organizations 
looking to gain new insights and competitive advantage, and introduced some of the core 
big data processing technologies. We also looked at the key roles related to managing, 
processing, and analyzing large datasets, and highlighted how cloud technologies enable 
organizations to better deal with the increasing volume, variety, and velocity of data.

In our first hands-on exercise, we provided step-by-step instructions for creating a new 
AWS account that can be used throughout the remainder of this book as we develop our 
own data engineering pipeline. 

In the next chapter, we dig deeper into current approaches, tools, and frameworks that are 
commonly used to manage and analyze large datasets, including data warehouses, data 
marts, data lakes, and a relatively new concept, the data lake house. We also get hands-on 
with AWS again, this time installing and configuring the AWS Command-Line Interface 
(CLI) tool and creating an Amazon S3 bucket. 





2
Data Management 

Architectures for 
Analytics

In Chapter 1, An Introduction to Data Engineering, we looked at the challenges  
introduced by ever-growing datasets, and how the cloud can help solve these analytical 
challenges. However, there are many different cloud services, open source frameworks, 
and architectures that can be used in analytical projects, depending on business 
requirements and objectives. 

In this chapter, we will discuss how analytical technologies have evolved and introduce 
the key technologies and concepts that are foundational for building modern analytical 
architectures, irrespective of whether you build them on AWS or elsewhere. 

If you have experience as a data engineer and have worked with enterprise data 
warehouses before, you may want to skim through the sections of this chapter, and then 
do the hands-on exercise at the end of this chapter. However, if you are new to data 
engineering and do not have experience with big data analytics, then the content in this 
chapter is important as it will provide an understanding of concepts that we will build  
on in the rest of this book. 



22     Data Management Architectures for Analytics

In this chapter, we will cover the following topics:

• The evolution of data management for analytics

• An introduction to data warehouses, data marts, and ETL/ELT pipelines

• An overview of data lake architecture and concepts

• A deeper dive into an emerging architecture, the data lakehouse

• Hands-on – configuring the AWS Command Line Interface tool and creating  
an S3 bucket

Technical requirements
To complete the hands-on exercises included in this chapter, you will need access to an 
AWS account where you have administrator privledges (as covered in Chapter 1, An 
Introduction to Data Engineering). 

You can find the code files of this chapter in the GitHub repository using the following 
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter02

The evolution of data management for 
analytics 
Innovations in data management and processing over the last several decades have laid the 
foundations of modern-day analytic systems. When you look at the analytics landscape of 
a typical mature organization, you will find the footprints of many of these innovations in 
their data analytics platforms. As a data engineer, you may come across analytic pipelines 
that were built using technologies from different generations, and you may be expected 
to understand them. Therefore, it is important to be familiar with some of the key 
developments in analytics over time, as well as to understand the foundational concepts  
of analytical data storage, data management, and data pipelines.

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter02
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter02
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Databases and data warehouses
Data processing and analytic systems have evolved over several decades. In the 1980s, the 
focus was on batch processing, where data would be processed in nightly runs on large 
mainframe computers. 

In the 1990s, the use of databases exploded, and organizations found themselves with tens, 
or even hundreds, of databases supporting different business processes. Generally, these 
databases were for transactional processing, and the ability to perform analytics across 
systems was very limited. 

As a result, in the 1990s, data warehouses become a popular tool where data could be 
ingested from multiple databases systems into a central repository, and the data warehouse 
could focus on running analytic reports. 

The data warehouse was designed to store well-integrated, highly structured, highly 
curated, and highly trusted data. Data would be ingested on a regular basis from other 
highly structured sources, but before entering the data warehouse, the data would go 
through a significant amount of preprocessing, validation, and transformations. Any 
changes to the data warehouse schema, or the need to ingest new data sources, would 
require a significant effort to plan the schema and related processes. 

Over the last few decades, businesses and consumers have rapidly adopted web and 
mobile technologies, and this has resulted in rapid growth in data sources, data volumes, 
and options to analyze an increasing amount of data. In parallel, organizations have 
realized the business value of insights they can gain by combining data from their internal 
systems with external data from their partners, the web, social media, and third-party  
data providers. To process increasingly larger data volumes and increased demands to 
support new consumers, data warehouses have evolved through multiple generations  
of technology and architectural innovations. 

Early data warehouses were custom-built using common relational databases on powerful 
servers, but they required IT teams to manage host servers, storage, software, and 
integrations with data sources. These were difficult to manage, and so in the mid-2000s, 
there was an emergence of purpose-built hardware appliances designed as modular data 
warehouse appliances built for terabyte- and petabyte-scale big data processing. These 
appliances contained new hardware and software innovations and were delivered as 
easy to install and manage units from popular vendors such as Oracle, Teradata, IBM 
Netezza, Pivotal Greenplum, and others. 
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Dealing with big, unstructured data 
While data warehouses have steadily evolved over the last 25+ years to support increasing 
volumes of highly structured data, there has been exponential growth in semi-structured 
and unstructured data produced by modern digital platforms (such as mobile and web 
applications, sensors, IoT devices, social media, and audio and video media platforms). 
These platforms produce data at a high velocity, and in much larger volumes than 
data produced by traditional structured sources. To gain a competitive advantage by 
transforming customer experience and business operations, it has become essential for 
organizations to gain deeper insights from these new data sources. Data warehouses are 
good at storing and managing flat, structured data from traditional sources as a set of 
tables, organized as a relational schema. However, they are not well suited to handling 
the huge volumes of high velocity semi-structured and unstructured data, which are 
becoming increasingly popular. 

As a result, in the early 2010s, new technologies for big data processing became 
popular. Hadoop, an open source framework for processing large datasets on clusters 
of computers, became the leading way to work with big data. These clusters contain tens 
of hundreds of machines with attached disk volumes that can hold tens of thousands of 
terabytes of data managed under a single distributed filesystem known as the Hadoop 
Distributed File System (HDFS). 

Many organizations deployed Hadoop distributions from providers such as Cloudera, 
Hortonworks, MapR, and IBM to large clusters of computers in their data centers. These 
Hadoop packages include cluster management utilities, as well as pre-configured and 
pre-integrated open source distributed data processing frameworks such as map-reduce, 
Hive, Spark, and Presto. Distributed data processing frameworks such as Apache 
Spark have also been built to process a wide variety of structured, semi-structured, and 
unstructured data, and can provide very high throughput at hundreds of terabytes by 
distributing processing across thousands of machines in a cluster. 

However, building and scaling on-premises Hadoop and Spark clusters typically requires  
a large upfront capital investment in machines and storage. The ongoing management of 
the cluster and big data processing pipelines requires a team of specialists that includes  
the following: 

• Hadoop administrators specialized in cluster hardware and software

• Data engineers specialized in processing frameworks such as Spark, Hive,  
and Presto

As the volume of data grows, new machines and storage continually need to be added  
to the cluster. 
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Big data teams managing on-premises clusters typically spend a significant percentage 
of their time managing and upgrading the cluster's hardware and software, as well as 
optimizing workloads.

A lake on the cloud and a house on that lake 
Over the last decade, organizations have been increasingly adopting public cloud 
infrastructure to reap the benefits of the following:

• On-demand capacity

• Limitless and elastic scaling

• Global footprint

• Usage-based cost models 

• Freedom from managing hardware 

Through both infrastructure and software as service models, cloud providers such as 
Amazon Web Services (AWS), Google Compute Cloud (GCP), and Microsoft Azure 
are enabling organizations to build new applications, as well as migrate their on-premises 
workloads to the public cloud. 

Since AWS made Amazon Redshift available in 2013, leading cloud providers have 
started providing data warehouses as a cloud-native service. Over time, cloud data 
warehouses have rapidly expanded their feature sets to exceed those of high-performance, 
on-premises data warehousing appliances. Besides no upfront investment, petabyte scale, 
and high performance, cloud data warehouse services provide elastic capacity scaling, 
variable cost, and freedom from infrastructure management. 

Since the arrival of cloud data warehouse services, the number of organizations building 
their data warehouses in the cloud has been accelerating. In the last 5 years alone, 
thousands of organizations have either built new warehouses or migrated their existing 
data warehouses and analytics workloads from on-premises vendor products and 
appliances to cloud data warehousing services (such as Amazon Redshift, Snowflake, 
Google BigQuery, and Azure Synapse). 

Many organizations have deployed both data warehouses and big data clusters in their 
data centers to manage and analyze structured and semi-structured data, respectively. 
They have also had to build and manage data movement pipelines to support the use cases 
that require integrating data from both data warehouses and big data clusters. Often, silos 
and data movement have made it difficult to have a single source of truth, which has led  
to delays in getting the required insights.
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Another trend in recent years has been the adoption of highly durable, inexpensive,  
and virtually limitless cloud object stores. Cloud object stores, such as Amazon S3, can 
store hundreds of petabytes of data at a fraction of the cost of on-premises storage, and 
they support storing data regardless of its source, format, or structure. They also provide 
native integrations with hundreds of cloud-native and third-party data processing and 
analytics tools. 

These new cloud object stores have enabled organizations to build a new, more integrated 
analytics data management approach, called the data lake architecture. A data lake 
architecture makes it possible to create a single source of truth by bringing together a 
variety of data of all sizes and types (structured, semi-structured, unstructured) in one 
place: a central, highly scalable repository built using inexpensive cloud storage. In the last 
few years, thousands of organizations have built a data lake using cloud technologies, and 
that trend is accelerating. 

Instead of lifting and shifting existing data warehouses and Hadoop clusters to the cloud, 
many organizations are refactoring their previously on-premises workloads to build an 
integrated cloud data lake. In this approach, all the data is ingested and processed in the 
data lake to build a single source of truth, and then a subset of the hot data is loaded into 
the dimensional schemas of a cloud data warehouse to support lower latency access.

A new trend we have seen over the last few years is cloud providers adding capabilities to 
their analytics services that support the emergence of a newer data analytics architecture, 
called lake house architecture, or data lakehouse. The lake house architecture approach 
is geared to natively integrate the best capabilities of data lakes and data warehousing, 
including the following: 

• Ability to quickly ingest any type of data

• Storing and processing petabytes of unstructured, semi-structured, and  
structured data

• Support for ACID transactions (the ability to concurrently read, insert, update,  
and delete records in a dataset managed by the data lakehouse)

• Low latency data access

• Ability to consume data with a variety of tools, including SQL, Spark, machine 
learning frameworks, and business intelligence tools

Several competing data lakehouse offerings are currently being developed by various 
companies, but notable among them are Redshift Spectrum and Lake Formation on  
AWS, Synapse on Microsoft Azure cloud, and Databricks Delta Lake. 
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We will cover the data lakehouse architecture in more detail in the Bringing together 
the best of both worlds with a data lakehouse section, but first, we dive deeper into data 
warehousing concepts. 

Understanding data warehouses and data 
marts – fountains of truth 
An Enterprise Data Warehouse (EDW) is the central data repository that contains 
structured, curated, consistent, and trusted data assets that are organized into a well-
modeled schema. The data assets in an EDW are made up of all the relevant information 
about key business domains and are built by integrating data sourced from the following 
places:

• Run-the-business applications (ERPs, CRMs, Line of Business applications) that 
support all the key business domains across the enterprise.

• External data sources such as data from partners and third parties. 

An enterprise data warehouse provides business users and decision-makers with an easy-
to-use, central platform that helps them find and analyze a well-modeled, well-integrated, 
single version of truth about various business subject areas such as customer, product, 
sales, marketing, supply chain, and more. Business users analyze data in the warehouse to 
measure business performance, find current and historical business trends, find business 
opportunities, and understand customer behavior.

In the remainder of this section, we will review the foundational concepts of a data 
warehouse by discussing a typical data management architecture with an EDW at 
the center, as depicted in the following diagram. Typically, a data warehouse-centric 
architecture includes the following: 

• A data warehouse (and optionally multiple subject-focused data marts)

• Data warehouse integrations with various data sources, across business domains

• Data warehouse integrations with end user analytics tools and systems consuming 
the data stored in the warehouse
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The following diagram shows how an enterprise data warehouse fits into an analytics 
architecture:

 

Figure 2.1 – Enterprise data warehousing architecture

At the center of our architecture is the enterprise data warehouse, which hosts a set of data 
assets that contain current and historical data about key business subject areas. On the 
left-hand side, we have our source systems and an ETL pipeline to load the data into the 
warehouse. On the right-hand side, we can see several systems/applications that consume 
data from the data warehouse. 

In the next couple of sections, we'll look at how modern cloud-native data warehouses, 
such as Amazon Redshift, leverage parallel processing and columnar storage to store and 
process petabytes of data. Amazon Redshift provides very high query throughput while 
processing high data volumes. 
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Distributed storage and massively parallel processing
In the following diagram, we can see the underlying architecture of an Amazon  
Redshift cluster:

Figure 2.2 – MPP architecture of an Amazon Redshift cluster

As we can see, an Amazon Redshift cluster contains several compute resources, along with 
their associated disk storage. There are two types of nodes in a Redshift cluster:

• One leader node, which interfaces with client applications, receives and parses 
queries, and coordinates query execution on compute nodes

• Multiple compute nodes, which store warehouse data and run query execution  
steps in parallel. 
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Each compute node has its own independent processors, memory, and storage volumes 
that are isolated from other compute nodes in the cluster (this is called a shared-nothing 
architecture). Data is stored in a distributed fashion across compute nodes. The cluster 
can easily be scaled up to store and process petabytes of data by simply adding more 
compute nodes to the cluster (horizontal scaling). 

Cloud data warehouses implement a distributed query processing architecture called 
Massively Parallel Processing (MPP) to accelerate queries on massive volumes of data. 
In this approach, the cluster leader node compiles the incoming client query into a 
distributed execution plan. It then coordinates the execution of segments of compiled 
query code on multiple compute nodes of the data warehouse cluster, in parallel. Each 
compute node executes assigned query segments on its respective portion (stored locally 
on the node) of the distributed dataset. To optimize MPP throughput, datasets may be 
evenly distributed across the nodes to ensure participation of the maximum number 
of cluster nodes in parallel query processing. To accelerate distributed MPP joins, most 
commonly joined datasets are distributed across cluster nodes by common join keys,  
so that matching slices of tables being joined end up on the same compute nodes. 

Columnar data storage and efficient data compression
In addition to providing massive storage and cluster computing, modern data warehouses 
also boost query performance through column-oriented storage and data compression. 
In this section, we'll examine how this works, but first, let's understand how traditional 
Online Transaction Processing (OLTP) databases store their data.

OLTP applications typically work with entire rows that include all columns of the table 
(for example, read/write a sales record or look up a catalog record). To serve OLTP 
applications, backend databases need to efficiently read and write full rows to the disk.  
To speed up full row lookups and updates, OLTP databases use a row-oriented layout  
to store table rows on the disk. In a row-oriented physical data layout, all the column 
values of a given row are co-located, as depicted in the following diagram: 
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Figure 2.3 – Row-oriented storage layout

Most analytics queries that business users run against a data warehouse are written to 
answer a specific question and typically include grouping and the aggregations (such as 
sum, average, mean) of a narrow set of columns from fact and dimension tables (these 
typically contain many more columns than the narrow set of columns included in the 
query). Analytics queries typically need to scan through a large number of rows but 
need data from only a narrow set of columns that the query cares about. A row-oriented 
physical data layout forces analytics queries to scan a large number of full rows (all 
columns), even though they need only a subset of the columns from these rows. Analytics 
queries on a row-oriented database can thus require a much higher number of disk I/O 
operations than necessary.  

Modern data warehouses store data on disks using a column-oriented physical layout. This 
is more suitable for analytical query processing, which only requires a subset of columns 
per query. While storing a table's data in a column-oriented physical layout, a data 
warehouse breaks a table into groups of rows, called row chunks/groups. It then takes a 
row chunk at a time and lays out data from that row chunk, one column at a time, so that 
all the values for a column (that is, for that row chunk) are physically co-located on the 
disk, as depicted in the following diagram:

  

Figure 2.4 – Column-oriented storage layout
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Data warehouses repeat this for all the row chunks of the table. In addition to storing 
tables as row chunks and using a column-oriented physical layout on disks, data 
warehouses also maintain in-memory maps of locations of these chunks. Modern data 
warehouses use these in-memory maps to pin-point column locations on the disk and 
read the physically co-located values of the column. This enables the query engine to 
retrieve data for only the narrow set of columns needed for a given analytics query. By 
doing this, disk I/O is significantly reduced compared to what would be required to run 
the same query on a row-oriented database. 

Most modern data warehouses compress the data before storing it on the disk. In addition 
to saving storage space, compressed data requires much lower disk I/O to read and write 
data to the disk. Compression algorithms provide much better compression ratios when 
all the values being compressed have the same data type and have a larger percentage of 
duplicates. Since column-oriented databases lay out values of the same column (hence 
the same data type, such as strings or integers) together, data warehouses achieve good 
compression ratios, resulting in faster read/writes and smaller on-disk footprints. 

Dimensional modeling in data warehouses
Data assets in the warehouse are typically stored as relational tables that are organized 
into widely used dimensional models, such as a star or snowflake schema. Storing data in 
a warehouse using a dimensional model makes it easier to retrieve and filter relevant data, 
and it also makes analytic query processing flexible, simple, and performant.

Let's dive deeper into two widely used data warehouse modeling techniques and see  
how we can organize sales domain entities as an example. Note that this example is  
just a subsection of a much larger data warehouse schema.

The following diagram illustrates how data in a sales subject area can be organized using  
a star schema: 
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Figure 2.5 – Sales data entities organized as a star schema
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In the preceding diagram, the data entities are organized like a star, with the Sales 
fact table forming the middle of the star and the dimension tables forming the 
corners. A fact table stores the granular numeric measurements/metrics (such as price 
or quantity, in our example) of a business subject area such as Sales. The dimension 
tables, surrounding the fact tables, store the context under which fact measurements 
were captured. Each dimension table essentially provides the attributes of the contextual 
entity such as who (employee, customer), what (product), where (store, city, state), and 
when (sales date/time, quarter, year, weekday). 

In a star schema, fact tables contain foreign key columns to store pointers to 
the related rows in the dimension tables. Dimensional attributes are key to finding 
and aggregating measurements stored in the fact tables in a data warehouse. Business 
analysts typically slice, dice, and aggregate facts from different dimensional perspectives 
to generate business insights about the subject area represented by the star schema. They 
can find out answers to questions such as, what is the total volume of a given product sold 
over a given period? What is the total revenue in a given product category? Which store 
sells the greatest number of products in a given category?

In a star schema, while data for a subject area is normalized by splitting measurements 
and context information into separate fact and dimension tables, individual dimension 
tables are typically kept denormalized so that all the related attributes of a dimensional 
topic can be found in a single table. This makes it easier to find all the related attributes 
of a dimensional topic in a single table (fewer joins, simpler to understand model), but 
for larger dimension tables, a denormalized approach can lead to data duplication and 
inconsistencies within the dimension table. Large denormalized dimension tables can  
also be slow to update.

One approach you can follow to work around these issues is a slightly modified type of 
schema, the snowflake schema, as shown in the following diagram:
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Figure 2.6 – Sales data entities organized as a snowflake schema

The challenges of inconsistencies and duplication in a star schema can be addressed by 
snowflaking (basically normalizing) each dimension table into multiple related dimension 
tables (normalizing the original product dimension into product and product 
category dimensions, for example). This continues until each dimension table contains 
only attributes with direct correlation to the table's primary key. The highly normalized 
model resulting from this snowflaking is called a snowflake schema. 



36     Data Management Architectures for Analytics

The snowflake schema can be designed by extending the star schema or can be built from 
the ground up by ensuring that each dimension is highly normalized and connected to 
the related dimension tables, thus forming a hierarchy. A snowflake schema can reduce 
redundancy and minimize disk space compared to a star schema, which often contains 
duplicate records. However, on the other hand, the snowflake schema may necessitate 
complex joins to answer business queries and may slow down query performance. 

Understanding the role of data marts
Data warehouses contain data from all relevant business domains and have a 
comprehensive but complex schema. Data warehouses are designed for the cross-domain 
analysis that's required to inform strategic business decisions. However, organizations 
often also have a narrower set of users who want to focus on a particular line of business, 
department, or business subject area. These users prefer to work with a repository that  
has a simple-to-learn schema, and only the subset of data that focuses on the area they  
are interested in. Organizations typically build data marts to serve these users.

A data mart is focused on a single business subject repository (for example, marketing, 
sales, or finance) and is typically created to serve a narrower group of business users, such 
as a single department. A data mart often has a set of denormalized fact tables organized 
in a much simpler schema compared to that of an enterprise data warehouse. Simpler 
schemas and a reduced amount of data volume make data marts faster to build, simpler 
to understand, and easier to use for end users. A data mart can be created in one of the 
following formats:

• Top down: Data is taken from an existing data warehouse and focuses on a slice  
of business subject data.

• Bottom up: Data is sourced directly from run-the-business applications related  
to a business domain of interest. 

Both data warehouses and data marts provide an integrated view of data from multiple 
sources, but they differ in the scope of data they store. Data warehouses provide a central 
store of data for the entire business and cover all business domains. Data marts serve a 
specific division, or business function, by providing an integrated view of a subject area 
relevant to that business function.
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So far, we have discussed various aspects of data warehouses and data marts, including  
the central data repositories of our Enterprise data warehousing architecture from  
Figure 2.1. Now, let's look at the components in our architecture that feed data to  
central data repositories.

Feeding data into the warehouse – ETL and ELT 
pipelines
To bring data into the warehouse (and optionally, data marts), organizations typically 
build data pipelines that do the following:

• Extract data from source systems.

• Transform source data by validating, cleaning, standardizing, and curating it.

• Load the transformed source data into the enterprise data warehouse schema,  
and optionally a data mart as well. 

In these pipelines, the first step is to extract data from source systems, but the next two 
steps can either take on a Transform-Load or Load-Transform sequence. 

The data warehouses of a modern organization typically need to be fed data from a diverse 
set of sources, such as ERP and CRM application databases, files stored on Network 
Attached Storage (NAS) arrays, SaaS applications, and external partner applications. The 
components that are used to implement the Extract step of both ETL  and ELT pipelines 
typically need to connect to these sources and handle diverse data formats (including 
relational tables, flat files, and continuous streams of records). 

The decision as to whether to build an Extract-Transform-Load (ETL) or Extract-Load-
Transform (ELT) data pipeline is based on the following: 

• The complexity of the required data transformations. 

• The speed at which source data needs to be made available for analysis in the data 
warehouse after it's produced in the source system.
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The following diagram shows a typical ETL pipeline for loading data into a  
data warehouse:

Figure 2.7 – ETL pipeline

An ETL pipeline extracts data from various sources and stores it in a staging area first 
(a system outside the warehouse). Transformation operations are then performed on 
staged data to validate it, clean it, standardize it, structure it, and convert it into a form 
suitable so that it can be loaded into the data warehouse (and optionally, data marts). The 
transformed data from the staging area is then loaded into the warehouse's dimensional 
schema. An ETL approach to building a data pipeline is typically used when the following 
are true:

• Source database technologies and formats are different from those of the data 
warehouse 

• Data volumes are small to moderate

• Data transformations are complex and compute-intensive
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In an ETL pipeline, transformations are performed outside the data warehouse using 
custom scripts, a cloud-native ETL service such as AWS Glue, or a specialized ETL  
tool from a commercial vendor such as Informatica, Talend, DataStage, Microsoft,  
or Pentaho. 

On the other hand, an ELT pipeline extracts data (typically, highly structured data) from 
various sources and loads it as-is (matching the sources systems' data structures) into a 
staging area within the data warehouse. The database engine powering the data warehouse 
is then used to perform transformation operations on the staged data to make it ready for 
consumption.

The following diagram shows a typical ELT pipeline:

Figure 2.8 – ELT pipeline
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The ELT approach allows for rapidly loading large amounts of source data into the 
warehouse. Furthermore, the MPP architecture of modern data warehouses can 
significantly accelerate the transform steps in ELT pipelines. The ELT approach is  
typically leveraged when the following are true:

• Data sources and the warehouse have similar database technologies, making it 
easier to directly load source data into the staging tables in the warehouse. 

• A large volume of data needs to be quickly loaded into the warehouse. 

• All the required transformation steps can be executed using the native SQL 
capabilities of the warehouse's database engine.

In this section, we learned how data warehouses can store and process petabytes of 
structured data. Modern data warehouses provide high-performance processing using 
compute parallelism, columnar physical data layout, and dimensional data models such  
as star or snowflake schemas. 

The data management architectures in modern organizations need capabilities that 
can store and analyze exploding volumes of semi-structured and unstructured data, 
in addition to handling structured data from traditional sources. In the next section, 
we'll learn about a new architecture, called data lakes, that today's leading organizations 
typically implement to store, process, and analyze structured, semi-structured, and 
unstructured data.

Building data lakes to tame the variety and 
volume of big data
Along with the rise of new data types and increasing data volumes, we have seen an 
increase in the ways that organizations look to draw insights from data. Machine 
learning in particular has become a popular tool for analytics, enabling organizations 
to automatically extract metadata from unstructured data sources, which can then be 
analyzed with traditional analytic tools: 

• Creating automated transcripts of call center audio recordings

• Using natural language processing (NLP) algorithms to extract sentiment data  
from text

• Identifying objects, people, and expressions in an image
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As we saw in the previous section, enterprise data warehouses have been the go-to 
repositories for storing highly structured tabular data sourced from traditional run-the-
business transactional applications. But the lack of a well-defined tabular structure makes 
unstructured and semi-structured data unsuitable for storing in typical data warehouses. 
Also, while they are good for use cases that need SQL-based processing, data warehouses 
are limited to processing data using only SQL, and SQL is not the right tool for all data 
processing requirements. For example, extracting metadata from unstructured data,  
such as audio files or images, is best suited for specialized machine learning tools. 

Most traditional data warehouses also tightly couple compute and storage. If you need 
additional compute power, you need to add a processing node that also includes storage. 
If you need additional storage, you add a processing node that also includes additional 
compute power. With these systems, you always add compute and storage together, even  
if you only need one of those additional resources. 

On the other hand, a cloud data lake is a central, highly scalable repository in the cloud 
where an organization can manage exabytes of various types of data, such as the following:

• Structured data (row-column-based tables)

• Semi-structured data (such as JSON and XML files, log records, and sensor data 
streams) 

• Unstructured data (such as audio, video streams, Word/PDF documents, and 
emails) 

Data from any of these sources can be quickly loaded into the data lake as-is (keeping the 
original source format and structure). Unlike with data warehouses, data does not need to 
be converted into a standard structure. 

A cloud data lake also natively integrates with cloud analytic services that are decoupled 
from data lake storage and enables diverse analytic tools, including SQL, code-based tools 
(such as Apache Spark), specialized machine learning tools, and business intelligence 
visualization tools. 

In the next section, we will dive deeper into the architecture of a typical data lake. 



42     Data Management Architectures for Analytics

Data lake logical architecture
Let's take a closer look at the architecture of a cloud-native data lake by looking at its 
logical architecture, as shown in the following diagram: 

 

Figure 2.9 – Data lake logical layered architecture

We can visualize a data lake architecture as a set of independent components organized 
into five logical layers. A layered, component-oriented data lake architecture can evolve  
to incorporate innovations in data management and analytics methods, as well as to make 
use of new tools. This keeps the data lake responsive to new data sources and changing 
requirements. In the following sections, we will dive deeper into these layers. 

The storage layer and storage zones
At the center of the data lake architecture is the storage layer, which provides virtually 
unlimited, low-cost storage that can store a variety of datasets, irrespective of their 
structure or format. 
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The storage layer is organized into different zones, with each zone having a specific 
purpose. Data moves through the various zones of the data lake, with new, modified 
copies of the data in each zone as the data goes through various transformations. There 
are no hard rules about how many zones there should be, or the names of zones, but the 
following zones are commonly found in a typical data lake: 

• Landing/raw zone: This is the zone where the ingestion layer writes data, as-is, 
from the source systems. The landing/raw zone permanently stores the raw data 
from source.

• Clean/transform zone: The initial data processing of data in the landing/raw zone, 
such as validating, cleaning, and optimizing datasets, writes data into the clean/
transform zone. The data here is often stored in optimized formats such as Parquet, 
and it is often partitioned to accelerate query execution and downstream processing. 
Data in this zone may also have had PII information removed, masked, or replaced 
with tokens. 

• Curated/enriched zone: The data in the clean/transformed zone may be further 
refined and enriched with business-specific logic and transformations, and this data 
is written to the curated/enriched zone. This data is in its most consumable state 
and meets all organization standards (cleanliness, file formats, schema). Data here  
is typically partitioned, cataloged, and optimized for the consumption layer.

Depending on the business requirements, some data lakes may include more or fewer 
zones than the three highlighted here. For example, a very simple data lake may just have 
two zones (the raw and curated zones), while some data lakes may have five or more zones 
to handle intermediate stages or specific requirements.

Cataloging and search layer
A data lake typically hosts a large number of datasets (potentially thousands) from a 
variety of internal and external sources. These datasets are used by several users across 
the organization, and these users need the ability to search for available datasets and 
review the schema and other metadata of those datasets. The cataloging and search layer 
provides this metadata (schema, partitioning information, categorization, ownership, and 
more) about the datasets hosted in the storage layer. The cataloging layer can also track 
changes that have been made to the schemas of the datasets in the lake. This layer should 
also provide a search capability to simplify the task of finding a required dataset among 
the many datasets held in the lake. 
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Ingestion layer
The ingestion layer is responsible for connecting to diverse types of data sources and 
bringing their data into the storage layer of the data lake. This layer contains several 
independent components, each purpose-built to connect to a data source with a distinct 
profile in terms of the following:

• Data structure (structured, semi-structured, unstructured) 

• Data delivery type (table rows, data stream, data file) 

• Data production cadence (batch, streaming)

This component-oriented composition of the ingestion layer provides the flexibility to 
simply add new components to match a new data source's distinct profile. 

A typical ingestion layer may contain several components (tools) for connecting to and 
ingesting from the various data sources. Examples include Amazon Database Migration 
Services (DMS) for ingesting from various databases, and Amazon Kinesis Firehose to 
ingest streaming data into the data lake. An overview of these tools, and many others, will 
be covered in Chapter 3, The AWS Data Engineers Toolkit, and we will dive deep into the 
ingestion layer in Chapter 6, Ingesting Batch and Streaming Data.

Processing layer
Once the ingestion layer brings data from a source system into the landing zone, it 
is the processing layer that makes it ready for consumption by data consumers. The 
processing layer transforms the data in the lake through various stages of data cleanup, 
standardization, and enrichment. Along the way, the processing layer stores transformed 
data in the different zones – writing it into the clean zone and then the curated zone, and 
then ensuring that the data catalog gets updated. 

The components in the ingestion and processing layers are used to create ELT pipelines. 
In these pipelines, the ingestion layer components extract data from the source and load 
it into the data lake, and then the processing layer components transform it to make it 
suitable for consumption by components in the consumption layer.
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Consumption layer
Once data has been ingested and processed to make it consumption-ready, it can 
be analyzed using several techniques, such as interactive query processing, business 
intelligence dashboarding, and machine learning. To perform analytics on data in the lake, 
the consumption layer provides purpose-built tools. The tools in the consumption layer 
can natively access data from the storage layer, and the schema can be accessed from the 
catalog layer (to apply schema-on-read to the lake-hosted data).

Data lake architecture summary
In this section, we learned about data lake architectures, and how they can enable 
organizations to manage and analyze vast amounts of structured, unstructured,  
and semi-structured data. 

Analytics platforms at a typical organization need to serve warehousing style structured 
data analytics use cases (such as complex queries and BI dashboarding), as well as 
use cases that require managing and analyzing vast amounts of unstructured data. 
Organizations typically end up building both a data warehouse and a data lake. 

In the next section, we will look at an emerging data management and analytics 
architecture that's often referred to as the lake house architecture, or the data lakehouse. 
This architecture natively integrates data warehouses and data lakes and unlocks the best 
of both worlds. 

Bringing together the best of both worlds with 
the lake house architecture
In today's highly digitized world, data about customers, products, operations, and the 
supply chain can come from many sources and can have a diverse set of structures. To gain 
deeper and more complete data-driven insights about a business topic (such as the customer 
journey, customer retention, product performance, and more), organizations need to 
analyze all the relevant topic data of all the structures from all the sources, together. 

Organizations collect and analyze structured data in data warehouses, and they build data 
lakes to manage and analyze unstructured data. Historically, organizations have built data 
warehouse and data lake solutions in isolation from each other, with each having its own 
separate data ingestion, storage, processing, and governance layers. Often, these disjointed 
efforts to build separate data warehouse and data lake ecosystems have ended up creating 
data and processing silos, data integration complexity, excessive data movement, and data 
consistency issues. These, in turn, have led to delays and increased costs in gaining deeper 
insights that only come when you combine and analyze all the relevant data.
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In this section, we will look at a recently emerging cloud-native architecture, called 
lake house architecture. This new architecture approach enables organizations to collect, 
manage, process, and analyze all of their structured and unstructured data in a simple  
and integrated fashion. The data lakehouse architecture combines the best features of  
both the data warehouse and data lake worlds, and also provides a unified interface to 
enable access to all topic relevant data, of all structures, in an integrated way. 

Data lakehouse implementations
Over the last 2 to 3 years, various cloud providers, software providers, and open source 
organizations have been building new products to enable this move toward a data lakehouse 
architecture. The implementation approaches to a data lakehouse (also sometimes referred 
to as data lakehouse) vary across different platform providers:

• Databricks has introduced an offering called Databricks Delta Lake. Delta Lake 
provides a storage layer that enables ACID transactions directly in the data lake. 
With this functionality, records can be inserted, updated, and deleted for tables  
in the data lake, something that was previously not easily available. 

• Apache Hudi is a relatively new open source project that enables users to perform 
insert, update, and delete operations on data in the data lake, without needing to 
build their own custom solutions. 

• Microsoft Azure has added a capability called Polybase to their warehouse service, 
known as Azure Synapse Analytics. Polybase allows Azure Synapse Analytics users 
to include data stored in Azure Blob storage, Azure Data Lake Store, and Hadoop  
to help process their T-SQL queries. 

• Amazon Web Services (AWS) has added several new capabilities, including new 
features in Redshift Spectrum and Lake Formation, to enable building a data 
lakehouse architecture on AWS. This includes the ability to read data lake tables  
in S3 from Amazon Redshift, as well as to perform inserts, updates, and deletes  
on data lake tables using Lake Formation governed tables. 

In the rest of this section, we'll look at an implementation architecture of a data lakehouse 
on AWS.
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Building a data lakehouse on AWS
Two components that provide the key foundations for building a lake house architecture 
in AWS are Amazon Redshift Spectrum and AWS Lake Formation. The following diagram 
shows a data lake architecture with these two components:

Figure 2.10 – Data lakehouse on AWS

Redshift Spectrum is a feature of the Amazon Redshift data warehouse service that  
enables Redshift to read data stored in S3. Redshift Spectrum is essentially a query 
processing layer that uses Amazon-managed compute nodes to natively query structured 
and semi-structured data hosted in data lake storage (S3). Spectrum enables an Amazon 
Redshift data warehouse to present a single unified interface, where users can run SQL 
statements that combine data from both Redshift (data warehouse) and S3 (data lake). 
Spectrum thus enables users to query all the data in the lake house using a single  
SQL interface.
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Lake Formation provides the central lake house catalog where users and analytics services 
can search, discover, and retrieve metadata for a dataset. The central lake house catalog 
is automatically kept up to date with metadata from all the lake house datasets by using 
the catalog automation capability provided by AWS Glue. Glue can be configured to 
periodically crawl through the lake house storage and discover datasets, extract their 
metadata (such as location, schema, format, partition information, and more), and then 
store this metadata as a table in the central Lake Formation catalog. The metadata of a 
table in the catalog can be used by AWS analytics services, such as Amazon Athena,  
to locate a corresponding dataset in the lake house storage and apply schema-on-read  
to that dataset during query execution. 

In addition to adding Redshift Spectrum and Lake Formation capabilities, AWS has also 
enabled various cloud services in the processing and consumption layers to be able to 
access all lake house data using either Redshift SQL or an Apache Spark interface. For 
example, AWS Glue (which provides a serverless Apache Spark environment) and Amazon 
EMR (a managed Spark environment) include native Spark plugins that can access Redshift 
tables, in addition to objects in S3 buckets, all in the same job. Amazon Athena supports 
query federation, which enables Athena to query data in the data lake, as well as data stored 
in other engines such as Amazon Redshift or an Amazon RDS database.

AWS has also enhanced the AWS Lake Formation service to support governed tables. 
With governed tables, users can run transactional queries against data stored in the table, 
including inserts, updates, and deletes. In addition to this, with governed tables, users can 
time travel, which means they can query a table and specify a specific time, and the results 
that are returned will represent the data as it was at the specified point in time. 

In future chapters, the hands-on exercises will cover various tasks related to ingesting, 
transforming, and querying data in the data lake, but in this chapter, we are still setting up 
some of the foundational tasks. In the next section, we will work through the process of 
installing and configuring the AWS Command Line Interface (CLI), and we will create 
an Amazon S3 bucket. 

Hands-on – configuring the AWS Command 
Line Interface tool and creating an S3 bucket
In Chapter 1, An Introduction to Data Engineering, you created an AWS account and  
an AWS administrative user, and then ensured you could access your account. As part of 
the process of creating the administrative user, you took note of the Access Key ID and 
Secret Access Key, both of which are needed for authenticating programmatic access to 
your account.

In this chapter, we will use those keys to configure the AWS CLI. We will also use the CLI 
to create an Amazon S3 bucket (a storage container in the Amazon S3 service).



Hands-on – configuring the AWS Command Line Interface tool and creating an S3 bucket     49

Installing and configuring the AWS CLI
To configure the AWS CLI, you will need an Access Key ID and Secret Access Key for  
an IAM administrative user.

The following steps will install the AWS CLI and configure it for use in the hands-on 
sections throughout the remainder of this book:

1. Download the appropriate AWS CLI installer for your platform (Mac, Windows,  
or Linux) from https://aws.amazon.com/cli/.

2. Run the installer to complete the installation of the AWS CLI.
3. To configure the CLI, run aws configure at the Command Prompt and provide 

the AWS Access Key ID and AWS Secret Access Key for your IAM Administrative 
user. Also, provide a default region – in the examples in this book, we will use 
us-east-2 (Ohio), but you can use a different region if it supports all the services 
and features covered in this book. For Default output format, press Enter to 
leave it as the default, as shown in the following command block: 

$ aws configure

AWS Access Key ID [None]: AKIAX9LFIEPF3KKQUI

AWS Secret Access Key [None]: 
neKLcXPXlabP9C90a0qeBkWZAbnbM4ihesP9N1u3

Default region name [None]: us-east-2

Default output format [None]: ENTER

Creating a new profile
If you already have the AWS CLI configured and associated with a different 
IAM user account, you have the option of configuring multiple profiles, each 
one associated with a different IAM user. To do this, run the configure 
command with the profile argument, specifying a name for the 
profile. For example, you could run aws configure --profile 
dataengbook, and then provide the details for the IAM administrative 
user we created in Chapter 1, An Introduction to Data Engineering. Then, when 
running through the tutorials in this book, make sure you always specify the 
profile created here. For example, to list the S3 buckets in your account using 
the dataengbook profile you just created, you would run aws s3 ls 
-- profile dataengbook. 

Thus, we have installed and configured the AWS CLI. Next, we will see how to create a 
new Amazon S3 bucket.

https://aws.amazon.com/cli/
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Creating a new Amazon S3 bucket
To confirm that we have configured the CLI correctly, we will create a new S3 bucket using 
the AWS CLI.

Amazon Simple Storage Service (S3) is an object storage service that offers near 
unlimited capacity with high levels of durability and availability. To store data in S3,  
you need to create a bucket. Once created, the bucket can store any number of objects. 

Each S3 bucket needs to have a globally unique name, and it is recommended that the 
name be DNS compliant. For more information on rules for bucket names, see https://
docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html.

To create an S3 bucket using the AWS CLI, run the following command at the  
Command Prompt:

$ aws s3 mb s3://<bucket-name>

Remember that the bucket name you specify here must be globally unique. If you attempt 
to create a bucket using a name that another AWS account has used, you will see an error 
similar to the following:

$ aws s3 mb s3://test-bucket

make_bucket failed: s3://test-bucket An error occurred 
(BucketAlreadyExists) when calling the CreateBucket operation: 
The requested bucket name is not available. The bucket 
namespace is shared by all users of the system. Please select a 
different name and try again.

If your aws s3 mb command returned a message similar to the following, then 
congratulations! Your AWS CLI has been successfully configured: 

make_bucket: <bucket-name>

Summary
In this chapter, we learned about the foundational architectural concepts that are typically 
applied when designing real-life analytics data management and processing solutions. We 
also discussed three analytics data management architectures that you would find most 
commonly used across organizations today: data warehouse, data lake, and data lakehouse. 

In the next chapter, we will provide an overview of several AWS services that are used in 
the creation of these architectures – from services for ingesting data, to services that help 
perform data transformation, to services that are designed for querying and analyzing data. 

https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
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Engineer's Toolkit
Back in 2006, Amazon launched Amazon Web Services (AWS) to offer on-demand 
delivery of IT resources over the internet, essentially creating the cloud computing 
industry. Ever since then, AWS has been innovating at an incredible pace, continually 
launching new services and features to offer broad and deep functionality across a wide 
range of IT services.

Traditionally organizations built their own big data processing systems in their data 
centers, implementing commercial or open source solutions designed to help them make 
sense of ever-increasing quantities of data. However, these systems were often complex 
to install, requiring a team of people to maintain, optimize, and update, and scaling these 
systems was a challenge, requiring large infrastructure spend and significant delays while 
waiting for hardware vendors to install new compute and storage systems.

Cloud computing has enabled the removal of many of these challenges, including the 
ability to launch fully configured software solutions at the push of a button and having 
these systems automatically updated and maintained by the cloud vendor. Organizations 
also benefit from the ability to scale out by adding resources in minutes, all the while only 
paying for what was used, rather than having to make large upfront capital investments.
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Today, AWS offers around 200 different services, including a number of analytics services 
that can be used by data engineers to build complex data analytic pipelines. There are 
often multiple AWS services that could be used to achieve a specific outcome, and the 
challenge for data architects and engineers is to balance the pros and cons of a specific 
service, evaluating it from multiple perspectives, before determining the best fit for the 
specific requirements.

In this chapter, we introduce a number of these AWS managed services commonly used 
for building big data solutions on AWS, and in later chapters, we will look at how you can 
architect complex data engineering pipelines using these services. As you go through this 
chapter, you will learn about the following topics:

• AWS services for ingesting data

• AWS services for transforming data

• AWS services for orchestrating big data pipelines

• AWS services for consuming data

• Hands-on - an AWS Lambda function when a new file arrives in an S3 bucket

Technical requirements
You can find the code files of this chapter in the GitHub repository using the following 
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter03

AWS services for ingesting data
The first step in building big data analytic solutions is to ingest data from a variety of 
sources into AWS. In this section, we introduce some of the core AWS services designed 
to help with this; however, this should not be considered a comprehensive review of every 
possible way to ingest data into AWS.

Don't feel overwhelmed by the number of services we cover in this section! We will 
explore approaches for deciding on the right service for your specific use case in later 
chapters, but it is important to have a good understanding of the available tools upfront.

Overview of Amazon Database Migration Service (DMS)
One of the most common ingestion use cases is to sync data from a traditional database 
system into an analytic pipeline, either landing the data in an Amazon S3-based data lake, 
or in a data warehousing system such as Amazon Redshift.

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter03
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter03
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Amazon DMS is a versatile tool that can be used to migrate existing database systems 
to a new database engine, such as migrating an existing Oracle database to an Amazon 
Aurora with PostgreSQL compatibility database. But from an analytics perspective, 
Amazon DMS can also be used to run continuous replication from a number of common 
database engines into an Amazon S3 data lake.

As discussed previously, data lakes are often used as a means of bringing in data from 
multiple different data sources into a centralized location to enable an organization to get 
the big picture across different business units and functions. As a result, there is often a 
requirement to perform continuous replication of a number of production databases into 
Amazon S3.

For our use case, we want to sync our production customer, products, and order databases 
into the data lake. Using DMS, we can do an initial load of data from the databases into 
S3, specifying the format that we want the file written out in (CSV or Parquet), and the 
specific ingestion location in S3.

At the same time, we can also set up a DMS task to do ongoing replication from the source 
databases into S3 once the full load completes. With transactional databases, the rows in 
a table are regularly updated, such as if a customer changes their address or telephone 
number. When querying the database using SQL, we can see the updated information, 
but in most cases, there is no practical method to track changes to the database using 
only SQL. Because of this, DMS uses the database transaction log files from the database 
to track updates to rows in the database and writes out the target file in S3 with an extra 
column added (Op) that indicates which operation is reflected in the row – an insert, 
update, or deletion. The process of tracking and recording these changes is commonly 
referred to as Change Data Capture (CDC).

Picture a situation where you have a source table with a schema of custid, lastname, 
firstname, address, and phone, and the following sequence of events happens:

• A new customer is added with all fields completed.

• The phone number was entered incorrectly, so the record has the phone  
number updated.

• The customer record is then deleted from the database.

We would see the following in the CDC file that was written out by DMS:

I, 9335, Smith, John, "1 Skyline Drive, NY, NY", 201-555-9012

U, 9335, Smith, John, "1 Skyline Drive, NY, NY", 201-555-9034

D, 9335, Smith, John, "1 Skyline Drive, NY, NY", 201-555-9034
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The first row in the file shows us that a new record was inserted into the table (represented 
by the I in the first column). The second row shows us that a record was updated 
(represented by the U in the first column). And finally, the third entry in the file indicates 
that this record was deleted from the table (represented by the D in the first column). 

We would then have a separate update process that would run to read the updates and 
apply those updates to the full load, creating a new point-in-time snapshot of our source 
database. The update process would be scheduled to run regularly, and each time it runs  
it would apply the latest updates as recorded by DMS to the previous snapshot, creating  
a new point-in-time snapshot. We will review this kind of update job and approach in 
more detail in Chapter 7, Transforming Data to Optimize for Analytics. 

When to use: Amazon DMS simplifies migrating from one database engine to a different 
database engine, or syncing data from an existing database to Amazon S3 on an ongoing 
basis.

When not to use: If you're looking to sync an on-premises database to the same engine 
in AWS, it is often better to use native tools from that database engine. DMS is primarily 
designed for heterogeneous migrations (that is, from one database engine to a different 
database engine).

Overview of Amazon Kinesis for streaming data 
ingestion
Amazon Kinesis is a managed service that simplifies the process of ingesting and 
processing streaming data in real time, or near real time. There are a number of different 
use cases that Kinesis can be used for, including ingestion of streaming data (such as log 
files, website clickstreams, or IoT data), as well as video and audio streams.

Depending on the specific use case, there are a number of different services that you  
can select from that form part of the overall Kinesis service. Before we go into more  
detail about these services, review the following summary of the various Amazon  
Kinesis services:

• Kinesis Data Firehose: Ingests streaming data, buffers for a configurable period, 
then writes out to a limited set of targets (S3, Redshift, Elasticsearch, Splunk,  
and others)

• Kinesis Data Streams: Ingests real-time data streams, processing the incoming  
data with a custom application and low latency
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• Kinesis Data Analytics: Reads data from a streaming source and uses SQL 
statements or Apache Flink code to perform analytics on the stream

• Kinesis Video Streams: Processes streaming video or audio streams, as well as  
other time-serialized data such as thermal imagery and RADAR data

Amazon Kinesis Agent
In addition to the AWS Kinesis services, AWS also provides an agent to easily consume 
data from a file and write that data out in a stream to either Kinesis Data Streams or 
Kinesis Data Firehose.

The Amazon Kinesis Agent is available on GitHub as a Java application under the 
Amazon Software License (https://github.com/awslabs/amazon-kinesis-
agent), as well as in a version for Windows (Amazon Kinesis Agent for Microsoft 
Windows).

The agent can be configured to monitor a set of files, and as new data is written to the  
file, the agent buffers the data (configurable for a duration of between 1 second and  
15 minutes) and then writes the data to Kinesis. The agent handles retry on failure,  
as well as file rotation and checkpointing.

An example of a typical use case is a scenario where you want to analyze events happening 
on your website in near real time. The Kinesis Agent can be configured to monitor the 
Apache web server log files on your web server, convert each record from the Apache 
access log format to JSON format, and then write records out reflecting all website activity 
every 30 seconds to Kinesis, where Kinesis Data Analytics can be used to analyze events 
and generate custom metrics based on a tumbling 5-minute window. 

When to use: The Amazon Kinesis Agent is ideal for when you want to stream data to 
Kinesis that is being written to a file in a separate process (such as log files).

When not to use: If you have a custom application where you want to emit streaming 
events (such as a mobile application, or IoT device) you may want to consider using 
the Amazon Kinesis Producer Library (KPL), or the AWS SDK, to integrate sending 
streaming data directly with your application. 

Amazon Kinesis Firehose
Amazon Kinesis Firehose is designed to enable you to easily ingest data in near real time 
from streaming sources and write out that data to common targets, including Amazon S3, 
Amazon Redshift, Amazon Elasticsearch, as well as third-party services (such as Splunk, 
Datadog, and New Relic).

https://github.com/awslabs/amazon-kinesis-agent
https://github.com/awslabs/amazon-kinesis-agent
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With Kinesis Firehose, you can easily ingest data from streaming sources, process or 
transform the incoming data, and deliver that data to a target such as Amazon S3 (among 
others). A common use case for data engineering purposes is to ingest website clickstream 
data from the Apache web logs on a web server and write that data out to an S3 data lake 
(or a Redshift data warehouse).

In this example, you could install the Kinesis Agent on the web server and configure it  
to monitor the Apache web server log files. Based on the configuration of the agent,  
on a regular schedule the agent would write records from the log files to the Kinesis 
Firehose endpoint.

The Kinesis Firehose endpoint would buffer the incoming records, and either after a 
certain time (1-15 minutes) or based on the size of incoming records (1 MB–128 MB) it 
would write out a file to the specified target. Kinesis Firehose requires you to specify both 
a size and a time, and whichever is reached first will trigger the writing out of the file.

When writing files to Amazon S3, you also have the option of transforming the incoming 
data to Parquet or ORC format, or to perform custom transforms of the incoming data 
stream using an Amazon Lambda function.

When to use: Amazon Kinesis Firehose is the ideal choice for when you want to receive 
streaming data, buffer that data for a period, and then write the data to one of the 
targets supported by Kinesis Firehose (such as Amazon S3, Amazon Redshift, Amazon 
Elasticsearch, or a supported third-party service). 

When not to use: If your use case requires very low latency processing of incoming 
streaming data (that is, immediate reading of received records), or you want to use a 
custom application to process your incoming records or deliver records to a service not 
supported by Amazon Kinesis Firehose, then you may want to consider using Amazon 
Kinesis Data Streams or Amazon Managed Streaming for Apache Kafka (MSK) instead.

Amazon Kinesis Data Streams
While Kinesis Firehose buffers incoming data before writing it to one of its supported 
targets, Kinesis Data Streams provides increased flexibility for how data is consumed and 
makes the incoming data available to your streaming applications with very low latency 
(AWS indicates data is available to consuming applications within 70 milliseconds of the 
data being written to Kinesis).
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Companies such as Netflix use Kinesis Data Streams to ingest terabytes of log data every 
day, enriching their networking flow logs by adding in additional metadata, and then 
writing the data to an open source application for performing near real-time analytics  
on the health of their network.

You can write to Kinesis Data Streams using the Kinesis Agent, or you can develop your 
own custom applications using the AWS SDK or the KPL, a library that simplifies writing 
data records with high throughput to a Kinesis data stream.

The Kinesis Agent is the simplest way to send data to Kinesis Data Streams if your data 
can be supported by the agent (such as when writing out log files), while the AWS SDK 
provides the lowest latency, and the Amazon KPL provides the best performance and 
simplifies tasks such as monitoring and integration with the Kinesis Client Library (KCL). 

There are also multiple options available for creating applications to read from your 
Kinesis data stream, including the following:

• Using other Kinesis services (such as Kinesis Firehose or Kinesis Data Analytics).

• Running custom code using the AWS Lambda service (a serverless environment  
for running code without provisioning or managing servers).

• Setting up a cluster of Amazon EC2 servers to process your streams. If using a 
cluster of Amazon EC2 servers to process your stream, you can use the KCL to 
handle many of the complex tasks associated with using multiple servers to process 
a stream, such as load balancing, responding to instance failures, checkpointing 
records that have been processed, and reacting to resharding (increasing or 
decreasing the number of shards used to process streaming data). 

When to use: Amazon Kinesis Data Streams is ideal for use cases where you want to 
process incoming data as it is received, or you want to create a high-availability cluster  
of servers to process incoming data with a custom application.

When not to use: If you have a simple use case that requires you to write data to specific 
services in near real time, you should consider Kinesis Firehose if it supports your target 
destination. If you are looking to migrate an existing Apache Kafka cluster to AWS, then 
you may want to consider migrating to Amazon MSK. If Apache Kafka supports third-
party integration that would be useful to you, you may want to consider Amazon MSK.
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Amazon Kinesis Data Analytics
Amazon Kinesis Data Analytics simplifies the process of processing streaming data, using 
either standard SQL queries or an Apache Flink application.

An example of a use case for Kinesis Data Analytics is to analyze incoming clickstream 
data from an e-commerce website to get near real-time insight into the sales of a product. 
In this use case, an organization may want to know how the promotion of a specific 
product is impacting sales to see whether the promotion is being effective, and Kinesis 
Data Analytics can enable this using relatively simple SQL queries to process records 
being sent from their web server clickstream logs. This enables the business to quickly 
get answers to questions such as "how many sales of product x have there been in each 
5-minute period since our promotion went live?"

When to use: If you want to use SQL expressions to analyze data or extract key metrics 
over a rolling time period, Kinesis Data Analytics significantly simplifies this task. If you 
have an existing Apache Flink application that you want to migrate to the cloud, consider 
running the application using Kinesis Data Analytics.

Amazon Kinesis Video Streams
Amazon Kinesis Video Streams can be used to process time-bound streams of 
unstructured data such as video, audio, and RADAR data.

Kinesis Video Streams takes care of provisioning and scaling the compute infrastructure 
that is required to ingest streaming video (or other types of media files) from potentially 
millions of sources. Kinesis Video Streams enables playback of video for live and 
on-demand viewing and can be integrated with other Amazon API services to enable 
applications such as computer vision and video analytics.

Appliances such as video doorbell systems, home security cameras, and baby monitors 
can stream video through Kinesis Video Analytics, simplifying the task of creating full-
featured applications to support these appliances.

When to use: When creating applications that use a supported source, Kinesis Video 
Streams significantly simplifies the process of ingesting streaming media data and 
enabling live or on-demand playback.
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Note about AWS service reliability
AWS services are known to be extremely reliable, and generally significantly 
exceed the uptime and reliability of what most organizations can achieve in 
their own data centers. However, as Werner Vogels (Amazon's CTO) has been 
known to say, "Everything fails all the time."

In November 2020, the Amazon Kinesis service running out of data centers 
in the Northern Virginia region (us-east-1) experienced a period of a number 
of hours where there were increased error rates for users of the service. During 
this time, many companies reported having their services affected, including 
Roomba vacuum cleaners, Ring doorbells, The Washington Post newspaper, 
Roku, and others.

This is a clear reminder that while AWS services generally offer extremely high 
levels of availability, if you require absolutely minimal downtime you need to 
design the ability to fail-over to a different AWS Region in your architecture.

Overview of Amazon MSK for streaming data ingestion
Apache Kafka is a popular open source distributed event streaming platform that enables 
an organization to create high-performance streaming data pipelines and applications, 
and Amazon MSK (Managed Streaming for Apache Kafka) is a managed version of 
Apache Kafka available from AWS.

While Apache Kafka is a popular choice for organizations, it can be a challenge to install, 
scale, update, and manage in an on-premises environment, often requiring specialized 
skills. To simplify these tasks, AWS offers Amazon MSK, which enables an organization 
to deploy an Apache Kafka cluster with a few clicks in the console, and reduces the 
management overhead by automatically monitoring cluster health and replacing  
failed components.

When to use: Amazon MSK is an ideal choice if your use case is a replacement for an 
existing Apache Kafka cluster, or if you want to take advantage of the many third-party 
integrations from the open source Apache Kafka ecosystem.

When not to use: Amazon Kinesis may be a better streaming solution if you are creating 
a new solution from scratch, as Kinesis is serverless and you only pay for data throughput 
(whereas with Amazon MSK you pay for the cluster, whether you are sending data 
through it or not).
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Overview of Amazon AppFlow for ingesting data from 
SaaS services
Amazon AppFlow can be used to ingest data from popular SaaS services, and to transform 
and write the data out to common analytic targets, such as Amazon S3, Amazon Redshift, 
and Snowflake (a popular cloud data warehousing solution), as well as being able to write 
to some SaaS services.

For example, AppFlow can be used to ingest lead data from Marketo, a developer of 
marketing automation solutions, where your organization may capture details about a new 
lead. Using AppFlow, you can create a flow that will automatically create a new Salesforce 
contact record whenever a new Marketo lead is created. 

From a data engineering perspective, you can create flows that will automatically write 
out new opportunity records created in Salesforce into your S3 data lake or Redshift data 
warehouse, enabling you to join those opportunity records with other datasets to perform 
advanced analytics.

AppFlow can be configured to run on a schedule, or in response to specific events, and 
can filter data, mask data, validate data, and perform calculations from data fields in  
the source.

While it is expected that new integrations will be added over time, as of the time of 
publication of this book the following integrations were supported by Amazon AppFlow:

• AWS services:

 � Amazon EventBridge (a serverless event bus that ingests data and routes it  
to targets)

 � Amazon Redshift (a cloud-based data warehousing service)

 � Amazon S3 (an object storage service, often used as the storage layer for analytic 
data lakes)

 � Amazon Honeycode (a managed service for building mobile and web applications 
with no programming required)

 � Amazon Lookout for Metrics (a machine learning service for identifying outliers 
in business and operational metrics and determining their root cause)
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• Third-party services:

 � Amplitude (a product analytics toolset)

 � Datadog (an application monitoring service)

 � Dynatrace (an applications and infrastructure monitoring service)

 � Google Analytics (a service for monitoring and tracking website traffic)

 � Infor Nexus (an on-demand global supply chain management platform)

 � Marketo (marketing automation software to help engage customers and 
prospects)

 � Salesforce (customer relationship management and related services)

 � ServiceNow (a platform for managing digital workflows)

 � Singular (a marketing analytics and ETL solution)

 � Slack (a channel-based messaging platform)

 � Snowflake (a cloud-based data warehouse solution)

 � Trend Micro (a workload security solution)

 � Upsolver (a service for turning event streams into analytics-ready data)

 � Veeva (a cloud computing service focused on pharmaceutical and life  
sciences companies)

 � Zendesk (a customer service and helpdesk platform)

When to use: Amazon AppFlow is an ideal choice for ingesting data into AWS if one of 
your data sources is a supported SaaS.

Overview of Amazon Transfer Family for ingestion 
using FTP/SFTP protocols
The Amazon Transfer Family provides a fully managed service that enables file transfers 
directly into and out of Amazon S3 using common file transfer protocols, including  
FTP and SFTP.
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Many organizations today still make use of these protocols to exchange data with other 
organizations. For example, a real-estate company may receive the latest MLS (Multi-
Listing Service) files from an MLS provider via SFTP. In this case, the real-estate company 
would have configured a server running SFTP, and created an SFTP user account that the 
MLS provider can use to connect to the server and transfer the files.

With Amazon Transfer for SFTP, the real-estate company could easily migrate to the 
managed AWS service, replicating the account setup that exists for their MLS provider 
on their on-premises server with an account in their Amazon Transfer service. With 
little to no change on the side of the provider, when future transfers are made via the 
managed AWS service, these would be written directly into Amazon S3, making the data 
immediately accessible to data transformation pipelines created for the Amazon S3-based 
data lake.

When to use: If an organization currently receives data via FTP, SFTP, or FTPS, they should 
consider migrating to the managed version of this service offered by Amazon Transfer.

Overview of Amazon DataSync for ingesting from  
on-premises storage
There is often a requirement to ingest data from existing on-premises storage systems, and 
Amazon DataSync simplifies this process while offering high performance and stability 
for the data transfers.

Network File System (NFS) and Server Message Block (SMB) are two common 
protocols that are used to allow computer systems to access files stored on a different 
system. With DataSync, you can easily ingest and replicate data from file servers that  
use either of these protocols. DataSync also supports ingesting data from on-premises 
object-based storage systems that are compatible with core AWS S3 API calls. 

DataSync can write to multiple targets within AWS, including Amazon S3, making it an 
ideal way to sync data from on-premises storage into your AWS S3 data lake. For example, 
if you have a solution running in your data center that writes out end-of-day transactions 
to a file share, DataSync can ensure that the data is synced to your S3 data lake. Another 
common use case is to transfer large amounts of historical data from an on-premises 
system into your S3 data lake.
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When to use: Amazon DataSync is a good choice when you're looking to ingest current 
or historical data from compatible on-premises storage systems to AWS over a network 
connection.

When not to use: For very large historical datasets where sending the data over a network 
connection is not practical, you should consider using the Amazon Snow family of 
devices. If you want to perform preprocessing of data, such as converting Apache web 
server log files to JSON, consider using Amazon Kinesis Agent to preprocess the data and 
then send data to Amazon S3 via Amazon Kinesis Firehose.

Overview of the AWS Snow family of devices for large 
data transfers
For use cases where there are very large datasets that need to be ingested into AWS, and 
either a lack of a good network connection or just the sheer size of the dataset makes  
it impractical to transfer via a network connection, the AWS Snow family of devices  
can be used.

The AWS Snow family of devices are ruggedized devices that can be shipped to a location 
and attached to a network connection in the local data center. Data can be transferred 
over the local network, and the device is then shipped back to AWS where the data will be 
transferred to Amazon S3. All the devices offer encryption of data at rest, and most of the 
devices also offer compute ability, enabling edge computing use cases.

There are multiple devices available for different use cases, as summarized here:

• AWS Snowcone: Lightweight (4.5 lb/2.1 kg) device with 8 TB of usable storage

• AWS Snowball Edge Optimized (for Data Transfer): Mediumweight (49.7 lb/22.5 
kg) device with 80 TB of usable storage

• AWS Snowmobile: Large 45-foot ruggedized shipping container pulled by a semi-
trailer truck. Capacity of up to 100 PB
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AWS services for transforming data
Once your data is ingested into an appropriate AWS service, such as Amazon S3, the next 
stage of the pipeline needs to transform the data to optimize it for analytics and to make  
it available to your data consumers.

Some of the tools we discussed in the previous section for ingesting data into AWS can 
perform light transformations as part of the ingestion process. For example, Amazon 
DMS can write out data in Parquet format (a format optimized for analytics), as can 
Kinesis Firehose. However, heavier transformations are often required to fully optimize 
your data for a differing set of analytic tasks and diverse data consumers, and in this 
section, we will examine some of the core AWS services that can be used for this.

Overview of AWS Lambda for light transformations
AWS Lambda provides a serverless environment for executing code and is one of AWS's 
most popular services. You can trigger your Lambda function to execute your code in 
multiple ways, including through integration with over 140 other AWS services, and you 
only pay for the duration that your code executes, billed in 1-millisecond increments,  
and based on the amount of memory that you allocate for your function.

In the data engineering world, a common use case for Lambda is for performing 
validation or light processing and transformation of incoming data. For example, if you 
have incoming CSV files being sent by one of your partners throughout the day, you can 
trigger a Lambda function to run each time a new file is received, have your code validate 
that the file is a valid CSV file, perform some computation on one of the columns and 
update a database with the result, and then move the file into a different bucket where  
a batch process will later process all files received for the day.

With the ability to run for up to 15 minutes, and with a maximum memory configuration 
of 10 GB, it is possible to do more advanced processing as well. For example, you may 
receive a ZIP file containing hundreds of XML files, and in your Lambda function you 
want to unzip the file, and then for each file you want to validate that it is valid XML, 
perform calculations on fields in the file to update various other systems, concatenate the 
contents of all the files, and write that out in Parquet format in a different zone of your 
data lake.
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Lambda is also massively parallel, meaning that it can easily scale for highly concurrent 
workloads. In the preceding example of processing CSV files as they arrive in an S3 
bucket, if hundreds of files were all delivered within a period of just a few seconds, a 
separate Lambda instance would be spun up for each file, and AWS would automatically 
handle the scaling of the Lambda functions to enable this. By default, you can have 1,000 
concurrent Lambda executions within an AWS Region for your account, but you can work 
with AWS support to increase this limit into the hundreds of thousands.

AWS Lambda supports many different languages, including Python, which has become 
one of the most popular languages for data engineering-related tasks. 

Overview of AWS Glue for serverless Spark processing
AWS Glue has multiple components that could have been split into multiple separate 
services, but these components can all work together, and so AWS has grouped them 
together into the AWS Glue family. In this section, we look at the core Glue components 
related to data processing.

Serverless ETL processing
At the heart of AWS Glue is a serverless environment providing either a Python 
engine (known as Glue Python shell) or an Apache Spark engine for performing data 
transformations and processing. Python can be used for performing transformations  
on small to medium datasets, while Apache Spark enables optimal processing for very 
large datasets:

• Apache Spark is an open source engine for distributed processing of large datasets 
across a cluster of compute nodes, which makes it ideal for taking a large dataset, 
splitting the processing work among the nodes in the cluster, and then returning a 
result. As Spark does all processing in memory, it is highly efficient and performant 
and has become the tool of choice for many organizations looking for a solution for 
processing large datasets.

• Python, which runs on a single node, has become an extremely popular language 
for performing data engineering-related tasks in scenarios where the power of a 
multi-node cluster is not required.
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The following diagram depicts the two different Glue engines – a single-node Glue Python 
shell on the left, and a multi-node Glue Apache Spark cluster on the right: 

Figure 3.1 – Glue Python shell and Glue Spark engines

Both engines can work with data that resides in Amazon S3, and with the AWS Glue Data 
Catalog. Both engines are serverless from the perspective of a user, meaning a user does 
not need to deploy or manage servers, a user just needs to specify the number of Data 
Processing Units (DPUs) that they want to power their job. Glue ETL jobs are charged 
based on the number of DPUs configured, as well as the amount of time that the underlying 
code executes for in the environment.

While AWS Glue does provide additional Spark libraries and functionality to simplify 
some common ETL tasks, their use is optional, and existing Spark code can be easily  
run as is with AWS Glue.

AWS Glue also supports Spark Streaming, an extension of the core Spark API designed  
to process live data streams.

AWS Glue Data Catalog
To complement the ETL processing functionality described previously, AWS Glue also 
includes a data catalog that can be used to provide a logical view of data stored physically 
on a disk, and objects in the catalog can then be directly referenced from your ETL code.
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In a scenario where you use DMS to replicate your Human Resources (HR) database to 
S3, you will end up with a prefix (directory) in S3 for each table from the source database. 
In this directory, there will generally be multiple files containing the data from the source 
table – for example, 20 CSV files containing the rows from the source employee table.

The Glue catalog can provide a logical view of this dataset, and capture additional 
metadata about the dataset, in the data catalog. For example, the data catalog consists of a 
number of databases at the top level (such as the HR database), and each database contains 
one or more tables (such as the Employee table), and each table contains metadata, 
such as the column headings and data types for each column (such as employee_id, 
lastname, firstname, address, and dept), as well as references to the S3 location 
for the data that makes up that table.

In the following screenshot, we see a bucket that contains objects under the prefix  
hr/employees and a number of CSV files that contain data imported from the 
employee database:

Figure 3.2 – Amazon S3 bucket with CSV files making up the Employee table
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The screenshot of the following AWS Glue Data Catalog shows us the logical view of this 
data. We can see that this is the employee table, and it references the S3 location shown in 
the preceding screenshot. In this logical view, we can see that the employee table is in the HR 
database, and we can see the columns and data types that are contained in the CSV files:

Figure 3.3 – AWS Glue Data Catalog showing a logical view of the Employee table

The AWS Glue Data Catalog is a Hive metastore-compatible catalog, and all you really 
need to know about that statement is that it means that the AWS Glue catalog works 
with a variety of other services and third-party products that can integrate with Hive 
metastore-compatible catalogs.

Within the AWS ecosystem, a number of services can use the AWS Glue Data Catalog. For 
example, Amazon Athena uses the AWS Glue Data Catalog to enable users to run SQL 
queries directly on data in Amazon S3, and Amazon EMR and the AWS Glue ETL engine 
use the catalog to enable users to reference catalog objects (such as databases and tables) 
directly in their ETL code.
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AWS Glue crawlers
AWS Glue crawlers are processes that can examine a data source (such as a path in  
an S3 bucket) and automatically infer the schema and other information about that  
data source, so that the AWS Glue Data Catalog can be automatically populated with 
relevant information.

For example, we could point an AWS Glue Crawler at the S3 location where DMS 
replicated the Employee table of our HR database. When the Glue Crawler runs, it 
examines a portion of each of the files in that location, identifies the file type (CSV, 
Parquet), uses a classifier to infer the schema of the file (column headings  
and types), and then adds that information into a database in the Glue catalog. 

Note that you can also add databases and tables to the Glue catalog using the Glue API, 
or via SQL statements in Athena, so using Glue crawlers to automatically populate the 
catalog is optional.

Overview of Amazon EMR for Hadoop ecosystem 
processing
Amazon EMR provides a managed platform for running popular open source big data 
processing tools, such as Apache Spark, Apache Hive, Apache Hudi, Apache HBase, 
Presto, Pig, and others. Amazon EMR takes care of the complexities of deploying these 
tools and managing the underlying clustered Amazon EC2 compute resources.

You may have noticed in the previous paragraph that Amazon EMR can be used to run 
Apache Spark, and you might be wondering why AWS has two services that effectively 
offer the same big data processing engine. While either service can be used to perform big 
data processing using the Apache Spark engine, there are important differences.

For a start, AWS Glue offers a serverless environment for running Apache Spark, whereas 
with Amazon EMR you need to specify the detailed configuration of the cluster you want 
to run Apache Spark. And, ultimately, this is probably one of the biggest differentiators 
between the services.

If your use case would benefit from being able to more finely tune the environment where 
Apache Spark runs, then Amazon EMR would be a better fit as it provides more options 
for specifying the configuration of the compute cluster and Spark settings than AWS Glue 
allows. Also, with AWS Glue you pay a slightly higher cost for an equivalent sized server 
than you would with Amazon EMR, but AWS Glue requires far less understanding or 
experience with regard to running an Apache Spark environment, and as a result, Glue 
requires much less configuration to get your Apache Spark code running.
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There may also be workloads where you want a permanently running Apache Spark 
environment, which you can get with Amazon EMR at a lower cost. However, one of the 
benefits of using the cloud for your big data processing requirements is that you can run 
transient clusters that are spun up to run a specific job, and then shut down – and this is 
possible with both solutions.

In summary, if you have a team that has experience of running Apache Spark 
environments, and your use case requires clusters that are fine-tuned as far as compute 
power and Apache Spark settings go, then Amazon EMR may be the way to go. But if you 
have a simpler use case and just want to be able to take your Apache Spark code and get 
it running to process your data with minimal configuration, then AWS Glue may be best 
suited.

The other important differentiator is that Amazon EMR offers many additional 
frameworks and tools for big data processing. So, if you're migrating an environment that 
uses Apache Hive, Presto, or other toolsets supported in EMR, then Amazon EMR would 
be a great fit.

The following diagram shows an EMR cluster, including some of the open source projects 
that can be run on the cluster:

Figure 3.4 – High-level overview of an EMR cluster



AWS services for orchestrating big data pipelines     71

Each EMR cluster requires a master node, and at least one core node (a worker node that 
includes local storage), and then optionally a number of task nodes (worker nodes that do 
not have any local storage).

AWS services for orchestrating big data 
pipelines
As discussed in Chapter 2, Data Management Architectures for Analytics, a data pipeline 
can be built to bring in data from source systems, and then transform that data, often 
moving the data through multiple stages, further transforming or enriching the data  
as it moves through each stage.

An organization will often have tens or hundreds of pipelines that work independently 
or in conjunction with each other on different datasets and perform different types of 
transformations. Each pipeline may use multiple services to achieve the goals of the 
pipeline and orchestrating all the varying services and pipelines can be complex. In this 
section, we look at a number of AWS services that help with this orchestration task.

Overview of AWS Glue workflows for orchestrating 
Glue components
In the AWS services for transforming data section, we covered AWS Glue, a service that 
includes a number of components. As a reminder, they are as follows:

• A serverless Apache Spark or Python shell environment for performing ETL 
transformations

• The Glue data catalog, which provides a centralized logical representation  
(database and tables) of the data in an Amazon S3 data lake

• Glue crawlers, which can be configured to examine files in a specific location, 
automatically infer the schema of the file, and add the file into the AWS Glue  
data catalog 

AWS Glue workflows are a functionality within the AWS Glue service and have been 
designed to help orchestrate the various AWS Glue components. A workflow consists of 
an ordered sequence of steps that can run Glue crawlers and Glue ETL jobs (Spark or 
Python shell).
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The following diagram shows a visual representation of a simple Glue workflow that can 
be built in the AWS Glue console:

Figure 3.5 – AWS Glue workflow

This workflow orchestrates the following tasks:

• It runs a Glue Crawler to add newly ingested data from the raw zone of the data lake 
into the Glue data catalog.

• Once the Glue Crawler completes, it triggers a Glue ETL job to convert the raw CSV 
data into Parquet format, and writes to the curated zone of the data lake.

• When the Glue job is complete, it triggers a Glue Crawler to add the newly 
transformed data in the curated zone, into the Glue data catalog.

Each step of the workflow can retrieve and update the state information about the 
workflow. This enables one step of a workflow to provide state information that can be 
used by a subsequent step in the workflow. For example, a workflow may run multiple 
ETL jobs, and each ETL job can update state information, such as the location of files that 
it outputted, that will be available to be used by subsequent workflow steps.

The preceding diagram is an example of a relatively simple workflow, but AWS Glue 
workflows are capable of orchestrating much more complex workflows. However, it is 
important to note that Glue workflows can only be used to orchestrate Glue components, 
which are ETL jobs and Glue crawlers.
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If you only use AWS Glue components in your pipeline, then AWS Glue workflows are 
well suited to orchestrate your data transformation pipelines. But if you have a use case 
that needs to incorporate other AWS services in your pipeline (such as AWS Lambda), 
then keep reading to learn about other available options.

Overview of AWS Step Functions for complex 
workflows
Another option for orchestrating your data transformation pipelines is AWS Step 
Functions, a service that enables you to create complex workflows that can be integrated 
with many AWS services.

Step Functions is serverless, meaning that you do not need to deploy or manage 
any infrastructure, and you pay for the service based on your usage, not on fixed 
infrastructure costs.

With Step Functions, you use JSON to define a state machine using a structured language 
known as the Amazon States Language. Alternatively, you can use Step Functions 
Workflow Studio to create a workflow using a visual interface that supports drag and 
drop. The resulting workflow can run multiple tasks, can run different branches based on 
a choice, can enter a wait state where you specify a delay before the next step is run, can 
loop back to previous steps, as well as various other things that can be done to control the 
workflow. 

When you start a state machine, you include JSON data as input text that will be passed to 
the first state in the workflow. The first state in the workflow uses the input data, performs 
the function it is configured to do (such as running a Lambda function using the input 
passed into the state machine), modifies the JSON data, and then passes the modified 
JSON data to the next state in the workflow. 

You can trigger a step function using Amazon EventBridge (such as on a schedule or in 
response to something else triggering an EventBridge event event) or can trigger the step 
function on-demand by calling the Step Functions API. 
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The following is an example of a Step Functions state machine:

Figure 3.6 – AWS Step Functions state machine

This state machine performs the following steps:

1. A CloudWatch event is triggered whenever a file is uploaded to a particular Amazon 
S3 bucket, and the CloudWatch event starts our state machine, passing in a JSON 
object that includes the location of the newly uploaded file.

2. The first step, Process Incoming File, runs a Glue Python shell job that takes the 
location of the uploaded file as input and processes the incoming file (for example, 
converting from CSV to Parquet format). The output of the Python function 
indicates whether the file processing succeeded or failed, and if succeeded it also 
includes the S3 path where the Parquet file was written. This information is included 
in the JSON passed to the next step.

3. The Did Job Succeed? step is of type Choice. It examines the JSON data passed to 
the step, and if the jobStatus field is set to succeeded, it branches to Run AWS 
Glue Crawler. If the jobStatus field is set to failed, it branches to Job Failed.
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4. In the Run AWS Glue Crawler step, a Lambda function is triggered, which in 
turn triggers an AWS Glue Crawler to run against the location where the previous 
Lambda function had written the Parquet file. Note that Step Functions can directly 
trigger the running of a Glue job but currently does not support directly running  
a Glue Crawler, which is why we use a Lambda function to trigger the Crawler.

5. The Job Failed step stops the execution of the state machine and marks the 
execution as a failure.

6. Outside of the dotted line box in Figure 3.6 we can perform error handling. We 
have a catch statement in our state machine that detects whether the state machine 
execution is in an error state, and if it is, it runs the Error step.

7. In the Error step, a Lambda function is triggered that sends out a notification  
to the data engineering team to indicate that file processing failed.

Overview of Amazon managed workflows for Apache 
Airflow
Apache Airflow is a popular open source solution for orchestrating complex data 
engineering workflows. It was created by Airbnb in 2014 to help their internal teams 
manage their increasingly complex workflows and became a top-level Apache project  
in 2019.

Airflow enables users to create processing pipelines programmatically (using the Python 
programming language) and provides a user interface to monitor the execution of the 
workflows. Complex workflows can be created, and Airflow includes support for a wide 
variety of integrations, including integrations with services from AWS, Microsoft Azure, 
Google Cloud Platform, and others.

However, installing and configuring Apache Airflow in a way that can support the 
resilience and scaling required for large production environments is complex, and 
maintaining and updating the environment can be challenging. As a result, AWS created 
Managed Workflows for Apache Airflow (MWAA), which enables users to easily  
deploy a managed version of Apache Airflow that can automatically scale out additional 
workers as demand on the environment increases, and scale in the number of workers  
as demand decreases.
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An MWAA environment consists of the following components:

• Scheduler: The scheduler runs a multithreaded Python process that controls what 
tasks need to be run, and where and when to run those tasks.

• Worker/executor: The worker/s execute/s tasks. Each MWAA environment 
contains at least one worker, but when configuring the environment, you can specify 
the maximum number of additional workers that should be made available. MWAA 
automatically scales out the number of workers up to that maximum, but will also 
automatically reduce the number of workers as tasks are completed and if no new 
tasks need to run. The workers are linked to your VPC (the private network in  
your AWS account).

• Meta-database: This runs in the MWAA service account and is used to track the 
status of tasks.

• Web server: The web server also runs in the MWAA service account and provides a 
web-based interface that users can use to monitor and execute tasks.

Note that even though the meta-database and web server run in the MWAA service 
account, there are separate instances of these for every MWAA environment, and there are 
no components of the architecture that are shared between different MWAA environments.

When migrating from an on-premises environment where you already run Apache 
Airflow, or if your team already has Apache Airflow skills, then the MWAA service should 
be considered for managing your data processing pipelines and workflows in AWS. 
However, it is important to note that while this is a managed service (meaning that AWS 
deploys the environment for you and upgrades the Apache Airflow software), it is not a 
serverless environment.

With MWAA, you select a core environment size (small, medium, or large), and are 
charged based on the environment size, plus a charge for the amount of storage used by 
the meta-database and for any additional workers you make use of. Whether you run one 
5-minute job per day, or run multiple simultaneous jobs 24 hours a day, 7 days a week, the 
charge for your core environment will remain the same. With serverless environments, 
such as Amazon Step Functions, billing is based on a consumption model, so there is no 
underlying monthly charge.
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AWS services for consuming data
Once the data has been transformed and optimized for analytics, the various data 
consumers in an organization need easy access to the data via a number of different 
types of interfaces. Data scientists may want to use standard SQL queries to query the 
data, while data analysts may want to both query the data in place using SQL and also 
load subsets of the data into a high-performance data warehouse for low-latency, high-
concurrency queries and scheduled reporting. Business users may prefer accessing data 
via a visualization tool that enables them to view data represented as graphs, charts, and 
other types of visuals.

In this section, we introduce a number of AWS services that enable different types of data 
consumers to work with our optimized datasets. We don't cover all services that can be 
used to consume data in this section, but instead highlight the primary services relevant 
to the data engineering role.

Overview of Amazon Athena for SQL queries in the 
data lake
Amazon Athena is a serverless solution for using standard SQL queries to query data 
that exists in a data lake, or in other data sources. As soon as a dataset has been written 
to Amazon S3 and cataloged in the AWS Glue Data Catalog, users can run complex SQL 
queries against the data without needing to set up or manage any infrastructure.

What is SQL?
Structured Query Language (SQL) is a standard language used to query 
relational datasets. A person proficient in SQL can draw information out of 
very large relational datasets easily and quickly, combining different tables, 
filtering results, and performing aggregations.

Data scientists and data analysts frequently use SQL to explore and better understand 
datasets that may be useful to them. Enabling these data consumers to query the data in 
an Amazon S3 data lake, without needing to first load the data into a traditional database 
system, increases productivity and flexibility for these data consumers.
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Many tools are designed to interface with data via SQL, and these tools often connect  
to the SQL data source using either a JDBC or ODBC database connection. Amazon 
Athena enables a data consumer to query datasets in the data lake (or other connected 
data sources) through the AWS Management Console interface, or through a JDBC or 
ODBC driver.

Graphical SQL query tools, such as SQL Workbench, can connect to Amazon Athena  
via the JDBC driver, and you can programmatically connect to Amazon Athena and run 
SQL queries in your code through the ODBC driver.

Athena Federated Query, a feature of Athena, enables you to build connectors so that 
Athena can query other data sources, beyond just the data in an S3 data lake. Amazon 
provides a number of pre-built open source connectors for Athena, enabling you to 
connect Athena to sources such as Amazon DynamoDB (a NoSQL database), as well 
as other Amazon-managed relational database engines, and even Amazon CloudWatch 
Logs, a centralized logging service. Using this functionality, a data consumer can run a 
query using Athena that gets active orders from Amazon DynamoDB, references that data 
against the customer database running on PostgreSQL, and then brings in historical order 
data for that customer from the S3 data lake – all in a single SQL statement.

Overview of Amazon Redshift and Redshift 
Spectrum for data warehousing and data lakehouse 
architectures
Data warehousing is not a new concept or technology (as we discussed in Chapter 2,  
Data Management Architectures for Analytics), but Amazon Redshift was the first cloud-
based data warehouse to be created. Launched in 2012, it was AWS's fastest-growing 
service by 2015, and today there are tens of thousands of customers that use it.

A Redshift data warehouse is designed for reporting and analytic workloads, commonly 
referred to as Online Analytical Processing (OLAP) workloads. Redshift provides a 
clustered environment that enables all the compute nodes in the cluster to work with 
portions of the data involved in a SQL query, helping to provide the best performance 
for scenarios where you are working with data that has been stored in a highly structured 
manner, and you need to do complex joins across multiple large tables on a regular basis. 
As a result, Redshift is an ideal query engine for reporting and visualization services that 
need to work with large datasets.
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A typical SQL query that runs against a Redshift cluster would be likely to retrieve data 
from hundreds or thousands, or even millions, of rows in the database, often performing 
complex joins between different tables, and likely doing calculations such as aggregating, 
or averaging, certain columns of data. The queries run against the data warehouse will 
often be used to answer questions such as "What was the average sale amount for sales in 
our stores last month, broken down by each ZIP code of the USA?", or "Which products, 
across all of our stores, have seen a 20% increase in sales between Q4 last year and Q1  
of this year?".

In a modern analytic environment, a common use case for a data warehouse would be to 
load a subset of data from the data lake into the warehouse, based on which data needs to 
be queried most frequently and which data needs to be used for queries requiring the best 
possible performance.

In this scenario, a data engineer may create a pipeline to load customer, product, sales, 
and inventory data into the data warehouse on a daily basis. Knowing that 80% of the 
reporting and queries will be on the last 12 months of sales data, the data engineer  
may also design a process to remove all data that's more than 12 months old from  
the data warehouse.

But what about the 20% of queries that need to include historical data that's more than 
12 months old? That's where Redshift Spectrum comes in, a feature of Amazon Redshift 
that enables a user to write a single query that queries data that has been loaded into the 
data warehouse, as well as data that exists outside the data warehouse, in the data lake. To 
enable this, the data engineer can configure the Redshift cluster to connect with the AWS 
Glue Data Catalog, where all the databases and tables for our data lake are defined. Once 
that has been configured, a user can reference both internal Redshift tables and tables 
registered in the Glue data catalog.
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The following diagram shows the Redshift and Redshift Spectrum architecture:

Figure 3.7 – Redshift architecture

In the preceding diagram, we can see that a user connects to the Redshift leader node (via 
JDBC or ODBC). This node does not query data directly but is effectively the central brain 
behind all the queries that do run on the cluster. In a scenario where a user is running a 
query that needs to query both current (last 12 months of) sales data, as well as historical 
sales data, the process works as follows:

1. Using a SQL client, the user makes a connection and authenticates with the Redshift 
leader node, and sends through a SQL statement that queries both the current_
sales table (a table in which the data exists within the Redshift cluster and contains 
the past 12 months of sales data) and the historical_sales table (a table that is 
registered in the Glue data catalog, and where the data files are located in the Amazon 
S3 data lake, which contains historical sales data going back 10 years).

2. The leader node analyzes and optimizes the query, compiles a query plan, and 
pushes individual query execution plans to the compute nodes in the cluster.
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3. The compute nodes query data they have locally (for the current_sales table) 
and query the AWS Glue Data Catalog to gather information on the external 
historical_sales table. Using the information they gathered, they can 
optimize queries for the external data and push those queries out to the Redshift 
Spectrum layer.

4. Redshift Spectrum is outside of a customer's Redshift cluster and is made up of 
thousands of worker nodes (Amazon EC2 compute instances) in each AWS Region. 
These worker nodes are able to scan, filter, and aggregate data from the files in 
Amazon S3, and then stream results back to the Amazon Redshift cluster.

5. The Redshift cluster performs final operations to join and merge data, and then 
returns the results to the user's SQL client.

Overview of Amazon QuickSight for visualizing data
"A picture is worth a thousand words" is a common saying, and is a sentiment that most 
business users would strongly agree with. Imagine for a moment that you are a busy sales 
manager, and it's Monday morning and you need to quickly determine how your various 
sales territories performed last quarter before your 9 a.m. call.

Your one option is to receive a detailed spreadsheet showing the specific sales figures 
broken down by territory and segment, as per Figure 3.8:

Figure 3.8 – SALES Table showing sales data by territory and segment
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The other option you have is to receive a graphical representation of the data in the form 
of a bar graph, as shown in Figure 3.9. Within the interface, you can filter data by territory 
and market segment, and also drill down to get more detailed information:

Figure 3.9 – Sample graph showing sales data by territory and segment

Most people would prefer the graphical representation of the data, as they can easily 
visually compare sales between quarters, segments, and territories, or identify the top sales 
territory and segment with just a glance. As a result, the use of business intelligence tools, 
which provide visual representations of complex data, is extremely popular in the business 
world.

Amazon QuickSight is a service from AWS that enables the creation of these types of 
complex visualizations, but beyond just providing static visuals, the charts created by 
QuickSight enable users to filter data and drill down to get further details. For example, 
our sales manager could filter the visual to just see the numbers from Q4, or to just see 
the enterprise segment. The user could also drill down into the Q4 data for the enterprise 
segment in the West territory to see sales by month, for example. 

Amazon QuickSight is serverless, which means there are no servers for the organization 
to set up or manage, and there is a simple monthly fee based on the user type (either an 
author, who can create new visuals, or a reader, who can view visuals created by authors).

A data engineer can configure QuickSight to access data from a multitude of sources, 
including accessing data in an Amazon S3-based data lake via integration with Amazon 
Athena.
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In the next section, we wrap up the chapter by getting hands-on with building a simple 
transformation that converts a CSV file into Parquet format, using Lambda to perform the 
transformation.

Hands-on – triggering an AWS Lambda 
function when a new file arrives in an S3 
bucket
In the hands-on portion for this chapter, we're going to configure an S3 bucket to 
automatically trigger a Lambda function whenever a new file is written to the bucket. In 
the Lambda function, we're going to make use of an open source Python library called 
AWS Data Wrangler, created by AWS Professional Services to simplify common ETL 
tasks when working in an AWS environment. We'll use the AWS Data Wrangler library to 
convert a CSV file into Parquet format, and then update the AWS Glue Data Catalog. 

Creating a Lambda layer containing the AWS Data 
Wrangler library
Lambda layers allow your Lambda function to bring in additional code, packaged as a 
.zip file. In our use case, the Lambda layer is going to contain the AWS Data Wrangler 
Python library, which we can then attach to any Lambda function where we want to use 
the library.

To create a Lambda layer, do the following:

1. Access the 2.10.0 version of the AWS Data Wrangler library in GitHub at 
https://github.com/awslabs/aws-data-wrangler/releases. Under 
Assets, download the awswrangler-layer-2.10.0-py3.8.zip file to your 
local drive. 

2. Log in to the AWS Management Console as the administrative user you created 
in Chapter 1, An Introduction to Data Engineering (https://console.aws.
amazon.com).

3. Make sure that you are in the region that you have chosen for performing the 
hands-on sections in this book. The examples in this book use the us-east-2 
(Ohio) region.

4. In the top search bar of the AWS console, search for and select the Lambda service.
5. In the left-hand menu, under Additional Resources, select Layers, and then click 

on Create layer.

https://github.com/awslabs/aws-data-wrangler/releases
https://console.aws.amazon.com
https://console.aws.amazon.com
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6. Provide a name for the layer (for example, awsDataWrangler210_python38), 
an optional description, and then upload the .zip file you downloaded from 
GitHub. For Compatible runtimes – optional, select Python 3.8 and then click 
Create. The following screenshot shows the configuration for this step:

Figure 3.10 – Creating and configuring an AWS Lambda layer

By creating a Lambda layer for the AWS Data Wrangler library, we can use AWS Data 
Wrangler in any of our Lambda functions just by ensuring this Lambda layer is attached 
to the function.
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Creating new Amazon S3 buckets
In this step, we create new Amazon S3 buckets. In a subsequent step, we will create a 
Lambda function that is automatically triggered whenever a new file is uploaded to the 
source bucket and writes out a transformed version of that file to the target bucket. As 
discussed in Chapter 2, Data Management Architectures for Analytics, it is common for 
data lakes to have multiple zones for the data to move through. In this section, we create 
a bucket to be our landing zone (for ingestion of raw files), and a clean zone (for files that 
have undergone initial processing and optimization).

To create the new Amazon S3 buckets, follow these steps:

1. Log in to the AWS Management Console as the administrative user you created 
in Chapter 1, An Introduction to Data Engineering (https://console.aws.
amazon.com), and ensure you are in the region you have chosen for performing 
the hands-on sections in this book.

2. In the top search bar, search for and select the S3 service, and then click on  
Create bucket.

3. Provide a name for your source bucket (for example, dataeng-landing-zone-
<initials>). This is where we will upload a file later and have it trigger our 
Lambda function.

Remember that bucket names need to be globally unique (not just unique within 
your account), so if you receive an error when creating the bucket, modify your 
bucket name to ensure it is unique (such as adding additional letters or numbers  
to your initials).

4. Ensure that your bucket is being created in the region you have chosen to use for 
the exercises in this book.

5. Accept all other defaults and click Create bucket.

Repeat these steps, but this time we create an Amazon S3 bucket for writing out our newly 
transformed files, so provide a bucket name similar to the following: dataeng-clean-
zone-<initials>.

https://console.aws.amazon.com
https://console.aws.amazon.com
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Creating an IAM policy and role for your Lambda 
function
In this section, we are setting up a Lambda function to be triggered every time a new file 
is uploaded to a specific Amazon S3 bucket. For this to work, we need to ensure that our 
Lambda function has the following permissions:

• Read our source S3 bucket (for example, dataeng-landing-zone-
<initials>)

• Write to our target S3 bucket (for example, dataeng-clean-zone-
<initials>)

• Write logs to Amazon CloudWatch

• Access to all Glue API actions (to enable the creation of new databases and tables)

To create a new AWS IAM role with these permissions, follow these steps:

1. From the Services dropdown, select the IAM service, and in the left-hand menu, 
select Policies and then click on Create policy. 

2. By default, the Visual editor tab is selected, so click on JSON to change to the  
JSON tab.

3. Provide the JSON code from the following code blocks, replacing the boilerplate 
code. Note that you can also copy and paste this policy by accessing the policy 
on this book's GitHub page. Note that if doing a copy and paste from the GitHub 
copy of this policy, you must replace dataeng-landing-zone-<initials> 
with the name of the source bucket you created in the previous step and replace 
dataeng-clean-zone-<initials> with the name of the target bucket you 
created in the previous step.

This first block of the policy configures the policy document and provides 
permissions for using CloudWatch log groups, log streams, and log events:

{

    "Version": "2012-10-17",

    "Statement": [

        {

            "Effect": "Allow",

            "Action": [

                "logs:PutLogEvents",

                "logs:CreateLogGroup",

                "logs:CreateLogStream"
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            ],

            "Resource": "arn:aws:logs:*:*:*"

        },

This next block of the policy provides permissions for all Amazon S3 actions  
(get and put) that are in the Amazon S3 bucket specified in the resource section  
(in this case, our clean-zone and landing-zone buckets). Make sure you replace 
dataeng-clean-zone-<initials> and dataeng-landing-zone-
<initials> with the name of the S3 buckets you created in a previous step:

        {

            "Effect": "Allow",

            "Action": [

                "s3:*"

            ],

"Resource": [

                "arn:aws:s3:::dataeng-landing-zone-
INITIALS/*",

                "arn:aws:s3:::dataeng-landing-zone-
INITIALS",

                "arn:aws:s3:::dataeng-clean-zone-
INITIALS/*",

                "arn:aws:s3:::dataeng-clean-zone-
INITIALS"

            ]

        },

In the final statement of the policy, we provide permissions to use all AWS Glue 
actions (create job, start job, and delete job). Note that in a production environment, 
you should limit the scope specified in the resource section:

        {

            "Effect": "Allow",

            "Action": [

                "glue:*"

            ],

            "Resource": "*"

        }
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    ]

}

4. Click on Next Tags, and then Next: Review.
5. Provide a name for the policy, such as DataEngLambdaS3CWGluePolicy, and 

then click Create policy.
6. In the left-hand menu, click on Roles and then Create role.
7. For trusted entity, ensure AWS service is selected, and for service, select Lambda 

and then click Next: Permissions. In Step 4 of the next section (Creating a Lambda 
function), we will assign this role to our Lambda function. 

8. Under Attach permissions, select the policy we just created (for example, 
DataEngLambdaS3CWGluePolicy) by searching and then clicking in the tick 
box. Then click Next: Tags.

9. Provide any tags you would like associated with this policy (optional) and click 
Next: Review.

10. Provide a role name, such as DataEngLambdaS3CWGlueRole, and click  
Create role.

Creating a Lambda function 
We are now ready to create our Lambda function that will be triggered whenever a  
CSV file is uploaded to our source S3 bucket. The uploaded CSV file will be converted  
to Parquet, written out to the target bucket, and added to the Glue catalog using AWS 
Data Wrangler:

1. In the AWS console, from the Services dropdown, select the Lambda service, and 
in the left-hand menu select Functions and then click Create function.

2. Select Author from scratch and provide a function name (such as 
CSVtoParquetLambda).

3. For Runtime, select Python 3.8 from the drop-down list.
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4. Expand Change default execution role and select Use an existing role. From 
the drop-down list, select the role you created in the previous section (such as 
DataEngLambdaS3CWGlueRole):

Figure 3.11 – Creating and configuring a Lambda function
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5. Do not change any of the advanced settings and click Create function.
6. Click on Layers in the first box, and then click Add a layer in the second box.
7. Select Custom layers, and from the dropdown, select the AWS Data Wrangler layer 

you create in a previous step (such as aawsDataWrangler210_python38). 
Select the latest version and then click Add:

Figure 3.12 – Adding an AWS Lambda layer to an AWS Lambda function

8. Click on your function name (such as CSVtoParquetLambda) in the first block, 
and then scroll down to the Code Source section. The following code can be 
downloaded from this book's GitHub repository. Make sure to replace any existing 
code in lambda_function with this code.
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In the first few lines of code, we import boto3 (the AWS Python SDK), 
awswrangler (which is part of the AWS Data Wrangler library that we added as  
a Lambda layer), and a function from the urllib library called unquote_plus:

import boto3

import awswrangler as wr

from urllib.parse import unquote_plus

We then define our main function, lambda_handler, which is called when the 
Lambda function is executed. The event data contains information such as the S3 
object that was uploaded and was the cause of the trigger that ran this function. 
From this event data, we get the S3 bucket name and the object key. We also set the 
Glue catalog db_name and table_name based on the path of the object that was 
uploaded. 

def lambda_handler(event, context):

    # Get the source bucket and object name as passed to 
the Lambda function

    for record in event['Records']:

        bucket = record['s3']['bucket']['name']

        key = unquote_plus(record['s3']['object']['key'])

    

    # We will set the DB and table name based on the last 
two elements of 

    # the path prior to the file name. If key = 'dms/
sakila/film/LOAD01.csv',

    # then the following lines will set db to sakila and 
table_name to 'film'

    key_list = key.split("/")

    print(f'key_list: {key_list}')

    db_name = key_list[len(key_list)-3]

    table_name = key_list[len(key_list)-2]
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We now print out some debug type information that will be captured in our 
Lambda function logs. This includes information such as the Amazon S3 bucket  
and key that we are processing. We then set the output_path value here, which 
is where we are going to write the Parquet file that this function creates. Make sure 
to change the output_path value of this code to match the name of the target S3 
bucket you created earlier:

    print(f'Bucket: {bucket}')

    print(f'Key: {key}')

    print(f'DB Name: {db_name}')

    print(f'Table Name: {table_name}')

    

    input_path = f"s3://{bucket}/{key}"

    print(f'Input_Path: {input_path}')

    output_path = f"s3://dataeng-clean-zone-INITIALS/{db_
name}/{table_name}"

    print(f'Output_Path: {output_path}')

We can then use the AWS Data Wrangler library (defined as wr in our function) 
to read the CSV file that we received. We read the contents of the CSV file into a 
pandas DataFrame we are calling input_df. We also get a list of current Glue 
databases, and if the database we want to use does not exist, we create it:

    input_df = wr.s3.read_csv([input_path])

    

    current_databases = wr.catalog.databases()

    wr.catalog.databases()

    if db_name not in current_databases.values:

        print(f'- Database {db_name} does not exist ... 
creating')

        wr.catalog.create_database(db_name) 
    else:

        print(f'- Database {db_name} already exists')
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Finally, we can use the AWS Data Wrangler library to create a Parquet file 
containing the data we read from the CSV file. For the S3 to Parquet function,  
we specify the name of the dataframe (input_df) that contains the data we 
want to write out in Parquet format. We also specify the S3 output path, the Glue 
database, and the table name:

    result = wr.s3.to_parquet(

        df=input_df, 

        path=output_path, 

        dataset=True,

        database=db_name,

        table=table_name,

        mode="append")

        

    print("RESULT: ")

    print(f'{result}')

    

    return result

9. Click on Deploy.
10. Click on the Configuration tab, and on the left-hand side click on General 

configuration. Click the Edit button and modify the Timeout to be 1 minute (the 
default timeout of 3 seconds is likely to be too low to convert some files from CSV 
to Parquet format).

Configuring our Lambda function to be triggered by  
an S3 upload
Our final task is to configure the Lambda function so that whenever a CSV file is 
uploaded to our landing zone bucket, the Lambda function runs and converts the  
file to Parquet format:

1. In the Function Overview box of our Lambda function, click on Add trigger.
2. For Trigger configuration, select the Amazon S3 service from the drop-down list.
3. For Bucket, select your landing zone bucket (for example, dataeng-landing-

zone-<initials>).
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4. We want our rule to trigger whenever a new file is created in this bucket, no matter 
what method is used to create it (Put, Post, or Copy), so select All object create 
events from the list.

5. For suffix, enter .csv. This will configure the trigger to only run the Lambda 
function when a file with a .csv extension is uploaded to our landing-zone bucket. 

6. Acknowledge the warning about Recursive invocation that can happen if you set 
up a trigger on a specific bucket to run a Lambda function, and then you get your 
Lambda function to create a new file in that same bucket and path. This is a good 
time to double-check and make sure that you are configuring this trigger on the 
LANDING ZONE bucket (for example, dataeng-landing-zone-<initials>) 
and not the target CLEAN ZONE bucket that our Lambda function will write to:

Figure 3.13 – Configuring an S3-based trigger for an AWS Lambda function
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7. Click Add to create the trigger.
8. Create a simple CSV file called test.csv that you can use to test the trigger. 

Ensure that the first line has column headings, as per the following example:

Name,favorite_num

Gareth,23

Tracy,28

Chris,16

Emma,14

Ensure you create the file with a standard text editor, and not Word processing 
software (such as Microsoft Word) or any other software that will add additional 
formatting to the file. 

9. Upload your test file to your source S3 bucket by running the following on the 
command line. Make sure to replace dataeng-landing-zone-initials  
with the name of the source bucket you created previously:

aws s3 cp test.csv s3://dataeng-landing-zone-initials/
testdb/csvparquet/test.csv

10. If everything has been configured correctly, your Lambda function will have been 
triggered and will have written out a Parquet-formatted file to your target S3 bucket 
and created a Glue database and table. You can access the Glue service in the AWS 
Management Console to ensure that a new database and table have been created 
and can run the following command at the command prompt to ensure that a 
Parquet file has been written to your target bucket. Make sure to replace dataeng-
clean-zone-initials with the name of your target S3 bucket:

aws s3 ls s3://dataeng-clean-zone-initials/testdb/
csvparquet/

The result of this command should display the Parquet file that was created by the  
Lambda function.
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Summary
In this chapter, we covered a lot! We reviewed a range of AWS services at a high level, 
including services for ingesting data from a variety of sources, services for transforming 
data, and services for consuming and working with data.

We then got hands-on, building a solution in our AWS account that converted a file from 
CSV format to Parquet format and registered the data in the AWS Glue Data Catalog.

In the next chapter, we cover a really important topic that all data engineers need to have 
a good understanding of and that needs to be central to every project that a data engineer 
works on, and that is security and governance.



4
Data Cataloging, 

Security, and 
Governance

There is probably no more important topic to cover in a book that deals with data than 
data security and governance (and the related topic of data cataloging). Having the most 
efficient data pipelines, the fastest data transformations, and the best data consumption 
tools is not worth much if the data is not kept secure. Also, data storage must comply with 
local laws for how the data should be handled, and the data needs to be cataloged so that  
it is discoverable and useful to the organization. 

Sadly, it is not uncommon to read about data breaches and poor data handling by 
organizations, and the consequences of this can include reputational damage to the 
organization, as well as potentially massive penalties imposed by the government.

In this chapter, we will do a deeper dive into the important considerations around best 
practices for handling data responsibly. We will cover the following topics:

• Getting data security and governance right

• Cataloging your data to avoid the data swamp

• The AWS Glue/Lake Formation data catalog



98     Data Cataloging, Security, and Governance

• AWS services for data encryption and security monitoring

• AWS services for managing identity and permissions

• Hands-on – configuring Lake Formation permissions

Technical requirements
To complete the hands-on exercises included in this chapter, you will need an AWS 
account where you have access to a user with administrator privileges (as covered in 
Chapter 1, An Introduction to Data Engineering).

You can find the code files of this chapter in the GitHub repository using the following 
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter04

Getting data security and governance right
Data security dictates how an organization should protect data to ensure that data is 
stored securely (such as in an encrypted state) and that access by unauthorized entities is 
prevented. For example, all the things an organization does to prevent falling victim to a 
ransomware attack, or having their data stolen and sold on the dark web, falls under data 
security. 

Data governance, on the other hand, is related to ensuring that only people that need 
access to specific datasets have that access (such as ensuring that data is not just generally 
open to all users of a system without considering whether they need access to that data 
to perform their job). Governance also applies to ensuring that an organization only uses 
and processes data on individuals in approved ways and that organizations provide data 
disclosures as required by law.  

Not providing adequate protection and security of an organization's data, or not 
complying with relevant governance laws, can end up being a very expensive mistake  
for an organization.

According to an article on CSO Online titled The biggest data breach fines, penalties, 
and settlements so far (https://www.csoonline.com/article/3410278/
the-biggest-data-breach-fines-penalties-and-settlements-so-
far.html), penalties and expenses related to data breaches have cost companies over 
$1.3 billion.

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter04
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter04
https://www.csoonline.com/article/3410278/the-biggest-data-breach-fines-penalties-and-settlements-so-far.html
https://www.csoonline.com/article/3410278/the-biggest-data-breach-fines-penalties-and-settlements-so-far.html
https://www.csoonline.com/article/3410278/the-biggest-data-breach-fines-penalties-and-settlements-so-far.html
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For example, Equifax, the credit agency firm, had a data breach in 2017 that exposed 
the personal and financial information of nearly 150 million people. As a result, Equifax 
agreed to pay at least $575 million in a settlement with several United States government 
agencies, and U.S. States.

But beyond financial penalties, a data breach can also do incalculable damage to an 
organization's reputation and brand. Once you lose the trust of your customers, it can be 
very difficult to earn that trust back.

Beyond data breaches where personal data is stolen from an organization's system, failure 
to comply with local regulations can also be costly. There are an increasing number of laws 
that define under what conditions a company may collect, store, and process personal 
information. Not complying with these laws can result in significant penalties for an 
organization, even in the absence of a data breach.

For example, Google was hit with a fine of more than $50 million for failing to adequately 
comply with aspects of a European regulation known as the General Data Protection 
Regulation (GDPR). Google appealed the decision, but in 2020, the decision was  
upheld by the courts, leaving the penalty on Google in place.

Common data regulatory requirements
No matter where you operate in the world, there are very likely several regulations 
concerning data privacy and protection that you need to be aware of, and plan for,  
as a data engineer. A small selection of these include the following:

• The General Data Protection Regulation (GDPR) in the European Union

• The existing California Consumer Privacy Act (CCPA) and the recently passed 
California Privacy Rights Act (CPRA) in California, USA

• The Personal Data Protection Bill (PDP Bill) in India

• The Protection of Personal Information Act (POPIA) in South Africa

These laws can be complex and cover many different areas, which is far beyond the scope 
of this book. However, generally, they involve individuals having the right to know what 
data a company holds about them; ensuring adequate protection of personal information 
that the organization holds; enforcing strict controls around data being processed; and 
in some cases, the right of an individual to request their data being deleted from an 
organization's system.

In the case of GDPR, an organization is subject to the regulations if they hold data on any 
resident of the European Union, even if the organization does not have a legal presence in 
the EU.
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In addition to these broad data protection and privacy regulations, many regulations  
apply additional requirements to specific industries or functions. Let's take a look at  
some examples:

• The Health Insurance Portability and Accountability Act (HIPAA), which applies 
to organizations that store an individual's healthcare and medical data

• The Payment Card Industry Data Security Standard (PCI DSS), which applies  
to organizations that store and process credit card data

Understanding what these regulations require and how best to comply with them is often 
complex and time-consuming. While, in this chapter, we will look at general principles 
that can be applied to protect data used in analytic pipelines, this chapter is not intended 
as a guide on how to comply with any specific regulation.

GDPR specifies that in certain cases, an organization must appoint a Data Protection 
Officer (DPO). The DPO is responsible for training staff involved in data processing and 
conducting regular audits, among other responsibilities.

If your organization has a DPO, ensure you set up a time to meet with the DPO to fully 
understand the regulations that may apply to your organization and how this may affect 
analytic data. Alternatively, work with your Chief Information Security Officer (CISO) 
to ensure your organization seeks legal advice on which data regulations may apply.

If you must participate in a compliance audit for an analytic workload running in AWS, 
review the AWS Artifact (https://aws.amazon.com/artifact/) service, a self-
service portal for on-demand access to AWS's compliance reports.

Core data protection concepts
There are several concepts and terminology related to protecting data that are important 
for a data engineer to understand. In this section, we will briefly define some of these.

Personally identifiable information (PII)
Personally identifiable information (PII) is a term commonly used in North America 
to reference any information that can be used to identify an individual. This can refer 
to either the information on its own being able to identify an individual or where the 
information can be combined with other linkable information to identify an individual.  
It includes information such as full name, social security number, IP address, and  
photos or videos.

PII also covers data that provides information about a specific aspect of an individual 
(such as a medical condition, location, or political affiliation).

https://aws.amazon.com/artifact/
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Personal data
Personal data is a term that is defined in GDPR and is considered to be similar to, but 
broader than, the definition of PII. Specifically, GDPR defines personal data as follows:

"Any information relating to an identified or identifiable natural person 
("data subject"); an identifiable natural person is one who can be identified, 

directly or indirectly, in particular by reference to an identifier such as a 
name, an identification number, location data, an online identifier or to 

one or more factors specific to the physical, physiological, genetic, mental, 
economic, cultural or social identity of that natural person."

GDPR, Article 4, Definitions (https://eur-lex.europa.eu/legal-content/
EN/TXT/HTML/?uri=CELEX:32016R0679#d1e1374-1-1).

Encryption
Encryption is a mathematical technique of encoding data using a key in such a way that 
the data becomes unrecognizable and unusable. An authorized user who has the key 
used to encrypt the data can use the key to decrypt the data and return it to its original 
plaintext form.

Encrypted data may be able to be decrypted by a hacker without the key through the use 
of advanced computational resources, skills, and time. However, a well-designed and 
secure encryption algorithm increases the difficulty of decrypting the data without the 
key, increasing the security of the encrypted data.

There are two important types of encryption and both should be used for all data  
and systems:

• Encryption in transit: This is the process of encrypting data as it moves between 
systems. For example, a system that migrates data from a database to a data lake 
should ensure that the data is encrypted before being transmitted, that the source 
and target endpoints are authenticated, and the data can then be decrypted at the 
target for processing. This helps ensure that if someone can intercept the data 
stream during transmission, that the data is encrypted and therefore unable to be 
read and used by the person who intercepted the data. A common way to achieve 
this is to use the Transport Layer Security (TLS) protocol for all communications 
between systems.

• Encryption at rest: This is the encryption of data that is written to a storage 
medium, such as a disk. After each phase of data processing, all the data that is 
persisted to disk should be encrypted.

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679#d1e1374-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679#d1e1374-1-1
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Encryption (in transit and at rest) is a key tool for improving the security of your data, but 
other important tools should also be considered, as covered in the subsequent sections. 

Anonymized data
Anonymized data is data that has been altered in such a way that personal data is 
irreversibly de-identified, rendering it impossible for any PII data to be identified. For 
example, this could involve replacing PII data with randomly generated data, in such a 
way that the randomization cannot be reversed to recreate the original data.

Another way anonymization can be applied is to remove most of the PII data so that only 
a few attributes that may be considered PII remains, but with enough PII data removed 
to make it difficult to identify an individual. However, this contains risk, as it is often 
still possible to identify an individual even with only minimal data. A well-known study 
(https://dataprivacylab.org/projects/identifiability/paper1.
pdf) found that with just ZIP code, gender, and date of birth information, 87% of the 
population in the United States can be uniquely identified.

Pseudonymized data/tokenization
Pseudonymized data is data that has been altered in such a way that personal data is 
de-identified. While this is similar to the concept of anonymized data, the big difference  
is that with pseudonymized data, the original PII data can still be accessed.

Pseudonymized data is defined by GDPR as data that cannot be attributed to a specific 
data subject without the use of separately kept "additional information."

There are multiple techniques for creating pseudonymized data. For example, you can 
replace a full name with a randomly generated token, a different name (so that it looks  
real but is not), a hash representing the name, and more. However, whichever technique  
is used, it must be possible to still access the original data.

One of the most popular ways to do this is to have a tokenization system generate a 
unique, random token that replaces the PII data.

For example, when a raw dataset is ingested into the data lake, the first step may be to 
pass the data through the tokenization system. This system will replace all PII data in the 
dataset with an anonymous token, and will record each real_data | token substitution in 
a secure database. Once the data has been transformed, if a consumer requires access and 
is authorized to access the PII data, they can pass the dataset to the tokenization system  
to be detokenized (that is, have the tokens replaced with the original, real values).

https://dataprivacylab.org/projects/identifiability/paper1.pdf
https://dataprivacylab.org/projects/identifiability/paper1.pdf
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The benefit of a tokenization system is that the generated token is random and does  
not contain any reference to the original value, and there is no way to determine the 
original value just from the token. If there is a data breach that can steal a dataset with 
tokenized data, there is no way to perform reverse engineering on the token to find the 
original value.

However, the tokenization system itself contains all the PII data, along with the associated 
tokens. If an entity can access the tokenized data and is also able to comprise the 
tokenization system, they will have access to all PII data. Therefore, it is important that 
the tokenization system is completely separate from the analytic systems containing the 
tokenized data, and that the tokenization system is protected properly.

On the other hand, hashing is generally considered the least secure method of de-identifying 
PII data, especially when it comes to data types with a limited set of values, such as social 
security numbers and names.

Hashing uses several popular hashing algorithms to create a hash of an original value.  
An original value, such as the name "John Smith," will always return the same hash value 
for a specific algorithm.

However, all possible social security numbers and most names have been passed through 
popular hashing algorithms and lookup tables have been created, known as rainbow 
tables. Using these rainbow tables, anyone can take a hashed name or social security 
number and quickly identify the original value.

For example, if you use the SHA-256 hashing algorithm, the original value of "John Smith" 
will always return "ef61a579c907bbed674c0dbcbcf7f7af8f851538eef7b8e58c5bee0b8cfdac4a".

If you used the SHA-256 hashing algorithm to de-identify your PII data, it would be 
very easy for a malicious actor to determine that the preceding value referenced "John 
Smith" (just try Googling the preceding hash and see how quickly the name John Smith 
is revealed). While there are approaches to improving the security of a hash (such as 
salting the hash by adding a fixed string to the start of the value), it is still generally not 
recommended to use hashing for any data that has a well-known, limited set of values,  
or values that could be guessed.

Authentication
Authentication is the process of validating that a claimed identity is that identity.  
A simple example is when you log in to a Google Mail (Gmail) account. You provide 
your identity (your Gmail email address) and then validate that it is you by providing 
something only you should know (your password), and possibly also a second factor  
of authentication (by entering the code that is texted to your cell phone).
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Authentication does not specify what you can access but does attempt to validate that 
you are who you say you are. Of course, authentication systems are not foolproof. Your 
password may have been compromised on another website, and if you had the same 
password for your Gmail account, someone could use that to impersonate you. If you 
have multi-factor authentication (MFA) enabled, you receive a code on your phone or 
a physical MFA device that you need to enter when logging in, and that helps to further 
secure and validate your identity.

Federated identity is a concept related to authentication and means that responsibility 
for authenticating a user is done by another system. For example, when logging in to the 
AWS Management Console, your administrator could set up a federated identity so that 
you use your Active Directory credentials to log in via your organization's access portal, 
and the organization's Active Directory server authenticates you. Once authenticated, 
the Active Directory server confirms to the AWS Management Console that you have 
been successfully authenticated as a specific user. This means you do not need a separate 
username and password to log in to the AWS system, but that you can use your existing 
Active Directory credentials to be authenticated to an identity in AWS.

Authorization
Authorization is the process of authorizing access to a resource based on a validated 
identity. For example, when you log in to your Google account (where you are 
authenticated by your password, and perhaps a second factor such as a code that is texted 
to your phone), you may be authorized to access that identity's email, and perhaps also  
the Google Calendar and Google Search history for that identity.

For a data analytics system, once you validate your identity with authentication, you need 
to be authorized to access specific datasets. A data lake administrator can, for example, 
authorize you to access data that is in the Conformed Zone of the data lake, but not grant 
you access to data in the Raw Zone.

Putting these concepts together
Getting data protection and governance right does not happen by itself. It is important that 
you plan for and thoughtfully execute the process of protecting and governing your data. 
This will involve using some of the concepts introduced previously, such as the following:

• Making sure PII data is replaced with a token as the first processing step after 
ingestion (and ensuring that the tokenization system is secure).

• Encrypting all data at rest with a well-known and reliable encryption algorithm  
and ensuring that all connections use secure encrypted tunnels (such as by using 
the TLS protocol for all communications between systems).
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• Implementing federated identities where user authorization for analytic systems 
is performed via a central corporate identity provider, such as Active Directory. 
This ensures that, for example, when a user leaves the company and their Active 
Directory account is terminated, their access to analytic systems in AWS is 
terminated as a result.

• Implementing least privilege access, where users are authorized for the minimum 
level of permissions that they need to perform their job.

This is also not something that a data engineer should do in isolation. You should work 
with your organization's security and governance teams to ensure you understand any 
legal requirements for how to process and secure your analytical data. You should also 
regularly review, or audit, the security policies in place for your analytic systems and data.

Cataloging your data to avoid the data swamp
Even if you do protect your data correctly and handle it as required by local regulations,  
if you do not make it easy for your users to find your analytic datasets and understand 
more about those datasets, your analytic data can become a liability.

You have probably heard about swamps, even if you have never actually been to one. 
Generally, swamps are known to be wet areas that smell pretty bad, and where some 
trees and other vegetation may grow, but the area is generally not fit to be used for most 
purposes (unless, of course, you're an ogre similar to Shrek, and you make your home in 
the swamp!).

In contrast to a swamp, when most people think about a lake, they picture beautiful 
scenery with clean water, a beautiful sunset, and perhaps a few ducks gently floating on 
the water. Most people would hate to find themselves in a swamp if they thought they 
were going to visit a beautiful lake.

In the world of data lakes, as a data engineer, you want to provide an experience that is 
much like the pure and peaceful lake described previously, and you want to avoid your 
users finding that the lake looks more like a swamp. However, if you're not careful, your 
data lake can become a data swamp, where there are lots of different pieces of data around, 
but no one is sure what data is there. Then, when they do happen to find some data, they 
don't know where the data came from or whether it can be trusted. Ultimately, a data 
swamp can be a dumping ground for data that is not of much use to anyone.
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How to avoid the data swamp
With some careful upfront planning and the right tools and policies, it is possible to avoid 
the data swamp and instead offer your users a well-structured, easy-to-navigate data lake.

Avoiding the data swamp is easy in theory – you just need two important things:

• A data catalog that can be used to keep a searchable record of all the datasets in  
the data lake

• Policies that ensure useful metadata is added to all the entries in the data catalog

While that may sound pretty straightforward, the implementation details matter and 
things are not always as simple in real life. You need to have well-structured policies to 
ensure all datasets are cataloged, and that a defined set of metadata is always captured 
along with those datasets. Ensuring this is successfully enforced will often require the 
buy-in of senior leadership in the organization.

Data catalogs
A data catalog enables business users to easily find datasets that may be useful to them, 
and to better understand the context around the dataset through metadata.

Broadly speaking, there are two types of data catalogs – business catalogs and technical 
catalogs. However, many catalog tools offer aspects of both business and technical catalogs.

Technical catalogs are those that map data files in the data lake to a logical representation 
of those files in the form of databases and tables. In Chapter 3, The AWS Data Engineers 
Toolkit, we covered the AWS Glue service, which is an example of a data catalog tool with 
a technical focus.

The Hive Metastore is a well-known catalog that stores technical metadata for Hive tables 
(such as the table schema, location, and partition information). These are primarily 
technical attributes of the table, and the AWS Glue data catalog is an example of a  
Hive-compatible Metastore (meaning analytic services designed to work with a Hive 
Metastore catalog can use the Glue catalog).

A technical catalog enables an analytic service to understand the schema of the dataset 
(the physical location of the files that make up the dataset, the columns in a dataset, and 
the data type for each column, for example). This enables the analytic service to run 
queries against the data.

In contrast to technical catalogs, some tools are designed primarily as a business catalog. 
A business catalog focuses on enabling business metadata regarding the datasets to be 
captured and providing a catalog that is easy to search.
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For example, with a business catalog, you may capture details about the following:

• The owner of the dataset

• The business unit that the data relates to

• The source system(s) that the data comes from

• The confidentiality classification of the data (sensitive, confidential, PII, and so on)

• How often the data is updated (hourly, daily, or weekly)

• How this dataset is related to other datasets

Most catalog tools offer a combination of both business and technical catalog 
functionality, although generally, they focus on one aspect more than the other. For 
example, the Glue data catalog is a Hive Metastore-compatible catalog that captures 
information about the underlying physical files and partitions. However, the Glue catalog 
is also able to capture other properties of the data. For example, the Glue catalog can 
capture key/values about a table, and this can be used to record the data owner, whether 
the table contains PII data, and more.

Popular data catalog solutions outside of AWS include the Collibra Data Catalog and  
the Informatica Enterprise Data Catalog.

Organizational policies for capturing metadata
While a catalog provides the ability to capture technical and business metadata about 
the data, it is up to the organization to enforce policies that ensure the right details are 
captured about each dataset.

For example, a policy needs to be enforced that ensures that all the data that is added 
to the data lake is captured in the data catalog. If data is added to the data lake and not 
captured in the catalog, you can very quickly end up with a data swamp – lots of data  
in the data lake but users are unable to find or understand the context of the data that  
is there.

If the technical data is captured in the data catalog but there is no policy to enforce the 
capture of business data, you can still end up with a data swamp. If you have hundreds  
of datasets in the data catalog with technical data but no business context, then it is 
difficult for users to get value from the data. Users will not have any information about 
the source of the data or the details of the dataset owner for them to reach out to with 
additional questions.

Ultimately, you want to have a catalog that users can search to find datasets, and then have 
users be able to examine the metadata to understand the business context of the data.
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The AWS Glue/Lake Formation data catalog
As discussed previously, the AWS Glue catalog is a technical data catalog that can capture 
some business attributes using key/value tags. For example, you can have a key called 
data_owner and an associated value as a tag on each table in the catalog.

Within AWS, there are two services for interacting with the data catalog. So far, we have 
only discussed the AWS Glue service, but the AWS Lake Formation service also provides 
an interface for the same catalog.

It is important to understand that there is only a single data catalog, but that both Glue and 
Lake Formation provide an interface to the catalog. For example, if you set zone:curated 
as a table property on the film_category table in curatedzonedb using the Glue 
console, you will see that same property set when viewing the table using Lake Formation.

Here, we can see the table details for the film_category table in the AWS Glue 
console, and we can see that one of the tags on this dataset is zone:curated:

Figure 4.1 – AWS Glue console showing table properties

If we look at the same table in the Lake Formation catalog, we can also see that the 
zone:curated table property is shown:
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Figure 4.2 – AWS Lake Formation console showing table properties

The Lake Formation console does provide a more modern design, and also provides  
some additional functionality that is not possible with the Glue interface. This includes  
the following:

• The ability to add key/value properties at the column level (with AWS Glue, you can 
only add properties at the table level)

• The ability to configure access permissions at the database, table, and column level 
(more on this later in this chapter)

The data catalog can be referenced by various analytical tools to work with data in the 
data lake. For example, Amazon Athena can reference the data catalog to enable users to 
run queries against databases and tables in the catalog. Athena uses the catalog to get the 
following information, which is required to query data in the data lake:

• The Amazon S3 location where the underlying data files are stored

• Metadata that indicates the file format type for the underlying files (such as CSV  
or Parquet)

• Details of the serialization library, which should be used to serialize the  
underlying data
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• Metadata that provides information about the data type for each column in  
the dataset

• Information about any partitions that are used for the dataset

A data engineer must help put automation in place to ensure that all the datasets that are 
added to a data lake are cataloged and that the appropriate metadata is added.

In Chapter 3, The AWS Data Engineers Toolkit, we discussed AWS Glue Crawlers,  
a process that can be run to examine a data source, infer the schema of the data source,  
and then automatically populate the Glue data catalog with information on the dataset. 

A data engineer should consider building workflows that make use of Glue Crawlers  
to run after new data is ingested, to have the new data automatically added to the data 
catalog. Or, when a new data engineering job is being bought into production, a check  
can be put in place to make sure that the Glue API is used to update the data catalog  
with details of the new data.

Automated methods should also be used to ensure that relevant metadata is added to the 
catalog whenever new data is created, such as by putting a method in place to ensure that 
the following metadata is added, along with all the new datasets:

• Data source

• Data owner

• Data sensitivity (public, general, sensitive, confidential, PII, and so on)

• Data lake zone (raw zone, transformed zone, enriched zone)

• Cost allocation tag (business unit name, department, and so on)

Putting this type of automation in place helps ensure that you continue to build a data lake 
without inadvertently letting the data lake became a data swamp.

AWS services for data encryption and security 
monitoring
Previously, we discussed common data protection concepts, such as data encryption.  
Now, we will look at some of the AWS services that can be used to help protect and  
secure our data.
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AWS Key Management Service (KMS)
AWS KMS simplifies the process of creating and managing security keys for encrypting 
and decrypting data in AWS. The AWS KMS service is a core service in the AWS 
ecosystem, enabling users to easily manage data encryption across several AWS services.

There are a large number of AWS services that can work with AWS KMS to enable data 
encryption, including the following AWS analytical services:

• Amazon AppFlow

• Amazon Athena

• Amazon EMR

• Amazon Kinesis Data Streams/Kinesis Firehose/Kinesis Video Streams

• Amazon Managed Streaming for Kafka (MSK)

• Amazon Managed Workflows for Apache Airflow (MWAA)

• Amazon Redshift

• Amazon S3

• AWS Data Migration Service (DMS)

• AWS Glue/Glue DataBrew

• AWS Lambda

The full list of compatible services can be found at https://aws.amazon.com/kms/
features/#AWS_Service_Integration.

Permissions can be granted to users to make use of the keys for encrypting and decrypting 
data, and all use of AWS KMS keys is logged in the AWS CloudTrail service. This enables 
an organization to easily audit the use of keys to encrypt and decrypt data.

For example, with Amazon S3, you can enable Amazon S3 Bucket Keys, which configures 
an S3 Bucket Key to encrypt all new objects in the bucket with an AWS KMS Key. This 
is significantly less expensive than using Server Side Encryption – KMS (SSE-KMS) to 
encrypt each object in a bucket with a unique key.

To learn more about configuring Amazon S3 Bucket Keys, see https://docs.aws.
amazon.com/AmazonS3/latest/userguide/bucket-key.html.

It is important that you carefully protect your KMS keys and that you put safeguards in 
place to prevent a KMS key from being accidentally (or maliciously) deleted. If a KMS  
key is deleted, any data that has been encrypted with that key is effectively lost and  
cannot be decrypted.

https://aws.amazon.com/kms/features/#AWS_Service_Integration
https://aws.amazon.com/kms/features/#AWS_Service_Integration
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html
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Because of this, you must schedule the deletion of your KMS keys and specify a waiting 
period of between 7 and 30 days before the key is deleted. During this waiting period, the 
key cannot be used, and you can configure a CloudWatch alarm to notify you if anyone 
attempts to use the key.

If you use AWS Organizations to manage multiple AWS accounts as part of an organization, 
you can create a Service Control Policy (SCP) to prevent any user (even an administrative 
user) from deleting KMS keys in child accounts.

Amazon Macie
Amazon Macie is a managed service that uses machine learning, along with pattern 
matching, to discover and protect sensitive data. Amazon Macie identifies sensitive data, 
such as PII data, in an Amazon S3 bucket and provides alerts to warn administrators  
about the presence of such sensitive data. Macie can also be configured to launch an 
automated response to the discovery of sensitive data, such as a step function that runs  
to automatically remediate the potential security risk.

Macie can identify items such as names, addresses, and credit card numbers that exist 
in files on S3. These items are generally considered to be PII data, and as discussed 
previously, these should ideally be tokenized before data processing. Macie can also be 
configured to recognize custom sensitive data types to alert the user on sensitive data that 
may be unique to a specific use case.

Amazon GuardDuty
While Amazon GuardDuty is not directly related to analytics on AWS, it is a powerful 
service that helps protect an AWS account. GuardDuty is an intelligent threat detection 
service that uses machine learning to monitor your AWS account and provide proactive 
alerts about malicious activity and unauthorized behavior.

GuardDuty analyzes several AWS generated logs, including the following:

• CloudTrail S3 data events (a record of all actions taken on S3 objects)

• CloudTrail management events (a record of all usage of AWS APIs within  
an account)

• VPC flow logs (a record of all network traffic within an AWS VPC)

• DNS logs (a record of all DNS requests within your account)

By continually analyzing these logs to identify unusual access patterns or data access, 
Amazon GuardDuty can proactively alert you to potential issues, and also helps you 
automate your response to threats.
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AWS services for managing identity and 
permissions
We previously defined authentication as the process of validating that a claimed identity  
is that identity, and authorization as the process of authorizing access to a resource, based 
on a validated identity.

Within AWS, there are several ways to authenticate an identity, and for analytics on AWS, 
there are two primary ways to manage which identities can access which resources.

AWS Identity and Access Management (IAM) service
AWS IAM is a service that provides both authentication and authorization for the  
AWS Console, command-line interface (CLI), and application programming interface 
(API) calls.

AWS IAM also supports a federation of identities, meaning that you can configure IAM  
to use another identity provider for authentication, such as Active Directory or Okta.

Note that this section is not intended as a comprehensive guide to Identity and Access 
Management on AWS, but it does provide information on foundational concepts that 
are important for anyone working within the AWS cloud to understand. For a deeper 
understanding of the AWS IAM service, refer to the AWS Identity and Access Management 
user guide (https://docs.aws.amazon.com/IAM/latest/UserGuide/
introduction.html).

Several IAM identities are important to understand:

• AWS account root user: When you create an AWS account, you provide an email 
address to be associated with that account, and that email address becomes the 
root user of the account. You can log in to the AWS Management Console using the 
root user, and this user has full access to all the resources in the account. However, 
it is strongly recommended that you do not use this identity to log in and perform 
everyday tasks, but rather create an IAM user for everyday use.

• IAM User: This is an identity that you create and can be used to log in to the AWS 
Console, run CLI commands, or make API calls. An IAM user has a login name and 
password that's used for Console access and can have up to two associated access 
keys that can be used to authenticate this identity when using the AWS CLI or API. 
While you can associate IAM policies directly with an IAM user, the recommended 
method to provide access to AWS resources is to make the user part of a group that 
has relevant IAM policies attached.

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html


114     Data Cataloging, Security, and Governance

• IAM User Groups: An IAM group is used to provide permissions that can be 
associated with multiple IAM users. You provide permissions (via IAM policies) to 
an IAM group, and all the members of that group then inherit those permissions.

• IAM roles: An IAM role can be confusing at first as it is similar to an IAM user. 
However, an IAM role does not have a username or password and you cannot 
directly log in or identify as an IAM role. However, an IAM user can assume the 
identity of an IAM role, taking on the permissions assigned to that role. An IAM 
Role is also used in identity federation, where a user is authenticated by an external 
system, and that user identity is then associated with an IAM role. Finally, an IAM 
role can also be used to provide permissions to AWS resources (for example, to 
provide permissions to an AWS Lambda function so that the Lambda function can 
access specific AWS resources).

To grant authorization to access AWS resources, you can attach an IAM policy to an 
IAM user, IAM group, or IAM role. These policies grant, or deny, access to specific AWS 
resources, and can also make use of conditional statements to further control access.

These identity-based policies are JSON documents that specify the details of access to 
an AWS resource. These policies can either be configured within the AWS Management 
Console, or the JSON documents can be created by hand.

There are three types of identity-based policies that can be utilized:

• AWS managed policies: These are policies that are created and managed 
by AWS and provide permissions for common use cases. For example, the 
AdministratorAccess managed policy provides full access to every service 
and resource in AWS, while the DatabaseAdministrator policy provides 
permissions for setting up, configuring, and maintaining databases in AWS.

• Customer-managed policies: These are policies that you create and manage to 
provide more precise control over your AWS resources. For example, you can create 
a policy and attach it to specific IAM users/groups/roles that provide access to a list 
of specific S3 buckets and limit that access to only be valid during specific hours of 
the day or for specific IP addresses.

• Inline policies: These are policies that are written directly for a specific user, group, 
or role. These policies are tied directly to the user, group, or role, and therefore apply 
to one specific entity only.
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The following policy is an example of a customer-managed policy that grants read access 
to a specific S3 bucket:

{

    "Version": "2012-10-17",

    "Statement": [

        {

            "Effect": "Allow",

            "Action": [

                "s3:ListBucket"

            ],

            "Resource": "arn:aws:s3::: de-landing-zone"

        },

  {

           "Effect": "Allow",

           "Action": [

               "s3:GetObject"

 ],

           "Resource": ["arn:aws:s3::: de-landing-zone/*"]

    }

    ]

}

The policy takes the form of a JSON document. In this instance, the policy does  
the following:

• Allow access (you can also create policies that Deny access).

• Allows access for action of s3:GetObject and s3:ListBucket, meaning 
authorization is given to run the Amazon S3 GetBucket and ListBucket 
actions (via the Console, CLI, or API).

• For ListBucket, the resource is set as the de-landing-zone bucket. For 
GetObject, the resource is set as de-landing-zone/*. This results in the 
principal being granted access to list the de-landing-zone bucket, and read 
access to all the objects inside the de-landing-zone bucket.  
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You could further limit this policy to only be allowed if the user was connecting from  
a specific IP address, at a certain time of day, or various other limitations. For example,  
to limit this permission to users from a specific IP address, you could add the following  
to the policy:

"Condition": {

                "IpAddress": {

                    "aws:SourceIp": [

                        "12.13.15.16/32",

                        "45.44.43.42/32"

                    ]

                }

            }

Once you have created a customer-managed policy, you can attach the policy to specific 
IAM groups, IAM roles, or IAM users.

Traditional data lakes on AWS used IAM policies to control access to data in an Amazon 
S3-based data lake. For example, a policy would be created to grant access to different 
zones of the data lake, and then that policy would be attached to different IAM users, 
groups, or roles.

However, when creating a large data lake that may contain multiple buckets or S3 prefixes 
that relate to specific business units, it can be challenging to manage S3 permissions 
through these JSON policies. Each time a new data lake location is created, the data 
engineer would need to make sure that the JSON policy document was updated to 
configure permissions for the new location.

To make managing large S3-based data lakes easier, AWS introduced a new service called 
AWS Lake Formation, which enables permissions for the data lake to be controlled by  
the data lake administrator from within the AWS Management Console (or via the AWS 
CLI or AWS API).

Using AWS Lake Formation to manage data lake access
AWS Lake Formation is a service that simplifies setting up and managing a data lake. And 
a big part of the Lake Formation service is the ability to manage access (authorization) 
to data lake databases and tables without having to manage fine-grained access through 
JSON-based policy documents in the IAM service.
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Lake Formation enables a data lake administrator to grant fine-grained permissions on 
data lake databases, tables, and columns using the familiar database concepts of grant and 
revoke for permissions management. A data lake administrator, for example, can grant 
SELECT permissions (effectively READ permission) for a specific data lake table to a 
specific IAM user or role.

Lake Formation permissions management is another layer of permissions that is useful for 
managing fine-grained access to data lake resources, but it works with IAM permissions 
and does not replace IAM permissions. A recommended way to do this is to apply broad 
permissions to a user in an IAM policy, but then apply fine-grained permissions with  
Lake Formation.

Permissions management before Lake Formation
Before the release of the Lake Formation service, all data lake permissions were managed 
at the Amazon S3 level using IAM policy documents written in JSON. These policies 
would control access to resources such as the following:

• The data catalog objects in the Glue data catalog (such as permissions to access  
Glue databases and tables)

• The underlying physical storage in Amazon S3 (such as the Parquet or CSV files in 
an Amazon S3 bucket)

• Access to analytical services (such as Amazon Athena or AWS Glue)

For example, the IAM policy would provide several Glue permissions, including the 
ability to read catalog objects (such as Glue tables and table partitions) and the ability 
to search tables. However, the resources section of the policy would restrict these 
permissions to the specific databases and tables that the user should have access to.

The policy would also have a section that provided permissions to the underlying S3 data. 
For each table that a user needed to access in the Glue data catalog, they would need both 
Glue data catalog permissions for the catalog objects, as well as Amazon S3 permissions 
for the underlying files.

The last part of the IAM policy would also require the user to have access to relevant 
analytical tools, such as permissions to access the Amazon Athena service.

Permissions management using AWS Lake Formation
With AWS Lake Formation, permissions management is changed so that broad access 
can be provided to Glue catalog objects in the IAM policy, and fine-grained access is 
controlled via AWS Lake Formation permissions.
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With Lake Formation, data lake users do not need to be granted direct permissions on 
underlying S3 objects as the Lake Formation service can provide temporary credentials  
to compatible analytic services to access the S3 data.

It is important to note that Lake Formation permissions access only works with 
compatible analytic services, which, at the time of writing, includes the following  
AWS services:

• Amazon Athena

• Amazon QuickSight

• Apache Spark running on Amazon EMR

• Amazon Redshift Spectrum

• AWS Glue

If using these compatible services, AWS Lake Formation is a simpler way to manage 
permissions for your data lake. The data lake user still needs an associated IAM policy that 
grants them access to the AWS Glue service, the Lake Formation service, and any required 
analytic engines (such as Amazon Athena). However, at the IAM level, the user can be 
granted access to all AWS Glue objects. The Lake Formation permissions layer can then  
be used to control which specific Glue catalog objects can be accessed by the user.

As the Lake Formation service passes temporary credentials to compatible analytic 
services to read data from Amazon S3, data lake users no longer need any direct  
Amazon S3 permissions to be provided in their IAM policies.

Hands-on – configuring Lake Formation 
permissions
In this hands-on section, we will use the AWS Management Console to configure Lake 
Formation permissions.

However, before we implement Lake Formation permissions, we're going to create a new 
data lake user and configure their permissions using just IAM permissions. We'll then 
go through the process of updating a Glue database and table to use Lake Formation 
permissions, and then grant Lake Formation permissions to our data lake user.

Configuring the Glue Crawler
While not covered in this chapter, we will provide a hands-on section with 
details on how to configure the Glue crawler in Chapter 6, Ingesting Batch and 
Streaming Data.
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Creating a new user with IAM permissions
To start, let's create a new IAM user that will become our data lake user. We will initially 
use IAM to grant our data lake user the following permissions:

• Permission to access a specific database and table in the Glue data catalog

• Permission to use the Amazon Athena service to run SQL queries against the  
data lake

First, let's create a new IAM policy that grants the required permissions for using Athena 
and Glue, but limits those permissions to only CleanZoneDB in the Glue catalog. To do 
this, we're going to copy the Amazon-managed policy for Athena Full Access, but we 
will modify the policy to limit access to just a specific Glue database, and we will add S3 
permissions to the policy. Let's get started:

1. Log in to the AWS Management Console and access the IAM service using this link: 
https://console.aws.amazon.com/iam/home.

2. On the left-hand side, click on Policies, and then for Filter Policies, type  
in Athena.

3. From the filtered list of policies, expand the AmazonAthenaFullAccess policy.
4. Click inside the JSON policy box and copy the entire policy to your computer 

clipboard.

Figure 4.3 – Copying the text of the AmazonAthenaFullAccess policy

5. At the top of the page, click on Create policy.

https://console.aws.amazon.com/iam/home
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6. The visual editor is selected by default, but since we want to create a JSON policy 
directly, click on the JSON tab.

7. Paste the Athena full access policy that you copied to the clipboard in step 4 into the 
policy, overwriting and replacing any text currently in the policy.

8. Look through the policy to identify the section that grants permissions for several 
Glue actions (glue:CreateDatabase; glue:DeleteDatabase; glue:getDatabase, and  
so on). This section currently lists the resource that it applies to as *, meaning that 
the user would have access to all databases and tables in the Glue catalog. In our use 
case, we want to limit permissions to just the Glue CleanZoneDB database (which 
was created in the hands-on section of Chapter 3, The AWS Data Engineers Toolkit). 
Replace the resource section of the section that provides Glue access with the 
following, which will limit access to the required DB only, although it also includes 
all tables in that database:

            "Resource": [

                "arn:aws:glue:*:*:catalog",

                "arn:aws:glue:*:*:database/cleanzonedb",

                "arn:aws:glue:*:*:database/cleanzonedb*",

                "arn:aws:glue:*:*:table/cleanzonedb/*"

            ]

The following screenshot shows how this looks when applied to the policy:

Figure 4.4 – Updated policy with limited permissions for Glue resources
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9. Immediately after the section that provides Glue permissions, we can add new 
permissions for accessing the S3 location where our CleanZoneDB data resides. 
Add the following section to provide these permissions, making sure to replace 
<initials> with the unique identifier you used when creating the bucket in 
Chapter 3, The AWS Data Engineers Toolkit:

        {

            "Effect": "Allow",

            "Action": [

                "s3:GetBucketLocation",

                "s3:GetObject",

                "s3:ListBucket",

                "s3:ListBucketMultipartUploads",

                "s3:ListMultipartUploadParts",

                "s3:AbortMultipartUpload",

                "s3:PutObject"

            ],

            "Resource": [

                "arn:aws:s3:::dataeng-clean-zone-
<initials>/*"

            ]

        },

Here is a screenshot showing the S3 permissions added to the policy:

Figure 4.5 – S3 permissions added to the policy
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10. Once you have pasted in the new S3 permissions, click on Next:Tags at the bottom 
right of the screen.

11. Optionally, add any tags for this policy, and then click on Next: Review.
12. For Name, provide a policy name of AthenaAccessCleanZoneDB and click 

Create policy.

Now that we have created an IAM policy for providing the required permissions to the 
Glue catalog and S3 buckets, we can create a new IAM user and attach our new policy  
to the new data lake user. 

Follow these steps to create the new IAM user:

1. On the left-hand side, click on Users, and then click Add user.
2. For User name, enter datalake-user.
3. For Access type, select AWS Management Console access.
4. For Console password, select Custom password and enter a secure password.
5. Clear the checkbox for Require password reset and then click Next: Permissions.
6. Select Attach existing policies directly and search for the policy you created in the 

previous step (AthenaAccessCleanZoneDB). Click the policy checkbox and 
then click Next: Tags.

7. Optionally, add any tags and click Next: Review.
8. Review the configuration and click Create user.
9. Click on Close to close the Add user dialog.

Now, let's create a new Amazon S3 bucket that we can use to capture the results of any 
Amazon Athena queries that we run:

1. In the AWS Management Console, use the top search bar to search for and select  
the S3 service.

2. Click on Create bucket.
3. For Bucket name, enter aws-athena-query-results-dataengbook-

<initials>. Replace <initials> with your initials or some other unique identifier.
4. Ensure AWS Region is set to the region you have been using for the other exercises 

in this book.
5. Leave the others as their defaults and click on Create bucket.
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We can now verify that our new datalake-user only has access to CleanZoneDB and 
that the user can run Athena queries on the table in this database:

1. Sign out of the AWS Management Console, and then sign in again using the new 
user you just created, datalake-user.

2. From the top search bar, search for and select the Athena service.
3. Before you can run an Athena query, you need to set up a query result location 

in Amazon S3. This is the S3 bucket and prefix where all the query results will be 
written to. From the top right of the Athena console, click on Settings.

4. For Query result location, enter the S3 path you created in the previous Step 
3 (for example, s3://aws-athena-query-results-dataengbook-
<initials>/).

5. Click on Save.
6. In the New Query window, run the following SQL query: select * from 

cleanzonedb.csvparquet.
7. If all permissions have been configured correctly, the results of the query should be 

displayed in the lower window. The file we created shows names and ages.
8. Log out of the AWS Management Console since we need to be logged in as our 

regular user, not datalake-user.

We have now set up permissions for our data lake using IAM policies to manage  
fine-grained access control, as was always done before the launch of the AWS Lake 
Formation service. In the next section, we will transition to using Lake Formation  
to manage fine-grained permissions on data lake objects. 

Transitioning to managing fine-grained permissions 
with AWS Lake Formation
In the initial setup, we configured permissions for our data lake user to be able to run  
SQL queries using Amazon Athena, and we restricted their access to just cleanzonedb 
using an IAM permissions policy.

In this section, we are going to modify cleanzonedb and the tables in that database  
to make use of the Lake Formation permissions model.
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Activating Lake Formation permissions for a database and table
As a reminder, Lake Formation adds a layer of permissions that work in addition to the 
IAM policy permissions. By default, every database and table in the catalog has a special 
permission enabled that effectively tells Lake Formation to just use IAM permissions 
and to ignore any permissions that may have been granted in Lake Formation. This is 
sometimes called the Pass-Through permission as it allows security checks to be validated 
at the IAM level, but then passes through Lake Formation without doing any additional 
permission checks.

With our initial setup, we granted Glue data catalog permissions to datalake-user in 
an IAM policy. This policy allowed the user to access the cleanzonedb database, as well 
as all the tables in that database. Let's have a look at how permissions are set up on the 
cleanzonedb database and tables in Lake Formation:

1. Log in to AWS Management Console and search for the Lake Formation 
service in the top search bar. Make sure you are logged in as your regular user, and 
not as datalake-user, which you created earlier in this chapter.

2. The first time you access the Lake Formation service, a pop-up box will prompt you 
to choose initial users and roles to be Lake Formation data lake administrators. By 
default, Add myself should be selected. Click Get started to add your current user 
as a data lake admin.

Figure 4.6 – Adding your user as a Lake Formation administrator

3. Once selected, you should be taken to the Lake Formation Data lake 
administrators screen, where you can confirm that your user has been added as  
a data lake administrator.
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4. On the left-hand side of the Lake Formation console, click on Databases. In the list 
of databases, click on the cleanzonedb database.

5. This screen displays details of cleanzonedb. Click on Actions, and then View 
permissions.

6. On the View permissions screen, we can see that two permissions have been 
assigned for this database. The first one is DataEngLambdaS3CWGlueRole, and 
this IAM role has been granted full permissions on the database. The reason for this 
is that DataEngLambdaS3CWGlueRole was the role that was assigned to the 
Lambda function that we used to create the database back in Chapter 3, The AWS 
Data Engineers Toolkit, so it is automatically granted these permissions.

Figure 4.7 – Lake Formation permissions for the cleanzonedb database
The other permission that we can see is for the IAMAllowedPrincipals group. 
This is the pass-through permission we mentioned previously, which effectively 
means that permissions at the Lake Formation layer are ignored. If this special 
permission was not assigned, only DataEngLambdaS3CWGlueRole would be 
able to access the database. However, because the permission has been assigned, 
any user who has been granted permissions to this database through an IAM policy, 
such as datalake-user, will be able to successfully access the database.
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7. To enable Lake Formation permissions on this database, we can remove the 
IAMAllowedPrincipals permission from the database. To do this, click the 
selector box for the IAMAllowedPrincipals permission and click Revoke.  
On the pop-up box, click on Revoke.

Figure 4.8 – Revoking the pass-through permission on cleanzonedb

8. We now want to do the same thing for our CSVParquet table in the 
database. To do this, click on Databases in the left-hand menu, then click on 
cleanzonedb. From the top right, click on View tables. Click the selector for the 
CSVParquet table and click on Actions/View Permissions. Click the selector for 
IAMAllowedPrincipals and click on Revoke. On the pop-up window, click on 
Revoke. This removes the special Pass-Through permission from the table.
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Optional – checking permissions
If you want to see what effect this has, you can log out of the AWS Console 
and log in again as datalake-user. Now, when you try to run a query on 
the CSVParquet table using Athena, you will receive an error message as Lake 
Formation permissions are in effect, and your datalake-user has not 
been granted permissions to access the table yet.

Granting Lake Formation permissions
By removing the IAMAllowedPrincipals permission from the cleanzonedb database 
and the CSVParquet table, we have effectively enabled Lake Formation permissions on 
those resources. Now, if any principal needs to access that database or table, they need 
both IAM permissions, as well as Lake Formation permissions.

If we had enabled Lake Formation permissions on all databases and tables, then we could 
modify our user's IAM policy permissions to give them access to all data catalog objects. 
We can do this because we would know that they would only be able to access those 
databases and tables where they had been granted specific Lake Formation permissions.

We previously created an edited copy of the AmazonAthenaFullAccess managed 
IAM policy to limit user access to specific data catalog databases and tables in the 
IAM policy. However, if all databases and tables had the IAMAllowedPrincipals 
permission removed and specific permissions granted to users instead, then we could 
apply the generic AmazonAthenaFullAccess policy.

We also previously provided access to the underlying S3 files using an IAM policy. 
However, when using Lake Formation permissions, compatible analytic tools are granted 
access to the underlying S3 data using temporary credentials provided by Lake Formation. 
Therefore, once Lake Formation permissions have been activated, we can remove 
permissions to the underlying S3 data from our user's IAM policy. Then, when using  
a compatible tool such as Amazon Athena, we know that Lake Formation will grant 
Athena temporary credentials to access the underlying S3 data.

Here, we will add specific Lake Formation permissions for our datalake-user to 
access the CleanZoneDB database and the CSVParquet table:

1. Ensure you are logged in as your regular user (the one you made a data lake admin 
earlier) and access the Lake Formation console.

2. Click on CleanZoneDB, and then click View tables.
3. Click on the CSVParquet table, and then click Actions/Grant.
4. From the IAM users and roles dropdown, click on the datalake-user principal.
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5. Under Columns, click on Exclude columns and then select Age as the column  
to exclude.

6. For Table permissions, mark the permission for Select.
7. Click on Grant at the bottom of the screen.

In the preceding steps, we granted our datalake-user Select permissions on 
the CSVParquet table. However, we put in a column limitation, which means that 
datalake-user will not be able to access the Age column. Enabling column-level 
permissions is not something that would be possible if we were just using IAM-level 
permissions, as column-level permissions is a Lake Formation-specific feature.

Now, if you log in to the AWS Management Console as datalake-user and run 
the same Athena query we ran previously (select * from cleanzonedb.
csvparquet), your permissions will enable the required access. 

Figure 4.9 – Running an Athena query with Lake Formation permissions

Note that in the results of the query, the Age column is not included as we specifically 
excluded this column when granting permissions on this table to our datalake-user.

In this section, we transitioned to using Lake Formation for managing data lake permissions 
for the cleanzonedb database. We expanded IAM permissions to provide coarse-grained 
permissions to Glue catalog objects, but then added fine-grained permissions in Lake 
Formation to limit cleanzonedb access to just our datalake-user. 
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Summary
In this chapter, we reviewed important concepts around data security and governance, 
including how a data catalog can be used to help prevent your data lake from becoming  
a data swamp.

Data encryption at rest and in transit, and tokenization of PII data, are important concepts 
for a data engineer to understand to protect data in the data lake, and a service such as 
AWS Lake Formation is a useful tool for easily managing authorization for datasets.

In the next chapter, we will take a step back and look at the bigger picture of how a data 
engineer can architect a data pipeline. We will begin exploring how to understand the 
needs of our data consumers, learn more about our data sources, and decide on the 
transformations that are required to transform raw data into useful data for analytics.





Section 2: 
Architecting and 

Implementing  
Data Lakes and Data 

Lake Houses 
In this section of the book, we examine an approach for architecting a high-level data 
pipeline and then dive into the specifics of data ingestion and transformation. We also 
examine different types of data consumers, learn about the important role of data marts 
and data warehouses, and finally put it all together by orchestrating data pipelines. We 
get hands-on with various AWS services for data ingestion (Amazon Kinesis and DMS), 
transformation (AWS Glue Studio), consumption (AWS Glue DataBrew), and pipeline 
orchestration (Step Functions). 

This section comprises the following chapters:

• Chapter 5, Architecting Data Engineering Pipelines

• Chapter 6, Ingesting Batch and Streaming Data

• Chapter 7, Transforming Data to Optimize for Analytics

• Chapter 8, Identifying and Enabling Data Consumers

• Chapter 9, Loading Data into a Data Mart

• Chapter 10, Orchestrating the Data Pipeline





5
Architecting 

Data Engineering 
Pipelines

Having gained an understanding of data engineering principles, the core concepts, and the 
available AWS tools, we can now put these together in the form of a data pipeline. A data 
pipeline is the process that ingests data from multiple sources, optimizes and transforms 
the data, and makes it available to data consumers. An important function of the data 
engineering role is the ability to design, or architect, these pipelines.

In this chapter, we will cover the following topics:

• Approaching the task of architecting a data pipeline

• Identifying data consumers and understanding their requirements

• Identifying data sources and ingesting data

• Identifying data transformations and optimizations

• Loading data into data marts

• Wrapping up the whiteboarding session

• Hands-on – architecting a sample pipeline
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Technical requirements
For the hands-on portion of this lab, we will design a high-level pipeline architecture. You 
can perform this activity on an actual whiteboard, a piece of paper, or using a free online 
tool called diagrams.net. If you want to make use of this online tool, make sure you can 
access the tool at http://diagrams.net.

You can find the code files of this chapter in the GitHub repository using the following 
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter05

Approaching the data pipeline architecture
Before we get into the details of the individual components that will go into the 
architecture, it is helpful to get a 10,000 ft view of what we're trying to do.

A common mistake when starting a new data engineering project is to try and do 
everything at once, and to create a solution that covers all use cases. A better approach is 
to identify an initial, specific use case, and to start the project while focusing on that one 
outcome, but keeping the bigger picture in mind.

This can be a significant challenge, and yet it is really important to get this balance right. 
While you need to focus on an achievable outcome that can be completed within a 
reasonable time frame, you also need to ensure that you're building within a framework 
that can be used for future projects. If each business unit tackles the challenge of data 
analytics independently, with no corporate-wide analytics initiative, it will be difficult to 
unlock the value of corporate-wide data.

The ideal project will include sponsorship from the highest levels of the organization but 
will identify a limited scope project for building an initial framework. This project, when 
completed, can be used as an internal case study to drive forward additional analytic 
projects.

In the 1989 film Field of Dreams, a farmer (played by Kevin Costner) hears a voice saying 

"If you build it, he will come."
Everyone in the town thinks he is crazy when he ends up sacrificing his crops to build  
a baseball field, but when he does, several long-dead baseball players come to the field to 
play. In business, a common mantra has become the following:

"If you build it, they will come."

http://diagrams.net
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter05
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter05
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This implies that if you build something really good, you will find customers for it. But 
this is not a recommended approach for building data analytic solutions.

Some organizations may have hundreds, or even thousands, of data sources, and many 
of those data sources may be useful for centralized analytics. But that doesn't mean we 
should attempt to immediately ingest them all into our analytics platform so that we 
can see how the business may use them. When organizations have taken this approach, 
embarking on multi-year-long projects to build out large analytic solutions covering many 
different initiatives, these have often failed.

Rather, once executive sponsorship has been gained and an initial project with limited 
scope has been identified, the data engineer can begin the process of designing a data 
pipeline for the project.

Architecting houses and architecting pipelines
If you were to build a new house, you would identify an appropriate piece of land, and 
then contract an architect to work with you to create the plans for the building. The 
architect would do several things:

• Discuss your requirements with you (how you want to use the home, what materials 
you would like, how many bedrooms, bathrooms, and so on).

• Gather information on the land where you will be building (size of the land, slope, 
and so on).

• Determine the type of materials that are best suited for building that environment.

As part of this, the architect may create a rough sketch showing the high-level plan. Once 
that high-level plan is agreed upon, the architect can gather more detailed information 
and then create a detailed architecture plan. This plan would include the layout of the 
rooms, and then where the shower, toilet, lights, and so on would go, and based on that, 
where the plumbing and electrical lines would run.
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For a data engineer creating the architecture for a data pipeline, a similar approach  
can be used:

• Gather information from project sponsors and data consumers on their 
requirements. Learn what their objectives are, what types of tools they want to use 
to consume the data, required data transformations, and so on.

• Gather information on the available data sources. This may include what systems 
store the raw data, what format that data is in, who the system and data owner are, 
and so on.

• Determine what types of tools are available and may be best suited for these 
requirements.

A useful way to gather this information is to conduct a whiteboarding session with the 
relevant stakeholders.

Whiteboarding as an information-gathering tool
Running a whiteboarding session with relevant stakeholders enables the data engineer to 
develop a high-level plan for the data pipeline, and helps gather the information required 
to start working on the detailed design. The purpose of the whiteboarding exercise is not 
to work out all the technical details and finalize the specific services and tools that will 
be used. Rather, the purpose is to agree with stakeholders on the overall approach for the 
pipeline and to gather the information that's required for the detailed design.

In this book, we will be using an architectural approach, where we ingest data into an 
Amazon S3-based data lake. Data is initially ingested into a raw zone, and then we 
transform and optimize the data using several tools to move the data through different 
data lake zones. As we covered in Chapter 2, Data Management Architectures for Analytics, 
a data lake has multiple zones that the data moves through. Typically, these include zones 
such as raw, transformed, conformed, and enriched, but can also include zones such as 
staging and inference (for data science purposes). There is no specific number of zones 
that a data lake requires as zones should be based on business requirements, but for our 
whiteboarding session, we will show three zones. 

Depending on data consumption requirements, we may then load subsets of the data into 
various data marts (such as Amazon Redshift, a cloud data warehouse service), making 
the data available to data consumers via various services.

The following diagram illustrates a high-level overview of the primary components of a 
typical data pipeline and the approach to developing the high-level pipeline architecture:
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Figure 5.1 – High-level overview of a data pipeline architecture

When approaching the design of the pipeline, we can use the following sequence (which is 
also reflected by the numbers in the preceding diagram):

1. Understanding the business objectives and who the data consumers are and their 
requirements

2. Determining the types of tools that data consumers will use to access the data
3. Understanding which potential data sources may be available
4. Determining the types of toolsets that will be used to ingest data
5. Understanding the required data transformations at a high level to take the raw data 

and prepare it for data consumers

As you can see, we should always work backward when designing a pipeline. That is, we 
should start with the data consumers and their requirements, and then work from there to 
design our pipeline.

Conducting a whiteboarding session
Once an initial project has been identified, the data engineer should bring together 
relevant stakeholders for a workshop to whiteboard the high-level approach. Ideally, all 
stakeholders should meet in person, have a whiteboard available, and should plan for a 
half-day workshop. Stakeholders should include a group of people that can answer the 
following questions:

• Who is the executive sponsor and what are the business value and objectives for the 
project?

• Who is going to be working directly with the data (the data consumers)? What types 
of tools are the data consumers likely to use to access the data?
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• What are the relevant raw data sources?

• At a high level, what types of transformations are required to transform and 
optimize the raw data?

The data engineer needs to understand the business objectives, and not just gather 
technical information during this workshop. A good place to start is to ask for a business 
sponsor to provide an overview of current challenges, and to review the expected business 
outcomes, or objectives, for the project. Also, ask about any existing solutions or related 
projects, and gaps or issues with those current solutions.

Once the team has a good understanding of the business value, the data engineer can 
begin whiteboarding to put together the high-level design. We work backward from 
our understanding of the business value of the project, which involves learning how 
the end-state data will be used to provide business value, and who the consumers of the 
data will be. From there, we can start understanding the raw data sources that will be 
needed to create the end-state data, and then develop a high-level plan for the types of 
transformations that may be required. 

Let's start by identifying who our data consumers are and understanding their 
requirements.

Identifying data consumers and 
understanding their requirements
A typical organization is likely to have multiple different categories, or types, of data 
consumers. We discussed some of these roles in Chapter 1, An Introduction to Data 
Engineering, but let's review these again:

• Business users: A business user generally wants to access data via interactive 
dashboards and other visualization types. For example, a sales manager may want 
to see a chart showing last week's sales by sales rep, geographic area, or top product 
categories.

• Business applications: In some use cases, the data pipeline that the data engineer 
builds will be used to power other business applications. For example, Spotify, 
the streaming music application, provides users with an in-app summary of their 
listening habits at the end of each year (top songs, top genres, total hours of music 
streamed, and so on). Read the following Spotify blog post to learn more about 
how the Spotify data team enabled this: https://engineering.atspotify.
com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-
decade-of-data/.

https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-of-data/
https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-of-data/
https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-of-data/
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• Data analyst: A data analyst is often tasked with doing more complex data analysis, 
digging deeper into large datasets to answer specific questions. For example, across 
all customers, you may be wondering which products are most popular by different 
age or socio-economic demographics. Or, you may be wondering what percentage 
of customers have browsed the company's e-commerce store more than 5 times, 
for more than 10 minutes at a time, in the last 2 weeks but have not purchased 
anything. These users generally use structured query languages such as SQL.

• Data scientist: A data scientist is tasked with creating machine learning models 
that can identify non-obvious patterns in large datasets, or make predictions about 
future behavior based on historical data. To do this, data scientists need access to 
large quantities of diverse datasets that they may refine further.

During the whiteboarding workshop, the data engineer should ask questions to 
understand who the data consumers are for the identified project. As part of this, it is 
important to also understand the types of tools each data consumer is likely to want to use 
to access the data.

As information is discovered, it can be added to the whiteboard, as illustrated in the 
following diagram:

Figure 5.2 – Whiteboarding data consumers and data access
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In this example, we can see that we have identified three different data consumers – a data 
analyst team, a data science team, and various business users. We have also identified the 
following:

• That the data analysts want to use ad hoc SQL queries to access the data

• That the data science team wants to use both ad hoc SQL queries and specialized 
machine learning tools to access the data

• That the business users want to use a Business Intelligence (BI) data visualization 
tool to access the data

It is useful to ask whether there are any existing corporate standard tools that the data 
consumer must use, but it is not important to finalize the toolsets at this point. For 
example, we should take note if a team already has experience with Tableau (a common 
BI application) and whether they want to use it for data visualization reporting. But if they 
have not identified a specific toolset they will use, that can be finalized at a later stage.

Once we have a good understanding of who the data consumers are for the project,  
and the types of tools they want to use to work with the data, we can move on to the  
next stage of whiteboarding, which is to examine the available data sources and means to 
ingest the data.

Identifying data sources and ingesting data
With an understanding of the overall business goals for the project, and having identified 
our data consumers, we can start exploring the available data sources.

While most data sources will be internal to the organization, some projects may require 
enriching organization-owned data with other third-party data sources. Today, there are 
many data marketplaces where diverse datasets can be subscribed to, or in some cases, 
accessed for free. When discussing data sources, both internal and external datasets 
should be considered.

The team that has been included in the workshop should include people that understand 
the data sources required for the project. Some of the information that the data engineer 
needs to gather about these data sources includes the following:

• Details about the source system containing the data (is the data in a database, in 
files on a server, existing files on Amazon S3, coming from a streaming source, and 
so on)?

• If this data is internal data, who is the owner of the source system within the 
business? Who is the owner of the data?
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• What frequency does the data need to be ingested on (continuous streaming/
replication, loading data every few hours, loading data once a day)?

• Optionally, discuss some potential tools that could be used for data ingestion.

• What is the raw/ingested format of the data (CSV, JSON, native database format, 
and so on)?

• Does the data source contain PII or other types of data that is subject to governance 
controls? If so, what controls need to be put in place to protect the data?

As information is discovered, it can be captured on the whiteboard, as illustrated in the 
following diagram:

Figure 5.3 – Whiteboarding data sources and data ingestion

During the whiteboarding process, additional notes should be captured to provide 
more context or detail about the requirements. These can be captured directly on the 
whiteboard or captured separately.
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In this example, we have identified three different data sources – customer data from 
a MySQL database, opportunity information from Salesforce, and near-real-time sales 
metrics from the organization's mobile application. We have also identified the following:

• The business team that owns each source system and the business team that owns 
the data

• The velocity of ingesting the data (how often each data source needs to be ingested)

• Potential services that can be used to ingest the data

When discussing ingestion tools, it may be worthwhile to capture potential tools if you 
have a good idea of which tool may be suitable. However, the objective of this session 
is not to come up with a final architecture and decision on all technical components. 
Additional sessions (as discussed later in this book) will be used to thoroughly evaluate 
potential toolsets against requirements and should be done in close consultation with 
source system owners.

During this whiteboarding session, we have been working backward, first identifying the 
data consumers, and then the data sources we plan to use. At this point, we can move on 
to the next phase of whiteboarding, which is to examine some of the data transformations 
that we plan to use to optimize the data for analytics.

Identifying data transformations and 
optimizations
In a typical data analytics project, we ingest data from multiple data sources and then 
perform transforms on those datasets to optimize them for the required analytics.

In Chapter 7, Transforming Data to Optimize for Analytics we will do a deeper dive into 
typical transformations and optimizations, but we will provide a high-level overview of 
the most common transformations here.

File format optimizations
CSV, XML, JSON, and other types of plaintext files are commonly used to store structured 
and semi-structured data. These file formats are useful when manually exploring data, but 
there are much better, binary-based file formats to use for computer-based analytics. A 
common binary format that is optimized for read-heavy analytics is the Apache Parquet 
format. A common transformation is to convert plaintext files into an optimized format, 
such as Apache Parquet. 
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Data standardization
When building out a pipeline, we often load data from multiple different data sources, 
and each of those data sources may have different naming conventions for referring to 
the same item. For example, a field containing someone's birth date may be called DOB, 
dateOfBirth, birth_date, and so on. The format of the birth date may also be stored as mm/
dd/yy, dd/mm/yyyy, or in a multitude of other formats.

One of the tasks we may want to do when optimizing data for analytics is to standardize 
column names, types, and formats. By having a corporate-wide analytic program, 
standard definitions can be created and adopted across all analytic projects in the 
organization.

Data quality checks
Another aspect of data transformation may be the process of verifying data quality and 
highlighting any ingested data that does not meet the expected quality standards.

Data partitioning
A common optimization strategy for analytics is to partition the data, grouping the data 
at the physical storage layer by a field that is often used in queries. For example, if data 
is often queried by a date range, then data can be partitioned by a date field. If storing 
sales data, for example, all the sales transactions for a specific month would be stored in 
the same Amazon S3 prefix (which is much like a directory). When a query is run that 
selects all the data for a specific day, the analytic engine only needs to read the data in the 
directory that's storing data for the relevant month.

Data denormalization
In traditional relational database systems, the data is normalized, meaning that each  
table contains information on a specific focused topic, and associated, or related, 
information is contained in a separate table. The tables can then be linked through  
the use of foreign keys.

For data lakes, combining the data from multiple tables into a single table can often 
improve query performance. Data denormalization takes two (or more) tables and creates 
a new table with data from both tables.
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Data cataloging
Another important component that we should include in the transformation section of 
our pipeline architecture is the process of cataloging the dataset. During this process, 
we ensure all the datasets in the data lake are referenced in the data catalog and can add 
additional business metadata.

Whiteboarding data transformation
For the whiteboarding session, we do not need to determine all the details of the required 
transformations, but it is useful to agree on the main transformations for the high-level 
pipeline design.

Some of the information that the data engineer needs to gather about expected data 
transformations during the whiteboarding session includes the following:

• Is there an existing set of standardized column name definitions and formats 
that can be referenced? If not, who will be responsible for creating these standard 
definitions?

• What additional business metadata should be captured for datasets? For example, 
data owner, cost allocation tags, data sensitivity, and so on.

• What format should optimized files be stored in? Apache Parquet is a common 
format, but you need to validate that the tools used by the data consumers can work 
with files in Apache Parquet format.

• Is there an obvious field that the data should be partitioned by?

• Are other required data transformations obvious at this point? For example, if 
you're ingesting data from a relational database, should the data be denormalized?

• What data transformation engines/skills does the team have? For example, does the 
team have experience creating Spark jobs using PySpark?

As information is discovered, it can be captured on the whiteboard, as illustrated in the 
following diagram:
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Figure 5.4 – Whiteboarding data transformation

In this example, we are creating a data lake with three zones – the landing zone, the clean 
zone, and the curated zone (as previously discussed in Chapter 2, Data Management 
Architectures for Analytics):

• Raw files are ingested into the landing zone and will be in plaintext formats such as 
CSV and XML. When the files are ingested, information about the files is captured 
in the data catalog, along with additional business metadata (data owner, data 
sensitivity, and so on).

• We haven't identified a specific data transformation engine at this point, but we did 
capture a note indicating that the team does have previous experience with creating 
Spark ETL jobs using PySpark. This means that AWS Glue may be a good solution 
for data transformation, but we will do further validation of this at a later stage.

• As part of our pipeline, we will have a process to run data quality checks on the data 
in the landing zone. If the quality checks pass, we will standardize the data (uniform 
column names and data types) and convert the files into Apache Parquet format, 
writing out the new files in the clean zone. Again, we will add the newly written-out 
files to our data catalog, including relevant business metadata.

• Another piece of our pipeline will now perform additional transformations on the 
data, as per the specific use case requirements. For example, data from a relational 
database will be denormalized, and tables can be enriched with additional data. We 
will write out the transformed data to the curated zone, partitioning the files by date 
as they are written out. Again, we will add the newly written-out files to our data 
catalog, including the relevant business metadata.
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It's important to remember that the goal of this session is not to work out all the technical 
details, but rather to create a high-level overview of the pipeline. In the preceding 
diagram, we did not specify that AWS Glue will be the transformation engine. We know 
that AWS Glue may be a good fit, but it's not important to make that decision now.

We have indicated a potential partitioning strategy based on date, but this is also 
something that will need further validation. To determine the best partitioning strategy, 
you need a good understanding of the queries that will be run against the dataset. In 
this whiteboarding session, it is unlikely that there will be time to get into those details, 
but after the initial discussion, this appeared to be a good way to partition data, so we 
included it.

Having determined transformations for our data, we will move on to the last step of the 
whiteboarding process, which is determining whether we are going to require any data 
marts.

Loading data into data marts
Many tools can work directly with data in the data lake, as we covered in Chapter 3, 
The AWS Data Engineer's Toolkit. These include tools for ad hoc SQL queries (Amazon 
Athena), data processing tools (such as Amazon EMR and AWS Glue), and even 
specialized machine learning tools (such as Amazon SageMaker).

These tools read data directly from Amazon S3, but there are times where a use case may 
require much lower latency, higher performance reads of the data. Or, there may be times 
where the use of highly structured schemas may best meet the analytic requirements of 
the use case. In these cases, loading data from the data lake into a data mart makes sense.

In analytic environments, a data mart is most often a data warehouse system (such as 
Amazon Redshift), but it could also be a relational database system (such as Amazon RDS 
MySQL), depending on the use case's requirements. In either case, the system will have 
local storage (often high-speed flash drives) and local compute power, offering the best 
performance when needing to query across large datasets, and specifically where queries 
require joining across many tables.

As part of the whiteboarding session, you should spend some time discussing whether  
a data mart may be best suited for loading a subset of the data. For example, if you expect 
a large number of users to use your BI tool (for data visualizations), you may spend some 
time discussing which data will be used the most by these teams. You could then include 
a note about loading a subset of the data into a data warehouse system and connecting the 
data visualization tool to the data warehouse in your whiteboarding session.
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Wrapping up the whiteboarding session
After completing the whiteboarding session, you should have a high-level overview 
architecture that illustrates the main components of the pipeline that you plan to build. 
At this point, there will still be a lot of questions that have been left unanswered and there 
will not be a lot of specific detail. However, the high-level architecture should be enough 
to get broad agreement from stakeholders on the proposed plans for the project. It should 
have also provided you with enough information that you can start on a detailed design 
and set up follow-up sessions as required.

Some of the information that you should have after the session includes the following:

• A good understanding of who the data consumers for this project will be

• For each category of data consumer, a good idea of what type of tools they would 
use to access the data (SQL, visualization tools, and so on)

• An understanding of the internal and external data sources that will be used

• For each data source, an understanding of the requirements for data ingestion 
frequency (daily, hourly, or near-real-time streaming, for example)

• For each data source, a list of who owns the data, and who owns the source system 
containing the data

• A high-level understanding of likely data transformations

• An understanding of whether loading a subset of data into a data warehouse or 
other data marts may be required

After the session, you should create a final high-level architecture diagram and include 
notes from the meeting. These notes should be distributed to all participants to request 
their approval and agreement on moving forward with the project based on the draft 
architecture.

Once an agreement has been reached on the high-level approach, additional sessions will 
be needed with the different teams to capture additional details and fully examine the 
requirements.
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The final high-level architecture diagram, based on the scenario we have been looking at 
in this chapter, may look as follows:

Figure 5.5 – High-level architecture whiteboard

In addition to our high-level architecture diagram on the whiteboard, we would have 
also captured associated notes about the various architecture components during the 
discussion. The notes that were captured for the scenario we discussed in this chapter may 
look like this:

Figure 5.6 – Notes associated with our whiteboarding

Now that you understand the theory of how to conduct a whiteboarding session, it's time 
to get some practical hands-on experience. This next section provides details about a 
fictional whiteboarding session and allows you to practice your whiteboarding skills. 
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Hands-on – architecting a sample pipeline
For the hands-on portion of this chapter, you will review the detailed notes from  
a whiteboarding session held for the fictional company GP Widgets Inc. As you go 
through the notes, you should create a whiteboard architecture, either on an actual 
whiteboard or on a piece of poster board. Alternatively, you can create the whiteboard 
using a free online design tool, such as the one available at http://diagrams.net.

As a starting point for your whiteboarding session, you can use the following template. 
You can recreate this on your whiteboard or poster board, or you can access the  
diagrams.net template for this via the GitHub site for of this book:

Figure 5.7 – Generic whiteboarding template

Note that the three zones included in the template (landing zone, clean zone, and curated 
zone) are commonly used for data lakes. However, some data lakes may only have two 
zones, while others may have four or more zones. The number of zones is not a hard rule 
but rather based on the requirements of the use case you are designing for.

As you go through the meeting notes, fill out the relevant sections of the template. In 
addition to drawing the components and flow for the pipeline, you should also capture 
notes relating to the whiteboard components, as per the example in Figure 5.6 At the end 
of this chapter, you can compare the whiteboard you have created with the one that the 
data engineer lead for GP Widgets has created.

By completing this exercise, you will gain hands-on experience in whiteboarding a data 
pipeline and learn how to identify keys points about data consumers, data sources, and 
required transformations. 

http://diagrams.net
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Detailed notes from the project "Bright Light" 
whiteboarding meeting of GP Widgets, Inc 
Here is a list of attendees participating in the meeting:

Attendees
• Ronna Parish, VP of marketing

• Chris Taylor, VP of enterprise sales

• Terry Winship, data analytics team manager

• James Dadd, data science team manager

• Owen McClave, database team manager

• Natalie Rabinovich, web server team manager

• Shilpa Mehta, data engineer lead

Meeting notes
Shilpa (SM) started the meeting by asking everyone to introduce themselves and then 
provided a summary of the meeting objectives:

• Plan out a high-level architecture for a new project to bring improved analytics to 
the marketing teams. During the discussion, Shilpa will whiteboard a high-level 
architecture.

• They reinforced that not all the technical details would be worked out in this 
meeting, but looking for agreement from all the stakeholders with a high-level 
approach and design is critical.

• Already agreed that the project will be built in the AWS cloud.

Shilpa asked Ronna (marketing manager) to provide an overview of the marketing team 
requirements for project Bright Light:

• Project Bright Light is intended to improve the visibility that the marketing team has 
into real-time customer behavior, as well as longer-term customer trends, through 
the use of data analytics.

• The marketing team wants to give marketing specialists real-time insights into 
interactions on the company's e-commerce website. Some examples of these 
visualizations include a heatmap to show website activity in different geographic 
locations; redemptions of coupons by product category; top ad campaign referrals, 
and spend by ZIP code in the previous period versus the current period.
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• All visualizations should enable the user to select a custom period, be able to filter 
on custom fields, and also be able to drill down from summary information into 
detailed information. Data should be refreshed on at least an hourly basis, but more 
often would be better.

The data analyst team supporting the marketing department will run more complex 
investigations of current and historical trends:

• Identify the top 10% of customers over the past x days by spend and identify their 
top product categories for use in marketing promotions.

• Determine the average time a customer spends on the website, and the number of 
products they browse versus the number of products they purchase.

• Identify the top returned products over the past day/month/week.

• Compare the sales by ZIP code this month versus sales by ZIP code in the same 
month 1 year ago, grouped by product category.

• For each customer, keep a running total of their number of widget purchases 
(grouped by category), average spend per sale, average spend per month, the 
number of coupons applied, and the total coupon value.

We have tasked our data science team with building a machine learning model that can 
predict a widget's popularity based on the weather in a specific location:

• Research highlights how weather can impact e-commerce sales and the sales of 
specific products; for example, the types of widgets that customers are likely to buy 
on a sunny day compared to a cold and rainy day.

• The marketing team wants to target our advertising campaigns and optimize our 
ad spend and real-time marketing campaigns based on the current and forecasted 
weather at a certain ZIP code.

• We regularly add new widgets to our catalog, so the model must be updated at least 
once a day based on the latest weather and sales information.

• In addition to helping with marketing, the manufacturing and logistics teams 
have expressed interest in this model to help optimize logistics and inventory for 
different warehouses around the country based on 7-day weather forecasts.
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James Dadd (data science team manager) spoke about some of the requirements for  
his team:

• They would need ad hoc SQL access to weather, website clickstream logs, and 
sales data for at least the last year.

• They have determined that a provider on AWS Data Exchange offers historical and 
forecast weather information for all US ZIP codes. There is a subscription charge 
for this data and the marketing team is working on allocating a budget for this. Data 
would be delivered daily via AWS Data Exchange in CSV format.

• James indicated he had not had a chance to speak with the database and website 
admin teams about getting access to their data yet.

• The team currently uses SparkML for a lot of their machine learning projects, but 
they are interested in cloud-based tools that may help them speed up delivery and 
collaboration for their machine learning products. They also use SQL queries to 
explore datasets.

Terry Winship (data analytics team manager) indicated that her team specializes in using 
SQL to gain complex insights from data:

• Based on her initial analysis, her team would need access to the customer, product, 
returns, and sales databases, as well as clickstream data from the web server logs.

• Her team has experience in working with on-premises data warehouses and 
databases. She has been reading up about data lakes and so long as the team can use 
SQL to query the data, they are open to using different technologies.

• She also has specialists on her team that can create the visualizations for the 
marketing team to use. This team primarily has experience with using Tableau for 
visualizations, but the marketing team does not have licenses for using Tableau. 
There would be a learning curve if a different visualization tool is used but they are 
open to exploring other options.

• Terry indicated that a daily update of data from the databases should be sufficient 
for what they need, but that they would need near-real-time streaming for the 
clickstream web server log files so that they could provide the most up-to-date 
reports and visualizations.
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Shilpa asked Owen McClave (database team manager) to provide an overview of the 
databases sources that the data science and data analytics teams would need:

• Owen indicated that all their databases run on-premises and run Microsoft SQL 
Server 2016, Enterprise Edition.

• Owen said he doesn't know much about AWS and has some concerns about 
providing administrative access for his databases to the cloud since he does not 
believe the cloud is secure. However, he said that ultimately, it is up to the data 
owners to approve whether the data can be copied to the cloud. If approved, he will 
work with the cloud team to enable data syncing in the cloud, so long as there is no 
negative impact on his databases.

• Chris Taylor (VP of sales) is the data owner for the databases that have been 
discussed today (customer, product, returns, and sales data).

Shilpa asked Chris Taylor (VP of sales) to provide input on the use of sales data for the 
project:

• Chris indicated that this analytics project has executive sponsorship from senior 
management and visibility by the board of directors.

• He indicated that sales data can be stored in the cloud, so long as the security team 
review and approve it.

Shilpa indicated that AWS has a tool called Database Migration Service that can be used 
to replicate data from a relational database, such as SQL Server 2016, to Amazon S3 cloud 
storage. She said she would set up a meeting with Owen to discuss the requirements for 
this tool in more detail at a later point as there are also various other options.

Shilpa requested that Natalie Rabinovich (web server team manager) provide more 
information on the web server log files that will be important for this project:

• Natalie indicated that they currently run the e-commerce website on-premises on 
Linux servers running Apache HTTP Server.

• A load balancer is used to distribute traffic between four different web servers. 
Each server stores its clickstream web server logs locally.

• The log files are plaintext files in Apache web log format.

• Shilpa indicated that AWS has an agent called the Kinesis Agent that could be 
used to read the log files and stream their contents to the AWS cloud. She queried 
whether it would be possible to install this agent on the Apache web servers.
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• Natalie indicated that it should be fine, but they would need more details and would 
need to test it in a development environment before installing it on the production 
servers.

• Shilpa asked who the data owner was. Natalie indicated that the marketing team 
owns the web server clickstream logs from a business perspective. 

Shilpa led a discussion on the potential data transformations that may be required on the 
data that is ingested for this project:

• Based on the description from James, it appears that data should be made available 
daily in CSV format and can be loaded directly into the raw zone of the data lake.

• Using a tool such as Amazon DMS, we can load data from the databases into the 
raw zone of the data lake in Parquet format.

• The Kinesis Agent can convert the Apache HTTP Server log files into JSON format, 
and stream these to Kinesis Firehose. Firehose can then perform basic validation of 
the log (using Lambda), convert the log into Parquet format, and write directly to 
the clean zone.

• Shilpa indicated that an initial transformation could perform basic data quality 
checks on incoming database data, add contextual information as new columns 
(such as ingestion time), and then write the file to the clean zone of the data lake.

• Shilpa explained that partitioning datasets helps optimize both the performance 
and cost of queries. She indicated that partitions should be based on how the data is 
queried and led a discussion on the topic. After some discussion, it was agreed that 
partitioning the database and weather by day (yyyyy/mm/dd) and web server logs 
by hour (yyyy/mm/dd/hh) may be a good partitioning strategy, but this would be 
investigated further and confirmed in future discussions.

• A second transformation could then be run against the data in the clean zone, 
performing tasks such as denormalizing the relational datasets, joining tables 
into optimized tables, enriching data with weather data, or performing any other 
required business logic. This optimized data would be written to the curated zone 
of the data lake. AWS Glue or Amazon EMR could potentially be used to perform 
these transformations.  

• As each dataset is loaded, and then the transformed data is written out to the next 
zone, the data will be added to the data catalog. Once data has been added to the 
data catalog, authorized users will be able to query the data using SQL queries, 
enabled by a tool such as Amazon Athena. Additional metadata could be added at 
this point, including items such as data owner, source system, data sensitivity level, 
and so on.
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• Shilpa indicated that she will arrange future meetings with the various teams to 
discuss the business metadata that must be added.

• Shilpa wrapped up the meeting with a brief overview of the whiteboard and 
committed to providing a copy of the whiteboard architecture and notes to all 
attendees for further review and comment. She also indicated that she would 
schedule additional meetings with smaller groups of people to dive deep into 
specific aspects of the proposed architecture to do additional validation.

Shilpa used a whiteboard in the meeting room to sketch out a rough architecture, and 
then after the meeting, she created the following diagram to show the architecture:

Figure 5.8 – Completed whiteboard architecture for project Bright Light

Shilpa also added some notes to go with the whiteboard and sent out both the whiteboard 
architecture and the notes to the meeting attendees:

Figure 5.9 – Completed whiteboard notes for project Bright Light
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Compare the whiteboard you created to the whiteboard created by Shilpa, and note the 
differences. Are there things that Shilpa missed on her whiteboard or notes? Are there 
things that you missed on your whiteboard or notes?

The exercises in this chapter allowed you to get hands-on with data architecting and 
whiteboarding. We will wrap up this chapter by providing a summary, and then do a 
deeper dive into the topics of data ingestion, transformation, and data consumption in the 
next few chapters.  

Summary
In this chapter, we reviewed an approach to developing data engineering pipelines by 
identifying a limited-scope project, and then whiteboarding a high-level architecture 
diagram. We looked at how we could have a workshop, in conjunction with relevant 
stakeholders in the organization, to discuss requirements and plan the initial architecture.

We approached this task by working backward. We started by identifying who the data 
consumers of the project would be and learning about their requirements. Then, we 
looked at which data sources could be used to provide the required data and how those 
data sources could be ingested. We then reviewed, at a high level, some of the data 
transformations that would be required for the project to optimize the data for analytics.

In the next chapter, we will take a deeper dive into the AWS services for ingesting batch 
and streaming data as part of our data engineering pipeline.
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Streaming Data
Having developed a high-level architecture of our data pipeline, we can now dive deep 
into the varied components of the architecture. We will start with data ingestion so that in 
the hands-on section of this chapter, we can ingest data that we can use for the hands-on 
activities in future chapters.

Data engineers are often faced with the challenge of the five Vs of data. These are the 
variety of data (the diverse types and formats of data); the volume of data (the size of 
the dataset); the velocity of the data (how quickly the data is generated and needs to be 
ingested); the veracity or validity of the data (the quality, completeness, and credibility of 
data); and finally, the value of data (the value that the data can provide the business with). 

In this chapter, we will look at several different types of data sources and examine the 
various tools available within AWS for ingesting data from these sources. We will also 
look at how to decide between multiple different ingestion tools to ensure you are using 
the right tool for the job. In the hands-on portion of this chapter, we will ingest data from 
both streaming and batch sources.

In this chapter, we will cover the following topics:

• Understanding varied data sources

• Ingesting data from database sources
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• Ingesting data from streaming sources

• Hands-on – ingesting data from a database source

• Hands-on – ingesting data from a streaming source

Technical requirements
In the hands-on sections of this chapter, we will use the Amazon DMS service to ingest 
data from a database source, and then we will ingest streaming data using Amazon 
Kinesis. To ingest data from a database, you need IAM permissions that allow your user to 
create an RDS database, an EC2 instance, a DMS instance, and a new IAM role and policy. 

For the hands-on section on ingesting streaming data, you will need IAM permissions 
to create a Kinesis Data Firehose instance, as well as permissions to deploy a 
CloudFormation template. The CloudFormation template that is deployed will create IAM 
roles, a Lambda function, as well as Amazon Cognito users and other Cognito resources. 

To query the newly ingested data, you will need permissions to create an AWS Glue 
Crawler and permissions to use Amazon Athena to query data.

You can find the code files of this chapter in the GitHub repository using the following 
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter06

Understanding data sources
Over the past decade, the amount and the variety of data that gets generated each year 
has significantly increased. Today, industry analysts talk about the volume of global data 
generated in a year in terms of zettabytes (ZB), a unit of measurement equal to a billion 
terabytes (TB). By some estimates, a little over 1 ZB of data existed in the world in 2012, and 
yet by the end of 2020, there would have been an estimated 59 ZB of data consumed globally.

In our pipeline whiteboarding session (covered in Chapter 5, Architecting Data 
Engineering Pipelines) we identified several data sources that we wanted to ingest and 
transform to best enable our data consumers. For each of these data sources that is 
identified in a whiteboarding session, you need to develop an understanding of the  
variety, volume, velocity, veracity, and value of data.

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter06
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter06
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Data variety
In the past decade, the variety of data that has been used in data analytics projects has 
greatly increased. If all data was simply relational data in a database (and there was a time 
when nearly all data was like this), it would be relatively easy to transfer into data analytic 
solutions. But today, organizations find value, and often competitive advantage, by being 
able to analyze many other types of data (web server log files, photos, videos, and other 
media, geolocation data, sensor, and other IoT data, and so on).

For each data source in a pipeline, the data engineer needs to determine what type of data 
will be ingested. Data is typically categorized as being of one of three types, as we examine 
in the following subsections.

Structured data
Structured data is data that has been organized according to a data model, and is 
represented as a series of rows and columns. Each row represents a record, with the 
columns making up the fields of each record.

Each column in a structured data file contains data of a specific type (such as strings or 
numbers), and every row has the same number and type of columns. The definition of 
which columns are contained in each record, and the data type for each column, is known 
as the data schema.

Common data sources that contain structured data include the following:

• Relational Database Management Systems (RDBMSes) such as MySQL, 
PostgreSQL, SQL Server, and Oracle

• Delimited files such as Comma Separated Values (CSV) files or Tab Separated 
Values (TSV) files

• Spreadsheets such as Microsoft Excel files in xls format

• Data from online forms
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The data shown in the following table is an example of structured data. In this case, it is 
data on the calorie content of several foods from the USA MyPyramid Food Raw Data, 
available at https://catalog.data.gov/dataset/mypyramid-food-raw-
data. This data extract has been sorted to show some of the highest calorie content foods 
in the dataset:

Figure 6.1 – An example of structured data

Structured data can be easily ingested into analytic systems, including Amazon S3-based  
data lakes, and data marts  such as an Amazon Redshift data warehouse.

Semi-structured data
Semi-structured data shares many of the same attributes as structured data, but the 
structure, or schema, does not need to be strictly defined. Generally, semi-structured data 
contains internal tags that identify data elements, but each record may contain different 
elements or fields.

Some of the data types in the unstructured data may be of a strong type, such as an  
integer value, while other elements may contain items such as free-form text. Common 
semi-structured formats include JSON and XML file formats.

The data that follows is part of a semi-structured JSON formatted file for product 
inventory. In this example, we can see that we have two items – a set of batteries and  
a pair of jeans:

[{

          "sku": 10001,

          "name": "Duracell – Copper Top AA Alkaline Batteries 
- long lasting, all-purpose 16 Count",

          "price": 12.78,

https://catalog.data.gov/dataset/mypyramid-food-raw-data
https://catalog.data.gov/dataset/mypyramid-food-raw-data
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          "category": [{

           "id": "5443",

               "name": "Home Goods"

          }

           ],

          "manufacturer": "Duracell",

           "model": "MN2400B4Z"

     },

     {

          "sku": 10002,

          "name": "Levi's Men's 505 Jeans Fit Pants",

          "type": "Clothing",

          "price": 39.99,

          "fit_type": [{

                    "id": 855,

                    "description": "Regular"

               },

               {

                    "id": 902,

                    "description": "Big and Tall"

               }

          ],

          "size": [{

                    "id": 101,

                     "waist": 32,

                    "length": 32

               },

               {

                    "id": 102,

                    "waist": 30,

                    "length": 32

               }

          ],

          "category": [{

               "id": 3821,

               "name": "Jeans"

          }, {
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               "id": 6298,

               "name": "Men's Fashion"

          }],

          "manufacturer": "Levi",

          "model": "00505-4891"

     }

]

While most of the fields are common between the two items, we can see that the pair of 
jeans includes attributes for fit_type and size, which are not relevant to batteries. You 
will also notice that the first item (the batteries) only belongs to a single category, while 
the jeans are listed in two categories.

Capturing the same information in a structured data type, such as CSV, would be much 
more complex. CSV is not well suited to a scenario where different records have a different 
number of categories, for example, or for where some records have additional attributes 
(such as fit_type or size). JSON is structured in a hierarchical format (where 
data can be nested, such as for category, fit_type, and size) and this provides 
significant flexibility.

Storing data in a semi-structured format, such as JSON, is commonly used for  
a variety of different use cases, such as working with IoT data, as well as for web  
and mobile applications.

Unstructured data
As a category, unstructured data covers many different types of data where the data does 
not have a predefined structure or schema. This can range from free-form data (such as 
text data in a PDF or word processing file or emails) to media files (such as photos, videos, 
satellite images, or audio files).

Some unstructured data can be analyzed directly, although generally not very efficiently, 
unless using specialized tools. For example, it is generally not efficient to search against 
large quantities of free-form text in a traditional database, although there are specialized 
tools that can be used for this purpose (such as Amazon ElasticSearch).

However, some types of unstructured data cannot be directly analyzed with data analytic 
tools at all. For example, data analytic tools are unable to directly analyze image or video 
files. This does not mean that we cannot use these types of files in our analytic projects, 
but to make them useful for analytics, we need to process them further.
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A large percentage of the data that's generated today is considered unstructured data, and 
in the past few years, a lot of effort has been put into being able to make better use of this 
type of data. For example, we can use image recognition tools to extract metadata from an 
image or video file that can then be used in analytics. Or, we could use natural language 
processing tools to analyze free-form text reviews on a website to determine customer 
sentiment for different products.

Refer to Chapter 13 Enabling Artificial Intelligence and Machine Learning, for an example 
of how Amazon Comprehend can be used to extract sentiment analysis from product 
reviews.

Data volume
The next attribute of data that we need to understand for each of our data sources relates 
to the volume of data. For this, we need to understand both the total size of the existing 
data that needs to be ingested, as well as the daily/monthly/yearly growth of data.

For example, we may want to ingest data from a database that includes a one-time ingest 
of 10 years of historical data totaling 2.2 TB in size. We may also find that data from this 
source generates around 30 GB of new data per month (or an average of 1 GB per day 
of new data). Depending on the network connection between the source system and the 
AWS target system, it may be possible to transfer the historical data over the network, 
but if we have limited bandwidth, we may want to consider using one of the devices in 
the Amazon Snow family of devices. For example, we could load data onto an Amazon 
Snowball device that is shipped to our data center and then send the device back to AWS, 
where AWS will load the data into S3 for us.

Understanding the volume of historical and future data also assists us in doing the initial 
sizing of AWS services for our use case, and helps us budget better for the associated costs.

Data velocity
Data velocity describes the speed at which we expect to ingest and process new data from 
the source system into our target system.

For ingestion, some data may be loaded on a batch schedule once a day, or a few times a 
day (such as receiving data from a partner on a scheduled basis). Meanwhile, other data 
may be streamed from the source to the target continually (such as when ingesting IoT 
data from thousands of sensors).
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As an example, according to a case study on the AWS website, the BMW group uses AWS 
services to ingest data from millions of BMW and MINI vehicles, processing terabytes of 
anonymous telemetry data every day. To read more about this, refer to the AWS case study 
titled BMW Group Uses AWS-Based Data Lake to Unlock the Power of Data (https://
aws.amazon.com/solutions/case-studies/bmw-group-case-study/).

We need to have a good understanding of both how quickly our source data is generated 
(on a schedule or via real-time streaming data), as well as how quickly we need to process 
the incoming data (does the business only need insights from the data 24 hours after it is 
ingested, or is the business looking to gather insights in near-real-time?).

The velocity of data affects both how we ingest the data (such as through a streaming 
service such as Amazon Kinesis), as well how we process the data (such as whether we run 
scheduled daily Glue jobs, or use Glue streaming to continually process incoming data).

Data veracity
Data veracity considers various aspects of the data we're ingesting, such as the quality, 
completeness, and accuracy of the data. 

As we discussed previously, data we ingest may have come from a variety of sources, and 
depending on how the data is generated, the data may be incomplete or inconsistent. For 
example, data from IoT sensors where the sensor went offline for a while may be missing 
a period of data. Or, data captured from user forms or spreadsheets may contain errors or 
missing values.

We need to be aware of the veracity of the data we ingest so that we can ensure we take 
these items into account when processing the data. For example, some tools can help 
backfill missing data with averages, as well as tools that can help detect and remediate 
fields that contain invalid data.

Data value
Ultimately, all the data that's ingested and processed is done for a single purpose – finding 
ways to provide new insights and value to the business. While this is the last of the five  
V's that we will discuss, it is the most important one to keep in mind when thinking of  
the bigger picture of what we are doing with data ingestion and processing. 

We could ingest terabytes of data and clean and process the data in multiple ways, but if 
the end data product does not bring value to the business, then we have wasted both time 
and money. 

https://aws.amazon.com/solutions/case-studies/bmw-group-case-study/
https://aws.amazon.com/solutions/case-studies/bmw-group-case-study/
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When considering the data we are ingesting, we need to ensure we keep the big picture  
in mind. We need to make sure that it is worth ingesting this data, and also understand 
how this data may add value to the business, either now or in the future. 

Questions to ask
In Chapter 5, Architecting Data Engineering Pipelines, we held a workshop during which 
we identified some likely data sources needed for our data analytics project, but now, we 
need to dive deeper to gather additional information.

We need to identify who owns each data source that we plan to ingest, and then do a deep 
dive with the data source owner and ask questions such as the following:

• What is the format of the data (relational database, NoSQL database, semi-structured 
data such as JSON or XML, unstructured data, and so on)?

• How much historical data is available?

• What is the total size of the historical data?

• How much new data is generated on a daily/weekly/monthly basis?

• Does the data currently get streamed somewhere, and if so, can we tap into the 
stream of data?

• How frequently is the data updated (constantly, such as with a database or 
streaming source, or on a scheduled basis such as at the end of the day or  
when receiving a daily update from a partner)?

• How will this data source be used to add value to the business, either now or in  
the future?

Learning more about the data will help you determine the best service to use to ingest the 
data, and help with initial sizing of services, and estimating a budget.

Ingesting data from a relational database
A common source of data for analytical projects is data that comes from a relational 
database system such as MySQL, PostgreSQL, SQL Server, or an Oracle database. 
Organizations often have multiple siloed databases, and they want to bring the data  
from these varied databases into a central location for analytics.
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It is common for these projects to include ingesting historical data that already exists in 
the database, as well as for syncing ongoing new and changed data from the database. 
There are a variety of tools that can be used to ingest from database sources, as we will 
discuss in this section.

AWS Database Migration Service (DMS)
The primary AWS service for ingesting data from a database is AWS Database Migration 
Service (DMS), though there are other ways to ingest data from a database source. As a 
data engineer, you need to evaluate both the source and the target to determine which 
ingestion tool will be best suited.

AWS DMS is primarily intended for doing either a one-off ingestion of historical data 
from a database, or for replicating data from a relational database on an ongoing basis. 
When using AWS DMS, the target is either a different database engine or an Amazon 
S3-based data lake. In this section, we will focus on ingesting data from a relational 
database to an Amazon S3-based data lake.

We introduced the AWS DMS service in Chapter 3, The AWS Data Engineer's Toolkit, so 
make sure you have read the Overview of Amazon Database Migration Service (DMS) 
section in that chapter to get a good understanding of how the service works.

Note that AWS DMS is a managed service, but it is not a serverless service. DMS 
provisions one or more EC2 servers as replication instances. These replication instances 
connect to the source database, read data from the source, prepare the data for loading 
into the target, and then connect to the target and write the data.

AWS Glue
AWS Glue, a Spark processing engine that we introduced in Chapter 3, The AWS 
Data Engineer's Toolkit, can make connections to several data sources. This includes 
connections to JDBC sources, enabling Glue to connect to many different database 
engines, and through those connections transfer data for further processing.

AWS Glue is well suited to certain use cases related to ingesting data from databases.  
Let's take a look at some of them.

Full one-off loads from one or more tables
AWS Glue can be configured to make a JDBC connection to a database and download 
data from tables. Glue effectively does a select (*) from the table, reading the table 
contents into the memory of the Spark server. At that point, you can use Spark to write 
out the data to Amazon S3, optionally in an optimized format such as Apache Parquet.
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Initial full loads from a table, and subsequent loads of new records
AWS Glue has a concept called bookmarks, which enables Glue to keep track of which 
data was previously processed, and then on subsequent runs only process new data. Glue 
does this by having you identify a column (or multiple columns) in the table that will 
serve as a bookmark key. The values in this bookmark key must always increase in value, 
although gaps are allowed.

For example, if you have an audit table that has a transaction ID column that sequentially 
increases for each new transaction, then this would be a good fit for ingesting data with 
AWS Glue while using the bookmark functionality.

The first time the job runs, it will load all records from the table and store the highest value 
for the transaction ID column in the bookmark. For illustration purposes, let's assume the 
highest value on the initial load was 944,872. The next time the job runs, it effectively does  
a select * from audit_table where transaction_id > 944872.

Note that this process is unable to detect updated or deleted rows in the table, so it is not 
well suited to all use cases. An audit table, or similar types of tables where data is always 
added to the table but existing rows are never updated or deleted, is the optimal use case 
for this functionality.

Creating AWS Glue jobs with AWS Lake Formation
AWS Lake Formation includes several blueprints to assist in automating some common 
ingestion tasks. One of these ingestion blueprints allows you to use AWS Glue to ingest 
data from a database source. With a few clicks in the Lake Formation console, you 
can configure your ingest requirements (one-off versus scheduled, full table load or 
incremental load with bookmarks, and so on). Once configured, Lake Formation creates 
the Glue Job for ingesting from the database source, the Glue Crawlers for adding newly 
ingested data into the Glue data catalog, and Glue Workflow for orchestrating the different 
components.

Other ways to ingest data from a database
There are several other approaches for ingesting data from a database to an Amazon 
S3-based data lake that we will cover briefly in this section.
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Amazon EMR provides a simple way to deploy several common Hadoop framework tools, 
and some of these tools are useful for ingesting data from a database. For example, you 
can run Apache Spark on Amazon EMR and use a JDBC driver to connect to a relational 
database to load data into the data lake (in a similar way to our discussion around using 
AWS Glue to connect to a database). Alternatively, in Amazon EMR, you can deploy 
Apache Sqoop, a popular tool for transferring data between relational database systems 
and Hadoop.

If you are running MariaDB, MySQL, or PostgreSQL on Amazon Relational Database 
Service (RDS), you can use RDS functionality to export a database snapshot to Amazon 
S3. This is a fully managed process that writes out all tables from the snapshot to Amazon 
S3 in Apache Parquet format. This is the simplest way to move data into Amazon S3 if you 
are using one of the supported database engines on RDS.

There are also several third-party commercial tools, many containing advanced features, 
that can be used to move data from a relational database to Amazon S3 (although these 
often come at a premium price). This includes tools such as Qlik Replicate (previously 
known as Attunity), a well-known tool for moving data between a wide variety of sources 
and targets (including relational databases, data warehouses, streaming sources, enterprise 
applications, cloud providers, and legacy platforms such as DB2, RMS, and so on). 

You may also find that your database engine contains tools for directly exporting data in 
a flat format that can then be transferred to Amazon S3. Some database engines also have 
more advanced tools, such as Oracle GoldenGate, a solution that can generate Change 
Data Capture (CDC) data as a Kafka stream. Note, however, that these tools are often 
licensed separately and can add significant additional expense. For an example of using 
Oracle GoldenGate to generate CDC data that has been loaded into an S3 data lake, search 
for the AWS blog post titled Extract Oracle OLTP data in real time with GoldenGate and 
query from Amazon Athena: https://aws.amazon.com/blogs/big-data/
extract-oracle-oltp-data-in-real-time-with-goldengate-and-
query-from-amazon-athena/.

Reminder About CDC
We introduced the concept of CDC in Chapter 3, The AWS Data Engineer's 
Toolkit, but it is an important concept, so here is a reminder. When rows in a 
relational database are deleted or updated, there is no practical way to capture 
those changes using standard database query tools (such as SQL). But when 
replicating data from a database to a new source, it is important to be able to 
identify those changes so that they can be applied to the target. This process of 
identifying and capturing these changes (new inserts, updates, and deletes) is 
referred to as CDC.

https://aws.amazon.com/blogs/big-data/extract-oracle-oltp-data-in-real-time-with-goldengate-and-query-from-amazon-athena/
https://aws.amazon.com/blogs/big-data/extract-oracle-oltp-data-in-real-time-with-goldengate-and-query-from-amazon-athena/
https://aws.amazon.com/blogs/big-data/extract-oracle-oltp-data-in-real-time-with-goldengate-and-query-from-amazon-athena/
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Deciding on the best approach for ingesting from  
a database
While all these tools can be used in one way or another to ingest data from a database, 
there are several points to consider when deciding on the best approach for your specific 
use case.

Size of the database
If the total size of the database tables you want to load is large (many tens of GBs or 
larger), then doing a full nightly load would not be a good approach. The full load could 
take a significant amount of time to run and puts a heavy load on the source system while 
running. In this scenario, a better approach is to do an initial load from the database and 
then constantly sync updates from the source using CDC.

For very large databases, you can use AWS DMS with an Amazon Snowball device to load 
data to the Snowball device in your data center. Once the data has been loaded, you return 
the device to AWS, and they will load it to Amazon S3. AWS DMS will capture all CDC 
changes while the Snowball device is being transferred back to AWS so that once the data 
is loaded, you can create an ETL job to apply changes to the full data load.

For smaller databases where you do not need to capture changes in near-real-time, you 
can consider using AWS Glue (or native database tools) to load the entire database to 
Amazon S3 on a scheduled basis. This will often be the simplest and most cost-effective 
method, but it is not right for every use case.

Database load
If you have a database with a consistent production load at all times, you will want  
to minimize the additional load you place on the server to sync to the data lake. In  
this scenario, you can use DMS to do an initial full load, ideally from a read replica  
of your database if it's supported as a source by DMS. For ongoing replication, DMS  
can use database log files to identify CDC changes, and this places a lower load on 
database resources.

Whenever you do a full load from a database (whether you're using AWS DMS, AWS 
Glue, or another solution), there will be a heavier load on the database as a full read of all 
tables is required. You need to consider this load and, where possible, use a replica of your 
database for the full load.

If a smaller database is running on Amazon RDS, the best solution would be to use the 
export to S3 from snapshot functionality of RDS, if it's supported for your database 
engine. This solution places no load on your source database.
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Data ingestion frequency
Some analytic use cases are well suited to analyzing data that is ingested on a fixed 
schedule (such as every night). However, some use cases will want to have access  
to new data as fast as possible.

If your use case requires access to data coming from a database source as soon as possible, 
then using a service such as AWS DMS to ingest CDC data is the best approach. However, 
remember that CDC data just indicates what data has changed (new rows inserted, 
existing rows updated or deleted), so you still require a process to apply that to the 
existing data to enable querying for the most up-to-date state.

If your use case allows for regularly scheduled updates, such as nightly, you can do a 
scheduled full load (if the database's size and performance impacts allow), or you can have 
a nightly process to apply the CDC data that was collected during the day to the previous 
snapshot of data.

In Chapter 7, Transforming Data to Optimize for Analytics, we will review several 
approaches for applying CDC data to an existing dataset.

Technical requirements and compatibility
When evaluating different approaches and tools for ingesting data from a database source, 
it is very important to involve the database owner and admin team upfront to technically 
evaluate the proposed solution.

A data engineering team may decide on a specific toolset upfront, based on their 
requirements and their broad understanding of compatibility with the source systems. 
However, at the time of implementation, they may discover that the source database team 
objects to certain security or technical requirements of the solution, and this can lead to 
significant project delays.

For example, AWS DMS supports CDC for several MySQL versions. However, DMS does 
require that binary logging is enabled on the source system with specific configuration 
settings for CDC to work.

Another example is that AWS DMS does not support server-level audits when SQL Server 
2008/2008 R2 is used as a source. Certain commands related to enabling this functionality 
will cause DMS to fail.

It is critical to get the buy-in of the database owner and admin team before finalizing 
a solution. All of these requirements and limitations are covered in the AWS DMS 
documentation (and other solutions or products should have similar documentation 
covering their requirements). Reviewing these requirements, in detail, with the admin 
team up front is critical to the success of the project.
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In the next section, we will take a similar look at tools and approaches for ingesting data 
from streaming sources.

Ingesting streaming data
An increasingly common source of data for analytic projects is data that is continually 
generated and needs to be ingested in near-real-time. Some common sources of this type 
of data are as follows:

• Data from IoT devices (such as smartwatches, smart appliances, and so on)

• Telemetry data from various types of vehicles (cars, airplanes, and so on)

• Sensor data (from manufacturing machines, weather stations, and so on)

• Live gameplay data from mobile games

• Mentions of the company brand on various social media platforms

For example, Boeing, the aircraft manufacturer, has a system called Airplane Health 
Management (AHM) that collects in-flight airplane data and relays it in real time to 
Boeing systems. Boeing processes the information and makes it immediately available  
to airline maintenance staff via a web portal.

In this section, we will look at several tools and services for ingesting streaming data,  
as well as things to consider when planning for streaming ingestion.

Amazon Kinesis versus Amazon Managed Streaming 
for Kafka (MSK)
The two primary services for ingesting streaming data within AWS are Amazon Kinesis 
and Amazon MSK. Both of these services were described in Chapter 3, The AWS 
Engineer's Toolkit, so ensure you have read those sections before proceeding.

In summary, both Amazon Kinesis and Amazon MSK are services from AWS that offer 
pub-sub message processing. That is, producers create messages that are written to the 
streaming service (Kinesis or MSK), and consumers subscribe to receive messages from 
the service. This is commonly used as a way to decouple applications producing streaming 
data from applications that are consuming data. Both services can scale up to handle 
millions of messages per second.

In this section, we will examine some of the primary differences between the two services 
and look at some of the factors that contribute to deciding which service is right for your 
use case.
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Serverless services versus managed services
Amazon Kinesis is a serverless service, meaning that you never need to make decisions 
about, manage, or know anything about the underlying servers that run the service. With 
Kinesis Data Streams, for example, you configure the number of shards for your stream, 
and AWS automatically configures the required compute infrastructure (a shard in Kinesis 
is the base throughput unit of a Kinesis data stream). With Amazon Kinesis Data Firehose, 
you don't even need to specify the number of shards to be provisioned, as Kinesis Data 
Firehose automatically scales up and down in response to message throughput changes 
without requiring any configuration.

Amazon MSK is a managed service, meaning AWS manages the infrastructure for you, 
but you still need to be aware of and make decisions about the underlying compute 
infrastructure and software. For example, you need to select from a list of instance types  
to power your MSK cluster, configure VPC network settings, and also fine-tune a range  
of Kafka configuration settings. You also need to select the version of Kafka that you want 
to use with the service.

As a serverless service, Kinesis is much quicker and easier to set up and configure than 
Amazon MSK. However, Amazon MSK provides a lot more options for configuring and 
fine-tuning the underlying software.

If you have a team with existing skills in using Apache Kafka, and you need to  
fine-tune the performance of the stream, then you may want to consider MSK. If you're 
just getting started with streaming and your use case does not have a requirement to  
fine-tune performance, then Amazon Kinesis may be a better option.

Open source flexibility versus proprietary software with strong  
AWS integration
Amazon MSK is a managed version of Apache Kafka, a popular open source solution. 
Amazon Kinesis is proprietary software created by AWS, although there are some  
limited open source elements, such as the Kinesis Agent.
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With Apache Kafka, there is a large community of contributors to the software, and a 
large ecosystem providing a diverse range of connectors and integrations. Kafka provides 
out-of-the-box integration with hundreds of event sources and event sinks (including 
AWS services such as Amazon S3, but also many other popular products, such as 
PostgreSQL, Elasticsearch, and others).

With Amazon Kinesis, AWS provides strong integration with several AWS services, 
such as Amazon S3, Amazon Redshift, and Amazon Elasticsearch. Kinesis also provides 
integration with a limited set of external services such as Splunk and DataDog through 
Amazon Kinesis Data Firehose.

When deciding between the two services, ensure that you consider the types of 
integrations your use case requires and how that matches with the out-of-the-box 
functionality of either Kinesis or MSK.

At-least-once messaging versus exactly once messaging
When working with streaming technologies, some use cases have specific requirements 
around how many times messages may be processed by data consumers. Amazon Kinesis 
and Apache Kafka (and therefore Amazon MSK) provide different guarantees around 
message processing.

Amazon Kinesis provides an at least once message processing guarantee. This effectively 
guarantees that every message generated by a producer will be delivered to a consumer for 
processing. However, in certain scenarios, a message may be delivered more than once  
to a consuming application, introducing the possibility of data duplication.

With Apache Kafka (and therefore Amazon MSK), as of version 0.11, the ability to 
configure your streams for exactly once message processing was introduced. When 
you configure your Apache Kafka stream, you can configure the: processing.
guarantee=exactly_once setting to enable this.

With Amazon Kinesis, you need to build the logic for anticipating and appropriately 
handling how individual records are processed multiple times in your application. AWS 
provides guidance on this in the Kinesis documentation, in the Handling Duplicate 
Records section.
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If your use case calls for a guarantee that all messages will be delivered to the processing 
application exactly once, then you should consider Amazon MSK. Amazon Kinesis is still 
an option, but you will need to ensure your application handles the possibility of receiving 
duplicate records.

Single processing engine versus niche tools
Apache Kafka is most closely compared to Amazon Kinesis Data Streams as both provide 
a powerful way to consume streaming messages. While both can be used to process 
a variety of data types, Amazon Kinesis does include several distinct sub-services for 
specialized use cases.

For example, if your use case involves ingesting streaming audio or video data, then 
Amazon Kinesis Video Streams is custom-designed to simplify this type of processing. 
Or, if you have a simple use case of wanting to write out ingested streaming data to targets 
such as Amazon S3, Amazon Elasticsearch, or Amazon Redshift (as well as some third-
party services), then Amazon Kinesis Data Firehose makes this task simple.

Deciding on a streaming ingestion tool
There are several factors to consider when deciding on which AWS service to use for 
processing your streaming data, as we covered in this section. Amazon Kinesis requires 
less upfront configuration and has fewer ongoing maintenance tasks, and it also has a 
subset of services for special use cases. Because of this, you should evaluate your use case 
against the various Kinesis services and see if one of these will meet your current and 
expected future requirements. If your use case has specific requirements, such as exactly 
once message delivery, the ability to fine-tune the performance of the stream, or needs 
integration with third-party products not directly available in Kinesis, then consider 
Amazon MSK.

In the next few sections, you will get hands-on with ingesting data from a database using 
AWS DMS and then ingesting streaming data using Amazon Kinesis.

Hands-on – ingesting data with AWS DMS
As we discussed earlier in this chapter, AWS DMS can be used to replicate a database into 
an Amazon S3-based data lake (among other uses). Follow the steps in this section to do 
the following:

• Create a new MySQL database instance in your account.

• Load a MySQL demo database using an EC2 instance.
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• Set up a DMS replication instance and configure endpoints and tasks.

• Run the DMS full-load.

• Run a Glue Crawler to add the tables that were newly loaded into S3 into the  
data catalog.

• Query the data with Amazon Athena.

Note
The following steps assume the use of your AWS account's default VPC and 
security group. You will need to modify the steps as needed if you're not using 
the default.

Creating a new MySQL database instance
First, we will create a new MySQL database using the default easy create settings for a free 
tier eligible database instance:

1. Log into the AWS Management Console (https://console.aws.amazon.
com).

2. In the top search bar, search for and select RDS to access the RDS console.
3. In the left-hand menu, click on databases.
4. Click Create database.
5. For the database creation method, select Easy Create.
6. For Engine type, select MySQL.
7. For DB instance size, select Free tier (db.t2.micro).
8. For DB instance identifier, provide a name, such as dataeng-mysql-1.
9. For Master password, provide a password and ensure you can recall the password 

you set here as this will be needed later.

https://console.aws.amazon.com
https://console.aws.amazon.com
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10. Click Create database:

Figure 6.2 – A portion of the Create database screen

11. Click on the name of the database you just created and take note of the Endpoint 
property (which is the database instance's hostname) under Connectivity & Security.

12. Note that it may take a few minutes for the database to be created before the endpoint 
URL is displayed

In this section, we created a new MySQL database instance. In the next section, we will 
create an EC2 instance to load some demo data into the database.
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Loading the demo data using an Amazon EC2 instance
We want to create a demo database in MySQL that we will then load into Amazon S3 
using AWS DMS. To load demo data into the database, we're going to use an Amazon  
EC2 instance:

1. In the AWS Management Console, search for and select EC2 using the top  
search bar.

2. In the left-hand menu, click on Instances.
3. At the top right, click on Launch instances.
4. Select Amazon Linux 2 AMI (HVM), SSD Volume Type.
5. For Instance type, select t2.micro and then select Next: Configure Instance Details.
6. For Configure instance details, make sure that Auto-assign Public IP is set  

to Enable.
7. At the bottom of the page is a section for User data. Paste the following bash script 

into this section; the script will be run when the instance starts for the first time.

Make sure you replace <PASSWORD> with the password you set in Step 9 of the 
Creating a new MySQL database instance section and replace <HOST> with the 
name of your MySQL database instance endpoint you took note of in Step 11 of  
the Creating a new MySQL database instance section:

#!/bin/bash

yum install -y mariadb

curl https://downloads.mysql.com/docs/sakila-db.zip -o 
sakila.zip

unzip sakila.zip

cd sakila-db

mysql --host=<HOST> --user=admin --password=<PASSWORD> -f 
< sakila-schema.sql

mysql --host=<HOST> --user=admin --password=<PASSWORD> -f 
< sakila-data.sql

The bash script does the following:
 � Installs MariaDB (which includes a MySQL client to enable us to connect  

to our MySQL server).
 � Downloads the Sakila demo database from the MySQL website, and then unzips 

the file and changes to the sakila-db directory.
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 � Connects to MySQL and runs the SQL content in the sakila-schema.sql file, 
which creates the Sakila schema (database and tables, views, and so on).

 � Connects to MySQL again and runs the SQL content in the sakila-data.sql 
file, which inserts the demo data into the tables in the Sakila database.

8. Click Next: Add storage and leave all the default settings as-is.
9. Click Next: Add Tags. Click Add Tag and set Key to Name and Value to  

dataeng-book-ec2.
10. Click Next: Configure Security Group and for Assign a security group, choose to 

Select an existing security group.
11. Select the security group named default.
12. Click Review and Launch.
13. Click Launch.
14. In the pop-up window, select Create a new key pair and provide a name for your new 

key pair (such as dataeng-book-key). Then, click Download Key Pair and ensure 
you save the key pair file in a location that you can easily access from the command 
line.

15. Click Launch Instances:

Figure 6.3 – Creating an EC2 instance and specifying the key pair

16. Click View Instances.

When the instance launches, it will run the script in the user data to load the Sakila demo 
database on our MySQL server.
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Creating an IAM policy and role for DMS
In this section, we will create an IAM policy and role that will allow DMS to write to our 
target S3 bucket:

1. In the AWS Management Console, search for and select IAM using the top  
search bar.

2. In the left-hand menu, click on Policies and then click Create policy.
3. By default, Visual editor is selected, so change to a text entry by clicking on the 

JSON tab.
4. Replace the boilerplate code in the text box with the following policy definition. 

Make sure you replace <initials> in the bucket name with the correct  
landing-zone bucket name you created in Chapter 3, The AWS Data Engineers 
Toolkit:

{

    "Version": "2012-10-17",

    "Statement": [

        {

            "Effect": "Allow",

            "Action": [

                "s3:*"

            ],

            "Resource": [

                "arn:aws:s3:::dataeng-landing-zone-
<initials>",

                "arn:aws:s3:::dataeng-landing-zone-
<initials>/*"

            ]

        }

    ]

} 

This policy grants permissions for all S3 operations (get, put, and so on) on, and in, 
dataeng-landing-zone-<initials> bucket.

5. Click Next: Tags, and then click Next: Review.
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6. Provide a descriptive policy name, such as 
DataEngDMSLandingS3BucketPolicy and click Create policy:

Figure 6.4 – Creating an IAM policy to grant S3 permissions

7. In the left-hand menu, click on Roles and then click Create role.
8. For Select type of trusted entity, make sure AWS service is selected.
9. From the list of services, select DMS and then click Next: Permissions.
10. Search for and select the policy you created in Step 6, and then click Next: Tags.
11. Click Next: Review.
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12. Provide a descriptive role name, such as DataEngDMSLandingS3BucketRole, 
and click Create role:

Figure 6.5 – Creating an IAM role to allow DMS to write to S3

13. Click on the newly created role and copy and paste the Role ARN property 
somewhere that you can easily access it; it will be required in the next section.

Now that we have created the required IAM permissions, we will create a DMS replication 
instance, as well as other required DMS resources (such as source and target endpoints,  
as well as a database migration task). 

Configuring DMS settings and performing a full load 
from MySQL to S3
In this section, we will create a DMS replication instance (a managed EC2 instance that 
connects to the source endpoint, retrieves data, and writes to the target endpoint), and 
also configure the source and target endpoints. We will then create a database migration 
task that provides the configuration settings for the migration.

In the following steps, you will configure DMS and start the full load job:

1. In the AWS Management Console, search for DMS using the top search bar and 
click on Database Migration Service.

2. In the left-hand menu, click on Replication Instances.
3. At the top of the page, click on Creation replication instance.
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4. Provide a Name for the replication instance; for example, mysql-s3-replication.
5. For Instance class, select dms.t3.micro.
6. For Allocated storage, enter 10 (the database we are replicating is very small,  

so 10 GB is enough space).
7. In the VPC dropdown, select the default VPC.
8. For Multi AZ select 'Dev or test workload (Single-AZ)
9. Leave everything else as the defaults and click Create.
10. In the left-hand menu, click on Endpoints.
11. At the top right, click on Create endpoint.
12. For Endpoint type, select Source endpoint and then click the box for Select  

RDS DB Instance.
13. For RDS Instance, use the drop-down list to select the MySQL database you  

created previously.
14. Under Endpoint configuration, for Access to endpoint database, select Provide 

access information manually.
15. For Password, provide the password that you set for the database in Step 9 of the 

Creating a new MySQL database instance section.
16. Select Create endpoint at the bottom right.
17. Now that we have created the source endpoint, we can create the target endpoint  

by clicking on Create endpoint at the top right.
18. For Endpoint type, select Target endpoint.
19. For Endpoint identifier, type in a name for the endpoint, such as s3-landing-

zone-sakilia-csv.
20. For Target engine, select Amazon S3 from the drop-down list.
21. For Service access role ARN, enter the Amazon Resource Name (ARN) for the 

IAM role you recorded in Step 13 of the previous section.
22. For Bucket name, provide the name of the landing zone bucket you created in  

Chapter 3, The AWS Data Engineers Toolkit (for example, dataeng-landing-
zone-<initials>).  

23. For Bucket folder, enter sakila-db.
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24. Expand Endpoint settings, and click on Add new setting. Select 'AddColumnName' 
from the settings list, and for value type True. 

Figure 6.6 – AWS DMS S3 target endpoint

25. Click Create Endpoint.
26.  On the left-hand side, click Database migration tasks, and then click Create task.
27. For Task identifier, provide a descriptive name for the task, such as dataeng-

mysql-s3-sakila-task.
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28. For Replication instance, select the instance you created in Step 4 of the previous 
section, such as mysql-s3-replication.

29. For Source database endpoint, select the source endpoint you created in Step 11 of 
the previous section, such as dataeng-mysql-1.

30. For Target database endpoint, select the target endpoint you created in Step 17 of 
the previous section, such as dataeng-s3-clean-sakila-parquet.

31. For Migration type, select Migrate existing data from the dropdown. This does a 
one-time migration from the source to the target.

32. Leave the defaults for Task settings as-is.
33. For Table mappings, under Selection rules, click Add new selection rule.
34. For Schema, select Enter a schema. Leave Schema name and Table name set as %.
35. Leave the defaults for Selection rules and all other sections as-is and click  

Create task.
36. Once the task has been created, the full load will be automatically initiated and the 

data will be loaded from your MySQL instance to Amazon S3. Click on the task 
identifier and review the Table statistics tab to monitor your progress.

Our previously configured S3 event for all CSV files written to the landing zone bucket 
will be triggered for each file that DMS loads. This will run the Lambda function we 
created in Chapter 3 which will create a new Parquet version of each file in the CLEAN 
ZONE bucket. This will also register each table in the AWS Glue data catalog.  

Querying data with Amazon Athena
The Lambda function that was run for each CSV file created by DMS, also registers each 
new Parquet file as part of a table in the AWS Glue Database. 

We can now query the newly ingested data using the Amazon Athena service. .

1. First we need to create a new Amazon S3 folder to store the results of our Athena 
queries. In the AWS Management Console, search for and select S3 using the top 
search bar.

2. Click on Create bucket, and for Bucket name enter athena-query-results-
<INITIALS>. Make sure the AWS Region is set to the region you have been using 
for the previous hands-on exercises. Leave all other defaults, and click on Create 
bucket.

3. In the AWS Management Console, search for and select Athena using the top 
search bar.
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4. Expand the left-hand panel, and click on Query Editor.
5. On the Athena dashboard page, click on Explore the query editor, and then click on 

the Settings tab.
6. Click on Manage on the settings tab, and for Location of query result provide the 

path of the bucket we just created, and then click Save.
7. Return to the Editor tab, and then in the Database dropdown on the left-hand side, 

select sakila from the  
drop-down list.

8. In the New query window, run the select * from film limit 20; query.
9. This query returns the results of the first 20 fictional films in the Sakila database.
10. Our DMS replication instance does have a low cost per hour while it is running. So, 

now that we have completed our database replication to Amazon S3 and confirmed 
the success of this task by querying data with Athena, we can delete the replication 
instance. Open up the DMS service, and on the left-hand side click on Database 
migration tasks. We need to delete the task before we can delete the associated 
replication instance, so select the task, and from the Actions menu click Delete, and 
then confirm deletion in the pop-up box.

11. Once the replication task has been deleted,  on the left-hand side, click on 
Replication instances. Select the replication instance you created earlier, and 
then from the Actions menu, select Delete. Confirm that you want to delete the 
replication instance by clicking on Delete in the pop-up box.

Congratulations! You have successfully replicated a MySQL database into your S3-based 
data lake. To learn more about ingesting data from MySQL to Amazon S3, see the 
following AWS documentation:

• Using Amazon S3 as a target for AWS Database Migration Service (https://
docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.
S3.html)

• Using a MySQL-compatible database as a source for AWS DMS (https://docs.
aws.amazon.com/dms/latest/userguide/CHAP_Source.MySQL.html)

Now that we have got hands-on with ingesting batch data from a database into our 
Amazon S3 data lake, let's look at one of the ways to ingest streaming data into our  
data lake.  

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.S3.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.S3.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.S3.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.MySQL.html
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Hands-on – ingesting streaming data
Earlier in this chapter, we looked at two options for ingesting streaming data into AWS, 
namely Amazon Kinesis and Amazon MSK. In this section, we will use the serverless 
Amazon Kinesis service to ingest streaming data. To generate streaming data, we will  
use the open source Amazon Kinesis Data Generator (KDG) In this section:

• Configure Amazon Kinesis Data Firehose to ingest streaming data, and write the 
data out to Amazon S3.

• Configure Amazon KDG to create a fake source of streaming data.

To get started, let's configure a new Kinesis Data Firehose to ingest streaming data and 
write it out to our Amazon S3 data lake. 

Configuring Kinesis Data Firehose for streaming 
delivery to Amazon S3
Kinesis Data Firehose is designed to enable you to easily ingest data from streaming 
sources, and then write that data out to a supported target (such as Amazon S3, which we 
will do in this exercise). Let's get started:

1. In the AWS Management Console, search for and select Kinesis using the top 
search bar.

2. The Kinesis landing page provides links to create new streams using the Kinesis 
features of Kinesis Data Streams, Kinesis Data Firehose, or Kinesis Data Analytics. 
Select the Kinesis Data Firehose service, and then click on Create delivery stream.

3. In this exercise, we are going to use the KDG to send data directly to Firehose, 
so for Source, select Direct PUT from the drop-down list. For Destination, select 
Amazon S3 from the drop-down list.

4. For Delivery stream name, enter a descriptive name, such as dataeng-
firehose-streaming-s3.

5. For Transform records with AWS Lambda, leave the default of Disabled as-is. This 
functionality can be used to run data validation tasks or perform light processing 
on incoming data with AWS Lambda, but we want to ingest the data without any 
processing, so we will leave this disabled.

6. For Convert record format, we will also leave the default of Disabled as-is. This 
can be used to convert incoming data into Apache Parquet or Apache ORC format. 
However, to do this, we would need to specify the schema of the incoming data 
upfront. We are going to ingest our data without changing the file format, so we  
will leave this disabled. 
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7. For S3 bucket, select the Landing Zone bucket you created previously; for example, 
dataeng-landing-zone-<initials>.

8. By default, Kinesis Data Firehose writes the data into S3 with a prefix to split 
incoming data by YYYY/MM/dd/HH. For our dataset, we want to load streaming 
data into a streaming prefix, and we only want to split data by the year 
and month that it was ingested. Therefore, we must set S3 bucket prefix to 
streaming/!{timestamp:yyyy/MM/}. For more information on custom 
prefixes, see https://docs.aws.amazon.com/firehose/latest/dev/
s3-prefixes.html.

9. If we set a custom prefix for incoming data, we must also set a custom error 
prefix. Set S3 bucket error output prefix to !{firehose:error-output-
type}/!{timestamp:yyyy/MM/}.

10. Expand the Buffer hints, compression and encryption section
11. The S3 buffer conditions allow us to control the parameters for how long Kinesis 

buffers incoming data, before writing it out to our target. We specify both a buffer 
size (in MB) and a buffer interval (in seconds), and whichever is reached first will 
trigger Kinesis to write to the target. If we used the maximum buffer size of 128 
MB and a maximum buffer interval of 900 seconds (15 minutes), we would see the 
following behavior. If we receive 1 MB of data per second, Kinesis Data Firehose 
will trigger after approximately 128 seconds (when 128 MB of data has been 
buffered). On the other hand, if we receive 0.1 MB of data per second, Kinesis Data 
Firehose will trigger after the 900-second maximum buffer interval. For our use 
case, we will set Buffer size to 1 MB and Buffer interval to 60 seconds.

12. For all the other settings, leave the default settings as-is and click on Create delivery 
stream.

13. Our Kinesis Data Firehose stream is now ready to receive data. So, in the next 
section, we will generate some data to send to the stream using the KDG (KDG) 
tool. 

Configuring Amazon Kinesis Data Generator (KDG)
Amazon KDG is an open source tool from AWS that can be used to generate customized 
data streams and can send that data to Kinesis Data Streams or Kinesis Data Firehose.

The Sakila database we previously loaded was for a company that produced classic movies 
and rented those out of their DVD stores. The DVD rental stores went out of business 
years ago, but the owners have now made their classic movies available for purchase and 
rental through various streaming platforms.

https://docs.aws.amazon.com/firehose/latest/dev/s3-prefixes.html
https://docs.aws.amazon.com/firehose/latest/dev/s3-prefixes.html
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The company receives information about their classic movies being streamed from their 
distribution partners in real time, in a standard format. Using KDG, we will simulate the 
streaming data that's received from partners, including the following:

• Streaming timestamp

• Whether the customer rented, purchased, or watched the trailer

• film_id that matches the Sakila film database

• The distribution partner name

• Streaming platform

• The state that the movie was streamed in

KDG is a collection of HTML and JavaScript files that run directly in your browser and 
can be accessed as a static site in GitHub. To use KDG, you need to create an Amazon 
Cognito user in your AWS account, and then use that user to log into KDG on the  
GitHub account.

AWS had created an Amazon CloudFormation template that you can deploy in your AWS 
account to create the required Amazon Cognito user. This CloudFormation template 
creates an AWS Lambda function in your account to perform the required setup.

Follow these steps to deploy the CloudFormation template, create the required Cognito 
user, and configure the KDG:

1. Open the KDG help page in your browser by going to  
https://awslabs.github.io/amazon-kinesis-data-generator/
web/help.html.

2. Read the information about how the CloudFormation template works to create 
Cognito credentials in your account. When you're ready, click on the Create a 
Cognito user with CloudFormation button.

3. The AWS Management Console will open to the CloudFormation Create Stack 
page. When opening the link, the region may default to Oregon (us-west-2-), so if 
necessary, change region to the region you are using for the exercises in this book, 
and then accept the CloudFormation defaults and click Next.

4. On the Specify stack details page, provide a Username and Password for your 
Cognito user and click Next.

5. For Configure stack options, leave all the default settings as-is and click Next.
6. Review the details of the stack to be created, and then click the box to acknowledge 

that AWS CloudFormation may create IAM resources. Click Create stack.

https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html
https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html
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Refresh the web page and monitor it until the stack's status is CREATE_COMPLETE.
7. Once the stack has been successfully deployed, go to the Outputs tab and take note 

of the KinesisDataGeneratorUrl value. Click on the link and open  
a new tab.

8. Use the username and password you set as parameters for the CloudFormation 
template to log into the Amazon KDG portal.

9. Set Region to be the same region where you created the Kinesis Data Firehose 
delivery stream.

10. For Stream/delivery stream, from the dropdown, select the Kinesis Data Firehose 
stream you created in the previous section.

11. For Records per second, set this as a constant of 10 records per second.
12. For the record template, we want to generate records that simulate what we  

receive from our distribution partners. Paste the following into the template  
section of the KDG:

{

    "timestamp":"{{date.now}}",

    "eventType":"{{random.weightedArrayElement(

      {

        "weights": [0.3,0.1,0.6],

        "data": ["rent","buy","trailer"]

      }

        )}}",

    "film_id":{{random.number(

        {

            "min":1,

            "max":1000

        }

    )}},

   "distributor":"{{random.arrayElement(

        ["amazon prime", "google play", "apple itunes", 
"vudo", "fandango now", "microsoft", "youtube"]

    )}}",

    "platform":"{{random.arrayElement(

        ["ios", "android", "xbox", "playstation", "smart 
tv", "other"]

    )}}",
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    "state":"{{address.state}}"

}    

13. Click Send data to start sending streaming data to your Kinesis Data Firehose  
delivery stream. Because of the configuration that we specified for our Firehose 
stream, the data we are sending is going to be buffered for 60 seconds, and then a 
batch of data written to our Landing Zone S3 bucket. This will continue for as long 
as we leave the KDG running.

14. Allow KDG to send data for 5-10 minutes, and then click on Stop Sending Data to 
Kinesis.

During the time that the KDG was running, it will have created enough data for us to use 
in later chapters, where we will join this data with data we migrated from our MySQL 
database. 

We can now use a Glue crawler to create a table in our data catalog for the newly ingested 
streaming data.

Adding newly ingested data to the Glue Data Catalog
In this section, we will run a Glue crawler to examine the newly ingested data, infer the 
schema, and automatically add the data to the Glue catalog. Once we do this, we can 
query the newly ingested data using services such as Amazon Athena. Let's get started:

1. In the AWS Management Console, search for and select Glue using the top search 
bar.

2. In the left-hand menu, click on Crawlers.
3. Click on Add crawler.
4. Enter a descriptive name for Crawler name, such as dataeng-streaming-

crawler.
5. Leave the defaults for Specify crawler source type as-is and click on Next.
6. For Add a data store, enter the path for the new data in Include Path (or click 

the folder icon to browse your S3 folders and select from there). For Include Path, 
the folder should be similar to s3://dataeng-landing-zone-<initials>/
streaming.

7. Click Next, then for Add another data store, leave the default of No as-is and click 
Next.
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8. For Choose an IAM role, leave the default to create a new IAM role as-is and enter 
a suffix for the IAM role (such as glue-crawler-streaming-data-role). 
Then, click Next.

9. For Create a schedule for this crawler, leave the default of Run on-demand as-is 
and click Next.

10. For Configure the crawler's output, click on Add database to create a new Glue 
catalog database for storing streaming data tables.

11. On the Add database page, provide a descriptive database name, such as 
streaming-db, and click on Create. Then, click Next.

12. Review the Glue crawler settings and click Finish.
13. Select your new crawler from the list and click Run crawler.

When the crawler finishes running, it should have created a new table for the newly 
ingested streaming data.

Querying the data with Amazon Athena
Now that we have ingested out new streaming data and added the data to the AWS Glue 
data catalog using the AWS Glue crawler, we can query the data using Amazon Athena:

1. In the AWS Management Console, search for and select Athena using the top 
search bar.

2. On the left-hand side, from the Database drop-down list, select the database you 
created in the previous step (such as streaming-db).

3. In the query window, type in select * from streaming limit 20.

The result of the query should show 20 records from the newly ingested streaming data, 
matching the pattern that we specified for KDG. Note how the Glue Crawler automatically 
added the YYYY and MM prefixes we created as partitions.

Summary
In this chapter, we reviewed several ways to ingest common data types into AWS. We 
reviewed how AWS DMS can be used to replicate a relational database to S3, and how 
Amazon Kinesis and Amazon MSK can be used to ingest streaming data.
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In the hands-on section of this chapter, we used both the AWS DMS and Amazon Kinesis 
services to ingest data and then used AWS Glue to add the newly ingested data to the data 
catalog and query the data with Amazon Athena.

In the next chapter, Chapter 7, Transforming Data to Optimize for Analytics, we will review 
how we can transform the ingested data to optimize it for analytics, a core task for data 
engineers.



7
Transforming Data 

to Optimize for 
Analytics

In previous chapters, we covered how to architect a data pipeline and common ways of 
ingesting data into a data lake. We now turn to the process of transforming raw data in 
order to optimize the data for analytics and to create value for an organization.

Transforming data to optimize for analytics and to create value for an organization is one 
of the key tasks for a data engineer, and there are many different types of transformations. 
Some transformations are common and can be generically applied to a dataset, such as 
converting raw files to Parquet format and partitioning the dataset. Other transformations 
use business logic in the transformations and vary based on the contents of the data and 
the specific business requirements.
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In this chapter, we review some of the engines that are available in AWS for performing 
data transformations and also discuss some of the more common data transformations. 
However, this book focuses on the broad range of tasks that a data engineer is likely to 
work on, so it is not intended as a deep dive into Apache Spark, nor is it intended as 
a guide to writing PySpark or Scala code. However, there are many other great books 
and online resources focused purely on teaching Apache Spark, and you are encouraged 
to investigate these, as knowing how to code and optimize Apache Spark is a common 
requirement for data engineers.

The topics we cover in this chapter include the following:

• An overview of how transformations can create new valuable datasets
• A look at the different types of transformation engines available
• Common data-preparation transformations
• Common business use case transformations
• How to handle change data capture (CDC) data
• Hands-on: Building transformations with AWS Glue Studio and Apache Spark

Technical requirements
For the hands-on tasks in this chapter, you need access to the AWS Glue service,  
including AWS Glue Studio. You also need to be able to create a new S3 bucket and  
new IAM policies.

You can find the code files of this chapter in the GitHub repository using the following 
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter07

Transformations – making raw data  
more valuable
As we have discussed in various places throughout this book, data can be one of the most 
valuable assets that an organization owns. However, raw, siloed data has limited value on 
its own, and we unlock the real value of an organization's data when we combine various 
raw datasets and transform that data through an analytics pipeline.

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter07
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter07
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Cooking, baking, and data transformations
Look at the following list of food items and consider whether you enjoy eating them:

• Sugar
• Butter
• Eggs
• Milk

For many people, these are pretty standard food items, and some (like the eggs and milk) 
may be consumed on their own, while others (like the sugar and the butter) are generally 
consumed with something else, such as adding sugar to your coffee or tea, or spreading 
butter on bread.

But, if you take those items and add a few more (like flour and baking powder) and 
combine all the items in just the right way, you could bake yourself a delicious cake, which 
would not resemble the raw ingredients at all. In the same way, our individual datasets 
have value to the part of the organization that they come from, but if we combine these 
datasets in just the right way, we can create something totally new and different. 

Now, if you happen to be having a party to celebrate something, your guests will 
appreciate the cake far more than they would appreciate just having the raw ingredients 
laid out! But if your goal was to provide breakfast for your friends, you may instead 
choose to fry the eggs, make some toast and spread the butter on the toast, and offer  
the milk and sugar to your guests for them to add to their coffee. 

In both cases, you're using some common raw ingredients, then adding some additional 
items, and finally using different utilities to prepare the food (an oven for the cake and a 
stovetop for the fried eggs). How you combine the raw ingredients, and what you combine 
them with, depends on whether you're inviting friends over for breakfast or whether 
you're throwing a party and want to celebrate with a cake. 

In the same way, data engineers can use the same raw datasets, combine them with 
additional datasets, process them with different analytics engines, and create totally new 
and different datasets. How they combine the datasets, and which analytics engine they 
use, depends on what they're trying to create, which of course ultimately depends on  
what the business purpose is.
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Transformations as part of a pipeline
In Chapter 5, Architecting Data Engineering Pipelines, we developed a high-level design 
for our data pipeline. We first looked at how we could work with various business users 
to understand what their requirements were (to keep our analogy going, whether they 
wanted a cake or breakfast). After that, we looked at three broad areas on which we 
gathered initial information, namely the following:

• Data consumers: Who was going to be consuming the data we created and what 
tools would they use for data gathering (our guests)?

• Data sources: Which data sources did we have access to that we could use to create 
our new dataset (our raw ingredients)?

• Data transformations: We reviewed, at a high level, the types of transformations 
that may be required in our pipeline in order to prepare and join our datasets  
(the recipe for making a cake or for fried eggs). 

We now need to develop a low-level design for our pipeline transformations, which will 
include determining the types of transformations we need to perform, as well as which 
data transformation tools we will use. In the next section, we begin by looking at the  
types of transformation engines that are available. 

Types of data transformation tools
As we covered in Chapter 3, The AWS Data Engineer's Toolkit, there are a number of  
AWS services that can be used for data transformation. We reviewed a number of these 
services in Chapter 3, The AWS Data Engineer's Toolkit, so make sure to review that 
chapter, but in this section, we will look more broadly at the different types of data 
transformation engines. 

Apache Spark
Apache Spark is an in-memory engine for working with large datasets, providing a 
mechanism to split a dataset among multiple nodes in a cluster for efficient processing. 
Spark is an extremely popular engine to use for processing and transforming big datasets, 
and there are multiple ways to run Spark jobs within AWS.



Types of data transformation tools     197

With Apache Spark, you can either process data in batches (such as on a daily basis or 
every few hours) or process near real-time streaming data using Spark Streaming. In 
addition, you can use Spark SQL to process data using standard SQL and Spark ML for 
applying machine learning techniques to your data. With Spark GraphX, you can work 
with highly interconnected points of data to analyze complex relationships, such as for 
social networking applications.

Within AWS, you can run Spark jobs using multiple AWS services. AWS Glue provides a 
serverless way to run Spark, and Amazon EMR provides a managed service for deploying 
a cluster for running Spark. In addition, you can use AWS container services (ECS or 
EKS) to run a Spark engine in a containerized environment or use a managed service 
from an AWS partner, such as Databricks.

Hadoop and MapReduce
Apache Hadoop is a framework consisting of multiple open source software packages for 
working with large datasets and can scale from running on a single server to running on 
thousands of nodes. Before Apache Spark, tools within the Hadoop framework – such as 
Hive and MapReduce – were the most popular way to transform and process large datasets.

Apache Hive provides a SQL-type interface for working with large datasets, while 
MapReduce provides a code-based approach to processing large datasets. Hadoop 
MapReduce is used in a similar way to Apache Spark, with the biggest difference being 
that Apache Spark does all processing in memory. Apache MapReduce on the other  
hand makes extensive use of traditional disk-based reads and writes to interim storage 
during processing.

For use cases with massive datasets that cannot be economically processed in memory, 
Hadoop MapReduce may be better suited. However, for many use cases, Apache Spark 
provides significant performance benefits, as well as the ability to handle streaming data, 
access to machine learning libraries, and an API for graph computation with GraphX.

While Apache Spark has become the leading big data processing solution in recent years, 
there are many legacy Hadoop systems still being used to process data on a daily basis. 
In addition to Apache Hive, one of the other Hadoop tools is the Hadoop Distributed 
File System (HDFS), and this is still commonly used as the ingest and target storage for 
Apache Spark processing jobs.

Within AWS, you can run a number of Hadoop tools using the managed Amazon EMR 
service. Amazon EMR simplifies the process of deploying Hadoop-based tools and 
supports multiple Hadoop tools, including Hive, HBase, Yarn, Tez, Pig, and many others.
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SQL
Structured Query Language (SQL) is another common method used for data 
transformation. The advantage of SQL is that SQL knowledge and experience are 
widely available, making it an accessible form of performing transformations for many 
organizations. However, a code-based approach to transformations (such as using Apache 
Spark) can be a more powerful and versatile way of performing transformations.

When deciding on a transformation engine, a data engineer needs to understand the skill 
sets available in the organization, as well as the toolsets and ultimate target for the data. 
If you are operating in an environment that has a heavy focus on SQL, with SQL skill sets 
being widely available and Spark and other skill sets being limited, then using SQL for 
transformation may make sense (although GUI-based tools can also be considered).

However, if you are operating in an environment that has complex data processing 
requirements, and where latency and throughput requirements are high, it may be 
worthwhile to invest in skilling up to use modern data processing approaches, such as Spark.

While we mostly focus on data lakes as the target for our data in this book, there are times 
where the target for our data transformations may be a data warehousing system, such 
as Amazon Redshift or Snowflake. In these cases, an Extract, Load, Transform (ELT) 
approach may be used, where raw data is loaded into the data warehouse (the Extract and 
Load portion of ELT), and then the transformation of data is performed within the data 
warehouse using SQL.

Alternatively, toolsets such as Apache Spark may be used with SQL, through Spark SQL. 
This provides a way to use SQL for transformations while using a modern data processing 
engine to perform the transformations, rather than using a data warehouse. This 
allows the data warehouse to be focused on responding to end-user queries, while data 
transformation jobs are offloaded to an Apache Spark cluster. In this scenario, we use an 
ETL approach, where data is extracted to intermediatory storage, Apache Spark is used  
to transform the data, and data is then loaded into a different zone of the data lake, or 
into a data warehouse.

Tools such as AWS Glue Studio provide a visual interface that can be used to design ETL 
jobs, including jobs that use SQL statements to perform complex transformations. This 
helps users who do not have Spark coding skills to run SQL-based transforms using the 
power of the Apache Spark engine.
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GUI-based tools
Another popular method of performing data transformation is through the use of 
GUI-based tools that significantly simplify the process of creating transformation jobs. 
There are a number of cloud and commercial products that are designed to provide a  
drag and drop-type approach to creating complex transformation pipelines, and these  
are widely used.

These tools generally do not provide the versatility and performance that you can get 
from designing transformations with code, but they do make the design of ETL-type 
transformations accessible to those without advanced coding skills. Some of these tools 
can also be used to automatically generate transformation code (such as Apache Spark 
code), providing a good starting point for a user to further develop the code, reducing 
ETL job development time.

Within AWS, the Glue DataBrew service is designed as a visual data preparation tool, 
enabling you to easily apply transformations to a set of files. With Glue DataBrew, a 
user can select from a library of over 250 common transformations and apply relevant 
transformations to incoming raw files. With this service, a user can clean and normalize 
data to prepare it for analytics or machine learning model development through an  
easy-to-use visual designer, without needing to write any code.

Another AWS service that provides a visual approach to ETL design is AWS Glue Studio,  
a service that provides a visual interface to developing Apache Spark transformations.  
This can be used by people who do not have any current experience with Spark but can 
also be used by those who do know Spark, as a starting point for developing their own 
custom transforms. With AWS Glue Studio, you can create complex ETL jobs that join 
and transform multiple datasets, and then review the generated code and further refine  
it if you have the appropriate coding skills.

Outside of AWS, there are also many commercial products that provide a visual approach 
to ETL design. Popular products include tools from Informatica, Matillion, Stitch, 
Talend, Panoply, Fivetran, and many others.

As we have covered in this section, there are multiple approaches and engines that can be 
used for performing data transformation. However, whichever engine or interface is used, 
there are certain data transformations that are commonly used to prepare and optimize 
raw datasets, and we'll look at some of these in the next section. 
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Data preparation transformations
The first set of transformations that we look at are those that help prepare the data for 
further transformations later in the pipeline. These transformations are designed to apply 
relatively generic optimizations to individual datasets that we are ingesting into the data 
lake. For these optimizations, you may need some understanding of the source data 
system and context, but, generally, you do not need to understand the ultimate business 
use case for the dataset.

Protecting PII data
Often, datasets that we ingest may contain personally identifiable information (PII) data, 
and there may be governance restrictions on which PII data can be stored in the data lake. 
As a result, we need to have a process that protects the PII data as soon as possible after it 
is ingested.

There are a number of common approaches that can be used here (such as tokenization or 
hashing), each with its own advantages and disadvantages, as we discussed in more detail 
in Chapter 4, Cataloging, Security, and Governance. But whichever strategy is used, the 
purpose is to remove the PII data from the raw data and replace it with a value, or token, 
in a way that enables us to still use the data for analytics.

This type of transformation is generally the first transformation performed for data 
containing PII, and in many cases, it is done in a different zone of the data lake, designed 
specifically for handling PII data. This zone will have strict controls to restrict access for 
general data lake users, and the best practice would be to have the anonymizing process 
run in a totally separate AWS account. Once the transformation has anonymized the PII 
data, the anonymized files will be copied into the general data lake raw zone in the main 
processing account.

Depending on the method used to transform PII data for anonymization, there may be 
multiple different toolsets that can be used. This includes open source libraries to create 
an Apache Spark job to do the anonymization, and, as you already know, that could be 
run on AWS Glue or Amazon EMR. If your requirements are just for a simple SHA-256 
hash of a column, you can achieve this by creating a new table using Amazon Athena, 
as outlined in the AWS blog post Anonymize and manage data in your data lake with 
Amazon Athena and AWS Lake Formation. Note, however, that an SHA-256 hash is often 
not regarded as a secure way of anonymizing data – for example, a court in Germany 
ruled that using an SHA-256 hash to anonymize data was not sufficient to comply with 
privacy requirements. For a more secure way to anonymize data, or for more complex use 
cases, you can use purpose-built managed services from commercial vendors that run in 
AWS, such as PK Privacy from the company PKWARE.
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Optimizing the file format
Within modern data lake environments, there are a number of file formats that can be 
used that are optimized for data analytics. From an analytics perspective, the most popular 
file format currently is Apache Parquet.

Parquet files are columnar-based, meaning that the contents of the file are physically stored 
to have data grouped by columns, rather than grouped by rows as with most file formats. 
(CSV files, for example, are physically stored to be grouped by rows.) As a result, queries that 
select a set of specific columns (rather than the entire row) do not need to read through all 
the data in the Parquet file to return a result, leading to performance improvements.

Parquet files also contain metadata about the data they store. This includes schema 
information (the data type for each column), as well as statistics such as the minimum and 
maximum value for a column contained in the file, the number of rows in the file, and so on.

A further benefit of Parquet files is that they are optimized for compression. A 1 TB 
dataset in CSV format could potentially be stored as 130 GB in Parquet format once 
compressed. Parquet supports multiple compression algorithms, although Snappy is  
the most widely used compression algorithm.

These optimizations result in significant savings, both in terms of storage space used and 
for running queries.

For example, the cost of an Amazon Athena query is based on the amount of compressed 
data scanned (at the time of writing, this cost was $5 per TB of scanned data). If only 
certain columns are queried of a Parquet file, then between the compression and only 
needing to read the data chunks for the specific columns, significantly less data needs  
to be scanned to resolve the query.

In a scenario where your data table is stored across perhaps hundreds of Parquet files in a 
data lake, the analytics engine is able to get further performance advantages by reading the 
metadata of the files. For example, if your query is just to count all the rows in a table, this 
information is stored in the Parquet file metadata, so the query doesn't need to actually 
scan any of the data. For this type of query, you will see that Athena indicates that 0 KB  
of data was scanned, therefore there is no cost for the query.

Or, if your query is for where the sales amount is above a specific value, the analytics 
engine can read the metadata for a column to determine the minimum and maximum 
values stored in the specific data chunk. If the value you are searching for is higher than 
the maximum value recorded in the metadata, then the analytics engine knows that it 
does not need to scan that specific column data chunk. This results in both cost savings 
and increased performance for queries.
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Because of these performance improvements and cost savings, a very common 
transformation is to convert incoming files from their original format (such as CSV,  
JSON, XML, and so on) into the analytics-optimized Parquet format.

Optimizing with data partitioning
Another common approach for optimizing datasets for analytics is to partition the data, 
which relates to how the data files are organized in the storage system for a data lake. 

Hive partitioning splits the data from a table to be grouped together in different folders, 
based on one or more of the columns in the dataset. While you can partition the data in 
any column, a common partitioning strategy that works for many datasets is to partition 
based on date. 

For example, suppose you had sales data for the past four years from around the country, 
and you had columns in the dataset for Day, Month and Year. In this scenario, you 
could select to partition the data based on the Year column. When the data was written 
to storage, all the data for each of the past few years would be grouped together with the 
following structure:

datalake_bucket/year=2021/file1.parquet

datalake_bucket/year=2020/file1.parquet

datalake_bucket/year=2019/file1.parquet

datalake_bucket/year=2018/file1.parquet

If you then run a SQL query and include a WHERE Year = 2018 clause, for example, 
the analytics engine only needs to open up the single file in the datalake_bucket/
year=2018 folder. Because less data needs to be scanned by the query, it costs less and 
completes quicker.

Deciding on which column to partition by requires that you have a good understanding 
of how the dataset will be used. If you partition your dataset by year but a majority of 
your queries are by the business unit (BU) column across all years, then the partitioning 
strategy would not be effective.

Queries you run that do not use the partitioned columns may also end up causing those 
queries to run slower if you have a large number of partitions. The reason for this is that 
the analytics engine needs to read data in all partitions, and there is some overhead in 
working between all the different folders. If there is no clear common query pattern, 
it may be better to not even partition your data. But if a majority of your queries use a 
common pattern, then partitioning can provide significant performance and cost benefits.
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You can also partition across multiple columns. For example, if you regularly process data 
at the day level, then you could implement the following partition strategy:

datalake_bucket/year=2021/month=6/day=1/file1.parquet

This significantly reduces the amount of data to be scanned when queries are run at 
the daily level and also works for queries at the month or year level. However, another 
warning regarding partitioning is that you want to ensure that you don't end up with a 
large number of small files. The optimal size of Parquet files in a data lake is 128 MB–1 
GB. The Parquet file format can be split, which means that multiple nodes in a cluster 
can process data from a file in parallel. However, having lots of small files requires a lot 
of overhead for opening, reading metadata, scanning data, and closing each file, and can 
significantly impact performance.

Partitioning is an important data optimization strategy and is based on how the data is 
expected to be used, either for the next transformation stage or for the final analytics 
stage. Determining the best partitioning strategy requires that you understand how the 
data will be used next.

Data cleansing
Optimizing the data format and partitioning data are transformation tasks that work 
on the format and structure of the data but do not directly transform the data. Data 
cleansing, however, is a transformation that alters parts of the data.

Data cleansing is often one of the first tasks to be performed after ingesting data and  
helps ensure that the data is valid, accurate, consistent, complete, and uniform. Source 
datasets may be missing values in some rows, have duplicate records, have inconsistent 
column names, use different formats, and so on. The data cleansing process works to 
resolve these issues on newly ingested raw data to better prepare the data for analytics. 
While some data sources may be nearly completely clean on ingestion (such as data from  
a relational database), other datasets are more likely to contain data needing cleansing, 
such as data from web forms, surveys, manually entered data, or Internet of Things (IoT) 
data from sensors.
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Some common data transformation tasks for data cleansing include the following:

• Ensuring consistent column names: When ingesting data from multiple datasets, 
you may find that the same data in different datasets have different column names. 
For example, one dataset may have a column called date_of_birth, while 
another dataset has a column called birthdate. In this case, a cleansing task  
may be to rename the date_of_birth column heading to birthdate.

• Changing column data type: It is important to ensure that a column has a 
consistent data type for analytics. For example, a certain column may be intended 
to contain integers, but due to a data entry error, one record in the column may 
contain a string. When running data analytics on this dataset, having a string in the 
column may cause the query to fail. In this case, your data cleansing task needs to 
replace all string values in a column that should contain integers with a null value, 
which will enable the query to complete successfully.

• Ensuring a standard column format: Different data sources may contain data 
in a different format. A common example of this is for dates, where one system 
may format the date as MM-DD-YYYY, while another system contains the data 
as DD-MM-YYYY. In this case, the data cleansing task will convert all columns 
in MM-DD-YYYY into the format of DD-MM-YYYY, or whatever your corporate 
standard is for analytics.

• Removing duplicate records: With some data sources, you may receive duplicate 
records (such as when ingesting streaming data, where only-once delivery is not 
always guaranteed). A data cleansing task may be required to identify and either 
remove, or flag, duplicate records.

• Providing missing values: Some data sources may contain missing values in some 
records, and there are a number of strategies to clean this data. The transformation 
may replace missing values with a valid value, which could be the average, or 
median, or the values for that column, or potentially just an empty string or a null. 
Alternatively, the task may remove any rows that have missing values for a specific 
column. How to handle missing values depends on the specific dataset and the 
ultimate analytics use case.

There are many other common tasks that may be performed as part of data cleansing. 
Within AWS, the Glue DataBrew service has been designed to provide an easy way to 
cleanse and normalize data using a visual design tool and includes over 250 common  
data cleansing transformations.

Once we have our raw datasets optimized for analytics, we can move on to looking at 
transforming our datasets to meet business objectives. 
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Business use case transforms
In a data lake environment, you generally ingest data from many different source systems 
into a landing, or raw, zone. You then optimize the file format and partition the dataset, as 
well as applying cleansing rules to the data, potentially now storing the data in a different 
zone, often referred to as the clean zone. At this point, you may also apply updates to the 
dataset with CDC-type data and create the latest view of the data, which we examine in the 
next section. 

The initial transforms we covered in the previous section could be completed without 
needing to understand too much about how the data is going to ultimately be used by the 
business. At that point, we were still working on individual datasets that will be used by 
downstream transformation pipelines to ultimately prepare the data for business analytics.

But at some point, you, or another data engineer working for a line of business, are going 
to need to use a variety of these ingested data sources to deliver value to the business for a 
specific use case. After all, the whole point of the data lake is to bring varied data sources 
from across the business into a central location, to enable new insights to be drawn from 
across these datasets.

The transformations that we discuss in this section work across multiple datasets, to enrich, 
denormalize, and aggregate the data, based on the specific business use case requirements.

Data denormalization
Source data systems, especially those from relational database systems, are mostly going 
to be highly normalized. This means that the source tables have been designed to contain 
information about a specific individual entity or topic. Each table will then link to other 
topics with related information through the use of foreign keys.

For example, you would have one table for customers and a separate table for salespeople. 
A record for a customer will include an identifier for the salesperson that works with that 
customer (such as sales_person_id). If you want to get the name of the salesperson 
that supports a specific customer, you could run a SQL query that joins the two tables. 
During the join, the system queries the customer table for the specific customer record 
and determines the sales_person_id value that is part of the record for that customer. 
The system then queries the sales_person table, finding the record with that  
sales_person_id, and can then access the name of the salesperson from there.
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Our normalized customer table may look as follows:

Figure 7.1 – Normalized customer table

And our normalized sales_person table may look as follows:

Figure 7.2 – Normalized Sales_Person table

Structuring tables this way has write-performance advantages for Online Transaction 
Processing (OLTP) systems and also helps to ensure referential integrity of the database. 
Normalized tables also consume less disk space, since data is not repeated across multiple 
tables. This was a bigger benefit in the early days of databases when storage was limited 
and expensive, but it is not a significant benefit today with low-cost object storage systems 
such as Amazon S3.

When it comes to running Online Analytics Processing (OLAP) queries, having to 
join data across multiple tables does incur a performance hit. Therefore, data is often 
denormalized for analytics purposes.

If we had a use case that required us to regularly query customers with their salesperson 
details, we may want to create a new table that is a denormalized version of our customer 
and sales_person tables.

The denormalized customer table may look as follows:

Figure 7.3 – Denormalized customer table

With this table, we can now make a single query that does not require any joins in order  
to determine the details for a salesperson for a specific customer.

While this was a simple example of a denormalization use case, an analytics project may 
have tens or even hundreds of similar denormalization transforms. A denormalization 
transform may also join data from multiple source tables and may end up creating very 
wide tables. 
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It is important to spend time to understand the use case requirements and how the data 
will be used, and then determine the right table structure and required joins.

Performing these kinds of denormalization transforms can be done with Apache Spark, 
GUI-based tools, or SQL. AWS Glue Studio can also be used to design these kinds of  
table joins using a visual interface.

Enriching data
Similar to the way we joined two tables in the previous example for denormalization 
purposes, another common transformation is to join tables for the purpose of enriching 
the original dataset.

Data that is owned by an organization is valuable but can often be made even more 
valuable by combining data the organization owns with data from third parties, or with 
data from other parts of the business. For example, a company that wants to market credit 
cards to consumers may purchase a database of consumer credit scores to match against 
their customer database, or a company that knows that its sales are impacted by weather 
conditions may purchase historical and future weather forecast data to help them analyze 
and forecast sales information.

AWS provides a data marketplace with the AWS Data Exchange service, a catalog of 
datasets available via paid subscription, as well as a number of free datasets. AWS Data 
Exchange currently contains over 1,000 datasets that can be easily subscribed to. Once you 
subscribe to a dataset, the Data Exchange API can be used to load data directly into your 
Amazon S3 landing zone.

In these scenarios, you would ingest the third-party dataset to the landing zone of your 
data lake, and then run a transformation to join the third-party dataset with company-
owned data.

Pre-aggregating data
One of the benefits of data lakes is that they provide a low-cost environment for storing 
large datasets, without needing to preprocess the data or determine the data schema 
up front. You can ingest data from a wide variety of data sources and store the detailed 
granular raw data for a long period inexpensively. Then, over time, as you find you have 
new questions you want to ask of the data, you have all the raw data available to work with 
and can run ad-hoc queries against the data.
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However, as the business develops specific questions they want to regularly ask of the data, 
the answers to these questions may not be easy to obtain through ad-hoc SQL queries. As 
a result, you may create transform jobs that run on a scheduled basis to perform the heavy 
computation that may be required to gain the required information from the data.

For example, you may create a transform job that creates a denormalized version of your 
sales data that includes, among others, columns for the store number, city, and state for 
each transaction. You may then have a pre-aggregation transform that runs daily to read 
this denormalized sales data (which may contain tens of millions of rows per day and tens 
or hundreds of columns) and compute sales, by category, at the store, city, and state level, 
and write these out to new tables. You may have hundreds of store managers that need 
access to store-level data at the category level via a BI visualization tool, but because we 
have pre-aggregated the data into new tables, the computation does not need to be run 
every time a report is run.

Extracting metadata from unstructured data
As we have discussed previously, a data lake may also contain unstructured data, such 
as audio or image files. While these files cannot be queried directly with traditional 
analytical tools, we can create a pipeline that uses Machine Learning (ML) and Artificial 
Intelligence (AI) services to extract metadata from these unstructured files.

For example, a company that employs real-estate agents (realtors) may capture images 
of all houses for sale. One of their data engineers could create a pipeline that uses an AI 
service such as Amazon Rekognition to automatically identify objects in the image and 
to identify the type of room (kitchen, bedroom, and so on). This captured metadata could 
then be used in traditional analytics reporting.

Another example is a company that stores audio recordings of customer service phone 
calls. A pipeline could be built that uses an AI tool such as Amazon Transcribe to create 
transcripts of the calls, and then a tool such as Amazon Comprehend could perform 
sentiment analysis on the transcript. This would create an output that indicates whether 
customer sentiment was positive, negative, or neutral for each call. This data could 
be joined with other data sources to develop a target list of customers to send specific 
marketing communication.
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While unstructured data such as audio and image files may at first appear to have no 
benefit in an analytics environment, with modern AI tools valuable metadata can be 
extracted from many of these sources. This metadata in turn becomes a valuable dataset 
that can be combined with other organizational data, in order to gather new insights 
through innovative analytics projects.

While we have only highlighted a few common transforms, there are literally hundreds of 
different transforms that may be used in an analytics project. Each business is unique and 
has unique requirements, and it is up to an organization's data teams to understand which 
data sources are available, and how these can be cleaned, optimized, combined, enriched, 
and otherwise transformed, to help answer complex business questions.

Another aspect of data transformation is the process of applying updates to an existing 
dataset in the data lake, and we examine strategies for doing this in the next section. 

Working with change data capture (CDC) data
One of the most challenging aspects of working within a data lake environment is the 
processing of updates to existing data, such as with change data capture (CDC) data. We 
have discussed CDC data previously, but as a reminder, this is data that contains updates 
to an existing dataset. 

A good example of this is data that comes from a relational database system. After the 
initial load of data is completed to the data lake, a system (such as Amazon DMS) can 
read the database transaction logs and write all future database updates to Amazon S3. 
For each row written to Amazon S3, the first column of the CDC file would contain one 
of the following characters (see the section on Amazon DMS in Chapter 3, The AWS Data 
Engineer's Toolkit, for an example of a CDC file generated by Amazon DMS): 

• I – Insert: This indicates that this row contains data that was a new insert to the table.

• U – Update: This indicates that this row contains data that updates an existing 
record in the table.

• D – Delete: This indicates that this row contains data for a record that was deleted 
from the table.

Traditionally though, it has not been possible to execute updates or deletes to individual 
records within the data lake. Remember that Amazon S3 is an object storage service, so 
you can delete and replace a file but you cannot edit or just replace a portion of a file.
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If you just append the new records to the existing data, you will end up with multiple 
copies of the same record, with each record reflecting the state of that record at a specific 
point in time. This can be useful to keep the history of how a record has changed over 
time, and so sometimes a transform job will be created to append the newly received data 
to the relevant table in the data lake for this purpose (potentially adding in a timestamp 
column that reflects the CDC data-ingestion time for each row). At the same time, we 
want our end users to be able to work with a dataset that only contains the current state  
of each data record.

There are two common traditional approaches to handling updates to data in a data lake.

Traditional approaches – data upserts and SQL views
One of the traditional approaches to dealing with CDC data is to run a transform job, on a 
schedule, that effectively merges the new CDC data with the existing dataset, keeping only 
the latest records. This is commonly referred to as performing an upsert (a combination 
of update and insert).

One way to do this is to create a transform in Spark that reads in existing data to 
one DataFrame, reads the new data into a different DataFrame, and then merges the 
DataFrames using custom logic, based on the specific dataset. The transform can then 
overwrite the existing data or write data to a new date-based partition, creating a new 
snapshot of the source system. A certain number of snapshots can be kept, enabling  
data consumers to query data from different points in time.

These transforms can end up being complex, and it is challenging to create a transform 
that is generic across all source datasets. Also, when overwriting the existing dataset with 
the updated dataset, there can be disruptions for data consumers that are trying to read 
from the dataset while the update is running. And as the dataset grows, the length of 
time and compute resources required to read in the full dataset in order to update it can 
become a major challenge. There are various strategies for dealing with these challenges, 
but they are complex, and for a long time, each organization facing these challenges had  
to implement its own complex solutions.

In order to create a solution that could be used across multiple different datasets, one 
common approach is to create a configuration table that captures details about source 
tables. This config table contains information such as a column that should be considered 
the primary key and a list of columns on which to partition the output. When the 
transform job runs, it reads the configuration table in order to integrate that table's 
specific settings with the logic in the transform job.
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AWS has a blog post that provides a solution for using AWS DMS to capture CDC data 
from source databases and then runs a Glue job to apply the latest updates to the existing 
dataset. This blog post also creates a DynamoDB table to store configuration data on 
the source tables, and the solution can be deployed into an existing account using the 
provided AWS CloudFormation template. For more information, see the AWS blog  
post titled Load ongoing data lake changes with AWS DMS and AWS Glue.

An alternative approach is to use Athena views to create a virtualized table that shows the 
latest state of the data. An Athena view is a query that runs whenever the virtual table is 
queried, using a SELECT query that is defined in the view. The view definition will join 
the source (the current table) and the table with the new CDC data, and return a result 
that reflects the latest state of the data.

Creating a view that combines the existing data and the new CDC data enables consumers 
to query the latest state of the data, without needing to wait for a daily transform job to 
run to consolidate the datasets. However, performance will degrade over time as the CDC 
data table grows, so it is advisable to also have a daily job that will run to consolidate the 
new CDC data into the existing dataset. Creating and maintaining these views can be 
fairly complex, especially when combined with a need to also have a daily transform to 
consolidate the datasets.

For many years, organizations have faced the challenge of building and maintaining 
custom solutions like these to deal with CDC data and other data lake updates.  
However, in recent years, a number of new offerings have been created to address  
these requirements more generically, as we see in the next section.

Modern approaches – the transactional data lake
Over the past few years, the concept of a transactional data lake has become popular, and 
a number of different companies and organizations have created new table formats to 
support the goal of transactional data lakes. When we refer to a transactional data lake, 
we are referencing the ability of a data lake to contain properties that were previously 
only available in a traditional database, such as the ability to update and delete individual 
records. In addition, many of these new solutions also provide support for schema 
evolution and time travel (the ability to query data as it was at a previous point in time). 
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Technically, these new table formats bring ACID semantics to the data lake:

• Atomicity: An expectation that data written will either be written as a full 
transaction or will not be written at all, and the dataset will be returned to its  
state prior to the transaction on failure

• Consistency: The expectation that even if a failure occurs, the dataset will  
stay consistent

• Isolation: The expectation that one transaction on the dataset will not be affected  
by another transaction that is requested at the same time

• Durability: The expectation that once a successful transaction has been completed,  
this transaction will be durable (it will be permanent, even if there is a later  
system failure)

Now, this does not mean that these modern data lake solutions can replace existing  
OLTP-based databases. You are not going to suddenly see retailers dump their 
PostgreSQL, MySQL, or SQL Server databases that run their customer relationship 
management (CRM) systems and instead use a data lake for everything.

Rather, data lakes are still intended as an analytical platform, but these new solutions do 
significantly simplify the ability to apply changes to existing records, as well as the ability 
to delete records from a large dataset. These solutions also help to ensure data consistency 
as multiple teams potentially work on the same datasets. There is still latency involved 
with these types of transactions, but much of the complexity involved with consolidating 
new and updates to a dataset, and providing a consistent, up-to-date view of data with 
lower latency, is handled by these solutions.

Let's have a brief look at some of the most common offerings for these new styles of 
transactional data lakes.

AWS Lake Formation governed tables
In December 2020, AWS announced the public preview of new functionality for Lake 
Formation with the introduction of governed tables. This new Amazon S3 table type has 
been designed to support ACID transactions within an S3-based data lake environment. 
When a table is created and configured as a governed table, Lake Formation handles the 
complexities of allowing multiple users to simultaneously and reliably insert, delete, and 
modify records across these tables. In addition, Lake Formation works behind the scenes 
to automatically compact and optimize the files behind the table on a regular basis.
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Apache Hudi
Apache Hudi started out as a project within Uber (the ride-sharing company) to provide 
a framework for developing low-latency and high-efficiency data pipelines for their large 
data lake environment. They subsequently donated the project to the Apache Software 
Foundation, which in turn made it a top-level project in 2020. Today, Apache Hudi is 
a popular option for building out transactional data lakes that support the ability to 
efficiently upsert new/changed data into a data lake, as well as to easily query tables and 
get the latest updates returned. AWS supports running Apache Hudi within the Amazon 
EMR managed service.

Apache Iceberg
Apache Iceberg was created by engineers at Netflix and Apple, and is designed as an 
open-table format for very large datasets. The code was donated to the Apache Software 
Foundation and became a top-level project in May 2020. 

Iceberg supports schema evolution, time travel for querying at a point in time, atomic 
table changes (to ensure that data consumers do not see partial or uncommitted changes), 
and support for multiple simultaneous writers. 

In August 2021, a new start-up, Tabular, was formed by the creators of Iceberg to build 
a cloud-native data platform powered by Apache Iceberg. At the time of writing, the 
platform has not yet been launched, but the founders have secured Series A funding  
for their start-up. 

Databricks Delta Lake
Databricks, a company formed by the original creators of Apache Spark, have developed 
their own approach to providing a transactional data lake, which has become popular 
over the past few years. This solution, called Delta Lake, is an open-format storage layer 
for streaming and batch operations that provides ACID transactions for inserts, updates, 
and deletes. In addition, Delta Lake supports time travel, which enables a query to retrieve 
data as it was at any point in time. Databricks have open sourced this solution and made  
it available on GitHub at https://github.com/delta-io/delta.

In addition to the open source version of Delta Lake, Databricks also offers a fully 
supported commercial version of Delta Lake that is popular with large enterprises. 
For more information on Delta Lake, see https://databricks.com/product/
delta-lake-on-databricks. 

https://github.com/delta-io/delta
https://databricks.com/product/delta-lake-on-databricks
https://databricks.com/product/delta-lake-on-databricks
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Handling updates to existing data in a data lake has been a challenge for as long as data 
lakes have been in existence. Over the years, some common approaches emerged to 
handle these challenges, but each organization had to effectively reinvent the wheel to 
implement its own solution.

Now, with a number of companies recently creating solutions to provide a more 
transactional-type data lake that simplifies the process of inserting, updating, and  
deleting data, it makes sense to explore these solutions, as outlined in this section.

So far in this chapter, we have covered data preparation transformations, business use case 
transforms, and how to handle CDC-type updates for a data lake. Now we get hands-on 
with data transformation using AWS Glue Studio. 

Hands-on – joining datasets with AWS  
Glue Studio
For our hands-on exercise in this chapter, we are going to use AWS Glue Studio to create 
an Apache Glue job that joins the streaming data with the data we migrated from our 
MySQL database in the previous chapter.

Creating a new data lake zone – the curated zone
As discussed in Chapter 2, Data Management Architecture for Analytics, it is common 
to have multiple zones in the data lake, containing different copies of our data as it gets 
transformed. So far, we have ingested raw data into the landing zone and then converted 
some of those datasets into Parquet format, written out in the clean zone. In this chapter, 
we will be joining multiple datasets together and will write out the new dataset to the 
curated zone of our data lake. The curated zone is intended to store data that has been 
transformed and is ready for consumption by data consumers:

1. Log into the AWS Management Console (https://console.aws.amazon.
com).

2. In the top search bar, search for and select S3 to access the S3 console.
3. In the top right, click on Create bucket.
4. For bucket name, enter dataeng-curated-zone-<initials>, replacing 

<initials> with your initials as you did for the landing zone and clean zone.
5. Ensure the region is set to the region you have been using for the other hands-on 

exercises. For the examples in this book, we use us-east-2 (Ohio).

https://console.aws.amazon.com
https://console.aws.amazon.com
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6. Accept all other defaults and click Create bucket.
7. In the top search bar, search for and select Glue to access the Glue console.
8. On the left-hand side, select Databases, and then click Add database.
9. For Database name, type curatedzonedb, and then click Create.

We have now created a new curated zone for our data lake, and in the next step, we will 
create a new IAM role to provide the permissions needed for our Glue transformation  
job to run. 

Creating a new IAM role for the Glue job
When we configure the Glue job using Glue Studio, we will need to specify an IAM role 
that has the following permissions:

• Read our source S3 bucket (for example, dataeng-landing-zone-
<initials> and dataeng-clean-zone-<initials>)

• Write to our target S3 bucket (for example, dataeng-curated-zone-
<initials>)

• Access to Glue temporary directories

• Write logs to Amazon CloudWatch

• Access to all Glue API actions (to enable the creation of new databases and tables)

To create a new AWS IAM Role with these permissions, follow these steps:

1. In the top search bar of the AWS Management Console, search for and select  
the IAM service, and in the left-hand menu, select Policies, and then click on 
Create policy.

2. By default, the Visual editor tab is selected, so click on JSON to change to the  
JSON tab.

3. Provide the JSON code from the following code blocks, replacing the boilerplate 
code. Note that you can also copy and paste this policy by accessing the policy on 
this book's GitHub page. If doing a copy and paste from the GitHub copy of this 
policy, you must replace <initials> in bucket names with the unique identifier 
you used when creating the buckets.
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The first block of the policy configures the policy document and provides 
permissions to get objects from Amazon S3 that are in the Amazon S3 buckets 
specified in the resource section. Make sure you replace <initials> with the 
unique identifier you have used in your bucket names:

{

    "Version": "2012-10-17",

    "Statement": [

        {

            "Effect": "Allow",

            "Action": [

                "s3:GetObject"

            ],

            "Resource": [

                "arn:aws:s3:::dataeng-landing-zone-
<initials>/*",

                "arn:aws:s3:::dataeng-clean-zone-
<initials>/*"

                ]

        },

4. This next block of the policy provides permissions for all Amazon S3 actions (get, 
put, and so on) that are in the Amazon S3 bucket specified in the resource section 
(in this case, our curated zone bucket). Make sure you replace <initials> with 
the unique identifier you have used in your bucket names:

        {

            "Effect": "Allow",

            "Action": [

                "s3:*"

            ],

            "Resource": "arn:aws:s3:::dataeng-curated-
zone-<initials>/*"

        }

    ]

}

5. Click on Next: tags and then click on Next: Review.
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6. Provide a name for the policy, such as DataEngGlueCWS3CuratedZoneWrite, 
and then click Create policy.

7. In the left-hand menu, click on Roles and then Create role.
8. For Trusted entity, ensure AWS service is selected, and for service select Glue, 

and then click Next: Permissions. Listing Glue as a trusted entity for this role 
enables the AWS Glue service to assume this role to run transformations.

9. Under Attach permissions policies, select the policy we just created (for example, 
DataEngGlueCWS3CuratedZoneWrite) by searching and then clicking in the 
tick box.

10. Also, search for AWSGlueServiceRole and click on the tick box to select this 
role. This managed policy provides access to temporary directories used by Glue,  
as well as CloudWatch logs and Glue resources.

11. Then, click Next: Tags.
12. Provide any tags you would like associated with this policy (optional) and click 

Next: Review.
13. Provide a role name, such as DataEngGlueCWS3CuratedZoneRole, and click 

Create role.

We have now created the permissions required for our Glue job to be able to access  
the required resources, so we can now move on to building our transformation using  
Glue Studio. 

Configuring a denormalization transform using AWS 
Glue Studio
We are now ready to create an Apache Spark job to denormalize the film data that we 
migrated from our MySQL database. The dataset we migrated is normalized currently  
(as expected for data coming from a relational database), so we want to denormalize  
some of the data to use in future transforms.
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Ultimately, we want to be able to analyze various data points about our new streaming 
library of classic movies. One of the data points we want to understand is which categories 
of movies are the most popular, but to find the name of a category associated with a 
specific movie, we need to query three different tables in our source dataset. The tables  
are as follows:

• film: This table contains details of each film in our classic movie library, including 
film_id, title, description, release_year, and rating. However, this table does 
not contain any information about the category that the film is in.

• category: This table contains the name of each category of film (such as action, 
comedy, drama, and so on), as well as category_id. However, this table does not 
contain any information that links a category with a film.

• film_category: This table is designed to provide a link between a specific 
film and a specific category. Each row contains a film_id value and associated 
category_id.

When analyzing the incoming streaming data about viewers streaming our movies, we 
don't want to have to do joins on each of the above tables to determine the category of 
movie that was streamed. So, in this first transform job that we are going to create, we 
denormalize this group of tables so that we end up with a single table that includes the 
category for each film in our film library.

To build the denormalization job using AWS Glue Studio, follow these steps:

1. In the AWS Management Console, use the top search bar to search for and select the 
Glue service.

2. In the left-hand menu, under the ETL section, click on AWS Glue Studio. Expand 
the left-hand panel, and click on Jobs.

3. Select the option for Visual with a blank canvas, and click Create.
4. Click on the Source dropdown, and then select S3.
5. On the right-hand side, under Data source properties – S3, ensure Data Catalog 

table is selected, and from the dropdown select the sakila database.
6. For the Table dropdown, select film_category.
7. Click on the Node properties tab in the transform designer and set Name to S3 – 

Film-Category.



Hands-on – joining datasets with AWS Glue Studio      219

At this point, the Glue Studio screen should look as follows:

Figure 7.4 – Glue Studio with first S3 data source

8. Repeat steps 4-7, adding another S3 source for the film table, and under Node 
properties, set the Name to S3 - Film. Once done, your Glue studio screen should 
look as follows:

Figure 7.5 – Glue Studio with two S3 data sources

9. In the Designer window, click on the Transform dropdown and select the  
Join transform.
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10. The Join transform requires two "parent" nodes – the two tables that we want to 
join. To set the parent nodes, click on Node properties, and use the Node parents 
dropdown to select the S3 – Film and S3 – Film-Category tables.

11. You will see a red check-mark on the Transform tab, indicating an issue that  
needs to be resolved. Click on the Transform tab, and you will see a warning 
about both tables having a column with the same name. Glue Studio offers to 
automatically resolve the issue by adding a custom prefix to the columns in the 
right-hand table (film_category). Click on Resolve it to have Glue Studio 
automatically add a new transform that renames the columns in the right-hand 
table (film_category).

12. There are a number of different join types that Glue Studio supports. Review the 
Join type drop-down list to understand the differences. For our use case, we want 
to join all the rows from our left-hand table (film) with matching rows from the 
right-hand table (film_category). The resulting table will have rows for every 
film, and each row will also include information from the film_category table 
– in this case, the category_id value for each film. For Join type, select Left join, 
and then click Add condition. We want to match the film_id field from the film 
table with the film_id field from the film_category table. Remember though 
that we had Glue Studio automatically rename the fields in the film_category 
table, so for the film_category table, select the (right) film_id field.

Once done, your Glue Studio screen should look as follows:

Figure 7.6 – Glue Studio after first table join
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13. Let's provide a name for the temporary table created as a result of the join. On the 
Node properties tab, change the name to Join – Film-Category_ID.

14. We don't need all the data that is in our temporary Join – Film-Category_ID 
table, so we can now use the Glue ApplyMapping transform to drop the columns 
we don't need, rename fields, and so on. From the Transform menu, select 
ApplyMapping.

15. Some of the fields that are related to our original data from when these movies  
were rented out from our DVD stores are not relevant to our new streaming 
business, so we can drop those now. At the same time, we can drop some of the 
fields from our film_category table, as the only column we need from that  
table is category_id. Select the Drop checkbox for the following columns:

 � rental_duration

 � rental_rate

 � replacement_cost

 � last_update

 � (right) film_id

 � (right) last_update

16. We can now add a transform, which will join the results of the ApplyMapping 
transform with our category table, adding the name of the category for each film. 
To add the Category table into our transform, from the Source drop-down menu, 
select S3. For Database, select sakila, and for Table, select Category.  
To provide a descriptive name, on the Node properties tab, change the Name  
to S3 – Category.

17. We can now add our final transformation. From the Transform drop-down menu, 
select Join.

18. We always need two tables for a join, so from the Node properties tab, use the 
Node parents to add the ApplyMapping transform as a parent of the join, and 
change Name to Join – Film-Category.

19. On the Transform tab, select Left join for Join type, and then click Add condition. 
From the S3 – Category table, select the category_id field, and from the 
ApplyMapping table, select the (right) category_id field.
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20. Now we will add one last ApplyMapping transform, again remove unneeded fields,  
and rename fields where appropriate. From the Transform dropdown, select 
ApplyMapping. Click the checkbox next to the following columns in order to  
drop them:

 � last_update

 � (right) category_id

Then, for the Source key value of name, change Target key to be category_
name, as this is a more descriptive name for this field.

In this section, we configured our Glue job for the transform steps required to denormalize 
our film and category data. In the next section, we will complete the configuration of our 
Glue job by specifying where we want our new denormalized table to be written. 

Finalizing the denormalization transform job to write 
to S3
To finalize the configuration of our transform job using Glue Studio, we now need to 
specify the target where we want to write out our data to:

1. Add a target by clicking on the Target drop-down, and selecting Amazon S3
2. On the Data target properties – S3 tab, select Parquet for Format, and Snappy 

for Compression type. Click on Browse S3 for S3 Target Location and select the 
dataeng-curated-zone-<initials> bucket. Add a prefix after the bucket of 
/filmdb/film_category/.

3. For Data Catalog update options, select Create a table in the Data Catalog, and 
on subsequent runs, update the schema and add new partitions.

4. For Database, select curatedzonedb from the drop-down list.
5. For Table name, type in film_category. Note that Spark requires lowercase 

table and column names, and that the only special character supported by Athena is 
the underscore character, which is why we use this rather than a hyphen.
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Our Data target properties – S3 configuration should look as follows:

Figure 7.7 – Data target properties – S3 configuration

Note about partition keys
Our sample dataset is very small (just 1,000 film records), but imagine for 
a moment that we were trying to create a similar table, including category 
information, for all the books ever published. According to an estimate from 
Google in 2010, there were nearly 130 million books that they planned to scan 
into a digital format. If our intention was to query all this book data to gather 
information on the books by category, then we would add a partition key, and 
specify category_name as a partition. When the data was written to S3, it 
would be grouped into different prefixes based on the category name, and this 
would significantly increase performance when we queried books by category.
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6. We can now provide a name and permissions configuration for our job. In the top 
left, change from the Visual tab to the Job details tab.

7. Set the name of the job to be Film Category Denormalization.
8. For IAM Role, from the dropdown select the role we created previously 

(DataEngGlueCWS3CuratedZoneRole).
9. For Requested number of workers, change this to 2. This configuration item 

specifies the number of nodes configured to run our Glue job, and since our dataset 
is small,  
we can use the minimum number of nodes.

10. For Job bookmark, change the setting to Disable. A job bookmark is a feature of 
Glue that tracks which files have been previously processed so that a subsequent  
run of the job does not process the same files again. For our testing purposes, we 
may want to process our test data multiple times, so we disable the bookmark.

11. For Number of retries, change this to 0. If our job fails to run, we don't want it  
to automatically repeat.

12. Leave all other defaults, and in the top right, click on Save. Then, click on Run  
to run the transform job.

13. Click on the Runs tab in order to monitor the job run. You can also change to the 
Script tab if you want to view the Spark code that AWS Glue Studio generated.

14. When the job completes, navigate to Amazon S3 and review the output location 
to validate that the files were created. Also, navigate to the AWS Glue console to 
confirm that the new table was created in curatedzonedb.

In the preceding steps, we denormalized data related to our catalog of films and their 
categories, and we can now join data from this new table with our streaming data.

Create a transform job to join streaming and film data 
using AWS Glue Studio
In this section, we're going to use AWS Glue Studio to create another transform, this time 
to join the table containing all streams of our movies, with the denormalized data about 
our film catalog:

1. In the AWS Management Console, use the top search bar to search for and select the 
Glue service.

2. In the left-hand menu, under the ETL section, click on AWS Glue Studio.
3. Click on Create and manage jobs, then select Blank graph, and click Create.
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4. Click on the Source dropdown, and then select S3.
5. On the right-hand side, under Data source properties – S3, ensure Data Catalog 

table is selected, and from the dropdown select the curatedzonedb database.
6. For the Table dropdown, select film_category.
7. Click on the Node properties tab in the transform designer, and set Name to  

S3 – Film_Category. 
8. Repeat steps 5–7, adding another S3 source for the streaming table from the 

streamingdb database, and setting the name to S3 - Streaming.
9. From the Transform dropdown, add an ApplyMapping transform for the  

S3 – Streaming data source.
10. Change the name of the film_id key to film_id_streaming and under  

Node properties set the name to ApplyMapping – Streaming.
11. From the Transform dropdown, add a Join transform and set Join type to  

Left join.
12. Under Node properties, add the S3 – Film-Category data source as a node parent.
13. Under the Transform tab, for Join conditions, click on Add condition.  

Select film_id_streaming for the left-hand table, and film_id for the  
right-hand table.

Your Glue Studio visual designer should look as follows:

Figure 7.8 – Glue Studio interface showing the first join
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14. Click on the Target drop-down, and select Amazon S3. For Format, select Parquet 
from the dropdown, and for Compression type, select Snappy.

15. For S3 Target Location, click Browse S3, select the dataeng-curatedzone-
<initials> bucket, and click Choose. Add a prefix after the bucket of /
streaming/streaming-films/.

16. For Data Catalog update options, select Create a table in the Data Catalog,  
and on subsequent runs, update the schema and add new partitions.

17. For Database, select curatedzonedb from the drop-down list.
18. For Table name, type in streaming_films.

Our Data Target Properties – S3 configuration should look as follows:

Figure 7.9 – Glue Studio interface showing target configuration
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19. We can now provide a name and permissions configuration for our job. In the top 
left, change from the Visual tab to the Job details tab.

20. Set the name of the job to be Streaming Data Film Enrichment.
21. For IAM Role, from the dropdown select the role we created previously 

(DataEngGlueCWS3CuratedZoneRole).
22. For Number of workers, change this to 2.
23. For Job bookmark, change the setting to Disable.
24. For Number of retries, change this to 0.
25. Leave all other defaults, and in the top right click on Save. Then click on Run to run 

the transform job.
26. Click on the Runs tab in order to monitor the job run.
27. When the job completes, navigate to Amazon S3 and review the output location 

to validate that the files were created. Also, navigate to the AWS Glue console to 
confirm that the new table was created in curatedzonedb.

We have now created a single table that contains a record of all streams of our classic 
movies, along with details about each movie, including the category of the movie. This 
table can be efficiently queried to analyze streams of our classic movies to determine  
the most popular movie and movie category, and we can break this down by state and 
other dimensions.

Summary
In this chapter, we've reviewed a number of common transformations that can be applied 
to raw datasets, covering both generic transformations used to optimize data for analytics 
and the business transforms to enrich and denormalize datasets.

This chapter is built on previous chapters in this book. We started by looking at how  
to architect a data pipeline, then reviewed ways to ingest different data types into a data 
lake, and in this chapter, we reviewed common data transformations.

In the next chapter, we will look at common types of data consumers and learn more 
about how different data consumers want to access data in different ways and with 
different tools.





8
Identifying and 

Enabling Data 
Consumers

A data consumer can be defined as a person, or application, within an organization that 
needs access to data. Data consumers can vary from staff that pack shelves and need to 
know stock levels, to the CEO of an organization that needs data to make a decision on 
which projects to invest in. A data consumer can also be a system that needs data from a 
different system. 

Everything a data engineer does is to make datasets useful and accessible to data 
consumers, which, in turn, enables the business to gain useful insights from their data. 
This means delivering the right data, via the right tools, to the right people or applications, 
at the right time, to enable the business to make informed decisions. 

Therefore, when designing a data engineering pipeline (as covered in Chapter 5, 
Architecting Data Engineering Pipelines), data engineers should start by understanding 
business objectives, including who the data consumers are and what their requirements 
are.  
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We can then work backward from these requirements to ensure that we use the 
appropriate tools to ingest data at the required frequency (streaming or batch, for 
example). We can also ensure that we create transformation pipelines that transform 
raw data sources into data that meets the consumer's specific requirements. And finally, 
understanding our data consumers will guide us in selecting a target location and format 
for our transformed data that is compatible with the tools that best enable our data 
consumers. 

Maintaining an understanding of how the data is consumed, as well as knowledge of any 
downstream dependencies, will also help data engineers support different types of data 
consumers as they work with a variety of datasets.

In this chapter, we will do a deep dive into data consumers by covering the following 
topics:

• Understanding the impact of data democratization 

• Meeting the needs of business users with data visualization

• Meeting the needs of data analysts with structured reporting

• Meeting the needs of data scientists and ML models

• Hands-on – transforming data using AWS Glue DataBrew

Technical requirements
For the hands-on exercise in this chapter, you will need permission to use the AWS Glue 
DataBrew service. You will also need to have access to the AWS Glue Data Catalog and 
any underlying Amazon S3 locations for the databases and tables that were created in the 
previous chapters. 

You can find the code files of this chapter in the GitHub repository using the following 
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter08

Understanding the impact of data 
democratization 
At a high level, business drivers have not changed significantly over the past few decades. 
Organizations are still interested in understanding market trends, customer behavior, 
increasing customer retention, improving product quality, and improving speed to 
market. However, the analytics landscape, the teams and individual roles that deliver 
business insights, and the tools that are used to deliver business value have evolved. 

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter08
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter08
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Data democratization – the enhanced accessibility of data for a growing audience of 
users, in a timely and cost-efficient manner – has become a standard expectation for most 
businesses. Today's varied data consumers expect to be able to get access to the right data 
promptly using their tool of choice to consume the data.

In fact, as datasets increase in volume and velocity, their gravity will attract more 
applications and consumers. This is based on the concept of data gravity, a term coined by 
Dave McCrory, which suggests that data has mass. That is, as datasets increase in size, they 
attract more users and become more difficult to move. 

To not be inhibited by a dataset's mass, a modern data pipeline should be based on a 
storage solution that allows users to interact with data in place, minimizing any heavy 
lifting and latency associated with moving data. And, due to data democratization and 
the existence of data gravity, both analytic teams and business users require access to 
more data, and a greater variety of data, at a faster rate to stay competitive. In effect, 
organizations have an increasing thirst for data.

A growing variety of data consumers
Over the past few years, we have seen an increase in the number and type of data 
consumers within an organization, and these data consumers are constantly looking for 
new data sources and tools. As a result, in today's modern organizations, we can expect to 
find a wide variety of data consumers – from traditional business users and data analysts 
to data scientists, machine-to-machine applications, as well as new types of business users. 

Beyond just the ability to run SQL queries and generate scheduled reports based on a 
pre-existing dataset, we see data analysts that also want the ability to do ad hoc data 
cleansing and exploration, as well as the ability to join structured data with semi-
structured data or metadata extracted from unstructured data. For example, they may 
want to evaluate sales trends concerning social media. 

And business users now expect dashboards to be refreshed with real, or near-real-time, 
data. They also want these dashboards to be accessible from anywhere, on a plethora of 
mobile devices. Furthermore, they are interested in more than just sales or ERP data. 
Analysts and business users are interested in social media data to identify consumer 
trends, and insurance and real estate companies are looking for data to be extracted 
from documents (such as medical reports or property appraisals). In the manufacturing 
industry, a variety of data consumers want access to data that's been collected from 
machines, devices, and vehicles for use cases such as proactively anticipating maintenance 
requirements. 
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Data consumers are also no longer limited to individual humans or teams. We are seeing a 
growing need for business applications to access data, be fed data, or be triggered based on 
an event or trend in the data. Call centers are interested in real-time transcripts of audio 
calls for sentiment analysis and tagging calls for manager review. They are also looking 
at applications and integrations that would use real-time call transcriptions, or full-text 
analysis of corporate documents, to reduce the time agents spend searching for answers. 
Engagement platforms are mapping the customer journey and using every event delivery 
(for example, email opened or email ignored) to tailor the customer experience. 

Finally, the availability and importance of data scientists is a growing need and role 
in many companies. They develop machine learning (ML) models that can identify 
non-obvious patterns in large datasets or make predictions about future behavior 
based on historical data. Data scientists usually require access to a large volume of raw, 
non-aggregated data. They also require enough data to train a machine learning model 
and test the model for accuracy.  

Let's take a deeper dive into some of the different types of data consumers that we can find 
in today's organizations. We will also look at how data engineers can help enable each of 
these data consumers. 

Meeting the needs of business users with data 
visualization
Some roles within an organization, such as data analysts, have always had easy access 
to data. For a long time, these roles were effectively gatekeepers of the data, and any 
"ordinary" business users that had custom data requirements would need to go through 
the data gatekeepers.

However, over the past few years, the growth of big data has expanded the thirst and need 
for custom data among a growing number of business users. Business users are no longer 
willing to tolerate having to go through long, formal processes to access the data they 
need to make decisions. Instead, users have come to demand easier, and more immediate, 
access to wider sets of data.
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To remain competitive, organizations need to ensure that they enable all the decision-
makers in their business to have easy and direct access to the right data. At the same 
time, organizations need to ensure that good data governance is in place, and that data 
consumers only have access to the data they need (as we discussed in Chapter 4, Data 
Cataloging, Security, and Governance). Data engineers are key to enabling this. 

AWS tools for business users
Business users have mixed skill sets, ranging from those that are Excel power users and 
are comfortable with concepts such as pivot tables, to executives who want easy access to 
dashboards that provide visualizations that summarize complex data. 

As a data engineer, you need to be able to provide solutions that meet the needs of these 
diverse business users. Within AWS, the primary tool that's used by business users is 
Amazon QuickSight, a cloud-based Business Intelligence (BI) application. QuickSight 
enables the creation of easy-to-access visualizations, but also provides functionality for 
advanced users to dig deeper into the data while providing strong security and governance 
controls. Amazon QuickSight is cloud-based and can easily be provisioned for hundreds, 
or even thousands, of users in an organization. 

A quick overview of Amazon QuickSight
We will do a deep dive into Amazon QuickSight in Chapter 12, Visualizing Data with 
Amazon QuickSight, but in this section, we will have a brief look at some of the primary 
ways that business users can use this tool.

Amazon QuickSight provides interactive access to data for business users, with many 
different types and styles of charts supported. A dashboard can display data from multiple 
different data sources, and users can filter data, sort data, and even drill down into specific 
aspects of a dataset. 
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Business users can elect to receive dashboards via regular emails or can access and 
interact with dashboards on-demand via the QuickSight portal or the QuickSight mobile 
app. Dashboards can also be embedded into existing web portals and apps, making these 
rich data visualizations accessible via existing tools that business users have access to.

Figure 8.1 – A sample QuickSight dashboard

While some users may have previously used spreadsheets to explore datasets using 
custom-built charts and pivot tables, QuickSight can provide the same functionality but in 
a much easier-to-use way. QuickSight also provides security, governance, and auditability, 
which is not possible when users share ad hoc spreadsheets. 

QuickSight can use data from many different sources, including directly from an S3-based 
data lake, databases (such as Redshift, MySQL, and Oracle), SaaS applications (including 
Salesforce, ServiceNow, Jira, and others), as well as numerous other sources. 



Meeting the needs of data analysts with structured reporting     235

As a data engineer, you may be involved in helping set up QuickSight and may need to 
configure access to the various data sources. QuickSight users with relevant access can 
combine different data sources directly, thereby enabling them to build the visualizations 
the business requires without going through traditional data gatekeepers. However, 
there may also be times where you are asked to create new datasets in a data lake or 
data warehouse (such as Redshift or Snowflake) so that QuickSight users can access the 
required data without needing to combine and transform datasets themselves.

We are now going to move on and explore a different type of data consumer – the data 
analyst. But for a deeper dive into QuickSight, including a hands-on exercise on creating a 
QuickSight visual, refer to Chapter 12, Visualizing Data with Amazon QuickSight.

Meeting the needs of data analysts with 
structured reporting
While business users make use of data to make decisions related to their job in an 
organization, a data analysts' full-time job is all about the data – analyzing datasets and 
drawing out insights for the business. 

If you look at various job descriptions for data analysts, you may see a fair amount of 
variety, but some elements will be common across most descriptions. These include the 
following:

• Cleansing data and ensuring data quality when working with ad hoc data sources.

• Developing a good understanding of their specific part of the business (sometimes 
referred to as becoming a domain specialist for their part of the organization). This 
involves understanding what data matters to their part of the organization, which 
metrics are important, and so on. 

• Interpreting data to draw out insights for the organization (this may include 
identifying trends, highlighting areas of concern, and performing statistical analysis 
of data). The data analyst also needs to present the information they've gathered, as 
well as their conclusions, to business leaders. 

• Creating visualizations using powerful BI software (such as Amazon QuickSight) 
that other business users can then interact with.

• Doing an ad hoc analysis of data using structured query languages such as SQL.
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A data analyst is often tasked with doing complex data analysis to answer specific business 
questions. Examples, as described earlier in this book, include identifying which products 
are the most popular by different age or socio-economic demographics. Another example 
is what percentage of customers have browsed the company's e-commerce store more than 
5 times, for more than 10 minutes at a time, in the last 2 weeks, but have not purchased 
anything. 

At times, a data analyst may make use of data in the data lake that has already been 
through formal data engineering pipelines, which means it has been cleaned and checked 
for quality. At other times, a data analyst may need to ingest new raw data, and in these 
cases, they may be responsible for data cleansing and performing quality checks on the 
data. 

Some of the work a data analyst does may be to use ad hoc SQL queries to answer very 
specific queries for a certain project, while at other times they may create reports, or 
visualizations, that run on a scheduled basis to provide information to business users. 

AWS tools for data analysts
Data analysts may use a variety of tools as they work with diverse datasets. This includes 
using query languages, such as SQL, to explore data in a data warehouse such as Redshift 
or data in a traditional database. A data analyst may also use advanced toolsets such as 
Python or R to perform data manipulation and exploration. Visual transformation tools 
may also be used by the data analyst to cleanse and prepare data when working with ad 
hoc data sources that have not been through formal data engineering pipelines. 

Data analysts also use BI tools, such as Amazon QuickSight, to create advanced 
visualizations for business users. We covered Amazon QuickSight previously, so let's 
explore some of the other tools in AWS that can be used by data analysts. 

Amazon Athena
Amazon Athena is a service that enables users to run complex SQL queries against a 
variety of data sources. This can be used to perform ad hoc exploration of data, enabling 
the data analyst to learn more about the data and test out different queries. 

Using Athena, a data analyst can run queries that join data from across tables in different 
data sources. For example, using Athena, you can run a single query that brings data in 
from S3 and join that with data from Redshift.

In Chapter 11, Ad Hoc Queries with Amazon Athena, we will do a deeper dive into the 
Athena service.
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AWS Glue DataBrew
Data analysts often need to use new sources of data to answer new questions and may 
need to perform some data transformation on these datasets. While creating these new 
insights, the data analyst may work closely with business users to develop the reports, 
visualizations, metrics, or other data as needed. Part of this iterative process may involve 
creating ad hoc transformation pipelines to ingest, cleanse, join, and transform data. 

Once the deliverable has been finalized (data sources identified, transformations 
determined, and so on), the data analyst may work with their data engineering team to 
formalize the pipeline. This is a recommended best practice to ensure that all pipelines 
are contained in a source control system, are part of formal deployment processes, and so 
on. As such, data engineers should work closely with data analysts, and always be ready to 
help formalize the ad hoc pipelines that a data analyst may create and that the business has 
come to depend on. 

One of the AWS tools that is very popular with data analysts is the AWS Glue DataBrew 
service. Using DataBrew, data analysts can easily cleanse new data sources and transform 
and join data from different tables to create new datasets. This can all be done with the 
Glue DataBrew visual interface, without the data analyst needing to write any code:

Figure 8.2 – The AWS Glue DataBrew visual transform designer
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Glue DataBrew can connect to many different data sources, including Redshift and 
Snowflake, JDBC databases, S3, Glue/Lake Formation tables, as well as other Amazon 
services such as AWS Data Exchange and Amazon AppFlow. DataBrew also includes over 
250 built-in transforms that can be used by data analysts to easily perform common data 
cleansing tasks and transformations. In the hands-on section of this chapter, you will get 
to use some of these built-in transforms.

Running Python or R in AWS
Some data analysts have advanced coding skills that they put to use to explore and 
visualize data using popular programming languages such as Python and R. These 
languages include many functions for statistically analyzing datasets and creating 
advanced visualizations.

Python code can be run using multiple services in AWS, including the following:

• AWS Lambda: Can run Python code in a serverless environment, for up to a 
maximum of 15 minutes of runtime

• AWS Glue Python Shell: Can run Python code in a serverless environment, with 
no limit on how long it runs

• Amazon EC2: A compute service where you can install Python and run Python 
code

RStudio, a popular IDE which can be used for creating data analytic projects based on the 
R programming language, can also be run using multiple services in AWS.

• RStudio can be run on Amazon EC2 compute instances, enabling data analysts to 
create R-based projects for data analysis. See the AWS blog titled Running R on AWS 
(https://aws.amazon.com/blogs/big-data/running-r-on-aws/) 
for more information on how to set this up.

• If you're working with very large datasets, RStudio can also be run on Amazon 
EMR, which uses multiple compute nodes to process large datasets. See the 
AWS blog titled Statistical Analysis with Open-Source R and RStudio on Amazon 
EMR (https://aws.amazon.com/blogs/big-data/statistical-
analysis-with-open-source-r-and-rstudio-on-amazon-emr/) for 
more information on how to use R with Amazon EMR. 

https://aws.amazon.com/blogs/big-data/running-r-on-aws/
https://aws.amazon.com/blogs/big-data/statistical-analysis-with-open-source-r-and-rstudio-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/statistical-analysis-with-open-source-r-and-rstudio-on-amazon-emr/
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Data engineers can help enable data analysts that have strong Python or R skills by 
helping them configure these coding environments in AWS. Data engineers can also help 
formalize data transformation pipelines in those cases where a data analyst has created 
an ad hoc pipeline for processing, that the business has subsequently come to use on an 
ongoing basis. 

While data analysts are primarily responsible for deriving insights out of data that reflect 
current trends, as well as the current state of the business, data scientists generally use data 
to predict future trends and requirements. In the next section, we will dive deeper into the 
role of the data scientist. 

Meeting the needs of data scientists and ML 
models
Over the past decade, the field of ML has significantly expanded, and the majority of 
larger organizations now have data science teams that use ML techniques to help drive 
the objectives of the organization. 

Data scientists use advanced mathematical concepts to develop ML models that can be 
used in various ways, including the following:

• Identifying non-obvious patterns in data (based on the results of a blood test, what 
is the likelihood that this patient has a specific type of cancer?)

• Predicting future outcomes based on historical data (is this consumer, with these 
specific attributes, likely to default on their debt?)

• Extracting metadata from unstructured data (in this image of a person, are they 
smiling? Are they wearing sunglasses? Do they have a beard?)

Many types of ML approaches require large amounts of raw data to train the machine 
learning model (teaching the model about patterns in data). As such, data scientists can 
be significant consumers of data in modern organizations. 

AWS tools used by data scientists to work with data
Data scientists will use a wide variety of tools with many different purposes, such as tools 
for developing ML models, tools for fine-tuning those models, and tools for preparing 
data to train ML models. 
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Amazon SageMaker is a suite of tools that helps data scientists and developers with the 
many different steps required to build, train, and deploy ML models. In this section, we 
will only focus on the tools that are used in data preparation, but in Chapter 13, Enabling 
Artificial Intelligence and Machine Learning, we will do a deeper dive into some of the 
other AWS tools related to ML and AI. 

SageMaker Ground Truth
Most ML models today rely on training the model using labeled data. That is, a dataset 
that includes the attribute that we are trying to predict is available to help train our model.

Let's use an example of a data scientist named Luna that is looking to create an ML model 
to identify if an image was of a dog or a cat. To train the model, Luna would need loads 
of pictures of dogs and cats and would need each image to be labeled to indicate whether 
it was a picture of a dog or a cat. Once Luna has this information, she could train her ML 
model to recognize both dogs and cats.

For our example, let's imagine that Luna was able to acquire a set of 10,000 images of 
dogs and cats, but the images are unlabeled, which means they cannot be used to train the 
model. And it would take weeks for Luna to go through the 10,000 images on her own to 
label each one correctly. 

Luckily, Luna has heard about SageMaker Ground Truth, a fully managed service for 
labeling datasets. Ground Truth uses its own ML model to automatically label datasets, 
and when it comes across data that it cannot confidently label, it can route that data 
to a team of human data labelers to be manually labeled. You can route data to either 
your pre-selected team of data labelers or make use of the over 500,000 independent 
contractors that are part of the Amazon Mechanical Turk program and have them label 
the data according to your instructions.

Using Amazon Ground Truth, Luna can quickly and accurately get her 10,000 images of 
dogs and cats labeled, ready to help train her ML model.

SageMaker Data Wrangler
It has been estimated that data scientists can spend up to 70% of their time cleaning and 
preparing raw data to be used to train ML models. To simplify and speed up this process, 
AWS announced SageMaker Data Wrangler at their re:Invent conference in 2020. 
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In most organizations, there will be formal datasets that data engineering teams have 
prepared for consumption by the organization. However, the specific data that a data 
scientist needs for training a specific model may not be available in this repository, may 
not be in the required format, or may not contain the granular level of data that is needed. 
To best enable data scientists to be self-sufficient without needing to depend on other 
teams, many organizations enable their data science teams to directly ingest and process 
raw data.

Data Wrangler supports directly ingesting data from sources, including Amazon S3, 
Athena, Redshift, as well as the Snowflake data warehouse. Once imported, a data scientist 
can use the SageMaker Studio interface to transform the data, selecting from a library 
of over 300 built-in data transformations. Data Wrangler also supports writing custom 
transformations using PySpark and popular Python libraries such as pandas. 

Once a Data Wrangler flow has been created in the SageMaker Studio visual interface, a 
user can export the Data Wrangler flow into a Jupyter Notebook and run it is as a Data 
Wrangler job, or even export the code as Python code and run it elsewhere. 

SageMaker Clarify
SageMaker Clarify is a tool for examining raw data to identify potential bias in data that 
is going to be used to train ML models. For example, let's say that you were developing a 
new ML model to detect credit risk for new customers. If your proposed training dataset 
contains data mostly on middle-aged people, then the resulting ML model may be less 
accurate when making predictions for younger or older people. 

SageMaker Clarify has been integrated with SageMaker Data Wrangler, enabling users 
to evaluate their datasets for potential bias as part of the data preparation process. Users 
can specify the attributes that they want to evaluate for bias (such as gender or age) and 
SageMaker Clarify will use several built-in algorithms to detect potential bias. SageMaker 
Clarify also provides a visual report with details on the measurements and potential bias 
identified.

So far, we have had a look at several types of data consumers that are common in 
organizations. Now, we will look at this chapter's hands-on exercise – creating a simple 
data transformation using AWS Glue DataBrew.
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Hands-on – creating data transformations 
with AWS Glue DataBrew
In Chapter 7, Transforming Data to Optimize for Analytics, we used AWS Glue Studio to 
create a data transformation job that took in multiple sources to create a new table. In this 
chapter, we discussed how AWS Glue DataBrew is a popular service for data analysts, so 
we'll now make use of Glue DataBrew to transform a dataset.

Differences between AWS Glue Studio and AWS Glue DataBrew
Both AWS Glue Studio and AWS Glue DataBrew provide a visual interface for 
designing transformations, and in many use cases either tool could be used 
to achieve the same outcome. However, Glue Studio generates Spark code 
that can be further refined in a code editor and can be run in any compatible 
environment. Glue DataBrew does not generate code that can be further 
refined, and Glue DataBrew jobs can only be run within the Glue DataBrew 
service. Glue Studio has fewer built-in transforms, and the transforms it does 
include are generally aimed at data engineers. Glue DataBrew has over 250 
built-in transforms, and these are generally aimed at data analysts.

In this hands-on task, we will be playing the role of a data analyst that has been tasked 
with creating a mailing list that can be used to send marketing material to the customers 
of our now-closed video store, to make them aware that our catalog of movies is now 
available for streaming.

Configuring new datasets for AWS Glue DataBrew
To start with, we're going to access the Glue DataBrew console and connect to two existing 
S3-based data sources (the customer and address tables that we ingested from our MySQL 
database in Chapter 6, Ingesting Batch and Streaming Data):

1. Log into the AWS Management Console and access the Glue service at https://
console.aws.amazon.com/databrew. 

2. From the left-hand side menu, click on Datasets.
3. Click on Connect new dataset.
4. Provide a Dataset name for the customer table (such as customer-dataset).
5. In the Connect to new dataset section of the window, click on Data Catalog S3 

tables on the left-hand side. Then, click on sakila from the list of Glue databases:

https://console.aws.amazon.com/databrew
https://console.aws.amazon.com/databrew
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Figure 8.3 – Glue DataBrew – Dataset console

6. From the list of tables, click the selector for the customer table, and then click 
Create dataset at the bottom right.

7. Repeat Steps 1 – 6, but this time, name the dataset address-dataset, select Data 
Catalog S3 tables and sakila again, but select the address table, and then Create 
dataset.

Now that we have configured the two datasets we plan to use, we will start creating the 
transform steps in a new DataBrew project.

Creating a new Glue DataBrew project
Now, let's create a new Glue DataBrew project where we can join our customer and 
address tables, and then clean the dataset: 

1. In the AWS Glue DataBrew console, click on Projects from the left-hand side menu. 
Then, click Create project.

2. For Project name, provide a name (such as customer-mailing-list).
3. Under Recipe details, leave the default of Create new recipe as-is.
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4. Under Select a dataset, select customer-dataset:

Figure 8.4 – Creating a new Glue DataBrew project (1)

5. Under Permissions, from the drop-down list, select Create new IAM role.
6. For New IAM role suffix, provide a suitable suffix, such as dataengbook.
7. At the bottom right, click on Create project:
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Figure 8.5 – Creating a new Glue DataBrew project (2)

Note that there are session costs associated with Glue DataBrew projects ($1.00 per 
30-minute session). However, at the time of writing, AWS was offering the first 40 sessions 
at no charge to new Glue DataBrew customers. For the current pricing, see https://
aws.amazon.com/glue/pricing/.

Building your Glue DataBrew recipe
We can now use the interactive Glue DataBrew project session to build out a recipe for our 
transformation (a recipe is the steps that are taken to transform our data). Note that it may 
take a few minutes before the session is provisioned and ready.

https://aws.amazon.com/glue/pricing/
https://aws.amazon.com/glue/pricing/
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In the interactive project session window, as shown in the following screenshot, we can 
see a sample of our customer table data and a panel to the right that allows us to build our 
recipe:

Figure 8.6 – AWS Glue DataBrew interactive project session

For our recipe, we want to join this data with our address table, and then make the 
following changes to the dataset to create a mailing list for our marketing team:

• Change the first_name and last_name columns to capital case.

• Change the email addresses so that they're all in lowercase.

Follow these steps to create the recipe:

1. Click on Add step in the recipe panel on the right-hand side of the console.
2. Scroll down through the list of transformations and select Join multiple datasets.
3. From the Select dataset dropdown, select address-dataset. Dataset metadata, as 

well as a sample of the dataset, will be displayed. Click on Next at the bottom right.
4. For Select join type, select Left join. This takes all the rows in our left-hand table 

(the customer table) and joins each row with the matching row in the address table, 
based on the join keys we specify.

5. For Join keys, for Table A, select address_id. For Table B, also select address_
id. 
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6. Under Column list, deselect all the columns, and then select only the following 
columns (these will be the only columns that our marketing team needs for the 
mailing list):

A. Table A, customer_id
B. Table A, first_name
C. Table A, last_name
D. Table A, email
E. Table B, address
F. Table B, district
G. Table B, postal_code

7. Click Finish.

We will now see a preview of our new table, with the customer and address tables 
joined, and only the columns selected previously showing. 

You may notice that our customer list includes addresses from many different 
countries (look at some of the entries under the district column), and yet we 
don't have a column for the country. This is because our original data source (a 
MySQL database) was highly normalized. The address table has a city_id field, 
and we could have included that and then joined our new dataset with the city table 
to include the city name and country_id fields. However, we would need to have 
joined that dataset with the country table (joining on the country_id column) to 
get the country name. We will not be covering those steps here, but feel free to give 
that a try on your own. 

All the first names and last names were captured in all uppercase in the original data 
source (MySQL), so let's transform these into capital case.

8. In the Recipe panel, click on Add step icon next to Applied steps.
9. From the list of transforms, scroll down and select the FORMAT / Change to 

capital case transform.
10. For Source column, select the first_name column. Ensure that Format column 

to has Capital case selected and then click Apply.
11. Repeat Steps 7 – 9, but this time select the last_name column as Source column.
12. Repeat Steps 7 – 9, but this time select the FORMAT / Change to lowercase 

transform and select the email column as the Source column.
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Your Glue DataBrew recipe should look as follows:

Figure 8.7 – Completed Glue DataBrew recipe

With that, we have created our recipe and been able to preview the results of our 
transform. Our final step will be to run our recipe in a Glue DataBrew job and write out 
the results to Amazon S3 so that we can provide the mailing list file to our marketing 
team.

Creating a Glue DataBrew job
In this final section of our hands-on activity, we will run our recipe in a job and write the 
results of our transform to a file in Amazon S3:

1. In the AWS Glue DataBrew console, click on Jobs from the left-hand side menu. 
Then, click Create job.

2. For Job name, provide a name for your job (such as mailing-list-job).
3. For Job input, select Project, and then select your customer-mailing-list project.
4. For Job output settings, leave the default settings as-is (output to Amazon S3, with 

CSV set as the file type, the delimiter as a comma, and no compression).
5. For S3 location, select a location (such as s3://dataeng-clean-zone-

<initial>/mailing-list).
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6. For Permissions, select the role that was created previously in this exercise (such as 
AWSGlueDataBrewServiceRole-dataengbook). 

7. For Permissions, select Create new IAM role and provide a suffix (such as mailing-
list-job). By having Glue DataBrew create a new role for this job, DataBrew will 
automatically provide write access to the location you specified for S3 output.

8. Click Create and run job.

When the job finishes running, the Job run history screen will be displayed, showing the 
status of the job:

Figure 8.8 – Job run history screen showing the job's status

Click on 1 output in the Output column to view the S3 destination that you selected for 
this job. Click on S3 destination path to open a new browser tab showing the output's 
location in the S3 console. Download the CSV file and open it with a text editor or 
spreadsheet application to verify the results.

In this hands-on exercise, you created a new Glue DataBrew job that joined two tables 
(customer and address). You then ran various transforms on the dataset to format the 
columns as needed by the marketing team and created a new CSV output file in Amazon 
S3.



250     Identifying and Enabling Data Consumers

Summary
In this chapter, we explored a variety of data consumers that you are likely to find in most 
organizations, including business users, data analysts, and data scientists. We briefly 
examined their roles, and then looked at the types of AWS services that each of them is 
likely to use to work with data.

In the hands-on section of this chapter, we took on the role of a data analyst, tasked 
with creating a mailing list for the marketing department. We used data that had been 
imported from a MySQL database into S3 in a previous chapter, joined two of the tables 
from that database, and transformed the data in some of the columns. Then, we wrote the 
newly transformed dataset out to Amazon S3 as a CSV file. 

In the next chapter, Loading Data into a Data Mart, we will look at how data from a data 
lake can be loaded into a data warehouse, such as Amazon Redshift.
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Data Mart
While the data lake enables a significant amount of analytics to happen inside it, there 
are several use cases where a data engineer may need to load data into an external data 
warehouse, or data mart, to enable a set of data consumers. 

As we reviewed in Chapter 2, Data Management Architectures for Analytics, a data lake 
is a single source of truth across multiple lines of business, while a data mart contains a 
subset of data of interest to a particular group of users. A data mart could be a relational 
database, a data warehouse, or a different kind of data store. 

Data marts serve two primary purposes. First, they provide a database with a subset of the 
data in the data lake, optimized for specific types of queries (such as for a specific business 
function). In addition, they also provide a higher-performing, lower latency query engine, 
which is often required for specific analytic use cases (such as for powering business 
intelligence applications). 
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In this chapter, we will focus on data warehouses and data marts and cover the  
following topics: 

• Extending analytics with data warehouses/data marts

• What not to do – anti-patterns for a data warehouse

• Redshift architecture review and storage deep dive

• Designing a high-performance data warehouse

• Moving data between the data lake and Redshift

• Hands-on – loading data into an Amazon Redshift cluster and running queries

Technical requirements
For the hands-on exercises in this chapter, you will need permissions to create a new IAM 
role, as well as permissions to create a Redshift cluster. 

You can find the code files of this chapter in the GitHub repository using the following 
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter09

Extending analytics with data warehouses/
data marts
Tools such as Amazon Athena (which we will do a deeper dive into in Chapter 11, Ad Hoc 
Queries with Amazon Athena) allow us to run SQL queries directly on data in the data 
lake. And while this enables us to query very large datasets that exist on Amazon S3, the 
performance of these queries is generally lower than the performance you get when running 
queries against data on a high-performance disk that is local to the compute engine. 

Not all queries require this kind of high performance, and we can categorize our queries 
and data into three categories. Let's take a look.

Cold data
This is data that is not frequently accessed, but it is mandatory to store it for long periods 
for compliance and governance reasons, or historical data that is stored to enable future 
research and development (such as for training machine learning models). 

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter09
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter09
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An example of this is the logs from a banking website. Unless there is a breach, or the 
customer requests account access history, there is a good chance that after a while,  
we may not need to query this data again. 

Another example is detailed data from a range of sensors in a factory. This data may not 
be queried actively after 30 days, but we want to keep this data available in case there is a 
future machine learning project where it would be useful to train the machine learning 
model with rich, historical data. 

In AWS, cold data can be stored in the Amazon S3 service, which provides different 
classes of storage based on your requirements. The following classes of S3 storage are 
commonly used for cold data, and S3 life cycle rules can be used to move data into these 
classes automatically after a certain time. For example, you can move certain datasets  
from warm storage to one of the following cold storage classes: 

• Amazon S3 Glacier (S3 Glacier): This storage class is intended for long-term 
storage where access to the data may be required a few times a year, and immediate 
access is not required. Data can be retrieved from S3 Glacier in minutes to hours 
(with different price points for the retrieval based on how quickly the data is 
required). Data in S3 Glacier cannot be directly queried with Amazon Athena  
or Glue jobs – it must be retrieved and stored in a regular storage class before it  
can be queried.

• Amazon S3 Glacier Deep Archive (S3 Glacier Deep Archive): This storage class 
is the lowest cost storage for long-term data retention and is intended for data that 
may be retrieved once or twice a year. Data in this storage class can be retrieved 
within 12 hours. 

Selecting the appropriate class of S3 storage for your data is important. Storing cold data 
that is infrequently accessed outside of the Glacier class means you are paying more for 
that storage than needed, and this is not frugal. Significant savings can be achieved by 
storing cold data in an appropriate storage class. 

Warm data
Warm data is data that is accessed relatively often but does not require extremely low 
latency for retrieval. This is data that needs to be queried on-demand, such as data that  
is used in daily ETL jobs, or data used for ad hoc querying and data discovery. 

An example of this kind of data is data that is ingested in our raw data lake zone daily, 
such as data from our SAP or another transactional database system. This data will be 
processed by our ETL jobs daily, and data will be written out to the transformed zone. 
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Generally, data in the transformed zone will still be batch processed for further business 
transforms, before being moved to the curated zone. All of these zones would likely fall 
into the category of warm data. 

In AWS, warm data can also be stored in the Amazon S3 service, but would most likely be 
stored in the standard storage class. The following classes of S3 storage are commonly used 
for warm data requirements:

• Amazon S3 Standard (S3 Standard): The S3 Standard storage class provides 
immediate access to data with performance that is ideal for ETL jobs and ad hoc 
SQL queries with Amazon Athena or Redshift Spectrum. With S3 Standard, costs 
are based on the amount of data stored, and there are no per-GB data retrieval costs 
(although there is a cost for API GET calls). 

• Amazon S3 Standard-Infrequent Access (S3 Standard-IA): This storage class 
offers the same immediate access to data, as well as the same fast retrieval speed, 
as Amazon S3 Standard. With S3 Standard-IA, the cost per GB for storage is lower 
than S3 Standard, but there is a per-GB cost for retrieving data. Data in this class 
can be directly accessed via Glue jobs, Amazon Athena, Redshift Spectrum,  
and more. 

• Amazon S3 Intelligent-Tiering (S3 Intelligent Tiering): This storage class is 
useful when you are unsure of data access patterns. With Intelligent Tiering, data is 
automatically moved from the Standard tier to the Infrequent Access tier if the data 
object has not been accessed in 30 days. Optionally, you can enable archive tiering 
as well, in which case objects that haven't been accessed in 90 days will be moved 
to S3 Glacier, and after 180 consecutive days without access will be moved to S3 
Glacier Deep Archive. 

Each of these storage classes has different pricing plans. S3 Standard's cost is based on 
storage and API calls (put, copy, get, and more), while S3 Standard Infrequent Access also 
has a cost per GB of data retrieved. S3 Intelligent Tiering does not have a cost per GB for 
data retrieved, but it does have a small monitoring and automation cost per object. For 
more details on pricing, see https://aws.amazon.com/s3/pricing/. 

When you know the access patterns for your data, you should select either the S3 Standard 
or S3 Standard-Infrequent Access class. However, if you are unsure of data access patterns, 
you should strongly consider storing the data in the S3 Intelligent Tiering class and allow 
the Amazon S3 service to automatically move data between classes based on how the data 
is accessed by your data consumers. 

https://aws.amazon.com/s3/pricing/
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Hot data
Hot data is data that is highly critical for day-to-day analytics enablement in an 
organization. This is data that is likely accessed multiple times per day and low-latency, 
high-performance access to the data is critical.

An example of this kind of data would be data used by a business intelligence application 
(such as Amazon QuickSight or Tableau). This could be data that is used to show 
manufacturing and sales of products at different sites, for example. This is often the kind 
of data that is used by end user data consumers in the organization, as well as by business 
analysts that need to run complex data queries. This data may also be used in constantly 
refreshing dashboards that provide critical business metrics and KPIs used by senior 
executives in the organization. 

In AWS, several services can be used to provide high-performance, low-latency access to 
data. These include the RDS database engines, the NoSQL DynamoDB database, as well 
as Elasticsearch (for searching full-text data). However, from an analytic perspective, the 
most common targets for hot data are Amazon Redshift or Amazon QuickSight SPICE 
(which stands for Super-fast, Parallel, In-memory Calculation Engine):

• Amazon Redshift is a super-fast cloud-native data warehousing solution that 
provides high-performance, low-latency access to data stored in the data warehouse. 

• Amazon QuickSight is a business intelligence tool from Amazon for creating 
dashboards. With Amazon QuickSight, you have the option of reading data from 
sources such as Amazon Redshift or loading data directly into the QuickSight 
in-memory database engine (SPICE) for optimal high-performance, low-latency 
access.

As we mentioned previously, AWS offers purpose-built storage engines for different  
data types/temperatures. The decision on which engine to use is generally based on  
a cost versus performance trade-off. 

In many cases, data is time-sensitive. There may be a business application that needs to 
report on historical statistics, current trends, and a zoomed-in view of the previous few 
months of data. Some of this data may also need to be refreshed frequently. This requires  
a data engineer to process the data, clean and massage it, and then load a subset of the 
data to a high-performing engine, such as Amazon Redshift. 

In this chapter, we are going to focus on using Amazon Redshift as a high-performance data 
mart for hot data access. Data lakes are a great option from a cost and scalability perspective 
for storing large amounts of data and being the ultimate source of truth. However, data 
warehouses provide an application-specific approach to querying large-scale structured  
and semi-structured data with the best performance and lowest latency. 
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What not to do – anti-patterns for a data 
warehouse
While there are many good ways to use a data warehouse for analytics, there are some 
things that organizations may be tempted to do that are not good for a data warehouse.

Let's take a look at some of the ways of using a data warehouse that should be avoided.

Using a data warehouse as a transactional datastore
Data warehouses are designed to be optimized for online analytical processing (OLAP) 
queries, so they should not be used for online transaction processing (OLTP) queries 
and use cases. 

While there are mechanisms to update or delete data from a data warehouse, a data 
warehouse is primarily designed for append-only queries. There are also other features 
of transactional databases (such as MySQL or PostgreSQL) that are available in Redshift 
– such as the concept of primary and foreign keys – but these are used for performance 
optimization and query planning and are not enforced by Redshift. 

Using a data warehouse as a data lake
Data warehouses offer increased performance by having high-performance storage 
directly attached to the compute engine. A data warehouse is also able to scale to store  
vast amounts of data, and while primarily designed to support structured data, they are 
also able to offer some support for semi-structured data.

However, data warehouses, by design, require upfront thought about schema and table 
structure. They are also not designed to store unstructured data (such as images and 
audio), and they only support SQL for data querying and transformation. As data 
warehouses include a compute engine, their cost is also higher than storing data in 
low-cost object storage. 

In contrast, with data lakes, you can store all the data on low-cost object storage and can 
ingest data without needing to design an appropriate schema structure first. You can also 
analyze the dataset directly (using tools such as Amazon Athena) and transform the data 
with a wide range of tools (SQL and Spark, for example), and then bring just the required 
data into the data warehouse. 
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The goal is to avoid storing unnecessary data in a data warehouse. Data warehouses are 
supposed to store curated datasets with well-defined schemas, and should only store hot 
data that is needed for high-performance, low-latency queries. 

Using data warehouses for real-time, record-level use 
cases
Data warehouses are optimized to load data in batches and are not well-suited to ingesting 
data as individual records. As such, a data warehouse should not be used as a direct target 
for large amounts of IoT data (or other real-time data sources), for example. 

If there is a requirement to load this kind of data in Redshift, it would be recommended 
to buffer the data and load the data in batches to Redshift. One way to do this would be 
by sending the data to Kinesis Firehose in real time, where Kinesis Firehose could then 
buffer the data for up to 15 minutes, or up to 128 MB of data, whichever comes first. Once 
the buffer is full, Kinesis can instruct Redshift to load the batch of data. However, in most 
cases, you would still need to design the schema/table structure upfront, whereas with 
data lakes, you can ingest data directly, without needing any schema design. 

Storing unstructured data
While some data warehouses (such as Amazon Redshift) can store semi-structured data 
(such as JSON data), data warehouses should not be used to store unstructured data such 
as images, videos, and other media content. 

You should always consider which data engine may be best for a specific data type before 
just defaulting to storing the data in a data warehouse. For example, Health Care FHIR 
data has a heavily nested JSON structure. While it is possible to store and query this in 
Amazon Redshift, you may want to consider using a solution designed for that specific 
data type, such as Amazon HealthLake. 

Now that we have reviewed some of the ways that a data warehouse should not be used, 
let's dig deeper into the Redshift architecture. 
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Redshift architecture review and storage  
deep dive
In this section, we will take a deeper dive into the architecture of Redshift clusters, as well 
as into how data in tables is stored across Redshift nodes. This in-depth look will help you 
understand and fine-tune Redshift's performance, though we will also cover how many of 
the design decisions affecting table layout can be automated by Redshift.

In Chapter 2, Data Management Architectures for Analytics, we briefly discussed how the 
Redshift architecture uses leader and compute nodes. Each compute node contains a certain 
amount of compute power (CPUs and memory), as well as a certain amount of local storage. 
When configuring your Redshift cluster, you can add multiple compute nodes, depending on 
your compute and storage requirements. Note that to provide fault tolerance and improved 
durability, the compute nodes have 2.5 - 3x the stated node storage capacity (for example, if 
addressable storage capacity is listed as 2.56 TB, the actual underlying storage may be closer 
to 7.5TB).

Every compute node is split into either 2, 4, or 16 slices, depending on the cluster type  
and size. Each slice is allocated a portion of the node's memory and storage and works  
as an independent worker, but working in parallel with the other slices. 

The slices store different columns of data for large tables, as distributed by the leader node. 
The data for each column is persisted as 1 MB immutable blocks, and each column can 
grow independently. 

When a user runs a query against Redshift, the leader node creates a query plan,  
allocates work for each slice, and then the slices execute the work in parallel. When each 
slice completes its work, it passes the results back to the leader node for final aggregation 
or sorting and merging. However, this means that a query is only as good as its  
slowest partition.

Data distribution across slices
Let's have a look at how data is distributed across slices in Redshift:
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Figure 9.1 – Data distribution across slices on a compute node

In the preceding diagram, we can see that column2 is distributed across Slice1-Disk1, 
Slice1-Disk2, and Slice2-Disk1. To increase data throughput and query performance, 
data should be spread evenly across slices to avoid I/O bottlenecks. If most of the data for 
a specific table were on one node, that node would end up doing all the heavy lifting and 
diminish the point of parallelism. Redshift supports multiple distribution styles, including 
EVEN, KEY, and ALL (and can automatically select the best distribution style, as we will 
discuss later in this chapter). The distribution style that's selected for a specific table 
determines which slice a row in a column will be stored on. 

One of the most common operations when performing analytics is the JOIN operation. 
Let's look at an example where we have two tables, one of which is a small dimension table 
(2-3 million rows) and the other is a very large fact table (potentially with hundreds of 
millions of rows). 
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The small dimension table can easily fit into the storage of a single node, while the 
large table needs to be spread across multiple nodes. One of the biggest impacts on 
performance regarding a JOIN query is when data needs to be shuffled (copied) around 
between nodes. To avoid this and to optimize JOIN performance, the smaller dimension 
table can be stored on all the slices of the cluster by specifying an ALL distribution style. 
For the larger table, data can be equally distributed across all the slices in a round-robin 
fashion by specifying an EVEN distribution style. By doing this, every slice will have a 
full copy of the small dimension table and it can directly join that with the subset of data  
it holds for the large fact table, without needing to shuffle the dimension data from  
other slices.

While this can be ideal for query performance, the ALL distribution style does have some 
overhead with regards to the amount of storage space used by the cluster, as well as a 
negative performance impact for data loads. 

An alternative approach that can be used to optimize joins, especially if both tables being 
joined are large, is to ensure that the same slice stores the rows for both tables that will 
need to be joined. A way to achieve this is by using the KEY distribution style, where a 
hash value of one of the columns will determine which row of each table will be stored  
on which slice. 

For example, let's say that we have a table that stores details about all of the products  
we sell, and that this table contains a product_id column. Let's also say we have a 
different table that contains details of all sales, and that it also contains a column called 
product_id. 

In our queries, we often need to join these tables on the product_id column. By 
distributing the data for both tables based on the value of the product_id column, we 
can help ensure that all the rows that need to be joined are on the same slice. Redshift 
would determine the hash value of, for example, product_id "DLX5992445". Then, 
all the rows, from both tables, that contain that product_id would be stored on the 
same slice. 

For grouping and aggregation queries, you also want to reduce data shuffling (copying 
data from one node to another to run a specific query) to save network I/O. This can also 
be achieved by using the KEY distribution style to keep records with the same key on the 
same slice. In this scenario, you would specify the column used in the GROUP BY clause 
as the key to distribute the data on. 
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However, if we queried one of these tables with a WHERE filter on the product_id 
column, then this distribution would create a bottleneck, as all the data that needed to 
be returned from the query would be on one slice. As such, you should avoid specifying 
a KEY distribution on a column that is commonly used in a WHERE clause. Finally, the 
column that's used for KEY distribution should always be one with high cardinality and 
normal distribution of data to avoid hot partitions and data skew. 

While this can be very complex, Redshift can automatically optimize configuration  
items such as distribution styles, as we will discuss later in this chapter in the Designing  
a high-performance data warehouse section.

Redshift Zone Maps and sorting data
The time it takes a query to return results is also impacted by hardware factors – specifically, 
the amount of disk seek and disk access time:

• Disk seek is the time it takes a hard drive to move the read head from one block  
to another (as such, it does not apply to nodes that use SSD drives). 

• Disk access is the latency in reading and writing stored data on disk blocks and 
transferring the requested data back to the client.

To reduce data access latency, Redshift stores in-memory metadata about each disk 
block on the leader node in what is called Zone Maps. For example, Zone Maps store 
the minimum and maximum values for the data of each column that is stored within 
a specific 1 MB data block. Based on these Zone Maps, Redshift knows which blocks 
contain data relevant to a query, so it can skip reading blocks that do not contain data 
needed for the query. This helps optimize query performance by magnitudes by reducing 
the number of reads. 

Zone Maps are most effective when the data on blocks is sorted. When defining a 
table, you can optionally define one or more sort keys, which determines how data is 
sorted within a block. When choosing multiple sort keys, you can either have a priority 
order of keys using a compound sort key or give equal priority to each sort key using 
an interleaved sort key. The default sort key type is a compound sort key, and this is 
recommended for most scenarios. 

Sort keys should be on columns that are frequently used with range filters or columns 
where you regularly compute aggregations. While sort keys can help significantly increase 
query performance by improving the effectiveness of Zone Maps, they can harm the 
performance of ingest tasks. In the next section, we will look at how Redshift simplifies 
some of these difficult design decisions by being able to automatically optimize a table's 
sort key. 
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Designing a high-performance data warehouse
When you're looking to design a high-performing data warehouse, multiple factors need 
to be considered. These include items such as cluster type and sizing, compression types, 
distribution keys, sort keys, data types, and table constraints. 

As part of the design process, you will need to consider several trade-offs, such as cost 
verse performance or the size of storage verse performance. Business requirements and 
the available budget will often drive these decisions. 

Beyond decisions about infrastructure and storage, the logical schema design also plays 
a big part in optimizing the performance of the data warehouse. Often, this will be an 
iterative process, where you start with an initial schema design that you refine over time to 
optimize for increased performance. 

Selecting the optimal Redshift node type
There are different types of nodes available, each with different combinations of CPU, 
memory, storage capacity, and storage type. The following are the three families of  
node types:

• RA3 nodes: When used with managed storage, you can decouple compute and 
storage since you pay a per-hour compute fee and a separate fee based on how much 
managed storage you use over the month. Storage is a combination of local SSD 
storage and data stored in S3. 

• DC2 nodes: These are designed for compute-intensive workloads and feature a fixed 
amount of local SSD storage per node. With DC2 nodes, compute and storage are 
coupled (meaning that to increase either compute or storage, you need to add a new 
node containing both compute and storage).

• DS2 nodes: These are legacy nodes that offer compute with attached large hard disk 
drives. With DS2 nodes, compute and storage is also coupled. 

AWS recommends that small data warehouses (under 1 TB in size) use DC2 nodes, while 
larger data warehouses make use of the RA3 nodes with managed storage. The DS2 node 
type is a legacy node type that is not generally recommended for use when creating a new 
Redshift cluster. 

When creating a new Redshift cluster in the console, you have the option of entering 
information about your data's size, type of data, and data retention, which will provide  
a recommend node type and the number of nodes for your workload.
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Selecting the optimal table distribution style and  
sort key
In the early days of Redshift, users had to specifically select the distribution style and sort 
key that they wanted to use for each table. When a Redshift cluster was not performing 
as well as expected, it would often turn out that the underlying issue was having a 
non-optimal distribution style and/or sort key.

As a result, Amazon introduced new functionality that enabled Redshift to use advanced 
artificial intelligence methods to monitor queries being run on the cluster, and to 
automatically apply the optimal distribution style and/or sort key. Optimizations can be 
applied to tables within a few hours of a minimum number of queries being run. 

If you create a new table and do not specify a specific distribution style or sort key, 
Redshift sets both of those settings to AUTO. Smaller tables will initially be set to have  
an ALL distribution style, while larger tables will have an EVEN distribution style. 

If a table starts small but grows over time, Redshift automatically adjusts the distribution 
style to EVEN. Over time, as Redshift analyses the queries being run on the cluster,  
it may further adjust the table distribution style to be KEY-based.

Similarly, Redshift analyzes queries being run to determine the optimal sort key for  
a table. The goal of this optimization is to optimize the data blocks that are read from  
the disk during a table scan. 

It is strongly recommended that you allow Redshift to manage distribution and sort 
key optimizations for your table automatically, but you do have the power to manually 
configure these settings if you have a unique use case.

Selecting the right data type for columns
Every column in a Redshift table is associated with a specific data type, and this data type 
ensures that the column will comply with specific constraints. This helps enforce the types 
of operations that can be performed on the values in the column. 

For example, an arithmetic operation such as sum can only be performed on numeric 
data types. If you needed to perform a sum operation on a column type that was defined 
as a character or string type, you would need to cast it to a numeric type. This can have 
an impact on query performance, so it needs to be taken into consideration.

There are broadly six data types that Amazon Redshift currently supports. Let's take  
a look.
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Character types
Character data types are equivalent to string data types in programming languages and 
relational databases and are used to store text.

There are two primary character types:

• CHAR(n), CHARACTER(n), and NCHAR(n): These are fixed-length character 
strings that support single-byte characters only. Data is stored with trailing white 
spaces at the end to convert the string into a fixed length. If you defined a column  
as CHAR(8), for example, data in this column would be stored as follows:

CHAR(8)

"ABC     "

"DEF     "

However, the trailing whitespace is ignored during queries. For example, if you're 
querying the length of one of the aforementioned records, it would return a result  
of 3, not 8. Also, if you're querying the table for records matching "ABC", the 
trailing space would again be ignored and the record would be returned. 

• VARCHAR(n) and NVARCHAR(n): These are variable-length character strings 
that support multi-byte characters. When creating this data type, to determine the 
correct length to specify, you should multiply the number of bytes per character, 
with the maximum number of characters you need to store. 

A column with VARCHAR(8), for example, can store up to 8 single-byte characters, 
4 two-byte characters, or 2 four-byte characters. To calculate the value of n for 
VARCHAR, multiply the number of bytes per character by the number of characters. 
As this data type is for variable-length strings, the data is not padded with trailing 
white space.

When deciding on the character type, if you need to store multi-byte characters, then 
you should always use the VARCHAR data type. For example, the Euro symbol (€) is 
represented by a 3-byte character, so this should not be stored in a CHAR column.

However, if your data can always be encoded with single-byte characters and always  
a fixed length, then use the fixed-width CHAR data type. An example of this is columns 
that store phone numbers or IP addresses.
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AWS recommends that you always use the smallest possible column size rather than 
providing a very large value, for convenience, as using an unnecessarily large length can 
have a performance impact for complex queries. However, there is a trade-off because if 
the value is too small, you will find that queries may fail if the data you attempt to insert 
is larger than the length specified. Therefore, consider what may be the largest potential 
value you need to store for a column and use that when defining the column.

Numeric types
Number data types in Redshift include integers, decimals, and floating-point numbers. 
Let's look at the primary numeric types.

Integer types
Integer types are used to store whole numbers, and there are a few options based on the 
size of the integer you need to store:

• SMALLINT/INT2: These integers have a range of -32,768 to +32,767.

• INTEGER/INT/INT4: These integers have a range of -2147483648 to +2147483647.

• BIGINT/INT8: These integers have a range of – 9223372036854775808 to 
+9223372036854775807.

You should always use the smallest possible integer type that will be able to store all 
expected values. For example, if you're storing the age of a person, you should use 
SMALLINT, while if you're storing a count of product inventory where you expect to have 
hundreds of thousands of units to potentially a few million units on hand, you should use 
the INTEGER type. 

Decimal type
The DECIMAL type allows you to specify the precision and scale you need to store. 
Precision indicates the total number of digits on both sides of the decimal point, while 
the scale indicates the number of digits on the right-hand side of the decimal point. You 
define the column by specifying DECIMAL(precision, scale). 

Creating a column and specifying a type as DECIMAL(7,3) would enable values in the 
range of -9999.999 to +9999.999. 

The DECIMAL type is useful for storing the results of complex calculations where you 
want full control over the accuracy of the results. 
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Floating-point types
These numeric types are used to store values with variable precision. The floating-point 
types are known as inexact types, which means you may notice a slight discrepancy when 
storing and reading back a specific value, as some values are stored as approximations. If 
you need to ensure exact calculations, you should use the DECIMAL type instead. 

The two floating-point types that are supported in Redshift are as follows:

• REAL/FLOAT4: These support values of up to 6 digits of precision.

• DOUBLE PRECISION/FLOAT8/FLOAT: These support values of up to 15 digits 
of precision. 

This data type is used to avoid overflow errors for values that are mathematically within 
range, but the string length exceeds the range limit. When you insert values that exceed 
the precision for that type, the values are truncated. For a column of the REAL type (which 
supports up to 6 digits of precision), if you insert 7876.7876, it would be stored as 7876.78. 
Or, if you attempted to insert a value of 787678.7876, it would be stored as 787678.

Datetime types
These types are equivalent to simple date, time, or timestamp columns in programming 
languages. The following datetime types are supported in Redshift:

• DATE: This column type supports storing a date without any associated time. Data 
should always be inserted enclosed in double quotation marks. 

• TIME/TIMEZ: This column type supports storing a time of day without any 
associated date. TIMEZ is used to specify the time of day with the time zone, with 
the default time zone being Coordinated Universal Time (UTC). Time is stored 
with up to six-digit precision for fractional seconds. 

• TIMESTAMP/TIMESTAMPZ: This column type is a combination of DATE 
followed by TIME/TIMEZ. If you insert a date without a time value, or only a 
partial time value, into this column type, any missing values will be stored as 00. 
For example, a TIMESTAMP of 2021-05-23 will be stored as 20121-05-23 
00:00:00. 
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Boolean type
The Boolean type is used to store single-byte literals with a True or False state or 
UNKNOWN. When inserting data into a Boolean type field, the valid set of specifiers for 
True are {TRUE, 't', 'true', 'y', 'yes', '1'}. The valid set of specifiers 
for False are {FALSE 'f' 'false' 'n' 'no' '0'}. And if a column has a NULL 
value, it is considered UNKNOWN.

Regardless of what literal string was used to insert a column of the Boolean type, the data 
is always stored and displayed as t for true and f for false. 

HLLSKETCH type
The HLLSKETCH type is a complex data type that stores the results of what is known 
as the HyperLogLog algorithm. This algorithm can be used to estimate the cardinality 
(number of unique values) in a large multiset very efficiently. Estimating the number of 
unique values is a useful analytic function that can be used to map trends over time. 

For example, if you run a large social media website with hundreds of millions of people 
visiting every day, to track trends, you may want to calculate how many unique visitors 
you have each day, each week, or each month. Using traditional SQL to perform this 
calculation would be impractical as the query would take too long and would require  
an extremely large amount of memory. 

This is where algorithms such as the HyperLogLog algorithm come in. Again, there is a 
trade-off, as you do give up some level of accuracy in exchange for a much more efficient 
way of getting a good estimate of cardinality (generally, the error range is expected to be 
between 0.01 – 0.6%). Using this algorithm means you can now work with extremely  
large datasets, and calculate the estimated unique values with minimal memory usage  
and within a reasonable time.

Redshift stores the result of the HyperLogLog algorithm in a data type called 
HLLSKETCH. You could have a daily query that runs to calculate the approximate unique 
visitors to your website each day and store that in an HLLSKETCH data type. Then, each 
week, you could use Redshift's built-in aggregate and scalar functions on the HLLSKETCH 
values to combine multiple HLLSKETCH values to calculate weekly totals. 

SUPER type
To support semi-structured data (such as arrays and JSON data) more efficiently in 
Redshift, Amazon provides the SUPER data type. You can load up to 1 MB of data into  
a column that is of the SUPER type, and then easily query the data without needing  
to impose a schema first. 
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For example, if you're loading JSON data into a SUPER data type column, you don't need 
to specify the data types of the attributes in the JSON document. When you query the 
data, dynamic typing is used to determine the data type for values in the JSON document. 

The SUPER data type offers significantly increased performance for querying  
semi-structured data versus unnesting the full JSON document and storing it in columns. 
If the JSON document contains hundreds of attributes, the increase in performance can  
be significant. 

Selecting the optimal table type
Redshift supports several different types of tables. Making use of a variety of table types 
for different purposes can help significantly increase query performance. Here, we will 
look at the different types of tables and discuss how each type can affect performance. 

Coupling storage and compute – local Redshift tables
The most common and default table type in Redshift is a table that is permanently  
stored on the disk local to a compute node and is automatically replicated for fault 
tolerance purposes. 

One of the biggest advantages of a lake house architecture is the performance 
enhancement of placing hot data on high-performance local drives, along with  
high-network bandwidth and a large high-speed cache, as available in Redshift. 

Redshift stores data in a columnar data format, which is optimized for analytics, and 
uses compression algorithms to reduce disk lookup time when a query is run. By using 
machine learning-based automatic optimizations related to table maintenance tasks 
such as vacuum, table sort, selection of distribution, and sort keys, as well as workload 
management, Redshift can turbo-charge query performance. 

While the best performance is gained by coupling compute and storage, it can result 
in an unnecessary increase in cost when you need to scale out either just compute or 
storage. To solve this, Amazon introduced RA3 nodes with Redshift Managed storage, 
which provides the best of both worlds. RA3 nodes offer tightly coupled compute with 
high-performance SSD storage, as well as additional S3-based storage that can be scaled 
separately. No changes need to be made to workflows to use these nodes, as Redshift 
automatically manages the movement of data between the local storage and S3 managed 
storage based on data access patterns. 
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External tables for querying data in Amazon S3
To take advantage of our data lake (which we consider to be our single source of truth), 
Redshift supports the concept of external tables. These tables are effectively schema objects 
in Redshift that point to database objects in the AWS Glue data catalog (or optionally an 
Amazon EMR Hive Metastore). 

Once we have created the external schema in Redshift that points to a specific database 
in the Glue data catalog, we can then query any of the tables that belong to that database, 
and Redshift Spectrum will access the data from the underlying Amazon S3 files. Note 
that while Redshift Spectrum does offer impressive performance for reading large datasets 
from Amazon S3, it will generally not be quite as fast as reading that same dataset if it 
were stored on a local disk on the Redshift compute nodes. 

By accessing the data directly from our S3 data lake, we avoid replicating multiple copies 
of the data across our data warehouse clusters. However, we still get to take advantage of 
the Massive Parallel Processing (MPP) query engine in Redshift to query the data. With 
Redshift Spectrum, we can still get impressive performance while directly accessing our 
single source of truth data lake data, without needing to constantly load and refresh data 
lake datasets into Redshift. 

When running queries in Redshift, we are free to run complex joins on data between local 
and external tables. We can also query data (or a subset of data) from an external S3 table, 
and then write that data out to a local Redshift table when we want to make a specific 
dataset, or portion of a dataset, available locally in Redshift for optimal query performance. 

A common use case for Redshift Spectrum is where a company knows that 80% of their 
queries access data generated in the past 12 months, but that 20% of their queries rely on 
also accessing historical data from the past 5 years. In this scenario, the past 12 months of 
data can be loaded into Redshift on a rolling basis and queried with optimal performance. 
However, the smaller portion of queries that need historical data can read that data from 
the data lake using Redshift Spectrum, with the understanding that reading historical data 
may not be quite as fast as reading data from the past 12 months. 

Another common use case for external tables is to enable Redshift to read data from file 
formats that are not natively supported in Redshift, such as Amazon ION, Grok, RCFile, 
and Sequence files. 
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An important point to keep in mind when planning your use of external tables is that 
Redshift Spectrum charges are based on the amount of data that's scanned by a query, 
whereas Redshift cluster charges are fixed, based on the cluster node's type and storage. 
Also, query performance, while impressive, may not match the performance when 
querying data stored locally in the cluster. Therefore, you should consider loading 
frequently queried data directly into Redshift local storage, rather than only relying 
on external tables. This is especially true for datasets that are used for things such as 
constantly refreshing dashboards, or datasets that are frequently queried by a large  
group of users. 

In the hands-on section of this chapter, we will configure a Redshift Spectrum external 
table and load data from that table into our Redshift cluster. 

Temporary staging tables for loading data into Redshift 
Redshift, like many other data warehousing systems, supports the concept of a temporary 
table. Temporary tables are session-specific, meaning that they are automatically dropped 
at the end of a session and are unrecoverable. 

However, temporary tables can significantly improve the performance of some operations 
as temporary tables are not replicated in the same way permanent tables are, and inserting 
data into temporary tables does not trigger automatic cluster incremental backup 
operations. One of the common uses of temporary tables (also sometimes referred  
to as staging tables) is for updating and inserting data into existing tables. 

Traditional transactional databases support an operation called an UPSERT, which is 
useful for Change Data Capture (CDC). An UPSERT transaction reads new data and 
checks if there is an existing matching record based on the primary key. If there is an 
existing record, the record is updated with the new data, and if there is no existing  
record, a new record is created.

While Redshift does support the concept of primary keys, this is for informational 
purposes and is only used by the query optimizer. Redshift does not enforce unique 
primary keys or foreign key constraints. As a result, the UPSERT SQL clause is not 
supported natively in Redshift. 

If you read in new data and insert that data into a table where there is a matching existing 
record, this may result in a duplicate record being inserted. As a result, you may end up 
with multiple versions of the same record, with a number of those records being out  
of date. 
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An alternative approach for handling CDC operations in Redshift is to load the new data 
into a temporary table, and then perform an INNER JOIN of the temporary table with the 
existing table. See Performing a merge operation by replacing existing rows (https://
docs.aws.amazon.com/redshift/latest/dg/merge-replacing-
existing-rows.html) in the Amazon Redshift documentation for more details on 
how to achieve this.

Data caching using Redshift materialized views
Data warehouses are often used as the backend query engine for business intelligence 
solutions. A visualization tool such as Amazon QuickSight (which we will discuss in 
more detail in Chapter 12, Visualizing Data with Amazon QuickSight) can be used to build 
dashboards based on data stored in Amazon Redshift.

The dashboards are accessed by different business users to visualize, filter, and drill down 
into different datasets. Often, the queries that are needed to create a specific visualization 
will need to reference and join data from multiple Redshift tables, and potentially perform 
aggregations and other calculations on the data. 

Instead of having to rerun the same query over and over as different users access the 
dashboards, you can effectively cache the query results by creating what is called a 
materialized view. 

Materialized views increase query performance by orders of magnitude by precomputing 
expensive operations such as join results, arithmetic calculations, and aggregations, and 
then storing the results of the query in a view. The BI tool can then be configured to query 
the view, rather than querying the tables directly. From the perspective of the BI tool, 
accessing the materialized view is the same as accessing a table. 

However, note that the materialized views are not updated when the underlying data 
tables are updated, and a refresh materialized view Redshift SQL statement 
needs to be run to refresh the view after full or incremental loads of the underlying tables.

A common use case for materialized views would be to store the results of the advanced 
queries and calculations needed to aggregate sales by store daily. Each night, the day's 
sales can be loaded into Redshift from the data lake, and on completion of the data ingest, 
a materialized view can be created or refreshed. In this way, the complex calculations and 
joins required to determine sales by store are run just once, and when users query the  
data via their BI tool, they access the results of the query through the materialized view. 

Now that we've looked at the types of tables that are supported in Redshift, let's look at the 
best practices involved in ingesting data into Redshift. 

https://docs.aws.amazon.com/redshift/latest/dg/merge-replacing-existing-rows.html
https://docs.aws.amazon.com/redshift/latest/dg/merge-replacing-existing-rows.html
https://docs.aws.amazon.com/redshift/latest/dg/merge-replacing-existing-rows.html
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Moving data between a data lake and Redshift
Moving data between a data lake and a data warehouse, such as Amazon Redshift, is a 
common requirement for many use cases. Data may be cleansed and processed with Glue 
ETL jobs in the data lake, for example, and then hot data can be loaded into Redshift so 
that it can be queried via BI tools with optimal performance. 

In the same way, there are certain use cases where data may be further processed in the 
data warehouse, and this newly processed data then needs to be exported back to the  
data lake so that other users and processes can consume this data. 

In this section, we will examine some best practices and recommendations for both 
ingesting data from the data lake and for exporting data back to the data lake. 

Optimizing data ingestion in Redshift
While there are various ways that you can insert data into Redshift, the recommended  
way is to bulk ingest data using the Redshift COPY command. The COPY command 
enables optimized data to be ingested from the following sources:

• Amazon S3

• Amazon DynamoDB

• Amazon Elastic Map Reduce (EMR)

• Remote SSH hosts

When running the COPY command, you need to specify an IAM role, or the access key 
and secret access key of an IAM user, that has relevant permissions to read the source 
(such as Amazon S3), as well as the required Redshift permissions. AWS recommends 
creating and using an IAM role with the COPY command. 

When reading data from Amazon S3, Amazon EMR, or from a remote host via SSH, the 
COPY command supports various formats, including CSV, Parquet, Avro, JSON, ORC, 
and many others. 

To take advantage of the multiple compute nodes in a cluster when ingesting files into 
Redshift, you should aim to match the number of ingest files with the number of slices 
in the cluster. Each slice of the cluster can ingest data in parallel with all the other slices 
in the cluster, so matching the number of files to the number of slices results in the 
maximum performance for the ingest operation, as shown in the following diagram:
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Figure 9.2 – Slices in a Redshift compute node

If you have one large ingest file, it should be split into multiple files, with each file having a 
size between 1 MB and 1 GB (after compression). To determine how many slices you have 
in your cluster, refer to the AWS documentation on Redshift cluster configuration.

For example, if you had a cluster with 4 x ra3.4xlarge nodes, you would have 16 
slices (there are 4 slices per ra3.4xlarge node). If your ingest file was 64 GB in size, 
you should split the file into 64 x 1 GB files, and each of the slices in the cluster would 
then ingest a total of four files. 

Note that when using the COPY command to ingest data, the COPY operation is treated as 
a single transaction across all files. If one of our 64 files failed to be copied, the entire copy 
would be aborted and the transaction would be rolled back. 

While it is possible to use INSERT statements to add rows to a table, adding single rows, 
or just a few rows, using INSERT statements is not recommended. Adding data to a table 
using INSERT statements is significantly slower than using the COPY command to ingest 
data. If you do need to add data using INSERT statements, you can insert multiple rows 
with a single statement using multi-row insert, by specifying multiple comma-separated 
rows. You should add as many rows as possible with a single INSERT statement to 
improve performance and maximize how data blocks are stored. 

When loading data from an Amazon EMR cluster, you can use the COPY command in 
Redshift and specify the EMR cluster ID and the HDFS path where the data should be 
loaded from. However, before doing this, you need to configure the nodes in the EMR 
cluster to accept SSH requests from your Redshift cluster, and you need to ensure the 
appropriate Security Groups have been configured to allow connections between Redshift 
and the EMR nodes.
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Alternatively, you can directly load data into Redshift from a Spark application running on 
EMR using the Spark-Redshift JDBC driver. In the background, the Spark DataFrame you 
are loading is written to a temporary S3 bucket, and then a COPY command is executed to 
load the data into Redshift. You can also read data from Redshift into a Spark DataFrame 
by using the Spark-Redshift JDBC driver.

When using AWS Glue, you can configure a Glue connection for your Redshift cluster. 
This uses built-in drivers within Glue to connect to your Redshift cluster, in a similar  
way to using the Spark-Redshift JDBC driver in Amazon EMR. 

Exporting data from Redshift to the data lake
Similar to how the COPY command can be used to ingest data to Redshift, you can use  
the UNLOAD command to copy data from a Redshift cluster to Amazon S3.

To maximize the performance of UNLOAD, Redshift uses multiple slices in the cluster to 
write out data to multiple files. Each file that is written can be a maximum size of 6.2 GB,  
although there is an option to specify a smaller maximum file size (and this also gives 
some control over the number of files that are written out). Depending on the size  
of the dataset you are unloading, it would generally be recommended to specify  
a MAXFILESIZE option of 1 GB.

When running the unload command, you specify a SELECT query to determine what 
data will be unloaded. To unload a full single table, you would specify SELECT * from 
TABLENAME in your UNLOAD statement. However, you could use more advanced queries 
in the UNLOAD statement, such as a query that joins multiple tables, or a query that uses 
a WHERE clause to unload only a subset of the data in a table. It is recommended that you 
specify an ORDER BY clause in the query, especially if you plan to load the data back into 
Redshift. 

By default, data is unloaded in a pipe-delimited text format, but unloading data in Parquet 
format is also supported. For most use cases where you're exporting data to a data lake, it 
is recommended to specify the Parquet format for the unloaded data. The Parquet format 
is optimized for analytics, is compressed (so it uses less storage space in S3), and the 
unload performance can be up to twice as fast when unloading in Parquet format versus 
unloading in text format.
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If you're performing an UNLOAD on a specific dataset regularly, you can use the 
ALLOWOVERWRITE option to allow Redshift to overwrite any existing files in the specified 
path. Alternatively, you can use the CLEANPATH option to remove any existing files in the 
specified path before writing data out. 

Another best practice recommendation for unloading large datasets to a data lake is to 
specify the PARTITION option and to provide one or more columns that the data should 
be partitioned by. When writing out partitioned data, Redshift will use the standard Hive 
partitioning format. For example, if you partition your data by the year and month 
columns, the data will be written out as follows:

s3://unload_bucket_name/prefix/year=2021/month=July/000.parquet

When using the PARTITION option with the CLEANPATH option, Redshift will only 
delete files for the specific partitions that it writes out to. 

Now that you have a good understanding of the Redshift architecture and some of the 
important considerations for optimizing the performance of your Redshift cluster, it is 
time to get hands-on with Redshift.

Hands-on – loading data into an Amazon 
Redshift cluster and running queries
In our Redshift hands-on exercise, we're going to create a new Redshift cluster and set up 
Redshift Spectrum so that we can query data in external tables on Amazon S3. We'll then 
use Redshift Spectrum to read data from S3 and load a subset of that data into a local table 
in Redshift, after which we'll run some complex queries.

In this exercise, we will be setting up a Redshift cluster for a travel agency. Agents need  
to ensure that they can find the best deal for accommodation in New York City and Jersey 
City that is close to specific popular tourist attractions, such as the Freedom Tower and 
the Empire State Building. 
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Uploading our sample data to Amazon S3
For this exercise, we will use a dataset from an organization called Inside Airbnb 
(http://insideairbnb.com/about.html) that provides Airbnb data 
under the Creative Commons Attribution 4.0 International License (https://
creativecommons.org/licenses/by/4.0/) license, which means that the data 
can be shared and adapted, as long as attribution is given. 

For this exercise, we will use the Inside Airbnb data for New York City and Jersey City. 
Let's get started:

1. Download the Jersey City and New York City listings.csv Summary 
Information and metrics for listings from http://insideairbnb.com/
get-the-data.html. Rename each file so that you can identify the Jersey 
City and New York City listings (for example, ny-listings.csv and 
jc-listings.csv).

2. Copy the listing files to the data lake's Landing Zone, creating a partition for each 
city, as follows. Remember to replace the Landing Zone path with the name of the 
bucket you created in Chapter 3, The AWS Data Engineers Toolkit:

aws s3 cp jc-listings.csv s3://dataeng-landing-zone-
initials/listings/city=jersey_city/jc-listings.csv

aws s3 cp ny-listings.csv s3://dataeng-landing-zone-
initials/listings/city=new_york_city/ny-listings.csv

3. To verify that the files have been uploaded correctly, we can use S3 Select to  
directly query uploaded files. Open the Amazon S3 console and navigate to the 
<bucket>/city=jersey_city/jc-listings.csv file. Select the file and, 
from the Actions menu, click on Query with S3 Select. Leave all the options as 
their defaults and click Run SQL query:

http://insideairbnb.com/about.html
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://insideairbnb.com/get-the-data.html
http://insideairbnb.com/get-the-data.html
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Figure 9.3 – Running SQL Select against the Airbnb Jersey City listings file
Repeat this again but select <bucket>/city=new_york_city/
ny-listings.csv instead.

Having uploaded our listings file to the data lake, we now need to create the IAM roles 
that our Redshift cluster will use, and then create the cluster.

IAM roles for Redshift
For our Redshift cluster to be able to create EC2 networking resources behind the scenes, 
our Redshift cluster needs permissions to access specific EC2 networking resources. When 
we create the first Redshift cluster in our account, Redshift will automatically create an IAM 
service-linked role called AWSServiceRoleForRedshift and attach the managed 
policy called AmazonRedshiftServiceLinkedRolePolicy to the role, providing 
the required permissions. Therefore, we do not need to create this role manually. 
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Amazon Redshift Spectrum enables our cluster to read data that is in our Amazon 
S3-based data lake directly, without needing to load the data into the cluster directly. 
Redshift Spectrum uses the AWS Glue data catalog, so it requires AWS Glue permissions 
in addition to Amazon S3 permissions. If you are operating in an AWS region where AWS 
Glue is not supported, then Redshift Spectrum uses the Amazon Athena catalog, so you 
would require Amazon Athena permissions. 

To create the IAM role that grants the required Redshift Spectrum permissions, follow 
these steps:

1. Navigate to the AWS IAM Management console, click on Roles on the left-hand 
side, and click on Create role.

2. Ensure that AWS service is selected for Select type of trusted entity, and then 
select the Redshift service from the list of services. For Select your use case, select 
Redshift – Customizable. Click on Next: Permissions.

3. Attach the following three policies to the role:

 � AmazonS3FullAccess

 � AWSGlueConsoleFullAccess

 � AmazonAthenaFullAccess

Important Note About Permissions
The preceding policies provide broad access to various AWS services, including 
full access to all S3 files in your account. If you are using an account created 
specifically for the hands-on exercises in this book, or you are using a limited 
sandbox account provided by your organization, then these permissions may 
be safe. However, in an AWS account that is shared with others, such as a 
corporate production account, then you should not use these policies. Instead, 
you should create new policies that, for example, limit access to only the S3 
buckets that are used in the hands-on exercises. Using full access policies, as we 
have here, is not a good security practice for shared or production accounts. 

Then, click on Next: Tags and then Next: Review.



Hands-on – loading data into an Amazon Redshift cluster and running queries     279

4. Provide a Role name, such as AmazonRedshiftSpectrumRole. Make sure that 
the three policies listed in Step 3 are included and that Trusted entities is set to 
AWS service: redshift.amazonaws.com. Once confirmed, click Create role:

Figure 9.4 – Creating an IAM Role for Redshift Spectrum

5. Search for the role you just created and click on the role's name. On the Summary 
screen, take note of Role ARN as this will be needed later. 

Now that we have created an IAM role that provides the permissions needed for Redshift 
Spectrum to access the required resources, we can move on to creating our cluster.
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Creating a Redshift cluster
We are now ready to create our Redshift cluster and attach the IAM policy for Redshift 
Spectrum to the cluster. Let's get started:

Important Note about Redshift Costs
At the time of writing, AWS offers a free Redshift trial, enabling you to create 
and test out a new Redshift cluster for up to 2 months at no charge. However, 
this is only available if your organization has not previously created a Redshift 
cluster. If your account is part of an organization that has previously created an 
Amazon Redshift cluster, you are not eligible for the free trial and your usage of 
Redshift will be billed for. For a single dc2.large node, the cost at the time 
of writing would be $182.50 per month. If you are eligible for the free trial but 
you leave your Redshift cluster running beyond the free trial time limit, you 
will be charged for the cluster. For more information, see https://aws.
amazon.com/redshift/free-trial/.

1. Navigate to the Amazon Redshift console at https://console.aws.amazon.
com/redshiftv2/ and click on Create cluster.

2. You can change, or keep, the default Redshift cluster name (redshift-
cluster-1), but make sure to select Free trial for What are you planning to use 
this cluster for?.

3. Leave the default Admin user name (awsuser) as-is, but provide an Admin user 
password. Make sure you can recall this password later as it will be needed in future 
steps. Click on Create cluster. 

4. Wait until your cluster is listed with a Status of Available, and then click on the 
cluster's name:

https://aws.amazon.com/redshift/free-trial/
https://aws.amazon.com/redshift/free-trial/
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
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Figure 9.5 – Created Redshift cluster

5. Click on the Properties tab, scroll down to the Cluster permissions section, and 
click the Attach IAM roles button.

6. Select the role you created previously for Redshift Spectrum (such as 
AmazonRedshiftSpectrumRole) and click on the Associate IAM role button. 
Then, click on Save changes.

Note that it may take a few minutes for the permissions modification to be applied. 
Click on Clusters on the left-hand side menu, and wait until Status changes from 
Available - Modifying, to just Available. Once the change has been fully applied, you 
can continue and test the Redshift connection. .

7. On the left-hand side of the Redshift console, click on Editor, and then click on 
Connect to database.

8. Leave the default of Create a new connection as-is and set Authentication to 
Temporary credentials. Make sure your cluster is selected from the drop-down list, 
and then enter dev for Database name and awsuser for Database user. Then, 
click Connect.

9. Once connected, ensure dev is set for Select database and public is set for Select 
schema. Then, in the query editor, run select * from sales limit 10 and 
click Run.
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The preceding query should have returned 10 rows from the sample database that was 
loaded when we created our trial Redshift cluster. 

Now that we have created and verified our Redshift cluster, we can create the external 
tables that will enable us to query data in S3.

Creating external tables for querying data in S3
To query data in Amazon S3 using Redshift Spectrum, we need to define a database, 
schema, and table. 

Note that Amazon Redshift and AWS Glue use the term database differently. In Amazon 
Redshift, a database is a top-level container that contains one or more schemas, and each 
schema can contain one or more tables. When you use the Redshift query editor, you 
specify the name of the database that you want to connect to, and any objects you create 
are created in that database. When you query a table, you specify the schema name along 
with the table name. 

However, in AWS Glue, there is no concept of a schema, just a database, and tables are 
created in the database.

With the command shown in the following steps, we can create a new Redshift schema, 
defined as an external schema (meaning objects created in the schema will be defined in 
the AWS Glue catalog), and we specify that we want to create a new database in the Glue 
catalog called accommodations. For Redshift to be able to write to the Glue data catalog 
and to access objects in S3, we need to specify the ARN for the Redshift Spectrum role 
that we previously created:

1. Run the following command in the Redshift query editor to create a new external 
schema called spectrum_schema, and to also create a new database in the Glue 
catalog called accommodations. Make sure to replace the iam_role ARN with the 
ARN you recorded previously when you created an IAM role for Redshift Spectrum:

create external schema spectrum_schema

from data catalog

database 'accommodation'

iam_role 'arn:aws:iam::1234567890:role/
AmazonRedshiftSpectrumRole' 

create external database if not exists;

Note that because we made a connection to the dev database in Redshift previously, 
the external schema is created as an object in the dev database. 
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2. We can now define an external table that will be registered in our Glue data catalog 
under our accommodations database. When defining the table, we specify the 
columns that exist, the column that we have partitioned our data by (city), the 
format of the files (text, comma delimited), and the location in S3 where the text 
files were uploaded. Make sure to replace the bucket name of the S3 location with 
the name of the bucket you created:

CREATE EXTERNAL TABLE spectrum_schema.listings(

  listing_id INTEGER,

  name VARCHAR(100),

  host_id INT,

  host_name VARCHAR(100),

  neighbourhood_group VARCHAR(100),

  neighbourhood VARCHAR(100),

  latitude Decimal(8,6),

  longitudes Decimal(9,6),

  room_type VARCHAR(100),

  price SMALLINT,

  minimum_nights SMALLINT,

  number_of_reviews SMALLINT,

  last_review DATE,

  reviews_per_month NUMERIC(8,2),

  calculated_host_listings_count SMALLINT,

  availability_365 SMALLINT)

partitioned by(city varchar(100))

row format delimited

fields terminated by ','

stored as textfile

location 's3://dataeng-landing-zone-initials/listings/';  
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3. Verify that the table was created correctly by selecting spectrum_schema from 
the dropdown on the left-hand side and by expanding the listings table to view the 
defined columns:

Figure 9.6 – External table in the Redshift console

4. We now need to add the specific partitions that we created, which we can do  
by running the following two commands in the Redshift query editor. Make sure  
to update the location so that it references your bucket name:

alter table spectrum_schema.listings add

partition(city='jersey_city') 

location 's3://dataeng-landing-zone-initials/listings/
city=jersey_city/'  

alter table spectrum_schema.listings add

partition(city='new_york_city') 

location 's3:// dataeng-landing-zone-initials /listings/
city=new_york_city/'  
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5. Verify that the table and partitions have been created correctly by viewing them 
in the AWS Glue console. Open AWS Glue console in a new browser window and 
click on Databases via the left-hand side navigation menu. 

6. Click on the Glue database we created earlier called accommodation, and then  
click on Tables in accommodation.

7. Click on the listings table, which will list the columns as we define them:

Figure 9.7 – Viewing the listings table in the AWS Glue console
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8. Click on the View Partitions button to view the partitions that have been defined:

Figure 9.8 – Viewing table partitions in the AWS Glue console
Note that instead of defining the table manually in the Redshift console and adding 
the partitions, we could have used a Glue Crawler to crawl the S3 location and 
automatically add the table and partitions to the Glue data catalog. If we had done 
that, we would have still needed to create the Redshift external schema and define 
the database, but we would not have had to specify the column details for the table.

9. To confirm that everything has been set up correctly, we can query the data using 
both Redshift Spectrum and Amazon Athena. In the Redshift query editor, run the 
following query:

select * from spectrum_schema.listings limit 100;

Note that when querying the table in Redshift, we query based on <redshift_
external_schema_name>.<table_name>. 

10. Open the Amazon Athena console in a new browser window and run the  
following query:

select * from accommodation.listings limit 100;

Note that when querying the table with Athena, we query based on  
<glue_database_name>.<table_name>.

Now that we have configured Redshift Spectrum to be able to read the files we uploaded to 
Amazon S3, we can design a Redshift table to store just the data we need locally.



Hands-on – loading data into an Amazon Redshift cluster and running queries     287

Creating a schema for a local Redshift table
With Redshift Spectrum, we pay for each query we run, based on the amount of data 
scanned. If we have a hot dataset that is going to be queried regularly, we may want to 
move required data into a local Redshift table so that we are not charged for every query. 
Depending on the types of queries we run, we may also find that the performance of queries 
against data stored locally is better than querying data on Amazon S3 via Redshift Spectrum.

If we wanted to load the full dataset from Amazon S3 into Redshift, we could use the 
Redshift COPY command to read the data from S3 and load it into a local table. However, 
we only want to query a subset of the data in our Amazon S3 files, so in this exercise, 
we will use Redshift Spectrum to read in just the required data and write it out to a local 
Redshift table. Let's get started:

1. First, we must create a new Redshift schema to store our local tables. Run the 
following command in the Redshift query editor:

create schema if not exists accommodation_local;

2. We can now create a new local table that contains just the fields that we require for 
our use case. Run the following in the Redshift query editor to create the new table:

CREATE TABLE dev.accommodation_local.listings(

  listing_id INTEGER,

  name VARCHAR(100),

  neighbourhood_group VARCHAR(100),

  neighbourhood VARCHAR(100),

  latitude Decimal(8,6),

  longitudes Decimal(9,6),

  room_type VARCHAR(100),

  price SMALLINT,

  minimum_nights SMALLINT,

  city VARCHAR(40))

distkey(listing_id)

sortkey(price);

With the preceding command, we have created a new local table in our dev 
database, and in accommodation_local schema, called listings. We defined 
the various columns, specified that we want the table distributed across the compute 
nodes of our cluster based on listing_id, and then specified that we want the 
table sorted on the price column. 
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3. To load data from our external Spectrum table into our new local table, we can run 
the following query:

INSERT into accommodation_local.listings

(SELECT listing_id, 

 name, 

 neighbourhood_group, 

 neighbourhood,

 latitude, 

 longitudes, 

 room_type, 

 price,

 minimum_nights 

FROM spectrum_schema.listings);

This query inserts data into our new local table, based on a query of the data in our external 
Spectrum schema. We just select the columns that we need for our planned queries.

Running complex SQL queries against our data
We can now run some advanced queries against the local listings table we just loaded data 
into. Our goal here is to be able to easily identify Airbnb listings in the New York City and 
Jersey City areas that are close to specific tourist attractions. We will split our query into 
different parts to explain what each part is doing:

1. The first part of our query, which you can paste into the Redshift query editor,  
is as follows:

WITH touristspots_raw(name,lon,lat) AS (

(SELECT 'Freedom Tower', -74.013382,40.712742) UNION

(SELECT 'Empire State Building', -73.985428, 40.748817)),

touristspots (name,location) AS (SELECT name,

ST_Point(lon, lat) FROM touristspots_raw)

select name, location from touristspots
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This part of the query creates a new temporary table called touristspots_raw, 
and inserts the names and longitude and latitude of two popular New York City 
tourist attractions. It then uses a Redshift function called ST_Point to convert the 
longitude and latitude of the tourist attractions into point geometry (which can 
be used in distance calculations). This portion of the query results in a new virtual 
table called touristspots that has two fields – name and location. 

2. Now, we want to convert the latitude and longitude of the values in our 
accommodation table into point geometry. We can do this with the following  
query, which you can run in the Redshift query editor (note that each block below 
should be on a single line in the Redshift query editor, so if copying and pasting be 
careful of inserted line breaks)

WITH accommodation(listing_id, name, room_type, 
location) AS (SELECT listing_id, name, room_type, ST_
Point(longitudes, latitude) from accommodation_local.
listings)

select listing_id, name, room_type, location from 
accommodation

This query creates a new temporary table called accommodation with data from 
our listings table, but again, it uses the ST_Point function to convert longitude 
and latitude into point geometry, as a field called location. 

3. Now, we can combine the preceding two queries in a modified form and add the 
final part of our query. This query will calculate the distance between a listing from 
our listings table containing Airbnb data, and either the Freedom Tower or Empire 
State Building. Then, we can sort the result by distance and return the 100 closest 
listings. Run the following query in the Redshift query editor:

WITH touristspots_raw(name,lon,lat) AS (

 (SELECT 'Freedom Tower', -74.013382,40.712742) UNION

 (SELECT 'Empire State Building', -73.985428, 40.748817)

),

touristspots(name,location) AS (

 SELECT name, ST_Point(lon, lat) 

 FROM touristspots_raw),

accommodation(listing_id, name, room_type, price, 
location) AS

(

 SELECT listing_id, name, room_type, price,

 ST_Point(longitudes, latitude) 
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 FROM accommodation_local.listings)

SELECT

 touristspots.name as tourist_spot, 

 accommodation.listing_id as listing_id,

 accommodation.name as location_name,

 (ST_DistanceSphere(touristspots.location,

accommodation.location) / 1000)::decimal(10,2) AS

distance_in_km,

 accommodation.price AS price, 

 accommodation.room_type as room_type

FROM touristspots, accommodation 

WHERE tourist_spot like 'Empire%'  

ORDER BY distance_in_km 

LIMIT 100;

In this final query, we combined our previous queries (to create two temporary 
tables – touristspots and accommodation) and we added new statements. 
We used the Redshift ST_DistanceSphere function to calculate the distance 
between a tourist spot and one of our listings, and then we converted the result  
into a decimal data type with two decimal places and named that column 
distance_in_km.

We then used a WHERE clause to filter out results to just the Empire State Building, 
sorted (or ordered) the result by distance, and limited the query to just the first  
100 results.

4. As our agents will be regularly running these queries to find the right Airbnb listing 
for our customers, we can create a materialized view that contains all of our listings, 
along with the distance between the listing and both the Empire State Building and 
the Freedom Tower. This will save us from having to calculate the distance each 
time the query is run. Run the following in the Redshift query editor to create the 
materialized view:

CREATE MATERIALIZED VIEW listings_touristspot_distance_
view AS

WITH touristspots_raw(name,lon,lat) AS (

 (SELECT 'Freedom Tower', -74.013382,40.712742) UNION

 (SELECT 'Empire State Building', -73.985428, 40.748817)

),

touristspots(name,location) AS (
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 SELECT name, ST_Point(lon, lat) 

 FROM touristspots_raw),

accommodation(listing_id, name, room_type, price, 
location) AS

(

 SELECT listing_id, name, room_type, price,

 ST_Point(longitudes, latitude) 

 FROM accommodation_local.listings)

SELECT

 touristspots.name as tourist_spot, 

 accommodation.listing_id as listing_id,

 accommodation.name as location_name,

 (ST_DistanceSphere(touristspots.location,

accommodation.location) / 1000)::decimal(10,2) AS 
distance_in_km,

 accommodation.price AS price, 

 accommodation.room_type as room_type

FROM touristspots, accommodation

In a system where there are a lot of queries with complex calculations, creating 
materialized views can help manage the CPU and memory pressure on the system. 

5. Now, we can query the view we have created by running the following in the 
Redshift query editor:

select * from listings_touristspot_distance_view where 
tourist_spot like 'Empire%' order by distance_in_km limit 
100

This query returns the top 100 listings that are closest to the Empire State Building. 
You do not need to calculate the distance for each point as part of the query. 

In these hands-on exercises, we created a Redshift cluster, ingested data, and ran several 
queries. Feel free to experiment with other queries, such as loading in the latitude and 
longitude for other tourist spots, and finding a query that finds listings for a certain  
room type or within a specific price range. 
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Summary
In this chapter, we learned how a cloud data warehouse can be used to store hot data to 
optimize performance and manage costs. We reviewed some common "anti-patterns" 
for data warehouse usage before diving deep into the Redshift architecture to learn more 
about how Redshift optimizes data storage across nodes. 

We then reviewed some of the important design decisions that need to be made when 
creating an optimized schema in Redshift, before reviewing ingested unloaded from 
Redshift.

Then, we performed a hands-on exercise where we created a new Redshift cluster, 
configured Redshift Spectrum to query data from Amazon S3, and then loaded a  
subset of data from S3 into Redshift. We then ran some complex queries to calculate the 
distance between two points before creating a materialized view with the results of our 
complex query. 

In the next chapter, we will discuss how to orchestrate various components of our data 
engineering pipelines. 
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Orchestrating the 

Data Pipeline
Throughout this book, we have been discussing various services that can be used by 
data engineers to ingest and transform data, as well as make it available for consumers. 
We looked at how we could ingest data via Amazon Kinesis Data Firehose and Amazon 
Database Migration Service, and how we could run AWS Lambda and AWS Glue 
functions to transform our data. We also discussed the importance of updating a data 
catalog as new datasets are added to a data lake, and how we can load subsets of data into 
a data mart for specific use cases. 

For the hands-on exercises, we made use of various services, but for the most part, we 
triggered these services manually. However, in a real production environment, it would 
not be acceptable to have to manually trigger these tasks, so we need a way to automate 
various data engineering tasks. This is where data pipeline orchestration tools come in. 

Modern-day ETL applications are designed with a modular architecture to facilitate the 
use of the best purpose-built tool to complete a specific task. A data engineering pipeline 
(also sometimes referred to as a workflow) stitches all of these components together to 
create an ordered execution of related tasks. 
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To build our pipeline, we need an orchestration engine to define and manage the sequence 
of tasks, as well as the dependencies between tasks. The orchestration engine also needs to 
be intelligent enough to perform different actions based on the failure or success of a task 
and should be able to define and execute tasks that run in parallel, as well as tasks that run 
sequentially. 

In this chapter, we will look at how to manage data pipelines with different orchestration 
engines. First, we will examine some of the core concepts of pipeline orchestration and 
then review several different options within AWS for orchestrating data pipelines. In the 
hands-on activity for this chapter, we will orchestrate a data pipeline using the AWS Step 
Function service. 

In this chapter, we will cover the following topics:

• Understanding the core concepts for pipeline orchestration

• Examining the options for orchestrating pipelines in AWS

• Hands-on – orchestrating a data pipeline using AWS Step Function

Technical requirements
To complete the hands-on exercises in this chapter, you will need an AWS account where 
you have access to a user with administrator privileges (as covered in Chapter 1, An 
Introduction to Data Engineering). We will make use of various AWS services, including 
AWS Lambda, AWS Step Function, and Amazon Simple Notification Service (SNS). 

You can find the code files of this chapter in the GitHub repository using the following 
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter10

Understanding the core concepts for pipeline 
orchestration
In Chapter 5, Architecting Data Engineering Pipelines, we architected a high-level overview 
of a data pipeline. We examined potential data sources, discussed the types of data 
transformations that may be required, and looked at how we could make transformed data 
available to our data consumers. 

Then, we examined the topics of data ingestion, transformation, and how to load 
transformed data into data marts in more detail in the subsequent chapters. As we 
discussed previously, these steps are often referred to as an extract, transform, load 
(ETL) process. 

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter10
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter10
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We have now come to the part where we need to combine the individual steps involved 
in our ETL processes to operationalize and automate how we process data. But before we 
look deeper at the AWS services for enabling this, let's examine some of the key concepts 
around pipeline orchestration.

What is a data pipeline, and how do you orchestrate 
it?
A simple definition is that a data pipeline is a collection of data processing tasks that need 
to be run in a specific order. Some tasks may need to run sequentially, while other tasks 
may be able to run in parallel. You could also refer to the sequencing of these tasks as a 
Workflow. 

Data pipeline orchestration refers to automating the execution of tasks involved in a data 
pipeline Workflow, managing dependencies between the different tasks, and ensuring that 
the pipeline runs when it is meant to. 

Think of the data pipeline as the smallest entity for performing a specific task against a 
dataset. For example, if you are receiving data from a partner regularly, your first data 
pipeline may involve validating that the data that's received is valid, and then converting 
the data file into an optimized format, such as Parquet. If you have hundreds of partners 
sending you data files, then this same pipeline may run for each of those partners. 

You may also have a second data pipeline that runs at a specific time of day that validates 
that the data from all your partners has been received, and then runs a Spark job to join 
the datasets and enrich the data with additional proprietary data.

Once that data pipeline finishes running, you may have a third pipeline that loads the 
newly enriched data into a data warehouse.

While you could place all of these steps in a single data pipeline, it is a recommended best 
practice to split pipelines into the smallest logic grouping of steps. In our example, our 
first step is getting newly received files converted into Parquet format, but we only want to 
do that if we can confirm that the file that's been received is valid. As such, we group those 
two tasks into a single pipeline. The goal of our second pipeline is to join the files we have 
received and enrich the new file with additional data, but we must also include a step to 
validate and report on whether all the expected partner files were received.   
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What is a directed acrylic graph? 
When talking about data pipelines, you may hear the term directed acyclic graph, 
commonly referred to as DAG. If you Google this term, you may find a lot of complex 
mathematical explanations of what a DAG is. This is because this term does not only apply 
to data pipelines, but is used to define many different types of ordered processes. For 
example, DAGs are also used to design compilers. 

A simple explanation of a DAG is that it represents connections between nodes, with the 
flow between nodes always occurring in only one direction and never looping back to an 
earlier node (acyclic means not a cycle). 

The following diagram shows a simple DAG:

Figure 10.1 – A simple example of a directed acyclic graph

If this DAG represented a data pipeline, then the following would take place:

• When event A completes, it triggers event B and event C.

• When event B completes, it triggers event F.

• When events B and C are complete, they trigger event D.

• When event D completes, it triggers event E.

In the preceding example, event F could never loop back to event A, B, or C as that would 
break the acyclic part of the DAG definition. 

No rule says that data pipelines have to be defined as DAGs, although certain 
orchestration tools do require this. For example, Apache Airflow (which we will discuss in 
more detail later in this chapter) requires pipelines to be defined as a DAG, and if there is 
a cycle in a pipeline definition where a node loops back to a previous node, this would not 
run. However, AWS Step Function does allow for loop cycles in the definition of a state 
machine, so Step Function-based pipelines do not enforce that the pipeline should be a 
DAG.
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How do you trigger a data pipeline to run?
There are two primary types of triggers for a pipeline – schedule-based pipelines and 
event-based pipelines.

Traditionally, pipelines were all triggered on a schedule. This could be once a day, or 
every hour, or perhaps even every 15 minutes. This is still a common approach, especially 
for batch-orientated pipelines. In our example pipeline, the second pipeline could be an 
example of a scheduled pipeline that runs once per day to join and enrich partner files 
that are received throughout the day. 

Today, however, a lot of pipelines are created to be event-driven. In other words, the 
pipeline is triggered in response to some specific event being completed. Event-based 
Workflows are useful for reducing the latency between data becoming available and the 
pipeline processing that data. For example, if you expect that you will have received the 
data files you need at some point between 4 A.M. and 6 A.M., you could schedule the 
pipeline to run at 6 A.M. However, if all the data is available by 5 A.M. on some days, 
using an event-based trigger can get your pipeline running earlier.  

In our earlier example of a pipeline, the first pipeline would be an event-driven pipeline 
that runs in response to a partner having uploaded a new file. Within AWS, there is strong 
support for creating event-driven activities, such as triggering an event (which could be a 
pipeline) based on a file being written to a specific Amazon S3 bucket.

Using manifest files as pipeline triggers
A manifest is often used to refer to a list of cargo carried by ship, or other transport 
vehicles. The manifest document may be reviewed by agents at a border crossing or port 
to validate what is being transported.

In the world of data pipelines, a common concept is to create a manifest file that contains 
information about other files that form part of a batch of files. 

In our data pipeline example of receiving files from our partners, we may find that the 
partner sends hundreds of small CSV files in a batch every hour. We may decide that we 
do not want to run our pipeline on each file that we receive, but that we want to process all 
the small CSV files of a batch together and convert them into a single Parquet file. 

In this case, we could instruct our partners to send a manifest file at the end of each 
batch of files that they send to us. This manifest file would list the name of each file that's 
transferred, as well as potentially some validation data, such as file size, or a calculated 
SHA-256 hash of the file. 
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We could then configure our S3 event notification to only trigger when a file that begins 
with the name manifest is written to our bucket. When this happens, we will trigger 
our pipeline to run, and perhaps the first step in our pipeline would be to read the 
manifest file, and then for each file listed in the manifest, verify that it exists. We could 
also calculate an SHA-256 hash of the file, and verify that it matches what is listed in the 
manifest. Once the files have been verified, we could run our ETL job to read in all the 
files and write the files out in Parquet format. 

This process would still be considered an event-driven pipeline, even though we are 
not responding to every file upload event, just the completion of a batch of uploads, as 
represented in the manifest file. 

How do you handle the failures of a step in your 
pipeline?
As part of the orchestration process to automate processing of steps in a pipeline, we need 
to ensure that failures are handled correctly. As part of this, it is also important that log 
files related to each step of the pipeline are easily accessible. In this section, we will look at 
some important concepts for failure handling and logging.

Common reasons for failure in data pipelines
There are many reasons why a specific step in a data pipeline may fail. Some common 
reasons for errors include the following:

• Data quality issues: If one of the steps in your pipeline is expecting to receive CSV 
files to process, but instead receives a file in JSON format that it does not know how 
to process, this would lead to a hard failure (that is, a failure that your job cannot 
recover from until the data quality issue is resolved). 

• Code errors: When you update a job, it is possible to introduce a syntax, or logic, 
error into the code. Testing your code before deploying it into production is very 
important, but there may be times when your testing does not catch a specific error. 
This would also be a hard failure, requiring you to redeploy fixed code.

• Endpoint errors: One of the steps in your pipeline may need to either read or write 
data to or from a specific endpoint (such as reading a file in S3 or writing data into 
a data warehouse). Sometimes, these errors may be due to a temporary problem, 
such as a temporary network error, and this could be considered a soft failure (that 
is, one that may be overcome by retrying). At other times, the error may be a hard 
failure, such as your job not being configured with the correct permissions to access 
the endpoint.
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• Dependency errors: Data pipelines generally consist of multiple steps with 
complex dependencies. This includes dependencies within the pipeline, as well as 
dependencies between different pipelines. If your job is dependent on a previous 
step, then the job it is dependent on is referred to as an upstream job. If your job 
fails, any jobs that depend on it are considered downstream jobs. Dependency 
errors can be hard failures (such as an upstream job or pipeline having a hard 
failure) or soft failures (the upstream job is taking longer than expected to complete, 
but if you retry your step, it may complete later). 

Hard failures generally interrupt processing (and also likely cause failures in downstream 
jobs) until someone takes a specific action to resolve the error. Soft failures (such as 
intermittent networking issues), however, can benefit from having a good retry strategy, as 
we will discuss next.

Pipeline failure retry strategies
When you're designing your pipeline, you should consider implementing a retry 
strategy for failed steps. Many orchestration tools (such as Apache Airflow and AWS 
Step Function) will allow you to specify the number of retries, the interval between retry 
attempts, as well as a backoff rate.

The retry backoff rate (also known as exponential backoff) causes the time between retry 
attempts to be increased on each retry. With AWS Step Function, for example, you can 
specify a BackOffRate value that will multiply the delay between retries by that value. 
For example, if you specify a retry interval of 10 seconds and a backoff rate of 1.5, Step 
Function will wait 15 seconds (10 seconds x 1.5) for the second retry, 22.5 seconds (15 
seconds x 1.5) for the third retry, and so on. 

Having reviewed some of the core concepts of data pipelines and orchestration, we can 
now examine the tools that are available in AWS for creating and orchestrating pipelines.

Examining the options for orchestrating 
pipelines in AWS
As you will have noticed throughout this book, AWS offers many different building 
blocks for architecting solutions. When it comes to pipeline orchestration, AWS provides 
native serverless orchestration engines with AWS Data Pipeline and AWS Step Function, 
a managed open source project with Amazon Managed Workflows for Apache Airflow 
(MWAA), and service-specific orchestration with AWS Glue Workflows. 
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There are pros and cons to using each of these solutions, depending on your use case. And 
when you're making a decision, there are multiple factors to consider, such as the level 
of management effort, the ease of integration with your target ETL engine, logging, error 
handling mechanisms, and cost and platform independence.

In this section, we'll examine each of the four pipeline orchestration options.

AWS Data Pipeline for managing ETL between data 
sources
AWS Data Pipeline is one of the oldest services that AWS has for creating and 
orchestrating data pipelines, having been originally released in 2012. 

Using AWS Data Pipeline, you can extract, transform, and load data between certain AWS 
data sources – even on-premises data sources. To use this service, you define your data 
sources, schedule transform activities, and select a data target for writing to. Data Pipeline 
will then manage the scheduling of the pipeline, automatically provision the required 
AWS resources (such as an EMR cluster), and enable you to monitor pipelines with 
configurable retry logic and alerting.

The following AWS data services are supported as sources and targets by Data Pipeline:

• Amazon DynamoDB

• Amazon Relational Database System

• Amazon Redshift

• Amazon S3

In addition to these data sources, Data Pipeline is also able to read and write to other 
JDBC data stores, such as an on-premises database.

The following compute services can be used to run jobs to transform your data:

• Amazon EC2

• Amazon EMR

• On-premises compute resources (by installing the Java-based Data Pipeline task 
runner software)
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If you review the AWS documentation for the Data Pipeline service, you may notice that 
there have not been many recent updates to the service. For example, the last update 
to the documentation was in 2018 (as per https://docs.aws.amazon.com/
datapipeline/latest/DeveloperGuide/DocHistory.html), the default EC2 
instance in most regions is the m1 instance family (although newer generations, such as 
m5 instances, can be used), and the task runner software is only supported by Java 1.6 and 
Java 1.8 versions. Also, the Data Pipeline service is only supported in five AWS regions 
(Northern Virginia, Oregon, Sydney, Tokyo, and Ireland).

Because of these limitations, it is generally recommended to use the newer AWS services 
for building and orchestrating data pipelines. 

AWS Glue Workflows to orchestrate Glue resources
In Chapter 3, The AWS Data Engineers Toolkit, we introduced the AWS Glue Workflows 
service. As a reminder, this is a part of the AWS Glue service and can be used to build a 
data pipeline consisting of Glue components (Glue Crawlers and Glue Spark or Python 
jobs).

For use cases where you are creating a data pipeline that only uses AWS Glue components, 
the use of Glue Workflows can be a good fit. For example, you could create the following 
pipeline using Glue Workflows:

• Run a Glue Crawler to add CSV files that have been ingested into a new partition to 
the Glue Data Catalog.

• Run a Glue Spark job to read the new data using the catalog, and then transform the 
CSV files into Parquet files.

• Run another Glue Crawler to add the newly transformed Parquet files to the Glue 
Data Catalog.

• Run two Glue jobs in parallel. One Glue job aggregates data and writes the results 
into a DynamoDB table. The other Glue job creates a newly enriched dataset that 
joins the new data to an existing reference set of data. 

• Run another Glue Crawler to add the newly enriched dataset to the Glue Catalog.

• Run a Glue Python Shell job to send a notification about the success or failure of the 
job.

https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/DocHistory.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/DocHistory.html
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While a fairly complex data pipeline can be created using Glue Workflows (as shown 
here), many use cases require the use of other AWS services, such as EMR for running 
Hive jobs or writing files to an SQS queue. While Glue Workflows don't support 
integration with non-Glue services directly, it is possible to run a Glue Python Shell job 
that uses the Boto3 library to interact with other AWS services. However, this is not as 
feature-rich or as obvious to monitor as interacting with those services directly. 

Monitoring and error handling
Glue Workflows includes a graphical UI that can be used to monitor job progress. With 
the UI, you can see whether any step in the pipeline has failed, and you can also resume 
the Workflow from a specific step once you have resolved the issue that caused the error. 
While Glue Workflows does not include a retry mechanism as part of the Workflow 
definition, you can specify the number of retries in the properties of individual Glue jobs.

CloudWatch Events provides a real-time stream of change events that can be generated 
by some AWS services, including AWS Glue. While, at the time of writing, Glue does not 
generate any events from Glue Workflows, events are generated from individual Glue jobs. 
For example, there is a Glue Job State Change event that is generated for Glue jobs that 
reflects one of the following states: SUCCEEDED, FAILED, TIMEOUT, or STOPPED. 

Using Amazon EventBridge, you can automate actions to take place when a new event and 
status you are interested in is generated. For example, you can create an EventBridge rule 
that picks up Glue Job FAILED events, then triggers a Lambda function to run, and sends 
an email notification with details of the failure.

Triggering Glue Workflows
When you create a Glue Workflow, you can select the mechanism that will cause the 
Workflow to run. There are three ways that a Glue Workflow run can be started.

If set to on-demand, the Workflow will only run when it's started manually from the 
console, or when it's started using the Glue API or CLI.

If set to scheduled, you can specify a frequency for running the job, such as hourly, daily, 
monthly, or for specific days of the week (such as Mondays to Fridays). Alternatively, you 
can set a custom schedule using a cron expression, which uses a string to set a frequency 
to run. For example, if you set the cron expression to */30 8-16 * * 2-6, the 
Workflow will run every 30 minutes between 8 A.M and 4:59 P.M., Mondays to Fridays.

Glue Workflows also support an event-driven approach, where the Workflow is triggered 
in response to an EventBridge event. With this approach, you can configure an Amazon 
EventBridge rule to send events to Glue Workflows, such as an S3 PutObject event for a 
specific S3 bucket and prefix. 
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When configuring your Workflow, you can also specify triggering criteria where you 
specify that you only want the Workflow to run after a certain number of events are 
received, optionally specifying a maximum amount of time to wait for those events.

For example, if you have a business partner that sends many small CSV files throughout 
the day, you may not want to process each file individually, but rather process a batch of 
files. For this use case, you can configure the Workflow to trigger once 100 events have 
been received and specify a time delay of 3,600 seconds (1 hour). 

This time delay starts when the first unprocessed event is received. If the specified number 
of events is not received within the time delay you entered, the Workflow will start anyway 
and process the events that have been received. 

If you receive 100 events between 8 A.M. and 8:40 A.M., the first run of the Workflow will 
be triggered at 8:40 A.M. If you receive only 75 events between 8:41 A.M. and 9:41 A.M., 
the Workflow will run a second time at 9:41 A.M. anyway and process the 75 received 
events since the time delay of 1 hour has been reached.  

Functionality such as the ability to easily restart a Workflow from a specific step, as well 
as the ability to batch events before triggering the running of a Workflow, makes Glue 
Workflows a good data pipeline orchestration solution for pipelines that only use the 
Glue service. However, if you are looking for a more comprehensive solution that can also 
orchestrate other AWS services and on-premises tools, then you should consider AWS 
Step Function or Apache Airflow, which we will discuss next.

Apache Airflow as an open source orchestration 
solution
Apache Airflow is a piece of open sourced orchestration software, originally developed at 
Airbnb, that provides functionality for authoring, monitoring, and scheduling Workflows. 
Some of the features available in Airflow include stateful scheduling, a rich user interface, 
core functionality for logging, monitoring, and alerting, and a code-based approach to 
authoring pipelines.

Within AWS, a managed version of Airflow is available as a service called Amazon 
Managed Workflows for Apache Airflow (MWAA). This service simplifies the process of 
getting started with Airflow, as well as the ongoing maintenance of Airflow infrastructure 
since the underlying infrastructure is managed by AWS. Like other AWS managed 
services, AWS ensures the scalability, availability, and security of the Airflow software and 
infrastructure. Please refer to the overview of Amazon MWAA in Chapter 3, The Data 
Engineers Toolkit, for more information on the architecture of this managed service. 
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When deploying the managed MWAA service in AWS, you can choose from multiple 
supported versions of Apache Airflow. At the time of writing, Airflow v1.10.12 and 
Airflow v2.0.2 are supported in the managed service. 

Core concepts for creating Apache Airflow pipelines
Apache Airflow uses a code-based (Python) approach to authoring pipelines. This means 
that to work with Airflow, you do need some Python programming skills. However, 
having pipelines as code is a natural fit for saving pipeline resources in a source control 
system, and it also helps with creating automated tests for pipelines. 

The following are some of the core concepts that are used to create Airflow pipelines.

Directed acyclic graphs (DAGs)
We introduced the concept of a directed acyclic graph (DAG) earlier in this chapter. In 
the context of Airflow, a data pipeline is created as a DAG (using Python to define the 
DAG), and the DAG provides the tasks in the pipeline and the dependencies between 
tasks. 

In the Airflow user interface, you can also view a pictorial representation of the DAG – 
the pipeline tasks and their dependencies, with tasks represented as nodes and arrows 
showing the dependencies between tasks. 

Airflow Connections and Hooks
Airflow Hooks define how to connect to remote source and target systems, such as a 
database, or a system such as Zendesk. This hook contains the code that controls the 
connection to the remote system, and while Airflow includes several built-in Hooks, it 
also lets you define custom hooks. Built-in hooks include hooks for Amazon S3, HTTP 
systems, various databases (such as Oracle, MySQL, and Postgres), as well as systems such 
as Slack, Presto, and Hive. 

Open source contributors can also create and share hooks, and this includes hooks for 
AWS services such as Athena, DynamoDB, Firehose, and Glue, as well as for non-AWS 
services such as Google BigQuery, DataBricks, Jenkins, and many others. 

A related concept is Airflow Connections, which defines the URL/hostname, username, 
and password that is used to make a connection to a remote system. 

Hooks and Connections contain the code to connect to and authenticate with remote 
systems, keeping that code separate from pipeline definitions. 
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Airflow Tasks
Airflow Tasks defines the basic unit of work that a DAG performs. Each task is defined in 
a DAG with upstream and downstream dependencies, which defines the order in which 
the tasks should run.

When a DAG runs, the tasks in the DAG move through various states, from None to 
Scheduled, to Queued, to Running, and finally to Success or Failed. 

Airflow Operators
Airflow Operators provide predefined task templates that provide a pre-built interface 
for performing a specific task. Airflow includes several built-in core operators (such as 
BashOperator and PythonOperator, which execute a bash command or Python 
function). There is also an extensive collection of additional operators that are released 
separately from Airflow Core (such as JdbcOperator, S3FileTransformOperator, 
S3toRedshiftTransfer, and DockerOperator). 

Airflow Sensors
Airflow Sensors provides a special type of Airflow operator that is designed to wait until a 
specific action takes place. The sensor will regularly check whether the activity it is waiting 
on has been completed, and can be configured to time out after a certain period.

Using Airflow Sensors enables you to create event-driven pipelines. For example, you 
could use S3KeySensor, which waits for a specific key to be present at an S3 path and, once 
present, triggers a specific DAG to run. 

Pros and cons of using MWAA
One of the key differentiators for Airflow is active development support from the open 
source community, with over 1,500 contributors. As a result of this active community, 
Airflow supports a wide range of integrations with many different services, including 
services from AWS, Google, and Microsoft Azure cloud. If your pipelines need integration 
with lots of services from multiple providers, then the number of supported integrations 
in Airflow is one of the most significant benefits you will find from using Airflow.  

Airflow is also a mature service, with built-in functionality for retrying tasks, alerting on 
failures, and scaling to handle large and complex Workflows. It has a well-developed UI 
for monitoring and managing pipelines. Airflow is widely used and proven across many 
large enterprises, such as Airbnb.  
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The managed version of Airflow that is available from AWS significantly simplifies 
the time and effort for deploying an Airflow environment. AWS also provides built-in 
functionality for scaling Airflow workers, automatically adding or removing additional 
workers based on demand. 

However, you do need to have some Python skills to use Airflow, so the learning curve 
for using Airflow may be higher than when using an orchestration tool that provides a 
graphical user interface for creating pipelines. Airflow also has a certain amount of fixed 
infrastructure that is used for delivering the service, and this comes with an associated 
fixed cost. So, whether your Airflow environment is actively running a pipeline, or 
whether it is idle for hours between pipeline runs, there is an ongoing cost for the 
environment.

Now, let's look at the final option within AWS for orchestrating data pipelines: the AWS 
Step Function service. 

AWS Step Function for a serverless orchestration 
solution
AWS Step Function is a comprehensive serverless orchestration service that uses a 
low-code approach to develop data pipelines and serverless applications. Step Function 
provides a powerful visual design tool that allows you to create pipelines with a simple 
drag and drop approach. Or, if you prefer, you can define your pipeline using Amazon 
States Language (ASL) directly using JSON. 

AWS has built optimized, easy-to-use integrations between many different AWS services 
and Step Function. For example, you can easily add a step that runs a Lambda function 
and select the name of the Lambda function to run from a drop-down list.

Step Function also makes it easy to specify how to handle the failure of a state with custom 
retry policies, lets you specify catch blocks to catch specific errors, and takes custom 
actions based on the error. 

For services where AWS has not built an optimized integration, you can still run the 
service by using the AWS SDK integration built into Step Function. For example, there is 
no direct Step Function integration for running Glue Crawlers, but you can add a state 
that calls the Glue StartCrawler API and specify the parameters that are needed by 
that API call. 

Step Function also includes strong support for error handling and has a visual interface 
for monitoring the status of a Step Function state machine run. However, Step Function 
does not currently support the ability to restart a state machine from a specific step. 
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A sample Step Function state machine
With Step Function, you create a state machine that defines the various tasks that make 
up your data pipeline. Each task is considered a state within the state machine, and you 
can also have states that control the flow of your pipeline, such as a choice state that 
executes a branch of the pipeline, or a wait state to pause the pipeline for a certain period.

When you're executing a Step Function state machine, you can pass in a payload that can 
be accessed by each state. Each state can also add additional data to the payload, such as a 
status code indicating whether a task succeeded or failed. 

The following diagram shows a sample state machine in Step Function: 

Figure 10.2 – Sample Step Function state machine
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In this state machine definition, we can see the following states:

1. We start with a Task state that executes a Lambda function that validates a manifest 
file that has been received (ensuring all the files listed in the manifest exist, for 
example).

2. We then have another Task state, this time to execute a Glue Job that will convert 
the files we received from CSV format into Parquet format.

3. Our next step is another Task state. This time, the task executes a Glue crawler to 
update our data catalog with the new Parquet dataset we have generated.

4. We then enter a Parallel state, which is used to create parallel branches of execution 
in our state machine. In this case, we're executing a Lambda function (to summarize 
data from the Parquet file and store the results in a DynamoDB table) and then 
trigger a Glue job to enrich our new Parquet dataset with additional data. 

5. We then enter a Choice state. The choice state specifies rules that get evaluated to 
determine what to do next. In this case, if our Lambda and Glue jobs succeeded, 
we end the state machine with a Success state. If either of them failed, we run a 
Lambda function to send a failure notification, and we end the state machine with a 
Fail state.

The visual editor that can be used in the console to create a state machine ultimately ends 
up generating an Amazon States Language (ASL) JSON file that contains the definition 
of the pipeline. You can store the JSON definition file for your data pipeline in a source 
control system, and then use the JSON file in a CI/CD pipeline to deploy your Step 
Function state machine.

Pros and cons of using AWS Step Function
AWS Step Function provides a native AWS solution for defining and orchestrating 
pipelines that are easy to use with a powerful visual design tool. Step Function is offered 
as a serverless service, which means that you only pay for the service while actively using 
it; you do not have any infrastructure to manage or even any infrastructure decisions to 
make.
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AWS offers Step Function as a highly available service within a region, and even provides 
an SLA indicating that AWS will make commercially reasonable efforts to make AWS Step 
Function available with a monthly uptime percentage for each AWS region, during any 
monthly billing cycle, of at least 99.9%. For more information on this SLA, see https://
aws.amazon.com/step-functions/sla/.

However, Step Function does not natively let you resume a pipeline from its point of 
failure, which tools such as Apache Airflow do offer. Also, while Step Function is very 
well integrated with AWS services and lets you orchestrate even on-premises workloads, if 
you are looking for an orchestration tool with strong integration to non-AWS third-party 
services, then Apache Airflow has the strongest offering for that.

In the hands-on exercises for this chapter, you will get the opportunity to build out a data 
pipeline using AWS Step Function. However, before we do that, let's summarize your 
choices for data pipeline orchestration within AWS.

Deciding on which data pipeline orchestration tool to 
use
As we have discussed in this chapter, there are multiple options for creating and 
orchestrating data pipelines within AWS. And while we have looked at four different 
options offered by AWS directly, there are countless other options from AWS partners that 
could also be considered.

For less complex environments that only use the services supported by either AWS Data 
Pipeline or AWS Glue Workflows, these services can be a good choice. However, for larger 
and more complex environments, it is worth examining both Amazon MWAA and AWS 
Step Function.

https://aws.amazon.com/step-functions/sla/
https://aws.amazon.com/step-functions/sla/
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The following tables show a comparison of Step Function and Amazon MWAA based on 
several different key attributes:

Figure 10.3 – Comparison of AWS Step Function and Amazon MWAA 

Now, let's get hands-on with AWS Step Function and see how this service can let us 
visually build pipelines.  
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Hands-on – orchestrating a data pipeline using 
AWS Step Function
In this section, we will get hands-on with the AWS Step Function service, which can be 
used to orchestrate data pipelines. The pipeline we're going to orchestrate is relatively 
simple, but Step Function can also be used to orchestrate far more complex pipelines with 
many steps. To keep things simple, we will only use Lambda functions to process our data, 
but you could replace Lambda functions with Glue jobs in production pipelines that need 
to process large amounts of data. 

For our Step Function state machine, we are going to start by using a Lambda function 
that checks the extension of an incoming file to determine the type of file. Once 
determined, we'll pass that information on to the next state, which is a CHOICE state. If it 
is a file type we support, we'll call a Lambda function to process the file, but if it's not, we'll 
send out a notification, indicating that we cannot process the file. 

If the Lambda function fails, we'll send a notification to report on the failure; otherwise, 
we will end the state machine with a SUCCESS status. 

Creating new Lambda functions
Before we can create our Step Function, we need to create the Lambda functions that we 
will be orchestrating. We will create three separate Lambda functions in this section.

Using a Lambda function to determine the file extension
Our first Lambda function will check the extension of any file that's uploaded to an 
Amazon S3 bucket. Then, it will return it that to the state machine. Let's get started:

1. Log in to AWS Management Console and navigate to the AWS Lambda service at 
https://console.aws.amazon.com/lambda/home.

2. Ensure that you are in the region that you have been using for all the exercises in 
this book.

3. Click on Create function.
4. Select Author from scratch. Then, for Function name, enter dataeng-check-

file-ext.
5. For Runtime, select Python 3.9. Leave the defaults for Architecture and 

Permissions as-is and click Create function. 

https://console.aws.amazon.com/lambda/home
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6. In the Code source block, replace any existing code with the following code. This 
code receives an EventBridge event when a new S3 file is uploaded and uses the 
metadata included within the event to determine the extension of the file:

import urllib.parse

import json

import os

print('Loading function')

def lambda_handler(event, context):

    print("Received event: " + json.dumps(event, 
indent=2))

    # Get the object from the event and show its content 
type

    bucket = event['detail']['requestParameters']
['bucketName']

    key = urllib.parse.unquote_plus(event['detail']
['requestParameters']['key'], encoding='utf-8')

    filename, file_extension = os.path.splitext(key)

    print(f'File extension is: {file_extension}')

    payload = {

        "file_extension": file_extension,

        "bucket": bucket,

        "key": key

        }

    return payload

7. Click the Deploy button above the code block section to save and deploy our 
Lambda function.

Now, we can create a second Lambda function that will process the file we received. 
However, for this exercise, the code in this Lambda function will randomly generate 
failures.  
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Lambda to randomly generate failures
For this Lambda function, we will use a random number generator to determine whether 
to cause an error in the Lambda function or to succeed. We will do this by generating a 
random number that will be either 0, 1, or 2 and then dividing our random number by 
10. When the random number is 0, we will get a "divide by zero" error from our function. 
Let's get started:

1. Repeat Steps 1 to 5 of the previous section to create the first Lambda function, but 
this time, for Function name, enter dataeng-random-failure-generator.

2. In the Code source block, replace any existing code with the following code:

from random import randint 

def lambda_handler(event, context):

    print('Processing')

    #Our ETL code to process the file would go here

    value = randint(0, 2)

    # We now divide 10 by our random number.

    # If the random number is 0, our function will fail

    newval = 10 / value

    print(f'New Value is: {newval}')

    return(newval)

3. Click the Deploy button above the code block section.

We now have two Lambda functions that we can orchestrate in our Step Function state 
machine. But before we create the state machine, we have a few additional resources to 
create.

Creating an SNS topic and subscribing to an email 
address
If there is a failure in our state machine, we want to be able to send an email notification 
about the failure. We can use the SNS service to send an email. To do this, we need to 
create an SNS topic that we will send the notification to. Then, we can subscribe one or 
more email addresses to that topic. Let's get started:

1. Navigate to the Amazon SNS service at https://console.aws.amazon.
com/sns.

2. Ensure that you are in the region that you have been using for all the exercises in 
this book.

https://console.aws.amazon.com/sns
https://console.aws.amazon.com/sns
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3. In the menu on the left-hand side, click on Topics, then Create topic.
4. For Type, select Standard.
5. For Name, enter dataeng-failure-notification.
6. Leave all the other items as-is and click on Create topic.
7. In the Topic details section, click Create subscription.
8. For Protocol, select Email.
9. For Endpoint, enter your email address. Then, click on Create subscription.
10. Access your email and look for an email from no-reply@sns.amazonaws.com. Click 

the Confirm subscription link in that email. You need to do this to receive future 
email notifications from Amazon SNS.

We now have an SNS topic with a confirmed email subscription that can receive SNS 
notifications. 

Creating a new Step Function state machine
Now, we can orchestrate the various components that we have created so far (our two 
Lambda functions and the SNS topic we will use for sending messages): 

1. Navigate to the Amazon Step Function service at https://console.aws.
amazon.com/states/home.

2. Ensure that you are in the region that you have been using for all the exercises in 
this book.

3. Click on Create state machine.
4. Leave the default of Design your Workflow visually as-is and set the type to 

Standard. Then, click Next.
5. This will show a visual editor with a Start block and an End block. Drag the AWS 

Lambda Invoke block into the visual designer, between the Start and End blocks.
6. On the right-hand side of the screen, set State name to Check File 

Extension.
7. Under API Parameters, use the drop-down list to select the Lambda function that 

extracts the file extension (such as dataeng-check-file-ext).
8. Click on the Output tab, click the selector for Filter output with OutputPath, 

and provide a value of $.Payload. Selecting this option configures our Check 
File Extension state to have an output of whatever was returned by our Lambda 
function (in our case, we have configured our Lambda function to return some 
JSON that contains the S3 bucket, object, and file extension of the file to process).

https://console.aws.amazon.com/states/home
https://console.aws.amazon.com/states/home


Hands-on – orchestrating a data pipeline using AWS Step Function     315

Figure 10.4 – Building out a Step Function state machine

9. On the left-hand side, click on the Flow tab. Then, drag the Choice state to between 
the Lambda Invoke function and the End state. We use the Choice state to branch 
out our pipeline to run different processes, based on the output of a previous state. 
In this case, our pipeline will do different things depending on the extension of the 
file we are processing.

10. On the right-hand side, under Configuration for our new choice state, click the 
Pencil Edit icon next to Rule #1 and then click Add conditions. 

11. On the pop-up screen, under Variable, enter $.file_extension (our Lambda 
function returned some JSON, including a JSON path of file_extension that 
contains a string with the extension of the file we are processing). Set Operator to 
matches string and for value, enter .csv. Then, click Save conditions.

12. On the left-hand side, switch back to the Actions tab and drag the AWS Lambda 
Invoke state to the Rule #1 box in the flow diagram. 

13. For our new Lambda Invoke state for Rule #1, set State name to Process CSV 
(since our Choice function is going to invoke this Lambda for any file that has an 
extension of .csv, as we set in Step 11). 
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14.  Under API Parameters, use the dropdown to set Function name to our second 
Lambda function (dataeng-random-failure-generator). In a real pipeline, 
we would have a Lambda function (or Glue job) that would read the CSV file that 
was provided as input and process the file. In a real pipeline, we may have also 
added additional rules to our Choice state for other file types (such as XLS or JPG) 
and had different Lambda functions or Glue jobs invoked to handle each file type. 

However, in this exercise, we are only focusing on how to orchestrate pipelines, so 
our Lambda function code is designed to simply divide 10 by a random number, 
resulting in random failures when the random number is 0. 

15. On the left-hand side, switch back to the Flow tab and drag the Pass state to the 
Default rule box leading from our Choice state. The default rule is used if the 
output of our Lambda function does not match any of the other rules. In this case, 
our only other rule is for handling files with a .csv extension, so if a file has any 
other extension besides .csv, the default rule will be used. 

16. On the right-hand side, for the Pass state configuration, change State name to 
Pass – Invalid File Ext. Then, click on the Output tab and paste the 
following into the Result textbox:

{

  "Error": "InvalidFileFormat"

}

The Pass state is used in a state machine to modify the data that is passed to the 
next state. In this case, we want to pass an error message about the file format being 
invalid to the next state in our pipeline.

Ensure that the selector for Add original input to output using ResultPath is 
selected and that the dropdown is set to Combine original input with result. In the 
textbox, enter $.Payload. 

17. If we receive an InvalidFileFormat error, we want to send a notification using the 
Amazon SNS service. To do so, on the left-hand side, under the Actions tab, drag 
the Amazon SNS Publish state to below our Pass - Invalid File Ext state. 

On the right-hand side, on the Configuration tab for the SNS Publish state, 
under API Parameters, set Topic to our previously created SNS topic (dataeng-
failure-notification). Your state machine should now look as follows:
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Figure 10.5 – The current status of our Step Function state machine

18. We can now add error handling for our Process CSV state. Click on the Process 
CSV state and, on the right-hand side, click on the Error handling tab. Under 
Catch errors, click on the + Add new catcher button. For Errors, select States.
ALL, for Fallback state, select our SNS Publish state, and for result path, enter 
$.Payload. This configuration means that if our Lambda function fails for any 
reason (States.ALL), we will add the error message to our JSON under a Payload 
key and pass this to our SNS notification state. 
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19. On the left-hand side, click on the Flow tab and drag Success state under the 
Process CSV state. Then, drag Fail state under the SNS Publish state. We are 
doing this as we want our Step Function to show as having failed if, for any reason, 
something failed and we ended up sending a failure notification using SNS. Your 
finalized state should look as follows:

Figure 10.6 – The final status of our Step Function state machine

20. At the top right, click on Next. This screen shows the JSON Amazon States 
Language code that has been generated for your state machine. Click on Next.

21. For State machine name, enter ProcessFilesStateMachine. Leave all the 
other settings as-is and click Create state machine. 

With that, we have created our pipeline orchestration using Step Function. Now, we want 
to create an event-driven Workflow for triggering the Step Function. In the next section, 
we will create a new EventBridge rule that will trigger our state machine whenever a new 
file is uploaded to a specific S3 bucket. 
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The Amazon EventBridge service is a serverless event bus that can be used to build event-
driven Workflows. EventBridge can detect events from various AWS services (such as 
a new file being uploaded to S3) and can be configured to trigger a variety of different 
targets in response to an event. In our case, we will configure our Step Function as a target.

Configuring AWS CloudTrail and Amazon EventBridge
The AWS CloudTrail service is used to log the activities that are performed in an AWS 
account in near-real time. For example, when a new file is uploaded to Amazon S3, a 
CloudTrail event can be logged with details of the activity that took place.

Amazon EventBridge can monitor CloudTrail logs to detect certain events and respond 
to those. In the case of Amazon S3, however, object-level data events are not logged in 
CloudTrail by default, so we will need to configure our S3 bucket to generate CloudTrail 
data events.

Configuring Amazon S3 data events
For this exercise, we want to detect new files being created in our S3 Clean Zone bucket 
and have that trigger our Step Function state machine. The following steps will take you 
through the process of configuring CloudTrail data events:

1. Navigate to the Amazon CloudTrail service at https://console.aws.
amazon.com/cloudtrail/home.

2. Ensure that you are in the region that you have been using for all the exercises in 
this book.

3. Expand the left panel and click on Dashboard.
4. Under Trails, click on Create trail.
5. For Trail name, enter s3-data-events.
6. Under Customer managed AWS KMS key, enter s3-data-events-key for 

AWS KMS alias.
7. Leave all the other options as-is and click Next.
8. For Event type, deselect Management events and select Data events instead.
9. Under Data event: S3, deselect the Read and Write options for All current and 

future S3 buckets.

https://console.aws.amazon.com/cloudtrail/home
https://console.aws.amazon.com/cloudtrail/home
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10. Under Individual bucket selection, enter (or browse for) the name of your clean-
zone bucket (such as dataeng-clean-zone-<initials>). Deselect Read, 
leaving only Write events selected. Then, click on Next.

11. After reviewing the summary screen, click on Create trail.

With the preceding steps, we have configured CloudTrail to record a log of all Write type 
events to our clean-zone bucket. In the next section, we will create a new EventBridge 
event that will detect Write events to the clean-zone bucket and trigger our Step Function 
in response. 

Create an EventBridge rule for triggering our Step Function state 
machine
Our final task, before testing our pipeline, is to configure the EventBridge rule that will 
trigger our Step Function state machine. Let's get started:

1. Navigate to the Amazon EventBridge service at https://console.aws.
amazon.com/events/home.

2. Ensure that you are in the region that you have been using for all the exercises in 
this book.

3. From the left-hand panel, click on Rules. Then, click on Create rule.
4. For the rule's name, enter dataeng-s3-trigger-rule.
5. Under Define pattern, select Event pattern, and then select Pre-defined pattern by 

service.
6. For Service provider, select AWS. For Service name, select Simple Storage Service 

(S3). For Event type, select Object level operations.
7. Select Specific operations. Then, from the drop-down list, select the PutObject, 

CopyObject, and CompleteMultipartUpload operations.
8. Select Specific bucket(s) by name and enter the name of your clean-zone bucket 

(for example, dataeng-clean-zone-<initials>):

https://console.aws.amazon.com/events/home
https://console.aws.amazon.com/events/home
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Figure 10.7 – Specifying the event pattern for an EventBridge rule

9. Scroll down to Select targets and for Target, select Step Function state machine 
from the drop-down list.
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10. For State machine, select ProcessFileStateMachine, which we created previously.
11. Leave all the other settings as-is and click Create.

With that, we have put together an event-driven Workflow to orchestrate a data pipeline 
using Amazon Step Function. Our last task is to test our pipeline.

Testing our event-driven data orchestration pipeline
To test our pipeline, we need to upload a file to our clean-zone S3 bucket. Once the file has 
been uploaded, the rule we created in Amazon EventBridge will cause our Step Function 
state machine to be triggered: 

1. Navigate to the Amazon S3 service at https://s3.console.aws.amazon.
com/s3.

2. From the list of buckets, click on the dataeng-clean-zone-<initials> bucket.
3. Optionally, create a new folder in this bucket for testing.
4. Click on Upload, then Add files. Browse your computer for a file with a CSV 

extension (if you cannot find one, create a new, empty file and make sure that the 
file is saved with an extension of CSV). 

5. Leave the other settings as-is and click Upload.
6. Navigate to the AWS Step Function service at https://console.aws.

amazon.com/states.
7. Click on the state machine we created earlier (ProcessFilesStateMachine). 

From the list of Executions, see whether the state machine Succeeded or Failed. 
Click on the Name property of the execution for more details.

8. Reupload the same .csv file (multiple times if necessary) and notice how some 
executions succeed and some fail. The random number generator has a 66% chance 
of generating the number 1 or 2 and a 33% chance of generating the number 
0. When the number 0 is generated, the function will fail, so throughout many 
executions, approximately one-third should fail.

The following diagram shows an example of what our state machine looks like after 
an execution where 0 was generated as a random number, causing the Lambda 
function to fail: 

https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://console.aws.amazon.com/states
https://console.aws.amazon.com/states
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Figure 10.8 – An example of a state machine run when the random number generator generated a 0, 
resulting in a failed state machine

9. After a failed execution, check the email address that you specified when you 
configured the Amazon SNS notification service. If you previously confirmed your 
SNS subscription, you should receive an email each time the state machine fails.

10. Now, upload another file to the same Amazon S3 bucket, but ensure that this 
file has an extension other than .csv (for example, PDF). When you're viewing 
the execution details for your state machine, you should see that the choice state 
proceeded to the Pass – Invalid File Ext state and then also published an SNS 
notification to your email.

In the hands-on activity for this chapter, we created a serverless pipeline that we 
orchestrated using the AWS Step Function service. Our pipeline was configured to be 
event-driven via the Amazon EventBridge service, which let us trigger the pipeline in 
response to a new file being uploaded to a specific Amazon S3 bucket. 
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This was a fairly simple example of a data pipeline. However, AWS Step Function can 
be used to orchestrate far more complex data pipelines, with advanced error handling 
and retries. For more information on advanced error handling, see the AWS blog titled 
Handling Errors, Retries, and Adding Alerting to Step Function state machine Executions 
(https://aws.amazon.com/blogs/developer/handling-errors-
retries-and-adding-alerting-to-step-function-state-machine-
executions/). 

Summary
In this chapter, we looked at a critical part of a data engineers' job: designing and 
orchestrating data pipelines. First, we examined some of the core concepts around data 
pipelines, such as scheduled and event-based pipelines, and how to handle failures and 
retries.

We then looked at four different AWS services that can be used for creating and 
orchestrating data pipelines. This included Amazon Data Pipeline, AWS Glue Workflows, 
Amazon Managed Workflows for Apache Airflow (MWAA), and AWS Step Function. We 
discussed some of the use cases for each of these services, as well as the pros and cons of 
them.

Then, in the hands-on section of this chapter, we built an event-driven pipeline. We used 
two AWS Lambda functions for processing and an Amazon SNS topic for sending out 
notifications about failure. Then, we put these pieces of our data pipeline together into 
a state machine orchestrated by AWS Step Function. We also looked at how to handle 
errors.

So far, we have looked at how to design the high-level architecture for a data pipeline and 
examined services for ingesting, transforming, and consuming data. In this chapter, we 
put some of these concepts together in the form of an orchestrated data pipeline.

In the remaining chapters of this book, we will take a deeper dive into some of the 
services for data consumption, including services for ad hoc SQL queries, services for data 
visualization, as well as an overview of machine learning and artificial intelligence services 
for drawing additional insights from our data.

In the next chapter, we will do a deeper dive into the Amazon Athena service, which is 
used for ad hoc data exploration, using the power of SQL. 

https://aws.amazon.com/blogs/developer/handling-errors-retries-and-adding-alerting-to-step-function-state-machine-executions/
https://aws.amazon.com/blogs/developer/handling-errors-retries-and-adding-alerting-to-step-function-state-machine-executions/
https://aws.amazon.com/blogs/developer/handling-errors-retries-and-adding-alerting-to-step-function-state-machine-executions/


Section 3:  
The Bigger Picture: 

Data Analytics, Data 
Visualization, and 
Machine Learning 

In Section 3 of the book, we examine the bigger picture of data analytics in modern 
organizations. We learn about the tools that data consumers commonly use to work with 
data transformed by data engineers, and briefly look into how machine learning (ML) 
and artificial intelligence (AI) can draw rich insights out of data. We also get hands-on 
with tools for running ad hoc SQL queries on data in the data lake (Amazon Athena), 
for creating data visualizations (Amazon QuickSight), and for using AI to derive insights 
from data (Amazon Comprehend). We then conclude by looking at data engineering 
examples from the real world and explore some emerging trends in data engineering.

This section comprises the following chapters:

• Chapter 11, Ad Hoc Queries with Amazon Athena

• Chapter 12, Visualizing Data with Amazon QuickSight

• Chapter 13, Enabling Artificial Intelligence and Machine Learning

• Chapter 14, Wrapping Up the First Part of Your Learning Journey





11
Ad Hoc Queries with 

Amazon Athena
In Chapter 8, Identifying and Enabling Varied Data Consumers, we explored a variety 
of data consumers. Now, we will start examining the AWS services that some of these 
different data consumers may want to use, starting with those that need to use SQL  
to run ad hoc queries on data in the data lake.

SQL syntax is widely used for querying data in a variety of databases, and it is a skill that  
is easy to find. As a result, there is significant demand from various data consumers for  
the ability to query data that is in the data lake using SQL, without having to first move  
the data into a dedicated traditional database.

Amazon Athena is a serverless, fully managed service that lets you use SQL to directly 
query data in the data lake, as well as query various other databases. It requires no setup, 
and the cost is based purely on the amount of data that is scanned to complete the query. 

In this chapter, we will do a deep dive into Athena, examining how Athena can be used 
to query data directly in the data lake, query data from other data sources with Query 
Federation, and how Athena provides workgroup functionality to help with governance 
and cost management. 
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In this chapter, we will cover the following topics:

• An introduction to Amazon Athena

• Tips and tricks to optimize Amazon Athena queries

• Federating the queries of external data sources with Amazon Athena Query 
Federation

• Managing governance and costs with Amazon Athena Workgroups

• Hands-on – creating an Amazon Athena workgroup and configuring Athena settings

• Hands-on – switching Workgroups and running queries

Technical requirements
In the hands-on sections of this chapter, you will perform administrative tasks related to 
Amazon Athena (such as creating a new Athena workgroup) and run Athena queries. As 
mentioned at the start of this book, we strongly recommend that, for the exercises in this 
book, you use a sandbox account where you have full administrative permissions.

For this chapter, at a minimum, you will need permissions to manage Athena Workgroups, 
permissions to run Athena queries, access to the AWS Glue data catalog for databases and 
tables to be queried, and read access to the relevant underlying S3 storage. 

A user that has the AmazonAthenaFullAccess and AmazonS3ReadOnlyAccess policies 
attached should have sufficient permissions for the exercises in this chapter. However, 
note that a user with these roles will have access to all S3 objects in the account, all Glue 
resources, all Athena permissions, as well as various other permissions, so this should only 
be granted to users in a sandbox account. Such broad privileges should be avoided for 
users in production accounts. 

You can find the code files of this chapter in the GitHub repository using the following 
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter11

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter11
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter11
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Amazon Athena – in-place SQL analytics for 
the data lake
Structured Query Language (SQL) was invented at IBM in the 1970s but has remained 
an extremely popular language for querying data throughout the decades. Every day, 
millions of people across the world use SQL directly to explore data in a variety of 
databases, and many more use applications (whether business applications, mobile 
applications, or others) that, under the covers, use SQL to query a database.

Over the years, the American National Standards Institute (ANSI) has created various 
versions of an ANSI-SQL standard that database vendors can use to build ANSI-SQL-
compliant databases. Database vendors often declare that their database is compatible 
with a large subset of ANSI-SQL, meaning that different database engines support 
different aspects of the ANSI-SQL standard.

Facebook, the social media network, has very large datasets and complex data analysis 
requirements and found that existing tools in the Hadoop ecosystem were not able to 
meet their needs. As a result, Facebook created an internal solution for being able to run 
SQL queries on their very large datasets, using standard ANSI SQL semantics, and in 2013, 
Facebook released this as an open source solution called Presto. 

In late 2016, AWS announced the launch of Amazon Athena, a new service that would 
enable customers to directly query structured and semi-structured data that exists in 
Amazon S3. In the launch announcement, Amazon indicated that Athena was a managed 
version of Presto, with full standard SQL support. This provided the power of the Presto 
SQL analytics engine as a serverless service to AWS customers.

SQL is broadly broken into two parts:

• Data Definition Language (DDL), which is used to create and modify  
database objects.

• Data Manipulation Language (DML), which is used to query and manipulate data.

In 2021, AWS upgraded the Amazon Athena engine to v2, which is based on HiveQL for 
DDL statements, and Presto version 0.217 for DML statements.

Amazon Athena requires a Hive-compatible data catalog that provides the metadata for 
the data being queried. The catalog provides a logical view (databases that contain tables, 
which consist of rows, along with columns of a specific data type), and this maps to 
physical files stored in Amazon S3. Athena originally had its own data catalog, but today,  
it requires the use of the AWS Glue data catalog as its Hive compatible data store. 
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Amazon Athena makes it easy to quickly start querying data in an Amazon S3-based data 
lake, but there are some important things to keep in mind to optimize SQL queries with 
Amazon Athena, as we will discuss in the next section.

Tips and tricks to optimize Amazon Athena 
queries
When raw data is ingested into the data lake, we can immediately create a table for that 
data in the AWS Glue data catalog (either using a Glue crawler or by running DDL 
statements with Athena to define the table). Once the table has been created, we can start 
exploring the table by using Amazon Athena to run SQL queries against the data.

However, raw data is often ingested in plaintext formats such as CSV or JSON. And 
while we can query the data in this format for ad hoc data exploration, if we need to run 
complex queries against large datasets, these raw formats are not efficient to query. There 
are also ways that we can optimize the SQL queries that we write to make the best use of 
the underlying Athena query engine. 

Amazon Athena's cost is based on the amount of compressed data that is scanned to 
resolve the query, so anything that can be done to reduce the amount of data scanned 
improves query performance and reduces query cost. 

In this section, we will review several ways that we can optimize our analytics for 
increased performance and reduced cost. 

Common file format and layout optimizations
The most impactful and easiest transformations that a data engineer can apply to raw files 
are those that transform the raw files into an optimized file format, and that structure the 
layout of files in an optimized way.

Transforming raw source files to optimized file formats
As we discussed in Chapter 7, Transforming Data to Optimize for Analytics, file formats 
such as Apache Parquet are designed for analytics and are much more performant than 
raw data formats such as CSV or JSON. So, transforming your raw source files into a 
format such as Parquet is one of the most important things a data engineer can do to 
improve the performance of Athena queries. Review the Optimizing the file format section 
of Chapter 7, Transforming Data to Optimize for Analytics, for a more comprehensive look 
at the benefits of Apache Parquet files. 



Tips and tricks to optimize Amazon Athena queries     331

In Chapter 7, Transforming Data to Optimize for Analytics we reviewed how the AWS Glue 
service can be used to transform your files into optimized formats. However, Amazon 
Athena can also transform files using a concept called Create Table As Select (CTAS). 
With this approach, you run a CTAS statement using Athena, and this instructs Athena to 
create a new table based on a SQL select statement against a different table.

In the following example, customers_csv is the table that was created on the data we 
imported from a database to our data lake, and the data is in CSV format. If we want to 
create a Parquet version of this table so that we can effectively query it, we could run the 
following SQL statement using Athena:

CREATE TABLE customers_parquet

WITH (

      format = 'Parquet',

      parquet_compression = 'SNAPPY')

AS SELECT *

FROM customers_csv;

The preceding statement will create a new table called customers_parquet. The 
underlying files for this table will be in Parquet format and compressed using the 
Snappy compression algorithm. The contents of the new table will be the same as the 
customers_csv table since our query specified SELECT *, meaning select all data. 

If you are bringing in specific datasets regularly (such as every night), then in most 
scenarios, it would make sense to configure and schedule an AWS Glue job to perform 
the conversion to Parquet format. But if you're doing ad hoc exploratory work on various 
datasets, or a one-time data load from a system, then you may want to consider using 
Amazon Athena to perform the transformation. Note that there are some limitations in 
using Amazon Athena to perform these types of transforms, so refer to the Considerations 
and Limitations for CTAS Queries (https://docs.aws.amazon.com/athena/
latest/ug/considerations-ctas.html) page in the Amazon Athena 
documentation for more details. 

Partitioning the dataset
This is also a concept that we covered in more detail in Chapter 7, Transforming Data to 
Optimize for Analytics but we will discuss it again now briefly as, after using an optimized 
file format such as Parquet, this is the next most impactful thing you can do to increase 
the performance of your analytic queries. Review the Optimizing with Data Partitioning 
section of Chapter 7, Transforming Data to Optimize for Analytics, for more details on 
partitioning. 

https://docs.aws.amazon.com/athena/latest/ug/considerations-ctas.html
https://docs.aws.amazon.com/athena/latest/ug/considerations-ctas.html
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A common data partitioning strategy is to partition files by columns related to date. For 
example, in our sales table, we could have a YEAR column, a MONTH column, and a DAY 
column that reflect the year, month, and day of a specific sales transaction, respectively. 
When the data is written to S3, all sales data related to a specific day will be written out  
to the same S3 prefix path. 

Our partitioned dataset may look as follows:

/datalake/transform_zone/sales/YEAR=2021/MONTH=9/DAY=29/sales1.
parquet

/datalake/transform_zone/sales/YEAR=2021/MONTH=9/DAY=30/sales1.
parquet

/datalake/transform_zone/sales/YEAR=2021/MONTH=10/DAY=1/sales1.
parquet

/datalake/transform_zone/sales/YEAR=2021/MONTH=10/DAY=2/sales1.
parquet

Note
The preceding partition structure is a simple example because generally, with 
large datasets, you would expect to have multiple Parquet files in each partition. 

Partitioning provides a significant performance benefit when you filter the results of your 
query based on one or more partitioned columns using the WHERE clause. For example, if 
a data analyst needs to query the total sales for the last day of September 2021, they could 
run the following query:

select sum(SALE_AMOUNT) from SALES where YEAR = '2021' and 
MONTH = '9' and DAY = '30'

Based on our partitioning strategy, the preceding query would only need to read the 
file (or files) in the single S3 prefix of /datalake/transform_zone/sales/
YEAR=2021/MONTH=9/DAY=30.

Even if we want to query the data for a full month or year, we still significantly reduce the 
number of files that need to be scanned, compared to having to scan all the files for all the 
years if we did not partition our data. 

As covered in Chapter 7, Transforming Data to Optimize for Analytics, you can specify one 
or more columns to partition by when writing out data using Apache Spark. Alternatively, 
you can use Amazon Athena CTAS statements to create a partitioned dataset. However, 
note that a single CTAS statement in Athena can only create a maximum of 100 partitions. 
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Other file-based optimizations
Using an optimized file format (such as Apache Parquet) and partitioning your data 
are generally the two strategies that will have the biggest positive impact on analytic 
performance. However, several other strategies can fine-tune performance, which we  
will cover here briefly.

Optimizing file size: It is important to avoid having a large number of small files if you 
want to optimize your analytic queries. For each file in S3, the analytic engine (in this case, 
Amazon Athena) needs to do the following:

• Open the file.

• Read the Parquet metadata to determine whether the query needs to scan the 
contents of the file.

• Scan the contents of the file if the file contains data needed for the query.

• Close the file.

There can be significant Input/Output (I/O) overhead in listing out very large numbers 
of files and then processing each file. Airbnb has an interesting blog post on Medium 
(https://medium.com/airbnb-engineering/on-spark-hive-and-
small-files-an-in-depth-look-at-spark-partitioning-strategies-
a9a364f908) that explains an issue they had where one of their data pipeline jobs ended 
up creating millions of files, and how this caused significant outages for them. 

To optimize for analytics, you should aim for file sizes of between 128 MB and 1,024 MB. 

Bucketing: Bucketing is a concept that is related to partitioning. However, with bucketing, 
you group rows of data together in a specified number of buckets, based on the hash 
value of a column (or columns) that you specify. Currently, Athena is not compatible 
with the bucketing implementation that's used in Spark, so you should use Athena CTAS 
statements to bucket your data. Refer to the Amazon Athena documentation on Bucketing 
versus Partitioning for more information (https://docs.aws.amazon.com/
athena/latest/ug/bucketing-vs-partitioning.html).

Partition Projection: In scenarios where you have a very large number of partitions, there 
can be a significant overhead for Athena to read all the information about partitions from 
the Glue catalog. To improve performance, you can configure partition projection, where 
you provide a configuration pattern to reflect your partitions. Athena can then use this 
configuration information to determine possible partition values, without needing to read 
the partition information from the catalog. 

https://medium.com/airbnb-engineering/on-spark-hive-and-small-files-an-in-depth-look-at-spark-partitioning-strategies-a9a364f908
https://medium.com/airbnb-engineering/on-spark-hive-and-small-files-an-in-depth-look-at-spark-partitioning-strategies-a9a364f908
https://medium.com/airbnb-engineering/on-spark-hive-and-small-files-an-in-depth-look-at-spark-partitioning-strategies-a9a364f908
https://docs.aws.amazon.com/athena/latest/ug/bucketing-vs-partitioning.html
https://docs.aws.amazon.com/athena/latest/ug/bucketing-vs-partitioning.html
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For example, if you have a column called YEARMONTH that you partition on, and you 
have data going back to 2005, you could configure the partition projection range as 
200501,NOW and the partition projection format as yyyyMM. Athena would then be 
able to determine all possible valid partitions for that period without needing to read 
the partition information from the Glue catalog. For more information on partition 
projection, see the AWS documentation titled Partition Projection with Amazon Athena 
(https://docs.aws.amazon.com/athena/latest/ug/partition-
projection.html). 

In addition to the file and layout optimizations, there are also ways to write SQL queries  
so that the queries are optimized for the Presto analytic engine. We will cover some of 
these optimizations in the next section.

Writing optimized SQL queries
The way that SQL queries are written can also have a significant impact on the 
performance of the query. 

In this section, we will review the top three best practices that will help provide optimal 
performance of queries. It's recommended that, as a data engineer, you share these best 
practices with data analysts and others using Athena to run queries.

That said, there are other ways, beyond the three best practices we will outline here, to 
go deep into query optimization. For example, you (or your end user data analysts) can 
use the EXPLAIN statement as part of an Athena query to view the logical execution plan 
of a specific SQL statement. You can then make modifications to your SQL statement 
and review the EXPLAIN query plan to understand how that changes the underlying 
execution plan. For more information, see the AWS Athena documentation titled Using  
the EXPLAIN Statement in Athena: https://docs.aws.amazon.com/athena/
latest/ug/athena-explain-statement.html.

We don't have space to cover these additional query optimization techniques in 
this chapter. However, the AWS documentation provides a deeper dive into these 
optimizations, so for more information, please refer to the AWS Athena documentation 
titled Performance Tuning in Athena: Performance Tuning in Athena

https://docs.aws.amazon.com/athena/latest/ug/partition-projection.html
https://docs.aws.amazon.com/athena/latest/ug/partition-projection.html
https://docs.aws.amazon.com/athena/latest/ug/athena-explain-statement.html
https://docs.aws.amazon.com/athena/latest/ug/athena-explain-statement.html
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Selecting only the specific columns that you need
When exploring data, it is common to run queries that select all columns by specifying 
the start of the query as select *. However, remember that the Parquet format that 
we recommend for analytics is a columnar-based file format, meaning that data stored 
on disk is grouped by columns rather than rows. When you specify a specific column to 
query, the analytic engine (such as Athena) can read the data for that column only. 

If you have a table with a lot of columns, specifying just the columns that are important 
to your query can significantly increase the performance of your query. This is because 
Athena does not need to process the data for all columns. Since Athena's cost is based 
on the amount of data that's scanned, selecting just specific columns can also result in 
significant cost savings.

Take a scenario where you have a table with 150 columns, but your specific query only 
needs data from 15 of the columns. In this scenario, Athena would scan approximately 
10% of the dataset, compared to a query that uses a select * to query all columns. 

Using approximate aggregate functions
The Presto database engine (and therefore Athena) supports a wide variety of functions 
and operators that can be used in queries. These include functions that can be used  
in calculations against large datasets in a data lake. They are used for tasks such as  
the following:

• Working out the sum of all sales for this month compared to last month

• Calculating the average number of orders per store

• Determining the total number of unique users that accessed our e-commerce store 
yesterday

• Other advanced statistical calculations

For some calculations, you may need to get a fully accurate calculation, such as when 
determining sales figures for formal financial reporting. At other times, you may just need 
an approximate calculation, such as for getting an estimate on how many unique visitors 
came to our website yesterday.

For those scenarios, where you can tolerate some deviation in the result, Presto provides 
approximate aggregate functions, and these offer significant performance improvements 
compared to the equivalent fully accurate version of the function. 
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For example, if we needed to calculate the approximate number of unique users that 
browsed our e-commerce store in the past 7 days, and we could tolerate a standard deviation 
of 2.3% in the result, we could use the approx._distinct function, as follows:

SELECT

     approx_distinct(userid)

FROM

     estore_log

WHERE

     visit_time > to_iso8601(current_timestamp – interval '7' 
day)

For more information on supported Presto functions in Athena, including approximate 
functions, refer to the Athena documentation titled Presto Functions in Amazon Athena: 
https://docs.aws.amazon.com/athena/latest/ug/presto-functions.
html

Using regular expressions instead of using the like operator
A common way to select rows of data that match a specific pattern is to use the like 
operator, as shown in the following query:

select 

     category_name, count(category_name) 

from 

     film_category 

where 

     category_name like 'Comedy' or category_name like 'Drama' 
or category_name like 'Music' or category_name like 'New' 

group by 

     category_name

The preceding query returns the selected categories (Comedy, Drama, Music, and New) 
along with the count of how many movies are in each of the categories. 

An alternative approach to using the like operator is to use regular expressions for pattern 
matching, and this can both simplify the statement as well as increase the performance of 
the query.

https://docs.aws.amazon.com/athena/latest/ug/presto-functions.html
https://docs.aws.amazon.com/athena/latest/ug/presto-functions.html
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The following query returns the same results as our previous query, but it uses the 
regexpr_like operator instead, and also includes regular expression syntax (?i) to 
make the pattern matching case insensitive: 

select 

      category_name, count(category_name) 

from 

      film_category 

where 

      regexp_like(category_name, '(?i)^comedy|drama|music|new') 

group by 

      category_name

Using regexp_like instead of a regular like is recommended to improve query 
performance, especially in scenarios where you need to do several comparisons that  
would require many like operators. 

Now that we have reviewed some of the important factors that can affect Athena's 
performance, we can look at more advanced features in Athena, such as the ability to 
federate queries, which we will discuss next. 

Federating the queries of external data 
sources with Amazon Athena Query 
Federation
As we've discussed several times in this book, Athena lets you query data that has been 
loaded into the data lake using standard SQL semantics. But since the launch of Athena, 
AWS has added additional functionality to enhance Athena to make it an even more 
powerful query engine.

One of those major enhancements, which became available in 2021 with Athena query 
engine v2, was the ability to run federated queries, which we will look at next. 



338     Ad Hoc Queries with Amazon Athena

Querying external data sources using Athena 
Federated Query
Query federation, also sometimes referred to as data virtualization, is the process of 
querying multiple external data sources, in different database engines or other systems, 
through a single SQL query statement. In November 2019, AWS announced the preview  
of Federated Query in Amazon Athena, which enables a single Athena query to query 
data in data lakes, as well as data from external sources.

Data lakes are designed to collect data from multiple systems in an organization and bring 
it into centralized storage, where the data can be combined in ways that unlock value for 
the business. 

However, it is not practical to bring every single dataset that an organization has created 
into the centralized storage of the data lake. For some datasets, the organization either 
does not need to keep all historical data for a dataset, or the data is currently in a system 
that already stores historical data. In these scenarios, it may make more sense to query  
the source dataset directly and combine data from the source with data in the data lake  
on the fly. 

If a dataset needs to be queried by multiple teams, is queried often, and queries need to 
return very large amounts of data, then it may be best to load that dataset directly into the 
data lake. Also, if you need to repeatedly query a system that is already under a relatively 
heavy load, you can reduce that load by loading data from the system to the data lake in 
off-peak hours, rather than running federated queries during peak times. 

But if you're performing ad hoc queries, or if the data only needs to be queried by a small 
number of teams with a relatively low frequency of querying, then using the Athena 
Federated Query functionality to access the data makes sense. Several people have run 
performance testing with Athena Federated Query and have proven the ability to query 
many tens of thousands of records per second. 

For example, Athena Federated Query could enable a data analyst to run a single SQL 
query that combines the following datasets:

• Master customer data in Amazon S3

• Current order information in Amazon Aurora

• Shipment tracking data in Amazon DynamoDB

• Product catalog data in Amazon Redshift:
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Figure 11.1 – Amazon Athena query federation

Another use case would be if you do a nightly load of data from an external system into 
your data lake, but a few of your queries need to be able to reference some real-time data. 
For example, if supplier order information was loaded into the data lake each night, but 
you had a query that needed to calculate the total number of orders for a specific supplier 
for the year up to the present time, your query could do the following:

• Read supplier order information from the S3 data lake for all orders from the 
beginning of the year up until yesterday.

• Read any orders from today from your SAP HANA system.

There are many other potential use cases where data processing can be simplified 
by having the ability to use pure SQL to read and manipulate data from multiple 
systems. Rather than having to read independently from multiple systems, and then 
programmatically process the data, data processing is simplified by processing the data 
with a single SQL query. 
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Pre-built connectors and custom connectors
Athena Federated Query uses code running in AWS Lambda to connect to and query 
data, as well as metadata, from the external systems. When a query runs that uses a 
connected data source, Athena invokes the relevant Lambda function/s to read metadata, 
identifies parts of the tables that need to be read, and launches multiple Lambda functions 
to read the data in parallel. 

AWS has open sourced several connectors that enable federated queries against many 
popular data sources, including the following:

• A JDBC connector for connecting to sources such as MySQL, Postgres,  
and Redshift.

• A DynamoDB connector for reading from the Amazon-managed NoSQL database.

• A Redis connector for reading data from Redis instances.

• A CloudWatch logs and CloudWatch metrics connector, enabling you to query 
your application log files and metrics using SQL.

• An AWS CMDB connector that integrates with several AWS services to enable  
SQL queries against your AWS resources. Integrated services include EC2, RDS, 
EMR, and S3.

The full list of connectors can be found on, and downloaded from, the AWS Labs Athena 
Query Federation GitHub page at https://github.com/awslabs/aws-athena-
query-federation/wiki/Available-Connectors.

In addition to the connectors made available by AWS, anyone can create custom 
connectors to connect to external systems. If you can make a network connection from 
AWS Lambda to the target system, whether on-premises or in the cloud, you could 
potentially create an Athena Federated Query connector for that system.

Third-party companies are also able to create connectors for Athena Federated Query. 
For example, a company called Trianz has created connectors for Terradata, Snowflake, 
Google BigQuery, Cloudera, Oracle, and other systems. 

To learn more about building custom connectors, see the Athena Query Federation 
GitHub page titled Amazon Athena Query Federation SDK: https://github.
com/awslabs/aws-athena-query-federation/blob/master/athena-
federation-sdk/README.md

So far, we have looked at the core Athena functionality for querying data inside and 
outside of the data lake. Now, let's take a look at some of the Athena functionality for 
managing governance and costs.

https://github.com/awslabs/aws-athena-query-federation/wiki/Available-Connectors
https://github.com/awslabs/aws-athena-query-federation/wiki/Available-Connectors
https://github.com/awslabs/aws-athena-query-federation/blob/master/athena-federation-sdk/README.md
https://github.com/awslabs/aws-athena-query-federation/blob/master/athena-federation-sdk/README.md
https://github.com/awslabs/aws-athena-query-federation/blob/master/athena-federation-sdk/README.md
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Managing governance and costs with Amazon 
Athena Workgroups
Athena costs are based on the amount of data that is scanned by a query, and in the first 
section of this chapter, we looked at some of the ways that data can be optimized so that 
queries would scan less data, and therefore reduce costs.

However, some of those optimizations are based on writing efficient SQL queries, and it's 
not unusual for organizations to be concerned that users are going to accidentally run 
SQL queries that are not optimized and end up scanning massive amounts of data. As 
such, organizations want a way to control the amount of data that's scanned by different 
users or teams. 

Organizations also have concerns around governance and security. Some of these 
concerns include the following:

• Athena saves the results of all queries, as well as associated metadata, on S3. These 
results could contain confidential information, so organizations want to ensure this 
data is protected.

• Multiple teams in an organization may use Athena in the same AWS account, and 
organizations want items such as query history to be stored separately for each 
team.

Athena Workgroups overview
To help organizations manage these governance concerns, AWS introduced the concept  
of Athena Workgroups. Workgroups are a resource type that enables the separation of 
query execution and query history between different users, teams, or systems. 

In the Athena console, users can save queries that they frequently run, and a list of 
historical queries that they have run are also available. However, these lists only show 
queries for the Workgroup where the query is run, so splitting up teams or projects into 
different Workgroups ensures that query history and saved queries are visible only to the 
specific team associated with the workgroup. 

Workgroups also enable an organization to control the amount of data that's scanned  
(and therefore Athena costs) for each Workgroup. In addition, Workgroups can also be 
used to enforce several settings, including the S3 path for query results, and can control 
whether query results are encrypted or not. 
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Enforcing settings for groups of users
One of the primary uses of Athena Workgroups is to separate groups of different Athena 
users and to enforce settings for each group. These could be separate Workgroups for each 
team, separate Workgroups for different applications, or separate Workgroups for different 
types of users.

Workgroups enable an administrator to enforce various settings for each different group 
of users or different projects or use cases. By default, each user can control several settings, 
but Workgroups enable an administrator to override the users' settings, forcing them  
to use the Workgroup settings.

The following are the configuration items that an administrator can enforce for members 
of a Workgroup:

• Query Result Location: This is the S3 path where the results of Athena queries will 
be written. Users can set a query result location, but if this is set for the workgroup 
and Override client-side settings is set on the Workgroup, then this location will be 
used for all the queries that are run in this Workgroup.

This enables an organization to control where query result files are stored in S3, 
and the organization can set strict access control options on this location to prevent 
unauthorized users from gaining access to query results.

For example, each team can be assigned a different Workgroup, and their IAM 
access policy can be configured to only allow read access to their query results. 

• Encrypt Query Results: This option can be used to enforce that query results 
are encrypted, helping organizations keep in line with their corporate security 
requirements.

• Metrics: You can choose to send metrics to CloudWatch logs, which will reflect 
items such as the number of successful queries, the query runtime, and the amount 
of data that's been scanned for all the queries that are run within this workgroup.

• Override client-side settings: If this item is not enabled, then users can configure 
their user settings for things such as query result location, and whether query results 
are encrypted. Therefore, it is important to enable this setting to ensure that query 
results are protected and corporate governance standards are met. 

• Requester pays S3 buckets: When creating a bucket in Amazon S3, one of the 
options that's available is to configure the bucket so that the user that queries the 
bucket pays for the API access costs. By default, Athena will not allow queries 
against buckets that have been configured for requester pays, but you can allow  
this by enabling this item. 
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• Tags: You can provide as many key:value tags as needed to help with items such 
as cost allocation, or for controlling access to a Workgroup. For example, you may 
have two Workgroups that have different settings for the query output location, 
based on different projects or use cases. You could provide a tag with the name 
of the team and then, through IAM policies, provide team members access to all 
Workgroups that are tagged with their team name.

For examples of how to manage access to Workgroups using tags or workgroup names, 
see the Amazon Athena documentation titled Tag-Based IAM Access Control Policies 
(https://docs.aws.amazon.com/athena/latest/ug/tags-access-
control.html). 

In addition to using Workgroups to enforce different settings for different groups of users 
or use cases, Workgroups can also be used to manage costs by limiting the amount of data 
that's scanned.

Enforcing data usage controls
As Athena pricing is based on the amount of data scanned (at the time of writing, the cost 
is $5 per TB of data scanned), limiting the amount of data that's scanned helps manage 
costs. To enable this, Athena Workgroups includes functionality for data usage controls, 
and two types of controls can be implemented.

Per query data usage control
You can configure the maximum amount of data that can be scanned by a single query 
using per query data usage controls. If a user runs a query and Athena ends up trying to 
scan more data than what's allowed in the control, the query is canceled. However, note 
that the AWS account is still billed for the amount of data that was scanned up until the 
query was canceled.

As a practical example, you may have a group of users that are relatively inexperienced 
with SQL and want to have a sandbox environment where they can run ad hoc queries 
safely. In this scenario, you could create an Athena Workgroup called sandbox and 
configure these users to have access to the sandbox Workgroup. You could configure the 
Workgroup to have a per-query limit of 100 GB, for example, which would ensure that  
no individual query would cost more than $0.50.

Per query data limits are useful for scenarios where you want to have hard control over the 
amount of data that's scanned by each query. However, this control is restrictive in that it 
automatically cancels any query that exceeds the specified amount of data that's scanned. 
An alternative option for controlling costs is to configure Workgroup data usage controls.

https://docs.aws.amazon.com/athena/latest/ug/tags-access-control.html
https://docs.aws.amazon.com/athena/latest/ug/tags-access-control.html
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Workgroup data usage controls
With Workgroup data usage controls, you have the flexibility to configure the maximum 
amount of data that's scanned by the entire workgroup, within a specified period. And 
instead of it being a hard cancel of the query, workgroup data usage controls use Amazon 
Simple Notification Service (SNS) to trigger actions when the limit is exceeded.

For example, you can configure a workgroup data usage control for a maximum data scan 
of 3 TB per day. Then, you can configure an SNS topic that will email an administrator  
to inform them if the data scanned limit for the workgroup has been exceeded. 

However, since multiple targets can be triggered by an SNS message, you can also do 
things such as automate a programmatic action when the limit you have set is reached. 
For example, you can create a Lambda function that can programmatically disable the 
workgroup, which would prevent any additional queries from being run in the Workgroup. 

Now, let's get hands-on with Athena by creating and configuring a new workgroup, as well 
as running some SQL queries.

Hands-on – creating an Amazon Athena 
workgroup and configuring Athena settings
In this section, we're going to create and configure a new Athena Workgroup and learn 
more about how Workgroups can help separate groups of users:

1. Log into AWS Management Console and access the Athena service using this link: 
https://console.aws.amazon.com/athena.

2. Expand the left-hand menu, and click on Workgroups to access the workgroup 
management page. 

https://console.aws.amazon.com/athena
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Figure 11.2 – Athena Console showing Workgroups

3. On the Workgroup management page, click on Create workgroup and enter the 
following values for our new Workgroup. For the items not listed here, leave the 
defaults as-is:

 � Workgroup name: Provide a descriptive name for the Workgroup, such as 
datalake-user-sandbox.

 � Description: Optionally, provide a description for this Workgroup, such as 
Sandbox Workgroup for new datalake-users.

 � Query result location: In the hands-on exercises in Chapter 4, Data Cataloging, 
Security, and Governance, we created a bucket to store our Athena query results 
in (named aws-athena-query-results-dataengbook-<initials>). 
Click the Browse S3 button next to Query result location, and select the 
previously created query result bucket selector, and then click Choose. To make 
the location of our query results unique for this Workgroup, add the Workgroup 
name to the end of the path. For example, the full path should be something like 
s3://aws-athena-query-results-dataengbook-xxxxx/datalake-
user-sandbox/. Make sure that you include the trailing slash at the end of the 
path. 
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 � Encrypt Query Results: Tick this box to ensure that our query results are 
encrypted. When you select this, you will see several options for controlling the 
type of encryption. For our purposes, select SSE-S3 for Encryption type (this 
specifies that we want to use S3 Server-Side Encryption rather than our own 
unique KMS encryption key). 

 � Override client-side settings: If we want to prevent our users from changing 
items such as the query result's location or encryption settings, we need to ensure 
that we select this option. 

4. In the Per query data usage control section, we can specify a Data limit to limit the 
scan size for individual queries run in this workgroup. If a query scans more than 
this amount of data, the query will be canceled. Set the Data limit size to 10 GB. 

Figure 11.3 – Athena Workgroup – Per query data usage control

5. Optionally add any Tags you want to specify, and then click on Create workgroup. 
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We can also set a Workgroup data usage control to manage the total amount of data that 
is scanned by all users of the Workgroup over a specific period. We are not going to cover 
this now, but if you would like to explore setting this up, refer to the AWS documentation 
titled Setting Data Usage Controls Limits: https://docs.aws.amazon.com/
athena/latest/ug/workgroups-setting-control-limits-cloudwatch.
html 

Hands-on – switching Workgroups and running 
queries
By default, all users operate in the primary Workgroup, but users can switch between any 
workgroup that they have access to. You can control Workgroup access via IAM policies, 
as detailed in the AWS documentation titled IAM Policies for Accessing Workgroups : 
https://docs.aws.amazon.com/athena/latest/ug/workgroups-iam-
policy.html

In the previous section, we created and configured a new Workgroup, so we can now run 
some SQL queries and explore Athena's functionality further:

1. In the left-hand menu, click on Query editor. Once in the Query editor, use the 
Workgroup drop-down list selector to change to the your newly created sandbox 
workgroup. 

Figure 11.4 – Switching Workgroups in the Athena Console

https://docs.aws.amazon.com/athena/latest/ug/workgroups-setting-control-limits-cloudwatch.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-setting-control-limits-cloudwatch.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-setting-control-limits-cloudwatch.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-iam-policy.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-iam-policy.html
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2. A pop-up dialog may appear for you to acknowledge that all the queries that are run 
in this Workgroup will use the settings we configured previously. This is because 
we chose to Overwrite client-side settings when creating the workgroup. Click 
Acknowledge to confirm this. 

3. In the Query editor, let's run our first query to determine which category of films is 
most popular with our streaming viewers. We're going to query the streaming_
films table, which was the denormalized table we created in Chapter 7, 
Transforming Data to Optimize for Analytics. On the left-hand side of the Athena 
query editor, select the curatedzonedb database from the dropdown, and then 
run the following query in the query editor:

SELECT category_name,

         count(category_name) streams

FROM streaming_films

GROUP BY category_name

ORDER BY streams DESC 

This query performs the following tasks:
 � It selects the category name and a count of the total number of entries of that 

category in the table, and then it renames the count of queries column to create  
a new column heading of streams.

 � It selects this data from the streaming_films table. Since we selected the 
curatedzonedb from the dropdown on the left-hand side, Athena automatically 
assumes that the table we are querying is in that selected database, so we don't 
need to specifically reference curatedzonedb in our query, although we could.

 � Then, it groups the results by category_name, meaning that one record will be 
returned per category.

 � Finally, it sorts the results by the streaming column, in descending order, so 
that the first result is the category with the highest number of streams. In the 
following screenshot, we can see that Sports was the most popular category 
from our streaming catalog:
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Figure 11.5 – Athena query for the top streaming categories
Note that the data in the streaming_films table was randomly generated by  
the Kinesis Data Generator utility in Chapter 6, Ingesting Streaming and Batch Data, 
so your results regarding the top category may be different.

4. If we have a query that we think we may want to run regularly (such as seeing the 
top category each day), we can save the query so that we don't need to retype it each 
time we want to run it. To do so, just click on the Save as button below the query. 

5. Provide a name for the query (such as Overall-Top-Streaming-
Categories) and a description (such as Returns a list of all 
categories, sorted by highest number of views). Then, click Save 
query. 
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6. Now, let's modify our query slightly to find out which State streamed the most 
movies out of our streaming catalog. Click on the plus (+) sign to open a new query 
window and enter the following query:

SELECT state,

         count(state) count

FROM streaming_films

GROUP BY state

ORDER BY count desc

Running this query using the data I generated returns the following results. We can see 
that our catalog of films was most popular with viewers in Louisiana Again, though, 
your results may be different due to the random data we generated using the Kinesis Data 
Generator:

Figure 11.6 – Athena Query Editor showing the total streams per state
Click on Save as and provide a name and description for this query. 
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7. Close the currently open query tabs, and then, via the top Athena menu, click on 
Saved queries. Here, we can see the list of queries that we have previously saved,  
and we can easily select a query from the list if we want to run that query again. 
Note that saved queries are saved as part of the Workgroup, so any of our team 
members that have access to this Workgroup will also be able to access any queries 
that we have saved. If you click on one of the saved queries, it will open the query  
in a New query tab. 

8. At the top of the Athena menu, click on Recent queries Here, we can see a list of all 
the recent queries that have been run in this Workgroup. There are several actions  
we can take:

Figure 11.7 – Amazon Athena - Recent queries tab
These actions are as follows:

A. If we want to rerun a query, we can click on the Execution ID of the query and it 
will open the query in a new query window.

B. To download the results that the query generated as a CSV file, click on 
Download Results. Remember that query results are always stored on S3  
in the location set for Query Result Location. 

C. To see the details of why a query failed, click on Failed under the Status column. 
A pop-up box will provide details of the error message that caused the failure.

Note that the Recent queries tab keeps a record of all the queries that have been run in 
the past 45 days. 

In these hands-on exercises, you configured an Athena workgroup and made use of  
that workgroup to run several queries. You also learned how to save queries and view 
query history. 
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Summary
In this chapter, we had a deeper look at the Amazon Athena service, which is an 
AWS-managed version of Apache Presto. We looked at how to optimize our data  
and queries to increase query performance and reduce costs.

Then, we explored how Athena can be used as a SQL query engine – not only for data in 
an Amazon S3 data lake but also for external data sources such as other database systems, 
data warehouses, and even CloudWatch logs using Athena Query Federation. 

Finally, we explored Athena Workgroups, which let us manage governance and costs. 
Workgroups can be used to enforce specific settings for different teams or projects,  
and can also be used to limit the amount of data that's scanned by queries. 

In the next chapter, we will take a deeper dive into another Amazon tool for data 
consumers as we look at how we can create rich visualizations and dashboards  
using Amazon QuickSight. 



12
Visualizing Data 

with Amazon 
QuickSight

In Chapter 11, Ad Hoc Queries with Amazon Athena, we looked at how Amazon Athena 
enables data analysts to run ad hoc queries against data in the data lake using the power of 
SQL. And while SQL is an extremely powerful tool for querying large datasets, often, the 
quickest way to understand a summary of a dataset is to visualize the data in graphs and 
dashboards. 

In this chapter, we will do a deeper dive into Amazon QuickSight, a Business 
Intelligence (BI) tool that enables the creation of rich visualizations that summarize data, 
with the ability to filter and drill down into datasets in numerous ways. 

In smaller organizations, a data engineer may be tasked with setting up and configuring 
a BI tool that data consumers can use. Things may be different in larger organizations, 
where there may be a dedicated team to manage the BI system. However, it is still 
important for a data engineer to understand how these systems work, as these systems will 
be consuming data that the data engineer will have played a part in creating. 
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The purpose of BI tools is to enable users to quickly understand complex datasets by 
enabling the exploration of data visually. And while we will focus on Amazon QuickSight 
in this chapter, many of the concepts in this chapter can be applied to other popular BI 
applications, such as Tableau, Microsoft Power BI, and Qlik. 

Amazon QuickSight is a serverless BI solution and is fully managed by AWS. 
Organizations don't need to pay for any infrastructure costs, but rather pay a fixed amount 
per QuickSight user on a subscription basis. 

In this chapter, we will cover the following topics:

• Representing data visually for maximum impact

• Understanding Amazon QuickSight's core concepts 

• Ingesting and preparing data from a variety of sources

• Creating and sharing visuals with QuickSight analyses and dashboards

• Understanding QuickSight's advanced features – ML Insights and embedded 
dashboards

• Hands-on – creating a simple QuickSight visualization

Technical requirements
At the end of this chapter, you will get hands-on by creating a QuickSight visual from 
scratch. To complete the steps in the hands-on section, you will need the appropriate user 
permissions to sign up for a QuickSight subscription. 

If you have administrator permissions for your AWS account, these permissions should 
be sufficient to sign up for a QuickSight subscription. If not, you will need to work with 
your IAM security team to create a custom policy. See the AWS documentation titled IAM 
Policy Examples for Amazon QuickSight and refer to the All Access for 
Standard Edition example policy as a reference. 

At the time of writing, Amazon QuickSight includes a free trial subscription for 30 days 
for new QuickSight subscriptions. If you do not intend to use QuickSight past these 30 
days, ensure that your user is also granted the quicksight:Unsubscribe permission 
so that you can unsubscribe from QuickSight after completing the hands-on section. 

Note that the All Access for Standard Edition example policy has a specific deny for the 
unsubscribe permission, so this may need to be modified based on your requirements. 
Work with your security team to implement a custom IAM policy.
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You can find the code files of this chapter in the GitHub repository using the following 
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter12

Representing data visually for maximum 
impact
Data lakes are designed to capture large amounts of raw data and enable the processing of 
that data to draw out new insights that provide business value. The insights that are gained 
from a data lake can be represented in many ways, such as reports that summarize sales 
data and top sales items, machine learning (ML) models that can predict future trends, 
and visualizations and dashboards that effectively summarize data. Each of these ways of 
representing data offers different benefits, depending on the business purpose: 

• If you're a data analyst that needs to report sales figures, profit margins, inventory 
levels, and other data for each category of product the company produces, you 
would probably want access to detailed tabular data. You would want the power of 
SQL to run powerful queries against the data to draw varied insights so that you can 
provide this data to different departments within the organization. 

• If you're a logistics manager and are responsible for supplying all your retail stores 
with the correct amount of inventory, you would want your data science team to 
develop an ML model that can predict inventory requirements for each store. The 
model could take in raw data from the data lake and predict how much inventory 
each store may require.

• If you're a sales manager for a specific product category, you need to have an 
updated view of sales for the products in your category at all times. You need to be 
able to determine which products are selling well, and which marketing campaigns 
are most effective. Seeing a visual representation of relevant data provides you 
with the most effective way to quickly understand the product and campaign's 
performance at a high level. 

Having raw, granular data available to an organization is important, but when you need 
to make decisions quickly based on that data, having a visual representation of the data is 
critical. 

It is not practical to identify trends or outliers in a dataset by examining a spreadsheet 
containing 10,000 rows. However, if you aggregate and summarize the data into a well-
designed visual representation of the data, it becomes very easy to identify those trends 
and outliers. 

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter12
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter12
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Benefits of data visualization
A well-designed visual representation of data can reflect multiple different datasets in a 
single picture. It can do so in a way that enables the consumer of the visual to immediately 
gain insights that would take significant time and effort to gather from raw data.

There is a common fact often mentioned in articles on the internet that people can process 
images 60,000 times faster than they can process text. As it turns out, this is just an 
often-repeated claim with no evidence to back it up. However, while the number may be 
exaggerated, the basic claim that the human brain can process images quicker than text is 
without a doubt true. 

And you don't need to look too far to validate this claim. For example, look at the rise 
of visual-based social media sites such as Instagram and Pinterest, or how people use 
emojis and animated GIFs to quickly and effectively communicate how they feel about 
something.

In the same way, we can use the power of visuals (images, graphs, word clouds, and many 
other types) to effectively communicate data from our data lake in a way that makes it 
easy for the consumer of the visual to quickly draw insights from the data. 

Let's examine some common uses of visualizations that enable a user to quickly 
understand complex information.

Popular uses of data visualizations
Visualizations can be used to draw insights from many different types of data, in various 
ways. In this section, we look at a few examples of some common types of visualizations to 
demonstrate the impact of a well-designed visual.

Trends over time
A common usage of analytic tools is to crunch through raw data to help surface trends, 
or changes in the data, over time. For example, we may want to understand how our 
spending on the AWS platform is changing over time, as this can help identify areas where 
we need to focus on cost optimizations. A line graph can be a useful way to illustrate 
changes in data over a certain period. 
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The following diagram was created using a popular spreadsheet application and provides a 
visual of raw Amazon S3 spend per month, over 9 months, for a fictional company:

Figure 12.1 – Line chart showing data over a certain period

In this visualization, we can see that our Tier1-Requests cost (middle line) significantly 
decreased from January to March. These costs are for API calls for operations such as 
PUT, COPY, POST, and LIST. Before February, we used to ingest a large number of small 
files, resulting in millions of PUT requests when writing these files to Amazon S3. After 
changing our transformation pipeline to write out fewer, larger files, this visualization 
clearly shows how those costs decreased. 



358     Visualizing Data with Amazon QuickSight

In the visualization, we can also see that in March, our storage consumption (top line) 
significantly decreased. This makes sense as, during March, our fictional company had a 
project to implement Amazon S3 life cycle rules that deleted older versions of data from 
S3. 

Showing summarized data over a certain period in a visual format makes it much easier to 
track and understand trends in our data, as well as to spot anomalies.

Data over a geographic area
In our first example, we looked at how we could graph trends over time, but another really 
useful visualization is to look at trends over a geographic area. There are many uses for 
this type of visualization, such as the following:

• Understanding the popularity of a certain product in different geographic regions.

• Quickly visualizing hotspots for the spread of an infectious disease (such as flu 
outbreaks) in different geographic regions.

• Visualizing the population sizes of different cities in different regions.

• Showing differences in temperature in different geographic areas.

These types of charts are often known as geospatial charts, although they go by many 
different names. The chart may also come in different formats, but a common format is to 
use circles of different sizes on the map, with the size of each circle representing the value 
of one of the columns in the dataset (the larger the value, the bigger the circle). Circles 
may also be different colors to represent different rows in the dataset.

For example, the following chart (created with Amazon QuickSight) uses city population 
data from https://simplemaps.com/data/world-cities. In this chart, we have 
filtered the data to show all cities with a population above 3 million people, and the size of 
the circle represents the relative population size. In the hands-on section of this chapter, 
you will use Amazon QuickSight to recreate this chart so that you can interact with the 
chart (filter for different values and so on):

https://simplemaps.com/data/world-cities
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Figure 12.2 – Map chart showing data by geographic region

The preceding diagram of a map chart enables us to quickly understand which parts of the 
world have the most populated cities, and which parts are less populated. The same type of 
chart could be used to show the spread of disease, vaccination rates, poverty levels, water 
quality, or just about any other data that is associated with a specific location. 

Heat maps to represent the intersection of data
Another common use of visualization tools is to understand the relationship between 
different sets of data. Often, we may have a gut feeling that there could be a correlation 
between two different datasets, but it is only when we explore the data more fully that we 
can understand those relationships.
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As a very simple example, we would probably suspect that sales of ice cream, water, and 
other cold goods would be more popular in the summer months and that the sales of 
coffee, hot chocolate, and soup would be more popular in the winter months: 

Figure 12.3 – Heat map showing product sales by category and month

The preceding diagram shows a heat map that plots the relationship between sales in 
different categories, by month. The darker squares illustrate a higher sales value, while the 
lighter squares represent lower sales values. 

As you can see, the sales of both coffee and water are strong throughout the year, but we 
can see that water has higher sales in the Northern Hemisphere summer (months 6 – 9), 
while coffee has higher sales in winter (months 11 – 2). Another insight we can gain 
quickly is that sales of ice are very low in the winter months and only have strong sales 
for a few summer months of the year (months 6 – 10). What other insights can you gain 
about sales of hot chocolate, ice cream, and soup by examining the heat map?

While this example may have been a fairly simple one, there are many other relationships 
between datasets that are not always as obvious, and heat maps can be useful to highlight 
these relationships visually.
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We do not have sufficient space in this chapter to cover all the many varied types of charts 
that can be used to visually represent data, but as we continue into the other sections of 
this chapter, we will explore some other common chart types along the way. In the next 
section, we are going to dive deeper into Amazon QuickSight's core concepts. 

Understanding Amazon QuickSight's core 
concepts 
At its core, QuickSight lets us ingest data from a wide variety of sources, perform some 
filtering or other transformation tasks on the data, and then create dashboards with 
multiple types of visuals that can be easily shared with others. 

The QuickSight service is fully managed by AWS, and there are no upfront costs for using 
the service. Instead, the service uses a pricing model of a monthly cost per user and offers 
both Standard and Enterpise Editions. QuickSight also includes a powerful in-memory 
storage and computation engine to enable the best performance for working with a variety 
of data sources. 

In this section, we'll examine the differences between the standard and enterprise 
editions of QuickSight and also do a deeper dive into SPICE, the in-memory storage and 
computation engine. 

Standard versus enterprise edition
The Standard Edition of QuickSight is useful for those that are just starting to explore 
the power of a BI tool and enables users to create visualizations from a variety of sources. 
However, for larger organizations, the Enterprise Edition of QuickSight provides several 
additional features that most large organizations would want to make use of. 

The following is a subset of some of the additional functionality available in the enterprise 
edition, but refer to the Amazon QuickSight pricing page for full details on the differences 
between the versions. The following features are only available in the enterprise edition:

• Integration with Active Directory (AD) and the ability to use AD groups for 
management of QuickSight resources

• The ability to embed dashboards into custom applications

• The ability to email reports to QuickSight users on a schedule

• Fine-grained access control over AWS data sources (such as S3 and Athena)
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• Automatic insight generation using ML Insights

• Encryption of data at rest

Another benefit of the Enterprise Edition of QuickSight is that pricing is lower for those 
users that just need to access and interact with created visualizations (readers), but do not 
need to author new visuals from scratch (authors). 

With the enterprise edition, there is a fixed monthly cost for users that have the author 
role, while users with the reader role are charged per session. Each session provides access 
to QuickSight dashboards for a user for up to 30 minutes after they have logged in. During 
this time, readers can fully interact with the dashboards (filtering data, doing drill-downs 
into data, and so on). At the time of writing, a session costs $0.30, and there is a maximum 
monthly cost of $5 per reader, no matter how many sessions are used. In comparison, the 
Standard Edition has a fixed cost (at the time of writing) of $9 per user and all users have 
full read and author capabilities. Refer to the QuickSight pricing page (https://aws.
amazon.com/quicksight/pricing/) for the current pricing for your region, as 
pricing may change occasionally. 

SPICE – the in-memory storage and computation 
engine for QuickSight
Like many other BI tools, Amazon QuickSight provides a storage engine for storing 
imported data and performing rapid calculations on that data. In QuickSight, SPICE is 
the acronym that's used to reference this engine, and it stands for Super-fast, Parallel, 
In-memory, Calculation Engine. When you're creating a new dataset in QuickSight, you 
can select whether to perform direct queries of the dataset, or whether you want to import 
data into SPICE. 

If you choose to query the dataset, then each time the visualization is accessed, QuickSight 
will make a connection to the data source (such as an Amazon RDS MySQL database) and 
query the data. This ensures that the dashboard always reflects the latest data. However, 
there is some latency in making the connection to the data source and retrieving data. 

Alternatively, you can choose to import data into the SPICE engine. That way, when the 
visualization is accessed, QuickSight can read the data directly from SPICE, and this can 
significantly improve performance. 

https://aws.amazon.com/quicksight/pricing/
https://aws.amazon.com/quicksight/pricing/
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You also have the option of scheduling a refresh of the data in SPICE so that QuickSight 
will regularly connect to the data source and retrieve the latest data to store in SPICE. 
With both the standard and enterprise editions of QuickSight, you can schedule the 
refresh to be done daily, weekly, or monthly. With the enterprise edition of QuickSight, 
however, you gain the additional option of performing incremental refreshes, and the 
ability to refresh data as often as every 15 minutes. You can also use an API call to trigger 
the refresh of SPICE data, enabling you to build an event-driven strategy for refreshing 
SPICE data. For more information, see the AWS blog post titled Event-driven refresh 
of SPICE datasets in Amazon QuickSight at https://aws.amazon.com/blogs/
big-data/event-driven-refresh-of-spice-datasets-in-amazon-
quicksight/.

Note 
There is a 2-minute timeout for generating visuals in QuickSight. Therefore, if 
your direct query takes 2 minutes or longer to perform the query and generate 
the visualization, a timeout will occur. In these cases, you either need to 
improve the performance of the query (filtering data, only selecting specific 
columns, and so on) or you should import the data into SPICE. 

If you're using a data source (such as Amazon Athena or Amazon Redshift Spectrum) that 
charges for each query, importing the data into SPICE can help reduce costs. Storing the 
data in SPICE means you only pay for the query when the data is initially loaded, as well 
as for when the data is refreshed. With a direct query, you would pay for the query each 
time the visualization is accessed. 

Managing SPICE capacity
Your account is granted 10 GB of SPICE storage for every paid user that has the author 
role (this would be every user in the Standard Edition, and users with the Author role in 
the enterprise edition). SPICE storage is shared by all QuickSight users in an account and 
is on a per-region basis. 

For example, if you have QuickSight enterprise edition and you have 10 users with the 
Author role and 100 users with the Reader role, all in the Northern Virginia (us-east-1) 
region, then your QuickSight account in us-east-1 would have 100 GB of SPICE storage 
available. 

https://aws.amazon.com/blogs/big-data/event-driven-refresh-of-spice-datasets-in-amazon-quicksight/
https://aws.amazon.com/blogs/big-data/event-driven-refresh-of-spice-datasets-in-amazon-quicksight/
https://aws.amazon.com/blogs/big-data/event-driven-refresh-of-spice-datasets-in-amazon-quicksight/
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If additional SPICE storage is needed, you can purchase additional SPICE capacity. For 
example, if you needed 130 GB of total SPICE storage for the datasets you wanted to 
import, you could purchase an additional 30 GB of capacity each month. At the time of 
writing, additional SPICE capacity for the Enterprise Edition is charged at $0.38 per GB.

There are also limits on the size of a single dataset in SPICE. At the time of writing, 
datasets are limited to a maximum of 500 million rows, or 500 GB, for QuickSight 
enterprise edition. For the Standard Edition, the limit is 25 million rows or 25 GB of data. 
There are also other limits for each dataset (such as the number of columns and the length 
of column names), so ensure you refer to the latest QuickSight documentation for updated 
information on these limits.

Now that we have reviewed the core Amazon QuickSight concepts, let's move on and 
review QuickSight's functionality for importing and preparing data.

Ingesting and preparing data from a variety of 
sources
Amazon QuickSight can use other AWS services as a source, as well as on-premises 
databases, imported files, and even some Software as a Service (SaaS) applications. 

For example, you can easily connect to Oracle, Microsoft SQL Server, Postgres, and 
MySQL databases, either running as part of the Amazon RDS managed database service 
or as instances running on Amazon EC2, or in your own data centers. You can also 
connect to data warehouse systems such as Amazon Redshift, Snowflake, and Teradata. 
Other AWS services are also supported as data sources, including Amazon S3, Amazon 
Athena, Amazon ElasticSearch Service, Amazon Aurora, and AWS IoT Analytics. 

In addition to these traditional data sources, QuickSight can also connect to various SaaS 
offerings, including ServiceNow, Jira, Adobe Analytics, Salesforce, GitHub, and Twitter. 

Data stored in files, such as a Microsoft Excel Spreadsheet (XLSX files), JSON documents, 
and CSV files, can also be imported into QuickSight. These files can be directly uploaded 
through the QuickSight console, or they can be imported from Amazon S3. 

The rich variety of potential data sources for QuickSight is shown in the following 
screenshot:
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Figure 12.4 – Data sources that can be imported into Amazon QuickSight

For data sources not directly supported, you can use other ingestion methods (such as 
those discussed in Chapter 6, Ingesting Batch and Streaming Data) to ingest data into your 
S3-based data lake. You can then create visualizations of that data by using the Amazon 
Athena data source integration to enable QuickSight to query the data.

Preparing datasets in QuickSight versus performing 
ETL outside of QuickSight
QuickSight includes functionality for performing data transformations on imported data. 
For example, you can do the following:

• Join two different datasets.

• Exclude specific fields.

• Filter data.

• Change the data type or name of a field.

• Create a new calculated field.

All of these data preparation tasks can be done using a simple visual interface.
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If you select to join two different datasets, then you need to import the data into SPICE. 
However, if you're just working with a single data source, the transformations you specify 
will be applied when the data is read from the data source.

Ultimately, you need to decide on whether you should perform data transformation and 
joins in QuickSight, or whether you should perform those transformations outside of 
QuickSight. For example, you could join two datasets, drop unneeded columns, change 
the data types and column names, and create new calculated fields using tools such as 
AWS Glue, AWS Glue DataBrew, or AWS Glue Studio.

There are several factors to consider when making this decision, including the following:

• If this dataset may be used outside of QuickSight, such as for queries using Amazon 
Athena, then it makes sense to perform the ETL with other tools before using the 
dataset in QuickSight.

• If the required transformations are relatively simple and the resulting dataset will 
only be used in QuickSight, then you may choose to perform the transformation 
using QuickSight. This could include transforms such as adding additional 
calculated fields, changing the names or data types of a few columns, dropping a few 
columns, and so on.

The decision about where to perform data transformations can be complex, and it may not 
be an easy decision. However, an important factor to take into account is the controls that 
may be in place for formal data pipelines, versus those for more informal transformations 
(such as those performed by data analysts using tools such as Amazon QuickSight). 

If you have strong governance controls around your formal data engineering pipelines 
(such as code reviews and change control), then you may choose to ensure that all the 
transformations are done within formal processes. However, you need to balance this 
against ensuring that you don't tie up your end user teams in formal processes that slow 
the business down. 

Often, you need to balance the two sides – ensuring that your business teams have the 
flexibility to perform minor transformations using tools such as QuickSight, while 
also ensuring that new datasets or visualizations that business users may use to make 
important business decisions have the correct governance controls around them. 
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It is not always easy to find this balance, and there are no specific rules that apply 
universally when making this decision. Therefore, much thought needs to be given to 
this decision to find the right balance between enabling the business to make decisions 
quickly, without being constrained by overly formal processes for even minor data 
transformations.

The business ultimately needs to take the time required to put in place governance and 
controls that communicate the types of ad hoc data transformations that data analysts and 
others can perform. These policies should also make it clear as to when transformations 
need to be performed within formal processes by data engineering teams.

Creating and sharing visuals with QuickSight 
analyses and dashboards
Once a dataset has been imported (and optionally transformed), you can create 
visualizations of this data using QuickSight analyses. This is the tool that is used by 
QuickSight authors to create new dashboards, with these dashboards containing one or 
more visualizations that can be shared with others in the business.

When you create a new analysis/dashboard, you choose one or more datasets to include 
in the analysis (up to a maximum of 50 datasets per dashboard). Each analysis consists of 
one or more sheets (or tabs, much like browser tabs) that display a group of visualizations. 
You can have up to 20 sheets (tabs) per dashboard, and each sheet can have up to 30 
visualizations.

Once you have created an analysis (consisting of multiple visuals, optionally across 
multiple sheets), you can choose to publish the analysis as a dashboard. When you're 
publishing a dashboard, you can select various parameters related to how readers can 
interact with the dashboard, including the following:

• If they can apply their ad hoc filters to the data in the dashboard

• If they can download data in the dashboard as a CSV file

• If they can perform drill-down and drill-up actions (when supported in a 
dashboard)

• If they can sort the data

Once the dashboard has been published, you can select who to share the dashboard with. 
You can either share the dashboard with everyone in the account (providing them with 
read access to the dashboard) or you can select specific users and groups to share with. 



368     Visualizing Data with Amazon QuickSight

By default, when you create a new analysis, the analysis contains a single sheet, with a 
single empty visualization that is set to a type of AutoGraph:

Figure 12.5 – Amazon QuickSight – New Analysis screen

QuickSight supports many different types of visualizations (as can be seen in the Visual 
types section of the preceding screenshot). Let's dive deeper into some of these visual 
types.

Visual types in Amazon QuickSight
In this section, we will discuss several data visualization types supported by Amazon 
QuickSight. There are many different types of visualizations that are supported, and 
we will not cover all of them here, so check out the Amazon QuickSight documentation 
(https://docs.aws.amazon.com/quicksight/latest/user/working-
with-visual-types.html) for a full list of supported visualizations. 

https://docs.aws.amazon.com/quicksight/latest/user/working-with-visual-types.html
https://docs.aws.amazon.com/quicksight/latest/user/working-with-visual-types.html
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AutoGraph for automatic graphing
While this is not an actual type of visual, you can select AutoGraph as a visual type to let 
QuickSight automatically choose the visual type for you. Based on the number of fields 
you select, and the data type of each field that is selected, QuickSight automatically uses 
the most appropriate visual type for your data. This is often a good way to start exploring 
your data if you're unsure of the specific type of graph you want to use. 

Line, geospatial, and heat maps
Earlier in this chapter. we discussed three common types of visualizations:

• Line charts: Displays data as a series of data points and is often used to plot data 
over a certain period

• Geospatial charts: Displays data points overlayed on a map, combining geospatial 
data with other data

• Heat maps: Displays data in a chart with values represented by darker or lighter 
colors

All three of these types of charts (and variations of these charts) are supported by Amazon 
QuickSight and can be used to create rich visualizations from many different data sources.

Bar charts
Bar charts are a common visualization type, and QuickSight supports multiple types 
of bar charts. For example, you can have a simple bar chart showing a single value for a 
dimension (such as sales per region) or a multi-measure bar chart that shows multiple 
measures for a dimension (such as sales goal and achieved sales per region). 

There are also additional bar chart types that are supported, such as stacked bar charts and 
clustered bar charts. Bar charts can be displayed horizontally or vertically.
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Custom visual types
QuickSight lets you include several custom visuals within a dashboard, including the 
following:

• Custom images (such as a company or product logo)

• Custom videos

• An online form

• An embedded web page

Note that when you're embedding custom content in an analysis/dashboard, you need to 
specify the HTTP URL of the resource. Also, while QuickSight does include functionality 
for emailing dashboards to users, embedded custom visual types (pictures, videos, forms, 
and web pages) will not be displayed in the email copy of a dashboard.

There are also other limitations to using embedded content. For example, the web content 
needs to support opening the content in an iFrame; otherwise, the content may not 
appear in QuickSight. When you're looking to embed content into a QuickSight analysis/
dashboard, you should look for content that has an embeddable URL (which is often 
available when you choose to share content). 

Key Performance Indicators
A Key Performance Indicator (KPI) is often used to show progress against a specific goal. 
For example, you may have a goal of achieving a specific amount of revenue in a quarter.

A KPI visual could display the current revenue as a percentage of the target revenue in a 
visual. A dashboard showing this KPI (or multiple KPIs) can help management keep track 
of how the business is performing based on several key metrics. 

In QuickSight, a KPI displays a comparison of two values and includes a progress bar 
indicating the percentage difference of the values:
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Figure 12.6 – Dashboard with KPI visuals

In the preceding screenshot, a sales manager can quickly view how their organization is 
performing against several key metrics. This chart shows that revenue is nearly at 80% 
of the target, new customers are at 90% of the target, and that they are within 11% of the 
target maximum customer cancellations for that period. 

Tables as visuals
There may be use cases where you want to display the raw data of a table on a dashboard, 
without converting the data into a specific visual. 

QuickSight supports displaying tables directly within an analysis/dashboard and supports 
up to 200 columns in the visual. However, directly displaying raw table data should ideally 
only be done with small tables, where you display just a limited amount of raw data.
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Other visual types
There are many other types of charts that are supported in QuickSight, and new types are 
added over time. These include the following common chart types:

• Pie charts

• Box plots

• Gauge charts

• Histograms

• Pivot tables

• Sankey diagrams

• Tree maps

• Word clouds

Not all the supported visual types have been listed in this chapter, so to review the full 
list of supported visual types, see the Amazon QuickSight documentation titled Working 
with Visual Types in Amazon QuickSight: https://docs.aws.amazon.com/
quicksight/latest/user/working-with-visual-types.html.

As we have discussed in this section, QuickSight lets us create many different types of 
visuals and publish and then share those visuals as dashboards. However, QuickSight 
also includes advanced functionality that can automatically reveal new insights in your 
data and lets you embed dashboards into custom applications, as we will see in the next 
section.

Understanding QuickSight's advanced 
features – ML Insights and embedded 
dashboards
The enterprise edition of Amazon QuickSight includes two advanced features that can 
help you draw out additional insights from your data, and that can enable you to widely 
share your data by embedding dashboards into applications. 

Amazon QuickSight ML Insights
QuickSight ML Insights uses the power of machine learning algorithms to automatically 
uncover insights and trends, forecast future data points, and identify anomalies in your 
data.

https://docs.aws.amazon.com/quicksight/latest/user/working-with-visual-types.html
https://docs.aws.amazon.com/quicksight/latest/user/working-with-visual-types.html
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All of these ML Insights can be easily added to an analysis/dashboard without the author 
needing to have any machine learning experience or any real understanding of the 
underlying ML algorithms. However, for those who are interested in the underlying ML 
algorithms used by QuickSight, Amazon provides comprehensive documentation on 
this topic. Review the Amazon QuickSight documentation titled Understanding the ML 
Algorithim Used by Amazon QuickSight for more information: https://docs.aws.
amazon.com/quicksight/latest/user/concept-of-ml-algorithms.
html.

However, to make use of ML Insights, there are specific requirements for your data, 
such as having at least one metric and one category dimension. For ML forecasting, the 
more historical data you have the better. For example, if you want to forecast based on 
daily data, you need at least 38 daily data points, or to forecast on quarters, you need at 
least 35 quarterly data points. The full details on the data requirements are documented 
in the Amazon QuickSight documentation titled Dataset Requirements for Using ML 
Insights with Amazon QuickSight: https://docs.aws.amazon.com/quicksight/
latest/user/ml-data-set-requirements.html.

Let's examine some of the different types of ML Insights in more detail.

Amazon QuickSight autonarratives
Autonarratives provide natural language insights into your data, providing you with an 
easy-to-read summary of what is displayed in a visual. Effectively, autonarratives enables 
you to provide a plainly stated summary of your data, as the following autonarrative 
examples show:

• Year-to-date revenue decreased by 4.6% from $906,123 to $864,441 compared to the 
same period last year. We are at 89.3% achievement for the YTD goal and 77.9% 
achievement for the annual goal. 

• Daily revenue for Accessories / Cell Phone Covers on September 3, 2021 was higher 
than expected at $3,461.21.

You can add a variety of autonarratives to an analysis, such as bottom-ranked items, 
growth rate, anomaly detection, top movers, and many others. For the full list of available 
autonarratives, see the Amazon QuickSight documentation titled Insights that include 
autonarratives: https://docs.aws.amazon.com/quicksight/latest/user/
auto-narratives.html.

https://docs.aws.amazon.com/quicksight/latest/user/concept-of-ml-algorithms.html
https://docs.aws.amazon.com/quicksight/latest/user/concept-of-ml-algorithms.html
https://docs.aws.amazon.com/quicksight/latest/user/concept-of-ml-algorithms.html
https://docs.aws.amazon.com/quicksight/latest/user/ml-data-set-requirements.html
https://docs.aws.amazon.com/quicksight/latest/user/ml-data-set-requirements.html
https://docs.aws.amazon.com/quicksight/latest/user/auto-narratives.html
https://docs.aws.amazon.com/quicksight/latest/user/auto-narratives.html
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ML-powered anomaly detection
Amazon QuickSight can perform anomaly detection across millions of metrics contained 
in your data, identify non-obvious trends, and highlight outliers in the data. These types 
of insights are difficult to draw out of data without using the power of modern ML 
algorithms. 

You can add an autonarrative widget to an analysis and specify the type as being 
anomalies. Then, you can configure several settings related to how QuickSight detects 
outliers in the data and can set a schedule for when outliers are calculated (ranging from 
once an hour to once a month). You can also configure QuickSight to analyze the top 
items that contributed to the anomaly. 

Once an anomaly has been detected, you can choose to explore the anomalies on the 
insight. This opens a screen where you can change various settings related to anomaly 
detection, enabling you to explore different types of anomalies in the dataset. 

ML-powered forecasting
Amazon QuickSight can use the power of ML algorithms to provide reliable forecasts 
against your data. When you create a visual that uses a date field and contains up to three 
metrics, you can select an option in the widget to add a forecast of future values.

QuickSight will automatically analyze historical data using an ML model and graph out 
future predicted values for each metric. You can also configure the forecast properties by 
setting items such as forecast length (how many future periods to forecast and how much 
historical data to analyze).

The machine learning model that's used by QuickSight for forecasting automatically 
excludes data that it identifies as outliers and automatically fills in any missing values. For 
example, if you had a short spike in sales due to a promotion, QuickSight could exclude 
that spike when calculating the forecast. Or, if there were a few days where historical 
data was missing, QuickSight could automatically determine likely values for the missing 
period. 

It is important to remember that the QuickSight ML Insight features (including 
autonarratives, anomaly detection, and forecasting) are available in the Enterprise Edition 
of QuickSight, and will not be available if you only have a Standard Edition subscription.

In this section, we looked at how QuickSight enables you to draw out powerful new 
insights from your data. In the next section, we will look at another popular feature of 
the enterprise edition of QuickSight, a feature that enables you to easily distribute your 
published dashboards more widely. 
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Amazon QuickSight embedded dashboards
For use cases where you don't want your users to have to log into QuickSight via the AWS 
Management Console or QuickSight portal, you can embed QuickSight directly into your 
applications or website.

You can embed either the full console experience (including authoring tools for creating 
new analyses and managing datasets) or embed published dashboards only. Embedded 
dashboards have the full interactive capabilities that they do in the console, which means 
that users can filter and sort data, and even drill down into data (so long as the author 
enabled those levels of interactivity when they published the dashboard). 

Embedding for registered QuickSight users
QuickSight supports several authentication methods, including AD SAML 2.0, as well 
as SSO using AWS Single Sign-on (or other identity providers such as Okta, Auth0, and 
PingOne).

As such, your users can authenticate with your existing website or HTML-based 
application using one of the supported authentication methods and, using that identity, 
map to an existing QuickSight user. If that user has not accessed QuickSight before, a new 
QuickSight user will be created for the user. 

You can elect to either embed the full console experience or only embed dashboards. 
Users will be able to open any dashboards that their QuickSight user has been given access 
to. 

With the QuickSight embedding experience, you can optionally customize the display 
theme using your branding. This enables the embedded QuickSight objects to appear as a 
direct part of your application, rather than looking like an embedded external application. 
However, even when you have a customized theme, the embedded QuickSight application 
does display a Powered by QuickSight label. 

Embedding for unauthenticated users
For use cases where your users do not authenticate with your website or application, you 
still have the option of embedding QuickSight dashboards for anonymous user access.

To enable anonymous access, you need to purchase reader session capacity pricing. This 
offers a set number of QuickSight sessions per month, or per year (depending on your 
plan), and these sessions can be consumed by anonymous users. The bonus of purchasing 
an annual plan for QuickSight sessions is that the Powered by QuickSight label can be 
removed from embedded resources.
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An example use case for this functionality is for a local government health department 
that wants to share the latest information on a virus outbreak with their community. The 
health department could embed an Amazon QuickSight dashboard into their website that 
is linked to the latest data on the spread of the virus. 

Users accessing the website could interact with the dashboard, filtering data for their 
specific location, sorting data, or even downloading a CSV version of the data for their 
additional analysis. These users would not need to log into the health department 
website to access the dashboard, and the health department could use an annual plan for 
reader session capacity. For more information on pricing for reader session plans, see 
the Amazon QuickSight pricing page: https://aws.amazon.com/quicksight/
pricing/.

Having learned more about QuickSight's core functionality, let's get hands on by creating a 
QuickSight visualization and publishing a dashboard.

Hands-on – creating a simple QuickSight 
visualization
Earlier in this chapter, we discussed how data can be represented over a geographic 
area. We used the example of data containing information on the population of world 
cities, and how we could use that to easily visualize how large cities are geographically 
distributed. The example visual in Figure 12.2 showed cities with a population of over 3 
million people, displayed on top of a map of the world. 

For the hands-on section of this chapter, we are going to recreate that visual using 
Amazon QuickSight. 

Setting up a new QuickSight account and loading a 
dataset
Before we start creating a new dashboard, we need to download a sample dataset of 
world city populations. We are going to use the basic dataset available from https://
simplemaps.com/, which is freely distributed under the Creative Commons Attribution 
4.0 license (https://creativecommons.org/licenses/by/4.0/): 

1. Use the following link to download the basic dataset from simplemaps.com: 
https://simplemaps.com/data/world-cities. If the file downloaded is 
a ZIP file, make sure to extract the actual city data CSV file.

2. Log into the AWS Management Console and use the top search bar to search for, 
and open, the QuickSight service.

https://aws.amazon.com/quicksight/pricing/
https://aws.amazon.com/quicksight/pricing/
https://simplemaps.com/
https://simplemaps.com/
https://creativecommons.org/licenses/by/4.0/
https://simplemaps.com/data/world-cities
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3. If you have not used QuickSight before in this account, you will be prompted with a 
Sign up for QuickSight button. Click the button to start the signup process. 

4. The default page opens to QuickSight enterprise edition. For this exercise, only the 
Standard Edition is needed, so click on Standard at the top right of the screen:

Figure 12.7 – Setting up a new QuickSight account
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5. For Authentication method, select Use IAM federated identities only, and then 
select your preferred AWS region. Under Account info, provide a unique name 
for your QuickSight account (such as data-engineering-<initials>) 
and provide a Notification email address that can be used to send QuickSight 
notifications to you. Leave all other settings as-is and click Finish: 

Figure 12.8 – Configuring a new QuickSight account

6. After a while, you should receive a message confirming that you have signed up for 
Amazon QuickSight. Click on the Go to Amazon QuickSight link, and then click 
through the welcome screens, which provide an overview of Amazon QuickSight's 
functionality. 

7. From the left-hand side menu, click on Datasets to go to the dataset management 
screen. On this screen, you will see several pre-loaded sample datasets:
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Figure 12.9 – Pre-loaded datasets for a new QuickSight account

8. Click on New dataset to create a new dataset. On the new dataset screen, click on 
Upload a file.

9. When you're prompted to provide the file to upload, navigate to where you 
downloaded the World Cities data from simplymaps.com (in Step 1 of this exercise) 
and upload the worldcities.csv CSV file.

10. Once the file has been uploaded, you will be presented with a popup to confirm the 
file upload settings. Click on Next.

11. On the next screen, click on Visualize. This will open a new analyses screen where 
you can create your analysis/dashboard based on the World Cities dataset.

Now that we have subscribed to QuickSight, downloaded our World Cities dataset, and 
uploaded the dataset into QuickSight, we are ready to create our first visual. 

Creating a new analysis
We are now on the analysis authoring page for QuickSight. Using this interface, we can 
build out new analyses consisting of multiple visualizations and, optionally, containing 
multiple sheets (tabs). Then, we can publish our analysis as a dashboard that can be 
consumed by QuickSight readers.



380     Visualizing Data with Amazon QuickSight

The following screenshot shows the analysis workspace after importing our 
worldcities.csv dataset:

Figure 12.10 – The different parts of a new QuickSight analysis

In this screenshot, we can see the following components of the analysis workspace. Note 
that the numbers in this section correspond to the component number shown in the 
preceding screenshot:

1. A popup message indicating that the dataset import is complete. This shows us that 
approximately 41,000 rows were ingested into the SPICE storage engine. You can 
click on the X button to close the popup.

2. A list of fields in our selected dataset (worldcities.csv). 
3. A list of different types of charts that we can use in our visuals (bar, pie, heat map, 

and so on).
4. The sheet bar, which shows us our current sheet (Sheet 1). Clicking the + sign 

would enable us to create additional sheets (much like tabs in a browser). We can 
also rename sheets.
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5. The visual display area. Once we select a chart type and add some fields to the 
visual, the chart will be displayed here. Notice that the size of the visual area can be 
dragged to be larger or smaller, and we can click on + Add in the top menu bar if we 
want to add additional visuals to this sheet. 

To create our map of the world showing cities with populations greater than 3 million 
people, perform the following steps: 

1. In the Visual types box, find and select the Points on map visual type.
2. From Fields list, drag lat into the Geospatial field well (at the top of the visual-

designed workspace), and then drag lng into the same Geospatial field well. 
Make sure that you drag lng either above or below lat; otherwise, you will end up 
replacing the existing lat field. 

3. Drag population into the Size field well and drag city into the Color field well. 

Your visual designer should look as follows at this point:

Figure 12.11 – Creating a new Points on Map visual
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At this point, our visual is displaying population data for all 41,000 cities in the 
dataset. However, for our use case, we only want to display data for cities that have 
a population of above 3 million people. Perform the following steps to filter the data 
to just cities with a population above a certain size.

4. From the left-hand side QuickSight menu, click on Filter, and then click Create 
one... (as shown in the following screenshot):

Figure 12.12 – Configuring a filter for a visual

5. In the popup that shows the list of fields, click on the population field. This displays 
a filters list with population showing as the only filter. 

6. From the filters list, click on population. Change the Equals dropdown to Greater 
than or equal to and enter a value of 3000000, as shown in the following 
screenshot. Then, click on Apply:
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Figure 12.13 – Editing the filter for a visual

Our visual now displays only those cities that have a population of 3 million people or 
more. Note how you can position the mouse over a city to get a popup of the city's name, 
along with its latitude, longitude, and population details. 

You can also modify the following aspects of the visual:

• Drag the corners of the visual to increase the size of the visual.

• Experiment with the visual by changing the filter on population size (for example, 
change the filter to 5 million people).

• Zoom in and out on the map to size the map to display just the parts of the map you 
want to show.

• Double-click on the title of the visual to change the title.

• Click the down arrow next to the title of the sheet (by default, Sheet 1) and rename 
the sheet (for example, changing the name to City Populations).



384     Visualizing Data with Amazon QuickSight

The completed visual now looks as follows:

Figure 12.14 – A completed visual showing cities with a population of over 3 million people

We could now share this analysis as a dashboard, making the visual available to a set of 
QuickSight users that we select. 

In the hands-on section of this chapter, you signed up for a new QuickSight account 
and imported a new file-based dataset that contained information on world cities. This 
included geospatial data (latitude and longitude), as well as the size of the population of 
the city. Then, you created a new visual based on this data, filtering the data to only show 
cities with a population of 3 million or more people. 

Important – Avoiding Future QuickSight Subscription Costs
If you do not intend to use QuickSight after the initial 30-day subscription, 
ensure that you unsubscribe from QuickSight to avoid future subscription 
charges. For more information, see the AWS documentation titled Canceling 
your Amazon QuickSight subscription and closing the account (https://
docs.aws.amazon.com/quicksight/latest/user/
closing-account.html). 

https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html
https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html
https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html
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Summary
In this chapter, you learned more about the Amazon QuickSight service, a BI tool that is 
used to create and share rich visualizations of data. 

We discussed the power of visually representing data, and then explored core Amazon 
QuickSight concepts. We looked at how various data sources can be used with QuickSight, 
how data can optionally be imported into the SPICE storage engine, and how you can 
perform some data preparation tasks using QuickSight. 

We then did a deeper dive into the concepts of analyses (where new visuals are authored) 
and dashboards (published analyses that can be shared with data consumers). As part 
of this, we also examined some of the common types of visualizations available in 
QuickSight.

We then looked at some of the advanced features available in QuickSight, including ML 
Insights (which uses machine learning to detect outliers in data and forecast future data 
trends), as well as embedded dashboards (which enable you to embed either the full 
QuickSight console or dashboards directly into your websites and applications). 

We wrapped up this chapter with a hands-on section that took you through the steps of 
configuring QuickSight within your AWS account and creating a new visualization.

In the next chapter, we will do a deeper dive into some of the many AWS machine 
learning and artificial intelligence services that are available. We will also review how 
these services can be used to draw new insights and context out of existing structured and 
unstructured datasets. 





13
Enabling Artificial 

Intelligence and 
Machine Learning

For a long time, organizations could only dream of the competitive advantage they 
would get if they could accurately forecast demand for their products, personalize 
recommendations for their customers, and automate complex tasks. 

And yet, advancements in machine learning (ML) over the past decade or so have made 
many of these things, and much more, a reality.

ML describes the process of training computers in a way that mimics how humans learn 
to perform several tasks. ML uses a variety of advanced algorithms and, in most cases, 
large amounts of data to develop and train an ML model. This model can then be used to 
examine new data and automatically draw insights from that data.

ML offers a wide range of interesting use cases that are expected to have a growing 
impact on many different aspects of life. For example, scientists are using ML to analyze 
a patient's retina scan to identify early signs of Alzheimer's disease. It is also the power of 
ML, and specifically computer vision, that is enabling advances in self-driving vehicles so 
that a car can navigate itself along a highway or, in the future, even navigate complicated 
city streets unaided.
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While not as exciting perhaps, organizations have been using the power of ML more 
and more over the past decade to improve things such as fraud detection, or to predict 
whether a consumer with a specific set of attributes is likely to default on a loan. 

AWS offers several services to help developers build their own custom advanced ML 
models, as well as a variety of pretrained models that can be used for specific purposes. 
In this chapter, we'll examine why artificial intelligence (AI) and ML matter to 
organizations, and we'll review a number of the AWS AI and ML services, as well as how 
these services use different types of data. 

In this chapter, we will cover the following topics:

• Understanding the value of ML and AI for organizations

• Exploring AWS services for ML

• Exploring AWS services for AI

• Hands-on – reviewing the reviews with Amazon Comprehend

Before we get started, review the following Technical requirements section, which lists the 
prerequisites for performing the hands-on activity at the end of this chapter. 

Technical requirements
In the last section of this chapter, we will go through a hands-on exercise that uses 
Amazon SQS and AWS Lambda, to send some text to the Amazon Comprehend service 
so that we can extract insights from it. 

As with the other hands-on activities in this book, if you have access to an administrator 
user in your AWS account, you should have the permissions needed to complete these 
activities. If not, you will need to ensure that your user is granted access to create Amazon 
SQS and AWS Lambda resources, as well as at least read-only permissions for Amazon 
Comprehend APIs. 

You can find the code files of this chapter in the GitHub repository using the following 
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter13

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter13
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter13
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Understanding the value of ML and AI for 
organizations
More and more companies, of all sizes, are in various stages in the journey of discovering 
how ML and AI can positively impact their business. While initially, only the largest 
of organizations had the money and expertise to invest in ML projects, over time, the 
required technology has become more affordable and more accessible to non-specialist 
developers.

Cloud providers, such as AWS, have played a big part in making ML and AI technology 
more accessible to a wider group of users. Today, a developer with no previous ML 
education or experience can use a service such as Amazon Lex to create a customer 
service chatbot. This chatbot will allow customers to ask questions using natural language, 
rather than having to select from a menu of preset choices. Not all that long ago, anyone 
wanting to create a chatbot like this would have needed a Ph.D. in ML!

Many large organizations still look to build up data science teams with specialized AI 
and ML education and experience, and these developers are often involved in cutting-
edge research and development. However, organizations of just about any size can use 
non-specialist developers to harness the power of ML to improve customer experience, 
financial forecasting, and other aspects of their business. 

Let's have a look at some of the ways that ML is having an impact on different types of 
organizations.

Specialized ML projects
Large organizations in specialized industries make use of advanced ML technologies to 
develop cutting-edge ML advances. In this section, we'll have a look at a few examples of 
these technologies. 

Medical clinical decision support platform
Cerner, a health information technology services company, has built an ML-powered 
clinical decision support system to help hospitals streamline their workflows. This 
solution, built on AWS, uses ML models to predict how busy an emergency room may 
get on any given day, or time. This helps ensure that the right patients are prioritized for 
care, that patients are discharged at the right time, and that real-time data is used to create 
a Centralized Operations Center dashboard. This dashboard provides critical, near-
real-time information on important metrics for managing hospital workflows, as well as 
predictions for what these metrics may look like over time. 
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Cerner has built their Cerner Machine Learning Ecosystem platform using Amazon 
SageMaker, as well as other AWS services. As with just about all ML projects, getting the 
right data to train the ML model is critical, and data engineers play an important role 
in this. In addition, data engineers are needed to build pipelines that enable near-real-
time data to be ingested from multiple sources and fed into the platform. If the pipeline 
fails to ingest the right data at the right frequency, then the ML models cannot make the 
predictions that an organization may have come to depend on. 

To learn more about the Cerner clinical decision support system, you can 
watch a pre-recorded webinar, available at https://www.youtube.com/
watch?v=TZB8W7BL0eo.

Early detection of diseases
One of the areas of ML and AI that has massive potential for impacting a significant 
number of people is the early detection of serious diseases. 

A November 2020 article in the international peer-reviewed journal Nature, titled 
Artificial intelligence is improving the detection of lung cancer (https://www.nature.
com/articles/d41586-020-03157-9), provides an in-depth look into how AI 
is positively impacting the medical field. In this article, the author (Elizabeth Svoboda) 
provides an example of how a deep learning ML model was able to correctly detect the 
early stages of lung cancer on CT scans 94% of the time, which was better than a panel of 
six veteran radiologists. 

With many terminal diseases, early detection can make a significant difference in the 
outcome for the patient. For example, early detection, combined with appropriate medical 
interventions, can significantly increase the chance of survival beyond 5 years for certain 
cancer patients.

Making sports safer
Another area that ML is having an impact on is improving the safety of athletes for 
competitive sports. For example, the National Football League (NFL) in the United 
States is using Amazon AI and ML services to derive new insights into player injuries, 
rehabilitation, and recovery. 

NFL has started a project that uses Amazon SageMaker to develop a deep learning 
model to track players on a field, and then detect and classify significant injury events 
and collisions. There is an expectation that these advanced ML models, along with vast 
quantities of relevant data (including video data), can be used to significantly improve 
player safety over time.

https://www.youtube.com/watch?v=TZB8W7BL0eo
https://www.youtube.com/watch?v=TZB8W7BL0eo
https://www.nature.com/articles/d41586-020-03157-9
https://www.nature.com/articles/d41586-020-03157-9
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To learn more about how NFL is using ML to improve player safety, you can watch a short 
video on YouTube from the AWS re:Invent 2020 conference titled AWS re:Invent 2020 
– Jennifer Langton of the NFL on using AWS to transform player safety (https://www.
youtube.com/watch?v=hXxfCn4tGp4). 

Having had a look at a few specialized use cases, let's look at how everyday businesses are 
using ML and AI to impact their organizations and customers. 

Everyday use cases for ML and AI
Just about every business, ranging from those with tens of employees to those with 
thousands of employees, is finding ways to improve through the use of ML and AI 
technologies.

One of the big reasons for this is that ML and AI have become more democratized over 
the past few years. Whereas ML and AI were once solely the domains of experts with 
years of experience in the field, today, a developer without specialized ML experience can 
harness the power of these technologies in impactful ways.

Let's have a look at a few examples of how ML and AI are widely used across different 
business sectors.

Forecasting
Just about every organization needs to do forecasting to anticipate a variety of factors 
that influence their business. This includes financial forecasting (such as sales and profit 
margin), people forecasting (such as employee turnover, and how many staff are needed 
for a particular shift), and inventory forecasting (such as how many units we are likely to 
sell, how many units we need to manufacture next month, and so on).

Forecasting uses historical data over a period (often referred to as time series data) and 
attempts to predict likely future values over time. Forecasting has been around since long 
before ML, but traditional forecasts often lacked accuracy due to things such as irregular 
trends in historical data. Traditional forecasting also often failed to take into account 
variable factors, such as weather, promotions, and more.

ML has introduced new approaches and techniques to forecasting that offer increased 
accuracy and the ability to take several variable factors into account. AWS offers several 
services that help bring the power of ML to forecasting problems, as we will discuss later 
in this chapter.

https://www.youtube.com/watch?v=hXxfCn4tGp4
https://www.youtube.com/watch?v=hXxfCn4tGp4
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Personalization
Personalization is all about tailoring communication and content for a specific customer 
or subscriber. A good example of personalization is the effort Netflix has invested in to 
provide personalized recommendations about other shows a specific subscriber may be 
interested in watching, based on the shows they have watched in the past.

Other examples of where ML is used to power personalized recommendations are the 
recommended products on the Amazon.com storefront, as well as the recommended 
travel destinations on booking.com. 

Natural language processing
Natural language processing (NLP) is a branch of AI/ML that is used to analyze human 
language and draw automated insights and context from the text. 

A great example of NLP is the Alexa virtual assistant from Amazon. Users can speak to 
Alexa using natural language, and Alexa uses NLP algorithms to understand what the 
user is asking. While voice recognition systems have been around for a long time, these 
generally required users to say very specific phrases for the system to understand them. 
With modern NLP approaches, 10 different users could ask the same question in 10 
slightly different ways, and the system would be able to understand what is being asked. 

Image recognition
Another area where ML is having an impact on many businesses is through the use of 
image recognition ML models. With these models, images can be analyzed by the model 
to recognize objects within them. This can be used for many different types of tasks, such 
as ensuring employees are wearing appropriate safety gear, or as part of the process of 
validating the identity of a customer. These models are also able to automatically label 
images based on what is in the image, such as the breed of dog in a collection of dog 
photos. 

Now that we have reviewed some examples of the typical use cases for ML and AI, we can 
do a deeper dive into some of the AWS services that enable these use cases.

Exploring AWS services for ML
AWS has three broad categories of ML and AI services, as illustrated in the following 
diagram (note that only a small sample of AI and ML services are included in this 
diagram, due to space constraints):
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Figure 13.1 – Amazon ML/AI stack

In the preceding diagram, we can see a subset of the services that AWS offers in each 
category – Artificial Intelligence Services, Machine Learning Services, and Machine 
Learning Frameworks and Infrastructure.

At the ML framework level, AWS provides Amazon Machine Images (AMIs) and prebuilt 
Docker containers that have popular deep learning ML frameworks pre-installed and 
optimized for the AWS environment. While these are useful for advanced use cases that 
require custom ML environments, these use cases are beyond the scope of this book. 

For more information on these ML frameworks, refer to the AWS documentation on 
AWS Deep Learning AMIs (https://aws.amazon.com/machine-learning/
amis/) and AWS Deep Learning Containers (https://aws.amazon.com/machine-
learning/containers/). 

In the remainder of this chapter, we will explore some of the services in the AWS ML 
services and AWS AI services categories. 

AWS ML services
While working in the Machine Learning Frameworks and Infrastructure layer (as 
shown in the preceding diagram) requires advanced ML skills and experience, AWS 
makes developing ML models more accessible in the Machine Learning Services layer. 

https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/machine-learning/containers/
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In this layer, Amazon SageMaker enables users to prepare, build, train, tune, deploy, and 
manage ML models, without needing to manage the underlying infrastructure. SageMaker 
is designed to simplify each step of building an ML model for both data scientists and 
everyday developers. 

SageMaker includes several underlying tools to help with each of the stages of building an 
ML model. 

SageMaker in the ML preparation phase
Several capabilities within SageMaker simplify and speed up the tasks involved in 
preparing to build an ML model. We covered these services in Chapter 8, Identifying and 
Enabling Data Consumers, so review that chapter for more information, but here is a quick 
reminder of these services. 

Amazon SageMaker Ground Truth
The majority of ML models learn by being trained on labeled data. That is, the model is 
effectively given data that includes the attribute the model is designed to predict. Once 
trained, the model can then predict data where the attribute to be predicted is missing. For 
example, to train a model that can identify different breeds of dogs in a photo, you would 
train the model using photos of dogs that are labeled with the breed of dog. Once trained, 
you could provide a picture of a dog and the model could predict the breed. 

SageMaker Ground Truth is a service that uses both ML and/or human curators to label 
data; for example, labeling the breed of a dog in a photo. This significantly speeds up the 
process of preparing data to use to train new ML models.

Amazon SageMaker Data Wrangler
The SageMaker Data Wrangler service is a visual data preparation tool that data scientists 
can use to prepare raw data for ML use. The service enables data scientists to select 
relevant datasets, explore the data, and then select from over 300 built-in transformations 
that they can easily apply to the dataset, without writing any code.

SageMaker Data Wrangler also includes visualization templates that enable you to 
preview the results of transformations in SageMaker Studio, a full-fledged integrated 
development environment (IDE) for ML.

Amazon SageMaker Clarify
When training an ML model with a training dataset, the dataset may be biased through 
either a concentration of specific data or because it is missing specific data.
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For example, if a dataset is intended to be used to predict responses from people with a 
wide age range, but the training dataset primarily contains data from people aged 35 – 
55, then predictions may be inaccurate for both younger people (under 35) and/or older 
people (over 55). 

The same could be applied to datasets that tend to concentrate on a specific gender, sexual 
orientation, married versus un-married, or just about any other attribute. To help avoid 
this type of potential bias in a dataset, SageMaker Clarify can examine specified attributes 
in a dataset and use advanced algorithms to highlight the existence of potential bias. 

SageMaker in the ML build phase
Once data has been labeled and prepared, a data scientist can move on to building ML 
models. The following capabilities in SageMaker are used to build new ML models. 

SageMaker Studio notebooks
Data scientists typically use notebooks to develop the code for their ML models. A 
notebook is an interactive web-based environment where developers can run their code 
and immediately see the results of the running code. An interactive notebook is backed by 
a compute engine that runs a kernel where notebook code is executed.

With SageMaker Studio Notebooks, you can quickly launch a new notebook, backed 
by an EC2 instance type of your choosing. The notebook environment uses Amazon 
Elastic File System (EFS), which is network-based storage that persists beyond the life 
of the instance running the notebook. This enables you to easily start and stop different 
notebook instances, and have your notebook project files available in each notebook 
instance. 

SageMaker Studio Notebooks also enables users to easily share notebooks, enabling 
collaborative work between data scientists on a team. In addition, SageMaker Studio 
Notebooks provides sample projects that can be used as a starting point for developing a 
new model. 

SageMaker Autopilot
For developers that do not have extensive ML experience, SageMaker Autopilot can be 
used to automatically build, train, and tune several different ML models, based on your 
data. 

The developer needs to provide a tabular dataset (rows and columns) and then indicate 
which column value they want to predict. This could be predicting a number (such as 
expected spend), a binary category (fraud or not fraud), or a multi-label category (such as 
favorite fruit, which could be banana, peach, pear, and so on). 
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SageMaker Autopilot will then build, train, and tune several ML models and provide a 
model leaderboard to show the results of each model. Users can view each of the models 
that were generated and explore the results that were generated by each model. From here, 
a user can select the model that best meets their requirements and deploy it.

SageMaker JumpStart
SageMaker JumpStart provides several preselected end-to-end solutions, ML models, 
and other resources to help developers and data scientists get their ML projects up and 
running quickly.

By using these prebuilt resources, developers can easily deploy solutions and models 
with all the infrastructure components managed for them. Once deployed, the model 
can be opened with SageMaker Studio Notebooks, and the model can be tested through a 
notebook environment. 

Prebuilt solutions include sample datasets that can be used to test the model, and you 
can also provide your own dataset to further train and tune the model. Some examples of 
prebuilt solutions available in JumpStart include the following:

• Churn prediction

• Credit risk prediction

• Computer vision

• Predictive maintenance

For more information on SageMaker JumpStart, including an example of how a 
solution can easily be deployed, see the AWS blog post by Julien Simon titled Amazon 
SageMaker JumpStart Simplifies Access to Pre-built Models and Machine Learning Solutions 
(https://aws.amazon.com/blogs/aws/amazon-sagemaker-jumpstart-
simplifies-access-to-prebuilt-models-and-machine-learning-
models/). 

SageMaker in the ML training and tuning phase
Once you have built an ML model, you need to train the model on a sample dataset, 
and then further tune and refine the model until you get the results that meet your 
requirements.

https://aws.amazon.com/blogs/aws/amazon-sagemaker-jumpstart-simplifies-access-to-prebuilt-models-and-machine-learning-models/
https://aws.amazon.com/blogs/aws/amazon-sagemaker-jumpstart-simplifies-access-to-prebuilt-models-and-machine-learning-models/
https://aws.amazon.com/blogs/aws/amazon-sagemaker-jumpstart-simplifies-access-to-prebuilt-models-and-machine-learning-models/
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Training a model is core functionality that's built into SageMaker. You point SageMaker to 
the location of your training data in Amazon S3, and then specify the type and quantity of 
SageMaker ML instances you want to use for the training job. SageMaker will provision a 
distributed compute cluster and perform the training, outputting the results to Amazon 
S3. The training cluster will then be automatically removed. 

SageMaker can also automatically tune your ML model by testing the model with 
thousands of different combinations of algorithm parameters to determine which 
combination of parameters provides the most accurate results. This process is referred 
to as hyperparameter tuning, and with SageMaker, you can specify the range of 
hyperparameters that you want to test. 

To keep track of the results of different training jobs, SageMaker also includes something 
called SageMaker Experiments.

SageMaker Experiments
This process of tracking different ML experiments can be made significantly easier using 
SageMaker Experiments. This feature of SageMaker automatically tracks items such as 
inputs, parameters, and configurations, and stores the result of each experiment. This 
helps reduce the overhead and time needed to identify the best performing combinations 
for your ML model.

When running a training job on SageMaker, you can pass in an extra parameter, defining 
the name of the experiment. By doing this, all the inputs and outputs of the job will be 
automatically logged. 

This data can then be loaded into a pandas DataFrame (a popular Python data structure 
for working with data), and you can use the built-in analytics features of pandas to 
analyze your results. Amazon SageMaker Studio also includes integration with SageMaker 
Experiments, enabling you to run queries on experiments data, and view leaderboards 
and metrics.

SageMaker in the ML deployment and management phase
Once you have prepared your data, developed your model, and then trained and tuned the 
model, you are finally ready to deploy the model. There are several different ways that you 
can select to deploy the model using SageMaker. 

For example, if you want to get predictions on a large dataset, you can use SageMaker's 
batch transform process. Using this, you point SageMaker to the dataset on S3, select 
the type of compute instance you want to use to power the transform, and then run the 
transform job, which will make a prediction for each record in the dataset and write out 
the transformed dataset to S3. 
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Alternatively, you can deploy an endpoint for your model that can be used by your 
applications to pass data to the model to get an ML-powered prediction in real time. For 
example, you can pass information to the endpoint of a specific credit card transaction 
(date, time, location, vendor, amount, and so on), and the ML model can predict whether 
this is a fraudulent or genuine transaction.

ML models can become less accurate over time due to changing trends in your customer 
base, for example, or because of data quality issues in upstream systems. To help monitor 
and manage this, you can use SageMaker Model Monitor.

SageMaker Model Monitor
SageMaker Model Monitor can be configured to continuously monitor the quality of 
your ML models and can send notifications when there are deviations in the model's 
quality. Model Monitor can detect issues with items such as data quality, model quality, 
and bias drift. 

To resolve issues with model quality, a user may take steps such as retraining the 
model using updated data or investigating potential quality issues with upstream data 
preparation systems. 

Having briefly covered some of the extensive functionality available for creating custom 
models using Amazon SageMaker, let's look at some of the AWS AI services that provide 
prebuilt ML models as a service.

Exploring AWS services for AI
While Amazon SageMaker simplifies building custom ML models, there are many use 
cases where a custom model is not required, and a generalized ML model will meet 
requirements.

For example, if you need to translate from one language into another, that will most 
likely not require a customized ML model. Existing, generalized models, trained for the 
languages you are translating between, would work. 

You could use SageMaker to develop a French to English translation model, train the 
model, and then host the model on a SageMaker inference endpoint. But that would take 
time and would have compute costs associated with each phase of development (data 
preparation, notebooks, training, and inference). 
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Instead, it would be massively simpler, quicker, and cheaper to use an AI service such as 
Amazon Translate, which already has a model trained for this task. This service provides 
a simple API that can be used to pass in text in one language and receive a translation in a 
target language. And there would be no ongoing compute costs or commitments – just a 
small per-character cost for the translation (currently $ 0.000015 per character).

Also, AWS is constantly working to improve the underlying ML algorithms, monitoring 
data quality, and maintaining the availability of the API endpoints, at no additional cost to 
you. And if you do need to customize the model (for example, based on specific industry 
terminology, or a preferred style or tone for the translation), you can provide additional 
training data for customized translations, although this comes at a slightly higher cost 
(currently $0.00006 per character). 

These types of AI services have gained in popularity over the past few years, and all of the 
major cloud providers now offer a range of pretrained ML models as a service. We don't 
have space in this chapter to cover all of the AWS AI services, but we'll look at a few of the 
most popular services in this section. 

We started with Amazon Translate as an example of an AWS AI service, so now, let's 
explore some of the other AI offerings from AWS.

AI for unstructured speech and text
One of the primary benefits of a data lake is the ability to store all types of data, including 
unstructured data such as PDF documents, as well as audio and video files, in the data 
lake. And while this type of data can be easily ingested and stored in the data lake, the 
challenge for the data engineer is in how to process and make use of this data.

For example, a large enterprise company may have hundreds of thousands of invoices 
from a variety of vendors, and they may want to perform analysis or fraud detection on 
those. Or a busy call center may want to automatically transcribe recorded customer calls 
to perform sentiment analysis and identify unhappy customers. 

For these use cases, AWS offers several AI services designed to extract metadata from text 
or speech sources to make this data available for additional analysis.

Amazon Transcribe for converting speech into text
Amazon Transcribe is an AWS AI service that can produce text transcription from 
audio and video files. This can be used to generate subtitles for a video file, to provide a 
transcription of a recording of a meeting or speech, or to get a transcript of a customer 
service call.
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Transcribe uses automatic speech recognition (ASR), a deep learning process, to enable 
highly accurate transcriptions from audio files, including the ability to identify different 
speakers in the transcript. Transcribe can also detect and remove sensitive personal 
information (such as credit card numbers or email addresses) from transcripts, as well 
as words that you don't want to be included in a transcription (such as curses or swear 
words). Transcribe can also generate a new audio file that replaces these unwanted words 
with silence. 

A data engineer can build a pipeline that processes audio or video files with Transcribe, 
ensuring that text transcripts from audio sources are generated shortly after new audio 
sources are ingested into the data lake. Other ML models or AWS AI services can also be 
built into the pipeline to further analyze the transcript to generate additional metadata.

Amazon Transcribe also includes functionality targeted at specific types of audio. For 
example, Amazon Transcribe Medical uses an ML model specifically trained to identify 
medical terminologies such as medicine names, diseases, and conditions. And Amazon 
Transcribe Call Analytics has been specifically designed to understand customer service 
and sales calls, as well as to identify attributes such as agent and customer sentiment, 
interruptions, and talk speed. 

Amazon Textract for extracting text from documents
Amazon Textract is an AI service that can be used to automatically extract text from 
unstructured documents, such as PDF or image files. Whether the source document is a 
scan of printed text or a form that includes printed text and handwriting, Textract can be 
used to create a semi-structured document for further analysis.

A data engineer may be tasked, for example, with building a pipeline that automatically 
analyzes uploaded expense receipts to extract relevant information. This may include 
storing that information in semi-structured files in the data lake, or a different target such 
as DynamoDB or a relational database.

For example, the following screenshot shows a portion of a hotel receipt bill contained in a 
PDF file:
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Figure 13.2 – Extract from a PDF document of a hotel invoice

Most traditional analytic tools would not be able to process this data contained within a 
PDF file, but when this file is sent to the Amazon Textract service, a semi-structured file 
can be created containing relevant data. For example, the ML model powering Textract 
can extract information from the preceding table as a CSV file that can be further 
analyzed in a data engineering pipeline. 

The following table shows the CSV file when opened in a spreadsheet application:

Figure 13.3 – CSV formatted data extracted from a PDF invoice

Textract has been designed to work well with various types of documents, including 
documents that contain handwritten notes. For example, a medical intake form at a 
doctor's office, where patients fill out the form by hand, can be sent to Textract to extract 
data from the form for further processing. 

Amazon Comprehend for extracting insights from text
We have looked at how Amazon Transcribe can create electronic text from speech, as well 
as how Amazon Textract can create semi-structured documents from scanned documents 
and images. Now, let's look at how to extract additional insights from text.
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Amazon Comprehend is an AI service that uses advanced ML models to generate 
additional insights from text documents, such as sentiment, topics, place names, and 
more. With Comprehend, you can build a near-real-time pipeline that passes in 1 – 25 
documents in a single API call for analysis or build a batch pipeline that configures 
Comprehend to analyze all documents in an S3 bucket. 

When you call the API or run an asynchronous batch job, you specify the type of 
comprehension that you want in the results. For example, you can have Comprehend 
analyze text to detect the dominant language, entities, key phrases, PII data, sentiment, or 
topics (each type of comprehension has a different API call). 

Comprehend can be used for several use cases, such as identifying important entities 
in lengthy legal contracts (such as location, people, and companies), or understanding 
customer sentiment when customers interact with your call center. As a data engineer, you 
may be tasked with building a pipeline that uses Amazon Transcribe to convert the audio 
of recorded customer service calls into text, and then run that text through Comprehend 
to capture insight into customer sentiment for each call. 

Another use case could be to analyze social media posts to identify which organizations 
were being referenced in a post, and what the sentiment of the review was. For example, 
we could analyze the following fictional post made to a social media platform: 

"I went to Jack's Cafe last Monday, and the pancakes were amazing! You should try this 
place, it's new in downtown Westwood. Our server, Regina, was amazing."

When Amazon Comprehend analyzes this text, it returns the following insights:

• Entities detected:

 � Jack's café, Organization, 93% confidence

 � Westwood, Location, 71% confidence

 � Regina, Person, 99% confidence

 � last Monday, Date, 94% confidence

• Sentiment:

 � Positive, 99% confidence

As we can see from the previous results, Comprehend can accurately detect entities 
and sentiment. At the end of this chapter, we will go through an exercise with Amazon 
Comprehend to determine customer sentiment from online reviews, which will allow you 
to get hands-on with how Amazon Comprehend works. 
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Note that there is also a specialty version of Comprehend, called Amazon Comprehend 
Medical, that has been designed to extract medical information from electronic text, 
such as medical conditions, medications, treatments, and protected health information. 
You can also train a Comprehend custom entity detection model using your data to 
recognize specialized entities (such as a model trained to recognize different makes and 
models of cars and motorbikes). 

AI for extracting metadata from images and video
In the previous section, we reviewed AI services for processing text – including audio 
transcribed into text (Amazon Transcribe), images and scanned documents converted 
into text (Amazon Textract), and insights drawn out of electronic text (Amazon 
Comprehend). 

In this section, we will change focus and look at how we can extract insights out of videos 
and images using the power of AI. 

Amazon Rekognition
Amazon Rekognition uses the power of pretrained ML models to extract metadata from 
images and videos, enabling users to get rich insights from this unstructured content.

With traditional data warehouses and databases, the ability to store unstructured data, 
such as images and videos, was very limited. In addition, until recently, it was difficult to 
extract rich metadata from these unstructured sources, without having humans manually 
label data. And, as you can imagine, this was a very time-consuming and error-prone 
process. 

For organizations that stored a lot of images or videos, they needed to manually build 
catalogs to tag the media appropriately. For example, these organizations would need 
someone to manually identify celebrities in photos or add labels to an image to tag what 
was shown in the image. 

As ML technologies advanced, these organizations could build and train ML models to 
automatically tag images (or stills from a video), but this still required deep expertise and 
an extensive labeled catalog for training the ML model. 

With new AI services, such as Amazon Rekognition, vendors do the hard work 
of building and training the ML models, and users can then use a simple API to 
automatically extract metadata from images. And, with Amazon Rekognition Video, 
users can also gain these insights from video files. When passed a video file for analysis, 
the results that are returned include a timestamp of where the object was detected, 
enabling an index of identified objects to be created. 
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For example, the following photo could be sent to the Amazon Rekognition service to 
automatically identify elements in the photo:

Figure 13.4 – Photo of a dog and a Jeep in the snow

When passed to Amazon Rekognition, the service can automatically identify objects in 
the photo. The following is a partial list of the identified objects (with the confidence level 
of the ML model shown in brackets):

• Outdoors (99.6%)

• Snow (99.2%)

• Blizzard (99.2%)

• Winter (99.2%)

• Wheel (95.3%)

• Dog (93.6%)

• Car (90.8%)
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A data engineer could use this type of service to build a data pipeline that ingests images 
and/or video, and then calls the Amazon Rekognition service for each file, building an 
index of objects in each file, and storing that in DynamoDB, for example. 

The AI services we have discussed so far are used to extract data from unstructured files 
such as PDF scans and image and video files. Now, let's take a look at AWS AI services 
that can be used to make predictions based on semi-structured data.

AI for ML-powered forecasts
A common business need is to forecast future values, whether these be the number of 
staff an entertainment venue is likely to need next month, or how much revenue an 
organization is likely to receive on a specific product line over the next 12 months.

For many years, organizations would use formulas to forecast future values, based on 
historical data that they had built up. However, these formulas often did not take into 
account seasonal trends and other third-party factors that could significantly influence the 
actual values that are realized. 

Modern forecasting tools, such as Amazon Forecast, can provide significantly more 
accurate forecasts by using the power of ML. 

Amazon Forecast
Amazon Forecast is a powerful AI service for predicting future time series data, based 
on complex relationships between multiple datasets. Using Forecast, a developer can train 
and build a customized forecast ML model, without needing ML expertise. 

To train the custom model, a user would provide historical data for the attribute that 
they want to predict (for example, daily sales at each store over the past 12 months). In 
addition, they can include related datasets, such as a dataset listing the total number of 
daily visitors to each store. 

If the primary dataset also includes geolocation data (identifying, for example, the 
location of the store) and timezone data, Amazon Forecast can automatically use weather 
information to help further improve prediction accuracy. For example, the model can 
take into account how the weather has affected sales in the past, and use the latest 14-day 
weather forecast to optimize predictions for the upcoming period based on the weather 
forecast.
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A data engineer may be involved in building a pipeline that uses Amazon Forecast. The 
following could be some of the steps in a pipeline that the data engineer architects and 
implements:

• Use an AWS Glue job to create an hourly aggregation of sales for each store, storing 
the results in Amazon S3.

• Use AWS Step Functions to call Lambda functions that clean up previous 
predictions, and generate new predictions based on the latest data. Use a Lambda 
function to create an export job to export the newly generated predictions to 
Amazon S3.

• Use Amazon AppFlow to load the newly generated predictions from Amazon S3 to 
Amazon Redshift for further analysis.

Refer to the AWS blog post titled Automating your Amazon Forecast workflow with 
Lambda, Step Functions, and CloudWatch Events rule (https://aws.amazon.
com/blogs/machine-learning/automating-your-amazon-forecast-
workflow-with-lambda-step-functions-and-cloudwatch-events-
rule/) for more details on building a pipeline that incorporates Amazon Forecast. 

AI for fraud detection and personalization
The AI services we discussed previously are often incorporated into data engineering 
pipelines as these services are useful for advanced analytics (such as extracting metadata 
from images, text transcripts from audio files, or making forecasts). However, other AI 
services are often used as a part of transactional systems, rather than data engineering 
pipelines, which we will briefly look at in this section. 

Amazon Fraud Detector
Amazon Fraud Detector is an AI service that helps organizations detect potentially 
fraudulent transactions and fake account registrations. 

Fraud Detector enables an organization to upload its historical data regarding fraudulent 
transactions. It then adds this to a model trained with fraud data from Amazon and AWS 
to optimize fraud detection.

Using Fraud Detector, an organization can build fraud prediction into their checkout 
process, getting a prediction within milliseconds as part of the checkout process.

https://aws.amazon.com/blogs/machine-learning/automating-your-amazon-forecast-workflow-with-lambda-step-functions-and-cloudwatch-events-rule/
https://aws.amazon.com/blogs/machine-learning/automating-your-amazon-forecast-workflow-with-lambda-step-functions-and-cloudwatch-events-rule/
https://aws.amazon.com/blogs/machine-learning/automating-your-amazon-forecast-workflow-with-lambda-step-functions-and-cloudwatch-events-rule/
https://aws.amazon.com/blogs/machine-learning/automating-your-amazon-forecast-workflow-with-lambda-step-functions-and-cloudwatch-events-rule/
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Amazon Personalize
Amazon Personalize is an AI service that helps organizations provide personalized 
recommendations to their customers. Using Personalize, developers can easily integrate 
personalized product recommendations, marketing initiatives, and other ML-powered 
personal recommendations into existing customer-facing systems. 

With Personalize, developers can design systems that capture live events from users (such 
as data extracted from a website click-stream) and combine this with historical user 
profile information to recommend the most relevant items for a user. This can be used 
to recommend other products a customer may be interested in, or the next movie or TV 
show a customer may like to watch. 

Having reviewed several AWS AI services, let's get hands-on with using one of these 
services: Amazon Comprehend. 

Hands-on – reviewing reviews with Amazon 
Comprehend
Imagine that you work for a large hotel chain and have been tasked with developing a 
process for identifying negative reviews that have been posted on your website. This will 
help the customer service teams follow up with the customer. 

If your company was getting hundreds of reviews every day, it would be time-consuming 
to have someone read the entire review every time a new review was posted. Luckily, you 
have recently heard about Amazon Comprehend, so you decide to develop a small Proof 
of Concept (PoC) test to see whether Amazon Comprehend can help. 

If your PoC is successful, you will want to have a decoupled process that receives reviews 
once they have been posted, calls Amazon Comprehend to determine the sentiment of 
the review, and then takes a follow-up action if the review is negative or mixed. Therefore, 
you decide to build your PoC in the same way, using Amazon Simple Queue Service 
(SQS) to receive reviews and have this trigger a Lambda function to perform analysis with 
Comprehend.

Setting up a new Amazon SQS message queue
Create a new Amazon SQS message queue for receiving reviews by following these steps:

1. Log into AWS Management Console and navigate to the Amazon SQS service at 
https://console.aws.amazon.com/sqs/v2/.

2. Click on Create queue.

https://console.aws.amazon.com/sqs/v2/
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3. Leave the default of a Standard queue as-is and provide a queue Name (such as 
website-reviews-queue):

Figure 13.5 – Creating a new Amazon SQS message queue

4. Leave all other options as their default values and click on Create queue at the 
bottom of the page.

Now that our queue has been created, we want to create a Lambda function that will read 
items from the queue and submit the website review text to Amazon Comprehend for 
analysis. 

Creating a Lambda function for calling Amazon 
Comprehend
The following steps will create a new Lambda function for calling Amazon Comprehend 
to analyze the text that's passed in from the SQS queue:

1. In the Amazon Management Console, navigate to the AWS Lambda service at 
https://us-east-2.console.aws.amazon.com/lambda/.

2. Click on Create function.
3. Select the option to Author from scratch.
4. Provide a Function name value (such as website-reviews-analysis-

function) and select the most recent version of Python for Runtime.

https://us-east-2.console.aws.amazon.com/lambda/
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5. For Execution role, select Create a new role from AWS policy templates.
6. Provide a Role name value (such as website-reviews-analysis-role). 
7. For Policy templates, search for SQS and add Amazon SQS poller permissions.
8. Leave everything else as the defaults and click on Create function.

Having created our function, we can add our custom code, which will receive the 
SQS message, extract the review text from the message, and then send it to Amazon 
Comprehend for sentiment and entity analysis.

9. Replace Code source in Lambda with the following block of code:

import boto3

import json

comprehend = boto3.client(service_name='comprehend', 

                          region_name='us-east-2')

def lambda_handler(event, context):

    for record in event['Records']:

        payload = record["body"]

        print(str(payload))

In this preceding block of code, we imported the required libraries and initialized 
the Comprehend API, which is part of boto3. Make sure that you modify the 
preceding Comprehend API initialization code to reflect the region you are using 
for these exercises. Then, we defined our Lambda function and read in the records 
that we received from Amazon SQS. Finally, we loaded body of record into a 
variable called payload. 

Continue your Lambda function with the following block of code:
        print('Calling DetectSentiment')

        response = comprehend.detect_sentiment(

            Text=payload, LanguageCode='en')

        sentiment = response['Sentiment']

        sentiment_score = response['SentimentScore']

        print(f'SENTIMENT: {sentiment}')

        print(f'SENTIMENT SCORE: {sentiment_score}')
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In this preceding block of code, we called the Comprehend API for sentiment 
detection, passed in the review text (payload), and specified that the text 
is in English. In the response we receive from Comprehend, we extracted 
the sentiment property (positive, mixed, or negative), as well as the 
SentimentScore property.

Now, let's look at our last block of code:
        print('Calling DetectEntities')

        response = comprehend.detect_entities(

            Text=payload, LanguageCode='en')

        print(response['Entities'])

        for entity in response['Entities']: 

            entity_text = entity['Text']

            entity_type = entity['Type']

            To the PD: Please add this to the next line 
in p-regular style

To correctly print over two lines we need the following code:

            print(f'ENTITY: {entity_text},' 

                f'ENTITY TYPE: {entity_type}') 

                  ENTITY TYPE: {entity_type}')

    return

In this final part of our code, we called the Comprehend API for entity detection, 
again passing in the same review text (payload). Multiple entities may be detected 
in the text, so we looped through the response and printed out some information 
about each entity. 

Then, we returned without any error, which indicates success, which means the 
message will be deleted from the SQS message queue. Note that for a production 
implementation of this code, you would want to add error-catching code to raise an 
exception if there were any issues when calling the Comprehend API. 

10. Click Deploy in the Lambda console to deploy your code. 

Now, we just need to add permissions to our Lambda function to access the Comprehend 
API and add our function as a trigger for our SQS queue. Then, we can test it out.
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Adding Comprehend permissions for our IAM role
When we created our Lambda function, we were able to select from a preset list of 
common permissions to add permission for our Lambda function to poll an SQS message 
queue. However, our function also needs to call the Comprehend API, so let's add 
permission for that as well:

1. In AWS Lambda console, with your website reviews analysis function open, click 
on the Configuration tab along the top, and then the Permissions tab on the left.

2. The name of the role you specified when creating the Lambda function will be 
shown as a link. Click on Role name (such as website-reviews-analysis-
role) to open the IAM console so that we can edit the permissions:

 

Figure 13.6 – Lambda Permissions > Configuration tab > Execution role

3. In the IAM console, click on Attach policies. 
4. Search for a policy called ComprehendReadOnly, which has sufficient permissions 

to enable us to call the Comprehend API from our Lambda function. 
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5. Select the tick box for ComprehendReadOnly, and then click on Attach policy:

Figure 13.7 – Finding and selecting the required Comprehend permissions in IAM

We are just about ready to test our function. Our last step is to link our SQS queue and 
our Lambda function.

Adding a Lambda function as a trigger for our SQS 
message queue
With the following steps, we'll configure our Lambda function to be able to pick up new 
messages that are added to our SQS message queue for processing:

1. Navigate back to the Amazon SQS message queue console at https://
us-east-2.console.aws.amazon.com/sqs/v2/home.

2. Click on the name of the SQS queue you previously created (such as website-
reviews-queue).

3. Click on the Lambda triggers tab, and then click Configure Lambda function 
trigger.

4. Make sure that Region is set to the region you have been using for the exercises in 
this chapter, and then select your Lambda function from the drop-down list. 

5. Click Save to link your SQS queue and Lambda function.

And with that, we are now ready to test out our solution and see how Amazon 
Comprehend performs. 

https://us-east-2.console.aws.amazon.com/sqs/v2/home
https://us-east-2.console.aws.amazon.com/sqs/v2/home
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Testing the solution with Amazon Comprehend
Using the following steps, test the solution and get Amazon Comprehend to analyze the 
text you have provided for both sentiment and entity detection:

1. Ensure that you are still on the Amazon SQS console and that your SQS queue is 
open.

2. At the top right, click on Send and receive messages:

 

Figure 13.8 – Amazon SQS queue detail view
We can now send a message directly to our SQS queue, which will trigger our 
Lambda function to process the message and send it to Amazon Comprehend. 
When moved to production, we would build integration into our website to 
automatically send all new reviews to our Amazon SQS message queue as the 
reviews are posted. 

3. Paste the following text (or your own, similar text) into the Message Body section 
of Send and receive messages:

"I recently stayed at the Kensington Hotel in downtown Cape Town and was very 
impressed. The hotel is beautiful, the service from the staff is amazing, and the sea 
views cannot be beaten. If you have the time, stop by Mary's Kitchen, a coffee shop 
not far from the hotel, to get a coffee and try some of their delicious cakes and baked 
goods."
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Then, click on the Send message option at the top right.
4. To view the results of the Comprehend analysis, we can review the output of our 

Lambda function in CloudWatch Logs. If it's not already open in a separate browser 
tab, open a new browser tab and navigate back to your Lambda function. Click 
on the Monitor tab, and then click View logs in CloudWatch. This will open the 
CloudWatch console in a new browser tab. 

The CloudWatch console should have opened at the log group for your Lambda 
function (for example, the log group named /aws/lambda/website-
reviews-analysis-functions). Click on the latest log stream to open the 
log:

 

Figure 13.9 – Amazon CloudWatch logs for our Lambda function
In the CloudWatch logs, you can see the output of our Lambda function. This 
includes the text that was analyzed, the sentiment (POSITIVE), the sentiment 
score, as well as the three entities Comprehend detected in our text (the hotel and 
coffee shop names, and the city location). 

5. Go back to your browser tab for the SQS console and modify the review text with 
a negative review. You can either write your own fictional negative review or copy 
and paste a negative review that you find via Google. Send the message via SQS 
and review the analysis results in CloudWatch to see how Comprehend detects the 
negative sentiment, and see which other entities Comprehend can detect. 
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After testing and validating that Amazon Comprehend can reliably detect sentiment from 
published reviews, you may decide to move forward with implementing this solution in 
production. If you do decide to do this, you could use Amazon Step Functions to build 
a workflow that runs a Lambda function to do the sentiment analysis. Then, depending 
on the results (positive, negative, neutral, or mixed), the Step Function state machine 
could run different Lambda functions based on the next steps (such as sending a negative 
review to customer service to follow up with the customer or sending a mixed review to a 
manager to decide on the next steps). 

With this hands-on exercise, you got to experiment with how Amazon Comprehend can 
detect both sentiment and entitles in written text. If you have time, you can explore the 
functionality of other Amazon AI services directly in the console. This includes Amazon 
Rekognition, Amazon Transcribe, Amazon Textract, and Amazon Translate. 

Summary
In this chapter, you learned more about the broad range of AWS ML and AI services 
and had the opportunity to get hands-on with Amazon Comprehend, an AI service for 
extracting insights from written text. 

We discussed how ML and AI services can apply to a broad range of use cases, both 
specialized (such as detecting cancer early) and general (business forecasting or 
personalization). 

We examined different AWS services related to ML and AI. We looked at how different 
Amazon SageMaker capabilities can be used to prepare data for ML, build models, train 
and fine-tune models, and deploy and manage models. SageMaker makes building custom 
ML models much more accessible to developers without existing expertise in ML. 

We then looked at a range of AWS AI services that provide prebuilt and trained models for 
common use cases. We looked at services for transcribing text from audio files (Amazon 
Transcribe), for extracting text from forms and handwritten documents (Amazon 
Textract), for recognizing images (Amazon Rekognition), and for extracting insights from 
text (Amazon Comprehend). We also briefly discussed other business-focused AI services, 
such as Amazon Forecast and Amazon Personalize.

We're near the end of a journey that has had us look, at a high level, at several tasks, 
activities, and services that are part of the life of a data engineer. In the next chapter, 
we will conclude this book by looking at some additional examples of data engineering 
pipelines, and briefly introduce other topics that a data engineer may wish to explore for 
further learning. 
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Further reading
To learn more about the impact that ML is having on the medical field regarding 
automatically detecting serious diseases, check out these articles:

• Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis: 
Principles and Recent Advances (https://ieeexplore.ieee.org/
document/9363896)

• AI Algorithm Can Accurately Predict Risk, Diagnose Alzheimer's Disease 
(https://www.bumc.bu.edu/busm/2020/05/04/ai-algorithm-can-
accurately-predict-risk-diagnose-alzheimers-disease/)

• Implementing AI models has made critical disease diagnosis easy (https://www.
analyticsinsight.net/implementing-ai-models-has-made-
critical-disease-diagnosis-easy/) 

• Apple hiring machine learning scientist for early disease detection (https://www.
healthcareitnews.com/news/apple-hiring-machine-learning-
scientist-early-disease-detection)

The organizations behind these articles and headlines use advanced ML principles and 
technologies to further advance medical diagnosis. It's still early days in this field, and this 
will be an interesting space to watch over the next few years. 

https://ieeexplore.ieee.org/document/9363896
https://ieeexplore.ieee.org/document/9363896
https://www.bumc.bu.edu/busm/2020/05/04/ai-algorithm-can-accurately-predict-risk-diagnose-alzheimers-disease/
https://www.bumc.bu.edu/busm/2020/05/04/ai-algorithm-can-accurately-predict-risk-diagnose-alzheimers-disease/
https://www.analyticsinsight.net/implementing-ai-models-has-made-critical-disease-diagnosis-easy/
https://www.analyticsinsight.net/implementing-ai-models-has-made-critical-disease-diagnosis-easy/
https://www.analyticsinsight.net/implementing-ai-models-has-made-critical-disease-diagnosis-easy/
https://www.healthcareitnews.com/news/apple-hiring-machine-learning-scientist-early-disease-detection
https://www.healthcareitnews.com/news/apple-hiring-machine-learning-scientist-early-disease-detection
https://www.healthcareitnews.com/news/apple-hiring-machine-learning-scientist-early-disease-detection
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Wrapping Up the 
First Part of Your 
Learning Journey

In this book, we have explored many different aspects of the data engineering role by 
learning more about common architecture patterns, understanding how to approach 
designing a data engineering pipeline, and getting hands-on with many different AWS 
services commonly used by data engineers (for data ingestion, data transformation, and 
orchestrating pipelines). 

We examined some of the important issues surrounding data security and governance and 
discussed the importance of a data catalog to avoid a data lake turning into a data swamp. 
We also reviewed data marts and data warehouses and introduced the concept of a data 
lake house. 

We learned about data consumers – the end users of the product that's produced by 
data engineering pipelines – and looked into some of the tools that they use to consume 
data (including Amazon Athena for ad hoc SQL queries and Amazon QuickSight for 
data visualization). Then, we briefly explored the topic of machine learning (ML) and 
artificial intelligence (AI) and learned about some of the AWS services that are used in 
these fields.
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In this chapter, we're going to introduce some important real-world concepts to help 
manage the data infrastructure/pipeline development process, have a look at some 
examples of real-world data pipelines, and discuss some emerging trends in the field. We'll 
then look at how to clean up your AWS account in the hands-on portion of this chapter. 

In this chapter, we will cover the following topics:

• Looking at the data analytics big picture

• Examining examples of real-world data pipelines

• Imagining the future – a look at emerging trends

• Hands-on – cleaning up your AWS account

Technical requirements
There are no specific technical requirements for the hands-on section of this chapter as we 
will just be cleaning up resources that we have created throughout this book. Optionally, 
however, there will be a section that covers deleting your AWS account. If you choose to 
do this, you will need access to the account's root user to log in with the email address that 
was used to create the account. 

You can find the code files of this chapter in the GitHub repository using the following 
link: https://github.com/PacktPublishing/Data-Engineering-with-
AWS/tree/main/Chapter14

Looking at the data analytics big picture
This book was never intended as a deep dive into one specific area of data engineering, 
although there are many other great books and resources out there that do focus on a 
single area (such as a deep dive on Spark programming, or on how to use Kafka to ingest 
streaming data). 

Because of this broad topic coverage, you have probably already begun to form a good 
idea of the different aspects of the bigger picture of data analytics. While it is quite 
common for data engineering roles to focus on just writing data transform jobs, or 
just managing the infrastructure to ingest and process streaming data, it is helpful to 
understand how this integrates with data warehouses/data marts, how different data 
consumers use data, and how ML and AI fit into the bigger data picture, as we have 
reviewed in this book.

https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter14
https://github.com/PacktPublishing/Data-Engineering-with-AWS/tree/main/Chapter14
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We have also been focusing on the tasks from the perspective of a single data engineer, but 
in reality, most data engineers will work as part of a larger team. There may be different 
teams, or team members, focused on different aspects of the data engineering pipeline, but 
all team members need to work together. 

In most organizations, there are also likely to be multiple environments, such as a 
development environment, a test/quality assurance (QA) environment, and a production 
environment. The data infrastructure and pipelines must be deployed and tested in the 
development environment first, and then any updates should be pushed to a test/QA 
environment for automated testing, before finally being approved for deployment in the 
production environment. 

In the following diagram, we can see that there are multiple teams responsible for different 
aspects of data engineering resources. We can also see that the data engineering resources 
are duplicated across multiple different environments (which would generally be different 
AWS accounts), such as the development environment, test/QA environment, and 
production environment. Each organization may structure its teams and environments a 
little differently, but this is an example of the complexity of data engineering in real life: 

Figure 14.1 – Data engineering teams and environments

It is a challenge to work in these kinds of complex environments, and an organized 
approach is required to be successful. Part of understanding the bigger picture of data 
analytics is to understand these types of challenges and how to overcome them, as we will 
look at in this section. 
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Managing complex data environments with DataOps
DataOps is a set of processes and principles that can be applied to manage how changes to 
data infrastructure (including pipelines) are deployed to a production environment. The 
purpose of DataOps is to bring repeatability and reliability to the process of transforming 
data to increase its value, as well as to make it production-ready for use by data consumers 
in the shortest possible time and with the highest data quality possible. 

The opposite of DataOps would be entirely manual processes for making changes to data 
infrastructure that can vary each time a change is made, and with no formal controls for 
testing and approving changes that are made in a production environment, or for ensuring 
data quality. 

DataOps builds on the well-known DevOps processes and principles for software 
engineering and applies similar processes to data. We don't have time in this book to do 
a deep dive into DataOps, but we will introduce some of the important concepts here and 
encourage you to read up more on this topic.

Data infrastructure and pipelines as source control-managed code
One of the big benefits of running workloads in the cloud is the ability to automate all 
the aspects of infrastructure deployment. While traditionally, you may think of code as 
being software engineering code, such as mobile phone or web applications, infrastructure 
deployments can also be encapsulated in code. 

Infrastructure as Code (IaC) refers to the process of using code, or definition 
templates, to control the deployment and configuration of infrastructure. In AWS, the 
AWS CloudFormation (CFN) service uses template files to specify the definition and 
configuration of infrastructure that you want to deploy to an AWS account. 

With CloudFormation, you create a template file (using either YAML or JSON formatted 
text) that specifies the details of the resources you want to deploy. 

For example, you can create a CFN template that can be used to automatically deploy the 
following resources into an AWS account:

• An S3 bucket that is configured to block public access

• An EventBridge rule to monitor files being written to that bucket and triggers a 
Lambda function when a new file is written

• An SNS topic that is used for sending failure notifications
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• A Lambda function that validates the new file that is received, and then launches a 
Step Function state machine

• A state machine that launches a Glue job to process the file, which then runs a Glue 
crawler to update the Glue catalog and sends an SNS notification if anything fails

Once you have created the template definition file, you can commit that file to a source 
code repository, such as AWS CodeCommit, Azure DevOps (ADO), BitBucket, or 
GitLab. The source code repository enables other team members to access and modify 
the template file you committed, and the source code system helps manage changes and 
conflicts in different versions of the template file.

In the same way, code that's used for data transformation jobs (such as Python, PySpark, 
or Scala code) or orchestration jobs (such as Step Function state machine definition files) 
can also be committed to a source control repository. 

Continuous integration/continuous delivery
Continuous integration (CI) refers to automated processes that are run when a new 
version of a file is committed to a source control repository. These automated processes 
are used to build the code when required (such as building a JAR file) and integrate the 
newly committed code into existing code that makes up the target system.

For example, when a new Python file is committed to the source control repository, 
automated tests can be done to validate that the code in the pipeline meets certain quality 
standards, syntax style requirements, and more. At this stage, unit tests can also be run 
to test the quality of the code (a simple test to make sure that the code works as expected 
– such as ensuring that a specific function returns the expected output, based on a given 
input). 

Some organizations prefer to run the automated test process on every commit to the 
repository, and in others, the tests will only be run when a pull request is raised to merge 
new code from a developer's branch into a main branch of the repository.

Continuous delivery (CD) refers to the process of automatically deploying code changes 
into target environments, generally with additional automated end-to-end testing. For 
example, after code is merged from a developer's branch into a main branch of the 
repository, the full repository may be deployed into a test environment. In this test 
environment, automated tests will run that do end-to-end testing (such as ingesting files, 
running transformation pipelines, and validating output files). 
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While in some cases, CD processes may be triggered whenever a pull request finishes 
merging code from developer branches into the main repository, some organizations 
prefer to kick off this process manually (although in this case, it could not strictly be called 
CD). 

For example, an organization may choose to do a once-daily, or even weekly, deployment 
of all merged code changes into the test environment. Once testing has been completed, 
they will then manually kick off the process to deploy the updated code into the 
production environment. However, the processes to deploy the code and perform 
validation testing will still be automated. There will also be automated processes to roll 
back the changes to the previous version in case of failure. 

DataOps brings source control repositories and CI/CD processes together as part of an 
agile approach to developing and deploying data infrastructure, transformation pipelines, 
and orchestration. The teams that develop the code (whether transformation code or 
infrastructure code) are also responsible for overseeing the process of deploying code to 
the production environment and managing any issues that arise.

We have only briefly introduced the core concepts of DataOps, but there is much more to 
learn, and there are many good online resources that can enable you to dive deeper into 
this topic. 

In the next section, we will look at some real-life examples of complex data engineering 
pipelines. 

Examining examples of real-world data 
pipelines
The data pipeline examples that we have used in this book have been based on common 
types of transformations and pipelines, but they have been relatively simple examples. As 
you can imagine, in large organizations, the types of data pipelines that are built can be a 
lot more complex and may end up processing extremely large sets of data.

In this section, we will examine two examples of more complex data engineering pipelines 
from two very well-known organizations – Spotify and Netflix. Both of these companies 
have public blogs that cover software and data engineering, and the details provided about 
their pipelines in this section have been taken from the public information that's been 
made available in a variety of blog posts and articles. 
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A decade of data wrapped up for Spotify users
Every year, for the past few years, the music streaming service Spotify has used the 
extensive data they have on their user's listening history to generate interesting stats 
for each user. This information is made available to each user at the end of the year and 
includes information such as how many minutes of Spotify audio they streamed that year, 
as well as their top artist, top track, and top genre for the year.

This information is marketed to users as Spotify Wrapped, which is a massive 
undertaking for multiple teams at Spotify, including marketing, frontend app engineering, 
and, of course, data engineering.  

While Spotify has been presenting the Spotify Wrapped feature for several years, in 2019, 
they decided to add a new feature by reporting on a user's listening trends for each year 
of the past decade (2010 – 2019). In an official Spotify blog post, Spotify Unwrapped: 
How we bought you a decade of data (https://engineering.atspotify.
com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-
of-data/), the Spotify data engineering team revealed some of the behind-the-scenes 
work they did to aggregate user data by year, over 10 years. 

In this blog post, the data engineering team talks about some challenges they faced with 
the wrapped project in 2018, and how they had to work closely with Google (their cloud 
provider) to be able to achieve the required processing scale. For 2019, they were planning 
to do something similar to 2018, but they had more users (totaling 248 million monthly 
active users) and were planning to do this for 10 years of listening history. As a result, they 
used the lessons they had learned from their 2018 experience to modify their approach for 
2019.

Spotify considers each statistic they want to report for an individual user (such as top 
artist or top track) as a separate data story. So, to meet the scale requirements for a decade 
of data, they decided to persist intermediate data and final data for Spotify Wrapped 
2019 in Google BigTable (a NoSQL database that is somewhat similar to Amazon 
DynamoDB). For every Spotify user, they had a row in BigTable with a column for each 
data story, for each year of the decade. This was a significant change from how they had 
processed and collected different data stories for each user in previous years, but this led 
to a significantly improved process as data was now pre-grouped and collated per user in 
BigTable.

They could then write separate jobs for most data stories (decoupling the data stories 
from each other) and run these individually, but could also run multiple different data 
story jobs in parallel. The output of each of these data story jobs would then be saved to 
the same userid row in BigTable. End-of-decade top statistics could then be aggregated 
directly from the data in BigTable.

https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-of-data/
https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-of-data/
https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-of-data/
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The key takeaways that we can learn from this example are as follows:

• It is good to iterate on data engineering pipelines and continually reevaluate the 
architecture and approach you use to identify better ways to do things.

• Breaking down large jobs into smaller, decoupled jobs can lead to improved 
efficiencies. Keep a modular design for your jobs and avoid the temptation to create 
a single job that does everything.

• Be versatile and flexible in the tools you use. While we did not have space to cover 
NoSQL databases in any significant way in this book, a NoSQL database may be an 
ideal target for storing some of the output from your big data processing jobs. For 
example, DynamoDB was designed to handle billions of rows of data in a table, as 
well as enable extremely fast access to individual rows from that large dataset. 

Data engineers are often challenged to come up with innovative new ways to draw insights 
out of extremely large datasets, as demonstrated in this real-world example from Spotify. 
Now, let's look at another real-life data processing example, this time from Netflix.

Ingesting and processing streaming files at Netflix 
scale
Netflix, the world's leading streaming video platform with over 200 million subscribers 
worldwide, predominantly uses AWS for its compute infrastructure. As you can imagine, 
it takes a lot of compute power and many different microservices and applications to 
support a user base of that size. 

Monitoring and understanding how network traffic flows between all the different Netflix 
microservices, across many separate AWS accounts, is key for the following:

• Maintaining a resilient service

• Understanding dependencies between services

• Troubleshooting when things do go wrong

• Identifying ways to improve the user experience 

One of the features of the Amazon Virtual Private Cloud (VPC) service is the ability to 
generate VPC FlowLogs, which capture details on network traffic between all network 
interfaces in a VPC (a private cloud-based network environment in an AWS account). 
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However, most AWS services make use of dynamic IP addresses, meaning that the IP 
address that's used by a system can frequently change. So, while VPC FlowLogs provide 
rich information on network communications between IP addresses, if you don't know 
which applications or services had the IP addresses being reported on at that time, the 
flow logs are largely meaningless. 

Enriching VPC FlowLogs with application information
To have data that was meaningful, Netflix determined that they needed to enrich VPC 
FlowLogs with information about which application was using a specific IP address at the 
point in time recorded in the VPC flow log. To capture this information, Netflix created 
an internal system called Sonar that uses CloudWatch Events, Netflix Events, API calls, 
and various other methods to capture a stream of IP change events. 

In 2017, AWS featured the Netflix solution for this in a case study on their website titled 
Netflix & Amazon Kinesis Data Streams Case Study (https://aws.amazon.com/
solutions/case-studies/netflix-kinesis-data-streams/). In this case 
study, it was explained that Netflix used a large Kinesis Data Streams cluster (of up to 
1,000 shards) to process incoming VPC FlowLogs. An internal Netflix application known 
as Dredge was created to read incoming data from the Kinesis Data Stream, as well as 
enrich the VPC flow log data with application metadata from the Sonar stream of IP 
change events, identifying the applications or microservices involved with each VPC flow 
log record. This enriched data was then loaded into an open source, high-performance, 
real-time analytics database called Druid, where users could efficiently analyze network 
data for troubleshooting and to gain improved insights into network performance. 

Amazon VPC enhancements and changing the architecture

In the cloud, things change frequently, and AWS is constantly enhancing its services 
and adding additional services in response to customer feedback. In August 2018, AWS 
enhanced the VPC Flow Logs service so that logs could be delivered directly to Amazon 
S3, without needing to be processed via Kinesis first. 

In May 2020, Netflix posted a public blog post titled How Netflix is able to enrich VPC 
Flow Logs at Hyper Scale to provide Network Insight (https://netflixtechblog.
com/hyper-scale-vpc-flow-logs-enrichment-to-provide-network-
insight-e5f1db02910d). This blog post shows how Netflix has changed its 
architecture to make the best use of the updated functionality in the VPC Flow Logs 
feature.

https://aws.amazon.com/solutions/case-studies/netflix-kinesis-data-streams/
https://aws.amazon.com/solutions/case-studies/netflix-kinesis-data-streams/
https://netflixtechblog.com/hyper-scale-vpc-flow-logs-enrichment-to-provide-network-insight-e5f1db02910d
https://netflixtechblog.com/hyper-scale-vpc-flow-logs-enrichment-to-provide-network-insight-e5f1db02910d
https://netflixtechblog.com/hyper-scale-vpc-flow-logs-enrichment-to-provide-network-insight-e5f1db02910d
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In this blog post, Netflix talks about a common pattern that they have for processing 
newly uploaded S3 files. When a new file is uploaded to S3, it is possible to configure an 
action to take place in response to the newly uploaded file (as we did in Chapter 3, The 
AWS Data Engineer's Toolkit, where we triggered a Lambda function to transform a CSV 
file into Parquet format whenever a new CSV file was uploaded to a specific S3 bucket 
prefix). 

Netflix commonly uses this pattern to write details of newly uploaded files to an Amazon 
SQS queue, and they can then read events from the queue to process the newly arrived 
files. This enables them to decouple the S3 event from the action that they wish to perform 
in response to this event. 

In this case, Netflix intended to read through the entries on the SQS queue and use the 
file size information included in the event notification to determine the number of newly 
ingested VPC flow log files to process in a batch (which they refer to as a mouthful of 
files). They intended to use an Apache Spark job that would enrich the VPC flow log with 
application metadata based on the IP addresses recorded in each record. They would tune 
the Apache Spark job to optimally process a certain amount of data, which is why they 
would read the file size information contained in the SQS messages to create an optimally 
sized mouthful of files to send to the Spark job.

With the Amazon SQS service, messages are read from the queue and processed. If the 
processing is successful, the processed messages are deleted from the queue. During 
this processing time, the messages are considered to be in flight and will be hidden from 
the queue so that no other application attempts to process the same files. If something 
goes wrong and the files are not successfully processed and deleted from the queue, the 
messages will become visible again after a certain amount of time (known as the visibility 
timeout period) so that they can be picked up by an application again for processing. 

In the case of Netflix, they would send a mouthful of files to an Apache Spark job, and 
once the Spark job successfully processed the messages, the messages would be deleted 
from the queue.

However, the Amazon SQS service has a limit on the number of files that can be 
considered to be in flight at any point (the default quota limit is 120,000 messages). Netflix 
found that because the Spark jobs would take a little while to process the files, they were 
regularly ending up with 120,000 or more messages in flight. As a result, they came up 
with an innovative way to work around this by using two different SQS queues.
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Working around Amazon SQS quota limits
The re-architected Netflix solution reads the SQS queue containing the S3 events and runs 
a process to create a mouthful of files (evaluating each file's size to create a batch that is 
the optimal size for their Spark jobs). This process can complete very quickly as it does not 
need to read or process the files, just read the metadata contained in the SQS messages to 
group a mouthful of files to be processed by a Spark job.

The output of the first job writes a message to a second SQS queue, and each message 
contains the list of files in a single mouthful. While the blog does not provide any 
indication of how many files may usually be contained in a mouthful of files, if we 
assumed it was, on average, around 10 files, it would reduce the number of messages on 
the second SQS queue by 90%. If a mouthful of files was, on average, 100 files, then the 
number of messages written to the secondary SQS queue would be reduced by 99%.

The Netflix blog does not provide enough details to be able to describe the exact 
architecture of the solution, but the following diagram shows an example of a potential 
architecture for this solution (this may not be the architecture that Netflix implemented):

Figure 14.2 – A potential architecture for VPC Flow Logs processing and enriching

In the preceding diagram, we have VPC Flow Logs configured to write to an Amazon 
S3 bucket in each account where we want to monitor network activity. We have also 
configured an EventBridge rule in each account that analyzes CloudTrail log files to pick 
up S3 write events from the VPC flow log bucket. When a write event is detected in the 
CloudTrail log file, an action is taken to write the S3 event message to an EventBridge bus 
in a central account.
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In the central account, an EventBridge rule detects the S3 events from the source accounts 
and takes an action to write each S3 event message to an Amazon SQS queue. A Lambda 
function has been configured that reads messages from the Amazon SQS queue and uses 
the file size metadata contained in the message to create a batch of files of an optimal size 
(called a mouthful of files by Netflix). The list of files in the batch is written to a separate 
SQS queue as a single message. This Lambda function can complete and remove messages 
from the first SQS queue very quickly as it is only processing metadata in the SQS 
messages, not reading/writing S3 files, and running a Glue job to enrich the files. 

A separate Lambda function processes the much smaller number of messages in the 
secondary SQS queue by reading the list of files in the mouthful. The list of files is passed 
to a Glue job that runs Spark code to enrich the VPC Flow Logs files in this mouthful with 
data from other sources. Enriched files are written to S3 and/or a database system such as 
RDS.

The key takeaways that we can learn from this example are as follows:

• It is important to know what the AWS quotas/limits are for the services that you 
use. Some limits can be raised by contacting AWS support, but some limits are hard 
limits that cannot be increased.

• It is important to stay up to date with what's new announcements from AWS. AWS 
regularly launches new services, as well as major new features, for existing services. 

As shown in this blog post, sometimes, new features from AWS can help you significantly 
simplify existing architectures and reduce costs (based on this blog post, it would seem 
that Netflix may no longer need their 1,000-shard Kinesis Data Streams cluster to process 
VPC FlowLogs). 

In the next section, we will look at upcoming trends and what the future may hold for data 
engineers.

Imagining the future – a look at emerging 
trends
Technology seems to progress at an increasing velocity. For decades, relational databases 
from vendors such as Oracle were the primary technology for managing all data. Today, 
there is a wide range of different database types that can be used, depending on the use 
case (such as graph databases for highly connected datasets, or NoSQL databases for low-
latency reading and writing for very large tables). 
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It was also not all that long ago that Hadoop MapReduce was the state-of-the-art 
technology for processing very large datasets, but today, most new projects would choose 
Apache Spark over a MapReduce implementation. And even Apache Spark itself has 
progressed from its initial release, with Spark 3.0 being released in June 2020. We have 
also seen the introduction of Spark Streaming, Spark ML, and Spark GraphX for 
different use cases. 

No one can tell for certain what the next big thing will be, but in this section, we will look 
at a few emerging concepts and technologies, as well as expected trends, that are likely to 
be of relevance to data engineers.

ACID transactions directly on data lake data
A trend that is developing currently is the atomicity, consistency, isolation, durability 
(ACID) properties for data lake tables, which provide consistency for dataset transactions 
(concurrent reads and writes). In addition, a lot of these new technologies incorporate the 
ability to update or delete individual records from a table in the data lake. Before these 
new technologies were introduced, the lack of ACID transactions and the ability to update 
and delete records in data lakes was a significant challenge, and each implementation of a 
data lake would need to create approaches to work around this challenge. 

We discussed these emerging technologies in more detail in Chapter 7, Transforming Data 
to Optimize for Analytics. Refer to the Modern approaches – the transactional data lake 
section for more information on these new technologies, including Databricks Delta 
Lake, Amazon Lake Formation Governed Tables, and Apache Hudi. 

More data and more streaming ingestion
A trend that is not new, but that is expected to continue over the next few years, is that of 
the increasing generation of new data. Not all newly generated data will be stored for long 
periods, but forecasts do indicate continued growth in stored data. 

It is expected that more and more organizations will also adopt data lakes, in addition to 
existing data warehouse solutions. And with drivers such as increased ML and AI projects, 
you can expect the amount of data to be ingested, cleansed, and processed to continue 
increasing significantly. 

Another trend we are seeing with data lakes is more and more data ingestion sources 
becoming streaming-based, rather than batch-based. Batch-based ingestion and 
processing are unlikely to go away anytime soon, but over time, streaming data is likely to 
become a larger percentage of ingested data compared to batch ingestion. 
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Some of the drivers of this increase in streaming data sources include the following:

• IoT data, such as data from sensors and wearable devices

• Point-of-Sale (PoS) devices that deliver real-time transaction data to data lakes

• Event-based workflows, such as the Netflix example of a stream of recorded 
changes to IP addresses

• Ingestion of real-time internet-based data, such as social media feeds, product 
reviews, weather forecasts, website scraping, and other sources

Refer to Chapter 6, Ingesting Batch and Streaming Data, for more information on AWS 
services for data ingestion. Also, consider doing a deeper dive into popular streaming 
technologies such as Amazon Kinesis, Spark Streaming, Apache Kafka, and Apache Flink. 

Multi-cloud
While this book focuses on data engineering using AWS services, there is a trend for many 
larger companies to adopt a multi-cloud strategy, where they use more than one cloud 
provider for services. 

Having a multi-cloud strategy can introduce numerous challenges across information 
technology (IT) teams, including challenges for data engineering teams that need to 
work with data stored with different cloud providers. Another challenge for IT teams and 
data engineers is the need to learn the different service implementations for each cloud 
provider (for example, AWS, Azure, and Google Cloud each offer a managed Apache 
Spark environment, but the implementation details are different for each provider). 

There are many different reasons for organizations wanting to adopt a multi-cloud 
strategy, but the pros and cons need to be carefully thought through. However, in many 
cases, data engineers will have no option but to take up the challenge of becoming 
comfortable with working in multiple different cloud provider environments. 

Decentralized data engineering teams, data platforms, 
and a data mesh architecture 
Since the dawn of computer departments in companies, there has been a constant back 
and forth between centralizing processing and decentralizing processing. 
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At the start, mainframes were a good example of centralized IT systems, where all 
processing was done by a central team. Then, in the '90s, there was a move to have 
departmental servers and systems, with decision-making done at the department level. 
This led to siloed systems and databases, which led to the introduction of data warehouses 
(and later, data lakes), to bring data back into a central place. 

In many cases, data engineers would work for a centralized team, and they would be 
responsible for ingesting data from all the departments into the central data warehouse, as 
well as any processing that was required of the data. They could then load a subset of the 
processed data back into a data mart, which data analysts in the departmental teams could 
then work with to analyze the data. 

But, once again, there is a noticeable trend to move this centralized control of data back to 
a decentralized model, although this time with a twist.

In May 2019, Zhamak Dehghani, a principal technology consultant at ThoughtWorks, 
wrote a blog post (https://martinfowler.com/articles/data-monolith-
to-mesh.html) that got a lot of people rethinking the approach of a centralized data 
engineering team. In this blog post, Dehghani introduces the concept of a dash mesh 
architecture.

We don't have the space to do a deep dive into this architecture shift in this book, so you 
are encouraged to read the original blog post mentioned previously, as well as subsequent 
blog posts by Dehghani, on this topic. However, we will outline the basic concepts here.

Domain-orientated data decomposition and ownership
In the original blog post, Dehghani argues that instead of data flowing from business 
domains into a centrally owned data lake, individual business domains should host and 
serve analytic information related to their domain to others in the business. 

When referring to a business domain here, we are talking about the team in the business 
that owns the relevant operational data. For example, in a real-estate business, you may 
have a team that is responsible for all property listings. They gather the details for each 
property and make this operational data available to other parts of the business through 
an API (such as a getListingPrice API call, which returns the listing price of a 
property). 

Traditionally, those teams may have then made the database that contains all the 
listings available as a source for a centralized data engineering team to ingest from. This 
centralized data engineering team would then be responsible for ingesting from the 
database, ensuring data quality, creating daily snapshots of current listings, aggregating 
listing data, and more. 

https://martinfowler.com/articles/data-monolith-to-mesh.html
https://martinfowler.com/articles/data-monolith-to-mesh.html
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However, Dehghani makes the point that the team that owns the operational data should 
also be the owner of the analytics data related to that domain. This could involve, for 
example, making a daily snapshot of all the listings available to other teams, or creating a 
stream of change events related to listings (new listing, removed listing, modified listing, 
and so on). 

Data and product thinking convergence
For the data mesh model to be successful, Dehghani proposes that domain data teams 
need to apply product thinking to the datasets they provide. That is, they should look 
at the analytic data they create for others in the business to consume, as a product they 
are offering. They need to learn about what their consumers want out of the data they 
generate (much like a product manager would solicit feedback and requirements from 
customers to develop their product roadmap). 

These domain data teams also need to ensure that they make their data discoverable by 
other data consumers in the business, and accessible in a way that meets organizational 
standards. The domain data team should also provide metadata, such as schema 
information, to best enable their data consumers to work with the provided data assets. 

To achieve this, data domain teams will need new roles, such as data product owners and 
data engineers, on the domain team (rather than just having centralized data engineers 
that do not have specific domain knowledge). 

Data and self-serve platform design convergence
While this approach uses a decentralized design for the ownership of domain data, this 
does not mean that a centralized data processing platform cannot be used with a data 
mesh architecture.

You don't want each domain team creating infrastructure for data engineering processing, 
data storage, orchestration, and so on. Therefore, you may still have a centralized team 
that builds data infrastructure as a platform. However, this platform should be data 
domain agnostic – that is, it should not include any domain-specific logic. This platform 
should also provide data services to domain teams in a way that they can self-serve, so 
they should not need the help of the data platform team to create a new data engineering 
pipeline. 
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The centralized data platform should do things such as the following:

• Providing big data processing systems, such as a managed Spark environment that 
domain data teams can easily access

• Providing a central catalog where domain data teams can publish their available 
datasets

• Implementing corporate governance standards and controls (such as how to identify 
and manage PII data, tokenize data, and so on)

• Providing an access control system that allows other domain teams to request access 
to a specific dataset, get approval for access from the data owner, and then grant 
access to the domain data

This overview of data mesh concepts does not cover all the aspects of each concept, so it 
is strongly encouraged that you read the original blog post, as well as other articles and 
resources, related to the data mesh architecture. 

Implementations of the data mesh architecture
As with most new concepts or approaches that are proposed, the actual implementation 
of the concept in the real world may vary greatly. As organizations look to implement or 
migrate to a data mesh architecture, some organizations may focus on specific aspects of 
the architecture initially or may implement a simpler version of the architecture. 

For example, an organization may use a centralized team to create a data platform that 
very much resembles a traditional data lake. However, instead of centralizing a team of 
data engineers, they will encourage each business unit that wants to use the platform to 
employ its own team of data engineers. 

The central platform team will provide Amazon S3 storage buckets, as well as their 
associated access controls, for each business unit team. They will also provide a framework 
for ingesting data into S3 using DMS, and for processing and orchestrating data pipelines 
using Lambda, Glue, and Step Functions. They will provide access to tools such as 
Amazon Athena for ad hoc data exploration and AWS Lake Formation for centralized 
cataloging. 
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Each business unit will be responsible for processing raw data and transforming and 
enriching the data. If a different business unit wants access to that enriched data, the 
centralized team will have created forms in ServiceNow (a software solution for managing 
business workflows) that can be used to request access to the data. ServiceNow will route 
the request for access to the business unit that owns the data, and when the request is 
approved, the centralized team will have an automated process to grant access. Each 
business unit may use a separate AWS account, so the automated process for granting 
access may leverage AWS Lake Formation cross-account access functionality to grant 
access to the target business unit account.

While this solution may not reflect a data mesh architecture in the same way that 
Dehghani envisioned it, it still employs concepts of a data mesh architecture. Primarily, 
it still achieves one of the important goals of a data mesh – moving data ownership and 
processed domain data out of centralized teams and into domain teams, while creating a 
domain-agnostic centralized data platform. 

Having looked at some practical implementations of real-world data engineering – 
including DataOps for pipeline deployment and management, examples of real-world data 
pipelines, and emerging trends and concepts – we will now move on to our final hands-on 
section of this book.

Hands-on – cleaning up your AWS account
In the hands-on section of Chapter 1, An Introduction to Data Engineering, we went 
through how to create a new AWS account. If you created a new account at that point, 
and have used that account to work through the exercises in this book, you may want to 
delete that account, now that you have reached the final chapter of this book. We'll include 
instructions on how to do that here. 

However, if this was your first AWS account, you may decide that you want to keep the 
account open so that you can continue to explore and learn more about AWS using other 
resources. If that is you, we'll include some instructions on how to check your account 
billing to detect which resources are still being charged for.
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Reviewing AWS Billing to identify the resources being 
charged for
In this section, we will go through how to review your AWS billing console to determine 
which resources you are being charged for:

1. Log in to the AWS Billing console using the following link: https://console.
aws.amazon.com/billing/home.

2. On the right-hand side of the Billing & Cost Management Dashboard page, there 
will be a visual showing Month-to-Date Spend by Service:

Figure 14.3 – Billing & Cost Management Dashboard
In the preceding screenshot, you can see that I have spent $12.96 so far this month, 
while at the bottom left, you can see that the forecast for the full month is a total of 
$14.82. 

I did not cancel my QuickSight subscription after completing the exercises in 
Chapter 12, Visualizing Data with Amazon QuickSight, and my free 30-day trial 
ended. If I wanted to cancel my QuickSight subscription now to avoid any future 
charges after this month, I could follow the instructions in Canceling your Amazon 
QuickSight subscription and closing the account (https://docs.aws.amazon.
com/quicksight/latest/user/closing-account.html).

https://console.aws.amazon.com/billing/home
https://console.aws.amazon.com/billing/home
https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html
https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html
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3. I can also see charges for Elastic Compute Cloud and Relational Database Service. 
I am not sure what these charges relate to, so to investigate this further, I can click 
on Bill Details at the top right, above the pie chart visualization of my spending for 
this month:

Figure 14.4 – AWS Bill Details view
Using the Bill Details view, I can expand the Elastic Compute Cloud (EC2) and 
Relational Database Service (RDS) sections for more information.

Here, I can see that the EC2 charges were incurred in the US-East (Ohio) region 
and that the charges relate to General Purpose SSD provisioned storage. I can now 
go to the EC2 console, where I will see that I have four EC2 instances that I have 
stopped (so they are not incurring any charges) but that each of them has attached 
disk volumes that continue to incur costs, even when the instances are stopped. If 
I wanted to ensure that I do not get billed for these in the future, I could terminate 
the instances, which will permanently delete the volumes.
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Looking back at the Bill Details screen, I can see that the RDS charges all relate 
to backups that I have created. Even though I terminated the RDS instances I had 
previously launched, I chose to create and store a backup copy of the databases on 
termination, so I will continue to incur costs related to those backups. If I wanted to 
stop any future billing, I could delete the RDS snapshots if they're no longer needed. 

If I canceled my QuickSight subscription, terminated my EC2 instances, and deleted my 
RDS snapshots, I could continue using my AWS account without incurring additional 
charges for those items. However, it is strongly recommended that you regularly 
check the billing console and set billing alarms to alert you of spending above the 
limit you've set. For more information, see https://docs.aws.amazon.com/
AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_
with_cloudwatch.html.

Closing your AWS account
If you decide that you want to close your AWS account, you can do so with the following 
steps.

Before proceeding, make sure that you have read the Considerations before you close your 
AWS account section of the AWS documentation at https://docs.aws.amazon.
com/awsaccountbilling/latest/aboutv2/close-account.html. Now, let's 
get started:

1. Log into your AWS account as the root user of the account (that is, using the email 
address and password you registered when you opened the account). Use the 
following link to log in: https://console.aws.amazon.com.

If you're prompted for an IAM username and password, click on the link for Sign in 
using root user email.

2. Enter your root user email address and password when prompted.
3. Open the billing console with the following link: https://console.aws.

amazon.com/billing/home#/.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/close-account.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/close-account.html
https://console.aws.amazon.com
https://console.aws.amazon.com/billing/home#/
https://console.aws.amazon.com/billing/home#/
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4. In the top-right corner, select the dropdown next to your account number (or 
account alias, if set). From this dropdown, select My account:

Figure 14.5 – Accessing the My Account screen in the AWS Management Console

5. Scroll to the bottom of the My Account page. Read and ensure you understand 
the text next to each checkbox, and if you understand and agree, click the relevant 
checkboxes. Then, click Close Account: 

Figure 14.6 – The AWS Close Account confirmation page

6. In the pop-up box, click Close Account to confirm that you want to close your 
account. 
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Subsequently, if you change your mind about closing your account, it may still be possible 
to reopen your account within 90 days of choosing to close it. To do so, contact AWS 
support.

Summary
Data engineering is an exciting role to be in and promises to continue to offer interesting 
challenges, constant learning opportunities, and increasing importance in helping 
organizations draw out the maximum value that they can from their data assets. And the 
cloud is an exciting place to build data engineering pipelines. 

Also, AWS has a proven track record in listening to their customers and continuing to 
innovate based on their customer requirements. Things move quickly with AWS services, 
so hold on tight for the ride. 

If you're new to data engineering on AWS, then this book is just the start of what could be 
a long and interesting journey for you. There is much more to be learned than what could 
ever be captured in a single book, or even a volume of books. Much of what you will learn 
will be through practical experience and things you learn on the job, as well as from other 
data engineers. 

But this book, and other books like it, as well as resources such as podcasts, YouTube 
videos, and blogs, are all useful vehicles along your journey. Let the end of this book be 
just the end of the first chapter of your learning journey about data engineering with AWS. 
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