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Preface

We live in a world where the amount of data being generated is constantly increasing. While a 

few decades ago, an organization may have had a single database that could store everything they 

needed to track, today most organizations have tens, hundreds, or even thousands of databases, 

along with data warehouses, and perhaps a data lake. And these data stores are being fed from an 

increasing number of data sources (transaction data, web server log files, IoT and other sensors, 

and social media, to name just a few). 

It is no surprise that we hear more and more companies talk about being data-driven in their 

decision making. But in order for an organization to be truly data-driven, they need to be masters 

of managing and drawing insights from these ever-increasing quantities and types of data. And 

to enable this, organizations need to employ people with specialized data skills. 

Doing a search on LinkedIn for jobs related to data returns nearly 800,000 results (and that is 

just for the United States!). The job titles include roles such as data engineer, data scientist, and 

data architect. 

This revised edition of the book includes updates to all chapters, covering new features and services 

from AWS, as well as three brand-new chapters. In these new chapters, we cover topics such as 

building transactional data lakes (using open table formats such as Apache Iceberg), implementing 

a data mesh approach on AWS, and using a DataOps approach to building a modern data platform. 

While this book will not magically turn you into a data engineer, it has been designed to accelerate 

your journey toward data engineering on AWS. By the end of this book, you will not only have 

learned some of the core concepts around data engineering, but you will also have a good under-

standing of the wide variety of tools available in AWS for working with data. You will also have 

been through numerous hands-on exercises, and thus gained practical experience with things 

such as ingesting streaming data, transforming and optimizing data, building visualizations, and 

even drawing insights from data using AI.
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Who this book is for
This book has been designed for two groups of people; firstly, those looking to get started with 

a career in data engineering, and who want to learn core data engineering concepts. This book 

introduces many different aspects of data engineering, providing a comprehensive high-level un-

derstanding of, and practical hands-on experience with, different focus areas of data engineering. 

Secondly, this book is for those people who may already have an established career focused on 

data, but who are new to the cloud, and to AWS in particular. For these people, this book provides 

a clear understanding of many of the different AWS services for working with data, and gives 

them hands-on experience with a variety of these AWS services.

What this book covers
Each of the chapters in this book takes the approach of introducing important concepts or key 

AWS services, and then providing a hands-on exercise related to the topic of the chapter: 

Chapter 1, An Introduction to Data Engineering, reviews the challenges of ever-increasing dataset 

volumes, and the role of the data engineer in working with data in the cloud.

Chapter 2, Data Management Architectures for Analytics, introduces foundational concepts and 

technologies related to big data processing. 

Chapter 3, The AWS Data Engineer’s Toolkit, provides an introduction to a wide range of AWS 

services that are used for ingesting, processing, and consuming data, and orchestrating pipelines. 

Chapter 4, Data Governance, Security, and Cataloging, covers the all-important topics of keeping 

data secure, ensuring good data governance, and the importance of cataloging your data. 

Chapter 5, Architecting Data Engineering Pipelines, provides an approach for whiteboarding the 

high-level design of a data engineering pipeline. 

Chapter 6, Ingesting Batch and Streaming Data, looks at the variety of data sources that we may 

need to ingest from, and examines AWS services for ingesting both batch and streaming data. 

Chapter 7, Transforming Data to Optimize for Analytics, covers common transformations for opti-

mizing datasets and for applying business logic. 

Chapter 8, Identifying and Enabling Data Consumers, is about better understanding the different 

types of data consumers that a data engineer may work to prepare data for. 
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Chapter 9, A Deeper Dive into Data Marts and Amazon Redshift, focuses on the use of data warehouses 

as a data mart and looks at moving data between a data lake and data warehouse. This chapter 

also does a deep dive into Amazon Redshift, a cloud-based data warehouse. 

Chapter 10, Orchestrating the Data Pipeline, looks at how various data engineering tasks and trans-

formations can be put together in a data pipeline, and how these can be run and managed with 

pipeline orchestration tools such as AWS Step Functions. 

Chapter 11, Ad Hoc Queries with Amazon Athena, does a deeper dive into the Amazon Athena service, 

which can be used to run SQL queries directly on data in the data lake, and beyond. 

Chapter 12, Visualizing Data with Amazon QuickSight, discusses the importance of being able to 

craft visualizations of data, and how the Amazon QuickSight service enables this. 

Chapter 13, Enabling Artificial Intelligence and Machine Learning, reviews how AI and ML are in-

creasingly important for gaining new value from data, and introduces some of the AWS services 

for both ML and AI. 

Chapter 14, Building Transactional Data Lakes, looks at new table formats (including Apache Iceberg, 

Apache Hudi, and Delta Lake) that bring traditional data warehousing type features to data lakes. 

Chapter 15, Implementing a Data Mesh Strategy, discusses a recent trend, referred to as a data mesh, 

that provides a new way to approach analytical data management and data sharing within an 

organization.

Chapter 16, Building a Modern Data Platform on AWS, introduces important concepts, such as 

DataOps, which provides automation and observability when building a modern data platform. 

Chapter 17, Wrapping Up the First Part of Your Learning Journey, concludes the book by looking at 

the bigger picture of data analytics, including real-world examples of data pipelines, and a review 

of emerging trends in the industry.

To get the most out of this book
Basic knowledge of computer systems and concepts, and how these are used within large orga-

nizations, is helpful prerequisite knowledge for this book. However, no data engineering-specific 

skills or knowledge are required. Also, a familiarity with cloud computing fundamentals and 

core AWS systems will make it easier to follow along, especially with the hands-on exercises, but 

detailed step-by-step instructions are included for each task. 
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Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Data-Engineering-with-AWS-2nd-edition. We also have other code bundles from our rich cat-

alog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. 

You can download it here: https://packt.link/gbp/9781804614426.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file 

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Include a 

WHERE Year = 2020 clause.”

A block of code is set as follows:

datalake_bucket/year=2023/file1.parquet 

datalake_bucket/year=2022/file1.parquet 

datalake_bucket/year=2021/file1.parquet 

datalake_bucket/year=2020/file1.parquet

When we wish to draw your attention to a particular part of a code block, the relevant lines or 

items are set in bold:

datalake_bucket/year=2023/file1.parquet

datalake_bucket/year=2022/file1.parquet

datalake_bucket/year=2021/file1.parquet

datalake_bucket/year=2020/file1.parquet

Note:

If you are using the digital version of this book, we advise you to access the code 

from the book’s GitHub repository (a link is available in the next section), rather 

than copying and pasting from the PDF or electronic version. Doing so will help you 

avoid any potential formatting errors when copying and pasting code.

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition
https://github.com/PacktPublishing/
https://packt.link/gbp/9781804614426
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Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, 

words in menus or dialog boxes appear in the text like this. For example: “In addition, you can 

use Spark SQL to process data using standard SQL.”

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of 

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do 

happen. If you have found a mistake in this book, we would be grateful if you reported this to us. 

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 

be grateful if you would provide us with the location address or website name. Please contact us 

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com
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Share your thoughts
Once you’ve read Data Engineering with AWS, Second Edition, we’d love to hear your thoughts! 

Please click here to go straight to the Amazon review page for this book and share your 

feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1804614424


Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook 

purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 

books directly into your application. 

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free 

content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804614426

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804614426




Section 1
AWS Data Engineering 
Concepts and Trends

In section one, we examine why data is so important to organizations today, and introduce foun-

dational concepts of data engineering, including coverage of governance and security topics. We 

also learn about the AWS services that form part of the data engineer’s toolkit, and get hands-on 

with creating an AWS account and using services such as Amazon S3, AWS Lambda, and AWS 

Identity and Access Management (IAM).

This section comprises the following chapters:

• Chapter 1, An Introduction to Data Engineering

• Chapter 2, Data Management Architectures for Analytics

• Chapter 3, The AWS Data Engineer’s Toolkit

• Chapter 4, Data Governance, Security, and Cataloging





1
An Introduction to Data 
Engineering

Data engineering continues to be a fast-growing career path and a role in high demand, as data be-

comes ever more critical to organizations of all sizes. For those that enjoy the challenge of putting 

together the “puzzle pieces” that build out complex data pipelines to ingest raw data, and then 

transform and optimize that data for varied data consumers, it can be a really rewarding career. 

In this chapter, we look at the many ways that data has become an important, and increasingly 

valuable, corporate asset. We also review some of the challenges that organizations face as they 

deal with increasing volumes of data, and how data engineers can use cloud-based services to 

help overcome these challenges. We then set the foundations for the hands-on activities in this 

book by providing step-by-step details on creating a new Amazon Web Services (AWS) account. 

Throughout this book, we are going to cover a number of topics that teach the fundamentals of 

developing data engineering pipelines on AWS, but we’ll get started in this chapter with these 

topics: 

• The rise of big data as a corporate asset

• The challenges of ever-growing datasets

• The role of the data engineer as a big data enabler

• The benefits of the cloud when building big data analytic solutions

• Hands-on – create or access an AWS account for following along with the hands-on ac-

tivities in this book
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Technical requirements
You can find the code files of this chapter in the GitHub repository using the following link: 
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/

main/Chapter01.

The rise of big data as a corporate asset
You don’t need to look too far or too hard to hear about the many ways that big data and data 

analytics are transforming organizations and having an impact on society as a whole. We hear 

about how companies such as TikTok analyze large quantities of data to make personalized rec-

ommendations about which video clip to show a user next. We also read countless articles about 

how the new generation of chatbots (like ChatGPT from OpenAI or Bard from Google) have been 

trained on massive datasets, and as a result, are able to have human-like conversations on a wide 

range of topics. We experience how companies like Amazon and Netflix are able to recommend 

products or videos we may be interested in, based on our purchase and viewing history. All of 

these companies have innovated and added customer value by performing complex analyses on 

very large datasets. 

We also see the importance of data in large companies, as demonstrated by those companies 

creating a new executive C-level position – the Chief Data Officer (CDO). According to an arti-

cle (https://hbr.org/2021/08/why-do-chief-data-officers-have-such-short-tenures) in 

the Harvard Business Review, the role of CDO was first established by Capital One (a technolo-

gy-driven U.S. bank) in 2002. By 2012, it was estimated that 12% of firms had a CDO according 

to a NewVantage Partners survey, and by 2021, this had grown to 65% of firms having a CDO. 

There is no doubt that data, when harnessed correctly and optimized for maximum analytic value, 

can be a game-changer for an organization. At the same time, those companies that are unable 

to effectively utilize their data assets risk losing a competitive advantage to others that do have 

a comprehensive data strategy and effective analytic and machine learning programs.

Organizations today tend to be in one of the following three states:

• They have an effective and modernized data analytics and machine learning program 

that differentiates them from their competitors.

• They are conducting proof of concept projects to evaluate how modernizing their analytic 

and machine learning programs can help them achieve a competitive advantage.

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter01
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter01
https://hbr.org/2021/08/why-do-chief-data-officers-have-such-short-tenures
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• Their leaders are having sleepless nights worrying about how their competitors are using 

new analytics and machine learning programs to achieve a competitive advantage over 

them.

No matter where an organization is in its data journey, if it has been in existence for a while, it 

has likely faced a number of common data-related challenges. Let’s look at how organizations 

have typically handled the challenge of ever-growing datasets. 

The challenges of ever-growing datasets
Organizations have many assets, such as physical assets, intellectual property, the knowledge 

of their employees, and trade secrets. But for too long, organizations did not fully recognize that 

they had another extremely valuable asset, and they failed to maximize the use of it – the vast 

quantities of data that they had gathered over time.

That is not to say that organizations ignored these data assets, but rather, due to the expense 

and complex nature of storing and managing this data, organizations tended to only analyze and 

keep a subset of their data. 

Initially, data may have been stored in a single database, but as organizations and their data 

requirements grew, the number of databases exponentially increased. Today, with the modern 

application development approach of microservices, companies commonly have hundreds, or 

even thousands, of databases. Faced with many data silos, organizations invested in data ware-

housing systems that would enable them to ingest data from multiple siloed databases into a 

central location for analytics. But due to the expense of these systems, there were limitations on 

how much data could be stored, and some datasets would either be excluded or only aggregate 

data would be loaded into the data warehouse. Data would also only be kept for a limited period 

of time, as data storage for these systems was expensive, and therefore, it was not economical to 

keep historical data for long periods. There was also a lack of widely available tools and compute 

power to enable the analysis of extremely large, comprehensive datasets.

As organizations continued to grow, multiple data warehouses and data marts would be im-

plemented for different business units or groups, and organizations still lacked a centralized, 

single-source-of-truth repository for their data. Organizations were also faced with new types 

of data, such as semi-structured or even unstructured data, and analyzing these datasets using 

traditional tools was a challenge.
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As a result, new technologies were invented that were better able to work with very large datasets 

and different data types. Hadoop was a technology created in the early 2000s at Yahoo as part of 

a search engine project that wanted to index 1 billion web pages. Over the next few years, Hadoop, 

and the underlying MapReduce technology, became a popular way for all types of companies 

to store and process very large datasets. However, running a Hadoop cluster was a complex and 

expensive operation requiring specialized skills. 

The next evolution for big data processing was the development of Spark (later taken on as an 

Apache project and now known as Apache Spark), a new processing framework for working with 

big data. Spark showed significant increases in performance when working with large datasets 

due to the fact that it did most processing in memory, significantly reducing the amount of read-

ing and writing to and from disks. Today, Apache Spark is often regarded as the gold standard for 

processing large datasets and is used by a wide array of companies.

In parallel with the rise of Apache Spark as a popular big data processing tool was the rise of the 

concept of data lakes – an approach that uses low-cost object storage as a physical storage layer 

for a variety of data types, Apache Hive as a central catalog of all the datasets, and makes that 

data available for processing with a wide variety of tools, including Apache Spark. AWS’s own 

website uses the following definition of data lakes:

Data lakes were great for centralizing data but were often run by a centralized team that would 

look to ingest data from all the data silos in an organization, transform and aggregate the data, 

and make it available centrally for use by other teams. While this was a definite improvement 

on having databases and data warehouses spread out with no central repository or governance, 

there was still room for improvement.

By centralizing all the data and having a single team manage this repository of data, the teams 

working to transform and extract additional value out of the data were often not the people most 

familiar with the business context behind the data. 

A data lake is a centralized repository that allows you to store all your structured 

and unstructured data at any scale. You can store your data as-is, without having 

to first structure the data, and run different types of analytics—from dashboards 

and visualizations to big data processing, real-time analytics, and machine learning 

to guide better decisions.
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To address this, Zhamak Dehghani (a data consultant working for Thoughtworks at the time) 

developed a new approach, which eventually became known as a data mesh. While we will cov-

er a brief introduction to data mesh architecture here, we will cover this topic in more detail in 

Chapter 15, Implementing a Data Mesh Architecture. 

With a data mesh architecture, the idea is to make the teams that generate the data responsible 

for creating an analytics version of the data, and then make that data easily accessible to the rest 

of the organization without needing to make multiple copies of the data. 

By 2022, this concept had gained widespread appeal, and many companies were working to im-

plement a data mesh approach for their data. Some took a limited view of what a data mesh was 

and considered it primarily a means of sharing data between teams without needing to physically 

move or copy the data. However, a full data mesh implementation went well beyond the technol-

ogy of how to share data. A data mesh implementation meant a change to the processes of how 

operational data was converted into analytical data, and along with it, the personas that were 

responsible for the data. A data mesh implementation was not just a technical implementation 

but rather a change to the culture and operation of teams within an organization. 

Whereas in many organizations, large-scale analytics had been done by a centralized team, with 

a data mesh approach, the team that owns an application that generates data must productize 

that data to make it available to the rest of the business. Much like DevOps had changed how 

development teams worked to create and support software, the data mesh approach meant that 

product teams needed to work differently in how they generated and shared analytical data. They 

would appoint a data product manager who would be responsible for the task of taking opera-

tional data and creating an analytics data product from that. For the product they created, they 

would take ownership of ensuring data quality, the freshness of data, communication around 

changes to the product (such as schema changes), and so on. They would effectively be product 

managers, outlining a roadmap for the data analytics product they would create, and they would 

be responsive to customer feedback on the data product. 

With a data mesh, there would still be a central data team, but this team would be responsible 

for creating a centralized data platform, which all the different data product teams could then 

use. So rather than being data engineers that transformed data, the centralized team would fo-

cus on being data platform engineers, creating a standardized platform that met best practices. 

They would then make this platform available to individual development teams to use in order 

to create and share their own data analytic products. 
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Having looked at how data analytics became an essential tool in organizations, let’s now look at 

the roles that enable maximizing the value of data for a modern organization. 

The role of the data engineer as a big data enabler
Amid the increasing recognition of data as a valuable corporate asset and the introduction of 

new technologies to store and process vast amounts of data, there has been an increase in the 

opportunities and roles available for data-related careers. 

Let’s look at a sample use case where a sales manager for a consumer goods organization wants to 

better understand which alternate products a customer considers before purchasing their product. 

In addition, they also want to have a better way of predicting product demand by category based 

on external factors, such as the expected weather.

Achieving the desired outcomes as specified by the sales manager will require bringing in data 

from multiple internal and external sources. Datasets that could be relevant to this scenario may 

include the following:

• Customer, product, and order relational databases

• Web server logs from the consumer-facing storefront

• Third-party sales data from online marketplaces where relevant products are sold (such 

as Amazon.com)

• Other relevant third-party datasets that may influence sales (for example, weather-re-

lated data)

Multiple teams would need to be involved in the project, with the following 3 roles playing a 

primary part in implementing the required solution: 

• Data engineer

• Data scientist

• Data analyst

Let’s take a look at how these three roles would contribute to this new project. 

Understanding the role of the data engineer
The role of a data engineer is to do the following:

• Design, implement, and maintain the pipelines that enable the ingestion of raw data into 

a storage platform
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• Transform that data to be optimized for analytics, based on data consumer requirements

• Make that data available for various data consumers using their tool of choice 

A data engineer must also ensure that they comply with all required security and governance 

requirements while performing the above tasks. 

In our scenario, the data engineer will first need to design the pipelines that ingest raw data from 

various internal and external sources. To achieve this, they will use a variety of tools, depending 

on the source system and whether it will be scheduled batch ingestion or near real-time streaming 

ingestion (as discussed in Chapter 6, Ingesting Batch and Streaming Data).

The data engineer is also responsible for transforming the raw input datasets to optimize them for 

analytics, using various techniques (as discussed in Chapter 7, Transforming Data to Optimize for 

Analytics). The data engineer must also create processes to verify the quality of data, add metadata 

about the data to a data catalog, and manage the lifecycle of code related to data transformation. 

Finally, the data engineer may need to assist in integrating various data consumption tools with 

the transformed data, enabling data analysts and data scientists to use their preferred tools to 

draw insights from the data. 

The data engineer uses tools such as Apache Kafka, Apache Spark, and Presto, as well as other 

commercially available products, to build the data pipeline and optimize data for analytics. 

The data engineer is much like a civil engineer for a new residential development. The civil en-

gineer is responsible for designing and building the roads, bridges, train stations, and so on to 

enable commuters to easily commute in and out of the development. In a similar way, the data 

engineer is responsible for designing and building the infrastructure required to bring data into 

a central source and for optimizing the data for use by various data consumers. 

Understanding the role of the data scientist
The role of a data scientist is to draw complex insights and make predictions based on various 

datasets, using machine learning and artificial intelligence. The data scientist will combine a 

number of skills, including computer science, statistics, analytics, and math, in order to help an 

organization answer complex questions and make informed decisions using data. 

Data scientists need to understand the raw data and know how to use that data to develop and 

train complex machine learning models that will help recognize patterns in the data and predict 

future trends. In our scenario, the data scientist may build a machine learning model that uses 

past sales data, correlated with weather information for each day in the reporting period. 
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They can then design and train this model to help business users get predictions on the likely 

top-selling categories for future dates based on the expected weather forecast (ice creams sell 

better on hot days, and umbrellas sell better on rainy days). 

Where the data engineer is like a civil engineer building infrastructure for a new development, the 

data scientist is developing new and advanced products for the residents of the development, such 

as advanced types of transport in and out of the development. Data scientists create the machine 

learning models that enable data consumers and business analysts to draw new insights and 

predictions from data. However, much like the designer of a new airplane is dependent on having 

an airport where the plane can land and take off, the data scientist is dependent on data engi-

neers creating data pipelines to bring in the data required to train new machine learning models. 

Understanding the role of the data analyst
The role of a data analyst is to examine and combine multiple datasets in order to help a business 

understand trends in the data and to make more informed business decisions. While a data sci-

entist develops models that make future predictions or identifies non-obvious patterns in data, 

the data analyst works with well-structured and modeled data to understand current conditions 

and to highlight recent patterns from the data. 

A data analyst may answer questions such as which menu item sold best in different geographic 

regions over the past month, or which medical procedure had the best outcome for patients of 

different ages. These insights help an organization make better decisions for the future.

In our scenario, the data analyst may run complex queries against the different datasets that are 

available (such as an orders database or web server logs), joining together subsets of data from 

each source to gain new insights. For example, the data analyst may create a report highlighting 

which alternate products are most often browsed by a customer before a specific product is pur-

chased. The data analyst may also make use of advanced machine learning models developed by 

the data scientists to gain further valuable insights.

Where the data engineer is like a civil engineer building infrastructure, and the data scientist is 

developing new, advanced forms of transportation, the data analyst is like a skilled pilot, using 

their expertise to get users to their end destination. 

Understanding other common data-related roles
Organizations may have other role titles and job descriptions for data-related positions, but 

generally, these will be a subset of the roles described in the preceding sections. 
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For example, a big data architect or data platform architect could be a subset of the data engineer 

role, focused on designing the architecture for big data pipelines, but not building the data-spe-

cific pipelines. Or, a data visualization developer may be focused on building out visualizations 

using business intelligence tools, but this is effectively a subset of the data analyst role.

Larger organizations tend to have more focused job roles, while in a smaller organization, a single 

person may take on the role of data engineer, data scientist, and data analyst. 

In this book, we will focus on the role of the data engineer, and dive deep into how a data engineer 

is able to build complex data pipelines using the power of cloud computing services. Let’s now 

look at how cloud computing has simplified how organizations are able to build and scale out 

big data processing solutions. 

The benefits of the cloud when building big data 
analytic solutions
For a long time, organizations relied on complex systems that they would run in their own data 

centers to help them capture, store, and process large amounts of data. But over the last decade 

or so, there has been a trend of an increasing amount of data that organizations want to store and 

analyze, and on-premises systems have struggled to scale to keep up with demand. Scaling up 

these traditional tools for managing ever-increasing dataset sizes has been expensive, complex, 

and time-consuming, and organizations have been seeking alternative solutions to cope with 

the increasing data volumes. 

Ever since Amazon launched AWS in 2006, organizations have been realizing the benefits of run-

ning their workloads in the cloud. Cloud computing enables scalability, cost efficiency, security, 

and automation that most companies find impossible to achieve within their own data centers, 

and this applies to the area of data analytics as well. One of the first AWS services was Amazon 

Simple Storage Service (Amazon S3), a cloud-based object store that offers essentially unlimited 

scalability at low cost, and yet provides durability and availability that most data center manag-

ers could only dream of achieving. Today, Amazon S3 has become the physical storage layer for 

many thousands of data lake projects, and a wide ecosystem of analytic tools has been created 

to work with the service.
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Successful data engineers need to understand the tools available in the cloud for building out 

complex data analytic projects and understand which set of tools is best to achieve the outcome 

needed for their project. In this book, you will learn more about AWS services for working with 

big data, and you will gain hands-on experience in developing a data engineering pipeline in AWS. 

To get started, you will need either an existing AWS account, or you will need to create a new 

AWS account so that you can follow along with the practical examples. In the next section, we 

provide step-by-step instructions for creating a new AWS account. 

Hands-on – creating and accessing your AWS 
account
The projects in this book require you to access an AWS account with administrator privileges. If 

you already have administrator privileges for an AWS account and know how to access the AWS 

Management Console, you can skip this section and move on to Chapter 2, Data Management 

Architectures for Analytics. 

If you are making use of a corporate AWS account, you will want to check with your AWS cloud 

operations team to ensure that your account has administrative privileges. Even if your daily-use 

account does not allow full administrative privileges, your cloud operations team may be able to 

create a sandbox account for you. 

If you cannot get administrative access to a corporate account, you will need to create a personal 

AWS account or work with your cloud operations team to request specific permissions needed 

to complete each section. The exercises in this book assume you have administrative access and 

the full details of required granular permissions will not be covered, but you can review the AWS 

documentation for information on granular permission requirements for each service. 

What is a sandbox account?

A sandbox account is an account isolated from your corporate production systems 

with relevant guardrails and governance in place and is used by many organizations 

to provide a safe space for teams or individual developers to experiment with cloud 

services.
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Creating a new AWS account
To create a new AWS account, you will need the following things:

• An email address (or alias) that has not been used before to register an AWS account

• A phone number that can be used for important account verification purposes

• Your credit or debit card, which will be charged for AWS usage outside of the Free Tier

The following steps will guide you through creating a new AWS account:

1. Navigate to the AWS landing page at http://aws.amazon.com.

2. Click on the Create an AWS Account link in the top right-hand corner.

3. Provide an email address, provide a name for your account, and then click on Verify email 

address. You will be emailed a verification code to verify your email, which you need to 

enter on the form to continue. 

An important note about costs associated with hands-on tasks in this book

If you are creating a new personal account or using an existing personal account, you 

will incur and be responsible for AWS costs as you follow along in this book. While 

some services may fall under AWS Free Tier usage, some of the services covered in 

this book will not. We strongly encourage you to set up budget alerts within your 

account and to regularly check your billing console� 

See the AWS documentation on setting up billing alarms to monitor your costs 

at https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

monitor_estimated_charges_with_cloudwatch.html.

A tip regarding the phone number you use when registering

It is important that you keep your contact details up to date for your AWS account 

as, if you lose access to your account, you will need access to the email address and 

phone number registered for the account to restore access. If you expect that your 

contact number may change in the future, consider registering a virtual number that 

you will always be able to access and that you can forward to your primary number. 

One such service that enables this is Google Voice (http://voice.google.com).

http://aws.amazon.com
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
http://voice.google.com
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4. Once you verify using the code emailed to you, specify a new secure password for your 

account (one that you have not used elsewhere). Then click on Continue. 

5. Select Business or Personal for the account type (note that the functionality and tools 

available are the same no matter which one you pick).

6. Provide the requested personal information and then, after reviewing the terms of the 

AWS Customer Agreement, click the checkbox if you agree to the terms, and then click 

Continue.

7. Provide a credit or debit card for payment information and select Verify and Continue.

8. Provide a phone number for a verification text or call, enter the characters shown for the 

security check, and complete the verification.

9. Select a support plan (basic support is free, but only provides self-service access to support 

resources) and complete the signup. 

10. You will receive a notification that your account is being activated. This usually completes 

in a few minutes, but it can take up to 24 hours. Check your email to confirm account 

activation.

A tip about reusing an existing email address

Some email systems support adding a “+” sign followed by a few characters 

to the end of the username portion of your email address in order to create a 

unique email address that still goes to your same mailbox. For example, atest.

emailaddress@gmail.com and atest.emailaddress+dataengineering@

gmail.com will both go to the primary email address inbox. If you have used 

your primary email address previously to register an AWS account, you can 

use this tip to provide a unique email address during registration but still 

have emails delivered to your primary account.

What to do if you don’t receive a confirmation email within 24 hours

If you do not receive an email confirmation within 24 hours confirming that your 

account has been activated, follow the troubleshooting steps provided by AWS Premi-

um Support at https://aws.amazon.com/premiumsupport/knowledge-center/

create-and-activate-aws-account/.

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
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Accessing your AWS account
Once you have received the confirmation email confirming that your account has been activated, 

follow these steps to access your account and create a new admin user:

1. Access the AWS console login page at http://console.aws.amazon.com.

2. Make sure Root user is selected, and then enter the email address that you used when 

creating the account.

3. Enter the password that you set when creating the account.

In the following steps, we are going to create a new IAM administrative user account:

1. In the AWS Management Console, confirm which Region you are currently in. You can 

select any region, such as the region closest to you geographically. 

Best practices for securing your account

When you log in using the email address you specified when registering the account, 

you are logging in as the account’s root user. It is a recommended best practice that 

you do not use this login for your day-to-day activities but rather, only use this 

when performing activities that require the root account, such as creating your first 

Identity and Access Management (IAM) user, deleting the account, or changing 

your account settings. For more information, see https://docs.aws.amazon.com/

IAM/latest/UserGuide/id_root-user.html.

It is also strongly recommended that you enable Multi-Factor Authentication (MFA) 

on this and other administrative accounts. To enable this, see https://docs.aws. 
amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.

html.

http://console.aws.amazon.com
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html
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In the following screenshot, the user is in the Ohio region (also known as us-east-2).

Figure 1.1: AWS Management Console

Selecting a region

The region you select in the AWS console is the geographical area of the 

world where the AWS resources you create will be deployed. It generally 

makes sense to deploy to the region closest to where you are located; however, 

this is not always the case. For example, not all AWS services are available 

in all regions (for a list of services available per region, see https://aws.
amazon.com/about-aws/global-infrastructure/regional-product-

services/). 

Another factor to consider is that the pricing for AWS services differs from 

region to region, so also take this into account when selecting a region to 

use for the exercises in this book. Finally, make sure that you are always in 

the same region when working through the exercises in each chapter.

For more information on selecting a region, refer to the AWS blog post  

What to Consider when Selecting a Region for your Workloads at https://
aws.amazon.com/blogs/architecture/what-to-consider-when-

selecting-a-region-for-your-workloads/.

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/blogs/architecture/what-to-consider-when-selecting-a-region-for-your-workloads/
https://aws.amazon.com/blogs/architecture/what-to-consider-when-selecting-a-region-for-your-workloads/
https://aws.amazon.com/blogs/architecture/what-to-consider-when-selecting-a-region-for-your-workloads/
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2. In the Search bar at the top of the screen, type in IAM and press Enter. This brings up the 

console for Identity and Access Management (IAM).

3. On the left-hand side menu, click Users and then Add users.

4. Provide a username, and then select the checkbox for Enable console access - optional.

5. Select Custom password, provide a password for console access, select whether to force 

a password change on the next login, then click Next.

Figure 1.2: Creating a new user in the AWS Management Console
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6. For production accounts, it is best practice to grant permissions with a policy of least 

privilege, giving each user only the permissions they specifically require to perform their 

role. However, AWS managed policies can be used to cover common use cases in test 

accounts, and so to simplify the setup of our test account, we will use the Administrator-

Access managed policy. This policy gives full access to all AWS resources in the account. 

On the Set permissions screen, select Attach policies directly from the list of policies, 

select AdministratorAccess, then click Next: Tags.

7. Optionally, specify tags (key-value pairs), then click Next.

8. Review the settings, and then click Create user.

9. Take note of the Console sign-in URL link that you will use to sign into your account.

For the remainder of the tutorials in this book, you should log in using the URL link provided 

and the username and password you set for your IAM user. You should also strongly consider 

enabling MFA for this account, a recommended best practice for all accounts with administrator 

permissions.

Summary
In this chapter, we reviewed how data is becoming ever more important for organizations looking 

to gain new insights and competitive advantage, and introduced some core big data processing 

technologies and approaches. We also looked at the key roles related to managing, processing, 

and analyzing large datasets, and highlighted how cloud technologies enable organizations to 

better deal with the increasing volume and variety of data.

In our first hands-on exercise, we provided step-by-step instructions for creating a new AWS 

account, which can be used through the remainder of this book as we develop our own data 

engineering pipeline. 

In the next chapter, we dig deeper into current approaches, tools, and frameworks that are com-

monly used to manage and analyze large datasets, including data warehouses, data marts, data 

lakes, and data mesh. We also get hands-on with AWS again, but this time we will use the AWS 

Command Line Interface (CLI) to create new Amazon S3 buckets. 
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Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd




2
Data Management Architectures 
for Analytics

In Chapter 1, An Introduction to Data Engineering, we looked at the challenges introduced by ev-

er-growing datasets, and how the cloud can help solve these analytic challenges. However, there 

are many different cloud services, open-source frameworks, file formats, and architectures that 

can be used in analytic projects, depending on the business requirements and objectives. 

In this chapter, we will discuss how analytical technologies have evolved and introduce the key 

technologies and concepts that are foundational for building modern analytical architectures, 

irrespective of whether you build them on Amazon Web Services (AWS) or elsewhere.

The content in this chapter lays an important foundation, as it will provide an introduction to 

the concepts that we will build on in the rest of the book.

In this chapter, we will cover the following topics:

• The evolution of data management for analytics

• A deeper dive into data warehouse concepts and architecture 

• An overview of data lake architecture and concepts

• Bringing together the best of data warehouses and data lakes

• Hands-on – using the AWS Command Line Interface (CLI) to create Simple Storage 

Service (S3) buckets
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Technical requirements
To complete the hands-on exercises included in this chapter, you will need access to an AWS 

account in which you have administrator privileges (as covered in Chapter 1, An Introduction to 

Data Engineering).

You can find the code and other content related to this chapter in the GitHub repository at the 

following link: https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-

edition/tree/main/Chapter02.

The evolution of data management for analytics
Innovations in data management and processing over the last several decades have laid the 

foundations for modern-day analytic systems. When you look at the analytics landscape of a 

typical mature organization, you will find the footprints of many of these innovations in its data 

analytics platforms. As a data engineer, you may come across analytic pipelines that were built 

using technologies from different generations, and you may be expected to understand them. 

Therefore, it is important to be familiar with some of the key developments in analytics over time, 

as well as to understand the foundational concepts of analytical data storage, data management, 

and data pipelines.

Databases and data warehouses
There are two broad types of database systems, and both of these have been around for many years:

• Online Transaction Processing (OLTP) systems are primarily used to store and update 

transactional data in high volumes. For example, OLTP-type databases are often used to 

store customer records, including transaction details (such as purchases, returns, and 

refunds). 

• Online Analytical Processing (OLAP) systems are primarily used for reporting on large 

volumes of data. It is common for OLAP systems to take data from multiple OLTP data-

bases, and provide a centralized repository of data that can be used for reporting purposes. 

In this book, we are focused primarily on data analytics, and therefore most of our discussions 

will be around OLAP systems. 

Both OLTP and OLAP data processing and analytic systems have evolved over several decades. 

In the 1980s, the focus was on batch processing, where data would be processed in nightly runs 

on large mainframe computers.

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter02
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter02
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In the 1990s, the use of databases exploded, and organizations found themselves with tens, or 

even hundreds, of databases supporting different business processes. Generally, these databases 

were for transactional processing (OLTP), and the ability to perform analytics across systems 

was limited.

As a result, in the 1990s, data warehouses (OLAP systems) became a popular tool with which 

data could be ingested from multiple database systems into a central repository, and the data 

warehouse could focus on running analytic reports.

The data warehouse was designed to store integrated, highly curated, and trusted data, that 

was also very structured (formatted with a well-defined schema). Data would be ingested on a 

regular basis from other highly structured sources, but before entering the data warehouse, the 

data would go through a significant amount of pre-processing, validation, and transformations. 

Any changes to the data warehouse schema (how the data was organized, or structured), or the 

need to ingest new data sources, would require a significant effort to plan the schema and related 

processes.

Over the last few decades, businesses and consumers have rapidly adopted web and mobile tech-

nologies, and this has resulted in rapid growth in data sources, data volumes, and the options for 

analyzing an increasing amount of data. In parallel, organizations have realized the business value 

of the insights they can gain by combining data from their internal systems with external data 

from their partners, the web, social media, and third-party data providers. To process consistently 

larger data volumes and increased demands to support new consumers, data warehouses have 

evolved through multiple generations of technology and architectural innovations.

Early data warehouses were custom-built using common relational databases on powerful servers, 

but they required IT teams to manage host servers, storage, software, and integrations with data 

sources. These were difficult to manage, and so in the mid-2000s, there was an emergence of 

purpose-built hardware appliances designed as modular data warehouse appliances, built for 

terabyte- and petabyte-scale big data processing. These appliances contained new hardware 

and software innovations and were delivered as easy-to-install and easy-to-manage units from 

popular vendors such as Oracle, Teradata, IBM Netezza, Pivotal Greenplum, and others.

Dealing with big, unstructured data
While data warehouses have steadily evolved over the last 25+ years to support increasing volumes 

of highly structured data, there has been exponential growth in the amount of semi-structured 

and unstructured data produced by modern digital platforms (such as mobile and web applica-

tions, sensors, IoT devices, social media, and audio and video media platforms). 
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These platforms produce data at a high velocity, and in much larger volumes than data produced 

by traditional structured sources. To gain a competitive advantage by transforming customer 

experience and business operations, it has become essential for organizations to gain deeper 

insights from these new data sources. Traditional data warehouses are good at storing and man-

aging flat, structured data from sources such as a set of tables, organized as a relational schema. 

However, they are not well suited to handling the huge volumes of high-velocity semi-structured 

and unstructured data that are becoming increasingly popular.

As a result, in the early 2010s, new technologies for big data processing became popular. Hadoop, 

an open-source framework for processing large datasets on clusters of computers, became the 

leading way to work with big data. These clusters contained tens of hundreds of machines with 

attached disk volumes that could hold tens of thousands of terabytes of data managed under a 

single distributed filesystem known as the Hadoop Distributed File System (HDFS).

Many organizations deployed Hadoop distributions from providers such as Cloudera, Horton-

works, MapR, and IBM to large clusters of computers in their data centers. These Hadoop packages 

included cluster management utilities, as well as pre-configured and pre-integrated open-source 

distributed data processing frameworks such as MapReduce, Hive, Spark, and Presto. 

However, building and scaling on-premises Hadoop clusters typically required a large upfront 

capital investment in machines and storage. And, the ongoing management of the cluster and 

big data processing pipelines required a team of specialists that included the following:

• Hadoop administrators specialized in cluster hardware and software

• Data engineers specialized in processing frameworks such as Spark, Hive, and Presto

As the volume of data grew, new machines and storage continually needed to be added to the 

cluster.

Big data teams managing on-premises clusters typically spent a significant percentage of their time 

managing and upgrading the cluster’s hardware and software, as well as optimizing workloads.

Cloud-based solutions for big data analytics
Over the last decade or so, organizations have increasingly adopted public cloud solutions to 

handle the challenge of increasing data volumes and diversity. Making use of cloud solutions for 

big data processing has a number of benefits, including: 

• On-demand capacity

• Limitless and elastic scaling
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• Global footprint

• Usage-based cost models

• Freedom from managing hardware

After AWS launched Amazon EMR in 2009 (a managed platform for running Hadoop frameworks), 

and Amazon Redshift in 2013 (a cloud-native data warehouse), the number of other companies 

developing cloud-based solutions for big data analytics rapidly increased. 

Today, companies like Google Cloud Platform (GCP), Microsoft Azure, Snowflake, and Data-

bricks provide a number of solutions for ingesting, storing, and analyzing large datasets in the 

cloud.

Over time, these cloud data warehouses and other cloud-based big data systems have rapidly 

expanded their feature sets to exceed those of high-performance, on-premise data warehousing 

appliances, and Hadoop clusters. Besides no upfront investment, a petabyte scale, and high per-

formance, these cloud-based services provide elastic capacity scaling, a usage-based cost model, 

and freedom from infrastructure management.  

Over the last decade, the number of organizations building their big data processing applications 

in the cloud has accelerated. In the last 5 years alone, thousands of organizations have migrated 

their existing data warehouses and Hadoop applications from on-premise vendor products and 

appliances to cloud-based services.

Another trend brought on by the move to the cloud has been the adoption of highly durable, 

inexpensive, and virtually limitless cloud object stores. Cloud object stores, such as Amazon S3, 

can store hundreds of petabytes of data at a fraction of the cost of on-prem storage, and support 

storing data regardless of its source, format, or structure. They also provide native integrations 

with hundreds of cloud-native and third-party data processing and analytics tools. 

These new cloud object stores have enabled organizations to build a new, more integrated analytics 

data management approach with decoupled compute and storage, called a data lake architecture. 

A data lake architecture makes it possible to create a single source of truth by bringing together a 

variety of data of all sizes and types (structured, semi-structured, or unstructured) in one place: 

a central, highly scalable repository built using inexpensive cloud storage. A wide variety of an-

alytic tools have been created or modified to integrate with these cloud object stores, providing 

organizations with many options for building data lake-based big data platforms. 
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Instead of lifting and shifting existing data warehouses and Hadoop clusters to the cloud as they 

are, many organizations are instead refactoring their previously on-premises workloads to build 

an integrated cloud data lake. In this approach, all data is first ingested, processed, and stored in 

the data lake to build a single source of truth, and then a subset of the “hot” data is loaded into 

the dimensional schemas of a cloud data warehouse to support lower-latency access.

In recent years, another term has been coined to refer to a variety of new technologies that enable 

integrating the best of data lakes and data warehousing capabilities, called the data lake house 

approach. There have been solutions from commercial companies (such as AWS, GCP, Snowflake, 

and Databricks), as well as open-source community-led initiatives (such as Apache Hudi, and 

Apache Iceberg) that have referred to a data lake house (also sometimes called a Lakehouse). 

While we will cover these new approaches in more detail in this chapter in the Bringing together 

the best of data warehouses and data lakes section, some of the new capabilities include:

• The ability to quickly ingest any type of data

• Storing and processing petabytes of unstructured, semi-structured, and structured data

• Support for ACID transactions (which references 4 key properties of a transaction - namely 

its atomicity, consistency, isolation, and durability – enabling multiple concurrent users 

to read, insert, update, and delete records in a dataset managed by the data lakehouse)

• Low-latency data access

• The ability to consume data with a variety of tools, including SQL, Spark, machine learning 

frameworks, and business intelligence tools

Before we dive deeper into the data lake house architecture, let’s first review some of the funda-

mentals of data warehouses.

A deeper dive into data warehouse concepts and 
architecture
An Enterprise Data Warehouse (EDW) is the central data repository that contains structured, 

curated, consistent, and trusted data assets that are organized into a well-modeled schema. The 

data assets in an EDW are made up of all the relevant information about key business domains 

and are built by integrating data sourced from the following places:

• Run-the-business transactional applications (ERPs, CRMs, and line-of-business applica-

tions) that support all the key business domains across an enterprise.

• External data sources such as data from partners and third parties.
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An EDW provides business users and decision-makers with an easy-to-use, central platform that 

helps them find and analyze a well-modeled, well-integrated, single version of truth for various 

business subject areas such as customers, products, sales, marketing, the supply chain, and more. 

Business users analyze data in the warehouse to measure business performance, find current 

and historical business trends, find business opportunities, and understand customer behavior.

In the remainder of this section, we will review the foundational concepts of a data warehouse 

by discussing a typical data management architecture with an EDW at the center, as depicted in 

Figure 2.1. Typically, a data-warehouse-centric architecture includes the following:

• Data sources from across the business that provide raw data to the data warehouse via 

Extract, Transform, Load (ETL) or Extract, Load, Transform (ELT) processes (more on 

this later in this chapter)

• One or more data warehouses (and, optionally, multiple subject-focused data marts)

• End user analytic tools for consuming data from the warehouse (such as SQL-based an-

alytic tools, and business intelligence visualization systems)

The following diagram shows how an enterprise data warehouse fits into an analytics architecture:

Figure 2.1: Enterprise data warehousing architecture
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At the center of our architecture is the EDW, which hosts a set of data assets that contain current 

and historical data about key business subject areas. We also have optional data marts that con-

tain a subset of the data from the warehouse, focused on and optimized for queries in a specific 

business domain (sales, finance, product, etc.).

On the left-hand side, we have our source systems and an ETL pipeline to load the data into the 

warehouse and transform the data. On the right-hand side, we can see several systems/applica-

tions that consume data from the data warehouse and data marts.

Before we dive deeper into the technical architecture and optimization techniques used in mod-

ern data warehouses, let’s review some of the foundational concepts around data modeling in 

data warehouses. 

Dimensional modeling in data warehouses
Data assets in the warehouse are typically stored as relational tables that are organized into 

widely used dimensional models, such as a star schema or snowflake schema. Storing data in a 

warehouse using a dimensional model makes it easier to retrieve and filter relevant data, and it 

also makes analytic query processing flexible, simple, and performant.

Let’s dive deeper into two widely used data warehouse modeling techniques, and see how we 

can organize sales domain entities as an example. Note that this example is just a subsection of 

a much larger data warehouse schema.
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Figure 2.2 illustrates how data in a sales subject area can be organized using a star schema:

Figure 2.2: Sales data entities organized into a star schema
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In data warehouses, tables are generally separated into fact tables and dimension tables. In 

Figure 2.2, the data entities are organized like a star, with the sales fact table forming the middle 

of the star, and the dimension tables forming the corners. 

A fact table stores granular numeric measurements/metrics for a specific domain (such as sales). 

In Figure 2.2, we have a SALES_FACT table that stores facts about an individual sales transaction, 

such as the sales price and quantity sold. The fact table also has a large number of foreign key 

columns that reference the primary keys of associated dimension tables. 

The dimension tables store the context under which fact measurements were captured. In Figure 

2.2, for example, we have dimension tables with information on stores, products, and other di-

mensions related to each sale transaction. Each individual dimension table essentially provides 

granular attributes related to one of the dimensions of the fact (such as the store where the sale 

took place). 

For example, for a specific sale, we record the price, quantity, and tax for the sale in the fact table, 

and then we reference dimensions such as the store_id for the store in which the sale took place 

and the product_id for the product that was sold. Instead of storing all the details for the store 

in the fact table (such as street address, region, country, and phone number), we just store the 

store_id related to the specific sale as a foreign key. When we want to query sales data, we can 

do a join between the SALES_FACT table and the STORE_DIMENSION table to report on the sale 

details (price and quantity) along with the region and country of the store (or any other details 

captured in the dimension table). We can also do a join between other dimension tables to retrieve 

details about the product sold, the employee that did the sale, the day of the week of the sale, etc. 

Dimensional attributes are key to finding and aggregating measurements stored in the fact tables 

in a data warehouse. Business analysts typically slice, dice, and aggregate facts from different 

dimensional perspectives to generate business insights about the subject area represented by the 

star schema. They can find answers to questions such as: 

• What is the total volume of a given product sold over a given period? 

• What is the total revenue in a given product category? 

• Which store sells the greatest number of products in a given category?

In a star schema, while data for a subject area is normalized by splitting measurements and 

context information into separate fact and dimension tables, individual dimension tables are 

typically kept denormalized so that all related attributes of a dimensional topic can be found in 

a single table. 
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This makes it easier to find all related attributes of a dimensional topic in a single table (fewer joins, 

and a simpler-to-understand model), but for larger dimension tables, a denormalized approach 

can lead to data duplication and inconsistencies within the dimension table. Large denormalized 

dimension tables can also be slow to update.

One approach to work around these issues is a slightly modified type of schema, the snowflake 

schema, which is shown in Figure 2.3:

Figure 2.3: Sales data entities organized into a snowflake schema
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The challenges of inconsistencies and duplication in a star schema can be addressed by snow-

flaking (basically normalizing) each dimension table into multiple related dimension tables 

(normalizing the original product dimension into product and product category dimensions, for 

example). This normalization of tables continues until each individual dimension table contains 

only attributes with a direct correlation with the table’s primary key. The highly normalized 

model resulting from this snowflaking is called a snowflake schema. 

The snowflake schema can be designed by extending the star schema or can be built from the 

ground up by ensuring that each dimension is highly normalized and connected to related di-

mension tables forming a hierarchy. A snowflake schema can reduce redundancy and minimize 

disk space, compared to a star schema, which often contains duplicate records. However, on the 

other hand, the snowflake schema may necessitate complex joins to answer business queries and 

may slow down query performance. 

To decide on whether to use a snowflake or star schema, you need to consider the types of queries 

that are likely to be run against the dataset and balance the pros and cons of potentially slower 

and more complex queries with a snowflake schema versus less performant updates and more 

complexity in managing changes to dimension tables with a star schema.

Let’s now take a closer look at the role of data marts, which can be used to provide a data repository 

that is easier to work with, with a schema focused on a specific aspect of a business. 

Understanding the role of data marts
Data warehouses contain data from all relevant business domains and have a comprehensive yet 

complex schema. Data warehouses are designed for the cross-domain analysis that’s required 

to inform strategic business decisions. However, organizations often also have a narrower set of 

users who want to focus on a particular line of business, department, or business subject area. 

These users prefer to work with a repository that has a simple-to-learn schema, and only the 

subset of data that focuses on the area they are interested in. Organizations typically build data 

marts to serve these users.
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A data mart is focused on a single business subject repository (for example, marketing, sales, or 

finance) and is typically created to serve a narrower group of business users, such as a single de-

partment. A data mart often has a set of denormalized fact tables organized into a much simpler 

schema compared to that of an EDW. Simpler schemas and a reduced data volume make data 

marts faster to build, simpler to understand, and easier to use for end users. A data mart can be 

created either as:

• Top-down: Data is taken from an existing data warehouse, focused on a slice of business 

subject data

• Bottom-up: Data is sourced directly from the transactional databases that are used to 

run a specific business domain of interest 

Both data warehouses and data marts provide an integrated view of data from multiple sources, 

but they differ in the scope of data they store. Data warehouses provide a central store of data for 

the entire business, or division, and cover all business domains. Data marts serve a specific busi-

ness function by providing an integrated view of a subject area relevant to that business function.

So far, we have discussed various aspects of data warehouses and data marts, the central data 

repositories of our EDW architecture from Figure 2.1. Now, let’s do a deeper dive into the technical 

architecture and optimizations that make modern data warehouses effective at querying large 

volumes of data.

Distributed storage and massively parallel processing
In Figure 2.4, we see the underlying architecture of an Amazon Redshift cluster. There are various 

different types of Redshift nodes, and Figure 2.4 shows a Redshift cluster based on RA3 nodes 

(which we will take a closer look at in Chapter 9, A Deeper Dive into Data Marts and Amazon Redshift): 
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Figure 2.4: MPP architecture of an Amazon Redshift RA3 cluster

As seen in Figure 2.4, an Amazon Redshift cluster contains a leader node and one or more com-

pute nodes:

• The leader node interfaces with client applications, receives and parses queries, and 

coordinates query execution on compute nodes.
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• Multiple compute nodes have high-performance storage for storing a subset of the ware-

house data and run query execution steps in parallel on the data that they store.

• For RA3 node types (as illustrated in this diagram), Amazon S3 is used as Redshift Man-

aged Storage (RMS) for warehouse data, and the compute node high-performance local 

storage is used as a cache for hot data. 

Each compute node has its own independent processors, memory, and high-performance storage 

volumes that are isolated from other compute nodes in the cluster (this is called a shared-nothing 

architecture). 

Cloud data warehouses implement a distributed query processing architecture called Massively 

Parallel Processing (MPP) to accelerate queries on massive volumes of data. In this approach, the 

cluster leader node first compiles the incoming client query into a distributed execution plan. It 

then coordinates the execution of segments of compiled query code on multiple compute nodes 

of the data warehouse cluster, in parallel. Each compute node executes assigned query segments 

on a portion of the distributed dataset. 

Columnar data storage and efficient data compression
In addition to providing massive storage and cluster computing, modern data warehouses also 

boost query performance through column-oriented storage and data compression. In this section, 

we’ll examine how this works, but first, let’s understand how OLTP databases store their data.

OLTP applications typically work with entire rows that include all the columns of the table (for 

example, reading/writing a sales record, or looking up a catalog record). To serve OLTP applications, 

backend databases need to efficiently read and write full rows to the disk. To speed up full-row 

lookups and updates, OLTP databases use a row-oriented layout to store table rows on the disk. 

In a row-oriented physical data layout, all the column values of a given row are co-located, as 

depicted in Figure 2.5:

Figure 2.5: Row-oriented storage layout
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Most analytics queries that business users run against a data warehouse are written to answer 

a specific question and typically include grouping and aggregations (such as sum, average, or 

mean) on a large number of rows, but of a narrow set of columns from the fact and dimension 

tables (these typically contain many more columns than the narrow set of columns included in 

the query). Analytics queries typically need to scan through a large number of rows but need data 

from only a narrow set of columns that relate to the specific query. A row-oriented physical data 

layout forces analytics queries to scan a large number of full rows (all columns), even though they 

need only a subset of the columns from these rows. Analytics queries on a row-oriented database 

can thus require a much higher number of disk I/O operations than necessary.

Modern data warehouses store data on disks using a column-oriented physical layout. This is 

more suitable for analytical query processing, which only requires a subset of columns per query. 

While storing a table’s data in a column-oriented physical layout, a data warehouse breaks a table 

into groups of rows, called row chunks/groups. It then takes a row chunk at a time and lays out 

data from that row chunk, one column at a time, so that all the values for a column (that is, for 

that row chunk) are physically co-located on the disk, as depicted in Figure 2.6:

Figure 2.6: Column-oriented storage layout

Data warehouses repeat this for all the row chunks of the table. In addition to storing tables as 

row chunks and using a column-oriented physical layout on disks, data warehouses also maintain 

in-memory maps of the locations of these chunks. Modern data warehouses use these in-memory 

maps to pinpoint column locations on the disk and read the physically co-located values of the 

column. This enables the query engine to retrieve data for only the narrow set of columns needed 

for a given analytics query. By doing this, the disk I/O is significantly reduced compared to what 

would be required to run the same query on a row-oriented database.
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In addition to using a column-orientated storage layout, modern data warehouses also employ 

multiple compression algorithms for a table. The warehouse is able to match individual columns 

with the compression algorithm that is most optimal for the given column’s type and profile of 

its data content.

In addition to saving storage space, compressed data requires much lower disk I/O to read and 

write data to the disk. Compression algorithms provide much better compression ratios when 

all values being compressed have the same data type and have a larger percentage of duplicates. 

Since column-oriented databases lay out values of the same column (hence, the same data type, 

such as strings or integers) together, data warehouses achieve good compression ratios, resulting 

in faster read/writes, and smaller on-disk footprints.  

Now that we have a better understanding of the architecture of modern data warehouses, let’s 

look at the processes (often referred to as pipelines), that are used to move data into a data ware-

house, and to transform the data to optimize it for analytics. 

Feeding data into the warehouse – ETL and ELT pipelines
To bring data into the warehouse (and optionally, data marts), organizations typically build data 

pipelines that do the following:

• Extract data from source systems.

• Transform source data by validating, cleaning, standardizing, and curating it.

• Load the transformed source data into the enterprise data warehouse schema, and op-

tionally a data mart as well.

In these pipelines, the first step is to extract data from source systems, but the next two steps can 

either take on a Transform-Load or Load-Transform sequence (so either ETL or ELT). 

The data warehouses of a modern organization typically ingest data from a diverse set of sources, 

such as ERP and CRM application databases, files stored on Network-Attached Storage (NAS) 

arrays, SaaS applications, and external partner applications. The components that are used to 

implement the Extract step of both ETL and ELT pipelines typically need to connect to these 

sources and handle diverse data formats (including relational tables, flat files, and continuous 

streams of records).
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The decision as to whether to build an ETL or ELT data pipeline is based on the following:

• The complexity of the required data transformations

• The skills and tools the organization has available to build data transformation steps

• The speed at which source data needs to be made available for analysis in the data ware-

house after it’s produced in the source system.

Figure 2.7 shows a typical ETL pipeline for loading data into a data warehouse:

Figure 2.7: ETL pipeline

With an ETL pipeline, transformations are performed outside of the data warehouse using custom 

scripts, a cloud-native ETL service such as AWS Glue, or a specialized ETL tool from a commercial 

vendor such as Informatica, Talend, DataStage, Microsoft, or Pentaho. 

An ETL pipeline may be a single system that has connectors to extract and load the data in addition 

to doing the transformations, or there may be multiple systems in the pipeline. For example, an 

ETL pipeline could consist of the following:

• One or more systems that extract data from various sources (databases, SaaS solutions, 

file storage, etc.) and write the data to a raw/staging storage area

• One or more transformation jobs that read data from the raw/staging storage area, trans-

form the data, and then write it to a transformed storage area

• Another system that reads data from the transformed storage area and loads the data 

into the data warehouse
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A transformation engine may run multiple transformation jobs to perform tasks such as validating 

data, cleaning data, and transforming data for the target data warehouse dimensional schema. 

An ETL approach to building a data pipeline is typically used when the following are true:

• Source database technologies and formats are different from those of the data warehouse 

• The engineering team wants to perform transformations using a programming language 

(such as PySpark) rather than pure SQL

• Data transformations are complex and compute-intensive

On the other hand, an ELT pipeline extracts data (typically highly structured data) from various 

sources and loads it as is into the staging area of the data warehouse. The database engine pow-

ering the data warehouse is then used to perform transformation operations on the staged data 

and writes the transformed data to a production table (ready for consumption). 

Figure 2.8 shows a typical ELT pipeline:

Figure 2.8: ELT pipeline

The ELT approach allows for rapidly loading large amounts of source data into the warehouse. 

Furthermore, the MPP architecture of modern data warehouses can significantly accelerate the 

transformation steps in ELT pipelines. The ELT approach is typically leveraged when the follow-

ing are true:

• Data sources and the warehouse have similar database technologies, making it easier to 

directly load source data into the staging tables in the warehouse.
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• A large volume of data needs to be quickly loaded into the warehouse.

• All the required transformation steps can be executed using the native SQL capabilities 

of the warehouse’s database engine.

With an ELT approach, the data transformation tasks are generally performed using SQL code. 

While there is a large amount of SQL knowledge and skills available on the market, there are other 

options for performing transformations (such as by using Apache Spark with PySpark or Scala 

code). Using an ELT approach limits your transformations to using SQL, which may or may not 

be best based on the skill sets and requirements of your organization. 

The primary difference between ETL and ELT is about where the data transformation takes place. 

With ELT, the data is loaded directly into the data warehouse, and the data warehouse engine 

is used for the transformation (typically using SQL to create a new, transformed version of the 

data). With ETL, an engine outside of the data warehouse first transforms the data before writing 

it to the data warehouse. 

In this section, we learned how data warehouses can store and process petabytes of structured 

data. Modern data warehouses provide high-performance processing using a dimensional data 

model (such as star or snowflake), compute parallelism, and a columnar physical data layout with 

compression. Data management architectures at modern organizations, however, also need to 

store and analyze exploding volumes of semi-structured and unstructured data. In the next section, 

we’ll learn about a newer architecture, called data lakes, that today’s leading organizations typi-

cally implement to store, process, and analyze structured, semi-structured, and unstructured data.

An overview of data lake architecture and concepts
As we saw in the previous section, EDWs have been the go-to repositories for storing highly 

structured tabular data sourced from the transactional databases used by business applications. 

However, the lack of a well-defined tabular structure makes typical data warehouses less suitable 

for storing unstructured and semi-structured data. Also, while they are good for use cases that 

need SQL-based processing, data warehouses are limited to processing data primarily using only 

SQL, and SQL is not the right tool for all data processing requirements. For example, extracting 

metadata from unstructured data, such as audio files or images, is best suited for specialized 

machine learning tools.

A cloud data lake is a central, highly scalable repository in the cloud where an organization can 

manage exabytes of various types of data, including:

• Structured data (row-column based tables)
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• Semi-structured data (such as JSON and XML files, log records, and sensor data streams) 

• Unstructured data (such as audio, video streams, Word/PDF documents, and emails) 

Data from any of these sources can be quickly loaded into the data lake as is (keeping the orig-

inal source format and structure). Unlike with data warehouses, data does not need to first be 

converted into a standard structure before it is consumed. 

A cloud data lake also natively integrates with cloud analytic services that are decoupled from 

data lake storage and enables diverse analytic tools, including SQL, code-based tools (such as 

Apache Spark), specialized machine learning tools, and business intelligence visualization tools. 

In the next section, we dive deeper into the architecture of a typical data lake. 

Data lake logical architecture
Let’s take a closer look at the architecture of a cloud-native data lake by looking at its logical 

architecture, as shown in Figure 2.9:

Figure 2.9: Logical layers of a data lake architecture
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We can visualize a data lake architecture as a set of independent components organized into 

five logical layers. A layered, component-oriented data lake architecture can evolve over time to 

incorporate new innovations in data management and analytics methods, as well as to make use 

of new tools. This keeps the data lake responsive to new data sources and changing requirements. 

In the next section, we will dive deeper into these layers.

The storage layer and storage zones
At the bottom of the data lake architecture illustrated in Figure 2.9 is the storage layer, built on 

a cloud object store such as Amazon S3. This provides virtually unlimited, low-cost storage that 

can store a variety of data, irrespective of the structure or format. 

The storage layer is organized into different zones, with each zone having a specific purpose. 

Data moves through the various zones of the data lake, with new, modified copies of the data 

in each zone as the data goes through various transformations. There are no hard rules about 

how many zones there should be, or the names of zones, but the following zones are commonly 

found in a typical data lake: 

• Landing/raw zone. This is the zone where the ingestion layer writes data, as is, from the 

source systems. The landing/raw zone permanently stores the raw data from the source.

• Clean/transform zone. The initial data processing of data in the landing/raw zone, such 

as validating, cleaning, and optimizing datasets, writes data into the clean/transform 

zone. The data here is often stored in optimized formats such as Parquet and is often 

partitioned to accelerate query execution and downstream processing. Data in this zone 

may also have had PII information removed, masked, or replaced with tokens. 

• Curated/enriched zone. The data in the clean/transformed zone may be further refined 

and enriched with business-specific logic and transformations, and this data is written 

to the curated/enriched zone. This data is in its most consumable state and meets all 

organizational standards (in terms of cleanliness, file formats, and schema). Data here is 

typically partitioned, cataloged, and optimized for the consumption layer.

Depending on the business requirements, some data lakes may include more or fewer zones than 

the 3 zones highlighted above. For example, a very simple data lake may just have two zones (the 

raw and curated zones), while some data lakes may have 5 or more zones to handle intermediate 

stages or specific requirements.
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Catalog and search layers
A data lake typically hosts a large number of datasets (potentially thousands), from a variety of 

internal and external sources. These datasets are often useful to multiple teams across the orga-

nization, and these teams need the ability to search for available datasets and review the schema 

and other metadata of those datasets. 

A technical catalog is used to map the many files stored in the storage layer into a logical rep-

resentation of databases and tables, with each table having columns of a specific data type (the 

table schema). A technical catalog, such as the AWS Glue Data Catalog, stores the metadata that 

defines the relationship between physical files on storage and a table definition in the catalog. 

Consumption tools (such as Amazon Athena) can use the technical catalog to understand which 

files to read from the storage layer when a user queries a specific database and table. 

A business catalog focuses on the metadata that is important to the business. This may include 

attributes such as the data owner, the date the dataset was last updated, a description of the 

table purpose, column definitions, and more. The business catalog may also integrate with the 

technical catalog in order to provide information on the table schema in the business catalog 

interface. The business catalog should also support the ability to do advanced searches, enabling 

teams to find data that is relevant to their use cases. We do a deep dive into data cataloging in 

Chapter 4, Data Governance, Security, and Cataloging. 

Ingestion layer
The ingestion layer is responsible for connecting to diverse types of data sources and bringing 

their data into the landing/raw zone of the storage layer. This layer may contain a variety of inde-

pendent tools, each purpose-built to connect to a data source with a distinct profile in terms of:

• Data structure (structured, semi-structured, or unstructured)

• Data delivery type (table rows, data stream, data file)

• Data production cadence (batch or streaming)

This approach provides the flexibility to easily add new tools to match a new data source’s dis-

tinct profile. 

A typical ingestion layer may include tools such as AWS Database Migration Service (DMS) for 

ingesting from various databases, Amazon Kinesis Firehose for ingesting streaming data, and 

Amazon AppFlow for ingesting data from SaaS applications. We do a deep dive into the ingestion 

layer in Chapter 6, Ingesting Batch and Streaming Data.
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The processing layer
Once the ingestion layer brings data from a source system into the landing zone, it is the processing 

layer that makes it ready for consumption by data consumers. The processing layer transforms 

the data in the lake through various stages of data cleanup, standardization, and enrichment. 

Along the way, the processing layer stores transformed data in the different zones – writing it 

into the clean zone and then the curated zone, and then ensuring that the technical data catalog 

gets updated. Tools commonly used in this layer include AWS Glue and Amazon EMR.

Components in the ingestion and processing layers are used to create ELT pipelines. In these 

pipelines, the ingestion layer components extract data from the source systems and load the data 

into the data lake, and then the processing layer components transform it to make it suitable for 

consumption by components in the consumption layer. We will do a deep dive into the processing 

layer in Chapter 7, Transforming Data to Optimize It for Analytics.

The consumption layer
Once data is ingested and processed to make it consumption-ready, it can be analyzed using 

several techniques, such as interactive query processing, business intelligence dashboarding, 

and machine learning. To perform analytics on data in the lake, the consumption layer provides 

purpose-built tools that are able to access data from the storage layer, and the schema from the 

catalog layer (to apply schema-on-read to the lake-hosted data). We will do a deeper dive into 

data consumption in Chapter 8, Identifying and Enabling Data Consumers. 

Data lake architecture summary
In this section, we learned about data lake architectures and how they can enable organizations 

to manage and analyze vast amounts of structured, unstructured, and semi-structured data.

Analytics platforms at a typical organization need to serve warehousing-style structured data 

analytics use cases (such as for complex queries and BI dashboarding), as well as use cases that 

require managing and analyzing vast amounts of unstructured and semi-structured data. As a 

result, organizations typically end up building both a data warehouse and a data lake, often with 

little interaction between the warehouse and the lake. 

In the next section, we will look at modern data management and analytic architectures that 

integrate the best of both data warehouses and data lakes. 
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Bringing together the best of data warehouses and 
data lakes
In today’s highly digitized world, data about customers, products, operations, and the supply 

chain can come from many sources and can have a diverse set of structures. To gain deeper and 

more complete data-driven insights into a business topic (such as a customer journey, customer 

retention, product performance, etc.), organizations need to analyze all topic-relevant data, of 

all structures, from all sources, together. 

A data lake is well suited to storing all these different types of data inexpensively and provides a 

wide variety of tools to work with and consume the data. This includes the ability to transform 

data with frameworks such as Apache Spark, to train machine learning models on the data using 

tools such as Amazon SageMaker, and to query the data using SQL with tools such as Amazon 

Athena, Presto, or Trino. 

However, there are some limitations to traditional data lakes. For example, traditional implemen-

tations of data lakes do not support the ACID (atomicity, consistency, isolation, and durability) 

properties common in most databases. Also, due to the use of inexpensive object storage as the 

storage layer, the query performance does not match what is possible with data warehouses that 

use high-performance, SSD-based local storage. 

These limitations cause complexity when you have multiple teams working on the same dataset, 

as one team updating data in the data lake while another team attempts to query the data lake 

can lead to inconsistencies in the queries. Also, when you have heavily used dashboards and 

reporting as is common with Business Intelligence applications, the performance of queries on 

data lake data may not meet requirements. 

These challenges are often worked around by loading a subset of the data from the data lake into 

a data warehouse, such as Amazon Redshift or Snowflake. This offers the performance needed 

for demanding business intelligence applications and also provides consistency when multiple 

teams are working with the same dataset. However, data warehouse storage is expensive, and 

some use cases require joining data across a diverse set of data and it is not economical to load 

all this data into the data warehouse.

To work around these challenges, new table formats have been created that simplify the process 

of updating data lake tables in a transactionally safe way, and new functionality is available to 

enable federated queries (joins of data across different storage engines) in an approach often 

referred to as a data lake house.
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The data lake house approach
During the year 2020, a number of vendors started using a new term to talk about an approach 

that brought together the best of data warehouses and data lakes. Some vendors referred to this 

as a Lakehouse, while others called it a data lake house, or data lakehouse. In addition to these 

differences in the name of the approach, the different vendors had slightly different definitions 

of what a lake house was. 

Even today you can read blogs and articles about different lake house approaches from compa-

nies such as AWS, Azure, Google, Snowflake, Databricks, Dremio, and Starburst. Because of this, 

I would consider the lake house terminology more of a marketing term than a technical term. 

Ultimately, there is no standard definition of a lake house, beyond the intention of different ven-

dors to provide the best of both data warehouses and data lakes with their own technology stacks. 

However, there are a number of widely adopted technologies and approaches that enable these 

companies to blur the lines between a data warehouse and a data lake.

New data lake table formats
Over the past few years, a number of new table formats have been proposed that are effectively 

a new generation of the original Hive table format, a format developed at Facebook more than a 

decade ago. While Hive has been fundamental in enabling the creation and growth of data lakes, 

there are a number of challenges with the Hive format that put significant limits on Hive-based 

data lakes. As a result, today there are three primary competing new table formats that can be 

used to develop modern data lakes. 

While each of these table formats has its own strengths and weaknesses, they are all intended to 

enable simplified and more consistent updates and reads of data lake data (especially when you 

have multiple teams working with the same dataset), as well as to offer performance improve-

ments, and the ability to query a table as it was at a certain point in time (often referred to as 

time travel). Many big data solution providers are adding support for one or more of these table 

formats, as they build out their “data lake house” offerings. These new table formats provide 

functionality for working with data in a data lake that is similar to what traditionally was only 

available in databases and data warehouses. 
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The three main new-generation table formats are:

• Delta Lake� This is a table format created by the Databricks company and is offered both 

as a commercial paid version with enhanced functionality and as an open-source version, 

which is a Linux Foundation project. A number of commercial and open-source tools are 

able to work with Delta Lake files, including Apache Spark, Presto, Snowflake, Redshift, 

and others.

• Apache Hudi� This is a table format that was created by Uber, and later donated to the 

Apache Software Foundation, and is now available as an open-source solution. Hudi has 

been fairly widely adopted, and blog posts/case studies that mention the use of Apache 

Hudi include those from companies such as Amazon Transportation Service, Walmart, 

Robinhood, and GE Aviation.

• Apache Iceberg� This table format was created by two engineers at Netflix and later do-

nated to the Apache Software Foundation, making it available as an open-source solution. 

Companies that have publicly referenced making use of Apache Iceberg, or who have 

contributed to the open-source project, include Airbnb, Expedia, Adobe, Apple, and Lyft.

It is impossible to predict with certainty which one of these table formats (or potentially others 

yet to be popularized) will become dominant over the next few years, but recently it has seemed 

like Apache Iceberg is generating increasing interest and gaining more and more support from 

big data product vendors. We will cover these new table formats in more detail in Chapter 14, 

Transactional Data Lakes. For now, though, let’s look at how federated queries enable querying 

across different database engines. 

Federated queries across database engines
Another approach that has become common in the quest to combine the best of data lakes and 

data warehouses is functionality that enables queries across different database engines or storage 

platforms. For example, cloud data warehouses such as Amazon Redshift and Snowflake are able 

to query data loaded into the data warehouse, as well as data in an Amazon S3-based data lake. 

With this approach, the most recent 12 months of data could be loaded into a data warehouse, 

while the previous 4 years of data could be stored in the data lake. Most queries would only query 

the most recent 12 months of data, and that would be stored within the highly performant storage 

of the data warehouse. However, for those queries that needed to access the historical information, 

the data warehouse could join tables in the S3 data lake with the recent data in the data warehouse. 
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This query federation can extend beyond just joining tables in the data warehouse and tables in the 

S3-based data lake to querying data in other storage engines as well. For example, with Amazon 

Redshift, you can define external tables that point to data in a PostgreSQL or MySQL database. 

With federated queries, the requirement to copy data between different data systems through 

ETL pipelines is reduced. However, querying across different systems does not perform as well 

as querying on local-only data, so there are use cases where you would still want to copy data 

between systems. Nevertheless, having the ability to query data across systems is useful in many 

situations, and helps create a more integrated big data ecosystem. AWS messaging around the 

lake house concept has often included highlighting this ability to have access to data in different 

systems, with a shared data catalog, and without needing to always create a copy of the source 

data in each system. 

In later chapters, the hands-on exercises will cover various tasks related to ingesting, transform-

ing, and querying data in the data lake, but in this chapter, we are still setting up some of the 

foundational tasks. In the next section, we will use the AWS Command Line Interface (CLI) to 

create a number of Amazon S3 buckets.

Hands-on – using the AWS Command Line Interface 
(CLI) to create Simple Storage Service (S3) buckets
In Chapter 1, An Introduction to Data Engineering, you created an AWS account and an AWS ad-

ministrative user and then ensured you could access your account. Console access allows you to 

access AWS services and perform most functions; however, it can also be useful to interact with 

AWS services via the CLI at times. 

In this hands-on section, you will learn how to access the AWS CLI, and then use the CLI to create 

Amazon S3 buckets (a storage container in the Amazon S3 service).

Accessing the AWS CLI
The AWS CLI can be installed on your personal computer/laptop or can be accessed from the AWS 

Console. To access the CLI on your personal computer, you need to generate a set of access keys.

Your access keys consist of an access key ID (which is comparable to a username), and a secret 

access key (which is comparable to a password). With these two pieces of information, you can 

authenticate as your user and perform all actions that your user is authorized to perform. 
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However, if anyone else were able to get your access key ID and secret access key, then they would 

have access to the same permissions. In the past, there have been instances where users have 

accidentally exposed their access key ID and secret access key, enabling malicious third parties 

to fraudulently use their account. 

As a result, the easiest and most secure way to access the CLI is via the AWS CloudShell service, 

which is accessible via the console. 

Using AWS CloudShell to access the CLI
CloudShell provides a terminal interface in your web browser, as part of the AWS Console, that 

can be used to explore and manage AWS resources, using the permissions of the user with which 

you log in to the console. With this approach, there is no need to generate access keys for your user.

Use the following steps to access the CLI via AWS CloudShell:

1. Log in to the AWS Console (https://console.aws.amazon.com) using the credentials 

you created in Chapter 1.

2. Click on the CloudShell icon, or use the search bar to search for the CloudShell service.

 Figure 2.10: Accessing the AWS CloudShell service in the console

https://console.aws.amazon.com
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3. To interact with AWS services, you run the command aws. To learn how to interact with a 

specific service, you can run the aws command, followed by the name of the AWS service 

you want to interact with (such as S3), followed by help. For example, to learn how to 

use the Amazon S3 service, run the following command, which will display the help page 

for the S3 service: 

aws s3 help

Figure 2.11: Displaying the AWS CLI help page for Amazon S3

4. Press the SPACE bar to display subsequent pages of the help, or press the letter q to quit 

the help pages.
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Creating new Amazon S3 buckets
Amazon S3 is an object storage service that offers near-unlimited capacity with high levels of 

durability and availability. To store data in S3, you need to create a bucket. Once created, the 

bucket can store any number of objects.

Each S3 bucket needs to have a globally unique name, and it is recommended that the name be 

DNS-compliant. For more information on rules for bucket names, see https://docs.aws.amazon.

com/AmazonS3/latest/userguide/bucketnamingrules.html: 

1. To create an S3 bucket using the AWS CLI, run the following command at the Command 

Prompt in CloudShell. In the following command, replace <bucket-name> with a unique 

name for your bucket:

$ aws s3 mb s3://<bucket-name>

Remember that the bucket name you specify here must be globally unique. If you attempt 

to create a bucket using a name that another AWS account has used, you will see an error 

similar to the following:

$ aws s3 mb s3://test-bucket

make_bucket failed: s3://test-bucket An error occurred 
(BucketAlreadyExists) when calling the CreateBucket operation: The 
requested bucket name is not available. The bucket namespace is 
shared by all users of the system. Please select a different name 
and try again.

If your aws s3 mb command returned a message similar to the following, then congrat-

ulations! You have created your first bucket.

make_bucket: <bucket-name>

2. We can now create additional buckets that we are going to use in some of the hands-on 

exercises in later chapters. As discussed earlier in this chapter, data lakes generally have 

multiple zones for data at different stages. To set up our data lake, we want to create S3 

buckets for the landing zone, clean zone, and curated zone. Refer back to the section titled 

The storage layer and storage zones earlier in this chapter for a description of each of the zones. 

In order to ensure that each bucket name created is globally unique, you can append some unique 

characters to each name, such as your initials, and if necessary, some numbers. In the examples 

below, I am going to append gse23 to each bucket name to ensure it is unique. 

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
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Run the following three commands in the CloudShell terminal to create your buckets (replacing 

gse23 with your own identifier). 

$ aws s3 mb s3://dataeng-landing-zone-gse23

$ aws s3 mb s3://dataeng-clean-zone-gse23

$ aws s3 mb s3://dataeng-curated-zone-gse23

We have now created the storage buckets that will form the foundation of the three zones of our 

data lake (landing zone, clean zone, and curated zone). In later chapters, we will ingest data into 

the landing zone, and then create transformed copies of that data in the other zones. 

Summary
In this chapter, we learned about the foundational architectural concepts that are typically applied 

when designing real-life analytics data management and processing solutions. We also discussed 

three analytics data management architectures that you would commonly find in organizations 

today: data warehouse, data lake, and data lakehouse.

In the next chapter, we will provide an overview of several AWS services that are used in the 

creation of these architectures, including services for ingesting data, services that help perform 

data transformation, and services that are designed for querying and analyzing data.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd


3
The AWS Data Engineer’s Toolkit

Back in 2006, Amazon launched Amazon Web Services (AWS) to offer on-demand delivery of IT 

resources over the internet, essentially creating the cloud computing industry. Ever since then, 

AWS has innovated at an incredible pace, continually launching new services and features to offer 

broad and deep functionality across a wide range of IT services.

Traditionally, organizations built their own big data processing systems in their data centers, 

implementing commercial or open-source solutions designed to help them make sense of ev-

er-increasing quantities of data. However, these systems were often complex to install, requiring 

a team of people to maintain, optimize, and update, and scaling these systems was a challenge, 

requiring significant expenditure on infrastructure and delays while waiting for hardware vendors 

to install new compute and storage systems.

Cloud computing has enabled the removal of many of these challenges, including the ability to 

launch fully configured software solutions at the push of a button and have these systems au-

tomatically updated and maintained by the cloud vendor. Organizations also benefit from the 

ability to scale out by adding resources in minutes, all the while only paying for what was used, 

rather than having to make large upfront capital investments.

Today, AWS offers over 200 different services, including a number of analytics services that can 

be used by data engineers to build complex data analytic pipelines. There are often multiple AWS 

services that can be used to achieve a specific outcome, and the challenge for data architects and 

engineers is balancing the pros and cons of a specific service and evaluating it from multiple 

perspectives, before determining the best fit for the specific requirements.
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In this chapter, we introduce a number of these AWS-managed services commonly used for 

building big data solutions on AWS, and in later chapters, we will look at how you can architect 

complex data engineering pipelines using these services. As you go through this chapter, you will 

learn about the following topics:

• AWS services for ingesting data

• AWS services for transforming data

• AWS services for orchestrating big data pipelines

• AWS services for consuming data

• Hands-on – triggering an AWS Lambda function when a new file arrives in an S3 bucket

Technical requirements
You can find the code files of this chapter in the GitHub repository at the following link: https://
github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/

Chapter03.

An overview of AWS services for ingesting data
The first step in building big data analytic solutions is to ingest data from a variety of sources 

into AWS. In this section, we will introduce some of the core AWS services designed to help with 

this; however, this should not be considered a comprehensive review of every possible way to 

ingest data into AWS.

Don’t feel overwhelmed by the number of services we cover in this section! We will explore 

approaches to deciding on the right service for your specific use case in later chapters, but it is 

important to have a good understanding of the available tools upfront.

Amazon Database Migration Service (DMS)
One of the most common ingestion use cases is to sync data from a database system into an ana-

lytic pipeline, either landing the data in an Amazon S3-based data lake or in a data warehousing 

system such as Amazon Redshift.

AWS DMS is a versatile tool that can be used to migrate an existing database system into a new da-

tabase engine, such as migrating an existing Oracle database into an Amazon Aurora PostgreSQL 

database. In addition, Amazon DMS can be used to replicate between the same database engine 

(such as from an on-prem PostgreSQL server to an Amazon Aurora PostgreSQL-compatible server). 

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter03
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter03
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter03
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When migrating to the same engine, DMS uses the database engine native tools in order to make 

the migration easy and performant. From an analytics perspective, AWS DMS can also be used 

to run continuous replication from a number of common database engines into an Amazon S3 

data lake.

As discussed previously, data lakes are often used as a means of bringing data from multiple 

different data sources into a centralized location to enable an organization to get the big picture 

across different business units and functions. As a result, there is often a requirement to perform 

continuous replication of a number of production databases into Amazon S3.

For our use case, we want to sync our production customer, products, and order databases into the 

data lake. Using DMS, we can do an initial load of data from the databases into S3, specifying the 

format that we want the file written out in (such as CSV or Parquet), and the specific ingestion 

location in S3. At the same time, we can also set up a DMS task to do ongoing replication from 

the source databases into S3 once the full load is completed.

With transactional databases, the rows in a table are regularly updated, such as if a customer 

changes their address or telephone number. When querying the database using Structured Query 

Language (SQL), we can see the updated information, but in most cases, there is no practical 

method to track changes to the database using only SQL. Because of this, DMS uses the database 

transaction log files from the database to track updates to rows in the database and writes out 

the target file in S3 with an extra column added (Op) that indicates which operation is reflected 

in the row – an insert, update, or deletion. The process of tracking and recording these changes 

is commonly referred to as Change Data Capture (CDC).

Picture a situation where you have a source table with a schema of custid, lastname, firstname, 

address, and phone, and the following sequence of events happens:

• A new customer is added with all fields completed

• The phone number was entered incorrectly, so the record has the phone number updated

• The customer record is then deleted from the database

We would see the following in the CDC file that was written out by DMS:

I, 9335, Smith, John, "1 Skyline Drive, NY, NY", 201-555-9012

U, 9335, Smith, John, "1 Skyline Drive, NY, NY", 201-555-9034

D, 9335, Smith, John, "1 Skyline Drive, NY, NY", 201-555-9034
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The first row in the file shows us that a new record was inserted into the table (represented by the 

I in the first column). The second row shows us that a record was updated (represented by the U 

in the first column). Finally, the third entry in the file indicates that this record was deleted from 

the table (represented by the D in the first column).

We would then have a separate update process that would run to read the updates and apply 

those updates to the full load, creating a new point-in-time snapshot of our source database. 

The update process would be scheduled to run regularly, and every time it runs, it would apply 

the latest updates as recorded by DMS to the previous snapshot, creating a new point-in-time 

snapshot. We will review this kind of update job and approach in more detail in Chapter 7, Trans-

forming Data to Optimize It for Analytics.

Amazon DMS is available either in a provisioned mode (where you select the size of the replication 

instance used to connect to the source database, do any transformation, and then write to the 

target) or in a serverless mode (where DMS automatically configures, scales, and manages the 

resources needed for the migration based on requirements).

When to use: Amazon DMS simplifies migrating from one database engine to a different database 

engine or syncing data from an existing database to Amazon S3 on an ongoing basis.

When not to use: Amazon DMS does put some load on the production database during migrations, 

so you need to take this into account. 

AWS web page: https://aws.amazon.com/dms/

Amazon Kinesis for streaming data ingestion
Amazon Kinesis is a managed service that simplifies the process of ingesting and processing 

streaming data in real time, or near real time. There are a number of different use cases that Kinesis 

can be used for, including ingestion of streaming data (such as log files, website clickstreams, or 

IoT data), as well as video and audio streams.

Depending on the specific use case, there are a number of different services that you can select 

from that form part of the overall Kinesis service. Before we go into more detail about these ser-

vices, here is a high-level overview of the various Amazon Kinesis services:

1. Kinesis Data Firehose: Ingests streaming data, buffers for a configurable period, then 

writes out to a limited set of targets (S3, Redshift, OpenSearch Service, Splunk, and 

others)

https://aws.amazon.com/dms/
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2. Kinesis Data Streams: Ingests real-time data streams, processing the incoming data with 

a custom application and low latency

3. Kinesis Data Analytics: Reads data from a streaming source and uses SQL statements or 

Apache Flink code to perform analytics on the stream

4. Kinesis Video Streams: Processes streaming video or audio streams, as well as other 

time-serialized data such as thermal imagery and RADAR data

In addition to the four core services listed above that make up the Kinesis service, there is also 

Kinesis Agent, which can be used to package and send data to Kinesis services. 

Amazon Kinesis Agent
AWS provides Kinesis Agent to easily consume data from a system and write that data out in a 

stream to either Kinesis Data Streams or Kinesis Data Firehose.

Amazon Kinesis Agent is available on GitHub as a Java application under the Amazon Software 

License (https://github.com/awslabs/amazon-kinesis-agent), as well as in a version for Win-

dows (https://github.com/awslabs/kinesis-agent-windows).

The agent can be configured to monitor a set of files, and as new data is written to the file, the 

agent buffers the data (configurable for a duration of between 1 second and 15 minutes) and then 

writes the data to either Kinesis Data Streams or Kinesis Data Firehose. The agent handles retry 

on failure, as well as file rotation and checkpointing.

An example of a typical use case is a scenario where you want to analyze events happening on 

your website in near real time. Kinesis Agent can be configured to monitor the Apache web server 

log files on your web server, convert each record from the Apache access log format into JSON 

format, and then write records out reflecting all website activity every 30 seconds to Kinesis, 

where Kinesis Data Analytics can be used to analyze events and generate custom metrics based 

on a tumbling 5-minute window.

When to use: Amazon Kinesis Agent is ideal for when you want to stream data to Kinesis that is 

being written to a file in a separate process (such as log files).

When not to use: If you have a custom application where you want to emit streaming events 

(such as a mobile application or IoT device), you may want to consider using the Amazon Kine-

sis Producer Library (KPL), or the AWS SDK, to integrate sending streaming data directly from 

your application.

https://github.com/awslabs/amazon-kinesis-agent
https://github.com/awslabs/kinesis-agent-windows
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Amazon Kinesis Firehose
Amazon Kinesis Firehose is designed to enable you to easily ingest data in near real time from 

streaming sources and write out that data to common targets, including Amazon S3, Amazon 

Redshift, Amazon OpenSearch Service, as well as many third-party services (such as Splunk, 

Datadog, and New Relic).

With Kinesis Firehose, you can easily ingest data from streaming sources, process or transform the 

incoming data, and deliver that data to a target such as Amazon S3 (among others). A common 

use case for data engineering purposes is to ingest website clickstream data from the Apache web 

logs on a web server and write that data out to an S3 data lake (or a Redshift data warehouse).

In this example, you could install Kinesis Agent on the web server and configure it to monitor the 

Apache web server log files. Based on the configuration of the agent, at a regular schedule, the 

agent will write records from the log files to the Kinesis Firehose endpoint.

The Kinesis Firehose endpoint would buffer the incoming records, and either after a certain time 

(1-15 minutes) or based on the size of incoming records (1 MB-128 MB), it would write out data 

to the specified target. Kinesis Firehose requires you to specify both a size and a time limit, and 

whichever is reached first will trigger the writing out of the file.

When writing files to Amazon S3, you also have the option to transform incoming data into Par-

quet or ORC format or perform custom transformations of the incoming data stream using an 

Amazon Lambda function. Kinesis Data Firehose also supports dynamic partitioning, enabling 

you to specify a custom partitioning configuration. With dynamic partitioning, as your data is 

written to your S3-based data lake it can be partitioned based on custom partition keys contained 

in the data payload.

When to use: Amazon Kinesis Firehose is the ideal choice for when you want to receive stream-

ing data, buffer that data for a period, and then write the data to one of the targets supported by 

Kinesis Firehose (such as Amazon S3, Amazon Redshift, Amazon OpenSearch Service, an HTTP 

endpoint, or a supported third-party service).

When not to use: If your use case requires very low-latency processing of incoming streaming 

data (that is, immediate reading of received records) or you want to use a custom application to 

process your incoming records or deliver records to a service not supported by Amazon Kinesis 

Firehose, then you should consider using Amazon Kinesis Data Streams or Amazon Managed 

Streaming for Apache Kafka (MSK) instead.

AWS web page: https://aws.amazon.com/kinesis/data-firehose/ 

https://aws.amazon.com/kinesis/data-firehose/
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Amazon Kinesis Data Streams
While Kinesis Firehose buffers incoming data before writing it to one of its supported targets, 

Kinesis Data Streams provides increased flexibility for how data is consumed and makes the 

incoming data available to your streaming applications with very low latency (AWS indicates 

data is available to consuming applications within as little as 70 milliseconds of the data being 

written to Kinesis).

Companies such as Netflix use Kinesis Data Streams to ingest terabytes of log data every day, en-

riching their networking flow logs by adding in additional metadata, and then writing the data to 

an open-source application for performing near real-time analytics on the health of their network.

You can write to Kinesis Data Streams using Kinesis Agent, or you can develop your own custom 

applications using the AWS SDK or the Amazon KPL, a library that simplifies writing data records 

with high throughput to a Kinesis data stream.

Kinesis Agent is the simplest way to send data to Kinesis Data Streams if your data can be supported 

by the agent (such as when writing out log files), while the AWS SDK provides the lowest latency, 

and the Amazon KPL provides the best performance and simplifies tasks such as monitoring and 

integration with the Kinesis Client Library (KCL).

There are also multiple options available for creating applications to read from your Kinesis data 

stream, including the following:

• Using other Kinesis services (such as Kinesis Firehose or Kinesis Data Analytics).

• Running custom code using the AWS Lambda service (a serverless environment for run-

ning code without provisioning or managing servers).

• Setting up a cluster of Amazon EC2 servers to process your streams. With this approach, 

you can use the KCL to handle many of the complex tasks associated with using multi-

ple servers to process a stream, such as load balancing, responding to instance failures, 

checkpointing records that have been processed, and reacting to resharding (increasing 

or decreasing the number of shards used to process streaming data).

Kinesis Data Streams supports two capacity modes. With Provisioned mode, you need to specify 

the number of shards for the data stream upfront, and can then resize the number of shards based 

on changing requirements. With On-Demand mode, you do not need to do any capacity planning 

or sizing of the Kinesis cluster, as the cluster automatically scales to meet throughput requirements. 
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When to use: Amazon Kinesis Data Streams is ideal for use cases where you want to process in-

coming data as it is received, or you want to create a high-availability cluster of servers to process 

incoming data with a custom application.

When not to use: If you have a simple use case that requires you to write data to specific services 

in near real time, you should consider Kinesis Data Firehose if it supports your target destination. 

If you are looking to migrate an existing Apache Kafka cluster to AWS, then you may want to 

consider migrating to Amazon MSK. If Apache Kafka supports third-party integration that would 

be useful to you, you may want to consider Amazon MSK.

AWS web page: https://aws.amazon.com/kinesis/data-streams/ 

Amazon Kinesis Data Analytics
Amazon Kinesis Data Analytics simplifies the process of processing streaming data using an 

Apache Flink application.

An example of a use case for Kinesis Data Analytics is to analyze incoming clickstream data from 

an e-commerce website to get near-real-time insight into the sales of a product. In this use case, 

an organization may want to know how the promotion of a specific product is impacting sales to 

see whether the promotion is effective, and Kinesis Data Analytics can enable this using a Flink 

application to process records being sent from their web server clickstream logs. This enables the 

business to quickly get answers to questions such as “how many sales of product x have there been 

in each 5-minute period since our promotion went live?”

When to use: If you want to use Apache Flink to analyze data or extract key metrics over a roll-

ing time period, Kinesis Data Analytics significantly simplifies this task. If you have an existing 

Apache Flink application that you want to migrate to the cloud, consider running the application 

using Kinesis Data Analytics.

AWS web page: https://aws.amazon.com/kinesis/data-analytics/ 

Amazon Kinesis Video Streams
Amazon Kinesis Video Streams can be used to process time-bound streams of unstructured data 

such as video, audio, and RADAR data.

Kinesis Video Streams takes care of provisioning and scaling the compute infrastructure that is 

required to ingest streaming video (or other types of media files) from potentially millions of 

sources. Kinesis Video Streams enables playback of video for live and on-demand viewing and 

can be integrated with other Amazon API services to enable applications such as computer vision 

and video analytics.

https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-analytics/
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Appliances such as video doorbell systems, home security cameras, and baby monitors can stream 

video through Kinesis Video Analytics, simplifying the task of creating full-featured applications 

to support these appliances.

When to use: When creating applications that use a supported source, Kinesis Video Streams 

significantly simplifies the process of ingesting streaming media data and enabling live or on-de-

mand playback.

AWS web page: https://aws.amazon.com/kinesis/video-streams 

Amazon MSK for streaming data ingestion
Apache Kafka is a popular open-source distributed event streaming platform that enables an or-

ganization to create high-performance streaming data pipelines and applications, and Amazon 

MSK is a managed version of Apache Kafka available from AWS.

While Apache Kafka is a popular choice for organizations, it can be a challenge to install, scale, 

update, and manage in an on-premises environment, often requiring specialized skills. To simplify 

these tasks, AWS offers Amazon MSK, which enables an organization to deploy an Apache Kafka 

cluster with a few clicks in the console and reduces the management overhead by automatically 

monitoring cluster health and replacing failed components, handling OS and application upgrades, 

deploying in multiple availability zones, and providing integration with other AWS services. 

A note about AWS service reliability

AWS services are known to be extremely reliable, and generally significantly exceed 

the uptime and reliability of what most organizations can achieve in their own data 

centers. However, as Werner Vogels (Amazon’s CTO) has been known to say, “Ev-

erything fails all the time.”

In November 2020, the Amazon Kinesis service running out of data centers in the 

Northern Virginia Region (us-east-1) experienced a period of a number of hours 

where there were increased error rates for users of the service. During this time, many 

companies reported having their services affected, including Roomba vacuum clean-

ers, Ring doorbells, The Washington Post newspaper, Roku, and others.

This is a clear reminder that while AWS services generally offer extremely high levels 

of availability, if you require absolutely minimal downtime, you need to design the 

ability to fail-over to a different AWS Region in your architecture.

https://aws.amazon.com/kinesis/video-streams
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With Amazon MSK, you need to specify compute and storage capacity for the cluster; however, 

Amazon MSK is also offered as a serverless cluster type. With this option, you do not need to specify 

and manage cluster capacity, as Amazon MSK Serverless automatically deploys and scales the 

required compute and storage. To decide between provisioned and serverless, you need to com-

pare the pricing for your use case, but generally, MSK Serverless is best suited for unpredictable 

workloads where there are spikes and troughs in streaming throughput. 

When to use: Amazon MSK is an ideal choice if your use case is a replacement for an existing 

Apache Kafka cluster, or if you want to take advantage of the many third-party integrations from 

the open-source Apache Kafka ecosystem. As Amazon MSK is a managed version of the open-

source Apache Kafka solution, if having an open-source solution that enables easy migration to 

non-AWS environments is important to you, then Amazon MSK may be a good choice. 

When not to use: Amazon Kinesis may be a preferred streaming solution if you are creating a 

new solution from scratch and you are looking for the best integration with other AWS services. 

AWS web page: https://aws.amazon.com/msk/ 

Amazon AppFlow for ingesting data from SaaS services
Amazon AppFlow can be used to ingest data from popular SaaS services (such as Salesforce, Goo-

gle Analytics, Microsoft SharePoint Online, and many more), and to transform and write the data 

out to common analytic targets (such as Amazon S3, Amazon EventBridge, and Amazon Redshift, 

as well as being able to write to some SaaS services).

For example, AppFlow can be used to ingest lead data from Marketo, a developer of marketing 

automation solutions, where your organization may capture details about a new lead. Using 

AppFlow, you can create a flow that will automatically create a new Salesforce contact record 

whenever a new Marketo lead is created.

From a data engineering perspective, you can create flows that will automatically write out new 

opportunity records created in Salesforce into your S3 data lake or Redshift data warehouse, en-

abling you to join those opportunity records with other datasets to perform advanced analytics.

AppFlow can be configured to run on a schedule or in response to specific events (for certain 

sources), and can filter, mask, and validate data, and perform calculations from data fields in the 

source. AWS also regularly adds additional integrations to the AppFlow service, and, in November 

2022, it announced 22 new data connectors, bringing the total number of connectors to over 50.  

https://aws.amazon.com/msk/
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In addition to connectors for a number of AWS services, there are connectors for third-party 

services such as Datadog, Facebook, Google Analytics, GitHub, LinkedIn, Salesforce, SAP OData, 

ServiceNow, Slack, Snowflake, Stripe, QuickBooks, Zoom, and many others. 

For details on all AppFlow connectors, review the AppFlow documentation at https://docs.aws.

amazon.com/appflow/latest/userguide/app-specific.html. 

When to use: Amazon AppFlow is an ideal choice for ingesting data into AWS if one of your data 

sources is a supported source.

When not to use: Amazon AppFlow has limited functionality for transforming data that is ingest-

ed. If you require more complex transformations as part of ingestion, or if the data sources you 

require are not supported, consider similar third-party toolsets (such as Hevo Data), or consider 

building a custom ingest pipeline using AWS Glue.   

AWS web page: https://aws.amazon.com/appflow/ 

AWS Transfer Family for ingestion using FTP/SFTP protocols
AWS Transfer Family provides a fully managed service that enables file transfers directly into 

and out of Amazon S3 using common file transfer protocols, including FTP, SFTP, FTPS, and AS2. 

Many organizations today still make use of these protocols to exchange data with other organi-

zations. For example, a real-estate company may receive the latest Multi-Listing Service (MLS) 

files from an MLS provider via SFTP. In this case, the real-estate company will have configured a 

server running SFTP and created an SFTP user account that the MLS provider can use to connect 

to the server and transfer the files.

With AWS Transfer for SFTP, the real-estate company could easily migrate to the managed AWS 

service, replicating the account setup that exists for their MLS provider on its on-premises server 

with an account in its AWS Transfer service. With little to no change on the side of the provider, 

when future transfers are made via the managed AWS service, these would be written directly 

into Amazon S3, making the data immediately accessible to data transformation pipelines created 

for the Amazon S3-based data lake.

When to use: If an organization currently receives data via FTP, SFTP, FTPS, or AS2, it should 

consider migrating to the managed version of this service offered by Amazon Transfer.

When not to use: There are other AWS Marketplace options for running a managed file transfer 

service, so you should compare options based on both features and pricing in order to determine 

the best match for your requirements. 

https://docs.aws.amazon.com/appflow/latest/userguide/app-specific.html
https://docs.aws.amazon.com/appflow/latest/userguide/app-specific.html
https://aws.amazon.com/appflow/
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Some of these other services, such as SFTP Gateway (see https://help.thorntech.com/), offer 

options across multiple clouds, so if multi-cloud is important to you, you may prefer a third-party 

service. 

AWS web page: https://aws.amazon.com/aws-transfer-family/ 

AWS DataSync for ingesting from on premises and 
multicloud storage services
There is often a requirement to ingest data from existing on-premises storage systems, and AWS 

DataSync simplifies this process while offering high performance and stability for data transfers.

Network File System (NFS) and Server Message Block (SMB) are two common protocols that are 

used to allow computer systems to access files stored on a different system. With DataSync, you 

can easily ingest and replicate data from file servers that use either of these protocols. DataSync 

also supports ingesting data from on-premises object-based storage systems that are compatible 

with core AWS S3 API calls, as well as from Hadoop Distributed File System (HDFS), commonly 

used for on-premises data lakes, and from other cloud object stores (such as Azure Blob Storage 

and Google Cloud Storage). 

DataSync can write to multiple targets within AWS, including Amazon S3 and Amazon EFS, mak-

ing it an ideal way to sync data from on-premises storage, on-premisis data lakes, as well as other 

cloud services, into your AWS S3-based data lake. For example, if you have a solution running in 

your data center that writes out end-of-day transactions to a file share, DataSync can ensure that 

the data is synced to your S3 data lake. Another common use case is to transfer large amounts of 

historical data from an on-premises system or HDFS data lake into your S3 data lake.

When to use: AWS DataSync is a good choice when you’re looking to ingest current or historical 

data from compatible on premises storage systems, or other cloud storage services, to AWS over 

a network connection.

When not to use: For very large historical datasets where sending the data over a network con-

nection is not practical, you should consider using the Amazon Snow family of devices. 

AWS web page: https://aws.amazon.com/datasync/ 

The AWS Snow family of devices for large data transfers
For use cases where there are very large datasets that need to be ingested into AWS, and either a 

good network connection is lacking or just the sheer size of the dataset makes it impractical to 

transfer them via a network connection, the AWS Snow family of devices can be used.

https://help.thorntech.com/
https://aws.amazon.com/aws-transfer-family/
https://aws.amazon.com/datasync/
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The AWS Snow family of devices are ruggedized devices that can be shipped to a location and 

attached to a network connection in the local data center. Data can be transferred over the local 

network and the device is then shipped back to AWS, where the data will be transferred to Am-

azon S3. All the devices offer encryption of data at rest, as well as high-security features such as 

tamper-resistant enclosures and Trusted Platform Modules (TPMs) that can detect unauthorized 

modifications to the hardware, software, or firmware of the devices. 

The Snow devices also offer compute ability, enabling edge computing use cases (edge computing 

is where you run applications closer to a user, so outside of the core AWS cloud environment). 

An example edge computing use case is for a factory in a remote area without good internet con-

nectivity, where they can use a Snow device in the factory to collect and process factory IoT data 

(such as using machine learning models running on the Snow device to predict maintenance 

issues based on the IoT data). 

There are multiple devices available for different use cases, as summarized here:

1. AWS Snowcone: Lightweight (4.5 lb/2.1 kg) device with 8-14 TB of usable storage, 2 vCPUs, 

and 4 GB of RAM for the compute

2. AWS Snowball Edge: Medium-weight (49.7 lb/22.5 kg) device with up to 104 vCPUs, 416 

GB of RAM, and 210 TB of usable SSD storage

The Snowball Edge devices are available either as compute-optimized or storage-optimized. 

The compute-optimized device can have up to 28 TB of SSD storage and includes the option of 

having an NVIDIA Tesla V100 GPU for compute-intensive applications (such as machine learning 

or video analysis). The storage-optimized device can have up to 210 TB SSD of storage but does 

not provide an option for GPU compute. 

When to use: The AWS Snow family of devices is ideal for migrating very large volumes of data 

from on-premises or remote locations to Amazon S3 and can also be used for edge computing use 

cases and for data migration from locations that have poor internet connectivity.

When not to use: You need to evaluate the available bandwidth from the source environment 

where you need to migrate data from in order to determine whether a solution such as DataSync 

may be able to transfer your data quicker than using a Snow device. See the Best practices for moving 

your data to AWS video from re:Invent 2021, available at https://youtu.be/9r9PmMpJGKg?t=219, 

for a comparison of DataSync and Snow devices for large transfers. 

AWS web page: https://aws.amazon.com/snow/ 

https://youtu.be/9r9PmMpJGKg?t=219
https://aws.amazon.com/snow/
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AWS Glue for data ingestion
AWS Glue provides a serverless Apache Spark environment where you can create code-based 

solutions for both data ingestion and transformation. 

AWS Glue includes a number of built-in connectors for connecting to certain AWS and third-party 

services, including Amazon RDS, Amazon Redshift, Amazon DocumentDB, MongoDB, MongoDB 

Atlas, and various JDBC-accessible sources. 

In addition, AWS Glue makes it possible to subscribe to a number of connectors from the AWS 

Marketplace. These include connectors created by AWS and available at no charge, such as the 

Google BigQuery connector (https://aws.amazon.com/marketplace/pp/prodview-sqnd4gn5f

ykx6?ref_=beagle&applicationId=GlueStudio). It also includes connectors from third parties 

that may have associated licensing costs, such as the CData Connector for Salesforce (https://
aws.amazon.com/marketplace/pp/prodview-sonh33r7xavhw?sr=0-11&ref_=beagle&applicat

ionId=GlueStudio). 

You can use these connectors when creating AWS Glue jobs in order to connect to a diverse set of 

sources and to import data as part of your AWS Glue job. 

When to use: AWS Glue enables you to import data into AWS as part of a Glue job, using pre-

built connectors. This is useful when there is no AWS-managed service for importing data from 

the required source, or when you want to import data as part of a Glue-based ETL job. The AWS 

Marketplace includes a number of these pre-built connectors, some at no charge, and others that 

have a subscription-based cost. 

When not to use: AWS Glue uses a Spark-based ETL job to ingest data from a variety of sources, 

but if you are looking to just ingest data without needing to do Spark-based transformations, 

then consider the AWS ingestion-focused managed services for your use case (such as Amazon 

AppFlow or AWS DMS).

Learn more about Glue connectors: https://docs.aws.amazon.com/glue/latest/ug/

connectors-chapter.html

Having examined a number of options for ingesting data into your AWS environment, we will 

now move on to an overview of services for transforming your data. 

https://aws.amazon.com/marketplace/pp/prodview-sqnd4gn5fykx6?ref_=beagle&applicationId=GlueStudio
https://aws.amazon.com/marketplace/pp/prodview-sqnd4gn5fykx6?ref_=beagle&applicationId=GlueStudio
https://aws.amazon.com/marketplace/pp/prodview-sonh33r7xavhw?sr=0-11&ref_=beagle&applicationId=GlueStudio
https://aws.amazon.com/marketplace/pp/prodview-sonh33r7xavhw?sr=0-11&ref_=beagle&applicationId=GlueStudio
https://aws.amazon.com/marketplace/pp/prodview-sonh33r7xavhw?sr=0-11&ref_=beagle&applicationId=GlueStudio
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html
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An overview of AWS services for transforming data
Once your data is ingested into an appropriate AWS service, such as Amazon S3, the next stage 

of the pipeline needs to transform the data to optimize it for analytics and to make it available 

to your data consumers.

Some of the tools we discussed in the previous section for ingesting data into AWS can perform 

light transformations as part of the ingestion process. For example, Amazon DMS can write out 

data in Parquet format (a format optimized for analytics), as can Kinesis Firehose. However, heavier 

transformations are often required to fully optimize your data for a differing set of analytic tasks 

and diverse data consumers, and in this section, we will examine some of the core AWS services 

that can be used for this.

AWS Lambda for light transformations
AWS Lambda provides a serverless environment for executing code and is one of AWS’s most 

popular services. You can trigger your Lambda function to execute your code in multiple ways, 

including through integration with other AWS services, and you only pay for the duration that 

your code executes, billed in 1-millisecond increments, and based on the amount of memory that 

you allocate to your function. Lambda can scale from a few executions per day to thousands of 

executions per second. 

In the data engineering world, a common use case for Lambda is for performing validation or 

light processing and transformation of incoming data. For example, if you have incoming CSV files 

being sent by one of your partners throughout the day, you can trigger a Lambda function to run 

every time a new file is received, have your code validate that the file is a valid CSV file, perform 

some computation on one of the columns and update a database with the result, and then move 

the file into a different bucket where a batch process will later process all files received for the day.

Another use case is to process an incoming stream of data. For example, you can use Lambda 

along with Amazon Kinesis Data Streams or Kinesis Data Firehose to process real-time streaming 

data from a mobile application.

With the ability to run for up to 15 minutes, and with a maximum memory configuration of 10 

GB, it is possible to do more advanced processing as well. For example, you may receive a ZIP file 

containing hundreds of small XML files, and you can process that with a Lambda function that 

unzips the file, validates each XML file to ensure that it is valid XML, performs calculations on 

fields in the file to update various other systems, concatenates the contents of all the files, and 

then writes that out in Parquet format in a different zone of your data lake.
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Lambda is also massively parallelized, meaning that it can easily scale for highly concurrent 

workloads. In the preceding example of processing ZIP files as they arrive in an S3 bucket, if 

hundreds of ZIP files were all delivered within a period of just a few seconds, a separate Lambda 

instance would be spun up for each file, and AWS would automatically handle the scaling of the 

Lambda functions to enable this. By default, you can have 1,000 concurrent Lambda executions 

within an AWS Region for your account, but you can work with AWS support to increase this 

limit to the tens of thousands.

AWS Lambda supports many different languages, including Python, which has become one of 

the most popular languages for data engineering-related tasks. In the hands-on activity part of 

this chapter, we will create a Lambda function that is automatically triggered when a new file is 

uploaded to a specific S3 location. 

AWS Glue for serverless data processing
AWS Glue has multiple components that could have been split into multiple separate services, 

but these components can all work together, so AWS has grouped them together into the AWS 

Glue family. In this section, we will look at the core Glue components related to data processing.

Serverless ETL processing 
There are a number of common code-based engines that are popular for performing data-engi-

neering-related tasks. These include:

1. Apache Spark is an open-source engine for the distributed processing of large datasets 

across a cluster of compute nodes, which makes it ideal for taking a large dataset, splitting 

the processing work between the nodes in the cluster, and then returning a result. As Spark 

does all processing in memory, it is highly efficient and performant and has become the 

tool of choice for many organizations looking for a solution for processing large datasets.

2. Python, which traditionally runs on a single node, has become an extremely popular 

language for performing data-science-/data-engineering-related tasks on small to me-

dium-sized datasets.

3. Ray�io is an open-source framework that enables running Python code over multiple 

compute nodes, enabling Python code to be used to process much larger datasets. 
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The following diagram depicts two of the Glue engines – a single-node Glue Python shell on the 

left, and a multi-node Glue Apache Spark cluster on the right:

Figure 3.1: Glue Python shell and Glue Spark engines

Both engines can work with data that resides in Amazon S3 and with the AWS Glue Data Catalog. 

Both engines are serverless from the perspective of a user, meaning a user does not need to deploy 

or manage servers; a user just needs to specify the number of Data Processing Units (DPUs) that 

they want to power their job. Glue ETL jobs are charged based on the number of DPUs configured, 

as well as the amount of time for which the underlying code executes in the environment.

While AWS Glue does provide additional Spark libraries and functionality to simplify some com-

mon ETL tasks, their use is optional, and existing open-source Spark code can be easily run in 

AWS Glue. AWS Glue also supports Spark Streaming, an extension of the core Spark API designed 

to process live data streams.

You can write new Spark code directly (or use existing Spark code) with the AWS Glue ETL service 

or you can generate Spark code through a GUI-based tool with the Glue Studio Visual Editor. In 

Chapter 7, Transforming Data to Optimize for Analytics, we will get hands-on with Glue Studio to 

join two datasets. 
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AWS Glue DataBrew
AWS Glue DataBrew is another serverless visual data preparation tool that lets you easily apply 

transformations to your data, without needing to write or manage any code. DataBrew includes 

over 250 built-in data transformations, which can be easily assembled via the DataBrew UI to 

create a DataBrew recipe, enabling you to apply multiple transformations to a dataset. 

DataBrew includes functionality for both profiling data (gathering statistics on the different 

columns in the dataset) and for monitoring data quality. It also includes many different types 

of transformations, such as formatting data, obfuscating PII data, splitting or joining columns, 

converting timezones, detecting and removing outliers, and many more. For example, you can 

run a DataBrew profile job that can detect PII data, and then create a DataBrew job that can mask, 

encrypt, or hash sensitive data. 

DataBrew is commonly used by data analysts and data scientists to clean and prepare data for 

additional processing. In Chapter 8, Identifying and Enabling Data Consumers, we will do a hands-

on exercise on using Glue DataBrew to transform some data. 

AWS Glue Data Catalog
To complement the ETL processing functionality described previously, AWS Glue also includes 

a data catalog that can be used to provide a logical view of data stored physically in the storage 

layer. Objects (such as databases and tables) in the catalog can then be directly referenced from 

your ETL code. 

Glue Data Catalog is a Hive metastore-compatible catalog, meaning that it can be used with any 

system that is able to work with a Hive metastore. As discussed in Chapter 2, under the heading 

Catalog and search layer, you get two types of catalogs – business and technical. The Hive metastore, 

and therefore Glue Data Catalog, is a technical catalog. 

As an example, if you used AWS DMS to replicate your Human Resources (HR) database in S3, 

you would end up with a prefix (directory) in S3 for each table from the source database. In this 

directory, we would generally find multiple files containing the data from the source table – for 

example, 20 CSV files containing the rows from the source employee table.

Glue Data Catalog can provide a logical view of this dataset and capture additional metadata about 

the dataset. For example, the data catalog consists of a number of databases at the top level (such 

as the HR database), and each database contains one or more tables (such as the employee table). 
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In addition, each table in the catalog contains metadata, such as the column headings and data 

types for each column (such as employee_id, lastname, firstname, address, and dept), a reference 

to the S3 location for the data that makes up that table, and details on the file format (such as CSV). 

In the following screenshot, we see a bucket that contains objects under the prefix hr/employees 

and a number of CSV files that contain data imported from the employee database:

Figure 3.2: Amazon S3 bucket with CSV files making up the employee table

The screenshot of the following AWS Glue Data Catalog shows us the logical view of this data. We 

can see that this is the employee table and it references the S3 location shown in the preceding 

screenshot. In this logical view, we can see that the employee table is in the HR database, and we 

can see the columns and data types that are contained in the CSV files.
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Figure 3.3: AWS Glue Data Catalog showing a logical view of the employee table

Within the AWS ecosystem, a number of services can use AWS Glue Data Catalog. For example, 

Amazon Athena uses AWS Glue Data Catalog to enable users to run SQL queries directly on data 

in Amazon S3, and Amazon EMR and the AWS Glue ETL engine use it to enable users to reference 

catalog objects (such as databases and tables) directly in their ETL code.

AWS Glue crawlers
AWS Glue crawlers are processes that can examine a data source (such as a path in an S3 bucket) 

and automatically infer the schema and other information about that data source so that AWS 

Glue Data Catalog can be automatically populated with relevant information.

For example, we could point an AWS Glue Crawler at the S3 location where DMS replicated the 

employee table of our HR database. When the Glue Crawler runs, it examines a portion of each 

of the files in that location, identifies the file type (CSV or Parquet), uses a classifier to infer the 

schema of the file (column headings and types), and then adds that information into a database 

in Glue Data Catalog.

Note that you can also add databases and tables to Glue Data Catalog using the Glue API or via SQL 

statements in Athena, so using Glue crawlers to automatically populate the catalog is optional. 

In Chapter 6, Ingesting Batch and Streaming Data, we will do a hands-on exercise to configure the 

Glue Crawler to add newly ingested data to Glue Data Catalog. 
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Amazon EMR for Hadoop ecosystem processing
Amazon EMR provides a managed platform for running popular open-source big data process-

ing tools, such as Apache Spark, Apache Hive, Apache Hudi, Apache HBase, Presto, Pig, and 

others. Amazon EMR takes care of the complexities of deploying these tools and managing the 

underlying clustered compute resources.

Like many other AWS services, Amazon EMR can run in a provisioned mode (where you specify 

specific compute resources to use), or it can be run in a serverless mode. 

With EMR provisioned mode, you can create an EMR cluster on EC2 nodes, specifying the specific 

instance types you want to use, and many other detailed configuration parameters (big data 

applications you want to deploy, automatic scaling options, networking, and more). This option 

provides you the most control and flexibility for cluster and application configuration, enabling 

you to fine-tune the performance of your applications. However, this does require you to build up 

expertise to understand the configuration options and their impact on application performance, 

such as the optimal EC2 instance type to use for different applications. 

Alternatively, you can select to run Spark workloads using Amazon EMR on an Elastic Kubernetes 

Service (EKS) cluster. If your organization already makes use of EKS to run applications, you can 

have EMR automatically deploy containers to run Spark workloads using the EKS compute. EMR 

does not provision the EKS cluster (it only provisions the Spark-based container to run on the 

cluster), so you are required to have an existing cluster and the skills to maintain and configure EKS. 

EMR Serverless provides you with an option to run certain workloads without needing to decide 

on and select EC2 instance types. With EMR Serverless, you can create an application that runs 

either Spark or Hive as the processing engine, and then select a maximum for CPU, memory, and 

storage for that application. You can optionally select to pre-initialize Spark drivers and workers 

for your application, which then creates a warm pool of workers for an application. While there 

is a cost to have the warm pool running, it does enable submitted jobs to start processing imme-

diately, and you can optionally specify a timeout, after which the application will stop if idle. If 

you do not pre-initialize capacity, it may take a few minutes for a submitted job to run, but it is 

the most cost-effective way to run your jobs as you do not pay for application idle time. Once an 

application is running, you can submit multiple Spark jobs to the application.

As discussed above, Amazon EMR can be used to run Apache Spark, and you might be wondering 

why AWS has multiple services (Glue and EMR) that effectively offer the same big data processing 

engine. While either service can be used to perform big data processing using the Apache Spark 

engine, there are differences from a management, integration, and cost perspective.
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AWS Glue requires the least amount of configuration, as you just need to specify a worker type 

and a maximum number of DPUs for each job and can then submit a Spark job to run. Using EMR 

Serverless requires a bit more configuration as you need to configure an application, and can 

then submit jobs to that application. However, you have more control over both the number of 

CPUs and the memory for each worker, and the cost for equivalent processing power is slightly 

lower than Glue. 

Amazon EMR provisioned clusters (on EC2 or EKS) require more expertise to manage but pro-

vide the most control for fine-tuning your Spark jobs. They also support a wide range of big data 

processing applications beyond Spark (such as Hive, Presto, and Trino) and are the lowest-cost 

method for running Spark jobs using a managed AWS service. 

One of the other differences is that AWS Glue has a number of built-in connectors, as well as a 

marketplace with additional connectors, that can make it easier to integrate your Spark code 

with external systems. 

The following diagram shows an EMR cluster provisioned on EC2, including some of the open-

source projects that can be run on the cluster:

Figure 3.4: High-level overview of an EMR cluster running on EC2
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Each EMR provisioned cluster requires a master node, at least one core node (a worker node that 

includes local storage), and then optionally a number of task nodes (worker nodes that do not 

have any local storage).

Having looked at how we can transform data in our data lake, let’s now look at the AWS services 

that enable us to orchestrate the different components of our data pipeline.

An overview of AWS services for orchestrating big 
data pipelines
As discussed in Chapter 2, Data Management Architectures for Analytics, a data pipeline can be built 

to bring in data from source systems, and then transform that data, often moving the data through 

multiple stages, further transforming or enriching the data as it moves through each stage.

An organization will often have tens or hundreds of pipelines that work independently or in 

conjunction with each other on different datasets and perform different types of transformations. 

Each pipeline may use multiple services to achieve the goals of the pipeline, and orchestrating 

all the varying services and pipelines can be complex. In this section, we will look at a number of 

AWS services that help with this orchestration task.

AWS Glue workflows for orchestrating Glue components
In the An overview of AWS services for transforming data section, we covered AWS Glue, a service 

that includes a number of components. As a reminder, they are as follows:

• A serverless Apache Spark or Python shell environment for performing ETL transforma-

tions

• Glue Data Catalog, which provides a centralized logical representation (database and 

tables) of the physical data stored in Amazon S3

• Glue crawlers, which can be configured to examine files in a specific location, automatically 

infer the schema of the file, and add the file to the AWS Glue Data Catalog

AWS Glue workflows are a functionality within the AWS Glue service that has been designed to 

help orchestrate the various AWS Glue components. A workflow consists of an ordered sequence 

of steps that can run Glue crawlers and Glue ETL jobs (Spark or Python shell).
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The following diagram shows a visual representation of a simple Glue workflow that can be built 

in the AWS Glue console:

Figure 3.5: AWS Glue workflow

This workflow orchestrates the following tasks:

1. It runs a Glue Crawler to add newly ingested data from the raw zone of the data lake into 

Glue Data Catalog.

2. Once the Glue Crawler completes, it triggers a Glue ETL job to convert the raw CSV data 

into Parquet format and writes it to the curated zone of the data lake.

3. When the Glue job is complete, it triggers a Glue Crawler to add the newly transformed 

data to the curated zone in Glue Data Catalog.

Each step of the workflow can retrieve and update the state information about the workflow. This 

enables one step of a workflow to provide state information that can be used by a subsequent 

step in the workflow. For example, a workflow may run multiple ETL jobs, and each ETL job can 

update state information, such as the location of files that it outputted, which will be available 

to be used by subsequent workflow steps.

The preceding diagram is an example of a relatively simple workflow, but AWS Glue workflows 

are capable of orchestrating much more complex workflows. However, it is important to note 

that Glue workflows can only be used to orchestrate Glue components, which are ETL jobs and 

Glue crawlers.
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If you only use AWS Glue components in your pipeline, then AWS Glue workflows are well suited 

to orchestrate your data transformation pipelines. But if you have a use case that needs to incor-

porate other AWS services in your pipeline (such as AWS Lambda), then keep reading to learn 

about other available options.

AWS Step Functions for complex workflows
Another option for orchestrating your data transformation pipelines is AWS Step Functions, a 

service that enables you to create complex workflows that can be integrated with over 220 AWS 

services, without needing to maintain code. 

Step Functions is serverless, meaning that you do not need to deploy or manage any infrastructure, 

and you pay for the service based on your usage, not on fixed infrastructure costs.

With Step Functions, you use JSON to define a state machine using a structured language known 

as the Amazon States Language (ASL). Alternatively, you can use Step Functions Workflow 

Studio to create a workflow using a visual interface that supports dragging and dropping, and 

this creates the JSON ASL for you. The resulting workflow can run multiple tasks, run different 

branches based on a choice, enter a wait state where you specify a delay before the next step is 

run, and loop back to previous steps, as well as various other things that can be done to control 

the workflow.

When you start a state machine, you include JSON data as input text that will be passed to the first 

state in the workflow. The first state in the workflow uses the input data, performs the function 

it is configured to do (such as running a Lambda function using the input passed into the state 

machine), modifies the JSON data, and then passes the modified JSON data to the next state in 

the workflow.

You can trigger a step function using Amazon EventBridge (such as on a schedule or in response 

to something else triggering an EventBridge event), as well as various other AWS services (such 

as Amazon API Gateway, AWS CodePipeline, or AWS IoT Rules Engine). You can also trigger a 

step function on-demand, by calling the Step Functions API.
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The following is an example of a Step Functions state machine:

Figure 3.6: AWS Step Functions state machine

This state machine performs the following steps:

1. An EventBridge rule is triggered whenever a file is uploaded to a particular Amazon S3 

bucket, and the EventBridge rule starts our state machine, passing in a JSON object that 

includes the location of the newly uploaded file.

2. The first step, Process Incoming File, runs a Lambda function that takes the location of the 

uploaded file as input and processes the incoming file (for example, converting from CSV 

into Parquet format). The output of the Lambda function indicates whether the file pro-

cessing succeeded or failed. This information is included in the JSON passed to the next step.
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3. The Did Job Succeed? step is of type Choice. It examines the JSON data passed to the 

step, and if the jobStatus field is set to succeeded, it branches to Start Glue Crawler. 

Otherwise, it branches to Publish Error via SNS.

4. In the Start Glue Crawler step, an AWS Glue Crawler is triggered. When this completes, 

a Step Functions flow runs that marks this step function execution as being successful. 

5. In the Publish Error via SNS step, a message is published to an SNS topic, which sends an 

email or text message to an operator to inform them that the job failed. When this com-

pletes, a Step Functions flow runs that marks this step function execution as having failed. 

In Chapter 10, Orchestrating the Data Pipeline, we have a hands-on exercise for orchestrating a 

pipeline using AWS Step Functions. 

Amazon Managed Workflows for Apache Airflow (MWAA)
Apache Airflow is a popular open-source solution for orchestrating complex data engineering 

workflows. It was created by Airbnb in 2014 to help its internal teams manage its increasingly 

complex workflows and became a top-level Apache project in 2019.

Airflow enables users to create processing pipelines programmatically (using the Python program-

ming language) and provides a user interface to monitor the execution of the workflows. Complex 

workflows can be created and Airflow includes support for a wide variety of integrations, includ-

ing integrations with services from AWS, Microsoft Azure, Google Cloud Platform, and others.

However, installing and configuring Apache Airflow in a way that can support the resilience and 

scaling required for large production environments is complex, and maintaining and updating 

the environment can be challenging. As a result, AWS created Managed Workflows for Apache 

Airflow (MWAA), which enables users to easily deploy a managed version of Apache Airflow that 

can automatically scale out additional workers as demand on the environment increases and 

scale in the number of workers as demand decreases.

An MWAA environment consists of the following components:

1. Scheduler: The scheduler runs a multithreaded Python process that controls what tasks 

need to be run, and where and when to run those tasks.

2. Worker/executor: The worker(s) execute(s) tasks. Each MWAA environment contains at 

least one worker, but when configuring the environment, you can specify the maximum 

number of additional workers that should be made available. MWAA automatically scales 

out the number of workers up to that maximum, but will also automatically reduce the 

number of workers as tasks are completed and if no new tasks need to run. The workers 

are linked to your VPC (the private network in your AWS account).
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3. Meta-database: This runs in the MWAA service account and is used to track the status 

of tasks.

4. Web server: The web server also runs in the MWAA service account and provides a web-

based interface that users can use to monitor and execute tasks.

Note that even though the meta-database and web server run in the MWAA service account, there 

are separate instances of these for every MWAA environment, and there are no components of 

the architecture that are shared between different MWAA environments.

When migrating from an on-premises environment where you already run Apache Airflow, or 

if your team already has Apache Airflow skills, then the MWAA service should be considered for 

managing your data processing pipelines and workflows in AWS. However, it is important to 

note that while this is a managed service (meaning that AWS deploys the environment for you 

and upgrades the Apache Airflow software), it is not a serverless environment.

With MWAA, you select a core environment size (small, medium, or large), and are charged based 

on the environment size, plus a charge for the amount of storage used by the meta-database and 

for any additional workers you make use of. Whether you run one 5-minute job per day or run 

multiple simultaneous jobs 24 hours a day 7 days a week, the charge for your core environment 

will remain the same. With serverless environments such as Amazon Step Functions, billing is 

based on a consumption model, so there is no underlying fixed charge.

Having looked at the services that can be used to orchestrate our data pipelines, let’s now move 

on to an overview of the AWS services that can be used to query and analyze our data. 

An overview of AWS services for consuming data
Once the data has been transformed and optimized for analytics, the various data consumers in 

an organization need easy access to the data via a number of different types of interfaces. Data 

scientists may want to use standard SQL queries to query the data, while data analysts may 

want to both query the data in place using SQL and also load subsets of the data into a high-per-

formance data warehouse for low-latency, high-concurrency queries, and scheduled reporting. 

Business users may prefer to access data via a visualization tool that enables them to view data 

represented as graphs, charts, and other types of visuals.

In this section, we will introduce a number of AWS services that enable different types of data 

consumers to work with our optimized datasets. We won’t cover all the services that can be used 

to consume data in this section, but instead will highlight the primary services relevant to a data 

engineering role.
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Amazon Athena for SQL queries in the data lake
Amazon Athena is a serverless solution for using standard SQL queries to query data that exists 

in a data lake or in other data sources. As soon as a dataset has been written to Amazon S3 and 

cataloged in AWS Glue Data Catalog, users can run complex SQL queries against the data without 

needing to set up or manage any infrastructure.

Data scientists and data analysts frequently use SQL to explore and better understand datasets 

that may be useful to them. Enabling these data consumers to query the data in an Amazon S3 

data lake, without needing to first load the data into a traditional database system, increases 

productivity and flexibility for these data consumers.

Many tools are designed to interface with data via SQL and these tools often connect to the SQL 

data source using either a JDBC or ODBC database connection. Amazon Athena enables a data 

consumer to query datasets in the data lake (or other connected data sources) through the AWS 

Management Console interface or through a JDBC or ODBC driver.

Graphical SQL query tools, such as SQL Workbench, can connect to Amazon Athena via the JDBC 

driver, and you can programmatically connect to Amazon Athena and run SQL queries in your 

code through the ODBC driver.

Athena Federated Query, a feature of Athena, enables you to build connectors so that Athena can 

query other data sources, beyond just the data in an S3 data lake. Amazon provides a number of 

pre-built open-source connectors for Athena, enabling you to connect Athena to sources such as 

Amazon DynamoDB (a NoSQL database), as well as other Amazon-managed relational database 

engines, and even Amazon CloudWatch Logs, a centralized logging service. Using this functionality, 

a data consumer can run a query using Athena that gets active orders from Amazon DynamoDB, 

references that data against the customer database running on PostgreSQL, and then brings in 

historical order data for that customer from the S3 data lake – all in a single SQL statement.

What is SQL?

SQL is a standard language used to query relational datasets. A person proficient in 

SQL can draw information out of very large relational datasets easily and quickly, 

combining different tables, filtering results, and performing aggregations.
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At re:Invent 2022, AWS announced Amazon Athena for Apache Spark, a new functionality that 

enables running Apache Spark jobs with Athena. With this new feature, you can launch a Jupyter 

notebook from within the Athena console, and query data in the data lake using Apache Spark code. 

Amazon Redshift and Redshift Spectrum for data 
warehousing and data lakehouse architectures
Data warehousing is not a new concept or technology (as we discussed in Chapter 2, Data Manage-

ment Architectures for Analytics), but Amazon Redshift was the first cloud-based data warehouse 

to be created. Launched in 2012, it was AWS’s fastest-growing service by 2015, and today there 

are tens of thousands of customers that use it.

A Redshift data warehouse is designed for reporting and analytic workloads, commonly referred 

to as Online Analytical Processing (OLAP) workloads. Redshift provides a clustered environment 

that enables all the compute nodes in a cluster to work with portions of the data involved in a 

SQL query, helping to provide the best performance for scenarios where you are working with 

data that has been stored in a highly structured manner, and you need to do complex joins across 

multiple large tables on a regular basis. As a result, Redshift is an ideal query engine for reporting 

and visualization services that need to work with large datasets.

A typical SQL query that runs against a Redshift cluster would be likely to retrieve data from 

hundreds of thousands, or even millions, of rows in the database, often performing complex 

joins between different tables, and likely doing calculations such as aggregating, or averaging, 

certain columns of data. The queries run against the data warehouse will often be used to answer 

questions such as “What was the average sale amount for sales in our stores last month, broken down 

by each ZIP code of the USA?” or “Which products, across all of our stores, have seen a 20% increase in 

sales between Q4 of last year and Q1 of this year?”

In a modern analytic environment, a common use case for a data warehouse would be to load a 

subset of data from the data lake into the warehouse, based on which data needs to be queried most 

frequently and which data needs to be used for queries requiring the best possible performance.

In this scenario, a data engineer may create a pipeline to load customer, product, sales, and in-

ventory data into the data warehouse on a daily basis. Knowing that 80% of the reporting and 

queries will be on the last 12 months of sales data, the data engineer may also design a process 

to remove all data that’s more than 12 months old from the data warehouse.
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But what about the 20% of queries that need to include historical data that’s more than 12 months 

old? That’s where Redshift Spectrum comes in, a feature of Amazon Redshift that enables a user 

to write a single query that queries data that has been loaded into the data warehouse, as well as 

data that exists outside the data warehouse, in the data lake. To enable this, the data engineer can 

configure the Redshift cluster to connect with AWS Glue Data Catalog, where all the databases 

and tables for our data lake are defined. Once that has been configured, a user can reference both 

internal Redshift tables and tables registered in Glue Data Catalog.

The following diagram shows the Redshift and Redshift Spectrum architecture:

Figure 3.7: Redshift architecture
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In the preceding diagram, we can see that a user connects to the Redshift leader node (via JDBC 

or ODBC). This node does not query data directly but is effectively the central brain behind all the 

queries that run on the cluster. In a scenario where a user is running a query that needs to query 

both current (last 12 months of) sales data and historical sales data in Amazon S3, the process 

works as follows:

1. Using a SQL client, the user makes a connection, authenticates with the Redshift leader 

node, and sends through a SQL statement that queries both the current_sales table 

(a table in which the data exists either in the local SSD cache of the cluster, or within 

Redshift Managed Storage (RMS), and contains the past 12 months of sales data) and 

the historical_sales table (a table that is registered in Glue Data Catalog, and where 

the data files are located in the Amazon S3 data lake, which contains historical sales data 

going back 10 years).

2. The leader node analyzes and optimizes the query, compiles a query plan, and pushes 

individual query execution plans to the compute nodes in the cluster.

3. The compute nodes query data they have locally (for the current_sales table) and query 

AWS Glue Data Catalog to gather information on the external historical_sales table. 

Using the information they gather, they can optimize queries for the external data and 

push those queries out to the Redshift Spectrum layer.

4. Redshift Spectrum is outside of a customer’s Redshift cluster and is made up of thousands 

of worker nodes (Amazon EC2 compute instances) in each AWS Region. These worker 

nodes are able to scan, filter, and aggregate data from the files in Amazon S3 and then 

stream the results back to the Amazon Redshift cluster.

5. The Redshift cluster performs final operations to join and merge data and then returns 

the results to the user’s SQL client.

6. Note the difference between RMS and data in S3 that Redshift Spectrum is able to query. 

Files that Redshift stores in RMS are managed by Redshift and are not accessible outside 

of Redshift. A Redshift cluster will automatically move data between the S3-based RMS 

and local SSD storage in each node of the cluster and is designed to ensure that frequently 

queried data is available from the local SSD drives for best performance. With Redshift 

Spectrum, any data in Amazon S3 that has been cataloged in Glue Data Catolog can be 

queried by a fleet of compute instances that are available to all Redshift clusters. This 

could be data in a variety of formats (such as JSON, CSV, Parquet, or others) and can be 

queried by other tools, such as Amazon Athena, since this data is not managed by Redshift.  
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7. Redshift also includes a number of advanced features, such as data sharing between 

Redshift clusters, automatic optimization of tables, integration with machine learning 

through Redshift ML, and the ability to mask data through data masking policies. We will 

do a deeper dive into Amazon Redshift in Chapter 9, Loading Data into a Data Mart, and this 

includes a hands-on exercise for loading data into Redshift and then querying that data. 

Overview of Amazon QuickSight for visualizing data
“A picture is worth a thousand words” is a common saying, and it is a sentiment that most business 

users would strongly agree with. Imagine for a moment that you are a busy sales manager, it’s 

Monday morning, and you need to quickly determine how your various sales territories performed 

last quarter before your 9 a.m. call.

Your one option is to receive a detailed spreadsheet showing the specific sales figures broken 

down by territory and segment, as per Figure 3.8:

Figure 3.8: Sales table showing sales data by territory and segment

The other option you have is to receive a graphical representation of the data in the form of a bar 

graph, as shown in Figure 3.9. Within the interface, you can filter data by territory and market 

segment, and also drill down to get more detailed information:
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Figure 3.9: Sample graph showing sales data by territory and segment

Most people would prefer the graphical representation of the data, as they can easily visually 

compare sales between quarters, segments, and territories, or identify the top sales territory and 

segment with just a glance. As a result, the use of business intelligence tools, which provide visual 

representations of complex data, is extremely popular in the business world.

Amazon QuickSight is a service from AWS that enables the creation of these types of complex 

visualizations, but beyond just providing static visuals, the charts created by QuickSight enable 

users to filter data and drill down to get further details. For example, our sales manager could 

filter the visual to just see the numbers from Q4 or to just see the enterprise segment. The user 

could also drill down into the Q4 data for the enterprise segment in the West territory to see 

sales by month, for example.

Amazon QuickSight is serverless, which means there are no servers for the organization to set up 

or manage, and there is a simple monthly fee based on the user type (either an author, who can 

create new visuals, or a reader, who can view visuals created by authors).

A data engineer can configure QuickSight to access data from a multitude of sources, including 

accessing data in an Amazon S3-based data lake via integration with Amazon Athena. In Chapter 

12, Visualizing Data with Amazon QuickSight, we will do a hands-on exercise to create a simple 

visualization with QuickSight. 

In the next section, we will wrap up the chapter by getting hands-on with building a simple trans-

formation that converts a CSV file into Parquet format, using Lambda to perform the transformation.
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Hands-on – triggering an AWS Lambda function 
when a new file arrives in an S3 bucket
In the hands-on portion of this chapter, we’re going to configure an S3 bucket to automatically 

trigger a Lambda function whenever a new file is written to the bucket. In the Lambda function, 

we’re going to make use of an open-source Python library called AWS SDK for pandas, created 

by AWS Professional Services to simplify common ETL tasks when working in an AWS environ-

ment. We’ll use the AWS SDK for pandas library to convert a CSV file into Parquet format and 

then update AWS Glue Data Catalog.

Converting a file into Parquet format is a common transformation in order to improve analytic 

query performance against our data. This can either be done in bulk (such as by using an AWS 

Glue job that runs every hour to convert files received in the past hour), or it can be done as each 

file arrives, as we are doing in this hands-on exercise. A similar approach can be used for other 

use cases, such as updating a total_sales value in a database as files are received with daily sales 

figures from a company’s retail stores across the world. 

Let’s get started with the hands-on section of this chapter. 

Creating a Lambda layer containing the AWS SDK for 
pandas library
Lambda layers allow your Lambda function to bring in additional code, packaged as a �zip file. In 

our use case, the Lambda layer is going to contain the AWS SDK for pandas Python library, which 

we can then attach to any Lambda function where we want to use the library.

To create a Lambda layer, do the following:

1. Access the 2.19.0 version of the AWS SDK for pandas library in GitHub at https://github.

com/aws/aws-sdk-pandas/releases. Under Assets, download the awswrangler-layer-

2.19.0-py3.9.zip file to your local drive. Note that there is a direct link to this file on the 

GitHub site for this book at https://github.com/PacktPublishing/Data-Engineering-

with-AWS-2nd-edition/tree/main/Chapter03.

2. Log in to the AWS Management Console as the administrative user you created in Chapter 

1, An Introduction to Data Engineering (https://console.aws.amazon.com).

3. Make sure that you are in the Region that you have chosen for performing the hands-on 

sections in this book. The examples in this book use the us-east-2 (Ohio) Region.

4. In the top search bar of the AWS console, search for and select the Lambda service.

https://github.com/aws/aws-sdk-pandas/releases
https://github.com/aws/aws-sdk-pandas/releases
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter03
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter03
https://console.aws.amazon.com
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5. In the left-hand menu, under Additional Resources, select Layers, and then click on 

Create layer.

6. Provide a name for the layer (for example, awsSDKpandas219_python39) and an optional 

description, and then upload the .zip file you downloaded from GitHub. For Compatible 

runtimes-optional, select Python 3�9, and then click Create. The following screenshot 

shows the configuration for this step:

Figure 3.10: Creating and configuring an AWS Lambda layer
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By creating a Lambda layer for the AWS SDK for pandas library, we can use AWS SDK for pandas 

in any of our Lambda functions just by ensuring this Lambda layer is attached to the function.

Creating an IAM policy and role for your Lambda function
In the previous chapter, we created three Amazon S3 buckets – one for a landing zone (for ingestion 

of raw files), one for a clean zone (for files that have undergone initial processing and optimiza-

tion), and one for the curated zone (to contain our finalized datasets, ready for consumption).  

In this section, we will create a Lambda function to be triggered every time a new file is uploaded 

to our landing zone S3 bucket. The Lambda function will process the file and write out a new 

version of the file to a target bucket (our clean zone S3 bucket).  

For this to work, we need to ensure that our Lambda function has the following permissions:

1. Read our source S3 bucket (for example, dataeng-landing-zone-<initials>).

2. Write to our target S3 bucket (for example, dataeng-clean-zone-<initials>).

3. Write logs to Amazon CloudWatch.

4. Access to all Glue API actions (to enable the creation of new databases and tables).

To create a new AWS IAM role with these permissions, follow these steps:

1. In the search bar at the top of the AWS console, search for and select the IAM service, and 

in the left-hand menu, select Policies and then click on Create policy.

2. By default, the Visual editor tab is selected, so click on JSON to change to the JSON tab.

3. Provide the JSON code from the following code blocks, replacing the boilerplate code. 

Note that you can also copy and paste this policy by accessing the policy on this book’s 

GitHub page (https://github.com/PacktPublishing/Data-Engineering-with-AWS-

2nd-edition/blob/main/Chapter03/DataEngLambdaS3CWGluePolicy.json). Note that 

if doing a copy and paste from the GitHub copy of this policy, you must replace dataeng-

landing-zone-<initials> with the name of the landing zone bucket you created in 

Chapter 2, and replace dataeng-clean-zone-<initials> with the name of the clean zone 

bucket you created in Chapter 2.

This first block of the policy configures the policy document and provides permissions 

for using CloudWatch log groups, log streams, and log events:

{

    "Version": "2012-10-17",

    "Statement": [

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/blob/main/Chapter03/DataEngLambdaS3CWGluePolicy.json
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/blob/main/Chapter03/DataEngLambdaS3CWGluePolicy.json
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        {

            "Effect": "Allow",

            "Action": [

                "logs:PutLogEvents",

                "logs:CreateLogGroup",

                "logs:CreateLogStream"

            ],

            "Resource": "arn:aws:logs:*:*:*"

        },

This next block of the policy provides permissions for all Amazon S3 actions (get and put) 

that are in the Amazon S3 bucket specified in the resource section (in this case, our clean 

zone and landing zone buckets). Make sure you replace dataeng-clean-zone-<initials> 

and dataeng-landing-zone-<initials> with the names of the S3 buckets you created 

in Chapter 2:

        {

            "Effect": "Allow",

            "Action": [

                "s3:*"

            ],

"Resource": [

                "arn:aws:s3:::dataeng-landing-zone-INITIALS/*",

                "arn:aws:s3:::dataeng-landing-zone-INITIALS",

                "arn:aws:s3:::dataeng-clean-zone-INITIALS/*",

                "arn:aws:s3:::dataeng-clean-zone-INITIALS"

            ]

        },

In the final statement of the policy, we provide permissions to use all AWS Glue actions 

(create job, start job, and delete job). Note that in a production environment, you should 

limit the scope specified in the resource section:
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        {

            "Effect": "Allow",

            "Action": [

                "glue:*"

            ],

            "Resource": "*"

        }

    ]

}

4. Click on Next Tags and then Next: Review.

5. Provide a name for the policy, such as DataEngLambdaS3CWGluePolicy, and then click 

Create policy.

6. In the left-hand menu, click on Roles and then Create role.

7. For the trusted entity, ensure AWS service is selected, and for the service, select Lambda 

and then click Next: Permissions. In step 4 of the next section (Creating a Lambda function), 

we will assign this role to our Lambda function.

8. Under Attach permissions, select the policy we just created (for example, 

DataEngLambdaS3CWGluePolicy) by searching and then clicking the tick box. Then, click 

Next.

9. Provide a role name, such as DataEngLambdaS3CWGlueRole, and click Create role.

Creating a Lambda function
We are now ready to create our Lambda function that will be triggered whenever a CSV file is 

uploaded to our source S3 bucket. The uploaded CSV file will be converted into Parquet, written 

out to the target bucket, and added to the Glue catalog using the AWS SDK for pandas library:

1. In the AWS console, search for and select the Lambda service, and in the left-hand menu, 

select Functions and then click Create function. Make sure you are in the same Region as 

where you created your AWS buckets in Chapter 2. 

2. Select Author from scratch and provide a function name (such as CSVtoParquetLambda).

3. For Runtime, select Python 3�9 from the drop-down list.
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4. Expand Change default execution role and select Use an existing role. From 

the drop-down list, select the role you created in the previous section (such as 

DataEngLambdaS3CWGlueRole):

Figure 3.11: Creating and configuring a Lambda function

5. Do not change any of the Advanced settings and click Create function.

6. Click on Layers in the first box (Function overview), and then click Add a layer in the 

Layers box.

7. Select Custom layers, and from the dropdown, select the AWS SDK for pandas layer you 

created in a previous step (such as awsSDKpandas219_python39). Select the latest version 

and then click Add.
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Figure 3.12: Adding an AWS Lambda layer to an AWS Lambda function

8. Scroll down to the Code Source section in the Lambda console. The following code can be 

downloaded from this book’s GitHub repository. Make sure to replace any existing code 

in lambda_function with this code.
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In the first few lines of code, we import boto3 (the AWS Python SDK), awswrangler (which 

is part of the AWS SDK for pandas library that we added as a Lambda layer), and a function 

from the urllib library called unquote_plus:

import boto3

import awswrangler as wr

from urllib.parse import unquote_plus

We then define our main function, lambda_handler, which is called when the Lambda 

function is executed. The event data contains information such as the S3 object that was 

uploaded and was the cause of the trigger that ran this function. From this event data, 

we get the S3 bucket name and the object key. We also set the Glue catalog db_name and 

table_name based on the path of the object that was uploaded (review the comments in 

the code below for an explanation of how this works).

def lambda_handler(event, context):

    # Get the source bucket and object name as passed to the Lambda 
function

    for record in event['Records']:

        bucket = record['s3']['bucket']['name']

        key = unquote_plus(record['s3']['object']['key'])

    

    # We will set the DB and table name based on the last two 
elements of

    # the path prior to the filename. If key = 'dms/sakila/film/
LOAD01.csv',

    # then the following lines will set db to 'sakila' and table_
name to 'film'

    key_list = key.split("/")

    print(f'key_list: {key_list}')

    db_name = key_list[len(key_list)-3]

    table_name = key_list[len(key_list)-2]

We now print out some debugging information that will be captured in our Lambda 

function logs. This includes information such as the Amazon S3 bucket and key that we 

are processing. We then set the output_path value here, which is where we are going to 

write the Parquet file that this function creates. Make sure to change the output_path 

value of this code to match the name of the target S3 bucket you created earlier:
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    print(f'Bucket: {bucket}')

    print(f'Key: {key}')

    print(f'DB Name: {db_name}')

    print(f'Table Name: {table_name}')

    

    input_path = f"s3://{bucket}/{key}"

    print(f'Input_Path: {input_path}')

    output_path = f"s3://dataeng-clean-zone-INITIALS/{db_name}/
{table_name}"

    print(f'Output_Path: {output_path}')

We can then use the AWS SDK for pandas library (defined as wr in our function) to read 

the CSV file that we received. We read the contents of the CSV file into a pandas DataFrame 

we are calling input_df. We also get a list of current Glue databases, and if the database 

we want to use does not exist, we create it:

    input_df = wr.s3.read_csv([input_path])

    

    current_databases = wr.catalog.databases()

    wr.catalog.databases()

    if db_name not in current_databases.values:

        print(f'- Database {db_name} does not exist ... creating')

        wr.catalog.create_database(db_name)    

    else:

        print(f'- Database {db_name} already exists')

Finally, we can use the AWS SDK for pandas library to create a Parquet file containing the 

data we read from the CSV file. For the S3 to Parquet function, we specify the name of the 

DataFrame (input_df) that contains the data we want to write out in Parquet format. We 

also specify the S3 output path, the Glue database, and the table name:

    result = wr.s3.to_parquet(

        df=input_df,

        path=output_path,

        dataset=True,

        database=db_name,

        table=table_name,

        mode="append")

    print("RESULT: ")
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    print(f'{result}')

    return result

9. Click on Deploy at the top of the Code Source window

10. Click on the Configuration tab (above the Code Source window), and on the left-hand 

side, click on General configuration. Click the Edit button and modify the Timeout to 

be 1 minute (the default timeout of 3 seconds is likely to be too low to convert some files 

from CSV into Parquet format). Then, click on Save. If you skip this step, you are likely to get 

an error when your function runs. 

Configuring our Lambda function to be triggered by an S3 
upload
Our final task is to configure the Lambda function so that whenever a CSV file is uploaded to our 

landing zone bucket, the Lambda function runs and converts the file into Parquet format:

1. In the Function Overview box of our Lambda function, click on Add trigger.

2. For Trigger configuration, select the S3 service from the drop-down list.

3. For Bucket, select your landing zone bucket (for example, dataeng-landing-zone-

<initials>).

4. We want our rule to trigger whenever a new file is created in this bucket, no matter what 

method is used to create it (Put, Post, or Copy), so select All object create events from 

the list.

5. For suffix, enter .csv. This will configure the trigger to only run the Lambda function 

when a file with a .csv extension is uploaded to our landing zone bucket.

6. Acknowledge the warning about Recursive invocation, which can crop up if you set up 

a trigger on a specific bucket to run a Lambda function and then you get your Lambda 

function to create a new file in that same bucket and path. This is a good time to dou-

ble-check and make sure that you are configuring this trigger in the LANDING ZONE bucket 

(for example, dataeng-landing-zone-<initials>) and not the target CLEAN ZONE bucket 

that our Lambda function will write to:
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Figure 3.13: Configuring an S3-based trigger for an AWS Lambda function

7. Click Add to create the trigger.

8. Create a simple CSV file called test.csv that you can use to test the trigger or download 

test.csv  from the GitHub site for this chapter (https://github.com/PacktPublishing/

Data-Engineering-with-AWS-2nd-edition/blob/main/Chapter03/test.csv). 

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/blob/main/Chapter03/test.csv
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/blob/main/Chapter03/test.csv
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Ensure that the first line has column headings, as per the following example:

name,favorite_num

Gareth,23

Tracy,28

Chris,16

Emma,14

Ensure you create the file with a standard text editor, and not Word processing software 

(such as Microsoft Word) or any other software that will add additional formatting to 

the file.

9. Navigate to the Amazon S3 console (https://s3.console.aws.amazon.com/s3) and click 

on the dataeng-landing-zone-initials bucket that you previously created. Then click 

on Create folder and provide a folder name of cleanzonedb. The top-level folder we cre-

ate here is going to be used as the name of the database that will be created in Glue Data 

Catalog to store our new table. 

10. Navigate into the cleanzonedb folder, and create a second-level folder (this will be used 

as the name of the table that gets created in Glue Data Catalog). Name the second-level 

folder csvtoparquet. 

11. Navigate into the csvtoparquet folder, click on Upload, and then upload the test.csv 

file you previously created. The file should be uploaded into dataeng-landing-zone-

initials/cleanzonedb/csvtoparquet. 

12. If everything has been configured correctly, your Lambda function will have been triggered 

and will have written out a Parquet-formatted file to your target S3 bucket and created a 

Glue database and table. You can access the Glue service in the AWS Management Console 

to ensure that a new database and table have been created in the data catalog and can run 

the following command in CloudShell to ensure that a Parquet file has been written to 

your target bucket. Make sure to replace dataeng-clean-zone-initials with the name 

of your target S3 bucket:

aws s3 ls s3://dataeng-clean-zone-initials/cleanzonedb/csvtoparquet/

The result of this command should display the Parquet file that was created by the Lambda 

function.

https://s3.console.aws.amazon.com/s3
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Summary
In this chapter, we covered a lot! We reviewed a range of AWS services at a high level, including 

services for ingesting data from a variety of sources, services for transforming data, and services 

for consuming and working with data.

We then got hands-on, building a solution in our AWS account that converted a file from CSV 

format into Parquet format and registered the data in AWS Glue Data Catalog.

In the next chapter, we will cover a really important topic that all data engineers need to have a 

good understanding of and that needs to be central to every project that a data engineer works 

on, and that is the topic of data governance. 

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd




4
Data Governance, Security, and 
Cataloging

Data governance and security are some of the most important topics to cover in a book that is 

all about data. Having the most efficient data pipelines, the fastest data transformations, and 

the best data consumption tools is not worth much if the data is not kept secure and governed 

correctly. Data must also be stored and accessed in a way that complies with local laws, and the 

data needs to be cataloged so that it is discoverable and useful to the organization.

Sadly, it is not uncommon to read about data breaches and poor data handling by organizations, 

and the consequences of this can include reputational damage to the organization, as well as po-

tentially massive penalties imposed by the government. And once an organization causes damage 

to their customers (such as exposing them to potential identity theft through a data breach), it 

is difficult for the organization to regain that trust. 

It is also not uncommon for organizations to find that they have massive quantities of data, but 

that they are not able to maximize the value of that data since it is siloed (contained across many 

different systems that are not connected) or of poor quality, or users just have no trust in the data 

they have access to. 

In this chapter, we will do a deeper dive into best practices for handling data responsibly, and 

for making sure that the value of data can be maximized for an organization. We will cover the 

following topics:

• The many different aspects of data governance 

• Data security, access, and privacy
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• Data quality, data profiling, and data lineage

• Business and technical data catalogs

• AWS services that help with data governance

• Hands-on – configuring Lake Formation permissions

Technical requirements
To complete the hands-on exercises included in this chapter, you will need an AWS account where 

you have access to a user with administrator privileges (as covered in Chapter 1, An Introduction 

to Data Engineering).

You can find the code files of this chapter in the GitHub repository using the following link: 
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/

main/Chapter04

The many different aspects of data governance
Data governance is a wide-ranging topic, covering many different aspects. If you do a Google 

search for the definition of data governance, you are likely to see many different definitions. At 

its core though, data governance is the various things an organization needs to do to ensure the 

secure, compliant, and effective use of data, from the time the data is created through to when 

it is archived or deleted. 

This includes processes that make the data discoverable, understandable, and usable, while 

ensuring that the data is of high quality and is protected and secured. This covers all data within 

an organization; however, for the purposes of this book, we will only be focusing on data gover-

nance for analytic data. 

Most organizations consist of many different business units or teams, and each of these generates 

their own data, and also has their own specific requirements for accessing data from other parts 

of the organization. But if a team has no way to centrally publish their datasets, or to discover 

datasets published by other parts of the organization, this significantly impacts the value of the 

data. Data is most valuable to an organization when all data generated can be used across all 

parts of the organization (in a well-governed manner). 

But just being able to discover data generated across the organization is not helpful if the data is 

not of good quality, cannot be easily understood, or cannot be trusted. Also, if it is not easy to get 

access to discovered data in a secure way, without significant delays and complicated processes, 

then the value of that data is impacted. 

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter04
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter04
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But governance also extends to ensuring that the data that is generated is secured and handled 

in a responsible way. 

Data security dictates how an organization should protect data to ensure that it is stored securely 

(such as in an encrypted state), and that access by unauthorized entities is prevented. For example, 

all the things an organization does to prevent falling victim to a ransomware attack, or having 

their data stolen and sold on the dark web, fall under data security.

The responsible handling of data involves making sure that only people who need access to 

specific datasets have that access (such as ensuring that data is not just generally open to all us-

ers of a system without considering whether they need access to that data to perform their jobs). 

Responsible handling also means ensuring that an organization only uses and processes data on 

individuals in approved ways, and that organizations provide data disclosures as required by law.

As the security of data needs to be the top priority for an organization, let’s start with a deeper 

dive into the topics of security, privacy, and data handling. 

Data security, access, and privacy
Not providing adequate protection and security for an organization’s data, or not complying 

with relevant governance laws, can end up being a very expensive mistake for an organization.

According to an article on CSO Online titled The biggest data breach fines, penalties, and settlements 

so far (https://www.csoonline.com/article/3410278/the-biggest-data-breach-fines-

penalties-and-settlements-so-far.html), penalties and expenses related to data breaches 

have cost companies over $4.4 billion (and counting).

For example, Equifax, the credit agency firm, had a data breach in 2017 that exposed the personal 

and financial information of nearly 150 million people. As a result, they agreed to pay at least $575 

million in a settlement with several United States government agencies, and U.S. states.

But beyond financial penalties, a data breach can also do incalculable damage to an organization’s 

reputation and brand. Once you lose the trust of your customers, it can be very difficult to earn 

that trust back.

Beyond data breaches where personal data is stolen from an organization’s system, failure to 

comply with local regulations relating to how data is handled can also be costly. There are an 

increasing number of laws that define under what conditions a company may collect, store, and 

process personal information. Not complying with these laws can result in significant penalties 

for an organization, even in the absence of a data breach.

https://www.csoonline.com/article/3410278/the-biggest-data-breach-fines-penalties-and-settlements-so-far.html
https://www.csoonline.com/article/3410278/the-biggest-data-breach-fines-penalties-and-settlements-so-far.html
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For example, Google was hit with a fine of more than $50 million for failing to adequately comply 

with aspects of a European regulation known as the General Data Protection Regulation (GDPR). 

Google appealed the decision, but in 2020, the decision was upheld by the courts, leaving the 

penalty on Google in place.

Common data regulatory requirements
No matter where you operate in the world, there are very likely several regulations concerning 

data privacy and protection that you need to be aware of, and plan for, as a data engineer. A small 

selection of these include the following:

• The General Data Protection Regulation (GDPR) in the European Union

• The California Consumer Privacy Act (CCPA) and the California Privacy Rights Act 

(CPRA) in California, USA

• The Personal Data Protection (PDP) Bill in India

• The Protection of Personal Information Act (POPIA) in South Africa

These laws can be complex and cover many different areas, which is far beyond the scope of this 

book. However, generally, they involve individuals having the right to know what data a company 

holds about them; ensuring adequate protection of personal information that the organization 

holds; enforcing strict controls around data being processed; and in some cases, the right of an 

individual to request their data being deleted from an organization’s system.

In the case of GDPR, an organization is subject to the regulations if they hold data on any resident 

of the European Union, even if the organization does not have a legal presence in the EU.

In addition to these broad data protection and privacy regulations, many regulations apply ad-

ditional requirements to specific industries or functions. Let’s take a look at some examples:

• The Health Insurance Portability and Accountability Act (HIPAA), which applies to 

organizations that store an individual’s healthcare and medical data

• The Payment Card Industry Data Security Standard (PCI DSS), which applies to orga-

nizations that store and process credit card data

Understanding what these regulations require and how best to comply with them is often complex 

and time-consuming. In this chapter, we will look at general principles that can be applied to 

protect data used in analytic pipelines; however, this chapter is not intended as a guide on how 

to comply with any specific regulation.



Chapter 4 105

GDPR specifies that in certain cases, an organization must appoint a Data Protection Officer 

(DPO). The DPO is responsible for training staff involved in data processing and conducting 

regular audits, among other responsibilities.

If your organization has a DPO, ensure you set up a time to meet with the DPO to fully understand 

the regulations that may apply to your organization and how this may affect analytic data. Alter-

natively, work with your Chief Information Security Officer (CISO) to ensure your organization 

seeks legal advice on which data regulations may apply.

If you must participate in a compliance audit for an analytic workload running in AWS, review the 

AWS Artifact service (https://aws.amazon.com/artifact/), a self-service portal for on-demand 

access to AWS’s compliance reports.

Core data protection concepts
There are several concepts and terminology related to protecting data that are important for a 

data engineer to understand. In this section, we will briefly define some of these.

Personally identifiable information (PII)
Personally identifiable information (PII) is a term commonly used in North America to reference 

any information that can be used to identify an individual. This can refer to either the information 

on its own being able to identify an individual or where the information can be combined with 

other linkable information to identify an individual. It includes information such as full name, 

social security number, IP address, and photos or videos.

PII also covers data that provides information about a specific aspect of an individual (such as a 

medical condition, location, or political affiliation).

Personal data
Personal data is a term that is defined in GDPR and is considered to be similar to, but broader 

than, the definition of PII. Specifically, GDPR defines personal data as follows:

Any information relating to an identified or identifiable natural person (“data 

subject”); an identifiable natural person is one who can be identified, directly or 

indirectly, in particular by reference to an identifier such as a name, an identifi-

cation number, location data, an online identifier or to one or more factors specific 

to the physical, physiological, genetic, mental, economic, cultural or social identity 

of that natural person.

https://aws.amazon.com/artifact/
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Encryption
Encryption is a mathematical technique of encoding data using a key in such a way that the data 

becomes unrecognizable and unusable. An authorized user who has the key used to encrypt the 

data can use the key to decrypt the data and return it to its original plaintext form.

Encrypted data may be able to be decrypted by a hacker without the key through the use of ad-

vanced computational resources, skills, and time. However, a well-designed and secure encryption 

algorithm increases the difficulty of decrypting the data without the key, increasing the security 

of the encrypted data.

There are two important types of encryption and both should be used for all data and systems:

1. Encryption in transit: This is the process of encrypting data as it moves between systems. 

For example, a system that migrates data from a database to a data lake should ensure 

that the data is encrypted before being transmitted, that the source and target endpoints 

are authenticated, and the data can then be decrypted at the target for processing. This 

helps ensure that if someone can intercept the data stream during transmission, the data 

is encrypted and therefore unable to be read and used by the person who intercepted the 

data. A common way to achieve this is to use the Transport Layer Security (TLS) protocol 

for all communications between systems.

2. Encryption at rest: This is the encryption of data that is written to a storage medium, 

such as a disk. After each phase of data processing, all the data that is persisted to disk 

should be encrypted.

Encryption (in transit and at rest) is a key tool for improving the security of your data, but other 

important tools should also be considered, as covered in the subsequent sections.

Anonymized data
Anonymized data is data that has been altered in such a way that personal data is irreversibly 

de-identified, rendering it impossible for any PII data to be identified. For example, this could 

involve replacing PII data with randomly generated data in such a way that the randomization 

cannot be reversed to recreate the original data.

GDPR, Article 4, Definitions (https://eur-lex.europa.eu/legal-content/EN/

TXT/HTML/?uri=CELEX:32016R0679#d1e1374-1-1)

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679#d1e1374-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679#d1e1374-1-1
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Another way anonymization can be applied is to remove most of the PII data so that only a few 

attributes that may be considered PII remain, but with enough PII data removed to make it dif-

ficult to identify an individual. However, this contains risk, as it is often still possible to identify 

an individual even with only minimal data. A well-known study (https://dataprivacylab.

org/projects/identifiability/paper1.pdf) found that with just the ZIP code, gender, and 

date of birth information, 87% of the population in the United States can be uniquely identified.

Pseudonymized data/tokenization
Pseudonymized data is data that has been altered in such a way that personal data is de-iden-

tified. While this is similar to the concept of anonymized data, the big difference is that with 

pseudonymized data, the original PII data can still be accessed (if a user has a legitimate need to 

access the PII data and has the necessary system authorization). 

Pseudonymized data is defined by GDPR as data that cannot be attributed to a specific data subject 

without the use of separately kept “additional information.”

There are multiple techniques for creating pseudonymized data. For example, you can replace a 

full name with a randomly generated token, a different name (so that it looks real but is not), a 

hash representing the name, and more. However, whichever technique is used, it must be possible 

to still access the original data.

One of the most popular ways to do this is to have a tokenization system generate a unique, ran-

dom token that replaces the PII data.

For example, when a raw dataset is ingested into the data lake, the first step may be to pass the 

data through the tokenization system. This system will replace all PII data in the dataset with 

an anonymous token and record each real_data token substitution in a secure database. Once 

the data has been transformed, if a data consumer requires access and is authorized to access the 

PII data, they can pass the dataset to the tokenization system to be detokenized (that is, have the 

tokens replaced with the original, real values).

The benefit of a tokenization system is that the generated token is random and does not contain 

any reference to the original value, and there is no way to determine the original value just from 

the token. If there is a data breach that can steal a dataset with tokenized data, there is no way 

to perform reverse engineering on the token to find the original value.

However, the tokenization system itself contains all the PII data, along with the associated tokens. 

If an entity can access the tokenized data and is also able to comprise the tokenization system, 

they will have access to all PII data. 

https://dataprivacylab.org/projects/identifiability/paper1.pdf
https://dataprivacylab.org/projects/identifiability/paper1.pdf
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Therefore, it is important that the tokenization system is completely separate from the analytic 

systems containing the tokenized data, and that the tokenization system is protected properly.

On the other hand, hashing is generally considered the least secure method of de-identifying PII 

data, especially when it comes to data types with a limited set of values, such as social security 

numbers and names.

Hashing uses several popular hashing algorithms to create a hash of an original value. An orig-

inal value, such as the name “John Smith,” will always return the same hash value for a specific 

algorithm.

However, all possible social security numbers and most names have been passed through popular 

hashing algorithms and lookup tables have been created, known as rainbow tables. Using these 

rainbow tables, anyone can take a hashed name or social security number and quickly identify 

the original value.

For example, if you use the SHA-256 hashing algorithm, the original value of “John Smith” will 

always return “ef61a579c907bbed674c0dbcbcf7f7af8f851538eef7b8e58c5bee0b8cfdac4a.”

If you used the SHA-256 hashing algorithm to de-identify your PII data, it would be very easy for a 

malicious actor to determine that the preceding value referenced “John Smith” (just try Googling 

the preceding hash and see how quickly the name John Smith is revealed). While there are ap-

proaches to improving the security of a hash (such as salting the hash by adding a fixed string to 

the start of the value), it is still generally not recommended to use hashing for any data that has 

a well-known, limited set of values, or values that could be guessed.

Authentication
Authentication is the process of validating that a claimed identity is that identity. A simple 

example is when you log in to a Google Mail (Gmail) account. You provide your identity (your 

Gmail email address) and then validate that it is you by providing something only you should 

know (your password), and possibly also a second factor of authentication (by entering the code 

that is texted to your cell phone, for example).

Authentication does not specify what you can access but does attempt to validate that you are 

who you say you are. Of course, authentication systems are not foolproof. Your password may 

have been compromised on another website, and if you had the same password for your Gmail 

account, someone could use that to impersonate you. If you have multi-factor authentication 

(MFA) enabled, you receive a code on your phone or a physical MFA device that you need to enter 

when logging in, and that helps to further secure and validate your identity.
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Federated identity is a concept related to authentication and means that responsibility for au-

thenticating a user is done by another system. For example, when logging in to the AWS Manage-

ment Console, your administrator could set up a federated identity so that you use your Active 

Directory credentials to log in via your organization’s access portal, and the organization’s Active 

Directory server authenticates you. Once authenticated, the Active Directory server confirms to 

the AWS Management Console that you have been successfully authenticated as a specific user. 

This means you do not need a separate username and password to log in to the AWS system, but 

you can use your existing Active Directory credentials to be authenticated to an identity in AWS.

Authorization
Authorization is the process of authorizing access to a resource based on a validated identity. For 

example, when you log in to your Google account (where you are authenticated by your password, 

and perhaps a second factor such as a code that is texted to your phone), you may be authorized 

to access that identity’s email, and perhaps also the Google Calendar and Google Search history 

for that identity.

For a data analytics system, once you validate your identity with authentication, you need to be 

authorized to access specific datasets. A data lake administrator can, for example, authorize you 

to access data that is in the Conformed Zone of the data lake, but not grant you access to data in 

the Raw Zone.

Putting these concepts together
Getting data protection right, and ensuring that you comply with local compliance regulations, 

does not happen by itself. It is important that you plan for and thoughtfully execute the process of 

protecting your data and ensuring data compliance. This will involve using some of the concepts 

introduced previously, such as the following:

• Making sure PII data is replaced with a token as the first processing step after ingestion 

(and ensuring that the tokenization system is secure).

• Encrypting all data at rest with a well-known and reliable encryption algorithm and 

ensuring that all connections use secure encrypted tunnels (such as by using the TLS 

protocol for all communications between systems).

• Implementing federated identities where user authorization for analytic systems is per-

formed via a central corporate identity provider, such as Active Directory. This ensures 

that, for example, when a user leaves the company and their Active Directory account is 

terminated, their access to analytic systems in AWS is terminated as a result.
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• Implementing least privilege access, where users are authorized for the minimum level 

of permissions that they need to perform their job.

This is also not something that a data engineer should do in isolation. You should work with your 

organization’s security and governance teams to ensure you understand any legal requirements 

for how to process and secure your analytical data. You should also regularly review, or audit, the 

security policies in place for your analytic systems and data.

Ensuring the security of your data, protecting PII, and making sure that data is used appropriately 

need to be a top priority for every organization. However, if the data that is being generated is 

not of high quality, and not trusted and understood by people across your organization, then the 

value of that data is limited. In the next section, we look at important ways to manage the quality 

of your data, and ways to build trust in your data across the organization. 

Data quality, data profiling, and data lineage
In this section, we look at three different, but related, concepts: data quality, data profiling, and 

data lineage. Each of these aspects of data governance are important tools for ensuring that data 

that is shared within your organization is of high quality, and that teams across your organization 

can have confidence when accessing and using the data. 

Data quality
Having high-quality data is essential for ensuring that an organization is equipped to make 

the best data-driven decisions, and to be effective in all activities that are data-driven (such as 

marketing campaigns). 

There are many different aspects to measuring data quality, and data quality is important in all 

phases of the data lifecycle. If data in the source production database is not captured correctly, then 

when that data is copied over to analytical systems, the analytical systems will have incorrect or 

missing data. For example, if the source system does not enforce that the date of birth is captured 

when creating a new customer record, then an analytical system using that data cannot rely on 

using a date of birth field, as it may be null for some records. Invalid records can also be created 

when users do manual data entry, as they may make a typo or capture a number incorrectly.  

However, data quality issues can be introduced at any part of the data pipeline. As data is bought 

in from multiple different systems, datasets are joined, and calculations are made, data can be 

corrupted. Also, at times, ETL jobs in a pipeline may fail or be interrupted at some point, and the 

resulting data that is generated may be incomplete. This can lead to further issues down the line 

with subsequent jobs.
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Data quality can be measured in many different ways, depending on the perspective of the person 

reviewing the data. Some of the common ways that data quality is measured include:

• Accuracy – does the data reflect the real facts?

• Completeness – does the data have all the required fields completed, such as date of 

birth or email?

• Consistency – does data from different data sources match and do the formats, such as 

the date format, match?

• Timeliness – is the data up to date?

For a data engineer, though, the primary concern is whether the content of the data is as expected. 

For example, if a column in a dataset is expected to be an integer, but some rows have strings in 

that field, then that could potentially cause the ETL pipeline to fail. Or, if a data processing job 

depends on each row having a valid email address, but some rows are missing an email address 

(or have an invalid email address), this again could cause a job to fail. Another example is where 

a column is meant to have a percentage between 0 and 100, and some rows have values that are 

outside of that range.  

As a result, it is common for data engineers to create a data quality check job as part of the data 

pipeline. In these data quality jobs, the data engineer will specify a number of rules that are used 

to evaluate the quality of data, and a data quality report can be generated that provides details 

on the results. For example, a data quality rule could be created that checks to make sure that the 

email address field has a valid value for at least 90% of rows in the dataset. Or, the data quality 

check could ensure that every phone number value in a dataset consists of exactly 10 characters. 

The data engineer can then decide on what action to take for rows that do not pass the data 

quality rule check.

There are various commercial and open-source tools that can be used to help create these jobs to 

evaluate data quality, and the AWS Glue service also includes functionality for evaluating data 

against a set of rules. Later in this chapter, we will do a deeper dive into AWS Glue Data Quality 

functionality. 

Data profiling
Data profiling is the process of analyzing a dataset, and then reporting on various aspects of 

the data content. This is useful to give both data engineers and other potential users of the data 

better insight into the underlying data. Data profiling can also be very useful to quickly identify 

potential data quality issues in a dataset, as we explain below. 
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A data profiling job analyzes all the data in a dataset, and then provides metrics for each column 

in the dataset. For example, if one of the columns in the dataset is a string, the data profiling job 

may report on the following attributes of that column:

Missing values. This reports on how many rows have a null, or no data, for this column. If we 

are planning to use a dataset for an email-based marketing campaign, but the data profiling job 

indicates that 54% of rows have a null for the email address, then we can very quickly determine 

that this dataset would not be good for our planned use case.

Distinct values. This reports on how many distinct values are contained in this column. For ex-

ample, if the column was to report on which US state a customer was in, we would expect there 

to be no more than 50 distinct values, since there are 50 states in the USA. If a higher number was 

reported for this column, then we would have to assume that data was not captured consistently, 

such as some rows having NY recorded for state, while other rows have captured the full name 

of New York. 

Unique values. This reports on how many rows have a unique value for this column (i.e., it is the 

only row that contains a specific value for this column).

Minimum/maximum string length. This reports on the number of characters for the shortest 

string in the column, as well as the longest string in the column. 

A dataset that includes number-based columns (such as integers or doubles) may report on 

similar values, but instead of reporting on minimum/maximum string length, for numbers, the 

report may include the minimum/maximum value. For a column that records a percentage that 

is expected to be between 0 and 100, if the minimum reported was a negative number, or the 

maximum recorded was over 100, then this would indicate likely data quality issues. 

In this way, data profiling is closely related to data quality, as it helps to identify potential data 

quality issues very quickly. But data quality requirements may be different for different users of 

a dataset. 

For example, a team that uses the master customer data table for reporting on the number of users 

in each country or state may not care whether every customer record has an email address and 

phone number, but does require the name of the Country or State that is part of the user’s address 

to be captured consistently. On the other hand, a marketing team that wants to send email-based 

promotions to all users may not care whether the customers’ Country or State has been captured 

consistently, but does require that they have a valid email address for every customer.
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In this way, data profiling does not make any assessment about the quality of data, but rather 

just reports on the profile, or shape, of the data. The end user who wants to use a specific dataset 

for a specific purpose can then review the data profile information to get a quick assessment as 

to whether the dataset seems to be appropriate for their use or not. If the data profile does not 

highlight any obvious problems with the data based on the specific use case, the data engineer 

can request access to the dataset and then establish a data quality job to further analyze the data. 

For example, even if the data profile report indicates that 100% of rows have an email address 

captured, the data engineer can create a data quality rule to validate whether every email address 

appears to be valid by ensuring each email address contains an “at” sign and a string with a dot 

separator in the domain portion of the email address. In this way, if one of the data records has 

an email value of “anna@gmail,” this would not be a null value, so the data profiling report may 

still indicate that 100% of records have an email address specified. But it is the data quality rule 

that would evaluate the specific value and be able to determine that the domain portion has not 

been correctly captured. 

Data lineage
Another concept in data management that helps to build trust in a dataset is the understanding 

of how a dataset has been created, which can be captured with data lineage. Data lineage allows 

a user to view information about the original sources of a dataset, as well as the transformations 

that have been applied to those sources. 

For example, let’s say you work for a company that has a streaming movie business and you need 

to identify the top 10 movies for each country that you operate in. To do this, you create a table 

called country_top_movies by joining your customer, movies, and streaming_stats tables. In 

your ETL job, you group by country and limit the results to the top 10 movies for each country. 

When you look at the data lineage for this job, you will see the three source tables, as well as 

details about the transformations that were applied to these tables after the join. 

When a data analyst is searching for a dataset, being able to view the data lineage that shows how 

that table was created helps to build trust that the table is appropriate for their use case. They 

gain insight into what the source tables were and the types of transformations that were applied, 

and using that information can decide whether the resulting dataset meets their requirements. 

The results of data quality checks, information on the data profile, and a visualization of data 

lineage can all be recorded in a data catalog, enabling users to search for datasets and dig deeper 

into information about that dataset. Let’s look at the role of data catalogs in more detail. 
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Business and technical data catalogs
You have probably heard about swamps, even if you have never actually been to one. Generally, 

swamps are known to be wet areas that smell pretty bad, and where some trees and other vege-

tation may grow, but the area is generally not fit to be used for most purposes (unless, of course, 

you’re an ogre similar to Shrek, and you make your home in the swamp!).

In contrast to a swamp, when most people think about a lake, they picture beautiful scenery with 

clean water, a beautiful sunset, and perhaps a few ducks gently floating on the water. Most people 

would hate to find themselves in a swamp if they thought they were going to visit a beautiful lake.

In the world of data lakes, as a data engineer, you want to provide an experience that is much like 

the pure and peaceful lake described previously, and you want to avoid your users finding that 

the lake looks more like a swamp. However, if you’re not careful, your data lake can become a data 

swamp, where there are lots of different pieces of data around, but no one is sure what data is 

there. Then, when they do happen to find some data, they don’t know where the data came from 

or whether it can be trusted. Ultimately, a data swamp can be a dumping ground for data that is 

not of much use to anyone. Or, more dangerously, it can allow people to use datasets that may 

not be the right dataset for the purpose and the data quality may be low or out of date. Making 

business decisions on the wrong dataset can lead to the wrong decision being made, which can 

negatively impact a company financially, or reputationally. 

To avoid creating a data swamp, you need a well-organized data catalog. 

Implementing a data catalog to avoid creating a data swamp
With some careful upfront planning and the right tools and policies, it is possible to avoid a data 

swamp and instead offer your users a well-structured, easy-to-navigate data lake.

Avoiding a data swamp is easy in theory – you just need two important things:

• A central data catalog that can be used to keep a searchable record of all the datasets in 

the data lake

• Policies that ensure useful metadata is added to all the entries in the data catalog, and 

policies for ensuring that only high-quality data is allowed to be added to the data catalog

While that may sound pretty straightforward, the implementation details matter and things 

are not always as simple in real life. You need to have a data platform that has rules in place to 

only allow data to be added to the central catalog that meets your specific requirements (such as 

certain metadata that must be associated with the dataset, and ensuring that the dataset meets 

certain data quality rules). 
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If you allow anyone to publish any dataset in your central catalog, you are very likely to end up 

with a data swamp. There may be many datasets published in the catalog, but users will not be 

able to identify which are trustworthy and useful datasets, or which are updated regularly, and 

will not have the context to help them understand where the dataset came from (its lineage) and 

what business purpose it serves.

When we talk about a central catalog, we are generally referring to a business data catalog, and 

the business catalog is usually associated with one or more technical catalogs. Let’s take a closer 

look at the different types of catalogs. 

Business data catalogs
The business data catalog (often referred to just as the data catalog) is a central repository that 

stores metadata about the different datasets in your environment. The purpose of the catalog 

is to enable users across your organization to discover available datasets and learn more about 

those datasets through the associated metadata.

For example, you may have a dataset called Top Movies by Country that lists the top 10 most 

streamed movies over the past 8 hours for each country your movie steaming company operates in. 

This dataset is created by an ETL job that runs every 8 hours, joining data from multiple different 

database tables. The ETL job and dataset are created by the Playback Operations team, as they 

need this data so that their streaming video player can display the current most popular movies 

based on the country a user is in. The table that is created has the following fields:

• Country

• Movie_Rank

• Movie_ID

• Title

• Genre

• Runtime

• Release_Year

When the Playback Operations team added the Top Movies by Country dataset to the business 

data catalog, they included the following metadata:

• Description of the dataset: Top 10 movies over last 8 hours grouped by country

• Tags: top10; ranking; countries; movies

• Owning team: Playback Operations

• Data Owner: Anchal Priya

• Update Frequency: 8 hours
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As part of the process of creating the new dataset entry in the business data catalog, the dataset 

entry is linked with the technical catalog, meaning that the details about each of the fields in the 

dataset are also included in the business data catalog. 

The data catalog also captures certain metadata automatically, such as the date/time when the 

dataset was last updated, a data quality score that can be automatically imported from the data 

quality tool, and the popularity of the dataset based on how many other users have requested 

access to the dataset. It is also possible to have the lineage and profile of the dataset stored in the 

data catalog, giving other users a better understanding of how this data was generated. 

Recently, the marketing team started a new project that depends on having data about which 

genre of movies are most popular in each country (such as Action in Brazil, and Comedy in Ar-

gentina). They initially thought that they would need to create their own new ETL job to join 

many different datasets to get this information, but wisely decided that they should first search 

the corporate data catalog to see if there is an existing dataset that may have this information.

One of the data analysts on the marketing team logs in to the data catalog, and searches for top 

movie genres by country. In the search results, the Top Movies by Country dataset is listed, and the 

data analyst is able to explore more information about the dataset, view the list of fields, and 

even see feedback that other users of the dataset have left. In this way, the data catalog is much 

like the catalog of products on eCommerce sites like Amazon.com. Users can search for products, 

explore more information about the products, and look at reviews left by others who provide 

feedback on the products.

The data analyst realizes that this dataset has the data they need in order to be able to easily 

identify the top movie genre by country. Within the data catalog, they are able to click a button 

to request access to the data, and provide a short note indicating why they need access. This au-

tomatically gets routed to the dataset owner (Anchal Priya, as recorded in the catalog) who can 

then approve or deny the request. If approved, an automatic process grants the data analyst on 

the marketing team access to the dataset. 

Popular data catalog solutions outside of AWS include the Collibra Data Catalog, the Informat-

ica Enterprise Data Catalog, Atlan, and Amundsen (an open-source data catalog). At the AWS 

re:Invent conference in December 2022, AWS announced Amazon DataZone, a new service that 

includes business data-catalog-type functionality. 

Amazon DataZone is a service from AWS that provides built-in data governance features, helping 

to unlock the power of data across an organization. This includes functionality for a business data 

catalog, as we cover in more detail in Chapter 15, Implementing a Data Mesh Strategy.
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As shown in this section, the purpose of the business data catalog is to enable users to discover 

and browse datasets that are available within the organization. Let’s now take a look at techni-

cal catalogs, which are primarily used by analytic applications to work with data in a data lake.  

Technical data catalogs
Technical catalogs are those that map data files in a data lake (such as files stored in Amazon S3 

storage) to a logical representation of those files in the form of databases and tables. The Hive 

metastore is a well-known technical catalog that stores metadata for Hive tables (such as the 

table schema, location, and partition information). These are primarily technical attributes of 

the table, and the AWS Glue Data Catalog is an example of a Hive-compatible Metastore (mean-

ing analytic services designed to work with a Hive metastore catalog can use the Glue catalog). 

Services such as Amazon Athena, AWS Glue ETL, and Amazon EMR enable you to run queries 

on data in an Amazon S3 data lake, just by referencing a database and table name and without 

needing to know the actual location in S3. When you run a query on a specific database/table, 

the analytic service references the technical catalog to determine where the underlying files that 

make up this table are located in Amazon S3. In addition, the analytic service can also access 

information on the schema of the table (column names and column types), as well as the format 

of those files (such as CSV or Parquet format), so that it uses the correct reader to access the data. 

A business data catalog (discussed in the previous section) can often integrate with the technical 

catalog. For example, with Amazon DataZone it is possible to import databases that have been 

registered in the Glue technical data catalog. Once imported, a user can add additional business 

metadata that users of the DataZone catalog can use to discover datasets. When users search the 

DataZone catalog, they can search and view the business metadata that was manually added, but 

can also access technical metadata imported from Glue, such as the schema (a list of columns and 

data types). In a similar way, third-party tools such as the Collibra data catalog can also integrate 

with the Glue catalog in order to import technical attributes.

In the next section, we do a deeper dive into AWS services that relate to data governance, and 

this includes a closer look at the technical data catalog provided by AWS. 

AWS services that help with data governance
As already discussed in this chapter, data governance is a wide-ranging subject covering many 

different aspects of working with data. And within AWS, there are a number of different tools and 

services that assist with data governance, which we will explore in this section.  
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The AWS Glue/Lake Formation technical data catalog
The AWS Glue Data Catalog is a technical catalog that provides a logical mapping (databases, 

tables, and columns) to data that is stored in files in Amazon S3. However, in addition to cata-

loging data files in Amazon S3, the AWS Glue Data Catalog can also store schema and metadata 

information about tables in other databases, such as Amazon Redshift, Amazon RDS, Amazon 

DynamoDB, and more. 

Within AWS, there are actually two services for interacting with the data catalog. So far, we have 

only discussed the AWS Glue Data Catalog, but the AWS Lake Formation service also provides 

an interface for the same catalog.

It is important to understand that there is only a single data catalog, but both Glue and Lake For-

mation provide an interface to the catalog. For example, if we edit the schema of the csvtoparquent 

table that we created in the hands-on exercise in Chapter 3, and use the Glue console to change 

the data type of the favorite_num column from bigint to int, we will see that reflected in the 

Lake Formation console as well. 

In the following screenshot, we see the csvtoparquent table, showing the schema, in the AWS 

Glue console. 

Figure 4.1: AWS Glue console showing table schema
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If we look at the same table in the Lake Formation console, we can see similar information, 

including that the current version of this table is Version 1 (this was created when we updated 

Version 0 by changing the data type for the favorite_num column). 

Figure 4.2: AWS Lake Formation console showing table schema

The Lake Formation and Glue consoles are similar in both design and functionality, and so whether 

you use the Glue or Lake Formation console comes down to personal preference. 

The data catalog can be referenced by various analytical tools to work with data in the data lake. 

For example, Amazon Athena can reference the data catalog to enable users to run queries against 

databases and tables in the catalog. Athena uses the catalog to get the following information, 

which is required to query data in the data lake:

• The Amazon S3 location where the underlying data files are stored

• Metadata that indicates the file format type for the underlying files (such as CSV or Parquet)

• Details of the serialization library, which should be used to serialize the underlying data

• Metadata that provides information about the data type for each column in the dataset

• Information about any partitions that are used for the dataset
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A data engineer must help put automation in place to ensure that all the datasets that are added 

to a data lake are cataloged and that the appropriate metadata is added.

In Chapter 3, The AWS Data Engineers Toolkit, we discussed AWS Glue Crawlers, a process that 

can be run to examine a data source, infer the schema of the data source, and then automatically 

populate the technical data catalog with information on the dataset.

A data engineer should consider building workflows that make use of Glue Crawlers to run after 

new data is ingested, to have the new data automatically added to the data catalog. Or, when a 

new data engineering job is being bought into production, a check can be put in place to make 

sure that the Glue API is used to update the data catalog with details of the new data.

Note that adding data to the technical catalog is a separate process from adding data to a business 

data catalog. While having data in the Glue/Lake Formation catalog enables many different AWS 

services to work with the data (such as Amazon Athena, Amazon EMR, etc.), the Glue/Lake For-

mation interfaces were not designed as business catalogs. As such, they do not provide the best 

interface for searching for different datasets, or for capturing business-related metadata (such as 

data owner, confidentiality level, data quality score, etc.). Therefore, to make data discoverable, 

you need a separate process to ensure that datasets are added to a business catalog.

AWS Glue DataBrew for profiling datasets
As discussed earlier in this chapter, data profiling examines a dataset in order to report on the 

profile, or shape, of the data. This includes information on each of the columns, such as the number 

of rows, distinct and unique values, min and max values for number data types, and min and max 

string length for string data types. It can also report on null or missing values within a column. 

In order to generate profile information on a dataset, you can configure and run a Glue DataBrew 

profile job. When the job finishes examining a dataset, you can view information about the data 

profile within the Glue DataBrew console, and you can generate a JSON file that contains profile 

information for the dataset. 
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Figure 4.3: AWS Glue DataBrew profiling job results

In the above screenshot, we can see a sample data profile as shown in the AWS Glue DataBrew 

console. Note that this is just a subset of the data profile information that DataBrew generated, 

but in this screenshot, we can see, for example, that there is a LAST_NAME column with 16,895 

rows. We can further see that there are 3,233 distinct values (last names that occur at least once), 

as well as 1,268 unique values (last names that occur only once in this dataset). We also see that 

the shortest last name is 3 characters long, and the longest last name has 18 characters. 

AWS Glue Data Quality
The AWS Glue service includes functionality for monitoring and measuring the quality of your 

datasets. With AWS Glue Data Quality, you can either evaluate data that is in S3 and has been 

cataloged in the Glue Data Catalog, or you can evaluate data as part of a data processing job 

using AWS Glue Studio. 
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Glue Data Quality is based on the open-source Deequ data quality framework and uses the Data 

Quality Definition Language (DQDL) in order to define data quality rules. The following are some 

of the expressions that you can use in DQDL rules to test the quality of a dataset:

• ColumnExists – checks whether a column exists. For example, ColumnExists "date_

of_birth".

• ColumnLength – checks the length of each row in the column. For example, if your data-

set has a postal code/ZIP code column and you know that the ZIP code should always be 

5 characters in length, you can write a rule such as ColumnLength "Postal_Code" = 5. 

• Completeness – checks the percentage of non-null rows for the specific column. For ex-

ample, if you wanted to make sure that at least 95% of the rows in the dataset had a value 

for email, you could write a rule such as Completeness "email" > 0.95.

• RowCount – checks that the dataset contains a specified number of rows. This can be 

within a range, for example, we can check if the dataset has between 10,000 and 15,000 

rows with the following rule: RowCount between 10000 and 15000.

There are many other rule types that can be used to evaluate data quality, either for data already 

cataloged in the data catalog or for data being processed with a Glue Studio job. Both Glue Studio 

and the Glue Data Catalog provide a visual tool for building a set of data quality rules.  

In addition, the AWS Glue DataBrew service also includes a visual editor for implementing data 

quality rules to evaluate the quality of your data. 

AWS Key Management Service (KMS) for data encryption
AWS KMS simplifies the process of creating and managing security keys for encrypting and de-

crypting data in AWS. The AWS KMS service is a core service in the AWS ecosystem, enabling 

users to easily manage data encryption across several AWS services.

There are a large number of AWS services that can work with AWS KMS to enable data encryption, 

including the following AWS analytical services:

• Amazon AppFlow

• Amazon Athena

• Amazon EMR

• Amazon Kinesis Data Streams/Kinesis Firehose/Kinesis Video Streams

• Amazon Managed Streaming for Kafka (MSK)

• Amazon Managed Workflows for Apache Airflow (MWAA)
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• Amazon Redshift

• Amazon S3

• AWS Data Migration Service (DMS)

• AWS Glue/Glue DataBrew

• AWS Lambda

The full list of compatible services can be found at https://aws.amazon.com/kms/features/#AWS_

Service_Integration.

Permissions can be granted to users to make use of the keys for encrypting and decrypting data, 

and all use of AWS KMS keys is logged in the AWS CloudTrail service. This enables an organization 

to easily audit the use of keys to encrypt and decrypt data.

For example, with Amazon S3, you can enable Amazon S3 Bucket Keys, which configures an S3 

bucket key to encrypt all new objects in the bucket with an AWS KMS key. This is significantly 

less expensive than using Server Side Encryption – KMS (SSE-KMS) to encrypt each object in 

a bucket with a unique key.

To learn more about configuring Amazon S3 Bucket Keys, see https://docs.aws.amazon.com/

AmazonS3/latest/userguide/bucket-key.html.

It is important that you carefully protect your KMS keys and that you put safeguards in place to 

prevent a KMS key from being accidentally (or maliciously) deleted. If a KMS key is deleted, any 

data that has been encrypted with that key is effectively lost and cannot be decrypted.

Because of this, you must schedule the deletion of your KMS keys and specify a waiting period of 

between 7 and 30 days before the key is deleted. During this waiting period, the key cannot be 

used, and you can configure a CloudWatch alarm to notify you if anyone attempts to use the key.

If you use AWS Organizations to manage multiple AWS accounts as part of an organization, you 

can create a Service Control Policy (SCP) to prevent any user (even an administrative user) from 

deleting KMS keys in child accounts.

Amazon Macie for detecting PII data in Amazon S3 objects
Amazon Macie is a managed service that uses machine learning, along with pattern matching, to 

discover and protect sensitive data. Amazon Macie identifies sensitive data, such as PII data, in an 

Amazon S3 bucket and provides alerts to warn administrators about the presence of such sensitive 

data. Macie can also be configured to launch an automated response to the discovery of sensitive 

data, such as a step function that runs to automatically remediate the potential security risk.

https://aws.amazon.com/kms/features/#AWS_Service_Integration
https://aws.amazon.com/kms/features/#AWS_Service_Integration
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html
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Macie can identify items such as names, addresses, and credit card numbers that exist in files on 

S3. These items are generally considered to be PII data, and as discussed previously, these should 

ideally be tokenized before data processing. Macie can also be configured to recognize custom 

sensitive data types to alert the user to sensitive data that may be unique to a specific use case.

The AWS Glue Studio Detect PII transform for detecting PII 
data in datasets
While Amazon Macie detects PII data directly in S3 files, an alternate option is to use the AWS 

Glue Studio Detect PII transform to detect PII data during a data processing job. When creating 

a job in AWS Glue Studio, you can add the Detect Sensitive Data transform and configure it based 

on your requirements. This includes selecting whether to examine every cell in the dataset for 

PII data or whether to just sample a limited number of rows for each column to detect PII data. 

You can also select what to do when PII data is detected, including options for redacting the text 

(replacing it with a preset string), applying a SHA-256 hash to the value, or just reporting on the 

PII data that is detected. 

Amazon GuardDuty for detecting threats in an AWS account
While Amazon GuardDuty is not directly related to analytics on AWS, it is a powerful service 

that helps protect an AWS account. GuardDuty is an intelligent threat detection service that uses 

machine learning to monitor your AWS account and provide proactive alerts about malicious 

activity and unauthorized behavior.

GuardDuty analyzes several AWS-generated logs, including the following:

• CloudTrail S3 data events (a record of all actions taken on S3 objects)

• CloudTrail management events (a record of all usage of AWS APIs within an account)

• VPC flow logs (a record of all network traffic within an AWS VPC)

• DNS logs (a record of all DNS requests within your account)

By continually analyzing these logs to identify unusual access patterns or data access, Amazon 

GuardDuty can proactively alert you to potential issues, and also helps you automate your re-

sponse to threats.

AWS Identity and Access Management (IAM) service
AWS IAM is a service that provides both authentication and authorization for the AWS Console, 

command-line interface (CLI), and application programming interface (API) calls.
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AWS IAM also supports the federation of identities, meaning that you can configure IAM to use 

another identity provider for authentication, such as Active Directory or Okta.

Note that this section is not intended as a comprehensive guide to Identity and Access Manage-

ment on AWS, but it does provide information on foundational concepts that are important for 

anyone working within the AWS cloud to understand. For a deeper understanding of the AWS IAM 

service, refer to the AWS Identity and Access Management user guide (https://docs.aws.amazon.

com/IAM/latest/UserGuide/introduction.html).

Several IAM identities are important to understand:

• AWS account root user: When you create an AWS account, you provide an email address 

to be associated with that account, and that email address becomes the root user of the 

account. You can log in to the AWS Management Console using the root user, and this user 

has full access to all the resources in the account. However, it is strongly recommended 

that you do not use this identity to log in and perform everyday tasks, but rather create 

an IAM user for everyday use.

• IAM user: This is an identity that you create and can be used to log in to the AWS Console, 

run CLI commands, or make API calls. An IAM user can have a login name and password 

that’s used for Console access, and can have up to two associated access keys that can be 

used to authenticate this identity when using the AWS CLI or API. While you can associate 

IAM policies directly with an IAM user, the recommended method to provide access to AWS 

resources is to make the user part of a user group that has relevant IAM policies attached.

• IAM user groups: An IAM user group is used to provide permissions that can be associated 

with multiple IAM users. You provide permissions (via IAM policies) to an IAM user group, 

and all the members of that group then inherit those permissions.

• IAM roles: An IAM role can be confusing at first as it is similar to an IAM user. However, an 

IAM role does not have a username or password and you cannot directly log in or identify 

as an IAM role. However, an IAM user can assume the identity of an IAM role, taking on the 

permissions assigned to that role. An IAM role is also used in identity federation, where 

a user is authenticated by an external system, and that user identity is then associated 

with an IAM role. Finally, an IAM role can also be used to provide permissions to AWS 

resources (for example, to provide permissions to an AWS Lambda function so that the 

Lambda function can access specific AWS resources).

To grant authorization to access AWS resources, you can attach an IAM policy to an IAM user, 

IAM user group, or IAM role. These policies grant, or deny, access to specific AWS resources, and 

can also make use of conditional statements to further control access.

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
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These identity-based policies are JSON documents that specify the details of access to an AWS 

resource. These policies can either be configured within the AWS Management Console, or the 

JSON documents can be created by hand.

There are three types of identity-based policies that can be utilized:

1. AWS-managed policies: These are policies that are created and managed by AWS and 

provide permissions for common use cases. For example, the AdministratorAccess 

managed policy provides full access to every service and resource in AWS, while the 

DatabaseAdministrator policy provides permissions for setting up, configuring, and 

maintaining databases in AWS.

2. Customer-managed policies: These are policies that you create and manage to provide 

more precise control over your AWS resources. For example, you can create a policy and 

attach it to specific IAM users/groups/roles that provide access to a list of specific S3 buck-

ets and limit that access to only be valid during specific hours of the day or for specific 

IP addresses.

3. Inline policies: These are policies that are written directly for a specific user, group, or 

role. These policies are tied directly to the user, group, or role, and therefore apply to one 

specific entity only.

The following policy is an example of a customer-managed policy that grants read access to a 

specific S3 bucket:

{

    "Version": "2012-10-17",

    "Statement": [

        {

            "Effect": "Allow",

            "Action": [

                "s3:ListBucket"

            ],

            "Resource": "arn:aws:s3::: de-landing-zone"

        },

  {

           "Effect": "Allow",

           "Action": [

               "s3:GetObject"

],
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           "Resource": ["arn:aws:s3::: de-landing-zone/*"]

    }

    ]

}

The policy takes the form of a JSON document. In this instance, the policy does the following:

1. Allow access (you can also create policies that Deny access).

2. Allows access for Action of s3:GetObject and s3:ListBucket, meaning authorization 

is given to run the Amazon S3 GetBucket and ListBucket actions (via the Console, CLI, 

or API).

3. For ListBucket, the resource is set as the de-landing-zone bucket. For GetObject, the 

resource is set as de-landing-zone/*. This results in the principal being granted access to 

list the de-landing-zone bucket, and read access to all the objects inside the de-landing-

zone bucket.

You could further limit this policy to only be allowed if the user was connecting from a specific IP 

address, at a certain time of day, or various other limitations. For example, to limit this permission 

to users from a specific IP address, you could add the following to the policy:

"Condition": {

                "IpAddress": {

                    "aws:SourceIp": [

                        "12.13.15.16/32",

                        "45.44.43.42/32"

                    ]

                }

            }

Once you have created a customer-managed policy, you can attach the policy to specific IAM user 

groups, IAM roles, or IAM users.

Traditional data lakes on AWS used IAM policies to control access to data in an Amazon S3-based 

data lake. For example, a policy would be created to grant access to different zones of the data lake 

storage in S3, and then that policy would be attached to different IAM users, user groups, or roles.

However, when creating a large data lake that may contain multiple buckets or S3 prefixes that 

relate to specific business units, it can be challenging to manage S3 permissions through these 

JSON policies. Each time a new data lake location is created, the data engineer would need to make 

sure that the JSON policy document were updated to configure permissions for the new location.
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To make managing large S3-based data lakes easier, AWS introduced a service called AWS Lake 

Formation, which enables permissions for the data lake to be controlled by the data lake admin-

istrator from within the AWS Management Console (or via the AWS CLI or AWS API).

Using AWS Lake Formation to manage data lake access
AWS Lake Formation is a service that simplifies setting up and managing a data lake. A big part of 

the Lake Formation service is the ability to manage access (authorization) to data lake databases 

and tables without having to manage fine-grained access through JSON-based policy documents 

in the IAM service.

Lake Formation enables a data lake administrator to grant fine-grained permissions on data 

lake databases, tables, and columns using the familiar database concepts of grant and revoke for 

permissions management. A data lake administrator, for example, can grant SELECT permissions 

(effectively READ permission) for a specific data lake table to a specific IAM user or role.

Lake Formation permissions management is another layer of permissions that is useful for man-

aging fine-grained access to data lake resources, but it works with IAM permissions and does not 

replace IAM permissions. A recommended way to do this is to apply broad permissions to a user 

or user group in an IAM policy, but then apply fine-grained permissions with Lake Formation.

Permissions management before Lake Formation
Before the release of the Lake Formation service, all data lake permissions were managed at the 

Amazon S3 level using IAM policy documents written in JSON. These policies would control access 

to resources such as the following:

• The data catalog objects in the Glue Data Catalog (such as permissions to access Glue 

databases and tables)

• The underlying physical storage in Amazon S3 (such as the Parquet or CSV files in an 

Amazon S3 bucket)

• Access to analytical services (such as Amazon Athena or AWS Glue)

For example, the IAM policy would provide several Glue permissions, including the ability to read 

catalog objects (such as Glue tables and table partitions) and the ability to search tables. However, 

the resources section of the policy would restrict these permissions to the specific databases and 

tables that the user should have access to.

The policy would also have a section that provided permissions to the underlying S3 data. For each 

table that a user needed to access in the Glue Data Catalog, they would need both Glue Data Cata-

log permissions for the catalog objects, as well as Amazon S3 permissions for the underlying files.
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The last part of the IAM policy would also require the user to have access to relevant analytical 

tools, such as permissions to access the Amazon Athena service.

Permissions management using AWS Lake Formation
With AWS Lake Formation, permissions management is changed so that broad access can be 

provided to Glue catalog objects in the IAM policy, and fine-grained access is controlled via AWS 

Lake Formation permissions.

With Lake Formation, data lake users do not need to be granted direct permissions on underlying 

S3 objects as the Lake Formation service can provide temporary credentials to compatible analytic 

services to access the S3 data.

It is important to note that Lake Formation permissions access only works with compatible an-

alytic services, which, at the time of writing, include the following AWS services:

• Amazon Athena

• Amazon QuickSight

• Amazon EMR

• Amazon Redshift Spectrum

• AWS Glue

• Amazon SageMaker Studio

If using these compatible services, AWS Lake Formation is a simpler way to manage permissions 

for your data lake. The data lake user still needs an associated IAM policy that grants them access 

to the AWS Glue service, the Lake Formation service, and any required analytic engines (such 

as Amazon Athena). However, at the IAM level, the user can be granted access to all AWS Glue 

objects. Then, the Lake Formation permissions layer can be used to control which specific Glue 

catalog objects (databases and tables) can be accessed by the user.

As the Lake Formation service passes temporary credentials to compatible analytic services to 

read data from Amazon S3, data lake users no longer need any direct Amazon S3 permissions to 

be provided in their IAM policies.

Hands-on – configuring Lake Formation permissions
In this hands-on section, we will use the AWS Management Console to configure Lake Formation 

permissions.
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However, before we implement Lake Formation permissions, we’re going to create a new data 

lake user and configure their permissions using just IAM permissions. We’ll then go through the 

process of updating a Glue database and table to use Lake Formation permissions, and then grant 

Lake Formation permissions to our data lake user.

Creating a new user with IAM permissions
To start, let’s create a new IAM user that will become our data lake user. We will initially use IAM 

to grant our data lake user the following permissions:

• Permission to access a specific database and table in the Glue Data Catalog

• Permission to access specific S3 locations that contain the underlying files associated 

with our Glue table objects

• Permission to use the Amazon Athena service to run SQL queries against the data lake

First, let’s create a new IAM policy that grants the required permissions for using Athena and 

Glue, but limits those permissions to only the CleanZoneDB in the Glue catalog. To do this, we’re 

going to copy the Amazon-managed policy for Athena Full Access, but we will modify the policy 

to limit access to just a specific Glue database, and we will add S3 permissions to the policy. Let’s 

get started:

1. Log in to the AWS Management Console and access the IAM service using this link: 

https://console.aws.amazon.com/iam/home.

2. On the left-hand side, click on Policies, and then for Filter Policies, type in Athena.

3. From the filtered list of policies, expand the AmazonAthenaFullAccess policy.

4. Click on the Copy button to copy the policy to your computer clipboard.

Configuring the Glue Crawler

While not covered in this chapter, we will provide a hands-on section with details on 

how to configure the Glue Crawler in Chapter 6, Ingesting Batch and Streaming Data.

https://console.aws.amazon.com/iam/home
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Figure 4.4: Copying the text of the AmazonAthenaFullAccess policy

5. At the top of the page, click on Create policy.

6. The visual editor is selected by default, but since we want to create a JSON policy directly, 

click on the JSON tab.

7. Paste the Athena Full Access policy that you copied to the clipboard in step 4 into the policy, 

overwriting and replacing any text currently in the policy.

8. Look through the policy to identify the section that grants permissions for several Glue 

actions (glue:CreateDatabase, glue:DeleteDatabase, glue:getDatabase, and so on). 

This section currently lists the resource that it applies to as *, meaning that the user would 

have access to all databases and tables in the Glue catalog. In our use case, we want to 

limit permissions to just the Glue CleanZoneDB database (which was created in the hands-

on section of Chapter 3, The AWS Data Engineers Toolkit). Replace the resource section of 

the section that provides Glue access with the following, which will limit access to the 

required DB only, although it also includes all tables in that database:

            "Resource": [

                "arn:aws:glue:*:*:catalog",

                "arn:aws:glue:*:*:database/cleanzonedb",

                "arn:aws:glue:*:*:database/cleanzonedb*",

                "arn:aws:glue:*:*:table/cleanzonedb/*"

            ]



Data Governance, Security, and Cataloging132

The following screenshot shows how this looks when applied to the policy:

Figure 4.5: Updated policy with limited permissions for Glue resources

9. Immediately after the section that provides Glue permissions, we can add new permis-

sions for accessing the S3 location where our CleanZoneDB data resides. Add the follow-

ing section to provide these permissions, making sure to replace <initials> with the 

unique identifier you used when creating the bucket in Chapter 2, Data Management 

Architectures for Analytics:

        {

            "Effect": "Allow",

            "Action": [

                "s3:GetBucketLocation",

                "s3:GetObject",

                "s3:ListBucket",

                "s3:ListBucketMultipartUploads",

                "s3:ListMultipartUploadParts",

                "s3:AbortMultipartUpload",

                "s3:PutObject"

            ],
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            "Resource": [

                "arn:aws:s3:::dataeng-clean-zone-<initials>/*"

            ]

        },

The following screenshot shows the S3 permissions added to the policy:

Figure 4.6: S3 permissions added to the policy

10. Once you have pasted in the new S3 permissions, click on Next:Tags at the bottom right 

of the screen.

11. Optionally, add any tags for this policy, and then click on Next: Review.

12. For Name, provide a policy name of AthenaAccessCleanZoneDB and click Create policy.

Now that we have created an IAM policy for providing the required permissions to the Glue 

catalog and S3 buckets, we can create a new data lake user and attach our new policy to the user. 
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Follow these steps to create the new IAM user:

1. In the IAM console, on the left-hand side, click on Users, and then click Add users.

2. For User name, enter datalake-user.

3. Click the checkbox for Provide user access to the AWS Management Console - optional.

4. Select the I want to create an IAM user option.

5. Select your preferred options for creating a password, and then click Next.

6. On the Set permissions page, select Attach policies directly.

7. In the Permission policies search bar, search for Athena and select the AthenaAccess-

CleanZoneDB policy, which we created in the previous set of steps. 

8. Click Next.

9. Review the new user details, and then click Create user.

10. Take note of the Console sign-in URL, which can be used to access the login screen for 

your account.

Now, let’s create a new Amazon S3 bucket that we can use to capture the results of any Amazon 

Athena queries that we run:

1. In the AWS Management Console, use the top search bar to search for and select the S3 

service.

2. Click on Create bucket.

3. For Bucket name, enter aws-athena-query-results-dataengbook-<initials>. Replace 

<initials> with your initials or some other unique identifier.

4. Ensure AWS Region is set to the region you have been using for the other exercises in 

this book.

5. Leave all other options with their defaults, and click on Create bucket.

Note that AWS recommends the use of IAM Identity Center to manage users in 

your AWS account, and this should be strongly considered when creating users in 

production, and even development, accounts. However, for our purposes, where 

we are using a single-purpose sandbox-type account for performing the hands-on 

exercises in this book, we will create an IAM user as this is a simpler setup. 
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We can now verify that our new datalake-user has access to CleanZoneDB and that the user can 

run Athena queries on the table in this database:

1. Sign out of the AWS Management Console, and then sign in again using the new user you 

just created, datalake-user. Use the Console sign-in URL you previously noted down 

to access the login page. 

2. From the top search bar, search for and select the Athena service.

3. Before you can run an Athena query, you need to set up a query result location in Amazon 

S3. This is the S3 bucket and prefix where all the query results will be written to. From the 

top right of the Athena console, click on Edit Settings.

4. For Query result location, enter the S3 path you created in the previous Step 3 (for example, 

s3://aws-athena-query-results-dataengbook-<initials>/).

5. Click on Save.

6. Change to the Editor tab, and in the query window, run the following SQL query: select 

* from cleanzonedb.csvtoparquet.

7. If all permissions have been configured correctly, the results of the query should be dis-

played in the lower window. The file we created shows names and ages.

8. Log out of the AWS Management Console since we need to be logged in as our regular 

user, not datalake-user, for the next steps. 

We have now set up permissions for our data lake using IAM policies to manage fine-grained 

access control, as was always done before the launch of the AWS Lake Formation service. In the 

next section, we will transition to using Lake Formation to manage fine-grained permissions on 

data lake objects.

Transitioning to managing fine-grained permissions with 
AWS Lake Formation
In the initial setup, we configured permissions for our data lake user to be able to run SQL queries 

using Amazon Athena, and we restricted their access to just cleanzonedb using an IAM permis-

sions policy.

In this section, we are going to modify cleanzonedb and the tables in that database to make use 

of the Lake Formation permissions model.
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Activating Lake Formation permissions for a database and table
As a reminder, Lake Formation adds a layer of permissions that work in addition to the IAM policy 

permissions. By default, every database and table in the catalog has a special permission enabled 

that effectively tells Lake Formation to just use IAM permissions and to ignore any permissions 

that may have been granted in Lake Formation. This is sometimes called the Pass-Through 

permission, as it allows security checks to be validated at the IAM level, but then passes through 

Lake Formation without doing any additional permission checks.

With our initial setup, we granted Glue Data Catalog permissions to datalake-user in an IAM 

policy. This policy allowed the user to access the cleanzonedb database, as well as all the tables 

in that database. Let’s have a look at how permissions are set up on the cleanzonedb database 

and tables in Lake Formation:

1. Log in to the AWS Management Console and search for the Lake Formation service in 

the top search bar. Make sure you are logged in as your regular user, and not as datalake-

user, which you created earlier in this chapter.

2. The first time you access the Lake Formation service, a pop-up box will prompt you to 

choose initial users and roles to be Lake Formation data lake administrators. By default, 

Add myself should be selected. Click Get started to add your current user as a data lake 

admin.

Figure 4.7: Adding your user as a Lake Formation administrator
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3. Once selected, you should be taken to the Lake Formation Data lake administrators 

screen, where you can confirm that your user has been added as a data lake administrator.

4. On the left-hand side of the Lake Formation console, click on Databases. In the list of 

databases, click on the cleanzonedb database.

5. This screen displays details of cleanzonedb. Click on Actions, and then View permissions.

6. On the View permissions screen, we can see that two permissions have been as-

signed for this database. The first one is DataEngLambdaS3CWGlueRole, and this IAM 

role has been granted full permissions on the database. The reason for this is that 

DataEngLambdaS3CWGlueRole was the role that was assigned to the Lambda function 

that we used to create the database back in Chapter 3, The AWS Data Engineers Toolkit, so 

it is automatically granted these permissions.

Figure 4.8: Lake Formation permissions for the cleanzonedb database

The other permission that we can see is for the IAMAllowedPrincipals group. This is the 

pass-through permission we mentioned previously, which effectively means that permis-

sions at the Lake Formation layer are ignored. If this special permission was not assigned, 

only DataEngLambdaS3CWGlueRole would be able to access the database. However, be-

cause the permission has been assigned, any user who has been granted permissions to 

this database through an IAM policy, such as datalake-user, will be able to successfully 

access the database.



Data Governance, Security, and Cataloging138

7. To enable Lake Formation permissions on this database, we can remove the 

IAMAllowedPrincipals permission from the database. To do this, click the selector box 

for the IAMAllowedPrincipals permission and click Revoke. On the pop-up box, click 

on Revoke.

8. We now want to do the same thing for our csvtoparquet table in the database. To do this, 

click on Databases in the left-hand menu, then click on cleanzonedb. From the top right, 

click on View tables. Click the selector for the csvtoparquet table and click on Actions/

View Permissions. Click the selector for IAMAllowedPrincipals and click on Revoke. On 

the pop-up window, click on Revoke. This removes the special Pass-Through permission 

from the table.

Granting Lake Formation permissions
By removing the IAMAllowedPrincipals permission from the cleanzonedb database and the 

csvtoparquet table, we have effectively enabled Lake Formation permissions on those resources. 

Now, if any principal needs to access that database or table, they need both IAM permissions, as 

well as Lake Formation permissions.

If we had enabled Lake Formation permissions on all databases and tables, then we could modify 

our user’s IAM policy permissions to give them access to all data catalog objects. We can do this 

because we would know that they would only be able to access those databases and tables where 

they had been granted specific Lake Formation permissions.

We previously created an edited copy of the AmazonAthenaFullAccess managed IAM policy to 

limit user access to specific data catalog databases and tables in the IAM policy. However, if all 

databases and tables had the IAMAllowedPrincipals permission removed and specific permis-

sions granted to users instead, then we could apply the generic AmazonAthenaFullAccess policy. 

Optional - checking permissions

If you want to see what effect this has, you can log out of the AWS Console and log 

in again as datalake-user. Now, when you try to run a query on the csvtoparquet 

table using Athena, you will receive an error message as Lake Formation permissions 

are in effect, and your datalake-user has not been granted permissions to access 

the table yet via Lake Formation.
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We also previously provided access to the underlying S3 files using an IAM policy. However, when 

using Lake Formation permissions, compatible analytic tools are granted access to the underlying 

S3 data using temporary credentials provided by Lake Formation. Therefore, once Lake Formation 

permissions have been activated, we can remove permissions to the underlying S3 data from our 

user’s IAM policy. Then, when using a compatible tool such as Amazon Athena, we know that 

Lake Formation will grant Athena temporary credentials to access the underlying S3 data.

Here, we will add specific Lake Formation permissions for our datalake-user to access the 

CleanZoneDB database and the csvtoparquet table:

1. Ensure you are logged in as your regular user (the one you made a data lake admin earlier) 

and access the Lake Formation console.

2. Click on CleanZoneDB, and then click View tables.

3. Click on the csvtoparquet table, and then click Actions/Grant.

4. From the IAM users and roles dropdown, click on the datalake-user principal.

5. For Table permissions, mark the permission for Select.

6. Under Data permissions, select Column-based access. 

7. Select Exclude columns, and then under Select columns, select the favorite_num column.

8. Click on Grant at the bottom of the screen.

In the preceding steps, we granted our datalake-user Select permissions on the csvtoparquet 

table. However, we put in a column limitation, which means that datalake-user will not be able 

to access the favorite_num column. Enabling column-level permissions is not something that 

would be possible if we were just using IAM-level permissions, as column-level permissions is a 

Lake Formation-specific feature.

Now, if you log in to the AWS Management Console as datalake-user and run the same Athena 

query we ran previously (select * from cleanzonedb.csvtoparquet), your permissions will 

enable the required access.
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Figure 4.9: Running an Athena query with Lake Formation permissions

Note that in the results of the query, the favorite_num column is not included as we specifically 

excluded this column when granting permissions on this table to our datalake-user.

In this section, we transitioned to using Lake Formation for managing data lake permissions 

for the cleanzonedb database. We added fine-grained permissions in Lake Formation to limit 

cleanzonedb access to just our datalake-user, and excluded the favorite_num column from the 

list of columns that our user could query.  

Summary
In this chapter, we reviewed important concepts around the many different aspects of data gov-

ernance, including how a data catalog can be used to help prevent your data lake from becoming 

a data swamp.

We reviewed data profiling, data quality, and data lineage as important aspects of data gover-

nance, as well as an introduction to how to ensure that your data is secured correctly and used in 

accordance with relevant regulations (such as GDPR). Ensuring that your data is used correctly 

and that it offers the most value to your organization does not just happen, but rather requires 

a strong data governance program and focus. 
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In the next chapter, we will take a step back and look at the bigger picture of how a data engineer 

can architect a data pipeline. We will begin exploring how to understand the needs of our data 

consumers, learn more about our data sources, and review the transformations that are required 

to transform raw data into useful data for analytics.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd




Section 2
Architecting and 

Implementing Data Lakes 
and Data Lake Houses

In this section of the book, we examine an approach for architecting a high-level data pipeline 

and then dive into the specifics of data ingestion and transformation. We will examine different 

types of data consumers, learn about the important role of data marts and data warehouses, and 

finally put it all together by orchestrating our own data pipelines. We get hands-on with various 

AWS services for data ingestion (Amazon Kinesis and DMS), transformation (AWS Glue Studio), 

consumption (AWS Glue DataBrew), and pipeline orchestration (Step Functions).

This section comprises the following chapters:

• Chapter 5, Architecting Data Engineering Pipelines

• Chapter 6, Ingesting Batch and Streaming Data

• Chapter 7, Transforming Data to Optimize for Analytics

• Chapter 8, Identifying and Enabling Data Consumers

• Chapter 9, A Deeper Dive into Data Marts and Amazon Redshift

• Chapter 10, Orchestrating the Data Pipeline





5
Architecting Data Engineering 
Pipelines

Having gained an understanding of data engineering principles, the core concepts, and the avail-

able AWS tools, we can now put these together in the form of a data pipeline. A data pipeline is 

the process that ingests data from multiple sources, optimizes and transforms it, and makes it 

available to data consumers. An important function of the data engineering role is the ability to 

design, or architect, these pipelines.

In this chapter, we will cover the following topics:

• Approaching the task of architecting a data pipeline

• Identifying data consumers and understanding their requirements

• Identifying data sources and ingesting data

• Identifying data transformations and optimizations

• Loading data into data marts

• Wrapping up the whiteboarding session

• Hands-on – architecting a sample pipeline

Technical requirements
For the hands-on portion of this lab, we will design a high-level pipeline architecture. You can 

perform this activity on an actual whiteboard, a piece of paper, or using a free online tool called 

diagrams.net. If you want to make use of this online tool, make sure you can access the tool at 

http://diagrams.net.

http://diagrams.net
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You can find the code files of this chapter in the GitHub repository using the following link: 
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/

main/Chapter05.

Approaching the data pipeline architecture
Before we get into the details of the individual components that will go into the architecture, it 

is helpful to get a 10,000 ft view of what we’re trying to do.

A common mistake when starting a new data engineering project is to try and do everything at 

once, creating a solution that covers all use cases. A better approach is to identify an initial, spe-

cific use case and start the project while focusing on that one outcome, but keeping the bigger 

picture in mind.

This can be a significant challenge, and yet it is really important to get this balance right. While 

you need to focus on an achievable outcome that can be completed within a reasonable time frame, 

you also need to ensure that you build within a framework that can be used for future projects. If 

each business unit tackles the challenge of data analytics independently, with no corporation-wide 

analytics initiative, it will be difficult to unlock the value of corporation-wide data.

An ideal project will include sponsorship from the highest levels of an organization but will iden-

tify a limited-scope project to build an initial framework. This project, when completed, can be 

used as an internal case study to drive forward additional analytic projects.

In the 1989 film Field of Dreams, a farmer (played by Kevin Costner) hears a voice saying

Everyone in the town thinks he is crazy when he ends up sacrificing his crops to build a baseball 

field, but when he does, several long-dead baseball players come to the field to play. In business, 

a common mantra is the following:

This implies that if you build something really good, you will find customers for it. However, this 

is not a recommended approach for building data analytic solutions.

”If you build it, he will come.”

”If you build it, they will come.”

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter05
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter05
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Some organizations may have hundreds, or even thousands, of data sources, and many of those 

data sources may be useful for centralized analytics. But that doesn’t mean we should attempt to 

immediately ingest them all into our analytics platform so that we can see how a business may 

use them. When organizations have taken this approach, embarking on multi-year-long projects 

to build out large analytic solutions covering many different initiatives, they have often failed.

Rather, once executive sponsorship has been gained and an initial project with limited scope has 

been identified, the data engineer can begin the process of designing a data pipeline for the project.

Architecting houses and pipelines
If you were to build a new house, you would identify an appropriate piece of land and then con-

tract an architect to work with you to create the plans for the building. The architect would do 

several things:

• Discuss your requirements with you (how you want to use the home, what materials you 

would like, how many bedrooms and bathrooms, and so on).

• Gather information on the land where you will be building (the size of the land, slope, 

and so on).

• Determine the type of materials that are best suited to build in that environment.

As part of this, the architect may create a rough sketch showing the high-level plan. Once that 

high-level plan is agreed upon, the architect can gather more detailed information and then 

create a detailed architectural plan. This plan would include the layout of the rooms, and then 

where the shower, toilet, lights, and so on would go and, based on that, where the plumbing and 

electrical lines would run.

For a data engineer creating the architecture for a data pipeline, a similar approach can be used:

• Gather information from project sponsors and data consumers on their requirements. 

Learn what their objectives are, what types of tools they want to use to consume the data, 

the required data transformations, and so on.

• Gather information on the available data sources. This may include what systems store 

the raw data, what format that data is in, who the system and data owner are, and so on.

• Determine what types of tools are available and which may be best suited for these re-

quirements.

A useful way to gather this information is to conduct a whiteboarding session with the relevant 

stakeholders.
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Whiteboarding as an information-gathering tool
Running a whiteboarding session with relevant stakeholders enables a data engineer to develop a 

high-level plan for the data pipeline, helping to gather the information required to start working 

on the detailed design. The purpose of the whiteboarding exercise is not to work out all the tech-

nical details and finalize the specific services and tools that will be used. Rather, the purpose is to 

agree with stakeholders on the overall approach for the pipeline and to gather the information 

that’s required for the detailed design.

In this book, we will use an architectural approach, where we ingest data into an Amazon S3-based 

data lake. Data is initially ingested into a raw zone, and then we transform and optimize the data 

using several tools to move the data through different data lake zones. As we covered in Chapter 

2, Data Management Architectures for Analytics, a data lake has multiple zones that the data moves 

through. Typically, this includes zones such as raw, transformed, conformed, and enriched, but a 

data lake can also include zones such as staging and inference (for data science purposes). There 

is no specific number of zones that a data lake requires, as zones should be based on business 

requirements, but for our whiteboarding session, we will show three zones.

Depending on data consumption requirements, we can then load subsets of the data into various 

data marts (such as Amazon Redshift, a cloud data warehouse service), making the data available 

to data consumers via various services.

The following diagram illustrates a high-level overview of the primary components of a typical 

data pipeline and the approach to developing the high-level pipeline architecture. Note that the 

diagram below shows data coming in on the left, and data consumers accessing the data on the 

right, which is a logical layout to understand the pipeline (data must be ingested before it can 

be consumed). However, when we approach designing the pipeline, we work backward, starting 

with the requirements of our data consumers, before then looking at data sources, and finally, 

meeting in the middle by looking at the required data transformations. 

Figure 5.1: High-level overview of a data pipeline architecture
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When approaching the design of the pipeline, we can use the following sequence (which is also 

reflected by the numbers in the preceding diagram):

• Understanding the business objectives, who the data consumers are, and their require-

ments

• Determining the types of tools that data consumers will use to access the data

• Understanding which potential data sources may be available

• Determining the types of toolsets that will be used to ingest data

• Understanding the required data transformations at a high level to take the raw data and 

prepare it for data consumers

As you can see, we should always work backward when designing a pipeline – that is, we should 

start with the data consumers and their requirements, and then work from there to design our 

pipeline.

Conducting a whiteboarding session
Once an initial project has been identified, the data engineer should bring together relevant 

stakeholders for a workshop to whiteboard the high-level approach. Ideally, all stakeholders 

should meet in person, have a whiteboard available, and should plan for a half-day workshop. 

Stakeholders should include a group of people that can answer the following questions:

• Who is the executive sponsor, and what is the business value and objective of the project?

• Who is going to be working directly with the data (the data consumers)? What types of 

tools are the data consumers likely to use to access the data?

• What are the relevant raw data sources?

• At a high level, what types of transformations are required to transform and optimize 

the raw data?

The data engineer needs to understand the business objectives, and not just gather technical in-

formation during this workshop. A good place to start is to ask for a business sponsor to provide 

an overview of current challenges, and to review the expected business outcomes, or objectives, 

for the project. Also, ask about any existing solutions or related projects, as well as any gaps or 

issues with those current solutions.
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Once the team has a good understanding of the business value, the data engineer can begin white-

boarding to put together the high-level design. We will work backward from our understanding 

of the business value of the project, which involves learning how the end-state data will be used 

to provide business value, and who the consumers of the data will be. From there, we can start 

understanding the raw data sources that will be needed to create the end-state data, and then 

develop a high-level plan for the types of transformations that may be required.

Let’s start by identifying who our data consumers are and understanding their requirements.

Identifying data consumers and understanding their 
requirements
A typical organization is likely to have multiple different categories, or types, of data consumers. 

We discussed some of these roles in Chapter 1, An Introduction to Data Engineering, but let’s review 

them again:

• Business users: A business user generally wants to access data via interactive dashboards 

and other visualization types. For example, a sales manager may want to see a chart show-

ing last week’s sales by sales rep, geographic area, or top product categories.

• Business applications: In some use cases, the data pipeline that the data engineer builds 

will be used to power other business applications. For example, Spotify, the streaming 

music application, provides users with an in-app summary of their listening habits at the 

end of each year (top songs, top genres, total hours of music streamed, and so on). Read 

the following Spotify blog post to learn more about how the Spotify data team enabled 

this: https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-

brought-you-a-decade-of-data/.

• Data analyst: A data analyst is often tasked with doing more complex data analysis, 

digging deeper into large datasets to answer specific questions. For example, across all 

customers, you may be wondering which products are most popular by different age or 

socio-economic demographics. Alternatively, you may be wondering what percentage of 

customers have browsed the company’s e-commerce store more than 5 times, for more 

than 10 minutes at a time, and in the last 2 weeks but have not purchased anything. These 

users generally use structured query languages such as SQL.

• Data scientist: A data scientist is tasked with creating machine learning models that can 

identify non-obvious patterns in large datasets, or make predictions about future behavior 

based on historical data. To do this, data scientists need access to large quantities of raw 

data that they can use to train their machine learning models.

https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-of-data/
https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-of-data/
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During the whiteboarding workshop, the data engineer should ask questions to understand who 

the data consumers are for the identified project. As part of this, it is important to also understand 

the types of tools each data consumer is likely to want to use to access data.

As information is discovered, it can be added to the whiteboard, as illustrated in the following 

diagram:

Figure 5.2: Whiteboarding data consumers and data access

In this example, we can see that we have identified three different data consumers – a data ana-

lyst team, a data science team, and various business users. We have also identified the following:

• That the data analysts want to use ad hoc SQL queries to access data

• That the data science team wants to use both ad hoc SQL queries and specialized machine 

learning tools to access data

• That the business users want to use a Business Intelligence (BI) data visualization tool 

to access data

It is useful to ask whether there are any existing corporate standard tools that the data consumer 

must use, but it is not important to finalize the toolsets at this point. For example, we should 

take note if a team already has experience with Tableau (a common BI application) and whether 

they want to use it for data visualization reporting. However, if they have not identified a specific 

toolset to use, that can be finalized at a later stage.
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Once we have a good understanding of who the data consumers are for the project, and the types 

of tools they want to use to work with data, we can move on to the next stage of whiteboarding, 

which is to examine the available data sources and means to ingest the data.

Identifying data sources and ingesting data
With an understanding of the overall business goals for the project, and having identified our 

data consumers, we can start exploring the available data sources.

While most data sources will be internal to an organization, some projects may require enriching 

organization-owned data with other third-party data sources. Today, there are many data mar-

ketplaces where diverse datasets can be subscribed to or, in some cases, accessed for free. When 

discussing data sources, both internal and external datasets should be considered.

The team that has been included in the workshop should include people who understand the 

data sources required for the project. Some of the information that the data engineer needs to 

gather about these data sources includes the following:

• Details about the source system containing data (is the data in a database, in files on a 

server, existing files on Amazon S3, coming from a streaming source, and so on)?

• If this data is internal data, who is the owner of the source system within the business? 

Who is the owner of the data?

• What frequency does the data need to be ingested on (continuous streaming/replication, 

loading data every few hours, or loading data once a day)?

• Optionally, discuss some potential tools that could be used for data ingestion.

• What is the raw/ingested format of the data (CSV, JSON, a native database format, and 

so on)?

• Does the data source contain PII or other data types that are subject to governance con-

trols? If so, what controls need to be put in place to protect the data?

As information is discovered, it can be captured on the whiteboard, as illustrated in the following 

diagram:
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Figure 5.3: Whiteboarding data sources and data ingestion

During the whiteboarding process, additional notes should be captured to provide more context 

or detail about the requirements. These can be captured directly on the whiteboard or captured 

separately.

In this example, we have identified three different data sources – customer data from a MySQL 

database, opportunity information from Salesforce, and near-real-time sales metrics from the 

organization’s mobile application. We have also identified the following:

• The IT team that owns each source system and the business team that owns the data

• The velocity of ingesting the data (how often each data source needs to be ingested)

• Potential services that can be used to ingest the data

When discussing ingestion tools, it may be worthwhile to capture potential tools if you have a 

good idea of which tool may be suitable. However, the objective of this session is not to come up 

with a final architecture and decision on all technical components. 
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Additional sessions (as discussed later in this book) will be used to thoroughly evaluate potential 

toolsets against requirements and should be done in close consultation with source system owners.

During this whiteboarding session, we have worked backward, first identifying the data consum-

ers, and then the data sources we plan to use. At this point, we can move on to the next phase 

of whiteboarding, which is to examine some of the data transformations that we plan to use to 

optimize the data for analytics.

Identifying data transformations and optimizations
In a typical data analytics project, we ingest data from multiple data sources and then perform 

transforms on those datasets to optimize them for the required analytics.

In Chapter 7, Transforming Data to Optimize for Analytics, we will do a deeper dive into typical 

transformations and optimizations, but we will provide a high-level overview of the most com-

mon transformations here.

File format optimizations
CSV, XML, JSON, and other types of plaintext files are commonly used to store structured and 

semi-structured data. These file formats are useful when manually exploring data, but there are 

much better, binary-based file formats to use for computer-based analytics. A common binary 

format that is optimized for read-heavy analytics (such as by compressing data and adding in 

useful metadata to optimize data reads) is the Apache Parquet format. A common transformation 

is to convert plaintext files into an optimized format, such as Apache Parquet.

Data standardization
When building out a pipeline, we often load data from multiple different data sources, and each 

of those data sources may have different naming conventions that refer to the same item. For 

example, a field containing someone’s birth date may be called DOB, dateOfBirth, birth_date, and 

so on. The format of the birth date may also be stored as mm/dd/yy, dd/mm/yyyy, or in a multitude 

of other formats.

One of the tasks we may want to do when optimizing data for analytics is to standardize column 

names, types, and formats. By having a corporate-wide analytic program, standard definitions 

can be created and adopted across all analytic projects in an organization.
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Data quality checks
Another aspect of data transformation may be the process of verifying data quality and alerting 

on any ingested data that does not meet the expected quality standards.

Data partitioning
A common optimization strategy for analytics is to partition data, grouping it at the physical 

storage layer by a field that is often used in queries. For example, if data is often queried by a date 

range, then it can be partitioned by a date field. If storing sales data, for example, all the sales 

transactions for a specific month would be stored in the same Amazon S3 prefix (which is very 

much like a directory). When a query is run that selects all the data for a specific day, the analytic 

engine only needs to read the data in the directory that stores data for the relevant month.

Data denormalization
In traditional relational database systems, data is normalized, meaning that each table contains 

information on a specific focused topic, and associated, or related, information is contained in a 

separate table. The tables can then be linked through the use of foreign keys.

In data lakes, combining data from multiple tables into a single table can often improve query 

performance. Data denormalization takes two (or more) tables and creates a new table, with 

data from both tables.

Data cataloging
Another important component that we should include in the transformation section of our pipe-

line architecture is the process of cataloging the dataset. During this process, we ensure that all 

the datasets in the data lake are added to the technical data catalog, and additional business 

metadata can be added to the business data catalog. 

Now that we have an understanding of the common types of transformations, let’s look at how 

this is applied to our whiteboarding session. 

Whiteboarding data transformation
For the whiteboarding session, we do not need to determine all the details of the required trans-

formations, but it is useful to agree on the main transformations for the high-level pipeline design.
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Some of the information that the data engineer needs to gather about expected data transforma-

tions during the whiteboarding session includes the following:

• Is there an existing set of standardized column name definitions and formats that can be 

referenced? If not, who will be responsible for creating these standard definitions?

• What additional business metadata should be captured for datasets? For example, data 

owner, column descriptions, cost allocation tags, data sensitivity, and so on.

• What format should optimized files be stored in? Apache Parquet is a common format, 

but you need to validate that the tools used by the data consumers can work with files 

in Apache Parquet format.

• Is there an obvious field that data should be partitioned by?

• Are other required data transformations obvious at this point? For example, if you ingest 

data from a relational database, should the data be denormalized?

• What data transformation engines/skills does the team have? For example, does the team 

have experience creating Spark jobs using PySpark?

As information is discovered, it can be captured on the whiteboard, as illustrated in the following 

diagram:

Figure 5.4: Whiteboarding data transformation
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In this example, we create a data lake with three zones – the landing zone, the clean zone, and the 

curated zone (as previously discussed in Chapter 2, Data Management Architectures for Analytics):

• Raw files are ingested into the landing zone and will be in plaintext formats such as CSV 

and XML. When the files are ingested, information about the files is captured in the data 

catalog, along with additional business metadata (data owner, data sensitivity, and so on).

• We haven’t identified a specific data transformation engine at this point, but we did cap-

ture a note indicating that the team has previous experience in creating Spark ETL jobs 

using PySpark. This means that AWS Glue may be a good solution for data transformation, 

but we will do further validation of this at a later stage.

• As part of our pipeline, we will have a process to run data quality checks on the data in the 

landing zone. If the quality checks pass, we will standardize the data (uniform column 

names and data types) and convert the files into Apache Parquet format, writing out the 

new files in the clean zone. Again, we will add the newly written-out files to our data 

catalog, including relevant business metadata.

• Another piece of our pipeline will now perform additional transformations on the data, 

as per the specific use case requirements. For example, data from a relational database 

will be denormalized, and tables can be enriched with additional data. We will write 

out the transformed data to the curated zone, partitioning the files by date as they are 

written out. Again, we will add the newly written-out files to our data catalog, including 

the relevant business metadata.

It’s important to remember that the goal of this session is not to work out all the technical details 

but, rather, to create a high-level overview of the pipeline. In the preceding diagram, we did not 

specify that AWS Glue will be the transformation engine. We know that AWS Glue may be a good 

fit, but it’s not important to make that decision now.

We have indicated a potential partitioning strategy based on date, but this is also something 

that will need further validation. To determine the best partitioning strategy, you need a good 

understanding of the queries that will be run against the dataset. In this whiteboarding session, 

it is unlikely that there will be time to get into those details, but after the initial discussion, this 

appeared to be a good way to partition data, so we have included it.

Having determined transformations for our data, we will move on to the last step of the white-

boarding process, which is determining whether we will require any data marts.
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Loading data into data marts
Many tools can work directly with data in the data lake, as we covered in Chapter 3, The AWS Data 

Engineer’s Toolkit. These include tools for ad hoc SQL queries (Amazon Athena), data processing 

tools (such as Amazon EMR and AWS Glue), and even specialized machine learning tools (such 

as Amazon SageMaker).

These tools read data directly from Amazon S3, but there are times when a use case may require 

much lower latency and higher performance reads of the data. Alternatively, there may be times 

when the use of highly structured schemas may best meet the analytic requirements of the use 

case. In these cases, loading data from the data lake into a data mart makes sense.

In analytic environments, a data mart is most often a data warehouse system (such as Amazon 

Redshift or Snowflake), but it could also be a relational database system (such as Amazon RDS 

for MySQL), depending on the use case’s requirements. In either case, the system will have local 

storage (often high-speed flash drives) and local compute power, offering the best performance 

when you need to query across large datasets and specifically, when queries require joining across 

many tables.

As part of the whiteboarding session, you should spend some time discussing whether a data 

mart may be best suited to load a subset of data. For example, if you expect a large number of 

users to use your BI tool (for data visualizations), you may spend some time discussing which 

data will be used the most by these teams. You could then include a note in your whiteboarding 

session, about loading a subset of the data into a data warehouse system and connecting the data 

visualization tool to the data warehouse.

Wrapping up the whiteboarding session
After completing the whiteboarding session, you should have a high-level overview architecture 

that illustrates the main components of the pipeline that you plan to build. At this point, there 

will still be a lot of questions that have been left unanswered, and there will not be a lot of spe-

cific details. However, the high-level architecture should be enough to get broad agreement from 

stakeholders on the proposed plans for the project. It should have also provided you with enough 

information that you can start on a detailed design and set up follow-up sessions as required.
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Some of the information that you should have after the session includes the following:

• A good understanding of who the data consumers for this project will be

• For each category of data consumer, a good idea of what type of tools they would use to 

access the data (SQL, visualization tools, and so on)

• An understanding of the internal and external data sources that will be used

• For each data source, an understanding of the requirements for data ingestion frequency 

(daily, hourly, or near-real-time streaming, for example)

• For each data source, a list of who owns the data and the source system containing the data

• A high-level understanding of likely data transformations

• An understanding of whether loading a subset of data into a data warehouse or other 

data marts may be required

After the session, you should create a final high-level architecture diagram and include notes from 

the meeting. These notes should be distributed to all participants to request their approval and 

agreement on moving forward with the project, based on the draft architecture.

Once an agreement has been reached on the high-level approach, additional sessions will be 

needed with the different teams to capture additional details and fully examine the requirements.

The final high-level architecture diagram, based on the scenario we have looked at in this chapter, 

may look as follows:

Figure 5.5: High-level architecture whiteboard
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In addition to our high-level architecture diagram on the whiteboard, we will also capture asso-

ciated notes about the various architectural components during the discussion. The notes that 

were captured for the scenario we discussed in this chapter may look like this:

Figure 5.6: Notes associated with our whiteboarding

Now that you understand the theory of how to conduct a whiteboarding session, it’s time to get 

some practical hands-on experience. This next section provides details about a fictional white-

boarding session and allows you to practice your whiteboarding skills.

Hands-on – architecting a sample pipeline
For the hands-on portion of this chapter, you will review the detailed notes from a whiteboarding 

session held for the fictional company GP Widgets Inc. As you go through the notes, you should 

create a whiteboard architecture, either on an actual whiteboard or on a piece of poster board. 

Alternatively, you can create the whiteboard using a free online design tool, such as the one 

available at http://diagrams.net.

As a starting point for your whiteboarding session, you can use the following template. You can 

recreate this on your whiteboard or poster board, or you can access the diagrams.net/Draw.IO 

template for this via the GitHub site of this book at https://github.com/PacktPublishing/Data-
Engineering-with-AWS-2nd-edition/blob/main/Chapter05/Data-Engineering-Whiteboard-

Template.drawio. 

http://diagrams.net
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/blob/main/Chapter05/Data-Engineering-Whiteboard-Template.drawio
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/blob/main/Chapter05/Data-Engineering-Whiteboard-Template.drawio
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/blob/main/Chapter05/Data-Engineering-Whiteboard-Template.drawio
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Figure 5.7: Generic whiteboarding template

Note that the three zones included in the template (landing zone, clean zone, and curated zone) 

are commonly used for data lakes. However, some data lakes may only have two zones, while 

others may have four or more zones. The number of zones is not a hard-and-fast rule but, rather, 

is based on the requirements of the use case you are designing for.

As you go through the meeting notes, fill out the relevant sections of the template. In addition 

to drawing the components and flow for the pipeline, you should also capture notes relating 

to the whiteboard components, as per the example in Figure 5.6. At the end of this chapter, you 

can compare the whiteboard you have created with the one that the data engineer lead for GP 

Widgets has created.

By completing this exercise, you will gain hands-on experience in whiteboarding a data pipe-

line and learn how to identify the key points about data consumers, data sources, and required 

transformations.

Detailed notes from the project “Bright Light” 
whiteboarding meeting of GP Widgets, Inc
Here is a list of attendees participating in the meeting:

• Ronna Parish, VP of marketing

• Chris Taylor, VP of enterprise sales

• Terry Winship, data analytics team manager

• James Dadd, data science team manager

• Owen McClave, database team manager

• Natalie Rabinovich, web server team manager

• Shilpa Mehta, data engineer lead
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Meeting notes
Shilpa started the meeting by asking everyone to introduce themselves and then provided a 

summary of the meeting objectives:

• Plan out a high-level architecture for a new project to bring improved analytics to the 

marketing teams. During the discussion, Shilpa will whiteboard a high-level architecture.

• They reinforced that not all the technical details would be worked out in this meeting, but 

looking for agreement from all the stakeholders with a high-level approach and design 

is critical.

• It’s already agreed that the project will be built in the AWS cloud.

Shilpa asked Ronna (marketing manager) to provide an overview of the marketing team require-

ments for project Bright Light:

• Project Bright Light is intended to improve the visibility that the marketing team has into 

real-time customer behavior, as well as longer-term customer trends, through the use of 

data analytics.

• The marketing team wants to give marketing specialists real-time insights into inter-

actions on the company’s e-commerce website. Some examples of these visualizations 

include a heatmap to show website activity in different geographic locations, redemptions 

of coupons by product category, top ad campaign referrals, and spend by zip code in the 

previous period versus the current period.

• All visualizations should enable a user to select a custom period, filter on custom fields, and 

drill down from summary information to detailed information. Data should be refreshed 

on at least an hourly basis, but more often would be better.

The data analyst team supporting the marketing department will run more complex investiga-

tions of current and historical trends:

• Identify the top 10% of customers over the past x days by spend, and identify their top 

product categories for use in marketing promotions.

• Determine the average time a customer spends on the website, as well as the number of 

products they browse versus the number of products they purchase.

• Identify the top returned products over the past day/month/week.

• Compare the sales by zip code this month versus sales by zip code in the same month 1 

year ago, grouped by product category.
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• For each customer, keep a running total of the number of widgets purchased (grouped 

by category), the average spend per sale, the average spend per month, the number of 

coupons applied, and the total coupon value.

We have tasked our data science team with building a machine learning model that can predict 

a widget’s popularity based on the weather in a specific location:

• Research highlights how weather can impact e-commerce sales and the sales of specific 

products – for example, the types of widgets that customers are likely to buy on a sunny 

day compared to a cold and rainy day.

• The marketing team wants to target our advertising campaigns and optimize our ad 

spend and real-time marketing campaigns, based on the current and forecasted weather 

in a certain zip code.

• We regularly add new widgets to our catalog, so the model must be updated at least once 

a day, based on the latest weather and sales information.

• In addition to helping with marketing, the manufacturing and logistics teams have ex-

pressed interest in this model to help optimize logistics and inventory for different ware-

houses around the country, based on 7-day weather forecasts.

James Dadd (data science team manager) spoke about some of the requirements for his team:

• They would need ad hoc SQL access to weather, website clickstream logs, and sales 

data for at least the last year.

• They have determined that a provider on AWS Data Exchange offers historical and forecast 

weather information for all US zip codes. There is a subscription charge for this data, and 

the marketing team is working on allocating a budget for this. Data would be delivered 

daily via AWS Data Exchange in the CSV format.

• James indicated he had not had a chance to speak with the database and website admin 

teams about getting access to their data yet.

• The team currently uses SparkML for a lot of their machine learning projects, but they are 

interested in cloud-based tools that may help them speed up delivery and collaboration 

for their machine learning products. They also use SQL queries to explore datasets.
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Terry Winship (data analytics team manager) indicated that her team specializes in using SQL 

to gain complex insights from data:

• Based on her initial analysis, her team would need access to the customer, product, re-

turns, and sales databases, as well as clickstream data from the web server logs.

• Her team has experience in working with on-premises data warehouses and databases. 

She has been reading up about data lakes, and as long as the team can use SQL to query 

the data, they are open to using different technologies.

• She also has specialists on her team that can create visualizations for the marketing team 

to use. This team primarily has experience with using Tableau for visualizations, but the 

marketing team does not have licenses to use Tableau. There would be a learning curve 

if a different visualization tool were used, but they are open to exploring other options.

• Terry indicated that a daily update of data from the databases should be sufficient for 

what they need, but that they would need near-real-time streaming for the clickstream 

web server log files so that they could provide the most up-to-date reports and visual-

izations.

Shilpa asked Owen McClave (database team manager) to provide an overview of the database 

sources that the data science and data analytics teams would need:

• Owen indicated that all their databases run on-premises and run Microsoft SQL Server 

2016, Enterprise Edition.

• Owen said he doesn’t know much about AWS and has some concerns about providing 

administrative access for his databases to the cloud, since he does not believe the cloud is 

secure. However, he said that, ultimately, it is up to the data owners to approve whether 

the data can be copied to the cloud. If approved, he will work with the cloud team to 

enable data syncing in the cloud, so long as there is no negative impact on his databases.

• Chris Taylor (VP of sales) is the data owner of the databases that have been discussed 

today (customer, product, returns, and sales data).

Shilpa asked Chris Taylor (VP of sales) to provide input on the use of sales data for the project:

• Chris indicated that this analytics project has executive sponsorship from senior man-

agement and visibility by the board of directors.

• He indicated that sales data can be stored in the cloud, so long as the security team reviews 

and approves it.
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Shilpa indicated that AWS has a tool called Database Migration Service, which can be used to 

replicate data from a relational database, such as SQL Server 2016, to Amazon S3 cloud storage. 

She said she would set up a meeting with Owen to discuss the requirements for this tool in more 

detail at a later point, as there are also various other options.

Shilpa requested that Natalie Rabinovich (web server team manager) provide more information 

on the web server log files that will be important for this project:

• Natalie indicated that they currently run the e-commerce website on-premises on Linux 

servers running Apache HTTP Server.

• A load balancer is used to distribute traffic between four different web servers. Each 

server stores its clickstream web server logs locally.

• The log files are plaintext files in the Apache web log format.

• Shilpa indicated that AWS has an agent called the Kinesis Agent, which can be used to 

read the log files and stream their contents to the AWS cloud. She queried whether it 

would be possible to install this agent on the Apache web servers.

• Natalie indicated that it should be fine, but they would need more details and to test it in 

a development environment before installing it on the production servers.

• Shilpa asked who the data owner was. Natalie indicated that the marketing team owns 

the web server clickstream logs from a business perspective.

Shilpa led a discussion on the potential data transformations that may be required on the data 

that is ingested for this project:

• Based on the description from James, it appears that data should be made available daily 

in the CSV format and can be loaded directly into the raw zone of the data lake.

• Using a tool such as Amazon DMS, we can load data from the databases into the raw zone 

of the data lake in the Parquet format.

• The Kinesis Agent can convert the Apache HTTP Server log files into the JSON format, 

streaming them to Kinesis Firehose. Firehose can then perform basic validation of the log 

(using Lambda), convert it into the Parquet format, and write directly to the clean zone.

• Shilpa indicated that an initial transformation could perform basic data quality checks on 

incoming database data, add contextual information as new columns (such as ingestion 

time), and then write the file to the clean zone of the data lake.
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• Shilpa explained that partitioning datasets helps optimize both the performance and 

cost of queries. She indicated that partitions should be based on how data is queried and 

led a discussion on the topic. After some discussion, it was agreed that partitioning the 

database and weather by day (yyyyy/mm/dd) and web server logs by hour (yyyy/mm/

dd/hh) may be a good partitioning strategy, but this would be investigated further and 

confirmed in future discussions.

• A second transformation could then be run against the data in the clean zone, performing 

tasks such as denormalizing the relational datasets, joining tables to optimized tables, 

enriching data with weather data, or performing any other required business logic. This 

optimized data would be written to the curated zone of the data lake. AWS Glue or Am-

azon EMR could potentially be used to perform these transformations.

• As each dataset is loaded, and then the transformed data is written out to the next zone, 

the data will be added to the Glue Data Catalog. Once data has been added to the data 

catalog, authorized users will be able to query the data using SQL queries, enabled by a 

tool such as Amazon Athena. Additional metadata could be added at this point, including 

items such as data owner, source system, data sensitivity level, and so on.

• Shilpa indicated that she will arrange future meetings with the various teams to discuss 

the business metadata that must be added.

• Shilpa wrapped up the meeting with a brief overview of the whiteboard, and she com-

mitted to providing a copy of the whiteboard architecture and notes to all attendees 

for further review and comment. She also indicated that she would schedule additional 

meetings with smaller groups of people to dive deep into specific aspects of the proposed 

architecture, providing additional validation.

Shilpa used a whiteboard in the meeting room to sketch out a rough architecture, and then after 

the meeting, she created the following diagram to show the architecture:
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Figure 5.8: Completed whiteboard architecture for project Bright Light

Shilpa also added some notes to go with the whiteboard, sending out both the whiteboard ar-

chitecture and the notes to the meeting attendees:

Figure 5.9: Completed whiteboard notes for project Bright Light
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Compare the whiteboard you created to the whiteboard created by Shilpa, and note the differ-

ences. Are there things that Shilpa missed on her whiteboard or notes? Are there things that you 

missed on your whiteboard or notes?

The exercises in this chapter allowed you to get hands-on with data architecting and whiteboard-

ing. We will wrap up this chapter by providing a summary, and then do a deeper dive into the 

topics of data ingestion, transformation, and data consumption in the next few chapters.

Summary
In this chapter, we reviewed an approach to developing data engineering pipelines by identifying 

a limited-scope project, and then whiteboarding a high-level architecture diagram. We looked 

at how we could have a workshop, in conjunction with relevant stakeholders in an organization, 

to discuss requirements and plan the initial architecture.

We approached this task by working backward. We started by identifying who the data consumers 

of the project would be and learning about their requirements. Then, we looked at which data 

sources could be used to provide the required data and how those data sources could be ingested. 

We then reviewed, at a high level, some of the data transformations that would be required for 

the project to optimize the data for analytics.

In the next chapter, we will take a deeper dive into AWS services to ingest batch and streaming 

data, learning more about how to select the best tool for our data engineering pipeline.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd


6
Ingesting Batch and Streaming 
Data

Having developed a high-level architecture for our data pipeline, we can now dive deep into the 

varied components of the architecture. We will start with data ingestion so that in the hands-on 

section of this chapter, we can ingest data and use that data for the hands-on activities in future 

chapters.

Data engineers are often faced with the challenge of the five Vs of data. These are the variety of data 

(the diverse types and formats of data); the volume of data (the size of the dataset); the velocity 

of the data (how quickly the data is generated and needs to be ingested); the veracity or validity 

of the data (the quality, completeness, and credibility of the data); and finally, the value of data 

(the value that the data can provide the business with).

In this chapter, we will look at several different types of data sources and examine the various tools 

available within AWS for ingesting data from these sources. We will also look at how to decide 

between multiple different ingestion tools to ensure you are using the right tool for the job. In 

the hands-on portion of this chapter, we will ingest data from both streaming and batch sources.

In this chapter, we will cover the following topics:

• Understanding data sources

• Ingesting data from database sources

• Ingesting data from streaming sources

• Hands-on – ingesting data from a database source

• Hands-on – ingesting data from a streaming source
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Technical requirements
In the hands-on sections of this chapter, we will use the AWS Database Migration Service (DMS) 

service to ingest data from a database source, and then we will ingest streaming data using Am-

azon Kinesis. To ingest data from a database, you need IAM permissions that allow your user to 

create an RDS database, an EC2 instance, a DMS instance, and a new IAM role and policy.

For the hands-on section on ingesting streaming data, you will need IAM permissions to create 

a Kinesis Data Firehose instance, as well as permissions to deploy a CloudFormation template. 

The CloudFormation template that is deployed will create IAM roles, a Lambda function, as well 

as Amazon Cognito users and other Cognito resources.

To query the newly ingested data, you will need permission to create an AWS Glue Crawler and 

permission to use Amazon Athena to query data.

You can find the code files of this chapter in the GitHub repository at the following link: https://
github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/

Chapter06.

Understanding data sources
Over the past decade, the amount and the variety of data that gets generated each year has sig-

nificantly increased. Today, industry analysts talk about the volume of global data generated in 

a year in terms of zettabytes (ZB), a unit of measurement equal to a billion terabytes (TB). By 

some estimates, a little over 1 ZB of data existed in the world in 2012, and yet by the end of 2025, 

there will be an estimated 181 ZB of data created, captured, copied, and consumed worldwide.  

In our pipeline whiteboarding session (covered in Chapter 5, Architecting Data Engineering Pipe-

lines), we identified several data sources that we wanted to ingest and transform to best enable 

our data consumers. For each data source that is identified in a whiteboarding session, you need 

to develop an understanding of the variety, volume, velocity, veracity, and value of data; we’ll 

move on to cover those now.

Data variety
In the past decade, the variety of data used in data analytics projects has greatly increased. If all 

data was simply relational data in a database (and there was a time when nearly all data was like 

this), it would be relatively easy to transfer into data analytic solutions. But today, organizations 

find value, and often a competitive advantage, in being able to analyze many other types of data 

(web server log files, photos, videos, and other media, geolocation data, sensor data, other IoT 

data, and so on).

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter06
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter06
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter06
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For each data source in a pipeline, data engineers need to determine what type of data will be 

ingested. Data is typically categorized as being of one of three types, as we examine in the fol-

lowing subsections.

Structured data
Structured data is data that has been organized according to a data model, and is represented 

as a series of rows and columns. Each row represents a record, with the columns making up the 

fields of each record.

Each column in a structured data file contains data of a specific type (such as strings or numbers), 

and every row has the same number and type of columns. The definition of which columns are 

contained in each record, and the data type for each column, is known as the data schema.

Common data sources that contain structured data include the following:

• Relational Database Management Systems (RDBMSes) such as MySQL, PostgreSQL, 

SQL Server, and Oracle

• Delimited files such as Comma-Separated Value (CSV) files or Tab-Separated Value 

(TSV) files

• Spreadsheets such as Microsoft Excel files in xls format

The data shown in the following table is an example of structured data. In this case, it is data 

on the calorie content of several foods from the USA MyPyramid Food Raw Data, available at 

https://catalog.data.gov/dataset/mypyramid-food-raw-data. This data extract has been 

sorted to show some of the foods with the highest calorie content in the dataset:

Figure 6.1: An example of structured data

https://catalog.data.gov/dataset/mypyramid-food-raw-data
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Structured data can be easily ingested into analytic systems, including Amazon S3-based data 

lakes, and data marts such as an Amazon Redshift data warehouse.

Semi-structured data
Semi-structured data shares many of the same attributes as structured data, but the structure, or 

schema, does not need to be strictly defined. Generally, semi-structured data contains internal 

tags that identify data elements, but each record may contain different elements or fields.

Some of the data types in the unstructured data may be of a strong type, such as an integer value, 

while other elements may contain items such as free-form text. Common semi-structured formats 

include JSON and XML file formats.

The data that follows is part of a semi-structured JSON formatted file for product inventory. In 

this example, we can see that we have two items – a set of batteries and a pair of jeans:

[{

          "sku": 10001,

          "name": "Duracell – Copper Top AA Alkaline Batteries - long 
lasting, all-purpose 16 Count",

          "price": 12.78,

          "category": [{

           "id": "5443",

               "name": "Home Goods"

          }

           ],

          "manufacturer": "Duracell",

          "model": "MN2400B4Z"

     },

     {

          "sku": 10002,

          "name": "Levi's Men's 505 Jeans Fit Pants",

          "type": "Clothing",

          "price": 39.99,

          "fit_type": [{

                    "id": 855,

                    "description": "Regular"

               },

               {

                    "id": 902,
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                    "description": "Big and Tall"

               }

          ],

          "size": [{

                    "id": 101,

                     "waist": 32,

                    "length": 32

               },

               {

                    "id": 102,

                    "waist": 30,

                    "length": 32

               }

          ],

          "category": [{

               "id": 3821,

               "name": "Jeans"

          }, {

               "id": 6298,

               "name": "Men's Fashion"

          }],

          "manufacturer": "Levi",

          "model": "00505-4891"

     }

]

While most of the fields are common between the two items, we can see that the pair of jeans 

includes attributes for fit_type and size, which are not relevant to batteries. You will also notice 

that the first item (the batteries) only belongs to a single category, while the jeans are listed in 

two categories (Jeans and Men's Fashion).

Capturing the same information in a structured data type, such as CSV, would be much more 

complex. CSV is not well suited to a scenario where different records have a different number of 

categories, for example, or where some records have additional attributes (such as fit_type or 

size). JSON is structured in a hierarchical format (where data can be nested, such as for category, 

fit_type, and size) and this provides significant flexibility.
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Storing data in a semi-structured format, such as JSON, is commonly used for a variety of different 

use cases, such as working with IoT data, as well as for web and mobile applications.

Unstructured data
As a category, unstructured data covers many different types of data where the data does not 

have a predefined structure or schema. This can range from free-form data (such as text data in 

a PDF or word processing file or emails) to media files (such as photos, videos, satellite images, 

or audio files).

Some unstructured data can be analyzed directly, although generally not very efficiently unless 

using specialized tools. For example, it is generally not efficient to search large quantities of free-

form text in a traditional database, although there are specialized tools that can be used for this 

purpose (such as Amazon OpenSearch Service).

However, some types of unstructured data cannot be directly analyzed with data analytic tools 

at all. For example, data analytic tools are unable to directly analyze image or video files. This 

does not mean that we cannot use these types of files in our analytic projects, but to make them 

useful for analytics, we need to process them further to extract useful metadata from the files. 

A large percentage of the data that’s generated today is considered unstructured data, and in the 

past few years, a lot of effort has been put into being able to make better use of this type of data. 

For example, we can use image recognition tools to extract metadata from an image or video file 

that can then be used in analytics. Or, we can use natural language processing tools to analyze 

free-form text reviews on a website to determine customer sentiment for different products.

Refer to Chapter 13, Enabling Artificial Intelligence and Machine Learning, for an example of how 

Amazon Comprehend can be used to extract sentiment analysis from product reviews.

Data volume
The next attribute of data that we need to understand for each of our data sources relates to the 

volume of data. For this, we need to understand both the total size of the existing data that needs 

to be ingested, as well as the daily/monthly/yearly growth of data.

For example, we may want to ingest data from a database that includes a one-time ingestion of 10 

years of historical data totaling 2.2 TB in size. We may also find that data from this source generates 

around 30 GB of new data per month (or an average of 1 GB per day of new data). Depending on 

the network connection between the source system and the AWS target system, it may be possible 

to transfer the historical data over the network, but if we have limited bandwidth, we may want 

to consider using one of the devices in the Amazon Snow family of devices. 
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For example, we could load data onto an Amazon Snowball device that is shipped to our data 

center, and then send the device back to AWS, where AWS will load the data into S3 for us.

Understanding the volume of historical and future data also assists us in doing the initial sizing 

of AWS services for our use case, and helps us budget better for the associated costs.

Data velocity
Data velocity describes the speed at which we expect to ingest and process new data from the 

source system into our target system.

For ingestion, some data may be loaded according to a batch schedule once a day, or a few times 

a day (such as receiving data from a partner on a scheduled basis). Meanwhile, other data may 

be streamed from the source to the target continually (such as when ingesting IoT data from 

thousands of sensors).

As an example, according to a case study on the AWS website, the BMW Group uses AWS services 

to ingest data from millions of BMW and MINI vehicles, processing TB of anonymous telemetry 

data every day. To read more about this, refer to the AWS case study titled BMW Group Uses AWS-

Based Data Lake to Unlock the Power of Data (https://aws.amazon.com/solutions/case-studies/

bmw-group-case-study/).

We need to have a good understanding of both how quickly our source data is generated (on a 

schedule or via real-time streaming data), as well as how quickly we need to process the incoming 

data (does the business only need insights from the data 24 hours after it is ingested, or is the 

business looking to gather insights in near real time?).

The velocity of data affects both how we ingest the data (such as through a streaming service 

such as Amazon Kinesis), as well as how we process the data (such as whether we run scheduled 

daily Glue jobs, or use Glue Streaming to continually process incoming data).

Data veracity
Data veracity considers various aspects of the data we’re ingesting, such as the quality, complete-

ness, and accuracy of the data.

As we discussed previously, the data we ingest may have come from a variety of sources, and 

depending on how the data was generated, the data may be incomplete or inconsistent. For ex-

ample, data from IoT sensors where the sensor went offline for a while may be missing a period 

of data, or data captured from user forms or spreadsheets may contain errors or missing values.

https://aws.amazon.com/solutions/case-studies/bmw-group-case-study/
https://aws.amazon.com/solutions/case-studies/bmw-group-case-study/
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We need to be aware of the veracity of the data we ingest so that we can ensure we take these 

items into account when processing the data. For example, some tools can help backfill missing 

data with averages, while others can help detect and remediate fields that contain invalid data.

Data value
Ultimately, all the data ingested and processed has been for a single purpose – finding ways to 

provide new insights and value to the business. While this is the last of the five Vs that we will 

discuss, it is the most important one to keep in mind when thinking of the bigger picture of what 

we are doing with data ingestion and processing.

We could ingest TB of data and clean and process the data in multiple ways, but if the end data 

product hasn’t brought value to the business, then we have wasted both time and money.

When considering the data we are ingesting, we need to ensure we keep the big picture in mind. 

We need to make sure that it is worth ingesting this data and also understand how this data may 

add value to the business, either now or in the future.

Questions to ask
In Chapter 5, Architecting Data Engineering Pipelines, we held a workshop during which we iden-

tified some likely data sources needed for our data analytics project, but now, we need to dive 

deeper to gather additional information.

We need to identify who owns each data source that we plan to ingest, and then do a deep dive 

with the data source owner and ask questions such as the following:

• What is the format of the data (relational database, NoSQL database, semi-structured 

data such as JSON or XML, unstructured data, and so on)?

• How much historical data is available?

• What is the total size of the historical data?

• How much new data is generated on a daily/weekly/monthly basis?

• Does the data currently get streamed somewhere, and if so, can we tap into the stream 

of data?

• How frequently is the data updated (constantly, such as with a database or streaming 

source, or on a scheduled basis, such as at the end of the day or when receiving a daily 

update from a partner)?

• How will this data source be used to add value to the business, either now or in the future?
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Learning more about the data will help you determine the best service to use to ingest the data, 

and help with the initial sizing of services and estimating a budget.

Now that we have reviewed how to take an inventory of the data sources you want to use, let’s 

move on to examining specific ingestion types, starting with ingestion from relational databases. 

Ingesting data from a relational database
A common source of data for analytical projects is data that comes from a relational database 

system such as MySQL, PostgreSQL, SQL Server, or an Oracle database. Organizations often have 

multiple siloed databases, and they want to bring the data from these varied databases into a 

central location for analytics.

It is common for these projects to include ingesting historical data that already exists in the da-

tabase, as well as syncing ongoing new and changed data from the database. There are a variety 

of tools that can be used to ingest from database sources, as we will discuss in this section.

AWS DMS
The primary AWS service for ingesting data from a database is AWS DMS, though there are other 

ways to ingest data from a database source. As a data engineer, you need to evaluate both the 

source and the target to determine which ingestion tool will be best suited.

AWS DMS is intended for doing either one-off ingestion of historical data from a database or rep-

licating change data (often referred to as Change Data Capture (CDC)) from a relational database 

on an ongoing basis. When using AWS DMS, the target is either a different database engine (such 

as an Oracle-to-PostgreSQL migration), or an Amazon S3-based data lake. In this section, we will 

focus on ingesting data from a relational database to an Amazon S3-based data lake.

We introduced the AWS DMS service in Chapter 3, The AWS Data Engineer’s Toolkit, so make sure 

you have read the Overview of Amazon Database Migration Service (DMS) section in that chapter 

to get a good understanding of how the service works.

While AWS DMS was originally a managed service only (meaning that DMS provisioned one or 

more EC2 servers as replication instances), AWS announced an AWS DMS serverless option in 

June 2023. When using the AWS DMS serverless option, DMS automatically sets up, scales, and 

manages the underlying compute resources, helping to simplify the database migration process.
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AWS Glue
AWS Glue, a Spark processing engine that we introduced in Chapter 3, The AWS Data Engineer’s 

Toolkit, can make connections to several data sources. This includes connections to JDBC sources, 

and custom connectors available on the AWS Glue Marketplace, enabling Glue to connect to many 

different database engines, and through those connections transfer data for further processing.

AWS Glue is well suited to certain use cases related to ingesting data from databases. Let’s take 

a look at some of them.

Full one-off loads from one or more tables
AWS Glue can be configured to make a connection to a database and download data from tables. 

Glue effectively does a select * from the table, reading the table contents into the memory of 

the Spark cluster. At that point, you can use Spark to write out the data to Amazon S3, optionally 

in an optimized format such as Apache Parquet.

Initial full loads from a table, and subsequent loads of new 
records
AWS Glue has a concept called job bookmarks, which enables Glue to keep track of which data 

was previously processed, and then on subsequent runs only process new data. Glue does this 

by having you identify a column (or multiple columns) in the table that will serve as a bookmark 

key. The values in this bookmark key must always increase in value, although gaps are allowed.

For example, if you have an audit table that has a transaction_ID column that sequentially in-

creases for each new transaction, then this would be a good fit for ingesting data with AWS Glue 

while using the bookmark functionality.

The first time the job runs, it will load all records from the table and store the highest value for 

the transaction_ID column in the bookmark. For illustration purposes, let’s assume the highest 

value on the initial load was 944,872. The next time the job runs, it effectively does a select * 

from audit_table where transaction_id > 944872.

Note that this process is unable to detect updated or deleted rows in the table, so it is not well 

suited to all use cases. An audit table, or similar types of tables where data is always added to the 

table but existing rows are never updated or deleted, is the optimal use case for this functionality. 
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Creating AWS Glue jobs with AWS Lake Formation
AWS Lake Formation includes several blueprints to assist in automating some common inges-

tion tasks. One of these ingestion blueprints allows you to use AWS Glue to ingest data from a 

database source. With a few clicks in the Lake Formation console, you can configure your ingest 

requirements (one-off versus scheduled, full table load or incremental load with bookmarks, and 

so on). Once configured, Lake Formation creates the Glue job for ingesting from the database 

source, the Glue Crawlers for adding newly ingested data into the Glue Data Catalog, and Glue 

workflows for orchestrating the different components.

Other ways to ingest data from a database
There are several other approaches to ingesting data from a database to an Amazon S3-based 

data lake, which we will cover briefly in this section.

Amazon EMR provides a simple way to deploy several common Hadoop framework tools, and 

some of these tools are useful for ingesting data from a database. For example, you can run Apache 

Spark on Amazon EMR and use a JDBC driver to connect to a relational database to load data into 

the data lake (in a similar way to our discussion about using AWS Glue to connect to a database). 

If you are running MariaDB, MySQL, or PostgreSQL on Amazon Relational Database Service 

(RDS), you can use RDS functionality to export a database snapshot to Amazon S3. This is a fully 

managed process that writes out all tables from the snapshot to Amazon S3 in Apache Parquet 

format. This is the simplest way to move data into Amazon S3 if you are using one of the supported 

database engines on RDS, and you want all tables exported to S3 on a scheduled basis. For more 

information, see the documentation at https://docs.aws.amazon.com/AmazonRDS/latest/

UserGuide/USER_ExportSnapshot.html.

There are also several third-party commercial tools, many containing advanced features that 

can be used to move data from a relational database to Amazon S3 (although these often come 

at a premium price). This includes tools such as Qlik Replicate (previously known as Attunity), a 

well-known tool for moving data between a wide variety of sources and targets (including rela-

tional databases, data warehouses, streaming sources, enterprise applications, cloud providers, 

and legacy platforms such as DB2).

You may also find that your database engine contains tools for directly exporting data in a flat 

format that can then be transferred to Amazon S3. Some database engines also have more ad-

vanced tools, such as Oracle GoldenGate, a solution that can generate CDC data as a Kafka stream. 

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ExportSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ExportSnapshot.html
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Note, however, that these tools are often licensed separately and can add significant additional 

expense. For an example of using Oracle GoldenGate to generate CDC data that has been loaded 

into an S3 data lake, search for the AWS blog post titled Extract Oracle OLTP data in real time with 

GoldenGate and query from Amazon Athena, or find it here: https://aws.amazon.com/blogs/big-
data/extract-oracle-oltp-data-in-real-time-with-goldengate-and-query-from-amazon-

athena/.

Deciding on the best approach to ingesting from a database
While all these tools can be used in one way or another to ingest data from a database, there are 

several points to consider when deciding on the best approach for your specific use case.

The size of the database
If the total size of the database tables you want to load is large (many tens of GB or larger), then 

doing a full nightly load would not be a good approach. The full load could take a significant 

amount of time to run and puts a heavy load on the source system while running. In this scenario, 

a better approach is to do an initial load from the database and then constantly sync updates 

from the source using CDC, such as by using AWS DMS. 

For very large databases, you can use AWS DMS with an Amazon Snowball device to load data 

to the Snowball device in your data center. Once the data has been loaded, you return the de-

vice to AWS, and it will load it to Amazon S3. AWS DMS will capture all CDC changes while the 

Snowball device is being transferred back to AWS so that once the data is loaded, you can create 

an ETL job to apply changes to the full data load. This initial load via Snowball may take a week 

or longer due to the physical transport of the device back to AWS, plus the application of a week 

or more of CDC data. However, once the initial load and application of CDC data are complete, 

CDC changes can continue to be applied in near real time. 

A reminder about CDC

We introduced the concept of CDC in Chapter 3, The AWS Data Engineer’s Toolkit, but 

it is an important concept, so here is a reminder. When rows in a relational database 

are deleted or updated, there is no practical way to capture those changes using stan-

dard database query tools (such as SQL). But when replicating data from a database 

to a new source, it is important to be able to identify those changes so that they can 

be applied to the target. This process of identifying and capturing these changes 

(new inserts, updates, and deletes) from the database log files is referred to as CDC.

https://aws.amazon.com/blogs/big-data/extract-oracle-oltp-data-in-real-time-with-goldengate-and-query-from-amazon-athena/
https://aws.amazon.com/blogs/big-data/extract-oracle-oltp-data-in-real-time-with-goldengate-and-query-from-amazon-athena/
https://aws.amazon.com/blogs/big-data/extract-oracle-oltp-data-in-real-time-with-goldengate-and-query-from-amazon-athena/
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For smaller databases, you can consider using RDS’ snapshot export functionality, AWS Glue, or 

native database tools to load the entire database to Amazon S3 on a scheduled basis. This will 

often be the simplest and most cost-effective method, but it is not right for every use case, being 

best suited to smaller databases (low tens of GB or smaller) and where having a daily update, 

rather than near-real-time updates, meets requirements. 

Database load
If you have a database with a consistent production load at all times, you will want to minimize 

the additional load you place on the server to sync to the data lake. In this scenario, you can use 

DMS to do an initial full load, ideally from a read replica of your database if it’s supported as a 

source by DMS. For ongoing replication, DMS can use database log files to identify CDC changes, 

and this places a lower load on database resources.

Whenever you do a full load from a database (whether you’re using AWS DMS, AWS Glue, or an-

other solution), there will be a heavier load on the database as a full read of all tables is required. 

You need to consider this load and, where possible, use a read replica of your database for the full 

load. If using Amazon RDS, see the following documentation for details on how to configure a read 

replica: https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html. 

If a smaller database is running on Amazon RDS, the best solution would be to use the export-to-

S3-from-snapshot functionality of RDS if it’s supported for your database engine. This solution 

places no load on your source database; however, as it loads from a snapshot of the database, it 

cannot be used for real-time data replication, but rather only for scheduled exports. 

Data ingestion frequency
Some analytic use cases are well suited to analyzing data that is ingested on a fixed schedule (such 

as every night). However, some use cases will want to have access to new data as fast as possible.

If your use case requires access to data coming from a database source as soon as possible, then 

using a service such as AWS DMS to ingest CDC data is the best approach. However, remember 

that CDC data just indicates what data has changed (new rows having been inserted and existing 

rows updated or deleted), so you still require a process to apply those changes to the existing data 

to enable querying for the most up-to-date state.

If your use case allows for regularly scheduled updates, such as nightly, you can do a scheduled 

full load (if the database’s size and performance impacts allow), or you can have a nightly process 

to apply the CDC data that was collected during the day to the previous snapshot of data.

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
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In Chapter 7, Transforming Data to Optimize for Analytics, we will review several approaches for 

applying CDC data to an existing dataset.

Technical requirements and compatibility
When evaluating different approaches to and tools for ingesting data from a database source, it 

is very important to involve the database owner and admin team upfront to technically evaluate 

the proposed solution.

A data engineering team may decide on a specific toolset upfront, based on its requirements and 

its broad understanding of compatibility with the source systems. However, at the time of imple-

mentation, it may discover that the source database team objects to certain security or technical 

requirements of the solution, and this can lead to significant project delays.

For example, AWS DMS supports CDC for several MySQL versions. However, DMS does require 

that binary logging is enabled on the source system with specific configuration settings for CDC 

to work.

Another example is that AWS DMS does not support server-level audits when SQL Server 

2008/2008 R2 is used as a source. Certain commands related to enabling this functionality will 

cause DMS to fail.

It is critical to get the buy-in of the database owner and admin team before finalizing a solution. 

All of these requirements and limitations are covered in the AWS DMS documentation (and other 

solutions or products should have similar documentation covering their requirements). Reviewing 

these requirements, in detail, with the database admin team upfront is critical to the success of 

the project.

In the next section, we will take a similar look at tools for and approaches to ingesting data from 

streaming sources.

Ingesting streaming data
An increasingly common source of data for analytic projects is data that is continually generated 

and needs to be ingested in near real time. Some common sources of this type of data are as follows:

• Data from IoT devices (such as smartwatches, smart appliances, and so on)

• Telemetry data from various types of vehicles (cars, airplanes, and so on)

• Sensor data (from manufacturing machines, weather stations, and so on)

• Live gameplay data from mobile games

• Mentions of the company brand on various social media platforms
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For example, Boeing, the aircraft manufacturer, has a system called Airplane Health Management 

(AHM) that collects in-flight airplane data and relays it in real time to Boeing systems. Boeing 

processes the information and makes it immediately available to airline maintenance staff via 

a web portal.

In this section, we will look at several tools and services for ingesting streaming data, as well as 

things to consider when planning for streaming ingestion.

Amazon Kinesis versus Amazon Managed Streaming for 
Kafka (MSK)
The two primary services for ingesting streaming data within AWS are Amazon Kinesis and Amazon 

MSK. Both of these services were described in Chapter 3, The AWS Engineer’s Toolkit, so ensure 

you have read those sections before proceeding.

In summary, both Amazon Kinesis and Amazon MSK are services from AWS that offer the ability 

to write streaming data to storage, and then have data consumers connect to that storage to read 

the messages. This is commonly used as a way to decouple applications producing streaming 

data from applications that are consuming data. Both services can scale up to handle millions 

of messages per second.

In this section, we will examine some of the primary differences between the two services and 

look at some of the factors that contribute to deciding which service is right for your use case.

Serverless services versus managed services
Amazon Kinesis Data Streams is available in two capacity modes – either provisioned or on-demand. 

With provisioned mode, you need to configure the number of shards (the base throughput unit of 

a Kinesis data stream) that is provisioned for the stream, while in on-demand mode, the number 

of shards is automatically allocated and managed by Kinesis. 

In both modes, AWS manages the underlying compute resources for you. Therefore, with Kine-

sis, you never have to select EC2 instance sizes or EBS storage or deal with any of the underly-

ing resources. You either select to provision and manage the number of shards for the Kinesis 

stream on your own (with provisioned mode) or you select to have AWS manage that for you 

with on-demand mode. 

With Amazon Kinesis Data Firehose, much like Amazon Kinesis Data Streams in on-demand mode, 

the compute automatically scales up and down in response to message throughput changes 

without requiring any configuration.
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In a similar way, Amazon MSK is also available in both a provisioned and a serverless mode. With 

provisioned mode, AWS manages the infrastructure for you, but you still need to be aware of and 

make decisions about the underlying compute infrastructure and software. For example, you 

need to select from a list of EC2 instance types to power your MSK cluster, configure VPC network 

settings, configure storage size and options, select the version of Apache Kafka to deploy, and 

fine-tune a range of Kafka configuration settings. 

With Amazon MSK Serverless, the deployment is simpler as you do not need to make decisions 

about the EC2 instance size, storage, and version, but you also have less control over the Kafka 

cluster options. 

If you have a team with existing skills in using Apache Kafka, and you need to fine-tune the perfor-

mance of the stream, then you may want to consider MSK provisioned mode. If you’re just getting 

started with streaming and your use case does not have a requirement to fine-tune performance, 

then Amazon Kinesis or Amazon MSK serverless mode may be a better option.

Open-source flexibility versus proprietary software with strong 
AWS integration
Amazon MSK is a managed version of Apache Kafka, a popular open-source solution. Amazon 

Kinesis is proprietary software created by AWS, although there are some limited open-source 

elements, such as Kinesis Agent.

With Apache Kafka, there is a large community of contributors to the software, and a large eco-

system providing a diverse range of connectors and integrations. Kafka provides out-of-the-box 

integration with hundreds of event sources and event sinks (including AWS services such as 

Amazon S3, but also many other popular products, such as PostgreSQL, Elasticsearch, and others).

With Amazon Kinesis, AWS provides strong integration with several AWS services, such as Am-

azon S3, Amazon Redshift, and Amazon OpenSearch Service. Kinesis also provides integration 

with a number of external services such as Splunk, DataDog, MongoDB, Sumo Logic, New Relic, 

and others through Amazon Kinesis Data Firehose.

When deciding between the two services, ensure that you consider the types of integrations your 

use case requires and how that matches with the out-of-the-box functionality of either Kinesis 

or MSK.



Chapter 6 185

At-least-once messaging versus exactly once messaging
When working with streaming technologies, some use cases have specific requirements around 

how many times messages may be processed by data consumers. Amazon Kinesis and Apache 

Kafka (and therefore Amazon MSK) provide different guarantees around message processing.

Amazon Kinesis provides an at-least-once message processing guarantee. This effectively guar-

antees that every message generated by a producer will be delivered to a consumer for process-

ing. However, in certain scenarios, a message may be delivered more than once to a consuming 

application, introducing the possibility of data duplication.

With Apache Kafka (and therefore Amazon MSK), as of version 0.11, the ability to configure your 

streams for exactly-once message processing was introduced. When you configure your Apache 

Kafka stream, you can configure the processing.guarantee=exactly_once setting to enable this.

With Amazon Kinesis, you need to build the logic for anticipating and appropriately handling 

how individual records are processed multiple times in your application. AWS provides guidance 

on this in the Kinesis documentation, in the Handling Duplicate Records section.

If your use case calls for a guarantee that all messages will be delivered to the processing applica-

tion exactly once, then you should consider Amazon MSK. Amazon Kinesis is still an option, but 

you will need to ensure your application handles the possibility of receiving duplicate records.

A single processing engine versus niche tools
Apache Kafka is most closely compared to Amazon Kinesis Data Streams as both provide a powerful 

way to consume streaming messages. While both can be used to process a variety of data types, 

Amazon Kinesis does include several distinct sub-services for specialized use cases.

For example, if your use case involves ingesting streaming audio or video data, then Amazon 

Kinesis Video Streams is custom-designed to simplify this type of processing. Or, if you have a 

simple use case of wanting to write out ingested streaming data to targets such as Amazon S3, 

Amazon OpenSearch Service, or Amazon Redshift (as well as some third-party services), then 

Amazon Kinesis Data Firehose makes this task simple.

Deciding on a streaming ingestion tool
There are several factors to consider when deciding on which AWS service to use for process-

ing your streaming data, as we covered in this section. Both Amazon Kinesis and Amazon MSK 

Serverless require minimal upfront configuration and ongoing maintenance, while Amazon MSK 

in provisioned mode provides the ability to fine-tune your cluster performance and options. 
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Amazon Kinesis has a subset of services for special use cases, so you should evaluate your use case 

against the various Kinesis services and see if one of these will meet your current and expected 

future requirements. If your use case has specific requirements, such as exactly once message de-

livery, the ability to fine-tune the performance of the stream, or needs integration with third-party 

products not directly available in Kinesis, then consider Amazon MSK. Finally, you should also 

compare the pricing for each service based on your requirements. 

In the next few sections, you will get hands-on with ingesting data from a database using AWS 

DMS and then ingesting streaming data using Amazon Kinesis.

Hands-on – ingesting data with AWS DMS
As we discussed earlier in this chapter, AWS DMS can be used to replicate a database into an Am-

azon S3-based data lake (among other uses). Follow the steps in this section to do the following:

1. Deploy a CloudFormation template that configures a MySQL RDS instance and then de-

ploys an EC2 instance to load a demo database into MySQL.

2. Set up a DMS replication instance and configure endpoints and tasks.

3. Run the DMS instance in full-load mode.

4. Run a Glue Crawler to add the tables that were newly loaded into S3 into the AWS Glue 

Data Catalog.

5. Query the data with Amazon Athena.

6. Delete the CloudFormation template in order to remove the resources that have been 

deployed.

Deploying MySQL and an EC2 data loader via 
CloudFormation
AWS CloudFormation is a service that enables you to deploy infrastructure as code. Using Cloud-

Formation templates provides the ability to deploy AWS services using either JSON- or YAML-for-

matted templates. This enables you to treat your infrastructure as code, meaning you can store 

the templates in a version control system (to manage changes to templates and integrate code 

reviews), and easily deploy infrastructure reliably and repeatably via CI/CD pipelines.

NOTE

The following steps assume the use of your AWS account’s default VPC and security 

group. You will need to modify the steps as needed if you’re not using the default.
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To get started, download the CloudFormation template from this book’s GitHub site at https://
github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/blob/main/

Chapter06/mysql-ec2loader.cfn.

Save the file locally to your computer by right-clicking on Raw and then selecting Save Link As 

in your browser window. 

Figure 6.2: Download the CloudFormation template from GitHub

In the following steps, we are going to deploy a CloudFormation template that will do the following:

1. Request that the user provides a password (DBPassword) that will be set as the admin 

password for the MySQL instance.

2. Set a parameter (LatestAmiId) that provides a path to an AWS Secrets Manager entry that 

contains the Amazon Machine Image (AMI) ID for deploying an instance with Amazon 

Linux 2023 within which the region the user is working.

3. Create an Amazon RDS MySQL instance (MySQLInstance) with 20 GB of allocated storage, 

using the db.t3.micro instance type. Set the admin password for the instance to the value 

entered by the user as captured in the DBPassword parameter. 

4. Create an Amazon EC2 instance (EC2Instance) of type t3.micro, provide user data that 

will run commands when the instance is launched to download a MySQL demo database, 

and write the database schema and data to the MySQL instance. Include the DependsOn 

option to indicate that the MySQLInstance resource must be created prior to this resource 

being created (this is to ensure that the MySQL instance is ready to receive the data that 

will be written via the EC2 instance we launch here).

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/blob/main/Chapter06/mysql-ec2loader.cfn
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/blob/main/Chapter06/mysql-ec2loader.cfn
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/blob/main/Chapter06/mysql-ec2loader.cfn
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Use the following steps to deploy the CloudFormation template:

1. Log in to the AWS Management Console (https://console.aws.amazon.com) and ensure 

that you are in the region that you have used for all the hands-on activities in this book. 

2. In the top search bar, search for and select CloudFormation to access the CloudFormation 

console.

3. Click on Create stack, With new resources (standard).

4. Under the Specify template section, select Upload a template file, click on Choose file, 

and select the mysql-ec2loader.cfn file you downloaded from GitHub. 

5. Click on Next.

6. For Stack name, provide a name (such as dataeng-aws-chapter6-mysql-ec2).

7. In the Parameters section, provide a DBPassword that will be used as the password for 

your MySQL admin user. 

8. Leave the LatestAmiId field with the default string, and then click Next.

9. Leave all other defaults and click Next.

10. Leave all defaults, and click on Submit.

CloudFormation will now take a few minutes to deploy your MySQL RDS instance and the EC2 

instance that will download the demo database (called SakilaDB), and then load the demo da-

tabase to the MySQL instance that was just created. 

Once the deployment is finished, the stack status will change to CREATE_COMPLETE, as shown 

in the following screenshot.

Figure 6.3: CloudFormation stack successfully created

https://console.aws.amazon.com
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You can continue with the next step to create an IAM policy and role for DMS to use while the 

deployment is still running. But you must ensure the deployment completes successfully before 

configuring DMS. 

Creating an IAM policy and role for DMS
In this section, we will create an IAM policy and role that will allow DMS to write to our target 

S3 bucket:

1. In the AWS Management Console, search for and select IAM using the top search bar.

2. In the left-hand menu, click on Policies and then click Create policy.

3. By default, the Visual editor is selected, so change to text entry by clicking on the JSON tab.

4. Replace the boilerplate code in the text box with the following policy definition (which 

can also be copied from this book’s GitHub site). Make sure you replace <initials> in the 

bucket name with the correct landing zone bucket name you created in Chapter 2, Data 

Management Architectures for Analytics:

{

    "Version": "2012-10-17",

    "Statement": [

        {

            "Effect": "Allow",

            "Action": [

                "s3:*"

            ],

            "Resource": [

                "arn:aws:s3:::dataeng-landing-zone-<initials>",

                "arn:aws:s3:::dataeng-landing-zone-<initials>/*"

            ]

        }

    ]

}

This policy grants permissions for all S3 operations (get, put, and so on) for the dataeng-

landing-zone-<initials> bucket. This will give DMS the permissions needed to write 

out CSV files in the landing zone bucket with the data from our MySQL database. 

5. Click Next.
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6. Provide a descriptive policy name, such as DataEngDMSLandingS3BucketPolicy, and click 

Create policy:

Figure 6.4: Creating an IAM policy to grant S3 permissions

7. In the left-hand menu, click on Roles and then click Create role.

8. For Trusted entity type, make sure AWS service is selected.

9. For Use case, search for and select DMS, make sure to click the selector for the DMS ser-

vice, and then click Next.
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Figure 6.5: Creating a new role for the DMS service to use

10. Search for and select the policy you created in step 6 (such as DataEngDMSLandingS3Buck

etPolicy), and then click Next.

11. Provide a descriptive Role name, such as DataEngDMSLandingS3BucketRole, and click 

Create role.

12. Click on the newly created role and copy and paste the role Amazon Resource Name (ARN) 

property somewhere where you can easily access it; it will be required in the next section.

Figure 6.6: Capturing the ARN of the newly created role
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Now that we have created the required IAM permissions, we will create a DMS replication in-

stance, as well as other required DMS resources (such as source and target endpoints, as well as 

a database migration task).

Configuring DMS settings and performing a full load from 
MySQL to S3
In this section, we will create a DMS replication instance (a managed EC2 instance that connects 

to the source endpoint, retrieves data, and writes to the target endpoint), and also configure the 

source and target endpoints. We will then create a database migration task that provides the 

configuration settings for the migration. Make sure that your CloudFormation template has 

been deployed completely before continuing with this section� 

In the following steps, you will configure DMS and start the full-load job:

1. In the AWS Management Console, search for DMS using the top search bar and click on 

Database Migration Service. 

2. In the left-hand menu, click on Replication Instances.

3. At the top of the page, click on Creation replication instance.

4. Provide a Name for the replication instance; for example, mysql-s3-replication.

5. For Instance class, select dms.t3.micro.

6. For High Availability, select Dev or test workload (Single-AZ).

7. For Allocated storage, enter 10 (the database we are replicating is very small, so 10 GB 

is enough space).

8. In the VPC dropdown, select the default VPC.

9. Leave everything else as the defaults and click Create replication instance. Note that it 

may take a few minutes for the replication instance to be created and ready. 

10. In the left-hand menu, click on Endpoints.

11. At the top right, click on Create endpoint.
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12. For Endpoint type, select Source endpoint and then click the box for Select RDS DB 

Instance.

13. For RDS Instance, use the drop-down list to select the MySQL database that was created 

by the CloudFormation template deployment.

14. Under Endpoint configuration, for Access to endpoint database, select Provide access 

information manually.

15. For Password, provide the password that you set for the database when deploying the 

CloudFormation template (step 7 in the Deploying the CloudFormation template step)

16. Leave all other defaults and then click Create endpoint at the bottom right.

17. Now that we have created the source endpoint, we can create the target endpoint by 

clicking on Create endpoint at the top right.

18. For Endpoint type, select Target endpoint.

19. For Endpoint identifier, type in a name for the endpoint, such as s3-landing-zone-

sakila-csv.

20. For Target engine, select Amazon S3 from the drop-down list.

21. For Amazon Resource Name (ARN) for service access role, enter the ARN for the IAM 

role you recorded in step 12 of the previous section.

22. For Bucket name, provide the name of the landing zone bucket you created in Chapter 

2, Data Management Architectures for Analytics (for example, dataeng-landing-zone-

<initials>).

23. For Bucket folder, enter sakila-db.
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24. Expand the endpoint settings and click on Add new setting. Select AddColumnName from 

the settings list, and for the value, type True.

Figure 6.7: AWS DMS S3 target endpoint

25. Click Create Endpoint.

26. On the left-hand side, click Database migration tasks, and then click Create task.

27. For Task identifier, provide a descriptive name for the task, such as dataeng-mysql-s3-

sakila-task.
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28. For Replication instance, select the instance you created in step 4 of the previous section, 

such as mysql-s3-replication.

29. For Source database endpoint, select the source endpoint that links to your MySQL in-

stance.

30. For Target database endpoint, select the S3 target endpoint you created previously.

31. For Migration type, select Migrate existing data from the dropdown. This does a one-

time migration from the source to the target.

32. Leave the defaults for Task settings as they are.

33. For Table mappings, under Selection rules, click on Add new selection rule�

34. For Schema, select Enter a schema. For Source name, enter %sakila%, and for Source 

Table name, leave it set as %.

35. Leave the defaults for Selection rules and all other sections as they are and click Create 

task.

36. Once the task has been created, the full load will be automatically initiated and the data 

will be loaded from your MySQL instance to Amazon S3. Click on the task identifier and 

review the Table statistics tab to monitor your progress.

Our previously configured S3 event for all CSV files written to the landing zone bucket will be 

triggered for each file that DMS loads. This will run the Lambda function we created in Chapter 

3, which will create a new Parquet version of each file in the CLEAN ZONE bucket. This will also 

register each table in the AWS Glue Data Catalog.

Querying data with Amazon Athena
The Lambda function that was run for each CSV file created by DMS also registers each new Par-

quet file as part of a table in the AWS Glue database.

We can now query the newly ingested data using the Amazon Athena service. 

1. First, we need to create a new Amazon S3 folder to store the results of our Athena queries. 

In the AWS Management Console, search for and select S3 using the top search bar.

2. Click on Create bucket, and for Bucket name, enter athena-query-results-<INITIALS>. 

Replace <INITIALS> in the bucket name with a unique identifier, such as the one you have 

used with other buckets in previous chapters. 

3. Make sure the AWS Region is set to the Region you have used for the previous hands-on 

exercises. Leave all other defaults and click on Create bucket.

4. In the AWS Management Console, search for and select Athena using the top search bar.
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5. Within the Athena console, click on the Settings tab.

6. Click on Manage in the Settings tab, and for Location of query result, provide the path 

of the bucket we just created (such as s3://athena-query-results-gse23), and then 

click Save.

7. Return to the Editor tab, and then in the Database dropdown on the left-hand side, select 

sakila from the drop-down list.

8. In the New query window, run the following query: select * from film limit 20;.

9. This query returns the results of the first 20 fictional films in the Sakila database.

10. If your query runs successfully and returns 20 results, that confirms that your DMS task 

was completed successfully. Since the infrastructure we deployed does have a low cost 

per hour while it is running, we can save costs by deleting the DMS replication instance 

and the resources deployed by the CloudFormation template. Open up the DMS service 

console, and on the left-hand side, click on Database migration tasks. We need to delete 

the task before we can delete the associated replication instance, so select the task, and 

from the Actions menu, click Delete, and then confirm the deletion in the pop-up box.

11. Once the replication task has been deleted, on the left-hand side, click on Replication 

instances. Select the replication instance you created earlier, and then from the Actions 

menu, select Delete. Confirm that you want to delete the replication instance by clicking 

on Delete in the pop-up box.

12. Open up the CloudFormation service console, and click on Stacks in the left-hand menu. 

13. Select the stack that you deployed earlier, and then click on Delete. Confirm the deletion 

by clicking on Delete stack in the popup. 

Congratulations! You have successfully replicated a MySQL database into your S3-based data 

lake. To learn more about ingesting data from MySQL to Amazon S3, see the following AWS 

documentation:

• Using Amazon S3 as a target for AWS Database Migration Service (https://docs.aws.

amazon.com/dms/latest/userguide/CHAP_Target.S3.html)

• Using a MySQL-compatible database as a source for AWS DMS (https://docs.aws.

amazon.com/dms/latest/userguide/CHAP_Source.MySQL.html)

Now that we have got hands-on with ingesting batch data from a database into our Amazon S3 

data lake, let’s look at one of the ways to ingest streaming data into our data lake.

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.S3.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.S3.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.MySQL.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.MySQL.html


Chapter 6 197

Hands-on – ingesting streaming data
Earlier in this chapter, we looked at two options for ingesting streaming data into AWS, namely 

Amazon Kinesis and Amazon MSK. AWS provides an open-source solution for streaming sample 

data to Amazon Kinesis; therefore, in this section, we will use the Amazon Kinesis service to ingest 

streaming data. To generate streaming data, we will use the AWS open-source Amazon Kinesis 

Data Generator (KDG). 

In this section, we will perform the following tasks:

1. Configure Amazon Kinesis Data Firehose to ingest streaming data, and write the data 

out to Amazon S3.

2. Configure Amazon KDG to create mock streaming data.

To get started, let’s configure a new Kinesis Data Firehose instance to ingest streaming data and 

write it out to our Amazon S3 data lake.

Configuring Kinesis Data Firehose for streaming delivery to 
Amazon S3
Kinesis Data Firehose is designed to enable you to easily ingest data from streaming sources, 

and then write that data out to a supported target (such as Amazon S3, which we will do in this 

exercise). Let’s get started:

1. In the AWS Management Console, search for and select Kinesis using the top search bar.

2. The Kinesis landing page provides links to create new streams using the Kinesis features of 

Kinesis Data Streams, Kinesis Data Firehose, or Kinesis Data Analytics. Select the Kinesis 

Data Firehose service, and then click on Create delivery stream.

3. In this exercise, we are going to use KDG to send data directly to Firehose, so for Source, 

select Direct PUT from the drop-down list. For Destination, select Amazon S3 from the 

drop-down list.

4. For Delivery stream name, enter a descriptive name, such as dataeng-firehose-

streaming-s3.
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5. For the optional section of Transform and convert records, leave both options unchecked� 

Transform source records with AWS Lambda functionality can be used to run data val-

idation tasks or perform light processing on incoming data with AWS Lambda, but we 

want to ingest the data without any processing, so we will leave this disabled. Convert 

record format can be used to convert incoming data into Apache Parquet or Apache ORC 

format. However, to do this, we would need to specify the schema of the incoming data 

upfront. We are going to ingest our data without changing the file format, so we will 

leave this disabled.

6. For S3 bucket, select the landing zone bucket you created previously; for example, s3://

dataeng-landing-zone-<initials>.

7. For Dynamic Partitioning, leave this option set to Not enabled. 

8. By default, Kinesis Data Firehose writes the data to S3 with a prefix to split incoming data 

by YYYY/MM/dd/HH. For our dataset, we want to load streaming data into a streaming 

prefix, and we only want to split data by the year and month that it was ingested. There-

fore, we must set S3 bucket prefix to streaming/!{timestamp:yyyy/MM/}. For more 

information on custom prefixes, see https://docs.aws.amazon.com/firehose/latest/

dev/s3-prefixes.html.

9. If we set a custom prefix for incoming data, we must also set a custom error prefix. Set S3 

bucket error output prefix to !{firehose:error-output-type}/!{timestamp:yyyy/

MM/}.

10. Expand the Buffer hints, compression and encryption section.

11. The S3 buffer conditions allow us to control the parameters for how long Kinesis buffers 

incoming data before writing it out to our target. We specify both a buffer size (in MB) 

and a buffer interval (in seconds), and whichever is reached first will trigger Kinesis to 

write to the target. If we used the maximum buffer size of 128 MB and a maximum buffer 

interval of 900 seconds (15 minutes), we would see the following behavior. If we receive 1 

MB of data per second, Kinesis Data Firehose will trigger after approximately 128 seconds 

(when 128 MB of data has been buffered). On the other hand, if we receive 0.1 MB of data 

per second, Kinesis Data Firehose will trigger after the 900-second maximum buffer in-

terval. For our use case, we will set Buffer size to 1 MB and Buffer interval to 60 seconds.

12. For all the other settings, leave the default settings as they are and click on Create deliv-

ery stream.

Our Kinesis Data Firehose stream is now ready to receive data. So, in the next section, we will 

generate some data to send to the stream using the KDG tool.

https://docs.aws.amazon.com/firehose/latest/dev/s3-prefixes.html
https://docs.aws.amazon.com/firehose/latest/dev/s3-prefixes.html
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Configuring Amazon Kinesis Data Generator (KDG)
Amazon KDG is an open-source tool from AWS that can be used to generate customized data 

streams and can send that data to Kinesis Data Streams or Kinesis Data Firehose.

The Sakila database we previously loaded was for a company that produced classic movies and 

rented those out of its DVD stores. The DVD rental stores went out of business years ago, but the 

owners have now made their classic movies available for purchase and rental through various 

streaming platforms.

The company receives information about its classic movies being streamed from its distribution 

partners in real time, in a standard format. Using KDG, we will simulate the streaming data that’s 

received from partners, including the following:

• The streaming timestamp

• Whether the customer rented, purchased, or watched the trailer

• film_id that matches the Sakila film database

• The distribution partner’s name

• The streaming platform

• The state that the movie was streamed in

KDG is a collection of HTML and JavaScript files that run directly in your browser and can be ac-

cessed as a static site in GitHub. To use KDG, you need to create an Amazon Cognito user in your 

AWS account, and then use that user to log in to KDG on the GitHub account.

AWS has created an Amazon CloudFormation template that you can deploy in your AWS account 

to create the required Amazon Cognito user. This CloudFormation template creates an AWS 

Lambda function in your account to perform the required setup.

Follow these steps to deploy the CloudFormation template, create the required Cognito user, and 

configure KDG:

1. Open the KDG help page in your browser by going to https://awslabs.github.io/

amazon-kinesis-data-generator/web/help.html.

2. Read the information about how the CloudFormation template works to create Cognito 

credentials in your account. When you’re ready, click on the Create a Cognito User with 

CloudFormation button.

https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html
https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html
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3. The AWS Management Console will open to the CloudFormation Create Stack page. 

IMPORTANT: When opening the link, the Region may default to Oregon (us-west-2-), 

therefore, change Region in the console to the Region you are using for the exercises in 

this book, then accept the CloudFormation defaults, and click Next.

4. On the Specify stack details page, provide a Username and Password for your Cognito 

user and click Next.

5. For Configure stack options, leave all the default settings as they are and click Next.

6. Review the details of the stack to be created, and then click the box to acknowledge that 

AWS CloudFormation may create IAM resources. Then, click Submit. 

Refresh the web page and monitor it until the stack’s status is CREATE_COMPLETE.

7. Once the stack has been successfully deployed, go to the Outputs tab and take note of the 

KinesisDataGeneratorUrl value. Click on the link and open a new tab.

8. Use the username and password you set as parameters for the CloudFormation template 

to log in to the Amazon KDG portal.

9. Set Region to the same Region in which you created the Kinesis Data Firehose delivery 

stream. If you need a mapping of Region IDs to region names, refer to the following doc-

umentation: https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.

RegionsAndAvailabilityZones.html.

10. For Stream/delivery stream, from the dropdown, select the Kinesis Data Firehose stream 

you created in the previous section.

11. For Records per second, set this as a constant of 10 records per second. Leave Compress 

records unchecked. 

12. For the record template, we want to generate records that simulate what we receive from 

our distribution partners. Paste the following into the Template 1 section of KDG (this can 

also be copied and pasted from the GitHub site for this chapter at https://github.com/

PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter06):

{

    "timestamp":"{{date.now}}",

    "eventType":"{{random.weightedArrayElement(

      {

        "weights": [0.3,0.1,0.6],

        "data": ["rent","buy","trailer"]

      }

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter06
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter06
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        )}}",

    "film_id":{{random.number(

        {

            "min":1,

            "max":1000

        }

    )}},

   "distributor":"{{random.arrayElement(

        ["amazon prime", "google play", "apple itunes", "vudo", 
"fandango now", "microsoft", "youtube"]

    )}}",

    "platform":"{{random.arrayElement(

        ["ios", "android", "xbox", "playstation", "smart tv", 
"other"]

    )}}",

    "state":"{{address.state}}"

}    

13. Click Send data to start sending streaming data to your Kinesis Data Firehose delivery 

stream. Because of the configuration that we specified for our Firehose stream, the data 

we are sending is going to be buffered for 60 seconds, and then a batch of data is written 

to our landing zone S3 bucket. This will continue for as long as we leave KDG running.

14. Allow KDG to send data for at least 5-10 minutes (3,000-6,000 records), and then click 

on Stop Sending Data to Kinesis. The longer this process runs, the more data you will 

have when querying this dataset in later chapters. If you want a larger dataset, consider 

leaving this process to run for 30-60 minutes before stopping sending data to Kinesis. 

We can now use a Glue crawler to create a table in our AWS Glue Data Catalog for the newly 

ingested streaming data.

By leaving KDG running for at least 5-10 minutes, it will have created enough data 

for us to use in later chapters, where we will join this data with data we migrated 

from our MySQL database. This is enough data to run the subsequent exercises, 

but you can leave KDG running for longer if you want a larger dataset to work with. 

However, this will cause your ETL jobs to run for longer, queries will take longer, etc. 
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Adding newly ingested data to the Glue Data Catalog
In this section, we will run a Glue crawler to examine the newly ingested data, infer the schema, 

and automatically add the data to the Glue Data Catalog. Once we do this, we can query the newly 

ingested data using services such as Amazon Athena. Let’s get started:

1. In the AWS Management Console, search for and select Glue using the top search bar.

2. In the left-hand menu, click on Crawlers (under Data Catalog). 

3. Click on Create crawler.

4. Enter a descriptive name for Name, such as dataeng-streaming-crawler, and click Next. 

5. For Data source configuration, under Data sources, click on Add a data source�

6. Make sure Data source is set to S3, and for Location of S3 data, set the S3 path to your 

dataeng-landing-zone-<initials> bucket, and add a suffix of streaming. For exam-

ple, s3://dataeng-landing-zone-<initials>/streaming/, but make sure to replace 

<initials> with the unique identifier you used, and make sure to include the ending 

slash after the suffix.

7. Leave all other settings as default, and then click on Add an S3 data source. 

8. Click on Next. 

9. For Configure security settings, click on Create new IAM role. Provide a suffix for the 

IAM role name, such as AWSGlueServiceRole-streaming-crawler, and then click Create. 

10. Click Next.

11. For Output configuration, click on Add database. In the new tab that opens, provide a 

descriptive database name, such as streaming_db, and then click Create database. 

12. Go back to your browser tab with the Glue console, and click the refresh icon to the right 

of Target database. From the dropdown, you should then be able to select the newly 

created streaming_db database. Leave the other settings as default (such as keeping the 

schedule as On demand), and then click Next. 

13. Review the settings on the Review and create page, and then click Create crawler.

14. Select your new crawler from the list and click Run.

When the crawler finishes running, it should have created a new table for the newly ingested 

streaming data. 
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Querying the data with Amazon Athena
Now that we have ingested our new streaming data, and added the data to the AWS Glue Data 

Catalog using the AWS Glue crawler, we can query the data using Amazon Athena:

1. In the AWS Management Console, search for and select Athena using the top search bar.

2. On the left-hand side, from the Database drop-down list, select the database you created 

in the previous step (such as streaming_db).

3. In the query window, type in select * from streaming limit 20.

The result of the query should show 20 records from the newly ingested streaming data, matching 

the pattern that we specified for KDG. Note how the Glue Crawler automatically added the two 

fields that we configured as our partitions (year and month). 

Summary
In this chapter, we reviewed several ways to ingest common data types into AWS. We reviewed 

how AWS DMS and AWS Glue can be used to ingest data from a relational database to S3, and 

how Amazon Kinesis and Amazon MSK can be used to ingest streaming data.

In the hands-on section of this chapter, we used both the AWS DMS and Amazon Kinesis services 

to ingest data and then used AWS Glue to add the newly ingested data to the AWS Glue Data 

Catalog and query the data with Amazon Athena.

In the next chapter, Chapter 7, Transforming Data to Optimize for Analytics, we will review how we 

can transform the ingested data to optimize it for analytics, a core task for data engineers.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd




7
Transforming Data to Optimize 
for Analytics

In previous chapters, we covered how to architect a data pipeline and common ways of ingesting 

data into a data lake. We now turn to the process of transforming raw data in order to optimize 

the data for analytics, enabling an organization to efficiently gain new insights into their data. 

Transforming data to optimize for analytics and create value for an organization is one of the 

key tasks for a data engineer, and there are many different types of transformations. Some trans-

formations are common and can be generically applied to a dataset, such as converting raw files 

to Parquet format and partitioning the dataset. Other transformations use business logic in the 

transformations and vary based on the contents of the data and the specific business requirements.

In this chapter, we review some of the engines that are available in AWS for performing data 

transformations and also discuss some of the more common data transformations. However, 

this book focuses on the broad range of tasks that a data engineer is likely to work on, so it is not 

intended as a deep dive into Apache Spark, nor is it intended as a guide to writing PySpark or 

Scala code. Even so, there are many other great books and online resources focused purely on 

teaching Apache Spark, and you are encouraged to investigate these, as knowing how to code 

and optimize Apache Spark is a common requirement for data engineers.

The topics we cover in this chapter include the following:

• Overview of how transformations can create value

• Types of data transformation tools

• Common data preparation transformations
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• Common business use case transformations

• Working with change data capture (CDC) data

• Hands-on: Building transformations with AWS Glue Studio and Apache Spark

Technical requirements
For the hands-on tasks in this chapter, you need access to the AWS Glue service, including AWS 

Glue Studio. You also need to be able to create a new S3 bucket and new IAM policies.

You can find the code files of this chapter in the GitHub repository using the following link: 
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/

main/Chapter07

Overview of how transformations can create value
As we have discussed in various places throughout this book, data can be one of the most valuable 

assets that an organization owns. However, raw, siloed data has limited value on its own, and 

we unlock the real value of an organization’s data when we combine various raw datasets and 

transform that data through an analytics pipeline.

Cooking, baking, and data transformations
Look at the following list of food items and consider whether you enjoy eating them:

• Sugar

• Butter

• Eggs

• Milk

For many people, these are pretty standard food items, and some (like the eggs and milk) may 

be consumed on their own, while others (like the sugar and the butter) are generally consumed 

with something else, such as adding sugar to your coffee or tea or spreading butter on bread.

But, if you take those items and add a few more (like flour and baking powder) and combine all 

the items in just the right way, you could bake yourself a delicious cake, which would not resem-

ble the raw ingredients at all. In the same way, our individual datasets have value on their own 

to the part of the organization that they come from, but if we combine these datasets in just the 

right way, we can create something totally new and different.

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter07
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter07
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Now, if you happen to be having a party to celebrate something, your guests will appreciate the 

cake far more than they would appreciate just having the raw ingredients laid out! But if your 

goal was to provide breakfast for your friends, you may instead choose to fry the eggs, make some 

toast and spread the butter on the toast, and offer the milk and sugar to your guests for them to 

add to their coffee.

In both cases, you’re using some common raw ingredients, then adding some additional items, 

and finally using different utilities to prepare the food (an oven for the cake and a stovetop for the 

fried eggs). How you combine the raw ingredients, and what you combine them with, depends 

on whether you’re inviting friends over for breakfast, or whether you’re throwing a party and 

want to celebrate with a cake.

In the same way, data engineers can use the same raw datasets, combine them with additional 

datasets, process them with different analytics engines, and create totally new and different 

datasets. How they combine the datasets, and which analytics engine they use, depends on what 

they’re trying to create, which, of course, ultimately depends on what the business purpose is.

For example, your marketing team may want to combine a dataset that lists sales of each product, 

for each day over the past year, with weather data for the past year (min and max temperature, 

and whether it rained or not). This would enable them to analyze which products sell best on hot 

days, cold days, and rainy days, so that they can tailor their marketing campaigns around this. 

Another example is having the marketing team aggregate their campaign data by region, and 

combine this with sales data aggregated by region and by product category, to measure the ef-

fectiveness of their marketing campaigns in different regions and across different product lines. 

This enables the team to optimize their marketing campaigns based on past performance. 

Transformations as part of a pipeline
In Chapter 5, Architecting Data Engineering Pipelines, we developed a high-level design for our data 

pipeline. We first looked at how we could work with various business users to understand what 

their requirements were (to keep our analogy going, whether they wanted a cake or breakfast). 

After that, we looked at three broad areas on which we gathered initial information, namely the 

following:

1. Data consumers: Who was going to be consuming the data we created and what tools 

would they use for data gathering (our guests)?

2. Data sources: Which data sources did we have access to that we could use to create our 

new dataset (our raw ingredients)?
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3. Data transformations: We reviewed, at a high level, the types of transformations that 

may be required in our pipeline in order to prepare and join our datasets (the recipe for 

making a cake or for fried eggs).

We now need to develop a low-level design for our pipeline transformations, which will include 

determining the types of transformations we need to perform, as well as which data transfor-

mation tools we will use. In the next section, we begin by looking at the types of transformation 

engines that are available.

Types of data transformation tools
As we covered in Chapter 3, The AWS Data Engineer’s Toolkit, there are a number of AWS services 

that can be used for data transformation. We reviewed a number of these services in that chapter, 

so make sure to review it again, but in this section, we will look more broadly at the different 

types of data transformation engines.

Apache Spark
Apache Spark is an in-memory engine for working with large datasets, providing a mechanism 

to split a dataset among multiple nodes in a cluster for efficient processing. Spark is an extremely 

popular engine to use for processing and transforming big datasets, and there are multiple ways 

to run Spark jobs within AWS.

With Apache Spark, you can either process data in batches (such as on a daily basis or every few 

hours) or process near real-time streaming data using Spark Streaming. In addition, you can 

use Spark SQL to process data using standard SQL, and Spark ML for applying machine learning 

techniques to your data. With Spark GraphX, you can work with highly interconnected points of 

data to analyze complex relationships, such as for social networking applications.

Within AWS, you can run Spark jobs using multiple AWS services. AWS Glue provides a serverless 

way to run Spark, and Amazon EMR provides both a managed service for deploying a cluster for 

running Spark as well as a serverless option. In addition, you can use AWS container services (ECS 

or EKS) to run a Spark engine in a containerized environment or use a managed service from an 

AWS partner, such as Databricks.

Hadoop and MapReduce
Apache Hadoop is a framework consisting of multiple open-source software packages for working 

with large datasets and can scale from running on a single server to running on thousands of nodes. 
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Before Apache Spark, tools within the Hadoop framework – such as Hive and MapReduce – were 

the most popular way to transform and process large datasets.

Apache Hive provides a SQL-type interface for working with large datasets, while MapReduce 

provides a code-based approach to processing large datasets. Hadoop MapReduce is used in a 

similar way to Apache Spark, with the biggest difference being that Apache Spark does all pro-

cessing in memory. Hadoop MapReduce on the other hand, makes extensive use of traditional 

disk-based reads and writes to interim storage during processing.

For use cases with massive datasets that cannot be economically processed in memory, Hadoop 

MapReduce may be better suited. However, for most use cases, Apache Spark provides significant 

performance benefits, as well as the ability to handle streaming data, access to machine learning 

libraries, and an API for graph computation with GraphX. While Apache Spark has become the 

leading big data processing solution in recent years, there are many legacy Hadoop systems still 

being used to process data on a daily basis. 

There are also components of Hadoop that are still commonly used for Spark processing. The 

Apache Hive metadata store (Data Catalog) is used by Spark to map databases and tables to phys-

ical files in storage. For example, the AWS Glue catalog (which we have discussed previously) is 

an Apache Hive-compatible metastore. 

Within AWS, you can run a number of Hadoop tools using the managed Amazon EMR service. 

Amazon EMR simplifies the process of deploying Hadoop-based infrastructure and supports 

multiple Hadoop tools, including Hive, HBase, Yarn, Tez, Pig, and many others.

SQL
Structured Query Language (SQL) is another common method used for data transformation. 

The advantage of SQL is that SQL knowledge and experience are widely available, making it an 

accessible form of performing transformations for many organizations. However, a code-based 

approach to transformations (such as using Apache Spark) can be a more powerful and versatile 

way of performing transformations.

When deciding on a transformation engine, a data engineer needs to understand the skill sets 

available in the organization, as well as the toolsets and ultimate target for the data. If you are 

operating in an environment that has a heavy focus on SQL, with SQL skill sets being widely 

available and Spark and other skill sets being limited, then using SQL for transformation may 

make sense (although GUI-based tools can also be considered).
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However, if you are operating in an environment that has complex data processing requirements, 

and where latency and throughput requirements are high, it may be worthwhile to invest in 

skilling up to use modern data processing approaches, such as Spark.

While we mostly focus on data lakes as the target for our data in this book, there are times where 

the target for our data transformations may be a data warehousing system, such as Amazon 

Redshift or Snowflake. In these cases, an Extract, Load, Transform (ELT) approach may be used, 

where raw data is loaded into the data warehouse (the extract and load portion of ELT), and then 

the transformation of data is performed within the data warehouse using SQL.

Alternatively, toolsets such as Apache Spark may be used with SQL, through Spark SQL. This 

provides a way to use SQL for transformations while using a modern data processing engine to 

perform the transformations, rather than using a data warehouse. This allows the data warehouse 

to be focused on responding to end-user queries, while data transformation jobs are offloaded 

to an Apache Spark cluster. In this scenario, we use an ETL approach, where data is extracted to 

intermediatory storage, Apache Spark is used to transform the data, and data is then loaded into 

a different zone of the data lake, or into a data warehouse.

Tools such as AWS Glue Studio provide a visual interface that can be used to design ETL jobs, 

including jobs that use SQL statements to perform complex transformations. This helps users 

who do not have Spark coding skills to run SQL-based transforms using the power of the Apache 

Spark engine.

GUI-based tools
Another popular method of performing data transformation is through the use of GUI-based 

tools that significantly simplify the process of creating transformation jobs. There are a number 

of cloud and commercial products that are designed to provide a drag-and-drop-type approach 

to creating complex transformation pipelines, and these are widely used.

These tools may not provide the versatility and performance that you can get from designing 

transformations with code, but they do make the design of ETL-type transformations accessible 

to those without advanced coding skills. Some of these tools can also be used to automatically 

generate transformation code (such as Apache Spark code), providing a good starting point for 

a user to further develop the code, reducing ETL job development time.

Within AWS, the Glue DataBrew service is designed as a visual data preparation tool, enabling 

you to easily apply transformations to a set of files. With Glue DataBrew, a user can select from 

a library of over 250 common transformations and apply relevant transformations to incoming 

raw files. 
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With this service, a user can clean and normalize data to prepare it for analytics or machine learn-

ing model development through an easy-to-use visual designer, without needing to write any code.

Another AWS service that provides a visual approach to ETL design is AWS Glue Studio, a service 

that provides a visual interface for developing Apache Spark transformations. This can be used 

by people who do not have any current experience with Spark and can also be used by those who 

do know Spark, as a starting point for developing their own custom transforms. With AWS Glue 

Studio, you can create complex ETL jobs that join and transform multiple datasets, and then 

review the generated code and further refine it if you have the appropriate coding skills.

Outside of AWS, there are also many commercial products that provide a visual approach to ETL 

design. Popular products include tools from Informatica, Matillion, Stitch, Talend, Panoply, 

Fivetran, and many others.

As we have covered in this section, there are multiple approaches and engines that can be used 

for performing data transformation. However, whichever engine or interface is used, there are 

certain data transformations that are commonly used to prepare and optimize raw datasets, and 

we’ll look at some of these in the next section.

Common data preparation transformations
The first set of transformations that we look at are those that help prepare the data for further 

transformations later in the pipeline. These transformations are designed to apply relatively 

generic optimizations to individual datasets that we are ingesting into the data lake. For these 

optimizations, you may need some understanding of the source data system and context, but, 

generally, you do not need to understand the ultimate business use case for the dataset.

Protecting PII data
Often, datasets that we ingest may contain personally identifiable information (PII) data, and 

there may be governance restrictions on which PII data can be stored in the data lake. As a result, 

we need to have a process that protects the PII data as soon as possible after it is ingested.

There are a number of common approaches that can be used here (such as tokenization or hash-

ing), each with its own advantages and disadvantages, as we discussed in more detail in Chapter 

4, Data Governance, Security, and Cataloging. But whichever strategy is used, the purpose is to 

remove the PII data from the raw data and replace it with a value, or token, in a way that enables 

us to still use the data for analytics.
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This type of transformation is generally the first transformation performed for data containing PII, 

and in many cases, it is done in a different zone of the data lake, designed specifically for handling 

PII data. This zone will have strict controls to restrict access for general data lake users, and the 

best practice would be to have the anonymizing process run in a totally separate AWS account. 

Once the transformation has anonymized the PII data, the anonymized files will be copied into 

the general data lake raw zone in the main processing account.

Depending on the method you want to use to transform PII data for anonymization, there may 

be multiple different toolsets that can be used. For example, in AWS both AWS Glue Studio and 

AWS Glue DataBrew can be used to detect and obfuscate PII data. 

AWS Glue DataBrew provides more options for obfuscating the data. For example, with Glue Da-

taBrew, you can redact data (replace PII data with a string of ######), replace/swap data (jumble 

the values in a column so that every value is moved to a different, random row), encrypt, or hash 

a PII value. With AWS Glue Studio, you can either redact or hash PII data. 

Alternatively, for more complex use cases, you can use purpose-built managed services from 

commercial vendors that run in AWS, such as PK Privacy from the company PKWARE.

Optimizing the file format
Within modern data lake environments, there are a number of file formats that can be used that 

are optimized for data analytics. From an analytics perspective, the most popular file format 

currently is Apache Parquet.

Parquet files are column-based, meaning that the contents of the file are physically stored to 

have data grouped by columns, rather than grouped by rows as with most file formats (CSV files, 

for example, are physically stored to be grouped by rows). As a result, queries that select a set 

of specific columns (rather than the entire row) do not need to read through all the data in the 

Parquet file to return a result, leading to performance improvements.

Parquet files also contain metadata about the data they store. This includes schema information 

(the data type for each column), as well as statistics such as the minimum and maximum value 

for a column contained in the file, the number of rows in the file, and so on.

A further benefit of Parquet files is that they are optimized for compression. A 1 TB dataset in CSV 

format could potentially be stored as 130 GB in Parquet format once compressed. Parquet sup-

ports multiple compression algorithms, although Snappy is the most widely used compression 

algorithm.



Chapter 7 213

These optimizations result in significant savings in terms of storage space used, and increased 

performance when running queries.

For example, the cost of an Amazon Athena query is based on the amount of compressed data 

scanned (at the time of writing, this cost was $5 per TB of scanned data). If only certain columns 

are queried of a Parquet file, then between the compression and only needing to read the data 

chunks for the specific columns, significantly less data needs to be scanned to resolve the query.

In a scenario where your data table is stored across perhaps hundreds of Parquet files in a data 

lake, the analytics engine is able to get further performance advantages by reading the metadata 

of the files. For example, if your query is just to count all the rows in a table, this information is 

stored in the Parquet file metadata, so the query doesn’t need to actually scan any of the data. For 

this type of query, you will see that Athena indicates that 0 KB of data was scanned, therefore 

there is no cost for the query.

Or, if your query is for where the sales amount is above a specific value, the analytics engine can 

read the metadata for a column to determine the minimum and maximum values stored in the 

specific data chunk. If the value you are searching for is higher than the maximum value record-

ed in the metadata, then the analytics engine knows that it does not need to scan that specific 

column’s data chunk. This results in both cost savings and increased performance for queries.

Because of these performance improvements and cost savings, a very common transformation 

is to convert incoming files from their original format (such as CSV, JSON, XML, and so on) into 

the analytics-optimized Parquet format.

Optimizing with data partitioning
Another common approach for optimizing datasets for analytics is to partition the data, which 

relates to how the data files are organized in the storage system for a data lake.

Hive partitioning splits the data from a table to be grouped together in different folders, based 

on one or more of the columns in the dataset. While you can partition the data based on any col-

umn, a common partitioning strategy that works for many datasets is to partition based on date.

For example, suppose you had sales data for the past four years from around the country, and 

you had columns in the dataset for Day, Month, and Year. In this scenario, you could select to 

partition the data based on the Year column. 
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When the data was written to storage, all the data for each of the past few years would be grouped 

together with the following structure:

datalake_bucket/year=2023/file1.parquet

datalake_bucket/year=2022/file1.parquet

datalake_bucket/year=2021/file1.parquet

datalake_bucket/year=2020/file1.parquet

If you then run a SQL query and include a WHERE Year = 2020 clause, for example, the analytics 

engine only needs to open up the single file in the datalake_bucket/year=2020 folder. Because 

less data needs to be scanned by the query, it costs less and completes quicker. Note that for most 

datasets there will be multiple Parquet files per partition, but each file would only contain data 

related to the partitioned year. 

Deciding on which column to partition by requires that you have a good understanding of how the 

dataset will be used. If you partition your dataset by year but a majority of your queries are by the 

business unit (BU) column across all years, then the partitioning strategy would not be effective.

Queries you run that do not use the partitioned columns may also end up causing those queries 

to run slower if you have a large number of partitions. The reason for this is that the analytics 

engine needs to read data in all partitions, and there is some overhead in working between all the 

different folders. If there is no clear common query pattern, it may be better to not even partition 

your data. But if a majority of your queries use a common pattern, then partitioning can provide 

significant performance and cost benefits.

You can also partition across multiple columns. For example, if you regularly process data at the 

day level, then you could implement the following partition strategy:

datalake_bucket/year=2021/month=6/day=1/file1.parquet

This significantly reduces the amount of data to be scanned when queries are run at the daily 

level and also works for queries at the month or year level. However, another warning regarding 

partitioning is that you want to ensure that you don’t end up with a large number of small files. 

The optimal size of each Parquet file in a data lake is between 128 MB and 1 GB. The Parquet file 

format can be split, which means that multiple nodes in a cluster can process data from a file in 

parallel. However, having lots of small files requires a lot of overhead for opening files, reading 

metadata, scanning data, and closing each file, and can significantly impact performance. There-

fore, it is better to have fewer partitions with larger files than to have hundreds, or thousands, of 

partitions but each partition only has a single file that is a few MB in size. 
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Partitioning is an important data optimization strategy and is based on how the data is expected 

to be used, either for the next transformation stage or for the final analytics stage. Determining 

the best partitioning strategy requires that you understand how the data will be used next.

Data cleansing
Optimizing the data format and partitioning data are transformation tasks that work on the 

format and structure of the data but do not directly transform the data. Data cleansing, however, 

is a transformation that alters parts of the data.

Data cleansing is often one of the first tasks to be performed after ingesting data and helps 

ensure that the data is valid, accurate, consistent, complete, and uniform. Source datasets may 

be missing values in some rows, have duplicate records, have inconsistent column names, use 

different formats, and so on. The data cleansing process works to resolve these issues on newly 

ingested raw data to better prepare the data for analytics. While some data sources may be nearly 

completely clean on ingestion (such as data from a relational database), other datasets are more 

likely to contain data needing cleansing, such as data from web forms, surveys, manually entered 

data, or Internet of Things (IoT) data from sensors.

Some common data transformation tasks for data cleansing include the following:

1. Ensuring consistent column names: When ingesting data from multiple datasets, you 

may find that the same data in different datasets has different column names. For example, 

one dataset may have a column called date_of_birth, while another dataset has a col-

umn called birthdate. In this case, a cleansing task may be to rename the date_of_birth 

column heading to birthdate.

2. Changing column data types: It is important to ensure that a column has a consistent data 

type for analytics. For example, a certain column may be intended to contain integers, but 

due to a data entry error, one record in the column may contain a string. When running 

data analytics on this dataset, having a string in the column may cause the query to fail. In 

this case, your data cleansing task needs to replace all string values in a column that should 

contain integers with a null value, which will enable the query to complete successfully.

3. Ensuring a standard column format: Different data sources may contain data in a different 

format. A common example of this is for dates, where one system may format the date 

as MM-DD-YYYY, while another system contains the data as DD-MM-YYYY. In this case, the 

data cleansing task will convert all columns in MM-DD-YYYY into the format DD-MM-YYYY, 

or whatever your corporate standard is for analytics.
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4. Removing duplicate records: With some data sources, you may receive duplicate re-

cords (such as when ingesting streaming data, where only-once delivery is not always 

guaranteed). A data cleansing task may be required to identify and either remove or flag 

duplicate records.

5. Providing missing values: Some data sources may contain missing values in some records, 

and there are a number of strategies to clean this data. The transformation may replace 

missing values with a valid value, which could be the average, or median, or the values 

for that column, or potentially just an empty string or a null. Alternatively, the task may 

remove any rows that have missing values for a specific column. How to handle missing 

values depends on the specific dataset and the ultimate analytics use case.

There are many other common tasks that may be performed as part of data cleansing. Within AWS, 

the Glue DataBrew service has been designed to provide an easy way to cleanse and normalize 

data using a visual design tool and includes over 250 common data cleansing transformations.

Once we have our raw datasets optimized for analytics, we can move on to looking at transforming 

our datasets to meet business objectives.

Common business use case transformations
In a data lake environment, you generally ingest data from many different source systems into 

a landing, or raw, zone. You then optimize the file format and partition the dataset, as well as 

applying cleansing rules to the data, potentially now storing the data in a different zone, often 

referred to as the clean zone. At this point, you may also apply updates to the dataset with CDC-

type data and create the latest view of the data, which we examine in the next section.

The initial transforms we covered in the previous section could be completed without needing 

to understand too much about how the data is going to ultimately be used by the business. At 

that point, we were still working on individual datasets that will be used by downstream trans-

formation pipelines to ultimately prepare the data for business analytics.

But at some point, you, or another data engineer working for a line of business, are going to need 

to use a variety of these ingested data sources to deliver value to the business for a specific use 

case. After all, the whole point of the data lake is to bring varied data sources from across the 

business into a central location, to enable new insights to be drawn from across these datasets.

The transformations that we discuss in this section work across multiple datasets to enrich, de-

normalize, and aggregate the data based on the specific business use case requirements.
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Data denormalization
Source data systems, especially those from relational database systems, are mostly going to be 

highly normalized. This means that the source tables have been designed to contain information 

about a specific individual entity or topic. Each table will then link to other topics with related 

information through the use of foreign keys.

For example, you would have one table for customers and a separate table for salespeople. A record 

for a customer will include an identifier for the salesperson that works with that customer (such 

as sales_person_id). If you want to get the name of the salesperson that supports a specific cus-

tomer, you could run a SQL query that joins the two tables. During the join, the system queries the 

customer table for the specific customer record and determines the sales_person_id value that is 

part of the record for that customer. The system then queries the sales_person table, finding the 

record with that sales_person_id, and can then access the name of the salesperson from there.

Our normalized customer table may look as follows:

Figure 7.1: Normalized customer table

And our normalized sales_person table may look as follows:

Figure 7.2: Normalized sales_person table

Structuring tables this way has write-performance advantages for Online Transaction Process-

ing (OLTP) systems and also helps to ensure the referential integrity of the database. Normalized 

tables also consume less disk space, since data is not repeated across multiple tables. This was 

a bigger benefit in the early days of databases when storage was limited and expensive, but it is 

not a significant benefit today with low-cost object storage systems such as Amazon S3.

When it comes to running Online Analytical Processing (OLAP) queries, having to join data 

across multiple tables does incur a performance hit. Therefore, data is often denormalized for 

analytics purposes.
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If we had a use case that required us to regularly query customers with their salesperson de-

tails, we may want to create a new table that is a denormalized version of our customer and 

sales_person tables.

The denormalized customer table may look as follows:

Figure 7.3: Denormalized customer_sales_person table

With this table, we can now make a single query that does not require any joins in order to de-

termine the details for a salesperson for a specific customer.

While this was a simple example of a denormalization use case, an analytics project may have 

tens, or even hundreds, of similar denormalization transforms. A denormalization transform may 

also join data from multiple source tables and may end up creating very wide tables.

It is important to spend time understanding the use case requirements and how the data will be 

used, and then determine the right table structure and required joins.

Performing these kinds of denormalization transforms can be done with Apache Spark, GUI-

based tools, or SQL. AWS Glue Studio can also be used to design these kinds of table joins using 

a visual interface.

Enriching data
Similar to the way we joined two tables in the previous example for denormalization purposes, 

another common transformation is to join tables for the purpose of enriching the original dataset.

Data that is owned by an organization is already valuable but can often be made even more 

valuable by combining data the organization owns with data from third parties, or with data 

from other parts of the business. For example, a company that wants to market credit cards to 

consumers may purchase a database of consumer credit scores to match against their customer 

database, or a company that knows that its sales are impacted by weather conditions may purchase 

historical and future weather forecast data to help them analyze and forecast sales information.

AWS provides a data marketplace with the AWS Data Exchange service, a catalog of datasets 

available via paid subscription, as well as a number of free datasets. AWS Data Exchange currently 

contains over 1,000 datasets that can be easily subscribed to. Once you subscribe to a dataset, the 

Data Exchange API can be used to load data directly into your Amazon S3 landing zone.
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In these scenarios, you would ingest the third-party dataset to the landing zone of your data 

lake, and then run a transformation to join the third-party dataset with company-owned data.

Pre-aggregating data
One of the benefits of data lakes is that they provide a low-cost environment for storing large 

datasets, without needing to pre-process the data or determine the data schema up front. You can 

ingest data from a wide variety of data sources and store the detailed granular raw data for a long 

period inexpensively. Then, over time, as you find you have new questions you want to ask of the 

data, you have all the raw data available to work with and can run ad-hoc queries against the data.

However, as the business develops specific questions they want to regularly ask of the data, the 

answers to these questions may not be easy to obtain through ad-hoc SQL queries. As a result, 

you may create transform jobs that run on a scheduled basis to perform the heavy computation 

that may be required to gain the required information from the data, making it easier for business 

users to gain the insights they need. 

For example, you may create a transform job that creates a denormalized version of your sales data 

that includes, among others, columns for the store number, city, and state for each transaction. 

You may then have a pre-aggregation transform that runs daily to read this denormalized sales 

data (which may contain tens of millions of rows per day and tens or hundreds of columns) and 

compute sales, by category, at the store, city, and state level, and write these out to new tables. 

You may have hundreds of store managers who need access to store-level data at the category 

level via a BI visualization tool, but because we have pre-aggregated the data into new tables, the 

computation does not need to be run every time a report is run.

Pre-aggregating data reduces time to insights for business users and provides significant per-

formance improvements, and therefore you should look to understand the frequent queries that 

are run by your data consumers, to determine where pre-aggregating data could bring business 

benefits. 

Extracting metadata from unstructured data
As we have discussed previously, a data lake may also contain unstructured data, such as audio 

or image files. While these files cannot be queried directly with traditional analytical tools, we 

can create a pipeline that uses Machine Learning (ML) and Artificial Intelligence (AI) services 

to extract metadata from these unstructured files.
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For example, a company that employs real-estate agents (realtors) may capture images of all 

houses for sale. One of their data engineers could create a pipeline that uses an AI service such 

as Amazon Rekognition to automatically identify objects in the image and to identify the type 

of room (kitchen, bedroom, and so on). This captured metadata could then be used in traditional 

analytics reporting.

Another example is a company that stores audio recordings of customer service phone calls. A 

pipeline could be built that uses an AI tool such as Amazon Transcribe to create transcripts of 

the calls, and then a tool such as Amazon Comprehend could perform sentiment analysis on 

the transcript. This would create an output that indicates whether the customer sentiment was 

positive, negative, or neutral for each call. This data could be joined with other data sources to 

develop a target list of customers to send specific marketing communication.

While unstructured data such as audio and image files may at first appear to have no benefit in 

an analytics environment, with modern AI tools, valuable metadata can be extracted from many 

of these sources. This metadata in turn becomes a valuable dataset that can be combined with 

other organizational data, in order to gather new insights through innovative analytics projects.

While we have only highlighted a few common transforms, there are literally hundreds of differ-

ent transforms that may be used in an analytics project. Each business is unique and has unique 

requirements, and it is up to an organization’s data teams to understand which data sources are 

available, and how these can be cleaned, optimized, combined, enriched, and otherwise trans-

formed to help answer complex business questions.

Another aspect of data transformation is the process of applying updates to an existing dataset 

in a data lake, and we examine strategies for doing this in the next section.

Working with Change Data Capture (CDC) data
One of the most challenging aspects of working within a data lake environment is the processing 

of updates to existing data, such as with Change Data Capture (CDC) data. We have discussed 

CDC data previously, but as a reminder, this is data that contains updates to an existing dataset.

A good example of this is data that comes from a relational database system. After the initial load-

ing of data to the data lake is complete, a system (such as Amazon DMS) can read the database 

transaction logs and write all future database updates to Amazon S3. For each row written to 

Amazon S3, the first column of the CDC file would contain one of the following characters (see 

the section on Amazon DMS in Chapter 3, The AWS Data Engineer’s Toolkit, for an example of a 

CDC file generated by Amazon DMS):
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1. I – Insert: This indicates that this row contains data that was newly inserted into the table

2. U – Update: This indicates that this row contains data that updates an existing record 

in the table

3. D – Delete: This indicates that this row contains data for a record that was deleted from 

the table

Traditionally, though, it has not been possible to execute updates or deletes of individual records 

within a data lake. Remember that Amazon S3 is an object storage service, so you can delete and 

replace a file but you cannot edit or just replace a portion of a file.

If you just append the new records to the existing data, you will end up with multiple copies of 

the same record, with each record reflecting the state of that record at a specific point in time. 

This can be useful to keep the history of how a record has changed over time, and so sometimes a 

transform job will be created to append the newly received data to the relevant table in the data 

lake for this purpose (potentially adding in a timestamp column that reflects the CDC data-in-

gestion time for each row). At the same time, we want our end users to be able to work with a 

dataset that only contains the current state of each data record.

There are two common approaches to handling updates to data in a data lake, as we explore next. 

Traditional approaches – data upserts and SQL views
One of the traditional approaches to dealing with CDC data is to run a transform job, on a schedule, 

that effectively merges the new CDC data with the existing dataset, keeping only the latest re-

cords. This is commonly referred to as performing an upsert (a combination of update and insert).

One way to do this is to create a transform in Spark that reads existing data into one DataFrame, 

reads the new data into a different DataFrame, and then merges the DataFrames using custom 

logic, based on the specific dataset. The transform can then overwrite the existing data or write 

data to a new date-based partition, creating a new snapshot of the source system. A certain number 

of snapshots can be kept, enabling data consumers to query data from different points in time.

These transforms can end up being complex, and it is challenging to create a transform that is 

generic across all source datasets. Also, when overwriting the existing dataset with the updated 

dataset, there can be disruptions for data consumers who are trying to read from the dataset 

while the update is running. And as the dataset grows, the length of time and compute resources 

required to read in the full dataset in order to update it can become a major challenge. There are 

various strategies for dealing with these challenges, but they are complex, and for a long time, 

each organization facing these challenges had to implement its own complex solutions.
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In order to create a solution that could be used across multiple different datasets, one common 

approach is to create a configuration table that captures details about source tables. This config 

table contains information such as a column that should be considered the primary key and a list 

of columns on which to partition the output. When the transform job runs, it reads the configu-

ration table in order to integrate that table’s specific settings with the logic in the transform job.

AWS has a blog post that provides a solution for using AWS DMS to capture CDC data from source 

databases and then run an AWS Glue job to apply the latest updates to the existing dataset. This 

blog post also creates a DynamoDB table to store configuration data on the source tables, and 

the solution can be deployed into an existing account using the provided AWS CloudFormation 

template. For more information, see the AWS blog post titled Load ongoing data lake changes with 

AWS DMS and AWS Glue.

An alternative approach is to use Athena views to create a virtualized table that shows the latest 

state of the data. An Athena view is a query that runs whenever the virtual table is queried, using a 

SELECT query that is defined in the view. The view definition will join the source (the current table) 

and the table with the new CDC data, and return a result that reflects the latest state of the data.

Creating a view that combines the existing data and the new CDC data enables consumers to query 

the latest state of the data, without needing to wait for a daily transform job to run to consolidate 

the datasets. However, performance will degrade over time as the CDC data table grows, so it is 

advisable to also have a daily job that will run to consolidate the new CDC data into the existing 

dataset. Creating and maintaining these views can be fairly complex, especially when combined 

with a need to also have a daily transform to consolidate the datasets.

For many years, organizations have faced the challenge of building and maintaining custom 

solutions like these to deal with CDC data and other data lake updates. However, in recent years, 

a number of new offerings have been created to address these requirements more generically, as 

we see in the next section.

Modern approaches – Open Table Formats (OTFs)
Over the past few years, a number of new Open Table Formats (OTFs) have been developed to 

support the idea of a more transactional data lake. When we refer to a transactional data lake, we 

are referencing the ability of a data lake to contain properties that were previously only available 

in a traditional database, such as the ability to update and delete individual records. In addition, 

many of these new solutions also provide support for schema evolution and time travel (the 

ability to query data as it was at a previous point in time).
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Technically, these new OTFs bring ACID semantics to the data lake:

1. Atomicity: An expectation that data written will either be written as a full transaction or 

will not be written at all, and the dataset will be returned to its state prior to the trans-

action on failure

2. Consistency: The expectation that even if a failure occurs, the dataset will stay consistent

3. Isolation: The expectation that one transaction on the dataset will not be affected by 

another transaction that is requested at the same time

4. Durability: The expectation that once a successful transaction has been completed, this 

transaction will be durable (it will be permanent, even if there is a later system failure)

Now, this does not mean that these modern data lake solutions can replace existing OLTP-based 

databases. You are not going to suddenly see retailers dump their PostgreSQL, MySQL, or SQL 

Server databases that run their Customer Relationship Management (CRM) systems and instead 

use a data lake for everything.

Rather, data lakes are still intended as an analytical platform, but these new solutions significantly 

simplify the ability to apply changes to existing records, as well as the ability to delete records 

from a large dataset. These solutions also help to ensure data consistency as multiple teams work 

on the same datasets. There is still latency involved with these types of transactions, but much of 

the complexity involved with consolidating new and updated rows in a dataset, and providing a 

consistent, up-to-date view of data with lower latency, is handled by these solutions.

In Chapter 14, Building Transactional Data Lakes, we will do a deeper dive into OTFs, but let’s have 

a quick look at some of the most common offerings for these new transactional data lakes.

Apache Iceberg
Apache Iceberg was created by engineers at Netflix and is designed as an OTF for very large data-

sets. The code was donated to the Apache Software Foundation and became a top-level project in 

May 2020. Since then, it has become a very popular choice for creating a transactional data lake. 

Iceberg supports schema evolution, time travel for querying at a point in time, atomic table 

changes (to ensure that data consumers do not see partial or uncommitted changes), and support 

for multiple simultaneous writers.

In August 2021, a new start-up, Tabular, was formed by the creators of Iceberg to build a cloud-na-

tive data platform powered by Apache Iceberg. Also, most of the large cloud providers (as well as 

other vendors) have added support for Apache Iceberg into many of their products (for example, 

AWS Glue provides native support for the Apache Iceberg table format). 
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Apache Hudi
Apache Hudi started out as a project within Uber (the ride-sharing company) to provide a frame-

work for developing low-latency and high-efficiency data pipelines for their large data lake en-

vironment. They subsequently donated the project to the Apache Software Foundation, which 

in turn made it a top-level project in 2020. Today, Apache Hudi is a popular option for building 

out transactional data lakes that support the ability to efficiently upsert new/changed data into 

a data lake, as well as to easily query tables and get the latest updates returned. AWS supports 

running Apache Hudi within the Amazon EMR managed service, as well as with AWS Glue. 

Databricks Delta Lake
Databricks, a company formed by the original creators of Apache Spark, have developed their 

own approach to providing a transactional data lake, which has become popular over the past 

few years. This solution, called Delta Lake, is an open table format for streaming and batch 

operations that provides ACID transactions for inserts, updates, and deletes. In addition, Delta 

Lake supports time travel, which enables a query to retrieve data as it was at any point in time. 

Databricks have open-sourced this solution and made it available on GitHub at https://github.

com/delta-io/delta.

In addition to the open-source version of Delta Lake, Databricks also offers a fully supported 

commercial version of Delta Lake that is popular with large enterprises. For more information 

on the commercial version of Delta Lake, see https://databricks.com/product/delta-lake-

on-databricks.

Handling updates to existing data in a data lake has been a challenge for as long as data lakes 

have been in existence. Over the years, some common approaches have emerged to handle these 

challenges, but each organization has had to effectively reinvent the wheel to implement their 

own solution.

Now, with a number of companies recently creating solutions to provide a more transactional-type 

data lake that simplifies the process of inserting, updating, and deleting data, it makes sense to 

explore these open table formats, as outlined in this section, and covered more fully in Chapter 

14, Building Transactional Data Lakes.

So far in this chapter, we have covered data preparation transformations, business use case trans-

forms, and how to handle CDC-type updates for a data lake. Now we get hands-on with data 

transformation using AWS Glue Studio.

https://github.com/delta-io/delta
https://github.com/delta-io/delta
https://databricks.com/product/delta-lake-on-databricks
https://databricks.com/product/delta-lake-on-databricks
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Hands-on – joining datasets with AWS Glue Studio
For our hands-on exercise in this chapter, we are going to use AWS Glue Studio to create an Apache 

Spark job that joins streaming data with data we migrated from our MySQL database in the 

previous chapter.

Creating a new data lake zone – the curated zone
As discussed in Chapter 2, Data Management Architecture for Analytics, it is common to have multiple 

zones in a data lake, containing different copies of our data as it gets transformed. So far, we have 

ingested raw data into the landing zone and then converted some of those datasets into Parquet 

format, and written the files out in the clean zone. In this chapter, we will be joining multiple 

datasets together and will write out the new dataset to the curated zone of our data lake. The 

curated zone is intended to store data that has been transformed and is ready for consumption 

by data consumers. We created an Amazon S3 bucket for the curated zone in a previous chapter, 

so now we can create a new AWS Glue database for this zone of our data lake:

1. Log in to the AWS Management Console (https://console.aws.amazon.com).

2. In the top search bar, search for and select Glue to access the Glue console.

3. On the left-hand side, select Databases, and then click Add database.

4. For Database name, type curatedzonedb, and then click Create database.

We have now created a new curated zone database for our data lake, and in the next step, we will 

create a new IAM role to provide the permissions needed for our Glue transformation job to run.

Creating a new IAM role for the Glue job
When we configure the Glue job using Glue Studio, we will need to specify an IAM role that has 

the following permissions:

1. Read our source S3 bucket (for example, dataeng-landing-zone-gse23 and dataeng-

clean-zone-gse23)

2. Write to our target S3 bucket (for example, dataeng-curated-zone-gse23)

3. Access to Glue temporary directories

4. Write logs to Amazon CloudWatch

5. Access to all Glue API actions (to enable the creation of new databases and tables)

https://console.aws.amazon.com
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To create a new AWS IAM role with these permissions, follow these steps:

1. In the top search bar of the AWS Management Console, search for and select the IAM 

service, and in the left-hand menu, select Policies, and then click on Create policy.

2. By default, the Visual editor tab is selected, so click on JSON to change to the JSON tab.

3. Provide the JSON code from the following code blocks, replacing the boilerplate code. This 

policy provides the required S3 permissions, and we will provide Glue and CloudWatch 

permissions via a managed policy in a later step. 

Note that you can also copy and paste this policy by accessing the policy on this book’s 

GitHub page. If doing a copy and paste from the GitHub copy of this policy, you must 

replace <initials> in bucket names with the unique identifier you used when creating 

the buckets.

The first block of the policy configures the policy document and provides permissions to 

get objects from Amazon S3 that are in the Amazon S3 buckets specified in the resource 

section. Make sure you replace <initials> with the unique identifier you have used in 

your bucket names:

{

    "Version": "2012-10-17",

    "Statement": [

        {

            "Effect": "Allow",

            "Action": [

                "s3:GetObject"

            ],

            "Resource": [

                "arn:aws:s3:::dataeng-landing-zone-<initials>/*",

                "arn:aws:s3:::dataeng-clean-zone-<initials>/*"

                ]

        },

4. This next block of the policy provides permissions for all Amazon S3 actions (get, put, and 

so on) that are in the Amazon S3 bucket specified in the resource section (in this case, our 

curated zone bucket). Make sure you replace <initials> with the unique identifier you 

have used in your bucket names:
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        {
            "Effect": "Allow",
            "Action": [
                "s3:*"
            ],
            "Resource": "arn:aws:s3:::dataeng-curated-zone-
<initials>/*"
        }
    ]
}

5. Click on Next: tags and then click on Next: Review.

6. Provide a name for the policy, such as DataEngGlueCWS3CuratedZoneWrite, and then 

click Create policy.

7. In the left-hand menu, click on Roles and then Create role.

8. For Trusted entity, ensure AWS service is selected, and for Use case search for and select 

Glue, and then click Next. Listing Glue as a trusted entity for this role enables the AWS 

Glue service to assume this role to run transformations.

9. Under the Attach permissions policies, select the policy we just created (for example, Da

taEngGlueCWS3CuratedZoneWrite) by searching and then clicking in the checkbox.

10. Also, search for AWSGlueServiceRole and click on the checkbox to select this role (make 

sure that it is the managed AWSGlueServiceRole policy, and not a policy previously creat-

ed, such as AWSGlueServiceRole-streaming-crawler-Fefdx-s3Policy). This managed 

policy provides access to temporary directories used by Glue, as well as CloudWatch logs 

and Glue resources.

11. Then, click Next.

12. Provide a role name, such as DataEngGlueCWS3CuratedZoneRole, and click Create role.

We have now configured the permissions required for our Glue job to be able to access the required 

resources, so we can now move on to building our transformation using Glue Studio.

Configuring a denormalization transform using AWS Glue 
Studio
We are now ready to create an Apache Spark job to denormalize the film data that we migrated 

from our MySQL database. The dataset we migrated is normalized currently (as expected for 

data coming from a relational database), so we want to denormalize some of the data to use in 

future transforms.
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Ultimately, we want to be able to analyze various data points of our new streaming library of 

classic movies. One of the data points we want to understand is which categories of movies are 

the most popular, but to find the name of a category associated with a specific movie, we need 

to query three different tables in our source dataset. The tables are as follows:

1. film: This table contains details of each film in our classic movie library, including film_id, 

title, description, release_year, and rating. However, this table does not contain any 

information about the category that the film is in.

2. category: This table contains the name of each category of film (such as action, comedy, 

drama, and so on), as well as category_id. However, this table does not contain any 

information that links a category with a film.

3. film_category: This table is designed to provide a link between a specific film and a spe-

cific category. Each row contains a film_id value and associated category_id.

When analyzing the incoming streaming data about viewers streaming our movies, we don’t 

want to have to do joins on each of the above tables to determine the category of movie that was 

streamed. So, in this first transform job that we are going to create, we denormalize this group 

of tables so that we end up with a single table that includes the category for each film in our film 

library.

To build the denormalization job using AWS Glue Studio, follow these steps:

1. In the AWS Management Console, use the top search bar to search for and select the 

Glue service.

2. In the left-hand menu, click on ETL Jobs.

3. Click on the Visual ETL option

4. On the left-hand side, under the Visual tab, click on Amazon S3 (source) as a new node. 

5. On the right-hand side, under Data source properties – S3, ensure Data Catalog table is 

selected for S3 source type, and from the dropdown, select the sakila database.

6. For the Table dropdown, select film_category.

7. Set Name for this node to be S3 – Film-Category.
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At this point, the Glue Studio screen should look as follows:

Figure 7.4: Glue Studio with first S3 data source

8. Click the plus sign (+) in the top left of the visual editor, and repeat steps 4-7, adding 

another S3 source for the film table, but set Name to S3 - Film. Once done, your Glue 

studio screen should look as follows:

Figure 7.5: Glue Studio with two S3 data sources
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9. In the Designer window, click on the plus sign (+) again, and from the Transform tab, 

select the Join transform.

10. The Join transform requires two “parent” nodes – the two tables that we want to join. 

To set the parent nodes, use the Node parents dropdown to select the S3 – Film and S3 

– Film-Category tables.

11. You will see a red checkmark on the Transform tab, indicating an issue that needs to be 

resolved. Click on the Transform tab, and you will see a warning about both tables having a 

column with the same name. Glue Studio offers to automatically resolve the issue by adding 

a custom prefix to the columns in the right-hand table. Click on Resolve it to have Glue 

Studio automatically add a new transform that renames the columns in the right-hand table.

12. There are a number of different join types that Glue Studio supports. Review the Join 

type drop-down list to understand the differences. For our use case, we want to join all 

the rows from our left-hand table (film) with matching rows from the right-hand table 

(film_category). The resulting table will have rows for every film, and each row will also 

include information from the film_category table – in this case, the category_id value 

for each film. For Join type, select Left join, and then click Add condition. We want to 

match the film_id field from the film table with the film_id field from the film_category 

table. Remember, though, that we had Glue Studio automatically rename the fields in 

the film_category table, so for the film_category table, select the (right) film_id field.

Once done, your Glue Studio screen should look as follows:

Figure 7.6: Glue Studio after first table join
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13. Let’s provide a name for the temporary table created as a result of the join. On the Node 

properties tab, change Name to Join – Film-Category_ID.

14. We don’t need all the data that is in our temporary Join – Film-Category_ID table, so 

we can now use the Glue Change Schema transform to drop the columns we don’t need, 

rename fields, and so on. Click on the plus sign (+) , and from the Transforms tab, select 

Change Schema.

15. Some of the fields that are related to our original data from when these movies were rented 

out from our DVD stores are not relevant to our new streaming business, so we can drop 

those now. At the same time, we can drop some of the fields from our film_category table, 

as the only column we need from that table is category_id. Select the Drop checkbox for 

the following columns:

• rental_duration

• rental_rate

• replacement_cost

• last_update

• (right) film_id

• (right) last_update

16. We can now add a transform, which will join the results of the Change Schema transform 

with our category table, adding the name of the category for each film. To add the Cate-

gory table to our transform, click the plus sign (+), and from the Data tab, select Amazon 

S3. Ensure Data Catalog Table is selected, and for Database, select sakila; and for Table, 

select Category. To provide a descriptive name, change Name to S3 – Category.

17. We can now add our final transformation. Click the plus sign (+), and from the Trans-

forms tab, select Join.

18. We always need two tables for a join, so from the Node properties tab, use the Node par-

ents dropdown to add the Change Schema transform as a parent of the join, and change 

Name to Join – Film-Category.

19. On the Transform tab, select Left join for Join type, and then click Add condition. From 

the S3 – Category table, select the category_id field, and from the Change Schema table, 

select the (right) category_id field.
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20. Now we will add one last Change Schema transform to again remove unneeded fields, 

and rename fields where appropriate. Click the plus sign (+), and from the Transforms 

tab, select Change Schema. Click the checkbox next to the following columns in order 

to drop them:

• last_update

• (right) category_id

21. Then, for the Source key value of name, change Target key to be category_name, as this 

is a more descriptive name for this field.

In this section, we configured our Glue job for the transform steps required to denormalize our 

film and category data. In the next section, we will complete the configuration of our Glue job by 

specifying where we want our new denormalized table to be written.

Finalizing the denormalization transform job to write to S3
To finalize the configuration of our transform job using Glue Studio, we now need to specify the 

target that we want to write our data to:

1. Add a target by clicking on the plus sign (+), and from the Targets tab, select Amazon S3. 

2. On the Data target properties – S3 tab, ensure Parquet is selected for Format and Snappy 

for Compression type. Click on Browse S3 for S3 Target Location, select the checkbox 

for the dataeng-curated-zone-<initials> bucket, and click Choose. In the S3 Target 

Location field, add a prefix after the bucket name of /filmdb/film_category/.

3. For Data Catalog update options, select Create a table in the Data Catalog, and on 

subsequent runs, update the schema and add new partitions.

4. For Database, select curatedzonedb from the drop-down list.

5. For Table name, type in film_category. Note that Spark requires lowercase table and 

column names, and that the only special character supported by Athena is the underscore 

character, which is why we use this rather than a hyphen.
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Our Data target properties – S3 configuration should look as follows:

Figure 7.7: Data target properties – S3 configuration

6. We can now provide a name and permissions configuration for our job. In the top left, 

change from the Visual tab to the Job details tab.

7. Set the name of the job to be Film Category Denormalization.

A note about partition keys

Our sample dataset is very small (just 1,000 film records), but imagine for 

a moment that we were trying to create a similar table, including category 

information, for all the books ever published. According to an estimate from 

Google in 2010, there were nearly 130 million books that they planned to 

scan into a digital format. If our intention was to query all this book data to 

gather information on the books by category, then we would add a partition 

key, and specify category_name as a partition. When the data was written 

to S3, it would be grouped into different prefixes based on the category name, 

and this would significantly increase performance when we queried books 

by category.
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8. For IAM Role, from the dropdown, select the role we created previously (DataEngGlueC

WS3CuratedZoneRole).

9. For Requested number of workers, change this to 2. This configuration item specifies the 

number of nodes configured to run our Glue job, and since our dataset is small, we can 

use the minimum number of nodes. Since we are using the minimum number of nodes, 

auto-scaling will not make a difference, but it is strongly encouraged to use the option 

for Automatically scale the number of workers when configuring your jobs. This feature 

ensures that Glue dynamically changes the number of workers to match what is needed 

by your job, saving you money by minimizing idle workers. 

10. For Job bookmark, ensure this setting is set to Disable. A job bookmark is a feature of 

Glue that tracks which files have been previously processed so that a subsequent run of 

the job does not process the same files again. For our testing purposes, we may want to 

process our test data multiple times, so we disable the bookmark.

11. For Number of retries, ensure this is set to 0. If our job fails to run, we don’t want it to 

automatically repeat.

12. Leave all other defaults, and at the top right, click on Save. Then, click on Run to run the 

transform job.

13. Click on the Runs tab in order to monitor the job run. You can also change to the Script 

tab if you want to view the Spark code that AWS Glue Studio generated.

14. When the job completes, navigate to the Amazon S3 console and review the output lo-

cation (such as dataeng-curated-zone-gse23/filmdb/film_category) to validate that 

the new Parquet files were created. Also, navigate to the AWS Glue console to confirm 

that the new table (film_category) was created in curatedzonedb.

In the preceding steps, we denormalized data related to our catalog of films and their categories, 

and we can now join data from this new table with our streaming data.

Create a transform job to join streaming and film data using 
AWS Glue Studio
In this section, we’re going to use AWS Glue Studio to create another transform, this time to join 

the table containing all streams of our movies, with the denormalized data about our film catalog:

1. In the AWS Management Console, use the top search bar to search for and select the 

Glue service.

2. In the left-hand menu, click on ETL jobs.
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3. Click on the Visual ETL option for Create job.

4. In the Visual tab, under Add nodes, select Amazon S3 (source).

5. On the right-hand side, under the Data source properties – S3 tab, under S3 source type, 

ensure Data Catalog table is selected, and from the dropdown, select the curatedzonedb 

database.

6. For the Table dropdown, select film_category.

7. Set Name to S3 – Film_Category.

8. On the left-hand side, under the Visual tab, click on the PLUS (+) sign. Repeat steps 4–7, 

adding another S3 source for the streaming table from the streamingdb database, and 

setting the name to S3 - Streaming.

9. Click on the plus sign (+), and from the Transforms tab, add a Change Schema transform 

for the S3 – Streaming data source (confirm that the S3 – Streaming source is selected by 

looking at Node parents on the Node properties tab).

10. Under the Node properties tab, change the Name of this transform element to Change 

Schema – Streaming� 

11. On the Transform tab, under Change Schema, change the name of the film_id key to 

film_id_streaming (by changing the Target key value for film_id). Both of our S3 source 

tables have a film_id field, which is why we need to change the field name for one of 

the tables. 

12. Click the plus sign (+) again, and under the Transform tab, add a Join transform and set 

Join type to Left join.

13. Under the Transform tab, ensure that the Change Schema – Streaming element and the 

S3 – Film_Category are listed as Node parents�

14. Under the Transform tab, for Join conditions, click on Add condition. Select film_id_

streaming for the Change Schema – Streaming element, and film_id for the S3 – Film_

Category element. 
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Your Glue Studio visual designer should look as follows:

Figure 7.8: Glue Studio interface showing the first join

15. Add a target by clicking on the plus sign (+), and under the Targets tab, click on Amazon S3. 

16. For Format, select Parquet from the dropdown, and for Compression type, select Snappy.

17. For S3 Target Location, click Browse S3, click the selector for the dataeng-curatedzone-

<initials> bucket, and click Choose. Add a prefix after the bucket of /streaming/

streaming-films/.

18. For Data Catalog update options, select Create a table in the Data Catalog, and on 

subsequent runs, update the schema and add new partitions.

19. For Database, select curatedzonedb from the drop-down list.

20. For Table name, type in streaming_films.
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Our Data Target Properties – S3 configuration should look as follows:

Figure 7.9: Glue Studio interface showing target configuration
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21. We can now provide a name and permissions configuration for our job. Along the top list 

of tabs, change from the Visual tab to the Job details tab.

22. Set the name of the job to be Streaming Data Film Enrichment.

23. For IAM Role, from the dropdown, select the role we created previously (DataEngGlueC

WS3CuratedZoneRole).

24. For Number of workers, change this to 2.

25. For Job bookmark, make sure this is set to Disable.

26. For Number of retries, make sure this is set to 0.

27. Leave all other defaults, and at the top right, click on Save. Then click on Run to run the 

transform job.

28. Click on the Runs tab in order to monitor the job run.

29. When the job status changes to Succeeded, click on Databases (under Data Catalog) to 

confirm that the new table (streaming_films) was created in the curatedzonedb database.

30. Navigate to the Amazon S3 console and review the output location (dataeng-curatedzone-

<initials>/streaming/streaming-films/) to validate that the files were created. 

We have now created a single table that contains a record of all streams of our classic movies, along 

with details about each movie, including the category of the movie. This table can be efficiently 

queried to analyze streams of our classic movies to determine the most popular movie and movie 

category, and we can break this down by state and other dimensions.

Summary
In this chapter, we’ve reviewed a number of common transformations that can be applied to raw 

datasets, covering both generic transformations used to optimize data for analytics and business 

transforms to enrich and denormalize datasets.

This chapter built on previous chapters in this book. We started by looking at how to architect 

a data pipeline, then reviewed ways to ingest different data types into a data lake, and in this 

chapter, we reviewed common data transformations.

In the next chapter, we will look at common types of data consumers and learn more about how 

different data consumers want to access data in different ways, and with different tools.
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Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd




8
Identifying and Enabling Data 
Consumers

A data consumer can be defined as a person, or application, within an organization that needs 

access to data. Data consumers can vary from staff that pack shelves and need to know stock levels 

to the CEO of an organization that needs data to make a decision on which projects to invest in. 

A data consumer can also be a system that needs data from a different system.

Everything a data engineer does is to make datasets useful and accessible to data consumers, 

which, in turn, enables the business to gain useful insights from their data. This means delivering 

the right data, via the right tools, to the right people or applications, at the right time, to enable 

the business to make informed decisions.

Therefore, when designing a data engineering pipeline (as covered in Chapter 5, Architecting Data 

Engineering Pipelines), data engineers should start by understanding business objectives, including 

who the data consumers are and what their requirements are.  

We can then work backward from these requirements to ensure that we use the appropriate tools 

to ingest data at the required frequency (streaming or batch, for example). We can also ensure 

that we create transformation pipelines that transform raw data sources into data that meets 

the consumer’s specific requirements. And, finally, understanding our data consumers will guide 

us in selecting a target location and format for our transformed data that is compatible with the 

tools that best enable our data consumers.
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Maintaining an understanding of how the data is consumed, as well as knowledge of any down-

stream dependencies, will also help data engineers support different types of data consumers as 

they work with a variety of datasets.

In this chapter, we will do a deep dive into data consumers by covering the following topics:

• Understanding the impact of data democratization

• Meeting the needs of business users with data visualization

• Meeting the needs of data analysts with structured reporting

• Meeting the needs of data scientists and ML models

• Hands-on – transforming data using AWS Glue DataBrew

Technical requirements
For the hands-on exercise in this chapter, you will need permission to use the AWS Glue DataBrew 

service. You will also need to have access to the AWS Glue Data Catalog and any underlying Ama-

zon S3 locations for the databases and tables that were created in the previous chapters. If you are 

using the administrative user created in Chapter 1, then you will have the necessary permissions. 

You can find the code files of this chapter in the GitHub repository using the following link: 
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/

main/Chapter08

Understanding the impact of data democratization
At a high level, business drivers have not changed significantly over the past few decades. Orga-

nizations are still interested in understanding market trends and customer behavior, increasing 

customer retention, improving product quality, and improving speed to market. However, the 

analytics landscape, the teams and individual roles that deliver business insights, and the tools 

that are used to deliver business value have evolved.

Data democratization – the enhanced accessibility of data for a growing audience of users, in 

a timely and cost-efficient manner – has become a standard expectation for most businesses. 

Today’s varied data consumers expect to be able to get access to the right data promptly, using 

their tool of choice to consume the data.

In fact, as datasets increase in volume and velocity, their gravity will attract more applications 

and consumers. This is based on the concept of data gravity, a term coined by Dave McCrory, 

which suggests that data has mass. That is, as datasets increase in size, they attract more users 

and become more difficult to move.

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter08
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter08
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The takeaway here is that as data volumes grow, and the velocity at which data is ingested in-

creases, the more business users demand easy access to high-quality data. Delivering on this 

becomes critical for enabling a business to stay competitive. 

A growing variety of data consumers
Over the past few years, we have seen an increase in the number and type of data consumers within 

an organization, and these data consumers are constantly looking for new data sources and tools. 

As a result, in today’s modern organizations, we can expect to find a wide variety of data consum-

ers – from traditional business users and data analysts to data scientists, machine-to-machine 

applications, as well as new types of business users (as organizations become more data-driven, 

it’s not only senior managers that need access to data, but employees at all levels of the organi-

zation need access to relevant, high-quality data). 

Beyond just the ability to run SQL queries and generate scheduled reports based on a pre-existing 

dataset, we see data analysts who also want the ability to do ad hoc data cleansing and exploration, 

as well as the ability to join structured data with semi-structured data or metadata extracted from 

unstructured data. For example, they may want to examine how social media drives sales trends.

And business users now expect dashboards to be refreshed with real, or near-real-time, data. 

They also want these dashboards to be accessible from anywhere, on many different types of 

mobile devices. Furthermore, they are interested in more than just sales or ERP data. Analysts 

and business users are interested in social media data to identify consumer trends, and insurance 

and real estate companies are looking for data to be extracted from documents (such as medical 

reports or property appraisals). In the manufacturing industry, a variety of data consumers want 

access to data that’s been collected from machines, devices, and vehicles for use cases such as 

proactively anticipating maintenance requirements.

Data consumers are also no longer limited to individual humans or teams. We are seeing a growing 

need for business applications to access data, be fed data, or be triggered based on an event or trend 

in the data. Call centers are interested in real-time transcripts of audio calls for sentiment analysis 

and tagging calls for manager review. They are also looking for applications and integrations that 

would use real-time call transcriptions, or full-text analysis of corporate documents, to reduce the 

time agents spend searching for answers. Engagement platforms map the customer journey and 

use every event (for example, email opened or email ignored) to tailor the customer experience.
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Finally, organizations have a growing need for data science, and as such, the number of data 

scientist roles within those organizations is increasing. Data scientists develop machine learn-

ing (ML) models that can identify non-obvious patterns in large datasets or make predictions 

about future behaviors based on historical data. Data scientists usually require access to raw, 

non-aggregated data, and require large volumes of data to train a machine learning model and 

test the model for accuracy.  

How a data mesh helps data consumers
With the increase in the number of datasets within an organization, and with a growing set of 

users wanting access to data across an organization, it can be very difficult for data consumers 

to find the data they need. Once a data consumer does find an available dataset, they need to be 

able to easily understand whether the dataset they found will meet their needs, and also need 

to get access to the data without complicated processes and the need to create multiple copies 

of the dataset.

A data mesh strategy (which we cover in more detail in Chapter 15, Implementing a Data Mesh 

Strategy), includes some core principles that help make datasets more easily discoverable, un-

derstandable, and accessible by data consumers. One of the data mesh principles is that of a self-

serve data platform, and this platform is intended to streamline the experience of data consumers 

discovering, accessing, and using datasets. 

The self-serve data platform often includes a business data catalog as the mechanism to make 

data discoverable. Data consumers can go to the catalog to search and discover all the datasets 

available in an organization. Each dataset published to the catalog should include additional 

metadata that helps the data consumer better understand the data (such as where the data comes 

from, who owns it, and business metadata providing more context around the dataset). The 

catalog should also provide a mechanism for a consumer to request access to a dataset, and then, 

if needed, the ability to automatically route that request to the appropriate person to approve 

the access. Once approved, the self-serve data platform should make it easy for the consumer to 

access the dataset, without needing to physically copy the dataset. 

Let’s now take a deeper dive into some of the different types of data consumers that we can find 

in today’s organizations. We will also look at how data engineers can help enable each of these 

data consumers.
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Meeting the needs of business users with data 
visualization
Some roles within an organization, such as data analysts, have always had easy access to data. 

For a long time, these roles were effectively gatekeepers of the data, and any “ordinary” business 

users that had custom data requirements would need to go through the data gatekeepers.

However, over the past decade or so, the growth of big data has expanded the thirst and need for 

custom data among a growing number of business users. Business users are no longer willing to 

tolerate having to go through long, formal processes to access the data they need to make decisions. 

Instead, users have come to demand easier, and more immediate, access to wider sets of data.

To remain competitive, organizations need to ensure that they enable all the decision-makers in 

their business to have easy and direct access to the right data. At the same time, organizations 

need to ensure that good data governance is in place and that data consumers only have access 

to the data they need (as we discussed in Chapter 4, Data Governance, Security, and Cataloging). 

Data engineers are key to enabling this.

AWS tools for business users
Business users have mixed skill sets, ranging from those that are Excel power users and are com-

fortable with concepts such as pivot tables, to executives who want easy access to dashboards 

that provide visualizations that summarize complex data.

As a data engineer, you need to be able to provide solutions that meet the needs of these diverse 

business users. Within AWS, the primary tool that’s used by business users is Amazon Quick-

Sight, a cloud-based Business Intelligence (BI) application. QuickSight enables the creation 

of easy-to-access visualizations and reports but also provides functionality for advanced users 

to dig deeper into the data while providing strong security and governance controls. Amazon 

QuickSight is cloud-based and can easily be provisioned for hundreds, or even thousands, of 

users in an organization.

A quick overview of Amazon QuickSight
We will do a deep dive into Amazon QuickSight in Chapter 12, Visualizing Data with Amazon 

QuickSight, but in this section, we will have a brief look at some of the primary ways that business 

users can use this tool.
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Amazon QuickSight provides interactive access to data for business users, with many different 

types and styles of charts supported. A dashboard can display data from multiple different data 

sources, and users can filter data, sort data, and even drill down into specific aspects of a dataset. 

In addition to dashboards, QuickSight can also be used to generate multi-page reports.

Business users can elect to receive dashboards via regular emails or can access and interact with 

dashboards on-demand via the QuickSight portal or the QuickSight mobile app. Dashboards 

can also be embedded into existing web portals and apps, making these rich data visualizations 

accessible via existing tools that business users have access to.

With a feature called Amazon QuickSight Q, business users can ask questions in natural language 

and receive answers, along with visualizations. This feature uses the power of Natural Language 

Processing (NLP) based machine learning models to understand the intent of a query and to then 

automatically identify appropriate data sources and create relevant visuals. For example, a sales 

manager could type in a query such as “show me sales this month by segment,” and QuickSight will 

create a chart showing the relevant information. 

Figure 8.1: A sample QuickSight dashboard
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While some users may have previously used spreadsheets to explore datasets using custom-built 

charts and pivot tables, QuickSight can provide the same functionality but in a much easier-to-use 

way. QuickSight also provides security, governance, and auditability, which is not possible when 

users share ad hoc spreadsheets.

QuickSight can use data from many different sources, including directly from an S3-based data 

lake, databases (such as Redshift, MySQL, and Oracle), SaaS applications (including Salesforce, 

ServiceNow, Jira, and others), as well as numerous other sources.

As a data engineer, you may be involved in helping set up QuickSight and may need to configure 

access to the various data sources. QuickSight users with relevant access can combine different 

data sources directly, thereby enabling them to build the visualizations the business requires 

without going through traditional data gatekeepers. However, there may also be times when you 

are asked to create new datasets in a data lake or data warehouse (such as Redshift or Snowflake) 

so that QuickSight users can access the required data without needing to combine and transform 

datasets themselves.

We are now going to move on and explore a different type of data consumer – the data analyst. 

But for a deeper dive into QuickSight, including a hands-on exercise on creating a QuickSight 

visual, refer to Chapter 12, Visualizing Data with Amazon QuickSight.

Meeting the needs of data analysts with structured 
reporting
While business users make use of data to make decisions related to their job in an organization, 

a data analyst’s full-time job is all about the data – analyzing datasets and drawing out insights 

for the business.

If you look at various job descriptions for data analysts, you may see a fair amount of variety, but 

some elements will be common across most descriptions. These include the following:

• Cleansing data and ensuring data quality when working with ad hoc data sources.

• Developing a good understanding of their specific part of the business (sometimes re-

ferred to as becoming a domain specialist for their part of the organization). This involves 

understanding what data matters to their part of the organization, which metrics are 

important, and so on.
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• Interpreting data to draw out insights for the organization (this may include identifying 

trends, highlighting areas of concern, and performing statistical analysis on data). The 

data analyst also needs to present the information they’ve gathered, as well as their con-

clusions, to business leaders.

• Creating visualizations using powerful BI software (such as Amazon QuickSight) that 

other business users can then interact with.

• Doing an ad hoc analysis of data using structured query languages such as SQL.

A data analyst is often tasked with doing complex data analysis to answer specific business ques-

tions. Examples, as described earlier in this book, include identifying which products are the most 

popular by different age or socio-economic demographics. Another example is what percentage 

of customers have browsed the company’s e-commerce store more than 5 times, for more than 

10 minutes at a time, in the last 2 weeks, but have not purchased anything.

At times, a data analyst may make use of data in the data lake that has already been through 

formal data engineering pipelines, which means it has been cleaned and checked for quality. At 

other times, a data analyst may need to ingest new raw data, and in these cases, they may be 

responsible for data cleansing and performing quality checks on the data.

Some of the work a data analyst does may be to use ad hoc SQL queries to answer very specific 

queries for a certain project, while at other times they may create reports, or visualizations, that 

run on a scheduled basis to provide information to business users.

AWS tools for data analysts
Data analysts may use a variety of tools as they work with diverse datasets. This includes using 

query languages, such as SQL, to explore data in a data warehouse such as Redshift or data in a 

traditional database. A data analyst may also use advanced toolsets such as Python or R to per-

form data manipulation and exploration. Visual transformation tools may also be used by the 

data analyst to cleanse and prepare data when working with ad hoc data sources that have not 

been through formal data engineering pipelines.

Data analysts also use BI tools, such as Amazon QuickSight, to create advanced visualizations or 

multi-page reports for business users. We covered Amazon QuickSight previously, so let’s explore 

some of the other tools in AWS that can be used by data analysts.
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Amazon Athena
Amazon Athena is a service that enables users to run complex SQL queries against a variety of 

data sources. This can be used to perform ad hoc exploration of data, enabling the data analyst 

to learn more about the data and test out different queries. Users also have the ability to use an 

integrated notebook environment to run Spark code for complex queries. 

Using Athena, a data analyst can run queries that join data from across tables in different data 

sources. For example, using Athena, you can run a single query that brings data in from S3 and 

joins that with data from Redshift.

In Chapter 11, Ad Hoc Queries with Amazon Athena, we will do a deeper dive into the Athena service.

AWS Glue DataBrew
Data analysts often need to use new sources of data to answer new questions and may need to 

perform some data transformation on these datasets. While creating these new insights, the data 

analyst may work closely with business users to develop the reports, visualizations, metrics, or 

other data as needed. Part of this iterative process may involve creating ad hoc transformation 

pipelines to ingest, cleanse, join, and transform data.

Once the deliverable has been finalized (data sources identified, transformations determined, 

and so on), the data analyst may work with their data engineering team to formalize the pipeline. 

This is a recommended best practice to ensure that all pipelines are contained in a source control 

system, are part of formal deployment processes, and so on. As such, data engineers should work 

closely with data analysts, and always be ready to help formalize the ad hoc pipelines that a data 

analyst may create and that the business has come to depend on.

One of the AWS tools that is very popular with data analysts is the AWS Glue DataBrew service. 

Using DataBrew, data analysts can easily cleanse new data sources and transform and join data 

from different tables to create new datasets. 
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This can all be done with the Glue DataBrew visual interface, without the data analyst needing 

to write any code. 

Figure 8.2: The AWS Glue DataBrew visual transform designer

Glue DataBrew can connect to many different data sources, including Redshift and Snowflake, 

JDBC databases, S3, Glue/Lake Formation tables, as well as other Amazon services such as AWS 

Data Exchange and Amazon AppFlow. DataBrew also includes over 250 built-in transforms that 

can be used by data analysts to easily perform common data cleansing tasks and transformations. 

In the hands-on section of this chapter, you will get to use some of these built-in transforms.

Running Python or R in AWS
Some data analysts have advanced coding skills that they put to use to explore and visualize data 

using popular programming languages such as Python and R. These languages include many 

functions for statistically analyzing datasets and creating advanced visualizations.

Python code can be run using multiple services in AWS, including the following:

1. AWS Lambda: Can run Python code in a serverless environment, for up to a maximum 

of 15 minutes of runtime
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2. AWS Glue Python shell: Can run Python code in a serverless environment, with no limit 

on how long it runs

3. Amazon EC2: A compute service where you can install Python and run Python code

In addition, if working with large datasets where a single compute node does not provide the 

needed processing power, AWS Glue for Ray is an engine option on AWS Glue that enables pro-

cessing large datasets with Python and popular Python libraries. AWS Glue for Ray supports 

the popular ray.io open-source compute framework that enables running Python code over 

multi-node clusters. 

RStudio, a popular IDE that can be used for creating data analytic projects based on the R pro-

gramming language, can also be run using multiple services in AWS:

1. RStudio can be run on Amazon EC2 compute instances, enabling data analysts to create 

R-based projects for data analysis. See the AWS blog titled Running R on AWS (https://

aws.amazon.com/blogs/big-data/running-r-on-aws/) for more information on how 

to set this up.

2. If you’re working with very large datasets, RStudio can also be run on Amazon EMR, which 

uses multiple compute nodes to process large datasets. See the AWS blog titled Statistical 

Analysis with Open-Source R and RStudio on Amazon EMR (https://aws.amazon.com/blogs/

big-data/statistical-analysis-with-open-source-r-and-rstudio-on-amazon-emr/) 

for more information on how to use R with Amazon EMR.

Data engineers can help enable data analysts who have strong Python or R skills by helping 

them configure these coding environments in AWS. Data engineers can also help formalize data 

transformation pipelines in those cases where a data analyst has created an ad hoc pipeline for 

processing that the business has subsequently come to use on an ongoing basis.

While data analysts are primarily responsible for deriving insights out of data that reflect current 

trends, as well as the current state of the business, data scientists generally use data to predict 

future trends and requirements. In the next section, we will dive deeper into the role of the data 

scientist.

Meeting the needs of data scientists and ML models
Over the past decade, the field of ML has significantly expanded, and the majority of larger or-

ganizations now have data science teams that use ML techniques to help drive the objectives of 

the organization.

ray.io
https://aws.amazon.com/blogs/big-data/running-r-on-aws/
https://aws.amazon.com/blogs/big-data/running-r-on-aws/
https://aws.amazon.com/blogs/big-data/statistical-analysis-with-open-source-r-and-rstudio-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/statistical-analysis-with-open-source-r-and-rstudio-on-amazon-emr/
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Data scientists use advanced mathematical concepts to develop ML models that can be used in 

various ways, including the following:

1. Identifying non-obvious patterns in data (based on the results of a blood test, what is the 

likelihood that this patient has a specific type of cancer?)

2. Predicting future outcomes based on historical data (is this consumer, with these specific 

attributes, likely to default on their debt?)

3. Extracting metadata from unstructured data (in this image of a person, are they smiling? 

Are they wearing sunglasses? Do they have a beard?)

Many types of ML approaches require large amounts of raw data to train the machine learning 

model (teaching the model about patterns in data). As such, data scientists can be significant 

consumers of data in modern organizations.

AWS tools used by data scientists to work with data
Data scientists use a wide variety of tools for many different purposes, such as tools for developing 

ML models, tools for fine-tuning those models, and tools for preparing data to train ML models.

Amazon SageMaker is a suite of tools that helps data scientists and developers with the many 

different steps required to build, train, and deploy ML models. In this section, we will only focus 

on the tools that are used in data preparation, but in Chapter 13, Enabling Artificial Intelligence and 

Machine Learning, we will do a deeper dive into some of the other AWS tools related to ML and AI.

SageMaker Ground Truth
Most ML models today rely on training the model using labeled data. That is, a dataset that in-

cludes the attribute that we are trying to predict is available to help train our model.

Let’s use an example of a data scientist named Luna who is looking to create an ML model to 

identify if an image is of a dog or a cat. To train the model, Luna would need loads of pictures of 

dogs and cats and would need each image to be labeled to indicate whether it is a picture of a 

dog or a cat. Once Luna has this labeled dataset, she could train her ML model to recognize both 

dogs and cats.

For our example, let’s imagine that Luna was able to acquire a set of 10,000 images of dogs and 

cats, but the images are unlabeled, which means they cannot be used to train the model. And it 

would take weeks for Luna to go through the 10,000 images on her own to label each one correctly.
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Luckily, Luna has heard about SageMaker Ground Truth, a fully managed service for labeling 

datasets. Ground Truth uses its own ML model to automatically label datasets, and when it comes 

across data that it cannot confidently label, it can route that data to a team of human data labelers 

to be manually labeled. You can route data to either your pre-selected team of data labelers, or 

make use of the over 500,000 independent contractors that are part of the Amazon Mechanical 

Turk program and have them label the data according to your instructions.

Using Amazon SageMaker Ground Truth, Luna can quickly and accurately get her 10,000 images 

of dogs and cats labeled, ready to help train her ML model.

SageMaker Data Wrangler
It has been estimated that data scientists can spend up to 70% of their time cleaning and preparing 

raw data to be used to train ML models. To simplify and speed up this process, Amazon Sage-

Maker Data Wrangler can be used to aggregate and prepare data for machine learning purposes. 

In most organizations, there will be formal datasets that data engineering teams have prepared 

for consumption by the organization. However, the specific data that a data scientist needs for 

training a specific model may not be available in this repository, may not be in the required format, 

or may not contain the granular level of data that is needed. To best enable data scientists to be 

self-sufficient without needing to depend on other teams, many organizations enable their data 

science teams to directly ingest and process raw data.

Data Wrangler supports directly ingesting data from sources, including Amazon S3, Athena, Red-

shift, as well as the Snowflake data warehouse. Once imported, a data scientist can use the Sage-

Maker Studio interface to transform the data, selecting from a library of over 300 built-in data 

transformations. Data Wrangler also supports writing custom transformations using PySpark 

and popular Python libraries such as pandas.

Once a Data Wrangler flow has been created in the SageMaker Studio visual interface, a user 

can export the Data Wrangler flow into a Jupyter notebook and run it as a Data Wrangler job, or 

even export the code as Python code and run it elsewhere.

SageMaker Clarify
SageMaker Clarify is a tool for examining raw data to identify potential bias in data that is going 

to be used to train ML models. For example, let’s say that you were developing a new ML model 

to detect credit risk for new customers. If your proposed training dataset contains data mostly on 

middle-aged people, then the resulting ML model may be less accurate when making predictions 

for younger or older people.
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SageMaker Clarify has been integrated with SageMaker Data Wrangler, enabling users to evalu-

ate their datasets for potential bias as part of the data preparation process. Users can specify the 

attributes that they want to evaluate for bias (such as gender or age) and SageMaker Clarify will 

use several built-in algorithms to detect potential bias. SageMaker Clarify also provides a visual 

report with details on the measurements and potential bias identified.

So far, we have had a look at several types of data consumers that are common in organizations, 

as well as the types of tools that these data consumers may use. Now, we will move on to this 

chapter’s hands-on exercise – creating a simple data transformation using AWS Glue DataBrew.

Hands-on – creating data transformations with AWS 
Glue DataBrew
In Chapter 7, Transforming Data to Optimize for Analytics, we used AWS Glue Studio to create a 

data transformation job that took in multiple sources to create a new table. In this chapter, we 

discussed how AWS Glue DataBrew is a popular service for data analysts, so we’ll now make use 

of Glue DataBrew to transform a dataset.

In this hands-on task, we will be playing the role of a data analyst who has been tasked with 

creating a mailing list that can be used to send marketing material to the customers of our now-

closed video store, to make them aware that our catalog of movies is now available for streaming.

Differences between AWS Glue Studio and AWS Glue DataBrew

Both AWS Glue Studio and AWS Glue DataBrew provide a visual interface for design-

ing transformations, and in many use cases, either tool could be used to achieve the 

same outcome. However, Glue Studio generates Spark code that can be further refined 

in a code editor and can be run in any compatible environment. Glue DataBrew does 

not generate code that can be further refined, although Glue DataBrew recipes can 

also be run from a Glue Studio job. Glue Studio has fewer built-in transforms, and 

the transforms it does include are generally aimed at data engineers. Glue DataBrew 

has over 250 built-in transforms, and these are generally aimed at data analysts. 

For more information on running Glue DataBrew recipes from within Glue Studio, 

see the following blog post: https://aws.amazon.com/blogs/big-data/use-

aws-glue-databrew-recipes-in-your-aws-glue-studio-visual-etl-jobs/. 

https://aws.amazon.com/blogs/big-data/use-aws-glue-databrew-recipes-in-your-aws-glue-studio-visual-etl-jobs/
https://aws.amazon.com/blogs/big-data/use-aws-glue-databrew-recipes-in-your-aws-glue-studio-visual-etl-jobs/
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Configuring new datasets for AWS Glue DataBrew
To start with, we’re going to access the Glue DataBrew console and connect to two existing S3-

based data sources (the customer and address tables that we ingested from our MySQL database 

in Chapter 6, Ingesting Batch and Streaming Data):

1. Log in to the AWS Management Console and access the Glue DataBrew service at 

https://console.aws.amazon.com/databrew.

2. From the left-hand side menu, click on Datasets.

3. Click on Connect new dataset.

4. Provide a Dataset name for the customer table (such as customer-dataset).

5. In the Connect to new dataset section of the window, click on Data Catalog S3 tables on 

the left-hand side. Then, click on sakila from the list of Glue databases.

Figure 8.3: Glue DataBrew – Dataset console

6. From the list of tables, click the selector for the customer table, and then click Create 

dataset at the bottom right.

https://console.aws.amazon.com/databrew
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7. Repeat Steps 1–6, but this time, name the dataset address-dataset, select Data Catalog 

S3 tables and sakila again, but select the address table, and then Create dataset.

Now that we have configured the two datasets we plan to use, we will start creating the transform 

steps in a new DataBrew project.

Creating a new Glue DataBrew project
Now, let’s create a new Glue DataBrew project where we can join our customer and address tables, 

and then clean the dataset:

1. In the AWS Glue DataBrew console, click on PROJECTS from the left-hand side menu. 

Then, click Create project.

2. For Project name, provide a name (such as customer-mailing-list).

3. Under Recipe details, leave the default of Create new recipe as is.

4. Under Select a dataset, select customer-dataset:

Figure 8.4: Creating a new Glue DataBrew project (1)
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5. Under Permissions, from the drop-down list, select Create new IAM role.

6. For New IAM role suffix, provide a suitable suffix, such as dataengbook.

7. At the bottom right, click on Create project:

Figure 8.5: Creating a new Glue DataBrew project (2)

Note that there are session costs associated with Glue DataBrew projects ($1.00 per 30-minute 

session). However, at the time of writing, AWS is offering the first 40 sessions at no charge to new 

Glue DataBrew customers. For the current pricing, see https://aws.amazon.com/glue/pricing/.

Building your Glue DataBrew recipe
We can now use the interactive Glue DataBrew project session to build out a recipe for our trans-

formation (a recipe is the steps that are taken to transform our data). Note that it may take a few 

minutes before the session is provisioned and ready.

https://aws.amazon.com/glue/pricing/


Identifying and Enabling Data Consumers258

In the interactive project session window, as shown in the following screenshot, we can see a 

sample of our customer table data and a panel to the right that allows us to build our recipe:

Figure 8.6: AWS Glue DataBrew interactive project session

For our recipe, we want to join this data with our address table, and then make the following 

changes to the dataset to create a mailing list for our marketing team:

• Change the first_name and last_name columns to capital case.

• Change the email addresses so that they’re all in lowercase.

Follow these steps to create the recipe. The first steps will join our data with the address table:

1. Click on Add step in the recipe panel on the right-hand side of the console.

2. Scroll down through the list of transformations and select Join multiple datasets.

3. From the Select dataset dropdown, select address-dataset. Dataset metadata, as well as 

a sample of the dataset, will be displayed. Click on Next at the bottom right.

4. For Select join type, select Left join. This takes all the rows in our left-hand table (the 

customer table) and joins each row with the matching row in the address table, based 

on the join keys we specify.

5. For Join keys, for Table A, select address_id. For Table B, also select address_id.
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6. Under Column list, deselect all the columns, and then select only the following columns 

(these will be the only columns that our marketing team needs for the mailing list):

• Table A, customer_id

• Table A, first_name

• Table A, last_name

• Table A, email

• Table B, address

• Table B, district

• Table B, postal_code

7. Click Finish.

We will now see a preview of our new table, with the customer and address tables joined, and 

only the columns selected previously showing.

You may notice that our customer list includes addresses from many different countries (look at 

some of the entries under the district column), and yet we don’t have a column for the country. 

This is because our original data source (a MySQL database) was highly normalized. The address 

table has a city_id field, and we could have included that and then joined our new dataset with 

the city table to include the city name and country_id fields. However, we would need to have 

joined that dataset with the country table (joining on the country_id column) to get the country 

name. We will not be covering those steps here, but feel free to give that a try on your own.

All the first names and last names were captured in all uppercase in the original data source 

(MySQL), so let’s transform these into capital case, and transform the email address into all 

lowercase. 

1. In the Recipe panel, click on Add step icon next to Applied steps.

2. From the list of transforms, scroll down and select the FORMAT / Change to capital case 

transform.

3. For Source column, select the first_name column. Ensure that Format column to has 

Capital case selected and then click Apply.

4. Repeat Steps 1–3, but this time select the last_name column as Source column.

5. Repeat Steps 1–3, but this time select the FORMAT / Change to lowercase transform and 

select the email column as the Source column, and then click Apply.
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Your Glue DataBrew recipe should look as follows:

Figure 8.7: Completed Glue DataBrew recipe

With that, we have created our recipe and have been able to preview the results of our transform. 

Our final step will be to run our recipe in a Glue DataBrew job and write out the results to Amazon 

S3 so that we can provide the mailing list file to our marketing team.

Creating a Glue DataBrew job
In this final section of our hands-on activity, we will run our recipe in a job and write the results 

of our transform to a file in Amazon S3:

1. In the AWS Glue DataBrew console, click on Jobs from the left-hand side menu. Then, 

click Create job.

2. For Job name, provide a name for your job (such as mailing-list-job).

3. For Job input, select Project, and then select your customer-mailing-list project.

4. For Job output settings, leave the default settings as is (output to Amazon S3, with CSV 

set as the file type, the delimiter as a comma, and no compression).

5. For S3 location, select a location (such as s3://dataeng-clean-zone-<initial>/

mailing-list but changing the initials to match your unique bucket name).  
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6. For Permissions, select Create new IAM role and provide a suffix (such as mailing-list-

job). By having Glue DataBrew create a new role for this job, DataBrew will automatically 

provide write access to the location you specified for S3 output.

7. Click Create and run job.

When the job finishes running, the Job run history screen will be displayed, showing the 

status of the job:

Figure 8.8: Job run history screen showing the job’s status

8. Click on 1 output in the Output column to view the S3 destination that you selected for 

this job. Click on S3 destination path to open a new browser tab showing the output’s 

location in the S3 console. Download the CSV file and open it with a text editor or spread-

sheet application to verify the results.

In this hands-on exercise, you created a new Glue DataBrew job that joined two tables (customer 

and address). You then ran various transforms on the dataset to format the columns as needed 

by the marketing team and created a new CSV output file in Amazon S3.

Summary
In this chapter, we explored a variety of data consumers that you are likely to find in most organiza-

tions, including business users, data analysts, and data scientists. We briefly examined their roles 

and then looked at the types of AWS services that each of them is likely to use to work with data.
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In the hands-on section of this chapter, we took on the role of a data analyst, tasked with cre-

ating a mailing list for the marketing department. We used data that had been imported from a 

MySQL database into S3 in a previous chapter, joined two of the tables from that database, and 

transformed the data in some of the columns. Then, we wrote the newly transformed dataset 

out to Amazon S3 as a CSV file.

In the next chapter, Loading Data into a Data Mart, we will look at how data from a data lake can 

be loaded into a data warehouse, such as Amazon Redshift.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd
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A Deeper Dive into Data Marts 
and Amazon Redshift

While a data lake enables a significant amount of analytics to happen inside it, there are several 

use cases where a data engineer may need to load data into an external data warehouse, or data 

mart, to enable a set of data consumers.

As we reviewed in Chapter 2, Data Management Architectures for Analytics, a data lake is a single 

source of truth across multiple lines of business, while a data mart generally contains a subset of 

data of interest to a particular group of users. A data mart could be a relational database, a data 

warehouse, or a different kind of datastore.

Data marts serve two primary purposes. First, they provide a database with a subset of the data 

in the data lake, optimized for specific types of queries (such as for a specific business function). 

In addition, they also provide a higher-performing, lower-latency query engine, which is often re-

quired for specific analytic use cases (such as for powering Business Intelligence (BI) applications).

In this chapter, we will focus on data warehouses and data marts and cover the following topics:

• Extending analytics with data warehouses/data marts

• What not to do – anti-patterns for a data warehouse

• Redshift architecture review and storage deep dive

• Designing a high-performance data warehouse

• Moving data between a data lake and Redshift

• Exploring advanced Redshift features

• Hands-on – deploying a Redshift Serverless cluster and running Redshift Spectrum queries 
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Technical requirements
For the hands-on exercises in this chapter, you will need permission to create a new IAM role, as 

well as permission to create a Redshift cluster.

You can find the code files of this chapter in the GitHub repository using the following link: 
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/

main/Chapter09

Extending analytics with data warehouses/data 
marts
Tools such as Amazon Athena (which we will do a deeper dive into in Chapter 11, Ad Hoc Queries 

with Amazon Athena) allow us to run SQL queries directly on data in the data lake. While this 

enables us to query very large datasets that exist in an Amazon S3 data lake, the performance 

of these queries is generally lower than the performance you get when running queries against 

data on a high-performance disk that is local to the compute engine.

However, not all queries require this kind of high performance, and we can categorize our que-

ries and data into cold, warm, and hot tiers. Before diving into the topic of data marts and data 

warehouses, let’s first take a look at the different tiers of queries/data storage that are common 

in data lake projects. 

Cold and warm data
We’ve grouped the cold and warm data tiers into one section, as when building in AWS, both of 

these tiers generally use Amazon S3 storage. As we have discussed elsewhere in this book, Amazon 

S3 is low-cost object storage that provides very high durability and an SLA of 99.9% availability, 

while also being massively scalable.

AWS offers different storage classes for the objects you store in Amazon S3, and some classes 

are better suited to cold data, while other classes are well suited to warm data. Let’s first take a 

look at the difference between cold and warm data, and then we can do a deeper dive into the 

different storage classes.

Cold data
This is data that is not frequently accessed but it is mandatory to store for long periods for com-

pliance and governance reasons, or historical data that is stored to enable future research and 

development (such as for training Machine Learning (ML) models).

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter09
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter09
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An example of this is the access logs from a banking website. Unless there is a court-issued legal 

request to query the logs for some specific data, the chances are that after a few months, we will 

not need to access this data again. However, due to compliance reasons, we may need to store 

this data for a number of years. 

Another example is detailed data from a range of sensors in a factory. This data may not be queried 

actively after 30 days, but we want to keep this data available in case there is a future ML project 

where it would be useful to train the ML model with rich, historical data.

Warm data
Warm data is data that is accessed relatively often but does not require extremely low latency 

for retrieval. This is data that needs to be queried on demand, such as data that is used in daily 

ETL jobs, or data used for ad hoc querying and data discovery.

An example of this kind of data is data that is ingested in our raw data lake zone daily, such as 

data from a transactional database system. This data will be processed by our ETL jobs daily, and 

data will be written out to the transformed zone.

Generally, data in the transformed zone will still be batch-processed for further business trans-

forms, before being moved to the curated zone. All of these zones would likely fall into the cat-

egory of warm data.

Amazon S3 storage classes
Broadly speaking, you can think of Amazon S3 storage classes as being part of one of three dif-

ferent groupings.

General purpose
The Amazon S3 Standard storage class is a general-purpose storage class that provides immediate 

(millisecond) access to data. This storage class is designed for data that is frequently accessed.

The Amazon S3 Standard storage class has a per-GB cost for data stored, and no per-GB cost to 

read or access the data. As such, it is ideal for storing current data lake data, such as newly ingested 

data, or data from the past month (or few months) that is queried regularly. 

Infrequent Access
There are two different storage classes that are categorized as Infrequent Access – S3 Standard-In-

frequent Access and S3 One Zone-Infrequent Access. Both of these storage classes provide 

immediate (millisecond) access to data, but the pricing model is different from the Standard 

storage class. 
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With the Infrequent Access storage classes, you pay a lower per-GB cost than S3 Standard for 

storing data, but there is a per-GB charge for reading/accessing the data. Therefore, this storage 

class is ideal for data that you need to store for longer periods of time and access infrequently. 

For example, you may store the most recent 3 months of data in the Standard storage class, but 

store the data for the 24 months prior to that in Infrequent Access, as that data may be queried 

once a month for month-end reporting. 

The difference between Standard-Infrequent Access and One Zone-Infrequent Access is that 

the One Zone data is only stored in a single availability zone. This reduces the durability of data 

stored in this storage class, while slightly reducing the data storage costs, and is only intended 

for data that can be easily recreated. 

Note that data stored in the Infrequent Access storage classes is always charged for a minimum 

of 30 days, therefore it is not suited to data that will be deleted in less than 30 days. Infrequent 

Access is intended for longer-term data storage.

Archive storage
Amazon S3 has a number of Glacier storage classes that are intended for different types of ar-

chiving requirements. 

The Glacier Instant Retrieval storage class offers archival storage for data that is not accessed 

regularly (for example, once per quarter) but you want to be able to access the data immediately. 

Objects in the Glacier Instant Retrieval storage class do not need to be restored before you access 

them, and therefore they can be queried by Athena. The Glacier Instant Retrieval storage class has 

a lower cost per GB of data stored than the Standard and Infrequent Access classes, but a higher 

cost to retrieve/access data than the other classes. 

The Amazon S3 Glacier Flexible Retrieval storage class is intended for long-term storage where 

access to the data may be required a few times a year, and immediate access is not required. Data 

can be retrieved from S3 Glacier in minutes to hours (with different price points for the retrieval, 

based on how quickly the data is required). Data in S3 Glacier cannot be directly queried with 

Amazon Athena or Glue jobs – it must be retrieved and stored in a regular storage class before it 

can be queried. 

The Amazon S3 Glacier Deep Archive storage class is the lowest-cost storage for long-term data 

retention and is intended for data that may be retrieved at most once or twice a year. Data in this 

storage class can be retrieved within 12 hours.
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Storage charges for objects in S3 Glacier storage classes are for a minimum of 90 days for Instant 

Retrieval and Flexible Retrieval and 180 days for Deep Archive, so they are not intended for data 

that is short-lived. 

Data that you store in the Glacier Instant Retrieval storage class can still be a part of your data 

lake, as you are able to immediately access the data and query it with tools such as Amazon Ath-

ena. However, because of the data access charges, you need to ensure that data in this class is not 

queried on a regular basis as this can get very expensive. If data is stored in the Glacier Flexible 

Retrieval or Deep Archive storage classes, this data cannot be considered active data in the data 

lake, as the data cannot be queried without first restoring it from the archive. 

Using Amazon S3 Lifecycle rules to automatically move data between 
storage classes
Amazon S3 enables you to configure Amazon S3 Lifecycle rules that are used to automatically 

move your data between the different storage classes. For example, you know that once your 

granular sales data per store is 3 months old, it is not queried often, so you could configure a 

lifecycle rule to automatically move data in the sales prefix of the bucket to either Infrequent 

Access or Glacier Instant Retrieval storage classes. 

When creating a lifecycle rule, you can specify multiple transitions that apply at different ages 

(days after creation) of an object. You can also specify configuration options, including the fol-

lowing:

• You can either limit the scope of the rule to a full bucket or create a rule for a specific 

prefix in a bucket.

• You can select to exclude files under a specific size or over a specific size.

• You can move objects between storage classes or select to delete an object.

For example, you can create a configuration rule that will move objects to Standard-Infrequent 

Access after 30 days, and then to Glacier Instant Retrieval 90 days after the object was created. It 

will then move the object to Glacier Deep Archive 365 days after it was created and, finally, will 

permanently delete the object 1,095 days (3 years) after creation.
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Enabling Amazon S3 to automatically optimize your storage costs 
You can also use a special storage class called Amazon S3 Intelligent Tiering to automatically 

move data to the most cost-effective access tier, based on changing access patterns. When you 

place objects in the S3 Intelligent Tiering storage class, the object is moved between tiers based 

on when it was last accessed (which is different from how lifecycle rules work, as those are based 

on the number of days since the object was created). 

The default tier is the Frequent Access tier, but if an object in this tier is not accessed for 30 days, 

it is automatically moved to the Infrequent Access tier. If an object is not accessed for 90 consec-

utive days, it is automatically moved to the Archive Instant Access tier (which, much like Glacier 

Instant Retrieval, makes the object available in milliseconds). 

You can optionally also enable having the object moved to the Archive Access tier, after anywhere 

between 90 and 730 days without it being accessed. Once data is moved to the Archive Access 

tier, it must be retrieved before it can be accessed, and retrieval ranges from minutes to 5 hours, 

although you can request expedited retrieval (at an additional charge), which restores objects 

in 1–5 minutes.  

An additional option is to activate the Deep Archive Access tier for data that has not been accessed 

for between 180 and 730 days (configurable). The Deep Archive Access tier is similar to the Glacier 

Deep Archive storage class in terms of time to retrieve objects (9–12 hours). 

When an object that has been moved into an Infrequent Access or Archive tier is accessed, it is 

moved back into the Frequent Access tier. 

There are trade-offs between storage costs, data retrieval costs, and the amount of time required 

to access data that has been archived (for certain storage classes/tiers), and therefore you need 

to consider these before enabling either lifecycle rules or the optional archive components of the 

Intelligent Tiering storage class. 

However, in most cases, it is highly recommended that you consider using the S3 Intelligent Tiering 

storage class (without optional archiving) as your default storage class for data in your data lake, 

as this can lead to significant cost optimization with very little effort or management overhead. 

Each of these storage classes has different pricing plans. S3 Standard’s cost is based on storage 

and API calls (put, copy, get, and more), while S3 Standard-Infrequent Access and Glacier Archive 

classes also have a cost per GB of data retrieved. S3 Intelligent Tiering does not have a cost per GB 

for data retrieved, but it does have a small monitoring and automation cost per object. For more 

details on pricing, see https://aws.amazon.com/s3/pricing/.

https://aws.amazon.com/s3/pricing/
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Hot data
Hot data is data that is highly critical for day-to-day analytics enablement in an organization. 

This is data that is likely accessed multiple times per day, and low-latency, high-performance 

access to the data is critical.

An example of this kind of data would be data used by a BI application (such as Amazon Quick-

Sight or Tableau). This could be data that is used to show manufacturing and sales of products at 

different sites, for example. This is often the kind of data that is used by end user data consumers 

in the organization, as well as by business analysts who need to run complex data queries. This 

data may also be used in constantly refreshing dashboards that provide critical business metrics 

and KPIs used by senior executives in the organization.

In AWS, several services can be used to provide high-performance, low-latency access to data. 

These include the RDS database engines, the NoSQL DynamoDB database, as well as OpenSearch 

(for searching full-text data). However, from an analytic perspective, the most common targets 

for hot data are Amazon Redshift or Amazon QuickSight SPICE (which stands for Super-fast, 

Parallel, In-memory Calculation Engine):

• Amazon Redshift is a super-fast cloud-native data warehousing solution that provides 

high-performance, low-latency access to data stored in the data warehouse.

• Amazon QuickSight is a BI tool from Amazon for creating dashboards. With Amazon 

QuickSight, you have the option of reading data from sources, such as Amazon Redshift, or 

loading data directly into the QuickSight in-memory database engine (SPICE) for optimal 

high-performance, low-latency access.

As we mentioned previously, AWS offers purpose-built storage engines for different data types/

temperatures. The decision of which engine to use is generally based on a cost versus performance 

trade-off.

In many cases, data is time-sensitive. There may be a business application that needs to report 

on historical statistics, current trends, and a zoomed-in view of the previous few months of data. 

Some of this data may also need to be refreshed frequently. This requires a data engineer to process 

the data, clean and transform it, and then load a subset of the data to a high-performing engine, 

such as Amazon Redshift.

In this chapter, we are going to focus on using Amazon Redshift as a high-performance data mart 

for hot data access. Data lakes are a great option from a cost and scalability perspective for storing 

large amounts of data and being the ultimate source of truth. 
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However, data warehouses provide an application-specific approach to querying large-scale 

structured and semi-structured data with the best performance and lowest latency.

What not to do – anti-patterns for a data warehouse
While there are many good ways to use a data warehouse for analytics, there are some approaches 

that at first may seem to be a good fit for a data warehouse but are generally not recommended.

Let’s take a look at some of the ways of using a data warehouse that should be avoided.

Using a data warehouse as a transactional datastore
Data warehouses are designed to be optimized for Online Analytical Processing (OLAP) queries, 

so they should not be used for Online Transaction Processing (OLTP) queries and use cases.

While there are mechanisms to update or delete data from a data warehouse (such as the merge 

statement in Redshift), a data warehouse is primarily designed for mostly append-only, or insert, 

queries. There are also other features of transactional databases (such as MySQL or PostgreSQL) 

that are available in Redshift – such as the concept of primary and foreign keys – but these are 

used for performance optimization and query planning and are not enforced by Redshift.

Using a data warehouse as a data lake
Data warehouses offer increased performance by having high-performance storage directly at-

tached to the compute engine. A data warehouse is also able to scale to store vast amounts of 

data, and while primarily designed to support structured data, they are also able to offer some 

support for semi-structured data.

However, data warehouses, by design, require upfront thought about schema and table structure. 

They are also not designed to store unstructured data (such as images and audio), and they gen-

erally use SQL as the primary method for data querying and transformation. As data warehouses 

include a compute engine, their cost is also higher than storing data in low-cost object storage.

In contrast, with data lakes, you can store all the data in low-cost object storage and can ingest 

data without needing to design an appropriate schema structure first. You can also analyze the 

dataset directly (using tools such as Amazon Athena) and transform the data with a wide range of 

tools (SQL and Spark, for example), and then bring just the required data into the data warehouse.

While it is possible to load raw data in a data warehouse and then transform the data in the ware-

house, that is the Extract, Load, Transform (ELT) process, this often ends up costing significantly 

more than storing the raw data in an object store such as S3, transforming the data directly in 

the data lake, and then loading a subset of data into a data warehouse. 
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The goal is to avoid storing unnecessary data in a data warehouse. Data warehouses are supposed 

to store curated datasets with well-defined schemas and should only store hot data that is needed 

for high-performance, low-latency queries.

Storing unstructured data
While some data warehouses (such as Amazon Redshift and Snowflake) can store semi-structured 

data (such as JSON data), data warehouses generally cannot be used to store unstructured data 

such as images, videos, and other media content.

You should always consider which data engine may be best for a specific data type before just 

defaulting to storing the data in a data warehouse. For example, Health Care FHIR data has a 

heavily nested JSON structure. While it is possible to store and query this in Amazon Redshift, or 

another data warehouse solution, you may want to consider using a solution designed for that 

specific data type, such as Amazon HealthLake.

Now that we have reviewed some of the ways that a data warehouse should not be used, let’s dig 

deeper into the Redshift architecture.

Redshift architecture review and storage deep dive
In this section, we will take a deeper dive into the architecture of Redshift clusters, as well as into 

how data in tables is stored across Redshift nodes. This in-depth look will help you understand 

and fine-tune Redshift’s performance, though we will also cover how many of the design decisions 

affecting table layout can be automated by Redshift.

In Chapter 2, Data Management Architectures for Analytics, we briefly discussed how the Redshift 

architecture uses leader and compute nodes. Each compute node contains a certain amount of 

compute power (CPUs and memory), as well as a certain amount of local storage. When configur-

ing your Redshift cluster, you can add multiple compute nodes, depending on your compute and 

storage requirements. Note that to provide fault tolerance and improved durability, the compute 

nodes have 2.5–3x the stated node storage capacity (for example, if the addressable storage ca-

pacity is listed as 2.56 TB, the actual underlying storage may be closer to 7.5 TB).

Every compute node is split into either 2, 4, or 16 slices, depending on the cluster type and size. 

Each slice is allocated a portion of the node’s memory and storage and works as an independent 

worker, but in parallel with the other slices.

The slices store different columns of data for large tables, as distributed by the leader node. The 

data for each column is persisted as 1 MB immutable blocks, and each column can grow inde-

pendently.
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When a user runs a query against Redshift, the leader node creates a query plan and allocates 

work for each slice, and then the slices execute the work in parallel. When each slice completes 

its work, it passes the results back to the leader node for final aggregation or sorting and merging. 

However, this means that a query is only as good as its slowest partition (or slice).

Data distribution across slices
Let’s have a look at how data is distributed across slices in Redshift:

Figure 9.1: Data distribution across slices on a compute node

In the preceding diagram, we can see that Column2 is distributed across Slice1-Disk1, Slice1-

Disk2, and Slice2-Disk1. To increase data throughput and query performance, data should be 

spread evenly across slices to avoid I/O bottlenecks. If most of the data for a specific table were 

on one node, that node would end up doing all the heavy lifting and diminish the point of par-

allelism. Redshift supports multiple distribution styles, including EVEN, KEY, and ALL (and can 

automatically select the best distribution style, as we will discuss later in this chapter). 



Chapter 9 273

The distribution style that’s selected for a specific table determines which slice a row in a column 

will be stored on.

One of the most common operations when performing analytics is the JOIN operation. Let’s look 

at an example where we have two tables, one of which is a small dimension table (2–3 million 

rows) and the other is a very large fact table (potentially with hundreds of millions of rows). For 

a reminder about data warehouse schema design with fact and dimension tables, refer back to 

the section Dimensional modeling in data warehouses in Chapter 2, Data Management Architectures 

for Analytics. 

The small dimension table can easily fit into the storage of a single node, while the large fact 

table needs to be spread across multiple nodes. One of the biggest impacts on performance re-

garding a JOIN query is when data needs to be shuffled (copied) between nodes. To avoid this, 

and to optimize JOIN performance, the smaller dimension table can be stored on all the slices 

of the cluster by specifying an ALL distribution style. For the larger table, data can be equally 

distributed across all the slices in a round-robin fashion by specifying an EVEN distribution style. 

By doing this, every slice will have a full copy of the small dimension table and it can directly 

join that with the subset of data it holds for the large fact table, without needing to shuffle the 

dimension data from other slices.

While this can be ideal for query performance, the ALL distribution style does have some overhead 

with regard to the amount of storage space used by the cluster, as well as a negative performance 

impact for data loads.

An alternative approach that can be used to optimize joins, especially if both tables being joined 

are large, is to ensure that the same slice stores the rows for both tables that will need to be joined. 

A way to achieve this is by using the KEY distribution style, where a hash value of one of the col-

umns will determine which row of each table will be stored on which slice.

For example, let’s say that we have a table that stores details about all of the products we sell, 

and that this table contains a product_id column. Let’s also say we have a different table that 

contains details of all sales, and that it also contains a column called product_id.

In our queries, we often need to join these tables on the product_id column. By distributing the 

data for both tables based on the value of the product_id column, we can help ensure that all 

the rows that need to be joined are on the same slice. Redshift would determine the hash value 

of, for example, product_id "DLX5992445" and, based on that hash value, determine which slice 

the data should be stored on. With this approach, all the rows from both tables that contain that 

product_id would be stored on the same slice.
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For grouping and aggregation queries, you also want to reduce data shuffling (copying data from 

one node to another to run a specific query) to save network I/O. This can also be achieved by using 

the KEY distribution style to keep records with the same key on the same slice. In this scenario, 

you would specify the column used in the GROUP BY clause as the key to distribute the data on.

However, if we queried one of these tables with a WHERE filter on the product_id column, then this 

distribution would create a bottleneck, as all the data that needed to be returned from the query 

would be on one slice. As such, you should avoid specifying a KEY distribution on a column that 

is commonly used in a WHERE clause. Finally, the column that’s used for KEY distribution should 

always be one with high cardinality and normal distribution of data to avoid hot partitions and 

data skew.

While this can be very complex, Redshift can automatically optimize configuration items such 

as distribution styles, as we will discuss later in this chapter in the Designing a high-performance 

data warehouse section.

Redshift Zone Maps and sorting data
The time it takes a query to return results is also impacted by hardware factors – specifically, the 

amount of disk seek and disk access time:

• Disk seek is the time it takes a hard drive to move the read head from one block to another 

(as such, it does not apply to nodes that use SSD drives).

• Disk access is the latency in reading and writing stored data on disk blocks and transfer-

ring the requested data back to the client.

To reduce data access latency, Redshift stores in-memory metadata about each disk block on 

the leader node in what is called Zone Maps. For example, Zone Maps store the minimum and 

maximum values for the data of each column that is stored within a specific 1 MB data block. 

Based on these Zone Maps, Redshift knows which blocks contain data relevant to a query, so it 

can skip reading blocks that do not contain data needed for the query. This helps optimize query 

performance by magnitudes by reducing the number of reads.

Zone Maps are most effective when the data on blocks is sorted. When defining a table, you can 

optionally define one or more sort keys, which determines how data is sorted within a block. 

When choosing multiple sort keys, you can either have a priority order of keys using a compound 

sort key or give equal priority to each sort key using an interleaved sort key. The default sort key 

type is a compound sort key, and this is recommended for most scenarios.
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Sort keys should be on columns that are frequently used with range filters or columns where you 

regularly compute aggregations. While sort keys can help significantly increase query performance 

by improving the effectiveness of Zone Maps, they can harm the performance of ingest tasks. In 

the next section, we will look at how Redshift simplifies some of these difficult design decisions 

by being able to automatically optimize a table’s sort key. In most cases, it makes sense to have 

Redshift automatically optimize the sort key, at least initially, and then over time, investigate 

manually setting the sort key if you feel further optimization is required. 

Designing a high-performance data warehouse
When you’re looking to design a high-performing data warehouse, multiple factors need to be 

considered. These include items such as cluster type and sizing, compression types, distribution 

keys, sort keys, data types, and table constraints.

As part of the design process, you will need to consider several trade-offs, such as cost versus 

performance. Business requirements and the available budget will often drive these decisions.

Beyond decisions about infrastructure and storage, the logical schema design also plays a big 

part in optimizing the performance of the data warehouse. Often, this will be an iterative process, 

where you start with an initial schema design that you refine over time to optimize for increased 

performance.

Provisioned versus Redshift Serverless clusters
When creating an Amazon Redshift cluster, you can select to either use a serverless Redshift 

configuration or provision specific resources. With Redshift Serverless clusters, you only pay 

for compute costs while the cluster is active, and the cluster automatically shuts down during 

periods of inactivity. With a provisioned cluster, you pay for the compute resources for as long 

as the cluster is up (although you can manually choose or schedule times to pause and resume 

the cluster, and when paused, you only pay for storage). 

Both provisioned and serverless clusters support the same features, and both can handle complex 

workloads and advanced queries. With provisioned clusters, you need to determine how many 

nodes to configure in the cluster, as well as what types of nodes, in order to get the performance 

you require. With Redshift Serverless, you only need to specify a base number for Redshift Pro-

cessing Units (RPUs), and Redshift Serverless will automatically scale in order to handle the 

load placed on the cluster. As a result, Redshift Serverless is able to more dynamically respond 

to changes in processing load.



A Deeper Dive into Data Marts and Amazon Redshift276

Redshift Serverless clusters also do not require you to specify maintenance windows or to plan 

for software upgrades. As a serverless service, updated software versions are automatically ap-

plied and there is no interruption to existing connections or queries when Redshift changes the 

underlying software version. 

Overall, Redshift Serverless is simpler to deploy and manage than working with a provisioned 

cluster; however, the costs for Redshift Serverless are harder to predict and manage. To help 

manage costs, you can set limits on the maximum RPUs consumed over a period of time (daily, 

weekly, or monthly), and when the limit is reached, either generate a notification or prevent any 

further queries from being run. 

If you have unpredictable workloads, or your cluster is only used at certain times (such as a de-

velopment or test cluster), then there are many advantages to using Redshift Serverless. However, 

if you have well-defined and relatively constant workloads, then using a provisioned cluster 

can provide lower costs (especially when you commit to usage by purchasing a 1-year or 3-year 

Reserved Instance for Redshift). 

Selecting the optimal Redshift node type for provisioned 
clusters
With provisioned clusters, there are different types of nodes available, each with different combi-

nations of CPU, memory, storage capacity, and storage type. The following are the three families 

of node types:

1. RA3 nodes: These nodes use managed storage, which decouples compute and storage 

since you pay a per-hour compute fee, and a separate fee based on how much managed 

storage you use over the month. Storage is a combination of local SSD storage and data 

stored in S3 and is fully managed by Redshift. 

2. DC2 nodes: These are designed for compute-intensive workloads and feature a fixed 

amount of local SSD storage per node. With DC2 nodes, compute and storage are cou-

pled (meaning that to increase either compute or storage, you need to add a new node 

containing both compute and storage).

3. DS2 nodes (legacy): These are legacy nodes that offer compute with attached large hard 

disk drives. With DS2 nodes, compute and storage are also coupled.

AWS recommends that for small provisioned clusters (under 1 TB compressed in size), you use 

DC2 nodes, while larger data warehouses make use of the RA3 nodes with managed storage. 
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Note that many advanced features of Redshift, such as data sharing, are only available with RA3 

nodes. The DS2 node type is a legacy node type that is not generally recommended for use when 

creating a new Redshift cluster. 

When creating a new provisioned Redshift cluster in the console, you have the option of entering 

information about your data’s size, type of data, and data retention, and Redshift will provide a 

recommended node type and the number of nodes for your workload.

Selecting the optimal table distribution style and sort key
In the early days of Redshift, users had to specifically select the distribution style and sort key 

that they wanted to use for each table. When a Redshift cluster was not performing as well as 

expected, it would often turn out that the underlying issue was having a non-optimal distribution 

style and/or sort key.

As a result, Amazon introduced new functionality that enabled Redshift to use advanced Artificial 

Intelligence methods to monitor queries being run on the cluster, and to automatically apply the 

optimal distribution style and/or sort key. Optimizations can be applied to tables within a few 

hours of a minimum number of queries being run.

If you create a new table and do not specify a specific distribution style or sort key, Redshift sets 

both of those settings to AUTO. Smaller tables will initially be set to have an ALL distribution style, 

while larger tables will have an EVEN distribution style.

If a table starts small but grows over time, Redshift automatically adjusts the distribution style to 

EVEN. Over time, as Redshift analyzes the queries being run on the cluster, it may further adjust 

the table distribution style to be KEY-based.

Similarly, Redshift analyzes queries being run to determine the optimal sort key for a table. The 

goal of this optimization is to optimize the data blocks that are read from the disk during a table 

scan.

It is strongly recommended that you allow Redshift to manage distribution and sort key optimiza-

tions for your table automatically, but you do have the power to manually configure these settings 

if you have a unique use case, or if you find that you need further performance improvements 

beyond what is achieved with automatic selection. 
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Selecting the right data type for columns
Every column in a Redshift table is associated with a specific data type, and this data type ensures 

that the column will comply with specific constraints. This helps enforce the types of operations 

that can be performed on the values in the column.

For example, an arithmetic operation such as sum can only be performed on numeric data types. 

If you needed to perform a sum operation on a column type that was defined as a character or 

string type, you would need to cast it to a numeric type first. This can have an impact on query 

performance, so it needs to be taken into consideration.

There are broadly six data types that Amazon Redshift currently supports. Let’s do a deeper dive 

into each of these data types. 

Character types
Character data types are equivalent to string data types in programming languages and relational 

databases, and are used to store text.

There are two primary character types:

1. CHAR(n), CHARACTER(n), and NCHAR(n): These are fixed-length character strings that sup-

port single-byte characters only. Data is stored with trailing white spaces at the end to 

convert the string into a fixed length. If you defined a column as CHAR(8), for example, 

data in this column would be stored as follows:

CHAR(8)

"ABC     "

"DEF     "

However, the trailing white space is ignored during queries. For example, if you were 

querying the length of one of the aforementioned records, it would return a result of 3, 

not 8. Also, if you were querying the table for records matching "ABC", the trailing space 

would again be ignored and the record would be returned.

2. VARCHAR(n) and NVARCHAR(n): These are variable-length character strings that support 

multi-byte characters. When creating this data type, to determine the correct length to 

specify, you should multiply the number of bytes per character by the maximum number 

of characters you need to store.
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A column with VARCHAR(8), for example, can store up to eight single-byte characters, four 

2-byte characters, or two 4-byte characters. To calculate the value of n for VARCHAR, mul-

tiply the number of bytes per character by the number of characters. As this data type is 

for variable-length strings, the data is not padded with trailing white space.

When deciding on the character type, if you need to store multi-byte characters, then you should 

always use the VARCHAR data type. For example, the Euro symbol (€) is represented by a 3-byte 

character, so this should not be stored in a CHAR column.

However, if your data can always be encoded with single-byte characters and is always a fixed 

length, then use the fixed-width CHAR data type. An example of this is columns that store phone 

numbers or IP addresses.

AWS recommends that you always use the smallest possible column size rather than providing a 

very large value, for convenience, as using an unnecessarily large length can have a performance 

impact for complex queries. However, there is a trade-off because if the value is too small, you 

will find that queries may fail if the data you attempt to insert is larger than the length specified. 

Therefore, consider what may be the largest potential value you need to store for a column and 

use that when defining the column.

Numeric types
Number data types in Redshift include integers, decimals, and floating-point numbers. Let’s look 

at the primary numeric types.

Integer types
Integer types are used to store whole numbers, and there are a few options based on the size of 

the integer you need to store:

1. SMALLINT/INT2: These integers have a range of -32,768 to +32,767.

2. INTEGER/INT/INT4: These integers have a range of -2,147,483,648 to +2,147,483,647.

3. BIGINT/INT8: These integers have a range of -9,223,372,036,854,775,808 to 

+9,223,372,036,854,775,807.

You should always use the smallest possible integer type that will be able to store all expected 

values. For example, if you’re storing the age of a person, you should use SMALLINT, while if you’re 

storing a count of product inventory where you expect to have hundreds of thousands of units to 

potentially a few million units on hand, you should use the INTEGER type.
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Decimal type
The DECIMAL type allows you to specify the precision and scale you need to store. The precision 

indicates the total number of digits on both sides of the decimal point, while the scale indicates 

the number of digits on the right-hand side of the decimal point. You define the column by spec-

ifying DECIMAL(precision, scale).

Creating a column and specifying a type as DECIMAL(7,3) would enable values in the range of 

-9,999.999 to +9,999.999.

The DECIMAL type is useful for storing the results of complex calculations where you want full 

control over the accuracy of the results.

Floating-point types
These numeric types are used to store values with variable precision. The floating-point types 

are known as inexact types, which means you may notice a slight discrepancy when storing and 

reading back a specific value, as some values are stored as approximations. If you need to ensure 

exact calculations, you should use the DECIMAL type instead.

The two floating-point types that are supported in Redshift are as follows:

1. REAL/FLOAT4: These support values of up to 6 digits of precision.

2. DOUBLE PRECISION/FLOAT8/FLOAT: These support values of up to 15 digits of precision.

This data type is used to avoid overflow errors for values that are mathematically within range, 

but the string length exceeds the range limit. When you insert values that exceed the precision 

for that type, the values are truncated. For a column of the REAL type (which supports up to 6 

digits of precision), if you insert 7876.7876, it would be stored as 7876.78. Or, if you attempted 

to insert a value of 787678.7876, it would be stored as 787678.

Datetime types
These types are equivalent to simple date, time, or timestamp columns in programming languages. 

The following date/time types are supported in Redshift:

1. DATE: This column type supports storing a date without any associated time. Data should 

always be enclosed in double quotation marks.

2. TIME/TIMEZ: This column type supports storing a time of day without any associated date. 

TIMEZ is used to specify the time of day with the time zone, with the default time zone 

being Coordinated Universal Time (UTC). TIME is stored with up to 6-digit precision for 

fractional seconds.



Chapter 9 281

3. TIMESTAMP/TIMESTAMPZ: This column type is a combination of DATE followed by TIME/TIMEZ. 

If you insert a date without a time value, or only a partial time value, into this column 

type, any missing values will be stored as 00. For example, a TIMESTAMP of 2021-05-23 

will be stored as 20121-05-23 00:00:00.

Boolean type
The Boolean type is used to store single-byte literals with a True or False state or UNKNOWN. When 

inserting data into a Boolean type field, the valid set of specifiers for True is {TRUE, 't', 'true', 

'y', 'yes', '1'}. The valid set of specifiers for False is {FALSE 'f' 'false' 'n' 'no' '0'}. 

And if a column has a NULL value, it is considered UNKNOWN.

Regardless of what literal string was used to insert a column of the Boolean type, the data is 

always stored and displayed as t for true and f for false.

HLLSKETCH type
The HLLSKETCH type is a complex data type that stores the results of what is known as the Hyper-

LogLog algorithm. This algorithm can be used to estimate the cardinality (number of unique 

values) in a large multiset very efficiently. Estimating the number of unique values is a useful 

analytic function that can be used to map trends over time.

For example, if you run a large social media website with hundreds of millions of people visiting 

every day, to track trends, you may want to calculate how many unique visitors you have each day, 

each week, or each month. Using traditional SQL to perform this calculation would be imprac-

tical as the query would take too long and would require an extremely large amount of memory.

This is where algorithms such as the HyperLogLog algorithm come in. Again, there is a trade-off, 

as you do give up some level of accuracy in exchange for a much more efficient way of getting a 

good estimate of cardinality (generally, the error range is expected to be between 0.01 and 0.6%). 

Using this algorithm means you can now work with extremely large datasets and calculate the 

estimated unique values with minimal memory usage and within a reasonable time.

Redshift stores the result of the HyperLogLog algorithm in a data type called HLLSKETCH. You 

could have a daily query that runs to calculate the approximate unique visitors to your website 

each day and store that in an HLLSKETCH data type. Then, each week, you could use Redshift’s 

built-in aggregate and scalar functions on the HLLSKETCH values to combine multiple HLLSKETCH 

values to calculate weekly totals.
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SUPER type
To support semi-structured data (such as arrays and JSON data) more efficiently in Redshift, 

Amazon provides the SUPER data type. You can load up to 1 MB of data into a column that is of the 

SUPER type, and then easily query the data without needing to impose a schema first.

For example, if you’re loading JSON data into a SUPER data type column, you don’t need to specify 

the data types of the attributes in the JSON document. When you query the data, dynamic typing 

is used to determine the data type for values in the JSON document.

The SUPER data type offers significantly increased performance for querying semi-structured 

data versus unnesting the full JSON document and storing it in columns. If the JSON document 

contains hundreds of attributes, the increase in performance can be significant.

Amazon did announce support for up to 16 MB of data in the SUPER type; however, at the time of 

writing, this functionality is still in preview. Also, this functionality currently has a number of 

known limitations, such as not supporting data sharing, elastic resize, or query federation if a 

table has a SUPER type that holds objects larger than 1 MB. 

Selecting the optimal table type
Redshift supports several different types of tables. Making use of a variety of table types for 

different purposes can help significantly increase query performance. Here, we will look at the 

different types of tables and discuss how each type can affect performance.

Local Redshift tables
The most common and default table type in Redshift is a table that is permanently stored on 

Redshift-managed storage. For RA3 node types, this includes local SSD drives as well as Amazon 

S3, while with DC2 node types, this would be local SSD storage. 

One of the biggest advantages of a lake house architecture is the performance enhancement of 

placing hot data on high-performance local drives, along with high-network bandwidth and a 

large high-speed cache, as available in Redshift. With RA3 nodes, Redshift uses Amazon S3-based 

storage, while automatically loading frequently queried data to local storage, in order to optimize 

performance (as we cover in more detail later in this section). 

Redshift stores data in a columnar data format, which is optimized for analytics and uses com-

pression algorithms to reduce disk lookup time when a query is run. By using ML-based auto-

matic optimizations related to table maintenance tasks such as vacuum, table sort, selection of 

distribution, and sort keys, as well as workload management, Redshift can turbo-charge query 

performance.
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While the best performance is gained by coupling compute and storage, it can result in an unnec-

essary increase in cost when you need to scale out either just compute or storage. To solve this, 

Amazon introduced RA3 nodes with Redshift Managed Storage (RMS), which provides the best 

of both worlds. RA3 nodes offer tightly coupled compute with high-performance SSD storage, as 

well as additional S3-based storage that can be scaled separately. No changes need to be made to 

workflows to use these nodes, as Redshift automatically manages the movement of data between 

the local storage and S3-managed storage based on data access patterns.

With RMS, data is initially stored on the local SSD drives, but if data on a node exceeds the space 

available on the SSD storage, Redshift automatically moves colder data to Amazon S3. Redshift 

uses an advanced algorithm to determine what data should be stored on the local SSD drives 

and what data is moved to Amazon S3, and automatically moves data between the two storage 

tiers as required. Some of the factors that the algorithm takes into account include data block 

temperature, data block age, and workload patterns.

External tables for querying data in Amazon S3 with Redshift 
Spectrum
To take advantage of our data lake (which we consider to be our single source of truth), Redshift 

supports the concept of external tables. These tables are effectively schema objects in Redshift 

that point to database objects in the AWS Glue Data Catalog (or optionally an Amazon EMR 

Hive metastore).

Once we have created the external schema in Redshift that points to a specific database in the 

Glue Data Catalog, we can then query any of the tables that belong to that database, and Redshift 

Spectrum will access the data from the underlying Amazon S3 files. Note that while Redshift 

Spectrum does offer impressive performance for reading large datasets from Amazon S3, it will 

generally not be quite as fast as reading that same dataset if it were stored within RMS. 

By accessing the data directly from our S3 data lake, we avoid replicating multiple copies of the 

data across our data warehouse clusters. However, we still get to take advantage of the Massively 

Parallel Processing (MPP) query engine in Redshift to query the data. With Redshift Spectrum, 

we can still get impressive performance while directly accessing our single-source-of-truth data 

lake data, without needing to constantly load and refresh data lake datasets into Redshift.

When running queries in Redshift, we are free to run complex joins on data between local and 

external tables. We can also query data (or a subset of data) from an external S3 table, and then 

write that data out to a local Redshift table when we want to make a specific dataset, or portion 

of a dataset, available locally in Redshift for optimal query performance.
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A common use case for Redshift Spectrum is where a company knows that 80% of their queries 

access data generated in the past 12 months, but that 20% of their queries also rely on accessing 

historical data from the past 5 years. In this scenario, the past 12 months of data can be loaded 

into Redshift on a rolling basis and queried with optimal performance. However, the smaller 

portion of queries that need historical data can read that data from the data lake using Redshift 

Spectrum, with the understanding that reading historical data may not be quite as fast as reading 

data from the past 12 months.

Redshift Spectrum also supports reading data in Amazon S3 that uses Open Table Formats, such 

as Delta Lake and Apache Hudi. Support for reading Apache Iceberg data with Redshift Spectrum 

is available in preview at the time of writing (and we will cover Open Table Formats in more detail 

in Chapter 14, Building Transactional Data Lakes). 

Another common use case for external tables is to enable Redshift to read data from file formats 

that are not natively supported in Redshift, such as Amazon Ion, Grok, RCFile, and Sequence files.

An important point to keep in mind when planning your use of external tables is that the cost of 

Redshift Spectrum, when run from provisioned clusters, is based on the amount of data that’s 

scanned by a Spectrum query, in addition to the fixed costs of the cluster. With Redshift Server-

less, cluster cost is based on the RPUs consumed by queries you run on the cluster, whether the 

queries are on local tables, or whether they use Redshift Spectrum to query data in the data lake. 

Also, while query performance with Redshift Spectrum is often impressive, it still may not match 

the performance when querying data stored locally in RMS. Therefore, you should consider load-

ing frequently queried data directly into RMS, rather than only relying on external tables. This 

is especially true for datasets that are used for tasks such as constantly refreshing dashboards, 

datasets that are frequently queried by a large group of users, or where you need to do a large 

number of joins across tables. 

In the hands-on section of this chapter, we will configure a Redshift Spectrum external table and 

query data from that table using both Redshift and Athena. 

Temporary staging tables for loading data into Redshift
Redshift, like many other data warehousing systems, supports the concept of a temporary table. 

Temporary tables are session-specific, meaning that they are automatically dropped at the end 

of a session and are unrecoverable.
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However, temporary tables can significantly improve the performance of some operations as 

temporary tables are not replicated in the same way permanent tables are, and inserting data into 

temporary tables does not trigger automatic cluster incremental backup operations. One of the 

common uses of temporary tables (also sometimes referred to as staging tables) is for updating 

and inserting data into existing tables.

Traditional transactional databases support an operation called an UPSERT, which is useful for 

Change Data Capture (CDC). An UPSERT transaction reads new data and checks if there is an 

existing matching record based on the primary key. If there is an existing record, the record is 

updated with the new data, and if there is no existing record, a new record is created.

While Redshift does support the concept of primary keys, this is for informational purposes and 

is only used by the query optimizer. Redshift does not enforce unique primary keys or foreign key 

constraints. As a result, the UPSERT SQL clause is not supported natively in Redshift.

However, in April 2023, Amazon Redshift announced support for the MERGE command, which 

enables applying source data changes into a Redshift table using a simple SQL statement. A com-

mon approach is to load the latest snapshot of data from a source system into a temporary table 

in Redshift, and then use the MERGE command to merge changes in the dataset into a target table. 

Data caching using Redshift materialized views
Data warehouses are often used as the backend query engine for BI solutions. A visualization 

tool such as Amazon QuickSight (which we will discuss in more detail in Chapter 12, Visualizing 

Data with Amazon QuickSight) can be used to build dashboards based on data stored in Amazon 

Redshift (and other data sources). 

The dashboards are accessed by different business users to visualize, filter, and drill down into 

different datasets. Often, the queries that are needed to create a specific visualization will need 

to reference and join data from multiple Redshift tables, and potentially perform aggregations 

and other calculations on the data.

Instead of having to rerun the same query over and over as different users access the dashboards, 

you can effectively cache the query results by creating what is called a materialized view.

Materialized views increase query performance by orders of magnitude by precomputing expen-

sive operations such as join results, arithmetic calculations, and aggregations, and then storing 

the results of the query in a view. The BI tool can then be configured to query the view, rather 

than querying the tables directly. From the perspective of the BI tool, accessing the materialized 

view is the same as accessing a table.
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You can choose to either manually refresh a materialized view using the REFRESH MATERIALIZED 

VIEW statement, or you can configure a materialized view to be automatically refreshed when 

the underlying base table data changes. Note, however, that Redshift prioritizes other running 

workloads over auto-refresh, and therefore might not immediately refresh a materialized view 

if the system is under load. 

A common use case for materialized views would be to store the results of the advanced queries 

and calculations needed to aggregate sales by store daily. Each night, the day’s sales can be loaded 

into Redshift from the data lake, and on completion of the data ingest, a materialized view can 

be created or refreshed. In this way, the complex calculations and joins required to determine 

sales by store are run just once, and when users query the data via their BI tool, they access the 

results of the query through the materialized view.

Now that we’ve looked at the types of tables that are supported in Redshift, let’s look at the best 

practices involved in ingesting data into Redshift.

Moving data between a data lake and Redshift
Moving data between a data lake and a data warehouse, such as Amazon Redshift, is a common 

requirement for many use cases. Data may be cleansed and processed with Glue ETL jobs in the 

data lake, for example, and then hot data can be loaded into Redshift so that it can be queried via 

BI tools with optimal performance.

In the same way, there are certain use cases where data may be further processed in the data 

warehouse, and this newly processed data then needs to be exported back to the data lake so that 

other users and processes can consume this data.

In this section, we will examine some best practices and recommendations for both ingesting 

data from the data lake and exporting data back to the data lake.

Optimizing data ingestion in Redshift
While there are various ways that you can insert data into Redshift, the recommended way is to 

bulk ingest data using the Redshift COPY command. The COPY command enables optimized data 

to be ingested from the following sources:

• Amazon S3

• Amazon DynamoDB

• Amazon Elastic MapReduce (EMR)

• Remote SSH hosts
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When running the COPY command, you need to specify an IAM role, or the access key and secret 

access key of an IAM user, that has relevant permissions to read the source (such as Amazon S3), 

as well as the required Redshift permissions. AWS recommends creating and using an IAM role 

with the COPY command.

When reading data from Amazon S3, Amazon EMR, or from a remote host via SSH, the COPY 

command supports various formats, including CSV, Parquet, Avro, JSON, ORC, and many others.

To take advantage of the multiple compute nodes in a cluster when ingesting files into a Red-

shift-provisioned cluster, you should aim to match the number of ingest files with the number 

of slices in the cluster. Each slice of the cluster can ingest data in parallel with all the other slices 

in the cluster, so matching the number of files to the number of slices results in the maximum 

performance for the ingest operation, as shown in the following diagram:

Figure 9.2: Slices in a Redshift compute node

If you have one large ingest file, it should be split into multiple files, with each file having a size 

between 1 MB and 1 GB (after compression). To determine how many slices you have in your 

cluster, refer to the AWS documentation on Redshift cluster configuration.

For example, if you had a cluster with 4 x ra3.4xlarge nodes, you would have 16 slices (there 

are four slices per ra3.4xlarge node). If your ingest file were 64 GB in size, you would split the 

file into 64 x 1 GB files, and each of the slices in the cluster would then ingest a total of four files.

Note that when using the COPY command to ingest data, the COPY operation is treated as a sin-

gle transaction across all files. If one of our 64 files failed to be copied, the entire copy would be 

aborted and the transaction would be rolled back.
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While it is possible to use INSERT statements to add rows to a table, adding single rows, or just 

a few rows, using INSERT statements is not recommended. Adding data to a table using INSERT 

statements is significantly slower than using the COPY command to ingest data. If you do need 

to add data using INSERT statements, you can insert multiple rows with a single statement using 

multi-row insert, by specifying multiple comma-separated rows. You should add as many rows 

as possible with a single INSERT statement to improve performance and maximize how data 

blocks are stored.

When loading data from an Amazon EMR cluster, you can use the COPY command in Redshift 

and specify the EMR cluster ID and the HDFS path that the data should be loaded from. Howev-

er, before doing this, you need to configure the nodes in the EMR cluster to accept SSH requests 

from your Redshift cluster, and you need to ensure the appropriate security groups have been 

configured to allow connections between Redshift and the EMR nodes.

Alternatively, you can directly load data into Redshift from a Spark application using the AWS-op-

timized Spark-Redshift JDBC driver, available in EMR 6.9, EMR Serverless, and Glue 4.0 and later. 

In the background, the Spark DataFrame you are loading is written to a temporary S3 bucket, 

and then a COPY command is executed to load the data into Redshift. You can also read data from 

Redshift into a Spark DataFrame by using the Spark-Redshift JDBC driver.

Automating data loads from Amazon S3 into Redshift
In November 2022, AWS announced the preview of new functionality in Redshift to perform an 

auto-copy of data from an S3 bucket into an Amazon Redshift cluster. Using this functionality, 

you can specify that a COPY command should be created as a job that will monitor an S3 location 

for new files, and as new files become available, these will automatically be loaded into the Red-

shift table that you specify. 

As of the time of writing, this functionality is still in preview and has some limitations, such as 

not supporting the loading of Parquet and ORC files. Please refer to the latest Amazon Redshift 

documentation for the latest supported features for COPY jobs. 

Exporting data from Redshift to the data lake
Similar to how the COPY command can be used to ingest data to Redshift, you can use the UNLOAD 

command to copy data from a Redshift cluster to Amazon S3.
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To maximize the performance of UNLOAD, Redshift uses multiple slices in the cluster to write out 

data to multiple files simultaneously. Each file that is written can be a maximum size of 6.2 GB, 

although there is an option to specify a smaller maximum file size (and this also gives some con-

trol over the number of files that are written out). Depending on the size of the dataset you are 

unloading, it would generally be recommended to specify a MAXFILESIZE option of 1 GB.

When running the UNLOAD command, you specify a SELECT query to determine what data will 

be unloaded. To unload a full single table, you would specify SELECT * from TABLENAME in your 

UNLOAD statement. However, you could use more advanced queries in the UNLOAD statement, such 

as a query that joins multiple tables, or a query that uses a WHERE clause to unload only a subset of 

the data in a table. It is recommended that you specify an ORDER BY clause in the query, especially 

if you plan to load the data back into Redshift.

By default, data is unloaded in a pipe-delimited text format, but unloading data in Parquet format 

is also supported. For most use cases where you’re exporting data to a data lake, it is recommended 

to specify the Parquet format for the unloaded data. The Parquet format is optimized for analytics, 

is compressed (so it uses less storage space in S3), and the UNLOAD performance can be up to twice 

as fast when unloading in Parquet format versus unloading in text format.

If you’re performing an UNLOAD on a specific dataset regularly, you can use the ALLOWOVERWRITE 

option to allow Redshift to overwrite any existing files in the specified path. Alternatively, you can 

use the CLEANPATH option to remove any existing files in the specified path before writing data out.

Another best practice recommendation for unloading large datasets to a data lake is to specify 

the PARTITION option and to provide one or more columns that the data should be partitioned 

by. When writing out partitioned data, Redshift will use the standard Hive partitioning format. 

For example, if you partition your data by the year and month columns, the data will be written 

out as follows:

s3://unload_bucket_name/prefix/year=2021/month=July/000.parquet

When using the PARTITION option with the CLEANPATH option, Redshift will only delete files for 

the specific partitions that it writes out to.

Let’s now look at some of the other advanced features available in Redshift, before moving on to 

the hands-on part of this chapter. 
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Exploring advanced Redshift features
While Redshift was first launched a long while back (2013), AWS is continually adding new func-

tionality and features to Redshift. In this section, we are going to look at some of the advanced 

capabilities launched in the past few years that can help you get the most from your Redshift 

cluster. You should also regularly review the AWS What’s New page for Redshift (https://aws.

amazon.com/redshift/whats-new/), as well as AWS blog posts tagged with Redshift (https://

aws.amazon.com/blogs/big-data/tag/amazon-redshift/), to ensure you keep up to date with 

new features. 

Data sharing between Redshift clusters
There are a number of use cases where you may want to share data from one Redshift cluster 

with data in another (or multiple other) Redshift cluster. For example, if you implement a data 

mesh architecture, you may want to make data available from one part of the business easily 

accessible for other parts of the business without needing to create a duplicate copy of the data. 

For this use case, a data producer in one part of the business can share data from their Redshift 

RA3 cluster with the Redshift cluster of data consumers in another part of the business that have 

been authorized to access the data. 

Another example of a use case for sharing data between clusters is where you may want to have 

the compute resources of a Redshift cluster focused just on data ingestion, transforming data, 

creating materialized views, etc. without having an impact on consumers who want to query the 

same data. In this case, you can have a dedicated ELT cluster that does the ingestion and transfor-

mation, and then launch a separate cluster that your data consumers will use to query the data. 

With this scenario, you can share the data from the ELT cluster with the consumer cluster, enabling 

each use case to have its own dedicated Redshift compute resources. If you ingest and transform 

data only once a day, you can even pause the ELT cluster once the ingestion and transformation 

are complete, and the consumer cluster will still be able to read the data from the paused ELT cluster. 

In a similar way, you may have multiple different teams wanting to run queries on the same 

dataset. Traditionally these teams would end up competing for cluster resources, and it would 

not be easy to proportionally allocate costs to the different teams based on their usage of the 

cluster. However, with Redshift data sharing, each team can have its own Redshift cluster, with 

dedicated resources, and yet they can all access the same dataset. This also means that it is much 

simpler to allocate data warehousing costs for each team, as they each have their own cluster. 

https://aws.amazon.com/redshift/whats-new/
https://aws.amazon.com/redshift/whats-new/
https://aws.amazon.com/blogs/big-data/tag/amazon-redshift/
https://aws.amazon.com/blogs/big-data/tag/amazon-redshift/
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With Amazon Redshift data sharing, you can share live data from a source RA3 Redshift cluster with 

a target RA3 Redshift cluster in the same, or different, AWS account, as well as across regions (for 

example, a Redshift cluster in the N. Virginia us-east-1 Region can share data with a Redshift cluster 

in the Ohio us-east-2 Region). As of the time of writing, data that is shared with another cluster 

is available in the target cluster as read-only data (i.e., the cluster accessing shared data cannot 

write or update any of the shared tables). Data that is shared is shared “live,” meaning that the 

target cluster sees the data in its current, most updated form, as it is updated in the source cluster. 

You can select to either manage data sharing in Redshift directly, or you can use the AWS Lake 

Formation service to define and enforce Redshift data shares. This includes the ability to define 

column and row-level access permissions for shared tables. You can learn more about managing 

Redshift data shares with Lake Formation in the AWS documentation at https://docs.aws.

amazon.com/redshift/latest/dg/lake-formation-datashare.html.

Machine learning capabilities in Amazon Redshift
Amazon Redshift includes functionality to integrate with the Amazon SageMaker ML service. 

This functionality, called Redshift ML, enables you to create and train new ML models on data 

in Redshift, and to perform inference (getting a prediction from the model) as part of a Redshift 

SQL query. 

When you use the Redshift ML functionality to create a new model based on data in Redshift, the 

data will be automatically exported to Amazon S3, and SageMaker AutoML will then be used to 

train a new model and make that available in Redshift. Note that using this functionality incurs 

S3 storage costs for the data exported, as well as Amazon SageMaker costs for the model training. 

An example of how you can use this functionality is to use a table in Redshift that contains cus-

tomer information such as their ZIP/postal code, how long they have had an account with your 

company, the total revenue you have billed them for, as well as the number of customer service 

calls they have made. In addition, to train the new model, your dataset should include a field that 

indicates whether they are still an active customer or not. Based on this data, you can create a 

model that will predict whether a customer (or group of customers) is likely to cancel their service 

(often referred to as customer churn). 

With the above dataset, you can use the Redshift CREATE MODEL statement in a SQL query, and 

Redshift will export the dataset to S3, and then use the Amazon SageMaker Autopilot feature 

to train the model. Once trained and validated, Amazon SageMaker will deploy the model and 

prediction function to Amazon Redshift. 

https://docs.aws.amazon.com/redshift/latest/dg/lake-formation-datashare.html
https://docs.aws.amazon.com/redshift/latest/dg/lake-formation-datashare.html
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Once complete, you can use SQL statements to provide similar information used to train the model 

(ZIP code, account length, spend, and customer service calls) to receive a prediction on whether 

a customer (or group of customers) is likely to cancel their service. 

For more information on Redshift ML, see the Amazon Redshift documentation at https://docs.

aws.amazon.com/redshift/latest/dg/machine_learning.html.

Running Redshift clusters across multiple Availability Zones
For some users, the risk of a Redshift cluster being unavailable for a period of time in the event 

of an issue with an AWS Availability Zone (AZ) is not a significant risk. In many cases, data ware-

house-based queries and reports are not considered critical dependencies for the business, and a 

business may be willing to take the risk of a certain period of downtime of their Redshift cluster.

With Redshift Serverless, you always configure the serverless cluster with subnets in 3 different 

availability zones, and this helps ensure the continued availability of the serverless endpoint in 

the event of an issue impacting an availability zone. 

With RA3-provisioned nodes, a feature called cluster relocation is enabled by default, and this 

allows Redshift to automatically relocate a cluster to a different availability zone in the event of 

issues impacting cluster operations in the current availability zone. While this can take place 

automatically, there is a period of downtime while the cluster is relocated. Note however that 

after relocation, the cluster can still be accessed using the same endpoint (therefore applications 

do not need to be reconfigured to point to a new endpoint after relocation). 

However, there may be other use cases where a business depends heavily on the availability of 

its data warehouse for running queries and reports and is willing to accept increased costs in 

exchange for increased availability.

In November 2022, AWS announced the preview availability of a new feature that enables Red-

shift RA3 clusters to be deployed across multiple AZs. When configuring an RA3 Redshift cluster 

in multi-AZ mode, you specify the number of nodes you want in a single AZ, and Redshift will 

deploy those number of nodes in each of the two AZs. All nodes across the AZs can perform read 

and write workload processing during normal operation. 

With multi-AZ, data is stored in RMS, which uses Amazon S3 and makes the data available si-

multaneously in both AZs where the compute nodes are running. If multiple queries are running 

against the multi-AZ Redshift cluster, the queries will run on compute nodes in both AZs; however, 

each individual query will use compute resources in a single AZ only. 

https://docs.aws.amazon.com/redshift/latest/dg/machine_learning.html
https://docs.aws.amazon.com/redshift/latest/dg/machine_learning.html
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Therefore, you need to ensure that you have enough compute nodes in each AZ to be able to 

handle your most complex queries. 

Learn more about running Redshift across multi-AZs by reading the documentation at https://

docs.aws.amazon.com/redshift/latest/mgmt/managing-cluster-multi-az.html.

Redshift Dynamic Data Masking
In addition to Redshift data access controls that enable row-level security and column-level se-

curity, you can also define Dynamic Data Masking (DDM) policies to further protect sensitive 

data stored in Redshift. Using this functionality, you can define policies that mask data values 

at the time that data is returned to a user. This enables you to protect sensitive data returned in 

queries, without needing to transform and store the data in Redshift in a protected format. 

For example, if you store confidential PII data (such as a national identity number or social security 

number), you can store the full data in Redshift but can ensure that when users query the data, 

they are not able to access the PII data directly. The policies you define can completely or partially 

redact the data, or can apply a hashing function to return a hash instead of the actual data. For 

example, using this functionality, you could configure a policy that returns just the last 4 digits 

of a social security number in a query, instead of displaying the full social security number. And 

you can apply the policy to different user roles, so that some users may be able to access the full 

number, while other users only see the last 4 digits. 

Read more about DDM in the Redshift documentation at https://docs.aws.amazon.com/

redshift/latest/dg/t_ddm.html.

Zero-ETL between Amazon Aurora and Amazon Redshift
In November 2022, AWS announced the preview support of zero-ETL integration between Am-

azon Aurora and Amazon Redshift. With this functionality, data written to Amazon Aurora can 

be made available in Amazon Redshift within seconds. 

This functionality enables you to analyze data from multiple Amazon Aurora database clusters in 

an Amazon Redshift cluster, in near real time. Previously, this would have required more complex 

solutions using ETL pipelines and services such as AWS Database Migration Service (DMS) to 

move data from an Aurora database into Redshift. Using this functionality, you can use Amazon 

Redshift’s advanced analytics and ML capabilities to gain new insights from transactional data.

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-cluster-multi-az.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-cluster-multi-az.html
https://docs.aws.amazon.com/redshift/latest/dg/t_ddm.html
https://docs.aws.amazon.com/redshift/latest/dg/t_ddm.html
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In the preview announcement, AWS announced zero-ETL support for Amazon Aurora MySQL 3 

(with MySQL 8.0 compatibility). At the time of writing, support for Amazon Aurora with Post-

greSQL compatibility was not available.

Resizing a Redshift cluster
There may be times when you need to resize your Redshift cluster, either permanently (due to 

sustained increased load on the cluster) or temporarily (to handle month-end data processing, 

for example). Redshift enables this through a process known as elastic resize. 

With elastic resize, you can add or remove nodes from a cluster, or change the node type (for 

example, from DC2 nodes to RA3 nodes). Elastic resize usually completes within around 10–15 

minutes, and while the resize operation takes place, the cluster is in read-only mode. During the 

process, queries may be temporarily paused, and it is possible that some queries may be dropped. 

Also, if the cluster has been configured to share data with other clusters, those other clusters may 

not be able to connect and access data during a portion of the resize. 

Elastic resize is recommended when you need to resize a cluster, but there are times when an 

elastic resize may not be supported for a specific cluster configuration. In those cases, you can 

perform a classic resize. This process takes longer, but it does support scenarios where elastic 

resize does not work, such as where you have a cluster that does not use KMS encryption, and 

you want to now encrypt your cluster. 

Now that you have a good understanding of the Redshift architecture, important considerations 

for optimizing the performance of your cluster, and an understanding of some of the advanced 

features in Redshift, it is time to get hands-on with deploying a Redshift cluster. 

Hands-on – deploying a Redshift Serverless cluster 
and running Redshift Spectrum queries
In our Redshift hands-on exercise, we’re going to create a new Redshift Serverless cluster and 

configure Redshift Spectrum so that we can query data in external tables on Amazon S3. We’ll 

then use both Redshift Spectrum and Amazon Athena to query data in S3.

Uploading our sample data to Amazon S3 
For this exercise, we are going to use some data generated with a service called Mockaroo (https://

www.mockaroo.com/). This service enables us to generate fake data with a wide variety of field 

types and is useful for demos and testing.

https://www.mockaroo.com/
https://www.mockaroo.com/
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We will upload this dataset, containing a list of users, to Amazon S3 and then query it using 

Redshift Spectrum. Note that all data in this file is fake data, generated with the tool mentioned 

above. Therefore, the names, email addresses, street addresses, phone numbers, etc. in this data-

set are not real. 

Let’s get started:

1. Download the fake list of users from the GitHub site for this book using the following link: 
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/

blob/main/Chapter09/user_details.csv.

2. Log in to the AWS Console and access the Amazon S3 service. Navigate to your landing 

zone bucket (for example, dataeng-landing-zone-initials) and create a new prefix 

called users. 

3. Upload the user_details.csv file into the data lake’s landing zone bucket (which you 

created in Chapter 3, The AWS Data Engineers Toolkit) under the users prefix. For example:

s3://dataeng-landing-zone-gse23/users/user_details.csv

4. To verify that the files have been uploaded correctly, we can use S3 Select to directly query 

uploaded files. In the Amazon S3 console, navigate to the users prefix in the landing zone 

bucket, and select the user_details.csv file. From the Actions menu, click on Query 

with S3 Select. Leave all the options as their defaults and click Run SQL query. This will 

display a few records from the CSV file. 

Having uploaded our users file to the data lake, we now need to create the IAM roles that our 

Redshift cluster will use, and then create the cluster. 

IAM roles for Redshift
Amazon Redshift Spectrum enables our cluster to read data that is in our Amazon S3-based data 

lake directly, without needing to load the data into the cluster. Redshift Spectrum uses the AWS 

Glue Data Catalog, so it requires AWS Glue permissions in addition to Amazon S3 permissions. If 

you are operating in an AWS Region where AWS Glue is not supported, then Redshift Spectrum 

uses the Amazon Athena catalog, so you would require Amazon Athena permissions.

To create the IAM role that grants the required Redshift Spectrum permissions, follow these steps:

1. Navigate to the AWS IAM Management console, click on Roles on the left-hand side, 

and click on Create role.

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/blob/main/Chapter09/user_details.csv
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/blob/main/Chapter09/user_details.csv
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2. Ensure that AWS service is selected for Select type of trusted entity, and then search for 

Redshift in the drop-down list. For Use cases for other AWS services, select Redshift – 

Customizable. Click on Next.

3. Attach the following four policies to the role:

• AmazonS3FullAccess

• AWSGlueConsoleFullAccess

• AmazonAthenaFullAccess

• AmazonRedshiftAllCommandsFullAccess

4. Then, click on Next and provide a Role name, such as AmazonRedshiftSpectrumRole. 

Make sure that the three policies listed in Step 3 are included and that Trusted entities 

includes redshift.amazonaws.com. Once confirmed, click Create role.

5. Search for the role you just created and click on the role’s name. On the Summary screen, 

take note of Role ARN as this will be needed later.

Now that we have created an IAM role that provides the permissions needed for Redshift Spectrum 

to access the required resources, we can move on to creating our cluster.

Creating a Redshift cluster
We are now ready to create our Redshift Serverless cluster and attach the IAM policy for Redshift 

Spectrum to the cluster. Let’s get started:

IMPORTANT NOTE ABOUT PERMISSIONS

The preceding policies provide broad access to various AWS services, in-

cluding full access to all S3 files in your account. If you are using an account 

created specifically for the hands-on exercises in this book, or you are using a 

limited sandbox account provided by your organization, then these permis-

sions may be safe. However, in an AWS account that is shared with others, 

such as a corporate production account, you should not use these policies. 

Instead, you should create new policies that, for example, limit access to only 

the S3 buckets that are used in the hands-on exercises. Using full access policies, 

as we have here, is not a good security practice for shared or production accounts.
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1. Navigate to the Amazon Redshift console at https://console.aws.amazon.com/

redshiftv2/. If you have not created a cluster before, there should be a button marked 

Try Redshift Serverless free trial that you can click in order to quickly configure a new 

serverless cluster. The option for Use default settings should already be checked, which 

enables us to create a cluster with default settings, so leave this option selected. If Try 

Redshift Serverless free trial is not displayed, then click on Create workgroup and provide 

a workgroup and namespace name, and set the base capacity to 8 RPUs. 

2. Scroll down to Associated IAM roles and click on Associate IAM role. Search for the role 

you created previously (such as AmazonRedshiftSpectrumRole) and select the role, then 

click Associate IAM roles. 

3. Select the role you just associated, and then click Set default and Make default. Click on 

Confirm when prompted. 

4. Scroll down to the bottom of the page and click on Save configuration.

5. This will now create your Amazon Redshift Serverless cluster and should complete in 

under 5 minutes. Once complete, click on Continue. 

You should be redirected to the Amazon Redshift Serverless dashboard, which includes infor-

mation on the default namespace and workgroup you just created (both called default), and 

also includes information on how much of the $300 in credits is still available, if you qualify for 

the free trial. 

IMPORTANT NOTE ABOUT REDSHIFT COSTS

At the time of writing, AWS offers a free trial for new Redshift Serverless customers, 

enabling you to create and test out a new Redshift Serverless cluster with $300 of 

credit that can be used over 90 days. However, this is only available if your organi-

zation has not previously created a Redshift Serverless cluster. If you’ve previously 

created an Amazon Redshift Serverless cluster, you are not eligible for the free trial 

and your usage of Redshift Serverless will be billed for. If you are eligible for the free 

trial but you leave your Redshift cluster running beyond the free trial time limit, you 

will be charged for usage of the cluster. For more information, see https://aws.

amazon.com/redshift/free-trial/.

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://aws.amazon.com/redshift/free-trial/
https://aws.amazon.com/redshift/free-trial/
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Querying data in the sample database
When a new Redshift Serverless cluster is created, it includes easy access to sample datasets that 

you can query as you explore the Redshift query editor and interface. The following steps show 

you how to access the sample database:

1. On the Redshift Serverless dashboard, click on the Query data button to launch the 

query editor. 

2. The query editor will launch in a new window, and a list of workgroups will be displayed 

on the left. The Serverless: default workgroup should be listed. Click to expand the work-

group name, which will display a popup for you to select an authentication method (since 

this is the first time you are connecting to the workgroup). Select the Federated user 

option, which uses your IAM credentials to generate temporary credentials for accessing 

the database. There is a default dev database that is created for new clusters, so leave dev 

set as the database to connect to, and click on Create connection.

3. Expand the sample_data_dev schema, and then click on the folder icon next to the tickit 

table. This loads the sample data into Redshift, but you need a database to store this data. 

Therefore, when you click on the folder icon (Open sample notebooks), you are prompted 

to allow Redshift to create a sample database. Click on Create. It may take a few minutes 

for the sample data to be loaded. 

The Redshift query editor includes notebook functionality, where you can write up a 

number of SQL statements, as well as blocks, where you can include comments using 

Markdown syntax. You can either click on Run all to run all the statements in the notebook, 

or you can click on Run in an individual block to run just a single statement.

4. Click on Run all to run all the statements in this notebook. 

5. In the first block (Sales per event), there are two SQL statements, and as a result, there are 

two Result tabs below. The first statement just set the path to use the tickit schema, and 

therefore there is not a lot to show in the result box. Click on Result 2 to view the results 

of the second statement, which queries the sales table and shows the total_price for 

each event in the database. 

Up to this point we have loaded and queried some sample data using a query editor notebook, but 

let’s now move on to defining an external schema where we can point to the data we uploaded at 

the start of the hands-on section. We can then query that data using Redshift Spectrum. 
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Using Redshift Spectrum to directly query data in the data 
lake
To query data in Amazon S3 using Redshift Spectrum, we need to define a database, schema, and 

table.

Note that Amazon Redshift and AWS Glue use the term database differently. In Amazon Redshift, 

a database is a top-level container that contains one or more schemas, and each schema can 

contain one or more tables. When you use the Redshift query editor, you specify the name of the 

database that you want to connect to, and any objects you create are created in that database. 

When you query a table, you specify the schema name along with the table name.

However, in AWS Glue, there is no concept of a schema, just a database, and tables are created 

in the database.

With the command shown in the following steps, we can create a new Redshift schema, defined 

as an external schema (meaning objects created in the schema will be defined in the AWS Glue 

Data catalog), and we specify that we want to create a new database in the Glue Data catalog 

called users. For Redshift to be able to write to the Glue Data Catalog and access objects in S3, 

we need to specify the ARN for the Redshift Spectrum role that we previously created, as this has 

access to all data in S3:

1. In the Redshift query editor v2 interface, click on the PLUS (+) sign, and then click on 

Editor to create a new tab that provides a simple query interface. 

2. In the database dropdown, change the database from sample_data_dev to dev, so that 

our new schema is created in the database called dev. Then run the following command 

in the new tab to create a new external schema called spectrum_schema, and to also 

create a new database in the Glue Data catalog called users. Make sure to replace the 

iam_role ARN with the ARN you recorded previously when you created an IAM role for 

Redshift Spectrum:

create external schema spectrum_schema

from data catalog

database 'users'

iam_role 'arn:aws:iam::1234567890:role/AmazonRedshiftSpectrumRole'

create external database if not exists;
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Figure 9.3: Creating a Redshift external schema

3. We can now define an external table that will be registered in the Glue Data Catalog under 

our users database in Glue and in the spectrum_schema in Redshift. When defining the 

table, we specify the columns that exist, the format of the files (text or comma delimit-

ed), and the location in S3 where the text files were uploaded. We also include a table 

properties attribute that indicates that the sample data has a header row, which we 

want to ignore. Replace the previous SQL statement with the following statement, and 

make sure to replace the bucket name of the S3 location with the name of your data lake 

landing zone bucket:

CREATE EXTERNAL TABLE spectrum_schema.user_details(
  id INTEGER,
  first_name VARCHAR(40),
  last_name VARCHAR(40),
  email VARCHAR(60),
  gender VARCHAR(15),
  address_1 VARCHAR(80),
  address_2 VARCHAR(80),
  city VARCHAR(40),
  state VARCHAR(25),
  zip VARCHAR(5),
  phone VARCHAR(12)
)
row format delimited
fields terminated by ','
stored as textfile
location 's3://dataeng-landing-zone-initials/users/'
table properties ('skip.header.line.count'='1');
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4. We can now run a query against the table to ensure that it was created successfully. In the 

left-hand navigation pane of the Redshift query editor v2, click on the REFRESH icon to 

update the interface to show the newly created objects. Under dev / spectrum_schema / 

tables, you should see the user_details table. Clicking on this table will show the table 

schema as we defined it. We can also query a sample of the data from the newly defined 

table by running the following query in the query editor (making sure that we have the 

dev database selected in the database dropdown of the query editor): 

select * from spectrum_schema.user_details limit 10;

5. We can also confirm that the new external table was created successfully by checking the 

Glue Data Catalog. Search for and open the Glue service in the AWS Console. 

6. Click on Databases, and then click on the users database. In the list of tables, click on 

the user_details table. 

7. To view a sample of the data in the table, click on Actions, and then click View data. If you 

receive a popup indicating that you will be using the Athena service to query the data and 

that there may be separate charges, click on Proceed. When the Athena console opens (in 

a new browser tab), you should see 10 records from our user_details table. 

With the above tasks, we queried data in our S3 data lake using both Amazon Athena and Amazon 

Redshift (using the Redshift Spectrum functionality). 

Summary
In this chapter, we learned how a cloud data warehouse can be used to store hot data to optimize 

performance and manage costs (such as for dashboarding or other BI use cases). We reviewed 

some common “anti-patterns” for data warehouse usage before diving deep into the Redshift 

architecture to learn more about how Redshift optimizes data storage across nodes.

We then reviewed some of the important design decisions that need to be made when creating 

a Redshift cluster optimized for performance, before reviewing how to ingest data into Redshift 

and unload data from Redshift. 

DELETE THE SERVERLESS CLUSTER

If you do not plan to explore additional Redshift functionality, you should delete the 

Redshift Serverless workgroup first, and then the namespace, in order to prevent 

unnecessary charges from being incurred over time. 
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Finally, we reviewed some of the advanced features of Redshift (such as data sharing, DDM, and 

cluster resizing) before moving on to doing some hands-on exercises.  

In the hands-on exercise portion of this chapter, we created a new Redshift Serverless cluster, 

explored some sample data, and configured Redshift Spectrum to query data from Amazon S3. 

In the next chapter, we will discuss how to orchestrate various components of our data engi-

neering pipelines. 

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd
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Orchestrating the Data Pipeline

Throughout this book, we have discussed various services that can be used by data engineers to 

ingest and transform data, as well as make it available for consumers. We looked at how we could 

ingest data via Amazon Kinesis Data Firehose and AWS Database Migration Service (DMS), 

and how we could run AWS Lambda and AWS Glue functions to transform our data. We also 

discussed the importance of updating a data catalog as new datasets are added to a data lake, 

and how we can load subsets of data into a data mart or data warehouse for specific use cases.

For the hands-on exercises, we made use of various services, but for the most part, we triggered 

these services manually. However, in a real production environment, it would not be acceptable 

to have to manually trigger these tasks, so we need a way to automate various data engineering 

tasks. This is where data pipeline orchestration tools come in.

Modern-day ETL applications are designed with a modular architecture to facilitate the use of 

the best purpose-built tool to complete a specific task. A data engineering pipeline (also some-

times referred to as a workflow) stitches all of these components together to create an ordered 

execution of related tasks, which can then be triggered to automatically run on a given schedule, 

or in response to another event occurring. 

To build our pipeline, we need an orchestration engine to define and manage the sequence of tasks, 

as well as the dependencies between tasks. The orchestration engine also needs to be intelligent 

enough to perform different actions based on the failure or success of a task, and should be able 

to define and execute tasks that run in parallel, as well as tasks that run sequentially.

In this chapter, we will look at how to manage data pipelines with different orchestration engines. 

First, we will examine some of the core concepts of pipeline orchestration, and then review several 

different options within AWS for orchestrating data pipelines. 
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In the hands-on activity for this chapter, we will orchestrate a data pipeline using the AWS Step 

Functions service.

In this chapter, we will cover the following topics:

• Understanding the core concepts for pipeline orchestration

• Examining the options for orchestrating pipelines in AWS

• Hands-on – orchestrating a data pipeline using AWS Step Functions

Technical requirements
To complete the hands-on exercises in this chapter, you will need an AWS account where you 

have access to a user with administrator privileges (as covered in Chapter 1, An Introduction to 

Data Engineering). We will make use of various AWS services, including AWS Lambda, AWS Step 

Functions, and Amazon Simple Notification Service (SNS).

You can find the code files of this chapter in the GitHub repository using the following link: 
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/

main/Chapter10

Understanding the core concepts for pipeline 
orchestration
In Chapter 5, Architecting Data Engineering Pipelines, we architected a high-level overview of a 

data pipeline. We examined potential data sources, discussed the types of data transformations 

that may be required, and looked at how we could make transformed data available to our data 

consumers.

Then, we examined the topics of data ingestion, transformation, and how to load transformed 

data into data marts in more detail in the subsequent chapters. As we discussed previously, these 

steps are often referred to as an Extract, Transform, Load (ETL) process.

We have now come to the part where we need to combine the individual steps involved in our ETL 

processes to operationalize and automate how we process data. But before we look deeper at the 

AWS services to enable this, let’s examine some of the key concepts around pipeline orchestration.

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter10
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter10
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What is a data pipeline, and how do you orchestrate it?
A simple definition is that a data pipeline is a collection of data processing tasks that need to be 

run in a specific order. Some tasks may need to run sequentially, while other tasks may be able 

to run in parallel. You could also refer to the sequencing of these tasks as a workflow.

Data pipeline orchestration refers to automating the execution of tasks involved in a data pipeline 

workflow, managing dependencies between the different tasks, and ensuring that the pipeline 

runs when it is meant to.

Think of the data pipeline as the smallest entity for performing a specific task against a dataset. 

For example, if you receive data from a partner regularly, your first data pipeline may involve val-

idating that the data that’s received is valid, and then converting the data file into an optimized 

format, such as Parquet. If you have hundreds of partners sending you data files, then this same 

pipeline may run for each of those partners.

You may also have a second data pipeline that runs at a specific time of day that validates that 

the data from all your partners has been received, and then runs a Spark job to join the datasets 

and enrich the data with additional proprietary data.

Once that data pipeline finishes running, you may have a third pipeline that loads the newly 

enriched data into a data warehouse.

While you could place all of these steps in a single data pipeline, it is a recommended best prac-

tice to split pipelines into the smallest logical grouping of steps. In the preceding example of 

processing files we receive from our partners throughout the day, our first step is getting newly 

received files converted into Parquet format, but we only want to do that if we can confirm that 

the file we received is valid. As such, we group those two tasks (confirming that the file is valid, 

and then converting into Parquet format) into our first pipeline. The goal of our second pipeline 

is to join the files we received from our partners throughout the day and enrich the new file with 

additional data. However, our second pipeline should also include a step to validate and report 

on whether all the expected partner files were received.

Let’s explore some of the common concepts that are regularly used when developing data pipelines. 
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What is a directed acyclic graph?
When talking about data pipelines, you may hear the term directed acyclic graph, commonly re-

ferred to as DAG. If you Google this term, you may find a lot of complex mathematical explanations 

of what a DAG is. This is because this term not only applies to data pipelines, but is used to define 

many different types of ordered processes. For example, DAGs are also used to design compilers.

A simple explanation of a DAG is that it represents connections between nodes, with the flow 

between nodes always occurring in only one direction and never looping back to an earlier node 

(acyclic means not a cycle).

The following diagram shows a simple DAG:

Figure 10.1: A simple example of a directed acyclic graph

If this DAG represented a data pipeline, then the following would take place:

• When event A completes, it triggers event B and event C.

• When event B completes, it triggers event F.

• When events B and C are complete, they trigger event D.

• When event D completes, it triggers event E.

In the preceding example, event F could never loop back to event A, B, or C, as that would break 

the acyclic part of the DAG definition.

No rule says that data pipelines have to be defined as DAGs, although certain orchestration tools 

do require this. For example, Apache Airflow (which we will discuss in more detail later in this 

chapter) requires pipelines to be defined as a DAG, and if there is a cycle in a pipeline definition 

where a node loops back to a previous node, this would not run. 
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However, AWS Step Functions does allow for loop cycles in the definition of a state machine, so 

Step Functions-based pipelines do not enforce that the pipeline should be a DAG.

How do you trigger a data pipeline to run?
There are two primary types of triggers for a pipeline – schedule-based pipelines and event-

based pipelines.

Traditionally, pipelines were all triggered on a schedule. This could be once a day, every hour, or 

perhaps even every 15 minutes. This is still a common approach, especially for batch-orientated 

pipelines. In our prior pipeline example, the second pipeline could be an example of a scheduled 

pipeline that runs once per day to join and enrich partner files that are received throughout the day.

Today, however, a lot of pipelines are created to be event-driven. In other words, the pipeline is 

triggered in response to some specific event being completed. Event-based workflows are useful for 

reducing the latency between data becoming available and the pipeline processing that data. For 

example, if you expect that you will have received the data files you need at some point between 4 

A.M. and 6 A.M., you could schedule the pipeline to run at 6 A.M. However, if all the data is avail-

able by 5 A.M. on some days, using an event-based trigger can get your pipeline running earlier.

In our earlier example of a pipeline, the first pipeline (to validate files and convert to Parquet for-

mat) would be an event-driven pipeline that runs in response to a partner having uploaded a new 

file. Within AWS, there is strong support for creating event-driven activities, such as triggering 

an event (which could be a pipeline) based on a file being written to a specific Amazon S3 bucket 

(and we will get hands-on with an event-driven pipeline in the hands-on section of this chapter). 

Using manifest files as pipeline triggers
A manifest is often used to refer to a list of cargo carried by a ship, or other transport vehicles. 

The manifest document may be reviewed by agents at a border crossing or port to validate what 

is being transported.

In the world of data pipelines, a common concept is to create a manifest file that contains infor-

mation about other files that form part of a batch of files.

In our data pipeline example of receiving files from our partners, we may find that the partner 

sends hundreds of small CSV files in a batch every hour. We may decide that we do not want to 

run our pipeline on each file that we receive, but instead to process all the small CSV files in a 

batch together and convert them into a single Parquet file.
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In this case, we could instruct our partners to send a manifest file at the end of each batch of 

files that they send to us. This manifest file would list the name of each file that’s transferred, as 

well as potentially some validation data, such as file size, or a calculated SHA-256 hash of the file.

We could then configure our S3 event notification to only trigger when a file that begins with the 

name manifest is written to our bucket. When this happens, we will trigger our pipeline to run, 

and perhaps the first step in our pipeline would be to read the manifest file, and then for each 

file listed in the manifest, verify that it exists. We could also calculate the SHA-256 hash of the 

file, and verify that it matches what is listed in the manifest. Once the files have been verified, we 

could run our ETL job to read in all the files and write the files out in Parquet format.

This process would still be considered an event-driven pipeline, even though we are not respond-

ing to every file upload event, just the completion of a batch of uploads, as represented in the 

manifest file.

There will, of course, be times when a job will fail, and we need to make sure that we build error 

handling into our pipelines, as discussed next.

How do you handle the failures of a step in your pipeline?
As part of the orchestration process to automate the processing of steps in a pipeline, we need 

to ensure that failures are handled correctly. Therefore, it is also important that log files related 

to each step of the pipeline are easily accessible. In this section, we will look at some important 

concepts involved in failure handling and logging.

Common reasons for failure in data pipelines
There are many reasons why a specific step in a data pipeline may fail. Some common reasons 

for errors include the following:

• Data quality issues: If one of the steps in your pipeline expects to receive CSV files to 

process, but instead receives a file in JSON format that it does not know how to process, 

this would lead to a hard failure (that is, a failure that your job cannot recover from until 

the data quality issue is resolved).

• Code errors: When you update a job, it is possible to introduce a syntax, or logic, error 

into the code. Testing your code before deploying it into production is very important, but 

there may be times when your testing does not catch a specific error. This would also be 

a hard failure, requiring you to redeploy fixed code.
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• Endpoint errors: One of the steps in your pipeline may involve the need to either read 

or write data to or from a specific endpoint (such as reading a file in S3 or writing data 

into a data warehouse). At times, your processing job may not be able to connect to the 

endpoint, and there may be a number of reasons for this type of error. For example, there 

could be a temporary network error preventing the connection from being successful, or 

it could be because of insufficient permissions to access a target database. If it were a 

temporary network error, this could be considered a soft failure (that is, one that may be 

overcome by retrying the step). But if it is due to insufficient permissions, the error would 

be considered a hard failure, and there is no point immediately retrying the step, as you 

will need the permissions issue to be resolved first. 

• Dependency errors: Data pipelines generally consist of multiple steps with complex 

dependencies. This includes dependencies within the pipeline, as well as dependencies 

between different pipelines. If your job is dependent on a previous step, then the job it is 

dependent on is referred to as an upstream job. If your job fails, any jobs that depend on 

it are considered downstream jobs. Dependency errors can be hard failures (such as an 

upstream job or pipeline having a hard failure) or soft failures (e.g., the upstream job is 

taking longer than expected to complete, but if you retry your step, it may complete later).

Hard failures generally interrupt processing (and are also likely to cause failures in downstream 

jobs) until someone takes a specific action to resolve the error. When a hard failure occurs, a 

data engineer, or operations person, will need to examine the log files to identify the error mes-

sage, and then take corrective action (such as getting access configured if the error indicated a 

permissions failure). 

Soft failures (such as intermittent networking issues), however, can benefit from having a good 

retry strategy, as we will discuss next.

Pipeline failure retry strategies
When you’re designing your pipeline, you should consider implementing a retry strategy for failed 

steps. Many orchestration tools (such as Apache Airflow and AWS Step Functions) will allow you 

to specify the number of retries, the interval between retry attempts, as well as a backoff rate.

The retry backoff rate (also known as exponential backoff) causes the time between retry at-

tempts to be increased on each retry. With AWS Step Functions, for example, you can specify a 

BackOffRate value that will multiply the delay between retries by that value. For example, if you 

specify a retry interval of 10 seconds and a backoff rate of 1.5, Step Functions will wait 15 seconds 

(10 seconds x 1.5) for the second retry, 22.5 seconds (15 seconds x 1.5) for the third retry, and so on.
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Having reviewed some of the core concepts of data pipelines and orchestration, we can now ex-

amine the tools that are available in AWS for creating and orchestrating pipelines.

Examining the options for orchestrating pipelines in 
AWS
As you will have noticed throughout this book, AWS offers many different building blocks for 

architecting solutions. When it comes to pipeline orchestration, AWS provides native serverless 

orchestration engines with AWS Data Pipeline and AWS Step Functions, a managed open-source 

project with Amazon Managed Workflows for Apache Airflow (MWAA), and service-specific 

orchestration with AWS Glue workflows.

There are pros and cons to using each of these solutions, depending on your use case. When 

making a decision on this, there are multiple factors to consider, such as the level of management 

effort, the ease of integration with your target ETL engine, logging, error-handling mechanisms, 

cost, and platform independence.

In this section, we’ll examine each of the four pipeline orchestration options.

AWS Data Pipeline (now in maintenance mode)
AWS Data Pipeline is one of the oldest services that AWS has for creating and orchestrating data 

pipelines, having been originally released in 2012. However, this service is now in maintenance 

mode and it is not recommended to build new ETL pipelines using this service. 

In December 2022, AWS updated the Data Pipeline documentation to encourage customers to 

migrate to alternative data integration services, such as AWS Glue, AWS Step Functions, or Am-

azon MWAA. If you have existing pipelines that use this service, refer to the AWS documentation 

for a guide on how to migrate to a more modern service at https://docs.aws.amazon.com/

datapipeline/latest/DeveloperGuide/migration.html. 

Let’s now take a look at the first of those services that are recommended as an alternative to AWS 

Data Pipeline, the AWS Glue service. 

AWS Glue workflows to orchestrate Glue resources
In Chapter 3, The AWS Data Engineer’s Toolkit, we introduced AWS Glue workflows as a feature 

of the AWS Glue service. As a reminder, AWS Glue enables you to easily build and run Spark-and 

Python-based ETL jobs, and the Glue workflows feature can be used to build a pipeline to orches-

trate the running of Glue components (Glue Crawlers and Glue ETL jobs).

https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/migration.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/migration.html
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For use cases where you create a data pipeline that only uses AWS Glue components, the use 

of Glue workflows can be a good fit. For example, you could create the following pipeline using 

Glue workflows:

• Run a Glue Crawler to add CSV files that have been ingested into a new partition to the 

Glue Data Catalog.

• Run a Glue Spark job to read the new data using the catalog, and then transform the CSV 

files into Parquet files.

• Run another Glue Crawler to add the newly transformed Parquet files to the Glue Data 

Catalog.

• Run two Glue jobs in parallel. One Glue job aggregates data and writes the results into a 

DynamoDB table. The other Glue job creates a newly enriched dataset that joins the new 

data to an existing reference set of data.

• Run another Glue Crawler to add the newly enriched dataset to the Glue Data Catalog.

• Run a Glue Python Shell job to send a notification about the success or failure of the job.

While a fairly complex data pipeline can be created using Glue workflows (as demonstrated 

above), many use cases require the use of other AWS services, such as EMR for running Hive jobs, 

or writing files to an SQS queue. While Glue workflows do not support integration with non-

Glue services directly, it is possible to run a Glue Python Shell job that uses the Boto3 library to 

interact with other AWS services. However, this is not as feature-rich or as obvious to monitor 

as interacting with those services directly.

Glue workflows are a good fit for those pipelines that only use AWS Glue, but other options 

should be considered if you want to orchestrate additional services outside of the Glue family of 

services. If your use case only uses AWS Glue services, then the following section will be helpful 

to understand some best practices for using AWS Glue workflows. 

Monitoring and error handling
Glue workflows includes a graphical UI that can be used to monitor job progress. With the UI, you 

can see whether any step in the pipeline has failed, and you can also resume the workflow from 

a specific step once you have resolved the issue that caused the error. While the Glue workflows 

feature does not include a retry mechanism as part of the workflow definition, you can specify 

the number of retries in the properties of individual Glue jobs.
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CloudWatch Events provides a real-time stream of change events that can be generated by some 

AWS services, including AWS Glue. While Glue does not generate any events related to Glue 

workflows directly, events are generated from individual Glue jobs. For example, there is a Glue 

Job State Change event that is generated for Glue jobs that reflects one of the following states: 

SUCCEEDED, FAILED, TIMEOUT, or STOPPED.

Using Amazon EventBridge, you can automate actions to take place when a new event and status 

you are interested in is generated. For example, you can create an EventBridge rule that picks 

up Glue job FAILED events, and then triggers a Lambda function to run, which sends an email 

notification with details of the failure.

Triggering Glue workflows
When you create a Glue workflow, you can select the mechanism that will cause the workflow to 

run. There are three ways that a Glue workflow run can be started.

If set to on-demand, the workflow will only run when it’s started manually from the console, or 

when it’s started using the Glue API or CLI.

If set to scheduled, you can specify a frequency for running the job, such as hourly, daily, monthly, 

or for specific days of the week (such as Mondays to Fridays). Alternatively, you can set a custom 

schedule using a cron expression, which uses a string to set a frequency to run. For example, if 

you set the cron expression to */30 8-16 * * 2-6, the workflow will run every 30 minutes between 

8 A.M and 4:59 P.M., Mondays to Fridays.

Glue workflows also support an event-driven approach, where the workflow is triggered in re-

sponse to an EventBridge event. With this approach, you can configure an Amazon EventBridge 

rule to send events to a Glue workflows as the target, such as an S3 PutObject event for a specific 

S3 bucket and prefix.

When configuring your workflow, you can also specify triggering criteria, where you specify 

that you only want the workflow to run after a certain number of events are received, optionally 

specifying a maximum amount of time to wait for those events.

For example, if you have a business partner that sends many small .csv files throughout the day, 

you may not want to process each file individually, but rather process a batch of files. For this use 

case, you can configure the workflow to trigger once 100 events have been received and specify 

a time delay of 3,600 seconds (1 hour).

This time delay starts when the first unprocessed event is received. If the specified number of 

events is not received within the time delay you entered, the workflow will start anyway and 

process the events that have been received.
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If you receive 100 events between 8 A.M. and 8:40 A.M., the first run of the workflow will be trig-

gered at 8:40 A.M. If you receive only 75 events between 8:41 A.M. and 9:41 A.M., the workflow 

will run a second time at 9:41 A.M. anyway and process the 75 received events, since the time 

delay of 1 hour has been reached.

While Glue workflows can be an ideal service for pipelines that only use Glue services, if you are 

looking for a more comprehensive solution that can also orchestrate other AWS services and 

on-premises tools, then you should consider AWS Step Functions or Apache Airflow, which we 

will discuss next.

Apache Airflow as an open-source orchestration solution
Apache Airflow is open-sourced orchestration software, originally developed at Airbnb, that 

provides functionality for authoring, monitoring, and scheduling workflows. Some of the features 

available in Airflow include stateful scheduling, a rich user interface, core functionality for logging, 

monitoring, and alerting, and a code-based approach to authoring pipelines.

Within AWS, a managed version of Airflow is available as a service called Amazon Managed work-

flows for Apache Airflow (MWAA). This service simplifies the process of getting started with Airflow, 

as well as the ongoing maintenance of Airflow infrastructure, since the underlying infrastructure is 

managed by AWS. Like other AWS managed services, AWS ensures the scalability, availability, and 

security of the Airflow software and infrastructure. Please refer to the overview of Amazon MWAA in 

Chapter 3, The Data Engineer’s Toolkit, for more information on the architecture of this managed service.

When deploying the managed MWAA service in AWS, you can choose from multiple supported 

versions of Apache Airflow. At the time of writing, Airflow v1.10.12 and Airflow v2.6.3 are supported 

in the managed service.

Core concepts for creating Apache Airflow pipelines
Apache Airflow uses a code-based (Python) approach to authoring pipelines. This means that 

to work with Airflow, you do need some Python programming skills. However, having pipelines 

as code is a natural fit for saving pipeline resources in a source control system, and it also helps 

with creating automated tests for pipelines.

The following are some of the core concepts that are used to create Airflow pipelines.

Directed acyclic graphs (DAGs)
We introduced the concept of a directed acyclic graph (DAG) earlier in this chapter. In the context 

of Airflow, a data pipeline is created as a DAG (using Python to define the DAG), and the DAG 

defines the tasks in the pipeline, and the dependencies between the tasks.
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In the Airflow user interface, you can also view a graphical representation of the DAG – the pipe-

line tasks and their dependencies, with tasks represented as nodes and arrows showing the 

dependencies between tasks.

Airflow Tasks
Airflow Tasks define the basic unit of work that a DAG performs. Each task is defined in a DAG 

with upstream and downstream dependencies, which defines the order in which the tasks should 

run. When a DAG runs, the tasks in the DAG move through various states, from None to Scheduled, 

to Queued, to Running, and then to Success or Failed.

Airflow Hooks
Airflow Hooks define how to connect to remote source and target systems, such as a database, 

or a system such as Zendesk. These Hooks contain the code that controls the connection to the 

remote system, and while Airflow includes several built-in hooks, it also lets you define custom 

hooks. With Amazon MWAA, default hooks are provided for many different AWS services (such 

as Amazon S3, AWS Glue, AWS Lambda, and more). There are also hooks available for various 

databases (such as Oracle, MySQL, and Postgres) and systems such as Slack. 

Hooks contain the code to connect to remote systems, keeping that code separate from pipeline 

definitions.

Airflow Operators
Airflow Operators are predefined task templates that provide a pre-built interface for perform-

ing a specific task. Airflow includes several built-in core operators (such as BashOperator and 

PythonOperator, which execute a bash command or Python function). 

There is also an extensive collection of additional operators that are released separately from 

Airflow Core. For example, the LambdaInvokeFunctionOperator, provided by AWS, can be used 

to invoke an AWS Lambda function.

Airflow Sensors
Airflow Sensors provides a special type of Airflow operator that is designed to wait until a specific 

action takes place. These Sensors regularly check whether the activity they are waiting on has 

been completed, and can be configured to time out after a certain period.

Using Airflow Sensors enables you to create event-driven pipelines. For example, you could use 

S3KeySensor, which waits for a specific key to be present on an S3 path and, once present, triggers 

a specific DAG to run.
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Airflow Connections
Airflow Connections define the configuration information needed to connect to a remote system. 

For example, a connection may define the URL/hostname, port, username, and password that is 

used to make a connection to a database. Airflow Connections can be used by hooks, operators 

and sensors to define authentication credentials for connecting to external systems (such as a 

database, Amazon S3, or an AWS Lambda function). 

Apache Airflow is a popular choice for creating and managing complex data pipelines, and has 

strong built-in support for AWS and third-party services. However, there is a fixed infrastructure 

cost for the service, as this is a managed service. Let’s now look at AWS Step Functions, a serverless 

pipeline orchestration solution. 

AWS Step Functions for a serverless orchestration solution
AWS Step Functions is a comprehensive serverless orchestration service that uses a low-code 

approach to develop data pipelines and serverless applications. Step Functions provides a powerful 

visual design tool that allows you to create pipelines with a simple drag and drop approach. Or, if 

you prefer, you can define your pipeline using Amazon States Language (ASL) directly using JSON.

AWS has built optimized, easy-to-use integrations between many different AWS services and 

Step Functions. For example, in the Step Functions interface you can easily add a step that runs 

a Lambda function, and select the name of the Lambda function to run from a drop-down list.

Step Functions also makes it easy to specify how to handle the failure of a state with custom retry 

policies, lets you specify catch blocks to catch specific errors, and takes custom actions based 

on the error. However, Step Functions does not currently support the ability to restart a state 

machine from a specific step.

For services where AWS has not built an optimized integration, you can still run the service by 

using the AWS SDK integration built into Step Functions. For example, there is no direct Step 

Functions integration for running Glue Crawlers, but you can add a state that calls the Glue 

StartCrawler API and specify the parameters that are needed by that API call.

In this next section, we review an example of a Step Functions state machine. 

A sample Step Functions state machine
With Step Functions, you create a state machine that defines the various tasks that make up your 

data pipeline. Each task is considered a state within the state machine, and you can also have 

states that control the flow of your pipeline, such as a choice state that executes a branch of the 

pipeline, or a wait state to pause the pipeline for a certain period.
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When you’re executing a Step Functions state machine, you can pass in a payload that can be 

accessed by each state. Each state can also add additional data to the payload, such as a status 

code indicating whether a task succeeded or failed.

The following diagram shows a sample state machine in Step Functions:

Figure 10.2: Sample Step Functions state machine
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In this state machine definition, we can see the following states:

1. We start with a Task state that executes a Lambda function that validates a manifest file 

that has been received (ensuring that all the files listed in the manifest exist, for example).

2. We then have another Task state, this time to execute a Glue Job that will convert the files 

we received from CSV format into Parquet format.

3. Our next step is another Task state. This time, the task executes a Glue Crawler to update 

our data catalog with the new Parquet dataset we have generated.

4. We then enter a Parallel state, which is used to create parallel branches of execution in 

our state machine. In this case, we execute a Lambda function to summarize data from 

the Parquet file, and store the results in a DynamoDB table. At the same time, we trigger 

a Glue job to load the new data into our Redshift data warehouse.

5. We then enter a Choice state. The choice state specifies rules that get evaluated to deter-

mine what to do next. In this case, if our Lambda and Glue jobs succeeded, we end the 

state machine with a Success state. If either of them failed, we run a Lambda function to 

send a failure notification, and we end the state machine with a Fail state.

The visual editor that can be used in the console to create a state machine ultimately ends up 

generating an Amazon States Language (ASL) JSON file that contains the definition of the pipe-

line. You can store the JSON definition file for your data pipeline in a source control system, and 

then use the JSON file in a CI/CD pipeline to deploy your Step Functions state machine. You can 

edit your pipeline using the GUI interface in the console, or by directly editing the JSON file. Any 

edits you make directly to the JSON file can be imported into the console, and visualized. This 

enables you to use a combination of both the visual editor and direct edits of the JSON file in 

order to manage your pipeline. 

In the hands-on exercises for this chapter, you will get the opportunity to build out a data pipeline 

using AWS Step Functions. However, before we do that, let’s summarize your choices for data 

pipeline orchestration within AWS.

Deciding on which data pipeline orchestration tool to use
As we have discussed in this chapter, there are multiple options for creating and orchestrating 

data pipelines within AWS. And while we have looked at the four different options offered by 

AWS directly, there are many other options from AWS partners that could also be considered.
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As covered previously, AWS Data Pipeline is now in maintenance mode and so it cannot be used 

for any new projects. If your project only uses AWS Glue jobs and the Glue Crawler, then AWS 

Glue workflows may be a good option. However, for larger and more complex pipelines, it is worth 

examining both Amazon MWAA and AWS Step Functions.

The following tables show a comparison of Step Functions and Amazon MWAA based on several 

different key attributes:

Figure 10.3: Comparison of AWS Step Functions and Amazon MWAA



Chapter 10 319

We do not have space to cover getting hands-on with both Amazon MWAA and AWS Step Func-

tions, but since Step Functions is serverless and provides an easy-to-use visual designer, we will 

look at how to build an AWS Step Functions state machine in the next section. 

Hands-on – orchestrating a data pipeline using AWS 
Step Functions
In this section, we will get hands-on with the AWS Step Functions service, which can be used to 

orchestrate data pipelines. The pipeline we’re going to orchestrate is relatively simple, but Step 

Functions can also be used to orchestrate far more complex pipelines with many steps. To keep 

things simple, we will only use Lambda functions to process our data, but you could replace Lamb-

da functions with Glue jobs in production pipelines that need to process large amounts of data.

For our Step Functions state machine, let’s start by running a Lambda function that checks the 

extension of an incoming file to determine the type of file. Once determined, we’ll pass that in-

formation on to the next state, which is a CHOICE state. If it is a file type we support, we’ll call a 

Lambda function to process the file, but if it’s not, we’ll send out a notification, indicating that 

we cannot process the file.

If the Lambda function fails, we’ll send a notification to report on the failure; otherwise, we will 

end the state machine with a SUCCESS status. Once we’ve created our state machine, we will 

configure EventBridge to automatically trigger the state machine when a file is uploaded to a 

specific Amazon S3 path. 

Let’s get building!

Creating new Lambda functions
Before we can create our state machine, we need to create the Lambda functions that we will 

orchestrate. We will create three separate Lambda functions in this section.

Using a Lambda function to determine the file extension
Our first Lambda function will check the extension of the file that’s uploaded to our Amazon 

S3 bucket. Once we have the extension, we will return that in a JSON payload. Let’s get started:

1. Log in to AWS Management Console and navigate to the AWS Lambda service at https://

console.aws.amazon.com/lambda/home. Make sure that you are in the Region that you 

used for all the exercises in this book.

2. Click on Create function.

https://console.aws.amazon.com/lambda/home
https://console.aws.amazon.com/lambda/home
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3. Select Author from scratch. Then, for Function name, enter dataeng-check-file-ext.

4. For Runtime, select Python 3�10. Leave the defaults for Architecture and Permissions 

as-is and click Create function.

5. In the Code source block, replace any existing code with the following code. This code 

receives an EventBridge event when a new S3 file is uploaded and uses the metadata 

included within the event to determine the extension of the file:

import urllib.parse

import json

import os

print('Loading function')

def lambda_handler(event, context):

    print("Received event: " + json.dumps(event, indent=2))

    # Get the object from the event and show its content type

    bucket = event['detail']['bucket']['name']

    key = urllib.parse.unquote_plus(event['detail']['object']
['key'], encoding='utf-8')

    filename, file_extension = os.path.splitext(key)

    print(f'File extension is: {file_extension}')

    payload = {

        "file_extension": file_extension,

        "bucket": bucket,

        "key": key

        }

    return payload

6. Click the Deploy button above the code block section to save and deploy your Lambda 

function.

Now, we can create a second Lambda function that will process the file we received. However, for 

this exercise, the code in this Lambda function will randomly generate failures.

Using Lambda to randomly generate failures
For this Lambda function, we will use a random number generator to determine whether to cause 

an error in the Lambda function or allow it to succeed. We will do this by generating a random 

number that will be either 0, 1, or 2 and then dividing our random number by 10. When the ran-

dom number is 0, we will get a “divide by zero” error from our function. We do this so that we 

can explore how Step Functions is able to handle failures in a function. 
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Let’s get started:

1. Repeat steps 1 to 5 of the previous section to create the first Lambda function, but this time, 

for Function name, enter dataeng-random-failure-generator.

2. In the Code source block, replace any existing code with the following code:

from random import randint

def lambda_handler(event, context):

    print('Processing')

    #Our ETL code to process the file would go here.

    #However for this exercise we will instead randomly

    #cause the function to succeed or fail

    value = randint(0, 2)

    # We now divide 10 by our random number.

    # If the random number is 0, our function will fail

    newval = 10 / value

    print(f'New Value is: {newval}')

    return(newval)

3. Click the Deploy button above the code block section.

We now have two Lambda functions that we can orchestrate in our Step Functions state machine. 

But before we create the state machine, we have a few additional resources to create.

Creating an SNS topic and subscribing to an email address
If there is a failure in our state machine, we want to be able to send an email notification about 

the failure. We can use the SNS service to send an email. To do this, we need to create an SNS 

topic that we will send the notification to. Then, we can subscribe one or more email addresses 

to that topic. Let’s get started:

1. Navigate to the Amazon SNS service at https://console.aws.amazon.com/sns. Ensure 

that you are in the Region that you have used for all the exercises in this book.

2. In the menu on the left-hand side, click on Topics, and then Create topic.

3. For Type, select Standard.

4. For Name, enter dataeng-failure-notification.

5. Leave all the other items as-is and click on Create topic.

6. In the Subscriptions section, click Create subscription.

7. For Protocol, select Email.

https://console.aws.amazon.com/sns
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8. For Endpoint, enter your email address. Then, click on Create subscription.

9. Access your email and look for an email from no-reply@sns.amazonaws.com (this may take 

a minute or two to arrive). Click the Confirm subscription link in that email. You need to 

do this to receive future email notifications from Amazon SNS.

We now have an SNS topic with a confirmed email subscription that can receive SNS notifications. 

Next, we will create our new Step Functions state machine. 

Creating a new Step Functions state machine
Now, we can orchestrate the various components that we have created so far (our two Lambda 

functions and the SNS topic we will use for sending emails) using AWS Step Functions:

1. Navigate to the AWS Step Functions service at https://console.aws.amazon.com/

states/home. Ensure that you are in the Region that you have used for all the exercises 

in this book.

2. In the left-hand menu, click on State machines, and then click on Create state machine.

3. Select Blank for the template.

4. This will show a visual editor with a Start block and an End block in the Design tab. On the 

left-hand side, we have the components that we can use to design our state machine. Drag 

the AWS Lambda Invoke block into the visual designer, between the Start and End blocks.

5. On the right-hand side of the screen, set State name to Check File Extension.

6. Under API Parameters, use the drop-down list to set the Function name to be the name 

of the Lambda function that extracts the file extension (such as dataeng-check-file-

ext:$LATEST).

7. On the right-hand side, click on the Output tab, and make sure the selector for Filter 

output with OutputPath is selected, and that the value is set to $.Payload. This option 

configures our Check File Extension state to have an output of whatever was returned by 

our Lambda function (in our case, we have configured our Lambda function to return a 

JSON payload that contains the S3 bucket, object, and file extension of the file to process).

https://console.aws.amazon.com/states/home
https://console.aws.amazon.com/states/home
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Figure 10.4: Building out a Step Functions state machine

8. On the left-hand side, click on the Flow tab. Then, drag the Choice state between the 

Lambda Invoke function and the End state. We use the Choice state to branch out our 

pipeline to run different processes, based on the output of a previous state. In this case, our 

pipeline will do different things depending on the extension of the file we are processing.

9. On the right-hand side, under Configuration for our new choice state, click the Pencil 

Edit icon next to Rule #1 and then click Add conditions.

10. On the pop-up screen, under Variable, enter $.file_extension (our Lambda function 

returns some JSON, including a JSON path of file_extension that contains a string with 

the extension of the file we are processing). Set Operator to matches string and for value, 

enter .csv. Then, click Save conditions.

11. On the left-hand side, switch back to the Actions tab and drag the AWS Lambda Invoke 

state to the left-hand side of the two choice boxes.

12. For our new Lambda Invoke state, set State name to Process CSV (since our Choice 

function is going to invoke this Lambda for any file that has an extension of .csv, as we 

set in step 10).
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13. Under API Parameters, use the dropdown to set Function name to our second Lambda 

function (dataeng-random-failure-generator:$LATEST). In a real pipeline, we would 

have a Lambda function (or Glue job) that would read the CSV file that was provided as 

input and process the file. In a real pipeline, we may have also added additional rules 

to our Cshoice state for other file types (such as XLS or JPG) and had different Lambda 

functions or Glue jobs invoked to handle each file type.

However, in this exercise, we are only focusing on how to orchestrate pipelines, so our 

Lambda function code is designed to simply divide 10 by a random number, resulting in 

random failures when the random number is 0.

14. On the left-hand side, switch back to the Flow tab and drag the Pass state to the Default 

rule box leading from our Choice state. The default rule is used if the output of our Lamb-

da function does not match any of the other rules. In this case, our only other rule is for 

handling files with a .csv extension, so if a file has any other extension besides .csv, the 

default rule will be used.

15. On the right-hand side, for the Pass state configuration, change State name to Pass – 

Invalid File Ext. Then, click on the Output tab and paste the following into the Result 

textbox:

{

  "Error": "InvalidFileFormat"

}

16. The Pass state is used in a state machine to modify the data that is passed to the next state. 

In this case, we want to pass a JSON-formatted error message about the file format being 

invalid to the next state in our pipeline.

17. Click the selector for Add original input to output using ResultPath so that that option 

is selected, and ensure that the dropdown is set to Combine original input with result. 

In the textbox, enter $.Payload.

18. If we receive an InvalidFileFormat error, we want to send a notification using the Ama-

zon SNS service. To do so, on the left-hand side, under the Actions tab, drag the Amazon 

SNS Publish state to below our Pass - Invalid File Ext state.

19. On the right-hand side, on the Configuration tab for the SNS Publish state, under API Pa-

rameters, set Topic to our previously created SNS topic (dataeng-failure-notification). 

Your state machine should now look as follows:
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Figure 10.5: The current status of our Step Functions state machine

20. We can now add error handling for our Process CSV state. Click on the Process CSV state 

and, on the right-hand side, click on the Error handling tab. Under Catch errors, click on 

the + Add new catcher button. For Errors, select States�ALL, for Fallback state, select our 

SNS Publish state, and for result path, enter $.Payload. This configuration means that 

if our Lambda function fails for any reason (States.ALL), we will add the error message 

to our JSON under a Payload key and pass this to our SNS notification state.

21. On the left-hand side, click on the Flow tab and drag Success state under the Process CSV 

state. Then, drag Fail state under the SNS Publish state. We do this as we want our Step 

Functions to show as having failed if, for any reason, something failed and we ended up 

sending a failure notification using SNS. 
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Your finalized state should look as follows:

Figure 10.6: The final status of our Step Functions state machine

22. At the top of the screen, click on the Config tab. 

23. For State machine name, enter ProcessFilesStateMachine. Leave all the other settings 

as-is and click Create in the top right.

24. On the next screen, click on Confirm. 

With that, we have created our pipeline orchestration using Step Functions. Now, we want to 

create an event-driven workflow for triggering our Step Functions state machine. In the next 

section, we will create a new EventBridge rule that will trigger our state machine whenever a 

new file is uploaded to a specific S3 bucket.
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The Amazon EventBridge service is a serverless event bus that can be used to build event-driven 

workflows. EventBridge can detect events from various AWS services (such as a new file being 

uploaded to S3) and can be configured to trigger a variety of different targets in response to an 

event. In our case, we will configure our Step Functions state machine as a target.

Configuring our S3 bucket to send events to EventBridge
In this section, we will configure Amazon EventBridge notifications for our data lake Clean Zone 

bucket. Once this is configured, whenever new files are created in our Clean Zone bucket, Event-

Bridge will process the event and trigger our Step Functions state machine. 

The following steps will take you through the process of configuring the Clean Zone bucket:

1. Navigate to the Amazon S3 service at https://s3.console.aws.amazon.com/s3/home. 

Ensure that you are in the Region that you have used for all the exercises in this book.

2. Review the list of buckets, and click on your Clean Zone bucket (for example, dataeng-

clean-zone-gse23). 

3. Click on the Properties tab for the bucket, scroll down to the Event Notifications section, 

and click on Edit next to the Amazon EventBridge sub-section. 

4. Click the selector for On, in order to ensure that notifications are sent to Amazon Event-

Bridge for all events in the bucket. Then, click Save changes. 

With the above steps, we have configured our Clean Zone bucket to send an event containing de-

tails about any actions in our S3 bucket (such as new objects created, objects that get read, etc) to 

EventBridge. In the next section, we will create an EventBridge rule to filter the events, and to send 

events we are interested in (the creation of new files) to our AWS Step Functions state machine. 

Creating an EventBridge rule for triggering our Step Functions 
state machine
Our final task, before testing our pipeline, is to configure the EventBridge rule that will trigger 

our Step Functions state machine. Let’s get started:

1. Navigate to the Amazon EventBridge service at https://console.aws.amazon.com/

events/home. Ensure that you are in the Region that you have used for all the exercises 

in this book.

2. From the left-hand panel, click on Rules, ensure that the default Event bus is selected, 

and then click on Create rule.

3. For the rule’s name, enter dataeng-s3-trigger-rule.

https://s3.console.aws.amazon.com/s3/home
https://console.aws.amazon.com/events/home
https://console.aws.amazon.com/events/home
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4. For Rule type, select Rule with an event pattern. Then, click Next.

5. For Event source, ensure that AWS events or EventBridge partner events is selected.

6. Under Sample event, for type, ensure that AWS events is selected. 

7. Under Sample events, search for S3, and under Simple Storage Service (S3), select Object 

created. This will display an example S3 Object Created notification. 

8. Under Creation method, select Use pattern form. 

9. Under Event pattern, ensure that AWS services is selected for Event source, and for AWS 

service, search for and select Simple Storage Service (S3). For Event type, select Amazon 

S3 Event Notification. 

10. Change the selector from Any event to Specific event(s). And then from the dropdown, 

select Object created. 

11. Change the selector from Any bucket to Specific bucket(s) by name.

12. In the text box, enter the name of your data lake Clean Zone bucket (for example, dataeng-

clean-zone-gse23). Then click Next. 

13. Under Select target(s), for Target 1, ensure that AWS service is selected, and for Select a 

target, search for and choose Step Functions state machine. 

14. Under State machine, select the state machine we created previously (such as 

ProcessFileStateMachine) from the dropdown. 

15. Optionally add tags, and then click Next.

16. Review the configuration details, and then click Create rule.

With the above steps we have created a new EventBridge rule that is triggered whenever a new 

object is created in the S3 bucket we specified. However, we may only want this rule to run when 

new objects (files) are created in a specific S3 bucket, rather than fsor every new object in the 

bucket as a whole. We can do this by editing the rule, as follows:

1. Under Rules, click on the name of the rule (such as dataeng-s3-trigger-rule).

2. Next to Event pattern, click on Edit.

3. Under the Event pattern JSON, click on Edit pattern. 

4. Modify the JSON to be as follows, but be sure to keep the bucket name that you created 

(i.e., change dataeng-clean-zone-initials to whatever your Clean Zone bucket name is): 

{

  "source": ["aws.s3"],

  "detail-type": ["Object Created"],
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  "detail": {

    "bucket": {

      "name": ["dataeng-clean-zone-initials"]

    },

    "object": {

      "key": [{

        "prefix": "chapter10"

     }]

   }

  }

}

5. Click on Next, and then click on Next twice more to continue through the screens and 

accepting the defaults. Then, click on Update rule. 

Your completed EventBridge rule should look as follows:

Figure 10.7: Our completed EventBridge rule

With that, we have put together an event-driven workflow to orchestrate a data pipeline using 

Amazon Step Functions. Our last task is to test our pipeline.
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Testing our event-driven data orchestration pipeline
To test our pipeline, we need to upload a file to our Clean Zone S3 bucket, into a prefix named 

chapter10. Once the file has been uploaded, the rule we created in Amazon EventBridge will 

cause our Step Functions state machine to be triggered:

1. Navigate to the Amazon S3 service at https://s3.console.aws.amazon.com/s3.

2. From the list of buckets, click on the dataeng-clean-zone-<initials> bucket.

3. Click on Create folder to create a new folder. For Folder name, specify chapter10. Then, 

click Create folder.

4. Click on the new folder (chapter10) to move into that folder. 

5. Click on Upload, and then Add files. Browse your computer for a file with a CSV exten-

sion (if you cannot find one, create a new, empty file and make sure to save it with an 

extension of .csv).

6. Leave the other settings as-is and click Upload.

7. Navigate to the AWS Step Functions service at https://console.aws.amazon.com/

states.

8. Click on the state machine we created earlier (ProcessFilesStateMachine). From the list 

of Executions, see whether the state machine Succeeded or Failed. Click on the Name 

property of the execution for more details. 

Note that you may see two executions, with the first execution failing and the second 

one succeeding (depending on the random number generator result). The first execution 

is triggered by the creation of the new folder/prefix (chapter10), and this fails with an 

invalid file extension failure, as the prefix obviously does not have a .csv extension. The 

second execution (where you uploaded the file with a .CSV extension) will either succeed 

or fail, depending on what random number was generated by our second Lambda function. 

9. Reupload the same .csv file multiple times and notice how some executions succeed and 

some fail. The random number generator has a 66% chance of generating the number 1 

or 2 and a 33% chance of generating the number 0. When the number 0 is generated, the 

function will fail, so throughout many executions, approximately one-third should fail.

The following diagram shows an example of what our state machine looks like after an ex-

ecution where 0 was generated as a random number, causing the Lambda function to fail:

https://s3.console.aws.amazon.com/s3
https://console.aws.amazon.com/states
https://console.aws.amazon.com/states
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Figure 10.8: An example of a state machine run when the random number generator 
generated a 0, resulting in a failed state machine

10. After a failed execution, check the email address that you specified when you configured 

the Amazon SNS notification service. If you previously confirmed your SNS subscription, 

you should receive an email each time the state machine fails with details on the error 

(such as "Error":"ZeroDivisionError"). 

11. Now, upload another file to the same Amazon S3 bucket, but ensure that this file has an 

extension other than .csv (for example, .pdf). When you’re viewing the execution details 

for your state machine, you should see that the choice state proceeded to the Pass – Invalid 

File Ext state and then also published an SNS notification to your email. The error listed 

in the email should be "Error":"InvalidFileFormat". 

In the hands-on activity for this chapter, we created a serverless pipeline that we orchestrated 

using the AWS Step Functions service. Our pipeline was configured to be event-driven via the 

Amazon EventBridge service, which let us trigger the pipeline in response to a new file being 

uploaded to a specific prefix in our Amazon S3 Clean Zone bucket.
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You could easily modify this state machine to handle different types of files, in different ways. For 

example, you could create a Lambda function that converts a CSV file to Parquet format, but that 

passes an image file (those with JPEG or PNG extensions) to a different Lambda function that 

creates a thumbnail of the image. 

This was a fairly simple example of a data pipeline. However, AWS Step Functions can be used 

to orchestrate far more complex data pipelines, with advanced error handling and retries. For 

more information on advanced error handling, see the AWS blog titled Handling Errors, Retries, 

and Adding Alerting to Step Functions State Machine Executions (https://aws.amazon.com/blogs/
developer/handling-errors-retries-and-adding-alerting-to-step-function-state-

machine-executions/).

Summary
In this chapter, we looked at a critical part of a data engineer’s job–designing and orchestrating 

data pipelines. First, we examined some of the core concepts around data pipelines, such as 

scheduled and event-based pipelines, and how to handle failures and retries.

We then looked at four different AWS services that can be used for creating and orchestrating data 

pipelines. This included AWS Data Pipeline (now in maintenance mode), AWS Glue workflows, 

Amazon MWAA, and AWS Step Functions. 

Then, in the hands-on section of this chapter, we built an event-driven pipeline. We used two AWS 

Lambda functions for processing, and an Amazon SNS topic for sending out notifications about 

failures. Then, we put these pieces of our data pipeline together into a state machine orchestrated 

by AWS Step Functions. We also looked at how to handle errors.

So far, we have looked at how to design the high-level architecture for a data pipeline and exam-

ined services for ingesting, transforming, and consuming data. In this chapter, we put some of 

these concepts together in the form of an orchestrated data pipeline.

In the remaining chapters of this book, we will take a deeper dive into some of the services for 

data consumption, including services for ad hoc SQL queries, services for data visualization, as 

well as an overview of machine learning and Artificial Intelligence services for drawing additional 

insights from our data.

In the next chapter, we will do a deeper dive into the Amazon Athena service, which is used for 

ad hoc data exploration, using the power of SQL.

https://aws.amazon.com/blogs/developer/handling-errors-retries-and-adding-alerting-to-step-function-state-machine-executions/
https://aws.amazon.com/blogs/developer/handling-errors-retries-and-adding-alerting-to-step-function-state-machine-executions/
https://aws.amazon.com/blogs/developer/handling-errors-retries-and-adding-alerting-to-step-function-state-machine-executions/
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Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd




Section 3
The Bigger Picture: 
Data Analytics, Data 
Visualization, and 
Machine Learning

In this, the third and final section of the book, we examine the bigger picture of data analytics 

within modern organizations. We learn about the tools that data consumers commonly use to 

work with data transformed by data engineers, and briefly look into how Artificial Intelligence 

(AI) and Machine Learning (ML) can draw rich insights out of data. We also get hands-on with 

tools for running ad hoc SQL queries on data in the data lake (Amazon Athena), for creating 

data visualizations (Amazon QuickSight), and for using AI to derive insights from data (Amazon 

Comprehend). We then conclude by looking at data engineering examples from the real world 

and explore some emerging trends in data engineering.

This section comprises the following chapters:

• Chapter 11, Ad Hoc Queries with Amazon Athena

• Chapter 12, Visualizing Data with Amazon QuickSight

• Chapter 13, Enabling Artificial Intelligence and Machine Learning

• Chapter 14, Building Transactional Data Lakes





11
Ad Hoc Queries with Amazon 
Athena

In Chapter 8, Identifying and Enabling Varied Data Consumers, we explored a variety of data 

consumers. Now in this chapter, we will start examining the AWS services that some of these 

different data consumers may want to use, starting with those that need to use SQL to run ad 

hoc queries on data in the data lake.

SQL syntax is widely used for querying data in a variety of databases, and there is a large number 

of people that know SQL, making it a skill that is fairly easy to find. As a result, there is significant 

demand from various data consumers for the ability to query data that is in the data lake using 

SQL, without having to first move the data into a dedicated traditional database.

Amazon Athena is a serverless, fully managed service that lets you use SQL and Spark to directly 

query data in the data lake, as well as query various other database sources. It requires no set-

up, and there are options to either pay for the service based only on the amount of data that is 

scanned by your SQL queries, or to reserve a specific amount of capacity and pay for that capacity 

reservation (referred to as provisioned capacity). 

In this chapter we will examine Athena features and functionality, such as how Athena can be 

used to query data directly in the data lake, how you can use Athena to query data from other 

data sources with Query Federation, and how Athena provides functionality for governance and 

cost management, with workgroups. We also provide some recommended best practices to help 

you optimize your Athena SQL queries for both cost and performance. 
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This chapter covers the following topics:

• An introduction to Amazon Athena

• Tips and tricks to optimize Amazon Athena SQL queries

• Exploring advanced Athena functionality

• Managing groups of users with Amazon Athena workgroups

• Hands-on – creating an Amazon Athena workgroup and configuring Athena settings

• Hands-on – switching workgroups and running queries

Technical requirements
In the hands-on sections of this chapter, you will perform administrative tasks related to Amazon 

Athena (such as creating a new Athena workgroup) and run Athena queries. As mentioned at the 

start of this book, we strongly recommend that, for the exercises in this book, you use a sandbox 

account where you have full administrative permissions.

For this chapter, at a minimum, you will need permissions to manage Athena workgroups, per-

missions to run Athena queries, access to the AWS Glue Data Catalog for databases and tables 

to be queried, and read access to the relevant underlying S3 storage.

A user that has the AmazonAthenaFullAccess and AmazonS3ReadOnlyAccess policies attached 

should have sufficient permissions for the exercises in this chapter. However, note that a user 

with these roles will have access to all S3 objects in the account, all Glue resources, all Athena 

permissions, as well as various other permissions, so this should only be granted to users in a 

sandbox account. Such broad privileges should be avoided for users in production accounts.

You can find the code files of this chapter in the GitHub repository using the following link: 
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/

main/Chapter11.

An introduction to Amazon Athena
Amazon Athena was originally launched as a service that simply provided a way to run SQL 

queries against data in an S3-based data lake. However, over the years, AWS had added a lot of 

additional functionality to Athena, enabling features like running queries against other databases 

(not just S3-based data), and supporting the use of Spark based Notebooks for querying data (in 

addition to SQL queries). 

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter11
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter11
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Structured Query Language (SQL) was invented at IBM in the 1970s but has remained an ex-

tremely popular language for querying data throughout the decades. Every day, millions of people 

across the world use SQL directly to explore data in a variety of databases, and many more use 

applications (whether business applications, mobile applications, or others) that, under the 

covers, use SQL to query a database.

Facebook, the social media network, has very large datasets and complex data analysis require-

ments and found that existing tools in the Hadoop ecosystem were not able to meet their needs. 

As a result, Facebook created an internal solution for being able to run SQL queries on their very 

large datasets, using standard SQL semantics, and in 2013, Facebook released this as an open-

source solution called Presto.

In late 2016, AWS announced the launch of Amazon Athena, a new service that would enable 

customers to directly query structured and semi-structured data that exists in Amazon S3. In 

the launch announcement, Amazon indicated that Athena was a managed version of Presto, 

with standard SQL support. This provided the power of the Presto SQL analytics engine as a 

serverless service to AWS customers. 

SQL is broadly broken into two parts:

• Data Definition Language (DDL), which is used to create and modify database objects.

• Data Manipulation Language (DML), which is used to query and manipulate data.

In 2021, AWS upgraded the Amazon Athena engine to v2, which included support for features 

such as federated queries, new geospatial functions, and schema evolution support for Parquet 

files. This was followed by the launch of Athena engine v3 in October 2022, which included re-

liability improvements, performance improvements, and updates incorporated from the Trino 

open-source project (https://trino.io/). While both engine versions are available for use at the 

time of writing, Athena engine v2 will be deprecated at some point, and therefore if starting a new 

project it is always recommended to configure the project to use the latest Athena engine version. 

Amazon Athena requires a Hive-compatible data catalog that provides the metadata for the data 

being queried. The catalog provides a logical view (databases that contain tables, which consist 

of rows, along with columns of a specific data type), and this maps to physical files stored in 

Amazon S3. Athena originally had its own data catalog, but today, it requires the use of the AWS 

Glue Data Catalog as its Hive compatible data store.

https://trino.io/
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Amazon Athena makes it easy to quickly start querying data in an Amazon S3-based data lake, but 

there are some important things to keep in mind to optimize SQL queries with Amazon Athena, 

as we will discuss in the next section.

Tips and tricks to optimize Amazon Athena queries
When raw data is ingested into the data lake, we can immediately create a table for that data 

in the AWS Glue Data Catalog (either using a Glue crawler or by running DDL statements with 

Athena to define the table). Once the table has been created, we can start exploring the table by 

using Amazon Athena to run SQL queries against the data.

However, raw data is often ingested in plaintext formats such as CSV or JSON. And while we 

can query the data in this format for ad hoc data exploration, if we need to run complex queries 

against large datasets, these raw formats are not efficient to query. There are also ways that we 

can optimize the SQL queries that we write to make the best use of the underlying Athena query 

engine, which we will review in this chapter. 

By default, Amazon Athena’s cost is based on the amount of compressed data that is scanned 

to resolve your SQL query, so anything that can be done to reduce the amount of data scanned 

improves query performance and reduces query cost. And if using Athena Provisioned Capacity, 

while you don’t pay based on the amount of data scanned, optimized file formats and queries 

use provisioned resources more efficiently, and queries are also more performant. 

In this section, we will review several ways that we can optimize our analytics for increased 

performance and better cost efficiency. 

Common file format and layout optimizations
The most impactful and easiest transformations that a data engineer can apply to raw files are 

those that transform the raw files into an optimized file format, and that structure the layout of 

files in an optimized way.

Transforming raw source files to optimized file formats
As we discussed in Chapter 7, Transforming Data to Optimize for Analytics, file formats such as Apache 

Parquet are designed for analytics and perform much better than raw data formats such as CSV 

or JSON. So, transforming your raw source files into a format such as Parquet is one of the most 

important things a data engineer can do to improve the performance of Athena queries. Review 

the Optimizing the file format section of Chapter 7, Transforming Data to Optimize for Analytics, for 

a more comprehensive look at the benefits of Apache Parquet files.
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In Chapter 7 we also reviewed how the AWS Glue service can be used to transform your files into 

optimized formats. However, Amazon Athena can also transform files using a concept called Create 

Table As Select (CTAS). With this approach, you run a CTAS statement using Athena, and this 

instructs Athena to create a new table based on a SQL select statement against a different table.

In the following example, customers_csv is the table that was created on the data we imported 

from a database to our data lake, and the data is in CSV format. If we want to create a Parquet 

version of this table so that we can query it efficiently, we could run the following SQL statement 

using Athena:

CREATE TABLE customers_parquet

WITH (

      format = 'Parquet',

      parquet_compression = 'SNAPPY')

AS SELECT *

FROM customers_csv;

The preceding statement will create a new table called customers_parquet. The underlying files 

for this table will be in Parquet format and compressed using the Snappy compression algorithm. 

The contents of the new table will be the same as the customers_csv table since our query spec-

ified SELECT *, meaning select all data.

If you are bringing in specific datasets regularly (such as every night), then in most scenarios, 

it would make sense to configure and schedule an AWS Glue job to perform the conversion to 

Parquet format. But if you’re doing ad hoc exploratory work on various datasets, or a one-time 

data load from a system, then you may want to consider using Amazon Athena to perform the 

transformation. Note that there are some limitations in using Amazon Athena to perform these 

types of transforms, so refer to the Considerations and Limitations for CTAS Queries (https://docs.

aws.amazon.com/athena/latest/ug/considerations-ctas.html) page in the Amazon Athena 

documentation for more details.

Partitioning the dataset
This is also a concept that we covered in more detail in Chapter 7, Transforming Data to Optimize 

for Analytics, but we will discuss it again now briefly as, after using an optimized file format such 

as Parquet, this is the next most impactful thing you can do to increase the performance of your 

analytic queries. Review the Optimizing with Data Partitioning section of Chapter 7, Transforming 

Data to Optimize for Analytics, for more details on partitioning.

https://docs.aws.amazon.com/athena/latest/ug/considerations-ctas.html
https://docs.aws.amazon.com/athena/latest/ug/considerations-ctas.html
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A common data partitioning strategy is to partition files by columns related to date. For example, 

in our sales table, we could have a YEAR column, a MONTH column, and a DAY column that reflect 

the year, month, and day of a specific sales transaction, respectively. When the data is written to 

S3, all sales data related to a specific day will be written out to the same S3 prefix path.

Our partitioned dataset may look as follows:

/datalake/transform_zone/sales/YEAR=2023/MONTH=9/DAY=29/sales1.parquet

/datalake/transform_zone/sales/YEAR=2023/MONTH=9/DAY=30/sales1.parquet

/datalake/transform_zone/sales/YEAR=2023/MONTH=10/DAY=1/sales1.parquet

/datalake/transform_zone/sales/YEAR=2023/MONTH=10/DAY=2/sales1.parquet

Partitioning provides a significant performance benefit when you filter the results of your query 

based on one or more partitioned columns using the WHERE clause. For example, if a data analyst 

needs to query the total sales for the last day of September 2023, they could run the following 

query:

select sum(SALE_AMOUNT) from SALES where YEAR = '2023' and MONTH = '9' and 
DAY = '30'

Based on our partitioning strategy, the preceding query would only need to read the file (or files) 

in the single S3 prefix of /datalake/transform_zone/sales/YEAR=2023/MONTH=9/DAY=30.

Even if we want to query the data for a full month or year, we still significantly reduce the number 

of files that need to be scanned, compared to having to scan all the files for all the years if we did 

not partition our data.

As covered in Chapter 7, Transforming Data to Optimize for Analytics, you can specify one or more 

columns to partition by when writing out data using Apache Spark. Alternatively, you can use 

Amazon Athena CTAS statements to create a partitioned dataset. However, note that a single 

CTAS statement in Athena can only create a maximum of 100 partitions. 

NOTE

The preceding partition structure is a simple example because generally, with large 

datasets, you would expect to have multiple Parquet files in each partition, and not 

just a single file. 
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Other file-based optimizations
Using an optimized file format (such as Apache Parquet) and partitioning your data are generally 

the two strategies that will have the biggest positive impact on analytic performance. However, 

several other strategies can fine-tune performance, which we will cover here briefly.

Optimizing file size: It is important to avoid having a large number of small files if you want 

to optimize your analytic queries. For each file in S3, the analytic engine (in this case, Amazon 

Athena) needs to do the following:

• Open the file.

• Read the Parquet metadata to determine whether the query needs to scan the contents 

of the file.

• Scan the contents of the file if the file contains data needed for the query.

• Close the file.

There can be significant Input/Output (I/O) overhead in listing out very large numbers of files 

and then processing each file. Airbnb has an interesting blog post on Medium (https://medium.
com/airbnb-engineering/on-spark-hive-and-small-files-an-in-depth-look-at-spark-

partitioning-strategies-a9a364f908) that explains an issue they had where one of their data 

pipeline jobs ended up creating millions of files, and how this caused significant outages for them.

While there are no hard rules regarding file size, it is generally recommended that to optimize for 

analytics you should aim for file sizes of at least 128 MB for objects in your S3-based data lake. 

When using file formats such as Parquet that are splitable (meaning the query engine can split 

the file and process different parts of the file in parallel), the maximum file size is not as much of 

an issue. But if processing files that are not splitable, such as Gzipped CSV files, it is important 

to have multiple files that the query engine can read in parallel, rather than a single large file. 

Bucketing: Bucketing is a concept that is related to partitioning. However, with bucketing, you 

group rows of data together in a specified number of buckets, based on the hash value of a column 

(or columns) that you specify. Athena engine v2 is not compatible with the bucketing implemen-

tation that’s used in Spark, but Athena engine v3 supports both Hive bucketing and the Spark 

bucketing algorithm. 

For example, if you have data on all airline flights that you often query based on the airport code 

of where the flight departed from, you could bucket your data on the origin airport code. That 

way, all records for flights that originated from a specific airport may be in a single file in each 

partition, and Athena would only need to scan that file when a query was based on the origin 

airport and limited to a single partition. 

https://medium.com/airbnb-engineering/on-spark-hive-and-small-files-an-in-depth-look-at-spark-partitioning-strategies-a9a364f908
https://medium.com/airbnb-engineering/on-spark-hive-and-small-files-an-in-depth-look-at-spark-partitioning-strategies-a9a364f908
https://medium.com/airbnb-engineering/on-spark-hive-and-small-files-an-in-depth-look-at-spark-partitioning-strategies-a9a364f908
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Refer to the Amazon Athena documentation on Partitioning and bucketing in Athena for more 

information (https://docs.aws.amazon.com/athena/latest/ug/ctas-partitioning-and-

bucketing.html).

Partition Projection: In scenarios where you have a very large number of partitions, there can 

be a significant overhead for Athena to read all the information about partitions from the Glue 

catalog. To improve performance, you can configure partition projection, where you provide a 

configuration pattern to reflect your partitions. Athena can then use this configuration informa-

tion to determine possible partition values, without needing to read the partition information 

from the catalog.

For example, if you have a column called YEARMONTH that you partition on, and you have data 

going back to 2013, you could configure the partition projection range as 201301,NOW and the 

partition projection format as yyyyMM. Athena would then be able to determine all possible valid 

partitions for that period without needing to read the partition information from the Glue cat-

alog. For more information on partition projection, see the AWS documentation titled Partition 

Projection with Amazon Athena (https://docs.aws.amazon.com/athena/latest/ug/partition-

projection.html).

In addition to the file and layout optimizations, there are also ways to write SQL queries so that 

the queries are optimized for the Athena analytic engine. We will cover some of these optimiza-

tions in the next section.

Writing optimized SQL queries
The way that SQL queries are written can also have a significant impact on the performance of 

the query.

In this section, we will review some best practices that will help provide optimal performance 

of queries. It’s recommended that, as a data engineer, you share these best practices with data 

analysts and others using Athena to run queries.

That said, there are other ways, beyond the three best practices we will outline here, to go deep 

into query optimization. For example, you (or your end user data analysts) can use the EXPLAIN 

statement as part of an Athena query to view the logical execution plan of a specific SQL statement. 

You can then make modifications to your SQL statement and review the EXPLAIN query plan to 

understand how that changes the underlying execution plan. For more information, see the AWS 

Athena documentation titled Using EXPLAIN and EXPLAIN ANALYSE in Athena: https://docs.

aws.amazon.com/athena/latest/ug/athena-explain-statement.html.

https://docs.aws.amazon.com/athena/latest/ug/ctas-partitioning-and-bucketing.html
https://docs.aws.amazon.com/athena/latest/ug/ctas-partitioning-and-bucketing.html
https://docs.aws.amazon.com/athena/latest/ug/partition-projection.html
https://docs.aws.amazon.com/athena/latest/ug/partition-projection.html
https://docs.aws.amazon.com/athena/latest/ug/athena-explain-statement.html
https://docs.aws.amazon.com/athena/latest/ug/athena-explain-statement.html
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Let’s look now at three important ways that you can optimize your queries. 

Selecting only the specific columns that you need
When exploring data, it is common to run queries that select all columns by specifying the start 

of the query as select *. However, remember that the Parquet format that we recommend for 

analytics is a columnar-based file format, meaning that data stored on disk is grouped by col-

umns rather than rows. When you specify a specific column to query, the analytic engine (such 

as Athena) can read the data for that column only.

If you have a table with a lot of columns (and it is not uncommon for tables to have over a hundred 

columns), specifying just the columns that are important to your query can significantly increase 

the performance of your query. 

Take a scenario where you have a table with 150 columns, but your specific query only needs 

data from 15 of the columns. If using a columnar data format such as Parquet, then Athena would 

only need to scan approximately 10% of the dataset, compared to a query that uses a select * 

to query all columns.

Using approximate aggregate functions
The Presto and Trino database engines (and therefore Athena) supports a wide variety of functions 

and operators that can be used in queries. These include functions that can be used in calculations 

against large datasets in a data lake. They are used for tasks such as the following:

• Working out the sum of all sales for this month compared to last month

• Calculating the average number of orders per store

• Determining the total number of unique users that accessed our e-commerce store yes-

terday

• Other advanced statistical calculations

For some calculations, you may need to get a fully accurate calculation, such as when determining 

sales figures for formal financial reporting. At other times, you may just need an approximate 

calculation, such as for getting an estimate on how many unique visitors came to our website 

yesterday.

For those scenarios, where you can tolerate some deviation in the result, Presto and Trino pro-

vide approximate aggregate functions, and these offer significant performance improvements 

compared to the equivalent fully accurate version of the function.
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For example, if we needed to calculate the approximate number of unique users that browsed 

our e-commerce store in the past 7 days, and we could tolerate a standard deviation of 2.3% in 

the result, we could use the approx._distinct function, as follows:

SELECT

     approx_distinct(userid)

FROM

     estore_log

WHERE

     visit_time > to_iso8601(current_timestamp – interval '7' day)

For more information on supported functions in Athena, including approximate functions, refer 

to the Athena documentation titled Functions in Amazon Athena: https://docs.aws.amazon.com/

athena/latest/ug/functions.html.

Athena also includes some options that you can enable to further improve query performance, 

such as the ability to reuse query results, as we discuss next. 

Reusing Athena query results
One of the options introduced with Athena engine v3, is the ability to specify that you want to 

reuse query results from previous queries, for a specific time period. When running a query you 

can opt-in to reusing previous query results, and can specify a maximum age for reusing results 

(with a default of 60 minutes, but the ability to reuse results for up to 7 days). 

When you enable this option for a query, Athena will look for a previous execution of the exact 

same query within the specified time period, and within the current workgroup. If Athena finds 

the results of the same query, it does not rerun the query, but rather points to the previous result 

location or fetches the data from it. This can lead to significant performance improvements and 

reduced cost. 

Note that Athena does not check for changes in the source data, so it is possible that using this 

feature will result in stale data being returned. Query reuse is based purely on finding an exact 

match for the query being run, within the same workgroup, and confirming that the result was 

generated within the time period specified (or 60 minutes if no maximum age is specified). 

We don’t have space to cover all query optimization techniques in this chapter. However, the 

AWS documentation provides a deeper dive into these optimizations, so for more information, 

refer to the AWS Athena documentation titled Performance Tuning in Athena at https://docs.

aws.amazon.com/athena/latest/ug/performance-tuning.html. 

https://docs.aws.amazon.com/athena/latest/ug/functions.html
https://docs.aws.amazon.com/athena/latest/ug/functions.html
https://docs.aws.amazon.com/athena/latest/ug/performance-tuning.html
https://docs.aws.amazon.com/athena/latest/ug/performance-tuning.html
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Now that you have a good idea of the core functionality provided in Athena, and understand 

how to optimize your queries, let’s move on to how to get even more out of Athena. In the next 

section we look at advanced functionality, such as how Athena can be used to query other data 

sources beyond the data files stored in Amazon S3, and how you can also query your data using 

Spark code through Athena. 

Exploring advanced Athena functionality
As we’ve discussed several times in this book, Athena lets you query data that has been loaded 

into the data lake using standard SQL semantics. But since the launch of Athena, AWS has added 

additional functionality to enhance Athena to make it an even more powerful query engine.

One of those major enhancements, which became available in 2021 with Athena query engine v2, 

was the ability to run federated queries, which we will look at next.

Querying external data sources using Athena Federated 
Query
Query federation, also sometimes referred to as data virtualization, is the process of querying 

multiple external data sources, in different database engines or other systems, through a single 

SQL query statement. 

Data lakes are designed to collect data from multiple systems in an organization and bring it into 

centralized storage, where the data can be combined in ways that unlock value for the business. 

However, it is not practical to bring every single dataset that an organization has created into 

the centralized storage of the data lake. For some datasets, the organization either does not need 

to keep all historical data for a dataset, or the data is currently in a system that already stores 

historical data. In these scenarios, it may make more sense to query the source dataset directly 

and combine data from the source with data in the data lake on the fly.

If a dataset needs to be queried by multiple teams, is queried often, and queries need to return 

very large amounts of data, then it is generally best to load that dataset directly into the data lake. 

Also, if you need to repeatedly query a system that is already under a relatively heavy load, you 

can reduce that load by loading data from the system to the data lake in off-peak hours, rather 

than running federated queries during peak times.

But if you’re performing ad hoc queries, or if the data only needs to be queried by a small number 

of teams with a relatively low frequency of querying, then using the Athena Federated Query func-

tionality to access the data makes sense. Several people have run performance testing with Athena 

Federated Query and have proven the ability to query many tens of thousands of records per second.
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Let’s look at an example of how this functionality could be used. Athena Federated Query could 

enable a data analyst to run a single SQL query that combines data from the following datasets:

• Master customer data in Amazon S3

• Current order information in Amazon Aurora

• Shipment tracking data in Amazon DynamoDB

• Product catalog data in Amazon Redshift

An illustration of how this query would work with Athena federation, which uses AWS Lambda 

based connectors, is shown in the following figure:

Figure 11.1: Amazon Athena query federation

Another use case would be if you do a nightly load of data from an external system into your data 

lake, but a few of your queries need to be able to reference some real-time data. For example, if 

supplier order information was loaded into the data lake each night, but you had a query that 

needed to calculate the total number of orders for a specific supplier for the year up to the present 

time, your query could do the following:

• Read supplier order information from the S3 data lake for all orders from the beginning 

of the year up until yesterday.
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• Read any orders from today from your SAP HANA system.

There are many other potential use cases where data processing can be simplified by having the 

ability to use SQL to read and manipulate data from multiple systems. Rather than having to 

read independently from multiple systems, and then programmatically process the data, data 

processing is simplified by processing the data with a single SQL query.

In April 2023, Athena added support for creating views on external data sources. Views are a 

common SQL construct that are used to mask complex queries on data, by effectively creating a 

virtual table, that when queried, constructs the results by running the underlying query specified 

in the view definition. 

For example, you can create a view based on a select statement that queries only certain columns 

in an underlying table. This effectively creates a virtual table, and when a user queries this view 

(or virtual table) with a select * statement, Athena runs the underlying query that only selected 

specific columns, and only returns those columns. This can be used for use cases such as limiting 

access to sensitive data (a table may have a column that contains a phone number, but you create 

the view to select all other columns except the phone number, and when the view is queried the 

results will not include the phone number column). You could also create a view that queries a 

number of systems using federated queries, but enables users to query the view without needing 

to know anything about the external databases. 

Athena includes a number of pre-built connectors for querying various data sources, but also 

enables you to create custom connectors, as we discuss next. 

Pre-built connectors and custom connectors
Athena Federated Query uses code running in AWS Lambda to connect to and query data, as 

well as metadata, from external systems. When a query runs that uses a connected data source, 

Athena invokes the relevant Lambda function/s to read metadata, identifies parts of the tables 

that need to be read, and launches multiple Lambda functions to read the data in parallel.

AWS has connectors that enable federated queries against over 30 popular data sources, including 

the following:

• A JDBC connector for connecting to sources such as MySQL, Postgres, and Redshift.

• A DynamoDB connector for reading from the Amazon-managed NoSQL database.

• A Redis connector for reading data from Redis instances.

• A CloudWatch logs and CloudWatch metrics connector, enabling you to query your 

application log files and metrics using SQL.
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• An AWS CMDB connector that integrates with several AWS services to enable SQL queries 

against your AWS resources. Integrated services include EC2, RDS, EMR, and S3.

• A Google BigQuery connector that enables queries across clouds for data in Google BigQ-

uery tables.

• An Apache Kafka connector that enables querying real-time data in Apache Kafka (and 

Amazon MSK) topics. With this connector you can join data in a Kafka topic with data in 

other topics, or with data in your Amazon S3 based data lake. 

The full list of connectors can be found in the Using Amazon Athena Federated Query section of the 

documentation at https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-

source.html.

In addition to the connectors made available by AWS, anyone can create custom connectors to 

connect to external systems. If you can make a network connection from AWS Lambda to the target 

system, whether on-premises or in the cloud, you could potentially create an Athena Federated 

Query connector for that system.

Third-party companies are also able to create connectors for Athena Federated Query. For example, 

a company called Trianz has created connectors for GreenPlum and GoogleSheets. 

To learn more about building custom connectors, see the Athena documentation titled Developing 

a data source connector using the Athena Query Federation SDK, at https://docs.aws.amazon.com/

athena/latest/ug/connect-data-source-federation-sdk.html.

Another relatively new feature in Athena (announced at re:Invent 2022) is the ability to use Athena 

to run Spark based processing of data via Notebooks. We look into this feature in the next section. 

Using Apache Spark in Amazon Athena
In November 2022, Amazon announced new functionality for Athena that enables users to inter-

actively explore their data lake data using the power of Apache Spark. This functionality includes 

a simplified notebook experience (compatible with Jupyter notebooks) where users can write and 

run code in blocks, and immediately see the results of the code execution. 

To use this functionality, you need to create a new Athena workgroup (which we cover in more 

detail later in this chapter) and configure the workgroup engine to be Spark. You can then create a 

new Notebook associated with the Spark workgroup, and specify options such as the idle timeout, 

the driver node size, executor size, as well as the maximum concurrent executors. You can then 

immediately start using Spark code to interactively query your data lake data.

https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source.html
https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source.html
https://docs.aws.amazon.com/athena/latest/ug/connect-data-source-federation-sdk.html
https://docs.aws.amazon.com/athena/latest/ug/connect-data-source-federation-sdk.html
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Using Athena notebooks you can also plot your data, creating visualizations based on your data. 

For example, you can load data into a Spark data frame based on a SQL query, covert the data 

frame into a Python Pandas data frame, and then use various libraries to plot the data. For an 

example walk-through of how to do this, refer to the AWS blog Explore your data lake using Amazon 

Athena for Apache Spark at https://aws.amazon.com/blogs/big-data/explore-your-data-

lake-using-amazon-athena-for-apache-spark/.

Amazon Athena for Apache Spark is useful for data engineers that are familiar with coding with 

Spark and Python, and want to interactively explore their data using code. Spark compute resourc-

es are deployed rapidly and Athena auto-scales compute resources based on the requirements 

of the queries that are run (up to the maximum concurrency that you specify when creating the 

Notebook). 

Amazon Athena also includes support for a number of open table formats, which we look at in 

the next section.

Working with open table formats in Amazon Athena
Amazon Athena includes support for working with a number of popular open table formats, 

including Apache Iceberg, Apache Hudi, and the Linux Foundation Delta Lake table format. 

These table formats, which we cover in more detail in Chapter 14, Building Transactional Data 

Lakes, enable data lakes to provide data integrity. ACID transactions provided by these formats 

(referring to the properties of atomicity, consistency, isolation and durability), enable data lakes 

to perform updates to data and provide a consistent view of data, in a way that is similar to what 

was previously only available in databases and data warehouses.  

However, the Athena support for each table format differs. At the time of writing, Apache Iceberg 

has the most support, enabling you to both query Iceberg data and perform updates and deletes 

to data in Iceberg. For Delta Lake format tables, Athena supports read-only queries (statements 

such as UPDATE, INSERT and DELETE are not currently supported). For the Hudi table format, Athena 

can read those tables, but does not support writing to those tables. 

For the latest support information on these open table formats, see the Athena documentation 

titled Using Athena ACID transactions at https://docs.aws.amazon.com/athena/latest/ug/

acid-transactions.html.

Let’s now look at how you can provision dedicated Athena capacity, instead of using the default 

on-demand capacity.

https://aws.amazon.com/blogs/big-data/explore-your-data-lake-using-amazon-athena-for-apache-spark/
https://aws.amazon.com/blogs/big-data/explore-your-data-lake-using-amazon-athena-for-apache-spark/
https://docs.aws.amazon.com/athena/latest/ug/acid-transactions.html
https://docs.aws.amazon.com/athena/latest/ug/acid-transactions.html
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Provisioning capacity for queries
By default, Athena usage is priced by the amount of data that a query scans. However, Athena 

also includes the option to provision a specific amount of capacity to use for queries. When using 

provisioned capacity, you are charged based on the compute resources you provision, and there 

is not a per query charge based on data scanned. 

When you provision capacity for Athena, you get dedicated processing capacity for your queries. 

To use this functionality, you specify the number of Data Processing Units (DPUs) that you 

need for your queries, and you assign one or more Workgroups to use that capacity (we discuss 

Workgroups in more detail in the next section of this chapter). 

DPUs are an indication of the compute resources assigned for your provisioned capacity reser-

vation. One DPU provides for 4 CPUs, and 16 GB of memory. The more DPUs assigned, the more 

concurrent queries you can run. Amazon provides the following guidance for the number of DPUs 

needed for a specific number of concurrent queries:

• For 10 concurrent queries, Amazon recommends 40 DPUs

• For 20 concurrent queries, Amazon recommends 96 DPUs

• For 30 or more concurrent queries, Amazon recommends 240 DPUs

The above provides general guidance on number of DPUs needed, but the actual number needed 

is based on your requirements and analysis patterns. If you do not have enough capacity to run 

all your queries at peak times, Athena will queue you query and run it when capacity becomes 

available. 

At the time of writing, Athena provisioned capacity is billed at $0.30 per DPU hour billed. While 

billing is per minute, there is a minimum billing period of 8 hours for any capacity that you pro-

vision. There is also a requirement to provision a minimum of 24 DPUs in a reservation, and you 

can increase DPU capacity in 4 DPU increments at any time. Capacity can be held for as long as 

needed, and can also be cancelled at any time (however you are always billed for a minimum of 

8 hours for each capacity reservation). 

If you have a few data analysts or data engineers that use Athena on an ad hoc basis to better 

understand the data in your data lake, then using Athena on-demand makes sense. However, if 

you have a large number of data consumers that are doing constant queries of your data, or you 

use Athena for performing data transformation tasks on a regular basis, then Athena provisioned 

capacity may help you to reduce costs. 
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When you create an Athena Provisioned Capacity reservation, you need to assign one or more 

workgroups to that reservation. In the next section we do a deeper dive into Athena workgroups. 

Managing groups of users with Amazon Athena 
workgroups
Athena workgroups are a powerful mechanism for separating different groups and types of user 

queries (such as SQL based queries, and Spark Notebook queries), for applying cost controls, 

assigning provisioned capacity, and for implementing strong governance on Athena usage. 

All queries within Athena are run in a specific workgroup, and you can apply a number of configu-

ration settings to each workgroup to control costs and governance for the users in that workgroup. 

The following list shows the configuration items that can be controlled at the workgroup level:

• The analytic engine that users in this workgroup use (either Athena SQL or Apache Spark)

• Whether the Athena engine version used for this workgroup is selected and upgraded 

automatically, or whether you manually specify the engine version to use

• The S3 location where the results of queries are written to, and whether these files are 

encrypted or not

• Various general settings, such as the option to publish query metrics to Amazon Cloud-

Watch, and an option to prevent users overriding the workgroup settings

• Limits for each query (the amount of data a single query is allowed to scan)

• Query limits for SQL engine workgroups (how much data can the workgroup as a whole 

scan within a specified time period)

These options enable administrators to manage governance concerns (where results are written 

to, and encryption settings), as well as cost controls (how much data can be scanned for SQL 

queries, at either the user or workgroup level).

Athena workgroups enable administrators to separate groups of users and automated ETL pro-

cesses into separate workgroups, each with their own settings. By using IAM policy settings, users 

(or processes) can be restricted to only be able to run their queries within specified workgroups.

Let’s start by looking at the cost controls enabled by workgroups. 

Managing Athena costs with Athena workgroups
By default, Athena SQL query costs are based on the amount of data that is scanned by a query, 

and in the first section of this chapter, we looked at some of the ways that data can be optimized 

so that queries would scan less data, and therefore reduce costs.
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However, some of those optimizations are based on writing efficient SQL queries, and it’s not 

unusual for organizations to be concerned that users are going to accidentally run SQL queries 

that are not optimized and end up scanning massive amounts of data. As such, organizations 

want a way to control the amount of data that’s scanned by different users or teams when they 

are not using provisioned capacity. 

By using Athena workgroups, an administrator can either assign the workgroup to use provisioned 

capacity (in which case there is no per query cost), or they can place cost controls on the workgroup. 

Per query data usage control
You can configure the maximum amount of data that can be scanned by a single SQL query using 

per query data usage controls. If a user runs a query and Athena ends up trying to scan more data 

than allowed by the control, the query is cancelled. However, note that the AWS account is still 

billed for the amount of data that was scanned up until the query was cancelled.

As a practical example, you may have a group of users that are relatively inexperienced with SQL 

and want to have a sandbox environment where they can run ad hoc queries safely. In this sce-

nario, you could create an Athena workgroup called sandbox and configure these users to have 

access to the sandbox workgroup. You could configure the workgroup to have a per-query limit of 

100 GB, for example, which would ensure that no individual query would cost more than $0.50.

Per query data limits are useful for scenarios where you want to have hard control over the amount 

of data that’s scanned by each query. However, this control is restrictive in that it automatically 

cancels any query that exceeds the specified amount of data that’s scanned. An alternative option 

for controlling costs is to configure workgroup data usage controls.

Athena workgroup data usage controls
With workgroup data usage controls, you have the flexibility to configure the maximum amount 

of data that’s scanned by the entire workgroup, within a specified time period. When the limit 

for the workgroup is reached, queries are not automatically cancelled, but an Amazon Simple 

Notification Service (SNS) message is triggered, or a Lambda function is run to take some pro-

grammatic action. 

For each workgroup, you can configure multiple alerts. For example, you can configure an initial 

workgroup data usage control for a maximum data scan of 3 TB per day, and have that trigger an 

SNS message to an SNS topic that sends an email to an administrator when the limit is reached. 
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You can also configure a second alert, that when data scanned reaches 5 TB for the workgroup in a 

day, another SNS message is sent to a topic, where the SNS topic triggers a Lambda function that 

programmatically updates the workgroup to have a STATE of DISABLED (preventing any additional 

queries from being run within that workgroup). 

You also have the option of adding tags to a Workgroup. If that tag is configured as a cost alloca-

tion tag in the Billing and Cost Management console, the costs associated with running queries in 

that Workgroup appear in your Cost and Usage Reports with that cost allocation tag. This helps 

you understand and monitor Athena costs by Workgroup. To learn more about monitoring costs 

with cost allocation tags, see the following AWS documentation: https://docs.aws.amazon.com/

awsaccountbilling/latest/aboutv2/cost-alloc-tags.html. 

Having reviewed how to place limits on costs related to Athena SQL queries, let’s now look at 

how to implement additional workgroup settings for implementing strong governance controls. 

Implementing governance controls with Athena workgroups
As discussed previously, Athena workgroups enable the separation of query execution between 

different users, teams, or systems. Every Athena query runs within a workgroup, and you can use 

IAM policies to limit which workgroups a specific user, or process, has access to.

Most organizations have concerns around governance and security, and workgroups include 

functionality that can address some of these concerns. Common concerns include the following:

• Athena saves the results of all queries, as well as associated metadata, on S3. These re-

sults could contain confidential information, so organizations want to ensure this data 

is protected.

• Multiple teams in an organization may use Athena in the same AWS account, and orga-

nizations want items such as query history to be stored separately for each team.

In the Athena console, users can save queries that they frequently run, and a list of historical 

queries that they have run are also available. However, these lists only show queries for the 

workgroup where the query is run, so splitting up teams or projects into different workgroups 

ensures that query history and saved queries are visible only to the specific team associated with 

the workgroup. These could be separate workgroups for each team, separate workgroups for 

different applications, or separate workgroups for different types of users.

By default, each user can control several settings, but workgroups enable an administrator to 

override the users’ settings, forcing them to use the workgroup settings.

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
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The following are some of the configuration items that an administrator can enforce for members 

of a workgroup:

• Query Result Location: This is the S3 path where the results of Athena queries will be 

written. Users can set a query result location, but if this is set for the workgroup and 

Override client-side settings is set on the workgroup, then this location will be used for 

all the queries that are run in this workgroup.

This enables an organization to control where query result files are stored in S3, and the 

organization can set strict access control options on this location to prevent unauthorized 

users from gaining access to query results.

For example, each team can be assigned a different workgroup, and their IAM access policy 

can be configured to only allow read access to their query results.

• Encrypt Query Results: This option can be used to enforce that query results are encrypted, 

helping organizations keep in line with their corporate security requirements.

• Metrics: You can choose to send metrics to CloudWatch logs, which will reflect items such 

as the number of successful queries, the query runtime, and the amount of data that’s 

been scanned for all the queries that are run within this workgroup.

• Override client-side settings: If this item is not enabled, then users can configure their 

user settings for things such as query result location, and whether query results are en-

crypted. Therefore, it is important to enable this setting to ensure that query results are 

protected and corporate governance standards are met.

• Requester pays S3 buckets: When creating a bucket in Amazon S3, one of the options 

that’s available is to configure the bucket so that the user that queries the bucket pays for 

the API access costs. By default, Athena will not allow queries against buckets that have 

been configured for requester pays, but you can allow this by enabling this item.

• Tags: You can provide as many key:value tags as needed to help with items such as 

cost allocation, or for controlling access to a workgroup. For example, you may have two 

Workgroups that have different settings for the query output location, based on differ-

ent projects or use cases. You could provide a tag with the name of the team and then, 

through IAM policies, provide team members access to all Workgroups that are tagged 

with their team name.

For examples of how to manage access to workgroups using tags or workgroup names, see the 

Amazon Athena documentation titled Tag-Based IAM Access Control Policies (https://docs.aws.

amazon.com/athena/latest/ug/taqgs-access-control.html).

https://docs.aws.amazon.com/athena/latest/ug/taqgs-access-control.html
https://docs.aws.amazon.com/athena/latest/ug/taqgs-access-control.html
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So far in this chapter we have learned more about the features and functionality available in 

Athena, such as how you can use connectors to query data in a variety of systems (such as Google 

BigQuery, or a PostgreSQL database) using Athena, and how Workgroups can be used to manage 

cost and enforce strong governance. We also reviewed some best practices for optimizing your 

Athena SQL queries from both a cost and performance perspective. Now, let’s get hands-on with 

some of these concepts by creating and configuring a new Athena workgroup, and then running 

some SQL queries on our data lake data.

Hands-on – creating an Amazon Athena workgroup 
and configuring Athena settings
In this section, we’re going to create and configure a new Athena workgroup, and set a per query 

data limit:

1. Log into AWS Management Console and access the Athena service using this link: 

https://console.aws.amazon.com/athena.

2. Expand the left-hand menu and click on Workgroups to access the workgroup manage-

ment page.

Figure 11.2: Athena Console showing Workgroups

3. On the workgroup management page, click on Create workgroup and enter the follow-

ing values for our new workgroup. For the items not listed here, leave the defaults as-is:

• Workgroup name: Provide a descriptive name for the workgroup, such as 

datalake-user-sandbox.

https://console.aws.amazon.com/athena
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• Description: Optionally, provide a description for this workgroup, such as Sandbox 

workgroup for new datalake-users.

• Query result location (in the Query result configuration section): In the hands-

on exercises in Chapter 4, Data Cataloging, Security, and Governance, we created a 

bucket to store our Athena query results in (named aws-athena-query-results-

dataengbook-<initials>). Click the Browse S3 button next to Query result lo-

cation, and select the previously created query result bucket selector, and then 

click Choose. To make the location of our query results unique for this work-

group, add the workgroup name to the end of the path. For example, the full path 

should be something like s3://aws-athena-query-results-dataengbook-gse23/

datalake-user-sandbox/. Make sure that you include the trailing slash at the 

end of the path.

• Encrypt Query Results: Tick this box to ensure that our query results are encrypt-

ed. When you select this, you will see several options for controlling the type of 

encryption. For our purposes, select SSE_S3 for Encryption type (this specifies 

that we want to use S3 Server-Side Encryption rather than our own unique KMS 

encryption key).

• Override client-side settings (under the Settings section): If we want to prevent 

our users from changing items such as the query result’s location or encryption 

settings, we need to ensure that we select this option.

4. In the Per query data usage control section, we can specify a Data limit to limit the scan 

size for individual queries run in this workgroup. If a query scans more than this amount 

of data, the query will be canceled. Set the Data limit size to 10 GB.
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Figure 11.3: Athena workgroup – Per query data usage control

5. Optionally add any Tags you want to specify, and then click on Create workgroup.

We can also set a workgroup data usage control to manage the total amount of data that is 

scanned by all users of the workgroup over a specific period. We are not going to cover this now, 

but if you would like to explore setting this up, refer to the AWS documentation titled Setting 

Data Usage Controls Limits: https://docs.aws.amazon.com/athena/latest/ug/workgroups-

setting-control-limits-cloudwatch.html.

Let’s now get hands-on with how to switch into our new workgroup, and how to run some que-

ries using Athena. 

https://docs.aws.amazon.com/athena/latest/ug/workgroups-setting-control-limits-cloudwatch.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-setting-control-limits-cloudwatch.html
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Hands-on – switching workgroups and running 
queries
By default, all users operate in the primary workgroup, but users can switch between any work-

group that they have access to. You can control workgroup access via IAM policies, as detailed in 

the AWS documentation titled IAM Policies for Accessing Workgroups : https://docs.aws.amazon.

com/athena/latest/ug/workgroups-iam-policy.html

In the previous section, we created and configured a new workgroup, so we can now run some 

SQL queries and explore Athena’s functionality further:

1. In the left-hand menu, click on Query editor. Once in the Query editor, use the Workgroup 

drop-down list selector to change to your newly created sandbox workgroup.

Figure 11.4: Switching Workgroups in the Athena Console

https://docs.aws.amazon.com/athena/latest/ug/workgroups-iam-policy.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-iam-policy.html
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2. A pop-up dialog may appear for you to acknowledge that all the queries that are run in 

this workgroup will use the settings we configured previously. This is because we chose 

to Overwrite client-side settings when creating the workgroup. Click Acknowledge to 

confirm this.

3. In the Query editor, let’s run our first query to determine which category of films is most 

popular with our streaming viewers. We’re going to query the streaming_films table, 

which was the denormalized table we created in Chapter 7, Transforming Data to Optimize 

for Analytics. On the left-hand side of the Athena query editor, select the curatedzonedb 

from the Database dropdown, and then run the following query in the query editor:

SELECT category_name,

         count(category_name) streams

FROM streaming_films

GROUP BY category_name

ORDER BY streams DESC

This query performs the following tasks:

• It selects the category name and a count of the total number of entries of that 

category in the table, and then it renames the count of queries column to create 

a new column heading of streams.

• It selects this data from the streaming_films table. Since we selected the 

curatedzonedb from the dropdown on the left-hand side, Athena automatically 

assumes that the table we are querying is in that selected database, so we don’t 

need to specifically reference curatedzonedb in our query, although we could.

• Then, it groups the results by category_name, meaning that one record will be 

returned per category.
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• Finally, it sorts the results by the streaming column, in descending order, so that 

the first result is the category with the highest number of streams. In the follow-

ing screenshot, we can see that Sports was the most popular category from our 

streaming catalog:

Figure 11.5: Athena query for the top streaming categories

4. Notice how under the query results on the right, there is an option for Reuse query results, 

which will re-use the previous result for an identical query run in the last 60 minutes, 

without rerunning the query (as we covered earlier in this chapter). Optionally run the 

query again a few times with this option not enabled and note the run time for each 

query. Then enable the Reuse query results option, and run the query a few more times, 

and compare the runtimes. The query we have is a very simple query, but for complex 

queries, or for cases where you have a BI or dashboarding tool using Athena, this option 

can make a significant performance difference. 

Note that the data in the streaming_films table was randomly generated 

by the Kinesis Data Generator utility in Chapter 6, Ingesting Streaming and 

Batch Data, so your results regarding the top category may be different.
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5. If we have a query that we think we may want to run regularly (such as seeing the top 

category each day), we can save the query so that we don’t need to retype it each time 

we want to run it. To do so, click the three dots at the top of the query window, and click 

on Save as, as shown in the following screenshot.

Figure 11.6: Save an Athena Query

6. Provide a name for the query (such as Overall-Top-Streaming-Categories) and a de-

scription (such as Returns a list of all categories, sorted by highest number 

of views). Then, click Save query.

7. Now, let’s modify our query slightly to find out which State streamed the most movies out 

of our streaming catalog. Click on the plus (+) sign at the top right of the query window 

to open a new query window and enter the following query, and then click Run:

SELECT state,

         count(state) count

FROM streaming_films

GROUP BY state

ORDER BY count desc
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Running this query using the data I generated indicates that Alaska was the most popular state 

for streaming movies from our catalog. Again, though, your results may be different due to the 

random data we generated using the Kinesis Data Generator:

1. Click on the three dots and then Save as and provide a name (such as Overall-Top-Stream-

ing-States) and a description for this query, and then click on Save query.

2. Click on the down arrow on the top right-hand side of the query editor and click Close 

all tabs. Then, via the top sAthena menu, click on Saved queries. Here, we can see the 

list of queries that we have previously saved, and we can easily select a query from the 

list if we want to run that query again. Note that saved queries are saved as part of the 

workgroup, so any of our team members that have access to this workgroup will also be 

able to access any queries that we have saved. If you click on one of the saved queries, it 

will open the query in a New query tab.

3. At the top of the Athena menu, click on Recent queries. Here, we can see a list of all the 

recent queries that have been run in this workgroup:

Figure 11.7: Amazon Athena recent queries tab

From here, we can take several actions, as follows:

1. If we want to rerun a query, we can click on the Execution ID of the query and it will open 

the query in a new query window.
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2. To download the results that the query generated as a CSV file, click the selector for a query 

and then click on Download Results. Remember that query results are also always stored 

on S3 in the location set for Query Result Location. Note that the Download CSV button 

can be used to download the list of queries, along with the query details, in a CSV file. 

3. To see the details of why a query failed, click on Failed under the Status column. A pop-up 

box will provide details of the error message that caused the failure.

4. Other information that we can see in the Recent queries tab is the Athena engine ver-

sion that was used, whether the query result was returned from the query cache (which 

happens when we use the Reuse query option), as well as the Run time for the query. 

Note that the Recent queries tab keeps a record of all the queries that have been run in the past 

45 days.

In these hands-on exercises, you configured an Athena workgroup and made use of that work-

group to run several queries against data that you previously loaded and transformed in the data 

lake. You also learned how to save queries and view query history.

Summary
In this chapter, we learned more about the Amazon Athena service, an AWS-managed service that 

builds on the Apache Presto and Trino solutions to enable you to run SQL or Spark based queries 

against your data. We also looked at how to optimize our data and SQL queries to increase query 

performance and reduce costs.

Then, we explored advanced Athena functionality, including how Athena can be used as a SQL 

query engine not only for data in an Amazon S3 data lake, but also for external data sources such 

as other database systems, data warehouses, and even CloudWatch logs, using Athena Query 

Federation.

We wrapped up the theory part of this chapter by looking at Athena workgroups, which let us 

manage governance and costs, and they can be used to enforce specific settings for different teams 

or projects, and can also be used to limit the amount of data that is scanned by queries. In the 

last section of this chapter, we got hands-on with Athena, first creating a new workgroup, and 

then using that workgroup to run a number of SQL queries. 

In the next chapter, we will explore another Amazon tool for data consumers as we look at how 

we can create rich visualizations and dashboards using Amazon QuickSight.
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Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd
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Visualizing Data with Amazon 
QuickSight

In Chapter 11, Ad Hoc Queries with Amazon Athena, we looked at how Amazon Athena enables data 

analysts to run ad hoc queries against data in the data lake using the power of SQL and Spark. 

And while this is an extremely powerful tool for querying large datasets, often, the quickest way 

to understand a summary of a dataset is to visualize the data in graphs and dashboards.

In this chapter, we will do a deeper dive into Amazon QuickSight, a business intelligence (BI) 

tool that enables the creation of rich visualizations that summarize data, with the ability to filter 

and drill down into datasets in numerous ways. In addition, QuickSight also enables the creation 

of formatted, multi-page reports, and brings advanced functionality, such as the ability to ask 

questions of data in natural language. 

In smaller organizations, a data engineer may be tasked with setting up and configuring a BI tool 

that data consumers can use. Things may be different in larger organizations, where there may 

be a dedicated team to manage the BI system. However, it is still important for a data engineer to 

understand how these systems work, as these systems will consume data that the data engineer 

will have played a part in creating.

The purpose of BI tools is to enable users to quickly understand complex datasets by enabling the 

exploration of data visually. And while we will focus on Amazon QuickSight in this chapter, many 

of the concepts in this chapter can be applied to other popular BI applications, such as Tableau, 

Microsoft Power BI, and Qlik.
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Amazon QuickSight is a serverless BI solution and is fully managed by AWS. Organizations don’t 

need to pay for any infrastructure or licensing costs, but rather pay a fixed amount per QuickSight 

user on a subscription basis based on which features are enabled. 

In this chapter, we will cover the following topics:

• Representing data visually for maximum impact

• Understanding Amazon QuickSight’s core concepts

• Ingesting and preparing data from a variety of sources

• Creating and sharing visuals with QuickSight analyses and dashboards

• Exploring QuickSight’s advanced features

• Hands-on – creating a simple QuickSight visualization

Technical requirements
At the end of this chapter, you will get hands-on by creating a QuickSight visual from scratch. To 

complete the steps in the hands-on section, you will need the appropriate user permissions to 

sign up for a QuickSight subscription.

If you have administrator permissions for your AWS account, these permissions should be suffi-

cient to sign up for a QuickSight subscription. If not, you will need to work with your IAM security 

team to create a custom policy. See the AWS documentation titled IAM Policy Examples for Amazon 

QuickSight and refer to the All Access for Standard Edition example policy as a reference.

At the time of writing, Amazon QuickSight includes a free trial subscription for 30 days for new 

QuickSight subscriptions. If you do not intend to use QuickSight past these 30 days, ensure that 

your user is also granted the quicksight:Unsubscribe permission so that you can unsubscribe 

from QuickSight after completing the hands-on section.

You can find the code files of this chapter in the GitHub repository using the following link: 
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/
main/Chapter12

Note that the All Access for Standard Edition example policy has a specific deny for the 

unsubscribe permission, so this may need to be modified based on your requirements. 

Work with your security team to implement a custom IAM policy.

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter12
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter12
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Representing data visually for maximum impact
Data lakes are designed to capture large amounts of raw data and enable the processing of that 

data to draw out new insights that provide business value. The insights that are gained from a 

data lake can be represented in many ways, such as reports that summarize sales data and top 

sales items, machine learning (ML) models that can predict future trends, and visualizations 

and dashboards that effectively summarize data. Each of these ways of representing data offers 

different benefits, depending on the business purpose:

• If you’re a data analyst who needs to report sales figures, profit margins, inventory levels, 

and other data for each category of product a company produces, you would probably 

want access to detailed tabular data. You would want the power of SQL to run powerful 

queries against the data to draw varied insights so that you can provide this data to dif-

ferent departments within the organization.

• If you’re a logistics manager and are responsible for supplying all your retail stores with 

the correct amount of inventory, you would want your data science team to develop an 

ML model that can predict inventory requirements for each store. The model could take 

in raw data from the data lake and predict how much inventory each store may require.

• If you’re a sales manager for a specific product category, you need to have an updated 

view of sales for the products in your category at all times. You need to be able to deter-

mine which products are selling well, and which marketing campaigns are most effective. 

Seeing a visual representation of relevant data provides you with the most effective way 

to quickly understand the product and campaign’s performance at a high level.

Having raw, granular data available to an organization is important, but when you need to make 

decisions quickly based on that data, having a visual representation of the data is critical.

It is not practical to identify trends or outliers in a dataset by examining a spreadsheet contain-

ing 10,000 rows. However, if you aggregate and summarize the data into a well-designed visual 

representation of the data, it becomes very easy to identify those trends and outliers. 

Of course, you do need to be cautious when creating visualizations to ensure that you do not 

select a subset of data that is not representative of the full dataset. As Mark Twain (supposedly) 

said: “There are three kinds of lies: lies, damned lies, and statistics”. It is important when designing 

a visual representation of data that you are careful not to misrepresent the data, and if you are 

viewing a visualization of data, that you are sure you can trust the author of that visualization. 
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Benefits of data visualization
A well-designed visual representation of data can reflect multiple different datasets in a single 

picture. It can do so in a way that enables the consumer of the visual to immediately gain insights 

that would take significant time and effort to gather from raw data.

There is a common fact often mentioned in articles on the internet that people can process images 

60,000 times faster than they can process text. As it turns out, this is just an often-repeated claim 

with no evidence to back it up. However, while the number may be exaggerated, the basic claim 

that the human brain can process images quicker than text is without a doubt true.

And you don’t need to look too far to validate this claim. For example, look at the rise of visu-

al-based social media sites such as Instagram and Pinterest, or how people use emojis and ani-

mated GIFs to quickly and effectively communicate how they feel about something.

In the same way, we can use the power of visuals (images, graphs, word clouds, and many other 

types) to effectively communicate data from our data lake in a way that makes it easy for the 

consumer of the visual to quickly draw insights from the data.

Let’s examine some common uses of visualizations that enable a user to quickly understand 

complex information.

Popular uses of data visualizations
Visualizations can be used to draw insights from many different types of data, in various ways. In 

this section, we will look at a few examples of some common types of visualizations to demon-

strate the impact of a well-designed visual.

Trends over time
A common usage of analytic tools is to crunch through raw data to help surface trends, or changes 

in the data, over time. For example, we may want to understand how our spending on the AWS 

platform changes over time, as this can help identify areas where we need to focus on cost op-

timizations. A line graph can be a useful way to illustrate changes in data over a certain period.

The following diagram was created using a popular spreadsheet application and provides a visual 

of raw Amazon S3 spend per month, over 9 months, for a fictional company:
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Figure 12.1: Line chart showing data over a certain period

In this visualization, we can see that our Tier1-Requests cost (middle line) significantly decreased 

from January to March. These costs are for API calls for operations such as PUT, COPY, POST, and 

LIST. Before February, we used to ingest a large number of small files, resulting in millions of PUT 

requests when writing these files to Amazon S3. After changing our transformation pipeline to 

write out fewer, larger files, this visualization clearly shows how those costs decreased.

In the visualization, we can also see that in March, our storage consumption (top line) significantly 

decreased. This makes sense as, during March, our fictional company had a project to implement 

Amazon S3 life cycle rules that deleted older versions of data from S3.

Showing summarized data over a certain period in a visual format makes it much easier to track 

and understand trends in our data, as well as to spot anomalies.
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Data over a geographic area
In our first example, we looked at how we could graph trends over time, but another really use-

ful visualization is to look at trends over a geographic area. There are many uses for this type of 

visualization, such as the following:

• Understanding the popularity of a certain product in different geographic regions

• Quickly visualizing hotspots for the spread of an infectious disease (such as flu outbreaks) 

in different geographic regions

• Visualizing the population sizes of different cities in different regions

• Showing differences in temperature in different geographic areas

These types of charts are often known as geospatial charts, although they go by many different 

names. The chart may also come in different formats, but a common format is to use circles of 

different sizes on the map, with the size of each circle representing the value of one of the columns 

in the dataset (the larger the value, the bigger the circle). Circles may also be different colors to 

represent different rows in the dataset.

For example, the following chart (created with Amazon QuickSight) uses city population data 

from https://simplemaps.com/data/world-cities. In this chart, we have filtered the data to 

show all cities with a population above 5 million people, and the size of each circle represents the 

relative population size. In the hands-on section of this chapter, you will use Amazon QuickSight 

to recreate this chart so that you can interact with the chart (filter for different values and so on):

Figure 12.2: Map chart showing data by geographic region

https://simplemaps.com/data/world-cities
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The preceding map chart enables us to quickly understand which parts of the world have the 

most populated cities, and which parts are less populated. The same type of chart could be used 

to show the spread of disease, vaccination rates, poverty levels, water quality, or just about any 

other data that is associated with a specific location.

Heat maps to represent the intersection of data
Another common use of visualization tools is to understand the relationship between different 

sets of data. Often, we may have a gut feeling that there could be a correlation between two dif-

ferent datasets, but it is only when we explore the data more fully that we can understand those 

relationships.

As a very simple example, we would probably suspect that sales of ice cream, water, and other cold 

goods would be more popular in the summer months, and that the sales of coffee, hot chocolate, 

and soup would be more popular in the winter months:

Figure 12.3: Heat map showing product sales by category and month

The preceding diagram shows a heat map that plots the relationship between sales in different 

categories, by month. The darker squares illustrate a higher sales value, while the lighter squares 

represent lower sales values.
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As you can see, the sales of both coffee and water are strong throughout the year, but we can see 

that water has higher sales in the Northern Hemisphere summer (months 6 - 9), while coffee has 

higher sales in winter (months 11 - 2). Another insight we can gain quickly is that sales of ice are 

very low in the winter months and only have strong sales for a few summer months of the year 

(months 6 - 10). What other insights can you gain about sales of hot chocolate, ice cream, and 

soup by examining the heat map?

While this example may have been a fairly simple one, there are many other relationships be-

tween datasets that are not always as obvious, and heat maps can be useful to highlight these 

relationships visually.

We do not have sufficient space in this chapter to cover all the many varied types of charts that 

can be used to visually represent data, but as we continue on to the other sections of this chapter, 

we will explore some other common chart types along the way. In the next section, we are going 

to dive deeper into Amazon QuickSight’s core concepts.

Understanding Amazon QuickSight’s core concepts
At its core, QuickSight lets us ingest data from a wide variety of sources, perform some filtering or 

other transformation tasks on the data, and then create dashboards with multiple types of visuals 

that can be easily shared with others, or highly formatted multi-page PDF reports. 

The QuickSight service is fully managed by AWS, and there are no upfront costs for using the ser-

vice. Instead, the service uses a pricing model of a monthly cost per user and offers both Standard 

and Enterprise editions. To include specific functionality, such as QuickSight Q (for making natural 

language queries of data), a higher price per user is charged. There is also an option for capacity 

pricing, where you pay for the number of sessions per month, or per year, instead of per user. 

QuickSight also includes a powerful in-memory storage and computation engine to enable the 

best performance for working with a variety of data sources. In this section, we’ll examine the 

differences between the Standard and Enterprise editions of QuickSight, and also do a deeper 

dive into SPICE, the in-memory storage and computation engine.

Standard versus Enterprise edition
The Standard edition of QuickSight is useful for those who are just starting to explore the pow-

er of a BI tool and enables users to create visualizations from a variety of sources. However, for 

larger organizations, the Enterprise edition of QuickSight provides several additional features 

that most large organizations would want to make use of.
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The following is a subset of some of the additional functionality available in the Enterprise edition, 

but refer to the Amazon QuickSight pricing page for full details on the differences between the 

versions. If just getting started with exploring the functionality of a BI application, then it makes 

sense to start with the Standard edition, as you can upgrade to the Enterprise edition at any time. 

However, the following features are only available in the Enterprise edition:

• Integration with Active Directory (AD) and the ability to use AD groups for the manage-

ment of QuickSight resources

• The ability to embed dashboards into custom applications

• The ability to email reports to QuickSight users on a schedule

• Fine-grained access control over AWS data sources (such as S3 and Athena)

• Automatic insight generation using ML Insights

• Encryption of data at rest

Note that if you select to use the Enterprise edition, it is not possible to downgrade to the Stan-

dard edition. Therefore, when starting out with QuickSight it’s recommended to start with the 

Standard edition, and then upgrade to the Enterprise edition as you have more users start using 

QuickSight, and if there are specific features from the Enterprise edition that you require.  

While the cost per author for the Enterprise edition is more expensive, if you have a very large 

number of users that just need to access QuickSight as readers (i.e., do not create visualizations, 

but only view visualizations created by others), then you can take advantage of the reader pricing 

that is available in the Enterprise edition to reduce your costs overall. 

With the Enterprise edition, there is a fixed monthly cost for users that have the author role, while 

users with the reader role are charged per session. Each session provides access to QuickSight 

dashboards for a user for up to 30 minutes after they have logged in. During this time, readers 

can fully interact with the dashboards (filtering data, doing drill-downs into data, and so on). 

At the time of writing, a session costs $0.30, and there is a maximum monthly cost of $5 per reader 

(increased to $10 per reader, if QuickSight Q is enabled), no matter how many sessions are used. 

In comparison, the Standard edition has a fixed cost (at the time of writing) of $12 per user (if 

paying month-to-month) and all users have full read and author capabilities. 

For example, if you have 50 users that need to access QuickSight, the Standard edition would 

cost $600/month. However, with the Enterprise edition, if you had 5 authors and 45 readers, the 

cost would be $345/month. 
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Refer to the QuickSight pricing page (https://aws.amazon.com/quicksight/pricing/) for the 

current pricing for your Region, as pricing may change occasionally. Let’s now look at the in-mem-

ory storage and computation functionality available in QuickSight. 

SPICE – the in-memory storage and computation engine for 
QuickSight
Like many other BI tools, Amazon QuickSight provides a storage engine for storing imported data 

and performing rapid calculations on that data. In QuickSight, SPICE is the acronym that’s used to 

refer to this engine, and it stands for Super-fast, Parallel, In-memory, Calculation Engine. When 

you’re creating a new dataset in QuickSight, you can select whether to perform direct queries of 

the dataset at the source, or whether you want to import data into SPICE.

If you choose to query the dataset directly from the source, then each time the visualization is 

accessed, QuickSight will make a connection to the data source (such as an Amazon RDS MySQL 

database) and query the data. This ensures that the dashboard always reflects the latest data. 

However, there is some latency in making the connection to the data source and retrieving data.

Alternatively, you can choose to import data into the SPICE engine. That way, when the visual-

ization is accessed, QuickSight can read the data directly from SPICE, and this can significantly 

improve performance. For data that does not change constantly, it makes sense to import data 

into SPICE and query the data from there. 

For example, if you have a dataset covering daily store sales, and the store sales are only updated 

at the close of business each evening (meaning the data is only updated daily), then it makes sense 

to import that into SPICE once a day. If you have 5,000 stores, and therefore 5,000 store managers 

that want to query the previous day’s data for their store, having the data in SPICE reduces the 

number of direct queries of the database, and significantly improves query performance. 

However, if creating a dashboard that reflects online sales, and sales are immediately updated 

in a centralized database, you may want to directly query that database. For example, you may 

create a dashboard for your marketing team that shows the top 10 products by sales over the past 

hour, and you may want to enable your marketing team to refresh the dashboard to get the latest 

data at any moment in time. In this case, you would want to use a direct query of the data source. 

This is because you always want the most up-to-date data, and the marketing team is relatively 

small, so there is not a massive load on the source database from direct queries. 

https://aws.amazon.com/quicksight/pricing/
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You also have the option of scheduling a refresh of the data in SPICE so that QuickSight will 

regularly connect to the data source and retrieve the latest data to store in SPICE. With both the 

Standard and Enterprise editions of QuickSight, you can schedule the refresh to be done daily, 

weekly, or monthly. With the Enterprise edition of QuickSight, however, you gain the additional 

option of performing incremental refreshes, and the ability to do an incremental refresh as often 

as every 15 minutes (or a full refresh every hour). You can also use an API call to trigger the re-

fresh of SPICE data, enabling you to build an event-driven strategy for refreshing SPICE data. For 

more information, see the AWS blog post titled Event-driven refresh of SPICE datasets in Amazon 

QuickSight at https://aws.amazon.com/blogs/big-data/event-driven-refresh-of-spice-

datasets-in-amazon-quicksight/.

If you’re using a data source that charges for each query (such as Amazon Athena in on-demand 

mode, or Amazon Redshift Spectrum), importing the data into SPICE can help reduce costs. Stor-

ing the data in SPICE means you only pay for the query when the data is initially loaded, as well 

as for when the data is refreshed. With a direct query, you would pay for the query each time the 

visualization is accessed.

Managing SPICE capacity
Your account is granted 10 GB of SPICE storage for every paid user that has the author role (this 

would be every user in the Standard Edition, and users with the Author role in the Enterprise 

edition). SPICE storage is shared by all QuickSight users in an account and is on a per-region basis.

For example, if you have QuickSight Enterprise edition and you have 10 users with the Author 

role and 100 users with the Reader role, all in the Northern Virginia (us-east-1) Region, then your 

QuickSight account in us-east-1 would have 100 GB of SPICE storage available.

NOTE

There is a 2-minute timeout for generating visuals in QuickSight. Therefore, if your 

direct query takes 2 minutes or longer to perform the query and generate the visu-

alization, a timeout will occur. In these cases, you either need to improve the per-

formance of the query (filtering data, only selecting specific columns, and so on) or 

you should import the data into SPICE. For more information on data source quotas 

and limitations, refer to the AWS documentation at: https://docs.aws.amazon.

com/quicksight/latest/user/data-source-limits.html.

https://aws.amazon.com/blogs/big-data/event-driven-refresh-of-spice-datasets-in-amazon-quicksight/
https://aws.amazon.com/blogs/big-data/event-driven-refresh-of-spice-datasets-in-amazon-quicksight/
https://docs.aws.amazon.com/quicksight/latest/user/data-source-limits.html
https://docs.aws.amazon.com/quicksight/latest/user/data-source-limits.html
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If additional SPICE storage is needed, you can purchase additional SPICE capacity. For example, 

if you needed 130 GB of total SPICE storage for the datasets you wanted to import, you could 

purchase an additional 30 GB of capacity each month. At the time of writing, additional SPICE 

capacity for the Enterprise edition is charged at $0.38 per GB.

There are also limits on the size of a single dataset in SPICE. At the time of writing, datasets are 

limited to a maximum of 1 billion rows, or 1 TB, for QuickSight Enterprise edition. For the Stan-

dard edition, the limit is 25 million rows, or 25 GB of data. There are also other limits for each 

dataset (such as the number of columns and the length of column names), so ensure you refer 

to the latest QuickSight documentation for updated information on these limits (see https://

docs.aws.amazon.com/quicksight/latest/user/data-source-limits.html). 

Now that we have reviewed the core Amazon QuickSight concepts, let’s move on and review 

QuickSight’s functionality for importing and preparing data.

Ingesting and preparing data from a variety of 
sources
Amazon QuickSight can use other AWS services as a source, as well as on-premises databases, 

imported files, and even some Software as a Service (SaaS) applications.

For example, you can easily connect to Oracle, Microsoft SQL Server, Postgres, and MySQL da-

tabases, either running as part of the Amazon RDS managed database service, or as instances 

running on Amazon EC2 or in your own data centers. You can also connect to data warehouse 

systems such as Amazon Redshift, Snowflake, and Teradata. Other AWS services are also supported 

as data sources, including Amazon S3, Amazon Athena, Amazon OpenSearch Service, Amazon 

Aurora, and AWS IoT Analytics.

In addition to these traditional data sources, QuickSight can also connect to various SaaS offerings, 

including ServiceNow, Jira, Adobe Analytics, Salesforce, GitHub, and Twitter.

Data stored in files, such as a Microsoft Excel Spreadsheet (XLSX files), JSON documents, and 

CSV files, can also be imported into QuickSight. These files can be directly uploaded through the 

QuickSight console, or they can be imported from Amazon S3.

https://docs.aws.amazon.com/quicksight/latest/user/data-source-limits.html
https://docs.aws.amazon.com/quicksight/latest/user/data-source-limits.html
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The rich variety of potential data sources for QuickSight is shown in the following screenshot:

Figure 12.4: Data sources that can be imported into Amazon QuickSight

For the latest list of supported data sources, and to confirm information about supported ver-

sions, see the AWS QuickSight documentation topic Supported Data Sources at https://docs.aws.

amazon.com/quicksight/latest/user/supported-data-sources.html. 

For data sources not directly supported, you can use other ingestion methods (such as those 

discussed in Chapter 6, Ingesting Batch and Streaming Data) to ingest data into your S3-based data 

lake. You can then create visualizations of that data by using the Amazon Athena data source 

integration to enable QuickSight to query the data directly in Amazon S3. 

To learn more about managing your SPICE memory capacity, refer to the AWS documentation at: 

https://docs.aws.amazon.com/quicksight/latest/user/managing-spice-capacity.html. 

Once your data has been imported, you can use QuickSight to do some level of ETL on the datasets, 

which we will look at in the next section. 

https://docs.aws.amazon.com/quicksight/latest/user/supported-data-sources.html
https://docs.aws.amazon.com/quicksight/latest/user/supported-data-sources.html
https://docs.aws.amazon.com/quicksight/latest/user/managing-spice-capacity.html
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Preparing datasets in QuickSight versus performing ETL 
outside of QuickSight
QuickSight includes functionality for performing data transformations on imported data. For 

example, you can do the following:

• Join two different datasets

• Exclude specific fields

• Filter data

• Change the data type or name of a field

• Create a new calculated field

All of these data preparation tasks can be done using a simple visual interface.

If you select to join two different datasets, then you need to import the data into SPICE. However, 

if you’re just working with a single data source, the transformations you specify will be applied 

when the data is read from the data source.

Ultimately, you need to decide whether you should perform data transformations and joins in 

QuickSight, or whether you should perform those transformations outside of QuickSight. For 

example, you could join two datasets, drop unneeded columns, change the data types and col-

umn names, and create new calculated fields using tools such as AWS Glue DataBrew or AWS 

Glue Studio.

There are several factors to consider when making this decision, including the following:

• If this dataset may be used outside of QuickSight, such as for queries using Amazon Ath-

ena, then it makes sense to perform the ETL with other tools before using the dataset in 

QuickSight.

• If the required transformations are relatively simple and the resulting dataset will only be 

used in QuickSight, then you may choose to perform the transformation using QuickSight. 

This could include transforms such as adding additional calculated fields, changing the 

names or data types of a few columns, dropping a few columns, and so on.

The decision about where to perform data transformations can be complex, and it may not be an 

easy decision. However, an important factor to take into account is the controls that may be in 

place for formal data pipelines, versus those for more informal transformations (such as those 

performed by data analysts using tools such as Amazon QuickSight).
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If you have strong governance controls around your formal data engineering pipelines (such as 

code reviews and change control), then you may choose to ensure that all the transformations 

are done within formal processes. However, you need to balance this against ensuring that you 

don’t tie up your end user teams in formal processes that slow the business down.

Often, you need to balance the two sides – ensuring that your business teams have the flexibility 

to perform minor transformations using tools such as QuickSight, while also ensuring that new 

datasets or visualizations that business users may use to make important business decisions have 

the correct governance controls around them.

It is not always easy to find this balance, and there are no specific rules that apply universally when 

making this decision. Therefore, much thought needs to be given to this decision to find the right 

balance between enabling the business to make decisions quickly, without being constrained by 

overly formal processes for even minor data transformations.

The business ultimately needs to take the time required to put in place governance and controls 

that communicate the types of ad hoc data transformations that data analysts and others can 

perform. These policies should also make it clear as to when transformations need to be performed 

by data engineering teams using formal processes.

For more information on the types of transforms you can do in QuickSight, see the QuickSight 

documentation titled Preparing data in Amazon QuickSight at https://docs.aws.amazon.com/

quicksight/latest/user/preparing-data.html. 

Once you have your data ready in QuickSight (whether you did the transforms inside or outside 

of QuickSight), you are ready to start building your dashboards and reports, as covered in the 

next section. 

Creating and sharing visuals with QuickSight 
analyses and dashboards
Once a dataset has been imported (and optionally transformed), you can create visualizations 

of this data using QuickSight analyses. This is the tool that is used by QuickSight authors to 

create new dashboards, with these dashboards containing one or more visualizations that can 

be shared with others in the business.

When you create a new analysis/dashboard, you choose one or more datasets to include in the 

analysis (up to a maximum of 50 datasets per dashboard). Each analysis consists of one or more 

sheets (or tabs, much like browser tabs) that display a group of visualizations. You can have up 

to 20 sheets (tabs) per dashboard, and each sheet can have up to 30 visualizations.

https://docs.aws.amazon.com/quicksight/latest/user/preparing-data.html
https://docs.aws.amazon.com/quicksight/latest/user/preparing-data.html
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Once you have created an analysis (consisting of multiple visuals, optionally across multiple 

sheets), you can choose to publish the analysis as a dashboard. When you’re publishing a dash-

board, you can select various parameters related to how readers can interact with the dashboard, 

including the following:

• If they can apply their own ad-hoc filters to the data in the dashboard

• If they can download data in the dashboard as a CSV file

• If they can perform drill-down and drill-up actions (when supported in a dashboard)

• If they can sort the data

Once the dashboard has been published, you can select who to share the dashboard with. You 

can either share the dashboard with everyone in the account (providing them with read access 

to the dashboard) or you can select specific users and groups to share with.

By default, when you create a new analysis, the analysis contains a single sheet, with a single 

empty visualization that is set to a type of AutoGraph, as seen in the following screenshot. 

Figure 12.5: New analysis screen in Amazon QuickSight

QuickSight supports many different types of visualizations (as can be seen in the Visual types 

section of the preceding screenshot). Let’s dive deeper into some of these visual types.
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Visual types in Amazon QuickSight
In this section, we will discuss several data visualization types supported by Amazon QuickSight. 

There are many different types of visualizations that are supported, and in this section, we will 

cover some of the most popular ones, but you can review the full list of visualizations in the 

Amazon QuickSight documentation (https://docs.aws.amazon.com/quicksight/latest/user/

working-with-visual-types.html). 

AutoGraph for automatic graphing
While this is not an actual type of visual, you can select AutoGraph as a visual type to let Quick-

Sight automatically choose the visual type for you. Based on the number of fields you select, and 

the data type of each field that is selected, QuickSight automatically uses the most appropriate 

visual type for your data. This is often a good way to start exploring your data if you’re unsure of 

the specific type of graph you want to use.

Line, geospatial, and heat maps
Earlier in this chapter. we discussed three common types of visualizations:

• Line charts: Displays data as a series of data points and is often used to plot data over a 

certain period

• Geospatial charts: Displays data points overlayed on a map, combining geospatial data 

with other data

• Heat maps: Displays data in a chart with values represented by darker or lighter colors

All three of these types of charts (and variations of these charts) are supported by Amazon Quick-

Sight, and can be used to create rich visualizations from many different data sources.

Bar charts
Bar charts are a common visualization type, and QuickSight supports multiple types of bar charts. 

For example, you can have a simple bar chart showing a single value for a dimension (such as sales 

per region) or a multi-measure bar chart that shows multiple measures for a dimension (such as 

sales goal and achieved sales per region).

There are also additional bar chart types that are supported, such as stacked bar charts and clus-

tered bar charts. Bar charts can be displayed horizontally or vertically.

https://docs.aws.amazon.com/quicksight/latest/user/working-with-visual-types.html
https://docs.aws.amazon.com/quicksight/latest/user/working-with-visual-types.html
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Key performance indicators
A Key performance indicator (KPI) is often used to show progress against a specific goal. For 

example, you may have a goal of achieving a specific amount of revenue in a quarter.

A KPI visual could display the current revenue as a percentage of the target revenue in a visual. 

A dashboard showing this KPI (or multiple KPIs) can help management keep track of how the 

business is performing based on several key metrics.

In QuickSight, a KPI displays a comparison of two values and includes a progress bar indicating 

the percentage difference between the values:

Figure 12.6: Dashboard with KPI visuals
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In the preceding screenshot, a sales manager can quickly view how their organization is per-

forming against several key metrics. This chart shows that revenue is nearly at 80% of the target, 

new customers are at 90% of the target, and that the team is within 11% of the target maximum 

customer cancellations for that period.

Tables as visuals
There may be use cases where you want to display the raw data of a table on a dashboard, without 

converting the data into a specific visual.

QuickSight supports displaying tables directly within an analysis/dashboard and supports up 

to 200 columns in the visual. However, directly displaying raw table data should ideally only be 

done with small tables, where you display just a limited amount of raw data.

Custom visual types
QuickSight lets you include several custom visuals within a dashboard, including the following:

• Custom images (such as a company or product logo)

• Custom videos

• An online form

• An embedded web page

These visual types help you customize and personalize your dashboards. For example, you may 

want to embed your company logo on a visual, or include a video that provides a guide for work-

ing with a specific dashboard. 

Note that when you embed custom content in an analysis/dashboard, you need to specify the 

HTTP URL of the resource. Also, while QuickSight does include functionality for emailing dash-

boards to users, embedded custom visual types (pictures, videos, forms, and web pages) will not 

be displayed in the email copy of a dashboard.

There are also other limitations to using embedded content. For example, the web content needs 

to support opening the content in an iframe; otherwise, the content may not appear in QuickSight. 

When you’re looking to embed content into a QuickSight analysis/dashboard, you should look for 

content that has an embeddable URL (which is often available when you choose to share content).
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Other visual types
There are many other types of charts that are supported in QuickSight, and new types are added 

over time. These include the following common chart types:

• Pie charts

• Box plots

• Donut charts

• Gauge charts

• Histograms

• Pivot tables

• Sankey diagrams

• Tree maps

• Waterfall charts

• Word clouds

As we have discussed in this section, QuickSight lets us create many different types of visuals, 

then publish and share those visuals as dashboards. However, QuickSight also includes advanced 

functionality that can automatically reveal new insights in your data and lets you embed dash-

boards into custom applications, as we will see in the next section.

Understanding QuickSight’s advanced features
The Enterprise edition of Amazon QuickSight includes advanced features that can help you 

draw out additional insights from your data, ask questions of your data using natural language, 

and enable you to widely share your data by embedding dashboards into applications. We will 

review some of these features next.  

Amazon QuickSight ML Insights
QuickSight ML Insights uses the power of ML algorithms to automatically uncover insights and 

trends, forecast future data points, and identify anomalies in your data.

All of these ML Insights functionalities can easily be added to an analysis/dashboard without 

the author needing to have any ML experience or any real understanding of the underlying ML 

algorithms. However, for those who are interested in the underlying ML algorithms used by 

QuickSight, Amazon provides comprehensive documentation on this topic. 
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Review the Amazon QuickSight documentation titled Understanding the ML algorithim used by 

Amazon QuickSight for more information: https://docs.aws.amazon.com/quicksight/latest/

user/concept-of-ml-algorithms.html.

However, to make use of ML Insights, there are specific requirements for your data, such as having 

at least one metric and one category dimension. For ML forecasting, the more historical data you 

have, the better. For example, if you want to forecast based on daily data, you need at least 38 

daily data points, or to forecast on quarters, you need at least 35 quarterly data points. The full 

details on the data requirements are documented in the Amazon QuickSight documentation titled 

Dataset requirements for using ML Insights with Amazon QuickSight: https://docs.aws.amazon.

com/quicksight/latest/user/ml-data-set-requirements.html.

Let’s examine some of the different types of ML Insights in more detail.

Amazon QuickSight autonarratives
Autonarratives provide natural language insights into your data, providing you with an easy-to-

read summary of what is displayed in a visual. Effectively, autonarratives enable you to provide 

a plainly stated summary of your data, as the following autonarrative examples show:

• Year-to-date revenue decreased by 4.6% from $906,123 to $864,441 compared to the same 

period last year. We are at 89.3% achievement for the YTD goal and 77.9% achievement 

for the annual goal.

• Daily revenue for Accessories / Cell Phone Covers on September 3, 2021 was higher than 

expected at $3,461.21.

You can add a variety of autonarratives to an analysis, such as bottom-ranked items, growth rate, 

anomaly detection, top movers, and many others. For the full list of available autonarratives, see 

the Amazon QuickSight documentation titled Insights that include autonarratives: https://docs.

aws.amazon.com/quicksight/latest/user/auto-narratives.html.

ML-powered anomaly detection
Amazon QuickSight can perform anomaly detection (also sometimes referred to as outlier detec-

tion) across millions of metrics contained in your data, identify non-obvious trends, and highlight 

outliers in the data. These types of insights are difficult to draw out of data without using the 

power of modern ML algorithms.

https://docs.aws.amazon.com/quicksight/latest/user/concept-of-ml-algorithms.html
https://docs.aws.amazon.com/quicksight/latest/user/concept-of-ml-algorithms.html
https://docs.aws.amazon.com/quicksight/latest/user/ml-data-set-requirements.html
https://docs.aws.amazon.com/quicksight/latest/user/ml-data-set-requirements.html
https://docs.aws.amazon.com/quicksight/latest/user/auto-narratives.html
https://docs.aws.amazon.com/quicksight/latest/user/auto-narratives.html
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You can add an autonarrative widget to an analysis and specify the type as being anomalous. Then, 

you can configure several settings related to how QuickSight detects outliers in the data and can 

set a schedule for when outliers are calculated (ranging from once an hour to once a month). You 

can also configure QuickSight to analyze the top items that contributed to the anomaly.

Once an anomaly has been detected, you can choose to explore the anomalies on the insight. This 

opens a screen where you can change various settings related to anomaly detection, enabling you 

to explore different types of anomalies in the dataset.

ML-powered forecasting
Amazon QuickSight can use the power of ML algorithms to provide reliable forecasts against your 

data. When you create a visual that uses a date field and contains up to three metrics, you can 

select an option in the widget to add a forecast of future values.

QuickSight will automatically analyze historical data using an ML model and graph out future 

predicted values for each metric. You can also configure the forecast properties by setting items 

such as forecast length (how many future periods to forecast and how much historical data to 

analyze).

The ML model that’s used by QuickSight for forecasting automatically excludes data that it identi-

fies as outliers and automatically fills in any missing values. For example, if you had a short spike 

in sales due to a promotion, QuickSight could exclude that spike when calculating the forecast. 

Or, if there were a few days where historical data was missing, QuickSight could automatically 

determine likely values for the missing period.

It is important to remember that the QuickSight ML Insight features (including autonarratives, 

anomaly detection, and forecasting) are available in the Enterprise edition of QuickSight only, 

and will not be available if you only have a Standard edition subscription.

In this section, we looked at how QuickSight enables you to draw out powerful new insights from 

your data using ML. In the next section, we will look at another advanced feature available in 

QuickSight, and that is the ability to ask questions of your data using natural language. 

Amazon QuickSight Q for natural language queries
ML approaches have enabled new abilities in many products, and one of those is the ability to 

query data with free-form text that uses everyday language. A number of popular BI products 

offer functionality for natural language queries (NLQ), and this includes Amazon QuickSight. 
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With the Amazon QuickSight Q feature, a user could type in a query such as “Show me the top 

3 product categories by revenue for 2023”, and QuickSight would create a graph displaying that 

information. However, a QuickSight author does first need to do some work to set up topics for 

QuickSight Q in order to enable the functionality. 

QuickSight Q is a feature that is only available with the QuickSight Enterprise edition, and there 

is an additional cost to enable this functionality. At the time of writing, there is a $250 charge per 

month for each account that has QuickSight Q enabled, and authors enabled to use Q have an extra 

charge of $10/month, and the reader maximum cost increases from $5 to $10 for readers with Q. 

Generative BI dashboarding authoring capabilities
In September 2023, AWS announced the preview of new generative BI authoring capabilities 

as part of Amazon QuickSight Q. The three new capabilities in preview that were part of the 

announcement provide new functionality for the following:

• Building visualizations by specifying what you want to see using natural language

• Creating complex calculations rapidly, by specifying the expected outcome of the calcu-

lation using natural language

• Refining and tweaking visualizations using natural language prompts

These new capabilities are powered by Amazon Bedrock, a service that offers a variety of Large 

Language Models (LLMs), suited for different tasks. For more information on this new function-

ality, see the QuickSight documentation at https://docs.aws.amazon.com/quicksight/latest/

user/generative-bi-author-experience.html. 

Let’s now take a deeper look at QuickSight Q Topics, the key concept employed to use QuickSight 

Q against a dataset. 

QuickSight Q Topics
Q Topics are a collection of one (or more) datasets that are used to represent a business subject 

area that users can ask questions about. Q Topics need to be created by a QuickSight author, and 

the author then needs to configure the topic to best enable natural language queries.

The easiest way to create and configure a topic, is to create a topic based on an existing analysis/

dashboard. When you create a topic using this method, QuickSight’s Automated Data Prepa-

ration automatically configures the topic using the power of ML, including automation of the 

following:

https://docs.aws.amazon.com/quicksight/latest/user/generative-bi-author-experience.html
https://docs.aws.amazon.com/quicksight/latest/user/generative-bi-author-experience.html
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• Selection of fields: With Automated Data Preparation, QuickSight examines the existing 

analysis to understand which fields are most commonly used in your dashboard, and 

includes those fields in the topic, and excludes fields that are not commonly used. In ad-

dition, it also automatically includes any calculated fields that you created in the analysis. 

• Naming of fields: It is common to use acronyms and shortened versions of field names 

in a database or data warehouse, such as naming a column DOB for Date Of Birth. With 

Automated Data Preparation, QuickSight can attempt to automatically rename fields to a 

more natural name that someone is likely to use in a query. In addition, it can automati-

cally add additional synonyms for each field, such as Birth Date for the Date of Birth field, 

or salesperson and account representative for the SALES_REP field. 

• Field formatting: With Automated Data Preparation, QuickSight can automatically de-

termine an appropriate format for a field when using that field in an answer. For example, 

with a field that shows sales revenue value, QuickSight can automatically assign a currency 

format to that field so that results using this field display the value with a dollar prefix, 

for example. 

When using Automated Data Preparation, authors are strongly encouraged to review the auto-

mated configuration that QuickSight applies and edit it further as needed. For example, based on 

the knowledge that an author has of the business, they may choose to add additional synonyms 

for certain fields. 

If an author creates a new topic directly (i.e., by not creating a topic based on an existing dash-

board), then the author needs to perform the above tasks manually to select fields, rename fields, 

add synonyms, and apply a format to relevant fields. 

Once a topic has been created, and your users start querying using natural language prompts, it 

is important to review how the topic is performing, so that adjustments can be made as needed. 

Let’s take a closer look at how to fine-tune your topics. 

Fine-tuning your QuickSight Q Topics
QuickSight Q includes functionality that lets you review the performance of the topics you have 

created, so that you can fine-tune the topic to further improve performance. 

Once your topic has been available to your users for a while, you can review the topic to see infor-

mation such as the queries that your users have run, whether QuickSight Q was able to provide a 

result, where users needed to provide more information, etc. This enables you to fine-tune the field 

names, synonyms, and field formats, in order to improve the results that QuickSight Q provides. 
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For example, you may find that users typed in a query and no result was available, but you may 

find that they used a specific term (such as rep for sales representative) that had not been configured 

as a synonym, and you can then add a new synonym so that future similar queries will return 

an appropriate result. 

It is important that you regularly review your topics, to understand how users are interacting 

with the topic, so that you can refine the topic settings to improve results. When a user provides 

feedback on how well Q responded to a question, this is recorded and available on the topic’s 

Summary and User Activity tabs. 

In the Summary tab, you can view metrics such as the number of questions asked over time, as 

well as a distribution of questions that received positive, negative, or no feedback. In the User 

activity tab, you can see a list of questions that were asked, as well as positive or negative feed-

back and comments. For more details on monitoring topic feedback, see the Amazon QuickSight 

documentation at https://docs.aws.amazon.com/quicksight/latest/user/quicksight-q-

topics-performance.html. 

In the next section, we will look at another popular feature of the Enterprise edition of QuickSight, 

a feature that enables you to easily distribute your published dashboards more widely.

Amazon QuickSight embedded dashboards
For use cases where you don’t want your users to have to log in to QuickSight via the AWS Man-

agement Console or QuickSight portal, you can embed QuickSight directly into your applications 

or website.

You can embed either the full console experience (including authoring tools for creating new 

analyses and managing datasets) or embed published dashboards only. Embedded dashboards 

have the full interactive capabilities that they do in the console, which means that users can 

filter and sort data, and even drill down into data (so long as the author enabled those levels of 

interactivity when they published the dashboard).

Embedding for registered QuickSight users
QuickSight supports several authentication methods, including AD SAML 2.0, as well as SSO using 

AWS Identity Center (or other identity providers such as Okta, Auth0, and PingOne).

As such, your users can authenticate with your existing website or HTML-based application 

using one of the supported authentication methods and, using that identity, map to an existing 

QuickSight user. If that user has not accessed QuickSight before, a new QuickSight user will be 

created for the user.

https://docs.aws.amazon.com/quicksight/latest/user/quicksight-q-topics-performance.html
https://docs.aws.amazon.com/quicksight/latest/user/quicksight-q-topics-performance.html
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You can elect to either embed the full console experience or only embed dashboards. Users will 

be able to open any dashboards that their QuickSight user has been given access to.

With the QuickSight embedding experience, you can optionally customize the display theme 

using your branding. This enables the embedded QuickSight objects to appear as a direct part 

of your application, rather than looking like an embedded external application. However, even 

when you have a customized theme, the embedded QuickSight application does display a Pow-

ered by QuickSight label.

Embedding for unauthenticated users
For use cases where your users do not authenticate with your website or application, you still 

have the option of embedding QuickSight dashboards for anonymous user access. 

To enable anonymous access, you need to purchase reader session capacity pricing. This offers a 

set number of QuickSight sessions per month, or per year (depending on your plan), and these 

sessions can be consumed by anonymous users. The bonus of purchasing an annual plan for Quick-

Sight sessions is that the Powered by QuickSight label can be removed from embedded resources.

An example use case for this functionality is for a local government health department that wants 

to share the latest information on a virus outbreak with their community. The health department 

could embed an Amazon QuickSight dashboard into its website that is linked to the latest data 

on the spread of the virus.

Users accessing the website could interact with the dashboard, filtering data for their specific 

location, sorting data, or even downloading a CSV version of the data for their additional analysis. 

These users would not need to log into the health department website to access the dashboard, 

and the health department could use an annual plan for reader session capacity. For more infor-

mation on pricing for reader session plans, see the Amazon QuickSight pricing page: https://

aws.amazon.com/quicksight/pricing/.

When embedding dashboards for unauthenticated users, you need to be very aware of what 

data you make available, and that you do not accidently expose company confidential data via 

an authenticated embedding. 

Let’s now look at another advanced feature in Amazon QuickSight: the ability to generate multi-

page formatted reports. 

https://aws.amazon.com/quicksight/pricing/
https://aws.amazon.com/quicksight/pricing/
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Generating multi-page formatted reports
The Amazon QuickSight Paginated Reports functionality (launched in November 2022) enables 

authors to create highly formatted, multi-page PDF reports. This extends Amazon QuickSight 

functionality beyond just creating rich visualizations in dashboards, to enabling report gener-

ation as well. 

With this functionality, QuickSight authors are able to create reports where they specify attri-

butes such as page size, length, orientation (portrait or landscape), as well as the arrangement 

of images, charts, and tables. These reports can easily be printed, or distributed via email as PDF 

attachments. A report created with this functionality can generate up to 1,000 pages in a PDF, 

and reports can be scheduled to run using QuickSight’s scheduling mechanism. 

Note that there is an extra cost to enable paginated reports in QuickSight. At the time of writing, 

the cost for 500 reports units a month (with a report unit being 100 pages long, or 100 MB in size) 

was $500 per month. To learn more about paginated reports, see the QuickSight documentation 

titled Working with paginated reports in Amazon QuickSight at https://docs.aws.amazon.com/

quicksight/latest/user/working-with-reports.html.

Having learned more about QuickSight’s advanced functionality, let’s get hands-on by creating 

a QuickSight visualization.

Hands-on – creating a simple QuickSight 
visualization
Earlier in this chapter, we discussed how data can be represented over a geographic area. We 

used the example of data containing information on the population of world cities, and how we 

could use that to easily visualize how large cities are geographically distributed. The example 

visual in Figure 12.2 showed cities with a population of over 5 million people, displayed on top 

of a map of the world.

For the hands-on section of this chapter, we are going to recreate that visual using Amazon 

QuickSight.

Setting up a new QuickSight account and loading a dataset
Before we start creating a new dashboard, we need to download a sample dataset of world city 

populations. We will use the basic dataset available from https://simplemaps.com/, which is 

freely distributed under the Creative Commons Attribution 4.0 license (https://creativecommons.

org/licenses/by/4.0/):

https://docs.aws.amazon.com/quicksight/latest/user/working-with-reports.html
https://docs.aws.amazon.com/quicksight/latest/user/working-with-reports.html
https://simplemaps.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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1. Use the following link to download the basic dataset from simplemaps.com: https://

simplemaps.com/data/world-cities. If the file downloaded is a ZIP file, make sure to 

extract the actual city data CSV file.

2. Log into the AWS Management Console and use the top search bar to search for, and 

open, the QuickSight service.

3. If you have not used QuickSight before in this account, you will be prompted with a Sign 

up for QuickSight button. Click the button to start the signup process.

4. The default page opens to the QuickSight Enterprise edition. For this exercise, only the 

Standard edition is needed, so click on the Sign up for Standard Edition here link at the 

very bottom of the page, as per the screenshot in Figure 12.7

Figure 12.7: Setting up a new QuickSight account

https://simplemaps.com/data/world-cities
https://simplemaps.com/data/world-cities
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5. For Authentication method, select Use IAM federated identities only, and then select 

your preferred AWS Region. Under Account info, provide a unique name for your Quick-

Sight account (such as data-engineering-<initials>) along with a Notification email 

address that can be used to send QuickSight notifications to you. Leave all other settings 

as-is and click Finish:

Figure 12.8: Configuring a new QuickSight account

6. After a while, you should receive a pop-up message confirming that you have signed up for 

Amazon QuickSight. Click on the Go to Amazon QuickSight link, and then click through 

the welcome screens, which provide an overview of Amazon QuickSight’s functionality.
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7. From the left-hand side menu, click on Datasets to go to the dataset management screen. 

On this screen, you will see several pre-loaded sample datasets:

Figure 12.9: Pre-loaded datasets for a new QuickSight account

8. Click on New dataset to create a new dataset. On the new dataset screen, click on Upload 

a file.

9. When you’re prompted to provide the file to upload, navigate to where you downloaded 

the World Cities data from simplymaps.com (in Step 1 of this exercise) and upload the 

worldcities.csv file.

10. Once the file has been uploaded, you will be presented with a popup to confirm the file 

upload settings. Click on Next.

11. On the next screen, click on Visualize. This will open a new analyses screen where you 

can create your analysis/dashboard based on the World Cities dataset.

Now that we have subscribed to QuickSight, downloaded our World Cities dataset, and uploaded 

the dataset to QuickSight, we are ready to create our first visual.

Creating a new analysis
We are now on the analysis authoring page for QuickSight. Using this interface, we can build out 

new analyses consisting of multiple visualizations and, optionally, containing multiple sheets 

(tabs). Then, we can publish our analysis as a dashboard that can be consumed by QuickSight 

readers.

Initially, we will receive a pop-up dialog that enables us to select a layout (with a default of Tiled), 

and to select a resolution to optimize the display. Leave the defaults and click on Create. 
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The following screenshot shows the analysis workspace after importing our worldcities.csv 

dataset and accepting the defaults:

Figure 12.10: The different parts of a new QuickSight analysis

In this screenshot, we can see the following components of the analysis workspace. Note that 

the numbers in the following list correspond to the component numbers shown in the preceding 

screenshot:

• A list of fields in our selected dataset (worldcities.csv).

• A list of different types of charts that we can use in our visuals (bar, pie, heat map, and 

so on).

• The sheet bar, which shows us our current sheet (Sheet 1). Clicking the + sign would enable 

us to create additional sheets (much like tabs in a browser). We can also rename sheets.

• The visual display area. Once we select a chart type and add some fields to the visual, the 

chart will be displayed here. Notice that the size of the visual area can be dragged to be 

larger or smaller, and we can click on + Add in the top menu bar if we want to add addi-

tional visuals to this sheet.
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To create our map of the world showing cities with populations greater than 3 million people, 

perform the following steps:

1. Click on the AutoGraph box, and then in the Visual types box, find and select the Points 

on map visual type.

2. From Fields list, drag lat into the Geospatial field well (at the top of the visual-designer 

workspace), and then drag lng into the same Geospatial field well. Make sure that you drag 

lng either above or below lat; otherwise, you will end up replacing the existing lat field.

3. Drag population into the Size field well and drag city into the Color field well.

Your visual designer should look as follows at this point:

Figure 12.11: Creating a new Points on Map visual
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At this point, our visual is displaying population data for all 41,000 cities in the dataset. 

However, for our use case, we only want to display data for cities that have a population 

of above 3 million people. Perform the following steps to filter the data to just cities with 

a population above a certain size.

4. From the left-hand side QuickSight menu, click on Filter, and then click Add Filter (as 

shown in the following screenshot):

Figure 12.12: Configuring a filter for a visual

5. In the pop-up that shows the list of fields, click on the population field. This displays a 

filters list with population showing as the only filter.
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6. From the filters list, click on population. Change the Equals dropdown to Greater than 

or equal to and enter a value of 3000000 (3 million), as shown in the following screenshot. 

Then, click on APPLY:

Figure 12.13: Editing the filter for a visual

Our visual now displays only those cities that have a population of 3 million people or 

more. Note how you can position the mouse over a city to get a popup of the city’s name, 

along with its latitude, longitude, and population details.
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You can also modify the following aspects of the visual:

• Drag the corners of the visual to increase the size of the visual. 

• Experiment with the visual by changing the filter on population size (for example, 

change the filter to 5 million people). 

• Zoom in and out on the map to size it to display just the parts of the map you 

want to show.

7. Double-click on the title of the visual to change the title (to something such as Cities 

with a population of over 5 million people). 

8. Click on the Pencil Icon (at the top right of the visual) and change the Base map to Streets.

9. Click the down arrow next to the title of the sheet (by default, Sheet 1) and rename the 

sheet (for example, changing the name to City Populations).

The completed visual now looks as follows:

Figure 12.14: A completed visual showing cities with a population of over 5 million 
people

Let’s now look at how to publish our new visual.

Publishing our visual as a dashboard
We can now publish our dashboard to make it available to QuickSight readers. 
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To publish our analysis, click on the SHARE icon in the top menu bar, and then select Publish 

dashboard. 

Figure 12.15: The share icon on a QuickSight analysis

On the Publish a dashboard pop-up, enter a dashboard name into the Publish new dashboard 

as field, such as World Cities by Population, then click Publish dashboard.

Once we have published our analysis, other users in our QuickSight account can access the visual 

through the QuickSight dashboards tab. 

In the hands-on section of this chapter, you signed up for a new QuickSight account and imported 

a new file-based dataset that contained information on world cities. This included geospatial data 

(latitude and longitude), as well as the size of the population of the city. Then, you created a new 

visual based on this data, filtering the data to only show cities with a population of 5 million or 

more people.

Summary
In this chapter, you learned more about the Amazon QuickSight service, a BI tool that is used to 

create and share rich visualizations of data.

IMPORTANT – AVOIDING FUTURE QUICKSIGHT SUBSCRIPTION COSTS

If you do not intend to use QuickSight after the initial 30-day subscription, ensure 

that you unsubscribe from QuickSight to avoid future subscription charges. For more 

information, see the AWS documentation titled Deleting your Amazon QuickSight 

subscription and closing the account (https://docs.aws.amazon.com/quicksight/

latest/user/closing-account.html).

https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html
https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html
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We discussed the power of visually representing data, and then explored core Amazon Quick-

Sight concepts. We looked at how various data sources can be used with QuickSight, how data 

can optionally be imported into the SPICE storage engine, and how you can perform some data 

preparation tasks using QuickSight.

We then did a deeper dive into the concepts of analyses (where new visuals are authored) and 

dashboards (published analyses that can be shared with data consumers). As part of this, we also 

examined some of the common types of visualizations available in QuickSight.

We then looked at some of the advanced features available in QuickSight. This included ML In-

sights (which uses ML to detect outliers in data and forecast future data trends), QuickSight Q 

(which enables the use of natural language queries to create visualizations), as well as embedded 

dashboards (which enable you to embed either the full QuickSight console, or specific dashboards, 

directly into your websites and applications) and paginated reports. 

We wrapped up this chapter with a hands-on section that took you through the steps of config-

uring QuickSight within your AWS account and creating and customizing a new visualization.

In the next chapter, we will do a deeper dive into some of the many AWS ML and Artificial Intel-

ligence services that are available. We will also review how these services can be used to draw 

new insights and context out of existing structured and unstructured datasets.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd




13
Enabling Artificial Intelligence 
and Machine Learning

For a long time, organizations could only dream of the competitive advantage they would get if 

they could accurately forecast demand for their products, personalize recommendations for their 

customers, and automate complex tasks. And yet, advancements in machine learning (ML) over 

the past decade or so have made many of these things, and much more, a reality.

ML describes the process of training computers in a way that mimics how humans learn to per-

form several tasks. ML uses a variety of advanced algorithms and, in most cases, large amounts 

of data to develop and train an ML model. This model can then be used to examine new data and 

automatically draw insights from that data.

The difference between AI and ML is not always clear, and people tend to use the terms somewhat 

interchangeably. AI focuses on creating machines to perform tasks that typically require human 

intelligence, such as problem-solving, decision-making, and understanding language. ML, more 

specifically, focuses on developing algorithms and statistical models to enable a model to recognize 

patterns in data and then make predictions based on those patterns. For example, training an ML 

model on a dataset that has customer data and an indication of which customers defaulted on 

their debt, and enabling that model to predict whether other customers may default on their debt.

AI and ML offers a wide range of interesting use cases that are expected to have a growing impact 

on many different aspects of life. For example, doctors are using ML to analyze a patient’s retina 

scans to identify early signs of Alzheimer’s disease. It is also the power of ML, and specifically 

computer vision, that is enabling advances in self-driving vehicles so that a car can navigate itself 

along a highway or even navigate complicated city streets unaided. 



Enabling Artificial Intelligence and Machine Learning406

A self-driving car, as an AI system, makes use of underlying ML models for image classification, 

object tracking, and route planning.

Large Language Models (LLMs), such as ChatGPT or Bard, enable users to ask queries using nat-

ural language on a wide variety of topics, and get comprehensive responses, as well as generate 

new content (such as stories, poems, or songs). 

AWS offers several services to help developers build their own custom advanced ML models, as 

well as a variety of pretrained models that can be used for specific purposes. In this chapter, we’ll 

examine why Artificial Intelligence (AI) and ML matter to organizations, and we’ll review a 

number of the AWS AI and ML services, as well as how these services use different types of data.

In this chapter, we will cover the following topics:

• Understanding the value of ML and AI for organizations

• Exploring AWS services for ML

• Exploring AWS services for AI

• Building generative AI solutions on AWS

• Hands-on – reviewing the reviews with Amazon Comprehend

Before we get started, review the following Technical requirements section, which lists the prereq-

uisites for performing the hands-on activity at the end of this chapter.

Technical requirements
In the last section of this chapter, we will go through a hands-on exercise that uses Amazon SQS 

and AWS Lambda, to send some text to the Amazon Comprehend service so that we can extract 

insights from it.

As with the other hands-on activities in this book, if you have access to an administrator user in 

your AWS account, you should have the permissions needed to complete these activities. If not, 

you will need to ensure that your user is granted access to create Amazon SQS and AWS Lambda 

resources, as well as at least read-only permissions for Amazon Comprehend APIs.

You can find the code files of this chapter in the GitHub repository using the following link: 
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/

main/Chapter13

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter13
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter13
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Understanding the value of ML and AI for 
organizations
More and more companies, of all sizes, are in various stages in the journey of discovering how ML 

and AI can positively impact their business. While initially, only the largest of organizations had 

the money and expertise to invest in ML projects, over time, the required technology has become 

more affordable and more accessible to non-specialist developers.

Cloud providers, such as AWS, have played a big part in making ML and AI technology more 

accessible to a wider group of users. Today, a developer with no previous ML education or expe-

rience can use a service such as Amazon Lex to create a customer service chatbot. This chatbot 

will allow customers to ask questions using natural language, rather than having to select from a 

menu of preset choices. Not all that long ago, anyone wanting to create a chatbot like this would 

have needed a Ph.D. in ML!

Many large organizations still look to build up data science teams with specialized AI and ML 

education and experience, and these developers are often involved in cutting-edge research and 

development. However, organizations of just about any size can use non-specialist developers 

to harness the power of ML to improve customer experience, financial forecasting, and other 

aspects of their business.

Let’s have a look at some of the ways that ML is having an impact on different types of organi-

zations.

Specialized ML projects
Large organizations in specialized industries make use of advanced ML technologies to develop 

cutting-edge ML advances. In this section, we’ll have a look at a few examples of these technologies.

Medical clinical decision support platform
Cerner, a health information technology services company, has built an ML-powered clinical de-

cision support system to help hospitals streamline their workflows. This solution, built on AWS, 

uses ML models to predict how busy an emergency room may get on any given day, or time. This 

helps ensure that the right patients are prioritized for care, that patients are discharged at the 

right time, and that real-time data is used to create a Centralized Operations Center dashboard. 

This dashboard provides critical, near-real-time information on important metrics for managing 

hospital workflows, as well as predictions for what these metrics may look like over time.
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Cerner has built its Cerner Machine Learning Ecosystem platform using Amazon SageMaker, as 

well as other AWS services. As with just about all ML projects, getting the right data to train the 

ML model is critical, and data engineers play an important role in this. In addition, data engineers 

are needed to build pipelines that enable near-real-time data to be ingested from multiple sources 

and fed into the platform. If the pipeline fails to ingest the right data at the right frequency, then 

the ML models cannot make the predictions that an organization may have come to depend on.

To learn more about the Cerner clinical decision support system, you can watch a pre-recorded we-

binar, available at https://www.youtube.com/watch?v=TZB8W7BL0eo.

Early detection of diseases
One of the areas of ML and AI that has massive potential for impacting a significant number of 

people is the early detection of serious diseases.

A January 2023 article in MIT News overviews an AI model developed by researchers at MIT that can 

detect future lung cancer risk (see https://news.mit.edu/2023/ai-model-can-detect-future-

lung-cancer-0120). In this article the researches explain how they were surprised that there were 

lung scans where humans couldn’t quite see where the cancer was, and yet the machine learning 

model they built was able to do better at predicting which lung may eventually develop cancer. 

With many terminal diseases, early detection can make a significant difference in the outcome 

for the patient. For example, early detection, combined with appropriate medical interventions, 

can significantly increase the chance of survival beyond 5 years for certain cancer patients.

Making sports safer
Another area that ML is having an impact on is improving the safety of athletes for competitive 

sports. For example, the National Football League (NFL) in the United States is using Amazon 

AI and ML services to derive new insights into player injuries, rehabilitation, and recovery.

The NFL has started a project that uses Amazon SageMaker to develop a deep learning model 

to track players on a field, and then detect and classify significant injury events and collisions. 

There is an expectation that these advanced ML models, along with vast quantities of relevant 

data (including video data), can be used to significantly improve player safety over time.

To learn more about how the NFL is using ML to improve player safety, you can 

watch a short video on YouTube from the AWS re:Invent 2020 conference titled AWS 

re:Invent 2020 – Jennifer Langton of the NFL on using AWS to transform player safety 

(https://www.youtube.com/watch?v=hXxfCn4tGp4).

https://www.youtube.com/watch?v=TZB8W7BL0eo
https://news.mit.edu/2023/ai-model-can-detect-future-lung-cancer-0120
https://news.mit.edu/2023/ai-model-can-detect-future-lung-cancer-0120
https://www.youtube.com/watch?v=hXxfCn4tGp4
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Having had a look at a few specialized use cases, let’s look at how everyday businesses are using 

ML and AI to impact their organizations and customers.

Everyday use cases for ML and AI
Just about every business, ranging from those with tens of employees to those with thousands of 

employees, is finding ways to improve through the use of ML and AI technologies.

One of the big reasons for this is that ML and AI have become more democratized over the past 

few years. Whereas ML and AI were once solely the domains of experts with years of experience 

in the field, today, a developer without specialized ML experience can harness the power of these 

technologies in impactful ways. And with LLMs like ChatGPT, just about every organization can 

find a use for generative AI to improve the productivity of workers. 

Let’s have a look at a few examples of how ML and AI are widely used across different business 

sectors.

Forecasting
Just about every organization needs to do forecasting to anticipate a variety of factors that influ-

ence their business. This includes financial forecasting (such as sales and profit margin), people 

forecasting (such as employee turnover, and how many staff are needed for a particular shift), 

and inventory forecasting (such as how many units we are likely to sell, how many units we need 

to manufacture next month, and so on).

Forecasting uses historical data over a period (often referred to as time series data) and attempts 

to predict likely future values over time. Forecasting has been around since long before ML, but 

traditional forecasts often lacked accuracy due to things such as irregular trends in historical data. 

Traditional forecasting also often failed to take into account variable factors, such as weather, 

promotions, and more.

ML has introduced new approaches and techniques to forecasting that offer increased accuracy 

and the ability to take several variable factors into account. AWS offers several services that help 

bring the power of ML to forecasting problems, as we will discuss later in this chapter.

Personalization
Personalization is all about tailoring communication and content for a specific customer or 

subscriber. A good example of personalization is the effort Netflix has invested in to provide 

personalized recommendations about other shows a specific subscriber may be interested in 

watching, based on the shows they have watched in the past (or shows they have been shown, 

that they have shown no interest in). 
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Other examples of where ML is used to power personalized recommendations are the recom-

mended products on the Amazon.com storefront, as well as the recommended travel destinations 

on booking.com.

Natural language processing
Natural language processing (NLP) is a branch of AI/ML that is used to analyze human language 

and draw automated insights and context from the text.

A great example of NLP is the Alexa virtual assistant from Amazon. Users can speak to Alexa using 

natural language, and Alexa uses NLP algorithms to understand what the user is asking. While 

voice recognition systems have been around for a long time, these generally required users to 

say very specific phrases for the system to understand them. With modern NLP approaches, 10 

different users could ask the same question in 10 slightly different ways, and the system would 

be able to understand what is being asked.

Traditional NLP technology is different to the new LLMs that have become popular since ChatGPT 

was launched. While LLMs are very good at responding to a very wide variety of prompts (based 

on their training on very large amounts of data, and their use of new transformer models), they 

sometimes may hallucinate (making up answers). Traditional NLP models are less likely to make 

up answers, but they are also more limited in the scope of prompts they can respond to. 

Image recognition
Another area where ML is having an impact on many businesses is through the use of image recog-

nition ML models. With these models, images can be analyzed by the model to recognize objects 

within them. This can be used for many different types of tasks, such as ensuring employees are 

wearing appropriate safety gear, or as part of the process of validating the identity of a customer. 

These models are also able to automatically label images based on what is in the image, such as 

the breed of dog in a collection of dog photos.

Now that we have reviewed some examples of the typical use cases for ML and AI, we can do a 

deeper dive into some of the AWS services that enable these use cases.

Exploring AWS services for ML
AWS has three broad categories of ML and AI services, as illustrated in the following diagram 

(note that only a small sample of AI and ML services are included in this diagram, due to space 

constraints):
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Figure 13.1: Amazon ML/AI stack

In the preceding diagram, we can see a subset of the services that AWS offers in each category – 

Artificial Intelligence Services, Machine Learning Services, and Machine Learning Frameworks 

and Infrastructure.

At the ML framework and infrastructure level, AWS provides Amazon Machine Images (AMIs) 

and prebuilt Docker containers that have popular deep learning ML frameworks pre-installed 

and optimized for the AWS environment. While these are useful for advanced use cases that 

require custom ML environments, these use cases are beyond the scope of this book.

In the remainder of this chapter, we will explore some of the services in the AWS ML services and 

AWS AI services categories.

For more information on these ML frameworks, refer to the AWS documentation 

on AWS Deep Learning AMIs (https://aws.amazon.com/machine-learning/

amis/) and AWS Deep Learning Containers (https://aws.amazon.com/machine-

learning/containers/).

https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/machine-learning/containers/
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AWS ML services
While working in the Machine Learning Frameworks and Infrastructure layer (as shown in 

the preceding diagram) requires advanced ML skills and experience, AWS makes developing ML 

models more accessible in the Machine Learning Services layer.

In this layer, Amazon SageMaker enables users to prepare, build, train, tune, deploy, and manage 

ML models, without needing to manage the underlying infrastructure. SageMaker is designed to 

simplify each step of building and deploying an ML model for both data scientists and everyday 

developers.

SageMaker includes several underlying tools to help with each of the stages of building an ML model.

SageMaker in the ML preparation phase

Amazon SageMaker Ground Truth

SageMaker Ground Truth is a service that uses both ML and/or human curators to label data; 

for example, labelling the breed of a dog in a photo. This significantly speeds up the process of 

preparing data to use to train new ML models.

Amazon SageMaker Data Wrangler
The SageMaker Data Wrangler service is a visual data preparation tool that data scientists can 

use to prepare raw data for ML use. The service enables data scientists to select relevant datasets, 

explore the data, and then select from over 300 built-in transformations that they can easily apply 

to the dataset, without writing any code.

Several capabilities within SageMaker simplify and speed up the tasks involved in 

preparing to build an ML model. We covered these services in Chapter 8, Identifying 

and Enabling Data Consumers, so review that chapter for more information, but here 

is a quick reminder of these services.

The majority of ML models learn by being trained on labeled data. That is, the model 

is effectively given data that includes the attribute the model is designed to predict. 

Once trained, the model can then predict data where the attribute to be predicted 

is missing. For example, to train a model that can identify different breeds of dogs 

in a photo, you would train the model using photos of dogs that are labeled with 

the breed of dog. Once trained, you could provide a picture of a dog and the model 

could predict the breed.
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SageMaker Data Wrangler also includes visualization templates that enable you to preview the 

results of transformations in SageMaker Studio, a full-fledged integrated development envi-

ronment (IDE) for ML.

Amazon SageMaker Clarify
When training an ML model with a training dataset, the dataset may be biased through either a 

concentration of specific data or because it is missing specific data.

For example, if a dataset is intended to be used to predict responses from people with a wide age 

range, but the training dataset primarily contains data from people aged 35 – 55, then predictions 

may be inaccurate for both younger people (under 35) and/or older people (over 55).

The same could be applied to datasets that tend to concentrate on a specific gender, sexual ori-

entation, married versus unmarried, or just about any other attribute. To help avoid this type of 

potential bias in a dataset, SageMaker Clarify can examine some specified attributes in a dataset 

and use advanced algorithms to highlight the existence of potential bias.

SageMaker in the ML build phase
Once data has been labeled and prepared, a data scientist can move on to building ML models. 

The following capabilities in SageMaker are used to build new ML models.

SageMaker Studio notebooks
Data scientists typically use notebooks to develop the code for their ML models. A notebook is 

an interactive web-based environment where developers can run their code and immediately 

see the results of the running code. An interactive notebook is backed by a compute engine that 

runs a kernel where notebook code is executed.

With SageMaker Studio Notebooks, you can quickly launch a new notebook, backed by an EC2 

instance type of your choosing. The notebook environment uses Amazon Elastic File System 

(EFS), which is network-based storage that persists beyond the life of the instance running the 

notebook. This enables you to easily start and stop different notebook instances, and have your 

notebook project files available in each notebook instance.

SageMaker Studio Notebooks also enables users to easily share notebooks, enabling collabora-

tive work between data scientists on a team. In addition, SageMaker Studio Notebooks provides 

sample projects that can be used as a starting point for developing a new model.
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SageMaker Autopilot
For developers that do not have extensive ML experience, SageMaker Autopilot can be used to 

automatically build, train, and tune several different ML models, based on your data.

The developer needs to provide a tabular dataset (rows and columns) and then indicate which 

column value they want to predict. This could be predicting a number (such as expected spend), 

a binary category (fraud or not fraud), or a multi-label category (such as favorite fruit, which 

could be banana, peach, pear, and so on).

SageMaker Autopilot will then build, train, and tune several ML models and provide a model 

leaderboard to show the results of each model. Users can view each of the models that were gen-

erated and explore the results that were generated by each model. From here, a user can select 

the model that best meets their requirements and deploy it.

SageMaker JumpStart
SageMaker JumpStart provides several preselected end-to-end solutions, ML models, and other 

resources to help developers and data scientists get their ML projects up and running quickly.

By using these prebuilt resources, developers can easily deploy solutions and models with all the 

infrastructure components managed for them. Once deployed, the model can be opened with 

SageMaker Studio Notebooks, and the model can be tested through a notebook environment.

Prebuilt solutions include sample datasets that can be used to test the model, and you can also 

provide your own dataset to further train and tune the model. Some examples of prebuilt solu-

tions available in JumpStart include the following:

• Foundation models (used to build generative AI solutions)

• Churn prediction

• Credit risk prediction

• Computer vision

• Predictive maintenance

For an example of how to use SageMaker JumpStart to build a custom generative AI solution, see 

the AWS blog post titled Fine-tune text-to-image Stable Diffusion models with Amazon SageMaker 

JumpStart at https://aws.amazon.com/blogs/machine-learning/fine-tune-text-to-image-

stable-diffusion-models-with-amazon-sagemaker-jumpstart/. In this blog post, you learn 

how to use SageMaker JumpStart to fine-tune the Stable Diffusion model by uploading pictures 

of a dog, and then having the Stable Diffusion model generate new images of the dog in differing 

situations (such as the dog on a beach, a pencil sketch of the dog, etc).  

https://aws.amazon.com/blogs/machine-learning/fine-tune-text-to-image-stable-diffusion-models-with-amazon-sagemaker-jumpstart/
https://aws.amazon.com/blogs/machine-learning/fine-tune-text-to-image-stable-diffusion-models-with-amazon-sagemaker-jumpstart/
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SageMaker in the ML training and tuning phase
Once you have built an ML model, you need to train the model on a sample dataset, and then 

further tune and refine the model until you get the results that meet your requirements.

Training a model is core functionality that’s built into SageMaker. You point SageMaker to the 

location of your training data in Amazon S3, and then specify the type and quantity of SageMaker 

ML instances you want to use for the training job. SageMaker will provision a distributed compute 

cluster and perform the training, outputting the results to Amazon S3. The training cluster will 

then automatically be removed.

SageMaker can also automatically tune your ML model by testing the model with thousands of 

different combinations of algorithm parameters to determine which combination of parameters 

provides the most accurate results. This process is referred to as hyperparameter tuning, and 

with SageMaker, you can specify the range of hyperparameters that you want to test.

To keep track of the results of different training jobs, SageMaker also includes something called 

SageMaker Experiments.

SageMaker Experiments
This process of tracking different ML experiments can be made significantly easier using SageMak-

er Experiments. This feature of SageMaker automatically tracks items such as inputs, parameters, 

and configurations, and stores the result of each experiment. This helps reduce the overhead and 

time needed to identify the best performing combinations for your ML model.

When running a training job on SageMaker, you can pass in an extra parameter, defining the name 

of the experiment. By doing this, all the inputs and outputs of the job will automatically be logged.

This data can then be loaded into a pandas DataFrame (a popular Python data structure for work-

ing with data), and you can use the built-in analytics features of pandas to analyze your results. 

Amazon SageMaker Studio also includes integration with SageMaker Experiments, enabling you 

to run queries on experiment data, and view leaderboards and metrics.

SageMaker in the ML deployment and management phase
Once you have prepared your data, developed your model, and then trained and tuned the model, 

you are finally ready to deploy the model. There are several different ways that you can select to 

deploy the model using SageMaker.
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For example, if you want to get predictions on a large dataset, you can use SageMaker’s batch 

transform process. Using this, you point SageMaker to the dataset on S3, select the type of com-

pute instance you want to use to power the transform, and then run the transform job, which 

will make a prediction for each record in the dataset and write out the transformed dataset to S3.

Alternatively, you can deploy an endpoint for your model that can be used by your applications 

to pass data to the model to get an ML-powered prediction in real time. For example, you can 

pass information to the endpoint of a specific credit card transaction (date, time, location, ven-

dor, amount, and so on), and the ML model can predict whether this is a fraudulent or genuine 

transaction.

ML models can become less accurate over time due to changing trends in your customer base, 

for example, or because of data quality issues in upstream systems. To help monitor and manage 

this, you can use SageMaker Model Monitor.

SageMaker Model Monitor
SageMaker Model Monitor can be configured to continuously monitor the quality of your ML 

models and can send notifications when there are deviations in the model’s quality. Model Monitor 

can detect issues with items such as data quality, model quality, and bias drift.

To resolve issues with model quality, a user may take steps such as retraining the model using 

updated data or investigating potential quality issues with upstream data preparation systems.

Having briefly covered some of the extensive functionality available for creating custom models 

using Amazon SageMaker, let’s look at some of the AWS AI services that provide prebuilt ML 

models as a service.

Exploring AWS services for AI
While Amazon SageMaker simplifies building custom ML models, there are many use cases where 

a custom model is not required, and a generalized ML model will meet requirements.

For example, if you need to translate from one language into another, that will most likely not 

require a customized ML model. Existing, generalized models, trained for the languages you are 

translating between, would work.

You could use SageMaker to develop a French to English translation model, train the model, and 

then host the model on a SageMaker inference endpoint. But that would take time and would 

have compute costs associated with each phase of development (data preparation, notebooks, 

training, and inference).
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Instead, it would be massively simpler, quicker, and cheaper to use an AI service such as Amazon 

Translate, which already has a model trained for this task. This service provides a simple API that 

can be used to pass in text in one language and receive a translation in a target language. And 

there would be no ongoing compute costs or commitments – just a small per-character cost for 

the translation (currently $ 0.000015 per character).

Also, AWS is constantly working to improve the underlying ML algorithms, monitoring data 

quality, and maintaining the availability of the API endpoints, at no additional cost to you. And 

if you do need to customize the model (for example, based on specific industry terminology, or a 

preferred style or tone for the translation), you can provide additional training data for customized 

translations, although this comes at a slightly higher cost (currently $0.00006 per character).

These types of AI services have gained in popularity over the past few years, and all of the major 

cloud providers now offer a range of pretrained ML models as a service. We don’t have space in 

this chapter to cover all of the AWS AI services, but we’ll look at a few of the most popular ser-

vices in this section.

We started with Amazon Translate as an example of an AWS AI service, so now, let’s explore some 

of the other AI offerings from AWS.

AI for unstructured speech and text
One of the primary benefits of a data lake is the ability to store all types of data, including un-

structured data such as PDF documents, as well as audio and video files, in the data lake. And 

while this type of data can be easily ingested and stored in the data lake, the challenge for the 

data engineer is in how to process and make use of this data.

For example, a large enterprise company may have hundreds of thousands of invoices from a 

variety of vendors, and they may want to perform analysis or fraud detection on those. Or a busy 

call center may want to automatically transcribe recorded customer calls to perform sentiment 

analysis and identify unhappy customers.

For these use cases, AWS offers several AI services designed to extract metadata from text or 

speech sources to make this data available for additional analysis.

Amazon Transcribe for converting speech into text
Amazon Transcribe is an AWS AI service that can produce text transcription from audio and 

video files. This can be used to generate subtitles for a video file, to provide a transcription of a 

recording of a meeting or speech, or to get a transcript of a customer service call.
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Transcribe uses automatic speech recognition (ASR), a deep learning process, to enable highly 

accurate transcriptions from audio files, including the ability to identify different speakers in the 

transcript and to automatically identify the language of a recording. Transcribe can also detect 

and remove sensitive personal information (such as credit card numbers or email addresses) from 

transcripts, as well as words that you don’t want to be included in a transcription (such as curses 

or swear words). Transcribe can also generate a new audio file that replaces these unwanted 

words with silence.

A data engineer can build a pipeline that processes audio or video files with Transcribe, ensuring 

that text transcripts from audio sources are generated shortly after new audio sources are ingest-

ed into the data lake. Other ML models or AWS AI services can also be built into the pipeline to 

further analyze the transcript to generate additional metadata.

Amazon Transcribe can work in both batch and streaming mode (although not all features or 

regions are supported in streaming mode). With batch mode, you point Amazon Transcribe at 

an audio recording in Amazon S3, while in streaming mode, you send through ‘chunks’ of the 

audio that then gets transcribed immediately. Streaming mode can be used for use-cases such 

as live captioning of meetings or a news broadcast. 

Amazon Transcribe also includes functionality targeted at specific types of audio. For example, 

Amazon Transcribe Medical uses an ML model specifically trained to identify medical terminol-

ogies such as medicine names, diseases, and conditions. And Amazon Transcribe Call Analytics 

has been specifically designed to understand customer service and sales calls, as well as to identify 

attributes such as agent and customer sentiment, interruptions, and talk speed. 

Amazon Textract for extracting text from documents
Amazon Textract is an AI service that can be used to automatically extract text from unstructured 

documents, such as PDF or image files. Whether the source document is a scan of printed text or a 

form that includes printed text and handwriting, Textract can be used to create a semi-structured 

document for further analysis.

A data engineer may be tasked, for example, with building a pipeline that automatically ana-

lyzes uploaded expense receipts to extract relevant information. This may include storing that 

information in semi-structured files in the data lake, or a different target such as DynamoDB or 

a relational database.

For example, the following screenshot shows a portion of a hotel receipt bill contained in a PDF file:
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Figure 13.2: Extract from a PDF document of a hotel invoice

Most traditional analytics tools would not be able to process this data contained within a PDF 

file, but when this file is sent to the Amazon Textract service, a semi-structured file can be created 

containing relevant data. For example, the ML model powering Textract can extract information 

from the preceding table as a CSV file that can be further analyzed in a data engineering pipeline.

The following table shows the CSV file when opened in a spreadsheet application:

Figure 13.3: CSV formatted data extracted from a PDF invoice

Textract has been designed to work well with various types of documents, including documents 

that contain handwritten notes. For example, a medical intake form at a doctor’s office, where 

patients fill out the form by hand, can be sent to Textract to extract data from the form for further 

processing.

Textract also has advanced functionality for handling specific types of documents, such as the 

Textract Analyze Lending feature that can automate the extraction of information from loan 

packages, automatically splitting the document package by document type. Textract can also 

automatically detect signatures, extract data from forms and tables, and process identity docu-

ments (such as U.S. passports and drivers licenses). And with a feature called Textract Queries, 

you can enable natural language queries about data extracted from documents. For example, 

you can enable a user to ask questions such as “What is the customer name”, and have Textract 

automatically provide the relevant answer based on the scan of the document. 
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Amazon Comprehend for extracting insights from text
We have looked at how Amazon Transcribe can create electronic text from speech, as well as how 

Amazon Textract can create semi-structured documents from scanned documents and images. 

Now, let’s look at how to extract additional insights from text.

Amazon Comprehend is an AI service that uses advanced ML models to generate additional in-

sights from text documents, such as sentiment, topics, place names, PII information, key phrases, 

dominant language detection, and more. With Comprehend, you can build a near-real-time 

pipeline that passes in 1 to 25 documents in a single API call for analysis, or build a batch pipeline 

that configures Comprehend to analyze all documents in an S3 bucket.

When you call the API or run an asynchronous batch job, you specify the type of comprehension 

that you want in the results. For example, you can have Comprehend analyze text to detect the 

dominant language, entities, key phrases, PII data, sentiment, or topics (each type of compre-

hension has a different API call).

Comprehend can be used for several use cases, such as identifying important entities in lengthy 

legal contracts (such as location, people, and companies), or understanding customer sentiment 

when customers interact with your call center. As a data engineer, you may be tasked with build-

ing a pipeline that uses Amazon Transcribe to convert the audio of recorded customer service 

calls into text, and then run that text through Comprehend to capture insight into customer 

sentiment for each call.

Another use case could be to analyze social media posts to identify which organizations were 

being referenced in a post, and what the sentiment of the review was. For example, we could 

analyze the following fictional post made to a social media platform:

When Amazon Comprehend analyzes this text, it returns the following insights:

1. Entities detected:

• Jack’s café, Organization, 93% confidence

• Westwood, Location, 71% confidence

• Regina, Person, 99% confidence

• last Monday, Date, 94% confidence

”I went to Jack’s Cafe last Monday, and the pancakes were amazing! You should try this 

place, it’s new in downtown Westwood. Our server, Regina, was amazing.”
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2. Sentiment:

• Positive, 99% confidence

As we can see from the previous results, Comprehend can accurately detect entities and senti-

ment. At the end of this chapter, we will go through an exercise with Amazon Comprehend to 

determine customer sentiment from online reviews, which will allow you to get hands-on with 

how Amazon Comprehend works.

Note that there is also a specialty version of Comprehend, called Amazon Comprehend Medi-

cal, that has been designed to extract medical information from electronic text, such as medical 

conditions, medications, treatments, and protected health information. You can also train a 

Comprehend custom entity detection model using your data to recognize specialized entities 

(such as a model trained to recognize different makes and models of cars and motorbikes).

AI for extracting metadata from images and video
In the previous section, we reviewed AI services for processing text – including audio transcribed 

into text (Amazon Transcribe), images and scanned documents converted into text (Amazon 

Textract), and insights drawn out of electronic text (Amazon Comprehend).

In this section, we will change focus and look at how we can extract insights out of videos and 

images using the power of AI.

Amazon Rekognition
Amazon Rekognition uses the power of pretrained ML models to extract metadata from images 

and videos, enabling users to get rich insights from this unstructured content.

With traditional data warehouses and databases, the ability to store unstructured data, such as 

images and videos, was very limited. In addition, until recently, it was difficult to extract rich 

metadata from these unstructured sources, without having humans manually label data. And, 

as you can imagine, this was a very time-consuming and error-prone process.

For organizations that stored a lot of images or videos, they needed to manually build catalogs 

to tag the media appropriately. For example, these organizations would need someone to man-

ually identify celebrities in photos or add labels to an image to tag what was shown in the image.

As ML technologies advanced, these organizations could build and train ML models to automat-

ically tag images (or stills from a video), but this still required deep expertise and an extensive 

labeled catalog for training the ML model.
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With new AI services, such as Amazon Rekognition, vendors do the hard work of building and 

training the ML models, and users can then use a simple API to automatically extract metadata 

from images. And, with Amazon Rekognition Video, users can also gain these insights from video 

files. When passed a video file for analysis, the results that are returned include a timestamp of 

where the object was detected, enabling an index of identified objects to be created.

For example, the following photo could be sent to the Amazon Rekognition service to automat-

ically identify elements in the photo:

Figure 13.4: Photo of a dog and a Jeep in the snow

When passed to Amazon Rekognition, the service can automatically identify objects in the photo. 

The following is a partial list of the identified objects (with the confidence level of the ML model 

shown in brackets):

• Outdoors (99.8%)

• Dog (98.3%)

• Winter (96.8%)

• Car (96.6%)

• Snow (90.7%)

• Wheel (87.8%)
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A data engineer could use this type of service to build a data pipeline that ingests images and/or 

video, and then calls the Amazon Rekognition service for each file, building an index of objects 

in each file, and storing that in DynamoDB, for example.

Some of the features included in Amazon Rekognition include label detection (such as objects, 

activities and landmarks), dominant color detection, facial recognition (including facial com-

parison and search), celebrity detection, unsafe images (used for content moderation), text in 

images, and more. 

The AI services we have discussed so far are used to extract data from unstructured files such as 

PDF scans and image and video files. Now, let’s take a look at AWS AI services that can be used 

to make predictions based on semi-structured data.

AI for ML-powered forecasts
A common business need is to forecast future values, whether these be the number of staff an 

entertainment venue is likely to need next month, or how much revenue an organization is likely 

to receive on a specific product line over the next 12 months.

For many years, organizations would use formulas to forecast future values, based on historical 

data that they had built up. However, these formulas often did not take into account seasonal 

trends and other third-party factors that could significantly influence the actual values that are 

realized.

Modern forecasting tools, such as Amazon Forecast, can provide significantly more accurate 

forecasts by using the power of ML.

Amazon Forecast
Amazon Forecast is a powerful AI service for predicting future time series data, based on com-

plex relationships between multiple datasets. Using Forecast, a developer can train and build a 

customized forecast ML model, without needing ML expertise.

To train the custom model, a user would provide historical data for the attribute that they want 

to predict (for example, daily sales at each store over the past 12 months). In addition, they can 

include related datasets, such as a dataset listing the total number of daily visitors to each store.

If the primary dataset also includes geolocation data (identifying, for example, the location of 

the store) and timezone data, Amazon Forecast can automatically use weather information to 

help further improve prediction accuracy. 
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For example, the model can take into account how the weather has affected sales in the past, and 

use the latest 14-day weather forecast to optimize predictions for the upcoming period based on 

the weather forecast.

A data engineer may be involved in building a pipeline that uses Amazon Forecast. The following 

could be some of the steps in a pipeline that the data engineer architects and implements:

1. Use an AWS Glue job to create an hourly aggregation of sales for each store, storing the 

results in Amazon S3.

2. Use AWS Step Functions to call Lambda functions that clean up previous predictions, 

and generate new predictions based on the latest data. Use a Lambda function to create 

an export job to export the newly generated predictions to Amazon S3.

3. Use a Redshift COPY job to load the newly generated predictions from Amazon S3 to 

Amazon Redshift for further analysis.

AI for fraud detection and personalization
The AI services we discussed previously are often incorporated into data engineering pipelines 

as these services are useful for advanced analytics (such as extracting metadata from images, 

text transcripts from audio files, or making forecasts). However, other AI services are often used 

as a part of transactional systems, rather than data engineering pipelines, which we will briefly 

look at in this section.

Amazon Fraud Detector
Amazon Fraud Detector is an AI service that helps organizations detect potentially fraudulent 

transactions and fake account registrations.

Fraud Detector enables an organization to upload its historical data regarding fraudulent trans-

actions. It then adds this to a model trained with fraud data from Amazon and AWS to optimize 

fraud detection.

Using Fraud Detector, an organization can build fraud prediction into their checkout process, 

getting a prediction within milliseconds as part of the checkout process.

Refer to the AWS blog post titled Automating your Amazon Forecast workflow with 

Lambda, Step Functions, and CloudWatch Events rule (https://aws.amazon.com/
blogs/machine-learning/automating-your-amazon-forecast-workflow- 

with-lambda-step-functions-and-cloudwatch-events-rule/) for more details 

on building a pipeline that incorporates Amazon Forecast.

https://aws.amazon.com/blogs/machine-learning/automating-your-amazon-forecast-workflow-with-lambda-step-functions-and-cloudwatch-events-rule/
https://aws.amazon.com/blogs/machine-learning/automating-your-amazon-forecast-workflow-with-lambda-step-functions-and-cloudwatch-events-rule/
https://aws.amazon.com/blogs/machine-learning/automating-your-amazon-forecast-workflow-with-lambda-step-functions-and-cloudwatch-events-rule/
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Amazon Personalize
Amazon Personalize is an AI service that helps organizations provide personalized recommenda-

tions to their customers. Using Personalize, developers can easily integrate personalized product 

recommendations, marketing initiatives, and other ML-powered personal recommendations into 

existing customer-facing systems.

With Personalize, developers can design systems that capture live events from users (such as data 

extracted from a website click-stream) and combine this with historical user profile information 

to recommend the most relevant items for a user. This can be used to recommend other products 

a customer may be interested in, or the next movie or TV show a customer may like to watch.

Before we get to the hands-on section of this lab, let’s have a look at how you can build generative 

AI solutions (such as those made popular with ChatGPT and Bard) on AWS. 

Building generative AI solutions on AWS
In November 2022, a company called OpenAI launched ChatGPT, a chatbot built on a new type of  

ML technology. This very quickly went viral and became a world-wide sensation, as people were 

amazed at the ability of this new chatbot to have conversations on just about any topic. OpenAI 

explained the abilities of this new chatbot as follows:

Using AWS services, it is possible for anyone to create new solutions or services that take advantage 

of the same type of technology that powers ChatGPT. But before we get into the AWS services 

that can be used for generative AI, let’s have a brief look at the details of the technology behind 

these new machine learning services. 

Understanding the foundations of generative AI technology
The technology behind ChatGPT is a model known as Generative Pretrained Transformer (GPT), 

which is based on the Transformer architecture, a type of neural network designed for processing 

sequential data, such as text. This technology is an example of a LLM, which is designed to both 

understand, and generate, conversational text in natural language. 

We’ve trained a model called ChapGPT which interacts in a conversational way. 

The dialogue format makes it possible for ChaptGPT to answer follow-up questions, 

admit its mistakes, challenge incorrect premises, and reject inappropriate requests.
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A foundational model is a model, such as ChatGPT, that can be used as a foundation for building 

more specialized models and applications. Beyond ChatGPT, there are many other companies and 

organizations that have created foundational models (such as Jurassic-2 from AI21labs, Claude 

from Anthopic, and Bard from Google) that can be used to build advanced ML applications. These 

models have been trained on a massive quantity of data (with many being trained on all publicly 

available internet sites), enabling them to respond to a wide range of queries and to handle many 

different tasks. Some models, such as ChatGPT, are primarily used for text based interactions, while 

others, such as DALL-E, are orientated for visual based tasks (such as generating new images). 

Text-based models can be used for use-cases such as effectively summarizing a large amount of 

text, answering questions on just about any topic, translating between languages, or generating 

content (such as marketing copy, stories, or even poems and songs). Image-based models can 

be used for generating images (creating realistic images based on whatever prompt is provided), 

detecting objects within an image, or modifying an existing image (such as changing the style of 

an image, or changing the background). 

Both text-based and image-based solutions that use this new ML technology can be built on AWS, 

as we look at in the following sections.

Building on foundational models using Amazon SageMaker 
JumpStart
Amazon SageMaker JumpStart (which we covered earlier in this chapter) includes options that 

can accelerate the process of building new solutions that harness the power of LLMs, as well 

as large-scale image models. Using JumpStart, you can use either publicly available models, or 

proprietary foundational models, to build new solutions.

When building a custom solution using SageMaker and foundational models, any data you use 

to train the model, as well as prompts you provide when using the model, are kept private. This 

ensures that any data that may be confidential to your organization is not exposed to a service 

provider, where they may potentially be able to incorporate the data you provided in the training 

of future versions of their model.

SageMaker JumpStart enables users to easily build solutions using state-of-the-art foundation 

models for a variety of use cases, such as code generation, summarization, content writing, image 

generation, and much more. With SageMaker JumpStart, AWS provides and maintains founda-

tion models that can be integrated into your machine learning lifecycle using popular publicly 

available models (such as HuggingFace, Stable Diffusion, and more) as well as proprietary models 

that you can subscribe to (such as models from AI21 Labs, Cohere, and LightOn). 
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For more information on selecting an appropriate model for your use case, see the AWS documen-

tation titled Choose a foundation model at https://docs.aws.amazon.com/sagemaker/latest/

dg/jumpstart-foundation-models-choose.html.

However, if your use case would benefit from a pre-built solution that is accessible via API, instead 

of building with SageMaker JumpStart, then keep reading as we explore the Amazon Bedrock 

service.

Building on foundational models using Amazon Bedrock
In September 2023, AWS launched a new service for building generative AI on AWS called Am-

azon Bedrock. This service makes FMs from multiple sources available via an API, providing an 

easy way for customers to build and scale generative AI-based applications. Bedrock includes 

FMs from leading AI companies like AI21 Labs, Anthropic, Cohere, Meta, Stability AI, and Amazon.

Amazon Bedrock provides a serverless environment, meaning that users do not need to manage any 

infrastructure. With Bedrock, customers can privately customize (or fine-tune) popular FMs with 

their own data, and then easily integrate and deploy these models into their existing applications. 

Along with the announcement of Amazon Bedrock, Amazon also announced the launch of Am-

azon Titan Embeddings, an LLM that translates text into a numerical representation, which can 

be used in ML applications for personalization and search. In addition, Amazon announced the 

preview of LLMs for text use cases, including Amazon Titan Text Express (offering a balance of 

price and performance), and Amazon Titan Text Lite (offering an affordable and compact model, 

ideal for basic tasks and fine-tuning). 

Common use cases for LLMs
LLMs by design are very versatile, meaning that this technology can be applied to many different 

potential use cases. For example, you could create a chatbot application that makes use of LLM 

technology and acts like an unhappy customer. You could then use this as part of the training for 

your call center staff, to train them on dealing with unhappy customers and evaluate how well 

they handle the “customer.” 

You could also build a Q&A chatbot that is connected to some of your internal datasets (such as 

FAQ documents), enabling users to ask questions using natural language and to get answers that 

come from your official corporate documents. 

https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-choose.html
https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-choose.html
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There are many other common use cases, as well as many use cases that are yet to be discovered. 

To review some of the common use cases and understand how you can use Amazon Bedrock 

for these use cases, see the Amazon Bedrock workshop at https://github.com/aws-samples/

amazon-bedrock-workshop. 

Having learned more about AWS services for AI and ML, let’s now get hands-on with one of the 

pretrained AI services we discussed earlier in this chapter, Amazon Comprehend. 

Hands-on – reviewing reviews with Amazon 
Comprehend
Imagine that you work for a large hotel chain and have been tasked with developing a process for 

identifying negative reviews that have been posted on your website. This will help the customer 

service teams follow up with the customer.

If your company was getting hundreds of reviews every day, it would be time-consuming to have 

someone read the entire review every time a new review was posted. Luckily, you have recently 

heard about Amazon Comprehend, so you decide to develop a small Proof of Concept (PoC) test 

to see whether Amazon Comprehend can help.

If your PoC is successful, you will want to have a decoupled process that receives reviews once 

they have been posted, calls Amazon Comprehend to determine the sentiment of the review, and 

then takes a follow-up action if the review is negative or mixed. Therefore, you decide to build 

your PoC in the same way, using Amazon Simple Queue Service (SQS) to receive reviews and 

have this trigger a Lambda function to perform analysis with Comprehend.

Setting up a new Amazon SQS message queue
Create a new Amazon SQS message queue for receiving reviews by following these steps:

1. Log in to AWS Management Console and navigate to the Amazon SQS service at https://

console.aws.amazon.com/sqs/v2/. Make sure you are in the same region you have been 

using for the other hands-on activities in this book. 

2. Click on Create queue.

https://github.com/aws-samples/amazon-bedrock-workshop
https://github.com/aws-samples/amazon-bedrock-workshop
https://console.aws.amazon.com/sqs/v2/
https://console.aws.amazon.com/sqs/v2/
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3. Leave the defaults for the Standard queue as-is and fill in the Name field for your queue 

(such as website-reviews-queue):

Figure 13.5: Creating a new Amazon SQS message queue

4. Leave all other options as their default values and click on Create queue at the bottom 

of the page.

Now that our queue has been created, we want to create a Lambda function that will read items 

from the queue and submit the website review text to Amazon Comprehend for analysis.

Creating a Lambda function for calling Amazon Comprehend
The following steps will create a new Lambda function to call Amazon Comprehend to analyze 

the text that’s passed in from the SQS queue:

1. In the Amazon Management Console, navigate to the AWS Lambda service at http://

console.aws.amazon.com/lambda/home. 

2. Click on Create function.

3. Select the option to Author from scratch.

4. Provide a Function name value (such as website-reviews-analysis-function) and 

select the most recent version of Python for Runtime.

5. Expand the Change default execution role section, and for Execution role, select Create 

a new role from AWS policy templates.

http://console.aws.amazon.com/lambda/home
http://console.aws.amazon.com/lambda/home
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6. Provide a Role name value (such as website-reviews-analysis-role).

7. For Policy templates, search for SQS and add Amazon SQS poller permissions.

8. Leave everything else as the defaults and click on Create function.

Having created our function, we can add our custom code, which will receive the SQS 

message, extract the review text from the message, and then send it to Amazon Compre-

hend for sentiment and entity analysis.

9. Scroll down a little, and replace the lambda_function code, in the Code source section, 

with the following block of code:

import boto3

import json

comprehend = boto3.client(service_name='comprehend', 

                region_name='us-east-2')

def lambda_handler(event, context):

    for record in event['Records']:

        payload = record["body"]

        print(str(payload))

10. In this preceding block of code, we imported the required libraries (boto3, and json) and 

initialized the Comprehend API, which is part of boto3. Make sure that you modify the 

preceding Comprehend API initialization code to reflect the region you are using for these 

exercises (in the example above, we use us-east-2, which is the Ohio region). Then, we 

defined our Lambda function and read in the records that we received from Amazon SQS. 

Finally, we loaded body of rescord into a variable called payload.

Continue your Lambda function with the following block of code:

        print('Calling DetectSentiment')

        response = comprehend.detect_sentiment(Text=payload,

                    LanguageCode='en')

        sentiment = response['Sentiment']

        sentiment_score = response['SentimentScore']

        print(f'SENTIMENT: {sentiment}')

        print(f'SENTIMENT SCORE: {sentiment_score}')
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In this preceding block of code, we called the Comprehend API for sentiment detection, 

passed in the review text (payload), and specified that the text is in English. In the response 

we receive from Comprehend, we extracted the sentiment property (positive, mixed, or 

negative), as well as the SentimentScore property.

11. Now, let’s look at our last block of code:

        print('Calling DetectEntities')

        response = comprehend.detect_entities(Text=payload,

                    LanguageCode='en')

        #print(response['Entities'])

        for entity in response['Entities']: 

            entity_text = entity['Text']

            entity_type = entity['Type']

And finally, to correctly print over two lines, we need the following code:

            print(

                f'ENTITY: {entity_text}, '

                f'ENTITY TYPE: {entity_type}'

                )

    return 

In this final part of our code, we called the Comprehend API for entity detection, again 

passing in the same review text (payload). Multiple entities may be detected in the text, 

so we looped through the response and printed out some information about each entity.

12. Then, we returned without any error, which indicates success, which means the message 

will be deleted from the SQS message queue. Note that for a production implementation 

of this code, you would want to add error-catching code to raise an exception if there were 

any issues when calling the Comprehend API.

13. Click Deploy in the Lambda console to deploy your code.

Now, we just need to add permissions to our Lambda function to access the Comprehend API and 

add our function as a trigger for our SQS queue. Then, we can test it out.
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Adding Comprehend permissions for our IAM role
When we created our Lambda function, we were able to select from a preset list of common per-

missions to add permission for our Lambda function to poll an SQS message queue. However, our 

function also needs to call the Comprehend API, so let’s add permission for that as well:

1. In the AWS Lambda console, with your website reviews analysis function open, click on 

the Configuration tab along the top, and then the Permissions tab on the left.

2. The name of the role you specified when creating the Lambda function will be shown 

as a link. Click on Role name (such as website-reviews-analysis-role) to open the IAM 

console so that we can edit the permissions, as shown below. 

Figure 13.6: Lambda Permissions > Configuration tab > Execution role

3. In the IAM console, click on the Add permissions drop-down, and then click Attach 

policies.

4. Search for a policy called ComprehendReadOnly, which has sufficient permissions to 

enable us to call the Comprehend API from our Lambda function.

5. Select the checkbox for ComprehendReadOnly, and then click on Add permissions.
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Figure 13.7: Finding and selecting the required Comprehend permissions in IAM

We are just about ready to test our function. Our last step is to link our SQS queue and our Lambda 

function.

Adding a Lambda function as a trigger for our SQS message 
queue
With the following steps, we’ll configure our Lambda function to be able to pick up new messages 

that are added to our SQS message queue for processing:

1. Navigate back to the Amazon SQS message queue console at https://console.aws.

amazon.com/sqs/v2/.

2. Click on the name of the SQS queue you previously created (such as website-re-

views-queue).

3. Click on the Lambda triggers tab, and then click Configure Lambda function trigger.

4. Make sure that Region is set to the region you have been using for the exercises in this 

chapter, and then select your Lambda function from the drop-down list (such as website-

reviews-analysis-function). 

5. Click Save to link your SQS queue and Lambda function.

https://console.aws.amazon.com/sqs/v2/
https://console.aws.amazon.com/sqs/v2/
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And with that, we are now ready to test out our solution and see how Amazon Comprehend 

performs.

Testing the solution with Amazon Comprehend
Using the following steps, test the solution and get Amazon Comprehend to analyze the text you 

have provided for both sentiment and entity detection:

1. Ensure that you are still on the Amazon SQS console and that your SQS queue is open.

2. At the top right, click on Send and receive messages:

Figure 13.8: Amazon SQS queue detail view

We can now send a message directly to our SQS queue, which will trigger our Lambda 

function to process the message and send it to Amazon Comprehend. When moved to 

production, we would build integration into our website to automatically send all new 

reviews to our Amazon SQS message queue as the reviews are posted.

3. Paste the following text (or your own, similar text) into the Message Body section of Send 

and receive messages:

“I recently stayed at the Kensington Hotel in downtown Cape Town and was very impressed. The 

hotel is beautiful, the service from the staff is amazing, and the sea views cannot be beaten. If 

you have the time, stop by Elizabeth’s Kitchen, a coffee shop not far from the hotel, to get a coffee 

and try some of their delicious cakes and baked goods.”
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4. Then, click on the Send message option at the top right.

5. To view the results of the Comprehend analysis, we can review the output of our Lambda 

function in CloudWatch Logs. If it’s not already open in a separate browser tab, open a 

new browser tab and navigate back to your Lambda function. Click on the Monitor tab, 

and then click View CloudWatch logs. This will open the CloudWatch console in a new 

browser tab.

6. The CloudWatch console should have opened at the log group for your Lambda function 

(for example, the log group named /aws/lambda/website-reviews-analysis-functions). 

Click on the latest log stream to open the log, which should look similar to the following 

screenshot.

Figure 13.9: Amazon CloudWatch logs for our Lambda function

In the CloudWatch logs, you can see the output of our Lambda function. This includes 

the text that was analyzed, the sentiment (POSITIVE), the sentiment score, as well as the 

three entities Comprehend detected in our text (the hotel and coffee shop names, and 

the city location).
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7. Go back to your browser tab for the Amazon SQS console and click Clear content and then 

provide a negative review for the message body. You can either write your own fictional 

negative review or copy and paste a negative review that you find via Google. Send the 

message via SQS and review the analysis results in CloudWatch to see how Comprehend 

detects the negative sentiment, and see which other entities Comprehend can detect.

After testing and validating that Amazon Comprehend can reliably detect sentiment from pub-

lished reviews, you may decide to move forward with implementing this solution in production. 

If you do decide to do this, you could use Amazon Step Functions to build a workflow that runs a 

Lambda function to do the sentiment analysis. Then, depending on the results (positive, negative, 

neutral, or mixed), the Step Function state machine could run different Lambda functions based 

on the next steps (such as sending a negative review to customer service to follow up with the 

customer or sending a mixed review to a manager to decide on the next steps).

With this hands-on exercise, you got to experiment with how Amazon Comprehend can detect 

both sentiment and entitles in written text. If you have time, you can explore the functionality 

of other Amazon AI services directly in the console. This includes Amazon Rekognition, Amazon 

Transcribe, Amazon Textract, and Amazon Translate.

Summary
In this chapter, you learned more about the broad range of AWS ML and AI services that AWS 

provides, and had the opportunity to get hands-on with Amazon Comprehend, an AI service for 

extracting insights from written text.

We discussed how ML and AI services can apply to a broad range of use cases, both specialized 

(such as detecting cancer early) and general (business forecasting or personalization). 

We examined different AWS services related to ML and AI. We looked at how different Amazon 

SageMaker capabilities can be used to prepare data for ML, build models, train and fine-tune 

models, and deploy and manage models. SageMaker makes building custom ML models much 

more accessible to developers without existing expertise in ML.

We then looked at a range of AWS AI services that provide prebuilt and trained models for com-

mon use cases. We looked at services for transcribing text from audio files (Amazon Transcribe), 

for extracting text from forms and handwritten documents (Amazon Textract), for recognizing 

images (Amazon Rekognition), and for extracting insights from text (Amazon Comprehend). We 

also briefly discussed other business-focused AI services, such as Amazon Forecast and Amazon 

Personalize.
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Finally, we had a brief look at how you can build generative AI solutions based on Foundation 

Models, using either Amazon SageMaker JumpStart, or the Amazon Bedrock service (a new service 

that AWS has announced, but not yet released as of the time of writing).  

We’re near the end of a journey that has had us look, at a high level, at several tasks, activities, and 

services that are part of the life of a data engineer. In the final part of this book, we will bring a lot 

of the previous concepts together and look at how you can build a modern data platform on AWS. 

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd




14
Building Transactional Data 
Lakes

In the last few years, new technologies have emerged that have significantly enhanced the capa-

bilities of traditional data lakes, enabling them to operate similarly to a data warehouse. These 

new technologies provide all the benefits of data lakes (such as low-cost object storage, and the 

ability to use serverless data processing services) while also making it much easier to update data 

in the data lake (amongst other benefits). 

Traditional data lakes were built on the Apache Hive technology stack, which enables you to store 

data in various file formats (such as CSV, JSON, Parquet, and Avro). Hive enabled many tens of 

thousands of data lakes to be built on object storage, but over the years the limitations of Hive 

became more clear, as we will discuss in this chapter. 

To overcome these limitations, a number of new table formats have been created by a number 

of different companies and open-source organizations. Keep reading to learn more about how 

these new table formats enable you to build a transactional data lake. The topics that we will 

cover in this chapter include:

• What does it mean for a data lake to be transactional?

• Deep dive into Delta Lake, Apache Hudi, and Apache Iceberg

• AWS service integrations for building transactional data lakes

• Hands-on – Working with Apache Iceberg tables in AWS

Before we get started, review the following Technical requirements section, which lists the prereq-

uisites for performing the hands-on activity at the end of this chapter.
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Technical requirements
In the last section of this chapter, we will go through a hands-on exercise that uses Amazon Glue 

to read data, and write the data out using the Apache Iceberg table format. 

As with the other hands-on activities in this book, if you have access to an administrator user in 

your AWS account, you should have the permissions needed to complete these activities. If not, 

you will need to ensure that your user is granted access to create and run AWS Glue jobs, and to 

read and write data from Amazon S3. 

You can find the SQL statements that we run in the hands-on activity section of this chapter in the 

GitHub repository for this book, using the following link: https://github.com/PacktPublishing/

Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter14.

What does it mean for a data lake to be transactional?
Transactional data lakes is a common way to refer to the abilities enabled by these new table 

formats, but what does that mean? 

Let’s start by looking at the definition of a database transaction in general, from Wikipedia 

(https://en.wikipedia.org/wiki/Database_transaction):

What this means is that you have the ability to update a database in a way that may potentially 

make multiple updates as part of the transaction, and you have the guarantee that all the individ-

ual updates will work and be applied consistently, or the whole transaction will fail. That means 

that if there are five updates as part of the transaction, and the third update fails, then the two 

previous updates that had been applied will be rolled back, and the last two updates will not be 

applied. Either everything in the transaction succeeds, or the database is returned to the state 

that it was in prior to the transaction being attempted. 

This has been standard functionality in traditional databases and data warehouses pretty much 

since they were invented, but it was not easy to implement that same functionality when work-

ing with Hive-based data lakes (although Spark did have some functionality that attempted 

to emulate this). But there were also other limitations in Hive that were challenges for anyone 

building a data lake. 

”A database transaction symbolizes a unit of work, performed within a database 

management system (or similar system) against a database, that is treated in a 

coherent and reliable way independent of other transactions.” 

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter14
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter14
https://en.wikipedia.org/wiki/Database_transaction
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Limitations of Hive-based data lakes
Being unable to easily apply multiple updates in a transaction consistently was just one of the 

limitations of Hive that made data processing more complex, with another big limitation being the 

inability to update rows in a table without having to rewrite the entire table (or at least a partition 

of the table). Most data lakes are built on object storage, where data in the file (object) cannot be 

modified. If you needed to update a row (such as deleting a record), you would read the table, or 

at least the relevant partition of the table, then remove the row, and rewrite the table or partition.

Let’s say you have a data lake that contains a customer table, partitioned by state, so that your 

files in the storage layer are laid out as follows:

/datalake/customer/state=new_york/parquetfile.1

/datalake/customer/state=new_york/parquetfile.2

/datalake/customer/state=new_york/parquetfile.3

/datalake/customer/state=new_jersey/parquetfile.1

/datalake/customer/state=new_jersey/parquetfile.2

/datalake/customer/state=new_jersey/parquetfile.3

If you have a customer from New York that requests that you delete all records that contain their 

information, and you want to honor that request, you would effectively need to do the following 

in your Spark code:

1. Read the records from the customer table for all customers in New York (such as select 

* from customers where state = "new_york") into a temporary Spark dataframe

2. Create a new dataframe that excludes the customer information of the customer that you 

want to remove from your data lake

3. Write this new dataframe (that now excludes the specific customer) back to the new_york 

partition, overwriting all the existing files in that partition

However, for a large organization, it is possible that they may have many millions of customers 

in New York State (so they may have 300 Parquet files in the New York partition, and not just the 

3 files shown in the above example). And with Hive, there is no built-in mechanism to find out 

which physical file in the data lake contains the record for a specific customer. As a result, you end 

up using a significant amount of compute power, and time, in order to just delete a single record 

from the data lake, as you need to replace all the files in the relevant partition. 
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In addition, if the update job is running, at some point it will delete the existing files from the 

partition, and then start writing out the new 300 files. If during this process, someone queries 

the data lake to list customers in New York, they will get inaccurate results, as only a subset of the 

300 files may exist at the time they do the query. Even worse, if two jobs both attempt to update 

the table at the same time, there is a chance that both jobs fail at some point, and the underlying 

table, or partition, is left in an inconsistent state. 

For a long time, customers that have built data lakes using Hive have struggled with these issues 

and had to invent complicated processes to try and ensure that their data stays consistent, and to 

ensure adequate performance. Three companies that built solutions to overcome some of these 

challenges ended up making their solutions available to the wider community.

Uber created a table format called Hudi, which was adopted as a top level project by Apache in 

2020 and became Apache Hudi. 

Netflix created a table format called Iceberg, and this was later donated to the Apache foundation 

and became a top-level Apache project in 2021.

Databricks (a company created by the original developers of Spark) created a table format called 

Delta Lake. They released an open-source version as a sub-project of the Linux Foundation, but 

also have a commercial version that is part of their Databricks Lakehouse Platform.  

Each of these new table formats provide similar, although not identical, functionality, and we 

will examine each of these table formats in more detail in later sections of this chapter. First, we 

take a look at some of the specific benefits provided by these new table formats. 

High-level benefits of open table formats
Each of the open table formats we will be examining provide the following functionality, although 

the way they implement this functionality may be different. 

ACID transactions
The common properties that are enabled in transactions are often referred to by the acronym 

ACID (Atomicity, Consistency, Isolation, Durability):

• Atomicity refers to the fact that every update contained in a transaction is treated as a 

single unit. If any one of the updates fail, then the transaction as a whole fails, and any 

updates that had been applied are rolled back.
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• Consistency refers to ensuring that reads and writes are always consistent. For example, 

if a transaction is running and performing a number of updates, someone querying the 

data must get a consistent result (i.e., not get a result that contains part of the updates 

only). This means any queries running against a table where updates are happening at 

the same time must either get results as the table was before the update started, or must 

get the results of the table as the table is after the update has been successfully completed 

and committed.  

• Isolation refers to ensuring that transactions are isolated from each other. This means 

that if two updates are run at the same time, they must not interfere with each other. One 

of the transactions must first complete before the second transaction is run. 

• Durability refers to ensuring that once an update has been applied, that it is permanent 

(well, at least until another update is applied to change that data). Once a transaction has 

been committed, all future reads must reflect the new state of the data. 

Record level updates
Each of these new open table formats make it much easier and more performant to do updates 

(inserts, deletes, or changes) to a single row of a table. These open table formats handle the un-

derlying complexities of working at the record level with very large datasets in a data lake. With 

some of the table formats, you are able to configure whether you want write or read performance 

to be optimized. 

Schema evolution
Schema evolution refers to the ability to change the schema of the table without breaking the 

ability to query the table. This includes the ability to make changes such as adding columns, de-

leting columns, changing the column name, changing the order of columns, and even changing 

the type of a column (for example, changing an integer to a long data type). 

Time travel
Time travel queries provide the ability to query a table as it was at some point in the past. When-

ever an update is made to a table, the open table format effectively creates a new version of the 

table. This enables you to run a query and specify a timestamp, and the query result will be as 

the data was at the timestamp specified. Alternatively, you can choose to roll back a table to the 

state that it was in at a prior point in time. 
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An example of how this can be used is to recover from an incorrect change to a table. For example, 

if you have a new data pipeline job that performs some transformation, but you discover after it 

runs that there was some logic error with the job, you can return the table to the version that it 

was at prior to the job running. Ideally, though, you should have strong change control and testing 

processes, so this should never happen in a production environment. However, you can use this 

feature to roll back a table to a previous version in your development or testing environment if 

you discover a code error during development or testing.

While this is very useful, it does mean that the physical files stored in the data lake end up being 

larger than the actual dataset (since you have all versions of the data). It also means that if you 

delete data for governance reasons (such as deleting a customer record because they requested that 

you remove all their information), it may be possible to still access the data through time travel.

Therefore, each of the table formats provides a method to delete older versions, or snapshots, of 

a table. 

And even though they are implemented differently, at a high level each of these table formats 

provides the above functionality by managing metadata related to the table, and by managing 

the layout of files in the object storage. Let’s take a high-level look at how this works.

Overview of how open table formats work
For a long time, modern file formats (such as Parquet) have worked by collecting and storing 

metadata related to the data that they store. For example, with Parquet, different types of meta-

data is stored in the file, along with the actual data. This includes metadata about the file (such 

as number of columns and rows in the file) and column metadata (such as the data type stored 

in the column, as well as statistics such as the min and max values for that column). 

Storing this type of metadata in the file enables a process that is reading data from the Parquet 

file to optimize query performance. For example, let’s say we have a table that contains transac-

tion information, and our table has around 20 million rows. The data is stored in Parquet format 

in a data lake, and is spread over 200 Parquet files. When a query runs and wants to report on 

transactions that were over 1,000 in value (stored in a column called amount), the query engine is 

able to use the metadata to avoid having to scan the data in every file. It does this by reading the 

metadata in each file, through which it can immediately identify if this specific file has data that 

needs to be read. If, for example, the metadata indicates that the minimum value for the amount 

column is 2.20 and the maximum value is 780.56, then the data in this file does not need to be 

scanned (as we are only querying for transactions with a value over 1,000). This can significantly 

improve query performance.
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In a similar way, the new table formats we are looking at store metadata about the table, and the 

files that make up the table. Using this information enables them to further optimize performance 

and also overcome some of the limitations of the Hive format, which we discussed previously.

The exact metadata captured and tracked differs between the table formats, but each format has 

a way to track the current state of a table, as well as a history of how the table has evolved. Some 

of the formats also track key statistics for each file that makes up the table. For example, with 

Apache Iceberg, there are Manifest files that store metadata for each file that makes up a table, 

including column-level metrics and stats that can be used to optimize the query. 

In this way, the table metadata will store some of the same data that is stored in a Parquet file, 

such as the min and max values for a column, the number of null values, etc. These details are 

stored for each file that makes up the table, enabling a query planner (an analytic engine that is 

querying the data) to identify the exact path of each file that has data relevant to a specific query, 

without even having to open the file to read the metadata. 

With Hive, the analytic engine would have needed to list all files in an S3 partition, and then open 

each file to read the Parquet metadata, for example. A partition may have had hundreds, or even 

thousands, of files, and listing every file and then opening every file to read the file metadata could 

significantly slow down a query. By maintaining metadata on every file that makes up a table, the 

query engine just needs to read the table format metadata files, and from there it can determine 

exactly which files contain data that it needs to scan to fulfil the query. Reading the metadata 

file to determine which files to query can significantly increase performance over having to list 

all files in a partition, and then individually read the metadata from every file. 

Another item that is common between the table formats is the approaches used to enable updates 

to a file. Again, these may be implemented slightly differently, but at a high level, there are two 

common approaches for updating tables, as we will see in this next section.

Approaches used by table formats for updating tables
There are two common approaches that are currently used by the different open table formats 

for applying updates to a table. All three formats support both the copy-on-write (COW) and 

the merge-on-read (MOR) approaches. 

 Let’s start with a detailed look at the COW approach. 
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COW approach to table updates
With the COW approach to updates and deletes, whenever a record is updated or deleted, a new 

copy of the underlying files that contain that record are created, with the updated data. At the 

same time, the metadata files are updated to reflect that there is a new version, or snapshot, of 

the data. These files contain metadata that points to the updated files so that when a query is 

run, the latest metadata files point to the latest data files. However, the metadata files for earlier 

versions/snapshots of the table still contain the pointers to the original file, with the older data. 

It is this mechanism that enables time travel. 

Using COW does have a performance impact on updating records in a table (or deleting records 

from a table) because each of the underlying affected files need to be recreated with the new 

data. However, it does provide better read performance than the MOR approach (which we will 

discuss shortly). 

Imagine that you have a user that purchases from your online eCommerce store every month for 

a full year, and that you have transaction data partitioned by month. Every month, you end up 

with approximately 300 Parquet files in that month’s partition, and a subset of those files con-

tain transactions for the specific user we mentioned earlier. If at some point you need to delete 

all records related to that user, with the COW approach, there will be a subset of files in every 

partition that will need to be rewritten. Even if just one of the 300 Parquet files in each partition 

needed to be updated, if the average file size was 1 GB, that would still require 12 GB of new data 

files to be written (since COW creates a new version of a file, rather than replacing the existing file). 

COW is ideal for use cases where updates/deletes of records in a table are infrequent, and for 

where you want to optimize write performance, over read performance. 

MOR approach to table updates
With the MOR approach to handling record updates and deletes, affected files are not rewritten 

when data inside those files is updated. Instead, if a record is either deleted or updated, a delete 

tracking metadata file is created to record the information about the deleted/updated record. For 

updated records, the newly updated record is also written to a new file. When a user queries the 

table, the query engine will know to ignore the records listed in the delete file, and will merge 

the original data with the file containing the updated data. 
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With this approach, writes are much faster (since a new version of the underlying Parquet files 

with changes do not need to be written when data is updated); however, reads are slower since 

the query engine needs to merge information from the deleted files and the files containing up-

dated records with the original data whenever that table is queried.

Each of the table formats supports a process that you can run that will merge the updates and 

deletes into new copies of the Parquet files. Therefore with this approach, if you have a write-heavy 

workload you can use MOR tables to enable fast writes, and then in off-peak times you can run 

a process to create newly updated Parquet files to improve read performance. 

Apache Hudi has supported the MOR approach since 2018, while Apache Iceberg introduced 

comprehensive MOR support with v2 of the Iceberg table format. Delta Lake traditionally only 

supported COW, but in a July 2023 blog post on the delta.io website, they announced a new feature 

called Deletion Vectors that provides a MOR approach for Delta Lake tables. 

Let’s now do a deeper dive into each of the open table formats that we are looking at in this 

chapter, starting with Delta Lake. 

Choosing between COW and MOR
As discussed above, there are pros and cons of each approach to updating tables. The following 

table summarizes the differences between the two approaches.

Figure 14.1: Comparison of COW and MOR

Let’s now examine each of the open table formats that we are looking at in this chapter, starting 

with Delta Lake. 
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An overview of Delta Lake, Apache Hudi, and 
Apache Iceberg
The three table formats that we are reviewing in this book all provide similar functionality, as 

outlined above, but they also all have their own unique features and slightly different implemen-

tations. In this section, we are going to do a deep dive into each of the three open table formats. 

Deep dive into Delta Lake
Let’s start by looking at Delta Lake; however, we will not be covering the enhanced capabilities 

available as part of the paid Databricks offering. For example, Delta Live Tables provides ETL 

pipeline functionality, but is not open-sourced, so is not covered here. 

Delta Lake has become a very popular table format, in large part as a result of Databricks having 

a very popular Lakehouse offering that incorporates Delta Lake. Databricks has made all Delta 

Lake API’s open-source, including a number of performance optimization features that they ini-

tially built for their paying customers. Delta Lake also includes advanced features, such as Delta 

Sharing, an open protocol for secure data sharing across different organizations. There are also 

stand-alone readers and writers for Delta Lake, which enables clients written in popular languages 

such as Python, Ruby, and Rust to write data directly to Delta Lake tables without requiring a 

big data engine such as Apache Spark. However, while some of the other table formats support 

multiple file formats, Delta Lake only supports the Apache Parquet file format. 

Delta Lake is built on an open-source standard called Delta Lake transaction log protocol. This 

standard specifies how data transactions should be recorded, and all implementations of Delta 

Lake must follow the Delta Lake transaction log protocol strictly. This is what enables one im-

plementation of Delta Lake to be able to read and update files that were created by a different 

implementation. 

There are various implementations of Delta Lake by open-source providers and commercial 

companies. For example, there is the delta-io implementation (https://github.com/delta-io/

delta/), which is open-source, and there is an implementation by Microsoft called the Microsoft 

Fabric Lakehouse, as well as an implementation by Databricks called Databricks Delta Lake. Each of 

these implementations has its own additional functionality, but they should all be interoperable. 

Advanced features available in Delta Lake
Let’s take a look at some of the advanced features that are available in Delta Lake.

https://github.com/delta-io/delta/
https://github.com/delta-io/delta/
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Delta Lake shallow clones
Some of the advanced functionality included in Delta Lake includes the ability to create a shallow 

clone of an existing table. You can create a shallow clone of any available version of a table, and 

when you make changes to the shallow clone version of the table, the original table is not im-

pacted. Shallow clones reference the underlying files of the source table, but track any changes 

(updates, deletes, and inserts) separately. This means that you can test changes to a table using 

a shallow clone without impacting the original source table.

Use cases for shallow clones include making a clone of a production table, and then doing testing 

on the cloned table (such as changing the schema, or other major changes). Another use case is 

for machine learning state capture, where you create a copy of a table as it was at a specific point 

in time, using a shallow clone. You can then retest or retrain a model using a static version of the 

table. The changes to the shallow clone will have no impact on the original table, and changes 

to the original table do not reflect in the shallow clone. 

Delta Lake Z Ordering
While we won’t go into the details of how Delta Lake Z Ordering works under the hood, let’s 

examine the basic principles of Z Ordering and how this helps improve query speed. 

With Delta Lake, you can run a command to reorganize how the data is stored in files, and you 

can specify that you want to use Z Ordering to sort the data. While standard sorting of files al-

lows you to optimize data sorting by one column, Z Ordering enables you to optimize data by 

multiple columns. 

This is useful if you regularly run queries where you filter the data by a number of different 

columns. When you run the command to sort the data using Z Ordering, you can specify one or 

more columns to sort the data on. The Z Ordering algorithm will store the data in files in such a 

way as to optimize any queries that use those columns for filtering. Note, however, that the more 

columns you specify, the less effective the sorting is overall. 

Therefore, if you mainly run queries where you filter by one specific column, there may not be 

much benefit gained from Z Ordering. However, if you regularly query your data and filter by two 

or three columns, then Z Ordering can be beneficial. 

When you run a command to reorganize your data using Z Ordering, all the underlying Parquet 

files are rewritten with the objective of clustering data for the columns you specify in as few files 

as possible. So if you have 50 files, for example, and you regularly query the data on column1 and 

column2, if you organize by those columns then queries will need to read fewer files in order to 

scan the needed data. 
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For a deeper dive into how Z Ordering works, see the following article from delta.io: https://

delta.io/blog/2023-06-03-delta-lake-z-order/.

Delta Lake Change Data Feed (CDF)
With Delta Lake Change Data Feed, all the inserts, updates, and deletions to a table can be cap-

tured in an audit log. This is functionality that can be enabled at a table level, so you are able to 

decide on which tables you may want to enable this functionality. 

There are two primary use cases for enabling Change Data Feed on a table. The first one is purely 

for a governance and audit perspective, where you want to be able to query all the changes that 

have been made to a table over time. Note, however, that the transaction log generated by this 

functionality does not include information on who made the change, but rather just records the 

changes made to a table. 

The second use case enables you to optimize operations for performing updates on incremental 

downstream tables (such as an aggregation table). For more information on Change Data Feed 

functionality and an example of how this can be used to update downstream tables, see the del-

ta.io blog post at https://delta.io/blog/2023-07-14-delta-lake-change-data-feed-cdf/

Let’s now move on to our next table format, Apache Hudi, and do a deep dive into this table format. 

Deep dive into Apache Hudi
Apache Hudi, originally developed at Uber for their massive data lake, has become a popular 

choice for building transactional data lakes and has broad support in modern analytic tools. Hudi 

is probably the oldest of the open table formats; it was developed at Uber in 2016, and its name 

is as an acronym for Hadoop Updates, Deletes, and Incrementals.

Let’s look at some of the key concepts that make Hudi different to the other open table formats, 

and that will help you better understand how Hudi works under the hood.

Hudi Primary Keys
Hudi has a concept of a primary key, which is made up of a record key and the partition path that 

the record belongs to. Using this key enables Hudi to ensure that there are no duplicate records 

in the data lake (or at least that records are unique within a partition). 

https://delta.io/blog/2023-06-03-delta-lake-z-order/
https://delta.io/blog/2023-06-03-delta-lake-z-order/
https://delta.io/blog/2023-07-14-delta-lake-change-data-feed-cdf/
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Hudi is highly customizable, and this includes the ability to choose from a number of different 

key generators. Here are a few of the built-in key generators:

• SimpleKeyGenerator is used to create a primary key where the record key consists of a 

single field (column) and the partition path is also based on a single field. For example, 

we may specify that the record key is based on the customer_id column, and the partition 

path is based on the state column. 

• ComplexKeyGenerator is used to create a primary key where the record key and the 

partition path consist of one or more fields. 

• NonpartitionedKeyGenerator is used for use cases when you do not need to partition 

your dataset. This effectively is used to set the partition path to be empty. 

In addition to the standard key generators, you also have the ability to write your own key gen-

erator and use that.

File groups
The file layout in object storage for Hudi tables is based on a partition path, and within each 

partition, files are organized into file groups. Each file group contains several file slices, with 

each slice consisting of one or more base data files, which are produced at a certain commit/

compaction event, along with a set of delta log files that record all the inserts/updates/deletes to 

the base file since the file was initially created. 

Note that the delta log files are used for tables that are configured as MOR. When a table is con-

figured as COW, updates are made directly to the base file at the time of writing. 

Compaction
When working with Hudi MOR table types, you need to regularly run a compaction process 

that will update the base Parquet file with all the updates contained in the delta logs, in order to 

optimize read performance. With MOR tables, any updates to a table are contained in an Avro 

formatted delta log file (with Avro providing the best performance for writing out rows of data). 

When you read a table, the base Parquet file is merged with the delta log files in order to return 

the latest state of the table. However, merging the delta log Avro file with the Parquet file does 

add overhead to the query.
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When you run the compaction process, all updates from the delta logs are merged into the Par-

quet file so that reads made directly after the compaction process completes only need to query 

the Parquet file. Of course, as new updates are made to the table, new delta logs are created, and 

therefore you need to run the compaction process on a regular basis. 

Record level index
While each of the open table formats captures metadata about the files and the data they contain 

(such as column min and max values), Hudi is currently the only one that stores record-level 

metadata in an index file. With the record-level index, Hudi is able to immediately identify exactly 

which files contain data for a specific record, and therefore knows exactly which files need to be 

scanned to resolve a query, or which need to be rewritten when a specific record is updated or 

deleted (or which transaction log files needs to be updated in the case of MOR tables). 

The index does this by recording the details of each record key, along with the relevant group/

file ID that contains the data for that record. Again, with Hudi being very configurable, you can 

select from multiple different types of indexes, or even write your own custom index mechanism. 

For a more in-depth understanding of how Hudi indexes work, refer to the following Hudi doc-

umentation: https://hudi.apache.org/docs/indexing.

Let’s now move on to a deep dive into the Apache Iceberg format, after which we’ll have a look 

at the current state of support in AWS services for each of these formats.

Deep dive into Apache Iceberg
Apache Iceberg is the table format that appears to be getting the broadest support across vendors, 

and some industry experts feel it may end up becoming the most popular table format (although 

all three table formats have their benefits and supporters).

Much like the other two formats, Iceberg has its own metadata format to track the data files that 

make up a table and, more specifically, to track table snapshots (the state of a table at a specific 

point in time). 

In the directory for an Iceberg table in S3 (for example, dataeng-curated-zone-gse23/iceberg/

streaming_films) there are two directories. One is the metadata directory, and the other is the 

data directory. All the metadata is, as expected, stored in the metadata directory. Let’s do a deep 

dive into the Apache Iceberg metadata files. 

https://hudi.apache.org/docs/indexing
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Iceberg Metadata file
The top level metadata file in the metadata directory is a file that begins with a sequence number 

(for example, the first file starts with 00000) followed by a Universally Unique Identifier (UUID), 

and that ends with metadata.json. Whenever there is a new commit to the Iceberg table (a com-

mit being an operation that ran against the table and changed it in some way), a new metadata.

json file will be created, with an incrementing sequence number. So after the first update to a 

table, there will be a new file that starts with 00001, followed by a unique UUID, and ending 

again with metadata.json. 

We won’t do a deep dive into everything that is tracked in this file, but the following are some of 

the metadata items stored in this file: 

• The table format version (the current Iceberg version is V2)

• The location of the table as stored in Amazon S3

• The date and time of when the table was last updated (in Unix epoch format)

• The table schema (a list of all columns, with column name, type, and an ID number for 

the column)

• Details about how the table has been partitioned (such as which column the table is 

partitioned on)

• The properties of the table (such as that the files are stored in Parquet format and the S3 

storage path for data)

• The UUID of the current snapshot (every time the table is updated, a new snapshot is 

created)

Statistics for each of the existing snapshots (such as the append or delete operation that was 

applied to the table, the snapshot timestamp, and the total size of the table and number of records 

contained in this snapshot)

For each snapshot, the metadata.json file also has a reference to the relevant metadata list file 

for that snapshot

When a query is run against the table, the query engine first queries the catalog (such as the 

AWS Glue catalog) to find out what the current metadata.json file is. It then reads the current 

metadata.json file and can then determine which manifest list file to query in order to read the 

relevant data. Let’s now look at what is stored in the manifest list file. 
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The manifest list file
The manifest list file is another metadata file created and managed by Iceberg. Whenever an 

update is made to a table, a new snapshot is created, and a new manifest list file is created that 

contains a list of the manifest files that are relevant to this snapshot. Manifest list files are stored 

in Avro format, and the filenames start with a prefix of snap.  

When the table is queried, the query engine can read the relevant manifest list file for the snap-

shot that needs to be queried, and from the manifest list it can read a list of the manifest files 

that are needed to query the data in this snapshot. 

By using a manifest list file that is associated with a specific snapshot, Iceberg is able to read only 

relevant manifest files, and doesn’t need to open and read all manifest files. 

Let’s take a look at the last of the metadata files, the manifest files.

The manifest file
The manifest file tracks detailed metadata about a subset of the data files that make up a table. 

For larger tables, there will be multiple manifest files, which enables the query engine to read 

multiple files simultaneously through parallelism. 

The manifest file contains valuable metadata about the data contained in a data file that the query 

engine can use in query planning to improve efficiency and performance. For example, for each 

data file, the manifest file contains information about which partition the data file stores data 

for, the number of records, the lower and upper bounds of columns, etc. 

Putting it together
Apache Iceberg is able to read the metadata files (the metadata,json file, the metadata list file for 

a snapshot, and then the manifest files for that snapshot) and use this to determine exactly which 

data files need to be read in order to return results for a specific query. For large tables, this can 

significantly speed up query performance by minimizing the number of data files that need to 

be read for a specific query. The following figure illustrates the different metadata and data files:
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Figure 14.2: Apache Iceberg File Structure
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In Figure 14.2, we see the following different levels of metadata and data for an Apache Iceberg table.

At the top of the diagram we have the AWS Glue Data Catalog, which stores the location of the 

latest metadata.json file for a table. When a query engine needs to query a table, it starts by 

querying the Glue Data Catalog for the location of the current metadata.json file. 

In the next level down, we see two metadata.json files, which are written to the S3 metadata 

directory for the table. Every time there is a commit to a table, a new metadata.json file is gener-

ated containing details about the manifest list files for each snapshot. In the example illustrated 

in Figure 14.2, we can see that the latest snapshot (S1) points to a specific metadata list file. Note 

that the metadata.json and metadata list files are stored in the Amazon S3 metadata prefix for 

the table (such as s3://datalake/database_name/table_name/metadata). 

We then see that the metadata.list file for a specific snapshot points to one or more manifest 

files. Multiple snapshot versions may point to the same manifest files. 

Finally, we see the actual data files (multiple formats are supported, but most commonly these 

files are in Parquet format). The data files are stored in the Amazon S3 data prefix for the table 

(such as s3://datalake/database_name/table_name/data). 

By capturing metadata for each snapshot, Iceberg enables time travel – the ability to query data 

as it was at a specific point in time by determining which snapshot was current at that point in 

time and then reading the relevant metadata and data files for that snapshot. 

In the hands-on section of this chapter, we will get hands-on with creating an Apache Iceberg 

formatted table and have a closer look at the metadata files and how they change as we perform 

different operations on the table.

Because Iceberg works on the basis of snapshots, with every commit to the table creating a new 

snapshot, you can end up with a lot of metadata files, as well as delete files that are used to track 

data that has been deleted. Keeping this data is useful for time travel queries (where you query 

the table as it was as a previous point in time), but you generally do not want, or need, to keep 

all data from the point that the table was created. In order to remove some of the old data and 

metadata files that are not needed to query recent data, there are various maintenance tasks that 

can be applied to your Iceberg tables, as we discuss in the next section. 

Maintenance tasks for Iceberg tables
There are two primary operations that can be used to clean up your Iceberg tables: optimizing 

the files that make up the table to improve read performance or deleting old data and metadata 

files that you may no longer need. 
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Let’s take a look at how Amazon Athena implements Iceberg table maintenance.

Amazon Athena provides the OPTIMIZE statement, which can be used to compact the underlying 

data files that make up an Iceberg table. When you run the OPTIMIZE statement against an Ice-

berg table, Athena rewrites the underlying data files into a more optimized layout (this is also 

sometimes referred to as a compaction process). 

One of the ways it does this is by rewriting underlying data files to exclude any records that were 

included in a delete file so that future reads do not need to merge the base data file and the delete 

file to return relevant results. Instead, the query engine can can just read the base file without 

having to merge any records from delete files.  

The other optimization applied by the OPTIMIZE process is to rewrite files into an optimal size. 

Over time, as some smaller commits are applied against a table, you may end up with a significant 

number of small files, which are not efficient to read. By running the OPTIMIZE process, small files 

can be merged into bigger files to increase performance. 

Vacuuming a table
The other table maintenance task supported by Amazon Athena is the VACUUM statement. When 

you run a VACUUM statement against an Iceberg table, Athena removes data and metadata files 

related to old snapshots that are no longer needed. There are various table properties that you 

can set to control how many snapshots to keep, such as vacuum_max_snapshot_age_seconds, 

and vacuum_min_snapshots_to_keep.

Keeping more snapshots enables you to perform time travel to older points in time, but it does 

mean that you use more storage space to store those additional snapshots (and this additional 

space may be a significant amount of space). Therefore, you need to balance how far in the past 

you need to be able to run time-travel queries against how much storage space the old snapshots 

consume, and what the cost implications are. You should also consider any data governance 

requirements when deciding on how much old data to keep versus when data should be deleted.

At the time of writing, the default value for vacuum_max_snapshot_age_seconds was set to be 

5 days, meaning that any snapshots older than 5 days would be deleted. This means that after 

running the VACUUM command using the default table setting, you would not be able to do time 

travel queries on data older than 5 days. 
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If you had a use case that required you to be able to query data for the last month, then you could 

update the value of this setting to be 31 days, and this would ensure that you could always query 

the status of the table as it was at any point in the last 31 days. If you had a table that was updated 

3 times every day, this would mean that 93 snapshots would be kept. 

For the vacuum_min_snapshots_to_keep setting, the default at the time of writing was 1, meaning 

that at least one snapshot would be kept, irrespective of the snapshot age setting. If you set this 

value to 100, and your table had 3 snapshots per day, then even if you had max snapshot age set 

to 31 days (covering 93 snapshots), additional snapshots would still be kept beyond the 31 days 

(at least 33 day’s worth of snapshots would be kept). Effectively, the vacuum_max_snapshot_

age_seconds property is ignored if it would result in keeping fewer snapshots than are set in the 

vacuum_min_snapshots_to_keep setting. 

The previous two tasks are based on the way Amazon Athena implements the clean-up of Apache 

Iceberg tables. However, other tools that support the Apache Iceberg table format may imple-

ment these maintenance tasks differently. For details of the underlying specification for table 

maintenance operations, see the Apache Iceberg specification at https://iceberg.apache.org/

docs/1.2.0/maintenance/.

When it comes to selecting which table format to use out of the three, it seems that Apache Iceberg 

currently has the most momentum, and is gaining broad support across many different analytic 

vendors. However, all three table formats have their own pros and cons, and AWS has a great blog 

post that compares the three different table formats in detail to help you make a decision about 

which table format may be right for your use case. See the blog post titled Choosing an open table 

format for your transactional data lake on AWS at https://aws.amazon.com/blogs/big-data/

choosing-an-open-table-format-for-your-transactional-data-lake-on-aws/. 

Now that we have a better understanding about the three table formats, let’s take a look at the 

current state of support for these new transactional open table formats in different AWS services. 

AWS service integrations for building transactional 
data lakes
AWS services constantly evolve as new services are introduced and existing services have new 

functionality added. This applies to the AWS analytic services as well, with many of these services 

introducing support for these new transactional open table formats over the last few years. In 

this section, we will look at the support for open table formats in various services, as at the time 

of publishing. 

https://iceberg.apache.org/docs/1.2.0/maintenance/
https://iceberg.apache.org/docs/1.2.0/maintenance/
https://aws.amazon.com/blogs/big-data/choosing-an-open-table-format-for-your-transactional-data-lake-on-aws/
https://aws.amazon.com/blogs/big-data/choosing-an-open-table-format-for-your-transactional-data-lake-on-aws/
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However, make sure to review the latest AWS documentation to understand the latest status of 

support across the services. 

Open table format support in AWS Glue
AWS Glue has broad support for open table formats across the different components of the Glue 

service. In this section, we examine open table support in two of the key Glue components.

AWS Glue crawler support
As covered earlier in this book, the AWS Glue crawler is a component of the Glue service that 

can scan a data source (such as Amazon S3) and automatically register table information in the 

Glue Data Catalog. A common use case is when you have data in an Amazon S3 data lake and you 

want to automatically populate the catalog.  

The AWS Glue crawler supports crawling data sources that are in Amazon S3 in Delta Lake, Apache 

Hudi, and Apache Iceberg format. When the crawler examines the objects in S3 that belong to these 

table formats, it is able to recognize the different metadata schemas, and successfully register the 

tables in the Glue Data Catalog, and correctly identify the open table format type. 

For more information about current support for open table formats with the AWS Glue Crawler, 

see the AWS documentation at https://docs.aws.amazon.com/glue/latest/dg/crawler-data-

stores.html.

AWS Glue ETL engine support
In November 2022, AWS announced support for the popular open table formats – Delta Lake, 

Apache Hudi, and Apache Iceberg—in AWS Glue for Apache Spark. With this announcement, AWS 

Glue for Apache Spark introduced native integration with these formats, meaning that users do 

not need to install a separate connector in order to work with these tables. 

For more information on how to use AWS Glue for Apache Spark with these three table formats, 

see the AWS blog post titled Introducing native support for Apache Hudi, Delta Lake, and Apache 

Iceberg on AWS Glue for Apache Spark at https://aws.amazon.com/blogs/big-data/part-1-
getting-started-introducing-native-support-for-apache-hudi-delta-lake-and-apache-

iceberg-on-aws-glue-for-apache-spark/.

Open table support in AWS Lake Formation
AWS Lake Formation, which we discussed previously in this book, is a service that enables you 

to configure fine-grained permissions on data in an Amazon S3 data lake at the database and 

table level (and even down to the row, column, and cell level). 

https://docs.aws.amazon.com/glue/latest/dg/crawler-data-stores.html
https://docs.aws.amazon.com/glue/latest/dg/crawler-data-stores.html
https://aws.amazon.com/blogs/big-data/part-1-getting-started-introducing-native-support-for-apache-hudi-delta-lake-and-apache-iceberg-on-aws-glue-for-apache-spark/
https://aws.amazon.com/blogs/big-data/part-1-getting-started-introducing-native-support-for-apache-hudi-delta-lake-and-apache-iceberg-on-aws-glue-for-apache-spark/
https://aws.amazon.com/blogs/big-data/part-1-getting-started-introducing-native-support-for-apache-hudi-delta-lake-and-apache-iceberg-on-aws-glue-for-apache-spark/
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AWS Lake Formation also enables you to configure sharing of both S3-based tables and Redshift 

tables across AWS accounts. 

The support for Lake Formation fine-grained access controls across different AWS services is com-

plex, with different AWS services supporting different levels of integration with Lake Formation 

permissions. For example, Amazon EMR 6.9.0 and later supports Lake Formation column-level 

permissions on Apache Hudi tables, but at the time of writing does not support Lake Formation 

permissions on Apache Iceberg or Delta Lake tables. And while AWS Glue can read and write 

Iceberg tables that are controlled using IAM permissions, it does not support Iceberg (or the other 

table formats) when they are managed using Lake Formation permissions.

At the time of writing, the best Lake Formation support for open table formats can be found in 

the Amazon Athena and Amazon Redshift Spectrum services. With both of these services you can 

read data from tables that are controlled by Lake Formation permissions for Delta Lake, Apache 

Hudi, and Apache Iceberg formats. 

For more information on the current state of Lake Formation permissions support for open ta-

ble formats across various AWS services, see the AWS Lake Formation documentation titled 

Working with other AWS services at https://docs.aws.amazon.com/lake-formation/latest/dg/

working-with-services.html. Underneath this section of the documentation there is detailed 

information for each of the compatible AWS services, including a discussion about the support 

for transactional table formats for each service. 

Open table support in Amazon EMR
As of Amazon EMR release 6.9.0, all three of the open table formats that we have been discussing 

are now supported in EMR, without having to manually install additional libraries to the cluster. 

However, depending on which packages you are using (such as Spark, Presto, Trino, or Flink) 

some additional configuration may be required, and there may be certain limitations. For details 

on how to configure EMR for each of the table formats, see the following documentation:

• Using Amazon EMR with Delta Lake: https://docs.aws.amazon.com/emr/latest/

ReleaseGuide/emr-delta.html

• Using Amazon EMR with Apache Hive: https://docs.aws.amazon.com/emr/latest/

ReleaseGuide/emr-hudi.html

• Using Amazon EMR with Apache Iceberg: https://docs.aws.amazon.com/emr/latest/
ReleaseGuide/emr-iceberg.html

https://docs.aws.amazon.com/lake-formation/latest/dg/working-with-services.html
https://docs.aws.amazon.com/lake-formation/latest/dg/working-with-services.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-delta.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-delta.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hudi.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hudi.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-iceberg.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-iceberg.html
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Note that the support in Amazon EMR Serverless is slightly different, and requires a different 

configuration in certain cases. However, all three table formats can be used with Amazon EMR 

Serverless. See the Tutorials section of the EMR Serverless documentation for information on 

the required configuration: https://docs.aws.amazon.com/emr/latest/EMR-Serverless-

UserGuide/tutorials.html.

For a comprehensive guide to using Amazon Iceberg on Amazon EMR, see the AWS blog post titled 

Build a high-performance, ACID compliant, evolving data lake using Apache Iceberg on Amazon EMR 

at https://aws.amazon.com/blogs/big-data/build-a-high-performance-acid-compliant-

evolving-data-lake-using-apache-iceberg-on-amazon-emr/.

Open table support in Amazon Redshift 
Amazon Redshift Spectrum enables you to run queries against data in Amazon S3 and, optionally, 

also join that data with other data that has been loaded into your Redshift cluster. We discussed 

this earlier in the book, when we used an example of loading the most recent 12 months of fre-

quently queried data into the Redshift cluster for optimal performance, and then being able to 

join that with 5 years of historical data that is in Amazon S3. Most queries would be querying 

recent data, so for the smaller percentage of queries that need to query the historical data, you 

can tolerate the slightly slower query performance of Redshift Spectrum.

In September 2020, AWS announced support for reading both Apache Hudi and Delta Lake for-

matted tables in an S3 data lake using Amazon Redshift Spectrum. However, for Apache Hudi, 

at the time of writing, only COW-formatted Hudi tables were supported (Hudi MOR tables are 

not supported). 

In July 2023, AWS announced preview support for querying Apache Iceberg formatted tables via 

Redshift Spectrum. 

Note that Redshift Spectrum only supports limited write operations, such as insert into, and 

therefore you cannot update tables in any of the open table formats using Redshift Spectrum.

Open table support in Amazon Athena
Amazon Athena provides a serverless way to query data in a data lake without needing to provi-

sion or manage any infrastructure (as we have discussed previously in this book). Once a table 

has been added to the AWS Glue Data Catalog, Amazon Athena can query and update the data 

using standard SQL statements. 

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/tutorials.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/tutorials.html
https://aws.amazon.com/blogs/big-data/build-a-high-performance-acid-compliant-evolving-data-lake-using-apache-iceberg-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/build-a-high-performance-acid-compliant-evolving-data-lake-using-apache-iceberg-on-amazon-emr/
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Amazon Athena provides strong support for open table formats, especially for the Apache Iceberg 

format. At the time of writing, Athena can be used to read data in all three of the table formats 

we have been discussing, and also supports insert, update, delete and maintenance operations 

for Apache Iceberg tables. In the hands-on section of this chapter, we will use Amazon Athena to 

create a new Iceberg table, and then perform various operations on the table using SQL commands. 

When looking to implement an open table format in AWS, you have a wide variety of different 

AWS services that can be used, and of course you can use multiple different AWS services to work 

on the same table in a transactionally consistent way. For example, you can create an Iceberg 

table using Amazon Athena and have an ETL job that runs in AWS Glue to regularly load and 

update data in the table. You may then have a different team that uses an EMR cluster for their 

ETL, and they may read some of the data in your Iceberg table. Finally, a different team may have 

a visualization tool (such as Amazon QuickSight or Power BI) that connects to Redshift and uses 

Redshift Spectrum to visualize data contained in the Iceberg table. 

As we discussed in this section, support for different features of the open table formats differs 

across services, so make sure to read the latest AWS documentation to understand any consid-

erations or limitations when architecting solutions that will make use of one of the open table 

formats. 

Let’s now get hands-on to apply some of what we have learned about open table formats and 

how they work in AWS. In the next section, we will use Amazon Athena to create and work with 

an Apache Iceberg table. 

Hands-on – Working with Apache Iceberg tables in 
AWS
As discussed in the previous section, Amazon Athena has strong support for the Apache Iceberg 

format, and as a serverless service, it is the quickest and simplest way to work with Apache Ice-

berg tables. 

For the hands-on section of this chapter, we are going to use the Amazon Athena service to create 

an Apache Iceberg table, and then explore some of the features of Iceberg as we query and modify 

the table. To do this, we will create an Iceberg version of one of the tables we created earlier in 

this book. 
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Creating an Apache Iceberg table using Amazon Athena
To create our Apache Iceberg table, we will access the Athena console and then run DDL state-

ments to specify the details of the table we want to create. At the time of writing, Amazon Athena 

supports the creation of Iceberg v2 tables. Remember to refer to the GitHub site for this book 

for a copy of the SQL statements used in this section (as mentioned at the start of this chapter): 

1. Log into the AWS Management Console and use the top search bar to search for, and 

open, the Athena service.

2. Open a new Query tab and run the following statement to create a new database to hold 

our Iceberg tables: 

create database curatedzonedb_iceberg;

3. Create a new version of our existing streaming_films table in Apache Iceberg format using 

the following statement. Make sure to change the S3 location specified in this statement 

to reflect the name of your S3 curated zone bucket: 

CREATE TABLE curatedzonedb_iceberg.streaming_films_ib(

    timestamp string,

    eventtype string,

    film_id_streaming int,

    distributor string,

    platform string,

    state string,

    ingest_year string,

    ingest_month string,

    category_id bigint,

    category_name string,

    film_id bigint,

    title string,

    description string,

    release_year bigint,

    language_id bigint,

    original_language_id double,

    length bigint,

    rating string,

    special_features string

)
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PARTITIONED BY (category_name)

LOCATION 's3://dataeng-curated-zone-gse23/iceberg/streaming_films/'

TBLPROPERTIES ('table_type' = 'ICEBERG', 'format' = 'parquet')

4. Open a new tab in your browser and navigate to the Amazon S3 console at https://

s3.console.aws.amazon.com/s3, and then navigate to the location that you specified for 

your new Iceberg table (for example, dataeng-curated-zone-gse23/iceberg/streaming_

films/).    

You will notice that there is a metadata folder here, and in the folder there should be a single file 

ending in metadata.json. Download this file, open it with a text editor, and review the metadata 

that has been captured. 

Having created our new Iceberg table, let’s now populate the table with the data from the orig-

inal table.

Adding data to our Iceberg table and running queries
In Chapter 7, Transforming Data to Optimize for Analytics, we created the streaming_films table by 

joining two other tables. We will now take the data from that table and write it into our Iceberg 

version of the table, before querying both the data and the metadata: 

1. Go back to your browser tab where you had the Athena console open, open a new Query 

tab, and run the following to insert data from our streaming_films table into our new 

Iceberg formatted table: 

insert into curatedzonedb_iceberg.streaming_films_ib

select *

from curatedzonedb.streaming_films

2. Go to your browser window where you had opened the Amazon S3 console and review the 

files in the metadata directory (note that you may need to click to refresh the list of files). 

Notice that we now have additional metadata files – the new metadata.json files as well 

as other files (for example, .stats files and .avro files). These files all contain different 

metadata that is used by Iceberg to track statistics, snapshots, and data files that make 

up the table, as we discussed in the Deep dive into Apache Iceberg section of this chapter. 

3. In a new browser window, open up the AWS Glue console (https://console.aws.amazon.

com/glue), navigate to the Glue Data Catalog, and open up the list of Glue databases. 

Select the curatedzonedb_iceberg database and then click on the streaming_files_ib 

table. Click on the Advanced properties tab to view some Iceberg-specific table properties. 

https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://console.aws.amazon.com/glue
https://console.aws.amazon.com/glue
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Figure 14.3: Glue advanced properties for the streaming_films_ib table

Note that the Glue Data Catalog is used to keep track of the location of the current (most 

recent) metadata file for a table, as well as the location of the previous version of the 

metadata file. Download the most recent version of the metadata file from Amazon S3 

and compare it to the previous version. 

4. Let’s now query our new table using Athena. Go back to your browser tab where you have 

the Athena console open and run the following query:

select * from curatedzonedb_iceberg.streaming_films_ib limit 50;

5. We can also query the Iceberg metadata to view information on the manifests and data 

files that Iceberg uses to manage the table. Run the following queries (one at a time) and 

view the metadata results:

select * from "curatedzonedb_iceberg"."streaming_films_ib$manifests"

select * from "curatedzonedb_iceberg"."streaming_films_ib$files"

select * from "curatedzonedb_iceberg"."streaming_films_
ib$partitions"
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In the results of the manifests query, you can see information such as how many data 

files make up the current snapshot (in my case, it’s 127) and the number of records (for 

my dataset, it is 8,550 records). 

In the results of the files query, you can see details about each file that makes up the 

current snapshot, including items such as record_count and the file size. Note that there 

may be many small files that make up this dataset. 

In the results of the partitions query, you can see details of how many partitions there 

are. We partitioned our table by film category, and in my dataset I have 16 different cat-

egories of films, so 16 partitions. 

When we added data to the table, Iceberg registered a snapshot, which can be used to query the 

state of a table at a point in time. In the next section, we will modify the data in our table so that 

we can see how new snapshots are created, and how they can be queried.

Modifying data in our Iceberg table and running queries
So far, we have created a new Iceberg table and then added some data to the table, resulting in 

the creation of our first snapshot. Let’s now delete one category of records from our table, and 

this change should result in the creation of a new snapshot: 

1. Go back to your browser tab where you had the Athena console open and open a new 

Query tab and run the following to delete data that is in the Documentary category:

delete from curatedzonedb_iceberg.streaming_films_ib where category_
name='Documentary'

2. Find your browser window with the S3 console and refresh the listing of files in the 

metadata directory. Your listing of metadata files should look similar to the following:
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Figure 14.4: Listing of Iceberg metadata files

We now have four versions of the master metadata.json file. If you were to look at the 

table in the Glue Data Catalog, and examine Advanced properties, you will see that the 

metadata_location attribute now points to the file starting with 00003, and the previous_

metadata_location attribute points to the file starting with 00002. 

3. We now have two snapshots, and for each snapshot there is a manifest list file (Avro files 

starting with a UUID) and a manifest file (the Avro files starting with snap). And if you 

open the most recent metadata.json file, you will find that it lists the current snapshot 

ID (in the field current-snapshot-id) but has metadata for the current and previous 

snapshot/s. If you compare the summary section for the snapshots, you will see that it 

identifies the operation that created the new snapshot (append for the first snapshot and 

delete for the most current snapshot). It also lists the number of records and files that 

were added or deleted, partitions changed, total data files, total records, etc. 
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Below is a screenshot of a portion of the most recent metadata.json file:

Figure 14.5: Most recent metadata.json file

The metadata file allows a query engine to identify which snapshot contains the latest state 

of data and to find the relevant manifest list files needed to query the latest state of data. 
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4. If you query the Iceberg metadata, such as by querying the partitions, you will see that 

there are now 15 partitions, where previously you had 16 partitions. Run the following 

query to list the Iceberg metadata for partitions, and note how the Documentary partition 

is no longer listed:

select * from "curatedzonedb_iceberg"."streaming_films_
ib$partitions"

If we now query the manifest files, we will see that just the most recent manifest file is 

listed, and this contains data about the current snapshot: 

select * from "curatedzonedb_iceberg"."streaming_films_ib$manifests"

5. Examine the results and notice that there are columns that provide information about the 

snapshot, such as the number of files, number of records, number of deleted files (which 

track data that has been deleted), number of deleted rows, etc.

6. Another special Iceberg query that we can run in Athena is a query that shows us all our 

snapshots. Use the following query statement to display a history of snapshots:

select * from "curatedzonedb_iceberg"."streaming_films_ib$history"

We should have two snapshots listed here. The first one is the original snapshot from 

when we added data to our table. The second snapshot (the one that shows a snapshot 

parent_id) is from when we deleted the Documentary category from our data. 

7. Remember that with Iceberg, data is not physically deleted from files until you run table 

maintenance operations (as we discussed earlier in this chapter). This enables us to run 

a query that references a previous snapshot. Run the following time travel query, but 

make sure to change the timestamp to a time prior to when you deleted the data for 

the Documentary category. Note that the timestamp used in this query is specified in the 

UTC timezone, so make sure to specify a time in the UTC timezone for before you deleted 

the Documentary category. You can use the output of the previous command (the history 

query) to see the UTC timestamp for when the second snapshot was created, and then 

modify the query below to specify a timestamp between the first and second snapshots:  

SELECT * FROM "curatedzonedb_iceberg"."streaming_films_ib" FOR 
TIMESTAMP AS OF TIMESTAMP '2023-07-23 19:00:00 UTC' where category_
name = 'Documentary'

If you selected an appropriate time, you should find that you received results that showed all the 

movies in the Documentary category. 
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We can now move on to looking at the maintenance activities for Iceberg tables. 

Iceberg table maintenance tasks
Over time, your Iceberg tables can end up using significantly more storage than the actual size 

of the current data. That is because with the snapshot approach, all data is kept forever … or at 

least until you run table maintenance tasks.

In the hands-on section of this chapter, we created a new table, inserted data into the table, and 

then deleted the data for a specific category. However, as we saw with the last query, we can 

specify a timestamp and query the table as it was prior to the deletion, demonstrating that all 

the data still exists. 

In this section, we are going to run two table maintenance tasks. First, we will optimize the data 

layout by creating a new snapshot with the files reorganized in an optimized format. After that, 

we will run a vacuum command to delete older snapshots.

Before we do this, let’s check on the size of our table in S3 as it currently is: 

1. Open your browser window where you have the Amazon S3 console.

2. Navigate to your curated-zone bucket, then to the folder for your iceberg database. For 

example, dataeng-curated-zone-gse23/iceberg.

3. Select the streaming_films prefix and then click on Actions / Calculate total size. Make 

a note of the number of files and size of data. For my dataset, I have 136 objects with a 

total size of 789 KB.

Optimizing the table layout
We firstly use the OPTIMIZE command to create a new snapshot of our data, but this time we 

ensure that the physical files in S3 are optimized. This covers items such as merging smaller 

files into larger files and merging delete files (which contain information on data that has been 

deleted) into the underlying base files: 

1. Open your browser window where you have the Amazon Athena console.

2. Before we run the optimization process against our Iceberg table, let’s first look at the 

file metadata for our table to understand how our data is distributed across files. Execute 

the following statement in a query window. This lists the files that make up our current 

snapshot:

select * from "curatedzonedb_iceberg"."streaming_films_ib$files"
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For my dataset, I have 116 files listed. Some of these files only have a single record, while 

others may have 100’s of records. 

3. In this step, we are going to optimize our table (sometimes also referred to as a compaction 

process) which involves merging small files into bigger files, and merging delete data into 

the underlying base files. Refer to the section earlier in this chapter titled Maintenance 

tasks for Iceberg tables for more details on how the OPTIMIZE statement works: 

OPTIMIZE curatedzonedb_iceberg.streaming_films_ib REWRITE DATA USING 
BIN_PACK

Note that Athena is not always consistent with where it allows database or table names to be 

quoted. For example, when querying metadata, such as by adding $files to the table name as 

we did in Step 2, you must have the table name in quotes. However, with the OPTIMIZE statement, 

if you put the database and table names in quotes, the query may not run and you will receive a 

confusing error indicating that OPTIMIZE is not a valid command.  

Let’s run the query to list file metadata for the current snapshot to determine whether our files 

are now more optimized:

 select * from "curatedzonedb_iceberg"."streaming_films_ib$files"

For my dataset, I now have 15 files listed, one for each category of data. Recall that I started with 

16 categories, but deleted the Documentary category, so I now have 15 categories, with all data 

for a category in a single file. This is a significant optimization from the 116 files that contained 

the data prior to this step. Each file is of course larger, with a higher record count (no more files 

with just 1 or 2 records in it), and this is optimized for querying.

We have now optimized the table so that when queries run against the most recent snapshot, the 

queries will be optimized for performance. However, all the data files for the previous snapshots 

are still there, as is the data for the deleted category. Go back to the S3 console and calculate total 

size for your streaming_films prefix. For my dataset, I now have 155 objects (compared to 136 

prior to running the optimize) and total size is now 1 MB. 

Reducing disk space by deleting snapshots
If we want to actually delete the data from storage (thereby reducing the size of data in S3), we 

can run a VACUUM operation, as we discussed earlier in this chapter. Let’s take a look at how to run 

a VACUUM on our table in order to remove deleted data, and older snapshots: 

1. Open your browser window where you have the Amazon Athena console.
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2. Re-run the query to list the snapshot history for your table:  

select * from "curatedzonedb_iceberg"."streaming_films_ib$history"

We should now have three snapshots listed. One from when we inserted data into the 

table, a second one from when we deleted the Documentary category data, and a third 

snapshot resulting from running the OPTIMIZE command. 

3. When we run the VACUUM command, we clean up old snapshots based on the value set 

in two table properties, as we discussed in the Maintenance tasks for Iceberg tables section 

earlier in this chapter. The defaults are to keep at least 1 snapshot and to keep at most 

5 days worth of snapshots. If we want to delete the original snapshot that included the 

data on the Documentary category (which will reduce the size of data in S3) we should 

set the vacuum_max_snapshot_age_seconds property to have a much shorter duration. 

In the statement below, we change this value to be just 60 seconds, but because we have 

the default value of vacuum_min_snapshots_to_keep set to 1, this will result in the oldest 

snapshots being deleted but will ensure that just the latest is kept. 

4. Execute the following statement to modify the relevant table property:

ALTER TABLE curatedzonedb_iceberg.streaming_films_ib SET 
TBLPROPERTIES (

  'vacuum_max_snapshot_age_seconds'='60'

)

5. To confirm that this setting was successfully applied, run the following command to 

show the table properties: 

SHOW TBLPROPERTIES curatedzonedb_iceberg.streaming_films_ib

Note that Athena is not always consistent with where it allows database or table names to be 

quoted. For example, when querying metadata, such as by adding $history to the table name as 

we did in Step 2, you must have the table name in quotes. However, with the SHOW TBLPROPERTIES 

statement, if you put the database and table names in quotes, the query may not run and you will 

receive an error indicating the command is invalid.

Let’s now run the VACUUM command, which will result in only our most recent, optimized snap-

shot being kept:

VACUUM curatedzonedb_iceberg.streaming_films_ib
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After running this command, we should only have one snapshot remaining (which you can con-

firm by running the $history query), and any files that were used only by the original snapshot 

(such as files containing data on the Documentary category) will have been deleted. 

If we now re-run Calculate total size on the streaming_files prefix in Amazon S3, we should see 

fewer files, and a smaller total size. For my dataset, after running the VACUUM statement the number 

of files in the streaming_films prefix went down to 27 objects, and the total size down to 273 KB. 

In the hands-on activity for this chapter, we used Amazon Athena to work with Apache Iceberg 

tables. We created a new table, inserted data, updated the table by deleting some data, and then 

optimized and vacuumed the table. As we went through that process, we examined how this 

changed the underlying metadata that Apache Iceberg uses to track the table state. 

Summary
In this chapter, we looked at how new open table formats are helping to solve some of the chal-

lenges experienced with traditional data lakes. This includes challenges around updating data at 

the record level, ensuring that users can consistently query a table even while it is being updated, 

managing changes to the underlying table schema, and more. 

We did a deep dive into how three popular new table formats – Delta Lake, Apache Hive, and 

Apache Iceberg – use metadata to manage tables consistently and to provide advanced features 

such as the ability to query a table as it was at a point in the past (commonly referred to as time 

travel queries). We then examined how different AWS analytical services support different table 

formats, and even different features of those table formats. 

Finally, we used the Amazon Athena service to get hands-on with working with Apache Iceberg, 

one of the most popular of the new table formats. After creating a new Apache Iceberg formatted 

table we did a number of operations on the table (such as inserting and deleting data), and also 

looked at how to perform table maintenance activities. 

The new table formats we discussed in this chapter are having a big impact on the ability to treat 

a data lake more like a traditional data warehouse, and it is becoming increasingly popular to use 

these table formats when building new data lakes. However, there are other trends we have seen 

over the last few years that are having an impact on how organizations work across the multiple 

data lakes that may end up being created. And these trends are also leading to a new strategy 

where different teams in an organization own their own data lakes, rather than attempting to 

centralize all data. This new approach is often referred to as a data mesh approach, and we will 

do a deep dive into what a data mesh is in the next chapter. 
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Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd
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Implementing a Data Mesh 
Strategy

The original definition of a data lake, which first appeared in a blog post by James Dixon in 2010 

(see https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/), 

was as follows:

In his vision of what a data lake would be, Dixon imagined that a data lake would be fed by a single 

source of data, containing the raw data from a system (so not pre-aggregated like you would have 

with a traditional data warehouse). He imagined that you may then have multiple data lakes for 

different source systems, but that these would be somewhat isolated.

Of course, new terms and ideas often seem to take on a life of their own and regularly don’t end 

up looking like the original vision of the creator. And that is true of data lakes, as what happened 

in the decade between 2010 – 2020 was that many organizations attempted to build centralized 

data lakes that would contain data from across the organization.

If you think of a datamart as a store of bottled water – cleansed and packaged and 

structured for easy consumption – the data lake is a large body of water in a more 

natural state. The contents of the data lake stream in from a source to fill the lake, 

and various users of the lake can come to examine, dive in, or take samples.

https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
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There were of course different implementations and approaches to data lakes, but it was common 

for an organization to set up a central data engineering team that would become responsible for 

collecting and processing data into a data lake. Raw data would be collected from across the orga-

nization, and a central data engineering team would be responsible for running transformations 

on the data to further enrich it and to join data across diverse systems. Different lines of business 

would then make requests to the central data engineering team for new types of transforms or 

new data sources they wanted to be ingested into the lake.

This approach was common for a long time, but had some significant limitations, as we will 

discuss in this chapter. In this chapter, we will also introduce a new approach to data lakes that 

has become popular over the past few years, with a concept known as a data mesh. Specifically, 

we cover the following topics in this chapter:

• What is a data mesh?

• Challenges that a data mesh approach attempts to resolve

• The organizational and technical challenges of building a data mesh

• AWS services that help enable a data mesh approach

• A sample architecture for a data mesh on AWS

• Hands-on – Implementing a data mesh approach on AWS

Before we get started, review the following Technical requirements section, which lists the prereq-

uisites for performing the hands-on activity at the end of this chapter.

Technical requirements
In the last section of this chapter, we will go through a hands-on exercise that uses Amazon 

DataZone to implement a basic data mesh approach.

As with the other hands-on activities in this book, if you have access to an administrator user in 

your AWS account, you should have the permissions needed to complete these activities.

You can access more information about running the exercises in this chapter using the following 

link: https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/

main/Chapter15

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter15
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter15
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What is a data mesh?
The concept of a data mesh was introduced around 2019 by Zhamak Dehghani, who at the time 

was a consultant for a company called ThoughtWorks. The data mesh architecture was built 

around four principles:

• Domain-oriented, decentralized data ownership

• Data as a product

• Self-service data infrastructure as a platform

• Federated computational governance

Over time, as with data lakes, the term began to mean different things to different people. Some 

organizations would claim they had implemented a data mesh because they had enabled data 

sharing between multiple data lakes, while others would go all in with organizational change, in 

addition to building technology stacks to support a data mesh.

I believe that it is okay for a term to evolve and change, but that does mean that when someone 

uses a term such as data mesh, you need to ask them exactly what that means to them. If some-

one defines a data mesh as the ability to share data between multiple data lakes or analytical 

systems, then that is fine, as long as you understand their limited definition. Other people you 

speak to may define their data mesh as an organization-wide program that is intended to modify 

their approach to how data is produced, transformed, and consumed, in a way that involves both 

organizational (people, process, culture) changes and technology changes. The second definition 

is closer to what Dehghani envisioned for a data mesh.

In this chapter, we will dig deeper into the original intention for the data mesh, mostly follow-

ing the concept as defined by Dehghani. In the original blog posts about the data mesh concept 

(https://martinfowler.com/articles/data-monolith-to-mesh.html), Dehghani made it clear 

that she was not proposing a data mesh as a technical solution. Rather, she defined the data mesh 

as an approach for how to organize responsibilities around analytical data, and the fundamental 

requirements that needed to be in place to gain maximum value for analytical data across an 

organization. So, as we start to look at the four principles that Dehghani defined for building a 

data mesh, remember that these are approaches, and not technical solutions or designs. Later in 

this chapter, we will review potential architectures for building a data mesh on AWS.

Let’s dive into the four principles for a data mesh, starting with domain-oriented, decentralized 

ownership.

https://martinfowler.com/articles/data-monolith-to-mesh.html
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Domain-oriented, decentralized data ownership
This first principle is around organization structure and who is responsible for creating the ana-

lytics data that is developed out of the transactional data that runs the business. A core idea with 

a data mesh, in the way that Dehghani laid it out, is that you no longer attempt to have a central 

team that collects and processes all the analytical data for an organization. It is important that 

transactional and analytical data responsibilities and ownership instead be defined in terms of 

business domains.

If we use an example of a company that streams music (such as Spotify, Amazon Music, or Apple 

Music), then there may be a business domain responsible for managing users/customers, and a 

separate domain for managing the music catalog (in addition to many other domains for items like 

partners, playlists, etc.). Based on the modern microservices approach to application development, 

each of these teams is likely to be responsible for creating APIs for managing their domain (such 

as creating a new user, or adding a new song to the catalog), and will also own the transactional 

data that they generate (the user database, or the song catalog database).

With a traditional approach, a centralized data engineering team may have worked with these 

teams to ingest their data into a central data lake, and the centralized team would also be respon-

sible for performing various ETL-related tasks (cleaning data, ensuring data quality, reacting to 

schema changes, joining across different datasets, etc.).

However, with a data mesh approach, one of the core principles is that analytical data is now also 

domain-oriented and decentralized. There is no longer a central team that collects data from across 

domains in order to process the data for analytics, but rather each domain becomes responsible 

for not only their transactional data and related APIs, but also for creating an analytical set of data 

for their domain. For example, the music catalog team creates an analytical dataset that groups 

all artists in the catalog by the country where their music is published, and the user team creates 

a cleaned, master list of all users, as well as a dataset showing the number of users per country.

Each team supporting a specific business domain works independently (in other words, analytical 

data is decentralized), but, as we discuss later, there is a central governance team that helps to 

ensure standards and controls for data that is part of the data mesh.

Let’s now look at the second principle for developing a data mesh, and that is around treating 

analytics datasets produced by a domain team as a data product.
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Data as a product
Along with this new approach of having decentralized, domain-oriented teams creating analytical 

data, there comes a concept of treating the data that is created as a product. Much as a team may 

create a software product, in the data mesh world, the team will create a data product.

When you create a software product, you are responsible for knowing who your customers are 

and what they want, and for delivering a high-quality product that is well documented, easily 

accessible, reliable, regularly updated, etc. You need to apply the same type of thinking to build-

ing a data product.

For example, the team that owns the music catalog may also have data related to streams of 

each song in the catalog. They also know that identifying the top 20 streamed songs for each day, 

month, and year is useful to other teams in the organization (such as the marketing team). As 

a result, the music catalog team creates three new tables in the data lake – top daily songs, top 

monthly songs, and top songs of the year so far.

Other parts of the business rely on having access to this aggregated data on top streaming songs, 

and it is the responsibility of the music catalog team to ensure that they deliver this data on time. 

Dehghani outlined some of the attributes, or properties, that a data product should have, including:

• Discoverability and accessibility (ability for other teams in the business to discover that 

the dataset exists and learn how to access it, or request access to the data)

• Security (the data should only be accessible to people who have a right to access it, and 

ideally there should be fine-grained access controls in place so that some people may be 

able to see all columns, while others will have a limited view)

• Understandability (data consumers should be able to understand the data, such as what 

data is stored in each column and how that data is defined for the business. Additional 

documentation may also provide examples of how to use the data, etc.)

Other aspects of data product thinking include agreeing on an SLA (Service Level Agreement) 

for your data product, which sets expectations between the data producer and data consumer 

around both the quality of the data and the timeliness of the data being updated.  You should 

also have a cross-domain governance team that defines some standards for data products, such 

as agreement on a date format used in all analytical products, or data types for specific fields.
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One of the recommendations for implementing this approach for the creation of data products is 

to create a new role in each domain team for a data product manager/owner. Much as each soft-

ware product has one or more people that are product managers, responsible for understanding 

customer requirements, setting the roadmap, and delivering a high-quality product, the same can 

be applied to the data product. Specifically tasking someone with the responsibility of developing 

and maintaining a data product for the domain is one of the organizational changes that should 

be implemented when developing a data mesh.

Let’s now move on to some of the technical aspects of building a data mesh, as we look at the 

next principle, which is having self-service data infrastructure as a platform.

Self-service data infrastructure as a platform
One of the concerns about having domain-oriented, decentralized teams is that there could 

be duplication of effort and expense if each team is responsible for setting up their own data 

infrastructure. Therefore, a recommendation for organizations that are looking to implement 

a data mesh is that you create a central team that is responsible for data infrastructure, but not 

responsible for implementing business logic in data pipelines.

That distinction between the data pipeline infrastructure and the actual data pipelines that 

implement business logic is important. The central data mesh team is responsible for building 

out infrastructure and systems that make it easy for data engineers working in a data domain to 

easily build ETL pipelines that apply business logic to create data products.

Some of the components that the central data mesh team may provide include:

• Scalable storage buckets (such as Amazon S3) for storing data

• Ingestion tooling (such as Amazon DMS, Glue, or third-party tools such as Upsolver)

• Data quality tools (such as Glue DataBrew, Glue Studio Data Quality, or third-party tools 

such as Deequ)

• Data transformation tools (such as Glue Studio, or third-party solutions such as Databricks)

• A central data catalog for making data products discoverable (such as Amazon DataZone, 

or third-party tools such as Collibra)

• Automation for routing data access requests to a data owner, and automated sharing of 

data once a request is approved (such as with Amazon DataZone, or can be built on top 

of a third-party tool such as Collibra)

• Data warehouse solution for low-latency data access (such as Amazon Redshift, or 

third-party solutions such as Snowflake)
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• Data access control solutions (such as AWS Lake Formation, or third-party tools such as 

Privacera)

• Data orchestration tools (such as Amazon MWAA, AWS Step Functions, or third-party 

tools such as Apache Airflow)

• Continuous Integration (CI)/Continuous Delivery (CD) infrastructure for deploying 

pipelines (such as AWS CodePipeline, or third-party tools such as GitHub Actions)

The central data mesh engineering team should provide the infrastructure, as well as documen-

tation and support for using that infrastructure. The purpose of this team is to enable the do-

main specific data engineers to easily build high-quality data products, make them discoverable 

through a central catalog, and ensure they are easily accessible with data sharing (i.e., make sure 

that other teams can access the data in place, without needing to make a copy of the data they 

want to access).

Let’s now look at the last principle suggested by Dehghani, federated computational governance, 

which addresses the interoperability and governance of data products.

Federated computational governance
Federated computational governance is a complex phrase, but effectively means that all data 

product owners and the data platform owner are represented in a central group that agrees 

on governance policies for data in the data mesh, and that governance is enforced/monitored 

through automation.

Previously, you may have had a central governance team that wrote up standards and gover-

nance policies that a central data engineering team would then work to implement; however, 

this changes with the decentralized data mesh approach. You still need certain standards and 

governance agreements in order to ensure a good level of interoperability between different data 

products, and to ensure that corporate governance requirements are met. However, these are now 

decided by a governance group that is made up of representatives that include data owners and 

the data platform owner.

The goal is to provide as much independence and flexibility as possible to the individual domain 

teams, while also ensuring good interoperability between data products. To do this, the data 

governance team can define certain standards, such as the date format that should be used, and 

how columns should be named for something like customer ID (for example, ensuring all col-

umns with the customer ID are named customer_id, instead of having different data products 

use variations such as cust-id, customer_identifier, customer_key, etc.).
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Other examples of items that the data governance team may create standards for include items 

around data quality metrics that must be reported for each data product, and a minimum set of 

metadata that must be captured for each data product registered in the data mesh catalog. The 

goals of these standards are to ensure that high-quality, trustworthy data products are easily 

discoverable in the data mesh, and that the data products can easily be joined through common 

field names and items like date formats. However, as far as possible, each data domain team 

should have as much freedom as possible to create data products, with only minimal and neces-

sary standardization and governance policies being applied from the federated governance team.

Finally, as far as possible, the data platform team should create automation to monitor compli-

ance with the standardization and governance rules that the governance teams put in place. This 

should include the automated monitoring of published data products to verify compliance, along 

with alerting to notify relevant data product owners and the governance team of data products 

that are out of compliance.

For example, there should be an automated process that runs data quality checks against pub-

lished data products, ensuring that data quality requirements are being met. For data products 

that are not meant to contain any PII (such as those where the PII is obfuscated in some way), 

there can be an automated process that scans data products, looking for PII, and notifying relevant 

stakeholders if PII is detected.

In addition to the four principles that we have outlined above, there is another important concept 

to understand when talking about a data mesh, and that is the concept of data producers and 

data consumers, which we discuss next.

Data producers and consumers
When people talk about a data mesh approach, you will often hear them talk about data producers 

and data consumers. These are used to identify two distinct personas that work within a data 

mesh, and how each of them interacts differently with the data mesh.

Data producers are teams that publish new data products within the data mesh. Teams within 

a domain will create analytical data products, from their transactional data, and publish the 

resulting dataset on the data mesh.

Data consumers are other teams within an organization that will search the data catalog for 

data that they need, and then subscribe to a dataset published by another team. For example, 

the marketing team may discover a dataset in the data catalog that contains the top 1000 songs 

that are streamed from the music catalog of a streaming service. They subscribe to the dataset 

to use this top 1000 songs data in their marketing campaigns.
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However, data consumers may also be data producers. For example, if there is a dataset listing 

the top 1000 songs streamed from the music catalog, the marketing team may join that dataset 

with a dataset that contains details about artists and create a new dataset that lists the top 10 

artists with the most popular songs on the streaming service. For example, in a specific week, 

Taylor Swift may not have the top-streamed song, but she may have 10 different songs that are in 

the top 1000 list. As a result, she may be the most popular artist in the list of the top 1000 songs. 

The marketing team may choose to publish this list of the most popular artists in the top 1000 

streaming songs as a new and separate dataset, and publish this to the data mesh, making them 

both a data consumer and data producer.

Having a better understanding of what is meant by a data mesh, let’s now look at some of the 

items that a data mesh approach helps to fix.

Challenges that a data mesh approach attempts to 
resolve
Traditional data lakes and approaches served many organizations well for a long time, but as with 

everything, there are always new developments and approaches that help drive improvements.

In the previous chapter, we looked at how new table formats (such as Apache Iceberg) introduced 

new functionality that improved querying and processing data in data lakes. In a similar way, 

the concepts and approaches introduced by a data mesh help solve some different challenges of 

traditional data lakes and how data teams are structured.

Let’s look at a few of the traditional challenges that a data mesh helps solve.

Bottlenecks with a centralized data team
While not the case for every data lake, it was common for large enterprises to create a centralized 

team that would ingest data from transactional systems across the organization and then perform 

ETL tasks on that data (cleaning the data, joining data from across different sources, etc.). This 

team would respond to requests from different parts of the business when they needed new data 

sources ingested or new reports created.

However, this was not always the most efficient way to get the analytics insights that each team 

needed. Often the central team would be overloaded with new ingestion or transformation re-

quests, and this central team would also often need time to learn about and understand the new 

data they were ingesting. This was because the central team was taking data from across the 

organization and could not be expected to be experts about the data and business logic of every 

part of the organization. 
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The central team would also end up having to try and prioritize the different requests coming 

from across the business, without necessarily having visibility into which request would have 

the biggest business impact.

One of the big benefits of a decentralized data mesh approach is that data stays within a domain 

and therefore close to domain experts. If each domain team hires data engineers to create analyt-

ical products of their data, those data engineers can become experts in the data for that specific 

domain. These domain experts will have a good idea of what good data quality looks like, and will 

more easily identify data quality problems. They will also get to know that part of the business 

well, and be in the best position to respond to the reporting and visualization requirements for 

that specific business domain (as well as know which data sources they need and how best to 

apply business logic transforms to create the required reports).

Finally, with the self-service approach that is core to a data mesh, each business domain can easily 

discover data that has been generated by other business domains and can directly request access 

to that data without needing to go through a central team to coordinate everything.

The “Analytics is not my problem” problem
When you create a central team that is responsible for doing all the data engineering tasks and 

creating the datasets and reporting that the business requires, there can be friction between this 

team and the data source owners.

Traditionally, there was strong separation of duties between the engineers responsible for building 

and running transactional systems and the engineers responsible for creating analytic reporting for 

the business. And when data engineers need data from a source system, the owners of the source 

system may get nervous about how that data is going to be extracted from the source database.

This would sometimes cause the owners of the source system to complain that analytics was not 

their problem (meaning not their responsibility). And strictly, they were correct – their primary 

responsibility to the organization is to keep the transactional systems up and running and per-

forming well. Anything that potentially could jeopardize that (such as a data engineering system 

trying to read the full database) is considered a risk, and a source system owner may fight against 

accepting that risk. This of course can lead to delays in data engineers being able to build the 

reports that another part of the business may be requesting.
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Therefore, when implementing a data mesh and, as part of that, changing the organizational 

culture regarding how data is comprehensively viewed and who is responsible for creating it 

(both transactional and analytical data), much of that friction can be removed.

For this to be successful does require organizational and cultural change (which can be difficult). 

But the end goal is to have business domains take responsibility for both the transactional data and 

analytical data for their domain. And if a team building a new transactional data source is aware 

that their wider team will also be responsible for making the analytics data available, and they 

involve data engineers from the design phase of the new system, this can significantly smooth the 

process of ensuring that required data can be efficiently extracted from the transactional system.

No organization-wide visibility into datasets that are 
available
When we discussed data products in the previous section, we spoke about how there are various 

attributes of data products that are core to the data mesh approach, and this included discover-

ability and accessibility.

With a centralized approach to data lakes, there ends up being a core data engineering team 

that collects all the data and then reactively responds to requests from across the organization 

to build new reports or to make specific data available. Often business requests go to that team 

from business users that don’t know what data or existing reports the central team has. The 

data engineering team may find that they already have the required data, but at times they will 

need to go to a different part of the business to find the source data and arrange to ingest it (as 

discussed in the previous point).

With traditional data lakes, a lot of activity was reactive. But with a data mesh approach, it is 

far more of a proactive, self-service approach. Each domain is responsible for creating analytical 

products for the data that they own, and the data platform team creates automation to enable 

new data products to be added to a central data catalog. All users across the organization can 

search the catalog to discover datasets, and from the catalog should have the ability to request 

access to a specific dataset. Once that is approved by the data owner, there should be automatic 

data sharing that makes the data available to the data consumer that requested it.

The above are just a few of the challenges that a data mesh approach helps to overcome. Let’s 

now do a deeper dive into the other side of the coin – the organizational and technical challenges 

of building a data mesh.



Implementing a Data Mesh Strategy486

The organizational and technical challenges of 
building a data mesh
As we discussed at the start of this chapter, a data mesh may mean different things to different 

people. Some people approach a data mesh implementation as though it were just a technical 

challenge about improving the sharing and creation of analytical data. But as we have seen, the 

way that Dehghani proposed a data mesh approach is not about technical solutions to data 

sharing, but much more about the overall way that an organization approaches analytical data.

In this section, we look at some of the challenges (both organizational and technical) of imple-

menting a data mesh.

Changing the way that an organization approaches analytical 
data
While there are technical challenges to building a data mesh, the more difficult part is changing 

the way that an organization views analytical data, and changing who is responsible for creating 

analytical data.

While there is no “traditional” way to creating analytical data, it has been very common for this 

to be the job of a central analytics team. Many companies, even today, still have a data & analytics 

team that is responsible for ingesting transactional data into a central data store (such as a data 

warehouse or data lake). Once ingested, this central team is also responsible for cleansing the 

data (ensuring data quality) and for building ETL pipelines to transform the transactional data 

into analytics data. A data mesh approach changes this completely.

Let’s take a look at how a data mesh changes things for the centralized data & analytics team.

Changes for the centralized data & analytics team
With a data mesh approach, the centralized data mesh team now has a different responsibility – 

they need to build and run a data platform that domain teams throughout the organization can 

use for building analytical data products. Where as their customers used to be business users 

that wanted specific data or reports for analyses, their new customers are now data engineers in 

different business teams that want a platform that enables them to easily build data products.

Where as previously they were responsible for implementing and running technology that they 

then used to build ETL pipelines, they are now focused on building a data platform that others 

can use to build ETL pipelines. They effectively are now responsible for building and running an 

internal Software-as-a-Service (SaaS) data platform for internal data engineers. 
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This is a change in their focus, but they are using existing skills they already had for deploying 

data-related infrastructure.

As part of the changing role of the data platform team, a new data platform owner role should 

be created. This role should work with the data domain teams in the different lines of business 

to learn about their requirements and expectations from the data platform, and in turn develop 

a data platform development roadmap that is regularly updated. The data platform owner takes 

on the responsibility of ensuring that the data platform features and functionality meet both the 

central governance team requirements and the requirements of the individual domains.

The change within the lines of business is more fundamental, as it introduces brand-new respon-

sibilities and skills requirements, as we will discuss next.

Changes for line of business teams
The more challenging organizational change is making lines of business responsible for generating 

not just transactional data, but also relevant analytical data products. This means that a line of 

business now needs to upskill for various roles, as we outline here.

Data product owners
Each line of business needs to appoint data product owners/managers that will be responsible 

for the development of analytical data products. The data product owners need a strong under-

standing of their specific line of business and must also understand the bigger picture of how 

other lines of business may want to use their data.

The data product owner is ultimately responsible for the creation of data products, as well as for 

the quality of those products. They need to work with the owners of transactional data systems 

to facilitate the ingestion of data from those systems, work with data architects or engineers 

to confirm ingestion methods and required transformations, and ensure that the finished data 

product is added to the central data catalog.

They are also ultimately responsible for ensuring the usability of the data that is generated, com-

municating any schema changes to downstream customers, and taking feedback from other parts 

of the business on any new requirements. The data product owner also needs to determine how 

the data should be delivered (such as batch updates to the data lake, making the data available 

via a streaming source such as Kafka or Kinesis, or loading the data into a data warehouse for 

access via JDBC).
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Data architects/engineers
Each line of business also needs to hire data engineers (or repurpose existing data engineers) that 

are capable of developing ETL pipelines that can use the central data platform to ingest data from 

line of business transactional systems and transform that data into analytical data products that 

can be shared with the rest of the organization.

Depending on the size of the line of business, they may choose to separate the role of data architect 

and data engineer. If separated, the data architect would work with the data product owner to 

design end-to-end pipelines from data ingestion to making the data available to consumers, and 

then work with data engineers to communicate the requirements for the pipeline.

The data engineers will either work closely with the data architect or directly with the data product 

owner to understand business requirements, enable ingestion of data from transactional systems, 

implement business logic in ETL pipelines for transforming data, and load the data product into 

a final destination where it can be consumed (data lake, data warehouse, streaming target, etc.). 

They will also play a key role in ensuring data quality.

Some teams may already have data architects/engineers; however, for other organizations, this 

may be a new role for a line of business. In some cases, the line of business may be able to move 

existing data architects/engineers from the centralized data engineering team into the line of 

business, reallocating existing resources as part of the organizational restructuring to imple-

ment the data mesh. Otherwise, the line of business may need to create new roles to fill the data 

architect/engineer positions.

Data stewards
The other role that is key in a data mesh is that of the data steward, a role that is responsible for 

ensuring that the data products created by a data producer meet the requirements of the central 

governance team policies. In addition to meeting the central governance policies, the data steward 

may also create governance policies that are specific to their line of business.

As discussed previously, the central governance team is responsible for implementing the min-

imum required policies to meet corporate governance standards, and governance standards 

that all domain producers agree should be common for the data mesh. However, a specific line 

of business, such as the HR team, may have additional governance requirements for their data 

products. The data steward helps define, and enforce, these policies.
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Some of the functions that the data steward may be responsible for include ensuring that all pub-

lished data products for their line of business have required metadata, and that any PII privacy 

requirements are enforced. The data steward may also take on the responsibility of ensuring that 

data quality is maintained for all published data products.

Data stewards will work with data product owners, as well as the data architects and engineers, 

in ensuring that governance and related requirements are met.

Data stewards may also be nominated to join the federated governance team that works with 

other data stewards across the organization to set minimum data governance requirements.

For any organization that is looking to adopt a data mesh approach to their data, it is critical that 

they first address the organizational changes that we have discussed here before they look into 

implementing any type of technical solution.

For this to be successful, it is critical that there is executive buy-in to implementing a data mesh 

approach. Without executive-level sponsorship of the data mesh, it will not be possible to im-

plement the organizational changes that are required. The executive that sponsors the project 

needs to be able to work with teams across the organization in order to educate them on the 

business value of moving to a data mesh approach, and to then secure the required buy-in from 

business leaders.

Once support has been secured, a comprehensive education program can be put in place to edu-

cate people from all parts of the organization on what a data mesh is, how it will be implemented, 

and what changes can be expected.

The organizational changes required for implementing a data mesh are often the biggest challenge, 

but there are also significant technical challenges, which we look at in the next section.

Technical challenges for building a data mesh
While many vendors advertise that they have the technical solution for building a data mesh, the 

reality is that there are no single solutions that out of the box enable everything that is needed 

for data mesh implementation at enterprise scale. In large enterprises, there is likely to already 

be a wide variety of technologies in use, and many different tools will need to be integrated into 

the new data mesh approach. For smaller organizations though, out-of-the-box solutions may 

be suitable.
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Integrating existing analytical tools
If you are building a brand-new platform (such as for a new company, or in the event you’re looking 

to modernize legacy on-prem solutions as you move to the cloud), then this is not a significant 

challenge. You can select a single vendor that supports a data mesh approach and use their suite 

of products. For example, you could build a data mesh using AWS-native services, or select a 

vendor such as Databricks or Snowflake, and use their data mesh solutions.

However, large organizations often already have a wide range of established analytical tools in 

use across the organization. And different parts of the organization may have different toolsets. 

For example, it’s not uncommon to have an organization where one team has built a data lake 

in AWS, and another team has built a data lake in Azure or Google Cloud Platform (GCP). Even 

if all data is in AWS, for example, you may find that different teams use different tools – such as 

one team using AWS-native services, while another team uses Databricks, and another team uses 

Snowflake. Integrating those different tools into a data mesh is certainly possible, but it generally 

takes a lot of custom development to build the required integrations. We look at one aspect of 

that integration in the next section, where we discuss the centralized data catalog.

Centralizing dataset metadata in a single catalog and building 
automation
A key part of a data mesh is having a centralized catalog where metadata for all data products is 

published. This enables all data consumers within the organization to go to a central catalog to 

search for and discover published data products, learn more about the data product (through 

comprehensive metadata that should be published with the data product), and request access 

to the data.

For large enterprises, there may already be one or more data catalogs in existence. Your challenge 

in this environment is to select a single data catalog solution that provides the needed function-

ality for your data mesh, and then get agreement from all lines of business to use this new catalog 

for all new data products.

However, you will not want to just “lift and shift” existing catalogs into the new catalog, because 

the data mesh has specific requirements around governance, required metadata, data quality, etc. 

Therefore, a line of business may end up continuing to use their existing data catalog for “legacy” 

datasets, while needing to publish all new data mesh data products into the new catalog. Therefore, 

this is both a technical and organizational/process change and challenge.
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A big focus of the data mesh approach is about creating a self-serve environment for data producers 

and consumers. This means building in as much automation of processes as possible. One common 

place for this automation is in requesting, approving, and provisioning access to data products.

In an ideal world, a data consumer should be able to log in to the central data catalog using their 

corporate credentials, and from there they should be able to search for relevant data for their 

use case. The search terms that they provide should be matched against attributes of the data 

products, such as column names, table descriptions, and additional metadata associated with 

the data product.

Once a data consumer finds a data product in the catalog, they should be able to learn more about 

the data product by reviewing the provided metadata, and ideally also viewing the lineage of the 

data product (which sources were used in the creation of the product, and what transforms and 

joins were applied). They may also be able to view a sample of the dataset.

If the data consumer decides that a specific data product is well suited to their use case, they should 

be able to request a subscription to the data product from within the catalog. Some data products 

may be marked as being available to all users in the organization without additional approval being 

required, in which case the data consumer should immediately receive access to the data. Access to 

the data product may be via a JDBC connection, or it could be provided via the data being shared 

with the consumer (such as the dataset being shared from a source Redshift or Snowflake data ware-

house, with a target Redshift or Snowflake data warehouse that the data consumer has access to).

Other datasets may require the data owner or data steward from the publishing domain to approve 

the request for access. In this case, the data consumer should be able to provide a justification 

for why they want access, and the request should be routed to the data producer. Once the data 

producer approves the request for access, the data should be automatically made available to 

the data consumer.

If an enterprise has a wide variety of analytic tools, then this will generally require custom de-

velopment to enable this level of automation. Alternatively, if an organization is using analytical 

tools from one primary vendor, the integration will be much simpler.

Compromising on integrations
Because of the complexities of integrating different analytical tools, across different vendors and 

perhaps even different clouds and on-prem data sources, an organization may compromise on 

their vision of what a data mesh is. The data mesh is a good approach to making analytical data 

available across an organization, but it is not always practical to enable every integration to reach 

the full vision of what a data mesh should be, as defined by Dehghani.
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As a result, organizations may implement limited aspects of the data mesh approach, or they may 

build a new data mesh that operates alongside existing analytical systems. This approach may be 

viewed by some as failing to really implement a data mesh, but my view is that if you gain at least 

some of the benefits of the data mesh approach, and you are able to do this in a reasonable time 

frame and cost, and in a way that brings concrete business benefits, then you should go with that. 

Ideally, over time, you will mature your data mesh to be more in line with the vision created by 

Dehghani. This is why at the start of this chapter we discussed how the term data mesh means 

different things to different people.

AWS services that help enable a data mesh approach
Most analytics vendors have been adding functionality to their solutions to support a data mesh 

approach over the past few years. And while there is currently no single solution that enables a 

data mesh across a complex selection of analytical tools and hybrid environments, many compa-

nies have made good progress in supporting the data mesh approach, at least within their own 

“ecosystem” of tools.

AWS has supported sharing both S3-and Redshift-based datasets across AWS accounts for a 

while. And while easy sharing of data across different AWS accounts (and different teams with-

in an organization generally have their own AWS accounts) is a key component of a data mesh 

architecture, it is only a piece of building a data mesh. Another key component is the ability to 

centrally catalog data and add rich business metadata for each dataset, which can be done with 

the Amazon DataZone service. In this section, we explore the AWS services that can help build 

an AWS-based data mesh in more detail.

Querying data across AWS accounts
In AWS, two of the primary query engines that are used for data consumption are Amazon Athena 

(for ad-hoc queries of data in an S3 data lake, and federated queries to other data sources) and 

Amazon Redshift (for low-latency use cases, such as for powering dashboards or visualizations 

in BI tools). Both tools can access data that has been shared across accounts using AWS Lake 

Formation.

Sharing data with AWS Lake Formation
We previously discussed the AWS Lake Formation service (in Chapter 4, Data Governance, Security, 

and Cataloging) and how it provides the ability to enforce granular data access controls. Using 

AWS Lake Formation, in conjunction with the Glue Data Catalog, you can control access to data 

in your S3-based data lake by granting or revoking permissions for users through the Lake For-

mation console (or API). This includes the ability to control access at the column or row level.
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With Lake Formation, you can also enable the sharing of data between different AWS accounts. As 

a reminder, in the Glue Data Catalog you have databases, which contain tables, and each table has 

one or more columns. When you share a database or table from a source AWS account to a target 

AWS account using Lake Formation, the database tables become visible in the target account’s 

catalog. Once a user in the target account is granted access to the shared database/table, they can 

query the table using Amazon Athena as though it were locally in the account, even though the 

data files are still in the source AWS account’s S3 bucket. With Lake Formation data sharing, the 

data is not copied to a target account, but rather made accessible in the target account.

In a similar way, you can use Lake Formation to manage Redshift data shares. This enables you 

to configure the sharing of a Redshift table from a data producer’s Redshift cluster directly to a 

data consumer’s Redshift cluster. Using Lake Formation, you can share both S3 and Redshift data 

between separate AWS accounts, as well as share data between different AWS Regions within 

the same account.

From a data mesh perspective, this enables data producers in one domain to grant access to their 

data products to data consumers in a different domain. A common pattern would be to have a 

business data catalog where data consumers can find datasets that they wish to subscribe to. 

Within the data catalog, the consumer should be able to request access to a dataset, and once 

approved by the data producer, access should be granted to the dataset. For data products that 

are S3-or Redshift-based, you can build an automation that uses Lake Formation to share the 

relevant table/s from the data producer account to the data consumer account.

Once S3-based data has been shared to a data consumer’s account, a data consumer can query 

the data using Amazon Athena, Amazon Redshift Spectrum, or Amazon QuickSight, as though 

the table were in the account locally. And in a similar way, if a Redshift table has been shared 

across accounts using Lake Formation, a data consumer can view the table in Redshift as though 

it were a local table in their cluster, and immediately start querying it.

In October 2023, AWS launched a new service that provides business data catalog functionality 

integrated with Lake Formation data sharing, called Amazon DataZone. Let’s explore how this 

service can significantly simplify the process of building a data mesh on AWS for environments 

that use AWS analytic services.

Amazon DataZone, a business data catalog with data mesh 
functionality
Amazon DataZone is a service from AWS that provides built-in data governance features, helping 

to unlock the power of data across an organization.
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While AWS does not specifically market Amazon DataZone as a data mesh solution, the service 

does include functionality that simplifies building out a data mesh, via integration with AWS 

Lake Formation. Let’s review some of the core concepts and components found in DataZone.

DataZone concepts
The following are some of the core DataZone concepts that you need to understand before we 

move on to examine the various components that make up DataZone.

Domains
The first concept to understand is that of domains, which are a way of organizing data assets, 

projects, associated AWS accounts, and data sources.

Most commonly, a domain will align with a specific organizational boundary, such as a business 

unit or specific function. As such, you may have domains for finance, HR, manufacturing, sales, 

marketing, etc.

Data sources
DataZone supports publishing data to the business data catalog from the Glue Data Catalog 

and Amazon Redshift. While traditionally the Glue Data Catalog is used to catalog Amazon S3-

based data lake resources, it can also be used to capture database and table information from 

other sources, such as relational databases or a Snowflake data warehouse. All sources that are 

supported by AWS Glue crawlers can also be imported as a DataZone data source.

Business glossaries
A business glossary is effectively a dictionary used to define business-related metadata, and to 

ensure the consistent use of business terms. For example, an organization may have datasets re-

lated to their business in different countries around the world. If you allow the free-form capture 

of metadata associated with a dataset, different people may label countries differently, making it 

difficult to consistently search the data catalog based on the country that the data applies to. For 

example, you could have the following metadata applied to different datasets:

• Country: United States

• Country: USA

• Region: U.S.

• Geography: united_states
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If the data catalog had the metadata shown above, it would be difficult to search the catalog to 

find all datasets with data from the United States. Therefore, you can instead create a business 

glossary called Country, and then create a list of all countries that your organization operates in, 

as shown below:

• Country

• United States

• South Africa

• New Zealand

• India

• United Kingdom

When adding metadata to a dataset, a data producer or data steward can select to apply metada-

ta from the Country glossary and select the specific country the dataset applies to. This ensures 

consistency in metadata, making it easier to find related datasets.

Metadata forms
Metadata forms can be used to ensure that datasets for a specific domain contain a consistent 

set of metadata. A domain data steward creates metadata forms, where they specify metadata 

that should be captured for datasets. Multiple metadata forms can be created, and then a data 

steward can select forms to be applied to all datasets in the domain. Optionally, a data publisher 

can also elect to attach additional metadata forms to datasets that they publish.

A metadata form lists field names for each metadata item, and then a field type. The field type 

could be a string (allowing for free-form entry), Boolean value, date, integer, or decimal. Alterna-

tively, the field type could be tied to a specific business glossary term. The following is a simple 

example of items that could be included in a metadata form.

Figure 15.1: Sample items for a metadata form in Amazon DataZone

Metadata forms are critical to ensuring that all data in the business data catalog has good meta-

data that can be used to help discover datasets, and to better understand the dataset.
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Associated AWS accounts
A DataZone domain is deployed to a specific AWS account, and you can then associate additional 

AWS accounts with the domain.

This enables teams that have their own AWS accounts where they produce or consume data to 

continue to use those accounts. They can publish data from their account into the DataZone busi-

ness data catalog, and when they subscribe to a data product from another project in a different 

account, they can have the data shared into their account for local consumption.

Having reviewed some of the core DataZone concepts, let’s now look at the key components of 

the DataZone service.

DataZone components
DataZone has a number of components that are used to provide an environment where users 

can search for and discover data, subscribe to a data product, and publish a data product. In this 

section, we will review two key DataZone components.

Data portal
When you configure Amazon DataZone, a data portal UI is created that is accessible from out-

side of the AWS console via a unique URL generated for your DataZone domain. The data portal 

provides the ability to manage your data products and is also a full business data catalog that 

enables data consumers to easily search for and discover data products.

As part of your data mesh, it is important that all potential data consumers across the domain can 

easily access the data catalog. By creating the data portal UI outside of the AWS console, it means 

that you do not need to grant AWS console access to all data producers and consumers in your 

domain. Instead, you can integrate the data portal UI with your Single Sign-On (SSO) provider, 

enabling users to easily log in to the data portal using their corporate credentials.

While DataZone administrators may still need AWS console access for some aspects of managing 

DataZone, most regular users will only work in the data portal UI. Within the data portal, data 

producers can do tasks such as add business metadata to their data products, view and approve 

(or reject) subscription requests from data consumers, etc. And for data consumers, the data 

portal allows them to search for and discover data products, as well as to request access to a data 

product directly from the portal.
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Projects and environments
Projects provide a way to group different resources together, including people, data assets, and 

analytical tools. When you create a project in the DataZone data portal UI, you are enabling a 

collaborative environment where a group of users can discover, subscribe to, and consume data 

registered in the business data catalog, as well as create new data products and publish them as 

part of a project.

Within a DataZone project, you can create environments, which are collections of configured 

resources (such as Amazon S3, AWS Glue databases, or Amazon Athena workgroups). Each envi-

ronment also has a set of IAM principals that are granted access to use those resources. DataZone 

environment profiles are pre-configured sets of resources and blueprints that are a template for 

creating a new environment.

Instead of access to data products being granted to individuals, with DataZone, access is granted 

to a project. As a project administrator, you can then add people to the project, and they can use 

the access granted to the project to access the data.

Having a better understanding of the Amazon DataZone service, let’s look at what an architecture 

for a data mesh on AWS looks like. In the following section, we will illustrate how DataZone can 

be a technical enabler of a data mesh approach to managing data.

A sample architecture for a data mesh on AWS
We have looked at what a data mesh is, some of the organizational and technical challenges of 

building a data mesh, and finally some of the AWS services that can be used to build a data mesh. 

Now, in this section, let’s bring it all together with a sample architecture for a data mesh on AWS.

Architecture for a data mesh using AWS-native services
Earlier in this chapter, we discussed how a data mesh is easier to build if starting new, or if just 

using AWS-native services. In this section, we will look at a sample architecture for when you 

only use AWS-native services, and in the section after this, we will review an architecture for 

environments that use analytic tools from other vendors.

The following architecture diagram shows a data mesh that is built using Amazon DataZone, 

with data in an Amazon S3-based data lake (a similar architecture would support data in Amazon 

Redshift) and using AWS Lake Formation for data sharing.
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Figure 15.2: Sample data mesh architecture when using AWS analytic services

In the preceding diagram, we see how there is an account for the central data mesh team, and this is 

the account where we have created our DataZone domain (and therefore is also the account that 

hosts the DataZone data portal). This account doesn’t host data producers or data consumers but 

is owned and managed by the central data mesh team. Here they create the DataZone domain 

and also manage the high-level administrative tasks for DataZone. The central data mesh team 

will also associate AWS accounts from data producers and consumers with the DataZone domain.

In addition to the central data mesh account that deploys the domain for Amazon DataZone, we 

also see two other accounts. On the left, we see a data producer account. This account is owned 

by the sales team, and in this account the data engineers on the sales team create data products 

to be part of the DataZone sales project. On the right, we see the account for the marketing team, 

who in this case are consumers of a sales data product.

While this diagram may look somewhat complicated, the architecture is relatively simple. Let’s 

go through each of the numbers in the preceding diagram to explain the process:

1. A data product is created and stored in an Amazon S3-based data lake. A Glue crawler (or 

other method) is used to register the technical metadata for the data product in the AWS 

Glue Data Catalog of the sales team’s AWS account.
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2. A member of the sales team that has been added to a DataZone project adds the data 

product to the DataZone catalog. They do this by creating a new DataZone data source 

that points to the database in the AWS Glue Data Catalog. This effectively imports the 

table metadata from the Glue Data Catalog, and they can then add relevant business 

metadata via a metadata form and the business glossary.

3. A user in the marketing team (who has been added to a relevant DataZone project for the 

marketing domain) searches the catalog and discovers the dataset from the sales team. 

They choose to subscribe to the data product, and a data steward or the data publisher 

in the sales team approves the subscription.

4. Once the subscription is approved, DataZone automatically uses AWS Lake Formation 

to share the dataset from the sales account Glue Data Catalog to the marketing team’s 

Glue Data Catalog.

5. The marketing team users can now use the deep-links in the DataZone data portal UI to 

access Amazon Athena and query the sales team data. When they run a SQL query, Athena 

accesses the data in the S3 bucket of the sales team, using Lake Formation-provisioned 

permissions.

This architecture is a good solution for where you are primarily using AWS-native services. In the 

preceding diagram, we showed an architecture that uses data in Amazon S3, but this architecture 

would also support Amazon Redshift tables in a similar way.

Let’s now review an architecture for an environment where there is a broad range of analytic 

services, from multiple vendors.

Architecture for a data mesh using non-AWS analytic 
services
As we have discussed in this chapter, Amazon DataZone (at the time of writing) supports the 

automated sharing of data in an Amazon S3-based data lake and data in Amazon Redshift. How-

ever, if you have data in other systems (such as Snowflake, or Databricks data cataloged in the 

Databricks Unity catalog), as well as perhaps on-premises data in other data warehouses (such 

as Teradata), then a data mesh architecture is more complex.

While most of these data sources could be cataloged in the Glue Data Catalog and then imported 

to Amazon DataZone from there, DataZone would not support enabling the automated sharing 

of those data sources across different domains. 
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Also, if you have more advanced catalog and data governance requirements (such as data lineage, 

which is not currently supported in Amazon DataZone), then you may want to consider a different 

business data catalog solution, such as Collibra, Atlan, or Alation.

There are many different ways that you could build out a data mesh architecture in this envi-

ronment, so the following example is just one potential pattern that you could use, although 

this is a pattern that is relatively common. In this example, we use just a single analytic service 

(Snowflake), but later on we will discuss approaches for when you have multiple analytic solu-

tions from various vendors.

Figure 15.3: Sample data mesh architecture when not using AWS analytic services

The preceding diagram shows a simplified architecture where just Snowflake is used as an analytic 

service, but the same architecture could be expanded to include additional analytic services such 

as Databricks, an on-premises Teradata data warehouse, Oracle, and others. We will talk about 

that in a moment, but let’s first work through the steps shown in Figure 15.3:

1. A data product is created and stored in the Snowflake data warehouse.

2. Using the Collibra JDBC driver for Snowflake, the data producer registers the data product 

in Collibra and adds the relevant business metadata. Note that we are using Collibra as 

an example, but this could be replaced with Atlan, Alation, or any other business data 

catalog of your choosing.
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3. A user in the marketing team searches the Collibra data catalog and discovers the dataset 

from the sales team. They choose to subscribe to the data product, and a data steward or 

the data publisher in the sales team approves the subscription.

4. Once the subscription is approved, Collibra automatically creates a ticket in ServiceNow 

(this could be using a custom-built integration, or an integration downloaded from the 

Collibra marketplace). An administrator is notified of the approved data share via Servi-

ceNow, and they then log in to Snowflake and share the specified dataset from the sales 

Snowflake cluster to the marketing team’s Snowflake cluster.

5. The marketing team users can now use their Snowflake cluster to query the data from 

the sales team.

Of course, there are multiple variations and different ways that this integration could have been 

built. Let’s discuss a few different options that we could use to modify the above architecture.

Automating the sharing of data in Snowflake
If Snowflake were the only analytic tool that we were using, then it would make sense to simplify 

things and remove the step of having an administrator manually do the datashare from the source 

Snowflake cluster to the target Snowflake cluster.

In the Collibra marketplace, there is an integration that enables Collibra to automatically share 

the relevant dataset between Snowflake clusters. See https://marketplace.collibra.com/

listings/snowflake-data-share-to-collibra-integration/

In the architecture shown in Figure 15.3, we used the ServiceNow integration, as a typical environ-

ment may have many different analytic tools, and there may not be a Collibra integration for each 

of those tools. Therefore, in a more complex environment, the simplest solution may be to just 

have Collibra raise a ServiceNow ticket, and then have an administrator do the share manually, 

as each analytic tool would have a different process for sharing data.

Using query federation instead of data sharing
In the architecture shown in Figure 15.3, we used the built-in functionality of Snowflake to make 

data in the producer Snowflake cluster (the sales team) available in the consumer Snowflake 

cluster (the marketing team). To the marketing team, the sales data would appear as though it 

were a local table, and they could easily use the Snowflake query tool on their cluster to join the 

sales data with their marketing data.

https://marketplace.collibra.com/listings/snowflake-data-share-to-collibra-integration/
https://marketplace.collibra.com/listings/snowflake-data-share-to-collibra-integration/
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However, not every analytic tool may support this type of data sharing. For example, if you have 

on-premises legacy data warehouses, it is unlikely that they would support data sharing to a 

different cluster. Therefore, an alternate approach is to use query federation to enable users in 

one team (such as marketing) to be able to easily access and query data from another team (such 

as sales), without needing to copy the data.

In Chapter 11, Ad-Hoc Queries with Amazon Athena, we discussed Athena query federation. As a 

reminder, this functionality enables you to create connectors to other database systems, and then 

run queries that can join data in the S3-based data lake with data from other database systems. 

To configure this in Amazon Athena, you need to install and configure the appropriate connector, 

which does require some relatively advanced technical skills.

As an alternative, there are commercial solutions from vendors that enable the same type of 

functionality but with an easy-to-use tool. One of the popular products in this space is Starburst. 

With Starburst, you can easily configure integrations with many popular database and analytical 

solutions. Starburst then sits between SQL clients and the target database. Users connect their SQL 

client to Starburst, and Starburst has connectors to various database systems. A data consumer 

can then query any of the database systems that they have been granted access to via Starburst.

If we were to incorporate Starburst into the architecture shown in Figure 15.3, when a subscrip-

tion is approved for a data product, an administrator would grant access to the data product in 

the sales team Snowflake cluster to the marketing team consumers via Starburst. The marketing 

team could then connect to Starburst to query the sales data.

The benefit of query federation is that it allows a data consumer to subscribe to multiple datasets, 

all in different analytic tools, and access them all via Starburst. However, it does mean that the data 

platform team has to license and manage additional infrastructure (such as the Starburst server), 

and in certain cases there may be increased query latency when querying via query federation.

Having looked at sample architectures, let’s now get hands-on with setting up a simple data mesh 

environment in the AWS console using Amazon DataZone.

Hands-on – Setting up Amazon DataZone
In the hands-on section of this chapter, we are going to set up and configure the Amazon DataZone 

service. We will then create a DataZone project, import a data source, add business metadata, and 

publish a data product. Finally, we will access the DataZone data portal as a data consumer, to 

search for and subscribe to a data product.
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At the time of publication of this book, the Amazon DataZone service has just recently been re-

leased. There are sometimes a number of changes made to a service shortly after it goes to GA, so 

make sure to reference the GitHub page for this chapter to check for any updates related to these 

hands-on exercises. The GitHub page is available at https://github.com/PacktPublishing/

Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter15

Let’s get started.

Setting up AWS Identity Center
To log in to the Amazon DataZone data portal, you can either use your AWS IAM credentials, or 

you can log in using an identity configured in AWS Identity Center. With AWS Identity Center, 

you can create local users, or you can perform identity federation using SSO by configuring Identity 

Center to work with your identity provider (such as Azure Active Directory, Okta, Ping Identity, 

etc.). For this hands-on exercise, we are going to set up AWS Identity Center with local users.

Note that Identity Center is an AWS Organizations-wide service, meaning that to configure Identity 

Center, you must log in with the credentials of your AWS Organizations management account. 

If you created a new account for performing the activities in this book, then the instructions 

provided here will help you get Identity Center configured. However, if you are using a sandbox 

or other work account that is part of AWS Organizations, then you will either need to work with 

your cloud management team to configure Identity Center, or you can use local IAM accounts 

instead of Identity Center:

1. Log in to the AWS Management Console and use the top search bar to search for, and 

open, the IAM Identity Center service.

2. Ensure that you are in the Region that you have been using for the exercises in the previous 

chapters of this book.

3. Within the Identity Center console, click the Enable button in the Enable IAM Identity 

Center box. If your account is not currently configured to be part of an AWS organization, 

you will be prompted to allow Identity Center to create an organization for you. Click on 

Create AWS Organization. Note that you will receive an email verification request, and 

you must verify your email address within 24 hours.

4. By default, the Identity Source is configured to be the Identity Center directory, which 

is what we will use to create local users in this exercise. Therefore, you do not need to edit 

the Identity Source, but if you wanted to link Identity Center to your SSO provider, this 

could be done at this point.

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter15
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter15
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5. Using the left-hand menu, navigate to the Groups page, and click on Create group.

6. Provide a Name for the group, such as DataZone Users.

7. Optionally provide a Description for this group, and then click on Create group.

8. Using the left-hand menu, navigate to the Users page, and click on Add user.

9. We want to create a user that will be used to manage our DataZone domain. So, for User-

name, set this to film-catalog-team-admin. In a production environment, we would use 

the username of an actual person, but to make it easier to track the different roles that we 

will log in to DataZone with, we are setting the name to be more descriptive of the role.

10. Provide an email address to be associated with this user. As we have done elsewhere in this 

book, we can create a unique email address that will go to our primary email by specifying 

our email address with a PLUS sign and a unique identifier after the name portion of the 

email. Gmail and Outlook both support this mechanism, but not all email providers may 

support this, in which case you should first create a new email address with a provider to use 

for this step. If your provider supports this, and your email was, for example, gareth-eagar@

example.com, then you could use gareth-eagar+film-catalog-team-admin@example.

11.  Fill in First Name and Last Name, and then click on Next.

12. On the Add user to groups screen, select the DataZone Users group and then click Next.

13. Review the details, and then click Add user.

14. Check your email for a message titled Invitation to join AWS IAM Identity Center. Click 

Accept Invitation in that message. In the page that opens, provide a password for your 

new account. NOTE: Identity Center requires passwords to be a minimum of 8 characters, 

and must contain lowercase, uppercase, numbers, and a special character.

15. Repeat steps 8 – 14 to add a second user. Set the Username for this user to be marketing-

team-admin.

In the above steps, we enabled AWS Identity Center, created a new user and group, and set the 

password for our new user. Let’s now configure our DataZone domain.

Enabling and configuring Amazon DataZone
Amazon DataZone domains are used to organize your data assets, users, and associated projects. 

In this section, we will set up Amazon DataZone by configuring a domain:

1. Log in to the AWS Management Console and use the top search bar to search for, and 

open, the DataZone service.

2. Click on Create domain.
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3. Under Domain details, provide a name for the domain. We will be creating a domain that 

manages data related to our movie streaming business, so let’s call our domain streaming.

4. Optionally provide a description, and then under Quick setup click the checkbox for Set-

up this account for data consumption and publishing. 

5. Leave all other defaults, scroll to the bottom of the page, and click on Create domain.

6. It may take a few minutes for your domain to be created. Once it is created, the Welcome to 

your DataZone Domain screen is displayed. Scroll down this screen, and in the Summary 

section, click on Update domain to enable IAM Identity Center (or alternatively, display 

your list of domains, click on the streaming domain, and then click Edit).

7. In the User management screen, click the checkbox for Enable users in IAM Identity 

Center. Leave the default option of Do not require assignments, which will allow any 

Identity Center user to access the DataZone portal. In a production environment, you may 

want to require assignments, so that only approved users can access the DataZone portal.

8. Scroll down and click on Update domain.

9. In the Data Domain console, scroll down to the Summary section again, and click the 

Copy icon to the left of the Data portal URL.

Figure 15.4: DataZone console showing Data Portal URL

10. Open a new private/Incognito browser window, and paste the Data Portal URL in that 

window. Note that if you do this in your current browser, you will be automatically logged 

in as your IAM user, but we want to log in as the movie-catalog-team-admin user. There-

fore, use a private/Incognito window.

11. Log in to the data portal using the username (film-catalog-team-admin) and password 

you configured in AWS Identity Center.

12. In the Welcome to Amazon DataZone popup, click on Create New Project.

13. In the Create project popup, enter Film Catalog Project for Name. Optionally provide 

a description, and then click Create.
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14. On the Your project is ready to use popup, click on Create environment.

15. For the environment Name, enter Film Datasets S3 as this is the project where we will 

produce datasets related to our catalog of films, using data in Amazon S3.

16. For Environment profile, select DataLakeProfile. This creates an environment that can 

be used to work with data in an Amazon S3-based data lake.

17. You can optionally customize the environment to specify the name to use for a Glue da-

tabase that is used for data that you publish, as well as the name of a Glue database that 

is used to contain tables that you subscribe to from other environments. You can also 

optionally specify the name of the Athena workgroup that you want to use. These are 

optional, so you can skip these and just click Create environment. DataZone will now 

create Glue objects (producer and consumer database), an S3 bucket, and other resources, 

as well as configure default Lake Formation permissions for the objects. This may take a 

few minutes to complete.

With the above steps, we have configured our DataZone domain and created a new project and 

environment that we will use to produce datasets related to our catalog of films. We can now 

move on to adding a data source to our project.

Adding a data source to our DataZone project
We are now ready to add one of our existing Glue datasets to DataZone. To do this, we need to 

configure a data source:

1. In the DataZone data portal, make sure you are in the Film Catalog Project and on the 

Overview tab.

2. In the Working with Projects section, click on Create data source.

3. For Name, enter films-CuratedZoneDB, optionally provide a description, and then for 

Data source type, select AWS Glue.

4. For Select an environment, chose the Film Datasets S3 environment from the dropdown.

5. For Data selection, for Database name, enter curatedzonedb. This is the name of the 

AWS Glue database that we have been using throughout this book in order to store our 

curated datasets.

6. For Table selection criteria, leave the default of the wildcard asterisk, which will add all 

of the tables in our curatedzonedb to DataZone. Then click Next.
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7. For Publishing settings, leave the default of No for Publish assets to the catalog. This will 

add the tables to the project inventory, and later, after reviewing and adding additional 

metadata, we can choose to publish the tables to the data catalog.

8. Leave the default setting of having Automated business name generation enabled.

9. Click on Next.

10. For Run preference, select Run on demand and then click Next.

11. Review the summary of settings, and then click Create�

12. On the films-CuratedZoneDB summary page, click on Run to run the data import process.

13. When the import completes, the three tables in the curatedzonedb in our Glue Data Cat-

alog should now be listed, as shown in the following screenshot. Even though we have 

multiple tables, for this exercise we will focus on the film_category table.

Figure 15.5: DataZone import from the Glue Data Catalog

Now that we have imported data into DataZone, we can add additional business metadata and 

then publish to the data catalog.
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Adding business metadata
We can now review the current metadata for one of the tables we imported and add additional 

business metadata:

1. In the DataZone data portal, click on the Data tab along the top. This provides an overview 

of data for this project.

2. On the left-hand side menu, click on Inventory data, and then click on the film_category 

table. Inventory data contains tables that we have imported into DataZone but that have 

not yet been published into the DataZone business data catalog.

3. Click on Schema to view the schema of this table. For each column, a green icon indicates 

where automated metadata has been generated. For example, the first column in this ta-

ble is category_id, and DataZone has automatically provided a label of Category ID for 

this column. You could approve each automatic metadata item individually, but in this 

exercise, we will accept all the changes by clicking the ACCEPT ALL button at the top of 

the screen, as shown in the following screenshot.

Figure 15.6: Automated metadata for the Film Category table
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4. Let’s make this dataset easier to discover for our business users by adding additional busi-

ness metadata. At the top right, click on Actions, and then select Edit from the dropdown.

5. In the Edit Asset popup, change the name to Movie listings with category. For 

description, provide the following: This table contains a complete listing of all films in our 

streaming movie catalog, including category/genre information for each film, as well as a list of 

special features.

6. Click on Update Asset.

7. Click on the Schema tab, then click the Pencil icon next to the Category Name field. For 

description, add the following: This field contains the movie category/genre. Sample categories 

include Animation, Comedy, Sports, Children, Drama, Action, and more.

8. Click Save.

9. We could add additional metadata for each of the columns, but to save time we are going 

to publish the data asset to the category as it is now. Click on Publish asset, and then in 

the confirmation popup, click Publish asset again.

This table is now added to the business data catalog, and is discoverable by other users of the 

catalog.

Creating a project for data analysis
We can now create a new project that will be used by our marketing team to do data analysis:

1. Log out of the DataZone data portal by clicking on your username in the top right and 

clicking Log out.

2. Sign back in to the DataZone data portal with SSO, but sign in as the marketing-team-

admin user. Note that you may be signed back in as the film-catalog-team-admin au-

tomatically, but if you are logged out again and you attempt to log in a second time, you 

should be prompted for your username.

3. Once logged in, click on Create Project.

4. For the project name, enter marketing-team-analysis. Optionally provide a description, 

and then click Create.

5. In the popup confirming that the project has been created, click on Create environment.

6. For the environment Name, enter marketing-team-datalake, and optionally provide a 

description.

7. Under Environment profile, select DataLakeProfile from the dropdown.

8. Leave all other defaults, and then click Create environment.



Implementing a Data Mesh Strategy510

Now that our analysis project is ready, we can search for and subscribe to data.

Search the data catalog and subscribe to data
In this section, our marketing team searches the business data catalog and subscribes to a dataset:

1. The marketing team wants to analyze the movie catalog in order to identify the most 

popular genres of films. Use the search bar along the top of the DataZone data portal 

console and search for movie genre.

2. In the results, you should see the Movie listings with category table. Note how even 

though the original table in the Glue Data Catalog was called films_category, we were 

able to find the table based on the business metadata we had added in DataZone. Click 

on the table name to select it.

3. We can now review details of the table, including schema information for the table. We 

decide that this table will be good for our analysis, so click on Subscribe.

Note the warning message on this page, indicating that this dataset is an 

unmanaged asset. With DataZone, if an S3-based table uses Lake Forma-

tion for permissions management, or you have a Redshift table, these are 

considered managed assets and DataZone can enable the automatic sharing 

of these resources between different projects/teams.

Because our film_category table has not been configured to use Lake 

Formation permissions, it is listed as unmanaged. This means we can still 

request a subscription to the dataset, and the data owner will receive a no-

tification to approve access. However, once they approve the subscription, 

they will need a process outside of DataZone to grant permissions to the 

team that requested the data. This could be, for example, working to add 

IAM-based permissions for the Glue database, table, and S3 data location 

for the film_category table to the marketing team IAM role.

In addition to modifying the table to use Lake Formation permissions, to 

configure the table for automatic sharing managed by DataZone, a Data-

Zone administrator would also need to grant a set of permissions to a  

specific IAM role that is auto created by DataZone to be used by our market-

ing-team-analysis project. This is beyond the scope of this book, but refer to 

the following documentation for more information on this topic: https://
docs.aws.amazon.com/datazone/latest/userguide/lake-formation-
permissions-for-datazone.html

https://docs.aws.amazon.com/datazone/latest/userguide/lake-formation-permissions-for-datazone.html
https://docs.aws.amazon.com/datazone/latest/userguide/lake-formation-permissions-for-datazone.html
https://docs.aws.amazon.com/datazone/latest/userguide/lake-formation-permissions-for-datazone.html
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4. In the Subscribe popup, select the marketing-team-analysis project from the drop-down, 

and then provide a Reason for request. For example, this could be Need access to the movie 

listings with category table for a new marketing project we are running.

5. Click on Subscribe.

Approving the subscription request
We now log in to the DataZone portal as the film-domain-admin (the owner and publisher of the 

film_category table) so we can approve the request:

1. Log out of the DataZone data portal by clicking on your username in the top right and 

clicking Log out.

2. Sign back in to the DataZone data portal with SSO, but sign in as the film-catalog-team-ad-

min user.

3. Click on the Notifications icon at the top right (just to the left of your username). You 

should see a list of alerts, with the most recent alert being Subscription request created. 

Click on the notification.

4. Review the Subscription request popup, which provides details about the requestor 

(marketing-team-admin) and the subscriber (the marketing-team-analysis project). 

This page also lists the Reason for access that the subscriber provided. Leave a short 

comment on your decision in the Decision comment box, and then click on Approve to 

approve the request.

As mentioned previously, since this dataset is not managed using AWS Lake Formation permis-

sions, the dataset will not have been automatically shared with the marketing team. Therefore, a 

process would need to be in place to now grant the marketing team access, such as by updating 

the marketing team IAM policies to grant access. In order to get the full benefits of DataZone 

automated data sharing between projects and accounts, it would be recommended to ensure 

that all your S3 data is managed by Lake Formation.

Summary
In this chapter, we looked at the concept of a data mesh, a relatively new approach to data man-

agement. And while this concept has only been around since 2019, it has been rapidly adopted 

in many organizations.
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The data mesh approach moves away from centralizing data analytics within a single team, and 

instead uses a decentralized approach, moving the responsibility for creating analytic data prod-

ucts closer to the teams that produce, or own, the operational data. In this chapter, we exam-

ined several different aspects of a data mesh, including the people, process, and organizational 

changes required to implement a data mesh, as well as some of the architecture approaches to 

implementing the technology required to enable a data mesh.

We also explored the core concepts and components of the Amazon DataZone service, which 

provides data governance functionality, including a business data catalog. After looking at po-

tential data mesh architectures within AWS, we then got hands-on with the Amazon DataZone 

service. In the hands-on exercise, we set up DataZone, imported a dataset from the AWS Glue 

Data Catalog, and added business metadata to the dataset. We then had a look at how to search 

the DataZone business data catalog and how to subscribe to a data product.

As we near the end of this book, we will look at some of the key concepts required to build a 

modern data platform on AWS, which we will cover next.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd
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Building a Modern Data 
Platform on AWS

As we near the end of this book, we will review high-level concepts around building a modern 

data platform on AWS. We could easily devote another whole book to this topic alone, but in this 

chapter, we will provide at least an overview to give you a strong foundation on how to approach 

the build-out of a modern data platform.  

There are many different pieces to the puzzle of building a modern data platform, and this chap-

ter will build on many of the other topics we have covered in this book (such as data meshes 

and modern table formats) alongside introducing topics we have not yet covered (such as Agile 

development and CI/CD pipelines).

The goal of this chapter is to help you think through how to bring together many of the different 

concepts you have learned in this book to create a data platform that supports both the data 

producers and data consumers in your organization. This chapter is not a complete guide to 

building a data platform, but rather introduces important concepts and tools to enable you to 

start planning the building of your own modern data platform on AWS.

In this chapter, we will cover the following topics:

• Goals of a modern data platform

• Deciding whether to build or buy your data platform

• DataOps as an approach to building data platforms 

• Hands-on – automated deployment of data platform components, and data transfor-

mation code



Building a Modern Data Platform on AWS514

Before we get started, review the following Technical requirements section. This lists the prereq-

uisites for performing the hands-on activity at the end of this chapter. 

Technical requirements
In the last section of this chapter, we will go through a hands-on exercise that automates the 

deployment of components that could be used in a data platform, as well as the code for a data 

engineering pipeline. This will require permission for services such as AWS CloudFormation, 

AWS CodeCommit, AWS CodeDeploy, as well as AWS Glue and various other services. As with 

the other hands-on activities in this book, having access to an administrator user in your AWS 

account should give you the permissions needed to complete these activities. 

You can access more information about running the exercises in this chapter using the following 

link: https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/

main/Chapter16

Goals of a modern data platform
In Chapter 15, Implementing a Data Mesh Strategy, we discussed how a central data platform team 

is responsible for building a platform that makes it easy for both data producers and data con-

sumers to work with organizational data. 

A data platform is intended to provide a system where multiple teams from across an organization 

can easily ingest data (including both structured and semi-structured, via batch and streaming), 

process the ingested data, and create new data products by joining datasets. It should also provide 

data governance controls, a catalog for making data discoverable across the organization, and 

the ability to easily share datasets across different teams/data domains. 

Let’s review some of the top goals for a modern data platform, after which we will explore ap-

proaches to building these data platforms. 

A flexible and agile platform
As we all know, the only constant is change. We have seen this throughout this book as we spoke 

about new table formats, including Apache Iceberg, and new data architecture approaches such 

as the data mesh approach. AWS services also constantly evolve, and new services are introduced 

(both by AWS and other vendors). In this second edition of the book, there are three new chapters 

(including this one), as well as countless updates related to new AWS services and features (such as 

EMR Serverless, Bedrock, Redshift support for Iceberg, Glue support for Ray.io, DataZone, and more). 

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter16
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter16
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As a result, it is critical when building a data platform to ensure that the platform is flexible enough 

to incorporate new technologies and approaches. And not only should the platform be adaptable, 

but also agile enough to adapt and incorporate changes quickly. This requires an agile approach 

to the development of the platform, as we discuss later in this chapter.

A scalable platform
When building a new platform, you want to be able to start with a minimally viable product 

(MVP), or minimally loveable product (MLP), as some people prefer to call it. This means that 

you build a working platform with a minimal set of critical features, and then over time you add 

additional features. It also means that you do a staged roll-out of the platform, starting with 

perhaps a single domain, and then onboarding additional domains over time.

This means that right from the start, you need to build a platform that is scalable. On day one 

of the platform being live, you may have just one or two datasets of a few hundred GBs. But as 

you onboard additional domains/lines of business, the data volumes may grow to tens, and then 

hundreds, of TBs. 

One of the big advantages of building a modern data platform on the cloud is the built-in scalabil-

ity. For example, an Amazon S3 bucket can be used to store hundreds of GBs of data to start with, 

and yet without any additional configuration necessary, the bucket can scale to store hundreds 

of TBs of data. The same goes for most other AWS services, specifically those that are serverless. 

For example, Amazon Kinesis in on-demand mode is able to automatically scale in response to 

changing data traffic. 

As a result, one of the key enablers of a data platform that can easily scale is the use of AWS 

serverless services.

A well-governed platform
Another key attribute for a modern data platform is that it must support good governance of all 

data that is stored and processed on the platform. 

In Chapter 15, Implementing a Data Mesh Strategy, we discussed how one of the key principals of a 

data mesh is federated computational governance. In summary, a central governance team, made up 

of representatives from each of the domains, works together to decide on the minimal required 

governance standards for the platform (such as compliance with data governance regulations, etc.). 

Each domain must then comply with those governance standards, but they may also implement 

their own additional governance requirements for their specific domain. 
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The central data platform needs to be able to support both the central common data governance 

requirements, and the governance requirements for each individual domain. This means that 

strong data governance functionality needs to be a core part of the platform from the start. Good 

data governance controls must be considered part of the minimally viable/lovable product that 

we spoke about earlier. 

A secure platform
Another obvious but key requirement is that the data platform must be secure. This is an aspect 

of data governance generally, but since it is so critical, we call it out separately here.

Security on the platform needs to cover things such as ensuring that all data both at rest and 

in transit is encrypted. In addition, security also involves access control, making sure that only 

authorized users have access to data on the data platform, and then only the level of access to 

the data they need as opposed to system-wide data access. Another aspect of security is ensuring 

that data access is logged, so that access attempts can be audited by the security team. 

In an overlap with data governance, security may also include using a service such as Amazon Ma-

cie to identify whether any PII information is contained in data files so that it can be secured if so.

An easy-to-use, self-serve platform
Even if you get all the previous goals correct – you have an agile, scalable, well-governed, and 

secure platform – but that platform is difficult to use, then its success will always be limited and 

it is likely to fail.

It is critical that different domains/lines of business are able to easily onboard onto the platform, 

and that users can quickly become productive with producing and/or consuming data. This re-

quires both organizational effort (ensuring that you have a team that helps domains onboard to 

the platform), and making sure that use of the platform is well documented and the platform is 

easy to use from a technical standpoint. The platform should also support self-service – that is, 

once onboarded, teams should be able to add new data products, subscribe to data products from 

other teams, and perform most functions without needing to depend on a central data platform 

team to perform certain tasks. 

The goal is to have the tools available that make it easy to ingest data into the platform, transform 

that data, apply required governance controls, register the data in a central catalog, and then 

enable data consumers to search for, subscribe to, and consume data products from across the 

organization. All of this should be doable without needing to raise tickets or request help from 

the central data platform team. 
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Having reviewed some of the key goals for central data platforms, let’s now look at a critical 

decision point – whether to build a data platform or buy one.

Deciding whether to build or buy a data platform
The question of whether to build or buy applies to many different purchasing decisions that an 

organization needs to make. Some of these decisions are pretty obvious – for example, not many 

organizations will choose to build their own power plant and generate their own power, rather 

than just purchasing power from their local utility company.

Within the IT realm, there is likely to be a mix of building and buying, depending on the size of the 

organization. For example, most organizations that need systems for HR, Customer Relationship 

Management (CRM), or Enterprise Resource Planning (ERP) will purchase these from one of the 

many vendors that have built these products for many years. However, many organizations will 

choose to build and manage their own website and mobile app, including the microservices that 

power those systems. 

Organizations also have a choice when it comes to their approach to implementing a modern data 

platform. However, there are a number of factors that you need to take into consideration when 

deciding whether to build or buy a data platform. Let’s start by looking at what may be involved 

when you choose to buy a platform.

Choosing to buy a data platform
One option is to purchase a unified data platform that provides the processing and query engine 

and most of the components an organization needs, and then integrate other components as 

required (such as BI tools or database ingestion tools). Many vendors provide data platform 

products, however, in this section, we will primarily reference two of the most common data 

platforms – Databricks and Snowflake. 

Databricks offers the Databricks Lakehouse Platform, designed to “provide all the components 

needed to unify data, analytics, and AI.” Snowflake offers the Snowflake Platform, designed to 

“connect businesses globally, across any type of scale of data and many different workloads.” 
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Depending on the vendor and platform you select, most data platforms that you purchase include 

the following components:

• Data storage: When you ingest data into most vendor-provided data platforms, the data 

is converted into an optimized format. This may be in a proprietary format, such as the 

compressed, columnar format that Snowflake stores data in, or an open format, such as 

the Delta Lake format that Databricks uses to store and manage data tables. Modern data 

platforms mostly make use of object storage such as Amazon S3 to physically store files. 

• Data transformation engine: A core part of these platforms is an engine that enables you 

to create ETL/ELT jobs to transform your data, applying business logic across multiple 

datasets. The most popular languages for performing data transformation are SQL and 

Python (including PySpark, a Python API for Apache Spark). Databricks provides the 

ability to transform data using either Apache Spark or SQL, while Snowflake primarily 

provides a SQL-based interface. 

• Data query editor: Another key component of data platforms is a query editor that en-

ables data producers and consumers to interact with the data on the platform. This may 

be a SQL-based editor for running SQL queries against data, or something different, such 

as a notebook interface that enables users to work with platform data using code. Both 

Databricks and Snowflake provide a rich SQL query editor that also enables the ability to 

visualize query results (i.e., viewing the results as a bar chart, line chart, heat grid, etc.). 

• Data services: Each platform will provide a number of services that you can use to man-

age and monitor your data platform, implement data governance, etc. This may include 

a data catalog for managing metadata related to your datasets (such as the Databricks 

Unity Catalog), as well as services that enable data sharing within the data platform 

and across different teams (such as Snowflake Secure Data Sharing, or Databricks Delta 

Share). Advanced services may also be included, such as the ability to securely combine 

data with a partner’s dataset in a way that protects data privacy and limits access to the 

underlying granular data (such as with the clean room solutions offered by both Data-

bricks and Snowflake). 

Note that even when you purchase a platform from a vendor, you are still likely to need to integrate 

other third-party services and applications with your data platform. For example, you may have 

an application that streams data via Kinesis Data Streams or Amazon MSK (a managed streaming 

Kafka service), and you need to integrate that into your data platform. You may also want to use 

a commercial tool that enables easy data ingestion from many different data sources (such as 

Upsolver, Striim, Matillion, Fivetran, and others). 



Chapter 16 519

On the data consumption side, you are also likely to need to integrate a BI visualization tool such 

as QuickSight or Tableau. 

When to buy a data platform
The primary benefit of purchasing a data platform from a vendor is that they provide and integrate 

all the common components that are needed for a modern data platform. This makes the imple-

mentation of the platform much simpler and reduces the skillsets required by the organization 

to implement and manage the platform. For organizations without existing engineering skills, 

this is a significant benefit. 

However, when you purchase a data platform from a vendor, you are limited to the functionality 

that the vendor provides. As a result, it is important to fully evaluate different vendor offerings to 

ensure that the platform meets your needs and is likely to continue to do so as your requirements 

change over time. Once an investment has been made in a specific vendor’s data platform, it can 

be very difficult to change to a different platform, and therefore it is critical that you evaluate 

your vendor’s ability to support your organization over a 5-10 year timeframe. 

Purchasing a platform is also often more expensive than using equivalent cloud-native services. 

The data platform vendors provide the integration between components managing the infra-

structure and software for you and provide support when you run into issues. However, this often 

comes at a premium cost. Therefore it is important that you understand all the factors that can 

influence the cost of the vendor solution (for example, some vendors charge an additional premium 

for more advanced features) and project what your costs are likely to be over a longer time period, 

based on your expected data volume growth and additional features you may need over time. 

Another benefit of purchasing a data platform is that, often, these platforms are supported across 

multiple clouds. For many organizations, it is simpler to standardize to, and build on, a single 

cloud, but for large organizations, different teams may have elected over time to use different 

cloud providers. If your organization already has teams building in different clouds, then the 

ability to have a single data platform (such as Databricks or Snowflake) that can be run in AWS, 

Azure, and GCP may be a significant benefit. 

Let’s now look at some of the reasons that it may make sense to build a platform using cloud-na-

tive services and third-party tools, instead of purchasing a platform from a vendor. 
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Choosing to build a data platform
An alternative to buying a data platform from a vendor is to build your own platform using 

cloud-native services. Throughout this book, we have discussed a number of AWS services that 

can be integrated together to build a data platform:

• Data storage: Most modern data platforms are built using cloud object stores, and within 

AWS you can build your data platform with Amazon S3 as the physical storage layer. As 

we discussed in Chapter 14, Building Transactional Data Lakes, you can also use one of the 

modern open-table formats to store your data in an optimized format, such as Apache 

Iceberg. For smaller projects and environments where the primary skillset is SQL, you 

may decide to store your data in Amazon Redshift (although with Redshift RA3 nodes, 

the persistence layer does use Amazon S3 under the hood). 

• Data transformation engine: We have discussed a number of AWS services that can be 

used to transform data as part of an ETL or ELT solution. For example, you can transform 

data using Apache Spark with the AWS Glue or Amazon EMR services, or use Python and 

pandas for light data transformation tasks using AWS Lambda. Alternatively, you can use 

SQL to transform your data using Amazon Athena or Amazon Redshift. 

• Data query editor: If you primary storage platform is Redshift, you can use Redshift Query 

Editor for working with your data. Alternatively, if using Amazon S3 to store your data, 

you can use Amazon Athena as your query editor. 

• Data services: AWS has a wide range of analytic services that can be integrated as part 

of your data platform. For example, AWS Lake Formation and Amazon DataZone can be 

used as a technical and business catalog respectively, and Lake Formation can also be used 

to manage access control and for sharing data across accounts. The AWS Clean Rooms 

service can be used to share data in S3 with partners in a secure, privacy-protecting way, 

and AWS Data Exchange can be used to directly access data from third-party data suppliers. 

While building a data platform using cloud-native components is not the appropriate choice 

for all organizations, it does carry a number of advantages over buying one, as we discuss next.

When to build a data platform
One of the primary advantages of building a data platform is that you have a lot of flexibility in 

which components you use, and cloud-native services are often available at a lower cost than 

buying a data platform solution from a vendor. 
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When you build a data platform, you get to customize the platform based on your specific business 

requirements and have a wider variety of tools that you can integrate with the platform to meet 

the requirements of different teams within your organization. You can also more easily swap out 

different components of the platform over time than if you had purchased a full data platform 

solution from a single vendor. 

In most cases, you will need some level of data engineering skills regardless of whether you use a 

vendor-provided data platform or a platform that you build yourself. These data engineers need 

to apply business logic to datasets in order to build analytical data products, which can be done 

through SQL or code-based transforms. Your data engineers also need to integrate the platform 

with other components, such as data ingestion services and BI visualization tools. However, when 

building a platform, your engineering team will also be responsible for creating integrations 

between the various AWS components that make up the core data platform (such as AWS Glue, 

Lambda, Lake Formation, DataZone, etc.).

Companies that have generalist developers and DevOps skills are well suited to building their 

own data platform. This is true for both small start-up type companies and large enterprises. In 

small start-ups, where budgets are tight, engineers can build their own data platform and start 

small with very low costs, and then scale up over time as the business grows. For large enter-

prises, there is often already a mix of different analytic tools used by different lines of business, 

and it may be easier to integrate these different technologies into a custom-built modern data 

platform than it would be to force all lines of business to standardize and migrate to a solution 

from a single vendor.

However, for mid-size companies that do not have developers and DevOps-type resources, it 

may make more sense for them to purchase a data platform solution from a vendor, and have the 

vendor (or a partner recommended by the vendor) implement and integrate the solution for them. 

A third way – implementing an open-source data platform
As somewhat of a compromise between buying a vendor-provided data platform and building 

one from scratch, another option is to implement an open-source data platform. This is closer 

to building a data platform, as implementing most open-source data platforms requires down-

loading the source code from a repository such as GitHub, and then having engineering teams 

implement and customize the solution. Your engineering teams will also need to integrate your 

different data sources with the platform, as most open-source data platforms do not have con-

nectors for all common sources. 
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However, it does give the engineering team a headstart and provides a mature platform with 

many features. In addition, it allows the engineering team to customize the platform based on 

the requirements of the business. 

In the following section, we provide a brief overview of a data platform created and open-sourced 

by AWS Professional Services. 

The Serverless Data Lake Framework (SDLF)
The Serverless Data Lake Framework (SDLF) is an open-source project that provides a data 

platform that accelerates the delivery of enterprise data lakes on AWS. This includes a number 

of production-ready best-practice templates that speed up the process of implementing data 

pipelines on AWS. This framework has been implemented at a number of large organizations, 

including Formula 1 motorsports racing, Amazon retail in Ireland, and Naranja Finance in Ar-

gentina (amongst many other companies).

Some of the best practices that are implemented via the SDLF include:

• Infrastructure-as-Code and version control: The base SDLF implementation, along with 

customizations and data transformation tasks, are all managed through a CI/CD pipeline 

and a code repository. The SDLF avoids the need to do any manual implementation via 

the AWS console, instead deploying infrastructure and code via DevOps pipelines. This 

also means that any changes to the data platform or data transformation pipelines are 

managed via a code repository, providing version control.

• Scalability using serverless technologies: The SDLF makes extensive use of serverless 

technologies for the core of the data platform. Serverless services can easily scale from low 

data volumes to handling much larger data volumes, and are often the most cost-effective 

approach as you only pay for resources when tasks are running (you never pay for idle time). 

• Built-in monitoring and alerting: The SDLF data platform includes built-in monitoring 

(using the ELK stack) and alerting (via CloudWatch alarms). This ensures that issues can 

be detected quickly and that logs are easily accessible for troubleshooting issues. 

Deploying and managing the SDLF does require DevOps skills, so is not intended for environments 

that do not have relevant engineering skills. Deploying the SDLF should not be viewed as an al-

ternative to purchasing a data platform from a vendor like Databricks or Snowflake; however, if 

you are considering building a data platform, then the SDLF can help accelerate the data platform 

build while ensuring many best practices are applied. 

In this next section, we will look at some of the key components of the SDLF. 
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Core SDLF concepts
There are various layers that make up the SDLF, starting from the foundational layer that provides 

the core data platform functionality. Once the foundations have been deployed, teams are able 

to build pipelines (which control the transformation processes that are applied to a dataset). 

Let’s look into each of these terms in more detail.

Foundations
When you deploy the SDLF foundation layer, you are deploying components to be used by all 

teams and all pipelines. This includes components such as Amazon S3 buckets for storage, Dy-

namoDB tables (for configuration and the metadata catalog that tracks pipeline executions), and 

the ELK stack for monitoring. 

Teams
The team layer deploys resources for a specific team (that is, a group of people that work together, 

such as a specific line of business, or a smaller team within a line of business). A team develops 

and deploys datasets, transformations, pipelines, and code repositories that are unique to that 

specific team. 

Datasets
With the SDLF, a dataset is a logical grouping of data – this could be a single table, or an entire 

database consisting of multiple tables. For example, a dataset could constitute the tables imported 

from a relational database, or a group of files coming from a streaming data source (such as IoT 

data from a factory system). 

Pipelines
A pipeline is a logical view of an ETL process, laying out the steps that data goes through as it is 

transformed. Teams create pipelines, and may create multiple pipelines for different datasets. 

With the SDLF, each pipeline is split into multiple stages, most commonly Stage A (which is 

intended for doing an initial light transform on a single file), and Stage B (which is intended for 

heavier transforms, such as joining datasets or applying business logic). 

The orchestration of these pipelines is done using AWS Step Functions. Each stage has a Step 

Functions workflow that defines the transformation steps that will be completed as part of the 

pipeline.
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Transformations
Transformations perform the data transformation tasks – converting files to Parquet format, join-

ing datasets, aggregating columns, etc. These transformations are run by the different stages of 

the pipeline. For example, a pipeline may consist of a Step Functions workflow that runs a Glue 

job to apply business logic to data, and then runs a Glue crawler to crawl the new data and add 

it to the Glue Data Catalog. The transformation would be the Spark code that the Glue job runs. 

To learn more about the Serverless Data Lake Framework (SDLF), use the following links:

• SDLF GitHub page: https://github.com/awslabs/aws-serverless-data-lake-

framework

• SDLF documentation: https://sdlf.readthedocs.io/en/latest/index.html

Having looked at options for buying, building, or implementing an open-source solution for a 

data platform, let’s now review how you can use a DataOps approach to building and maintaining 

your data platform and transformation code. 

DataOps as an approach to building data platforms
DataOps is a term that has been around since at least 2015 and refers to an agile approach to 

building data platforms and data products that borrows from some of the concepts of DevOps. 

Where DevOps transformed the approach to how software is engineered, DataOps transforms 

the approach by which data products are built.

Much like it is difficult to give an exact definition or outline an exact approach for other concepts 

we have discussed (such as data lakes and data meshes), it is similarly difficult to tie down one 

clear-cut definition for what is meant by DataOps. The original author of the term may have had 

a clear definition of what they meant, but over time, the term may come to mean different things 

to different people, and the meaning of the term as a whole may evolve.

In this section, we will attempt to focus on some of the core concepts of DataOps, and specifically, 

how they apply to building a data platform and data products. There is more to DataOps than 

we can cover in a single chapter, so in this section, we will focus on two of the key aspects – au-

tomation and observability. 

Automation and observability as a key for DataOps
While there may be different definitions of what DataOps is, at its core it is about automation and 

observability. This includes automating the deployment of the data platform (and updates to the 

platform), as well as deployment and updates to the transform code that produces data products. 

https://github.com/awslabs/aws-serverless-data-lake-framework
https://github.com/awslabs/aws-serverless-data-lake-framework
https://sdlf.readthedocs.io/en/latest/index.html
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A key part of this automation is managing infrastructure for the data platform and logic for data 

transformations as version-managed code. 

In addition, there should be automation for monitoring and alerting for the data platform and data 

transformations. If the platform is designed to trigger an AWS Lambda job to run in response to 

a specific event (such as a new data file being received) and the Lambda function fails to execute, 

a data platform engineer should receive an alert. In the same way, if the code within a Lambda 

function causes an error and the function fails, a data engineer should be alerted. 

There should also be observability dashboards that enable data platform owners and data engi-

neers to view key metrics related to their area of responsibility. A platform engineer should easily 

be able to view the throughput of Kinesis Data Streams or the number of executions of a Lambda 

function, and a data engineer should be able to easily view the status of a specific pipeline they 

have engineered. When there is a failure, engineers should be able to easily access relevant log 

files in order to troubleshoot and identify the root cause of the issue. 

Another key success factor for DataOps is ensuring that teams work with an Agile approach, 

working in short sprints in order to constantly evolve and enhance the data platform and prod-

ucts, rather than planning months-long release cycles. To learn more about the Agile approach 

to software development, see https://www.atlassian.com/agile. 

Let’s take a closer look at the topic of automating infrastructure and code deployment. 

Automating infrastructure and code deployment
When you deploy data platform infrastructure (such as a Snowflake or Redshift cluster, a Da-

tabricks cluster or an AWS Glue job, or a Kinesis Data Stream) the deployment should not be 

done manually using the console or by typing commands on the command line, but should be 

automated using a provisioning tool. Two common tools for this purpose are Terraform (by 

HashiCorp) and CloudFormation (an AWS service). 

In the same way, when deploying data transformation code (such as the code for a Glue job or 

Databricks job, or a SQL transform in Snowflake or Redshift), this code should be managed and 

deployed from a version-controlled code repository. Common tools for this include GitHub, Git-

Lab, AWS CodeCommit, Bitbucket, and Azure DevOps.

When developing code, developers should build unit tests (among other types of tests), and as 

part of the automation of code deployment, the pipeline should use these tests to validate the 

code. It is also recommended to perform security scans of code as part of the pipeline and to 

implement other software development best practices. 

https://www.atlassian.com/agile
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While it may be argued that managing the code for these deployments via these tools may add 

additional overhead to the deployment process, it significantly increases the reliability and se-

curity of the deployment and improves the reliability of making updates to either infrastructure 

or data transformation code. If an update does fail, then having all infrastructure, pipeline, and 

transformation code managed in a version control system means that rolling back to the previous 

version of the code can be done quickly. 

For example, let’s say someone deploys some data transformation code in a Glue job by directly 

writing the code for the Glue job in the AWS console. When that code needs to be updated, anoth-

er engineer may use the AWS Management Console to modify the code. With this approach, no 

history of the code changes will be stored and an engineer can change the code without anyone 

else needing to approve those changes.

In comparison, if the code for the Glue job is managed via a code management solution (such 

as AWS CodeCommit or GitHub), then each version of the code is stored and available to review. 

When code is updated, you can build in approval requirements which require the code to be re-

viewed by other members of the team, and perhaps a security engineer, before the code is deployed 

via an automated pipeline. In addition, code can be developed and tested in a development envi-

ronment and then promoted to be deployed in the QA or production environment via a pipeline. 

Let’s now look at the importance of observability for data platforms and data engineering pipelines.

Automating observability
The other key part of building data platforms and products is to ensure that there is clear ob-

servability – this means that teams can monitor the current status of operations, identify trends 

that indicate when things are starting to go wrong, and deep-dive to find the root cause of issues 

when things do go wrong.

There are three primary tools that enable this:

• Dashboards: Having dashboards that are constantly updated enables a team to get an 

accurate view of current operations. By looking at various dashboards, teams can view Key 

Performance Indicators (KPIs) that show the health of a system. For example, a platform 

engineer can view a CloudWatch dashboard for Simple Queue Service (SQS) to determine 

whether the queue size is growing, indicating an issue with processing the queue. In a 

similar way, a data engineer can view a list of all DAGs in Apache Airflow and easily see 

when a specific DAG last ran, the recent tasks for a DAG, the number of runs, etc. 
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• Alerts: The platform should have a way of sending automated alerts when things are not 

operating normally or if failures are detected. For example, CloudWatch alarms can be 

configured to send an email or text alert if a queue grows beyond a certain threshold, and 

Airflow Service Level Agreements (SLAs) can be used to generate an email if the expected 

time it takes for a specific task to complete exceeds an agreed length of time. 

• Logs: The other tool that teams need is an effective log collection system that includes 

functionality for doing advanced searches against logs. When things do go wrong (as they 

will!), teams need an effective way to search through logs to help troubleshoot the issue. 

For example, CloudWatch Logs or Amazon OpenSearch can be used to store logs from 

the various systems across a data platform and engineers can easily search through the 

logs to troubleshoot failures. 

To learn more about DataOps, you can access a free, on-demand DataOps certification course 

titled The Fundamentals of DataOps. This course, along with a certification assessment, is offered 

by DataKitchen, a commercial provider of DataOps solutions. Access the course at https://info.

datakitchen.io/training-certification-dataops-fundamentals.

Having briefly discussed a DataOps approach to developing data platforms and data products, let’s 

now look at some of the core AWS services that can be used to implement a DataOps approach. 

AWS services for implementing a DataOps approach
In this section, we’ll explore a quick overview of some of the core AWS services that can help you 

implement a DataOps approach to building your data platform and data products. Then, in the 

hands-on section of this chapter, you can follow along to get some practical experience by putting 

some of these services into action. 

AWS services for infrastructure deployment
There are two primary tools within AWS that enable you to manage and deploy your Infrastructure 

as Code (IaC), instead of manually deploying resources via the AWS console or the command line. 

AWS CloudFormation
AWS CloudFormation enables you to define your AWS resources within a template (in either 

YAML or JSON format), and then automatically deploy those resources into your AWS account. 

When you need to modify some aspect of the infrastructure, you can modify and redeploy the 

template and CloudFormation will intelligently update the resources.

https://info.datakitchen.io/training-certification-dataops-fundamentals
https://info.datakitchen.io/training-certification-dataops-fundamentals


Building a Modern Data Platform on AWS528

For example, you can define a simple AWS Glue job using the following YAML template:

AWSTemplateFormatVersion: '2010-09-09'

# Sample template to define an AWS Glue job (in YAML format)

Resources:                                      

# The script file already exists in S3 and is called by this job

  GlueSampleJob:

    Type: AWS::Glue::Job

    Properties:

      Role: DataEngGlueCWS3CuratedZoneRole

      Description: Glue job to denormalize film and category tables

      Command:

        Name: glueetl

        ScriptLocation: "s3://aws-glue-assets-1234567890-us-east-2/
scripts/Film Category Denormalization.py"

      WorkerType: G.1X

      NumberOfWorkers: 2

      GlueVersion: "3.0"

      Name: Film Category Denormalization via CFN

The above template deploys a Glue job to run the Film Category Denormalization job (which we 

created in an earlier chapter using the Glue Studio console). 

CloudFormation also supports the ability to use parameters in templates, and at deployment 

time the parameter values can be passed to CloudFormation. This enables you to use the same 

template to deploy resources into different environments, such as your dev, test, and production 

environments. For example, the ScriptLocation could be referenced as a parameter, and then at 

the time of deployment the correct S3 bucket name for the specific environment could be passed 

in. Or the WorkerType and NumberOfWorkers could be parameters, so that you deploy smaller 

resources in the dev and test environments, and more powerful resources for the production job 

deployment. 

If you are building a data platform using all AWS services, then CloudFormation is a good option 

for automating your infrastructure deployments and updates. However, if you have a multi-cloud 

approach, or you also want to automate the deployment of other non-AWS services (such as 

Snowflake or Databricks), then Terraform (a product from HashiCorp) provides similar func-

tionality for both AWS and non-AWS resources. For more information on Terraform, see https://

www.terraform.io/. 

https://www.terraform.io/
https://www.terraform.io/
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Let’s now look at another related service that enables us to create CloudFormation templates 

with recommended best practices via code.

AWS Cloud Development Kit (CDK)
The AWS CDK enables you to define resources using popular programming languages including 

TypeScript, JavaScript, Python, Java, C#/.Net, and Go. You define the resources in your code and 

the CDK then creates a CloudFormation template that incorporates best practices for the specific 

type of resource that you are creating. 

Some of the benefits of using the AWS CDK to define your AWS resources as code are as follows:

• It allows you to specify high-level constructs in your code, and have CDK automati-

cally create CloudFormation templates that provide best practice and contain secure 

defaults:

This enables you to define resources that follow best practices, with less code. For example, 

the AWS documentation demonstrates how just 13 lines of Python code that provides 

high-level constructs can be used to create a CloudFormation template of over 500 lines. 

See: https://docs.aws.amazon.com/cdk/v2/guide/home.html.

• It allows you to use common programming approaches to model the design of your 

system:

For example, you can use the AWS CDK to write Python code that defines AWS resources 

that make up your data platform, and make use of programming constructs such as pa-

rameters, if … then … else conditions, loops, and more. 

• It enables the import of existing CloudFormation templates for use in your AWS CDK 

code:

With this approach, you can migrate any existing CloudFormation templates to the AWS 

CDK one piece at a time. See the AWS documentation on this at https://docs.aws.amazon.

com/cdk/v2/guide/use_cfn_template.html. 

• It enables you to centralize the code that defines your data platform resources along-

side the code for data transformation jobs, CI/CD pipelines, etc�:

Source Control Management (SCM) systems such as Git (which we will cover in more 

detail in the next section) enable you to securely manage your code in a centralized location 

and include features that simplify collaboration and help manage conflicts. By defining 

your resources using the AWS CDK, you can manage all your code in central repositories. 

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/v2/guide/use_cfn_template.html
https://docs.aws.amazon.com/cdk/v2/guide/use_cfn_template.html
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AWS has a blog post that demonstrates how to use the AWS CDK to create a continuous integration 

and continuous deployment (CI/CD) pipeline to define, test, provision, and manage changes to 

an AWS Glue-based pipeline. We will not cover the AWS CDK in any more detail here, but refer to 

the following AWS blog post to learn more about how the CDK can be used with data pipelines: 
https://aws.amazon.com/blogs/big-data/build-test-and-deploy-etl-solutions-using-

aws-glue-and-aws-cdk-based-ci-cd-pipelines/.

Let’s now look at AWS services for managing and deploying code. 

AWS code management and deployment services
Source Control Management (SCM) systems enable you to store code (along with documenta-

tion and other files) in a way that each version of a file is stored and tracked. It also helps manage 

potential conflicts when you have multiple engineers working to update the same set of files. This 

has many benefits, including:

• The ability to easily revert to a previous version of code

• Being able to check which person on the team made a change to a specific part of the code

• The ability for multiple people to work on different parts of the same file (such as different 

functions in code), easily merge their changes to the file, and resolve any potential conflicts

• Ensuring that there is a central copy of all code, enabling administrators to handle code 

backups centrally

The most popular code management toolkit is Git, an open-source solution that is freely avail-

able. Many vendors, however, have created commercial SCM solutions that use the underlying 

Git toolset. This means that once you have a good understanding of how Git works, there are 

multiple different solutions that you can use with ease that add additional functionality and a 

user interface to the underlying Git toolset. 

Let’s look at the AWS service for hosting Git repositories, as well as related services that can be 

used to create CI/CD pipelines.

AWS CodeCommit
AWS CodeCommit is a cloud-based service that provides a managed source control system to 

host Git repositories. CodeCommit stores code, binaries, and metadata in a way that provides 

resilience, redundancy, and high availability. CodeCommit encrypts all files that it stores, and 

through integration with AWS Identity and Access Management (IAM), you can assign specific 

permissions to different users for different code repositories. 

https://aws.amazon.com/blogs/big-data/build-test-and-deploy-etl-solutions-using-aws-glue-and-aws-cdk-based-ci-cd-pipelines/
https://aws.amazon.com/blogs/big-data/build-test-and-deploy-etl-solutions-using-aws-glue-and-aws-cdk-based-ci-cd-pipelines/
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With CodeCommit you can create a code repository to store code related to the data platform 

and separate code repositories for each of your data domains (where data producers can store 

code for their data engineering transforms and pipelines). You can also integrate popular devel-

opment tools with AWS CodeCommit, such as AWS Cloud9, Visual Studio, and Eclipse. Certain 

AWS services also offer direct integration with CodeCommit, such as support in AWS Glue for 

managing code for your Glue jobs in CodeCommit (and AWS Glue also supports another popular 

code management solution, GitHub). 

CodeCommit currently offers 5 active users per month at no cost as part of the AWS Free Tier. 

If you need more than 5 active users, the cost is $1 per additional user per month. This comes 

with a set limit of storage and Git requests per user per month, and if these limits are exceeded 

there is an additional charge. See the CodeCommit pricing page at https://aws.amazon.com/

codecommit/pricing/.

We will use CodeCommit in the hands-on section of this chapter, but first let’s have an overview 

of a related service, AWS CodeBuild. 

AWS CodeBuild
AWS CodeBuild is a managed service that can be used to compile source code, run unit tests, and 

produce software packages ready for deployment. 

For example, you can use CodeBuild to deploy an environment where you can use an AWS Glue 

public Amazon ECR image (Docker container) to run unit tests against your code. Once the tests 

have run, assuming they complete successfully, you can use CodeBuild to write the updated code 

to an Amazon S3 bucket. 

AWS CodePipeline
AWS CodePipeline is a managed service providing continuous delivery, enabling you to auto-

mate the steps to deploy and update code and infrastructure for your data platform and products. 

For example, you can create a pipeline in CodePipeline that instructs CloudFormation to perform 

an update on resources, based on an updated CloudFormation template. You can then configure 

that pipeline to be automatically triggered when a new commit is made to the associated Code-

Commit repository and branch combination. By doing this, every time you update the CloudFor-

mation template in CodeCommit, the pipeline will be triggered and will use CloudFormation to 

deploy the update to the existing resources. 

https://aws.amazon.com/codecommit/pricing/
https://aws.amazon.com/codecommit/pricing/
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Another example is data producers using CodePipeline to manage updates to their data engi-

neering transform and pipeline code. When a data engineer updates the code for a Glue job and 

commits that to CodeCommit, this can trigger a pipeline that calls CodeBuild to run unit tests 

against the Python code, and then writes the updated file to Amazon S3. When Glue jobs run, 

they read the code file from Amazon S3, so the next time the Glue job is triggered it will use the 

latest version of the code file placed there by CodeBuild. For an example of this implementation, 

see the following AWS blog post: https://aws.amazon.com/blogs/devops/how-to-unit-test-

and-deploy-aws-glue-jobs-using-aws-codepipeline/. 

Having reviewed a number of AWS services that help implement a DataOps approach to building 

a data platform, let’s now get hands-on with some of these services.

Hands-on – automated deployment of data platform 
components and data transformation code
While we do not have space to cover all aspects of building a modern data platform, in this section 

we will cover how to use various AWS services to deploy some components of a data platform. 

We start by setting up an AWS CodeCommit repository that will contain all the resources for our 

data repository (such as Glue ETL scripts and CloudFormation templates). We then use AWS 

CodePipeline to configure pipeline jobs that push any code or infrastructure changes into our 

target account. 

Setting up a Cloud9 IDE environment
Our first step is to create a Cloud9 IDE environment, which we can use for writing our code and 

committing code to a CodeCommit repository. Cloud9 is an AWS service that can be used to 

provision a managed EC2 instance to provide us with a browser-based Integrated Development 

Environment (IDE) that we can use to write, run, and debug code from within our web browser. 

Cloud9 environments come preinstalled with various tools that are useful for developing in an 

AWS environment, such as the AWS Command Line Interface (CLI) and a Git client. 

Let’s get started:

1. Log in to the AWS Management Console and use the top search bar to search for and 

open the Cloud9 service.

2. On the Cloud9 dashboard page, click on Create environment at the top right.

3. For Name, provide a name for your environment, such as dataeng-ide, and optionally 

provide a description that explains what you are using the environment for (this will be 

visible to other AWS users in this account).

https://aws.amazon.com/blogs/devops/how-to-unit-test-and-deploy-aws-glue-jobs-using-aws-codepipeline/
https://aws.amazon.com/blogs/devops/how-to-unit-test-and-deploy-aws-glue-jobs-using-aws-codepipeline/
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4. For Environment type, ensure that New EC2 instance is selected, and for Instance type, 

select t2�micro. If there are no t2�micro instances available when you launch your Cloud9 

IDE, either wait a while and try again, or use a different instance size (just be aware of 

the pricing differences for the different instance types). 

5. Leave all other settings at their defaults, and click Create.

6. On the list of your Cloud9 environments, click on the link to open your Cloud9 IDE. Note 

that it takes a few minutes for your environment to be created. 

7. Once the environment has been created, use the terminal at the bottom of the Cloud9 

environment to run the following command: git –-version. This should return the 

version of Git that is preinstalled in the Cloud9 environment. 

Figure 16.1: AWS Cloud9 console

8. You can now configure a username and email that will be associated with your Git com-

mits by running the following commands in the Cloud9 terminal. Modify the following 

commands to use a username of your choice and specify your email address:

git config --global user.name "Gareth Eagar"

git config --global user.email gareth.eagar@example.com
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9. We can now configure the AWS CLI credential helper, which will automate the provisioning 

of credentials needed to authenticate to CodeCommit. Run the following two commands 

to configure the credential helper:

git config --global credential.helper '!aws codecommit credential-
helper $@'

git config --global credential.UseHttpPath true

10. For the last step in this part of the hands-on exercise, let’s create a new directory in our 

Cloud9 environment to contain our Git repositories. By default, you should be in the /

home/ec2-user/environment directory in the terminal window, and you can run the fol-

lowing commands to create a new git subdirectory, and then change into that directory:

mkdir git

cd git

Now that we have configured our IDE environment, let’s move on to creating our CodeCommit 

repositories.

Setting up our AWS CodeCommit repository
In this step, we create an AWS CodeCommit repository to store a CloudFormation template that 

deploys a Glue job, and to store PySpark code for the Glue job. We then clone the repository in 

our Cloud9 environment.

Let’s get started:

1. We will be going back to our Cloud9 IDE environment shortly, so use a new browser tab 

to open the AWS Management Console and use the top search bar to search for, and 

open, the CodeCommit service.

2. On the Repositories page, click on Create repository on the right-hand side. 

3. For Repository name, set the name to data-product-film, and optionally provide a 

Description. Then, click Create.

4. In the left-hand side menu, make sure Repositories is selected, and then click on the 

Clone HTTPS link under the Clone URL column for your data-product-film repository. 

This will copy the HTTPS URL for the repository to our clipboard, which we will need in 

the next step. 
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5. Go back to your browser tab with the Cloud9 IDE environment, and in the terminal/

console window, run pwd to make sure you are in the home/ec2-user/environment/git 

directory. 

6. In the terminal/console window, run git clone <https-repo-link>, replacing <https-

repo-link> with the link you copied in step 5. For example:

git clone https://git-codecommit.us-east-2.amazonaws.com/v1/repos/
data-product-film

7. In the terminal/console window, change into the data-product-film directory and create 

new subfolders – one for our Glue PySpark code, and one for CloudFormation templates:

cd data-product-film

mkdir glueETL_code

mkdir cfn_templates

8. We also want to create a new S3 bucket to store resources related to our data product. In 

the terminal/console window, run the following command to create a new bucket, but 

make sure to replace initials with your own initials or unique identifier:

aws s3 mb s3://data-product-film-initials

So far, we have created a repository in AWS CodeCommit, cloned the repository into a Cloud9 

IDE environment, and created an Amazon S3 bucket and directories to store our files. We can 

now move on to our next exercise, where we will add a Glue ETL script and a CloudFormation 

template into our repository. 

Adding a Glue ETL script and CloudFormation template into 
our repository
In this section, we will create a new CloudFormation template file that defines an AWS Glue job, 

and will also create a file that contains the code for the Glue job:

1. Log in to the AWS Management Console and use the top search bar to search for, and 

open, the Cloud9 service.

2. In the list of your environments, click on the dataeng-ide environment (which we created 

earlier), and then click on Open in Cloud9. Note that if your Cloud9 environment has 

been idle for more than 30 minutes, it will have automatically shut down and you will 

need to wait a few minutes while the environment restarts.
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3. Once your Cloud9 environment is ready, click on File | New File. Paste the following code 

into the editor. Note that you can also copy and paste this code from the GitHub site for 

this chapter of the book:

IMPORTANT: Make sure you change the S3 path to reference the name of the curated 

zone bucket.

import sys

from awsglue.transforms import *

from awsglue.utils import getResolvedOptions

from pyspark.context import SparkContext

from awsglue.context import GlueContext

from awsglue.job import Job

from awsglue.dynamicframe import DynamicFrame

args = getResolvedOptions(sys.argv, ["JOB_NAME"])

sc = SparkContext()

glueContext = GlueContext(sc)

spark = glueContext.spark_session

job = Job(glueContext)

job.init(args["JOB_NAME"], args)

# Load the streaming_films table into a Glue DynamicFrame from the 
Glue catalog

StreamingFilms = glueContext.create_dynamic_frame.from_catalog(

    database="curatedzonedb",

    table_name="streaming_films",

    transformation_ctx="StreamingFilms",

)

# Convert the DynamicFrame to a Spark DataFrame

spark_dataframe = StreamingFilms.toDF()

# Create a SparkSQL table based on the steaming_films table

spark_dataframe.createOrReplaceTempView("streaming_films")

# Create a new DataFrame that records number of streams for each

# category of film
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CategoryStreamsDF = glueContext.sql("""

SELECT category_name,

         count(category_name) streams

FROM streaming_films

GROUP BY category_name

""")

# Convert the DataFrame back to a Glue DynamicFrame

CategoryStreamsDyf = DynamicFrame.fromDF(CategoryStreamsDF, 
glueContext, "CategoryStreamsDyf")

# Prepare to write the dataframe to Amazon S3

############# NOTE ############# 

#### Change the path below to

#### reference your bucket name

################################

s3output = glueContext.getSink(

  path="s3://dataeng-curated-zone-gse23/streaming/top_categories",

  connection_type="s3",

  updateBehavior="UPDATE_IN_DATABASE",

  partitionKeys=[],

  compression="snappy",

  enableUpdateCatalog=True,

  transformation_ctx="s3output",

)

# Set the database and table name for where you want this table

# to be registered in the Glue catalog

s3output.setCatalogInfo(

  catalogDatabase="curatedzonedb", catalogTableName="category_
streams"

)

# Set the output format to Glue Parquet

s3output.setFormat("glueparquet")

# Write the output to S3 and update the Glue catalog

s3output.writeFrame(CategoryStreamsDyf)

job.commit()
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4. Ensure that in the previous step, you modified the name of the S3 bucket on line 47 to match 

the name of your curated zone bucket, and then click File | Save As. Make sure to select 

the glueETL_code directory, give the file a name of Glue-streaming_views_by_category.

py, and then click Save:

Figure 16.2: Cloud9 – saving the Glue ETL code

5. Now we can create our CloudFormation template, which will be used to deploy a new Glue 

job. Click on File | New File. Paste the following code for our CloudFormation template 

into the text editor for the new file. Note that you can also copy and paste this code from 

the GitHub site for this chapter of the book:

IMPORTANT: Make sure you change the S3 script location parameter to reference the 

name of the bucket that you created earlier in this chapter. 

AWSTemplateFormatVersion: '2010-09-09'

# CloudFormation template to deploy the streaming view by category

# Glue job.

# In the Parameters section we define parameters that can be passed 
to

# CloudFormation at deployment time. If no parameters are passed in, 
then the

# specified default is used. 
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Parameters: 

# JobName: The name of the job to be created

  JobName:  

    Type: String

    Default: streaming_views_by_category 

# The name of the IAM role that the job assumes. It must have access 
to data, 

# script, and temporary directory. We created this IAM role via the 
AWS 

# console in Chapter 7. 

  IAMRoleName:  

    Type: String

    Default: DataEngGlueCWS3CuratedZoneRole

# The S3 path where the script for this job is located. Modify the 
default

# below to reference the specific path for your S3 bucket

  ScriptLocation:  

    Type: String

    Default: "s3://data-product-film-initials/glueETL_code/Glue-
streaming_views_by_category.py"    

# In the Resources section, we define the AWS resources we want to 
deploy

# with this CloudFormation template. In our case, it is just a 
single Glue

# job, but a single template can deploy multiple different AWS 
resources

Resources:                                      

# Below we define our Glue job, and we substitute parameters in from 
the 

# above section. 

  GlueJob:

    Type: AWS::Glue::Job

    Properties:

      Role: !Ref IAMRoleName

      Description: Glue job to calculate number of streams by 
category

      Command:

        Name: glueetl
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        ScriptLocation: !Ref ScriptLocation

      WorkerType: G.1X

      NumberOfWorkers: 2

      GlueVersion: "3.0"

      Name: Streaming Views by Category

6. Ensure that in the previous step, you modified the name of the S3 bucket on line 22 to 

match the name of your data product film bucket, and then click File | Save As. Make sure 

to select the cfn_templates directory, give the file a name of CFN-glue_job-streams_by_

category.cfn, and then click Save�

7. Let’s now commit the two new files we created to our data-product-film repository. To 

do this, use the terminal/console window in Cloud9. Make sure you are in the /home/ec2-

user/environment/git/data-product-film directory and run the following commands 

to commit the file to the repository:

git add .

git commit -m "Initial commit of CloudFormation template and Glue 
code for our streaming views by category data product"

git push

The above git add command stages all files in the current directory and its subdirec-

tories to be added to Git. The git commit command prepares the file to be written to 

our CodeCommit Git repository, along with a message explaining the purpose of this 

specific commit. The git push command takes the prepared files and copies them into 

the CodeCommit repository. 

8. Now, access the AWS Console and navigate to the CodeCommit service. If you review 

the data-platform-film repository in CodeCommit, you should see the files that we just 

created in the repository. 

We have now created a CloudFormation template and Glue ETL code and committed the files to 

our CodeCommit repository. Next, we create pipelines to automate the deployment of the Glue 

job and code. 

Note that you can type out the above commands or copy and paste them 

from the GitHub repo for this book, but be careful about copying and pasting 

from the eBook or PDF versions, as it may use quote characters that will not 

work correctly when you paste the code into Cloud9. 
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Automating deployment of our Glue code 
When a Glue job runs, it reads the code for the job from Amazon S3. In this section, we will set up 

a pipeline using AWS CodePipeline that will copy the contents of our data product film repository 

to Amazon S3 whenever a change is made to any of the files:

1. Log in to the AWS Management Console and use the top search bar to search for and 

open the CodePipeline service.

2. On the page listing pipelines, click on Create pipeline on the top right-hand side.

3. For Pipeline name, enter data-product-film-resources, and for Role name, accept the 

default. Leave Advanced settings as the default, and then click on Next.

4. For Source provider, select AWS CodeCommit from the drop-down list.

5. For Repository name, select data-product-film.

6. For Branch name, select the default (usually the default branch is called master, but it 

may also be called main, depending on the tool that was used to commit the first file to 

the repository).

7. For Change detection options, select Amazon CloudWatch Events�

8. Leave other settings as default, and click Next.

9. For Build – optional, click Skip build stage. Then click Skip to confirm.

10. For Deploy provider, select Amazon S3 from the drop-down list.

11. For Bucket, select the bucket we created earlier for our data product (such as data-prod-

uct-film-initials).

12. Select the Extract file before deploy option, leave Deployment path – optional blank, 

then click Next.

13. Review the settings, then click Create pipeline. 

14.  Open the Amazon S3 console and confirm that the files from your repo have now been 

copied into your data-product-film-initials bucket. 

Our Glue code is now deployed, so let’s now set up a pipeline that will deploy our Glue job using 

CloudFormation.

Automating the deployment of our Glue job 
Let’s create a new pipeline that will be triggered whenever the CloudFormation template for our 

Glue job is updated. In order to do this, we first need to update one of our IAM roles. 



Building a Modern Data Platform on AWS542

When we deploy a CloudFormation template via the console, by default it will use the credentials 

of the user that we are logged in as to create the required resources (such as a Glue job). However, 

when doing an automated deployment via CodePipeline, we need to specify an IAM role that has 

the necessary permissions to deploy the resources instead. 

For our use case, we can use the DataEngGlueCWS3CuratedZoneRole role, which we created in 

Chapter 7 to run our Glue job. However, we need to modify the role so that CloudFormation is 

able to assume it when deploying resources, which we do by adding a trust relationship for 

CloudFormation to the role. We also want to add permissions to allow this role (which is also 

used to run our Glue job) to access the new bucket we created that contains the Glue ETL code: 

1. Log in to the AWS Management Console and use the top search bar to search for, and 

open, the IAM service.

2. In the left-hand menu, click on Roles, and then search for DataEngGlueCWS3CuratedZoneRole, 

and then click on the role name so we can edit it.

3. Select the Trust relationships tab, and then click Edit trust policy�

4. Modify the Service portion of the policy to also include the CloudFormation service, as 

follows:

{

    "Version": "2012-10-17",

    "Statement": [

        {

            "Effect": "Allow",

            "Principal": {

                "Service": [

                    "cloudformation.amazonaws.com",

                    "glue.amazonaws.com"

                ]

            },

            "Action": "sts:AssumeRole"

        }

    ]

}

5. Once the policy JSON is updated, click on Update policy. 

6. Click on the Permissions tab, expand the DataEngGlueCWS3CuratedZoneWrite policy, 

and click Edit.



Chapter 16 543

7. Add your data-product-film-initials bucket in the list of resources that provide 

s3:GetObject permissions as follows (making sure to modify the bucket name initials 

to reflect your bucket name):

"Resource": [

    "arn:aws:s3:::dataeng-landing-zone-initials/*",

        "arn:aws:s3:::dataeng-clean-zone-initials/*",

        "arn:aws:s3:::data-product-film-initials/*"

    ]

Now that we have permissions configured as needed, let’s create the pipeline: 

1. Log in to the AWS Management Console and use the top search bar to search for, and 

open, the CodePipeline service.

2. On the page listing pipelines, click on Create pipeline at the top right-hand side.

3. For Pipeline name, enter data-product-film-glue-streaming-views-by-category-

job, and for Role name, accept the default. Leave Advanced settings as default, and then 

click on Next.

4. For Source provider, select AWS CodeCommit from the drop-down list.

5. For Repository name, select data-product-film.

6. For Branch name, select the default (usually the default branch is called master, but it 

may also be called main, depending on the tool that was used to commit the first file to 

the repository).

7. For Change detection options, select Amazon CloudWatch Events�

8. Leave other settings as default, and click Next.

9. For Build – optional, click Skip build stage. Then click Skip to confirm.

10. For Deploy provider, select AWS CloudFormation from the dropdown.

11. For Action mode, select Create or update a stack�

12. For Stack name, enter glue-job-streaming-views-by-category-job.

13. For Template, select SourceArtifact for Artifact name. 

14. For File name, enter the name of our CloudFormation template: cfn_templates/CFN-

glue_job-streams_by_category.cfn.

15. For Role name, select DataEngGlueCWS3CuratedZoneRole from the dropdown.

16. Leave all other settings blank and then click Next.

17. Review the settings, then click Create pipeline.



Building a Modern Data Platform on AWS544

18. The pipeline should run, deploying the Glue job to your account. In the AWS Management 

Console, go to the CloudFormation service to confirm that the template was deployed, 

and then go to the AWS Glue console to confirm that the job has been created. You can 

also optionally run the Glue job in order to create the new top_categories table. 

Testing our CodePipeline
We created our CodePipeline so that when a change to our CloudFormation template (which 

deploys our Glue job) is committed to CodeCommit, the change will automatically be deployed 

by CodePipeline.

Let’s test it out:

1. Log in to the AWS Management Console and use the top search bar to search for, and 

open, the CodeCommit service.

2. Click on the data-product-film repository, then click on the cfn_templates folder, and 

then click on the name of our CloudFormation template (CFN-glue_job-streams_by_

category). 

3. Click on the Edit button at the top right.

4. Let’s increase the number of workers for our Glue job from 2 to 3. Look for the 

NumberOfWorkers attribute (around line 38) and change the number from 2 to 3. 

5. At the bottom of the page, complete the form for Commit changes to master by providing 

details for Author name, Email address, and Commit message.

6. Click on Commit changes.

7. Now navigate back to the CodePipeline service in the AWS console. When you review the 

list of pipelines, you should see that your cloudformation-glue-job-deployment pipeline 

is listed as In progress (although it may take a few moments before the status updates). 

8. Navigate to the CloudFormation service, click on your stack name, then view the Events 

tab and confirm that your Glue job is being updated. You can also optionally go to the AWS 

Glue console and confirm in the Job details tab that the number of workers is now set to 3. 

We’ve now created a CloudFormation template to deploy a Glue job, and linked that with a 

CodePipeline pipeline to automatically deploy updates to the job whenever we commit a new 

version of the CloudFormation template to our CodeCommit repository. With this, we are now 

managing our code through an SCM system (Git with CodeCommit, in this case), and we can 

automate the deployment of our pipeline whenever a change is made to our transformation code 

or the configuration of our AWS Glue Job CloudFormation template. 
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Summary
In this chapter, we introduced a number of approaches to implementing a modern data platform. 

We looked at the high-level goals of a data platform (flexibility, scalability, good governance, 

secure, and self-serve enabled), and then discussed the pros and cons of building versus buying 

a data platform. 

We then discussed how a DataOps approach brings automation to the process of developing data 

products. We looked at how the deployment and management of infrastructure (such as Glue 

jobs) can be automated, as well as how code for transforms can be managed with an SCM system. 

We then got hands-on with some of the AWS services that can be used to automate data plat-

forms, including CloudFormation, CodeCommit, and CodePipeline. We created a Git repository 

in CodeCommit and used it to store both the PySpark code for our Glue ETL job and a CloudFor-

mation template to deploy the Glue job. We then looked at how we could create a pipeline that 

would automatically deploy our Glue job (as well as any updates to the Glue job configuration). 

Any updates to our ETL code are also automatically pushed to the Amazon S3 location where 

the Glue job reads the ETL code, ensuring that updates to the code would be run with any future 

executions of the Glue job. 

A modern data platform should be managed by a central team, and should enable data producers 

to easily build data products and catalog those in a way that data consumers can find and access 

the data products. The platform should also make it easy to use modern table formats (such as 

Apache Iceberg), and data producers should be able to use automation to deploy and manage 

their transformation code. 

There is a lot more to building a modern data platform than we could cover in this chapter, and 

you are encouraged to read further on this topic. But we’ll now move on to the last chapter of 

this book, where we will wrap up by looking at the bigger picture of analytics, real-world data 

pipelines, and potential future developments and trends in this space.
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Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd
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Wrapping Up the First Part of 
Your Learning Journey

In this book, we have explored many different aspects of the data engineering role by learning 

more about common architecture patterns, understanding how to approach designing a data engi-

neering pipeline, and getting hands-on with many different AWS services commonly used by data 

engineers (for data ingestion, data transformation, orchestrating pipelines, and consuming data). 

We examined some of the important issues surrounding data security and governance and dis-

cussed the importance of a data catalog to avoid a data lake turning into a data swamp. We also 

reviewed data marts and data warehouses and introduced the concept of a data lake house.

We learned about data consumers – the end users of the product that’s produced by data engi-

neering pipelines – and looked into some of the tools that they use to consume data (including 

Amazon Athena for ad hoc SQL queries and Amazon QuickSight for data visualization). Then, we 

briefly explored the topics of machine learning (ML) and Artificial Intelligence (AI) and learned 

about some of the AWS services that are used in these fields.

We also looked at some recent developments, such as the data mesh approach, which moves 

away from a centralized data engineering team and has teams that produce the data and also 

own the process of creating analytical versions of that data. We also discussed open table for-

mats, such as Apache Iceberg, which overcome some of the technical challenges of traditional 

data lakes, such as doing record-level updates. Finally, we introduced some important concepts 

for building a modern data platform, including the pros and cons of building versus buying, and 

how a DataOps approach can help bring automation and observability to a modern data platform. 
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In this chapter, we’re going to review the complexities of real-world data engineering environ-

ments (including some examples of real-world data pipelines) and discuss some emerging trends 

in the field. We’ll then look at how to clean up your AWS account in the hands-on portion of this 

chapter.

In this chapter, we will cover the following topics:

• Understanding the complexities of real-world data environments

• Examining examples of real-world data pipelines

• Imagining the future – a look at emerging trends

• Hands-on – cleaning up your AWS account

Technical requirements
There are no specific technical requirements for the hands-on section of this chapter as we will 

just be cleaning up resources that we have created throughout this book. Optionally, however, 

there will be a section that covers deleting your AWS account. If you choose to do this, you will 

need access to the account’s root user to log in with the email address that was used to create 

the account.

You can find the code files of this chapter in the GitHub repository using the following link: 
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/

main/Chapter17

Understanding the complexities of real-world data 
environments
This book was never intended as a deep dive into one specific area of data engineering, although 

there are many other great books and resources out there that do focus on a single area (such as 

books that focus on Apache Spark programming, or on just how to use Kafka to ingest streaming 

data). Rather, we took a broad look at the many different areas that are covered by data engineering.

Because of this broad topic coverage, you have probably already begun to form a good idea of 

the different aspects of the bigger picture of data analytics. While it is quite common for data 

engineering roles to focus on just writing data transform jobs, or just managing the infrastructure 

to ingest and process streaming data, it is helpful to understand how this integrates with data 

warehouses/data marts, how different data consumers use data, and how ML and AI fit into the 

bigger data picture, as we have reviewed in this book. Having this broader understanding of the 

big data landscape makes you a better data engineer, no matter what your specific focus is. 

https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter17
https://github.com/PacktPublishing/Data-Engineering-with-AWS-2nd-edition/tree/main/Chapter17
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We have also been focusing on the tasks from the perspective of a single data engineer, but in 

reality, most data engineers will work as part of a larger team. There may be different teams, or 

team members, focused on different aspects of the data engineering pipeline, but all team mem-

bers need to work together. This is why DataOps processes are so important, as they help teams 

work together effectively in the process of building data products. 

In most organizations, there are also likely to be multiple environments, such as a development 

environment, a test/quality assurance (QA) environment, and a production environment. The 

data infrastructure and pipelines must be deployed and tested in the development environment 

first, and then any updates should be pushed to a test/QA environment for automated testing, 

before finally being approved for deployment in the production environment.

In the following diagram, we can see that there are multiple teams responsible for different 

aspects of data engineering resources. We can also see that the data engineering resources are 

duplicated across multiple different environments, such as the development environment, test/

QA environment, and production environment (and these would generally be separate AWS 

accounts). Each organization may structure its teams and environments a little differently, but 

this is an example of the complexity of data engineering in real life:

Figure 17.1: Data engineering teams and environments
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If using a data mesh approach to organize your data teams, then each data domain would have 

multiple environments and teams, as shown in Figure 17.1. However, for smaller data domains, 

there may be a single team with a variety of skills that manages all of the aspects shown in the 

diagram. There is no best way to structure teams within a domain, as it mostly depends on the 

scale of the data (including the number and complexity of data sources), and the range and 

complexity of required data transforms. For a small domain with just a few data sources that are 

creating just one or two data products, it is possible that all the functions shown in Figure 17.1 will 

be managed by a single data engineer, building on automation and functionality provided by the 

central data mesh team (which we discussed in Chapter 15, Implementing a Data Mesh Strategy).

Let’s now look at what this may look like for an organization with multiple data domains, and how 

the different domains come together with a central data mesh platform, as shown in Figure 17.2.

Figure 17.2: Data engineering environments in a data mesh

In Figure 17.2, we see three data domains, and at the bottom right, a central data platform. Note 

how the central data platform team is responsible for a business data catalog, which each data 

domain uses to publish metadata for their data products. The central data platform team may 

also create and manage CloudFormation stacks, which are used to automate the deployment 

of resources such as AWS Glue, Amazon EMR, and Amazon Managed Workflows for Apache 

Airflow (MWAA). The data platform team may also deploy AWS CodeBuild, CodeDeploy, and 

CodePipeline, which each domain uses to implement DevOps processes. 
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In this way, the data platform team helps simplify the process of implementing data engineering 

pipelines for each data domain, by providing automation for resource and code deployment. 

Having discussed some of the complexities of real-world data environments, let’s now look at 

some examples of real-world data pipelines.

Examining examples of real-world data pipelines
The data pipeline examples that we have used in this book have been based on common types of 

transformations and pipelines, but they have been relatively simple examples. As you can imagine, 

in large organizations, the types of data pipelines that are built can be a lot more complex and 

may end up processing extremely large sets of data.

In this section, we will examine two examples of more complex data engineering pipelines from 

two very well-known organizations – Spotify and Netflix. Both of these companies have public 

blogs that cover software and data engineering, and the details provided about their pipelines in 

this section have been taken from the public information that’s been made available in a variety 

of blog posts and articles.

By learning more about these real-world big data pipelines, you can be better prepared for what 

to expect when you start working with very large datasets. Also, these examples teach valuable 

lessons from cutting-edge companies about how they approach complex big data processing 

tasks, and you can apply these types of approaches and lessons learned to your own complex 

engineering challenges in the future. 

A decade of data wrapped up for Spotify users
Each year, the music streaming service Spotify uses the extensive data they have on their users’ 

listening history to generate interesting stats for each user. This information is made available to 

each user at the end of the year and includes information such as how many minutes of Spotify 

audio they streamed that year, as well as their top artist, top track, and top genre for the year. 

In 2022, Spotify added a new feature – an overview of a user’s “listening personality” that displayed 

a four-letter code that was a combination of four binary attributes that each try to measure and 

describe one aspect of how a user listens to music, independent of what music they like. For exam-

ple, it analyzed how much a user listened to their favorite artists versus how much they explored 

new artists, and how much they listened to newly released songs versus listening to older songs.
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To generate these statistics and metrics related to each user of the platform, the data engineer-

ing team at Spotify has to gather and analyze detailed information about every user’s listening 

history, such as:

• Which songs they played

• Which artists they listened to

• The top genres they listen to

• Whether the user listens to the same artist all the time, or often listens to different artists

• The age of each song they listened to, in order to determine whether they listened to more 

new songs or preferred older songs 

A summary of the information is then generated for users, and users can review this in a feature 

called Spotify Wrapped. Putting this all together is a massive undertaking for multiple teams at 

Spotify, including marketing, frontend app engineering, and, of course, data engineering.

While Spotify has been presenting the Spotify Wrapped feature for several years, in 2019, they 

decided to add a new feature that reports a user’s listening trends for each year of the past decade 

(2010 – 2019). In an official Spotify blog post, Spotify Unwrapped: How we bought you a decade of data 

(https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-

you-a-decade-of-data/), the Spotify data engineering team revealed some of the behind-the-

scenes work they did to aggregate user data by year, over 10 years.

In this blog post, the data engineering team talks about some challenges they faced with the 

Wrapped project in 2018, and how they had to work closely with Google (their cloud provider) 

to be able to achieve the required processing scale. For 2019, they were planning to do something 

similar to 2018, but they had more users (totaling 248 million monthly active users at the time) 

and were planning to do this for 10 years of listening history. As a result, they used the lessons 

they had learned from their 2018 experience to modify their approach for 2019.

Spotify considers each statistic they want to report for an individual user (such as top artist or 

top track) as a separate data story. So, to meet the scale requirements for a decade of data, they 

decided to persist intermediate data and final data for Spotify Wrapped 2019 in Google BigTable 

(a NoSQL database that is somewhat similar to Amazon DynamoDB). For every Spotify user, they 

had a row in BigTable with a column for each data story, for each year of the decade. This was a 

significant change from how they had processed and collected different data stories for each user 

in previous years, but this led to a significantly improved process as data was now pre-grouped 

and collated per user in BigTable.

https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-of-data/
https://engineering.atspotify.com/2020/02/18/spotify-unwrapped-how-we-brought-you-a-decade-of-data/


Chapter 17 553

They could then write separate jobs for most data stories (decoupling the data stories from each 

other) and run these individually, but could also run multiple different data story jobs in paral-

lel. The output of each of these data story jobs would then be saved in BigTable, with a row for 

each Spotify user. End-of-decade top statistics could then be aggregated directly from the data 

in BigTable.

The key takeaways that we can learn from this example are as follows:

• It is good to iterate on data engineering pipelines and continually reevaluate the archi-

tecture and approach you use to identify better ways to do things.

• Breaking down large jobs into smaller, decoupled jobs can lead to improved efficiencies. 

Keep a modular design for your jobs and avoid the temptation to create a single job that 

does everything.

• Be versatile and flexible in the tools you use. While we did not have space to cover NoSQL 

databases in any significant way in this book, a NoSQL database may be an ideal target for 

storing some of the output from your big data processing jobs. For example, DynamoDB 

was designed to handle billions of rows of data in a table, as well as enable extremely fast 

access to individual rows from that large dataset.

Data engineers are often challenged to come up with innovative new ways to draw insights out 

of extremely large datasets, as demonstrated in this real-world example from Spotify. Now, let’s 

look at another real-life data processing example, this time from Netflix.

Ingesting and processing streaming files at Netflix scale
Netflix, the world’s leading streaming video platform, with over 230 million subscribers world-

wide, predominantly uses AWS for its compute infrastructure. As you can imagine, it takes a lot 

of compute power, and many different microservices and applications, to support a user base 

of that size.

Monitoring and understanding how network traffic flows between all the different Netflix mi-

croservices, across many separate AWS accounts, is key for the following:

• Maintaining a resilient service

• Understanding dependencies between services

• Troubleshooting when things do go wrong

• Identifying ways to improve the user experience
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One of the features of the Amazon Virtual Private Cloud (VPC) service (a private cloud-based 

network environment in an AWS account) is the ability to generate VPC Flow Logs, which capture 

details on network traffic between all network interfaces in a VPC.

However, most AWS services make use of dynamic IP addresses, meaning that the IP address 

that’s used by a system can frequently change. So, while VPC Flow Logs provide rich information 

on network communications between IP addresses, if you don’t know which applications or ser-

vices had the IP addresses being reported on at that time, the Flow Logs are largely meaningless.

Enriching VPC Flow Logs with application information
To have data that was meaningful, Netflix determined that they needed to enrich VPC Flow Logs 

with information about which application was using a specific IP address at the point in time 

recorded in the VPC Flow Log. To capture this information, Netflix created an internal system 

called Sonar that uses CloudWatch Events, Netflix Events, API calls, and various other methods 

to capture a stream of IP change events.

At the 2017 AWS Summit in Chicago, Netflix presented a breakout session about this solution 

(available on YouTube at https://www.youtube.com/watch?v=8tsIqfvizpU). In the video, Net-

flix explains how they used a large Kinesis Data Streams cluster (with hundreds of shards) to 

process incoming VPC Flow Logs. An internal Netflix application known as Dredge was created 

to read incoming data from the Kinesis data stream, as well as enrich the VPC Flow Log data with 

application metadata from the Sonar stream of IP change events, identifying the applications or 

microservices involved with each VPC Flow Log record. This enriched data was then loaded into 

an open-source, high-performance, real-time analytics database called Druid, where users could 

efficiently analyze network data for troubleshooting and to gain improved insights into network 

performance (to learn more about Apache Druid, see https://druid.apache.org/). 

Amazon VPC enhancements and changing the architecture
In the cloud, things change frequently, and AWS is constantly enhancing its services and adding 

additional services in response to customer feedback. In August 2018, AWS enhanced the VPC 

Flow Logs service so that logs could be delivered directly to Amazon S3, without needing to be 

processed via Kinesis first.

In May 2020, Netflix posted a public blog post titled How Netflix is able to enrich VPC Flow Logs at 

Hyper Scale to provide Network Insight (https://netflixtechblog.com/hyper-scale-vpc-flow-

logs-enrichment-to-provide-network-insight-e5f1db02910d). This blog post shows how 

Netflix has changed its architecture to make the best use of the updated functionality in the VPC 

Flow Logs service.

https://www.youtube.com/watch?v=8tsIqfvizpU
https://druid.apache.org/
https://netflixtechblog.com/hyper-scale-vpc-flow-logs-enrichment-to-provide-network-insight-e5f1db02910d
https://netflixtechblog.com/hyper-scale-vpc-flow-logs-enrichment-to-provide-network-insight-e5f1db02910d
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In this blog post, Netflix talks about a common pattern that they have for processing newly up-

loaded S3 files. When a new file is uploaded to S3, it is possible to configure an action to take place 

in response to the newly uploaded file (as we did in Chapter 3, The AWS Data Engineer’s Toolkit, 

where we triggered a Lambda function to transform a CSV file into Parquet format whenever a 

new CSV file was uploaded to a specific S3 bucket prefix).

Netflix commonly uses this pattern to write details of newly uploaded files to an Amazon SQS 

queue, and they can then read events from the queue to process the newly arrived files. This enables 

them to decouple the S3 event from the action that they wish to perform in response to this event.

In this case, Netflix intended to read through the entries on the SQS queue and use the file size 

information included in the event notification to determine the number of newly ingested VPC 

Flow Log files to process in a batch (which they refer to as a mouthful of files). They intended to 

use an Apache Spark job that would enrich the VPC Flow Log with application metadata based 

on the IP addresses recorded in each record. They would tune the Apache Spark job to optimally 

process a certain amount of data, which is why they would read the file size information contained 

in the SQS messages to create an optimally sized mouthful (batch) of files to send to the Spark job.

With the Amazon SQS service, messages are read from the queue and processed. If the processing 

is successful, the processed messages are deleted from the queue. During the time that a batch 

of messages is being processed, the messages are considered to be in flight and will be hidden 

from the queue so that no other application attempts to process the same files. If something goes 

wrong and the files are not successfully processed and deleted from the queue, the messages will 

become visible again after a certain amount of time (known as the visibility timeout period) so that 

they can be picked up by an application again for processing.

In the case of Netflix, they would send a mouthful of files to an Apache Spark job, and once the 

Spark job successfully processed the messages, the messages would be deleted from the queue.

However, the Amazon SQS service has a limit on the number of files that can be considered to be 

in flight at any point (the default quota limit is 120,000 messages). Netflix found that because 

the Spark jobs would take a little while to process the files, they were regularly ending up with 

120,000 or more messages in flight, causing issues. As a result, they came up with an innovative 

way to work around this by using two different SQS queues.

Working around Amazon SQS quota limits
The re-architected Netflix solution reads the SQS queue containing the S3 events and runs a pro-

cess to create a mouthful of files (evaluating each file’s size to create a batch that is the optimal 

size for their Spark jobs). 
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This process can complete very quickly as it does not need to read or process the files, just read the 

metadata contained in the SQS messages to group a mouthful of files to be processed by a Spark job.

The output of the first job writes a message to a second SQS queue, and each message contains 

the list of files in a single mouthful. While the blog does not provide any indication of how many 

files may usually be contained in a mouthful of files, if we assumed it was, on average, around 10 

files, it would reduce the number of messages on the second SQS queue by 90%. If a mouthful of 

files was, on average, 100 files, then the number of messages written to the secondary SQS queue 

would be reduced by 99%.

The Netflix blog does not provide enough details to be able to describe the exact architecture of 

the solution, but the following diagram shows an example of a potential architecture we could 

design for this solution (however, this may be very different from the architecture that Netflix 

implemented):

Figure 17.3: A potential architecture for VPC Flow Logs processing and enrichment

In the preceding diagram, we have VPC Flow Logs configured to write to an Amazon S3 bucket in 

a central flow log processing account. As each new Flow Log is written into this central bucket, it 

triggers an EventBridge rule with details about the newly written file, including the size of the file.

The EventBridge rule has an Amazon SQS queue configured as a target, so as each new file is written 

to the Amazon S3 bucket, EventBridge forwards the event information to an Amazon SQS queue. 
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A Lambda function has been configured to read messages from the Amazon SQS queue and uses 

the file size metadata contained in the message to create a batch of files of an optimal size. The 

list of files in the batch is written to a separate SQS queue as a single message. At this point, our 

first Lambda function can complete, and remove messages from the first SQS queue very quickly, 

since it is only processing metadata in the SQS message, not reading/writing S3 files, and running 

a Spark job to enrich the files.

A separate Lambda function processes the much smaller number of messages in the secondary 

SQS queue by reading the list of files (the mouthful of files) in each message. The list of files is 

passed to a Spark job (in our example architecture, we are using AWS Glue to run the job), and 

this job enriches the VPC Flow Log files in this mouthful with data from other sources. Enriched 

files are written to another Amazon S3 bucket, and/or a system designed for storing and searching 

through log-style data, such as Amazon OpenSearch Service.

The key takeaways that we can learn from this example are as follows:

• It is important to know what the AWS quotas/limits are for the services that you use. 

Some limits can be raised by contacting AWS support, but some limits are hard limits 

that cannot be increased.

• It is important to stay up to date with what’s new announcements from AWS. AWS regularly 

launches new services, as well as major new features, for existing services. Bookmark the 

following web page, which lists all new AWS features and services: https://aws.amazon.

com/new.

As shown in this blog post, new features launched by AWS may help you significantly simplify 

existing architectures and reduce costs (based on this blog post, it would seem that Netflix may 

no longer need their Kinesis Data Streams cluster, configured with hundreds of shards, in order 

to process VPC Flow Logs).

In the next section, we will look at upcoming trends and what the future may hold for data engineers.

Imagining the future – a look at emerging trends
Technology seems to progress at an increasing velocity. For decades, relational databases from 

vendors such as Oracle were the primary technology for managing all data. Today, there is a wide 

range of different database types that can be used, depending on the use case (such as graph 

databases for highly connected datasets, NoSQL databases for low-latency reading and writing 

of very large tables, and vector databases, which have become popular for ML applications such 

as generative AI).

https://aws.amazon.com/new
https://aws.amazon.com/new
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It was also not all that long ago that Hadoop MapReduce was the state-of-the-art technology for 

processing very large datasets, but today, most new projects would choose Apache Spark over 

a MapReduce implementation. Apache Spark itself continues to progress from its initial release, 

with Spark 3.4 having been released in April 2023. We have also seen the introduction of Spark 

Streaming, Spark ML, and Spark GraphX for different use cases.

No one can tell for certain what the next big thing will be, but in this section, we will look at a few 

emerging concepts and technologies, as well as expected trends, that are likely to be of relevance 

to data engineers.

Increased adoption of a data mesh approach
In the past few years, we have seen a rapid increase in the number of companies that are looking 

to implement a data mesh-type approach to how they organize and structure data responsibil-

ities. This will continue to lead to a move away from centralized data engineering teams to data 

engineers being assigned to specific data domains. 

This will also lead to an increase in dedicated data platform engineer roles, with the platform 

engineers being responsible for the central data platform and catalog, and not responsible for 

developing ETL pipelines that perform data transformation. Instead, data engineers responsible 

for developing data transformation pipelines will be embedded in data domains, and make use 

of infrastructure templates managed by the central data platform team. 

There will also be an increase in roles that are responsible for data governance, ensuring that data 

quality is high and that data lineage and protection of PII data are prioritized. 

As discussed in Chapter 15, Implementing a Data Mesh Strategy, the term data mesh means different 

things to different people and was never intended as a technical solution but more of a theoretical 

approach. Therefore, not every data mesh implementation will be the same, and we will not always 

see a role for people who are focused on architecting the data mesh implementation for a company. 

Requirement to work in a multi-cloud environment
While this book focuses on data engineering using AWS services, it is not uncommon for many 

larger companies to have a multi-cloud strategy, where they use more than one cloud provider 

for services.

Having a multi-cloud strategy can introduce numerous challenges across information technology 

(IT) teams, including challenges for data engineering teams that need to work with data stored 

with different cloud providers. 
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Another challenge for IT teams and data engineers is the need to learn the different service imple-

mentations for each cloud provider (for example, AWS, Azure, and Google Cloud each offer a man-

aged Apache Spark environment, but the implementation details are different for each provider).

From a data analytics perspective, each of the cloud providers is starting to do more to support 

querying analytics data across clouds. For example, Amazon Athena and AWS Glue both have 

connectors that you can deploy to enable those services to read data from sources such as Google 

BigQuery and Azure Data Lake Storage. 

Perhaps a bigger challenge is to have a unified data catalog that can efficiently span across mul-

tiple clouds, in order to create a centralized repository of business data, no matter which cloud 

the data is stored in. 

There are many different reasons for organizations wanting to adopt a multi-cloud strategy, but 

the pros and cons need to be carefully thought through. However, in many cases, data engineers 

will have no option but to take up the challenge of becoming comfortable with working in, and 

across, multiple different cloud provider environments.

Migration to open table formats
As we discussed in Chapter 14, Building Transactional Data Lakes, the last few years have seen the 

development of a number of open table formats, which provide a modern approach to developing 

data lakes that are able to be easily updated in a consistent manner (in addition to other features).

While difficult to predict which of the table formats will become dominant, it appears that Apache 

Iceberg has the most momentum currently. But whichever format (or formats) ends up becoming 

the most popular, you can expect that many organizations will be working on migrating to one 

of the open table formats over the next few years.

This will involve migrating existing Hive-based data lake tables to one of the new open table 

formats, and modifying existing ETL jobs to make use of the new features provided. Considering 

that most large organizations likely have thousands of datasets and transformation jobs, this 

will be a significant undertaking. However, there are significant benefits provided by these table 

formats, so it will be a worthwhile project for these organizations. These migration projects are 

likely to be long-term projects, and it may take a number of years to migrate all existing data lake 

tables and transformation jobs to a new open table format.  

Managing costs with FinOps
In recent years, there has been increasing focus on monitoring and managing cloud-related spend, 

and this of course also applies to data-related spend. 
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This trend is likely to continue, and as a result, organizations are increasingly developing a FinOps 

function. The purpose of FinOps is to create a cross-functional team that helps monitor IT-re-

lated spend and bring engineering, finance, technology, and business teams together to work on 

making data-driven spending decisions.

It is important for data teams to have a program in place that helps educate the data engineering 

team, the central data platform team, and all other associated teams about best practices for cloud 

cost management. This team should be part of, or be represented within, the FinOps function. 

While the cloud offers incredible scale, flexibility, and agility, it can be more challenging to predict 

future costs. It is great to provide a data engineering team access to a development environment 

where they can create and run AWS Glue Spark-based jobs on demand, and then deploy those 

to production. But a data engineer’s primary role is to transform the data, and the cost of that 

transformation is often not a priority for the data engineer. 

By default, a Glue job is assigned 10 DPUs, but many smaller jobs may not require that many DPUs. 

Also, auto-scaling is an option in Glue jobs (where Glue automatically uses only the needed DPUs, 

up to a maximum number of DPUs), but this needs to be enabled for each job. If only using the 

default Glue settings, a job may cost more than required. But with just a little bit of education, 

each team can learn how to easily cost-optimize their Glue jobs. 

To be a successful data engineer, it is increasingly important that you learn how to manage and 

optimize costs for your data engineering pipelines and data platform. And ensuring that your 

organization has a cross-functional FinOps team is, or will become, critical to the success of your 

cloud projects. 

The merging of data warehouses and data lakes
Another trend that we have seen over the past few years is the merging of data warehouses and 

data lakes. 

Snowflake architecture resembles that of a data warehouse, and the Databricks platform architec-

ture provides more of a data lake approach. However, in their marketing, one of the Snowflake mes-

saging campaigns is about “Snowflake for Data Lakes.” The Databricks documentation talks about 

their Databricks Lakehouse platform providing a “complete end-to-end data warehousing solution.”

For a while, many companies used variations of the term “Data Lake House” to describe a combi-

nation of a data lake and a data warehouse. These terms were used by different marketing teams 

to mean slightly different things, but ultimately it was used to describe how data lake and data 

warehouse technologies were becoming more interoperable. 
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For example, within AWS, Redshift Spectrum can be used to query data in an Amazon S3-based 

data lake, Amazon Athena can be used to query and join data in multiple sources (including an 

Amazon S3-based data lake, and an Amazon Redshift data warehouse), and AWS Glue works with 

open table formats to enable more data-warehouse-type functionality. 

This trend continues, even if the terms somewhat change. Over the next few years, we are likely to 

continue to see the lines blur between data lakes and data warehouses, with traditional solutions 

for each encompassing more of the features and functionality of the other. The advent of open 

table formats (previously discussed) is enabling and accelerating this trend. 

Data warehouses are increasingly able to query open table formats that exist on object storage 

(such as Amazon S3), and data lake technologies are increasingly including functionality that 

enables them to act more like a data warehouse (also enabled by open table formats). Ultimate-

ly, as we see the increase in the adoption of open table formats, it will become more difficult to 

separate the functions of a data lake and a data warehouse.

The application of generative AI to business intelligence and 
analytics
With the growing popularity of generative AI solutions (such as ChatGPT) in recent times, there 

is increasing interest in being able to query data in a data store (such as a data lake) using natural 

language. The ultimate goal would be to enable an executive to type something like “On which 

day of the week do we see the highest sales of our chocolate flavored ice cream?”. And in response, the 

generative AI-powered assistant may ask some necessary clarifying questions, but will ultimately 

return an accurate result, or perhaps even a visualization showing the requested data. 

Today, there are some experimental approaches that attempt to use generative AI/LLMs to gen-

erate the SQL required to query a data store, in response to a prompt (for an example, see the 

following AWS blog post – https://aws.amazon.com/blogs/machine-learning/reinventing-
the-data-experience-use-generative-ai-and-modern-data-architecture-to-unlock-

insights/). However, these are not yet at a point where they are can be counted on to provide 

guaranteed accurate and high-quality results to all potential queries. 

Over the next few years, we can expect to see improvements in applying generative AI/LLMs to data 

analytics. For example, in July 2023, AWS announced new generative business intelligence (BI) 

features were coming to Amazon QuickSight. This functionality builds on the existing function-

ality of QuickSight Q (which we covered in Chapter 12, Visualizing Data with Amazon QuickSight).

https://aws.amazon.com/blogs/machine-learning/reinventing-the-data-experience-use-generative-ai-and-modern-data-architecture-to-unlock-insights/
https://aws.amazon.com/blogs/machine-learning/reinventing-the-data-experience-use-generative-ai-and-modern-data-architecture-to-unlock-insights/
https://aws.amazon.com/blogs/machine-learning/reinventing-the-data-experience-use-generative-ai-and-modern-data-architecture-to-unlock-insights/
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In the announcement, AWS explained that the new generative BI capabilities would include 

functionality for:

• Rapidly creating visuals using a new QuickSight Q-powered visual authoring experience

• Fine-tuning and formatting visuals using natural language

• Creating calculations using natural language without needing to know specific syntax

• Enabling business users to create generative BI-powered stories, which automates much 

of the process of generating narrative and visual presentations around a data topic by 

simply entering a description of the story they want to tell

For example, with stories, a business user can type something such as “Build a story about how we 

can increase the conversion of free trial customers into paying accounts so we can boost sales.” Quick-

Sight will put together a document that includes visuals, along with narrative text, that explores 

the topic. To learn more about this, see the AWS blog post at https://aws.amazon.com/blogs/

business-intelligence/announcing-generative-bi-capabilities-in-amazon-quicksight/.

The application of generative AI to building transformations
In addition to generative AI being used to simplify BI and analytic tasks, we can expect to see 

increasing usage of these new LLMs for building ETL-type transformations. 

For example, AWS Glue already supports Amazon CodeWhisperer, an AI coding companion that 

can help developers as they write ETL transformation code, such as PySpark code. CodeWhis-

perer has been built into AWS Glue Studio notebooks, enabling a developer to enter a comment 

in their code describing what they are trying to do and have CodeWhisperer generate suggested 

code to achieve that function. 

For example, if a developer has a Spark DataFrame that includes a column named quantity and 

another named price, they can write the following comment in their Glue Studio notebook: 

# Add a column to calculate the total price

CodeWhisperer will then generate some suggested code, and the developer can use the up and 

down arrows to look through different code suggestions and then hit TAB to accept the suggestion. 

For example, CodeWhisperer may suggest the following code, which the developer can accept 

by hitting TAB:

df = df.withColumn('total_price',  df.quantity * df.price)

https://aws.amazon.com/blogs/business-intelligence/announcing-generative-bi-capabilities-in-amazon-quicksight/
https://aws.amazon.com/blogs/business-intelligence/announcing-generative-bi-capabilities-in-amazon-quicksight/
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Over the next few years, we can expect that these AI coding assistants will significantly improve, 

perhaps to the point where an analyst can describe the transformation they want to apply to a 

dataset in natural language, and the AI assistant will generate all the code required and then 

show a sample of the result for the analyst to approve. Once approved, the AI assistant can then 

automatically commit the code to a code repository. The analyst can then describe, in natural lan-

guage, a pipeline that runs multiple transformations, and the AI assistant will generate an Apache 

Airflow DAG for the pipeline, commit the DAG to a code repository, and then deploy the pipeline. 

It is not possible to know exactly how generative AI and LLMs will impact the future of data 

engineering, but it will be an interesting topic to watch and keep up with. 

Having looked at some practical implementations of real-world data engineering, examples of 

real-world data pipelines, and emerging trends and concepts, we will now move on to our final 

hands-on section of this book.

Hands-on – cleaning up your AWS account
In the hands-on section of Chapter 1, An Introduction to Data Engineering, we went through how 

to create a new AWS account. If you created a new account at that point, and have used that ac-

count to work through the exercises in this book, you may want to delete that account now that 

you have reached the final chapter of this book. We’ll include instructions on how to do that here.

However, if this was your first AWS account, you may decide that you want to keep the account 

open so that you can continue to explore and learn more about AWS using other resources. If that 

is the case, we’ll include some instructions on how to check your account billing to detect which 

resources you are still being charged for.

For more details on using Amazon CodeWhisperer with AWS Glue, see the fol-

lowing blog post: https://aws.amazon.com/blogs/big-data/build-data-
integration-jobs-with-ai-companion-on-aws-glue-studio-notebook-

powered-by-amazon-codewhisperer/. For general information on CodeWhisperer 

and integrations with various IDEs, such as Visual Studio Code, see the following  

documentation: https://docs.aws.amazon.com/codewhisperer/latest/

userguide/setting-up.html.

https://aws.amazon.com/blogs/big-data/build-data-integration-jobs-with-ai-companion-on-aws-glue-studio-notebook-powered-by-amazon-codewhisperer/
https://aws.amazon.com/blogs/big-data/build-data-integration-jobs-with-ai-companion-on-aws-glue-studio-notebook-powered-by-amazon-codewhisperer/
https://aws.amazon.com/blogs/big-data/build-data-integration-jobs-with-ai-companion-on-aws-glue-studio-notebook-powered-by-amazon-codewhisperer/
https://docs.aws.amazon.com/codewhisperer/latest/userguide/setting-up.html
https://docs.aws.amazon.com/codewhisperer/latest/userguide/setting-up.html
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Reviewing AWS Billing to identify the resources being 
charged for
While many of the services that we have used in this book are included in the AWS Free Tier 

(where you are not charged for certain limited usage of specific services), other services will have 

had a cost associated with their use. 

In this section, we will go through how to review the AWS Billing console to determine which 

resources you are being charged for:

1. Log in to the AWS Billing console using the following link: https://console.aws.amazon.

com/billing/home.

2. On the Billing Dashboard, we can immediately see a forecast of what the current month’s 

spend will be, as well as the actual month-to-date cost, and a comparison of the current 

month’s spend compared to the previous month at the same point:

Figure 17.4: AWS Billing Dashboard

https://console.aws.amazon.com/billing/home
https://console.aws.amazon.com/billing/home
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In the preceding screenshot, you can see that I have spent $12�69 so far this month, and 

that the forecast for the full month is a total of $16�00.

3. Scroll further down the Billing Dashboard and review the section titled Cost trend by 

top five services.

Figure 17.5: AWS Billing Dashboard – Cost trend by top five services

I did not cancel my QuickSight subscription after completing the exercises in Chapter 12, 

Visualizing Data with Amazon QuickSight, and my free 30-day trial ended. If I wanted to 

cancel my QuickSight subscription now to avoid any future charges after this month, I 

could follow the instructions in Deleting your Amazon QuickSight subscription and closing the 

account (https://docs.aws.amazon.com/quicksight/latest/user/closing-account.

html).

4. I can also see charges for Relational Database Service and Redshift. I am not sure what 

these charges relate to, so to investigate this further, I can click on Bills in the left-hand 

menu. Once on the Bills page, I can scroll down and review the section titled Amazon 

Web Services, Inc� charges by service. 

https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html
https://docs.aws.amazon.com/quicksight/latest/user/closing-account.html
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On this page, I can expand the Redshift item to examine those costs. 

Figure 17.6: AWS bill details view

Here, I can see that the Redshift charges are related to two Amazon Redshift Serverless clusters that 

I had previously created – one in the US East (N. Virginia) Region and one in the US East (Ohio) 

Region. I have not performed any queries with the cluster recently, but I am being billed for the 

amount of storage I am using, from when I previously loaded data into the serverless cluster. If 

I no longer needed the cluster and data, then to avoid being charged in the future, I could go to 

the Redshift console, view the configured namespace, then delete any associated workgroups 

within that namespace, and then delete the namespace. I would of course need to do this for each 

Region where I had Redshift Serverless configured. 

In a similar way, I could expand the lines for Glue and Relational Database Service (RDS), and 

identify what items I am being charged for. In my case, the Glue charges were related to a Glue 

job that I had run, so as long as I am not running any future jobs, I will not have any future Glue 

charges. For RDS, the charges were for backups that I had taken of database instances, so I could 

delete those snapshots if no longer needed, and that way I would not have any future RDS charges. 

If I canceled my QuickSight subscription, deleted my Redshift workgroups and namespaces, and 

deleted my RDS snapshots, I could continue using my AWS account without incurring additional 

charges for those items. However, it is strongly recommended that you regularly check the Billing 

console and set billing alarms to alert you of spending above the limit you’ve set. 
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For more information, see https://docs.aws.amazon.com/AmazonCloudWatch/latest/

monitoring/monitor_estimated_charges_with_cloudwatch.html.

If you want to keep your AWS account so you can continue to explore and experiment with AWS 

services, then going through the Billing console to identify what AWS services you are paying for 

and deleting those resources you don’t need is all you need to do for now. However, in the next 

section, we’ll cover what to do if you want to fully delete your account.  

Closing your AWS account
If you decide that you want to close your AWS account, you can do so with the following steps.

Before proceeding, make sure that you have read the Considerations before you close your AWS ac-

count section of the AWS documentation at https://docs.aws.amazon.com/awsaccountbilling/

latest/aboutv2/close-account.html. If you want to close your account, use the following steps:

1. Log in to your AWS account as the root user of the account (that is, using the email address 

and password you registered when you opened the account). Use the following link to log 

in: https://console.aws.amazon.com.

If you’re prompted for an IAM username and password, click on the link for Sign in using 

root user email.

2. Enter your root user email address and password when prompted.

3. Open the Billing console with the following link: https://console.aws.amazon.com/

billing/home#/.

4. In the top-right corner, select the dropdown next to your account number (or account 

alias, if set). From this dropdown, select Account:

Figure 17.7: Accessing the Account screen in the AWS Management Console

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/close-account.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/close-account.html
https://console.aws.amazon.com
https://console.aws.amazon.com/billing/home#/
https://console.aws.amazon.com/billing/home#/
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5. Scroll to the bottom of the Account page. Read and ensure you understand the account 

closure guidance. If you still want to close your account, click Close account:

Figure 17.8: Closing your AWS account

6. In the pop-up box, click Close account to confirm that you want to close your account.

Subsequently, if you change your mind about closing your account, it may still be possible to 

reopen your account within 90 days of choosing to close it. To do so, contact AWS support.

Summary
Data engineering is an exciting role to be in and is one that offers interesting challenges, con-

stant learning opportunities, and increasing importance in helping organizations draw out the 

maximum value that they can from their data assets. And the cloud is an exciting place to build 

data engineering platforms and pipelines.

AWS has a proven track record of listening to their customers and continuing to innovate based on 

their customers’ requirements, so you can expect new features and services at a virtually constant 

pace. Things move quickly with AWS services, so hold on tight for the ride.

If you’re new to data engineering on AWS, then this book is just the start of what could be a long 

and interesting journey for you. There is much more to be learned than what could ever be cap-

tured in a single book, or even a volume of books. Much of what you will learn will be through 

practical experience and things you learn on the job, as well as from other data engineers.

But this book, and other books like it, as well as resources such as podcasts, YouTube videos, and 

blogs, are all useful vehicles along your journey. Let the end of this book be just the end of the 

first chapter of your learning journey about data engineering with AWS.
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Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to 

the author, and learn about new releases – follow the QR code below:

https://discord.gg/9s5mHNyECd

https://discord.gg/9s5mHNyECd
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AWS Glue crawlers  72
AWS Glue DataBrew  70
AWS Glue Data Catalog  70-72
serverless ETL processing   68, 69

AWS Glue job  222
AWS Glue Python Shell  251
AWS Glue Studio  121, 210-212

versus AWS Glue DataBrew  254
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data warehouse, using as  270
Redshift Spectrum, using to query  
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SFTP Gateway

URL  64
SimpleKeyGenerator  451
Simple Queue Service (SQS)  526
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