




Build an Orchestrator in Go (From Scratch) MEAP
V09

1. Welcome
2. 1_What_is_an_orchestrator?
3. 2_From_mental_model_to_skeleton_code
4. 3_Hanging_some_flesh_on_the_task_skeleton
5. 4_Workers_of_the_Cube,_unite!
6. 5_An_API_for_the_worker
7. 6_Metrics
8. 7_The_manager_enters_the_room
9. 8_An_API_for_the_manager

10. 9_What_could_possibly_go_wrong?
11. 10_Implementing_a_more_sophisticated_scheduler
12. 11_Implementing_persistent_storage_for_tasks



Welcome
Dear reader,

Thank you for purchasing the MEAP edition of Build an Orchestrator in Go
(From Scratch). I hope that you have fun learning more about orchestration
systems and that it will be useful in your day-to-work.

This book is written for engineers who have experience building or running
applications in Docker containers and who have at least heard of
orchestration systems like Kubernetes. At a minimum you will want to be
comfortable starting, stopping, and inspecting Docker containers, and you
will also want to have some experiencing writing non-trivial programs. The
code in this book is written in the Go programming language. If you're not
familiar with Go, don't worry. The code is written with simplicity and
readability in mind, so you should be able to implement the concepts in the
book in any language you feel comfortable with.

You don't have to be a Kubernetes expert to get value from this book. We
won't be going into the inner workings of Kubernetes, but rather discussing
the concepts and components that make up an orchestration system like
Kubernetes in the general sense. Thus, we won't be talking about how to
containerize a web application in order to run it on Kubernetes. Instead, we'll
be talking about how to write a system like Kubernetes itself.

I've been a user of orchestration systems for more than ten years. As an SRE
at Google, I ran jobs on Borg. Since leaving Google, I've run jobs on both
Kubernetes and Hashicorp's Nomad. Across all three of these orchestration
systems, I've read documentation that dove into details about various parts of
the system. While I learned some of the details, I really didn't know how
these systems did what they did. I had guesses, of course, but that's not the
same thing as knowing, at a fundamental level, how something works.

In early 2020, with the onset of the Covid-19 pandemic and finding myself
working from home full-time, I suddenly had spare cycles and wanted to find



a side project. I'd been wanting to learn Go, and we were using Nomad at
work to run our organizations workloads. I'd been wondering about the inner
workings of orchestrators for some time, so I started by looking at Nomad's
source code. I quickly realized that I wasn't interested in the inner workings
of Nomad itself in so much as I wanted to understand the more general
problem space. So, rather then slog through the two million plus lines of code
that make up Nomad, I decided to write a clone of Nomad. For fun! While
the result could in no way replace Nomad, I was able to build a functional
replica in less than 5000 lines of code.

Throughout this book we'll be identifying, discussing, and implementing the
core concepts of an orchestration system. By the end of the book, you will
learn how to do the following:

Identify the components that make up any orchestration system
Start and stop containers using the Docker API
Scheduler containers on to worker nodes
Manage a cluster of worker nodes using a scheduler and simple API

As all of us who work in technology know, things change quickly.
Understanding how orchestrators work in the general sense can help you
today if you're using Kubernetes or Nomad, but it can also help you down the
road if (or when?) these tools are supplanted by a newer or better version.

I hope you will have fun with this book. Along the way, if you have
questions, comments, or suggestions, please post your feedback in the
liveBook Discussion Forum. Your participation will help this book be the
best it can be.

— Tim Boring

In this book

MEAP VERSION 9 About this MEAP Welcome Brief Table of Contents 1
What is an orchestrator? 2 From mental model to skeleton code 3 Hanging
some flesh on the task skeleton 4 Workers of the Cube, unite! 5 An API for
the worker 6 Metrics 7 The manager enters the room 8 An API for the
manager 9 What could possibly go wrong? 10 Implementing a more



sophisticated scheduler 11 Implementing persistent storage for tasks



1 What is an orchestrator?
This chapter covers

The evolution of application deployments
Classifying the components of an orchestration system
Introducing the mental model for the orchestrator
Defining requirements for our orchestrator
Identifying the scope of our work

Kubernetes. Kubernetes. Kubernetes. If you’ve worked in or near the tech
industry in the last five years, you’ve at least heard the name. Perhaps you’ve
used it in your day job. Or, perhaps you’ve used other systems such as
Apache Mesos or Hashicorp’s Nomad.

In this book, we’re going to build our own Kubernetes, writing the code
ourselves in order to gain a better understanding about just what Kubernetes
is. And what Kubernetes is—like Mesos and Nomad—is an orchestrator.

When you’ve finished the book, you will have learned the following:

What components form the foundation of any orchestration system
How those components interact
How each component maintains its own state and why
What tradeoffs are made in designing and implementing an orchestration
system

1.1 The (Not So) Good 'Ol Days

Let’s take a journey back to 2002 and meet Michelle. Michelle is a system
administrator for her company, and she is responsible for keeping her
company’s applications up and running around the clock. How does she
accomplish this?

Like many other sysadmins, Michelle employs the common strategy of



deploying applications on bare metal servers. A simplistic sketch of
Michelle’s world can be seen in figure 1.1. Each application typically runs on
its own physical hardware. To make matters more complicated, each
application has its own hardware requirements, so Michelle has to buy and
then manage a server fleet that is unique to each application. Moreover, each
application has its own unique deployment process and tooling. The database
team gets new versions and updates in the mail via compact disk, so its
process involves a database administrator (DBA) copying files from the CD
to a central server, then using a set of custom shell scripts to push the files to
the database servers, where another set of shell scripts handles installation
and updates. Michelle handles the installation and updates of the company’s
financial system herself. This process involves downloading the software
from the Internet, at least saving her the hassle of dealing with CDs. But the
financial software comes with its own set of tools for installing and managing
updates. There are several other teams that are building the company’s
software product, and the applications that these teams build have a
completely different set of tools and procedures.

Figure 1.1. This diagram represents Michelle’s world in 2002. The outer box represents pysical
machines and the operating systems running on them. The inner box represents the applications
running on the machines and demonstrate how applications used to be more directly tied to both
operating systems and machines.

If you weren’t working in the industry during this time and didn’t experience
anything like Michelle’s world, consider yourself lucky. Not only was that
world chaotic and difficult to manage, it was also extremely wasteful.
Virtualization came along next in the early to mid-aughts. These tools
allowed sysadmins like Michelle to carve up their physical fleets so that each



physical machine hosted several smaller yet independent virtual machines
(VMs). Instead of each application running on its own dedicated physical
machine, it now ran on a VM. And multiple VMs could be packed onto a
single physical one. While virtualization made life for folks like Michelle
better, it wasn’t a silver bullet.

This was the way until the mid 2010s when two new technologies appeared
on the horizon. The first was Docker, which introduced containers to the
wider world. The concept of containers was not new. It had been around
since 1979 (see Ell Marquez’s "The History of Container Technology").
Before Docker, containers were mostly confined to large companies, like Sun
Microsystems and Google, and hosting providers looking for ways to
efficiently and securely provide virtualized environments for their customers.
The second new technology to appear at this time was Kubernetes, a
container orchestrator focused on automating the deployment and
management of containers.

1.2 What is a container and how is it different from
a virtual machine?

As mentioned earlier, the first step in moving from Michelle’s early world of
physical machines and operating system was the introduction of virtual
machines. Virtual machines, or VMs, abstracted a computers physical
components (cpu, memory, disk, network, cdrom, etc.) so administrators
could run multiple operating systems on a single physical machine. Each
operating system running on the physical machine was distinct. Each had its
own kernel, its own networking stack, and its own resources (cpu, memory,
disk).

The VM world was a vast improvement in terms of cost and efficiency. The
cost and efficiency gains, however, only applied to the machine and operating
system layers. At the application layer, not much had changed. As you can
see in figure 1.2, application were still tightly coupled to an operating system.
If you wanted to run two or more instances of your application, you needed
two or more VMs.

Figure 1.2. Applications running on Virtual machines.



Unlike VMs, a container does not have a kernel. It does not have its own
networking stack. It does not control resources like cpu, memory, and disk. In
fact, the term container is just a concept; it is not a concrete technical reality
like virtual machine.

The term container is really just a shorthand for process and resources
isolation in the Linux kernel. So, when we talk about containers what we
really are talking about is namespaces and cgroups, both of which are
features of the Linux kernel. Namespaces "partition resources such that one
set of processes sees one set of resources while another set of processes sees
a different set of resources."
(https://en.wikipedia.org/wiki/Linux_namespaces) cgroups, or control

entest

entest



groups, provides limits, accounting, and prioritization for a collection of
processes (https://en.wikipedia.org/wiki/Cgroups)

But, let’s not get too bogged down with these lower level details. You don’t
need to know about namespaces and cgroups in order to work through the
rest of this book. If you are interested, however, I encourage you to watch Liz
Rice’s talk "Containers From Scratch".

With the introduction of containers, an application can be decoupled from the
operating system layer, as seen in listing 1.3. With containers, if I have an
app that starts up a server process that listens on port 80, I can now run
multiple instances of that app on a single physical host. Or, lets say that I
have six different applications, each with their own server processes listening
on port 80. Again, with containers, I can run those six applications on the
same host without having to give each one a different port at the application
layer.

Figure 1.3. Applications running in containers.

entest



The real benefit of containers is that it gives the application the impression it
is the sole application running on the operating system, and thus has access to
all of the operating system’s resources.

1.3 What is an orchestrator?

The most recent step in the evolution of Michelle’s world is using an
orchestrator to deploy and manage her applications. An orchestrator is a
system that provides automation for deploying, scaling, and otherwise
managing containers. In many ways, an orchestrator is similar to a cpu
scheduler that assigns "resources to perform tasks."
(https://en.wikipedia.org/wiki/Scheduling_(computing)) The difference is that



the target object of an orchestration system is containers instead of OS-level
processes. (While containers are typically the primary focus of an
orchestrator, there are systems that also provide for the orchestration of other
types workloads. Hashicorp’s Nomad, for example, supports Java, command,
and the QEMU virtual machine runner workload types in addition to
Docker.)

With containers and an orchestrator, Michelle’s world changes drastically. In
the past, the physical hardware and operating systems she deployed and
managed were mostly dictated by requirements from application vendors.
Her company’s financial system, for example, had to run on AIX (a
proprietary Unix OS owned by IBM), which meant the physical servers had
to be RISC-based
(https://en.wikipedia.org/wiki/Reduced_instruction_set_computer) IBM
machines. Why? Because the vendor that developed and sold the financial
system certified that the system could run on AIX. If Michelle tried to run the
financial system on, say, Debian Linux, the vendor would not provide
support because it was not a certified OS. And this was just for one of the
many applications that Michelle operated for her company.

Now, Michelle can deploy a standardized fleet of machines that all run the
same OS. She no longer has to deal with multiple hardware vendors who deal
in specialized servers. She no longer has to deal with administrative tools that
are unique to each operating system. And, most importantly, she no longer
needs the hodgepodge of deployment tools provided by application vendors.
Instead, she can use the same tooling to deploy, scale, and manage all of her
company’s application.

Michelle’s old world Michelle’s new world

Multiple hardware vendors Single hardware vendor (or cloud
provider)

Multiple operating systems Single operating system



Runtime requirements dictated by
application vendors

Application vendors build to
standards (containers and
orchestration)

1.4 The components of an orchestration system

So, an orchestrator automates deploying, scaling, managing containers. Next,
let’s identify the components and their requirements that make those features
possible. These components can be seen in figure 1.4. They are:

The task
The job
The scheduler
The manager
The worker
The cluster
The CLI

1.4.1 The Task

The task is the smallest unit of work in an orchestration system and typically
runs in a container. You can think of it like a process that runs on a single
machine. A single task could run an instance of a reverse proxy like Nginx;
or it could run an instance of an application like a RESTful API server; it
could be a simple program that runs in an endless loop and does something
silly, like ping a website and write the result to a database.

A task should specify the following:

1. The amount of memory, CPU, and disk it needs to run effectively
2. What the orchestrator should do in case of failures, typically called a

restart policy
3. The name of the container image used to run the task

Task definitions may specify additional details, but these are the core
requirements.



1.4.2 The Job

The job is an aggregation of tasks. It has one or more tasks that typically
form a larger logical grouping of tasks to perform a set of functions. For
example, a job could be comprised of a RESTful API server and a reverse
proxy.

Kubernetes and the concept of a job

If you’re only familiar with Kubernetes, this definition of job may be
confusing at first. In Kubernetesland, a job is a specific type of workload that
has historically been referred to as a batch job, that is a job that starts and
then runs to completion. Kubernetes actually has multiple resource types that
are Kubernetes-specific implementations of the job concept:

Deployment
ReplicaSet
StatefulSet
DaemonSet
Job

In the context of this book, we’ll use job in its more common definition.

A job should specify details at a high level and will apply to all tasks it
defines:

1. Each task that makes up the job
2. Which data centers the job should run in
3. How many instances of each task should run
4. The type of the job (should it be running continuously or will it run to

completion and stop?)

We won’t be dealing with jobs in our implementation, for the sake of
simplicity. Instead, we’ll work exclusively at the level of individual tasks.

1.4.3 The Scheduler

The scheduler decides what machine can best host the tasks defined in the



job. The decision-making process can be as simple as selecting a node from a
set of machines in a round-robin fashion, or as complex as the EPVM
scheduler (used as part of Google’s Borg scheduler), which calculates a score
based on a number of variables and then selects a node with the "best" score.

The scheduler should perform these functions:

1. Determine a set of candidate machines on which a task could run.
2. Score the candidate machines from best to worst.
3. Pick the machine with the best score.

We’ll implement both the round-robin and EPVM schedulers later in the
book.

1.4.4 The Manager

The manager is the brain of an orchestrator and the main entry point for
users. In order to run jobs in the orchestration system, users submit their jobs
to the manager. The manager, using the scheduler, then finds a machine
where the job’s tasks can run. The manager also periodically collects metrics
from each of its workers, which are used in the scheduling process.

The manager should do the following:

1. Accept requests from users to start and stop tasks.
2. Schedule tasks onto worker machines.
3. Keep track of tasks, their states, and the machine on which they run.

1.4.5 The Worker

The worker provides the muscles of an orchestrator. It is responsible for
running the tasks assigned to it by the manager. If a task fails for any reason,
it must attempt to restart the task. The worker also makes metrics about its
tasks and its overall machine health available for the manager to poll.

The worker is responsible for the following:

1. Running tasks as Docker containers.



2. Accepting tasks to run from a manager.
3. Providing relevant statistics to the manager for the purpose of

scheduling tasks.
4. Keeping track of its tasks and their state.

1.4.6 The Cluster

The cluster is the logical grouping of all the above components. An
orchestration cluster could be run from a single physical or virtual machine.
More commonly, however, a cluster is built from multiple machines, from as
few as five to as many as thousands or more.

The cluster is the level at which topics like high availability (HA) and
scalability come in to play. When you start using an orchestrator to run
production jobs, then these topics become critical. For our purposes, we
won’t be discussing HA or scalability in any detail as they relate to the
orchestrator we’re going to build. Keep in mind, however, that the design and
implementation choices we make will impact the ability to deploy our
orchestrator in a way that it would meet the HA and scalability needs of a
production environment.

1.4.7 CLI

Finally, our CLI, the main user interface, should allow a user to:

1. Start and stop tasks
2. Get the status of tasks
3. See the state of machines (i.e. the workers)
4. Start the manager
5. Start the worker

Figure 1.4. The basic components of an orchestration system. Regardless of what terms different
orchestrators use, each has a scheduler, a manager, a worker, and they all operate on tasks.



All orchestration systems share these same basic components. Google’s Borg,
seen in Figure 1.5, calls the manager the BorgMaster and the worker a
Borglet, but otherwise uses the same terms as defined above.

Figure 1.5. Google’s Borg. At the bottom are a number of Borglets, or workers, which run
individual tasks in containers. In the middle is the BorgMaster, or the manager, which uses the
scheduler to place tasks on workers.



Apache Mesos, seen in figure 1.6, was presented at the Usenix HotCloud
workshop in 2009 and was used by Twitter starting in 2010. Mesos calls the
manager simply the master and the work an agent. It differs slightly,
however, from the Borg model in how it schedules tasks. It has a concept of a
framework, which has two components: a "scheduler that registers with the
master to be offered resources, and an executor process that is launched on
agent nodes to run the framework’s tasks."
(http://mesos.apache.org/documentation/latest/architecture/)

Figure 1.6. Apache Mesos



Kubernetes, which was created at Google and influenced by Borg, calls the
manager the control plane and the worker a kubelet. It rolls up the concepts
of job and task into Kubernetes objects. Finally, Kubernetes maintains the
usage of the terms scheduler and cluster. These components can be seen in
the Kubernetes architecture diagram in figure 1.4.

Figure 1.7. The Kubernetes architecture. The control plane, seen on the left, is equivalent to the
manager function, or to Borg’s BorgMaster.



Hashicorp’s Nomad, released a year after Kubernetes, uses more basic terms.
The manager is the server, and the worker is the client. While not shown in
figure 1.6, Nomad uses the terms scheduler, job, task, and cluster as we’ve
defined here.

Figure 1.8. Nomad’s architecture. While it appears more sparse, it still functions similar to the
other orchestrators.





1.5 Why implement an orchestrator from scratch?

If orchestrators such as Kubernetes, Nomad, and Mesos already exist, why
write one from scratch? Couldn’t we just look at the source code for them
and get the same benefit?

Perhaps. Keep in mind, though, these are large software projects. Kubernetes
and Nomad each contain more than 2 millions lines of source code. Mesos
clocks in at just over 700,000 lines of code. While not impossible, learning a
system by slogging around in codebases of this size may not be the best way.

Instead, we’re going to roll up our sleeves and get our hands dirty.

To ensure we focus on the core bits of an orchestrator and don’t get
sidetracked, we are going to narrow the scope of our implementation. The
orchestrator you write in the course of this project will be fully functional.
You will be able to start and stop jobs, and interact with those jobs.

It will not, however, be production ready. After all, our purpose is not to
implement a system that will replace Kubernetes, Nomad, or Mesos. Instead,
our purpose is to implement a minimal system that gives us deeper insight
into how production-grade systems like Kubernetes and Nomad work.

1.6 Meet Cube

We’re going to call our implementation Cube. If you’re up on your Star Trek:
Next Generation references, you’ll recall the Borg travelled in a cube-shaped
spaceship.

Cube will have a much simpler design than Google’s Borg, Kubernetes or
Nomad. And it won’t be anywhere near as resilient as the Borg’s ship. It will,
however, contain all the same components as those systems.

The mental model in figure 1.9 expands on the architecture outlined in figure
1.4 above. In addition to the higher level components, it dives a little deeper
into the three main components: the manager, the worker, and the scheduler.

entest



Figure 1.9. Mental model for Cube. It will have a manager, a worker, and a scheduler, and users
(i.e. you) will interact with it via a command line.



Starting with the scheduler in the lower left of the diagram, we see it contains
three boxes: feasibility, scoring, and picking. These boxes represent the
scheduler’s generic phases, and they are arranged in the order in which the
scheduler moves through the process of scheduling tasks onto workers.

Feasability This phase assesses whether it’s even possible to schedule a
task onto a worker. There will be cases where a task cannot be
scheduled onto any worker; there will also be cases where a task can be
scheduled but only onto a subset of workers. We can think of this phase
similar to choosing which car to buy. My budget is $10,000, but
depending on which car lot I go to all the cars on the lot could cost more
than $10,000 or there may only be subset of cars that fit into my price
range.
Scoring This phase takes the workers identified by the feasability phase
and gives each one a score. This stage is the most important and can be
accomplished any number of ways. For example, to continue our car
purchase analogy, I might give a score for each of three cars that fit
within my budget based on variables like fuel efficiency, color, and
safety rating.
Picking The phase is the simplest. From the list of scores, the scheduler
picks the best one. This will be either the highest or lowest score.

Moving up the diagram we come to the manager. The first box inside the
manager component shows that the manager uses the scheduler we described
previously. Next, there is the API box. The API is the primary mechanism for
interacting with Cube. Users submit jobs and request jobs be stopped via the
API. A user can also query the API to get information about job and worker
status. Next, there is the Job Storage box. The manager must keep track of all
the jobs in the system in order to make good scheduling decisions, as well as
to provide answers to user queries about job and worker statuses. Finally, the
manager also keeps track of worker metrics, such as the number of jobs a
worker is currently running, how much memory it has available, how much
load is the CPU under, and how much disk space is free. This data, like the
data in the job storage layer, is used for scheduling.

The final component in our diagram is the worker. Like the manager, it too
has an API, though it serves a different purpose. The primary user of this API



is the manager. The API provides the means for the manager to send tasks to
the worker, to tell the worker to stop tasks, and to retrieve metrics about the
worker’s state. Next, the worker has a task runtime, which in our case will be
Docker. Like the manager, the worker also keeps track of the work it is
responsible for, which is done in the Task Storage layer. Finally, the worker
provides metrics about its own state, which it makes available via its API.

1.7 What tools will we use?

In order to focus on our main goal, we’re going to limit the number of tools
and libraries we use. Here’s the list of tools and libraries we’re going to use:

Go (v1.16)
chi (v5.0.3)
Docker SDK (v20.10.7+incompatible)
BoltDB (v1.3.1)
goprocinfo
Linux

As the title of this book says, we’re going to write our code in the Go
programming language. Both Kubernetes and Nomad are written in Go, so it
is obviously a reasonable choice for large scale systems. Go is also relatively
lightweight, making it easy to learn quickly. If you haven’t used Go before
but have written non-trivial software in languages such as C/C++, Java, Rust,
Python, or Ruby, then you should be fine. Chapter 2 will provide an
introduction to the language constructs that we’ll use throughout the rest of
the book. If you want more in-depth material about the Go language, either
The Go Programming Language (www.gopl.io/) or Get Programming with
Go (www.manning.com/books/get-programming-with-go) are good
resources. That said, all the code presented will compile and run, so simply
following along should also work.

There is no particularly requirement for an IDE to write the code. Any text
editor will do. Use whatever you’re most comfortable with and makes you
happy.

We’ll focus our system on supporting Docker containers. This is a design



choice. We could broaden our scope so our orchestrator could run a variety of
jobs: containers, standalone executables, or Java JARs. Remember, however,
our goal is not to build something that will rival existing orchestrators. This is
a learning exercise. By narrowing our scope to focus solely on Docker
containers will help us reach our learning goals more easily. This said, we
will be using Docker’s Go SDK
(https://pkg.go.dev/github.com/docker/docker/client).

Our manager and worker are going to need a datastore. For this purpose,
we’re going to use BoltDB (https://github.com/boltdb/bolt), an embedded
key/value store. There are two main benefits to using Bolt. First, by being
embedded within our code, we don’t have to run a database server. This
feature means neither our manager nor our workers will need to talk across a
network to read or write its data. Second, using a key/value store provides
fast, simple access to our data.

The manager and worker will each provide an API to expose their
functionality. The manager’s API will be primarily user-facing, allowing
users of the system to start and stop jobs, review job status, and get an
overview of the nodes in the cluster. The worker’s API is internal-facing and
will provide the mechanism by which the manager sends jobs to workers and
retrieves metrics from them. In many other languages, we might use a web
framework to implement such an API. For example, if we were using Java we
might use Spring. Or, if we were using Python we might choose Django.
While there are such frameworks available for Go, they aren’t always
necessary. In our case, we don’t need a full web framework like Spring or
Django. Instead, we’re going to use a lightweight router called chi
(https://github.com/go-chi/chi). We’ll write handlers in plain Go, and assign
those handlers to routes.

To simplify the collection of worker metrics, we’re going to use the
goprocinfo library (https://github.com/c9s/goprocinfo). This library will
abstract away some details related to getting metrics from the proc filesystem.

Finally, while you can write the code in this book on any operating system, it
will need to be compiled and run on Linux. Any recent distribution should be
sufficient.

entest

entest

entest

entest



For everything else, we’ll rely on Go and its standard tools that are installed
by default with every version of Go. Since we’ll be using Go modules, you
should use Go 1.14 or later. I’ve developed the code in this book using 1.16.

1.8 A word about hardware

You won’t need a bunch of hardware to complete this book. You can do
everything on a single machine, whether that’s a laptop or a desktop or even a
Raspberry Pi. The only requirements are that the machine is running Linux,
and it has enough memory and disk to hold the source code and compile it.

If you are going to do everything on a single machine, there are a couple
more things to consider. You can run a single instance of the worker. This
means when you submit a job to the manager, it will assign that job to the
single worker. For that matter, any job will be assigned to that worker. For a
better experience, and one that better exercises the scheduler and showcases
the work you’re going to do, you can run multiple instances of the worker.
One way to do this is to simply open multiple terminals, and run an instance
of the worker in each. Alternatively, you can use something like Tmux
(https://github.com/tmux/tmux), seen in figure 1.7, which achieves a similar
outcome but allows you to detach from the terminal and leave everything
running.

Figure 1.10. A tmux session showing 3 Raspberry Pis running the Cube worker.





If you have extra hardware lying around—e.g. an old laptop or desktop, or a
couple of Raspberry Pis—you can use those as your worker nodes. Again, the
only requirement is they are running Linux. For example, in developing the
code in preparation for writing this book, I used eight Raspberry Pis as
workers. I used my laptop as the manager.

1.9 What we won’t be implementing or discussing

So, to reiterate, our purpose here is not to build something that can be used to
replace a production-grade system like Kubernetes. Engineering is about
weighing trade-offs against your requirements. This is a learning exercise to
gain a better understanding of how orchestrators, in general, work. To that
end, we won’t be dealing with or discussing any of the following that might
accompany discussions of production-grade systems:

Distributed computing
Service discovery
High availability
Load balancing
Security

1.9.1 Distributed computing

Distributed computing is an architectural style where a system’s components
run on different computers, communicate across a network, and have to
coordinate actions and state. The main benefits of this style are scalability
and resiliency to failure. An orchestrator is a distributed system. It allows
engineers to scale systems beyond the resources of a single computer, thus
enabling those systems to handle larger and larger workloads. An orchestrator
also provides resiliency to failure by making it relatively easy for engineers to
run multiple instances of their services and for those instances to be managed
in an automated way.

That said, we won’t be going into the theory of distributed computing. If
you’re interested in that topic specifically, there are many resources that
cover the subject in detail.

entest



Resources on distributed computing:

Designing Data-Intensive Applications
(https://www.oreilly.com/library/view/designing-data-intensive-
applications/9781491903063/)
Designing Distributed Systems
(https://www.oreilly.com/library/view/designing-distributed-
systems/9781491983638/)

1.9.2 Service discovery

Service discovery provides a mechanism for users, either human or other
machines, to discover service locations. Like all orchestration systems, Cube
will allow us to run one or more instances of a task. When we ask Cube to
run a task for us, we cannot know in advance where Cube will place the task,
i.e. on which worker the task will run. If we have a cluster with three worker
nodes, a task can potentially be scheduled onto any one of those three nodes.

To help find tasks once they are scheduled and running, we can use a service
discovery system, for example Consul (www.consul.io) to answer queries
about how to reach a service. While service discovery is indispensable in
larger orchestration systems, it won’t be necessary for our purposes.

Resources on service discovery:

Service Discovery in a Microservices Architecture
(https://www.nginx.com/blog/service-discovery-in-a-microservices-
architecture/)

1.9.3 High availability

The term availability refers to the amount of time that a system is available
for usage by its intended user base. Often you’ll hear the term High
Availability (HA) used, which refers to strategies to maximize the amount of
time a system is available for its users. Several examples of HA strategies
are:

entest

entest



elimination of single points of failure via redundancy
automated detection of and recovery from failures
isolation of failures to prevent total system outages

An orchestration system, by design, is a tool that enables engineers to
implement these strategies. By running more than one instance of, say, a
mission critical web API, I can ensure the API won’t become completely
unavailable for my users if a single instance of it goes down for some reason.
By running more than one instance of my web API on an orchestrator, I
ensure that if one of the instances does fail for some reason, the orchestrator
will detect it and attempt to recover from the failure. If any one instance of
my web API fails, that failure will not affect the other instances (with some
exceptions, continue reading below).

At the same time, it is common to use these strategies for the deployment of
the orchestration system itself. Production orchestration systems typically use
multiple worker nodes. For example, worker nodes in a Borg cluster number
in the tens of thousands. By running multiple worker nodes, the system
permits users like me to run multiple instances of my mission critical web
API across a number of different machines. If one of those machines running
my web API experiences a catastrophic failure (maybe a mouse took up
residence in the machine’s rack and accidentally unseated the machine’s
power cord), my application can still serve its users.

For our purposes in this book, we will implement our orchestrator so multiple
instances of the worker can be easily run in a manner similar to Google’s
Borg. For the manager, however, we will only run a single instance. So,
while our workers can be run in an HA way, our manager cannot. Why?

The manager and worker components of our orchestration system—of any
orchestration system—have different scopes. The worker’s scope is narrow,
concerned only with the tasks that it is responsible for running. If worker #2
fails for some reason, worker #1 doesn’t care. Not only does it not care, it
doesn’t even know worker #2 exists.

The manager’s scope, however, encompasses the entire orchestration cluster.
It maintains state for the cluster: how many worker nodes there are, the state
of each worker (cpu/memory/disk capacity as well as how much of that



capacity is already being used), and the state of each task submitted by users.
In order to run multiple instances of the manager, there are many more
questions to ask:

Among the manager instances, will there be a leader that will handle all
of the management responsibilities; or can any manager instance handle
those responsibilities?
How are state updates replicated to each instance of the manager?
If state data gets out of sync, how do the managers decide which data to
use?

These questions ultimately lead to the topic of consensus, which is a
fundamental problem in distributed systems. While this topic is interesting, it
isn’t critical to our learning about and understanding how an orchestration
system works. If our manager goes down, it won’t effect our workers. They
will continue to run the tasks already assigned to them. It does mean our
cluster won’t be able to accept new tasks, but our purposes, we’re going to
decide that this is acceptable for the exercise at hand.

Resources on high availability:

https://www.freecodecamp.org/news/high-availability-concepts-and-
theory/
https://livebook.manning.com/book/learn-amazon-web-services-in-a-
month-of-lunches/chapter-14

Resources on consensus:

https://people.cs.rutgers.edu/~pxk/417/notes/content/consensus.html
Paxos Made Simple (https://lamport.azurewebsites.net/pubs/paxos-
simple.pdf)
The Raft Consensus Algorithm (https://raft.github.io/)

1.9.4 Load balancing

Load balancing is a strategy for building highly available, reliable, and
responsive applications. Common load balancers (LBs) include Nginx,
HAProxy, and AWS’s assortment of load balancers (classic ELBs, network

entest

entest



LBs, and the newer application LBs). While they are used in conjunction
with orchestrators, they can become complex quickly because they are
typically employed in multiple ways.

For example, it’s common to have a public-facing LB that serves as an
entrypoint to a system. This LB might know about each node in an
orchestration system, and it will pick one of the nodes to which it forwards
the request. The node receiving this request is itself running a LB that is
integrated with a service discovery system and can thus forward the request
to a node in the cluster running a task that can handle the request.

Load balancing as a topic is also complex. It can be as simple as using a
round-robin algorithm, in which the LB simply maintains a list of nodes in
the cluster and a pointer to the last node selected. When a request comes in,
the LB simply selects the next node in the list. Or, it can be as complex as
choosing a node that is best able to meet some criteria, such as the resources
available or the lowest number of connections.

While load balancing is an important tool in building highly available
production systems, it is not a fundamental component of an orchestration
system.

Resources on load balancing:

http://cbonte.github.io/haproxy-dconv/2.5/intro.html#2
https://www.cloudflare.com/learning/performance/types-of-load-
balancing-algorithms/

1.9.5 Security

Security is like an onion. It has many layers, many more than we can
reasonable cover in this book. If we were going to run our orchestrator in
production, we would need to answer questions like:

How do we secure the manager so only authenticated users can submit
tasks or perform other management operations?
Should we use authorization in order to segment users and the
operations they can perform?

entest



How do we secure the workers so they only accept requests from a
manager?
Should network traffic between the manager and worker be encrypted?
How should the system log events in order to audit who did what and
when?

Resources on security:

API Security in Action (https://www.manning.com/books/api-security-
in-action)
Security by Design (https://www.manning.com/books/secure-by-design)
Web Application Security (https://www.oreilly.com/library/view/web-
application-security/9781492053101/)

In the next chapter we’re to start coding by translating our mental model into
skeleton code.

1.10 Summary

Orchestrators abstract machines and operating systems away from
developers, thus leaving them to focus on their application.
An orchestrator is a system comprised of a manager, worker, and
scheduler. The primary objects of an orchestration system are tasks and
jobs.
Orchestrators are operated as a cluster of machines, with machines
filling the roles of manager and worker.
In orchestration systems, applications typically run in containers
Orchestrators allow for a level of standardization and automation that
was difficult to achieve previously.



2 From mental model to skeleton
code
This chapter covers

Creating skeletons for the task, worker, manager, and scheduler
components
Identifying the states of a task
Using an interface to support different types of schedulers
Writing a test program to verify the code will compile and run

Once I have a mental model for a project, I like to translate that model into
skeleton code. I do this quite frequently in my day job. It’s similar to how
carpenters frame a house: they define the exterior walls and interior rooms
with 2x4s, add trusses to give the roof a shape. This frame isn’t the finished
product, but it marks the boundaries of the structure, allowing others to come
along and add details at a later point in the construction.

In the same way, skeleton code provides the general shape and contours of
the system I want to build. The final product may not conform exactly to this
skeleton code. Bits and pieces may change, new pieces may be added or
removed, and that’s okay. This typically allows me to start thinking about the
implementation in a concrete way without getting too deep into the weeds
just yet.

If we look again at our mental model (Figure 2.1), where should we start?
You can see immediately that three most obvious components are the
manager, worker, and scheduler. The foundation of each of these
components, however, is the task, so let’s start with it.

Figure 2.1. The Cube mental model shows the Manager, Worker, and Scheduler as the major
components of the system.

entest



For the rest of the chapter, we’ll be creating new files in our project directory.
Take the time now to create the following directories and files:



.

├── main.go

├── manager

│   └── manager.go

├── node

│   └── node.go

├── scheduler

│   └── scheduler.go

├── task

│   └── task.go

└── worker

    └── worker.go

2.1 The task skeleton

The first thing we want to think about is the states a task will go through
during its life. First, a user submits a task to the system. At this point, the task
has been enqueued but is waiting to be scheduled. Let’s call this initial state
Pending. Once the system has figured out where to run the task, we can say it
has been moved into a state of Scheduled. The scheduled state means the
system has determined there is a machine that can run the task, but it is in the
process of sending the task to the selected machine or the selected machine is
in the process of starting the task. Next, if the selected machine successfully
starts the task, it moves into the Running state. Upon a task completing its
work successfully, or being stopped by a user, the task moves into a state of
Completed. If at any point the task crashes or stops working as expected, the
task then moves into a state of Failed.

Figure 2.2. The states a task will go through during its life cycle.



Now that we have identified the states of a task, lets create the State type in
Listing 2.1.

Listing 2.1. The State type represents the states a task goes through, from Pending, Scheduled,
Running, to Failed or Completed.

package task

type State int

const (

        Pending State = iota

        Scheduled



        Running

        Completed

        Failed

)

Next, we should identify other attributes of a task that would be useful for our
system. Obviously, an ID would allow us to uniquely identify individual
tasks, and we’ll use universally unique identifiers (UUID) for these. A
human-readable Name would be good, too, because it means we can talk about
Tim’s awesome task instead of task 74560f1a-b141-40ec-885a-
64e4b36b9f9c. With these, we can sketch the beginning of our Task struct as
in Listing 2.2 below.

What is a UUID?

UUID stands for universally unique identifier. A UUID is 128 bits long and,
in practice, unique. While it’s not improbable that one could generate two
identical UUIDs, the probability is extremely low. For more details about
UUIDs, see RFC 4122 (https://tools.ietf.org/html/rfc4122).

Listing 2.2. The initial Task struct. Note that the State field is of type State, which we defined
previously.

import (

    "github.com/google/uuid"

)

type Task struct {

    ID      uuid.UUID

    Name    string

    State   State

}

We have already said we’re going to limit our orchestrator to dealing with
Docker containers. As a result, we’ll want to know what Docker image a task
should use, and for that let’s use an attribute named Image. Given that our
tasks will be Docker containers, there are several attributes that would be
useful for a task to track. Memory and Disk will help the system identify the
amount of resources a task needs. ExposedPorts and PortBindings are used
by Docker to ensure the machine allocates the proper network ports for the
task and that it is available on the network. We’ll also want a RestartPolicy



attribute, which will tell the system what to do in the event a task stops or
fails unexpectedly. With these attributes, we can update our Task struct as
seen in Listing 2.3.

Listing 2.3. Updating our Task struct with Docker-specific fields.

import (

    "github.com/google/uuid"

    "github.com/docker/go-connections/nat"

)

type Task struct {

    ID      uuid.UUID

    Name    string

    State   State

    Image   string

    Memory  int

    Disk    int

    ExposedPorts nat.PortSet

    PortBindings map[string]string

    RestartPolicy string

}

Finally, in order to know when a task starts and stops, we can add StartTime
and FinishTime fields to our struct. While these aren’t strictly necessary,
they are helpful to display in a CLI. With these two attributes, we can flesh
out the remainder of our Task struct as seen in Listing 2.4.

Listing 2.4. Adding start and stop time fields to the Task struct.

type Task struct {

    ID      uuid.UUID

    Name    string

    State   State

    Image   string

    Memory  int

    Disk    int

    ExposedPorts nat.PortSet

    PortBindings map[string]string

    RestartPolicy string

    StartTime time.Time

    FinishTime time.Time

}



We have our Task struct defined, which represents a task that a user wants to
run on our cluster. As we mentioned above, a Task can be in one of several
states: Pending, Scheduled, Running, Failed, or Completed. The Task struct
works fine when a user first requests a task to be run, but how does a user tell
the system to stop a task? For this purpose, let’s introduce the TaskEvent
struct seen in Listing 2.5 below.

In order to identify a TaskEvent, it will need an ID, and like our Task this will
be done using a UUID. The event will need a State, which will indicate the
state the task should transition to (e.g. from Running to Completed). Next, the
event will have a Timestamp to record the time the event was requested.
Finally, the event will contain a Task struct. Users won’t directly interact
with the TaskEvent struct. It will be an internal object that our system uses to
trigger tasks from one state to another.

Listing 2.5. The TaskEvent struct, which represent an event that moves a Task from one state to
another.

type TaskEvent struct {

    ID      uuid.UUID

    State State

    Timestamp time.Time

    Task Task

}

With our Task and TaskEvent structs defined, let’s move on to sketching the
next component, the Worker.

2.2 The worker skeleton

If we think of the task as the foundation of this orchestration system, then we
can think of the worker as the next layer that sits atop the foundation. Let’s
remind ourselves what the worker’s requirements are:

1. Run tasks as Docker containers.
2. Accept tasks to run from a manager.
3. Provide relevant statistics to the manager for the purpose of scheduling

tasks.
4. Keep track of its tasks and their state.



Using the same process we used for defining the task struct, let’s create the
Worker struct. Given the first and fourth requirements, we know that our
worker will need to run and keep track of tasks. To do that, the worker will
use a field named Db, which will be a map of UUIDs to tasks. To meet the
second requirement, accepting tasks from a manager, the worker will want a
Queue field. Using a queue will ensure that tasks are handled in first-in, first-
out (FIFO) order. We won’t be implementing our own queue, however,
instead opting to using the Queue from golang-collections. We’ll also add
a TaskCount field as a convenient way of keeping track of the number of
tasks a worker has at any given time.

In your project directory, create a sub-directory called worker, and then
change into that directory. Now, open a file named worker.go and type in the
code from Listing 2.6.

Listing 2.6. The beginnings of the Worker struct. Note that by using a map for the Db field, we
get the benefit of a datastore without having to worry about the complexities of an external
database server or embedded database library.

package worker

import (

    "github.com/google/uuid"

    "github.com/golang-collections/collections/queue"

    "cube/task"

)

type Worker struct {

        Name      string

        Queue     queue.Queue

        Db        map[uuid.UUID]task.Task

        TaskCount int

}

So, we’ve identified the fields of our Worker struct. Now, let’s add some
methods that will do the actual work. First, we’ll give the struct a RunTask
method. As its name suggests, it will handle running a task on the machine
where the worker is running. Since a task can be in one of several states, the
RunTask method will be responsible for identifying the task’s current state,
and then either starting or stopping a task based on the state. Next, let’s add a



StartTask and a StopTask method, which will do exactly as their names
suggest—start and stop tasks. Finally, let’s give our worker a CollectStats
method which can be used to periodically collect statistics about the worker.

Listing 2.7. The skeleton of the Worker component. Notice that each method simply prints out a
line stating what it will do. Later in the book we will revisit these methods to implement the real
behavior represented by these statements.

func (w *Worker) CollectStats() {

    fmt.Println("I will collect stats")

}

func (w *Worker) RunTask() {

    fmt.Println("I will start or stop a task")

}

func (w *Worker) StartTask() {

    fmt.Println("I will start a task")

}

func (w *Worker) StopTask() {

    fmt.Println("I will stop a task")

}

2.3 The manager skeleton

Along with the Worker, the Manager is the other major component of our
orchestration system. It will handle the bulk of the work.

As a reminder, here are the requirements for the manager we defined in
Chapter 1:

1. Accept requests from users to start and stop tasks.
2. Schedule tasks onto worker machines.
3. Keep track of tasks, their states, and the machine on which they run.

In the manager.go file, let’s create the struct named Manager seen in Listing
2.8. The Manager will have a queue, represented by the pending field, in
which tasks will be placed upon first being submitted. The queue will allow
the manager to handle tasks on a first-in-first-out (FIFO) basis. Next, the
Manager will have two in-memory databases: one to store tasks and another



to store task events. The databases are maps of strings to Task and TaskEvent
respectively.

Our Manager will need keep track of the workers in the cluster. For this, let’s
use a field named, surprisingly, workers, which will be a slice of strings.
Finally, let’s add a couple convenience fields that will make our lives easier
down the road. It’s easy to imagine that we’ll want to know the jobs that are
assigned to each worker. We’ll use a field called workerTaskMap, which will
be a map of strings to task UUIDs. Similarly, it’d be nice to have an easy way
to find the worker running a task given a task name. Here we’ll use a field
called taskWorkerMap, which is a map of task UUIDs to strings, where the
string is the name of the worker.

Listing 2.8. The beginnings of our Manager skeleton.

package manager

type Manager struct {

    Pending queue.Queue

    TaskDb map[string][]Task

    EventDb map[string][]TaskEvent

    Workers []string

    WorkerTaskMap map[string][]uuid.UUID

    TaskWorkerMap map[uuid.UUID]string

}

From our requirements, you can see the manager needs to schedule tasks onto
workers. So, let’s create a method on our Manager struct called selectWorker
to perform that task. This method will be responsible for looking at the
requirements specified in a Task and evaluating the resources available in the
pool of workers to see which worker is best suited to run the task. Our
requirements also say the Manager must keep "track of tasks, their states, and
the machine on which they run." To meet this requirement, create a method
called UpdateTasks. Ultimately, this method will end up triggering a call to a
worker’s CollectStats method, but more about later in the book.

Is our Manager skeleton missing anything? Ah, yes. So far it can select a
worker for a task, and update existing tasks. There is another requirement that
is implied in the requirements: the Manager obviously needs to send tasks to



workers. So, let’s add this to our requirements and create a method on our
Manager struct.

Listing 2.9. Like the Worker’s methods, the Manager’s methods only print out what they will do.
The work of implementing these methods' actual behavior will come later.

func (m *Manager) SelectWorker() {

    fmt.Println("I will select an appropriate worker")

}

func (m *Manager) UpdateTasks() {

    fmt.Println("I will update tasks")

}

func (m *Manager) SendWork() {

    fmt.Println("I will send work to workers")

}

2.4 The scheduler skeleton

The last of the four major components from our mental model is the
scheduler. Its requirements are as follows:

1. Determine a set of candidate workers on which a task could run.
2. Score the candidate workers from best to worst.
3. Pick the worker with the best score.

This skeleton, which we’ll create in the scheduler.go file, will be different
from our previous ones. Instead of defining structs and the methods of those
structs, we’re going to create an interface.

Interfaces in Go

Interfaces are the mechanism by which Go supports polymorphism. They are
contracts that specify a set of behaviors, and any type that implements the
behaviors can then be used anywhere that the interface type is specified.

For more details about interfaces, see the Interfaces and other types section
of the Effective Go blog post:
https://golang.org/doc/effective_go#interfaces_and_types

entest

entest

entest



Why an interface? As with everything in software engineering, tradeoffs are
the norm. During my initial experiments with writing an orchestrator, I
wanted a simple scheduler, because I wanted to focus on other core features
like running a task. For this purpose, my initial scheduler used a round-robin
algorithm that kept a list of workers and identified which worker got the most
recent task. Then, when the next task came in, the scheduler simply picked
the next worker in its list.

While the round-robin scheduler worked for this particular situation, it
obviously has flaws. What happens if the next worker to be assigned a task
doesn’t have the available resources? Maybe the current tasks are using up all
the memory and disk. Furthermore, I might want more flexibility in how
tasks are assigned to workers. Maybe I’d want the scheduler to fill up one
worker with tasks instead of spreading the tasks across multiple workers,
where each worker could potentially only be running a single task.
Conversely, maybe I’d want to spread out the tasks across the pool of
resources to minimize the likelihood of resource starvation.

Thus, we’ll use an interface to specify the methods that a type must
implement to be considered a Scheduler. As you can see in Listing 2.10,
these methods are SelectCandidateNodes, Score, and Pick. Each of these
methods map nicely onto the requirements for our scheduler.

Listing 2.10. The skeleton of the Scheduler component.

package scheduler

type Scheduler interface {

    SelectCandidateNodes()

    Score()

    Pick()

}

2.5 Other skeletons

At this point, we’ve created skeletons for the four primary objects we see in
our mental model: Task, Worker, Manager, and Scheduler. There is, however,
another object that is hinted at in this model, the Node.



Up to now, we’ve talked about the Worker. The Worker is the component that
deals with our logical workload, that is tasks. The Worker has a physical
aspect to it, however, in that it runs on a physical machine itself, and it also
causes tasks to run on a physical machine. Moreover, it needs to know about
the underlying machine in order to gather stats about the machine that the
manager will use for scheduling decisions. This physical aspect of the Worker
we’ll call a Node.

In the context of Cube, a node is an object that represents any machine in our
cluster. For example, the manager is one type of node in Cube. The worker,
of which there can be more than one, is another type of node. The manager
will make extensive use of node objects to represent workers.

For now, we’re only going to define the fields that make up a Node struct, as
seen in Listing 11. First, a node will have a Name, for example something as
simple as "node-1". Next, a node will have an Ip address, which the manager
will want to know in order to send tasks to it. A physical machine also has a
certain amount of Memory and Disk space that can be used by tasks. These
attributes represent maximum amounts. At any point in time, the tasks on a
machine will be using some amount of memory and disk, which we can call
MemoryAllocated and DiskAllocated. Finally, a Node will have zero or more
tasks, which we can track using a TaskCount field.

Listing 2.11. The Node component represents a physical machine where the worker and tasks will
run.

package node

type Node struct {

        Name            string

        Ip              string

        Cores           int

        Memory          int

        MemoryAllocated int

        Disk            int

        DiskAllocated   int

        Role            string

        TaskCount       int

}



2.6 Taking our skeletons for a spin

Now that we’ve created these skeletons, let’s see if we can use them in a
simple test program. We want to ensure that the code we just wrote will
compile and run. To do this, we’re going to create instances of each of the
skeletons, print the skeletons, and, finally, call each skeleton’s methods.

The following list summarizes in more detail what our test program will do:

create a Task object
create a TaskEvent object
print the Task and TaskEvent objects
create a Worker object
print the Worker object
call the worker’s methods
create a Manager object
call the manager’s methods
create a Node object
print the Node object

Before we write this program, however, let’s take care of a small
administrative task that’s necessary to get our code to compile. Remember,
we said we’re going to use the queue implementation from the golang-
collections package, and we’re also using the UUID package from Google.
We’ve also used the nat package from Docker. While we have imported
them in our code, we haven’t yet installed them locally. So, let’s do that now:

Listing 2.12. Using the go get command to install the third-party packages we imported in our
code.

$ go get github.com/golang-collections/collections/queue

$ go get github.com/google/uuid

$ go get github.com/docker/go-connections/nat

Listing 2.13. Testing the skeletons by creating a minimal program that will actually compile and
run.

package main



import (

        "cube/node"

        "cube/task"

        "fmt"

        "time"

        "github.com/golang-collections/collections/queue"

        "github.com/google/uuid"

        "cube/manager"

        "cube/worker"

)

func main() {

        t := task.Task{

                ID:     uuid.New(),

                Name:   "Task-1",

                State:  task.Pending,

                Image:  "Image-1",

                Memory: 1024,

                Disk:   1,

        }

        te := task.TaskEvent{

                ID:        uuid.New(),

                State:     task.Pending,

                Timestamp: time.Now(),

                Task:      t,

        }

        fmt.Printf("task: %v\n", t)

        fmt.Printf("task event: %v\n", te)

        w := worker.Worker{

                Queue: *queue.New(),

                Db:    make(map[uuid.UUID]task.Task),

        }

        fmt.Printf("worker: %v\n", w)

        w.CollectStats()

        w.RunTask()

        w.StartTask()

        w.StopTask()

        m := manager.Manager{

                Pending: *queue.New(),

                TaskDb:  make(map[string][]task.Task),

                EventDb: make(map[string][]task.TaskEvent),

                Workers: []string{w.Name},



        }

        fmt.Printf("manager: %v\n", m)

        m.SelectWorker()

        m.UpdateTasks()

        m.SendWork()

        n := node.Node{

                Name:   "Node-1",

                Ip:     "192.168.1.1",

                Cores:  4,

                Memory: 1024,

                Disk:   25,

                Role:   "worker",

        }

        fmt.Printf("node: %v\n", n)

}

Now is the moment of truth! Time to compile and run our program. Do this
using the go run main.go command, and you should see output like that in
Listing 2.14 below.

Listing 2.14. Testing the skeletons by creating a minimal program that will actually compile and
run.

$ go run main.go #1

task: {389e41e6-95ca-4d48-8211-c2f4aca5127f Task-1 0 Image-1 1024 1 map[] map[] 0001-01-01 00:00:00 +0000 UTC 0001-01-01 00:00:00 +0000 UTC} 

task event: {69de4b79-9023-4099-9210-d5c0791a2c32 0 2021-04-10 17:38:22.758451604 -0400 EDT m=+0.000186851 {389e41e6-95ca-4d48-8211-c2f4aca5127f Task-1 0 Image-1 1024 1 map[] map[]  0001-01-01 00:00:00 +0000 UTC 0001-01-01 00:00:00 +0000 UTC}} 

worker: { {<nil> <nil> 0} map[] 0} #4

I will collect stats #5

I will start or stop a task

I will start a task

I Will stop a task

manager: {{<nil> <nil> 0} map[] map[] [] map[] map[]} #6

I will select an appropriate worker #7

I will update tasks

I will send work to workers

node: {Node-1 192.168.1.1 4 1024 0 25 0 worker 0} #8

Congrats! You’ve just written the skeleton of an orchestration system that
compiles and runs. Take a moment and celebrate. In the following chapters,
we’ll use these skeletons as a starting point for more detailed discussions of
each component before diving into the technical implementations.



2.7 Summary

Writing skeletons can help translate a mental model from an abstract
concept into working code. Thus, we created skeletons for the Task,
Worker, Manager, and Scheduler components of our orchestration
system. This step also helped us identify additional concepts we didn’t
initially think of. The TaskEvent and Node components were not
represented in our model, but will be useful later in the book.
A task can be in one of five states: Pending, Scheduled, Running,
Completed, or Failed. The worker and manager will use these states to
perform actions on tasks, such as stopping and starting them.
Go implements polymorphism by using interfaces. An interface is a type
that specifies a set of behaviors, and any other type that implements
those behaviors will be considered of the same type as the interface.
Using an interface will allow us to implement multiple schedulers, each
with slightly different behavior.



3 Hanging some flesh on the task
skeleton
This chapter covers

Reviewing how to start and stop Docker containers via the commandline
Introducing the Docker API calls for starting and stopping containers
Implementing the Task concept to start and stop a container

Think about cooking your favorite meal. Let’s say you like making
homemade pizza. In order to end up pulling a delicious, hot pizza out of your
oven, you have to perform a number of tasks. If you like onions, green
peppers, or any other veggies on your pizza, you have to cut them up. You
have to knead the dough into a baking sheet. Next, you spread tomato sauce
across the dough and sprinkle cheese over it. Finally, on top of the cheese,
you layer your veggies and other ingredients.

A task in an orchestration system is similar to one of the individual steps in
making a pizza. Like most companies these days, yours most likely has a
website. That company’s website runs on a web server, perhaps the
ubiquitous Apache web server. That’s a task. The website may use a
database, like MySQL or PostgreSQL, to store dynamic content. That’s a
task.

In our pizza making analogy above, the pizza wasn’t made in a vacuum. It
was created in a specific context, which is a kitchen. The kitchen provides the
necessary resources to make the pizza: there is a refrigerator where the cheese
is stored; cabinets where the pizza sauce is kept; an oven in which to cook the
pizza; knives to cut the pizza into slices.

Similarly, a task operates in a specific context. In our case, that context will
be a Docker container. Like the kitchen, the container will provide the
resources necessary for the task to run: it will provide CPU cycles, memory,
and networking according to the needs of the task.

entest



As a reminder, the task is the foundation of an orchestration system. Figure
1.1 shows a modified version of our mental model from chapter 1.

Figure 3.1. The main purpose of an orchestration system is to accept tasks from users and run
them on the system’s worker nodes. Here, we see a user submitting a task to the Manager node,
which then selects Worker2 to run the task. The dotted lines to Worker1 and Worker3 represent
that these nodes were considered but ultimately not select to run the task.

In the rest of this chapter, we’ll flesh out the Task skeleton we wrote in the
previous chapter. But first, let’s quickly review some Docker basics.

3.1 Docker: starting, stopping, and inspecting
containers from the commandline



If you are a developer, you have probably used Docker containers to run your
application and its backend database on your laptop while working on your
code. If you are a DevOps engineer, you may have deployed Docker
containers to your company’s production environment. Containers allow the
developer to package their code, along with all its dependences, and then ship
the container to production. If a DevOps team is responsible for deployments
to production, then they only have to worry about deploying the container.
They don’t have to worry about whether the machine where the container will
run has the correct version of the PostgreSQL library that the application uses
to connect to its database.

If you need a more detailed review of Docker containers and how to control
them, check out chapter 2 of Docker In Action.

To run a Docker container, we can use the docker run command, an
example of which can be seen in Listing 3.1. Here, the docker run command
is starting up a PostgreSQL database in a container, which might be used as a
backend datastore while developing a new application.

Listing 3.1. Running the Postgres database server as a Docker container. This command will run
the container in the foreground, meaning we can see its log output (-it), gives the container a
name of postgres, sets the POSTGRES_USER and POSTGRES_PASSWORD environment
variables, and uses version 13 of the Postgres server.

$ docker run -it \

    -p 5432:5432 \

    --name postgres \

    -e POSTGRES_USER=cube \

    -e POSTGRES_PASSWORD=secret \

    postgres:13

Once a container is running, then it performs the same functions it would if
you were running it as a regular process on your laptop or desktop. In the
case of the Postgres database from Listing 3.1, I can now log into the
database server using the psql commandline client and create a table like that
in Listing 3.2.

Listing 3.2. Logging in to the Postgres server and creating a table. Because we specified -p
5432:5432 in the docker run command in the previous listing, we can tell the psql client to
connect to that port on the local machine.

entest

entest

entest



$ psql -h localhost -p 5432 -U cube

Password for user cube:

psql (9.6.22, server 13.2 (Debian 13.2-1.pgdg100+1))

WARNING: psql major version 9.6, server major version 13.

         Some psql features might not work.

Type "help" for help.

cube=# \d

No relations found.

cube=# CREATE TABLE book (

isbn char(13) PRIMARY KEY,

title varchar(240) NOT NULL,

author varchar(140)

);

CREATE TABLE

cube=# \d

       List of relations

 Schema | Name | Type  | Owner

--------+------+-------+-------

 public | book | table | cube

(1 row)

Once a container is up and running, we can get information about it by using
the docker inspect command. The output from this command is extensive,
so I will only list the State info.

Listing 3.3. Using the docker inspect cube-book command to get information about the running
container.

$ docker inspect cube-book

[

    {

        "Id": "a820c7abb54b723b5efc0946900baf58e093d8fdd238d4ec7cb5647",

        "Created": "2021-05-15T20:00:41.228528102Z",

        "Path": "docker-entrypoint.sh",

        "Args": [

            "postgres"

        ],

        "State": {

            "Status": "running",

            "Running": true,

            "Paused": false,

            "Restarting": false,

            "OOMKilled": false,

            "Dead": false,

            "Pid": 27599,



            "ExitCode": 0,

            "Error": "",

            "StartedAt": "2021-05-15T20:00:42.4656334Z",

            "FinishedAt": "0001-01-01T00:00:00Z"

        },

        ....

]

Finally, we can stop a Docker container using the docker stop cube-book
command. There isn’t any output from the command, but if we run the
docker inspect cube-book command now, we’ll see the state has changed
from running to exited.

Listing 3.4. Running docker inspect cube-book after docker stop cube-book.

$ docker inspect cube-book

[

    {

        "Id": "a820c7abb54b723b5efc0946900baf58e093d8fdd238d4ec7cb5647",

        "Created": "2021-05-15T20:00:41.228528102Z",

        "Path": "docker-entrypoint.sh",

        "Args": [

            "postgres"

        ],

        "State": {

            "Status": "exited",

            "Running": false,

            "Paused": false,

            "Restarting": false,

            "OOMKilled": false,

            "Dead": false,

            "Pid": 0,

            "ExitCode": 0,

            "Error": "",

            "StartedAt": "2021-05-15T20:00:42.4656334Z",

            "FinishedAt": "2021-05-15T20:18:31.698919838Z"

        },

        ....

]

3.2 Docker: starting, stopping, and inspecting
containers from the API



In our orchestration system, the worker will be responsible for starting,
stopping, and providing information about the tasks its running. To perform
these functions, the worker will use Docker’s API. The API is accessible via
the HTTP protocol using a client like curl or the HTTP library of a
programming language. Listing 3.5 shows an example of using curl to get
the same information we got from the docker inspect command previously.

Listing 3.5. Querying the Docker API with the curl HTTP client. Notice we’re passing the --
unix-socket flag to the curl command. By default, Docker listens on a unix socket, but it can be
configured to listen on a tcp socket. The URL, http://docker/containers/6970e8469684/json,
contains the ID of the container to inspect, which I got from the docker ps command on my
machine. Finally, the output from curl is piped to the jq command, which prints the output in a
more readable format than curl’s.

curl --unix-socket \

    /var/run/docker.sock http://docker/containers/6970e8469684/json| jq .

{

  "Id": "6970e8469684d439c73577c4caee7261bf887a67433420e7dcd637cc53b8ffa7",

  "Created": "2021-05-15T20:58:36.283909602Z",

  "Path": "docker-entrypoint.sh",

  "Args": [

    "postgres"

  ],

  "State": {

    "Status": "running",

    "Running": true,

    "Paused": false,

    "Restarting": false,

    "OOMKilled": false,

    "Dead": false,

    "Pid": 270523,

    "ExitCode": 0,

    "Error": "",

    "StartedAt": "2021-05-15T20:58:36.541148947Z",

    "FinishedAt": "0001-01-01T00:00:00Z"

  },

  ....

}

We could use Go’s HTTP library in our orchestration system, but that would
force us to deal with many low-level details like HTTP methods, status
codes, and serializing requests and deserializing responses. Instead, we’re
going to use Docker’s SDK, which handles all the low-level HTTP details for
us and allows us to focus on our primary task: creating, running, and stopping

entest

entest

entest

entest

entest

entest



containers. The SDK provides the following six methods that will meet our
needs:

NewClientWithOpts: a helper method that instantiates an instance of the
client and returns it to the caller
ImagePull: pulls the image down to the local machine where it will be
run
ContainerCreate: creates a new container with a given configuration
ContainerStart: sends a request to Docker Engine to start the newly
created container
ContainerStop: sends a request to Docker Engine to stop a running
container
ContainerRemove: removes the container from the host

  Note

Docker’s Golang SDK has extensive documentation
(https://pkg.go.dev/github.com/docker/docker) that’s worth reading. In
particular, the docs about the Go client
(https://pkg.go.dev/github.com/docker/docker/client) are relevant to our work
throughout the rest of this book.

The docker commandline examples we reviewed in the previous section
actually use the Go SDK under the hood. Later in this chapter, we’ll
implement a Run() method that uses the ImagePull, ContainerCreate, and
ContainerStart methods to create and start a container. Figure 3.1 provides
a graphic representation of our custom code and the docker command using
the SDK.

Figure 3.2. Regardless of the starting point, all paths to creating and running a container go
through the Docker SDK.



By using the Go SDK for controlling the Docker containers in our
orchestration system, we don’t have to reinvent the wheel. We can simply
reuse the same code used by the docker command every day.



3.3 Task configuration

In order to run our tasks as containers, they need a configuration. What is a
configuration. Think back to our pizza analogy from the beginning of the
chapter. One of the tasks in making our pizza was cutting the onions (if you
don’t like onions, insert your veggie of choice). To perform that task, we
would use a knife and a cutting board, and we would cut the onions in a
particular way. Perhaps we cut them into thin, even slices, or dice them in
small cubes. This is all part of the "configuration" of the task of cutting
onions. (Okay, I’m probably stretching the pizza analogy a bit far, but I think
you get the point.)

For a task in our orchestration system, we’ll describe its configuration using
the Config struct in Listing 3.6. This struct encapsulates all the necessary bits
of information about a task’s configuration. The comments should make the
intent of each field obvious, but there are a couple fields worth highlighting.

The Name field will be used to identify a task in our orchestration system, and
it will perform double duty as the name of the running container. Throughout
the rest of the book, we’ll use this field to name our containers like "test-
container-1".

The Image field, as you probably guessed, holds the name of the image the
container will run. Remember, an image can be thought of as a package: it
contains the collection of files and instructions necessary to run a program.
This field can be set to a value as simple as postgres, or it can be set to a
more specific value that includes a version, like postgres:13.

The Memory and Disk fields will serve two purposes. The scheduler will use
them to find a node in the cluster capable of running a task. They will also be
used to tell the Docker daemon the amount of resources a task requires.

The Env field allows a user to specify environment variables that will get
passed in to the container. In our command to run a Postgres container we set
two environment variables: -e POSTGRES_USER=cube to specify the database
user and -e POSTGRES_PASSWORD=secret to specify that user’s password.



Finally, the RestartPolicy field tells the Docker daemon what to do in the
event a container dies unexpectedly. This field is one of the mechanisms that
provides resilience in our orchestration system. As you can see from the
comment, the acceptable values are an empty string, always, unless-
stopped, or on-failure. Setting this field to always will, as its name implies,
restart a container if it stops. Setting it to unless-stopped will restart a
container unless it has been stopped (e.g. by docker stop). Setting it to on-
failure will restart the container if it exits due to an error (i.e. a non-zero
exit code). There are a few details that are spelled out in the documentation
(https://docs.docker.com/config/containers/start-containers-
automatically/#restart-policy-details)

We’re going to add the Config struct in listing 3.6 to the task.go file from
chapter 2.

Listing 3.6. The config struct that will hold the configuration for orchestration tasks.

type Config struct {

        Name string

        AttachStdin bool

        AttachStdout bool

        AttachStderr bool

        Cmd []string

        Image string

        Memory int64

    Disk int64

        Env []string

        RestartPolicy string

}

3.4 Starting and Stopping Tasks

Now that we’ve talked about a task’s configuration, let’s move on actually
starting and stopping a task. Remember, the worker in our orchestration
system will be responsible for running tasks for us. That responsibility will
mostly involve starting and stopping tasks.

Let’s start by adding the code for the Docker struct you see in Listing 3.7 to
the task.go file. This struct will encapsulate everything we need to run our
task as a Docker container. The Client field will hold a Docker client object

entest

entest

entest



that we’ll use to interact with the Docker API. The Config field will hold the
task’s configuration. And, once a task is running, it will also contain the
ContainerId. This ID will allow us to interact with the running task.

Listing 3.7. Starting and stopping containers.

type Docker struct {

    Client *client.Client

        Config  Config

        ContainerId string

}

For the sake of convenience, let’s create a struct called DockerResult. We
can use this struct as the return value in methods that start and stop
containers, providing a wrapper around common information that is useful
for callers. The struct contains an Error field to hold any error messages. It
has an Action field that can be used to identify the action being taken, for
example "start" or "stop". It has a ContainerId field to identify the container
to which the result pertains. And, finally, there is a Result field that can hold
arbitrary text that provides more information about the result of the operation.

Listing 3.8. The DockerResult struct.

type DockerResult struct {

        Error       error

        Action      string

        ContainerId string

        Result      string

}

Now we’re reading for the exciting part: actually writing the code to create
and run a task as a container. To do this, let’s start by adding a method to the
Docker struct we created earlier. Let’s call that method Run.

The first part of our Run method will pull the Docker image our task will use
from a container registry such as Docker Hub. A container registry is simply
a repository of images and allow for the easy distribution of the images it
hosts. To pull the image, the Run method first creates a context, which is a
type that holds values that can be passed across boundaries such as APIs and
processes. It’s common to use a context to pass along deadlines or

entest

entest

entest

entest

entest



cancellation signals in requests to an API. In our case, we’ll use an empty
context returned from the Background function.

Next, Run calls the ImagePull method on the Docker client object, passing
the context object, the image name, and any options necessary to pull the
image. The ImagePull method returns two values: an object that fulfills the
io.ReadCloser interface and an error object. It stores these values in the
reader and err variables.

The next step in the method checks the error value returned from ImagePull.
If the value is not nil, the method prints the error message and returns as a
DockerResult.

Finally, the method copies the value of the reader variable to os.Stdout via
the io.Copy function. io.Copy is a function from the io package in Golang’s
standard library, and it simply copies data to a destination (os.Stdout) from
a source (reader). Because we’ll be working from the commandline
whenever we’re running the components of our orchestration system, it’s
useful to write the reader variable to Stdout as a way to communicate what
happened in the ImagePull method.

Listing 3.9. The start of our Run() method. Similar to running a container from the commandline,
the method begins by pulling the container’s image.

func (d *Docker) Run() DockerResult {

        ctx := context.Background()

        reader, err := d.Client.ImagePull(

        ctx, d.Config.Image, types.ImagePullOptions{})

        if err != nil {

                log.Printf("Error pulling image %s: %v\n", d.Config.Image, err)

                return DockerResult{Error: err}

        }

        io.Copy(os.Stdout, reader)

}

Once the Run method has pulled the image and checked for errors (and
finding none, we hope), the next bit of business on the agenda is to prepare
the configuration to be sent to Docker. Before we do that, however, let’s take
a look at the signature of the ContainerCreate method from the Docker
client. This is the method we’ll use to actually create the container. As you

entest

entest



can see in listing 3.10, ContainerCreate takes several arguments. Similar to
the ImagePull method used earlier, it takes a context.Context as its first
argument. The next argument is the actual container configuration, which is a
pointer to a container.Config type. We’ll copy the values from our own
Config type into this one. The third argument is a pointer to a
container.HostConfig type. This type will hold the configuration a task
requires of the host on which the container will run, for example a Linux
machine. The fourth argument is also a pointer and points to a
network.NetworkingConfig type. This type can be used to specify
networking details, such as the network ID container will use, any links to
other containers that are needed, and IP addresses. For our purposes, we
won’t make use of the network configuration, instead allowing Docker to
handle those details for us. The fifth argument is another pointer, and it points
to a specs.Platform type. This type can be used to specify details about the
platform on which the image runs. It allows you to specify things like the
CPU architecture and the operating system. We won’t be making use of this
argument either. The sixth and final argument to ContainerCreate is the
container name, passed as a string.

Listing 3.10. The Docker client’s ContainerCreate method creates a new container based on a
configuration.

func (cli *Client) ContainerCreate(

    ctx context.Context,

    config *container.Config,

    hostConfig *container.HostConfig,

    networkingConfig *network.NetworkingConfig,

    platform *specs.Platform,

    containerName string) (container.ContainerCreateCreatedBody, error)

Now we know what information we need to pass along in the
ContainerCreate method, so let’s gather it from our Config type and
massage it into the appropriate types that ContainerCreate will accept. What
we’ll end up with is what you see in listing 3.11.

First, we’ll create a variable called rp. This variable will hold a
container.RestartPolicy type, and it will contain the RestartPolicy we
defined in our Config struct from listing 3.6 earlier.



Following the rp variable let’s declare a variable called r. This variable will
hold the resources required by the container in a container.Resources type.
The most common resources we’ll use for our orchestration system will be
memory.

Next, let’s create a variable called cc to hold our container configuration.
This variable will be of the type container.Config, and into it we’ll copy
two values from our Config type. The first is the Image our container will
use. The second is is any environment variables, which go into the Env field.

Finally, we take the rp and r variables we defined and add them to a third
variable called hc. This variable is a container.HostConfig type. In addition
to specifying the RestartPolicy and Resources in the hc variable, we’ll also
set the PublishAllPorts field to true. What does this field do? Remember
our example docker run command in listing 3.2, where we start up a
PostgreSQL container? In that command, we used -p 5432:5432 to tell
Docker that we wanted to map port 5432 on the host running our container to
port 5432 inside the container. Well, that’s not the best way to expose a
container’s ports on a host. There is an easier way. Instead, we can set
PublishAllPorts to true, and Docker will expose those ports automatically
by randomly choosing available ports on the host.

Listing 3.11. The next phase of running a container creates four variables to hold configuration
information that gets passed to the ContainerCreate method.

func (d *Docker) Run() DockerResult {

    // previous code not listed

        rp := container.RestartPolicy{

                Name: d.Config.RestartPolicy,

        }

        r := container.Resources{

                Memory: d.Config.Memory,

        }

    cc := container.Config{

        Image: d.Config.Image,

        Env: d.Config.Env,

    }



        hc := container.HostConfig{

                RestartPolicy: rp,

                Resources:     r,

        PublishAllPorts: true,

        }

So we’ve done all the necessary prep work, and now we can create the
container and start it. We’ve already touched on the ContainerCreate
method above in listing 3.10, so all that’s left to do is to call it like in listing
3.12. One thing to notice, however, is that we pass nil values as the fourth
and fifth arguments, which you’ll recall from listing 3.10 is the networking
and platform arguments. We won’t be making use of these features in our
orchestration system, so we can ignore them for now.

As with the ImagePull method earlier, ContainerCreate returns two values,
a response, which is a pointer to a container.ContainerCreateCreatedBody
type, and an error type. The ContainerCreateCreatedBody type gets stored
in the resp variable, and we put the error in the err variable. Next, we check
the err variable for any errors, and if we find any print them and return them
in a DockerResult type.

Great! We’ve got all our ingredients together, and we’ve formed them into a
container. All that’s left to do is start it. To perform this final step, we call the
ContainerStart method.

Besides a context argument, ContainerStart takes the ID of an existing
container, which we get from the resp variable returned from
ContainerCreate, and any options necessary to start the container. In our
case, we don’t need any options, so we simply pass an empty
types.ContainerStartOptions. ContainerStart only returns one type, an
error, so we check it in the same we have with the other method calls we’ve
made. If there is an error, we print it and then return it in a DockerResult.

Listing 3.12. The penultimate phase of the process calls the ContainerCreate and ContainerStart
methods.

func (d *Docker) Run() DockerResult {

    // previous code not listed



        resp, err := d.Client.ContainerCreate(

        ctx, &cc, &hc, nil, nil, d.Config.Name)

        if err != nil {

                log.Printf(

            "Error creating container using image %s: %v\n",

            d.Config.Image, err

        )

                return DockerResult{Error: err}

        }

        err := d.Client.ContainerStart(

        ctx, resp.ID, types.ContainerStartOptions{})

    if err != nil {

                log.Printf("Error starting container %s: %v\n", resp.ID, err)

                return DockerResult{Error: err}

        }

At this point, if all was successful, we have a container running the task. All
that’s left to do now is to take care of some bookkeeping, which you can see
in listing 3.13. We start by adding the container ID to the configuration object
(which will ultimately be stored, but let’s not get ahead of ourselves!).
Similar to printing the results of the ImagePull operation to stdout, we do the
same with the result of starting the container. This is accomplished by calling
the ContainerLogs method and then writing the return value to stdout using
the stdcopy.StdCopy(os.Stdout, os.Stderr, out) call.

Listing 3.13. The final phase of creating and running a container involves some bookkeeping and
outputting information from logs.

func (d *Docker) Run() DockerResult {

    // previous code not listed

        d.Config.Runtime.ContainerID = resp.ID

        out, err := cli.ContainerLogs(

        ctx,

        resp.ID,

        types.ContainerLogsOptions{ShowStdout: true, ShowStderr: true}

    )

        if err != nil {

                log.Printf("Error getting logs for container %s: %v\n", resp.ID, err)

                return DockerResult{Error: err}

entest



        }

        stdcopy.StdCopy(os.Stdout, os.Stderr, out)

        return DockerResult{

        ContainerId: resp.ID,

        Action: "start",

        Result: "success"

    }

}

As a reminder, the Run method we’ve written in listings 3.9, 3.11, 3.12, and
3.13 perform the same operations as the docker run command. When you
type docker run on the commandline, under the hood the docker binary is
using the same SDK methods we’re using in our code to create and run the
container.

Now that we can create a container and start it, let’s write the code to stop a
container. Compared to our Run method above, the Stop method will be much
simpler, as you can see in Listing 3.10. Because there isn’t the necessary prep
work to do for stopping a container, the process simply involves calling the
ContainerStop method with the ContainerID, and then calling the
ContainerRemove method with the ContainerID and the requisite options.
Again, in both of these operations, the code checks the value of the err
returned from the method.

As with the Run method, our Stop method performs the same operations
carried out by the docker stop and docker rm commands.

Listing 3.14. Similar to running a container, stopping a container is a two-step process. First, the
container is stopped by calling the ContainerStop method, and finally it’s removed by calling
ContainerRemove.

func (d *Docker) Stop(id string) DockerResult {

        log.Printf("Attempting to stop container %v", id)

        ctx := context.Background()

        err := d.Client.ContainerStop(ctx, id, nil)

        if err != nil {

                fmt.Println(err)

                panic(err)

        }

entest



        err = d.Client.ContainerRemove(ctx, id, types.ContainerRemoveOptions{RemoveVolumes: true, RemoveLinks: false, Force: false})

        if err != nil {

                panic(err)

        }

        return DockerResult{Action: "stop", Result: "success", Error: nil}

}

Now, let’s update our main.go program that we created in chapter 2 to create
and stop a container.

First, add the createContainer function in listing 3.14 to the bottom of the
main.go file. Inside it, we’ll set up the configuration for the task and store it
in a variable called c, then we’ll create a new Docker client and store it in dc.
Next, let’s create the d object, which is of type task.Docker. From this
object, we call the Run() method to create the container.

Listing 3.15. In the createContainer function, we use the Config and Docker objects we wrote
earlier in the chapter.

func createContainer() (*task.Docker, *task.DockerResult) {

        c := task.Config{

                Name:  "test-container-1",

                Image: "postgres:13",

                Env: []string{

                        "POSTGRES_USER=cube",

                        "POSTGRES_PASSWORD=secret",

                },

        }

        dc, _ := client.NewClientWithOpts(client.FromEnv)

        d := task.Docker{

                Client: dc,

                Config: c,

        }

        result := d.Run()

        if result.Error != nil {

                fmt.Printf("%v\n", result.Error)

                return nil, nil

        }

        fmt.Printf(

        "Container %s is running with config %v\n", result.ContainerId, c)

        return &d, &result



}

Second, add the stopContainer function below createContainer. This
function accepts a single argument, d, which is the same d object created in
CreateContainer in listing 3.14. All that’s left to do is call d.Stop().

Listing 3.16. The stopContainer function uses the Docker object returned from createContainer
to stop a container.

func stopContainer(d *task.Docker) *task.DockerResult {

        result := d.Stop()

        if result.Error != nil {

                fmt.Printf("%v\n", result.Error)

                return nil

        }

        fmt.Printf(

        "Container %s has been stopped and removed\n", result.ContainerId)

        return &result

}

Finally, we call the createContainer and stopContainer functions we
created above from our main() function in main.go. To do that, add the code
from Listing 3.15 to the bottom of your main function.

As you can see, the code is fairly simple. It starts by prints a useful message
that it’s going to create a container, then calls the createContainer()
function and stored the results in two variables, dockerTask and
createResult. Then, it checks for errors by comparing the value of
createResult.Error to nil. If it finds an error, it prints it and exits by
calling os.Exit(1). To stop the container, the main function simply calls
stopContainer and passes it the dockerTask object returned by the earlier
call to createContainer.

Listing 3.17. Calling the createContainer and stopContainer functions that we created in the
previous two listings.

func main() {

    // previous code not shown

    fmt.Printf("create a test container\n")



    dockerTask, createResult := createContainer()

    if createResult.Error != nil {

        fmt.Printf(createResult.Error)

        os.Exit(1)

    }

    time.Sleep(time.Second * 5)

    fmt.Printf("stopping container %s\n", createResult.ContainerId)

    _ = stop_container(dockerTask)

}

Time for another moment of truth. Let’s run the code!

Listing 3.18. Running the code to create and stop a container.

$ go run main.go #1

task: {2c66f7c4-2484-4cf8-a22b-81c3dd24294d Task-1 0 Image-1 1024 1 map[] map[]  0001-01-01 00:00:00 +0000 UTC 0001-01-01 00:00:00 +0000 UTC}

task event: {f7045213-732e-49f9-9ca0-ef781e58d30c 0 2021-05-16 16:00:41.890181309 -0400 EDT m=+0.001923263 {2c66f7c4-2484-4cf8-a22b-81c3dd24294d Task-1 0 Image-1 1024 1 map[] map[]  0001-01-01 00:00:00 +0000 UTC 0001-01-01 00:00:00 +0000 UTC}}

worker: { {<nil> <nil> 0} map[] 0}

I will collect stats

I will start or stop a task

I will start a task

I Will stop a task

manager: {{<nil> <nil> 0} map[] map[] [] map[] map[]}

I will select an appropriate worker

I will update tasks

I will send work to workers

node: {Node-1 192.168.1.1 4 1024 0 25 0 worker 0} #2

create a test container #3

{"status":"Pulling from library/postgres","id":"13"}

{"status":"Digest: sha256:117c3ea384ce21421541515edfb11f2997b2c853d4fdd58a455b77664c1adc20"}

{"status":"Status: Image is up to date for postgres:13"} #4

Container 20dfabd6e7f7f30948690c4352979cbc2122d90b0a22567f9f0bcbc33cc0f051 is running with config {test-container-1 false false false map[] [] postgres:13 0 0 [POSTGRES_USER=cube POSTGRES_PASSWORD=secret] } 

stopping container 20dfabd6e7f7f30948690c4352979cbc2122d90b0a22567f9f0bcbc33cc0f051

2021/05/16 16:00:47 Attempting to stop container 20dfabd6e7f7f30948690c4352979cbc2122d90b0a22567f9f0bcbc33cc0f051

Container 20dfabd6e7f7f30948690c4352979cbc2122d90b0a22567f9f0bcbc33cc0f051 has been stopped and removed 

At this point, we have the foundation of our orchestration system in place.
We can create, run, stop, and remove containers, which provide the technical
implementation of our Task concept. The other components in our system,
namely the Worker and Manager, will use this Task implementation to
perform their necessary roles.

3.5 Summary



The task concept, and its technical implementation, is the fundamental
unit of our orchestration system. All the other components—worker,
manager, and scheduler—exist for the purpose of starting, stopping, and
inspecting tasks.
The Docker API provides the ability to manipulate containers
programmatically. The three most important methods are
ContainerCreate, ContainerStart, and ContainerStop. These
methods allow a developer to perform the same operations from their
code that they can do from the commandline, i.e. docker run, docker
start, and docker stop.
A container has a configuration. The configuration can be broken down
into the following categories: identification (i.e. how to identify
containers), resource allocation, networking, and error handling.
A task is the smallest unit of work performed by our orchestration
system and can be thought of similarly to running a program on your
laptop or desktop.
We use Docker in this book because it abstracts away many of the
concerns of the underlying operating system. We could implement our
orchestration system to run tasks as regular operating system processes.
Doing so, however, means our system would need to be intimately
familiar with the details of how process run across OSes (e.g. Linux,
Mac, Windows).
An orchestration system consists of multiple machines, which are called
a cluster.



4 Workers of the Cube, unite!
This chapter covers

Reviewing the purpose of the worker component in an orchestration
system
Reviewing the Task and Docker structs
Defining and implementing an algorithm for processing incoming tasks
Building a simplistic state machine to transition tasks between states
Implementing the worker’s methods for starting and stopping tasks

Think about running a web server that serves static pages. In many cases,
running a single instance of our web server on a single physical or virtual
machine is good enough. As the site grows in popularity, however, this setup
poses several problems:

Resource availability: given the other processes running on the machine,
is there enough memory, CPU, and disk to meet the needs of our web
server?
Resilience: if the machine running the web server goes down, our site
goes down with it.

Running multiple instances of our web server helps us solve these problems.

In this chapter we will focus on fleshing out the Worker skeleton sketched out
in chapter 2. It will use the Task implementation we covered in chapter 3. At
the end of the chapter, we’ll use our implementation of the worker to run
multiple instances of a simple web server like that in our scenario above.

4.1 The Cube worker

With an orchestration system, the worker component allows us to easily scale
applications such as our web server from the above scenario. Figure 4.1
shows how we could run three instances of our website, represented by the
boxes W1, W2, and W3, with each instance running on a separate worker. In this

entest



diagram, it’s important to realize that the term Worker is doing double duty: it
represents a physical or virtual machine, and the worker component of the
orchestration system that runs on that machine.

Figure 4.1. The worker boxes are serving double duty in this diagram. They represent a physical
or virtual machine, on which the Worker component of the orchestration system runs.



Now, we’re less likely to experience resource availability issues. Because
we’re running three instances of our site, on three different workers, user
requests can be spread across the three instances instead of going to a single
instance running on a single machine.



Similarly, our site is now more resilient to failures. For example, if Worker1
in figure 4.2 crashes, it will take the W3 instance of our site with it. While this
might make us sad and cause us some work to bring Worker1 back online, the
users of our site shouldn’t notice the difference. They’ll be able to continue
making requests to our site and getting back the expected static content.

Figure 4.2. In the scenario where a worker node fails, our web server running on the other nodes
can still respond to requests.



4.1.1 The components that make up the worker

The worker is composed of smaller pieces that perform specific roles. Those
pieces, seen in figure 4.3, are an API, a Runtime, a Task Queue, a Task DB,

entest



and Metrics. In this chapter, we’re going to focus only on three of these
components: the runtime, the task queue, and the task db. We’ll work with
the other two components in following chapters.

Figure 4.3. Our worker will be made up of these five components, but this chapter will focus only
on the Runtime, Task Queue, and Task DB.

4.2 Tasks and Docker

In chapter 1, we said a task is the smallest unit of work in an orchestration
system. Then, in chapter 3, we implemented that definition in the Task struct,

entest



which we can see again in listing 4.1. This struct is the primary focus of the
worker. It receives a task from the manager, then runs it. We’ll use this struct
throughout this chapter.

As the smallest unit of work, a task performs its work by being run as a
Docker container. So, there is a one-to-one correlation between a task and a
container.

Listing 4.1. Task struct defined in chapter 2. The worker uses this struct to start and stop tasks.

type Task struct {

        ID            uuid.UUID

        ContainerID   string

        Name          string

        State         State

        Image         string

        Memory        int64

        Disk          int64

        ExposedPorts  nat.PortSet

        PortBindings  map[string]string

        RestartPolicy string

        StartTime     time.Time

        FinishTime    time.Time

}

In chapter 3, we also defined the Docker struct seen in listing 4.2. The worker
will use this struct to start and stop the tasks as Docker containers.

Listing 4.2. Docker struct defined in chapter 3.

type Docker struct {

        Client      *client.Client

        Config      Config

}

The two objects will be the core of the process that will allow our worker to
start and stop tasks.

4.3 The role of the queue

Take a peek at listing 4.3 to remind yourself what the Worker struct looks



like. The struct is in the same state we left it in chapter 2.

The Worker will use the Queue field in the Worker struct as a temporary
holding area for incoming tasks that need to be processed. When the Manager
sends a task to the Worker, the task lands in the queue, which the Worker will
process on a first-in-first-out basis.

Listing 4.3. Worker skeleton from chapter 2

package worker

import (

    "fmt"

    "github.com/google/uuid"

    "github.com/golang-collections/collections/queue"

)

type Worker struct {

        Name      string

        Queue     queue.Queue

        Db        map[uuid.UUID]*task.Task

        TaskCount int

}

It’s important to note that the Queue field is itself a struct, which defines
several methods we can use to push items onto the queue (Enqueue), pop
items off of the queue (Dequeue), and get the length of the queue (Len). The
Queue field is an example of composition in Go. Thus, we can use other
structs to compose new, higher level objects.

Also notice that Queue is being imported from the github.com/golang-
collections/collections/queue package. So, we’re re-using a Queue
implementation that someone else has written for us. If you haven’t done so
already [TODO: reference to an appendix with installation steps], you’ll need
to specify this package as a dependency.

4.4 The role of the db



The worker will use the Db field to store the state about its tasks. This field is
a map, where keys are of type uuid.UUID from the github.com/google/uuid
package and values are of type Task from our task package. There is one
thing to note about using a map for the Db field. We’re starting with a map
here out of convenience. This will allow us to write working code quickly.
But, this comes with a tradeoff: anytime we restart the worker, we will lose
data. This tradeoff is acceptable for the purpose of getting started, but later
we’ll replace this map with a persistent data store that won’t lose data when
we restart the worker.

4.5 Counting tasks

Finally, the TaskCount field provides a simple count of the tasks the worker
has been assigned. We won’t make use of this field until the next chapter.

4.6 Implementing the worker’s methods

Now that we’ve reviewed the fields in our Worker struct, let’s move on and
talk about the methods that we stubbed out in chapter 2. The RunTask,
StartTask, and StopTask methods seen in listing 4.4 don’t do much right
now but print out a statement, but by the end of the chapter we will have fully
implemented each of them.

Listing 4.4. The stubbed out versions of RunTask, StartTask, and StopTask.

func (w *Worker) RunTask() {

    fmt.Println("I will start or stop a task")

}

func (w *Worker) StartTask() {

    fmt.Println("I will start a task")

}

func (w *Worker) StopTask() {

    fmt.Println("I will stop a task")

}

We’re going to implement these methods in reverse order from what you see
above. The reason for implementing them in this order is that the RunTask



method will use the other two methods to start and stop tasks.

4.6.1 Implementing the StopTask method

There is nothing complicated about the StopTask method. It has a single
purpose: to stop running tasks, remembering that a task corresponds to a
running container. The implementation, seen in listing 4.5, can be
summarized as the following set of steps:

1. Create an instance of the Docker struct that allows us to talk to the
Docker daemon using the Docker SDK.

2. Call the Stop() method on the Docker struct.
3. Check if there were any errors in stopping the task.
4. Update the FinishTime field on the task t.
5. Save the updated task t to the worker’s Db field.
6. Print an informative message and return the result of the operation.

Listing 4.5. Our implementation of the StopTask method.

func (w *Worker) StopTask(t task.Task) task.DockerResult {

        config := task.NewConfig(&t)

        d := task.NewDocker(config)

        result := d.Stop(t.ContainerID)

        if result.Error != nil {

                log.Printf("Error stopping container %v: %v", t.ContainerID, result.Error)

        }

        t.FinishTime = time.Now().UTC()

        t.State = task.Completed

        w.Db[t.ID] = &t

        log.Printf("Stopped and removed container %v for task %v", t.ContainerID, t.ID)

        return result

}

Notice that the StopTask method returns a task.DockerResult type. The
definition of that type can be seen in listing 4.6. If you remember, Go
supports multiple return types We could have enumerated each field in the
DockerResult struct as a return type to the StopTask method. While there is
nothing technically wrong with that approach, using the DockerResult
approach allows us to wrap all the bits related to the outcome of an operation



into a single struct. Anything we want to know about the result of an
operation, we simply consult the DockerResult struct.

Listing 4.6. A reminder of what the DockerResult type looks like.

type DockerResult struct {

        Error       error

        Action      string

        ContainerId string

        Result      string

}

4.6.2 Implementing the StartTask method

Next, let’s implement the StartTask method. Similar to the StopTask
method, StartTask is fairly simple, but the process to start a task has a few
more steps. The enumerated steps are:

1. Update the StartTime field on the task t.
2. Create an instance of the Docker struct to talk to the Docker daemon.
3. Call the Run() method on the Docker struct.
4. Check if there were any errors in starting the task.
5. Add the running container’s ID to the tasks t.Runtime.ContainerId

field.
6. Save the updated task t to the worker’s Db field.
7. Return the result of the operation.

The implementation of these steps can be seen in listing 4.7.

Listing 4.7. Our implementation of the StartTask method.

func (w *Worker) StartTask(t task.Task) task.DockerResult {

        t.StartTime = time.Now().UTC()

        config := task.NewConfig(&t)

        d := task.NewDocker(config)

        result := d.Run()

        if result.Error != nil {

                log.Printf("Err running task %v: %v\n", t.ID, result.Error)

                t.State = task.Failed

                w.Db[t.ID] = &t

                return result



        }

        t.ContainerID = result.ContainerId

        t.State = task.Running

        w.Db[t.ID] = &t

        return result

}

By recording the StartTime in the StartTask method, combined with
recording FinishTime in the StopTask method, we’ll later be able to use
these timestamps in other output. For example, later in the book we’ll write a
CLI that allows us to interact with our orchestrator, and the StartTime and
FinishTime values can be output as part of a task’s status.

Before we move on from these two methods, I want to point out that neither
of them interact directly with the Docker SDK. Instead, they simply call the
Run and Stop methods on the Docker object we created. It is the Docker
object which handles the direct interaction with the Docker client. By
encapsulating the interaction with Docker in the Docker object, our worker
does not need to know anything about the underlying implementation details.

The StartTask and StopTask methods are the foundation of our Worker.
But, in looking at the skeleton we created in chapter two, there is another
foundational method missing. How do we add a task to the worker?
Remember, we said the worker would use its Queue field as a temporary
storage for incoming tasks, and when it was ready it would pop a task of the
queue and perform the necessary operation.

Let’s fix this problem by adding the AddTask method seen in listing 4.8. This
method performs a single task: it adds the task t to the Queue.

Listing 4.8. The worker’s AddTask method.

func (w *Worker) AddTask(t task.Task) {

        w.Queue.Enqueue(t)

}

4.6.3 An interlude on task state



All that’s left to do now is to implement the RunTask method.

Before we do that, however, let’s pause for a moment and recall the purpose
of the RunTask method. In chapter 2, we said the RunTask method "will be
responsible for identifying the task’s current state, and then either starting or
stopping a task based on the state." But why do we even need RunTask?

There are two possible scenarios for handling tasks:

a task is being submitted for the first time, so the Worker will not know
about it
a task is being submitted for the Nth time, where the task submitted
represents the desired state to which the current task should transition.

When processing the tasks it receives from the Manager, the worker will need
to determine which of these scenarios it is dealing with. We’re going to use a
naive heuristic to help the worker solve this problem.

Remember that our Worker has the Queue and Db fields. For our naive
implementation, the worker will use the Queue field to represent the desired
state of a task. When the worker pops a task off the queue, it will interpret it
as "put task t in the state s." The worker will interpret tasks it already has in
its Db field as existing tasks, that is tasks that it has already seen at least once.
If a task is in the Queue but not the Db, then this is the first time the worker is
seeing the task, and we default to starting it.

In addition to identifying which of the above two scenarios it is dealing with,
the worker will also need to verify if the transition from the current state to
the desired state is a valid one.

Let’s review the states we defined in chapter 2. Listing 4.9 shows that we
have states Pending, Scheduled, Running, Completed, and Failed.

Listing 4.9. The State type, which defines the valid states for a task.

const (

        Pending State = iota

        Scheduled

        Running



        Completed

        Failed

)

But what do these states represent? We explained these states in chapter 2,
but let’s do a quick refresher:

Pending: this is the initial state, the starting point, for every task.
Scheduled: a task moves to this state once the manager has scheduled it
onto a worker.
Running: a task moves to this state when a worker successfully starts the
task (i.e. starts the container).
Completed: a task moves to this state when it completes its work in a
normal way (i.e. it does not fail).
Failed: if a task does fail, it moves to this state.

To reinforce what these states represent, we can also recall the state diagram
from chapter two, seen here in figure 4.4.

Figure 4.4. The states a task will go through during its life cycle.



So, we’ve defined what the states mean as they relate to a task, but we still
haven’t defined how a task transitions from one state to the next. Nor have we
talked about what transitions are valid. For example, if a worker is already
running a task—which means it’s in the Running state—can it transition to
the Scheduled state? If a task has failed, should it be able to transition from
the Failed state to the Scheduled state?

So before getting back to the RunTask method, it looks like we need to figure
out this issue of how to handle state transitions. To do this, we can model our
states and transitions using the state table seen in table 4.1.



This table has three columns that represent the CurrentState of a task, an
Event that triggers a state transition, and the NextState to which the task
should transition. Each row in the table represents a specific valid transition.
Notice that there is not a transition from Running to Scheduled, or from
Failed to Scheduled.

Table 4.1. State transition table that shows the valid transitions from one state to another.

CurrentState Event NextState

Pending ScheduleEvent Scheduled

Pending ScheduleEvent Failed

Scheduled StartTask Running

Scheduled StartTask Failed

Running StopTask Completed

Now that we have a better understanding of the states and transitions between
them, we can translate our understanding into code. Orchestrators like Borg,
Kubernetes, and Nomad use a state machine to deal with the issue of state
transitions. However, in order to keep the number of concepts and
technologies we have to deal with to a minimum, we’re going to hard code
our state transitions into the stateTransitionMap type you see in listing
4.10. This map encodes the transitions we identified above in table 4.1.

The stateTransitionMap creates a map between a State and a slice of
states, []State. Thus, the keys in this map are the current state, and the
values are the valid transition states. For example, the Pending state can only
transition to the Scheduled state. The Scheduled state, however, can transition



to Running, Completed, or Failed.

Listing 4.10. The stateTransitionMap map.

var stateTransitionMap = map[State][]State{

        Pending:   []State{Scheduled},

        Scheduled: []State{Scheduled, Running, Failed},

        Running:   []State{Running, Completed, Failed},

        Completed: []State{},

        Failed:    []State{},

}

In addition to stateTransitionMap, we’re going to implement the Contains
and ValidStateTransition helper functions seen in listing 4.11. These
functions will perform the actual logic to verify that a task can transition from
one state to the next.

Let’s start with the Contains function. It takes two arguments: states, a slice
of type State, and state of type State. If it finds state in the slice of states, it
returns true, otherwise it returns false.

The ValidStateTransition function is a wrapper around the Contains
function. It provides a convenient way for callers of the function to simply
ask, "Hey, can a task transition from this state to that state?" All the heavy
lifting is done by the Contains function.

You should add the code is listing 4.8 to the state.go file in the task
directory of your project.

Listing 4.11. Helper methods

func Contains(states []State, state State) bool {

        for _, s := range states {

                if s == state {

                        return true

                }

        }

        return false

}

func ValidStateTransition(src State, dst State) bool {

        return Contains(stateTransitionMap[src], dst)



}

4.6.4 Implementing the RunTask method

Now we can finally talk more specifically about the RunTask method. It took
us a while to get here, but we needed to iron out those other details before it
even made sense talking about this method. And because we did that leg
work, implementing the RunTask method will go a bit more smoothly.

As we said earlier in the chapter, the RunTask method will identify the task’s
current state and then either start or stop it based on that state. We can use a
fairly naive algorithm to determine whether the worker should start or stop a
task. It looks like this:

1. Pull a task of the queue.
2. Convert it from an interface to a task.Task type.
3. Retrieve the task from the worker’s Db.
4. Check if the state transition is valid.
5. If the task from the queue is in a state Scheduled, call StartTask.
6. If the task from the queue is in a state Completed, call StopTask.
7. Else there is an invalid transition, so return an error.

All that’s left to do now is to implement the above steps in our code, which
can be seen in figure 4.12.

Listing 4.12. Our implementation of the RunTask method.

func (w *Worker) RunTask() task.DockerResult {

        t := w.Queue.Dequeue() #1

        if t == nil {

                log.Println("No tasks in the queue")

                return task.DockerResult{Error: nil}

        }

        taskQueued := t.(task.Task) #2

        taskPersisted := w.Db[taskQueued.ID] #3

        if taskPersisted == nil {

                taskPersisted = &taskQueued

                w.Db[taskQueued.ID] = &taskQueued

        }



        var result task.DockerResult

        if task.ValidStateTransition(taskPersisted.State, taskQueued.State) { #4

                switch taskQueued.State {

                case task.Scheduled:

                        result = w.StartTask(taskQueued) #5

                case task.Completed:

                        result = w.StopTask(taskQueued) #6

                default:

                        result.Error = errors.New("We should not get here")

                }

        } else {

                err := fmt.Errorf("Invalid transition from %v to %v", taskPersisted.State, taskQueued.State)

                result.Error = err #7

        }

        return result #8

}

4.7 Putting it all together

Whew, we’ve made it. We covered a lot of territory in implementing the
methods for our worker. If you remember chapter 3, we ended by writing a
program that used the work we did earlier in the chapter. We’re going to
continue that practice in this chapter.

Before we do, however, remember that in chapter 3 we built out the Task and
Docker structs, and that work allowed us to start and stop containers. The
work we did in this chapter sits on top of the work from the last chapter. So
once again, we’re going to write a program that will start and stop…Tasks.
The worker operates on the level of the Task, and the Docker struct operates
on the lower level of the container.

Now, let’s write a program to pull everything together into a functioning
worker. You can either comment out the code from the main.go file you used
in the last chapter, or create a new main.go file to use for this chapter.

The program is simple. We create a worker w, which has a Queue and Db
fields like we talked about at the beginning of the chapter. Next, we create a
task t. This task starts with a state of Scheduled, and it uses a Docker image
named strm/helloworld-http. More about this image in a bit. After creating
a worker and a task, we call the worker’s AddTask method and pass it the task



t. Then it calls the worker’s RunTask method. This method will pull the task
t off the queue and do the right thing. It captures the return value from the
RunTask method and stores it in the variable result. (Bonus points if you
remember what type is returned from RunTask.)

At this point, we have a running container.

After sleeping for 30 seconds (feel free to change the sleep time to whatever
you want), then we start the process of stopping the task. We change the
task’s state to Completed, call AddTask again and pass it the same task, and
finally call RunTask again. This time when RunTask pulls the task off the
queue, the task will have a container ID and a different state. As a result, the
task gets stopped.

Listing 4.13 shows our program to create a worker, add a task, start it, and
finally stop it.

Listing 4.13. This program pulls everything together into a functioning worker that starts and
stops a task.

// previous code not shown

func main() {

        db := make(map[uuid.UUID]*task.Task)

        w := worker.Worker{

                Queue: *queue.New(),

                Db:    db,

        }

        t := task.Task{

                ID:    uuid.New(),

                Name:  "test-container-1",

                State: task.Scheduled,

                Image: "strm/helloworld-http",

        }

        // first time the worker will see the task

        fmt.Println("starting task")

        w.AddTask(t)

        result := w.RunTask()

        if result.Error != nil {

                panic(result.Error)

        }



        t.ContainerID = result.ContainerId

        fmt.Printf("task %s is running in container %s\n", t.ID, t.ContainerID)

        fmt.Println("Sleepy time")

        time.Sleep(time.Second * 30)

        fmt.Printf("stopping task %s\n", t.ID)

        t.State = task.Completed

        w.AddTask(t)

        result = w.RunTask()

        if result.Error != nil {

                panic(result.Error)

        }

}

Let’s pause for a moment and talk about the image used in the above code
listing. At the beginning of the chapter, we talked about the scenario of
scaling a static website using an orchestrator, specifically the worker
component. This image, strm/helloworld-http provides a concrete example
of a static website: it runs a web server that serves a single file. To verify this
behavior, when you run the program, in a separate terminal type the docker
ps command. You should see output similar to listing 4.14. In that output,
you can find the port the web server is running on by looking at the PORTS
column. Then, open your browser and type localhost:<port>. In the case of
the output below, I would type localhost:49161 in my browser.

Listing 4.14. Output from the docker ps command. The output has been truncated to make it
more readable.

$ docker ps

CONTAINER ID   IMAGE                 PORTS                  NAMES

4723a4201829   strm/helloworld-http  0.0.0.0:49161->80/tcp  test-container-1

When I browse to the server on my machine, I see "Hello from
90566e236f88".

Go ahead and run the program. You should see output similar to that in
listing 4.15.

Listing 4.15. Running your main program should start the task, sleep for a bit, then stop the task.



$ go run main.go

starting task

{"status":"Pulling from strm/helloworld-http","id":"latest"}

{"status":"Digest: sha256:bd44b0ca80c26b5eba984bf498a9c3bab0eb1c59d30d8df3cb2c073937ee4e45"}

{"status":"Status: Image is up to date for strm/helloworld-http:latest"}

task bfe7d381-e56b-4c4d-acaf-cbf47353a30a is running in container e13af1f4b9cbac6f871d1d343ea8f7958dae5f1897954bf6b4a2c58ad7520dcb

Sleepy time

stopping task bfe7d381-e56b-4c4d-acaf-cbf47353a30a

2021/08/08 21:13:09 Attempting to stop container e13af1f4b9cbac6f871d1d343ea8f7958dae5f1897954bf6b4a2c58ad7520dcb

2021/08/08 21:13:19 Stopped and removed container e13af1f4b9cbac6f871d1d343ea8f7958dae5f1897954bf6b4a2c58ad7520dcb for task bfe7d381-e56b-4c4d-acaf-cbf47353a30a

Congratulations! You now have a functional worker. Before moving on to the
next chapter, play around with what you’ve built. In particular, modify the
main function from listing 4.13 to create multiple workers, then add tasks to
each them.

4.8 Summary

Tasks are executed as containers, meaning there is a one-to-one
relationship between a task and a container.
The worker performs two basic actions on tasks, either starting or
stopping them. These actions result in tasks transitioning from one state
to the next valid state.
The worker shows how the Go language supports object composition.
The worker itself is a composition of other objects, in particular the
Worker’s Queue field is a struct defined in the github.com/golang-
collections/collections/queue package
The worker, as we’ve designed and implemented it, is simple. We’ve
used clear and concise processes that are easy to implement in code.
The worker does not interact directly with the Docker SDK. Instead, it
uses our Docker struct, which is a wrapper around the SDK. By
encapsulating the interaction with the SDK in the Docker struct, we can
keep the StartTask and StopTask methods small and readable.



5 An API for the worker
This chapter covers

Understanding the purpose of the worker API
Implementing methods to handle API requests
Creating a server to listen for API requests
Starting, stopping, and listing tasks via the API

In chapter 4, we implemented the core features of the worker: pulling tasks
off its queue, and then starting or stopping them. Those core features alone,
however, do not make the worker complete. We need a way to expose those
core features so a manager, which will be the exclusive user, running on a
different machine can make use of them. To do this, we’re going to wrap the
worker’s core functionality in an Application Programming Interface, or API.

The API will be simple, as you can see if figure 5.1, providing the means for
a manager to perform these basic operations:

Send a task to the worker (which results in the working starting the task
as a container)
Get a list of the worker’s tasks
Stop a running task

Figure 5.1. The API for our orchestrator provides a simple interface to the worker.



5.1 Overview of the worker API

We’ve enumerated above the operations that the worker’s API will support:
sending a task to a worker to be started, getting a list of tasks, and stopping a
task. But, how will we implement those operations? We’re going to
implement those operations using a web API. This choice means that the
worker’s API can be exposed across a network, and that it will use the HTTP
protocol. Like most web APIs, the worker’s API will use three primary
components:

Handlers: functions that are capable of responding to requests.
Routes: patterns that can be used to match the URL of incoming



requests.
Router: an object that uses routes to match incoming requests with the
appropriate handler

We could implement our API using nothing but the http package from the Go
standard library. That can be tedious, however, because the http package is
missing one critical piece: the ability to define parameterized routes. What is
a parameterized route? It’s a route that defines a URL where one or more
parts of the URL path are unknown and may change from one request to the
next. This is particular useful for things like identifiers. For example, if a
route like /tasks called with a HTTP GET request returns a list of all tasks,
then a route like /tasks/5 returns a single item, the task whose identifier is
the integer five. Since each task should have a unique identifier, however, we
need to provide a pattern when defining this kind of route in a web API. The
way to do this is to use a parameter for the part of the URL path that can be
different with each request. In the case of tasks, we can use a route defined as
/tasks/{taskID}.

Because the http package from the standard library doesn’t provide a robust
and easy way to define parameterized routes, we’re going to use a
lightweight, third-party router called chi. Conceptually, our API will look like
what you see in figure 5.2. Requests will be sent to an HTTP server, which
you can see in the blue box. This server provides a function called
ListenAndServe which is the lowest layer in our stack and will handle the low
level details of listening for incoming requests. The next three layers—
Routes, Router, and Handlers—are all provided by chi.

Figure 5.2. Internally, the worker’s API is composed of an HTTP server from the Go standard
library; the routes, router, and handlers from the chi package; and finally our own worker.

entest





For our worker API we’ll use the routes defined below in table 5.1. Because
we’re exposing our worker’s functionality via a web API, the routes will
involve standard HTTP methods like GET, POST, and DELETE. The first
route in the table, /tasks, will use the HTTP GET method and will return a
list of tasks. The second route is the same as the first, but it uses the POST
method, which will start a task. The third route, /tasks/{taskID}, will stop
the running task identified by the parameter {taskID}.

Table 5.1. Routes used by our worker API

Method Route Description

GET /tasks get a list of all tasks

POST /tasks create a task

DELETE /tasks/{taskID} stop the task identified
by taskID

If you work with REST (Representational State Transfer) APIs at your day
job, this should look familiar. If you’re not familiar with REST, or you are
new to the world of APIs, don’t worry. It’s not necessary to be a REST expert
to grok what we’re building in this chapter. At a very hand-wavy level, REST
is an architectural style that builds on the client-server model of application
development. If you want to learn more about REST, you can start with a
gentle introduction like the API 101: What Is a REST API? post on the
Postman blog.

5.2 Data format, requests, and responses

Before we get into writing any code, we need to address one more important
item. From your experience browsing the internet, you know that when you



type an address into your browser, you get back data. Type https://espn.com
and you get data about sports. Type https://nytimes.com and you get data
about current events. Type in https://www.funnycatpix.com and you get data
that is pictures of cats.

Like the above websites, the worker API deals with data, both sending and
receiving data. It’s data, however, is not about news or cats but about tasks.
Furthermore, the data the worker API deals with will take a specific form,
and that form is JSON, which stands for Javascript Object Notation. You’re
probably already familiar with JSON, as it’s the lingua franca of many
modern APIs. This decision has two consequences:

1. any data sent to the API—e.g for our POST /tasks route in the table
above—must be encoded as JSON data in the body of the request; and

2. any data returned from the API—e.g. for our GET /tasks route—must
be encoded as JSON data in the body of the response.

For our worker, we only have one route, the POST /tasks route, that will
accept a body. But what data does our worker expect to be in the body of that
request?

If you remember from the last chapter, the Worker has a StartTask method
that takes a task.Task type as an argument. That type holds all the necessary
data we need to start the task as a Docker container. But what the Worker
API will receive (from the Manager) is a task.TaskEvent type, which contains
a task.Task. So, the job of the API is to extract that task from the request
and add it to the worker’s queue. Thus, a request to our POST /tasks route
will look like that in listing 5.1.

Listing 5.1. The Worker API receives a task.TaskEvent from the Manager. The task.TaskEvent
here was used in chapter 4.

{

    "ID": "6be4cb6b-61d1-40cb-bc7b-9cacefefa60c",

    "State": 2,

    "Task": {

        "State": 1,

        "ID": "21b23589-5d2d-4731-b5c9-a97e9832d021",

        "Name": "test-chapter-5",

        "Image": "strm/helloworld-http"



    }

}

The response to our POST /tasks request will have a status code of 201 and
includes a JSON-encoded representation of the task in the response body.
Why a 201 and not a 200 response code? We could use a 200 response status.
According to the HTTP spec described in RFC 7231, "The 200 (OK) status
code indicates that the request has succeeded. The payload sent in a 200
response depends on the request method".
(https://datatracker.ietf.org/doc/html/rfc7231#section-6.3.1) Thus, the 200
response code is the generic case telling the requester, "Yes, I received your
request and it was successful". The 201 response code, however, handles the
more specific case, i.e. for a POST request, that tells the requester, "Yes, I
received your request and I created a new resource". In our case, that new
resource is the task sent in the request body.

Like the POST /tasks route, the GET /tasks route returns a body in its
response. This route ultimately calls the GetTasks method on our worker,
which returns a slice of pointers to task.Task types, effectively a list of
tasks. Our API in this situation will take that slice returned from GetTasks,
encode it as JSON and then return it. Listing 5.2 shows an example of what
such a response might look.

Listing 5.2. The Worker API returns a list of tasks for the GET /tasks route. In this example,
there are two tasks.

[

  {

    "ID": "21b23589-5d2d-4731-b5c9-a97e9832d021",

    "ContainerID": "4f67af51b173564ffd50a3c7fdec258321262f5fa0529159e469806a5598c578",

    "Name": "test-chapter-5",

    "State": 2,

    "Image": "strm/helloworld-http",

    "Memory": 0,

    "Disk": 0,

    "ExposedPorts": null,

    "PortBindings": null,

    "RestartPolicy": "",

    "StartTime": "0001-01-01T00:00:00Z",

    "FinishTime": "0001-01-01T00:00:00Z"

  },

  {

entest



    "ID": "266592cd-960d-4091-981c-8c25c44b1018",

    "ContainerID": "180d207fa788d5261e6ccf927012476e24286c07fc3a387f4509272d2e901a4d",

    "Name": "test-chapter-5-1",

    "State": 2,

    "Image": "strm/helloworld-http",

    "Memory": 0,

    "Disk": 0,

    "ExposedPorts": null,

    "PortBindings": null,

    "RestartPolicy": "",

    "StartTime": "0001-01-01T00:00:00Z",

    "FinishTime": "0001-01-01T00:00:00Z"

  }

]

In addition to the list of tasks, the response will also have a status code of
200.

Finally, let’s talk about the DELETE /tasks/{taskID} route. Like the GET
/tasks route, this one will not take a body in the request. Remember, we said
earlier that the {taskID} part of the route is a parameter and allows the route
to be called with arbitrary IDs. So, this route allows us to stop a task for the
given taskID. This route will only return a status code of 204; it will not
include a body in the response.

So, with this new information, let’s update table 5.1.

Table 5.2. Updated table 5.1 that for each request additionally shows whether the route accepts a
request body, whether it returns a response body, and what status code is returned for a
successful request.

Method Route Description Request Body Response
Body

Status
code

GET /tasks get a list of
all tasks none list of

tasks 200

POST /tasks create a
task

JSON-encoded
task.TaskEvent none 201



DELETE /tasks/{taskID}

stop the
task
identified
by taskID

none none 204

5.3 The API struct

At this point, we’ve set the stage for writing the code for the worker API.
We’ve identified the main components of our API, defined the data format
used by that API, and enumerated the routes the API will support.

We’re going to start by representing our API in code as the struct seen in
listing 5.3. You should create a file named api.go in the worker/ directory of
your code where you can place this struct.

This struct serves several purposes. First, it contains the Address and Port
fields, which define the local IP address of the machine where the API runs
and the port on which the API will listen for requests. These fields will be
used to start the API server, which we will implement later in the chapter.
Second, it contains the Worker field, which will be a reference to an instance
of a Worker object. Remember, we said the API will wrap the worker in
order to expose the Worker’s core functionality to the Manager. This field is
the means by which that functionality is exposed. Third, the struct contains
the Router field, which is a pointer to an instance of chi.Mux. This field is
what brings in all the functionality provided by the chi router.

Listing 5.3. The API struct that will power our worker.

type Api struct {

        Address string

        Port    int

        Worker  *Worker

        Router  *chi.Mux

}

What is a mux?



The term mux stands for multiplexer and can be used synonymously with
request router.

5.4 Handling Requests

With the API struct defined, we’ve given the API a general shape, or form, at
a high level. This shape is what will contain the API’s three components:
handlers, routes, and a router. Let’s dive deeper into the API and implement
the handlers that will be able to respond to the routes we defined in table 5.1
above.

As we’ve already said, a handler is a function capable of responding to a
request. In order for our API to handle incoming requests, we need to define
handler methods on the API struct. We’re going to use the following three
methods, which I’ll list here with their method signatures:

StartTaskHandler(w http.ResponseWriter, r *http.Request)
GetTasksHandler(w http.ResponseWriter, r *http.Request)
StopTaskHandler(w http.ResponseWriter, r *http.Request)

There is nothing terribly complicated about these handler methods. Each
method takes the same arguments, an http.ReponseWriter type and a pointer
to an http.Request type. Both of these types are defined in the http package in
Go’s standard library. The http.ResponseWriter w will contain data related to
responses. The http.Request r will hold data related to requests.

To implement these handlers, create a file named handlers.go in the worker
directory of your project, then open that file in a text editor. We’ll start by
adding the StartTaskHandler method seen in listing 5.4. At a high level, this
method reads the body of a request from r.Body, converts the incoming data
it finds in that body from JSON to an instance of our task.TaskEvent type,
then adds that task.TaskEvent to the worker’s queue. It wraps up by printing
a log message and then adding a response code to the http.ResponseWriter.

Listing 5.4. The worker’s StartTaskHandler method takes incoming requests to start a task,
reads the body of the request and converts it from JSON to a task.TaskEvent, then puts that on
the worker’s queue.



func (a *Api) StartTaskHandler(w http.ResponseWriter, r *http.Request) {

        d := json.NewDecoder(r.Body) #1

        d.DisallowUnknownFields() #2

        te := task.TaskEvent{} #3

        err := d.Decode(&te) #4

        if err != nil { #5

                msg := fmt.Sprintf("Error unmarshalling body: %v\n", err)

                log.Printf(msg)

                w.WriteHeader(400)

                e := ErrResponse{

                        HTTPStatusCode: 400,

                        Message:        msg,

                }

                json.NewEncoder(w).Encode(e)

                return

        }

        a.Worker.AddTask(te.Task) #6

        log.Printf("Added task %v\n", te.Task.ID) #7

        w.WriteHeader(201) #8

        json.NewEncoder(w).Encode(te.Task) #9

}

The next method we’ll implement is the GetTasksHandler method in listing
5.5. This method looks simple, but there is a lot going inside it. It starts off by
setting the Content-Type header to let the client know we’re sending it JSON
data. Then, similar to StartTaskHandler, it adds a response code. And then
we come to the final line in the method. It may look a little complicated, but
it’s really just a compact way to express the following operations:

get an instance of a json.Encoder type by calling the
json.NewEncoder() method
get all the worker’s tasks by calling the worker’s GetTasks method
transform the list of tasks into JSON by calling the Encode method on
the json.Encoder object

Listing 5.5. The worker’s GetTasksHandler does what it advertises: it returns all of the tasks the
worker knows about.

func (a *Api) GetTasksHandler(w http.ResponseWriter, r *http.Request) {

        w.Header().Set("Content-Type", "application/json")

        w.WriteHeader(200)

        json.NewEncoder(w).Encode(a.worker.GetTasks())



}

The final handler to implement is the StopTaskHandler. If we glance back at
table 5.2, we can see stopping a task is accomplished by sending a request
with a path of /tasks/{taskID}. An example of what this path will look like
when a real request is made is /tasks/6be4cb6b-61d1-40cb-bc7b-
9cacefefa60c. This is all that’s needed to stop a task, because the worker
already knows about the task: it has it stored in its Db field.

The first thing the StopTaskHandler must do is read the taskID from the
request path. As you can see in figure 5.6, we’re doing that by using a helper
function named URLParam from the chi package. We’re not going to worry
about how the helper method is getting the taskID for us; all we care about is
that it simplifies our life a bit and gives us the data we need to get on with the
job of stopping a task.

Now that we have the taskID, we have to convert it from a string, which is
the type that chi.URLParam returns to us, into a uuid.UUID type. This
conversion is done by calling the uuid.Parse() method, passing it the string
version of the taskID. Why do we have to perform this step? It’s necessary
because the worker’s Db field is a map which has keys of type uuid.UUID. So
if we were to try to lookup a task using a string, the compiler would yell at
us.

Okay, so now we have a taskID and we have converted it to the correct type.
The next thing we want to do is to check if the worker actually knows about
this task. If it doesn’t, then we should return a response with a 404 status
code. If it does, then we change the state to task.Completed and add it to the
worker’s queue. This is what the remaining of the method is doing.

Listing 5.6. The worker’s StopTaskHandler uses the taskID from the request path to add a task
to the worker’s queue that will stop the specified task.

func (a *Api) StopTaskHandler(w http.ResponseWriter, r *http.Request) {

        taskID := chi.URLParam(r, "taskID")  #1

        if taskID == "" {  #2

                log.Printf("No taskID passed in request.\n")

                w.WriteHeader(400)

        }



        tID, _ := uuid.Parse(taskID)  #3

        _, ok := a.Worker.Db[tID]  #4

        if !ok {  #5

                log.Printf("No task with ID %v found", tID)

                w.WriteHeader(404)

        }

        taskToStop := a.Worker.Db[tID]  #6

        taskCopy := *taskToStop  #7

        taskCopy.State = task.Completed  #8

        a.Worker.AddTask(taskCopy)  #9

        log.Printf("Added task %v to stop container %v\n", taskToStop.ID, taskToStop.ContainerID)  #10

        w.WriteHeader(204)  #11

}

There is one little gotcha in our StopTaskHandler that’s worth explaining in
more detail. Notice that we’re making a copy of the task that’s in the
worker’s datastore. Why is this necessary?

As we mentioned in chapter 4, we’re using the worker’s datastore to
represent the current state of tasks, while we’re using the worker’s queue to
represent the desired state of tasks. As a result of this decision, the API
cannot simply retrieve the task from the worker’s datastore, set the state to
task.Completed, then put the task onto the worker’s queue. The reason for
this is that the values in datastore are pointers to task.Task types. If we were
to change the state on taskToStop, we would be changing the state field on
the task in the datastore. We would then add the same task to the worker’s
queue, and when it popped the task off to work on it, it would complain about
not being able to transition a task from the state task.Completed to
task.Completed. Hence, we make a copy, change the state on the copy, and
add it to the queue.

5.5 Serving the API

Up to this point, we’ve been setting the stage for serving the worker’s API.
We’ve created our API struct that contains the two components that will make
this possible: that is, the Worker and Router fields. Each of these is a pointer
to another type. The Worker field is a pointer to our own Worker type that we
created in chapter 3, and it will provide all the functionality to start and stop



tasks and get a list of tasks the worker knows about. The Router field is a
pointer to a Mux object provided by the chi package, and it will provide the
functionality for defining routes and routing requests to the handlers we
defined earlier.

In order to serve the worker’s API, we need to make two additions to the
code we’ve written so far. Both additions will be made to the api.go file.

The first addition is to add the initRouter() method to the Api struct as you
see in listing 5.7. This method, as its name suggests, initializes our router. It
starts by creating an instance of a Router by calling chi.NewRouter(). Then
it goes about setting up the routes we defined above in table 5.2. We won’t
get into the internals of how the chi package creates these routes.

Listing 5.7. The initRouter() method.

func (a *Api) initRouter() {

        a.Router = chi.NewRouter() #1

        a.Router.Route("/tasks", func(r chi.Router) { #2

                r.Post("/", a.StartTaskHandler) #3

                r.Get("/", a.GetTasksHandler)

                r.Route("/{taskID}", func(r chi.Router) { #4

                        r.Delete("/", a.StopTaskHandler) #5

                })

        })

}

The final addition is to add the Start() method to the Api struct as you see in
listing 5.8. This method calls the initRouter method defined in listing 5.4,
and then it starts an HTTP server that will listen for requests. The
ListenAndServe function is provided by the http package from Go’s
standard library. It takes an address, which we’re building with the
fmt.Sprintf function and will typically (for us) look like 127.0.0.1:5555,
and a handler, which for our purposes is the router that gets created in the
initRouter() method.

Listing 5.8. The Start() method initializes our router and starts listening for requests

func (a *Api) Start() {

        a.initRouter()



        http.ListenAndServe(fmt.Sprintf("%s:%d", a.Address, a.Port), a.Router)

}

5.6 Putting it all together

Like we’ve done in previous chapters, it’s time to take the code we’ve written
and actually run it. To do this, we’re going to continue our use of main.go, in
which we’ll write our main function. You can either re-use the main.go file
from the last chapter and just delete the contents of the main function, or start
with a fresh file.

In your main.go file, add the main() function from listing 5.9. This function
uses all the work we’ve done up to this point. It creates an instance of our
Worker, w, which has a Queue and a Db. It creates an instance of our Api, api,
which uses the host and port values that it reads from the local environment.

Finally, the main() function performs the two operations that brings
everything to life.

The first of these operations is to call a function runTasks and passing it a
pointer to the worker w. But it also does something else. It has this funny go
term before calling the runTasks function. What is that about? If you’ve used
threads in other languages, the go runTasks(&w) line is similar to using
threads. In Go, threads are called goroutines, and they provide the ability to
perform concurrent programming. We won’t go into the details of goroutines
here, because there are other resources dedicated solely to this topic. For our
purposes, all we need to know is that we’re creating a goroutine and inside it
we will run the runTasks function. After creating the goroutine, we can
continue on in the main function and start our API by calling api.Start().

Listing 5.9. Running our worker from main.go.

func main() {

        host := os.Getenv("CUBE_HOST")

        port, _ := strconv.Atoi(os.Getenv("CUBE_PORT"))

        fmt.Println("Starting Cube worker")

        w := worker.Worker{



                Queue: *queue.New(),

                Db:    make(map[uuid.UUID]*task.Task),

        }

        api := worker.Api{Address: host, Port: port, Worker: &w}

        go runTasks(&w)

        api.Start()

}

Now, let’s talk about the runTasks function, which you can see in listing
5.10. This function runs in a separate goroutine from the main function, and
it’s fairly simple. It’s a continuous loop that checks the worker’s queue for
tasks and calls the worker’s RunTask method when it finds tasks that need to
run. For our own convenience, we’re sleeping for ten seconds between each
iteration of the loop. This slows things down for us so we can easily read any
log messages.

Listing 5.10. The runTasks function.

func runTasks(w *worker.Worker) {

        for {

                if w.Queue.Len() != 0 {

                        result := w.RunTask()

                        if result.Error != nil {

                                log.Printf("Error running task: %v\n", result.Error)

                        }

                } else {

                        log.Printf("No tasks to process currently.\n")

                }

                log.Println("Sleeping for 10 seconds.")

                time.Sleep(10 * time.Second)

        }

}

There is a reason that we’ve structured our main function like this. If you
recall the handler functions we wrote earlier in the chapter, they were
performing a very narrow set of operations, namely:

reading requests sent to the server
getting a list of tasks from the worker (in the case of the
GetTasksHandler)
putting a task on the worker’s queue



sending a response to the requester

Notice that the API is not calling any worker methods that perform task
operations, that is it is not starting or stopping tasks. Structuring our code in
this way allows us to separate the concern of handling requests from the
concern of performing the operations to start and stop tasks. Thus, we make it
easier on ourselves to reason about our codebase. If we want to add a feature
or fix a bug with the API, we know we need to work in the api.go file. If we
want to do the same for request handling, we need to work in the
handlers.go file. And, for anything related to the operations of starting and
stopping tasks, we need to work in the worker.go file.

Okay, time to make some magic. Running our code should result in a number
of log messages being printed to the terminal, like this:

$ go run main.go #1

Starting Cube worker #2

2021/11/05 14:17:53 No tasks to process currently. #3

2021/11/05 14:17:53 Sleeping for 10 seconds.

2021/11/05 14:18:03 No tasks to process currently. #4

2021/11/05 14:18:03 Sleeping for 10 seconds.

2021/11/05 14:18:13 No tasks to process currently. #5

2021/11/05 14:18:13 Sleeping for 10 seconds.

As you can see when we first start the worker API, it doesn’t do much. It tells
us it doesn’t have any tasks to process, then sleeps for ten seconds, and then
wakes up again and tells us the same thing. This isn’t very exciting. Let’s
spice things up by interacting with the worker API. We’ll start with getting a
list of tasks using the curl command in a separate terminal:

$ curl -v localhost:5555/tasks #1

*   Trying 127.0.0.1:5555...

* Connected to localhost (127.0.0.1) port 5555 (#0) #2

> GET /tasks HTTP/1.1 #3

> Host: localhost:5555

> User-Agent: curl/7.78.0

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 200 OK #4

< Content-Type: application/json

< Date: Fri, 05 Nov 2021 18:27:25 GMT



< Content-Length: 3

<

[] #5

Great! We can query the API to get a list of tasks. As expected, though, the
response is an empty list because the worker doesn’t have any tasks yet. Let’s
remedy that by sending it a request to start a task.

curl -v --request POST \  #1

  --header 'Content-Type: application/json' \  #2

  --data '{  #3

    "ID": "266592cd-960d-4091-981c-8c25c44b1018",

    "State": 2,

    "Task": {  

        "State": 1,

        "ID": "266592cd-960d-4091-981c-8c25c44b1018",

        "Name": "test-chapter-5-1",

        "Image": "strm/helloworld-http"

    }

}

' localhost:7777/tasks

When you run the above curl command, you should see output like that
below. Notice that the status code in the response is HTTP/1.1 201 Created
and there is no response body.

*   Trying 127.0.0.1:5555...

* Connected to localhost (127.0.0.1) port 5555 (#0)

> POST /tasks HTTP/1.1

> Host: localhost:5555

> User-Agent: curl/7.80.0

> Accept: */*

> Content-Type: application/json

> Content-Length: 243

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 201 Created

< Date: Mon, 29 Nov 2021 22:24:51 GMT

<

* Connection #0 to host localhost left intact

At the same time you run the curl command above, you should see log
messages in the terminal where the API is running. Those log messages
should look like this:



2021/11/05 14:47:47 Added task 266592cd-960d-4091-981c-8c25c44b1018

Found task in queue: {266592cd-960d-4091-981c-8c25c44b1018 test-chapter-5-1 1 strm/helloworld-http 0 0 map[] map[] 0001-01-01 00:00:00 +0000 UTC 0001-01-01 00:00:00 +0000 UTC}:

{"status":"Pulling from strm/helloworld-http","id":"latest"}

{"status":"Digest: sha256:bd44b0ca80c26b5eba984bf498a9c3bab0eb1c59d30d8df3cb2c073937ee4e45"}

{"status":"Status: Image is up to date for strm/helloworld-http:latest"}

2021/11/05 14:47:53 Sleeping for 10 seconds.

Great! At this point, we’ve created a task by calling the worker API’s POST
/tasks route. Now, when we make a GET request to /tasks, instead of seeing
an empty list we should see output like this:

$ curl -v localhost:5555/tasks

*   Trying 127.0.0.1:5555...

* Connected to localhost (127.0.0.1) port 5555 (#0)

> GET /tasks HTTP/1.1

> Host: localhost:5555

> User-Agent: curl/7.78.0

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 200 OK

< Content-Type: application/json

< Date: Fri, 05 Nov 2021 19:17:55 GMT

< Content-Length: 346

<

[

  {

    "ID":"266592cd-960d-4091-981c-8c25c44b1018",

    "ContainerID": "6df4e15a5c840b0ece1aede5378e344fb672c2516196117dd37c3ae055b402d2",

    "Name":"test-chapter-5-1",

    "State":2,

    "Image":"strm/helloworld-http",

    "Memory":0,

    "Disk":0,

    "ExposedPorts":null,

    "PortBindings":null,

    "RestartPolicy":"",

    "StartTime":"0001-01-01T00:00:00Z",

    "FinishTime":"0001-01-01T00:00:00Z"

  }

]

Also, we should see a container running on our local machine, which we can
verify using the docker ps like so:

$ docker ps --format "table {{.ID}}\t{{.Image}}\t{{.Status}}\t{{.Names}}"



CONTAINER ID   IMAGE                  STATUS          NAMES

6df4e15a5c84   strm/helloworld-http   Up 35 minutes   test-chapter-5-1

So far, we’ve queried the worker API to get a list of tasks by making a GET
request to the /tasks route. Seeing the worker didn’t have any, we created
one by making a POST request to the /tasks route. Upon querying the API
again by making a subsequent GET request /tasks, we got back a list
containing our task.

Now, let’s exercise the last bit of the worker’s API functionality and stop our
task. We can do this by making a DELETE request to the /tasks/<taskID>
route, using the ID field from our previous GET request.

$ curl -v --request DELETE "localhost:5555/tasks/266592cd-960d-4091-981c-8c25c44b1018"

*   Trying 127.0.0.1:5555...

* Connected to localhost (127.0.0.1) port 5555 (#0)

> DELETE /tasks/266592cd-960d-4091-981c-8c25c44b1018 HTTP/1.1

> Host: localhost:5555

> User-Agent: curl/7.78.0

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 204 No Content

< Date: Fri, 05 Nov 2021 19:25:47 GMT

In addition to seeing our request received a HTTP/1.1 204 No Content
response, we should see log output from the worker API that looks like the
following:

2021/11/05 15:25:47 Added task 266592cd-960d-4091-981c-8c25c44b1018 to stop container 6df4e15a5c840b0ece1aede5378e344fb672c2516196117dd37c3ae055b402d2

Found task in queue: {266592cd-960d-4091-981c-8c25c44b1018 6df4e15a5c840b0ece1aede5378e344fb672c2516196117dd37c3ae055b402d2 test-chapter-5-1 3 strm/helloworld-http 0 0 map[] map[] 0001-01-01 00:00:00 +0000 UTC 0001-01-01 00:00:00 +0000 UTC}:

2021/11/05 15:25:54 Attempting to stop container 6df4e15a5c840b0ece1aede5378e344fb672c2516196117dd37c3ae055b402d2

2021/11/05 15:26:05 Stopped and removed container 6df4e15a5c840b0ece1aede5378e344fb672c2516196117dd37c3ae055b402d2 for task 266592cd-960d-4091-981c-8c25c44b1018

2021/11/05 15:26:05 Sleeping for 10 seconds.

We can confirm it’s been stopped by checking the output of docker ps again:

$ docker ps

CONTAINER ID   IMAGE     COMMAND   CREATED   STATUS    PORTS     NAMES

We can also confirm it by querying the API and checking the state of our
task. In the response to our GET /tasks request, we should see the State of



the task is 3.

$ curl -v localhost:5555/tasks

*   Trying 127.0.0.1:5555...

* Connected to localhost (127.0.0.1) port 5555 (#0)

> GET /tasks HTTP/1.1

> Host: localhost:5555

> User-Agent: curl/7.78.0

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 200 OK

< Content-Type: application/json

< Date: Fri, 05 Nov 2021 19:31:36 GMT

< Content-Length: 356

<

[

  {

    "ID":"266592cd-960d-4091-981c-8c25c44b1018",

    "ContainerID": "20d50c12fb2243f96183b81c00942a123cd2a48e463cc971dafedcadedfbd2d8",

    "Name":"test-chapter-5-1",

    "State":3,

    "Image":"strm/helloworld-http",

    "Memory":0,

    "Disk":0,

    "ExposedPorts":null,

    "PortBindings":null,

    "RestartPolicy":"",

    "StartTime":"0001-01-01T00:00:00Z",

    "FinishTime":"2021-11-05T19:30:04.661208966Z"

  }

]

5.7 Summary

The API wraps the worker’s functionality and exposes it as a HTTP
server, thus making it accessible over a network. This strategy of
exposing the worker’s functionality as a web API will allow the
manager to start and stop tasks, as well as query the state of tasks, across
1 or more workers.
The API is made up of handlers, routes, and a router. Handlers are
functions that accept a request and know how to process it and return a
response. Routes are patterns that can be used to match the URL of



incoming requests (e.g. /tasks). And, finally, a router is the glue that
makes it all work by
The API uses the standard HTTP methods like GET, POST, DELETE to
define the operations that will occur for a given route. For example,
calling GET /tasks will return a list of tasks from the worker.
While the API wraps the Worker’s functionality, it does not interact
with that functionality itself. Instead, it simply performs some
administrative work and then places the task on the Worker’s queue.



6 Metrics
This chapter covers

Explaining why the worker needs to collect metrics
Defining the metrics
Creating a process to collect metrics
Implementing a handler on the existing API

Imagine you’re the host at a busy restaurant on a Friday night. You have six
servers waiting on customers sitting at tables spread across the room. Each
customer at each of those tables has different requirements. One customer
might be there to have drinks and appetizers with a group of friends she
hasn’t seen in a while. Another customer might be there for a full dinner,
complete with an appetizer and desert. Yet another customer might have strict
dietary requirements and only eats plant-based food.

Now, a new customer walks in. It’s a family of four: two adults, two teenage
children. Where do you seat them? Do you place them at the table in the
section being served by John, who already has three tables with four
customers each? Do you place them at the table in Jill’s section, who has six
tables with a single customer each? Or, do you place them in Willie’s section,
who has a single table with three customers?

This scenario is exactly what the manager in an orchestration system deals
with. Instead of six servers waiting on tables, you have six machines. Instead
of customers, you have tasks, and instead of being hungry and wanting food
and drinks the tasks want computing resources like CPU, memory, and disk.
The manager’s job in an orchestration system, like the host in the restaurant,
is to place incoming tasks on the "best" worker machine that can meet the
task’s resource needs.

In order for the manager to do its job, however, it needs metrics that reflect
how much work a worker is already doing. Those metrics are provided by the
worker.



6.1 What metrics should we collect?

Before we dive deeper into metrics, it’s good to refresh our memory about
the worker and its components at a higher level. As you can see in figure 6.1,
the two components that we’ll be dealing with are the API and Metrics. In
previous chapters, we covered the Task DB, Task Queue, and Runtime
components. In the last chapter, we covered the API, which resulted in
building an API server that wraps the Worker’s lower level operations for
starting and stopping tasks. Now, we want to dig deeper in the Metrics
component, which will expose metrics on the same API.

Figure 6.1. Remembering the big picture of the worker’s components.

In order for a worker to tell a manager how much work it’s currently doing,
what metrics will paint a reasonably accurate picture? Remember, we’re not
building a production-ready orchestrator. Systems like Borg, Kubernetes, and
Nomad will have better metrics, both in quantity and quality, than will our



system. That’s okay. We’re trying to understand how an orchestration system
works at a fundamental level, not replace existing systems.

In thinking about these metrics, let’s look back at listing 3.6, in which we
defined the Task struct. There are three fields in that struct that are relevant to
this discussion: CPU, Memory and Disk. These fields represent how much
CPU, memory, and disk space a task needs to perform its work. The values
will be specified by humans like you and me when we submit our tasks to the
system. If our task will be doing a lot of heavy computation, maybe it will
need lots of CPU and memory. If our task uses a Docker image that is
particularly large for some reason, we may want to specify an amount that
provides a little overhead so there is room for the worker to download the
image when it starts the task.

type Task struct {

    // prior fields not listed

    Cpu           float64

    Memory        int

    Disk          int

    // following fields not listed

}

If these are the resources that a user will specify when it submits a task to the
system, then it makes sense that we should collect metrics about these
resources from each of the workers. In particular, we’re interested in metrics
about the following:

CPU usage (as a percentage)
Total memory
Available memory
Total disk
Available disk

6.2 Metrics available from the /proc filesystem

Now that we’ve identified the metrics we want to collect, let’s talk about how
we’re going to collect them. On Linux systems, there is a pseudo-filesystem

entest



named /proc which contains a range of information about the state of the
system. A deep discussion about the /proc filesystem is beyond the scope of
this book, and if you’re interested in more details there are good sources that
cover the topic. For our purposes, it’s enough to understand that /proc is a
special filesystem that is part of the Linux operating system and holds a
wealth of information, including information about the state of the system’s
CPU, memory, and disk resources.

More info about /proc

If you’re interested in more information about the /proc filesystem, there are
many resources available on the web. Here are a couple to get started:

https://tldp.org/LDP/sag/html/proc-fs.html http://mng.bz/51MD

The nice thing about /proc is it appears like any other filesystem, which
means users can interact with it the same way they interact with other
"normal" filesystems. Items in /proc appear as files, which means standard
tools like ls and cat can be used on them.

The files in the /proc filesystem that we’re going to work with are:

/proc/stat contains information about processes running on the system
/proc/meminfo contains information about memory usage
/proc/loadavg contains information about the system’s load average

These files are the source of data that you see in many Linux commands like
ps, stat, and top.

To get a sense of the data contained in these files, use the cat command to
poke around them. For example, running the command cat /proc/stat on
my laptop (which is running Manjaro Linux), I see a bunch of data about
each of my CPUs. According to the proc man page (see man 5 proc), each
line contains 10 values which represent the amount of time spent in various
states. Those states are:

user Time spent in user mode
nice Time spent in user mode with low priority (nice)

entest



system Time spent in system mode
idle Time spent in the idle task
iowait Time waiting for I/O to complete
irg Time servicing interrupts
softirq Time servicing softirqs
steal Stolen time, which is the time spent in other operating systems
when running in a virtualized environment
guest Time spent running a virtual CPU for guest operating systems
under the control of the Linux kernel
guest_nice Time spent running a niced guest

Listing 6.1. Using cat to look at the /proc/stat file

$ cat /proc/stat

cpu  724661 181 374910 105390121 4468 59434 23083 0 0 0  #1

cpu0 59580 33 29642 8786508 191 3560 2244 0 0 0  #2

cpu1 60502 3 31300 8779359 150 9016 2729 0 0 0

cpu2 58574 7 32002 8785331 139 3688 3159 0 0 0

cpu3 59564 9 30935 8787000 137 3259 2017 0 0 0

cpu4 59555 6 29208 8786670 369 3312 1950 0 0 0

cpu5 63148 16 37486 8755311 430 16914 2993 0 0 0

cpu6 60653 76 31349 8780196 483 4168 2040 0 0 0

cpu7 62622 2 33386 8781129 533 3402 1325 0 0 0

cpu8 60286 1 31729 8783928 542 3175 1219 0 0 0

cpu9 59229 2 29664 8787395 571 3038 1118 0 0 0

cpu10 59550 1 28925 8789436 468 2945 1100 0 0 0

cpu11 61392 18 29278 8787854 449 2952 1184 0 0 0

Running the command cat /proc/meminfo shows data about the memory
being used by my system. This data is used by commands like free. For our
purposes, we will focus on two values provided from /proc/meminfo (see
/proc/meminfo in man 5 proc for more details).

MemTotal Total usable RAM (i.e., physical RAM minus a few reserved
bits and the kernel binary code)
MemAvailable An estimate of how much memory is available for
starting new applications, without swapping.

Listing 6.2. Using cat to look at the /proc/meminfo file

$ cat /proc/meminfo



MemTotal:       32488372 kB

MemFree:        21697264 kB

MemAvailable:   25975132 kB

Buffers:          512724 kB

Cached:          5829084 kB

SwapCached:            0 kB

Active:          1978056 kB

Inactive:        6165696 kB

Active(anon):      18368 kB

Inactive(anon):  3766080 kB

Active(file):    1959688 kB

Inactive(file):  2399616 kB

Unevictable:     1836208 kB

Mlocked:              32 kB

SwapTotal:             0 kB

SwapFree:              0 kB

Dirty:                 0 kB

[additional data truncated]

Running the command cat /proc/loadavg shows data about the system’s
load average. The first three fields in the output should look familiar, as they
are the same as what you see when you run the uptime command. These
numbers represent the number of jobs in the run queue (state R) or waiting for
disk I/O averaged over 1, 5, and 15 minutes. The fourth field contains two
values separated by a slash (i.e. this is not a fraction): the first value is the
number of currently runnable kernel processes or threads, and the second
value is the number of kernel processes and threads that currently exist on the
system. (see /proc/loadavg in man 5 proc).

Listing 6.3. Using cat to look at the /proc/loadavg file

$ cat /proc/loadavg

0.14 0.16 0.18 1/1787 176550

While we will use the /proc filesystem for CPU and memory metrics, we
won’t use it to gather disk metrics. We could indeed use it, for there is the
/proc/diskstats file. But, we’re going to collect disk metrics a different
way, which we’ll talk more about here in a minute.

Since the metrics we’re interested in are available from the /proc filesystem,
we could write our own code to interact with /proc and pull out the data we
need. We’re not, however, going to take that route. Instead, we’re going to

entest



use a third-party library called goprocinfo.

6.3 Collecting metrics with goprocinfo

The goprocinfo library provides a range of types that allow us to interact with
the /proc filesystem. Four our purposes we’re going to focus on four types
that will greatly simplify our work. They are:

LoadAvg which provides the ReadLoadAvg() method and makes
available the data from /proc/loadavg
CpuStat which provides the ReadStat() method and makes available the
data from /proc/stat
MemInfo which provides the ReadMemInfo() method and makes
available the data from /proc/meminfo
Disk which provides the ReadDisk() method and makes available disk-
related data using the syscall package from Go’s standard library

We won’t use every piece of data contained in each of these types, as we will
see shortly.

In order to make it easy to use these metrics, let’s create a wrapper around
them. We’ll start by adding the Stats struct you see in listing 6.1 below. This
wrapper type contains five fields that will provide us everything we need.
The MemStats field will hold all the memory-related data we need and will be
a pointer to the MemInfo type from goprocinfo. The DiskStats field will
hold all the necessary disk-related data and will be a pointer to goprocinfo’s
`Disk type. The CpuStats field will contain all the cpu-related data and will
be a pointer to goprocinfo’s `CPUStat type. Finally, the LoadLoadStats
field will hold the relevant load-related data and will be a pointer to
goprocinf’s `LoadAvg type.

Listing 6.4. The Stats type we’ll use to hold all the worker’s metrics.

type Stats struct {

    MemStats  *linux.MemInfo

        DiskStats *linux.Disk

        CpuStats  *linux.CPUStat

        LoadStats *linux.LoadAvg

entest



}

Now that we have defined our Stats type, let’s take a step back and think
about the kinds of metrics that might be useful. Starting with memory, what
might we be interested in? It’d be good to know how much total memory the
worker has. Knowing how much memory is available for new programs
would also probably be useful. It’d also be good to know how much memory
is being used. Similarly, it’d be useful to know how much memory is being
used as a percentage of total memory.

With these memory metrics identified, let’s add some helper methods to the
Stats type that will make it quick and easy to get this data. We’ll start with a
method named MemTotalKb, seen in listing 6.2 below. This method simply
returns the value of the MemStats.MemTotal field. We add the suffix Kb to the
method name as a quick reminder of the units being used.

Listing 6.5. The MemTotalKb() helper method.

func (s *Stats) MemTotalKb() uint64 {

        return s.MemStats.MemTotal

}

Next, let’s add the MemAvailableKb method seen in listing 6.3. Like
MemTotalKb, it simply returns the value from a field in the MemStats field, in
this case MemAvailable.

Listing 6.6. The MemAvailableKb() helper method.

func (s *Stats) MemAvailableKb() uint64 {

        return s.MemStats.MemAvailable

}

The MemTotalKb and MemAvailable methods let us figure out the last two
memory-related metrics we identified, how much memory is being used as an
absolute value and as a percentage of total memory. These metrics are
provided by the MemUsedKb and MemUsedPercent methods in listing 6.4.

Listing 6.7. The MemUsedKb() and MemUsedPercent() helper methods.

func (s *Stats) MemUsedKb() uint64 {



        return s.MemStats.MemTotal - s.MemStats.MemAvailable

}

func (s *Stats) MemUsedPercent() uint64 {

        return s.MemStats.MemAvailable / s.MemStats.MemTotal

}

Now let’s turn our attention to disk-related metrics. Similar to our memory
metrics, it’d be good to know how much total disk is available on a worker
machine, how much is free, and how much is being used. Unlike the
memory-related methods, our disk-related methods won’t need to perform
any calculations. The data is provided to us directly from goprocinfo’s
`Disk type. So, let’s create the DiskTotal, DiskFree, and DiskUsed methods
seen below in listing 6.5.

Listing 6.8. The helper methods for collecting metrics about the amount of total disk space, the
amount of free disk space, and the amount of disk space used.

func (s *Stats) DiskTotal() uint64 {

        return s.DiskStats.All

}

func (s *Stats) DiskFree() uint64 {

        return s.DiskStats.Free

}

func (s *Stats) DiskUsed() uint64 {

        return s.DiskStats.Used

}

Finally, let’s talk about CPU-related metrics. The two mostly commonly used
metrics when we talk about CPU-related metrics are load average and usage.
As we mentioned earlier, load average can be seen in the output of the
uptime command, which come from /proc/loadavg.

$ uptime

 14:38:18 up 6 days, 22:39,  2 users,  load average: 0.43, 0.32, 0.33

$ cat /proc/loadavg

0.43 0.32 0.33 1/2462 865995

For CPU usage, however, the story is slightly more complicated. When we
talk about "cpu usage", we typically talk in terms of percentages. For



example, currently on my laptop the cpu usage is 2%. But, what does that
actually mean?

As we talked about previously, on a Linux operating system a CPU spends its
time in various states. Moreover, we can see how much time our CPU(s) are
spending in each of the states (user, nice, system, idle, etc.) by looking at
/proc/stat. Knowing how much time our CPUs are spending in these
individual states is nice, but it doesn’t translate into that single percentage we
use when we say, "cpu percentage is 2%".

Unfortunately, the CPUStat type provided by the goprocinfo library doesn’t
provide us with any useful helper methods to calculate the cpu usage; it
simply provides us the CPUStat type as you can see below.

type CPUStat struct {

        Id        string `json:"id"`

        User      uint64 `json:"user"`

        Nice      uint64 `json:"nice"`

        System    uint64 `json:"system"`

        Idle      uint64 `json:"idle"`

        IOWait    uint64 `json:"iowait"`

        IRQ       uint64 `json:"irq"`

        SoftIRQ   uint64 `json:"softirq"`

        Steal     uint64 `json:"steal"`

        Guest     uint64 `json:"guest"`

        GuestNice uint64 `json:"guest_nice"`

}

So, it is up to us to calculate this percentage ourselves. Luckily, we don’t
have to do too much work, because this problem has been discussed in a
StackOverflow post titled, Accurate calculation of CPU uage given in
percentage in Linux. According to this post, the general algorithm for
performing this calculation is this:

1. sum the values for the idle states
2. sum the values for the non-idle states
3. sum the total of idle and non-idle states
4. subtract the idle from the total and divide the result by the total

Thus, we can code this algorithm as you see in listing 6.6.



Listing 6.9. The CpuUsage() method encodes the algorithm that will give us the CPU usage as a
percentage.

func (s *Stats) CpuUsage() float64 {

        idle := s.CpuStats.Idle + s.CpuStats.IOWait

        nonIdle := s.CpuStats.User + s.CpuStats.Nice + s.CpuStats.System + s.CpuStats.IRQ + s.CpuStats.SoftIRQ + s.CpuStats.Steal

        total := idle + nonIdle

        if total == 0 {

                return 0.00

        }

        return (float64(total) - float64(idle)) / float64(total)

}

At this point, we have laid the foundation for gathering metrics that reflect
the amount of work an individual worker is performing. All that is left now is
to wrap up our work into a few functions that will return a fully populated
Stats type that we can use in the worker’s API.

The first of these functions is the GetStats() function seen in listing 6.7.
This function sets the fields MemStats, DiskStats, CpuStats, LoadStats in
the Stats struct by calling the appropriate helper functions.

Listing 6.10. The GetStats() function populates an instance of the Stats type and returns a
pointer to the caller.

func GetStats() *Stats {

        return &Stats{

                MemStats:  GetMemoryInfo(),

                DiskStats: GetDiskInfo(),

                CpuStats:  GetCpuStats(),

                LoadStats: GetLoadAvg(),

        }

}

Each of the helper functions used in the GetStats function takes a similar
format. It starts by calling the relevant function from the goprocinfo library.
It then checks if any errors were returned from the function call. And, finally,
it returns the data in the relevant struct.



It’s worth noting that if there is an error in calling the relevant goprocinfo
function, we simply print an error message and return a pointer to the
appropriate type, e.g. &linux.MemInfo{}. The returned type will be populated
with the appropriate zero value (i.e. the empty string "" for strings and 0 for
numbers).

Listing 6.11. These helper functions returns metrics from the /proc filesystem, with the exception
of the GetDiskInfo() function. Under the hood, it uses the syscall package from Go’s standard
library.

func GetMemoryInfo() *linux.MemInfo {

        memstats, err := linux.ReadMemInfo("/proc/meminfo")

        if err != nil {

                log.Printf("Error reading from /proc/meminfo")

                return &linux.MemInfo{}

        }

        return memstats

}

// GetDiskInfo See https://godoc.org/github.com/c9s/goprocinfo/linux#Disk

func GetDiskInfo() *linux.Disk {

        diskstats, err := linux.ReadDisk("/")

        if err != nil {

                log.Printf("Error reading from /")

                return &linux.Disk{}

        }

        return diskstats

}

// GetCpuInfo See https://godoc.org/github.com/c9s/goprocinfo/linux#CPUStat

func GetCpuStats() *linux.CPUStat {

        stats, err := linux.ReadStat("/proc/stat")

        if err != nil {

                log.Printf("Error reading from /proc/stat")

                return &linux.CPUStat{}

        }

        return &stats.CPUStatAll

}

// GetLoadAvg See https://godoc.org/github.com/c9s/goprocinfo/linux#LoadAvg

func GetLoadAvg() *linux.LoadAvg {

        loadavg, err := linux.ReadLoadAvg("/proc/loadavg")



        if err != nil {

                log.Printf("Error reading from /proc/loadavg")

                return &linux.LoadAvg{}

        }

        return loadavg

}

6.4 Exposing the metrics on the API

Now that we’ve done all the hard work, there are only three things left to do
in order to expose the worker’s metrics on its API:

1. add a method to the worker to regularly collect metrics
2. add a handler method to the API
3. add a /stats route to the API

To regularly collect our metrics, let’s add a method called CollectStats to
our worker in the worker.go file. This method, seen in listing 6.9, uses an
infinite loop, inside of which we call the GetStats() function we created
earlier. Note that we also set the worker’s TaskCount field. Finally, we sleep
for fifteen seconds. Why sleep for fifteen seconds? This is an arbitrary
decision that is mainly intended to slow down how frequently our system is
performing actions so that we humans can observe what is going on. In a real
production system, where users might be submitting tens, hundreds, or even
thousands of tasks per minute, we’d want to collect metrics in a more real-
time fashion.

Listing 6.12. The worker’s new CollectStats() method.

func (w *Worker) CollectStats() {

        for {

                log.Println("Collecting stats")

                w.Stats = GetStats()

        w.TaskCount = w.Stats.TaskCount

                time.Sleep(15 * time.Second)

        }

}

Next, let’s add the new handler method, called GetStatsHandler, to the API



in the handlers.go file. Like the other handlers we created in chapter 5, this
one takes two arguments, an http.ResponseWriter named w and a pointer to
an http.Request named r. The body of the method is pretty simple. It sets
the Content-Type header to application/json to let the caller know the
response contains JSON-encoded content. It then sets the response code to
200. Finally, it encodes the worker’s Stats field. Thus, GetStatsHandler is
simply encoding and returning the metrics in the worker’s Stats field, which
gets refreshed every fifteen seconds by the CollectStats method above.

Listing 6.13. The API’s new GetStatsHandler() method will be used for requests to the new
/stats route created in listing 6.11.

func (a *Api) GetStatsHandler(w http.ResponseWriter, r *http.Request) {

        w.Header().Set("Content-Type", "application/json")

        w.WriteHeader(200)

        json.NewEncoder(w).Encode(a.Worker.Stats)

}

The last thing to do is to update the API’s routes in the api.go file. Here, we
will create a new route, /stats. That route will only support GET requests and
will call the GetStatsHandler we created above.

Listing 6.14. Adding the new /stats route to the api.go file.

a.Router.Route("/stats", func(r chi.Router) {

    r.Get("/", a.GetStatsHandler)

})

Since we’ve added this new route to our API, let’s update the route table
from chapter 5 to provide a complete picture of what it now looks like.

Table 6.1. Our updated route table for the worker API.

Method Route Description Request Body Response
Body

Status
code

GET /tasks get a list of
all tasks none list of

tasks 200



POST /tasks
create a
task

JSON-encoded
task.TaskEvent none 201

DELETE /tasks/{taskID}

stop the
task
identified
by taskID

none none 204

GET /stats
get metrics
about the
worker

none
JSON-
encoded
stats.Stats

200

6.5 Putting it all together

Before we put this all together and take it for a test run, let’s quickly review
what we’ve done.

We created a new file, stats.go
In stats.go we created a new Stats type to hold the worker’s metrics
Also in stats.go, we created a GetStats() function that uses the
goprocinfo library to collect metrics and populate the Stats type with
data
We added the CollectStats method to the worker, which will call the
GetStats() function in an infinite loop
We added the GetStatsHandler method to the worker’s handlers in
handlers.go

We added a new route, /stats, to the worker’s API

At a conceptual level, the above work looks like that in figure 6.2.

Figure 6.2. The worker runs on a Linux machine and serves an API that includes the /stats
endpoint. The metrics served on the /stats endpoint are collected using the goprocinfo library,
which interacts directly with the Linux /proc filesystem.



Now, to see our work in action we need to write a program, like we’ve done
in past chapters, that will glue all of our work together. In this case, we can



actually re-use the same program we wrote in chapter 5. We only need to
make one minor change.

So, open up the main.go program we used in chapter 5. In the main()
function after the call to runTasks, add a call to the worker’s new
CollectStats method. And, like the runTasks method, execute that call to
CollectStats in a separate goroutine.

Listing 6.15. Updating the main() function from our main.go file. To allow the API to provide
metrics about the worker’s state, we just add a line to run the CollectStats() method in a
separate goroutine.

func main() {

        host := os.Getenv("CUBE_HOST")

        port, _ := strconv.Atoi(os.Getenv("CUBE_PORT"))

        fmt.Println("Starting Cube worker")

        w := worker.Worker{

                Queue: *queue.New(),

                Db:    make(map[uuid.UUID]*task.Task),

        }

        api := worker.Api{Address: host, Port: port, Worker: &w}

        go runTasks(&w)

        go w.CollectStats()

        api.Start()

}

After updating the main.go file, start up the API the same way you did in
chapter 5. You’ll notice that the API’s log output shows that it’s collecting
stats every 15 seconds.

$ CUBE_HOST=localhost CUBE_PORT=5555 go run main.go

Starting Cube worker

2021/12/28 14:03:35 No tasks to process currently.

2021/12/28 14:03:35 Sleeping for 10 seconds.

2021/12/28 14:03:35 Collecting stats

2021/12/28 14:03:45 No tasks to process currently.

2021/12/28 14:03:45 Sleeping for 10 seconds.

2021/12/28 14:03:50 Collecting stats

Now that the API is running, query the new /stats endpoint from a different



terminal. You should see output about memory, disk and cpu usage.

$ curl localhost:5555/stats|jq .

{

  "MemStats": {

    "mem_total": 32488372,

    "mem_free": 14399056,

    "mem_available": 23306576,

    [....]

  },

  "DiskStats": {

    "all": 1006660349952,

    "used": 39346565120,

    "free": 967313784832,

    "freeInodes": 61645909

  },

  "CpuStats": {

    "id": "cpu",

    "user": 4819423,

    "nice": 701,

    "system": 2140212,

    "idle": 502094668,

    "iowait": 14448,

    "irq": 561115,

    "softirq": 178454,

    "steal": 0,

    "guest": 0,

    "guest_nice": 0

  },

  "LoadStats": {

    "last1min": 0.78,

    "last5min": 0.55,

    "last15min": 0.43,

    "process_running": 2,

    "process_total": 2336,

    "last_pid": 581117

  },

  "TaskCount": 0

}

6.6 Summary

The worker exposes metrics about the state of the machine where it is
running. The metrics—about CPU, memory, and disk usage—will be
used by the manager to make scheduling decisions.



To make gathering metrics easier, we use a third-party library called
goprocinfo. This library handles most of the low-level work necessary
to get metrics from the /proc filesystem.
The metrics are made available on the same API that we built in chapter
5. Thus, the manager will have a uniform way to interact with workers:
making HTTP calls to /tasks to perform task operations, and making
calls to /stats to gather metrics about a worker’s current state.



7 The manager enters the room
This chapter covers

Reviewing the purpose of the manager
Designing a naive scheduling algorithm
Implementing the manager’s methods for scheduling and updating tasks

In chapters 4, 5, and 6, we implemented the Worker component of Cube, our
orchestration system. We focused on the core functionality of the Worker in
chapter 4, which enabled the worker to start and stop tasks. In chapter 5, we
added an API to the worker. This API wrapped the functionality we built in
chapter 4 and made it available from standard HTTP clients (e.g. curl). And,
finally, in chapter 6, we added the ability for our worker to collect metrics
about itself and expose those on the same API. With this work, we can run
multiple workers, with each worker running multiple tasks.

Now, we’ll move our attention to the Manager component of Cube. As we
mentioned in chapter 1, the manager is the brain of an orchestrator. While we
have multiple workers, we wouldn’t want to ask the users of our orchestration
system to submit their tasks directly to a worker. Why? This would place an
unnecessary burden on users, forcing them to be aware of how many workers
existed, how many tasks they were already running, and then to pick one.
Instead, we encapsulate all of that administrative work into the manager. The
users submit their tasks to the manager, and it figures out which worker in the
system can best handle the task.

Unlike Workers, the Cube orchestrator will have a single Manager. This is a
practical design decision meant to simplify the number of issues we need to
consider in our manager implementation.

By the end of this chapter, we will have implemented a Manager than can
submit tasks to Workers, using a naive round-robin scheduling algorithm.

7.1 The Cube manager

entest

entest



The manager component allows us to isolate administrative concerns from
execution concerns. This is a design principle known as separation of
concerns. Administrative concerns in an orchestration system include things
like the following:

Handling requests from users
Assigning tasks to workers who are best able to perform them (i.e.
scheduling)
Keeping track of task and worker state
Restarting failed tasks

Figure 7.1. The manager is responsible for administrative tasks, similar to the function of a
restaurant host seating customers. It will use the worker’s /tasks and /stats API endpoints to
perform its administrative duties.



Every orchestration system has a manager component. Google’s Borg calls it
the borgmaster. Hashicorp’s Nomad uses the unimaginative yet functional
term server. Kubernetes doesn’t have a singular name for this component, but
instead specifically identifies the subcomponents (API server, controller
manager, etcd, scheduler).

Control plane vs data plane

Another way to think of separation of concerns is the concept of control
plane vs data plane. In the world of networking, you’ll find these terms used
frequently, and they refer to "plane of existence".

In a network, the control plane controls how data moves from point A to
point B. This plane is responsible for things like creating routing tables,
which are determined by different protocols (such as the Border Gateway
Protocol, BGP, and the Open Shortest Path First, OSPF, protocol). This plane
performs functions similar to the administrative concerns of our manager.

Unlike the control plane, the data plane does the actual work of moving the
data around. This plane performs functions similar to the execution concerns
of our worker.

7.1.1 The components that make up the manager

Like our worker, our manager will be comprised of several subcomponents,
as seen in figure 7.2. The manager will have a Task DB, which, like the
worker, will store tasks. In contrast to the worker’s Task DB, however, the
manager’s will contain all tasks in the system.

The manager will also have an Event DB, which will store events (i.e.,
task.TaskEvent). This subcomponent is mostly a convenient way for us to
separate metadata from task-specific data. Metadata includes things like the
timestamp when a user submitted a task to the system, . We’ll make use of it
in a later chapter when we implement a CLI for the manager.

Like the worker, for the initial implementation of the manager, we’re going to
use an in-memory map to store tasks and events. The manager’s Workers
subcomponent is a list of the workers it manages. Like the worker, it will also

entest



have a Task Queue. And, finally, the manager will have an API, similar to the
worker. (As we did with the worker, we’re going to address the manager’s
API in a separate chapter. So we’ll defer further discussion of it until a later
chapter.)

Figure 7.2. The manager’s components are similar to the worker’s, with the addition of an Event
DB and a list of Workers.

With this foundation laid, we can move on to implementation.

7.2 The Manager struct

Like the worker, we created a skeleton of the manager implementation in
chapter 2. At the core of that manager skeleton is the Manager struct, which
will contain fields that represent the subcomponents identified above. You
can see this struct in listing 7.1, which should be in the same state we left it in
chapter 2.

Since it has been a while, let’s remind ourselves of the requirements for our
manager. In chapter 1, we identified these requirements:



1. Accept requests from users to start and stop tasks.
2. Schedule tasks onto worker machines.
3. Keep track of tasks, their states, and the machine on which they run.

If you need more of a reminder about the Manager struct and its field, please
look back at section 2.3 in chapter 2.

Listing 7.1. The Manager struct.

package manager

import (

        "bytes"

        "cube/task"

        "cube/worker"

        "encoding/json"

        "fmt"

        "log"

        "net/http"

        "github.com/golang-collections/collections/queue"

        "github.com/google/uuid"

)

type Manager struct {

        Pending       queue.Queue

        TaskDb        map[uuid.UUID]*task.Task

        EventDb       map[uuid.UUID]*task.TaskEvent

        Workers       []string

        WorkerTaskMap map[string][]uuid.UUID

        TaskWorkerMap map[uuid.UUID]string

}

7.3 Implementing the manager’s methods

Now that we’ve reminded ourselves of what the Manager struct looks like,
let’s move forward and remember what skeleton methods we had previously
defined on the struct.

Listing 7.2. The stubbed out versions of the Manager’s SelectWorker, UpdateTasks, and SendWork
methods.



func (m *Manager) SelectWorker() {

    fmt.Println("I will select an appropriate worker")

}

func (m *Manager) UpdateTasks() {

    fmt.Println("I will update tasks")

}

func (m *Manager) SendWork() {

    fmt.Println("I will send work to workers")

}

We’re going to implement these methods in the following order:

SelectWorker
SendWork
UpdateTasks

7.3.1 Implementing the SelectWorker method

The SelectWorker method will serve as the scheduler in this early phase of
implementing our manager. It’s sole purpose will be to pick one of the
workers from the manager’s list of workers, i.e. the Workers field, which is a
slice of strings. We’re going to start with a naive round-robin scheduling
algorithm that begins by simply selecting the first worker from the list of
Workers and storing it in a variable. From this point forward, the algorithm
looks like so:

1. Check if we are at the end of the Workers list
2. If we are not, select the next worker in the list
3. Else, return to the beginning and select the first worker in the list

In order to implement this algorithm, we need to make a minor change to the
Manager struct. As you can see in listing 7.3, we’ve added the field
LastWorker. We’ll use this field to store an integer, which will be an index
into the Workers slice, thus giving us a worker.

Listing 7.3. Adding the LastWorker field to the Manager struct.

type Manager struct {



    // previous fields omitted

        LastWorker    int

Let’s move on now to the actual scheduling algorithm. As you can see in
listing 7.4, it’s only nine lines of code (not counting the method signature).
We start the process by declaring the variable newWorker, which represents
the lucky worker that has been chosen to run a task. Then, we use an if/else
block to actually choose the worker. In this block, we first check if the
worker we chose during the last run is the last worker in our list of workers.
If not, then we set newWorker to the next worker in the list of workers, and we
increment the value of LastWorker by 1. If the previous worker chosen is the
last one in our list, then we start over from the beginning, choosing the first
worker in the list, and setting LastWorker accordingly. Finally, we return the
worker to the caller.

Listing 7.4. The SelectWorker method implements an extremely naive scheduling algorithm.

func (m *Manager) SelectWorker() string {

        var newWorker int  #1

        if m.LastWorker+1 < len(m.Workers) { #2

                newWorker = m.LastWorker + 1 #3

                m.LastWorker++ #4

        } else { #5

                newWorker = 0 #6

                m.LastWorker = 0 #7

        }

        return m.Workers[newWorker] #8

}

It’s worth taking a moment to talk about the format of the strings stored in the
manager’s Workers field. The field itself is of type []string, so technically
the value of the strings could be anything. In practice, however, these are
going to take the form of <hostname>:<port>. If you recall from chapters 5
and 6, when we started the worker’s API, we specified the CUBE_HOST and
CUBE_PORT environment variables. The former we set to localhost, and the
latter we set to 5555. So, the manager’s Workers field contains a list of
<hostname>:<port> values, which specifies the address where the worker’s
API is running.



7.3.2 Implementing the SendWork method

The next method we need to implement is the manager’s SendWork method. It
is the workhorse of the manager and performs the following process:

1. Check if there are task events in the Pending queue
2. If there are, select a worker to run a task
3. Pull a task event off the pending queue
4. Set the state of the task to Scheduled
5. Perform some administrative work that makes it easy for the manager to

keep track of which workers tasks are running on
6. JSON encode the task event
7. Send the task event to the selected worker
8. Check the response from the worker

Let’s implement steps 1-6 in the above process with the code in listing 7.5.
We use an if/else block that sets up our conditional flow: it checks the length
of the manager’s Pending queue, and if the length is greater than zero—
meaning there are tasks to process—it moves on to the next steps.

Listing 7.5. The manager’s SendWork method.

func (m *Manager) SendWork() {

        if m.Pending.Len() > 0 {

                w := m.SelectWorker() #1

                e := m.Pending.Dequeue()

                te := e.(task.TaskEvent) #2

                t := te.Task

                log.Printf("Pulled %v off pending queue", t)

                m.EventDb[te.ID] = &te #3

                m.WorkerTaskMap[w] = append(m.WorkerTaskMap[w], te.Task.ID) #4

                m.TaskWorkerMap[t.ID] = w #5

                t.State = task.Scheduled

                m.TaskDb[t.ID] = &t

                data, err := json.Marshal(te) #6

                if err != nil {

                        log.Printf("Unable to marshal task object: %v.", t)

                }



Once the SendWork method has pulled a task of the Pending queue and
encoded it as JSON, all that’s left to do is send the task to the selected
worker. These final two steps are implemented in listing 7.6. Sending the task
to the worker involves building the URL using the worker’s host and port,
which we got when we called the manager’s SelectWorker method above.
From there, we use the Post function from the net/http package in the
standard library. Then we decode the response body and print it. Notice that
we’re also checking errors along the way.

               url := fmt.Sprintf("http://%s/tasks", w)

                resp, err := http.Post(url, "application/json", bytes.NewBuffer(data))

                if err != nil {

                        log.Printf("Error connecting to %v: %v", w, err)

                        m.Pending.Enqueue(t)

                        return

                }

                d := json.NewDecoder(resp.Body)

                if resp.StatusCode != http.StatusCreated {

                        e := worker.ErrResponse{}

                        err := d.Decode(&e)

                        if err != nil {

                                fmt.Printf("Error decoding response: %s\n", err.Error())

                                return

                        }

                        log.Printf("Response error (%d): %s", e.HTTPStatusCode, e.Message)

                        return

                }

                t = task.Task{}

                err = d.Decode(&t)

                if err != nil {

                        fmt.Printf("Error decoding response: %s\n", err.Error())

                        return

                }

                log.Printf("%#v\n", t)

        } else {

                log.Println("No work in the queue")

        }

}

As you can see from the above code, the manager is interacting with the
worker via the worker API we implemented in chapter 5.



7.3.3 Implementing the UpdateTasks method

At this point, our manager can select a worker to run a task and then send that
task to the selected worker. It has also stored the task in its TaskDB and
EventsDB databases. But, the manager’s view of the task is only from its own
perspective. Sure, it sent it to the worker and, if all went well, the worker
responded with http.StatusCreated (i.e. 201). But, even if we receive a
http.StatusCreated response, that just tells the us that the worker received
the task and added it to its queue. This response gives us no indication that
the task was started successfully and is currently running. What if the task
failed when the worker attempted to start it? How might a task fail, you ask?
Here are a few:

The user specified a non-existent Docker image, so that when the
worker attempts to start the task Docker complains that it can’t find the
image
The worker’s disk is full, so it doesn’t have enough space to download
the Docker image
There is a bug in the application running inside the Docker container
that prevents it from starting correctly (maybe the creator of the
container image left out an important environment variable that the
application needs to start up properly)

These are just several ways a task might fail. While the manager doesn’t
necessarily need to know about every possible way a task might fail, what it
does need to do is check in with the worker periodically to get status updates
on the tasks its running. Moreover, the manager needs to get status updates
for every worker in the cluster.

With this in mind, let’s implement the manager’s UpdateTasks method.

The general shape of updating tasks from each worker is straightforward. For
each worker, we perform the following steps:

1. Query the worker to get a list of its tasks
2. For each task, update its state in the manager’s database so it matches

the state from the worker



The first step can be seen in listing 7.6. It should look familiar by this point.
The manager starts by making a GET /tasks HTTP request to a worker using
the Get method from the net/http package. It checks if there were any
errors, such as connection issues (maybe the worker was down for some
reason). If the manager was able to connect to the worker, it then checks the
response code and ensures it received a http.StatusOK (i.e. 200) response
code. Finally, it decodes the JSON data in the body of the response, which
should result in a list of the worker’s tasks.

Listing 7.6. TODO

func (m *Manager) UpdateTasks() {

        for _, worker := range m.Workers {

                log.Printf("Checking worker %v for task updates", worker)

                url := fmt.Sprintf("http://%s/tasks", worker)

                resp, err := http.Get(url)

                if err != nil {

                        log.Printf("Error connecting to %v: %v", worker, err)

                }

                if resp.StatusCode != http.StatusOK {

                        log.Printf("Error sending request: %v", err)

                }

                d := json.NewDecoder(resp.Body)

                var tasks []*task.Task

                err = d.Decode(&tasks)

                if err != nil {

                        log.Printf("Error unmarshalling tasks: %s", err.Error())

                }

}

The second step, seen below in listing 7.7, runs inside the main for loop from
listing 7.6. There is nothing particularly sophisticated or clever about how
we’re updating the tasks. We start by checking if the task’s state in the
manager is the same as that of the worker; if not, we set the state to the state
reported by the worker. (In this way, the manager treats the workers as the
authoritative source for the state of the world, that is, the current state of the
tasks in the system.) Once we’ve updated the task’s state, we then update its
StartTime and FinishTime. And, finally, we update the task’s ContainerID.

Listing 7.7. TODO



            for _, t := range tasks {

                        log.Printf("Attempting to update task %v", t.ID)

                        _, ok := m.TaskDb[t.ID]

                        if !ok {

                                log.Printf("Task with ID %s not found\n", t.ID)

                                return

                        }

                        if m.TaskDb[t.ID].State != t.State {

                                m.TaskDb[t.ID].State = t.State

                        }

                        m.TaskDb[t.ID].StartTime = t.StartTime

                        m.TaskDb[t.ID].FinishTime = t.FinishTime

                        m.TaskDb[t.ID].ContainerID = t.ContainerID

                }

}

With the implementation of the UpdateTasks method, we have now
completed the core functionality of our manager. So let’s quickly summarize
what we’ve accomplished thus far before continuing:

With the SelectWorker method we’ve implemented a simple, but naive,
scheduling algorithm to assign tasks to workers
With the SendWork method we’ve implemented a process that uses the
SelectWorker method and sends individual tasks to assigned workers
via that worker’s API
With the UpdateTasks method we’ve implemented a process for the
manager to update it’s view of the state of all the tasks in the system

That’s a large chunk of work we’ve just completed. Take a moment to
celebrate your achievement before moving on to the next section!

7.3.4 Adding a task to the manager

While we have implemented the core functionality of the manager, there are a
couple more methods that we still need to implement. The first of these
methods is the AddTask method seen in listing 7.7. This method should look
familiar, as its similar to the AddTask method we created in the worker. It also
serves a similar purpose: it’s how tasks are added to the manager’s queue.



Listing 7.8. The manager’s AddTask method serves the same purpose as the worker’s: adding a
task to the manager’s queue of pending tasks.

func (m *Manager) AddTask(te task.TaskEvent) {

        m.Pending.Enqueue(te)

}

7.3.5 Creating a manager

Finally, let’s create the New function seen in listing 7.8. This is a helper
function that takes in a list of workers, creates an instance of the manager,
and returns a pointer to it. The bulk of the work performed by this function is
initializing the necessary subcomponents used by the manager. It sets up the
taskDB and eventDb databases. Next, it initializes the workerTaskMap and
taskWorkerMap maps that help the manager more easily identify where tasks
are running. While this function isn’t technically called a constructor, as in
some other object-oriented languages, it performs a similar function and will
be used in the process of starting the manager.

Listing 7.9. TODO

func New(workers []string) *Manager {

        taskDb := make(map[uuid.UUID]*task.Task)

        eventDb := make(map[uuid.UUID]*task.TaskEvent)

        workerTaskMap := make(map[string][]uuid.UUID)

        taskWorkerMap := make(map[uuid.UUID]string)

        for worker := range workers {

                workerTaskMap[workers[worker]] = []uuid.UUID{}

        }

        return &Manager{

                Pending:       *queue.New(),

                Workers:       workers,

                TaskDb:        taskDb,

                EventDb:       eventDb,

                WorkerTaskMap: workerTaskMap,

                TaskWorkerMap: taskWorkerMap,

        }

}

With the addition of the AddTask method and New function, we’ve completed
the initial implementation of the Cube manager. Now, all that’s left to do is



take it for a spin!

7.4 An interlude on failures and resiliency

It’s worth pausing here for a moment to identify a weakness in our
implementation. While the manager can select a worker from a pool of
workers and send it a task to run, it is not dealing with failures. The manager
is simply recording the state of the world in its Task DB.

What we are building towards, however, is a declarative system where a user
declares the desired state of a task. The job of the manager is to honor that
request by making a reasonable effort to bring the task into the declared state.
For now, a reasonable effort means making a single attempt to bring the task
into the desired state. We are going to revisit this topic in a later chapter,
where we will consider additional steps the manager can take in the face of
failures in order to build a more resilient system.

7.5 Putting it all together

By now, the pattern were using to build Cube should be clear. We spend the
bulk of the chapter writing the core pieces we need, then at the end of the
chapter we write, or update, a main() function in our project’s main.go file to
make use of our work. We’ll continue using this same pattern here and for the
next few chapters.

For this chapter, we’re going to start by using the main.go file from chapter 6
as our starting point. Whereas in past chapters we focused exclusively on
running a worker, now we want to run a worker and a manager. We want to
run them both because running a manager in isolation makes no sense: the
need for a manager only makes sense in the context of having one or more
workers.

Let’s make a copy of the main.go file from chapter 6. As we said, this is our
starting point for running the worker and the manager. Our previous work
already knows how to start an instance of the worker. As we can see in listing
7.9, we create an instance of the worker, w, and then we create an instance of



the worker API, api. Next, we call the runTasks function, also defined in
main.go, and pass it a pointer to our worker w. We make the call to runTasks
using a goroutine, identified by the go keyword before the function call.
Similarly, we use a second goroutine to call the worker’s CollectStats()
method, which periodically collects stats from the machine where the worker
is running (as we saw in chapter 6). Finally, we call the API’s Start()
method, which starts up the API server and listens for requests. Here is where
we make our first change. Instead of calling api.Start() in our main
goroutine, we call it using a third goroutine, which allows us to run all the
necessary pieces of the worker concurrently.

Listing 7.10. We re-use the main() function from the previous chapter and make one minor
change to run all the worker’s components in separate goroutines.

func main() {

        host := os.Getenv("CUBE_HOST")

        port, _ := strconv.Atoi(os.Getenv("CUBE_PORT"))

        fmt.Println("Starting Cube worker")

        w := worker.Worker{

                Queue: *queue.New(),

                Db:    make(map[uuid.UUID]*task.Task),

        }

        api := worker.Api{Address: host, Port: port, Worker: &w}

        go runTasks(&w)

        go w.CollectStats()

        go api.Start()

At this point, we have an instance of our worker running. Now, we want to
start an instance of our manager.

To do this, we create a list of workers and assign it to a variable named
workers. This list is a slice of strings, and we add our single worker to it.
Next, we create an instance of our manager by calling the New function
created earlier, passing it our list of workers.

Listing 7.11. TODO

    workers := []string{fmt.Sprintf("%s:%d", host, port)}



        m := manager.New(workers)

With an instance of our worker running and an instance of a manager created,
the next step is to add some tasks to the manager. In listing 7.11, we create
three tasks. This is a random decision. Feel free to choose more or less.
Creating the Task and TaskEvent should look familiar, since it’s the same
thing we’ve done in previous chapters in working with the worker. Now,
however, instead of adding the TaskEvent to the worker directly, we add it to
the manager by calling AddTask on the manager m and passing it the task
event te. The final step in this loop is to call the SendWork method on
manager m, which will select the only worker we currently have and, using
the worker’s API, send the worker the task event.

Listing 7.12. To exercise our newly implemented manager, we create three tasks and add them to
the manager’s queue before calling the manager’s SendWork method.

for i := 0; i < 3; i++ {

                t := task.Task{

                        ID:    uuid.New(),

                        Name:  fmt.Sprintf("test-container-%d", i),

                        State: task.Scheduled,

                        Image: "strm/helloworld-http",

                }

                te := task.TaskEvent{

                        ID:    uuid.New(),

                        State: task.Running,

                        Task:  t,

                }

                m.AddTask(te)

                m.SendWork()

        }

Reaching this point, let’s pause for a moment and think about what has
happened.

We have created an instance of the worker and it’s running and listening
for API requests
We have created an instance of the manager, and it has a list of workers
containing the single worker we created earlier
We have created three tasks and added those tasks to the manager
The manager has selected a worker (in this case, the only one that exists)



and sent it the three tasks
The worker has received the tasks and at least attempted to start them

From this list, it’s clear there are two perspectives on the state of the tasks in
this system. There is the manager’s perspective, and there is the worker’s
perspective. From the manager’s perspective, it has sent the tasks to the
worker. Unless there is an error returned from the request to the worker’s
API, the manager’s work in this process could be considered complete.

From the worker’s perspective, things are more complicated. It’s true the
worker has received the request from the manager. Upon receiving the
request, however, we must remember how we built the worker. The worker
API’s request handlers don’t directly perform any operations; instead, the
handlers take the requests and put them on the worker’s queue. In a separate
goroutine, the worker performs the direct operations to start and stop tasks.
As we mentioned in chapter 5, this design decision allows us to separate the
concern of handling API requests from the concern of performing the actual
operations to start and stop tasks.

Once the worker picks a task off of its queue and attempts to perform the
necessary operation, any number of things can go wrong. As we enumerated
earlier, examples of things going wrong can include user errors (e.g. a user
specifying a non-existing Docker image in the task specification) or machine
errors (e.g. a machine doesn’t have enough disk space to download the task’s
Docker image).

As we can see, in order for the manager to be an effective component in our
orchestration system, it can’t just use a fire-and-forget approach to task
management. It must constantly check in with the workers it is managing to
reconcile its perspective with that of the workers'.

We discussed this problem earlier in the chapter, and it was our motivation
for implementing the manager’s UpdateTasks method. So, now, let’s make
use of our foresight. Once the manager has sent tasks off to the worker, we
want to call the manager’s UpdateTasks method.

To accomplish our objective, we’ll use another goroutine, and this goroutine
will call an anonymous function. Like other programming languages, an



anonymous function in Go is simply a function that is defined where it’s
called. Inside of this anonymous function, we use an infinite loop. Inside this
loop, we print an informative log message that tells us the manager is
updating tasks from its workers. Then, we call the manager’s UpdateTasks
method to actually update its perspective on the tasks in the system. And,
finally, it sleeps for fifteen seconds. As we’ve done previously, we’re using
sleep here purely for the purpose of slowing the system down so we can
observe and understand our work.

While we’re on the topic of observing our work, let’s also add another
infinite loop that ranges over the tasks and prints out the ID and State of
each task in the system. This will allow us to observe the tasks' state changing
as the UpdateTasks method does its job.

Listing 7.13. This pattern of using an anonymous function to run a piece of code in a separate
goroutine is common in the Go ecosystem.

go func() { #1

        for { #2

                fmt.Printf("[Manager] Updating tasks from %d workers\n", len(m.Workers))

                m.UpdateTasks() #3

                time.Sleep(15 * time.Second)

        }

}() #4

for { #5

        for _, t := range m.TaskDb { #6

                fmt.Printf("[Manager] Task: id: %s, state: %d\n", t.ID, t.State)

                time.Sleep(15 * time.Second)

        }

}

At this point, we’ve written all the necessary code to run our worker and
manager together. So, let’s switch from writing code to running it.

To run our main.go program, call it with go run main.go. Also, it’s
important to define the CUBE_HOST and CUBE_PORT environment variables as
part of the command, as this tells the worker API on what port to listen.
These environment variables will also be used by the manager to populate it’s
Workers field. When we start our program, the initial output should look
familiar. We should see the following:



$ CUBE_HOST=localhost CUBE_PORT=5555 go run main.go

Starting Cube worker #1

2022/01/30 14:17:12 Pulled {9f122e79-6623-4986-a9df-38a5216286fb .... #2

2022/01/30 14:17:12 No tasks to process currently. #3

2022/01/30 14:17:12 Sleeping for 10 seconds.

2022/01/30 14:17:12 Collecting stats #4

2022/01/30 14:17:12 Added task 9f122e79-6623-4986-a9df-38a5216286fb #5

After the initial output above, we should see the worker start the tasks. Then,
once all three tasks are started, you should start seeing output like that below
from the main.go program. This is our code that is calling the manager’s
UpdateTasks method in one for loop, and ranging over the manager’s tasks
and printing out the ID and State of each task in a separate for loop.

[Manager] Updating tasks from 1 workers

[Manager] Task: id: 9f122e79-6623-4986-a9df-38a5216286fb, state: 2

[Manager] Updating tasks from 1 workers

[Manager] Task: id: 792427a7-e306-44ef-981a-c0b76bfaab8e, state: 2

Interleaved in the output, you should also see output like that below. This
output is coming from our manager itself.

2022/01/30 14:18:57 Checking worker localhost:5555 for task updates

2022/01/30 14:18:57 Attempting to update task 792427a7-e306-44ef-981a-c0b76bfaab8e

2022/01/30 14:18:57 Attempting to update task 2507e136-7eb7-4530-aeb9-d067eeb34394

2022/01/30 14:18:57 Attempting to update task 9f122e79-6623-4986-a9df-38a5216286fb

While our main.go program is running in one terminal, open a second
terminal and query the worker API. Depending on how quickly you run the
curl command after starting up the main.go program, you may not see all
three tasks. Eventually, though, you should see them.

$ curl http://localhost:5555/tasks |jq .

[

  {

    "ID": "723143b3-4cb8-44a7-8dad-df553c15bce3",

    "ContainerID": "14895e61db8d08ba5d0e4bb96d6bd75023349b53eb4ba5915e4e15ecda82e907",

    "Name": "test-container-0",

    "State": 2,

    [....]

  },

  {

    "ID": "a85013fb-2918-47fb-82b0-f2e8d63f433b",

    "ContainerID": "f307d7045a36501059092f06ff3d323e6246a7c854bfabeb5ff17b2185ffd9ec",



    "Name": "test-container-1",

    "State": 2,

    [....]

  },

  {

    "ID": "7a7eb0ef-8516-4103-84a7-9f964ba47cb8",

    "ContainerID": "fffc1cf5b8ca7d33eb3c725f4190b81e0978f3efc8405562f9dfe4d315decbec",

    "Name": "test-container-2",

    "State": 2,

    [....]

  }

]

In addition to querying the worker API, we can use the docker command to
verify that our tasks are indeed running. Note that I’ve removed some of the
columns from the output of docker ps for readability.

$ docker ps

CONTAINER ID   CREATED         STATUS         NAMES

fffc1cf5b8ca   5 minutes ago   Up 5 minutes   test-container-2

f307d7045a36   5 minutes ago   Up 5 minutes   test-container-1

14895e61db8d   5 minutes ago   Up 5 minutes   test-container-0

7.6 Summary

The manager records user requests in the form of task.TaskEvent items
and stores them in its EventDB. This task event, which includes the
task.Task itself, serves as the user’s desired state for the task.
The manager records the state of the world, i.e. the actual state of a task
from the perspective of a worker, in its TaskDB. For this initial
implementation of the manager, we do not attempt to retry failed tasks
and instead simply record the state. We will revisit this issue in a later
chapter.
The manager serves a purely administrative function. It accepts requests
from users, records those requests in its internal databases, then selects a
worker to run the task and passes it along to the worker. It periodically
updates its internal state by querying the worker’s API. It is not directly
involved in any of the operations to actually run a task.
We’ve used a simple, extremely naive algorithm to assign tasks to
workers. This decision allowed us to code a working implementation of
the manager in a relatively small number of lines of code. We will



revisit this decision in a later chapter.



8 An API for the manager
This chapter covers

Understanding the purpose of the manager API
Implementing methods to handle API requests
Creating a server to listen for API requests
Starting, stopping, and listing tasks via the API

In chapter 7, we implemented the core functionality of the manager
component: pulling tasks off its queue, selecting a worker to run those tasks,
sending them to the selected workers, and periodically updating the state of
tasks. That functionality is just the foundation and doesn’t provide a simple
way for users to interact with the manager.

So, like we did with the worker in chapter 5, we’re going to build an API for
the manager. This API will wrap the manager’s core functionality and expose
it to users. In the case of the manager, users means end users, that is,
developers who want to run their application in our orchestration system.

The manager’s API, like the worker’s, will be simple. It will provide the
means for users to perform these basic operations:

Send a task to the manager
Get a list of tasks
Stop a task

This API will be constructed using the same components that we used for the
worker’s API. It will be comprised of handlers, routes, and a mux.

8.1 Overview of the manager API

Before we get too far into our code, let’s zoom out for a minute and take a
more holistic view of where we’re going. We’ve been focusing pretty tightly
for the last couple of chapters, so it will be a good reminder to see how the



technical details fit together.

We’re not building a manager and worker just for the sake of it. The purpose
of building them is to fulfill a need: developers need a way to run their
applications in a reliable and resilient way. The manager and worker are
abstractions that free the developer from having to think too deeply about the
underlying infrastructure (whether physical or virtual) on which their
applications run. Figure 8.1 reminds us what this abstraction looks like.

Figure 8.1. The manager is comprised of an API server and Manager components, and similarly
the worker is comprised of an API server and worker components. The user communicates with
the manager, and the manager communicates with one or more workers.



With that reminder, let’s zoom back in to the details of constructing the
manager’s API. Because it will be similar to the worker’s, we won’t spend as
much time going into the details of handlers, routes, and muxes. If you need a
refresher, please refer to section 5.1 in chapter 5.



8.2 Routes

Let’s start by identify the routes that our manager API should handle. And, it
shouldn’t be too surprising that the routes are identical to that of the worker’s
API. In some ways, our manager is acting as a reverse proxy: instead of
balancing requests for, say, web pages across a number of web servers, it’s
balancing requests to run tasks across a number of workers.

Thus, like the worker’s, the manager’s API will handle GET requests to
/tasks, which will return a list of all the tasks in the system. This enables our
users to see what tasks are currently in the system. It will handle POST
requests to /tasks, which will start a task on a worker. This allows our users
to run their tasks in the system. And, finally, it will handle DELETE requests to
/tasks/{taskID}, which will stop a task specified by the taskID in the route.
This allows our users to stop their tasks.

Table 8.1. Routes used by our manager API

Method Route Description

GET /tasks get a list of all tasks

POST /tasks create a task

DELETE /tasks/{taskID} stop the task identified
by taskID

8.3 Data format, requests, and responses

If the routes we use for the manager’s API are similar to the worker’s, then
what about the data format, and the requests and responses that the manager
will receive and return? Again, it should not be surprising that the manager’s
API will use the same data format, JSON, as the worker’s API. If the worker



API speaks JSON, the manager’s API should speak the same language to
minimize unnecessary translation between data formats. Thus, any data sent
to the manager’s API must be JSON-encoded, and any data returned by the
API will also be encoded as JSON.

Table 8.2. An updated route table showing whether the routes send a request body, returns a
response body, and the status code for a successful request.

Method Route Description Request Body Response
Body

Status
code

GET /tasks get a list of
all tasks none list of

tasks 200

POST /tasks create a
task

JSON-encoded
task.TaskEvent none 201

DELETE /tasks/{taskID}

stop the
task
identified
by taskID

none none 204

We can see how these routes are used in figure 8.2, which shows a POST
request to create a new task and a GET request to get a list of tasks. The
developer issues requests to the Manager, and the Manager returns responses.
In the first example, the developer issues a POST request with a body that
specifies a task to run. The manager responds with a status code of 201. In the
second example, the developer issues a GET request, and the manager
responds with a status code of 200 and a list of its tasks.

Figure 8.2. Two examples of how a developer uses the Manager’s API.





8.4 The API struct

Drilling down a little farther, we notice another similarity with the worker’s
API. The manager’s API also uses an Api struct, which will encapsulate the
necessary behavior of its API. The only difference will be swapping out a
single field: the Worker field gets replaced by a Manager field, which will
contain a pointer to an instance of our manager. Otherwise, the Address,
Port, and Router fields all have the same types and serve the same purposes
as they did in the worker API.

Listing 8.1. The manager’s Api struct functions similarly to the worker’s.

type Api struct {

        Address string

        Port    int

        Manager *Manager

        Router  *chi.Mux

}

8.5 Handling requests

Continuing to drill down, let’s talk about the handlers for the manager API.
These should look familiar, as they are the same three handlers we
implemented for the worker:

StartTaskHandler(w http.ResponseWriter, r *http.Request)
GetTasksHandler(w http.ResponseWriter, r *http.Request)
StopTaskHandler(w http.ResponseWriter, r *http.Request)

We’ll implement these handlers in a file named handlers.go, which you
should create in the manager directory next to the existing manager.go file.
To reduce the amount of typing necessary, feel free to copy the handlers from
the worker’s API and paste them into the manger’s handlers.go file. The
only changes we’ll need to make are to update any references to a.Worker to
a.Manager.

Let’s start with the StartTaskHandler, which works the same as its worker
counterpart. It expects a request body encoded as JSON. It decodes that



request body into a task.TaskEvent, checking for any decoding errors. Then
it adds the task event to the Manager’s queue using the manager’s AddTask
method implemented in chapter 7. The implementation can be seen here in
listing 8.2.

Listing 8.2. The manager’s StartTaskHandler.

func (a *Api) StartTaskHandler(w http.ResponseWriter, r *http.Request) {

        d := json.NewDecoder(r.Body) #1

        d.DisallowUnknownFields()

        te := task.TaskEvent{}

        err := d.Decode(&te) #2

        if err != nil { #3

                msg := fmt.Sprintf("Error unmarshalling body: %v\n", err)

                log.Printf(msg)

                w.WriteHeader(400)

                e := ErrResponse{

                        HTTPStatusCode: 400,

                        Message:        msg,

                }

                json.NewEncoder(w).Encode(e)

                return

        }

        a.Manager.AddTask(te) #4

        log.Printf("Added task %v\n", te.Task.ID)

        w.WriteHeader(201) #5

        json.NewEncoder(w).Encode(te.Task) #6

}

Next up is the GetTasksHandler. Like the StartTaskHandler above,
GetTasksHandler works the same way as its counterpart in the worker API.
The only change is that this API gets the tasks from the manager by passing
a.Manager.GetTasks() to the encoding method.

Listing 8.3. The manager’s GetTasksHandler.

func (a *Api) GetTasksHandler(w http.ResponseWriter, r *http.Request) {

        w.Header().Set("Content-Type", "application/json")

        w.WriteHeader(200)

        json.NewEncoder(w).Encode(a.Manager.GetTasks())

}



Finally, let’s implement the StopTaskHandler. Again, the method works the
same way as its worker counterpart, so there isn’t much new to add to the
discussion.

Listing 8.4. The manager’s StopTaskHandler.

func (a *Api) StopTaskHandler(w http.ResponseWriter, r *http.Request) {

        taskID := chi.URLParam(r, "taskID") #1

        if taskID == "" {

                log.Printf("No taskID passed in request.\n")

                w.WriteHeader(400)

        }

        tID, _ := uuid.Parse(taskID)

        _, ok := a.Manager.TaskDb[tID] #2

        if !ok {

                log.Printf("No task with ID %v found", tID)

                w.WriteHeader(404)

        }

        te := task.TaskEvent{ #3

                ID:        uuid.New(),

                State:     task.Completed,

                Timestamp: time.Now(),

        }

        taskToStop := a.Manager.TaskDb[tID] #4

        taskCopy := *taskToStop #5

        taskCopy.State = task.Completed

        te.Task = taskCopy

        a.Manager.AddTask(te) #6

        log.Printf("Added task event %v to stop task %v\n", te.ID, taskToStop.ID)

        w.WriteHeader(204) #7

}

As a reminder, as we did in the Worker, the Manager’s handler methods are
not operating directly on tasks. We have separated the concerns of
responding to API requests and the operations to start and stop tasks. So the
API simply puts the request on the Manager’s queue via the AddTask method,
then the manager picks up the task from its queue and performs the necessary
operation.

So, we’ve been able to implement the handlers in the manager’s API by



copying and pasting the handlers from the worker’s API and making a few
minor adjustments. At this point, we’ve implemented the meat of the API.

8.6 Serving the API

Now that we have implemented the manager’s handlers, let’s complete our
work that will let us serve the API to users. We’ll start by copying and
pasting the initRouter method from the worker. This method sets up our
router and creates the required endpoints, and since the endpoints will be the
same as the worker’s, we don’t need to modify anything.

Listing 8.5. The manager API’s initRouter method defines the routes that will be served to users.

func (a *Api) initRouter() {

        a.Router = chi.NewRouter()

        a.Router.Route("/tasks", func(r chi.Router) {

                r.Post("/", a.StartTaskHandler)

                r.Get("/", a.GetTasksHandler)

                r.Route("/{taskID}", func(r chi.Router) {

                        r.Delete("/", a.StopTaskHandler)

                })

        })

}

For the icing on the cake, let’s take care of starting the API by copying the
Start method from the worker’s API. The manager’s API will start up in the
same way, so like the initRouter method above, we don’t need to make any
changes.

Listing 8.6. The manager API’s Start method starts the API server, enabling it to respond to user
requests.

func (a *Api) Start() {

        a.initRouter()

        http.ListenAndServe(fmt.Sprintf("%s:%d", a.Address, a.Port), a.Router)

}

8.7 A few refactorings to make our lives easier

At this point, we’ve implemented everything we need to have a functional



API for the manager. But, now that we’re to a point in our journey where we
have APIs for both the worker and the manager, let’s make a few minor
tweaks that will make it easier to run these APIs.

If you recall chapter 5, we created the function runTasks in our main.go file.
We used it as way to continuously check for new tasks the worker needed to
run. If it found any tasks in the worker’s queue, then it called the workers
RunTask method.

Instead of having this function be part of the main.go file, let’s move it into
the worker itself. This change will then encapsulate all the necessary worker
behavior in the Worker object. So copy the runTasks function from the
main.go file and paste it into the worker.go file. Then, to clean everything up
so the code will run we’re going to make three changes:

Rename the existing RunTask method to runTask
Rename the runTasks method from main.go to RunTasks
Change the RunTasks method to call the newly renamed runTask
method

You can see these changes below in listing 8.7.

Listing 8.7. Moving the runTasks function from main.go to the worker and renaming it RunTasks.

func (w *Worker) runTask() task.DockerResult { #1

    // body of the method stays the same

}

func (w *Worker) RunTasks() { #2

        for {

                if w.Queue.Len() != 0 {

                        result := w.runTask() #3

                        if result.Error != nil {

                                log.Printf("Error running task: %v\n", result.Error)

                        }

                } else {

                        log.Printf("No tasks to process currently.\n")

                }

                log.Println("Sleeping for 10 seconds.")

                time.Sleep(10 * time.Second)

        }



}

In a similar fashion, we’re going to make some changes to the Manager struct
that will make it easier to use the manager in our main.go file. For starters,
let’s rename the manager’s UpdateTasks method to updateTasks. So the
method should look like this:

func (m *Manager) updateTasks() {

    // body of the method stays the same

}

Next, let’s create a new method on our Manager struct called UpdateTasks.
This method serves a similar purpose to the RunTasks method we added to
the worker. It runs an endless loop, inside which it calls the manager’s
updateTasks method. This change makes it possible for us to remove the
anonymous function we used in chapter 7’s main.go file that performed the
same function.

Listing 8.8. We add the UpdateTasks method to the manager, which performs a similar role the
worker’s RunTasks method.

func (m *Manager) UpdateTasks() {

        for {

                log.Println("Checking for task updates from workers")

                m.updateTasks()

                log.Println("Task updates completed")

                log.Println("Sleeping for 15 seconds")

                time.Sleep(15 * time.Second)

        }

}

Finally, let’s add the ProcessTasks method you see in listing 8.9 below to
the Manager. This method also works similar to the worker’s RunTasks
method: it runs an endless loop, repeatedly calling the manager’s SendWork
method.

Listing 8.9. The manager’s ProcessTasks method.

func (m *Manager) ProcessTasks() {

        for {

                log.Println("Processing any tasks in the queue")

                m.SendWork()



                log.Println("Sleeping for 10 seconds")

                time.Sleep(10 * time.Second)

        }

}

8.8 Putting it all together

Alright, it’s that’s time again: time to take what we’ve built in the chapter and
run it. Before we do that, however, let’s quickly summarize what it is that
we’ve built so far:

We have wrapped the manager component in an API that allows users to
communicate with the manager
We’ve constructed the manager’s API using the same types of
components we used for the worker’s API: handlers, routes, and a
router
The router listens for requests to the routes, and dispatches those
requests to the appropriate handlers

So, let’s start by copying and pasting the main function from the main.go file
in chapter 7. This will be our starting point.

There is one major difference between our situation at the end of this chapter
and that of the last. That is, we now have APIs for both the worker and the
manager. So, while we will be creating instances of each, we will not be
interacting with them directly as we have in the past. Instead, we will be
passing these instances into their respective APIs, then starting those APIs so
they are listening to HTTP requests.

In past chapters where we have started instances of the worker’s API, we
have set two environment variables: CUBE_HOST and CUBE_PORT. These were
used to set up the worker API to listen for requests at
http://localhost:5555. Now, however, we have two APIs that we need to
start. To handle our new circumstances, let’s set up our main function to
extract a set of host:port environment variables for each API. As you can
see in listing 8.10, these will be called CUBE_WORKER_HOST,
CUBE_WORKER_PORT, CUBE_MANAGER_HOST, and CUBE_MANAGER_PORT.



Listing 8.10. Extracting the host and port for each API from environment variables.

func main() {

        whost := os.Getenv("CUBE_WORKER_HOST")

        wport, _ := strconv.Atoi(os.Getenv("CUBE_WORKER_PORT"))

        mhost := os.Getenv("CUBE_MANAGER_HOST")

        mport, _ := strconv.Atoi(os.Getenv("CUBE_MANAGER_PORT"))

}

Next, after extracting the host and port values from the environment and
storing them in appropriately named variables, let’s start up the worker API.
This process should look familiar from chapter 7. The only difference here,
however, is that we’re calling the RunTasks method on the worker object,
instead of a separate runTasks function that we previously defined in
main.go. As we did in chapter 7, we call each of these methods using the go
keyword, thus running each in a separate goroutine.

Listing 8.11. Starting up the worker API.

    fmt.Println("Starting Cube worker")

        w := worker.Worker{

                Queue: *queue.New(),

                Db:    make(map[uuid.UUID]*task.Task),

        }

        wapi := worker.Api{Address: whost, Port: wport, Worker: &w}

        go w.RunTasks()

        go w.CollectStats()

        go wapi.Start()

Finally, we’ll start up the manager API. This process starts out the same as it
did in the last chapter. We create a list of workers that contains the single
worker created above, represented as a string by its <host>:<port>. Then, we
create an instance of our manager, passing in the list of workers. Next, we
create an instance of the manager’s API and store it in a variable called mapi.

The next two lines in our main function set up two goroutines that will run in
parallel with the main goroutine running the API. The first goroutine will run
the manager’s ProcessTasks method. This ensures the manager will process
any incoming tasks from users. The second goroutine will run the manager’s



UpdateTasks method. It will ensure the manager updates the state of tasks by
querying the worker’s API to get up-to-date states for each task.

Then, what we’ve been waiting for. We start the manager’s API by calling
the Start method.

Listing 8.12. Staring up the manager API.

    fmt.Println("Starting Cube manager")

        workers := []string{fmt.Sprintf("%s:%d", whost, wport)}

        m := manager.New(workers)

        mapi := manager.Api{Address: mhost, Port: mport, Manager: m}

        go m.ProcessTasks()

        go m.UpdateTasks()

        mapi.Start()

}

At this point, all that’s left to do is to run our main program so both the
manger and worker APIs are running. As you can see below, both the worker
and the manager get started.

$ CUBE_WORKER_HOST=localhost \

CUBE_WORKER_PORT=5555 \

CUBE_MANAGER_HOST=localhost \

CUBE_MANAGER_PORT=5556 \

go run main.go

Starting Cube worker

Starting Cube manager

2022/03/06 14:45:47 Collecting stats

2022/03/06 14:45:47 Checking for task updates from workers

2022/03/06 14:45:47 Processing any tasks in the queue

2022/03/06 14:45:47 Checking worker localhost:5555 for task updates

2022/03/06 14:45:47 No work in the queue

2022/03/06 14:45:47 Sleeping for 10 seconds

2022/03/06 14:45:47 No tasks to process currently.

2022/03/06 14:45:47 Sleeping for 10 seconds.

2022/03/06 14:45:47 Task updates completed

2022/03/06 14:45:47 Sleeping for 15 seconds

Let’s do a quick sanity check to verify our manager does indeed respond to



requests. Let’s issue a GET requests to get a list of the tasks it knows about. It
should return an empty list.

$ curl -v localhost:5556/tasks

*   Trying 127.0.0.1:5556...

* Connected to localhost (127.0.0.1) port 5556 (#0)

> GET /tasks HTTP/1.1

> Host: localhost:5556

> User-Agent: curl/7.81.0

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 200 OK

< Content-Type: application/json

< Date: Sun, 06 Mar 2022 19:52:46 GMT

< Content-Length: 3

<

[]

Cool! Our manager is listening for requests as we expected. As we can see,
though, it doesn’t have any tasks—because we haven’t told it to run any, yet.
So, let’s take the next step and send a request to the manager that instructs it
to start a task for us.

For this purpose, let’s create a file named task.json in the same directory
where our main.go file is. Inside this file, let’s create the JSON-
representation of a task as seen below in listing 8.13. This representation
similar to what we used in main.go in chapter 7, except we’re moving out
into a separate file.

{

    "ID": "6be4cb6b-61d1-40cb-bc7b-9cacefefa60c",

    "State": 2,

    "Task": {

        "State": 1,

        "ID": "21b23589-5d2d-4731-b5c9-a97e9832d021",

        "Name": "test-chapter-5",

        "Image": "strm/helloworld-http"

    }

}

Now that we’ve created our task.json file with the task we want to send to
the manager via it’s API, let’s use curl to send a POST request to the



manager API’s /tasks endpoint. And, as expected, the manger’s API
responds with a 201 response code.

$ curl -v --request POST \

--header 'Content-Type: application/json' \

--data @task.json \

localhost:5556/tasks

*   Trying 127.0.0.1:5556...

* Connected to localhost (127.0.0.1) port 5556 (#0)

> POST /tasks HTTP/1.1

> Host: localhost:5556

> User-Agent: curl/7.81.0

> Accept: */*

> Content-Type: application/json

> Content-Length: 230

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 201 Created

< Date: Sun, 06 Mar 2022 20:04:36 GMT

< Content-Length: 286

< Content-Type: text/plain; charset=utf-8

<

{

    "ID":"21b23589-5d2d-4731-b5c9-a97e9832d021",

    "ContainerID":"",

    "Name":"test-chapter-5",

    "State":1,

    "Image":"strm/helloworld-http",

    "Cpu":0,

    "Memory":0,

    "Disk":0,

    "ExposedPorts":null,

    "PortBindings":null,

    "RestartPolicy":"",

    "StartTime":"0001-01-01T00:00:00Z",

    "FinishTime":"0001-01-01T00:00:00Z"

}

One thing to note about the JSON return by the manager’s API. Notice that
the ContainerID field is empty. The reason for this is that, like the worker’s
API, the manager’s API doesn’t operate directly on tasks. As tasks come in to
the API, they are added to the manager’s queue, and the manager works on
them independently of the request. So at the time of our request, the manager
hasn’t shipped of the task to the worker, and so it can’t know what the
ContainerID will be. If we make a subsequent request to the manager’s API



to GET /tasks, we should see a ContainerID for our task.

$ curl -v localhost:5556/tasks|jq

*   Trying 127.0.0.1:5556...

> GET /tasks HTTP/1.1

> Host: localhost:5556

> User-Agent: curl/7.81.0

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 200 OK

< Content-Type: application/json

< Date: Sun, 06 Mar 2022 20:16:43 GMT

< Content-Length: 352

[

  {

    "ID": "21b23589-5d2d-4731-b5c9-a97e9832d021",

    "ContainerID": "428115c14a41243ec29e5b81feaccbf4b9632e2caaeb58f166df595726889312",

    "Name": "test-chapter-8",

    "State": 2,

    "Image": "strm/helloworld-http",

    "Cpu": 0,

    "Memory": 0,

    "Disk": 0,

    "ExposedPorts": null,

    "PortBindings": null,

    "RestartPolicy": "",

    "StartTime": "0001-01-01T00:00:00Z",

    "FinishTime": "0001-01-01T00:00:00Z"

  }

]

There is one minor thing to keep in mind when querying the manager’s API,
as we did above. Depending on how quickly we issue our GET /tasks
request after sending the initial POST /tasks request, we may still not see a
ContainerID. Why is that? If you recall, the manager updates its view of
tasks by making a GET /tasks requests to the worker’s API. It then uses the
response to that request to update the state of the tasks in its own datastore. If
you look back to figure 8.12 above, you can see that our main.go program is
running the manager’s UpdateTasks method in a separate goroutine, and that
method sleeps for 15 seconds between each attempt to update tasks.

Once the manager shows the task running—i.e., we get a ContainerID in our
GET /tasks response—we can further verify the task is indeed running using



the docker ps command.

$ docker ps --format "table {{.ID}}\t{{.Image}}\t{{.Status}}\t{{.Names}}"

CONTAINER ID   IMAGE                  STATUS              NAMES

428115c14a41   strm/helloworld-http   Up About a minute   test-chapter-8

So, now that we’ve seen that we can use the manager’s API to start a task and
to get a list of tasks, let’s use it to stop our running task. To do this, we issue
a DELETE /tasks/{taskID} request, like that below.

$ curl -v --request DELETE \

    'localhost:5556/tasks/21b23589-5d2d-4731-b5c9-a97e9832d021'

*   Trying 127.0.0.1:5556...

* Connected to localhost (127.0.0.1) port 5556 (#0)

> DELETE /tasks/21b23589-5d2d-4731-b5c9-a97e9832d021 HTTP/1.1

> Host: localhost:5556

> User-Agent: curl/7.81.0

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 204 No Content

< Date: Sun, 06 Mar 2022 20:29:27 GMT

As we can see, the manager’s API accepted our request, and it responded
with a 204 response, as expected. You should also see in the following output
from our main.go program. (Note I’ve truncated some of the output to make
it easier to read.)

2022/03/06 15:29:27 Added task event 937e85eb to stop task 21b23589

Found task in queue:

2022/03/06 15:29:32 attempting to transition from 2 to 3

2022/03/06 15:29:32 Attempting to stop container 442a439de

2022/03/06 15:29:43 Stopped and removed container 442a439de for task 21b23589

Again, we can use the docker ps command to confirm that our manager did
what we expected it to do, which in this case is to stop the task.

$ docker ps

CONTAINER ID   IMAGE     COMMAND   CREATED   STATUS    PORTS     NAMES

8.9 Summary



Like the worker’s API, the manager’s wraps its core functionality and
exposes it as a HTTP server. Unlike the worker’s API, who’s primary
user is the manager, the primary user of the manager’s API is end users,
in other words developers. Thus, the manager’s API is what users
interact with in order to run their tasks on the orchestration system.
The manager and worker APIs provide an abstraction over our
infrastructure, either physical or virtual, that remove the need for
developers to concern themselves with such low-level details. Instead of
thinking about how their application runs on a machine, they only have
to be concerned about how their application run in a container. If it runs
as expected in a container on their machine, then it can run on any
machine that’s also running the same container framework (i.e. Docker).
Like the worker API, the manager’s is a simple REST-based API. It
defines routes that enable users to create, query, and stop tasks. Also,
when being sent data it expects that data to be encoded as JSON, and it
likewise encodes any data it sends as JSON.



9 What could possibly go wrong?
This chapter covers

Enumerating potential failures
Exploring options for recovering from failures
Implementing task health checks to recover from task crashes

At the beginning of chapter 4, in which we started the process of
implementing our worker, we talked about the scenario of running a web
server that serves static pages. In that scenario, we considered how to deal
with the problem of our site gaining in popularity and thus needing to be
resilient to failures in order to ensure we could serve our growing user base.
The solution, we said, was to run multiple instances of our web server. In
other words, we decided to scale horizontally, a common pattern for scaling.
By scaling the number of web servers, we can ensure that a failure in any
given instance of the web server does not bring our site completely down
and, thus, unavailable to our users.

In this chapter, we’re going to modify the above scenario slightly. Instead of
serving static web pages, we’re going to serve an API. This API is dead
simple: it takes a POST request with a body, and it returns a response with
the same body. In other words, it simply echoes the request in the response.

With that minor change to our scenario, this chapter will reflect on what
we’ve built thus far and discuss a number of failure scenarios, both with our
orchestrator and the tasks running on it. And, then, we will implement several
mechanisms for handling a subset of failure scenarios.

9.1 Overview of our new scenario

So, our new scenario involves an API that takes the body of a request, and
simply returns that body in the response to the user. The format of the body is
JSON, and our API defines this format in the Message struct you see below.



type Message struct {

    Msg string

}

Thus, making a curl request to this API looks like this:

$ curl -X POST localhost:7777/ -d '{"Msg":"Hello, world!"}'

{"Msg":"Hello, world!"}

And, as you can see in the response, we do indeed get back the same body
that we sent. In order to make this scenario simpler to use, I’ve gone ahead
and built a Docker image that we can simply re-use throughout the rest of the
chapter. So, to run that API locally, all you have to do is this:

$ docker run -it --rm --name echo timboring/echo-server:latest

(By the way, if you’re interested in the source code for this API, you can find
it in the echo directory in the downloadable source code for this chapter.)

Now, let’s move on to talk about the number of ways this API can fail when
running it as a task in our orchestration system.

9.2 Failure scenarios

Failures happen. ALL THE TIME! As engineers, we should expect this.
Failures are the norm, not the exception. More importantly, failures happen at
multiple levels:

failures at the level of the application
failures at the level of individual tasks
failures at the level of the orchestration system

Let’s walk through what failures at each of these levels might look like.

9.2.1 Application startup failure

A task can also fail to start because the task’s application has a bug in its
startup routine. For example, we might decide that we want to store each
request our echo service receives, and to do that we add a database as a



dependency. Now, when an instance of our echo service starts up, it attempts
to make a connection to the database.

What happens, however, if we can’t connect to the database? Maybe it’s
down due to some networking issue. Or, if we’re using a managed service,
perhaps the administrators decided they needed to do some maintenance, and
as a result the database service is unavailable for some period of time. Or,
maybe the database is upset with its human overlords and has decided to go
on strike.

It doesn’t really matter why the database is unavailable. The fact is our
application depends on the database, and it needs to do something when that
database is not available. There are generally two options for how our
application can respond:

it can simply crash
it can attempt to retry connecting to the database

In my experience, I’ve seen the former option used frequently. It’s the
default. As an engineer, I have an application, it needs a database, and I
attempt to connect to the database when my application starts. Maybe I check
for errors, log them, and then exit gracefully.

The latter option might be the better choice, but it adds some complexity.
Today, most languages have at least one third-party library that provides the
framework to perform retries using exponential backoff. Using this option, I
could have my application attempt to connect to the database in a separate
goroutine, and until it can connect maybe my application serves a 503
response with a helpful message explaining that the application is in the
process of starting up.

9.2.2 Application bugs

A task can also fail after having successfully started up. For example, our
echo service can start up and operate successfully for a while. But, we’ve
recently added a new feature, and we didn’t really test it thoroughly because
we decided it was an important feature and getting it into production would
allow us to post about it on Hacker News. A user queries our service in a way



that triggers our new code in an unexpected way and crashes the API. Ooops!

9.2.3 Task startup failures due to resource issues

A task can fail to start because the worker machine doesn’t have enough
resources (i.e. memory, cpu, or disk). In theory, this shouldn’t happen.
Orchestration systems like Kubernetes and Nomad implement sophisticated
schedulers that take memory and cpu requirements into account when
scheduling tasks onto worker nodes.

The story for disk, however, is a little more nuanced. Container images
consume disk space. Run the docker images command on your machine and
notice the SIZE column in the output. On my machine, the timboring/echo-
server we’re using in this chapter is 12.3MB in size. If if I pull down the
postgres:14 image, I can see that it’s size is 376MB.

$ docker images

REPOSITORY              TAG           IMAGE ID       CREATED        SIZE

timboring/echo-server   latest        fe039d2a9875   4 months ago   12.3MB

postgres                14            dd21862d2f49   4 days ago     376MB

While there are strategies to minimize size, images still reside on disk and
thus consume space. In addition to container images, the other processes
running on worker nodes also use disk space, for example they may store
their logs on disk. Also, other containers running on a node may also be using
disk space for their own data. So, it is possible that an orchestrator could
schedule a task onto a worker node, and then when that worker starts up the
task, the task fails because there isn’t enough disk space to download the
container image.

9.2.4 Task failures due to Docker daemon crashes and restarts

Running tasks can also be impacted by issues with the Docker daemon. For
example, if the Docker daemon crashes, then our task will be terminated.
Similarly, if we stop or restart the Docker daemon, then the daemon will also
stop our task. This behavior is the default for the Docker daemon. Containers
can be kept alive while the daemon is down using a feature called live
restore, but the usage of that feature is beyond the scope of this book. For our



purposes, we will work with the default behavior.

9.2.5 Task failures due to machine crashes and restarts

The most extreme failure scenario is a worker machine crashing. In the case
of an orchestration system, if a worker machine crashes, then the Docker
daemon will obviously stop running, along with any tasks running on the
machine.

Less extreme is the situation where a machine is restarted. Perhaps an
administrator restarts it after updating some software, in which case the
Docker daemon will be stopped and started back up after the machine
reboots. In the process, however, any tasks will be terminated and will need
to be restarted.

9.2.6 Worker failures

In addition to application and task failures, when we run the echo service on
our orchestration system, the worker where the task runs can also fail. But,
there is a little more involved at this level. When we say "worker", we need
to clarify what exactly we’re talking about. First, there is the worker
component that we’ve written. And, second, there is the machine where our
worker component runs.

So when we talk about worker failures, we actually have two discrete types
of failures at this layer of our orchestration system. Our worker component
that we’ve written can crash due to bugs in our code. It can also crash
because the machine on which it’s running crashes or becomes otherwise
unavailable.

We already touched on machine failure above, but let’s talk briefly about
failures with the worker component. If it fails for some reason, what happens
to the running tasks? Unlike the Docker daemon, our worker going down or
restarting does not terminate running containers. It does mean that the
manager cannot send new tasks to the worker, and it means that the manager
cannot query the worker to get the current state of running tasks.



So, while a failure in our worker is inconvenient, it doesn’t have an
immediate impact on running tasks. (It could be more than inconvenient if,
say, a number of workers crashed that resulted in your team not being able to
deploy a mission critical bug fix. But, that’s a topic for another book.)

9.2.7 Manager failures

The final failure scenario to consider involves the manager component.
Remember, we said the manager serves an administrative function. It receives
requests from users to run their tasks, and it schedules those tasks onto
workers. Unless the manager and worker components are running on the
same machine (and we wouldn’t do that in a production environment, would
we!), any issues with the manager will only effect those administrative
functions.

So, if the manager component itself were to crash, or if the machine where it
was running were to crash, then the impact would likely be minimal. Running
tasks would continue to run. Users would not, however, be able to submit
new tasks to the system because the manager would not be available to
receive and take action on those requests. Again, inconvenient but not
necessarily the end of the world.

9.3 Recovery options

As failures in an orchestration system can occur at multiple levels and have
various degrees of impact, so too do the recovery options.

9.3.1 Recovery from application failures

As we mentioned above, applications can fail at startup due to external
dependencies being unavailable. The only real automated recovery option
here is to perform retries with exponential backoff or some other mechanism.
An orchestration system cannot wave a magic wand and fix problems with
external dependencies (unless, of course, that external dependency is also
running on orchestration system). An orchestrator provides us with some
tools for automated recovery from these kinds of situations, but if a database



is down, continually restarting the application isn’t going to change the
situation.

Similarly, an orchestration system can’t help us with the bugs we introduce
into our applications. The real solution on this front is tools like automated
testing, which can help identify bugs before they are deployed into
production.

9.3.2 Recovering from environmental failures

An orchestration system provides a number of tools for dealing with non-
application specific failures. We can group the remaining failure scenarios
together and call them environmental failures:

failures with Docker
failures with machines
failures with an orchestrator’s worker
failures wiht an orchestrator’s manager

Let’s cover some ways in which an orchestration system can help recovering
from these types of failures.

Recovering from task-level failures

Docker has a built-in mechanism for restarting containers when they exit.
This mechanism is called restart policies and can be specified on the
commandline using the --restart flag. In the example commandline below,
we run a container using the timboring/echo-server image and tell Docker
we want it to restart the container once if it exits because of a failure.

$ docker run \

    --restart=on-failure:1 \

    --name echo \

    -p 7777:7777 \

    -it \

    timboring/echo-server:bad-exit

Docker supports four restart policies:



no: do nothing when a container exits (this is the default)
on-failure: restart the container if it exits with a non-zero status code
always: always restart the container, regardless of the exit code
unless-stopped: always restart the container, except if the container
was stopped

You can read more about Docker’s restart policies in the docs at
https://docs.docker.com/engine/reference/run/#restart-policies---restart.

The restart policy works well when dealing with individual containers being
run outside of an orchestration system. In most production situations, we run
Docker itself as a systemd unit. Systemd, as the initialization system for most
Linux distributions, can ensure that applications that are supposed to be
running are indeed actually running, especially after a reboot.

For containers running as part of an orchestration system, however, using
Docker’s restart policies can pose problems. The main issue is that it muddies
the waters around who is responsible for dealing with failures. Is the Docker
daemon ultimately responsible? Or is the orchestration system? Moreover, if
the Docker daemon is involved in handling failures, then it adds complexity
to the orchestrator because it will need to check with the Docker daemon to
see if it’s in the process of restarting a container.

For Cube, we will handle task failures ourselves instead of relying on
Docker’s restart policy. This decision, however, does raise another question.
Should the manager or worker be responsible for handling failures?

The worker is closest to the task, so it seems natural to have the worker deal
with failures. But, the worker is only aware of its own singular existence.
Thus, it can only attempt to deal with failures in its own context. If it’s
overloaded, it can’t make the decision to send the task to another worker,
because it doesn’t know about any other workers.

The manager, though farther away from the actual mechanisms that control
task execution, has a broader view of the whole system. It knows about all
the workers in the cluster, and it knows about the individual tasks running on
each of those workers. Thus, the manager has more options for recovering
from failures than does an individual worker. It can ask the worker running



the failed task to try to restart it. Or, if that worker is overloaded or
unavailable (maybe it crashed), it can find another worker that has capacity to
run the task.

9.3.3 Recovering from worker failures

As we mentioned above when discussing the types of worker failures, we
said there are two distinct types of failures when it comes to the worker.
There are failures in the worker component itself, and failures with the
machine where the worker is running.

In the first case, when our worker component fails, we have the most
flexibility. The worker itself isn’t critical to existing tasks. Once a task is up
and running, the worker is not involved in the task’s ongoing operation. So, if
the worker fails, there isn’t much consequence to running tasks. In such a
state, however, the worker is in a degraded state. The manager won’t be able
to communicate with the worker, which means it won’t be able to collect task
state, and it won’t be able to place new tasks on the worker. It also won’t be
able to stop running tasks.

In this situation, we could have the manager attempt to fix the worker
component. How? The obvious thing that comes to mind is for the manager
to consider the worker dead and move all the tasks to another worker. This is
a rather blunt force tactic, however, and could wreak more havoc. If the
manager simply considers those tasks dead and attempts to restart them on
another worker machine, what happens if the tasks are still running on the
machine where the worker crashed? By blindly considering the worker and
all of its tasks dead, the manager could be putting applications into an
unexpected state. This is particularly true when there is only a single instance
of a task.

The second case, where a worker machine has crashed, is also tricky. How
are we defining "crashed"? Does it mean the manager cannot communicate
with the worker via its API? Does it mean the manager performs some other
operation to verify a worker is up, for example by attempting an ICMP ping?
Moreover, can the manager be certain that a worker machine was actually
down even if it did attempt an ICMP ping and did not receive a response?



What if the issue was that the worker machine’s network card died, but the
machine was otherwise up and operating normally? Similarly, what if the
manager and worker machine were on different network segments, and a
router, switch, or other piece of network equipment died, thus segmenting the
two networks so that the manager could not talk to the worker machine?

As we can see, trying to make our orchestration system resilient to failures in
the worker component is more complex than it may initially seem. It’s
difficult to determine if a machine is down—meaning it has crashed or been
powered off and is otherwise not running any tasks—in which case the
Docker daemon is not running, nor are any of the tasks under its control.

9.3.4 Recovering from manager failures

Finally, let’s consider our options for failures in the manager component.
Like the worker, there are two failure scenarios. The manager component
itself could fail, and the machine on which the manager component is running
could fail. While these scenarios are the same as in the worker, their impact
and how we deal with them is slightly different.

First, if the manager dies—regardless of whether it’s the manager component
itself or the machine where it’s running—there is no impact to running tasks.
The tasks and the worker operate independently of the manager. In our
orchestration system, if the manager dies, the worker and its tasks continue
operating normally. The only difference is that the worker won’t receive any
new tasks.

Second, recovering from manager failures in our orchestration system will
likely be less complex than recovering from failures at the worker layer.
Remember, for the sake of simplicity, we have said that we will run only a
single manager. So, if it fails, we only need to try to recover a single instance.
If the manager component crashes, we can restart it. (Ideally, we’d run it
using an init system like Systemd or supervisord.) If its datastore gets
corrupted, we can restore it from a backup.

While not ideal, a manager failure doesn’t bring our whole system down. It
does cause some pain for developers, because while the manager is down



they won’t be able to start new tasks or stop existing ones. So, deployments
of new features or bug fixes will be delayed until the manager is back online.

Obviously, the ideal state in regards to the manager would be to run multiple
instances of the manager. This is what orchestrators like Borg, Kubernetes,
and Nomad do. Like running multiple workers, multiple instances of the
manager adds resiliency to the system as a whole. There is, however, added
complexity.

When running multiple managers, we have to think about synchronizing state
across all the instances. There might be a "primary" instance that is
responsible for handling user requests and acting on them. This instance will
also be responsible for distributing the state of all the system’s task across the
other managers. If the primary instance fails, then another can take over its
role. At this point, we start getting into the realm of consensus and the idea of
how do systems agree on the state of the world. This is where things like the
Raft protocol come into play, but going farther down this road is beyond the
scope of this book.

9.4 Implementing health checks

With this complexity in mind, we are going to implement a simple solution
for illustration purposes. We are going to implement health checks at the task
level. The basic idea here is two-fold:

An application implements a health check and exposes it on its API as
/health. (The name of the endpoint could be anything, as long as its
well defined and doesn’t change.)
When a user submits a task, they define the health check endpoint as
part of the task configuration.
The manager calls a task’s health check periodically and will attempt to
start a new task for any non-200 response.

With this solution, we don’t have to worry about whether the worker machine
is reachable or not. We also don’t have to figure out if a worker component is
working or not. We just call the health check for a task, and if it responds that
it’s operating as expected, we know the manager can continue about its



business.

(Operationally, we still care about whether the worker component is
functioning as expected. But, we can treat that issue separately from task
health and how and when we need to attempt to restart tasks.)

There are two components to health checks. First, the worker has to
periodically check the state of its tasks and update them accordingly. To do
this, it can call the ContainerInspect() method on the Docker API. If the
task is in any state other than running, then the worker updates the task’s
state to Failed.

Second, the manager must periodically call a task’s health check. If the check
doesn’t pass (i.e. it returns anything other than a 200 response code), it then
sends a task event to the appropriate worker to restart the task.

9.4.1 Inspecting a task on the worker

Let’s start with refactoring our worker so it can inspect the state of a task’s
Docker container. If we remember back to chapter 3, we implemented the
Docker struct seen below. The purpose of this struct is to hold a reference to
an instance of the Docker client, which is what allows us to call the Docker
API and perform various container operations. It also holds the Config for a
task.

type Docker struct {

        Client *client.Client

        Config Config

}

In order to handle responses from the ContainerInspect API call, let’s
create a new struct called DockerInspectResponse in the task/task.go file.
As we can see in listing 9.1, this struct will contain two fields. The Error
field will hold an error if we encounter one when calling ContainerInspect.
The Container field is a pointer to a types.ContainerJSON struct. This struct
is defined in Docker’s Go SDK (http://mng.bz/61a6). It contains all kinds of
detailed information about a container, but most importantly for our purposes
it contains the field State. This is the current state of the container as Docker



sees it.

Listing 9.1. The new DockerInspectResponse struct.

type DockerInspectResponse struct {

        Error     error

        Container *types.ContainerJSON

}

  Note

The concept of Docker container state can be confusing. For example, the
doc (https://docs.docker.com/engine/reference/commandline/ps/#status) for
the docker ps command mentions filtering by container status, where status
is one of created, restarting, running, removing, paused, exited, or dead.

If you look at the source code, however, you’ll find there is a State struct
defined in container/state.go (http://mng.bz/oJdv) which looks like this:

type State struct {

    Running           bool

        Paused            bool

        Restarting        bool

        OOMKilled         bool

        RemovalInProgress bool

        Dead              bool

    // other fields omitted

}

As we can see, technically there is not a state called created, nor is there an
exited state. So what is going on here? It turns out there is a method on the
State struct named StateString (http://mng.bz/nJB4), and this is
performing some logic that results in the statuses we see in the
documentation for the docker ps command.

In addition to adding the DockerInspectResponse struct, we’re also going to
add a new method on our existing Docker struct. Let’s call this method
Inspect and it should take a string that represents the container ID we want it
to inspect. Then, it should return a DockerInspectResponse. The body of the
method is straightforward. It creates an instance of a Docker client called dc.



Then we call the client’s ContainerInspect method, passing in a context ctx
and a containerID. We check for an error and return it if we find one.
Otherwise, we return a DockerInspectResponse.

Listing 9.2. The Inspect method calls the Docker API to get the authoritative state of a task’s
container.

func (d *Docker) Inspect(containerID string) DockerInspectResponse {

        dc, _ := client.NewClientWithOpts(client.FromEnv)

        ctx := context.Background()

        resp, err := dc.ContainerInspect(ctx, containerID)

        if err != nil {

                log.Printf("Error inspecting container: %s\n", err)

                return DockerInspectResponse{Error: err}

        }

        return DockerInspectResponse{Container: &resp}

}

Now that we’ve implemented the means to inspect a task, let’s move on and
use it in our worker.

9.4.2 Implementing task updates on the worker

In order for the worker to update the state of its tasks, we’ll need to refactor it
to use the new Inspect method we created on the Docker struct. To start,
let’s open the worker/worker.go file and add the InspectTask method seen
below. This method takes a single argument t of type task.Task. It creates a
task config config, then sets up an instance of the Docker type that will allow
us to interact with the Docker daemon running on the worker. Finally, it calls
the Inspect method, passing in the ContainerID.

Listing 9.3. The InspectTask method calls the new Inspect method on the Docker struct.

func (w *Worker) InspectTask(t task.Task) task.DockerInspectResponse {

        config := task.NewConfig(&t)

        d := task.NewDocker(config)

        return d.Inspect(t.ContainerID)

}

Next, the worker will need to call its new InspectTask method. To do this,



let’s use the same pattern we’ve used in the past. We’ll create a public
method called UpdateTasks, which will allow us to call to run in a separate
goroutine. This method is nothing more than a wrapper that runs a continous
loop and calls the private updateTasks method, which does all the heavy
lifting.

Listing 9.4. The worker’s new UpdateTasks method serves as a wrapper around the new
updateTasks method.

func (w *Worker) UpdateTasks() {

        for {

                log.Println("Checking status of tasks")

                w.updateTasks()

                log.Println("Task updates completed")

                log.Println("Sleeping for 15 seconds")

                time.Sleep(15 * time.Second)

        }

}

The updateTasks method performs a very simple algorithm. For each task in
the worker’s datastore, it does the following:

1. call the InspectTask method to get the task’s state from the Docker
daemon

2. verify the task is in running state
3. if it’s not in a running state, or not running at all, it sets the tasks' state

to failed

The updateTasks method also performs one other operation. It sets the
HostPorts field on the task. This allows us to see what ports the Docker
daemon has allocated to the task’s running container.

Listing 9.5. The worker’s new updateTasks method handles calling the new InspectTask method,
which results in updating the task’s state based on the state of its Docker container.

func (w *Worker) updateTasks() {

        for id, t := range w.Db {

                if t.State == task.Running {

                        resp := w.InspectTask(*t)

                        if resp.Error != nil {

                                fmt.Printf("ERROR: %v", resp.Error)

                        }



                        if resp.Container == nil {

                                log.Printf("No container for running task %s", id)

                                w.Db[id].State = task.Failed

                        }

                        if resp.Container.State.Status == "exited" {

                                log.Printf("Container for task %s in non-running state %s", id, resp.Container.State.Status)

                                w.Db[id].State = task.Failed

                        }

                        w.Db[id].HostPorts = resp.Container.NetworkSettings.NetworkSettingsBase.Ports

                }

        }

}

9.4.3 Healthchecks and restarts

We’ve said we will have the manager perform health checks for the tasks
running in our orchestration system. But, how do we identify these health
checks so the manager can call them? One simple way to accomplish this is
to add a field called HealthCheck to the Task struct, and by convention we
can use this new field to include a URL that the manager can call to perform
a health check.

In addition to the HealthCheck field, let’s also add a field called
RestartCount to the Tasks struct. This field will be incremented each time
the task is restarted, as we will see later in this chapter.

Listing 9.6. We add the HealthCheck and RestartCount fields to the existing `Task`struct.

type Task struct {

    // existing fields omitted

        HealthCheck   string

        RestartCount  int

}

The benefit of this approach to health checks is that it makes it the
responsibility of the task to define what it means to be "healthy". Indeed, the
definition of "healthy" can vary wildly from task to task. Thus, by having the
task define its health check as a URL that can be called by the manager, all
the manager has to do then is to call that URL. The result of calling the task’s



health check URL then determines a task’s health: if the call returns a 200
status, the task is healthy; otherwise it is not.

Now that we’ve implemented the necessary bits to enable our health check
strategy, let’s write the code necessary for the manager to make use of that
work.

Let’s start with the lowest level code first. Open the manager/manager.go file
in your editor, and add the checkTaskHealth method seen below. This
method implements the necessary steps that allow the manager to check the
health of an individual task. It takes a single argument t of type task.Task,
and it returns an error if the health check is not successful.

There are a couple things to note about this method. First, recall that when
the manager schedules a task onto a worker, it adds an entry in its
TaskWorkerMap field that maps the task’s ID to the worker where it has been
scheduled. That entry is a string and will be the IP address and port of the
worker, e.g. 192.168.1.100:5555. Thus, it’s the address of the worker’s API.
The task will, of course, be listening on a different port from the worker API.
Thus, it’s necessary to get the task’s port that the Docker daemon assigned to
it when the task started, and we accomplish this by calling the getHostPort
helper method. Then, using the worker’s IP address, the port on which the
task is listening, and the health check defined in the task’s definition, the
manager can build a URL like http://192.168.1.100:49847/health.

Listing 9.7. The manager’s new checkTaskHealth method is responsible for calling a task’s
healthcheck URL.

func (m *Manager) checkTaskHealth(t task.Task) error {

        log.Printf("Calling health check for task %s: %s\n", t.ID, t.HealthCheck)

        w := m.TaskWorkerMap[t.ID] #1

        hostPort := getHostPort(t.HostPorts) #2

        worker := strings.Split(w, ":") #3

        url := fmt.Sprintf("http://%s:%s%s", worker[0], *hostPort, t.HealthCheck) #4

        log.Printf("Calling health check for task %s: %s\n", t.ID, url)

        resp, err := http.Get(url) #5

        if err != nil {

                msg := fmt.Sprintf("Error connecting to health check %s", url)

                log.Println(msg)

                return errors.New(msg) #6

192.168.1.100:49847.html


        }

        if resp.StatusCode != http.StatusOK { #7

                msg := fmt.Sprintf("Error health check for task %s did not return 200\n", t.ID)

                log.Println(msg)

                return errors.New(msg)

        }

        log.Printf("Task %s health check response: %v\n", t.ID, resp.StatusCode)

        return nil

}

Listing 9.8. The getHostPort method is a helper that returns the host port where the task is
listening.

func getHostPort(ports nat.PortMap) *string {

        for k, _ := range ports {

                return &ports[k][0].HostPort

        }

        return nil

}

Now that our manager knows how to call individual task health checks, let’s
create a new method that will use that knowledge to operate on all the tasks
in our system. It’s important to note that we want the manager to check the
health of tasks only in Running or Failed states. Tasks in Pending or
Scheduled start are in the process of being started, so we don’t want to
attempt calling their health checks at this point. And, the Completed state is
terminal, meaning the task has stopped normally and is in the expected state.

The process we’ll use to check the health of individual tasks will involve
iterating over the tasks in the manager’s TaskDb. If a task is in the Running
state, then it will call the task’s health check endpoint and attempt to restart
the task if the health check fails. If a task is in the Failed state, then there is
no reason to call its health check, so we move on and attempt to restart the
task. We can summarize this process like this:

If the task is in Running state:
Call the manager’s checkTaskHealth method, which in turn will call the
task’s health check endpoint
If the task’s health check fails, attempt to restart the task



If the task is in Failed state:
attempt to restart the task

The above process is coded as you see below in the doHealthChecks method
in listing X. Notice that we are only attempting to restart failed tasks if their
RestartCount field is less than three. We are arbitrarily choosing to only
attempt to restart failed tasks three times. If we were writing a production-
quality system, we would likely do something smarter and much more
sophisticated.

Listing 9.9. The manager’s doHealthChecks method has primary responsibility for health checks.

func (m *Manager) doHealthChecks() {

        for _, t := range m.TaskDb {

        if t.State == task.Running && t.RestartCount < 3 {

                        err := m.checkTaskHealth(*t)

                        if err != nil {

                                if t.RestartCount < 3 {

                                        m.restartTask(t)

                                }

                        }

                } else if t.State == task.Failed && t.RestartCount < 3 {

                        m.restartTask(t)

                }

        }

}

The doHealthChecks method above calls the restartTask method seen here.
Despite the number of lines involved, this code is fairly straightforward.
Because our manager is naively attempting to restart the task on the same
worker where the task was originally scheduled, it looks up that worker in its
TaskWorkerMap using the task’s task.ID field. Next, it’s changes the task’s
state to Scheduled, and it increments the task’s RestartCount. Then, it
overwrites the existing task in the TaskDb datastore to ensure the manager has
the correct state of the task. At this point, the rest of the code should look
familiar. It creates a task.TaskEvent and adds the task to it, then marshals
the TaskEvent into JSON. Using the JSON-encoded TaskEvent, it sends a
POST request to the worker’s API to restart the task.

Listing 9.10. The manager’s new restartTask method is responsible for restarting tasks that have
failed.



func (m *Manager) restartTask(t *task.Task) {

        // Get the worker where the task was running

        w := m.TaskWorkerMap[t.ID]

        t.State = task.Scheduled

        t.RestartCount++

        // We need to overwrite the existing task to ensure it has

        // the current state

        m.TaskDb[t.ID] = t

        te := task.TaskEvent{

                ID:        uuid.New(),

                State:     task.Running,

                Timestamp: time.Now(),

                Task:      *t,

        }

        data, err := json.Marshal(te)

        if err != nil {

                log.Printf("Unable to marshal task object: %v.", t)

        }

        url := fmt.Sprintf("http://%s/tasks", w)

        resp, err := http.Post(url, "application/json", bytes.NewBuffer(data))

        if err != nil {

                log.Printf("Error connecting to %v: %v", w, err)

                m.Pending.Enqueue(t)

                return

        }

        d := json.NewDecoder(resp.Body)

        if resp.StatusCode != http.StatusCreated {

                e := worker.ErrResponse{}

                err := d.Decode(&e)

                if err != nil {

                        fmt.Printf("Error decoding response: %s\n", err.Error())

                        return

                }

                log.Printf("Response error (%d): %s", e.HTTPStatusCode, e.Message)

                return

        }

        newTask := task.Task{}

        err = d.Decode(&newTask)

        if err != nil {

                fmt.Printf("Error decoding response: %s\n", err.Error())

                return

        }

        log.Printf("%#v\n", t)

}



With the low-level details implemented, we can wrap our the necessary
coding for the manager by writing the DoHealthChecks method seen below.
This method will be used to run the manager’s health checking functionality
in a separate goroutine.

Listing 9.11. Like other wrapper methods, the DoHealthChecks method wraps the doHealthChecks
method.

func (m *Manager) DoHealthChecks() {

        for {

                log.Println("Performing task health check")

                m.doHealthChecks()

                log.Println("Task health checks completed")

                log.Println("Sleeping for 60 seconds")

                time.Sleep(60 * time.Second)

        }

}

9.5 Putting it all together

In order to test our code and see it work, we’ll need a task that implements a
health check. Also, we’ll want a way to trigger it to fail so our manager will
attempt to restart it. We can use the echo service mentioned at the beginning
of the chapter for this purpose. I’ve made it available as a Docker image that
we can pull and run locally, thus saving us the time of writing additional
code.

To run it, use this command:

$ docker run -p 7777:7777 --name echo timboring/echo-server:latest

The echo service implements three endpoints. Calling the root endpoint /
with a POST and a JSON-encoded request body will simply echo a JSON
request body back in a response body.

$ curl -X POST http://localhost:7777/ -d '{"Msg": "hello world"}'

{"Msg":"hello world"}

Calling the /health endpoint with a GET will return an empty body with a



200 OK response.

$ curl -v http://localhost:7777/health

*   Trying 127.0.0.1:7777...

* Connected to localhost (127.0.0.1) port 7777 (#0)

> GET /health HTTP/1.1

> Host: localhost:7777

> User-Agent: curl/7.83.1

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 200 OK

< Date: Sun, 12 Jun 2022 16:17:02 GMT

< Content-Length: 2

< Content-Type: text/plain; charset=utf-8

<

* Connection #0 to host localhost left intact

OK

Finally, calling the /healthfail endpoint with a GET will return an empty
body with a 500 Internal Server Error response.

$ curl -v http://localhost:7777/healthfail

*   Trying 127.0.0.1:7777...

* Connected to localhost (127.0.0.1) port 7777 (#0)

> GET /healthfail HTTP/1.1

> Host: localhost:7777

> User-Agent: curl/7.83.1

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 500 Internal Server Error

< Date: Sun, 12 Jun 2022 16:17:45 GMT

< Content-Length: 21

< Content-Type: text/plain; charset=utf-8

<

* Connection #0 to host localhost left intact

Internal server error

At this point, we can start up our worker and manager locally. We only need
to make two tweaks to the code in the main.go file from chapter 8. The first
is to call the new UpdateTasks method on our worker. The second is to call
the new DoHealthChecks method on our manager. The rest of the code
remains the same and results in the worker and manager starting up.



Listing 9.12. We only need to make two changes to the main.go file from chapter 8 in order to
make use of the code written in this chapter.

func main() {

        w := worker.Worker{

                Queue: *queue.New(),

                Db:    make(map[uuid.UUID]*task.Task),

        }

        wapi := worker.Api{Address: whost, Port: wport, Worker: &w}

        go w.RunTasks()

        go w.CollectStats()

        *go w.UpdateTasks()*

        go wapi.Start()

        m := manager.New(workers)

        mapi := manager.Api{Address: mhost, Port: mport, Manager: m}

        go m.ProcessTasks()

        go m.UpdateTasks()

        *go m.DoHealthChecks()*

        mapi.Start()

}

When we start up the worker and manager, we should see familiar output like
this.

2022/06/12 12:25:52 Sleeping for 15 seconds

2022/06/12 12:25:52 Collecting stats

2022/06/12 12:25:52 Checking for task updates from workers

2022/06/12 12:25:52 Checking worker localhost:5555 for task updates

2022/06/12 12:25:52 No tasks to process currently.

2022/06/12 12:25:52 Sleeping for 10 seconds.

2022/06/12 12:25:52 Processing any tasks in the queue

2022/06/12 12:25:52 No work in the queue

2022/06/12 12:25:52 Sleeping for 10 seconds

2022/06/12 12:25:52 Performing task health check

2022/06/12 12:25:52 Task health checks completed

2022/06/12 12:25:52 Sleeping for 60 seconds

2022/06/12 12:25:52 Task updates completed

2022/06/12 12:25:52 Sleeping for 15 seconds

We can verify the worker and manager are indeed working as expected by
sending requests to their APIs.



# querying the worker API

$ curl localhost:5555/tasks

[]

# querying the manager API

$ curl localhost:5556/tasks

[]

As we’d expect, both the worker and manager return empty lists for their
respective /tasks endpoints.

So let’s create a task so the manager can start it up. To simplify the process,
create a file called task1.json and add the following JSON to it:

Listing 9.13. We can store a task in JSON format in a file and pass the file to the curl command,
thus saving us time and confusion.

{

    "ID": "a7aa1d44-08f6-443e-9378-f5884311019e",

    "State": 2,

    "Task": {

        "State": 1,

        "ID": "bb1d59ef-9fc1-4e4b-a44d-db571eeed203",

        "Name": "test-chapter-9.1",

        "Image": "timboring/echo-server:latest",

        "ExposedPorts": {

            "7777/tcp": {}

        },

        "PortBindings": {

            "7777/tcp": "7777"

        },

        "HealthCheck": "/health"

    }

}

Next, let’s make a POST request to the manager using this JSON as a request
body.

$ curl -v -X POST localhost:5556/tasks -d @task1.json

When we submit the task to the manager, we should see the manager and
worker going through their normal paces to create the task. Ultimately, we
should see the task in a running state if we query the manager.



$ curl http://localhost:5556/tasks|jq

[

  {

    "ID": "bb1d59ef-9fc1-4e4b-a44d-db571eeed203",

    "ContainerID": "fbdcb43461134fc20cafdfcdadc4cc905571c386908b15428d2cba4fa09be270",

    "Name": "test-chapter-9.1",

    "State": 2,

    "Image": "timboring/echo-server:latest",

    "Cpu": 0,

    "Memory": 0,

    "Disk": 0,

    "ExposedPorts": {

      "7777/tcp": {}

    },

    "HostPorts": {

      "7777/tcp": [

        {

          "HostIp": "0.0.0.0",

          "HostPort": "49155"

        },

        {

          "HostIp": "::",

          "HostPort": "49154"

        }

      ]

    },

    "PortBindings": {

      "7777/tcp": "7777"

    },

    "RestartPolicy": "",

    "StartTime": "0001-01-01T00:00:00Z",

    "FinishTime": "0001-01-01T00:00:00Z",

    "HealthCheck": "/health",

    "RestartCount": 0

  }

]

And, we should eventually see output from the manager showing it calling
the task’s health check.

2022/06/12 13:17:13 Performing task health check

2022/06/12 13:17:13 Calling health check for task bb1d59ef-9fc1-4e4b-a44d-db571eeed203: /health

2022/06/12 13:17:13 Calling health check for task bb1d59ef-9fc1-4e4b-a44d-db571eeed203: http://localhost:49155/health

2022/06/12 13:17:13 Task bb1d59ef-9fc1-4e4b-a44d-db571eeed203 health check response: 200

2022/06/12 13:17:13 Task health checks completed



This is good news. We can see that our health checking strategy is working.
Well, at least in the case of a healthy task! What happens in the case of an
unhealthy one?

To see what happens if a task’s health check fails, let’s submit another task to
the manager. This time, we’re going to set the task’s health check endpoint to
/healthfail.

Listing 9.14. The JSON definition for our second task, which includes a healthcheck that will
result in a non-200 response.

{

    "ID": "6be4cb6b-61d1-40cb-bc7b-9cacefefa60c",

    "State": 2,

    "Task": {

        "State": 1,

        "ID": "21b23589-5d2d-4731-b5c9-a97e9832d021",

        "Name": "test-chapter-9.2",

        "Image": "timboring/echo-server:latest",

        "ExposedPorts": {

            "7777/tcp": {}

        },

        "PortBindings": {

            "7777/tcp": "7777"

        },

        "HealthCheck": "/healthfail"

    }

}

If we watch the output in the terminal where out worker and manager are
running, we should eventually see the call to this task’s /healthfail
endpoint return a non-200 response.

2022/06/12 13:37:30 Calling health check for task 21b23589-5d2d-4731-b5c9-a97e9832d021: /healthfail

2022/06/12 13:37:30 Calling health check for task 21b23589-5d2d-4731-b5c9-a97e9832d021: http://localhost:49160/healthfail

2022/06/12 13:37:30 Error health check for task 21b23589-5d2d-4731-b5c9-a97e9832d021 did not return 200

And, as a result of this health check failure, we should see the manager
attempt to restart the task.

2022/06/12 13:37:30 Added task 21b23589-5d2d-4731-b5c9-a97e9832d021

This process should continue until the task has been restarted three times,



after which the manager will stop trying to restart the task, thus leaving it in
Running state. We can see this by querying the manager’s API and looking at
the task’s State and RetryCount fields.

{

    "ID": "21b23589-5d2d-4731-b5c9-a97e9832d021",

    "ContainerID": "acb37c0c2577461cae93c50b894eccfdbc363a6c51ea2255c8314cc35c91e702",

    "Name": "test-chapter-9.2",

    "State": 2,

    "Image": "timboring/echo-server:latest",

    // other fields omitted

    "RestartCount": 3

  }

In addition to restarting tasks when their health check fails, this strategy also
works in the case where a task dies. For example, we can simulate the
situation of a task dying by stopping the task’s container manually using the
docker stop command. Let’s do this for the first task we created above,
which should still be running.

2022/06/12 14:14:08 Performing task health check

2022/06/12 14:14:08 Calling health check for task bb1d59ef-9fc1-4e4b-a44d-db571eeed203: /health

2022/06/12 14:14:08 Calling health check for task bb1d59ef-9fc1-4e4b-a44d-db571eeed203: http://localhost:49169/health

2022/06/12 14:14:08 Error connecting to health check http://localhost:49169/health

2022/06/12 14:14:08 Added task bb1d59ef-9fc1-4e4b-a44d-db571eeed203

And we should then see the container running again:

$ docker ps

CONTAINER ID   IMAGE                          CREATED          STATUS

1d75e69fa804   timboring/echo-server:latest   36 seconds ago   Up 36 seconds

And if we query the manager’s API, we should see the task has a
RestartCount of 1:

$ curl http://localhost:5556/tasks|jq

[

  {

    "ID": "bb1d59ef-9fc1-4e4b-a44d-db571eeed203",

    "ContainerID": "1d75e69fa80431b39980ba605bccdb2e049d39d44afa32cd3471d3d987209bf3",

    "Name": "test-chapter-9.1",

    "State": 2,

    "Image": "timboring/echo-server:latest",

    // other fields omitted



    "RestartCount": 1

  }

]

9.6 Summary

Failures happen all the time, and the causes can be numerous.
Handling failures in an orchestration system is complex. We
implemented task-level health checking as a strategy to handle a small
number of failure scenarios.
An orchestration system can automate the process of recovering from
task failures up to a certain point. Past a certain point, however, the best
it can do is provide useful debugging information that helps
administrators and application owners troubleshoot the problem further.
(Note that we did not do this for our orchestration system. If you’re
curious, you can try to implement something like task logging.)



10 Implementing a more
sophisticated scheduler
This chapter covers

Describing the scheduling problem
Defining the phases of scheduling
Re-implementing the round robin scheduler
Discussing the Enhanced PVM (E-PVM) concept and algorithm
Implementing the E-PVM scheduler

We implemented a simple round-robin scheduler in chapter 7. Now, let’s
return and dig a little deeper into the general problem of scheduling and see
how we might implement a more sophisticated scheduler.

10.1 The scheduling problem

Whether we realize it or not, the scheduling problem lives with us in our
daily lives. In our homes, we have work to do like sweeping the floors,
cooking meals, washing clothes, mowing the grass, and so on. Depending on
the size of our family, we have 1 or more people to perform the necessary
work. If you live by yourself, then you have a single worker, yourself. If you
live with a partner, you have two workers. If you live with a partner and
children, then you have 3 or more workers.

Now, how do we assign our house work to our workers? Do you take it all on
yourself because your partner is taking the kids to soccer practice? Do you
mow the grass and wash the clothes, while your partner will sweep the floors
and cook dinner after returning from taking the kids to soccer practice? Do
you take the kids to soccer practice while your partner cooks dinner, and
when you return your oldest child will mow the grass and the youngest will
do the laundry while your partner sweeps the floors?



In chapter 6, we described the scheduling problem using the scenario of a
host seating customers at a busy restaurant on a Friday night. The host has six
servers waiting on customers sitting at tables spread across the room. Each
customer at each of those tables has different requirements. One customer
might be there to have drinks and appetizers with a group of friends she
hasn’t seen in a while. Another customer might be there for a full dinner,
complete with an appetizer and desert. Yet another customer might have strict
dietary requirements and only eats plant-based food.

Now, a new customer walks in. It’s a family of four: two adults, two teenage
children. Where does the host seat them? Do they place them at the table in
the section being served by John, who already has three tables with four
customers each? Do they place them at the table in Jill’s section, who has six
tables with a single customer each? Or, do they place them in Willie’s
section, who has a single table with three customers?

The same scheduling problem also exists in our work lives. Most of us work
on a team, and we have work that needs to get done: writing documentation
for a new feature or a new piece of infrastructure; fixing a critical bug that a
customer reported over the weekend; drafting team goals for the next quarter.
How do we divvy up this work amongst ourselves?

As we can from the above examples, scheduling is all around us.

10.2 Scheduling considerations

When we implemented the round-robin scheduler in chapter 7, we didn’t take
much into consideration. We just wanted a simple implementation of a
scheduler that we could implement quickly so we could focus on other areas
of our orchestration system.

There are, however, a wide range of things to consider if we take the time.
What goals are we trying to achieve?

Seat customers as quickly as possible to avoid a large queue of
customers having to wait
Distribute customers evenly across our servers so they get the best



service
Get customers in and out as quickly as possible because we want high
volume.

The same considerations exist in an orchestration system. Instead of seating
customers at tables, we’re placing tasks on machines.

Do we want the task to be placed and running as quickly as possible?
Do we want to place the task on a machine that is best capable of
meeting the unique needs of the task?
Do we want to place the task on a machine that will distribute the load
evenly across all of our workers?

10.3 Scheduler interface

Unfortunately, there is no one-size-fits-all approach to scheduling. How we
schedule tasks depends on the goals we want to achieve. For this reason, most
orchestrators support multiple schedulers. Kubernetes achieves this through
scheduling Profiles (see
https://kubernetes.io/docs/reference/scheduling/config/), while Nomad
achieves it through four scheduler types (see
https://developer.hashicorp.com/nomad/docs/schedulers).

Like Kubernetes and Nomad, we want to support more than one type of
scheduler. We can accomplish this by using an interface. In fact, we already
defined such an interface in chapter 2.

type Scheduler interface {

    SelectCandidateNodes()

    Score()

    Pick()

}

Our interface is simple. It has three methods:

SelectCandidateNodes
Score
Pick



We can think of these methods as the different phases of the scheduling
problem, as seen in figure 10.1.

Figure 10.1. The scheduling problem can be broken down into three phases: selecting candidate
nodes, scoring candidate nodes, and, finally, picking one of the nodes

Using just these three methods, we can implement any number of schedulers.
Before we dive into writing any new code, however, let’s revise our
Scheduler interface with a few more details.



To start, we want our SelectCandidateNodes method to accept a task and a
list of nodes. As we will soon see, this method acts as a filter early in the
scheduling process, reducing the number of possible workers to only those
that we are confident can run the task. For example, if our task needs 1 gig of
disk space because we haven’t taken the time to reduce the size of our Docker
image, then we only want to consider scheduling the task onto workers that
have at least 1 gig of disk space available to download our image. As a result,
SelectCandidateNodes returns a list of nodes that will, at a minimum, meet
the resource requirements of the task.

Next, we want our Score method to also accept a task and list of nodes as
parameters. This method performs the heavy lifting. Depending on the
scheduling algorithm we’re implementing, this method will assign a score to
each of the candidate nodes it receives. Then, it returns a map[string]float64,
where the map key is the name of the node and the value is its score.

Finally, our Pick method needs to accept a map of scores, i.e. the output of
the Score method, and a list of candidate nodes. Then, it picks the node with
the "best" score. The definition of "best" is left as an implementation detail.

Listing 10.1. The updated Scheduler interface includes method parameters and return values.

type Scheduler interface {

        SelectCandidateNodes(t task.Task, nodes []*node.Node) []*node.Node

        Score(t task.Task, nodes []*node.Node) map[string]float64

        Pick(scores map[string]float64, candidates []*node.Node) *node.Node

}

10.4 Adapting the round-robin scheduler to the
scheduler interface

Since we have already implemented a round-robin scheduler, let’s adapt that
code to our scheduler interface. The sequence diagram in figure 10.2
illustrates how our manager will interact with the Scheduler interface to
select a node for running a task.

Figure 10.2. Sequence diagram showing the interactions between the manager, scheduler, and
worker.



Let’s start by opening the scheduler.go file and creating the RoundRobin
struct seen in listing 10.2. Our struct has two fields: Name, which allows us to
give it a descriptive name, and LastWorker, which will take over the role of
the field with the same name from the Manager struct.

Listing 10.2. The round-robin scheduler can be adapted to the Scheduler interface by defining a
RoundRobin struct.

type RoundRobin struct {

        Name       string

        LastWorker int

}

Next, let’s implement the SelectCandidateNodes method for our round-
robin scheduler. Because we are adapting our original implementation, not
improving upon it, we’re going to simply return the list of nodes that are
passed in as one of the two method parameters. While it might seem a bit
silly for this method to just return what it received, the RoundRobin scheduler
does need to implement this method in order to meet the contract of the
Scheduler interface.



Listing 10.3. The SelectCandidateNodes method for the round-robin scheduler simply returns the
nodes it receives without filtering out any.

func (r *RoundRobin) SelectCandidateNodes(t task.Task, nodes []*node.Node) []*node.Node {

        return nodes

}

Now, let’s implement the Score method for our round-robin implementation.
Here, we’re effectively taking the code from the existing manager’s
SelectWorker method and pasting it into the Score method. We do, however,
need to make a few modifications.

First, we define the nodeScores variable, which is of type
map[string]float64. This variable will hold the scores we assign to each
node. Depending on the number of nodes we’re using, the resulting map will
look something like this:

{

    "node1": 1.0,

    "node2": 0.1,

    "node3": 1.0,

}

Second, we iterate over the list of nodes that are passed in to the method and
build our map of nodeScores. Notice that our method of scoring is not that
sophisticated. We check if the index is equal to the newWorker variable, and if
it is then we assign the node a score of 0.1. If the index is not equal to the
newWorker, then we give it a score of 1.0. Once we have built our map of
nodeScores, we return it.

Listing 10.4. The Score method adapts the original code from the manager’s SelectWorker
method to the Score method of the Scheduler interface.

func (r *RoundRobin) Score(t task.Task, nodes []*node.Node) map[string]float64 {

        nodeScores := make(map[string]float64) #1

        var newWorker int #2

        if r.LastWorker+1 < len(nodes) {

                newWorker = r.LastWorker + 1

                r.LastWorker++

        } else {

                newWorker = 0



                r.LastWorker = 0

        }

        for idx, node := range nodes { #3

                if idx == newWorker {

                        nodeScores[node.Name] = 0.1

                } else {

                        nodeScores[node.Name] = 1.0

                }

        }

        return nodeScores #4

}

With the SelectCandidateNodes and Score methods implemented, let’s turn
our attention to the final method of the Scheduler interface, the Pick method.
As its name suggests, this method picks the "best" node to run a task. It
accepts a map[string]float64, which will be the scores returned from the
Score method above. It also accepts a list of candidate nodes. It returns a
single type of a pointer to a node.Node.

For the purposes of the round-robin implementation, the "best" score is the
lowest score. So, if we had a list of three nodes with scores of 0.1, 1.0, and
1.0, the node with the 0.1 score will be selected.

Listing 10.5. The round-robin scheduler’s Pick method return the node with the lowest score.

func (r *RoundRobin) Pick(scores map[string]float64, candidates []*node.Node) *node.Node {

        var bestNode *node.Node

        var lowestScore float64

        for idx, node := range candidates { #1

                if idx == 0 { #2

                        bestNode = node

                        lowestScore = scores[node.Name]

                        continue

                }

                if scores[node.Name] < lowestScore { #3

                        bestNode = node

                        lowestScore = scores[node.Name]

                }

        }

        return bestNode #4



}

With the implementation of the Pick method, we have completed adapting
the round-robin scheduler to the Scheduler interface. Now, let’s see how we
can use it.

10.5 Using the new scheduler interface

In order to use the new Scheduler interface, there are a few changes we need
to make to the manager. There are three types of changes to do:

Adding new fields to the Manager struct
Modifying the New helper function in the manager package
Modifying several of the manager’s methods to use the scheduler

10.5.1 Adding new fields to the Manager struct

The first set of changes to make are to add two new fields to our Manager
struct. As you can see below in listing 10.6, the first is a field named
WorkerNodes. This field is a slice of pointers of node.Node. It will hold
instances of each worker node. The second field we need to add is
Scheduler, which is our new interface type scheduler.Scheduler. As you
will see later, defining the Scheduler field type as the Scheduler interface
allows the manager to use any scheduler that implements the interface.

Listing 10.6. The WorkerNodes and Scheduler fields are new to the Manager struct.

type Manager struct {

    // previous code not shown

        WorkerNodes   []*node.Node

        Scheduler     scheduler.Scheduler

}

10.5.2 Modifying the New helper function

The second set of changes involve modifying the New function in the manager
package. The first of these changes is to add the schedulerType parameter to



the function signature. This parameter will allow us to create a manager with
one of the concrete scheduler types, starting with the RoundRobin type. The
next change to make involves adding an error to the types returned from the
function. The changes to the function signature can be seen in listing 10.7.

Listing 10.7. The New helper function is modified to take a new argument, schedulerType and
return an error in addition to a pointer to the Manager.

func New(workers []string, schedulerType string) (*Manager, error) {

The next change to the function happens in the body. We define the variable
nodes to hold a slice of pointers to the node.Node type. We’re going to
perform this work inside the existing loop over the workers slice. Inside this
loop, we create a node by calling the node.NewNode function, passing it the
name of the worker, the address for the worker’s API (e.g.
http://192.168.33.17:5556), and the node’s role. All three values passed in to
the NewNode function are strings. Once we have created the node, we add it to
the slice of nodes by calling the built-in append function.

After creating the list of nodes, we can move on to the next-to-last change in
the function body. Depending on the schedulerType passed in, we need to
create a scheduler of the appropriate type. To do this, we create the variable s
to hold the scheduler. Then, we use a switch statement to initialize the
appropriate scheduler. We start out with only a single case to support the
"roundrobin" scheduler. If schedulerType is not "roundrobin", then we
return an error with an informative message.

The final changes to the function are simple. We need to add our list of nodes
and our scheduler s to the Manager that we’re returning at the end of the
function. We do this by adding the slice of nodes to the WorkerNodes field,
and the scheduler s to the Scheduler field.

Listing 10.8. Changes to the New helper function to use the new Scheduler interface.

func New(workers []string, schedulerType string) (*Manager, error) {

    // previous code not shown

        var nodes []*node.Node

        for worker := range workers {



                workerTaskMap[workers[worker]] = []uuid.UUID{}

                nAPI := fmt.Sprintf("http://%v", workers[worker])

                n := node.NewNode(workers[worker], nAPI, "worker")

                nodes = append(nodes, n)

        }

        var s scheduler.Scheduler

        switch schedulerType {

        case "roundrobin":

                s = &scheduler.RoundRobin{Name: "roundrobin"}

    default:

        return nil, fmt.Errorf("unsupported scheduler type")

        }

        return &Manager{

                Pending:       *queue.New(),

                Workers:       workers,

                TaskDb:        taskDb,

                EventDb:       eventDb,

                WorkerTaskMap: workerTaskMap,

                TaskWorkerMap: taskWorkerMap,

                WorkerNodes:   nodes,

                Scheduler:     s,

        }

}

With the changes to the New function above, we can now create our manager
with different types of schedulers. But, we still have more work to do on our
manager before it can actually use the scheduler.

The next piece of the Manager type we need to change is the SelectWorker
method. We’re going to scrap the previous implementation of this method
and replace it. Why? Because the previous implementation was specifically
geared toward the round-robin scheduling algorithm. With the creation of the
Scheduler interface and the RoundRobin implementation of that interface, we
need to refactor the SelectWorker method to operate on the scheduler
interface.

As you can in listing 10.9, the SelectWorker method becomes more
straightforward. It does the following:

Call the manager’s Scheduler.SelectCandidateNodes method, passing



it the task t and the slice of nodes in the manager’s WorkerNodes field.
If the call to SelectCandidateNodes results in the candidates variable
being nil, then we return an error.
Call the manager’s Scheduler.Score method, passing it the task t and
slice of candidates.
Call the manager’s Scheduler.Pick method, passing it the scores from
the previous step and the slice of candidates.
Return the selectedNode.

Listing 10.9. The SelectWorker method now uses the Scheduler interface to select a worker.

func (m *Manager) SelectWorker(t task.Task) (*node.Node, error) {

        candidates := m.Scheduler.SelectCandidateNodes(t, m.WorkerNodes)

        if candidates == nil {

                msg := fmt.Sprintf("No available candidates match resource request for task %v", t.ID)

                err := errors.New(msg)

                return nil, err

        }

        scores := m.Scheduler.Score(t, candidates)

        selectedNode := m.Scheduler.Pick(scores, candidates)

        return selectedNode, nil

}

Now, let’s move on to the SendWork method of the manager. In the original
version, the beginning of the method looked like that in listing 10.10 below.
Notice that we called the SelectWorker method first, and we didn’t pass it a
task. We need to rework the beginning of this method to account for the
changes we made to the SelectWorker method above.

Listing 10.10. The original SendWork method called SelectWorker at the beginning of the method.

func (m *Manager) SendWork() {

        if m.Pending.Len() > 0 {

                w := m.SelectWorker()

                e := m.Pending.Dequeue()

                te := e.(task.TaskEvent)

                t := te.Task

                log.Printf("Pulled %v off pending queue", t)

                m.EventDb[te.ID] = &te



                m.WorkerTaskMap[w] = append(m.WorkerTaskMap[w], te.Task.ID)

                m.TaskWorkerMap[t.ID] = w

Instead of calling the SelectWorker method first, we now want to pop a task
off the manager’s pending queue as the first step. Then we do some
accounting work, notably adding the task.TaskEvent te to the manager’s
EventDb map. It’s only after pulling a task off the queue and doing the
necessary accounting work that we then call the new version of
SelectWorker. Moreover, we pass the task t to the new SelectWorker
method.

Listing 10.11. The new SendWork method re-orders the steps in the process of sending a task to a
worker.

func (m *Manager) SendWork() {

        if m.Pending.Len() > 0 {

                e := m.Pending.Dequeue()

                te := e.(task.TaskEvent)

                m.EventDb[te.ID] = &te

                log.Printf("Pulled %v off pending queue", te)

                t := te.Task

                w, err := m.SelectWorker(t)

                if err != nil {

                        log.Printf("error selecting worker for task %s: %v", t.ID, err)

                }

One important thing to note about the changes above: the type returned from
the new implementation of SelectWorker is no longer a string. SelectWorker
now returns a type of node.Node. To make this more concrete, the old version
of SelectWorker returned a string that looked like 192.168.13.13:1234. So,
we need to make a few minor adjustments throughout the remainder of the
SendWork method to replace any usage of the old string value held in the
variable w with the value of the node’s Name field. Listing 10.12 below shows
the affected lines that need to be changed.

Listing 10.12. The w variable has changed from a string to a node.Node type, so we need to use the
w.Name field.

m.WorkerTaskMap[w.Name] = append(m.WorkerTaskMap[w.Name], te.Task.ID)

m.TaskWorkerMap[t.ID] = w.Name



url := fmt.Sprintf("http://%s/tasks", w.Name)

}

With that, we’ve completed all the necessary changes to our manager. Well,
sort of.

10.6 Did you notice the bug?

Up until this chapter, we’ve been working with a single instance of the
worker. This choice made it easier for us to focus on the bigger picture. In the
next section, however, we’re going to modify our main.go program to start
three workers.

There is a problem lurking in the manager’s SendWork method. Notice that
it’s popping a task off its queue, then selecting a worker where it will send
that task. What happens, however, when the task popped off the pending
queue is for an existing task? The most obvious case for this behavior is
stopping a running task. In such a case, the manager already knows about the
running task and the associated task event, so we shouldn’t create new ones.
Instead, we need to check for an existing task and update it as necessary.

Our code in the previous chapters was working by chance. Since we were
running a single worker, the SelectWorker method only had one choice when
it encountered a task intended to stop a running task. Since we’re now
running three workers, there is a 67 percent chance that the existing code will
select a worker where the existing task to be stopped is NOT running.

Let’s fix this problem!

To start, let’s introduce a new method to our manager, called stopTask. This
method takes two arguments: a worker of type string, and a taskID also of
type string. From the name of the method and the names of the parameters
it’s obvious what the method will do. It uses the worker and taskID
arguments to build a URL to the worker’s /tasks/{taskID} endpoint. Then
it creates a request by calling the NewRequest function in the http package.
Next, it executes the request.

Listing 10.13. The new stopTask method.



func (m *Manager) stopTask(worker string, taskID string) {

        client := &http.Client{}

        url := fmt.Sprintf("http://%s/tasks/%s", worker, taskID)

        req, err := http.NewRequest("DELETE", url, nil)

        if err != nil {

                log.Printf("error creating request to delete task %s: %v", taskID, err)

                return

        }

        resp, err := client.Do(req)

        if err != nil {

                log.Printf("error connecting to worker at %s: %v", url, err)

                return

        }

        if resp.StatusCode != 204 {

                log.Printf("Error sending request: %v", err)

                return

        }

        log.Printf("task %s has been scheduled to be stopped", taskID)

}

Now, let’s use the stopTask method by calling it from the SendWork method.
We’re going to add new code near the beginning of the first if statement,
which checks the length of the manager’s Pending queue. Just after the log
statement that prints, "Pulled %v off pending queue", add a newline and enter
the code after the // new code comment seen in listing 10.14.

Listing 10.14. Checking for existing tasks and calling the new stopTask method.

// existing code

if m.Pending.Len() > 0 {

        e := m.Pending.Dequeue()

        te := e.(task.TaskEvent)

        m.EventDb[te.ID] = &te

        log.Printf("Pulled %v off pending queue", te)

    // new code

        taskWorker, ok := m.TaskWorkerMap[te.Task.ID] #1

        if ok {

                persistedTask := m.TaskDb[te.Task.ID] #2

                if te.State == task.Completed && task.ValidStateTransition(persistedTask.State, te.State) { #3

                        m.stopTask(taskWorker, te.Task.ID.String())

                        return



                }

                log.Printf("invalid request: existing task %s is in state %v and cannot transition to the completed state", persistedTask.ID.String(), persistedTask.State)

                return

        }

10.7 Putting it all together

Now that we’ve made the changes to the manager so it can make use of the
new scheduler interface, we’re ready to make several changes to our main.go
program. As I mentioned above, in previous chapters we used a single
worker. That choice was mostly one of convenience. Given that we’ve
implemented a more sophisticated Scheduler interface, however, it’ll be
more interesting to start up several workers. This will better illustrate how
our scheduler works.

The first change to make in our main program is to create three workers. To
do this, we take the same approach as in previous chapters, but repeat it three
time to create workers w1, w2, and w3 as seen in listing 10.15. After creating
each worker, we then create an API for it. Notice that for the first worker, we
use the existing wport variable for the Port field of the API. Then, in order to
start multiple APIs we increment the value of the wport variable so each API
has a unique port to run on. This saves us from having to specify three
different variables when we run the program from the commandline.

Listing 10.15. Each worker is represented by a worker.Worker type and a worker.Api type.

    w1 := worker.Worker{

                Queue: *queue.New(),

                Db:    make(map[uuid.UUID]*task.Task),

        }

        wapi1 := worker.Api{Address: whost, Port: wport, Worker: &w1}

        w2 := worker.Worker{

                Queue: *queue.New(),

                Db:    make(map[uuid.UUID]*task.Task),

        }

        wapi2 := worker.Api{Address: whost, Port: wport + 1, Worker: &w2}

        w3 := worker.Worker{

                Queue: *queue.New(),



                Db:    make(map[uuid.UUID]*task.Task),

        }

        wapi3 := worker.Api{Address: whost, Port: wport + 2, Worker: &w3}

Now that we have our three workers and their APIs, let’s start everything up.
The process is the same as in past chapters, just doing it once for each
worker/API combo.

Listing 10.16. We start up each worker in the same way as we did for a single worker.

go w1.RunTasks()

go w1.UpdateTasks()

go wapi1.Start()

go w2.RunTasks()

go w2.UpdateTasks()

go wapi2.Start()

go w3.RunTasks()

go w3.UpdateTasks()

go wapi3.Start()

The next change is to build a slice that contains all three of our workers.

workers := []string{

        fmt.Sprintf("%s:%d", whost, wport),

        fmt.Sprintf("%s:%d", whost, wport+1),

        fmt.Sprintf("%s:%d", whost, wport+2),

}

Now, we need to update the existing call to the manager package’s New
function to specify the type of scheduler we want the manager to use. As you
can see below, we’re going to start by using the "roundrobin" scheduler.

func main() {

        m := manager.New(workers, "roundrobin")

}

With these changes, we can now start up our main program. Notice that we
start up in the same way, by passing in the necessary environment variables
for the worker and manager and then using the command go run main.go.
Also notice that the output we see looks the same as it has. We see that the
program is starting up the worker; then it starts up the manager; then it starts



cycling through checking for new tasks, collecting stats, checking the status
of tasks, and attempting to update any existing tasks.

$ CUBE_WORKER_HOST=localhost CUBE_WORKER_PORT=5556 CUBE_MANAGER_HOST=localhost CUBE_MANAGER_PORT=5555 go run main.go

Starting Cube worker

Starting Cube manager

2022/11/12 11:28:48 No tasks to process currently.

2022/11/12 11:28:48 Sleeping for 10 seconds.

2022/11/12 11:28:48 Collecting stats

2022/11/12 11:28:48 Checking status of tasks

2022/11/12 11:28:48 Task updates completed

2022/11/12 11:28:48 Sleeping for 15 seconds

2022/11/12 11:28:48 Processing any tasks in the queue

2022/11/12 11:28:48 No work in the queue

2022/11/12 11:28:48 Sleeping for 10 seconds

2022/11/12 11:28:48 Checking for task updates from workers

2022/11/12 11:28:48 Checking worker localhost:5556 for task updates

2022/11/12 11:28:48 Checking worker localhost:5557 for task updates

2022/11/12 11:28:48 Checking worker localhost:5558 for task updates

2022/11/12 11:28:48 Performing task health check

2022/11/12 11:28:48 Task health checks completed

2022/11/12 11:28:48 Sleeping for 60 seconds

Next, let’s send a task to our manager. We’ll use the same command we have
in past chapters to start up an instance of the echo server. The output from the
curl command looks like what we’re used to seeing from previous chapters.

$ curl -X POST localhost:5555/tasks -d @task1.json

{

    "ID":"bb1d59ef-9fc1-4e4b-a44d-db571eeed203",

    "ContainerID":"",

    "Name":"test-chapter-9.1",

    "State":1,

    "Image":"timboring/echo-server:latest",

    "Cpu":0,

    "Memory":0,

    "Disk":0,

    "ExposedPorts": {

        "7777/tcp": {}

    },

    "HostPorts":null,

    "PortBindings": {

        "7777/tcp":"7777"

    },

    "RestartPolicy":"",

    "StartTime":"0001-01-01T00:00:00Z",



    "FinishTime":"0001-01-01T00:00:00Z",

    "HealthCheck":"/health",

    "RestartCount":0

}

After sending the above task to the manager, we should see something like
the following in the output of our main program. This should look familiar.
The manager is checking its pending queue for tasks. It finds the task we sent
it using the above curl command.

2022/11/12 11:40:18 Processing any tasks in the queue

2022/11/12 11:40:18 Pulled {a7aa1d44-08f6-443e-9378-f5884311019e 2 0001-01-01 00:00:00 +0000 UTC {bb1d59ef-9fc1-4e4b-a44d-db571eeed203 test-chapter-9.1 1 timboring/echo-server:latest 0 0 0 map[7777/tcp:{}] map[] map[7777/tcp:7777]  0001-01-01 00:00:00 +0000 UTC 0001-01-01 00:00:00 +0000 UTC /health 0}} off pending queue

The following output is from the worker. It shows that the manager selected
it when it called its SelectWorker method, which calls the
SelectCandidateNodes, Score, and Pick methods on the scheduler.

Found task in queue: {bb1d59ef-9fc1-4e4b-a44d-db571eeed203  test-chapter-9.1 1 timboring/echo-server:latest 0 0 0 map[7777/tcp:{}] map[] map[7777/tcp:7777]  0001-01-01 00:00:00 +0000 UTC 0001-01-01 00:00:00 +0000 UTC /health 0}: 2022/11/12 11:40:28 attempting to transition from 1 to 1

Once the task is running, we can see the manager check it for any updates.

2022/11/12 11:40:33 Checking for task updates from workers

2022/11/12 11:40:33 Checking worker localhost:5556 for task updates

2022/11/12 11:40:33 [manager] Attempting to update task bb1d59ef-9fc1-4e4b-a44d-db571eeed203

2022/11/12 11:40:33 Task updates completed

At this point, we can start the other two tasks we’ve been using in past
chapters. Using the RoundRobin scheduler, you should notice the manager
selecting each of the other two workers in succession.

So, we can see that the round-robin scheduler works. Now, let’s implement a
second scheduler.

10.8 The E-PVM scheduler

The next type of scheduler we’re going to implement is more sophisticated
than our round-robin scheduler. For our new scheduler, our goal is to spread
the tasks across our cluster of worker machines so we minimize the CPU load
of each node. In other words, we would rather each node in our cluster do
some work, and have overhead for any bursts of work.



10.8.1 The theory

In order to accomplish our goal of spreading the load across our cluster,
we’re going to use an opportunity cost approach to scoring our tasks. It is one
of the approaches that Google used for its Borg orchestrator in its early days,
and is based on the work presented in the paper "An Opportunity Cost
Approach for Job Assignment in a Scalable Computing Cluster"
(https://www.cnds.jhu.edu/pub/papers/mosix.pdf). According to the paper,
"the key idea…is to convert the total usage of several heterogeneous
resources…into a single homogeneous 'cost'. Jobs are then assigned to the
machine where they have the lowest cost." The "heterogenous resources" are
CPU and memory. The authors call this method "Enhanced PVM" (where
PVM stands for "Parallel Virtual Machine").

The main idea here is that when a new task enters the system and needs to be
scheduled, this algorithm will calculate a marginal_cost for each machine in
our cluster. What does marginal cost mean? If each machine has a
"homogeneous cost" that represents the total usage of all its resources, then
the marginal cost is the amount that "homogeneous cost" will increase if we
add a new task to its workload.

The paper provides us the pseudocode for this algorithm, seen in listing 10.15
below. If the marginal_cost of assigning the job to a machine is less than the
MAX_COST, then assign we assign the machine to machine_pick. Once we’ve
iterated through our list of machines, machine_pick will contain the machine
with the lowest marginal cost. We will slightly modify our implementation of
this pseudocode to fit our own purposes.

Listing 10.17. Pseudocode describing the algorithm used in the Enhanced PVM scheduling
method.

max_jobs = 1;

while () {

  machine_pick = 1; cost = MAX_COST

    repeat {} until (new job j arrives)

    for (each machine m) {

      marginal_cost = power(n, percentage memory utilization on m if j was added) +

      power(n, (jobs on m + 1/max_jobs) - power(n, memory use on m) - power(n, jobs on m/max_jobs));



      if (marginal_cost < cost) { machine_pick = m; }

   }

  assign job to machine_pick;

  if (jobs on machine_pick > max_jobs) max_jobs = max_jobs * 2;

}

10.9 In practice

Implementing our new scheduler, which we’ll call the E-PVM scheduler, will
follow a path similar to the one we used to adapt the round-robin algorithm to
our Scheduler interface. We start by defining the Epvm struct below. Notice
that we’re only defining a single field, Name, because we don’t need to keep
track of the last selected node like we did for the round-robin scheduler.

type Epvm struct {

        Name string

}

Next, we implement the SelectCandidateNodes method of the E-PVM
scheduler. Unlike the round-robin scheduler, in this version of
SelectCandidateNodes we do actually attempt to narrow the list of potential
candidates. We do this by checking that the resources the task is requesting
are less than the resources the node has available. For our purposes, we’re
only checking disk, because we want to ensure the selected node has the
available disk space to download the task’s Docker image.

Listing 10.18. The Epvm scheduler’s SelectCandidateNodes method filters out any nodes that can’t
the task’s disk requirements.

func (e *Epvm) SelectCandidateNodes(t task.Task, nodes []*node.Node) []*node.Node {

        var candidates []*node.Node

        for node := range nodes {

        if checkDisk(t, nodes[node].Disk-nodes[node].DiskAllocated) {

                        candidates = append(candidates, nodes[node])

        }

        }

        return candidates

}



func checkDisk(t task.Task, diskAvailable int64) bool {

        return t.Disk <= diskAvailable

}

Now, let’s dive in to the meat of the E-PVM scheduler. It’s time to
implement the Score method based on the E-PVM pseudocode from above.

We start by defining a couple of variables that we’ll use later in the method.
The first variable we define is nodeScores, which is a type of
map[string]float64 and will hold the scores of each node. Next, we define
the maxJobs variable. We are randomly setting it to the value of 4.0, meaning
each node can handle 4 tasks at most. I chose this value because I initially
developed the code for this book using a cluster of several Raspberry Pis, and
it seemed like a reasonable guess of how many tasks each Pi could handle. In
a production system, we would tune this value based on an analysis of
observed metrics from our running production system.

The next step is to iterate over each of our nodes passed in to the method and
calculate the marginal cost of assigning the task to the node. This process
involves eight steps:

Calculate the node’s current CPU usage
Calculate the node’s current CPU load
Calculate the node’s allocated memory
Calculate the node’s percentage of memory allocated
Calculate the percentage of memory that would be allocated if the task
were assigned to it
Calculate the memory cost of adding the task to the node
Calculate the CPU cost of adding the task to the node
Add the memory and CPU costs to get the marginal cost of adding the
task to the node

To calculate the node’s current CPU usage, we use the calculateCpuUsage
helper function defined later. Then, we call the calculateLoad helper
function. This function takes two parameters, usage and capacity. The
usage value we get from the previous call to calculateCpuUsage, and for the
capacity we use a fraction of what we think our max load will be. This
definition of usage comes from the E-PVM paper, which assumes that the



maximum possible load is "the smallest integer power of two greater than the
largest load we have seen at any given time." Again, given that I originally
developed this code using Raspberry Pis, and only three of them at that, I
guessed that the highest load seen on any of the nodes was 80%.

Listing 10.19. The E-PVM scheduler’s Score has the same signature as the one in the
RoundRobin scheduler, but it calculates scores in a more complicated way.

func (e *Epvm) Score(t task.Task, nodes []*node.Node) map[string]float64 {

        nodeScores := make(map[string]float64)

        maxJobs := 4.0

        for _, node := range nodes {

                cpuUsage := calculateCpuUsage(node)

                cpuLoad := calculateLoad(cpuUsage, math.Pow(2, 0.8))

                memoryAllocated := float64(node.Stats.MemUsedKb()) + float64(node.MemoryAllocated)

                memoryPercentAllocated := memoryAllocated / float64(node.Memory)

                newMemPercent := (calculateLoad(memoryAllocated + float64(t.Memory/1000), float64(node.Memory)))

                memCost := math.Pow(LIEB, newMemPercent) + math.Pow(LIEB, (float64(node.TaskCount+1))/maxJobs) - math.Pow(LIEB, memoryPercentAllocated) - math.Pow(LIEB, float64(node.TaskCount)/float64(maxJobs))

                cpuCost := math.Pow(LIEB, cpuLoad) + math.Pow(LIEB, (float64(node.TaskCount+1))/maxJobs) - math.Pow(LIEB, cpuLoad) - math.Pow(LIEB, float64(node.TaskCount)/float64(maxJobs))

                nodeScores[node.Name] = memCost + cpuCost

                        nodeScores[node.Name] = marginalCost

                }

        }

        return nodeScores

}

Our score method uses two helper functions to calculate CPU usage and load.
The first of these helpers, calculateCpuUsage, is itself a multi-step process.
The code for this function is based on the algorithm presented in this Stack
Overflow post, https://stackoverflow.com/a/23376195. I won’t go into more
details about this algorithm, because the post does a good job of covering the
topic. So I’d urge you to read it if you are interested.

Listing 10.20. The calculateCpuUsage helper function calculates the CPU usage as a float64.

func calculateCpuUsage(node *node.Node) *float64 {

        stat1 := getNodeStats(node)



        time.Sleep(3 * time.Second)

        stat2 := getNodeStats(node)

        stat1Idle := stat1.CpuStats.Idle + stat1.CpuStats.IOWait

        stat2Idle := stat2.CpuStats.Idle + stat2.CpuStats.IOWait

        stat1NonIdle := stat1.CpuStats.User + stat1.CpuStats.Nice + stat1.CpuStats.System + stat1.CpuStats.IRQ + stat1.CpuStats.SoftIRQ + stat1.CpuStats.Steal

        stat2NonIdle := stat2.CpuStats.User + stat2.CpuStats.Nice + stat2.CpuStats.System + stat2.CpuStats.IRQ + stat2.CpuStats.SoftIRQ + stat2.CpuStats.Steal

        stat1Total := stat1Idle + stat1NonIdle

        stat2Total := stat2Idle + stat2NonIdle

        total := stat2Total - stat1Total

        idle := stat2Idle - stat1Idle

        var cpuPercentUsage float64

        if total == 0 && idle == 0 {

                cpuPercentUsage = 0.00

        } else {

                cpuPercentUsage = (float64(total) - float64(idle)) / float64(total)

        }

        return &cpuPercentUsage

}

Note that this function is using a second helper function, getNodeStats. This
function, seen in listing 10.21, is calling the /stats endpoint on the worker
node and retrieving the worker’s stats at that point in time.

Listing 10.21. The getNodeStats helper function returns the stats for a given node.

func getNodeStats(node *node.Node) *stats.Stats {

        url := fmt.Sprintf("%s/stats", node.Api)

        resp, err := http.Get(url)

        if err != nil {

                log.Printf("Error connecting to %v: %v", node.Api, err)

        }

        if resp.StatusCode != 200 {

                log.Printf("Error retrieving stats from %v: %v", node.Api, err)

        }

        defer resp.Body.Close()

        body, _ := ioutil.ReadAll(resp.Body)

        var stats stats.Stats

        json.Unmarshal(body, &stats)



        return &stats

}

The third helper function used by our Score method above is the
calculateLoad function. This function is much simpler than the
calculateCpuUsage function. It takes two parameters: usage, which is of
type float64, and capacity, also a float64 type. Then, it simply divides
usage by capacity and returns the result.

func calculateLoad(usage float64, capacity float64) float64 {

        return usage / capacity

}

The final method of our E-PVM scheduler to implement is the Pick method.
This method is similar to the same method in the round-robin scheduler. It
differs only in changing the name of the lowestScore variable to minCost to
reflect the shift to the E-PVM scheduler’s focus on marginal cost. Otherwise,
the method performs the same basic purpose, to select the node with the
minimum, or lowest, cost.

Listing 10.22. The E-PVM scheduler’s Pick method is almost identical to the one in the
RoundRobin scheduler.

func (e *Epvm) Pick(scores map[string]float64, candidates []*node.Node) *node.Node {

        minCost := 0.00

        var bestNode *node.Node

        for idx, node := range candidates {

                if idx == 0 {

                        minCost = scores[node.Name]

                        bestNode = node

            continue

                }

                if scores[node.Name] < minCost {

                        minCost = scores[node.Name]

                        bestNode = node

                }

        }

        return bestNode

}

With the implementation of the Pick method, we have completed the
implementation of our second scheduler. This scheduler, like the round-robin



scheduler, implements the Scheduler interface. As a result, we can use either
scheduler in our manager. Before we change our main.go program to use this
new scheduler, however, let’s take a minor detour and take care of some
unfinished business.

10.10 Completing the Node implementation

Earlier, we implemented a helper function named getNodeStats. This
function takes a variable node, which is a pointer to a node.Node type. As the
name of the function suggests, it communicates with the node by making a
GET call to the node’s /stats endpoint. It then returns the resulting stats from
the node as a pointer to a stats.Stats type. This function is part of the
scheduler, so it’s awkward to have it handling the lower level details of
calling the node’s /stats endpoint, checking the response, and decoding the
response from JSON.

Let’s factor this code out of the scheduler and put it where it really belongs,
in the Node type. We implemented the Node type back in chapter 2, so let’s
review what it looks like since it has been a while since we’ve seen it.

The Node type is pretty straightforward, as we can see in listing 10.23. Its
fields hold the values that represent various attributes of our physical or
virtual machine that’s performing the role of the worker.

Listing 10.23. The Node type we defined in chapter 2.

type Node struct {

        Name            string

        Ip              string

        Cores           int

        Memory          int

        MemoryAllocated int

        Disk            int

        DiskAllocated   int

        Role            string

        TaskCount       int

}

Let’s remove the getNodeStats function from our scheduler.go file and add



it to the node.go file in the node/ package directory. As part of this moving
process, let’s also change the name to GetStats.

Listing 10.24. We rename the getNodeStats helper function to GetStats and make it a method of
the node.Node type.

func (n *Node) GetStats() (*stats.Stats, error) {

        var resp *http.Response

        var err error

        url := fmt.Sprintf("%s/stats", n.Api)

        resp, err = utils.HTTPWithRetry(http.Get, url)

        if err != nil {

                msg := fmt.Sprintf("Unable to connect to %v. Permanent failure.\n", n.Api)

                log.Println(msg)

                return nil, errors.New(msg)

        }

        if resp.StatusCode != 200 {

                msg := fmt.Sprintf("Error retrieving stats from %v: %v", n.Api, err)

                log.Println(msg)

                return nil, errors.New(msg)

        }

        defer resp.Body.Close()

        body, _ := ioutil.ReadAll(resp.Body)

        var stats stats.Stats

        err = json.Unmarshal(body, &stats)

        if err != nil {

                msg := fmt.Sprintf("error decoding message while getting stats for node %s", n.Name)

                log.Println(msg)

                return nil, errors.New(msg)

        }

        n.Memory = int64(stats.MemTotalKb())

        n.Disk = int64(stats.DiskTotal())

        n.Stats = stats

        return &n.Stats, nil

}

With the GetStats method now implemented on the Node type, we can
remove the old getNodeStats helper function from scheduler.go. And,
finally, we can update the calculateCpuUsage helper function to use the



node.GetStats method. In addition to using the node.GetStats method,
let’s also change the function signature to return a pointer to a float64 and
an error. The changed function looks like this:

func calculateCpuUsage(node *node.Node) (*float64, error) {

        //stat1 := getNodeStats(node)

        stat1, err := node.GetStats()

        if err != nil {

                return nil, err

        }

        time.Sleep(3 * time.Second)

        //stat2 := getNodeStats(node)

        stat2, err := node.GetStats()

        if err != nil {

                return nil, err

        }

    // unchanged code

        return &cpuPercentUsage, nil

The GetStats helper calls a node’s worker API, so we need to expose it on
the worker Api type. This change is simple and can be seen below.

func (a *Api) initRouter() {

    // previous code unchanged

        a.Router.Route("/stats", func(r chi.Router) {

                r.Get("/", a.GetStatsHandler)

        })

}

With the above changes, we have completed our detour. Now, let’s return to
our fancy new E-PVM scheduler and take it for a spin!

10.11 Using the E-PVM scheduler

At this point, we have all the work completed on our shiny new scheduler
interface. We have two types of schedulers we can use in our manager: the
round-robin scheduler, and the E-PVM scheduler. We have already made
most of the necessary changes to use the scheduler interface, but we have a
few minor tweaks to make that will allow us to easily switch between the



RoundRobin and Epvm schedulers.

The first change to make involves adding a new case to the switch statement
in the manager’s New function. The new case adds support for the Epvm
scheduler.

Listing 10.25. We add a new case to the switch statement to support the new "epvm" scheduler.

switch schedulerType {

case "roundrobin": #1

        s = &scheduler.RoundRobin{Name: "roundrobin"}

case "epvm" #2

        s = &scheduler.Epvm{Name: "epvm"}

default:

    return nil, fmt.Errorf("scheduler type must be either 'round-robin' or 'epvm'") #3

}

The second and final change happens in our main.go program. If you recall,
we previously created a new instance of the manager with the "roundrobin"
scheduler using the New function.

func main() {

        m := manager.New(workers, "roundrobin")

}

Now, however, we want to create an instance of the manager that will use the
Epvm scheduler. To do this, we can simply change the string in the call to New
from roundrobin to epvm.

func main() {

        m := manager.New(workers, "epvm")

}

That’s it! We can now run our main program and it will use the Epvm
scheduler instead of the RoundRobin scheduler. Give it a try!

10.12 Summary

The scheduling problem exists all around us, from home chores to
seating customers in a restaurant.



Scheduling does not have a one-size-fits-all solution. There are multiple
solutions, and each one makes tradeoffs based on what we are trying to
achieve. It can be as simple as using a round-robin algorithm to select
each node in turn. Or, it can be as complex as devising a method to
calculate a score for each node based on some set of data, for example
the current CPU load and memory usage of each node.
For the purposes of scheduling tasks in an orchestration system, we can
generalize the process to three functions: selecting candidate nodes,
which involves reducing the number of possible nodes based on some
selection criteria (e.g. does the node have enough disk space to pull the
task’s container image?); scoring the set of candidate nodes; and, finally,
picking the "best" candidate node.
We can use these three functions to create a general framework to allow
us to implement multiple schedulers. In Go, the interface is what
allows us to create this framework.
In this chapter, we started three workers, in contrast to a single one in
past chapters. Using three workers allowed us to see a more realistic
example of how the scheduling process works. However, it’s not the
same as a more real-world scenario of using multiple physical or virtual
machines.



11 Implementing persistent storage
for tasks
This chapter covers

Describing the purpose of a datastore in an orchestration system
Defining the requirements for our persistent datastore
Defining the Store interface
Introducing BoltDB
Implementing the persistent datastore using the Store interface
Discussing the special concerns that exist for the manager’s datastore

The fundamental unit of our orchestration system is the task. Up until now,
we have been keeping track of this fundamental unit by storing it in Go’s
built-in map type. Both our worker and our manager store their respective
tasks in a map. This strategy has served us well, but you may have noticed a
major problem with it: any time we restart the worker or the manager, they
lose all their tasks. The reason they lose their tasks is that Go’s built-in map
is an in-memory data structure and is not persisted to disk.

Similar to how we revisited our earlier decisions around scheduling tasks,
we’re now going to return to our decision about how we store them. We’re
going to talk briefly about the purpose of a datastore in an orchestration
system, and then we’re going to start the process of replacing our previous in-
memory map datastore with a persistent one.

11.1 The storage problem

Why do we need to store the tasks in our orchestration system? While we
haven’t talked much at all about the issue, the storage of tasks is crucial to a
working orchestration system. Storing tasks in some kind of datastore enables
the higher level functionality of our system:



it enables the system to keep track of each task’s current state
it enables the system to make informed decisions about scheduling
it enables the system to help tasks recover from failures

As we mentioned earlier, our current implementation uses Go’s built-in map
type, which means we’re storing tasks in memory. If we stop the manager,
then start it back up because, say, we made a code change, the manager loses
the state of all its tasks. We then have no way to recover the system as a
whole. For example, if we start our system with three workers and a manager,
restarting the manager means we can’t gracefully stop running tasks by
calling the manager’s API, i.e. we can’t call curl -X DELETE
http:localhost:5555/tasks/1234567890. The manager no longer has any
knowledge of that task.

At a basic level, the solution to the above problem is to replace the in-
memory map with a persistent datastore. Such a solution will write task state
to disk, thus enabling the manager and worker to be restarted without any
loss of state.

11.2 The Store interface

Before jumping directly to a persistent storage solution, let’s follow the same
process we used in the last chapter. Remember, we didn’t just jump straight
to the E-PVM scheduler. Instead, we started by creating the Scheduler
interface, and then we adapted the existing round-robin scheduler to the
interface.

The mental model of our store interface looks like that in figure 11.1. At the
top of the model we have the Manager and Worker, each using the same
Store interface. That interface is abstract, but as we can see it sits on top of
two concrete implementations: an In-memory Store and a Persistent
Store.

Figure 11.1. The mental model of our store interface.



If we think about the operations we have been using to store and retrieve
tasks and task events, we can identify four methods to create an interface.
Those four methods are:

Put(key string, value interface{})
Get(key)
List()
Count()

  Note



You might be wondering about why the above list doesn’t include a Remove
or Delete method. Theoretically, the datastore serves as a historical record of
the tasks in an orchestration system. So, it doesn’t make sense to provide a
method to remove history. In practice, however, it could be useful to provide
such a method. For example, over time, an orchestration system would build
up a datastore containing tens of thousands, if not hundreds of thousands or
more. If the datstore supports the "Remove" operation, it could be used to
perform maintenance on the datastore itself.

The Put method, as its name suggests, puts an item, identified by a key, into
the store. Until now, we have been interacting with our store by saving tasks
and tasks events directly in a map. For example, in the manager’s SendWork
method, we can see several examples of interacting directly with the TaskDb
and EventDb stores. In the first example below, we pop a task event off the
manager’s Pending queue, convert it to the task.TaskEvent type, then store
a pointer to the task.TaskEvent in the EventDb using the task event’s id as
the key. In the second example, we extract the task from the task event, then
store a pointer to it in the TaskDb using the task’s id as the key.

Listing 11.1. Examples of how we have been using Go’s built-in map to store tasks and events.

// example # 1

e := m.Pending.Dequeue()

te := e.(task.TaskEvent)

m.EventDb[te.ID] = &te

// example # 2

t := te.Task

// code hidden for the sake of brevity

t.State = task.Scheduled

m.TaskDb[t.ID] = &t

There is nothing technically wrong with how we’ve implemented the task and
task event stores up to now. It was quick and easy. More importantly, it just
worked. One downside to this implementation, however, is that it is
dependent on the underlying data structure underpinning the store. In this
case, the manager must know how to put and retrieve items from Go’s built-



in map. In other words, we have tightly coupled the manager to the built-in
map type. We cannot easily change out this implementation of the store for
some other implementation. For example, what if we wanted to use SQLite, a
popular SQL-based embedded datastore?

To make it easier for us to use different implementations of a datastore, let’s
create the Store interface seen in listing X.Y. The interface includes the four
methods we listed previously, Put, Get, List, and Count.

Listing 11.2. The Store interface provides the methods that an implementation must meet.

type Store interface {

        Put(key string, value interface{}) error

        Get(key string) (interface{}, error)

        List() (interface{}, error)

        Count() (int, error)

}

One thing to note in our Store interface is that we have declared several
values in the method signatures as being of type interface{}. The empty
interface, as this is called, means that the value can be of any type. For
example, the Put method takes a key that is a string and a value that is an
empty interface, or any type. This means the Put method can accept a value
that is a task.Task, or a task.TaskEvent, or some other type.

With the Store interface defined, let’s move on and implement an in-memory
store that can replace our existing one.

11.3 Implementing an in-memory store for tasks

We’re going to start with an implementation of the task store, and then we’ll
move on to the task events store. Both the manager and worker use task
stores, but only the manager uses an event store. The new implementations of
the task and event stores will both wrap Go’s built-in map type. By wrapping
the built-in map type, we can remove the manager’s coupling to the
underlying data structure. Instead of needing to understand the mechanics of
a map, the manager will simply call the methods of the Store interface, and
the implementation of the interface will handle all the lower level details of



how to interact with the underlying data structure.

For our purposes, we’re going to implement separate types for the task and
event stores. We could create a generate store that is able to operate on both
tasks and events, but that is more complex and would involve additional
concepts that are beyond the scope of this book.

The first implementation is the InMemoryTaskStore. We start by defining a
struct and giving it a single field called Db. Not surprisingly, this field is of
type map[string]*task.Task, the same as the current implementation. Next,
let’s define a helper function that will return an instance of the
InMemoryTaskStore. We’ll call this helper function NewInMemoryTaskStore,
and it takes no arguments and returns a pointer to an InMemoryTaskStore that
has it’s Db field initialized to an empty map of type map[string]*task.Task.

Listing 11.3. The InMemoryTaskStore provides a wrapper around Go’s built-in map type for the
purpose of storing tasks.

type InMemoryTaskStore struct {

        Db map[string]*task.Task

}

func NewInMemoryTaskStore() *InMemoryTaskStore {

        return &InMemoryTaskStore{

                Db: make(map[string]*task.Task),

        }

}

Let’s move on and implement the Put method. The sequence diagram in
figure 11.2 shows how the Put method will be used. When a user calls the
manager’s API to start a task (POST /tasks), the manager will call the Put
method to store the task in its own datastore. Then, the manager sends the
task to the worker by calling the worker’s API. The worker, in turn, calls the
Put method to store the task in its datastore.

Figure 11.2. Sequence diagram illustrating how the manager and worker save tasks to their
respective datastores using the Put method.



The implementation of the Put method, seen in listing X.Y, is fairly
straightforward. The method takes two arguments: a key that is of type string,
and a value that is of the empty interface type. In the body of the method, we
first attempt to convert the value to a concrete type using a type assertion.
What we are doing is asserting that value is not nil and that the value in
value is a pointer to a task.Task. We also capture a boolean named ok,
which tells us if the assertion was successful. If the assertion was not
successful, we return an error, otherwise we store the task t in the map.

Listing 11.4. The Put method uses the comma, ok idiom to verify the type conversion is successful
before storing it in the map.

func (i *InMemoryTaskStore) Put(key string, value interface{}) error {

        t, ok := value.(*task.Task)

        if !ok {

                return fmt.Errorf("value %v is not a task.Task type", value)

        }

        i.Db[key] = t

        return nil

}

Next, we’ll implement the Get method. The sequence diagram in figure 11.3
shows how the Get method will be used. When a user calls the manager’s
API to get a task (Get /tasks/{taskID}), the manager will call the Get
method to retrieve the task from its datastore and return it.



Figure 11.3. Sequence diagram illustrating how the manager retrieves tasks from its datastore
using the Get method.

The implementation of the Get method takes a key of type string and returns
an empty interface and potentially an error. We start by looking for the key in
the store’s Db. Notice that we’re using the comma ok idiom here, too. If the
key exists in Db, then t will be contain the task identified by the key, and we
return it. If it does not exist, then t will be nil and ok will be false and we
return an error.

Listing 11.5. The Get method uses the comma, ok idiom to check if the key exists in the map.

func (i *InMemoryTaskStore) Get(key string) (interface{}, error) {

        t, ok := i.Db[key]

        if !ok {

                return nil, fmt.Errorf("task with key %s does not exist", key)

        }

        return t, nil

}

The next method we’ll implement is the List method. Unlike the Get method
above, which returns a single task, this method returns all the tasks in the
store. As you can see below in listing X.Y, we start by creating a variable
called tasks as a slice of pointers to task.Task. This slice will hold all the



tasks in the store. Then, we range over the map in the Db field, append each
task to the tasks slice. Once we’ve ranged over all the tasks and appended
them to the slice, we return it.

Listing 11.6. The List method builds up a slice of tasks by ranging over the map. This method
always returns nil for the error value. This is necessary in order to conform to the contract
specified by the Store interface.

func (i *InMemoryTaskStore) List() (interface{}, error) {

        var tasks []*task.Task

        for _, t := range i.Db {

                tasks = append(tasks, t)

        }

        return tasks, nil

}

The final method in our task store is Count. As its name implies, this method
returns the number of tasks contained in the store’s Db field. Because Db is a
map, we can get the count of items using the built-in len function.

Listing 11.7. The Count method can easily get the count of tasks using Go’s built-in len function.

func (i *InMemoryTaskStore) Count() (int, error) {

        return len(i.Db), nil

}

Now that we’ve implemented an in-memory version of the task store, let’s
move on and do the same thing for task events.

11.4 Implementing an in-memory store for task
events

The store for the task events will be identical to the one for tasks. The
obvious difference will be the task events store will operate on the
task.TaskEvent type and not task.Task. Because the differences are minor,
we won’t go into the details.

Listing 11.8. The InMemoryTaskEventStore is identical to the InMemoryTaskStore, with the
exception of operating on task.TaskEvent types instead of task.Task.



type InMemoryTaskEventStore struct {

        Db map[string]*task.TaskEvent

}

func NewInMemoryTaskEventStore() *InMemoryTaskEventStore {

        return &InMemoryTaskEventStore{

                Db: make(map[string]*task.TaskEvent),

        }

}

func (i *InMemoryTaskEventStore) Put(key string, value interface{}) error {

        e, ok := value.(task.TaskEvent)

        if !ok {

                return fmt.Errorf("value %v is not a task.TaskEvent type", value)

        }

        i.Db[key] = &e

        return nil

}

func (i *InMemoryTaskEventStore) Get(key string) (interface{}, error) {

        e, ok := i.Db[key]

        if !ok {

                return nil, fmt.Errorf("task event with key %s does not exist", key)

        }

        return e, nil

}

func (i *InMemoryTaskEventStore) List() (interface{}, error) {

        var events []*task.TaskEvent

        for _, e := range i.Db {

                events = append(events, e)

        }

        return events, nil

}

func (i *InMemoryTaskEventStore) Count() (int, error) {

        return len(i.Db), nil

}

11.5 Refactoring the manager to use the new in-
memory stores

At this point, we have defined an interface that will allow us to store tasks
and events. We have also implemented two concrete types of our store



interface, both of which wrap Go’s built-in map type and remove the need for
the manager and worker to interact with it directly. So, let’s make some
changes to the manager and worker so they can make use of our new code.

Starting with the manager, we need to update the TaskDb and EventDb fields
on the Manager struct. Instead of these fields being of type
map[uuid.UUID]*task.Task and map[uuid.UUID]*task.TaskEvent, let’s
change them both to be of type store.Store. With this change, our manager
can now use any kind of store that implements the store.Store interface.

type Manager struct {

    // fields omitted for convenience

        TaskDb        store.Store

        EventDb       store.Store

    // fields omitted

Changing the TaskDb and EventDb fields to an interface type should look
familiar to you. If you remember in chapter 10, we did something similar
when we introduced the Scheduler field, which was of type
scheduler.Scheduler, also an interface. That change allowed us to
configure the manager to use different types of schedulers, and now we have
configured it to use different types of stores.

Next, let’s modify the New function in the manager package. In the last
chapter, we updated it so it accepted a schedulerType in addition to a slice of
workers. Now, let’s add another argument to the New function, one called
dbType. The new signature will look like the following:

func New(workers []string, schedulerType string, dbType string) *Manager

There are several changes to the body of the New function that we’ll need to
make next. The first of these changes is to remove the initialization of the
taskDb and eventDb variables using the make() built-in function. Just delete
those two lines for now. We’re going to do something slightly different here
in a bit.

Now, we want to change how we’re returning from the function. We are
currently returning a pointer to the Manager type like this:

return &Manager{ ... }



Instead of returning a pointer using what’s called a struct_literal, let’s assign
it to a variable named m. It will look like this:

Listing 11.9. Assigning a struct literal to the m variable instead of returning it.

m := Manager{

        Pending:       *queue.New(),

        Workers:       workers,

        WorkerTaskMap: workerTaskMap,

        TaskWorkerMap: taskWorkerMap,

        WorkerNodes:   nodes,

        Scheduler:     s,

}

At this point, we have an instance of our Manager type, but it does not have
any stores for tasks and events. We’re going to use the dbType variable we
added to the New function’s signature as part of a switch statement to allow
us to set up different types of datastores based on the value of dbType.
Because we’ve only implemented in-memory stores, we’re going to start by
only supporting the case where the value of dbType is memory. In this case,
we call the NewInMemoryTaskStore function to create an instance of our in-
memory task store, and we call the NewInMemoryTaskEventStore function to
create an instance of our in-memory event store.

All that’s left to do now is to assign the value of the ts variable to the
manager’s TaskDb field, and assign the es value to the manager’s EventDb
field. Then, return a pointer to the manager.

var ts store.Store #1

var es store.Store

switch dbType { #2

case "memory": #3

        ts = store.NewInMemoryTaskStore()

        es = store.NewInMemoryTaskEventStore()

}

m.TaskDb = ts #4

m.EventDb = es #5

return &m #6

Now we’re ready for the substantive changes! We need to change the
manager’s methods so it interacts with the datastore using the methods of our



new Store interface instead of operating directly on the map structures. The
first method we’ll work on is updateTasks.

All of the changes we need to make in the updateTasks method occur inside
the for loop that ranges over a slice of pointers to task.Task types. The first
change to make involves replacing the block of code that checks if an
individual task reported by a worker exists in the manager’s task store. The
current code uses the comma ok idiom to perform this check. We’ll replace
this block with a call to the store interface’s Get method, and checking the
err value to indicate the task doesn’t exist in the manager’s store.

We can see this change below in listing X.Y. The existing code is commented
out, and its replacement follows just afterward. Now, our updated code is
calling the Get method on the manager’s TaskDb store, passing it the ID of the
task as a string. If the task exists in the manager’s store, it will be assigned to
the result variable, and if there is an error it will be assigned to the err
variable. Next, we perform the usual error checking, and if there is an error,
we log it and move on to the next task using the continue statement. Finally,
we use a type assertion to convert the result, which is of type interface{}
to the concrete task.Task type (actually a pointer to a task.Task). If the type
assertion fails, then we log a message and continue on to the next task.

for _, t := range tasks {

    // previous code omitted for convenience

    // existing code to be replaced

        // _, ok := m.TaskDb[t.ID]

        // if !ok {

        //      log.Printf("[manager] Task with ID %s not found\n", t.ID)

        //      continue

        // }

    result, err := m.TaskDb.Get(t.ID.String())

        if err != nil {

                log.Printf("[manager] %s", err)

                        continue

        }



        taskPersisted, ok := result.(*task.Task)

        if !ok {

                        log.Printf("cannot convert result %v to task.Task type", result)

                        continue

        }

The last set of changes to make in the updateTasks method involve replacing
the remaining direct operations on the existing map structure with calls to the
appropriate methods of the Store interface. The existing code can be seen in
listing X.Y. Here, we are modifying a task by directly changing its fields in
the map.

if m.TaskDb[t.ID].State != t.State {

        m.TaskDb[t.ID].State = t.State

}

m.TaskDb[t.ID].StartTime = t.StartTime

m.TaskDb[t.ID].FinishTime = t.FinishTime

m.TaskDb[t.ID].ContainerID = t.ContainerID

m.TaskDb[t.ID].HostPorts = t.HostPorts

}

We want to replace the above code with that below in listing X.Y. Since we
have already retrieved the task from the manager’s task store, and we’ve
converted it from an empty interface type to a pointer to the concrete
task.Task type, we can simply update the necessary fields on the
taskPersisted variable. Then, we finish up by calling the store’s Put
method to save the updated task.

Listing 11.10. The Store interface allows us to clean up our interaction with the taskPersisted
type.

if taskPersisted.State != t.State {

                taskPersisted.State = t.State

}

taskPersisted.StartTime = t.StartTime



taskPersisted.FinishTime = t.FinishTime

taskPersisted.ContainerID = t.ContainerID

taskPersisted.HostPorts = t.HostPorts

m.TaskDb.Put(taskPersisted.ID.String(), taskPersisted)

The doHealthChecks method is the next method we need to update. It uses a
for loop to range over all the tasks in the manager’s task store. Up to now,
this method has been ranging directly over the map of tasks. Instead of doing
that, let’s implement a helper method that will use the Store interface’s List
method, build a slice of tasks, and return us that slice. We can see this new
helper method, named GetTasks in listing X.Y.

Listing 11.11. The GetTasks method calls the List method and converts the result from an empty
interface to a slice of pointers to task.Type.

func (m *Manager) GetTasks() []*task.Task {

        taskList, err := m.TaskDb.List() #1

        if err != nil { #2

                log.Printf("error getting list of tasks: %v", err)

                return nil

        }

        return taskList.([]*task.Task) #3

}

With the GetTasks helper method implemented, let’s turn our attention back
to the doHealthChecks method, where we’ll use it. The first step is to call
GetTasks and store the result in a variable called tasks. Now that we have a
slice of tasks, we just need to change the for loop to range over tasks instead
of directly over the map.

// for _, t := range m.TaskDb {

//        // code omitted

// }

tasks := m.GetTasks()

for _, t := range tasks {

        // omitted code

}

The next method that needs updating is the restartTask method. This one is
easy. It currently has a single interaction with the map built-in, so all we need



to do is replace it with a call to the store’s Put method. So, it’s just a matter
of replacing the first line below with the second.

// m.TaskDb[t.ID] = t

m.TaskDb.Put(t.ID.String(), t)

The final method to update is the SendWork method. Despite being a long
method that encompasses a multi-step process to send tasks to workers, we
have only a few updates to make here. The first update involves our first
interaction with the new EventDb store. We want to change from interacting
directly with the old task events map to using the new EventDb store. Early
on in the SendWork method, we pop an event off the manager’s Pending
queue, and we convert it to task.TaskEvent type. Now, we want to call the
Put method on the events store, passing it the event ID as a string and a
pointer to the task event te. If the call to Put returns an error, we log it and
return.

Listing 11.12. The first change to the SendWork method, which involves using the new Put method
instead of operating directly on the map.

e := m.Pending.Dequeue()

te := e.(task.TaskEvent)

err := m.EventDb.Put(te.ID.String(), &te)

if err != nil {

                log.Printf("error attempting to store task event %s: %s", te.ID.String(), err)

                return

}

The second update involves this method’s use of the tasks store. In listing
X.Y below, we can see the existing code where we are again interacting
directly with the TaskDb map. Since this code is getting a task from the map,
we want to convert the code to use the store interface’s Get method like
we’ve done previously.

Listing 11.13. Existing code that gets a task from the store by operating directly on the map.

taskWorker, ok := m.TaskWorkerMap[te.Task.ID]

if ok {

                persistedTask := m.TaskDb[te.Task.ID]

                if te.State == task.Completed && task.ValidStateTransition(persistedTask.State, te.State) {

                        m.stopTask(taskWorker, te.Task.ID.String())



                        return

                }

}

To change the above code to use our new Get method on the store interface,
we need to rearrange our code a little.

result, err := m.TaskDb.Get(te.Task.ID.String()) #1

if err != nil { #2

                log.Printf("unable to schedule task: %s", err)

                return

}

persistedTask, ok := result.(*task.Task) #3

if !ok { #4

                log.Printf("unable to convert task to task.Task type")

                return

}

The final update to the SendWork method, and our final update to the
manager, involves another change to use the task store’s Put method instead
of inserting a task directly in a map.

t.State = task.Scheduled

// m.TaskDb[t.ID] = &t

m.TaskDb.Put(t.ID.String(), &t)

11.6 Refactoring the worker

At this point our manager is using the new Store interface. Our worker,
however, is not. It’s still operating directly on the built-in map type. So, let’s
perform the same refactoring on the worker so it, too, uses the Store
interface.

Like the manager, the first order of business is to change the worker’s Db type
from a map[uuid.UUID]*task.Task to the store.Store interface type. By
doing so, it can use any type of store that implements the store.Store
interface.

type Worker struct {

    // fields omitted

        Db    store.Store



    // fields omitted

}

Next, we need to update the New helper function in the worker package. Let’s
update its function signature to take another argument. This new argument is
named taskDbType and is a string. We then create a variable s that is of the
new store.Store type. Now, we use a switch statement on the taskDbType
argument and assign the result of the NewInMemoryTaskStore function call to
the variable s. Finally, we assign s to the worker’s Db field. We can then
return a pointer to the worker w, which will include the store interface.

Listing 11.14. The New helper function now creates an instance of the InMemoryTaskStore.

func New(name string, taskDbType string) *Worker {

        w := Worker{

                Name:  name,

                Queue: *queue.New(),

        }

        var s store.Store

        var err error

        switch taskDbType {

        case "memory":

                s = store.NewInMemoryTaskStore()

        }

        w.Db = s

        return &w

}

With the change to the New helper function, let’s move on to the worker’s
methods. The first to modify is the GetTasks method. Remember, this
method was previously operating directly on the worker’s Db map field. Since
we’ve moved the logic that operates directly on the underlying store (in this
case a built-in map), we want GetTasks to use the store interface instead. We
want to replace the body of GetTasks with the simplified version seen here in
list X.Y.

Listing 11.15. The body of the GetTasks method calls the store interface’s List method.

func (w *Worker) GetTasks() []*task.Task {

        taskList, err := w.Db.List()

        if err != nil {



                log.Printf("error getting list of tasks: %v", err)

                return nil

        }

        return taskList.([]*task.Task)

Next, we need to modify the runTask method. Like all of the previous code,
it too has been operating directly on the Db map. The beginning steps of this
method are the following:

1. Pop a task off the worker’s Queue
2. Convert the task from an interface to a task.Task type
3. Get the task from the Db map
4. If the task doesn’t exist, then create it

Notice steps 3 and 4. The process attempts to get the task from the map by
looking it up using the task’s ID. This operation, however, doesn’t return an
error if the task isn’t in the map. Our InMemoryTaskStore implements the
Store interface’s Get method, which does returns an error. That error could
be due to any number of factors. It could be because the task simply didn’t
exist in the store, or because there was some issue interacting with the
underlying store itself. So, if we were to use the same order of operations
when we switch to using the new Store interface, we’d have a problem. If
the call to the store’s Get method returns an error, how do we distinguish if
it’s because the task didn’t exist or if there was an error with the underlying
store itself? In the former case, we want to create the task; in the latter case,
we want to return an error.

As we’ve done in the past, our solution is making a tradeoff. We’re going to
switch the order of operations so that we call the store’s Put method first,
which will effectively overwrite the task if it exists. If the call to Put does not
return an error, then we call the store’s Get method to retrieve the task from
the store.

Listing 11.16. The runTask method changes the order of operations to account for our Store
interface including errors in return values.

func (w *Worker) runTask() task.DockerResult {

    // previous code omitted



        err := w.Db.Put(taskQueued.ID.String(), &taskQueued)

        if err != nil {

                msg := fmt.Errorf("error storing task %s: %v", taskQueued.ID.String(), err)

                log.Println(msg)

                return task.DockerResult{Error: msg}

        }

        result, err := w.Db.Get(taskQueued.ID.String())

        if err != nil {

                msg := fmt.Errorf("error getting task %s from database: %v", taskQueued.ID.String(), err)

                log.Println(msg)

                return task.DockerResult{Error: msg}

        }

    // code omitted

The StartTask method is the next one that requires changes. It performs two
operations on the task store. Each one is updating the state of the task and
storing the updated task in the Db. In these cases, we can simply swap the
direct operation on the map with a call to the new Put method, as seen in
listing X.Y.

Listing 11.17. Using the Put method instead of directly operating on a map.

func (w *Worker) StartTask(t task.Task) task.DockerResult {

        config := task.NewConfig(&t)

        d := task.NewDocker(config)

        result := d.Run()

        if result.Error != nil {

                log.Printf("Err running task %v: %v\n", t.ID, result.Error)

                t.State = task.Failed

                w.Db.Put(t.ID.String(), &t)

                return result

        }

        t.ContainerID = result.ContainerId

        t.State = task.Running

        w.Db.Put(t.ID.String(), &t)

Next, the StopTask method operates on the task store just once. Similar to the
StartTask method, it is updating the state of the task and saving it to the
map. Again, we can simply swap out the direct interaction with the map and
replace it with a call to the store’s Put method.



func (w *Worker) StopTask(t task.Task) task.DockerResult {

        config := task.NewConfig(&t)

        d := task.NewDocker(config)

        stopResult := d.Stop(t.ContainerID)

        if stopResult.Error != nil {

                log.Printf("%v\n", stopResult.Error)

        }

        removeResult := d.Remove(t.ContainerID)

        if removeResult.Error != nil {

                log.Printf("%v\n", removeResult.Error)

        }

        t.FinishTime = time.Now().UTC()

        t.State = task.Completed

        w.Db.Put(t.ID.String(), &t)

        log.Printf("Stopped and removed container %v for task %v\n", t.ContainerID, t.ID)

        return removeResult

}

Finally, the updateTasks method operates on the task store four times. The
first operation is a for loop that ranges over the worker’s Db map. Because Go
supports iterating over a map, we were able to loop over the store directly.
Go doesn’t support iterating over function call—it only returns once.

func (w *Worker) updateTasks() {

        // for each task in the worker's datastore:

        // 1. call InspectTask method

        // 2. verify task is in running state

        // 3. if task is not in running state, or not running at all, mark task as `failed`

        tasks, err := w.Db.List() #1

        if err != nil {

                log.Printf("error getting list of tasks: %v", err)

                return

        }

        for _, t := range tasks.([]*task.Task) { #2

                if t.State == task.Running {

                        resp := w.InspectTask(*t)

                        if resp.Error != nil {

                                fmt.Printf("ERROR: %v", resp.Error)

                        }

                        if resp.Container == nil {

                                log.Printf("No container for running task %s", t.ID)

                                t.State = task.Failed



                                w.Db.Put(t.ID.String(), t) #3

                        }

                        if resp.Container.State.Status == "exited" {

                                log.Printf("Container for task %s in non-running state %s", t.ID, resp.Container.State.Status)

                                t.State = task.Failed

                                w.Db.Put(t.ID.String(), t) #4

                        }

                        // task is running, update exposed ports

                        t.HostPorts = resp.Container.NetworkSettings.NetworkSettingsBase.Ports

                        w.Db.Put(t.ID.String(), t) #5

                }

        }

}

11.7 Putting it all together

At this point, we’re almost ready to spin up our manager and workers and
have them use the new Store interface. All that’s needed are a few minor
tweaks to our main.go program.

The first tweak to make involves how we create our workers. If you recall,
we had been creating them by assigning a struct literal to a variable.

w1 := worker.Worker{

                Queue: *queue.New(),

                Db:    store.NewInMemoryTaskStore(),

}

Now, however, we can simplify this part of our code by using the New helper
function in the worker package. So we’ll replace the three lines above with a
single call to the New function.

w1 := worker.New("worker-1", "memory")

w2 := worker.New("worker-2", "memory")

w3 := worker.New("worker-3", "memory")

The second tweak involves how we’re creating the manager. We already had
a New helper function that we were using. We now need to add an argument to
our call to New that specifies what type of datastore the manager should use.



m := manager.New(workers, "epvm", "memory")

With these changes, we can now run our main program and see what we get.

$ CUBE_WORKER_HOST=localhost CUBE_WORKER_PORT=5556 CUBE_MANAGER_HOST=localhost CUBE_MANAGER_PORT=5555 go run main.go

Starting Cube worker

Starting Cube manager

2023/03/04 16:19:38 No tasks to process currently.

2023/03/04 16:19:38 Sleeping for 10 seconds.

2023/03/04 16:19:38 Checking status of tasks

2023/03/04 16:19:38 Task updates completed

2023/03/04 16:19:38 Sleeping for 15 seconds

2023/03/04 16:19:38 Checking status of tasks

2023/03/04 16:19:38 Task updates completed

2023/03/04 16:19:38 Sleeping for 15 seconds

2023/03/04 16:19:38 Processing any tasks in the queue

2023/03/04 16:19:38 No work in the queue

2023/03/04 16:19:38 Sleeping for 10 seconds

2023/03/04 16:19:38 No tasks to process currently.

2023/03/04 16:19:38 Sleeping for 10 seconds.

2023/03/04 16:19:38 Checking for task updates from workers

2023/03/04 16:19:38 Checking worker localhost:5556 for task updates

As you can see, not much has changed. The workers and manager start up as
expected and do their respective jobs.

Let’s send a task to the manager.

curl -X POST localhost:5555/tasks -d @task1.json

2023/03/04 16:19:42 Add event {a7aa1d44-08f6-443e-9378-f5884311019e

2023/03/04 16:19:48 Pulled {a7aa1d44-08f6-443e-9378-f5884311019e

2023/03/04 16:19:57 [manager] selected worker localhost:5556 for task bb1d59ef-9fc1-4e4b-a44d-db571eeed203

2023/03/04 16:19:57 [worker] Added task bb1d59ef-9fc1-4e4b-a44d-db571eeed203

2023/03/04 16:19:57 [manager] received response from worker

[worker] Found task in queue: {bb1d59ef-9fc1-4e4b-a44d-db571eeed203

2023/03/04 21:19:59 Listening on http://localhost:7777

It works! So, we have successfully refactored the manager and worker to use
an interface representing a datastore instead of operating directly on the
datastore itself. There is still one problem. If we stop and restart either the



manager or the worker, they will forget about any tasks they have previously
seen.

We can solve this problem by implementing a persistent datastore.

11.8 Introducing BoltDB

In moving from an in-memory datastore to a persistent one, there are some
high-level questions we have to ask ourselves. First, do we need a server-
based datastore? A server-based datastore is like PostgreSQL, MySQL,
Cassandra, Mongo, or any other datastore that runs as its own process. For
our purposes, a server-based datastore is overkill. It would be another process
we’d have to start and then manage, and most server-based systems can get
complex quickly.

Instead, we’re going to choose an embedded datastore. This is called an
embedded datastore because it uses a library that you "embed" directly in
your application.

The second question involves the data model that we want to use. The most
popular data model is the relational model, which is what systems like
PostgreSQL and MySQL use. There is even an embedded relational
datastore, SQLite. While such datastores are popular and robust, they also
require the use of the Structured Query Language, or SQL, to insert and
query data. SQL datastores are highly structured and require strict schemas
defining tables and columns.

Another data model that has become popular in the last decade is the key-
value datastore, sometimes also referred to as NoSQL. Popular opensource
key/value datastores include Cassandra and Redis.

If you recall our in-memory datastore using Go’s built-in map type, it had a
simple interface: we put data into the datastore, and we got data out of it. The
main mechanism by which we put or got tasks into this datastore was the key,
in our case a UUID. Our tasks are the values to which the keys refer.

Because we are already using a key-value datastore, it makes sense to pick a



persistent datastore that uses the same paradigm. And, to keep this as simple
as possible, we’re going to use an embedded library called BoltDB
(github.com/boltdb/bolt). As mentioned in BoltDB’s README, it is "a pure
Go key/value store" and the "goal of the project is to provide a simple, fast,
and reliable database for projects that don’t require a full database server such
as Postgres or MySQL".

To use the BoltDB library, we will need to install it. From your project
directory, install the library using the command below:

$ go get github.com/boltdb/bolt/...

As we did with the in-memory version of of the task and event datastores, we
are now going to implement persistent versions of each store.

11.9 Implementing a persistent task store

The first persistent store we will implement is the TaskStore. It will
implement the Store interface, the same as the in-memory stores do. The
only difference will be in the implementation details.

The first thing to do is to create the TaskStore struct seen below in listing
X.Y. There are several differences from the in-memory version to note. The
first is that the TaskStore struct uses a different type for its Db field. Whereas
the InMemoryTaskStore used a map[string]*task.Task type, here the field
is a pointer to the bolt.DB type. This type is defined in the BoltDB library.
Next, The TaskStore struct defines the DbFile and FileMode fields. BoltDB
uses a file on disk to persist data, and the DbFile field tells BoltDB the name
of the file it will operate on, and the FileMode ensures that we have the
necessary permissions to read and write to the file. In BoltDB, key/value
pairs are stored in collections called "buckets", so the struct’s Bucket field
defines the name of the bucket we want to use for the TaskStore.

Listing 11.18. The persistent version of our task store is called TaskStore.

import (

        // previous imports omitted



        "github.com/boltdb/bolt"

)

type TaskStore struct {

        Db       *bolt.DB

        DbFile   string

        FileMode os.FileMode

        Bucket   string

}

The next thing to do is to create a helper function to create an instance of our
persistent datastore. We did the same thing with our in-memory datastores.
The NewTaskStore helper takes three arguments: a string file that provides
the name of the file we want to use, the mode of the file as an os.FileMode
type, and a string that provides the name of the bucket in which we want to
store our tasks.

Listing 11.19. The NewTaskStore helper function creates an instance of our persistent task
datastore.

func NewTaskStore(file string, mode os.FileMode, bucket string) (*TaskStore, error) {

        db, err := bolt.Open(file, mode, nil) #1

        if err != nil {

                return nil, fmt.Errorf("unable to open %v", file)

        }

        t := TaskStore{ #2

                DbFile:   file,

                FileMode: mode,

                Db:       db,

                Bucket:   bucket,

        }

        err = t.CreateBucket() #3

        if err != nil {

                log.Printf("bucket already exists, will use it instead of creating new one")

        }

        return &t, nil #4

}

With the TaskStore struct defined and our helper function created, let’s turn
our attention to the methods of the TaskStore. In addition to the methods
defined by the Store interface--Put, Get, List, and Count--we’re going to



define a Close method. Why do we need such a method? Remember, our
persistent datastore is writing its data to a file on disk. Moreover, in the
NewTaskStore helper function, we called the Open function to open the file.
The Close method will close the file when we’re done with it.

func (t *TaskStore) Close() {

        t.Db.Close()

}

The first method of the Store interface to implement is Count. As with the in-
memory stores, the persistent version will return the number of tasks in the
datastore. Unlike the in-memory versions, this one is a little more involved.

Similar to relational datastores like PostgreSQL or MySQL, BoltDB supports
transactions. Per the BoltDB README, each transaction in BoltDB "has a
consistent view of the data as it existed when the transaction started." BoltDB
supports three types of transactions:

Read-write
Read-only
Batch read-write

For our purposes, we will only be using the first two.

Since our Count method needs to get the number of tasks, we can use a read-
only transaction. Unlike the in-memory stores, where we were able to use
Go’s built-in len method on Go’s map type, here we have to iterate over all
the keys in the bucket to construct our count. BoltDB provides the ForEach
method to simplify this process.

To perform a read-only transaction we use Bolt’s View function. This method
takes a function, which itself takes an argument of a pointer to a bolt.Tx type
and returns an error. This is the mechanism that provides the transaction.
Inside the transaction, we identify the bucket on which we want to operate,
then iterate over each key in that bucket and increment the taskCount value.
After iterating over all the keys, we check for any errors before finally return
the taskCount.

func (t *TaskStore) Count() (int, error) {



        taskCount := 0

        err := t.Db.View(func(tx *bolt.Tx) error { #1

                b := tx.Bucket([]byte("tasks")) #2

                b.ForEach(func(k, v []byte) error { #3

                        taskCount++ #4

                        return nil

                })

                return nil

        })

        if err != nil { #5

                return -1, err

        }

        return taskCount, nil #6

}

Let’s move on and implement another method that is specific to the persistent
store and is thus not part of the Store interface. The method is the
CreateBucket method seen in listing X.Y. It takes no arguments and returns
an error. In this method, we create the bucket that will hold all of our tasks as
key/value pairs. Because we are creating a bucket, we need to use a read-
write transaction, and we do this with the Update function. Using Update
works similar to View. It takes a function that takes a pointer to a bolt.Tx
type and returns an error. We then call the CreateBucket function and pass in
the name of the bucket to create. We then check for any errors.

Listing 11.20. Our CreateBucket method is a wrapper around a function of the same name in the
BoltDB library.

func (t *TaskStore) CreateBucket() error {

        return t.Db.Update(func(tx *bolt.Tx) error {

                _, err := tx.CreateBucket([]byte(t.Bucket))

                if err != nil {

                        return fmt.Errorf("create bucket %s: %s", t.Bucket, err)

                }

                return nil

        })

}

Now, let’s return to the methods of the Store interface and implement the
second of these methods, Put. The signature of this Put method is the same as
for the in-memory versions, so there is nothing new here. What is new is how



we store the key/value pair. As we did in the CreateBucket method above,
we will use the Update function to get a read-write transaction. We identify
the bucket where we will store the key/value pair using the tx.Bucket
function, passing it the name as a string. In order to store the value in the
BoltDB bucket, we have to convert the value to a slice of bytes. We do this
by calling the Marshal function from the json package, and passing it the
value converted to a pointer to the task.Task type. Once the value has been
converted to a slice of bytes, we call the Put function on the bucket, passing
it the key and value (both as slices of bytes).

Listing 11.21. TODO

func (t *TaskStore) Put(key string, value interface{}) error {

        return t.Db.Update(func(tx *bolt.Tx) error {

                b := tx.Bucket([]byte(t.Bucket))

                buf, err := json.Marshal(value.(*task.Task))

                if err != nil {

                        return err

                }

                err = b.Put([]byte(key), buf)

                if err != nil {

                        return err

                }

                return nil

        })

}

The third method of the Store interface to implement is the Get method. It
takes a string, which is the key we want to retrieve. It returns an
interface{}, which is the task we wanted, and an error. We start by defining
the variable task of type task.Task. Next, we use a read-only transaction by
way of the View function, which we’ve seen above. Again, we identify the
bucket on which we want to operate. Then, we look up the task using the Get
function, passing it the key as a slice of bytes. Notice that we do not check
the Get call for any errors. The reason for this is that the BoltDB library
guarantees Get will work unless there is a system failure (e.g. the datastore
file is deleted from disk). If there is no task in the bucket for the key, then Get
returns nil. Once we have the task, we have to decode it from a slice of bytes
back into a task.Type, which we do using the Unmarshal function from the



json package. Finally, we do some error checking, then return a pointer to
the task.

func (t *TaskStore) Get(key string) (interface{}, error) {

        var task task.Task

        err := t.Db.View(func(tx *bolt.Tx) error {

                b := tx.Bucket([]byte(t.Bucket))

                t := b.Get([]byte(key))

                if t == nil {

                        return fmt.Errorf("task %v not found", key)

                }

                err := json.Unmarshal(t, &task)

                if err != nil {

                        return err

                }

                return nil

        })

        if err != nil {

                return nil, err

        }

        return &task, nil

}

The fourth and final method to implement is the List method. Like Get
above, List uses a read-only transaction. Instead of getting a single task,
however, it iterates over all the tasks in the bucket and creates a slice of tasks.
In this, it is similar to the Count method.

func (t *TaskStore) List() (interface{}, error) {

        var tasks []*task.Task

        err := t.Db.View(func(tx *bolt.Tx) error {

                b := tx.Bucket([]byte(t.Bucket))

                b.ForEach(func(k, v []byte) error {

                        var task task.Task

                        err := json.Unmarshal(v, &task)

                        if err != nil {

                                return err

                        }

                        tasks = append(tasks, &task)

                        return nil

                })

                return nil

        })

        if err != nil {

                return nil, err



        }

        return tasks, nil

}

11.10 Implementing a persistent task event store

The persistent store for task events will look almost the same as the one for
tasks. The obvious differences will be in naming. Our struct is named
EventStore instead of TaskStore, and it will operate on the task.TaskEvent
type instead of task.Task.

The EventStore struct and NewEventStore helper function should look
familiar. There isn’t much to discuss here.

type EventStore struct {

        DbFile   string

        FileMode os.FileMode

        Db       *bolt.DB

        Bucket   string

}

func NewEventStore(file string, mode os.FileMode, bucket string) (*EventStore, error) {

        db, err := bolt.Open(file, mode, nil)

        if err != nil {

                return nil, fmt.Errorf("unable to open %v", file)

        }

        e := EventStore{

                DbFile:   file,

                FileMode: mode,

                Db:       db,

                Bucket:   bucket,

        }

        err = e.CreateBucket()

        if err != nil {

                log.Printf("bucket already exists, will use it instead of creating new one")

        }

        return &e, nil

}

Likewise, the Close and CreateBucket methods on the EventStore type



should also look familiar. The former is closing the datastore file opened in
NewEventStore, and the latter is creating a bucket to store events.

func (e *EventStore) Close() {

        e.Db.Close()

}

func (e *EventStore) CreateBucket() error {

        return e.Db.Update(func(tx *bolt.Tx) error {

                _, err := tx.CreateBucket([]byte(e.Bucket))

                if err != nil {

                        return fmt.Errorf("create bucket %s: %s", e.Bucket, err)

                }

                return nil

        })

}

The Count method counts the number of events in the persistent store,
returning the count.

func (e *EventStore) Count() (int, error) {

        eventCount := 0

        err := e.Db.View(func(tx *bolt.Tx) error {

                b := tx.Bucket([]byte(e.Bucket))

                b.ForEach(func(k, v []byte) error {

                        eventCount++

                        return nil

                })

                return nil

        })

        if err != nil {

                return -1, err

        }

        return eventCount, nil

}

The Put and Get methods are also identical to their counterparts in the
TaskStore type. Put takes a key and a value, writes it to the datstore and
returns any errors. Get takes a key, looks it up in the datastore and returns the
value, if found.

func (e *EventStore) Put(key string, value interface{}) error {

        return e.Db.Update(func(tx *bolt.Tx) error {

                b := tx.Bucket([]byte(e.Bucket))



                buf, err := json.Marshal(value.(*task.TaskEvent))

                if err != nil {

                        return err

                }

                err = b.Put([]byte(key), buf)

                if err != nil {

                        log.Printf("unable to save item %s", key)

                        return err

                }

                return nil

        })

}

func (e *EventStore) Get(key string) (interface{}, error) {

        var event task.TaskEvent

        err := e.Db.View(func(tx *bolt.Tx) error {

                b := tx.Bucket([]byte(e.Bucket))

                t := b.Get([]byte(key))

                if t == nil {

                        return fmt.Errorf("event %v not found", key)

                }

                err := json.Unmarshal(t, &event)

                if err != nil {

                        return err

                }

                return nil

        })

        if err != nil {

                return nil, err

        }

        return &event, nil

}

And, last but not least, the List method builds a list of all the events in the
datastore and returns it.

func (e *EventStore) List() (interface{}, error) {

        var events []*task.TaskEvent

        err := e.Db.View(func(tx *bolt.Tx) error {

                b := tx.Bucket([]byte(e.Bucket))

                b.ForEach(func(k, v []byte) error {

                        var event task.TaskEvent

                        err := json.Unmarshal(v, &event)

                        if err != nil {



                                return err

                        }

                        events = append(events, &event)

                        return nil

                })

                return nil

        })

        if err != nil {

                return nil, err

        }

        return events, nil

}

With the persistent versions of our task and event stores implemented, we can
change our main program to use them instead of their in-memory
counterparts.

11.11 Switching out the in-memory stores for
permanent ones

We need to make a couple of minor changes in our manager and worker code
in order to use the new persistent stores. Both changes involve adding cases
for creating persistent datastores in the New helper functions in the manager
and worker packages.

Let’s start with the manager. We need to add the persistent case to our
switch statement, seen in listing X.Y. Thus, when a caller of the New function
passes in persistent as the value of dbType, we call the NewTaskStore and
NewEventStore functions instead of their in-memory equivalents. Notice that
each function takes three arguments: the name of the file to use for the
datastore, the filemode of the file, and the name of the bucket that will store
the key/value pairs.

Listing 11.22. Adding the "persistent" case to the New helper function in the manager package.
The 0600 in the function calls represent the filemode argument, which means only the owner of
the file can read and write it.

switch dbType {

case "memory":



        ts = store.NewInMemoryTaskStore()

        es = store.NewInMemoryTaskEventStore()

case "persistent":

        ts, err = store.NewTaskStore("tasks.db", 0600, "tasks")

        es, err = store.NewEventStore("events.db", 0600, "events")

}

The changes in the worker’s New function are similar. We add a persistent
case, which calls the NewTaskStore helper function. We’re starting three
workers, so we use the filename variable to create a unique filename for
each worker. Because the worker only operates on tasks, there is no need to
set up an event store.

Listing 11.23. Adding the "persistent" case to the New helper function in the worker package.

case "persistent":

        filename := fmt.Sprintf("%s_tasks.db", name)

        s, err = store.NewTaskStore(filename, 0600, "tasks")

}

At this point, changing our main program to use the new persistent store is
just a matter of changing four lines of existing code. In all four lines, seen
below, we simply change the string memory to persistent.

//w1 := worker.New("worker-1", "memory")

w1 := worker.New("worker-1", "persistent")

//w2 := worker.New("worker-2", "memory")

w2 := worker.New("worker-2", "persistent")

// w3 := worker.New("worker-3", "memory")

w3 := worker.New("worker-3", "persistent")

//m := manager.New(workers, "epvm", "memory")

m := manager.New(workers, "epvm", "persistent")

With these changes, start up the main program and perform the same
operations that we performed earlier in the chapter. You should notice that
everything looks the same from the outside as it did when we used the in-
memory stores. The only difference is that you will now see several files with
the .db extension in the working directory. These are the files BoltDB is
using to persist the systems tasks and events. The files you should see are:



tasks.db
worker-1_tasks.db
worker-2_tasks.db
worker-3_tasks.db

11.12 Summary

Storing the orchestrator’s tasks and events in persistent datastores allows
the system to keep track of task and event state, to make informed
decisions about scheduling, and to help recover from failures.
The store.Store interface enables us to swap out datastore
implementations based on our needs. For example, while doing
development work, we can use an in-memory store, while we use a
persistent store for production.
While we adapted our old stores that were based on Go’s built-in map
type to the new store.Store interface, these in-memory
implementations suffer the same problem, that is the manager and
worker will still lose their tasks when they restart.
With the store.Store interface and a concrete implementation, we
made changes to the manager and worker to remove their operating
directly on the datastore. For example, instead of operating on a map of
map[uuid.UUID]*task.Task, we changed them to operate on the
store.Store interface. In doing this, we decoupled the manager and
worker from the underlying datastore implementation: they no longer
needed to know the internal workings of the specific datastore; they only
needed to know how to call the methods of the interface while all the
technical details were handled by an implementation.
The BoltDB library provides an embedded key/value datastore on top of
which we built our TaskStore and EventStore stores. These datastores
persist their data to files on disk, thus allowing the manager and worker
to gracefully restart without losing their tasks.
Once we created the store.Store interface and two implementations
(one in-memory, one persistent), we could switch between the
implementations by simply passing a string of either "memory" or
"persistent" to the New helper functions.


	Welcome
	1_What_is_an_orchestrator?
	2_From_mental_model_to_skeleton_code
	3_Hanging_some_flesh_on_the_task_skeleton
	4_Workers_of_the_Cube,_unite!
	5_An_API_for_the_worker
	6_Metrics
	7_The_manager_enters_the_room
	8_An_API_for_the_manager
	9_What_could_possibly_go_wrong?
	10_Implementing_a_more_sophisticated_scheduler
	11_Implementing_persistent_storage_for_tasks

