

AWS Observability Handbook

Monitor, trace, and alert your cloud applications with AWS’
myriad observability tools

Phani Kumar Lingamallu

Fabio Braga de Oliveira

BIRMINGHAM—MUMBAI

AWS Observability Handbook
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Mohd Riyan Khan
Publishing Product Manager: Surbhi Suman
Senior Content Development Editor: Adrija Mitra
Technical Editor: Irfa Ansari
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Prashant Ghare
Marketing Coordinator: Agnes D'souza

First published: April 2023

Production reference: 1190423

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

978-1-80461-671-0

www.packtpub.com

http://www.packtpub.com

I would like to take this opportunity to express my heartfelt gratitude to two very special people in my
life. To my parents, Lakshmi and Mohan Rao, your unwavering support and guidance throughout my
life have been a source of strength and inspiration. Your love and sacrifices have shaped me into the

person I am today, and I am forever grateful for all that you have done for me. And to my wife, Usha,
my loving partner throughout our joint life journey; you have been my rock during difficult times and
my partner in every adventure. Your love has given me strength, and your friendship has brought me

endless joy. Thank you for both being an integral part of my life and for making it truly special.

– Phani Kumar Lingamallu

My parents had a difficult life; they migrated from an impoverished region in Brazil to try for a
better life. They found each other, fell in love, and brought up a family, doing the best they could with
the knowledge they had. All three of their kids attended the best universities in our country. Thanks

to their struggle and sacrifices, and despite all the bumps in the road, I was able to experience an
international career, migrating to Germany with my small family. We may be far away, but I can’t

start to think about any of my accomplishments without feeling thankful for everything they provided
for me.

– Fabio Braga de Oliveira

Contributors

About the authors
Phani Kumar Lingamallu works as a senior partner solution architect at Amazon Web Services
(AWS). With around 19 years of IT experience, he previously served as a consultant for several well-
known companies, such as Microsoft, HCL Technologies, and Harsco. He has worked on projects
such as the large-scale migration of workloads to AWS and the Azure cloud. He has hands-on
experience with the setup of monitoring/management for over 45,000 servers, and the design and
implementation of large-scale AIOps transformations for clients across Europe, the US, and APAC,
covering monitoring, automation, reporting, and analytics. He holds a Master of Science in electronics
and possesses certifications including AWS Solution Architect Professional and Microsoft Certified
Azure Solution Architect Expert.

I am immensely grateful to my fellow colleagues, both those I have worked with in my current role and
those from my previous roles. Your unwavering dedication and passion for the work we do have been a
constant source of inspiration to me.

Fabio Braga de Oliveira works as a senior partner solution architect at AWS. He carries a wealth of
experience from various industries – automotive, industrial, and financial services, working in the last
19 years as a software engineer/team lead/solutions architect. His professional interests range from
big to small: he loves event-driven architectures, helping build complex, highly efficient systems, and
also working on small devices, building devices fleet to collect data and support companies to drive
new insights, using analytics techniques and machine learning. He majored in electronics and has
a BS in computer science, an MBA in project management, and a series of IT certifications, among
them AWS Certified Solution Architect – Professional. Nowadays, he supports AWS partners in the
DACH/CEE region with application modernization (serverless and containers) and IoT workloads.

I would love to be as brilliant and smart as many of my colleagues. I am standing on the shoulders of
giants, definitely. Every example, every code excerpt, and every concept is the result of the accumulated
knowledge of practitioners and the computer science community as a whole. So, to all of you, my
humble thank you; without all of you, I wouldn’t be half of what I am.

About the reviewers
Anand Rajanala’s expertise in Application Performance Management (APM) and AIOps observability.
As a product manager, he has created roadmaps and identified opportunities to enhance product
offerings to ensure that products meet customer needs and are aligned with business goals.

Working with companies such as CA, HCL Technologies, Broadcom, ConnX, and Rakuten has given
Anand the opportunity to develop a deep understanding of the technology industry and the challenges
that businesses face. He has strong communication and collaboration skills, which are essential for
managing cross-functional teams and building relationships with stakeholders.

Anand Rajanala has a supportive family behind him – his lovely kids, Srisubodh and Paanya SriSisira,
and his wife, Vasavi. To my family, my brothers and sister – I cannot thank you enough for everything
you do for me and our family. Words cannot express how much your support means to me. From the
bottom of my heart, thank you for being there for me every step of the way.

Peter Gergely Marczis brings 15 years of industry experience to his role as the leader of the DevOps
platforms practice at Nordcloud. Starting his career as an embedded programmer, he quickly developed
a passion for cutting-edge technologies, and he now works with industry-leading companies on their
DevOps strategies. His unique expertise and insights have made him the ideal candidate to review
technical content for its quality and relevance to the field.

Preface xv

Part 1: Getting Started with Observability on AWS

1
Observability 101 3

Technical requirements 4
What is observability? 4
The need for observability in a
distributed application environment 5
Building blocks of observability 9
Metrics 10
Logs 12
Traces 15
What is the relationship between the three
pillars? 16

Benefits of observability 17
Understanding application health and
performance to improve customer experience 17
Improving developer productivity 17
Getting more insight with visualizations 18
Digital eperience monitoring 18
Controlling cost and planning capacity 18

Summary 18
Questions 19

2
Overview of the Observability Landscape on AWS 21

Technical requirements 22
Overview of observability tools in AWS 22
Overview of native observability
services in AWS 24
Amazon CloudWatch Metrics 24
Amazon CloudWatch Logs 26
AWS X-Ray 27

Amazon EventBridge 28
CloudWatch Alarms 28
CloudWatch Dashboards 29
CloudWatch Synthetics 30
Real User Monitoring (RUM) 31
CloudWatch Evidently 32
CloudWatch Container Insights 33

Table of Contents

Table of Contentsviii

CloudWatch Lambda Insights 33
CloudWatch Contributor Insights 34
CloudWatch Application Insights 35
CloudWatch Metric Insights 36
CloudWatch Logs Insights 37
CloudWatch ServiceLens 38

Overview of AWS-managed open
source observability services in AWS 39
Amazon Managed Service for Prometheus 39

Amazon OpenSearch Service 40
Amazon Managed Grafana 40
AI and ML insights 41
Instrumentation 44

Adoption of observability services in
AWS 46
Summary 47
Questions 47

3
Gathering Operational Data and Alerting Using Amazon CloudWatch
 49

Technical requirements 49
Overview of CloudWatch metrics
and logs 50
Deployment and configuration of the
CloudWatch agent in an EC2 instance 51
The unified CloudWatch agent 52
EC2 Windows instance monitoring with the
unified CloudWatch agent 53
Manual installation and configuration of the
CloudWatch agent 55

Automated installation using AWS Systems
Manager 67

Overview of CloudWatch alarms and
dashboards 73
CloudWatch alarms 73
CloudWatch dashboards 80

Overview of Amazon EventBridge 84
Summary 90
Questions 90

4
Implementing Distributed Tracing Using AWS X-Ray 91

Technical requirements 92
Overview of AWS X-Ray 92
X-Ray concepts 93

Navigating the AWS X-Ray console 94
Step 1 – deploying a sample application 95
Step 2 – navigating the application 98
Step 3 – navigating the AWS CloudWatch
X-Ray user interface 99

Overview of the CloudWatch ServiceLens map 106
Overview of X-Ray Analytics 107

End-to-end instrumentation of a
sample application deployed in an
EC2 instance 108
Preparing the environment 108
Testing the sample application 111

Table of Contents ix

Exploring the sample application running on
an EC2 instance 114

Summary 126

Part 2: Automated and Machine Learning-
Powered Observability on AWS

5
Insights into Operational Data with CloudWatch 129

Technical requirements 129
Deriving operational intelligence
from CloudWatch metrics 130
CloudWatch metrics explorer 130
CloudWatch Metrics Insights 136
Metric math expressions 136
CloudWatch anomaly detection 148

Exploring CloudWatch Application
Insights 153
Exploring CloudWatch Logs Insights 160
Exploring CloudWatch Contributor
Insights and its use cases 163
Summary 166
Questions 167

6
Observability for Containerized Applications on AWS 169

Technical requirements 170
Introduction to CloudWatch
Container Insights 170
Set up a Cloud9 development workspace 175
Set up an Amazon EKS cluster 177
Set up an Amazon ECS cluster 177

Implementing observability for a
distributed application running on
Amazon EKS 178
Container Insights metrics on your EKS EC2
or customer-managed Kubernetes clusters 178
Container Insights metrics on EKS Fargate 180

Implementing observability for a
distributed application running on
Amazon ECS 180
Container Insights on Amazon ECS for the
cluster- and service-level metrics 181
Container Insights on Amazon ECS for
instance-level metrics using ADOT 183
Collect logs and send them to CloudWatch
Logs using FireLens 184

End-to-end visibility of containerized
applications using AWS App Mesh 186
Add monitoring and logging capabilities 186
Add end-to-end tracing capabilities 187

Table of Contentsx

Understanding and troubleshooting
performance bottlenecks in containers 188
Workspace 189
Build the environments 189
Set up Container Insights 189

Explore Container Insights 190
Set up load tests 191
Load testing metrics 193
Accessing CloudWatch Logs Insights 194

Summary 196

7
Observability for Serverless Applications on AWS 197

Technical requirements 198
Deploying a basic serverless
application running on AWS Lambda 198
Built-in metrics 201
Lambda logging 203
CloudWatch Logs Insights from Lambda logs 203
API Gateway metrics and logs 205

CloudWatch Lambda Insights 206
Single-function view 210
Multifunction view 210

End-to-end tracing of the Node.js
application 211
Exploring Lambda Powertools 216
Lambda Powertools for enhanced logging 218
Lambda Powertools – custom metrics 219
Lambda Powertools – tracing 222

Troubleshooting performance issues
using X-Ray groups 224
Summary 228
Questions 229

8
End User Experience Monitoring on AWS 231

Technical requirements 232
End user experience monitoring 232
CloudWatch Synthetics 233
How CloudWatch Synthetics works 233
Use cases of CloudWatch Synthetics monitoring 237
Understanding CloudWatch Synthetics canaries 238
Configuring CloudWatch Synthetics canaries 240

CloudWatch RUM 256
How CloudWatch RUM works 256
Setting up CloudWatch RUM for an S3 static
website 257

Summary 268
Questions 269

Table of Contents xi

Part 3: Open Source Managed Services on AWS

9
Collecting Metrics and Traces Using OpenTelemetry 273

Technical requirements 274
An open standard to collect metrics
and traces using AWS Distro for
OpenTelemetry 274
How to instrument once for multiple
monitoring destinations 276
Traces 276
Metrics 278
Logs 281

OpenTelemetry Collector deployment 283

Instrumenting a container
application running on ECS using
OpenTelemetry 284
The OpenTelemetry Python SDK for traces 288
The OpenTelemetry Python SDK for metrics 289
Deploying the OpenTelemetry Collector 290
Checking the resulting application telemetry 291

Summary 296

10
Deploying and Configuring an Amazon Managed Service for
Prometheus 297

Technical requirements 298
Prometheus and Grafana overview 298
Setting up Amazon Managed Service
for Prometheus and Grafana 302
Setting up a Cloud9 development workspace 303
Setting up an AMP workspace 304
Setting up an AMG dashboard 307
Setting up an Amazon EKS cluster and tools 314

Ingesting telemetry data 315
Ingestion from a new Prometheus server 316

Ingestion using AWS Distro for
OpenTelemetry (ADOT) 321

Querying Prometheus metrics via
API and Grafana 322
Querying Prometheus metrics using
Prometheus APIs 322
Querying Prometheus metrics using Amazon
Managed Grafana 324

Implementing container monitoring 328
Summary 332

Table of Contentsxii

11
 Deploying the Elasticsearch, Logstash, and Kibana Stack Using
Amazon OpenSearch Service 333

Technical requirements 334
Amazon OpenSearch Service
overview 334
Setup and configuration of Amazon
OpenSearch Service 336
Installation of a standalone cluster of
Amazon OpenSearch Service 339

Observability of the application
traces and logs using Amazon

OpenSearch Service 350
Application traces 353
Application logs 357

Anomaly detection in Amazon
OpenSearch Service 362
Security for Amazon OpenSearch
Service 366
Summary 368
Questions 368

Part 4: Scaled Observability and Beyond

12
Augmenting the Human Operator with Amazon DevOps Guru 371

Technical requirements 372
Overview of Amazon DevOps Guru 372
Enabling Amazon DevOps Guru 373
Analyzing resources using Amazon DevOps
Guru 376
How DevOps Guru works 377

Reviewing Amazon DevOps Guru
insights for serverless applications in
AWS 378
Discovering and analyzing resources 379
Decreasing DynamoDB capacity 380
Generating traffic to create anomalies 381

Reactive insights 382
Proactive insights 386

Understanding Relational Database
Service (RDS) performance issues
using DevOps Guru 386
AI and ML insights 388
Amazon CodeGuru 389
Amazon Lookout for Metrics 390

Summary 399
Questions 399

Table of Contents xiii

13
Observability Best Practices at Scale 401

Observability best practices at scale 401
Understanding multi-account and multi-
Region topologies 402
Exploring CloudWatch cross-account
observability 404
How cross-account observability works 405
Configuring CloudWatch cross-account
observability 406

Exploring cross-account cross-
Region CloudWatch 413
Configuring AWS cross-account cross-Region
in AWS Organizations 413
Limitations of CloudWatch cross-account
cross-Region observability 417

Summary 418
Questions 418

14
Be Well-Architected for Operational Excellence 419

Technical requirements 419
An overview of the AWS Well-
Architected Framework 420
Applying the Well-architected
framework and exploring automated
solutions 421
Operational excellence 421
Security 424
Reliability 428

Performance efficiency 429
Cost optimization 430
Sustainability 434

Understanding management and
governance in the Well-Architected
Framework 434
Summary 438
Questions 438

15
The Role of Observability in the Cloud Adoption Framework 439

Overview of Cloud Adoption
Framework 3.0 440
Cloud transformation journey 441
Transformation domains 442
Foundational capabilities 443
Business outcomes 444

Developing an observability strategy
for your organization 444
Benefits of defining an observability strategy 445
The output of the observability strategy 446
Applying an observability strategy 447
Operations perspective in the CAF 455
Observability maturity model 455

Table of Contentsxiv

Best practices for faster observability maturity 457

Role of observability in the CAF
and the best practices for quicker
adoption of the cloud 458
Beyond observability 459
Observability 459

AIOps-based operations 460
Event management 460
Service management 461
Automated resolution 461
Dashboards 462

Summary 463
Questions 464

Index 465

Other Books You May Enjoy 480

Preface

Observability refers to the ability to gain insights into the internal state of a system by analyzing the
external outputs or data produced by the system. Achieving observability is complex in modern
application architectures due to their distributed nature.

While talking to customers and builders, we realized the information required to leverage observability
benefits using AWS’s native tools and services is spread across many service-specific documents without
a concise view and practical examples. That’s why we decided to write this book for practitioners
looking for a straightforward, hands-on source.

In this book, we will explore how to configure and use various AWS services to achieve full-stack
observability for your workloads running on AWS. The guide covers key concepts such as understanding
the need for observability for different architectures, such as monolith, microservices, and serverless
computing, on AWS. The book also highlights how Site Reliability Engineers (SREs) can benefit from
AWS’s automated and machine learning offerings to achieve more with less management overhead.
We will also look into how developers can achieve observability for their applications and roll out
changes confidently with the help of observability. Furthermore, we will dive into the open source
observability options available on AWS.

Then, we will look into the architecture best practice recommendations for your observability
workloads, the importance of observability in achieving faster adoption of the cloud, and the approach
to observability in a large organization.

Who this book is for
This book is intended for SREs, Cloud Developers, DevOps engineers, and Solution Architects who
are looking to use AWS’s native services and open source managed services on AWS to achieve
the required observability targets. Solution architects seeking to achieve operational excellence by
implementing cloud observability solutions for their workloads will also find guidance in this book.
You are expected to have a basic understanding of AWS cloud fundamentals and the different service
offerings available on the AWS cloud to run applications, such as EC2, storage solutions such as S3,
and container solutions such as ECS and EKS.

Prefacexvi

What this book covers
Chapter 1, Observability 101, will go through the fundamentals of observability and discuss its
building blocks and concepts. It provides you with the required terminology and introduces the
vocabulary and concepts that you need to know relating to observability in a modern distributed
application environment.

Chapter 2, Overview of the Observability Landscape on AWS, will help you understand the basic,
foundational services and infrastructure-, application-, and machine learning-based tools available
in AWS in terms of cloud-native observability and managed open source observability solutions.

Chapter 3, Gathering Operational Data and Alerting Using Amazon CloudWatch, helps you navigate
the fundamentals of CloudWatch metrics, CloudWatch Logs, CloudWatch alarms, and CloudWatch
dashboards. It provides hands-on experience in the installation of a unified agent and ingesting
metrics and logs from EC2 instances and provides an overview of how to visualize them on a unified
dashboard. It also introduces the requirement of the EventBridge service and event rules and how
they would be used for fault monitoring.

Chapter 4, Implementing Distributed Tracing Using AWS X-Ray, will take you through what the
requirement for distributed tracing is in modern applications and the fundamentals of the services
offered by AWS relating to performance monitoring and distributed tracing.

Chapter 5, Insights into Operational Data with CloudWatch, will deep-dive into CloudWatch metrics
and CloudWatch dashboards. We will see how to do more with less using CloudWatch Log Insights,
CloudWatch Contributor Insights, and CloudWatch Application Insights, deriving operational intelligence
automatically from log data and metrics and allowing for faster troubleshooting during operations.

Chapter 6, Observability for Containerized Applications on AWS, enables you to understand the setup
of end-to-end containerized applications running on ECS and EKS to achieve observability.

Chapter 7, Observability for Serverless Applications on AWS, gives an overview of Lambda Insights
and explores the data generated from it. You will understand how to gather metrics, logs, and traces
from the serverless Lambda application and how they can be visualized as a unified dashboard for
end-to-end operational visibility.

Chapter 8, End User Experience Monitoring on AWS, will take you through the importance of user
experience monitoring. It provides an overview of how synthetic canaries can be implemented in
understanding the user experience for a web application. We will provide an overview of how to collect
metrics to capture real user behavior while interacting with a web application.

Chapter 9, Collecting Metrics and Traces Using OpenTelemetry, will discuss the existing SDKs, APIs,
and AWS services that support organizations looking for ways to implement observability but using
the open source ecosystem. It shows how AWS services can easily integrate with existing practices,
helping to reduce much of the heavy lifting of deploying and managing those open source tools done
by your own infrastructure team.

Preface xvii

Chapter 10, Deploying and Configuring an Amazon Managed Service for Prometheus, enables you to
understand the foundation of Amazon Managed Grafana and Prometheus and guides you in setting
up the services, ingesting metrics, logs, and traces from the cloud-native observability services, and
setting up advanced dashboards for operational visibility. It also discusses how to set up Prometheus
monitoring for containerized workloads on AWS.

Chapter 11, Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch
Service, enables you to understand the foundation of Amazon OSS and guides you on how to set up
the services and ingest logs and traces from your application workloads and set up dashboards for
operational visibility.

Chapter 12, Augmenting the Human Operator with Amazon DevOps Guru, looks at AWS DevOps
Guru, which is a service powered by machine learning that automatically extracts the relevant metrics
about workloads and detects anomalies before they impact end users. In this chapter, you will learn
how to use it to enrich the already deployed set of tools and use it as an advisor to detect issues and
recommend remediations.

Chapter 13, Observability Best Practices at Scale, covers some patterns and recommendations on
how to scale the observability of applications in complex organizations for workloads distributed in
multiple accounts and regions.

Chapter 14, Be Well-Architected for Operational Excellence, looks at the AWS Well-Architected Framework,
which provides guidelines on how to apply best practices of the design, delivery, and operations of
AWS environments. Its Operational Excellence pillar and Management and Governance Lens include
guidance on how to run workloads effectively and continuously improve operations. In this chapter,
we discuss some of those principles and how they are interconnected with observability best practices.

Chapter 15, The Role of Observability in the Cloud Adoption Framework, looks at the Cloud Adoption
Framework (CAF), which helps customers and users to digitally transform their businesses by leveraging
the AWS experience and best practices. Among the CAF pillars are Management, Governance, and
Operations. This chapter will discuss the role of observability in an organization’s transformation journey.

To get the most out of this book
To get the most out of the book, we recommend you have an AWS account to practice the concepts
discussed in the book. We have used quick-start templates where applicable to make your exercises as
practical as possible. If you would like to understand the code and the CloudFormation templates used
in detail, we suggest you access the book’s GitHub repository (a link is available in the next section).

Software/hardware covered in the book Operating system requirements
Python 3.9 Windows, macOS, or Linux
Node.js 14/Node.js 16
JSON

Prefacexviii

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/AWS-Observability-Handbook. If there’s an update to the code, it
will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/n7E68.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Set the
dataset name to my-dateset1.”

A block of code is set as follows:

 Function:
 Runtime: nodejs16.x
 Timeout: 100
 Layers:
 - !Sub "arn:aws:lambda:${AWS::Region}:580247275435:layer:
LambdaInsightsExtension:21"
 TracingConfig:
 Mode: Active

Any command-line input or output is written as follows:

python sendAPIRequest.py

https://github.com/PacktPublishing/AWS-Observability-Handbook
https://github.com/PacktPublishing/AWS-Observability-Handbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/n7E68

Preface xix

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “For the next step, let’s go ahead and
decrease the table capacity in DynamoDB for both Read Capacity and Write Capacity to 1.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read AWS Observability Handbook, we’d love to hear your thoughts! Please click here
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1804616710
https://packt.link/r/1804616710

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook
purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804616710

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804616710

Part 1:
Getting Started with

Observability on AWS

This part provides an overview of observability and a discussion about the building blocks of
observability. Additionally, it provides a review of the different services available in AWS to achieve
observability in a modern distributed application environment.

This section has the following chapters:

•	 Chapter 1, Observability 101

•	 Chapter 2, Overview of the Observability Landscape on AWS

•	 Chapter 3, Gathering Operational Data and Alerting Using Amazon CloudWatch

•	 Chapter 4, Implementing Distributed Tracing Using AWS X-Ray

1
Observability 101

Observability is the hot new tech buzzword. Observability is confused with many other practices,
such as monitoring, tracing, logging, telemetry, and instrumentation. But observability is a superset
of all these, and all are required to achieve observability. It includes measuring your infrastructure,
application, and user experience to understand how they are doing and then acting on the findings
with predictive or reactive solutions.

One of the benefits of working with older technologies was the limited set of defined failure modes.
Yes, things broke, but you would know what went wrong at any given time, or you could find out
quickly because many older systems repeatedly failed in the same ways. As systems became more
complex, the possible failures became more abundant. To address the possible failures of these
complex systems, monitoring tools were created. We kept track of our application performance with
monitoring, data collection, and time-series analytics. This process was manageable for a while but
quickly got out of hand.

Modern systems are extraordinarily complex, with everything depending on open source libraries
and turning into cloud-native microservices running on Kubernetes clusters. Further, we develop
them faster than ever, and the possible failure modes multiply as we implement and deploy these
distributed systems more quickly.

When something fails, it’s no longer obvious what caused it. Nothing is perfect; every software system
will fail at some point, and the best thing we can do as developers is to make sure that when our software
fails, it’s as easy as possible for us to fix it. Standard monitoring, which is always reactive, cannot fix
this problem, and it can only track known unknowns. The new unknowns mean that we have to do
more work to figure out what’s going on. Observability goes beyond mere monitoring (even of very
complicated infrastructures) and is instead about building visibility into every layer of your business.
Increased visibility gives everyone invested in the business more significant insight into issues and
user experience, and creates more time for more strategic initiatives, instead of firefighting issues.

Observability 1014

In this chapter, we are going to cover the following topics:

• What is observability?

• The need for observability in a distributed application environment

• Building blocks of observability

• Benefits of observability

Technical requirements
For this chapter, you must have a basic understanding of application deployment and operations.

Some basic coding skills are also required. We will use some code samples to illustrate concepts, but
we will keep it simple and focus less on the code and more on the ideas explained.

Finally, we will use the Python language for all the code samples if not explicitly stated otherwise.

What is observability?
If you are reading this book, the odds are you have already read about or heard the term observability
elsewhere, and have decided to apply it to your AWS workloads. You are in the right place. But even
being a book for the practitioner, we can’t start this book without defining some terms. They will
become our guide for the rest of this book, helping us drive our discussions. Let’s start with the main
one: observability.

The engineer Rudolf E. Kálmán coined the term observability (abbreviated as o11y) in 1960.

In his 1960 paper, Kálmán describes what he calls observability in the field of control theory: the measure
of how well someone can infer a system’s internal states from knowledge of its external signals/outputs.

Observability is another borrowed term, in the same way as software architecture, software engineering,
and design patterns. We borrow a complex, mathematical term from an older, more mature field and
make it ours in our younger computing field. And to do that, we need to make it softer to make it usable.

So, in this book, we will say an application has observability if the following is true:

• You can read any variable that affects the application state

• You can understand how the application reached that state

• You can execute both the aforementioned points without deploying any new code

So, your application is observable if you can answer questions that you knew you should ask, but you
can also answer questions that you didn’t know you needed to ask.

The need for observability in a distributed application environment 5

So far, we have defined what observability is. But if you are like me, the first time I saw a description of
observability like the one provided here, it didn’t help me understand it or even what made it different
from our old friend: monitoring. But I like examples, so let me try to do a better job to help you. In
the next section, we will see a small application example, we will apply monitoring practices to keep
our application up and running, and we will fail. Let’s discuss why we failed and how observability
principles can improve the situation in our sample scenario.

The need for observability in a distributed application
environment
Let’s suppose you want to create the definitive Hello World program so that no other developer will
need to implement it again. But you want to add a minor new feature: the users can give their names,
and the application should remember them, all based on modern REST APIs. So, you implement
something as follows:

from flask import Flask, request
import os.path
app = Flask(__name__)

@app.route("/")
def hello_world():

 name = request.args.get('name')
 if name:
 with open("name.txt", "w") as text_file:
 text_file.write(name)

 name_file = None

 if os.path.exists("name.txt"):
 with open("name.txt") as text_file:
 name_file = text_file.read()

 if name_file:
 return {
 "msg" : f"Hello, {name_file}!"
 }

Observability 1016

 return {
 "msg": "Hello, World!"
 }

In this small example, written in the Python (https://www.python.org) language and using
the Flask (https://flask.palletsprojects.com/en/2.0.x/) web framework, we have
an optional name query parameter, which, if we receive it, we store in a file. Anyway, we always read
from the file, and if there’s something in it, we return a friendly hello to our old, returning friend.
Otherwise, we return an also friendly but generic Hello, World! message.

We can see an example of user interaction with our REST API here:

> curl http://127.0.0.1:5000/
{"msg":"Hello, World!"}
> curl http://127.0.0.1:5000/?name=User
{"msg":"Hello, User!"}
> curl http://127.0.0.1:5000/
{"msg":"Hello, User!"}

Our local tests show the implementation works as intended, so we are ready to shock and revolutionize
the world. Our organization follows best practices, so we need to define and monitor key application
metrics before we deploy our application in production. After years of deploying and monitoring
applications, we, as software engineers, start to understand what can go wrong and what to keep an
eye on. Usually, applications can be CPU-, memory-, or I/O-intensive. Given that our application
writes and reads data to/from a file, we decided a key metric is input/output operations per second
(IOPS). We add the necessary tools to monitor it and the CPU and memory just in case. We also create
dashboards to have visual clues of our current state, and we implement alarms to notify us when we
think we are reaching any system limits. This all looks good, so let’s open the gates for our beloved users!

But after a few users start to use our application, reports of unexpected behaviors begin to pour into
our issue system. Some users sent their names, but the application failed to store them. Or even worse,
some users received the names of other users in a significant data privacy leak. Nobody wants to be
in the news because of that.

What happened to our perfect, simple, little application? During the deployment, our operations
teams used a typical deployment pattern to increase the application’s scalability and availability, as
shown in the following diagram:

https://www.python.org
https://flask.palletsprojects.com/en/2.0.x/

The need for observability in a distributed application environment 7

Figure 1.1 – Load balancing requests to multiple servers

Many of you may recognize the pattern described in this diagram. For many years, even on-premises
operations teams have deployed multiple nodes of the same application behind a load balancer, which
distributes incoming requests in a round-robin fashion to all of them. In this way, you can quickly
scale the number of requests the application can handle by the number of nodes, and if a node fails,
the load balancer automatically redirects new requests to the yet-available nodes.

We look at our configured metrics and we are clueless. None of our metrics helps us solve the problem.
We deploy new metrics. We watch the problem occur a couple of times again (with new, angry users).
And after debugging a bit, we find that the users who could not see their names after sending them
received responses from servers that did not have their names stored in the local storage. Even worse,
the users receiving other users’ names received responses from servers that stored names from other
users. What a mess!

Postmortem time: what happened, and how can we prevent it from happening again? When our
operations team deployed our application behind a load balancer, we had multiple nodes, not just
one anymore. New nodes could appear and disappear. This failure of nodes, combined with the fact
we keep the application state in the individual nodes, causes the issue.

Observability 1018

This is a simplistic, even silly, example of the jump in complexity from the local, single-user development
environment to a distributed, multi-node, auto-scaling production environment. Our code is simple,
and because of that, we thought nothing could go wrong. But there are many things outside our
application code we don’t understand entirely. Still, we take them for granted: the CPU run queue, the
kernel multi-threading, the language virtual machine, the network stack, the load balancing strategy…
and many more. They all contain the application state and the potential root cause for an issue.

This simple example shows that an initially observable application, deployed as a standalone process,
as many monoliths are, no longer remains observable as soon as we use modern techniques such as
multiple nodes and load balancing. Those components added more complexity and issues we didn’t
expect. As our user base grows and we split our monolithic application into many related services, what
was the right observability tool before may not be the right tool now. This mismatch can catch us off
guard because the complexity jump is exponential. As a terrifying example, see the following graph:

Figure 1.2 – Real-time graph of microservice dependencies at http://amazon.com in 2008

In our small example, we applied the usual techniques under the monitoring umbrella. The practice
of monitoring is good enough for monolithic and small-scale distributed applications. And in this
book, we will start with them, and we will progress, showing you the right tools for the job. With some
experience, operations teams can reduce the potential failure space from hundreds, maybe thousands,
of possibilities to a few. But we expect our businesses to grow, and with it, the supporting applications.
The number of possible application and error states grows exponentially. As soon as our application
reaches a specific size, at any moment, a call in the middle of the night can quickly become a sleepless
night while we try to navigate the maze of our metrics to find the right set of inputs that have caused
a new, unforeseen issue.

Modern applications have gotten good at accounting for failures that can be caught by tests and use
established techniques such as autoscaling and failovers to make the application more resilient. As we
catch up on known variables and take action to monitor them, the unknown unknowns are left. The

Building blocks of observability 9

issues we often see in modern applications are emergent failure modes, which happen when many
unlikely events line up to degrade the performance of the system or even take it down. These scenarios
are challenging to debug, which entails the need for observability.

If we want to understand any application state without deploying new code, we need to collect as
much context as possible and store it all. We need mechanisms to query, slice, and summarize this
data in new ways. Some of this complexity may not fit in our human brains anymore, so the support
of machine learning tools is a must. Dashboards and alarms continue to be necessary for the well-
known failure states, but to reach the next step, we need new tools in our tool belt.

So far, we have seen what observability is and how it evolved from more traditional monitoring practices
to support more complex systems. We saw the need to collect more data and answer questions we
didn’t know we should answer. In the next section, we will see the basic observability components
and how they relate.

Building blocks of observability
There are three fundamental building blocks of observability: metrics, logs, and traces. Each plays a
specific role in infrastructure and application monitoring, so you need to understand what they bring
to the table. They can be called the golden triangle of observability, as depicted in the following figure:

Figure 1.3 – Observability building blocks

Now, let’s try to understand the three building blocks.

Observability 10110

Metrics

Metrics are measurements of resource usage or behavior of your system over time. They might be
low-level measurements of system resources, such as the CPU, memory utilization, disk space, or the
number of I/O operations per second. They could also be high-level indicators, such as how the user
interacts with your system – for example, how many customer requests, the number of clicks on a
web page, the number of products added to the shopping cart, and so on.

Everything from the operating system to the application can generate metrics, and a metric is composed
of a name, a timestamp, a field representing some value, and potentially a unit. Metrics are a prominent
place to start observability.

For many years, metrics have been the starting point to measure a system’s health, representing the
data on which monitoring systems are built to give a holistic view of your environment, automate
responses to events, and alert humans when something needs their attention. In the following figure,
you can see a simple example of a CPU utilization metric:

Building blocks of observability 11

Figure 1.4 – A CloudWatch metric

When a solution expands to hundreds or thousands of microservices, the risk of false positives and
false negatives increases, causing alarm fatigue. The root cause of this alarm fatigue is twofold.

First, we are keeping old habits from the monolithic times, when we had a single system to care for,
and operations engineers did their best to keep it up all the time. The objective was to avoid failures
entirely. We collect metrics and establish healthy/unhealthy thresholds for many of them. And on
every unexpected outage, a postmortem evaluation of the causes will point out which metrics/alarms
were missing in a rinse-and-repeat fashion.

Second, for any highly distributed and scalable system:

Everything Fails All the Time

– Werner Vogels, AWS CTO

The mechanisms and controls we use on monolithic or small-scale applications are not the right
choices on higher scales because failures are expected. The question now is whether the issues are or
aren’t affecting our end customer experience or business processes and not whether a single service
is up and running.

That’s why we see a change in the metrics being used to notify operation engineers that something
is wrong, from low-level metrics (CPU, memory utilization, and disk space), to aggregated metrics
related to the user experience and business outcomes (web page time to interact, error rate, and
conversion rate).

We will look at different tools for collecting and analyzing metrics in this book.

Observability 10112

Logs

Event logs, or simply logs, are probably the oldest and simplest way to expose the internal state of an
application. A log is a file or collection of files that contains the history of all the clues the application
developers decided to leave to someone else. In case of issues, they could read it and understand the
application’s steps until the failure. See the following example:

import logging

logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s -
%(message)s',filename='example.log', encoding='utf-8', level=logging.
DEBUG)

logging.info('Store input numbers')
num1 = input('Enter first number: ')
num2 = input('Enter second number: ')

logging.debug('First number entered: %s', num1)
logging.debug('Second number entered: %s', num2)

logging.info('Add two numbers')
sum = float(num1) + float(num2)

logging.debug('Sum of the two numbers: %d', sum)

logging.info('Displaying the sum')
msg = 'The sum of {0} and {1} is {2}'.num1

logging.debug('Rendered message: %s', msg)

print(msg)

After executing this program, the resulting log file looks like this:

2022-03-20 17:21:40,886 – root – INFO – Store input numbers
2022-03-20 17:21:43,758 – root – DEBUG – First number entered: 1
2022-03-20 17:21:43,758 – root – DEBUG – Second number entered: 2

Building blocks of observability 13

2022-03-20 17:21:43,758 – root – INFO – Add two numbers
2022-03-20 17:21:43,758 – root – DEBUG – Sum of the two numbers: 3
2022-03-20 17:21:43,759 – root – INFO – Displaying the sum
2022-03-20 17:21:43,759 – root – DEBUG – Rendered message: The sum of
1 and 2 is 3.0

As we can see, logs initially used an unstructured format because they were meant to be readable by
humans. And initially, they were written on the local disk of the machine running the application.

We can quickly see how the jump from a single, monolithic application to a distributed system, or
even a collection of distributed systems, can affect how we use or process log files. I used SSH to
connect to a machine and check the server logs. Today, we have applications dynamically coming
online because of a scale-out event or terminated because they failed a health check. We can’t store
the logs on the local machine anymore; otherwise, they would be lost sooner or later. We need a place
to send them and keep them.

Another substantial improvement is to make them machine-readable. In our investigation to
understand what happened with our application, we need to collect as much context as possible and
make it available in a system where we can query, slice, and aggregate it in new and unexpected ways.
We can’t simply connect to a single machine and read a single log file anymore. Instead, we need to
understand the execution steps of potentially hundreds of servers.

Check out the same log example here, but now using structured logs:

import logging
import structlog

logging.basicConfig(format='%(message)s',filename='example.log',
encoding='utf-8', level=logging.DEBUG)

structlog.configure(
 processors=[
 structlog.stdlib.filter_by_level,
 structlog.stdlib.add_logger_name,
 structlog.stdlib.add_log_level,
 structlog.stdlib.PositionalArgumentsFormatter(),
 structlog.processors.TimeStamper(fmt="iso"),
 structlog.processors.StackInfoRenderer(),
 structlog.processors.format_exc_info,

Observability 10114

 structlog.processors.UnicodeDecoder(),
 structlog.processors.JSONRenderer()
],
 wrapper_class=structlog.stdlib.BoundLogger,
 logger_factory=structlog.stdlib.LoggerFactory(),
 cache_logger_on_first_use=True,
)

log = structlog.get_logger()

num1 = input('Enter first number: ')
num2 = input('Enter second number: ')

log = log.bind(num1=num1)
log = log.bind(num2=num2)

sum = float(num1) + float(num2)

log = log.bind(sum=sum)

msg = 'The sum of {0} and {1} is {2}'.num1

log.debug('Rendered message', msg=msg)

print(msg)

The resulting logs are as follows:

{"num1": "1", "num2": "2", "sum": 3.0, "msg": "The sum of 1 and 2 is
3.0", "event": "Rendered message", "logger": "__main__", "level":
"debug", "timestamp": "2022-03-22T07:43:11.694537Z"}

As you can see, the structured logs contain key-value pairs with the relevant data. To make it easier
for machine consumption, we can use a semi-structured format such as JSON. And also, instead of
multiple lines that tell us what happened, the logs are structured to represent a unit of work, so you
can aggregate more data in a single context.

Building blocks of observability 15

We can also see a profound shift in how we debug issues in our production system. Initially, it was
reactive: we collected metrics and defined healthy thresholds for some of them. As soon as one of
those thresholds was crossed, the monitoring system would send an alert via an SMS or pager to the
engineer of that shift to go and investigate further. So, the engineer would check the metric that raised
the alarm, as well as all the other metrics, create a hypothesis of what could be the problem, and only
then use logs to prove or refute the hypothesis. So, in this case, if the metrics show that the system is
malfunctioning, logs show why it is malfunctioning.

With the explosion in the number of servers and services a team must handle, we see a shift toward the
proactive use of observability tools, where the engineers don’t just use them when there’s an issue but
all the time. When doing a new release or when activating a new feature using a feature flag, we need
to check not only the 99.9% satisfied end users but the other 0.1%. And to collect all the necessary data,
structured logs are a fundamental tool, and the path for the investigation starts with them instead. We
see engineers using analytic tools to make complex queries against the data generated by structured
logs first and checking some other auxiliary data second to confirm the issue.

Throughout this book, we will look at tools for collecting and analyzing data for systems of any size
so that you can decide which one fits your case best.

Traces

Last but not least in the observability triangle is application trace data. Trace and logs are sometimes
difficult to differentiate, but the main difference is in nature and intent. While logs are discrete events
that localize issues and errors, traces are continuous. They understand the application flow while
processing a single task/event or request.

Traces are more verbose. They include information such as which methods/functions were called,
with which parameters, how long a method took to return a value, the call order, information about
the thread context, and more. Because of that, tracing is often implemented using instrumentation,
utilizing the programing language runtime reflection mechanism to introduce hooks and automatically
collect this information.

Traces add the critical visibility of the application end to end. Traces typically focus on the application
layer and provide limited visibility into the underlying infrastructure’s health. So, metrics and traces
complement each other to give you complete visibility into the end-to-end application environment.

But more interesting than just tracing is distributed tracing. Distributed tracing is the capability of
a tracing solution to track and observe service requests as they flow through multiple systems. The
tracing process starts at one of the application’s entry points (for example, a user request on the web
application), which generates a unique identifier. This identifier is carried along while traversing the
local method calls, using techniques such as attaching it to the thread context. When a request is
made to an external system, the request carries this unique ID as part of the request metadata (for
example, part of the HTTP headers in an HTTP-based REST call). The recipient system unpacks the
ID and carries it along similarly.

Observability 10116

In this way, when we aggregate the data generated by different systems, we can see the request flow
from application to application, the time it took to process locally, or how much time it took to call
external data sources.

A distributed tracing map will look like this:

Figure 1.5 – A service map on X-Ray

Later in this book, you will learn how to add distributed tracing capabilities to your application.

What is the relationship between the three pillars?

When a user request occurs, and a delay has occurred for the request, metrics provide the data to
demonstrate data quantitatively, such as the number of requests. At the same time, it can also record
the number of services the request passes through when it occurs using the trace data. If you would
like to record detailed information when an error occurs, you can do so using the log data.

As we can see, it is easy for us to see metrics, tracing, and logging and the connection between these
three kinds of data.

Will I need to adapt all three pillars?

The simpler your environment and the more tolerant you are of performance degradation and outages,
the fewer tools are required to keep it running and simple metrics will be able to work fine for you.

If the environment becomes complex and has to be up and running all the time or needs to be fixed
as quickly as possible, you will require a mix of tools to understand where it is broken. Metrics and
logs will support you with this requirement.

Benefits of observability 17

If your environment consists of a lot of microservices, then adding traces will save you effort when it
comes to troubleshooting problems across the environment.

In this section, we saw the basic observability building blocks, a few of their historical origins, and
how they evolved. We also briefly saw the need to connect all three to create a holistic view. In the
next section, we will see why we should invest in improving our system’s observability.

Benefits of observability
Adopting observability to analyze system performance used to be the job of sysadmins and ops teams,
who cared most about the mean time to detect (MTTD) and mean time to resolve (MTTR). Today,
more job roles than ever need to use observability data. With the rise of DevOps, CI/CD, and Agile
methods, developers are often directly responsible for the performance of their apps in production.
SREs and DevOps staff care about meeting service-level indicators (SLIs) and service-level objectives
(SLOs). Information about systems and workloads is also used by business leaders in making decisions
about capacity, spending, risk, and end user experience. Each stakeholder in an organization has
different needs for what is monitored and how the resulting data is analyzed, reported, and displayed.
Let’s try to understand the benefits of observability in the real world for different personas.

Understanding application health and performance to improve
customer experience

The main observability goal is to know what is going on anywhere in your system to ensure the
best possible experience for your end users. You want to detect problems quickly, investigate them
efficiently, and remediate them as soon as possible to minimize downtime and other disruptions to
your customers.

Improving developer productivity

Traditional debugging by analyzing logs or instrumenting breakpoints into code is tedious, repetitive,
and time-consuming. It doesn’t scale well for production applications or those built using microservice
or serverless architectures. To analyze performance across distributed applications, developers need to
correlate metrics and traces to identify user impact from any source and to find broken or expensive
code paths as quickly as possible. And they need to do all this without having to re-instrument their
code when they want to add new observability tools to their kit.

Observability 10118

Getting more insight with visualizations

Observability, especially at scale, can generate huge volumes of data that become difficult for humans
to parse. Visualization tools help humans make sense of data by correlating observability data into
intuitive graphic displays. However, having a bunch of graphs, charts, and more scattered across multiple
tools and displays becomes a problem. It’s essential to centralize visual data into a single dashboard,
giving you a unified view of your system’s critical information and performance.

Digital eperience monitoring

Digital Experience Monitoring (DEM) correlates infrastructure and operations metrics with business
outcomes by focusing on the end user experience. It seeks to reduce the MTTR in the event of client-
side performance issues by monitoring the client-side performance on web and mobile applications
in real time. Resolution is assisted by the relevant debugging data such as error messages, stack traces,
and user sessions to fix performance issues such as JavaScript errors, crashes, and latencies.

Controlling cost and planning capacity

A key advantage to operating in the cloud is that you can scale quickly to meet demand during peak
load times. However, unplanned and uncontrolled growth can result in unexpected costs. Observability
can help you find performance improvements, such as reducing the CPU footprint. Across a fleet of
thousands or hundreds of thousands of instances, a slight percentage performance improvement in
how much CPU an application uses can save millions of dollars. Similarly, by using observability to
understand and predict your future capacity needs, you can take advantage of the cost savings available
from reserve and spot pricing and avoid cost surprises.

Summary
In this chapter, we saw what observability means in the context of software applications and what makes
it different from monitoring. We saw increased observability complexity, from more straightforward,
monolithic applications to more complex, distributed applications. We discussed the observability
building blocks and how they evolved. Finally, we saw some critical use cases where observability
principles bring attractive business advantages.

Now, you can more easily discuss the differences between monitoring and observability, and when
to adopt one of them. You can also advocate for observability principles in your organization, clearly
understanding the requirements and advantages.

In the next chapter, we will map the different AWS services we can use to make applications observable.

Questions 19

Questions
Answer the following questions to test your knowledge of this chapter:

1. Which characteristics must a solution have to make it observable?

2. What’s the difference between monitoring and observability?

3. Why is observability important for complex, distributed applications?

4. What is alarm fatigue and what are its root causes?

5. What’s the difference between unstructured and structured logs? What makes structured logs
better for more complex use cases?

6. What’s the difference between tracing and distributed tracing?

7. Can you cite three use cases for observability?

2
Overview of the

Observability Landscape
on AWS

We spent the previous chapter understanding the requirement of observability in the modern
application landscape and the building blocks of observability. In this chapter, we will go through
various services that can be used to observe and manage your application landscape available on
Amazon Web Services (AWS).

AWS offers several services that can be used to observe and manage your overall application landscape:

• Infrastructure monitoring: Amazon CloudWatch, or simply CloudWatch, metrics and logs
will support infrastructure monitoring for components such as VMs, containers, operating
systems (OSes), and applications.

• Distributed tracing: AWS X-Ray provides support in distributed tracing and profiling for your
application. AWS X-Ray support distributed tracing for applications written in the .NET, Java,
Node.js, Python, Ruby, and Go programming languages.

• AWS services vended monitoring: AWS services natively send metrics and logs to Amazon
CloudWatch. These metrics and logs are configurable or can be use without much configuration
to manage your infrastructure.

• Digital experience monitoring: Digital experience monitoring adds the outside, end user
perspective to ensure applications and services are available and functional across all user
interfaces or devices. Digital experience monitoring tools combine application performance data,
real user behavior, and synthetic monitoring to help you gain deeper experience insights, such
as via session replays, understand the impact of changes, and identify bottlenecks. AWS provides
three services to help you understand your application’s digital experience, namely CloudWatch
Real User Monitoring (RUM), CloudWatch Synthetics canaries, and CloudWatch Evidently.

Overview of the Observability Landscape on AWS22

In this chapter, we are going to cover the following topics:

• Overview of observability tools in AWS

• Overview of native observability services in AWS

• Overview of AWS-managed open source observability services in AWS

• Adoption of observability services in AWS

Technical requirements
To engage in the technical section of this chapter, you need to have an AWS account. You can quickly
sign up for the AWS free tier if you do not have one.

Check out the following link to learn how to sign up for an AWS account: https://aws.amazon.
com/premiumsupport/knowledge-center/createand-activate-aws-account/.

Overview of observability tools in AWS
We can divide the monitoring/observability tools available in AWS into two categories:

• AWS-native services

• Open source managed services

The following figures show a high-level representation of the AWS services available to you:

Figure 2.1 – Overview of observability services on AWS

https://aws.amazon.com/premiumsupport/knowledge-center/createand-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/createand-activate-aws-account/

Overview of observability tools in AWS 23

Observing the layers, you can see that similar functionality is provided natively or using the open
source managed services available on the AWS platform. We will discuss each layer and the different
options available.

Let’s try to navigate each layer to understand the AWS services available to you.

The first layer, which is the instrumentation layer, provides the tools required to collect metrics,
logs, and traces from your applications. AWS provides CloudWatch and X-Ray agents to install and
collect metrics, logs, and trace data from both operating systems and applications, instrument them
appropriately, and send the data to AWS-native services. Similarly, the open source AWS Distro for
Open Telemetry (ADOT) supports collecting traces and application metrics, and Fluent Bit supports
collecting metrics and logs for container services. We can also use Jaeger or Zipkin tracing to collect
distributed application tracing based on the requirements.

In the second layer, metrics (M), events (E), logs (L), and traces (T) are stored and processed and
can be referred to as MELT for easy recollection. Once the raw data is collected, the data metrics,
logs, and traces are processed and aggregated in the CloudWatch Metrics, CloudWatch Logs, and
AWS X-Ray services, respectively. Additionally, AWS events communicate changes in the state of the
services as events through EventBridge, which supports forwarding them to third-party systems for
additional engagement.

The third layer adds visibility to the data generated and received by CloudWatch Metrics and Logs
with CloudWatch Dashboards. CloudWatch Alarms provides a mechanism to notify you and
activate any actions required to be taken on the data. The third layer also consists of services related
to measuring the digital experience of the end users. CloudWatch Synthetics supports mimicking
the end user behavior and understanding the issue before impacting the real users. RUM captures
the real user data and understands any issues caused to the users. CloudWatch Evidently supports
carrying out blue/green deployments and understanding the performance impact of the new code.

The fourth layer consists of the Insight services to help you build intelligence on top of the data and
support gathering additional information about managed compute services. Container Insights
provides a method to collect, aggregate metrics and logs from container services such as Amazon
Elastic Container Service (ECS) and Amazon Elastic Kubernetes Service (EKS), Lambda Insights
for serverless services such as AWS Lambda functions and Application Insights to automate the
onboarding of applications, eliminating the overhead of manual setup and also configuring the data
collection. Metric Insights provides intelligence to query metrics using SQL and Logs Insights provides
interactive search features and allows you to analyze the log data in real time.

The fifth layer acts as an umbrella in providing a bird’s-eye view of Application Health using
CloudWatch ServiceLens and provides a navigation experience to help you drill down and understand
root cause issues.

The sixth layer consists of the open source managed services, powered by Open Search and Amazon
Managed Service for Prometheus (AMP), and provides services to capture metrics, logs, and
application traces using Open Source Managed services.

Overview of the Observability Landscape on AWS24

The seventh layer, which is powered by AMG, provides dashboarding services on the data gathered
about metrics, logs, and traces from different observability services and provides a top-down view of
the application, as well as business health metrics.

The eighth layer provides machine learning services such as Amazon DevOps Guru to help you
identify application health issues. Amazon CodeGuru delivers a deep dive into code-level issues and
provides a way to detect code that has the longest execution times. Amazon Lookout for Metrics
provides anomaly detection in metrics gathered from different data sources.

In this section, we learned about the services offered by AWS for achieving observability and how
they can be segregated into different layers. We also learned about the relationship between them in
both AWS cloud-native services and AWS open source managed observability services. In the next
section, we will understand what the purpose of each service is and the functionality it provides for
achieving observability for your application workloads.

Overview of native observability services in AWS
Let’s start by understanding the AWS-native observability services in AWS, which are powered by
Amazon CloudWatch. Amazon CloudWatch is a cloud-native monitoring and observability solution
that provides comprehensive functionality in terms of metrics, logs, traces, dashboarding, alarms, real
user monitoring, synthetic monitoring, and observability tools for over 200 AWS services, including
serverless technologies such as AWS Lambda and AWS Fargate. Amazon CloudWatch is used to
monitor more than 6,000 trillion metric observations, ingests more than 3.5 Exabytes of logs, and
when combined with EventBridge, triggers more than 32 trillion events per month.

CloudWatch delivers actionable insights by collecting logs, metrics, and events, providing a single
pane of glass for all applications and services on AWS and on-premises. You can configure alarms
and be notified when metrics are outside the desired range, visualize logs and metrics side by side,
trigger automated actions, troubleshoot issues, and discover insights to help you fix your applications
before your users notice. In this section, we will understand the components of Amazon CloudWatch
and look into how they can be leveraged to fulfill the golden triangle of observability discussed in
The previous chapter. Let’s start with layer 2 in the AWS-native observability services and the first
component of the golden triangle, known as metrics.

Amazon CloudWatch Metrics

Amazon CloudWatch Metrics provides data points about the performance of your systems. By default,
many AWS services provide built-in metrics (for example, Amazon Elastic Compute Cloud (EC2)
CPU utilization or DynamoDB consumed read capacity) with a frequency of 5-minute intervals. If you
are looking to gather at a frequency of fewer than 5 minutes for high-critical workloads running on
AWS, you could enable detailed monitoring for some resources, such as your Amazon EC2 instances,
which publish the metrics at a frequency of 1 minute. Amazon CloudWatch will load all the metrics,
aggregate them, and index them for you to search, graph, and configure alarms.

Overview of native observability services in AWS 25

Metric data is kept for up to 15 months and is aggregated in rolling windows as follows:

• CloudWatch keeps metrics with a period of fewer than 60 seconds for 3 hours. CloudWatch
aggregates them into 1-minute groups after 3 hours.

• Metrics with a period of 1 minute are available for 15 days. After that, CloudWatch aggregates
them into 5-minute groups.

• Metrics with a period of 5 minutes are available for 63 days. After that, CloudWatch aggregates
them into 1-hour groups.

• Metrics with a period of 1 hour are available for 15 months.

You can visualize the Metrics section in AWS CloudWatch in the following screenshot:

Figure 2.2 – CloudWatch Metrics

CloudWatch allows you to publish custom metrics, which will help you to publish application-related
metrics such as the number of processors used by a Java application, business application metrics,
such as the number of orders, and more. We will discuss the custom metric functionality in Chapter 7,
Observability for Serverless Applications on AWS Metrics Explorer is a tool that allows you to explore
the data in CloudWatch Metrics. It is easy to select the metric you are interested in, for example, by
viewing it by a specific Lambda tag and then splitting it by errors in each group. Its collection of features
immediately gives a bird’s-eye view of all the crawlers and errors in each group. You can visualize the
Metrics Explorer view of EC2 instances by type in the following screenshot:

Overview of the Observability Landscape on AWS26

Figure 2.3 – EC2 Instances by type view in CloudWatch Metrics Explorer

We will understand the technical components of metrics and learn how to gather default and custom
metrics from EC2 in the next chapter.

Amazon CloudWatch Logs

CloudWatch Logs is a highly scalable service that can be used to ingest, store, and access logs from your
applications and AWS services. CloudWatch Logs provides useful functionalities such as the following:

• Real-time access to your logs

• Aggregation of logs from different hosts into a central place

• Allowing search functionality on logs to identify root cause issues quickly

• Long-term retention of logs for investigation

• Easy integration with storage services such as S3

CloudWatch Logs and Log groups can be seen in the following screenshot:

Figure 2.4 – CloudWatch Log groups

Overview of native observability services in AWS 27

We will dive deep into CloudWatch logs and gathering logs from various services in Chapter 3, Gathering
Operational Data and Alerting Using Amazon CloudWatch,Chapter 6, Observability for Containerized
Applications on AWS and Chapter 7, Observability for Serverless Applications on AWS, of this book.

AWS X-Ray

AWS X-Ray helps developers analyze and debug distributed applications built using microservices
or serverless architectures. Tracing can help developers and architects find latency in a chain of calls
to fulfill a request. A trace records the execution path across multiple services/applications, together
with metrics such as the execution time. AWS X-Ray provides a daemon that runs on-premises on
Linux, macOS, and Windows, in a Docker container, or on AWS compute resources to forward data
from your instrumented application to the X-Ray service.

Traces generated from a sample application with high latency can be used to identify bottlenecks in
your application, as shown in the following screenshot:

Figure 2.5 – CloudWatch X-Ray traces with high latency and the Sample queries view

We will look into how to instrument applications using AWS X-Ray in Chapter 4, Implementing
Distributed Tracing Using AWS X-Ray, Chapter 6, Observability for Containerized Applications on AWS,
and Chapter 7, Observability for Serverless Applications on AWS, of this book.

Overview of the Observability Landscape on AWS28

Amazon EventBridge

Amazon EventBridge delivers a near real-time stream of events that describe changes in your AWS
infrastructure. When resources change state, they automatically emit events in the stream. Then, you
can write declarative rules to match events of interest and route them to targets to take action.

From an observability practice standpoint, Amazon EventBridge will help you do the following:

• Reduce polling and associated cost and complexity

• Create a uniform interface for events across AWS services

• Provide near real-time notifications of resource changes

• Provide an end-to-end solution, from event detection to automated remediation

• Provide a scheduled execution of tasks in a fully managed service

• Provide a unified experience for event notifications and actions

The Rules view of Amazon EventBridge can be seen in the following screenshot:

Figure 2.6 – CloudWatch EventBridge

Additionally, with EventBridge, you can build event-driven computing architectures for business
applications using serverless applications such as AWS Lambda.

CloudWatch Alarms

Amazon CloudWatch Alarms allows you to define thresholds around CloudWatch Metrics and
receive notifications when the metrics fall outside a certain range. Each metric can trigger multiple
alarms, and each alarm can have many actions associated with it.

A CloudWatch Alarm is always in one of three possible states: OK, ALARM, or INSUFFICIENT_DATA.
You can see the different states of the alarms in the CloudWatch Alarms console:

Overview of native observability services in AWS 29

Figure 2.7 – State of CloudWatch Alarms

CloudWatch Dashboards

CloudWatch Dashboards is a customizable collection of visual displays of your metrics that you or
your team deem relevant to see side by side. CloudWatch Dashboards helps you visualize the system
performance and interpret your AWS services and workloads metrics. You can use cross-account
dashboards to share multiple AWS regions and account data. This cross-account/region sharing is
beneficial when working with cloud applications and workflows that involve numerous accounts and
metrics you or your team need to monitor/view in a centralized manner.

An automated dashboard generated for an Amazon EKS Cluster produced from a sample application
is shown in the following screenshot:

Figure 2.8 – Automated EKS performance dashboard

Overview of the Observability Landscape on AWS30

We will learn how to set up and configure CloudWatch Events, CloudWatch Alarms, and CloudWatch
Dashboards in the next chapter of this book.

CloudWatch Synthetics

Amazon CloudWatch Synthetics is part of the digital experience monitoring set of services designed to
help you understand your customer experience, even when you don’t have any customer traffic on your
application. As a result, you can identify and fix the issues before they impact your customer experience.

CloudWatch Synthetics lets you monitor web applications using modular, lightweight canary tests
and allows you to do the following:

• Website and API endpoint monitoring: Amazon CloudWatch Synthetics monitors your website
and API endpoint for latency, availability, and performance monitoring

• Outside-in monitoring: Client-side to transaction monitoring

• Continuous monitoring: Acts like a user 24/7 and continuously runs health checks

• Visual monitoring: Visual monitoring will let you detect defects in your application by
comparing the screenshots with an established baseline

CloudWatch Synthetics can test your endpoints every minute, 24/7, and notify you when something
deviates from the expected behavior. You can customize those tests to check for a list of metrics, such
as the following:

• Availability

• Latency

• Transactions

• Broken or dead links

• Step-by-step task completions

• Page load errors

• Load latencies for UI assets

• Complex wizard flows

• Checkout flows

A dashboard view of website availability as measured using CloudWatch Synthetic canaries can be
seen in the following screenshot:

Overview of native observability services in AWS 31

Figure 2.9 – Website availability using CloudWatch Synthetics canaries

Real User Monitoring (RUM)

CloudWatch RUM is another service that’s part of digital experience monitoring. It enables your
applications to send telemetry data, which will enable application developers and DevOps engineers
to provide quicker resolution and optimize the end user experience. CloudWatch RUM helps in
identifying client-side performance issues, debugging client-side errors, and collecting client-side
metrics on the web application performance in real time.

CloudWatch RUM detects anomalies in performance and aggregates debugging data such as stack
traces, error messages, and user sessions, helping to diagnose performance issues such as JavaScript
crashes, latencies, and errors. Customers can also visualize the impact of the problem on the end
customer population, including the browsers affected, the number of users, and their geolocations.
RUM helps developers prioritize features and bug fixes by aggregating user behaviors and click-stream
paths, providing information such as bounced user sessions.

You can see the data generated by CloudWatch RUM in the following screenshot providing information
about Page loads and load time, Apdex by country, and more:

Overview of the Observability Landscape on AWS32

Figure 2.10 – RUM metrics in CloudWatch RUM

CloudWatch Evidently

CloudWatch Evidently is another service that’s part of digital experience monitoring. It helps application
developers safely validate new features via A/B testing and experimentation to do safe launches across
the entire application stack, covering user-facing and backend features. Application developers can
use Evidently to run experiments on new application features to identify unintended consequences,
thus reducing risks. When releasing new features, developers can publish the features to a smaller
population of users, monitor vital metrics such as conversions and page load times, and safely publish
the feature to a broader audience if the team is satisfied with the results. It also allows developers to
collect user data, experiment with different designs, and release the best one to production.

CloudWatch Evidently helps you remove the guesswork when deciding which features are the best
for your business, whether it’s a new user experience, machine learning recommendations model, or
server-side implementation. Experimental results are described clearly, so you don’t need advanced
statistical knowledge to interpret them. While an experiment is running, anytime p-value and confidence
intervals allow you to see when there is statistical significance so that you can end the experiment.
It also has a granular scheduling capability to dial up traffic in a controlled manner so that you can
launch your new application changes with confidence while monitoring key business and performance
metrics for the new feature. You can define alarms to roll back to a safe state if there are issues with the
launch. CloudWatch Evidently also integrates with CloudWatch RUM, adding client-side application
monitoring so that you can use RUM metrics directly in Evidently.

We will go through the configuration, management, and usage of Digital Experience Monitoring in
Chapter 8, End User Experience Monitoring on AWS, of this book.

Overview of native observability services in AWS 33

CloudWatch Container Insights

CloudWatch Container Insights is a fully managed service that summarizes and traces correlations
between metrics and logs from your containerized applications. Container Insights collects data as
performance log events in a structured JSON while leveraging Embedded Metric Format (EMF) in
CloudWatch. CloudWatch EMF automatically extracts custom metrics from the log data and uses
them to provide visualizations and create alarms. CloudWatch Container Insights is available for
AWS services such as EKS, ECS, and AWS Fargate. CloudWatch Container Insights also provides
diagnostic information, such as the number of times a container restarted (for example, the infamous
CrashLoopBackOff in Kubernetes), to help you isolate issues and resolve them quickly.

The following screenshot shows an automatic dashboard generated by CloudWatch Container Insights:

Figure 2.11 – Performance view of an EKS cluster in CloudWatch Container Insights

CloudWatch Lambda Insights

Similar to CloudWatch Container Insights, CloudWatch Lambda Insights also summarizes and
correlates metrics and logs for Lambda functions. It processes metrics for the CPU time, memory,
disk, and network. It helps you find the root cause of cold starts and worker shutdowns to help you
fix them quickly.

Lambda Insights has use cases other than fundamental performance understanding, including
identifying functions that are having issues with a memory leak, identifying functions that have high
costs compared to the rest of the Lambda functions in the account, and understanding latency drivers
in specific functions.

Overview of the Observability Landscape on AWS34

The following screenshot shows the multifunction comparison view provided by CloudWatch
Lambda Insights:

Figure 2.12 – A multifunction view of a Lambda function in CloudWatch Lambda Insights

CloudWatch Contributor Insights

CloudWatch Contributor Insights allows you to set up a real-time analysis of time-series data
quickly and easily in Amazon CloudWatch Logs, to understand which process impacts the system or
application performance the most. Today, you can use contributor insights for two different use cases:

• Contributor Insights for CloudWatch Logs: You can evaluate patterns in structured log
events in real time

• Contributor Insights for DynamoDB: You can view the most accessed and throttled items

Overview of native observability services in AWS 35

When analyzing CloudWatch Logs, you can see statistical summaries as the top-N contributors and
the total number of unique contributors. Those summaries help you understand what impacts the
system’s performance. For example, you can identify the users who consume your network bandwidth
the most, find bad hosts, or find the URLs that generate the most errors.

The following screenshot shows the top IP traffic patterns analyzed from the VPCFlowLogs area in
Contributor Insights:

Figure 2.13 – Top IP traffic patterns in VPCFlowLogs in Contributor Insights

When analyzing DynamoDB, you can understand what the hotkeys are, identify table access patterns
over time, and identify the most frequent keys. As the contributor insights are asynchronous, there
is no performance impact on the DynamoDB database.

CloudWatch Application Insights

Generally, when setting up observability using CloudWatch, we need to take time to identify and set
up monitoring, detect and correlate anomalies, and diagnose and troubleshoot issues. Typically, 60
to 70% of our time is spent on the setup. CloudWatch Application Insights provides an easy way to
automate the setup of monitors for the application resources via application discovery. It performs
intelligent problem detection by correlating observations using algorithms and built-in rules. It
provides visualization using CloudWatch automatic dashboards with additional insights to pinpoint
the potential root cause.

General use cases of CloudWatch Application Insights include, but are not limited to, the following:

• Monitoring for .NET applications and MS SQL Server running on an EC2 instance

• Monitoring Microsoft Active Directory and SharePoint

• Observability for SAP HANA running on an EC2 instance

Overview of the Observability Landscape on AWS36

A typical view of the Application Insights dashboard that’s generated for the monitored components
can be seen in the following screenshot:

Figure 2.14 – CloudWatch Application Insights summary view

CloudWatch Metric Insights

CloudWatch Metrics Insights is a flexible, SQL-based query engine that you can use to analyze your
metrics at scale. Based on your use cases and business requirements, you can group and aggregate
your custom and AWS built-in metrics in real time. A single query can process up to 10,000 metrics
to identify trends and patterns.

When using the CloudWatch console, you can choose one of the pre-built sample queries or create
one yourself. You can build queries in two different ways:

• Builder view: This lets you browse your existing metrics and dimensions to build a query

• Query editor view: This lets you write SQL queries manually

Overview of native observability services in AWS 37

A query showcasing the average CPU utilization of instances for EC2 instances grouped by InstanceID
is shown in the following screenshot:

Figure 2.15 – Average CPU utilization of EC2 instances by InstanceID

in the CloudWatch Metric Insights query editor view

CloudWatch Logs Insights

CloudWatch Logs Insights is a fully managed, highly scalable, cost-efficient, and interactive log analytics
solution for CloudWatch Logs. It offers log analytics capabilities, such as support for aggregations,
regular expressions, and time-series visualizations. You can execute ad hoc analytics queries to help
you identify the root cause of operational issues.

CloudWatch Logs Insights implements a purpose-built query language with the key benefits of fast
execution, query auto-completion, and log field discovery.

The following screenshot shows a query showcasing the source and destination traffic from the VPC
Flow logs using CloudWatch Logs Insights:

Overview of the Observability Landscape on AWS38

Figure 2.16 – Querying VPC Flow logs from CloudWatch Logs Insights

CloudWatch ServiceLens

CloudWatch ServiceLens gives you unified access to metrics, logs, traces, and canaries, enabling
performance monitoring from end user interaction to infrastructure layer insights. ServiceLens
integrates CloudWatch and AWS X-Ray to provide a holistic view of your application to help you
pinpoint performance bottlenecks and identify impacted users.

A ServiceLens map will provide an overview of the application’s health, with the ability to drill down
into specific components to view metrics, logs, and traces and view end-to-end customer transactions
and impact.

With the introduction of the ServiceLens map, the customer’s observability journey will change from
tracking individual components to changing a single view of the entire application into a single view.
From the ServiceLens map, you can do the following:

• Observe: Get an overview of all resources and their health in a single view. Visualize dependencies
and contextual linking of resources. Reduce the MTTR by correlating latencies and requests
at each node and edge.

• Inspect: Know when your end user experience has degraded. Tie end user experience back to
infrastructure-level insights.

• Isolate: Identify performance bottlenecks and issues. View the top resources with issues by
sorting and filtering.

• Diagnose: Dive deep into node-level insights using pre-canned dashboards. Investigate correlated
metrics, alarms, traces, and logs.

Overview of AWS-managed open source observability services in AWS 39

An application traceability view from the CloudWatch ServiceLens map is shown in the
following screenshot:

Figure 2.17 – Representation of traffic, latency, and errors on a ServiceLens map

In this section, we explored what is offered by AWS’s cloud-native services to provide observability
for your applications. In the next section, we’ll understand the open source managed offerings from
AWS that support observability for your application and understand the functionality of each.

Overview of AWS-managed open source observability
services in AWS
When managing open source solutions for observability, it could be challenging to keep the software
updated, secured, patched, and distributed across the company. AWS helps you by providing a range
of managed services, fully compatible with popular open source observability software. They will
support you in using the tools of choice that you love and have invested in while avoiding the burden
of managing them yourself. We will explore the offerings from AWS in open source managed services
and the functionalities provided by them in the following subsections.

Amazon Managed Service for Prometheus

Amazon Managed Service for Prometheus (AMP) is a fully managed, secure, and highly available
metric monitoring solution that makes it easy to monitor containerized applications at scale. You
can use this service to monitor workloads from AWS environments and non-AWS environments,
including on-premises services. Prometheus is easy to use and has a fantastic query language called
PromoQL, which can provide support for high-cardinality metric data and has a powerful alerting
feature that offers alarm groups, inhibition, and silencing.

Overview of the Observability Landscape on AWS40

It scales up and down based on your workload’s requirements and integrates with AWS security
services to enable secure access to data. It integrates well with Kubernetes-native service discovery of
resources and provides support for dozens of exporters that help you capture performance and health
metrics of various workloads with minimal effort.

You can use Prometheus with Amazon ECS and Amazon EKS or in on-premises environments using
AWS Distro for Open Telemetry or Prometheus servers as collection agents.

Amazon OpenSearch Service

Amazon OpenSearch Service is a fully managed, secure, and highly available service that makes
it easy to deploy, operate, and scale OpenSearch clusters in the AWS cloud. Amazon OpenSearch
Service makes it easy for you to perform log analytics, real-time application monitoring, clickstream
analysis, and more. It also automatically detects and replaces unhealthy OpenSearch nodes, reducing
the overhead of managing the required infrastructure yourself. There are three major components
from OpenSearch that are of interest from an observability standpoint:

• Amazon OpenSearch Service Log Analytics: Log analytics involves searching, analyzing, and
visualizing machine data generated by your IT systems and technology infrastructure to gain
operational insights.

• Amazon OpenSearch Dashboards: OpenSearch Dashboards is a lightweight, real-time
visualization tool.

• Amazon OpenSearch Service Trace Analytics: The addition of trace data to OpenSearch Log
Analytics makes it easy to use the same service to isolate the source of performance problems
and also diagnose their root cause. End-to-end insights are possible when a trace is added to
traditional logs and metrics in OpenSearch.

Amazon Managed Grafana

Amazon Managed Grafana (AMG) is a fully managed service developed by Grafana Labs and AWS
based on Grafana, a popular open source analytics platform. It allows you to create a rich, single-pane-
of-glass view for all your disparate data sources. It also allows you to create alerts within the dashboard
and dispatch notifications to different destinations, such as Amazon SNS, PagerDuty, Slack, Opsgenie,
and others. AMG also enables you to analyze, monitor, and alarm across multiple data sources such as
AMP, Amazon CloudWatch, AWS X-Ray, Amazon Time Stream, Amazon OpenSearch service, and
third-party ISVs such as Datadog and Splunk, as well as self-managed data sources such as Influx DB.
AMG reduces the operational management of Grafana by automatically scaling compute and storage
infrastructure as demands increase with automated version updates and security patching.

With AMG Enterprise, you can access even more Enterprise plugins, which give customers more
flexibility and options to unify data visualization on the managed Grafana service.

Overview of AWS-managed open source observability services in AWS 41

A view of the AMG dashboard for the ingested CloudWatch Logs can be seen in the following screenshot:

Figure 2.18 – CloudWatch log ingestion statistics on an AMG dashboard

With that, we understand the open source managed observability services offered on AWS. Now, let’s
explore the artificial intelligence (AI) and machine learning (ML) services offered by AWS to support
observability for your application and transition from manual operations to AI for IT operations.

AI and ML insights

AIOPs is the process of using AI or ML techniques to solve operational problems. The goal of AIOPs
is to reduce human intervention in the IT operations process. AWS offers multiple AI and ML services
to help you automate your IT operations. We will review some of the AIOPs services (Amazon
DevOps Guru, Amazon CodeGuru, and Amazon Lookout for Metrics) offered by AWS and their role
in observability in the next few subsections.

Amazon DevOps Guru

The key challenges operators face today when an issue occurs are due to large and disparate data
volumes, lots of time and effort in manually correlating across data sources and tools, alarms and
notifications from multiple tools resulting in alarm fatigue, and the inability to identify the most
critical issue. That’s where Amazon DevOps Guru comes into the picture.

Amazon DevOps Guru is an ML-powered service that is designed to improve an application or
service’s operational performance and availability by reducing expensive downtime with no ML
experience. When DevOps Guru identifies a critical issue by detecting behaviors that deviate from
normal operating patterns, such as increased latency, high error rates, resource constraints, and so
on, it automatically sends an alert and provides a summary of related anomalies, along with the likely

Overview of the Observability Landscape on AWS42

root cause and context for when and where the issue occurred. It prevents the operations team from
having to set alarms and thresholds manually, which prevents tons of alarms from being generated.
When an issue occurs, it guides operators via Insights, hence reducing the MTTR issue. When possible,
DevOps Guru also helps provide recommendations on how to remediate the issue.

Additionally, Amazon DevOps Guru for RDS combines the database depth of Performance Insights
with ML detection. Amazon DevOps Guru for Serverless services that use AWS Lambda detects
anomalous behaviors at the function and correlates anomalies across resources into a single issue.

Amazon CodeGuru

Historically, if a developer were to write code, it would be reviewed by a senior developer to understand
any specific issues with the code. That’s where Amazon CodeGuru helps you. Amazon CodeGuru is a
developer tool that provides automated code reviews and identifies the most expensive lines of code
that affect application performance. Amazon CodeGuru is an ML service for automated code review
and provides application performance profiling. Furthermore, it accepts user feedback and enhances
the recommendations based on user feedback.

Amazon CodeGuru has two different services:

• Amazon CodeGuru Reviewer

• Amazon CodeGuru Profiler

Amazon CodeGuru Reviewer can integrate with GitHub and AWS CodeCommit to scan the code,
provide automated code review comments, and addresses code areas such as concurrency, resource
leaks, sensitive information leaks, and more. Amazon CodeGuru needs read-only access and will not
store the code. Amazon CodeGuru Reviewer supports the Java and Python languages.

Amazon CodeGuru Profiler finds your most expensive lines of code. It is trained to find methods with
high potential for performance optimization and provides recommendations on how to fix the code.
CodeGuru Profiler supports Amazon EC2 instances, Amazon ECS, EKS, AWS Fargate containers,
and AWS Lambda functions. Amazon CodeGuru Profiler supports Java, Python, and JVM languages
such as Scala and Kotlin.

The following screenshot shows the heap size anomalies in an application captured by Amazon
CodeGuru Profiler:

Overview of AWS-managed open source observability services in AWS 43

Figure 2.19 – Visualization of heap size anomalies in a sample app in CodeGuru

Amazon Lookout for Metrics

Amazon Lookout for Metrics is a fully managed ML service that detects anomalies in any time-series
metrics and determines their root cause with no ML experience. You can connect your data to the
service via any supported data sources, ranging from Amazon S3, Amazon Redshift, and Amazon
CloudWatch to name a few. From an observability standpoint, it can detect anomalies in operational
metrics and business metrics, and accurately detect data points that are outside the norm. Then, it
creates an impact summary to help you diagnose the criticality and root cause of the anomalies quickly.
Once anomalies have been detected, you can investigate the results on the AWS console, consume
them via APIs, and create custom notifications and actions via an output channel. Amazon Lookout
for Metrics also allows you to provide feedback and tune the system for continuous improvement.

The use cases of Amazon Lookout for Metrics are beyond operational IT metrics and could be expanded
to enhance customer engagement across the customer journey, marketing metrics to understand the
overall traffic volume, revenue churn, and more.

You can see the anomaly detection that is generated by Amazon Lookout for Metrics in the
following screenshot:

Overview of the Observability Landscape on AWS44

Figure 2.20 – CPU utilization anomaly detection in Amazon Lookout for Metrics

Now that we have understood the services offered on AWS for observability, let’s try to understand
the methodologies available for gathering metrics, logs, and traces from your application running on
EC2, and containerized applications running on EKS, ECS, and others.

Instrumentation

Fundamentally, instrumentation involves measuring an application. It is the very foundation on which
we can monitor, troubleshoot, debug, profile, and understand how applications function and why they
function in a certain way. AWS provides different agents and SDKs to instrument infrastructure and
applications. These agents are used to collect metrics, logs, and traces. These metrics are collected by
AWS services and are then used to provide insight into the application.

CloudWatch Agent

CloudWatch Agent is an open source software package that autonomously and continuously runs on
EC2, containers, hybrid, and on-premises servers running both Linux and Windows. CloudWatch
Agent sends metrics and logs to Amazon CloudWatch for storage and analysis, allowing you to create
a unified dashboard view of metrics and logs across your hybrid environment.

X-Ray Agent

X-Ray Agent is a software package that runs on EC2, hybrid, and on-premises servers running both
Linux and Windows. X-Ray Agent sends traces of applications to AWS X-Ray for storage and analysis,
allowing you to create a unified dashboard view of traces across your hybrid environment.

Overview of AWS-managed open source observability services in AWS 45

The X-Ray SDK is a library that provides a high-level API for AWS X-Ray. It also provides a way to
interact with AWS X-Ray and generate and consume traces. The X-Ray SDK is available in different
programming languages, such as Java, Python, and Go.

AWS Distro for OpenTelemetry

AWS Distro for OpenTelemetry (ADOT) is a secure, production-ready, AWS-supported distribution
of the OpenTelemetry project. OpenTelemetry provides an agnostic instrumentation library for multiple
runtimes and platforms with automatic and manual instrumentation support to collect distributed
traces and metrics. With AWS Distro for OpenTelemetry, you can instrument your applications to
send correlated metrics and traces to multiple AWS and Partner monitoring solutions. You can use
ADOT to instrument your applications running on Amazon ECS, Amazon EC2, Amazon EKS on
EC2, AWS Fargate, and AWS Lambda, as well as on-premises.

ADOT consists of SDKs, auto-instrumentation agents, collectors, and exporters to send data to backend
services. OpenTelemetry’s components include the following:

• The OpenTelemetry library/SDK: The OpenTelemetry SDK allows you to collect AWS resource-
specific metadata, such as container IDs, Lambda function versions, tasks, and Pod IDs. It
allows you to correlate ingested trace and metrics data from AWS X-Ray and CloudWatch.

• An auto-instrumentation agent: AWS has added support in the OpenTelemetry Java auto-
instrumentation agent for AWS SDK and AWS X-Ray traces.

• OpenTelemetry collector: AWS has added AWS-specific exporters to the distro upstream
collector to send data to AWS services, including AWS X-Ray, Amazon CloudWatch, and AMP.

Jaeger and Zipkin tracing

Jaeger is an open source distributed tracing system initially developed by Uber. It stores traces and
spans (in a storage backend) and hosts a UI that gives visibility to these traces and spans. Zipkin
is a distributed tracing system, and it helps gather the timing data needed to troubleshoot latency
problems in service architectures.

The new ADOT releases include the Jaeger receiver and Zipkin receiver as a part of the AWS Distro.
Based on the requirements, the backends where the traces and logs are sent can be either X-Ray,
OpenSearch, or others, based on the observability services being adopted.

Fluentbit

Fluentbit is a super-fast, lightweight, highly scalable logging and metrics processor and forwarder.
AWS provides a fluent bit image with CloudWatch Logs and Kinesis Data Firehose plugins. If you
are looking to capture application logs from EKS, fluentbit and fluentd are the options to publish the
data to CloudWatch Logs. With the latest release of 1.19, fluentbit also supports publishing logs to
OpenSearch Service.

Overview of the Observability Landscape on AWS46

With that, we’ve explored all the blocks of the observability services provided by AWS in native, open
source managed, and AI and ML services. We’ve also understood the tools available to instrument
applications and gather metrics, logs, and traces. Next, we’ll provide guidance on how you should
choose various services to achieve observability for your applications.

Adoption of observability services in AWS
Observability covers many concepts and tools that are used by different organizational roles with widely
varying needs. AWS has a broad, deep, and growing portfolio of solutions. Observability solutions are
tending to converge, in part because of the industry-wide adoption of OpenTelemetry as a standard.

For customers looking for an all-in-one solution, that’s Amazon CloudWatch, with a large and growing
number of features across a wide range of observability needs, and more on the way. However, other
services, even some that are not primarily observability tools, also have multiple observability features,
and when a customer can meet a need within a familiar tool, they often prefer to use that. For example,
logs can be analyzed using Amazon CloudWatch Logs, but also with Amazon OpenSearch Service.
Customers who are already familiar with Elasticsearch and use it in other contexts may use OpenSearch
for log analysis. Similarly, distributed traces can be analyzed with AWS X-Ray, but also with Amazon
OpenSearch Service’s new Trace Analytics feature.

In this reality, any customer’s choice of tool may be less about the availability of a specific feature than
about their preferences across several axes, such as the following:

• The level of sophistication

• Preference for open source

• Need to integrate with third-party solutions

• Organization-wise versus individual/team choices

• Bias toward familiarity

• All-in-one AWS versus hybrid versus multi-cloud

• Architecture – standard stack versus containers versus serverless

We will look into the details of these topics throughout this book to understand them in greater detail.

Summary 47

Summary
In this chapter, we saw what options are available for adopting observability for applications running
on AWS and in Hybrid mode. We understood what native AWS services are available to support
observability needs in a distributed application environment and where they would be useful. We
also covered what AWS-managed open source services are available on AWS. Then, we understood
high-level ways to choose the AWS and open source managed services dimensions when adopting
the observability requirements for an organization.

In the next chapter, we will start understanding each of the services in detail, starting with CloudWatch
Metrics and CloudWatch Logs.

Questions
Answer the following questions to test your knowledge of this chapter:

1. Which AWS-native services are available to support observability needs in a distributed
application environment?

2. What AWS-managed open source services are available on AWS to support observability needs
in a distributed application environment?

3. What instrumentation tools are available on AWS to support observability needs in a distributed
application environment?

4. What is the difference between AWS-native and AWS-managed open source services?

5. What are the different ways to choose the AWS-native and AWS-managed open source services?

3
Gathering Operational Data
and Alerting Using Amazon

CloudWatch

We spent the whole of the last chapter understanding the various services available on AWS to observe
our applications, using cloud-native and open source observability solutions to observe and monitor
the compute, microservices, and serverless components. We categorized the services into layers and
provided a brief description of the services in each layer. Also, we gained an understanding of the
functionalities of those services and when you should adopt those services in general. Those services
will be discussed as we progress, and we will practically demonstrate them.

In this chapter, we are going to cover the following topics:

• Overview of CloudWatch metrics and logs

• Deployment and configuration of the CloudWatch agent in an EC2 instance

• Overview of CloudWatch alarms and dashboard

• Setup of CloudWatch alarms and dashboard

• Overview of Amazon EventBridge

• Setup rules for state change events in Amazon EventBridge

Technical requirements
To be able to accomplish the technical tasks in the chapter, you will need to have the following
technical prerequisites:

• A working AWS account (you can opt for the free tier, which will cost $0/month for 1 year)

• A Windows EC2 instance set up in the AWS account

Gathering Operational Data and Alerting Using Amazon CloudWatch50

• A fundamental understanding of AWS IAM (Roles, Users, Policies, and Permissions)

• Fundamental knowledge of AWS Systems Manager (SSM)

• Basic PowerShell and shell script execution knowledge

• An understanding of AWS Simple Notification Service (SNS)

The code files for this chapter can be downloaded from the Chapter03 folder at https://github.
com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS.

Overview of CloudWatch metrics and logs
In Chapter 2, Overview of the Observability Landscape on AWS, you gained an understanding of the
functionalities provided by CloudWatch metrics, CloudWatch logs, and the dashboard. Now let’s
dive into the technical terms related to these services.

CloudWatch metrics have three main terms and they are as follows:

• Metric: A metric is a variable to monitor and is a time-ordered set of data points.

• Metric namespace: A CloudWatch metric namespace is a logical store for storing different
CloudWatch metrics. Metrics from different namespaces are isolated from each other using
metric namespaces. There are two main types of namespaces, namely AWS namespaces and
custom namespaces. All the default AWS vended metrics will be published to AWS namespaces
with the AWS/Service. Metrics published from the CloudWatch agent and metrics published
from applications are published to custom namespaces. You can see the namespaces available
in the CloudWatch metrics in the following screenshot.

Figure 3.1 – Metric namespaces in CloudWatch

https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS
https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS

Deployment and configuration of the CloudWatch agent in an EC2 instance 51

• Metric dimensions: A dimension is a name/value pair that is part of a metric’s identity. By using
dimensions, you are creating a new variation of a metric. For example, you can publish a metric
to a dimension called InstanceId, and another dimension called InstanceType. This functionality
allows you to see how a specific InstanceType is being utilized from a grouping perspective.

CloudWatch retains metric data for 15 months. Data points that are initially published within a
shorter period are aggregated together for long-term storage. For example, if you collect data for 1
minute, the data remains available for 15 days with a 1-minute resolution. After 15 days, this data is
still available, but is aggregated and is retrievable only with a resolution of 5 minutes. After 63 days,
the data is further aggregated and is available with a resolution of 1 hour.

Let’s try to understand the technical terms related to CloudWatch logs:

• Log event: A record of an activity generated by an application or a resource being monitored.
The log event generated in CloudWatch has two properties – timestamp and raw event message.

• Log stream: A log stream is a sequence of log events that share the same source. A log stream
is generally intended to represent the sequence of events coming from the application instance
or the resource being monitored.

• Log group: A log group is a collection of log streams that share the same retention, monitoring,
and access control settings. You can define log groups and specify which streams to put into
each group. There is no limit on the number of log streams that can belong to one log group.
You can also define a log group with a retention policy that specifies how long to retain the
log events in the group.

Let’s proceed with the installation of the CloudWatch agent and gather custom metrics and logs from
an EC2 instance.

Deployment and configuration of the CloudWatch agent
in an EC2 instance
When you launch an EC2 instance, whether Linux or Windows, CloudWatch will provide metrics
related to the instance, such as CPU, network, and disk metrics, by default. The automated dashboard
in Figure 3.2 provides the default AWS vended metrics provided by CloudWatch as part of the EC2
instance built with no additional configuration.

You can view the automatic dashboard generated by AWS CloudWatch by navigating to CloudWatch
–> Dashboard –> Automatic Dashboard –> EC2. This should display the default AWS vended metrics
provided by CloudWatch, as seen in the following screenshot:

Gathering Operational Data and Alerting Using Amazon CloudWatch52

Figure 3.2 – Automated dashboard generated by CloudWatch for default AWS vended EC2 metrics

Building upon the default vended metrics provided by AWS, there are certain metrics that are only
visible to the guest operating system, such as memory metrics and page file utilization. In some cases,
you also need to monitor application-level metrics, Operating System (OS) logs, or application logs.
You can start monitoring these additional levels of detail by utilizing the unified CloudWatch agent.

The unified CloudWatch agent

As discussed in Chapter 2, Overview of the Observability Landscape on AWS, the unified CloudWatch
agent is an open source package available on GitHub: https://github.com/aws/amazon-
cloudwatch-agent. The stable version of the CloudWatch agent can be downloaded from the
AWS repository, based on the OS and the region of the instance, from the following link: https://
docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/download-
cloudwatch-agent-commandline.html.

You can gather the OS metrics and log files from an EC2 instance using the CloudWatch agent.
Additionally, you can also enable the Statsd and Collectd protocols, and the procstat plugin to gather
application metrics, network metrics, and individual process level metrics respectively, and send them
to the CloudWatch metrics namespace. The following diagram provides a high-level representation
of the CloudWatch agent and the supported plugins:

https://github.com/aws/amazon-cloudwatch-agent
https://github.com/aws/amazon-cloudwatch-agent
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/download-cloudwatch-agent-commandline.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/download-cloudwatch-agent-commandline.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/download-cloudwatch-agent-commandline.html

Deployment and configuration of the CloudWatch agent in an EC2 instance 53

Figure 3.3 – CloudWatch agent and plugins

Next, let’s try to set up the unified CloudWatch agent on an EC2 Windows instance.

EC2 Windows instance monitoring with the unified CloudWatch
agent

Currently, the CloudWatch agent for Windows can only be used on 64-bit versions of the operating
system. Now Let’s take a look at how unified CloudWatch agent works in Windows. Once you install
the unified CloudWatch agent, there are three main components that will provide the required
functionality in a Windows instance. The CloudWatch agent installation creates our Windows Service
that reads the given Configuration File and sends the data to the Amazon CloudWatch service, as
shown in the following diagram:

Figure 3.4 – The components of CloudWatch agent in the Windows OS

Gathering Operational Data and Alerting Using Amazon CloudWatch54

You can install the CloudWatch agent in two different ways:

• Manual installation: Download the agent from the AWS repository and install it manually
on your EC2 instance.

• Automated installation: If you are looking to roll out the CloudWatch agent to multiple EC2
instances, it would be preferred to go with automated installation. Automated installation
can be carried out in two different ways other than leveraging Infrastructure as Code (IaC)
using CloudFormation:

 � AWS Systems Manager: AWS Systems Manager can be used to automate the process of agent
installation in EC2 instances along with applying the standard templates.

 � Application Insights: Application Insights can be used to automate agent installation and
discovery and monitor resources, and eliminate the need for manual instrumentation.

Let’s build the Windows EC2 instance along with the Internet Information Services (IIS) web server.
The prerequisites are as follows:

1. Set up an EC2 Windows instance with the IIS web server. To set up the EC2 Windows instance,
follow the instructions at https://docs.aws.amazon.com/AWSEC2/latest/
WindowsGuide/EC2_GetStarted.html.

2. As we launch of the EC2 instance, we will use User data to install the IIS web server, as depicted
in Figure 3.5. Let’s configure the security group to allow port 80 to allow http requests, along
with Remote Desktop Protocol (RDP) port 3389, for the EC2 instance to allow the web
application to be accessible from the internet. This will allow you to generate user access logs
and capture them using the CloudWatch agent when you browse the web application.

3. To install the IIS web server, copy the following script to User data:

<powershell>

Install-WindowsFeature -name Web-Server
-IncludeManagementTools

</powershell>

Once you’ve copied the User data script, it should look like the following:

Figure 3.5 – IIS web server installation using User data

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html

Deployment and configuration of the CloudWatch agent in an EC2 instance 55

As we have built the EC2 Windows instance, let’s install the unified CloudWatch agent using the
manual installation method and explore automation in the next section.

Manual installation and configuration of the CloudWatch agent

Let’s look at the steps required for the installation and configuration of the unified CloudWatch agent:

1. Set up IAM role: Create the IAM role and attach the IAM role to an EC2 instance.

2. Download and install the agent: Download the CloudWatch agent from S3 or GitHub and
install it on the EC2 instance.

3. Create a configuration file: Create a JSON configuration file using the wizard.

4. Start the agent: Start the CloudWatch agent using the configuration file.

Let’s proceed with step 1 – creating the IAM role and adding it to the EC2 instance!

Step 1 – set up IAM role: The IAM role provides the permission to publish the custom metrics gathered
by the agent to the CloudWatch metrics and logs service:

1. Let’s go ahead and create a new IAM role named CWAgentAdminRole with CloudWatch
AgentAdminPolicy.

Note
We are using a more privileged policy, CloudWatchAgentAdminPolicy, as we are looking to store
the configuration file generated in the AWS SSM Parameter Store. CloudWatchAgentServerPolicy
will be sufficient to gather metrics using the CloudWatch agent and store them in the
CloudWatch service.

2. Input IAM in the search engine, then select the IAM service, as shown in the following
screenshot, and navigate to it:

Figure 3.6 – Navigate to IAM

Gathering Operational Data and Alerting Using Amazon CloudWatch56

3. Next, you will select Roles | Create role:

Figure 3.7 – Create role

4. Select Trusted Entity | AWS service | EC2, as shown in the following screenshot and select Next:

Figure 3.8 – Select EC2

5. Search for and select CloudWatchAgentAdminPolicy and select Next.

6. Provide the Role name as CWAgentAdminRole and click on the Create Role button.

Deployment and configuration of the CloudWatch agent in an EC2 instance 57

Figure 3.9 – Create a CloudWatch agent role

This completes the creation of the new IAM role with the required permissions. Let’s proceed
with attaching the newly created role to the EC2 instance we have created.

7. By attaching the IAM role to the E2 instance, we grant it the required permission to
publish CloudWatch metrics and also save the configuration file in Parameter Store in AWS
Systems Manager.

Gathering Operational Data and Alerting Using Amazon CloudWatch58

8. Right-click on the instance created, then navigate to Security, and select Modify IAM role:

Figure 3.10 – Modify IAM role

9. From the dropdown, select the role named CWAgentAdminRole and click Save:

Figure 3.11 – Select CWAgentAdminRole from the dropdown

For further information about the IAM role and instructions on how to create one, refer to
the following link: https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_roles_create_for-service.html.

Now, let’s proceed with step 2 of installing the CloudWatch agent!

Deployment and configuration of the CloudWatch agent in an EC2 instance 59

Step 2 – installation of the CloudWatch agent: We need to download the agent files from the S3
location provided by AWS that contains the CloudWatch agent source files. This can be done using
either the browser or PowerShell. We will use PowerShell for the installation and configuration.

Let’s log in to the Windows EC2 instance created as a part of the prerequisites and download the
CloudWatch Agent installation package to the user’s desktop and follow these steps:

1. Make sure to open PowerShell in Administrator mode and run the following command to
download the unified CloudWatch agent:

Invoke-WebRequest -Uri https://s3.amazonaws.com/amazon-
cloudwatch-agent/windows/amd64/latest/amazon-cloudwatch-
agent.msi -OutFile $env:USERPROFILE\Desktop\amazon-
cloudwatch-agent.msi

2. Verify that the Amazon CloudWatch agent was successfully downloaded using the following
command and verify that it returns True:

Test-Path -Path $env:USERPROFILE\Desktop\amazon-
cloudwatch-agent.msi

3. Install the CloudWatch agent using the following PowerShell command. The command will
execute silently and will install the agent on the EC2 instance:

msiexec /i $env:USERPROFILE\Desktop\amazon-cloudwatch-
agent.msi

Executing all the three steps will result in the following:

Figure 3.12 – Executing agent download and agent installation from PowerShell

Step 3 – create a configuration file: Now, let’s proceed with generating and saving the configuration file.
To generate the configuration file, we need to execute a file named amazon-cloudwatch-agent-
config-wizard.exe. The executable program is menu-driven and will provide configurable
options within your PowerShell console session. The executable will create a config.json file and
also provides you with the option to store the configuration file in AWS Systems Manager Parameter
Store. Let’s proceed with creating the configuration file:

1. Navigate to %ProgramFiles%\Amazon\AmazonCloudWatchAgent, launch PowerShell,
and run the amazon-cloudwatch-agent-config-wizard.exe executable using
PowerShell, which will help you generate the configuration file with the options for gathering

Gathering Operational Data and Alerting Using Amazon CloudWatch60

additional metrics from the operating system by executing the following code snippet (please make
sure to navigate to the path %programfiles%\Amazon\AmazonCloudWatchAgent.
This is the path where the config.json file should be stored to execute the exercise correctly):

& $env:ProgramFiles\Amazon\AmazonCloudWatchAgent\amazon-
cloudwatch-agent-config-wizard.exe

2. The first question, shown in Figure 3.13, asks you which OS you would like to install the agent
for. As we are on Windows EC2, we simply press Enter as it is the default option.

/

Figure 3.13 – OS selection

3. The second question, shown in Figure 3.14, asks for the location of the instance. The CloudWatch
agent wizard will query the EC2 instance metadata to check the details and provide the default
option. As we are using an EC2 instance on AWS, let’s proceed with the default selection.

Figure 3.14 – Location selection

4. The third question, shown in Figure 3.15, is about enabling the StatsD plugin. We will not
configure the plugin for this exercise as there are no additional application requirements. Let’s
provide option 2.

Figure 3.15 – StatsD plugin options

Deployment and configuration of the CloudWatch agent in an EC2 instance 61

5. The fourth question is about the migration of any legacy agent configuration from the old
CloudWatch Log Agent. CloudWatch Log Agent was a standalone agent before the introduction
of a unified CloudWatch agent. Let’s continue with option 2 as we are not transitioning any
configuration from the legacy agent:

Figure 3.16 – Migration of log configuration from the legacy Log Agent

6. The next four questions, shown in Figure 3.17, are about what type of metrics you would like
to gather from the OS and the metric dimensions. We will go with the default options. Note
that adding dimensions to the metrics will result in additional costs for CloudWatch metrics.
Therefore, if specific metric dimensions are not required, it can be changed to no:

Figure 3.17 – Core metric and dimension options

7. The next question is about the resolution of the metrics. Based on the criticality of the application,
you can gather metrics at a frequency of 1 second. For this exercise, we’ll select 1s (1 second):

Figure 3.18 – Resolution selection for CloudWatch metrics

Gathering Operational Data and Alerting Using Amazon CloudWatch62

8. The next question is about the additional metrics that you would like to gather by default. To
make it easy, CloudWatch has predefined metrics for each configuration. The standard option
will provide Memory, Paging, Processor, PhysicalDisk, and LogicalDisk information. Details
can be verified at this link: https://docs.aws.amazon.com/AmazonCloudWatch/
latest/monitoring/create-cloudwatch-agent-configuration-file-
wizard.html. Refer to the CloudWatch agent predefined metric sets section. For this
exercise, we are going with option 2 (Standard):

Figure 3.19 – Selecting predefined metrics to be gathered

9. The next question, seen in Figure 3.20, is about confirming whether the configuration is fine
or whether you would like to change it. The configuration generated as a JSON file can be
customized at a later stage if required. We will confirm that the configuration is good.

Figure 3.20 – Confirming the configuration of options

10. The next four questions are about the logs that you would like to collect using the CloudWatch
agent. We are going to collect IIS logs from the default path. We will select yes and provide
the log path and the log group name to ingest the logs.

11. Next, you will need to provide the log file path to gather the IIS log files, as shown here:

C:\inetpub\logs\LogFiles\W3SVC1*.log

12. We will be providing the name IISLogs as the log group name to store the logs sent by the
CloudWatch agent for IIS:

IISLogs

13. Log Group Retention in days: We will select option 5, which will set up the retention of logs
for 7 days in the CloudWatch log group and specify any additional log files to monitor as no.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-cloudwatch-agent-configuration-file-wizard.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-cloudwatch-agent-configuration-file-wizard.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-cloudwatch-agent-configuration-file-wizard.html

Deployment and configuration of the CloudWatch agent in an EC2 instance 63

Figure 3.21 – Custom log retention configuration

14. The next question is whether you would like to monitor any Windows event logs. This will
be useful if you would like to gather OS or application events (such as ad hoc OS reboots,
application backup-related events, etc.). We will select no for this exercise, as shown in the
following screenshot:

Figure 3.22 – Windows event gathering using the CloudWatch agent

Gathering Operational Data and Alerting Using Amazon CloudWatch64

15. The configuration file will be saved locally. If you would like to automate the agent installation
and configuration in the future, the config file can be saved to the AWS SSM Parameter Store.
Let’s go ahead and save it in Parameter Store so that we can look at automation for the next
exercise. Select the default options for the next four questions, as shown in Figure 3.23. In
these four options, we are providing the name for the parameter store, which will default to
AmazonCloudWatch-windows, the region to store the configuration file in (AWS System
Manager defaults to the region you are building the EC2 instance in), and the credentials to
access Parameter Store (provided by the AWS IAM role attached to the EC2 instance provided
in step 1).

Figure 3.23 – Saving the configuration file to Parameter store

Let’s proceed with step 4: starting the agent using the config file generated!

Step 4 – starting the agent: We need to run a PowerShell command to start the agent along with
the configuration file generated as part of step 3 to start the CloudWatch agent. Let’s proceed with
starting the agent:

1. Let’s start the agent using amazon-cloudwatch-agent-ctl.ps1 and using the
configuration file generated in step 3 by running the following command:

& $env:ProgramFiles\Amazon\AmazonCloudWatchAgent\
amazon-cloudwatch-agent-ctl.ps1 -a fetch-config -m ec2
-c file:$env:ProgramFiles\Amazon\AmazonCloudWatchAgent\
config.json -s

2. After running the command, you should see that the CloudWatch agent has been successfully
started using the configuration file provided, as shown in Figure 3.24.

Figure 3.24 – Starting the CloudWatch agent using Powershell

Deployment and configuration of the CloudWatch agent in an EC2 instance 65

3. You can check that the service has been successfully started and is running from Services
(Local) in the Windows OS, as shown in Figure 3.25.

Figure 3.25 – The CloudWatch agent service in Windows services

Next, let’s explore the data received by the CloudWatch metrics and logs from the CloudWatch agent:

1. Navigate to CloudWatch –> Metrics –> All metrics and observe that there is a new custom
namespace created with the name CWAgent, as shown in the following screenshot:

Figure 3.26 – Custom namespace created for the CloudWatch agent

2. Click on the CWAgent metric namespace, then select InstanceID, which will provide the
detailed metrics gathered for the EC2 instance, such as Processor % Usertime, Physical %
Disk Time, Pagefile Usage, MemoryCommitted, and so on.

Gathering Operational Data and Alerting Using Amazon CloudWatch66

Figure 3.27 – Exploring the metrics gathered by the CloudWatch agent

3. Browse the public IP of the EC2 instance created, which will generate the IIS logs. To verify the
logs gathered, navigate to CloudWatch | Log groups. You should see, as in Figure 3.28, that
there’s a new log group named IISLogs.

Figure 3.28 – Exploring the web server logs gathered by the CloudWatch agent

When you navigate the log group, you will observe the log streams in the CloudWatch Log groups
that have been created by the instance ID for each EC2 instance.

This verifies that the manual agent installation was successful and we are able to succesfully gather
additional metrics from the EC2 instance, in addition to collecting logs from the web server.

As a part of Well-Architected best practices, it would be good to leverage an automated agent
rollout rather than a manual installation. We already generated the configuration file required for the
configuration from the manual installation and stored it in AWS SSM Parameter Store. Let’s continue
with the installation and configuration of the CloudWatch agent using AWS Systems Manager.

Deployment and configuration of the CloudWatch agent in an EC2 instance 67

Automated installation using AWS Systems Manager

To begin this section, please proceed with the new EC2 instance built along with the IIS installation,
which was previously covered as part of the prerequisites. Next, let’s see how to install the agent using
Systems Manager:

1. Set up IAM roles: Create an IAM role with policies of AmazonEC2RoleforSSM and
CloudWatchAgentServerPolicy. This will enable you to manage the EC2 instance using AWS
Systems Manager and gather custom metrics and logs from the EC2 instances in CloudWatch.

2. Installation of the agent: We will run the AWS-ConfigureAWSPackage command and
install the CloudWatch agent on the target EC2 instances.

A high-level representation of configuring the role and the installation of the agent is depicted
in the following diagram:

Figure 3.29 – Installation process of the CloudWatch agent using Systems Manager

3. Create and store a configuration file: If you have skipped manual installation, please generate
the configuration file as described in step 3 of the Manual installation and configuration
of the CloudWatch agent section or download it from the repository and create it as a
parameter in AWS Systems Manager’s Parameter Store. You can find the configuration file
(AmazonCloudWatch-windows.json) on Github: https://github.com/
PacktPublishing/AWS-Observability-Handbook/blob/main/Chapter03/
AmazonCloudWatch-windows.json.

4. Starting the agent: The process of starting the CloudWatch agent using AWS System manager
can be accomplished by running the SSM AmazonCloudWatch-ManageAgent document
with the saved configuration file in AWS SSM Parameter Store and starting the agent in the
EC2 instances to be monitored. This process is illustrated in the following diagram:

Figure 3.30 – Process to start the CloudWatch agent using AWS Systems Manager

https://github.com/PacktPublishing/AWS-Observability-Handbook/blob/main/Chapter03/AmazonCloudWatch-windows.json
https://github.com/PacktPublishing/AWS-Observability-Handbook/blob/main/Chapter03/AmazonCloudWatch-windows.json
https://github.com/PacktPublishing/AWS-Observability-Handbook/blob/main/Chapter03/AmazonCloudWatch-windows.json

Gathering Operational Data and Alerting Using Amazon CloudWatch68

With a clear understanding of the procedure for installing the CloudWatch agent using AWS SSM, we
can now move forward with installing the CloudWatch agent using Systems Manager:

1. IAM roles provide the permission to publish the custom metrics gathered by the agent to the
CloudWatch metrics and logs service.

2. Let’s go ahead and create a new IAM role named CWAgentRole. Please refer to the instructions
in the manual installation on how to create a role and add the AmazonEC2roleforSSM and
CloudWatchAgentServerPolicy policies and create a new IAM role na,ed CWAgentRole.
Then attach it to the newly created instance.

3. To install the CloudWatch agent using Systems Manager, do the following:

I. Navigate to Systems Manager as follows:

Figure 3.31 – Navigate to Systems Manager

II. Select Run Command | Run a Command, as you can see in the following screenshot:

Deployment and configuration of the CloudWatch agent in an EC2 instance 69

Figure 3.32 – Select Run a Command

III. Select Command document | AWS-ConfigureAWSPackage, and leave the Document
Version to Default:

Figure 3.33 – CloudWatch agent install using AWS SSSM Run a ComV.nd

Gathering Operational Data and Alerting Using Amazon CloudWatch70

IV. Provide the name of the package to Install as AmazonCloudWatchAgent and select the
Choose instances manually option and then select the newly created AWS EC2 Instance
and uncheck Enable an S3 bucket:

Figure 3.34 – Provide package name as AmazonCloudWatchAgent

V. Once submitted, verify that the installation is successful, which should look like the following:

Figure 3.35 – CloudWatch agent installed successfully

Deployment and configuration of the CloudWatch agent in an EC2 instance 71

4. Let’s start the CloudWatch agent using the AWS SSM document:

I. Select Run command | Command document | AmazonCloudWatch-ManageAgent.

Figure 3.36 – Starting the CloudWatch agent using AmazonCloudWatch-ManageAgent

II. Provide the Parameter file from Parameter Store as AmazonCloudWatch-windows
in the Optional Configuration Location field.

Figure 3.37 – Selecting the CloudWatch agent configuration file from Parameter Store

Gathering Operational Data and Alerting Using Amazon CloudWatch72

III. Select Choose instances manually, as shown in Figure 3.37, select the newly created
instance, and configure the agent with the parameters created as per the JSON file. Unselect
Enable an S3 bucket and leave the remaining values at the default. Then click Run.

Figure 3.38 – Selecting the instances where the CloudWatch agent should be configured

IV. Verify that the agent configuration is successful as follows.

Figure 3.39 – Successful rollout of the CloudWatch agent configuration using Systems Manager

Overview of CloudWatch alarms and dashboards 73

V. When you navigate to the CloudWatch metrics, you should be able to see the instance
sending the custom CloudWatch metrics.

Figure 3.40 – Verification of the gathered CloudWatch agent metrics

We have successfully installed and configured the CloudWatch agent using AWS Systems Manager.

We will be covering the method to discover and install the CloudWatch agent using AWS Application
Insights in Chapter 5, Insights into Operational Data with CloudWatch. Now, let’s continue with
configuring the alarms for the metrics being monitored.

Overview of CloudWatch alarms and dashboards
In the last section, we started gathering custom OS metrics and logs using the CloudWatch agent.
Let’s proceed with the technical concepts of CloudWatch alarms and configure CloudWatch for the
gathered metrics.

CloudWatch alarms

We gained an understanding of what CloudWatch alarms are and the states in them in the previous chapter.

Let’s understand what an alarm can be used for in observability. CloudWatch alarms will help you
measure a defined data point and determine whether it is in an alarm state, OK state, or has insufficient
data. Based on the state of the alarm, we can set up notifications and notify the team, group, or a third-
party system that will be interested in the application’s state. Additionally, an automated response can
be set up to act on the alarm so that auto-remediation activities can be carried out.

Different types of alarms can be set up in CloudWatch. They are as follows:

• Static threshold: Static thresholds will be good when there are well-defined KPIs, for example,
instance metrics that need to be alerted when they cross a threshold.

Gathering Operational Data and Alerting Using Amazon CloudWatch74

• Anomaly detection: Anomaly detection in CloudWatch applies a machine learning algorithm
to define the upper limit and lower limit for each of the enabled metrics and generates an alarm
only when the metrics fall outside of the expected values This can be useful for identifying
unexpected spikes or dips in your metric patterns. An example use case is detecting a sudden
increase in usage, which could be a result of organic growth in the usage of an application or
a sign of a DDOS attack.

• Composite alarms: Composite alarms are a way to group multiple individual alarms. Instead
of having to manage and respond to multiple alarms for different parts of the environment,
composite alarms allow you to group related alarms together. This can help to reduce the number
of alarms that need to be monitored and managed, which can improve overall efficiency and
reduce the potential for alarm noise caused by multiple alarms being triggered at the same time.

• Metric math expressions: Metric math expressions can be used to build more meaningful
KPIs and alarms for them. You can combine multiple metrics and create a combined utilization
metric and alarm on the composite metric. For example, you would like to set up an alarm only
for when all the pods in a particular cluster have high CPU utilization.

Let’s go ahead and create a fundamental CPU alarm for the monitored EC2 instance and send
notifications via email using AWS SNS:

1. Let’s set up a static threshold alarm. Navigate to CloudWatch | Alarms | All Alarms| Create
alarm. Let’s see what that looks like in the following screenshot.

Figure 3.41 – Create alarm

2. Click Select Metric | Browse AWS namespaces | EC2 | Per-Instance Metrics. Now, select
CPU utilization for the instance that you created in the earlier exercise in the Deployment and
configuration of the CloudWatch agent in an EC2 instance section.

Overview of CloudWatch alarms and dashboards 75

Figure 3.42 – CPU utilization metric for an EC2 instance

3. Select the Greater threshold and set the threshold value to 70%, as shown in Figure 3.42, then
click on Next.

Figure 3.43 – Set the threshold to greater than 70%

Gathering Operational Data and Alerting Using Amazon CloudWatch76

4. Next, you will select Create new topic and provide your email address. Then select Create
topic and click on Next.

Figure 3.44 – Configure email notifications using an SNS topic

5. Provide the alarm name as CPU Utilization, then click Next, and create the alarm.

Figure 3.45 – Name the alarm

Overview of CloudWatch alarms and dashboards 77

Repeat the process to create an alarm for the CPU credit balance. We will then create a composite
alarm based on these two alarms, as follows:

1. Anomaly detection: You can create alarms based on anomaly detection, like the static threshold
alarm, except that instead of setting up the alarms based on a threshold, you select Anomaly
detection as shown in Figure 3.45. You can configure notifications as described in the steps
for setting up a static threshold alarm.

Figure 3.46 – Configuring anomaly detection for a CloudWatch alarm

We can create an alarm based on three different categories as a part of anomaly detection:

 � Outside of the band: An alarm will be generated when there is a deviation in the lower and
upper thresholds

 � Greater than the band: There will be an alarm only when the upper band shows
anomalous behavior

 � Lower than the band: There will be an alarm only when the lower band shows
anomalous behavio.

2. Composite alarms: You can create composite alarms to reduce alarm fatigue and provide better
visibility of the problems that are impacting your application. For example, if you consistently
have high CPU usage and low CPU credit balance, it may be necessary to increase the instance
size to handle high load and prevent application failures.

We have created two static threshold alarms, one for CPU Utilization, and the other for CPU
Credit Balance. Let’s create a composite alarm, combining them:

I. Select the CPU Utilization and CPU Credit Balance alarms and click on Create
composite alarm as shown here.

Gathering Operational Data and Alerting Using Amazon CloudWatch78

Figure 3.47 – Create composite alarm

II. Change the condition to AND.

Figure 3.48 – Conditions to create a composite alarm

Overview of CloudWatch alarms and dashboards 79

III. Select Action –> Next –> Create composite alarm.

Figure 3.49 – Configuring notifications for the composite alarm

IV. This creates a composite alarm and alert when both the alarms are in the Alarm state,
which avoids alarms when CPU utilization is high, and also when CPU credit is not
available for constant high CPU utilization to avoid application issues. You can see the
composite alarm created in Figure 3.49.

Figure 3.50 – Notification about the composite alarm

Gathering Operational Data and Alerting Using Amazon CloudWatch80

We will look at the example of the metric math alarms in Chapter 7, Observability for Serverless
Applications on AWS.

The following are some of the best practices to keep in mind when configuring alarms:

• Create alarms based on meaningful metrics and KPIs

• Test alarm actions

• Use composite alarms to eliminate noise

• Use alarms for automatic responses to events

• Iterate alarm definitions over time

We now understand what an alarm is, the different types of alarms that are available in CloudWatch,
and how to configure them. We also know the best practices to keep in mind when configuring alarms
to avoid alarm fatigue. Let’s explore CloudWatch dashboards next.

CloudWatch dashboards

We learned what a CloudWatch dashboard is and about its functionalities in in the previous chapter.
In this chapter, let’s further explore the types of CloudWatch dashboards and how to create them.
There are two different types of dashboards available in CloudWatch:

• Automatic dashboards: These are created automatically based on the metrics being gathered
by the CloudWatch service and require no intervention from the user. We have already seen
an automated dashboard created by CloudWatch for an EC2 instance as a part of Figure 3.2.

• Custom dashboards: These are created by the user and can be combined with different types
of metrics, logs, events, and traces of information gathered from the services being used by
the application.

Widgets are the foundation of custom dashboards and can be added based on the type of data being
displayed. They are the main component of the dashboard display and come in various forms, such
as Line, Stacked area, Number, Gauge, Bar, Pie, Text, Logs table, and Alarm status, as shown in
Figure 3.50.

Overview of CloudWatch alarms and dashboards 81

Figure 3.51 – Widgets available in the CloudWatch dashboard

Let’s go ahead and create a custom dashboard for the data generated by the EC2 instance. We will be
creating a custom dashboard with default metrics provided for an EC2 instance (CPU utilization and
CPU credit balance), custom metrics generated by the CloudWatch agent (Memory % Committed
Bytes in Use), logs generated by IIS, and the current alarm status. We will be using the Line, Number,
Logs table, and Alarm status widgets as a part of this custom dashboard:

1. Navigate to CloudWatch | Dashboards | Custom dashboards | Create dashboard.

Figure 3.52 – Creating a custom dashboard

2. Provide a name for the dashboard, such as EC2_Dashboard, then click on Create dashboard.

Figure 3.53 – Provide a name for the custom dashboard

Gathering Operational Data and Alerting Using Amazon CloudWatch82

3. Add the Line widget and select Metrics. Browse AWS namespaces, select EC2, and then
Per-instance Metrics. Next, select CPU Utilization for the instance that you created in the
earlier exercise (in the Deployment and configuration of the CloudWatch agent section) by
clicking Create and Save. It should appear as in the following screenshot. Then, click the +
icon to add more widgets.

Figure 3.54 – Adding CPU Utilization on a Line widget

4. Add a Number widget and navigate to Custom namespaces –> CWAgent –> InstanceId –>
Memory % Committed Bytes in Use, then click on Create widget, and save the dashboard.
Then click the + icon to add more widgets.

5. Add the Logs table widget, select IISLogs, click Create widget, and save the dashboard. Then
click the + icon to add more widgets.

Overview of CloudWatch alarms and dashboards 83

Figure 3.55 – Adding IISLogs to the CloudWatch dashboard

6. Add the Alarm Status widget, select all the alarms statuses, click Add to Dashboard, and
provide the name Alarm Status before you save the dashboard.

7. The end result of the custom dashboard, EC2_Dashboard, will look as follows.

Figure 3.56 – End state of the custom EC2 dashboard

We now understand the different types of dashboards that can be created in CloudWatch and have
learned how to create a custom dashboard to simplify the experience for Site Reliability Engineers
(SREs). Now let’s learn about the fault monitoring provided by AWS, using Amazon EventBridge.

Gathering Operational Data and Alerting Using Amazon CloudWatch84

Overview of Amazon EventBridge
Amazon EventBridge is a serverless event bus service for AWS services, your applications, and
Software-as-a-Service (SaaS) providers. Events are generated for any change in the state of resources.
From an observability point of view, Amazon EventBridge is a service that allows you to subscribe
to events and receive notifications when those events occur.

An event is a signal that a system’s state has changed, such as an EC2 instance that has been shut down.
To write code to react to events, you need to know the events’ schemas, which include information
such as the title, format, and validation rules for each piece of event data.

Let’s take a look at how EventBridge works. EventBridge has four main components:

• Event sources: Event sources are the place where an event comes from. AWS services generate
events when there is any change in the state of resources. For example, Amazon EC2 generates
events when there is any change in the state of an instance. Event sources are of three types:
AWS services, custom events, and SaaS applications. There are over 90 AWS services that will
publish events to EventBridge.

• Event buses: An event bus is a pipeline that receives events from event sources. Traditionally,
there is a default bus where AWS service-related events are published. In addition to that,
there is now a custom event bus to publish your custom events and a SaaS event bus that is
dedicated to ingesting partner events.

• Rules: You can associate rules to an event bus. Rules allow you to match values against metadata
and payloads of events as they are ingested, and to determine which events are routed to
which destinations.

• Targets: Targets are the place where events are sent. You can associate multiple targets with
each rule. Targets can include built-in targets such as Lambda functions, Kinesis Data Streams,
Amazon SNS topics for notifications, and custom targets. A target processes the events.

You can see the high-level architecture of EventBridge in the following diagram:

Figure 3.57 – EventBridge architecture

Overview of Amazon EventBridge 85

Beyond observability, Amazon EventBridge could be leveraged to build event-driven architecture for
your business applications.

Now, let’s look at subscribing to an event for an EC2 state change for events such as shut down, restart,
stopped, and so on:

1. Navigate to Service –> EventBridge. Then click on Create rule as shown in the following screenshot.

Figure 3.58 – Create rule

2. Provide a name for the rule, such as EC2_State_Change, then set Event bus as default.
Set Rule type to Rule with an event pattern. All of this is shown in the following screenshot.

Gathering Operational Data and Alerting Using Amazon CloudWatch86

Figure 3.59 – Provide the name for the rule

Overview of Amazon EventBridge 87

3. You will set Event Source as AWS events or EventBridge partner events.

Figure 3.60 – Select Event Source as AWS Events

4. Set Target 1 as AWS service, then choose SNS Topic for Select a target. Under Topic, choose
Default_CloudWatch_Alarms_Topic, then click Next. You will have to create a new SNS
topic if not already available.

Gathering Operational Data and Alerting Using Amazon CloudWatch88

Figure 3.61 – Select target as SNS topic to send notifications

Overview of Amazon EventBridge 89

5. In the Configure tag(s) field, do not add anything as they are optional, and click Next.

6. In Review and create, click on Create rule.

Figure 3.62 – Creating an event rule for the EC2 state changes

Gathering Operational Data and Alerting Using Amazon CloudWatch90

You can test whether the rule is working or not by stopping the EC2 instance. You should receive
email alerts for state changes of the instance, such as stopping, stopped, and so on.

Amazon EventBridge is a highly durable service that is replicated across Availability Zones (AZs).
Events will be retried for delivery for 24hrs with exponential back-off. Unmatched events will be
dropped immediately.

Summary
In this chapter, we learned about the basics of CloudWatch metrics and logs. We learned about the
default AWS vended metrics provided by AWS for EC2 instances and have explored on how to gather
custom metrics by using CloudWatch agent. We have learned on how to install the CloudWatch agent
manually on Windows EC2 instance to gather additional guest OS-level customer metrics and logs
and how to automate the CloudWatch agent installation using AWS Systems Manager.

Further, we explored alarms and different types of alarming options available in AWS CloudWatch and
how to create alarms for the metrics gathered, and also how to avoid alarm fatigue using composite alarms.

Further, we went ahead and visualized the data generated from CloudWatch using a custom dashboard
and utilized widgets to display different types of data, such as AWS vended metrics, custom metrics,
logs, and alarms on a single dashboard.

Furthermore, we discussed the importance of events and the requirements of AWS EventBridge. We
also discussed the configuration of events in EventBridge and how to subscribe to them as notifications.

In the next chapter, we are going to cover the core concepts of AWS X-Ray and how it can be used to
further enhance the observability of your distributed applications running on AWS.

Questions
As we have gone through different concepts related to Amazon CloudWatch, let’s see whether we are
able to remember what we’ve learned and answer questions about CloudWatch:

1. What are the different types of namespaces for Amazon CloudWatch metrics?

2. What are the retention settings for metrics and logs in Amazon CloudWatch?

3. What are the different types of alarms you can configure in Amazon CloudWatch?

4. What are CloudWatch custom dashboards used for?

5. What are the components of the Amazon EventBridge?

6. How can you filter events in Amazon EventBridge?

4
Implementing Distributed

Tracing Using AWS X-Ray

AWS X-Ray is a versatile and powerful service that allows for detailed analysis and debugging of
distributed applications. It can be used to investigate a wide range of applications running on various
types of computing on AWS, including EC2 and Serverless. However, its real strength lies in its ability to
seamlessly integrate and provide real-time visibility into each service’s performance in a microservices
architecture. In the microservice architecture, a single request from a user can trigger a complex
series of interactions between multiple services. AWS X-Ray helps you understand every aspect of the
request-response cycle by tracing each step and allowing you to identify performance bottlenecks and
errors, which help you address critical issues that might be impacting the user experience.

In a complex microservices architecture, diagnosing issues can be an incredibly challenging task.
Without AWS X-Ray, it can be a time-consuming and error-prone process of manually looking through
each service’s logs and correlating them in some way. Additionally, the services may be written in
different programming languages, use different log formats, and some may log more information
than others. All of this can make it difficult to collect all the necessary information and make sense
of it. Fortunately, with AWS X-Ray, you can streamline and gather all the necessary information in a
single tool and a single place.

AWS X-Ray provides powerful insights into application performance, allowing you to quickly identify
the root cause of issues. With X-Ray, you can trace requests as they flow through the various services
in your application, from your application code to any AWS services you’re using. This end-to-end
tracing allows you to gain a deep understanding of how your application is performing and identify
the areas that are contributing the most to latency.

By leveraging the data collected by AWS X-Ray, you can build a comprehensive service map that visually
depicts the real-time relationships between different services and sources. This service map provides
a powerful tool for understanding the complex interactions that occur within your microservices
architecture, helping you optimize performance and improve the user experience.

Implementing Distributed Tracing Using AWS X-Ray92

If you see yourself answering yes to any of the following statements, we strongly recommend you
look at AWS X-Ray:

• Are you building new applications or planning to migrate existing ones to AWS?

• Are you using a microservices architecture?

• Do you want a powerful tool to analyze and debug performance issues and errors within
that application?

In this chapter, we will cover the following topics:

• Overview of the AWS X-Ray and concepts of X-Ray

• Overview of CloudWatch ServiceLens map and integration with metrics, logs, and traces

• AWS X-Ray Analytics and troubleshooting application performance issues

• End-to-end instrumentation of a sample application deployed in an EC2 instance

Technical requirements
This chapter is more code-oriented since often, we will need to give up a more black-box approach
to modify the code and collect more application context details.

We will use two sample applications to demonstrate the usage of AWS X-Ray in real scenarios, one
implemented in JavaScript/Node.js and another in Java. Code experience with those languages is
welcome, but we will keep it simple so that no deep understanding is required.

We will rely on infrastructure automation using CloudFormation. Please check the product page and
documentation at https://aws.amazon.com/cloudformation/.

We will also install and configure software on a Linux server, so some basic bash shell experience
is welcome.

Overview of AWS X-Ray
X-Ray is a powerful service and very easy to use, but to understand it better, we can’t escape learning
its vocabulary. You can find a collection of the main concepts and building blocks, which are well
explained, in the AWS documentation (see https://docs.aws.amazon.com/xray/latest/
devguide/xray-concepts.html). We will provide the same list here for completeness.

https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html

Overview of AWS X-Ray 93

X-Ray concepts

Here is a list defining the main concepts related to X-Ray:

• Segments: Each application sends information about its unit of work as segments. This segment
contains information about the host, the request, the response, start and end times, and any
errors or exceptions that happened between the start/end.

• Subsegments: Subsegments further break down the work recorded by segments. Subsegments
register more granular details about your application code or downstream calls.

• Service graph: With segments and subsegments, X-Ray builds a service graph, where each
resource is a node of this graph, and the requests are the edges. X-Ray uses this data to generate
a visualization called a service map. X-Ray combines service segments with the same trace ID
in a single service graph.

• Traces: With a single trace ID, you can collect all segments and subsegments responsible for
a single request. This collection of segments is called a trace.

• Sampling: X-Ray records a sample of all traces to ensure you collect relevant tracing while
reducing costs. The default sampling rule collects the most pertinent data while minimizing
costs, but you can configure the sampling rules to collect more data from sensitive parts of
your system.

• Tracing header: The first X-Ray-enabled service adds a tracing header to the request, with
information such as the trace ID, the parent segment, the sampling decision, and whether the
request should be sampled or not.

• Filter expression: The amount of trace data generated by a single application can easily overwhelm
the operations team when troubleshooting issues. To make life easier when analyzing traces,
you can use filter expressions to query for all traces related to the same piece of data.

• Groups: You can use filter expressions to define the criteria by which to add traces to designated
groups. X-Ray adds any new trace that matches the group’s criteria to the group.

• Annotations and metadata: You can add extra information to segments, such as annotations
and metadata. Annotations are key-value pairs, and X-Ray adds them to indexes, which allows
the user to use them in filter expressions. Metadata is also key-value pairs, but X-Ray won’t
add it to indexes, so you should use it when you want to store data together with the trace but
do not need to search by it.

• Instrumentation: To instrument your application, you need to send trace data for both
incoming and outbound requests, as well as other events that occur within your application,
along with metadata about the requests. Depending on your specific requirements, there are
several instrumentation options available that you can choose from or combine:

Implementing Distributed Tracing Using AWS X-Ray94

 � Auto Instrumentation: This feature allows you to automatically instrument your application
without any code changes. You can use AWS-provided integrations with popular AWS services
such as Amazon EC2, Amazon Elastic Container Service (ECS), AWS Lambda, and AWS
Elastic Beanstalk to enable this feature. Once enabled, X-Ray will automatically generate
trace data for incoming and outgoing requests to and from these services.

 � Library Instrumentation: This feature involves adding X-Ray libraries to your application
code to enable trace data generation. These libraries are available for a variety of popular
programming languages and frameworks, including Java, .NET, Node.js, Ruby, and Python.
Once the libraries are added to your code, X-Ray will automatically generate trace data for
incoming and outgoing requests.

 � Manual Instrumentation: This feature involves adding trace generation code directly to
your application code. This option provides the most control over the trace data generated
and allows you to instrument custom libraries and frameworks. However, it also requires
the most effort and may be more error-prone than the other options.

With those concepts in mind, let’s go on a guided tour of the X-Ray console.

Navigating the AWS X-Ray console
In this section, I will give you a guided tour of X-Ray. You can just read this section, but I strongly
advise you to follow the same steps as me so that you can easily understand how the new tool works:

1. If you are accessing the X-Ray console for the first time, you can search for it and click on the
service icon or access it directly via https://console.aws.amazon.com/xray/
home. You will see a getting started page, as shown in the following screenshot:

Figure 4.1 – AWS X-Ray start page, first access

https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

Navigating the AWS X-Ray console 95

Important Note
At the time of writing, the X-Ray product team was about to release a new UI for the service,
so you will see a message like the one shown in Figure 4.2 asking whether you would like to use
the new interface. Eventually, the product team will roll out its final version, and all customers
will use the new UI, so this message won’t exist. To keep this book as up-to-date as possible
for longer, we will always opt to use the new UI in these cases. I suggest you do the same; any
screenshots from now on will use the new UI.

Let’s switch to the new AWS X-Ray console by clicking on Try out the new console. This will
navigate you to part of the CloudWatch console:

Figure 4.2 – Block message asking whether the user wants to try the new console

2. You can click the links to learn more about the service or the Getting started button to skip
to the fun part. Click on Getting Started.

Step 1 – deploying a sample application

1. After clicking the Getting Started button, you will see a page containing instructions on creating
a sample application using CloudFormation, the Infrastructure as Code offering from AWS.
Click on the Create a sample application with CloudFormation button:

Figure 4.3 – Launching the X-Ray sample application using CloudFormation

Implementing Distributed Tracing Using AWS X-Ray96

2. You will be redirected to the CloudFormation service page when you click the button. You can
accept the default values in the first step and click on Next:

Figure 4.4 – First step in the CloudFormation wizard – launching the X-Ray sample application

3. In the second step, you must select the VPC and subnets where Beanstalk will launch the EC2
instances. If your account has the default VPC, please use it. If you have deleted your default
VPC, you can check out how to create it at https://docs.aws.amazon.com/vpc/
latest/userguide/default-vpc.html. See the following screenshot:

Figure 4.5 – Second step in the CloudFormation wizard – launching the X-Ray sample application

https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html

Navigating the AWS X-Ray console 97

4. You can keep the default values in the third step and click Next:

Figure 4.6 – Third step in the CloudFormation wizard – launching the X-Ray sample application

5. Finally, in the fourth step, you can review the configuration, check the box saying you acknowledge
CloudFormation will create IAM resources on your behalf, and click Create stack:

Figure 4.7 – Fourth step in the CloudFormation wizard – launching the X-Ray sample application

Implementing Distributed Tracing Using AWS X-Ray98

6. The process will take a few minutes to finish. You can check the deployment’s status by navigating
to CloudFormation | Stacks, refreshing from time to time using the Refresh button, and checking
the column status in the xray-sample row. Once the deployment finishes, you will see a page
similar to the one shown here. This confirms that the application has been successfully deployed:

Figure 4.8 – CloudFormation Stacks with an xray-sample status of CREATE_COMPLETE

Step 2 – navigating the application

1. Now, we need to access the application home page. Click on the xray-sample link to see the stack
details and, on the Outputs tab, copy and paste the value of the ElasticBeanstalkEnvironmentURL
key into a new browser tab, as shown here:

Figure 4.9 – CloudFormation | Stacks | xray-sample details | Outputs tab

Navigating the AWS X-Ray console 99

2. In this sample application, you can do a signup process manually or automatically generate 10
signup processes every minute. Let’s do the latter. Click on the Start button:

Figure 4.10 – The A New Startup signup page

The application will show random emails used to emulate the signup process. Wait 5 minutes
to make sure enough information has been generated.

Step 3 – navigating the AWS CloudWatch X-Ray user interface

1. We can now open the AWS X-Ray console page to see the service map and traces. Go to
https://console.aws.amazon.com/cloudwatch/home#xray:service-map/
map?~(query~(filter~())~context~(timeRange~(delta~300000))); you
will see a service map similar to the following:

https://console.aws.amazon.com/cloudwatch/home#xray:service-map/map?~(query~(filter~())~context~(timeRange~(delta~300000)))
https://console.aws.amazon.com/cloudwatch/home#xray:service-map/map?~(query~(filter~())~context~(timeRange~(delta~300000)))

Implementing Distributed Tracing Using AWS X-Ray100

Figure 4.11 – Service map with data from the xray-sample application

Here, we can see the famous service map. Each node represents a source/target of requests,
while the edges are the requests themselves. The node’s size and the line’s thickness represent
the ratio of the number of requests coming/going from/to the different resources. Nodes with
borders in red or orange represent nodes returning Fault (5xx) or Error (4xx) HTTP codes.

This single pane of glass view, which unifies data across different sources, gives you a holistic
view of your entire application, from the client request to the application, and finally, the data
storage. As you can see, the emulated application also includes some errors to demonstrate
how to debug them. We will come back to this in a second.

2. If you click on the application node (the one identified by the application IP), you will see the
application’s details:

Navigating the AWS X-Ray console 101

Figure 4.12 – Service map, with the Metrics tab selected

The service map will highlight the service you are checking the details for. You will see Metrics,
Alerts, and Response time distribution tabs in the region below the map:

 � In the Metrics tab, you can see details such as the p50 and p90 latency percentiles, the number
of requests per unit of time, and the number of faults served.

 � In the Alerts tab, we can see any alerts triggered by the application and any X-Ray insights.
They are empty for now, but we will return to them in the next section:

Figure 4.13 – Service map with the Alerts tab selected

Implementing Distributed Tracing Using AWS X-Ray102

 � The Response time distribution tab provides a visual representation of the distribution of
response times for each request sent by the client and the distribution across different services
in your AWS account. By selecting a particular section of the graph, you can filter out traces
that are causing higher latency and focus your analysis on those specific requests. This can help
you pinpoint any issues and take the necessary steps to optimize your system’s performance:

Figure 4.14 – Service map with the Response time distribution tab selected

3. Let’s go back to the Metrics tabs. We aim to find the root cause of the application errors we
can see in the service map. There’s a checkbox in the Metrics tab labeled X% Errors (4xx). If
you click on it, X-Ray will filter and show only the metrics related to traces with application
errors. Let’s click it and start our investigation:

Navigating the AWS X-Ray console 103

Figure 4.15 – Service map with the X% Errors (4xx) checkbox selected

4. In the same way, as with Metrics, the View traces button will change to View filtered traces.
Initially, clicking on it will redirect you to a list of all application traces, which does not help our
investigation. But after you click on the checkbox, the View filtered traces button will redirect
you to a list of traces related to the application errors. Let’s click on it.

5. You will be redirected to CloudWatch | Traces overview (see https://console.aws.
amazon.com/xray/home#/traces). Here, you can build a query to find specific traces,
but in our case, it was already pre-populated to retrieve only the traces with errors from the
application. We can click on a trace link to drill down into that trace’s details:

https://console.aws.amazon.com/xray/home#/traces
https://console.aws.amazon.com/xray/home#/traces

Implementing Distributed Tracing Using AWS X-Ray104

Figure 4.16 – The CloudWatch | Traces page, with a filter to show application errors applied

6. On the trace details page, you will see a Trace Map, section where we can see all the resources
that took part in this single trace. As we can see, the trace has information about the Client,
the Elastic Beanstalk Environment, and finally, the DynamoDB Table. Trace Summary contains
general information, such as the HTTP method, the response code, duration, and age. The most
exciting section is the Segments Timeline section:

Figure 4.17 – The CloudWatch | Traces page, highlighting the Trace Map section

Navigating the AWS X-Ray console 105

The Segments Timeline section shows the segments and subsegments that are part of this
trace, together with temporal data as the start/end times. You can see more details if you
click on one of them. We can see that the application segment is returning an error, but the
call to the DynamoDB table causes this error. If we click on the DynamoDB application
segment in the Segment details section, we will see what’s causing the failure: an exception
called ConditionalCheckFailedException:

Figure 4.18 – The Segment Timeline section highlighting the DynamoDB application exception

7. If we check the Amazon DynamoDB Error Handling page (see https://docs.aws.
amazon.com/amazondynamodb/latest/developerguide/Programming.
Errors.html), we will see an explanation of what the error means:

ConditionalCheckFailedException

Message: The conditional request failed.

You specified a condition that is evaluated as false. For example, you might have tried to perform
a conditional update on an item, but the actual value of the attribute did not match the expected
value in the condition.

Well, what’s happening, exactly? Let’s look at the application code. You can find the application
code at https://github.com/aws-samples/eb-node-express-sample/
tree/xray, and the section that emulates the end user sign-ups at https://github.
com/aws-samples/eb-node-express-sample/blob/xray/views/index.
ejs#L178. As you can see, every 6 seconds, a new signup is triggered, but 1 in 10 is a duplicated
signup that uses a fixed email repeatedly. In the application code (at https://github.com/
aws-samples/eb-node-express-sample/blob/xray/app.js#L81), we can see

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.Errors.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.Errors.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.Errors.html
https://github.com/aws-samples/eb-node-express-sample/tree/xray
https://github.com/aws-samples/eb-node-express-sample/tree/xray
https://github.com/aws-samples/eb-node-express-sample/blob/xray/views/index.ejs#L178
https://github.com/aws-samples/eb-node-express-sample/blob/xray/views/index.ejs#L178
https://github.com/aws-samples/eb-node-express-sample/blob/xray/views/index.ejs#L178
https://github.com/aws-samples/eb-node-express-sample/blob/xray/app.js#L81
https://github.com/aws-samples/eb-node-express-sample/blob/xray/app.js#L81

Implementing Distributed Tracing Using AWS X-Ray106

that a DynamoDB condition (see https://docs.aws.amazon.com/amazondynamodb/
latest/developerguide/LegacyConditionalParameters.Expected.html)
is used when adding a new item:

ddb.putItem({
 'TableName': ddbTable,
 'Item': item,
 'Expected': { email: { Exists: false } }
 },...

As soon as you try to execute the signup with an existing email, DynamoDB will return a
message stating The conditional request failed – bingo!

In this section, you had a little taste of how X-Ray can help you debug your application and connect
endpoints and resources in a single pane of glass. It gives you all the tools you need to drill down and
find the root cause of an error, even when affecting a small portion of your users, literally helping you
find the needle in the haystack.

In the next section, we will discuss another powerful X-Ray feature that allows you to correlate
between traces, metrics, and logs, which will give you even more incredible superpowers in your
observability journey.

Overview of the CloudWatch ServiceLens map

So far, we have seen how X-Ray traces and service maps can give you a fantastic view of what is going
on in your application. If we stop there, that is powerful enough to fulfill your hunger for observability
for a long while in many complex cases.

But, as discussed in Chapter 1, Observability 101, the exponential growth of your application demands
more insights. Traces in X-Ray provide insights into the interaction between different services, but
how can we correlate them with all the metrics and logs our application generates? Should we go back
and do it manually once more?

That is why we have CloudWatch ServiceLens, which can correlate traces, logs, and metrics in a single
place. You can easily find performance issues and bugs affecting your end users with more information.

For the time being, there are some requirements for this magic to happen:

• An updated X-Ray SDK

• Only the SDK for Java supports log correlation

• Only Lambda functions, API Gateway, Java-based applications running on Amazon EC2,
and Java-based applications running on Amazon EKS or Kubernetes with Container Insights
deployed support log correlation

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.Expected.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.Expected.html

Navigating the AWS X-Ray console 107

You can find detailed instructions on setting up CloudWatch ServiceLens for your application in
the AWS documentation (see https://docs.aws.amazon.com/AmazonCloudWatch/
latest/monitoring/deploy_servicelens.html). In the last section of this chapter, we
will look at an end-to-end example of how to set it up on a Java application.

Overview of X-Ray Analytics

I saw a post once (and I do not remember exactly where) that resonated with my understanding of
observability. I can’t remember who said this, and I hope, if someday the author reads these lines, they
can forgive my lack of memory and not properly giving them the credit, but the post said the following:

“Observability is not a DevOps problem; it is a data analytics problem.” – Unknown

And I cannot agree more. As discussed in Chapter 1, Observability 101, if a tool does not provide
you with ways to slice and aggregate the information you collect from an application, the tool is not
contributing to achieving better observability of your application.

That’s where X-Ray Analytics comes in to support you. X-Ray Analytics provides several built-in
dashboards, which display aggregate statistics, such as service maps, response time distributions, error
rates, and more. You can also create custom dashboards to display the metrics and dimensions that
are most relevant to your use case. The X-Ray Analytics traces view is shown in the following figure:

Figure 4.19 – X-Ray Analytics view

Having gained an overview of the concepts of X-Ray and navigated through the various views available
in AWS X-Ray, it is time to explore how to instrument an end-to-end sample application using X-Ray
for an application that is running on an EC2 instance.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/deploy_servicelens.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/deploy_servicelens.html

Implementing Distributed Tracing Using AWS X-Ray108

End-to-end instrumentation of a sample application
deployed in an EC2 instance
In this section, we will deploy a Java application in an EC2 instance and see the steps necessary to have
everything up and running. We usually use the Python language for sample code, but the X-Ray Java
SDK, at the time of writing, provides a complete set of features, as we saw in the previous sections.

This section is hands-on, so log in to your AWS account and be prepared for the ride. AWS will charge
you for the resources deployed in this section, but for short periods, this is not something that will
break the bank. When you finish, remember to clean up the used resources.

This hands-on exercise is spread over three steps:

1. Understanding the application and deploying the applicatio.

2. Testing the sample application to generate X-Ray trace.

3. Exploring the sample application by logging into the EC2 instance

Preparing the environment

Follow these steps to prepare the environment:

1. A CloudFormation template has been provided in this book’s GitHub repository for deploying
everything necessary so that you have a Linux machine up and running and ready to receive
HTTP requests. The following diagram shows the infrastructure you will deploy with it:

End-to-end instrumentation of a sample application deployed in an EC2 instance 109

Figure 4.20 – Diagram of the deployed infrastructure

To deploy the application in your AWS Account, log in to your AWS account and
click or copy and paste the following URL into your browser window: https://
console.aws.amazon.com/cloudformation/home#/stacks/
new?stackName=scorekeep&templateURL=https://insiders-guide-
observability-on-aws-book.s3.amazonaws.com/chapter-04/basic-
ec2-template.yml. If you are the type of person who does not trust people deploying
things in your account, you can always check the template itself here: https://insiders-
guide-observability-on-aws-book.s3.amazonaws.com/chapter-04/
basic-ec2-template.yml.

https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-04/basic-ec2-template.yml
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-04/basic-ec2-template.yml
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-04/basic-ec2-template.yml

Implementing Distributed Tracing Using AWS X-Ray110

2. This action will open the AWS CloudFormation console with all the parameters that are necessary
for the template, along with the default values. You can keep the default values and click on the
Next button on all the subsequent pages. On the last one, named Review scorekeep, do not forget
to check the box stating The following resource(s) require capabilities: [AWS::IAM::Role]
and click on the Create stack button:

Figure 4.21 – The application stack, loading the template from an external S3 bucket

Let’s acknowledge the notification about creating relevant IAM roles for deploying the stack:

Figure 4.22 – Accepting the IAM permission for creating the application stack

End-to-end instrumentation of a sample application deployed in an EC2 instance 111

3. We will go through some relevant sections of this CloudFormation template in the Exploring
the sample application section, but if you are curious, you can go to https://insiders-
guide-observability-on-aws-book.s3.amazonaws.com/chapter-04/
basic-ec2-template.yml to see what’s inside. We did our best to create a great example
with many useful tricks worth checking.

4. Wait until the Stack switches to the CREATE_COMPLETE state. After a short timearound
10 to 15 minutes to be more precise), your account will have the following resources deployed
for our fun:

 � An EC2 instance

 � A Lambda function

 � A PostgreSQL database

 � Five DynamoDB tables

 � An SNS topic

 � Security groups

 � Roles and permissions

Testing the sample application

Now, it’s time to test the sample application:

1. The sample application has been installed and is up and running. You can access the sample
application using the URL mentioned for the PublicDNS key, which you can find in the Stacks
| Outputs tab. Click on it:

Figure 4.23 – The Stacks | Outputs tab, where you can find the PublicDNS key

https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-04/basic-ec2-template.yml
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-04/basic-ec2-template.yml
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-04/basic-ec2-template.yml

Implementing Distributed Tracing Using AWS X-Ray112

2. Once you have clicked on the PublicDNS URL, you will see the UI of our small application
– Scorekeep:

Figure 4.24 – The Scorekeep main UI

3. You can enter your name and create a game session (or join an existing one). You can provide a
game for your session and select the game you want to play (in this MVP, only Tic Tac Toe...):

Figure 4.25 – Creating a new Tic Tac Toe game session

End-to-end instrumentation of a sample application deployed in an EC2 instance 113

4. Let’s play a couple of sessions of the “Tic Tac Toe” game. That is important as it will generate
the log and metrics data we will use in the following sections. Or, if you are in a hurry, you can
click on the top-right link, Powered by AWS X-Ray. You will see two buttons on the following
page: Trace game sessions and Trace SQL queries. If you click on either of them, you will
see a simulation of game sessions. You can click on them and leave the browser window/tab
open to generate enough traffic. After a while, you can access the X-Ray service map page (go
to https://console.aws.amazon.com/xray/home#/service-map), and you
will see a service map similar to the one shown here. Alternatively, if you opted for a new AWS
X-Ray Console, you can navigate to CloudWatch | X-Ray | Service Map:

Figure 4.26 – The application service map

Let’s continue our exploration by logging into the EC2 instance that’s been deployed and exploring
the CloudFormation template that’s been deployed, along with exploring the important components
of the sample application that have been deployed from X-Ray’s point of view.

https://console.aws.amazon.com/xray/home#/service-map

Implementing Distributed Tracing Using AWS X-Ray114

Exploring the sample application running on an EC2 instance

The application we will analyze follows the basic web three-tier architecture. We will use an Nginx
server to publish the web UI to the end users and forward any requests starting with the /API path
to the Java application port running on the same machine. The Java application will store data using
both RDS and DynamoDB databases.

On the same machine, we will run both the CloudWatch agent and the X-Ray daemon, where the
application communicates metrics, traces, and logs. The agent and daemon share this data with the
CloudWatch and X-Ray APIs.

In the following subsections, we’ll look closely at how to set up X-Ray so that it can collect traces and
integrate them with metrics and logs to provide a comprehensive view of the application’s inner workings.

Accessing the EC2 instance

Let’s access our EC2 instance. Access the EC2 console (https://console.aws.amazon.com/
ec2) and look for the instance that was created by the stack we deployed a moment ago:

1. If you, like me, have more than one instance running, you can select your instances one by one
and check the Tags tab. We are looking for one with a tag key of aws:cloudformation:stack-
name and a value of scorekeep. Alternatively, you can access it directly by going to https://
console.aws.amazon.com/ec2/v2/home?#Instances:v=3;instanceStat
e=running;tag:aws:cloudformation:stack-name=scorekeep:

Figure 4.27 – An EC2 instance with a tag of aws:cloudformation:stack-name equal to scorekeep

https://console.aws.amazon.com/ec2
https://console.aws.amazon.com/ec2
https://console.aws.amazon.com/ec2/v2/home?#Instances:v=3;instanceState=running;tag:aws:cloudformation:stack-name=scorekeep
https://console.aws.amazon.com/ec2/v2/home?#Instances:v=3;instanceState=running;tag:aws:cloudformation:stack-name=scorekeep
https://console.aws.amazon.com/ec2/v2/home?#Instances:v=3;instanceState=running;tag:aws:cloudformation:stack-name=scorekeep

End-to-end instrumentation of a sample application deployed in an EC2 instance 115

2. Once we have found our instance, we can connect to it. Click on the Connect button at the top
of the EC2 console. It will show the Connect to instance page. The default tab, EC2 Instance
Connect, is what we need. You don’t need to change any other parameter; click on the Connect
button. Another tab will open with a prompt connected to our instance, like a charm:

Figure 4.28 – Connecting to the EC2 instance using the EC2 Instance Connect method

You can see the SSH prompt once you connect to the EC2 instance:

Figure 4.29 – Logged in to the EC2 instance

Implementing Distributed Tracing Using AWS X-Ray116

3. In this machine, you will find a folder called java-scorekeep as this is deployed as part of the
CloudFormation template and contains the project source code. In this machine, we have the
following processes running:

 � CloudWatch agent

 � AWS X-Ray daemon

 � Nginx

 � Scorekeep application

We will discuss each one at a time.

We strongly advise you to keep this X-Ray console window open while reading the following sections
so that you can explore and understand the material better. We have both the nano (https://
www.nano-editor.org/) and the vim (https://www.vim.org/) editors installed. The
nano editor is easier to use, but vim is an old friend to most system admins, so feel free to pick one.

Installing the AWS X-Ray daemon on Amazon EC2

We will use a feature of the CloudFormation template called AWS::CloudFormation::Init
(see https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
aws-resource-init.html). With it, you can provide metadata information to the cfn-init
script we will run inside the machine on startup. You can find the X-Ray daemon installation
instructions in the AWS documentation (see https://docs.aws.amazon.com/xray/
latest/devguide/xray-daemon.html). In our case, you can find the installation instructions
in our CloudFormation template between lines 444 and 449 (here’s the template file: https://
insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-
04/basic-ec2-template.yml). The following code snippet is for Linux and the rpm package
manager since we are using an Amazon Linux 2 image:

curl https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/
xray-daemon/aws-xray-daemon-3.x.rpm -o /home/ec2-user/xray.rpm
yum install -y /home/ec2-user/xray.rpm
rm /home/ec2-user/xray.rpm

The daemon will automatically start and restart on every EC2 instance reboot, and the X-Ray
daemon will start listening for application connections on port 2000 (see the X-Ray configuration
setup at https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon-
configuration.html).

https://www.nano-editor.org/
https://www.nano-editor.org/
https://www.vim.org/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-init.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-init.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon-configuration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon-configuration.html

End-to-end instrumentation of a sample application deployed in an EC2 instance 117

Installing the CloudWatch agent on Amazon EC2

In the same way as the X-Ray daemon, we will use AWS::CloudFormation::Init to provide
instructions on installing and configuring the CloudFormation agent. This process is divided into
three steps:

1. Install the CloudWatch agent binaries.

2. Copy the CloudWatch agent configuration file to the right place.

3. Stop/start the agent, passing the new configuration file as a parameter.

If you want more details about the CloudWatch agent, refer to Chapter 3, Gathering Operational
Data and Alerting Using Amazon CloudWatch. In this example, you can see each of these steps in our
CloudFormation template, as shown in the Preparing the environment section. The binary installation
happens in the packages section of the CloudFormation Init metadata, as shown in the following
code snippet:

install_deps:
 packages:
 yum:
 java-1.8.0-amazon-corretto-devel: []
 nginx: []
 amazon-cloudwatch-agent: []

You can see the CloudWatch agent configuration file in the CloudFormation template, on lines 302
to 430. It is an extensive file, so I won’t reproduce it entirely here, only the initial part:

config-amazon-cloudwatch-agent:
 files:
 "/opt/aws/amazon-cloudwatch-agent/etc/amazon-cloudwatch-agent.
json":
 content: |
 {
 "agent": {
 "metrics_collection_interval": 10,
 "logfile": "/opt/aws/amazon-cloudwatch-agent/logs/amazon-
cloudwatch-agent.log"
 },
 "metrics": {
 "namespace": "ScoreKeep",
 "metrics_collected": {
 "cpu": {
 "resources": [
...

Implementing Distributed Tracing Using AWS X-Ray118

I have shown a longer portion of the file to show many of the features offered by CloudWatch, among
them a detailed memory utilization, processes, and a storage set of metrics. You can learn about the
meaning of each of them at https://docs.aws.amazon.com/AmazonCloudWatch/
latest/monitoring/CloudWatch-Agent-Configuration-File-Details.html.

Application setup

The application setup is simple. In our example, we are using a Java application you can find in the
~/java-scorekeep folder. Any application must add the required libraries to make X-Ray API
calls and publish trace data. In our case, as we are using Gradle (see https://gradle.org/) as
our build and dependency management tool, we need to add the necessary packages to the build file,
which you can find in ~/java-scorekeep/build.gradle. See the following code snippet:

dependencies {
 ...
 compile("com.amazonaws:aws-xray-recorder-sdk-core")
 compile("com.amazonaws:aws-xray-recorder-sdk-aws-sdk")
 compile("com.amazonaws:aws-xray-recorder-sdk-aws-sdk-instrumentor")
 compile("com.amazonaws:aws-xray-recorder-sdk-apache-http")
 compile("com.amazonaws:aws-xray-recorder-sdk-sql-postgres")
 compile("com.amazonaws:aws-xray-recorder-sdk-metrics")
 compile("com.amazonaws:aws-xray-recorder-sdk-slf4j")
 ...
}
dependencyManagement {
 imports {
 mavenBom("com.amazonaws:aws-java-sdk-bom:1.11.761")
 mavenBom("com.amazonaws:aws-xray-recorder-sdk-bom:2.11.0")
 }
}

You can find all the X-Ray SDKs for the Java libraries and sub-modules and their meanings at https://
docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java.html, as well as
how to use them for both the Maven and Gradle build managers.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Agent-Configuration-File-Details.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Agent-Configuration-File-Details.html
https://gradle.org/
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java.html

End-to-end instrumentation of a sample application deployed in an EC2 instance 119

The AWS X-Ray SDK

Once we have the X-Ray aws-xray-recorder-sdk-aws-sdk-instrumentor SDK library as one of the
application dependencies, any call to any AWS SDK client is instrumented automatically. It doesn’t
matter if you access Amazon RDS, SQS, SNS, DynamoDB, or any other AWS service; you can remove
the library from your dependencies to deactivate the automatic instrumentation. You can also choose
to instrument only some AWS SDK calls. In this use case, you can remove the library from your
dependencies and add the instrumentation as per the AWS client manually. This can be seen in the
following code, where we are only instrumenting Amazon DynamoDB calls:

public class SessionModel {
 private AmazonDynamoDB client = AmazonDynamoDBClientBuilder.
standard()
 .withRequestHandlers(new TracingHandler())
 .build();

Subsegments

With the AWS X-Ray dependencies in place, your application will send segment information from
the moment your application receives a request until it’s sent the response to the client, which is a
great start. But usually, some application flows and/or integrations are more critical and we would like
more details. In those cases, we can add subsegments. So, instead of having a big single monolithic
segment, we will have separated segments for specific regions of our code, where we can drill down
to see more information.

X-Ray annotations and metadata

• You have the option to provide extra information about the execution environment in your
segments and subsegments by leveraging annotations and metadata:

• Annotations: Annotations are key-value pairs you can use to search for using filter expressions
(see https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-
java-segment.html#xray-sdk-java-segment-annotations) (see https://
docs.aws.amazon.com/xray/latest/devguide/xray-console-filters.
html) or to group segments

• Metadata: Metadata is (see https://docs.aws.amazon.com/xray/latest/
devguide/xray-sdk-java-segment.html#xray-sdk-java-segment-
metadata) pieces of information you want to have stored alongside the segment, but you
don’t need them indexed for search

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-segment.html#xray-sdk-java-segment-annotations
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-segment.html#xray-sdk-java-segment-annotations
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-filters.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-filters.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-filters.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-segment.html#xray-sdk-java-segment-metadata
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-segment.html#xray-sdk-java-segment-metadata
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-segment.html#xray-sdk-java-segment-metadata

Implementing Distributed Tracing Using AWS X-Ray120

Programmatically creating subsegments, annotations, and metadata

In the following figure, you can see a section of the application code that uses subsegments. When
you navigate to the /home/ec2-user/java-scorekeep/src/main/java/scorekeep/
GameModel.java path, as described in the Accessing the EC2 instance section, you can understand
the addition of sub-segments in AWS X-ray.

The method begins by creating a new subsegment of an X-Ray segment using AWSXRay.
beginSubsegment(). This allows the method to track performance and record additional
information about this saveGame operation within the larger request being handled by the application:

Figure 4.30 – Subsegment, annotation, and metadata in AWS X-Ray

Next, the method checks whether the sessionId property associated with the game object is valid
by using the sessionModel.loadSession() method to load the session. If the session cannot
be found, a SessionNotFoundException error is thrown.

If the session is found, the method adds metadata to the X-Ray subsegment called subsegment.
putMetadata() and adds an annotation to the X-Ray segment using segment.putAnnotation().
These methods allow the developer to attach additional information to the X-Ray segment and
subsegment for later analysis and troubleshooting.

Finally, the method attempts to save the game object to the database using the DynamoDB mapper
and ends the X-Ray subsegment using AWSXRay.endSubsegment(). If any exceptions are thrown
during the execution of the method, they are added to the X-Ray subsegment using subsegment.
addException() before being re-thrown. This allows the X-Ray service to track any errors that
occur during the method’s execution.

End-to-end instrumentation of a sample application deployed in an EC2 instance 121

You could search the traces using annotations added by using gameid as required, as shown in the
following figure:

Figure 4.31 – Leveraging an annotation to filter the X-Ray traces

Additionally, you can see the subsegment and metadata information for the traces of saveGame in
the trace details, as shown in the following figure:

Figure 4.32 – An HTTP POST request highlighting the GameModel.saveGame subsegment and metadata

Instrumenting calls to a PostgreSQL database

You can instrument SQL queries using one of the X-Ray SDK Java JDBC interceptors (see https://
docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-sqlclients.
html). This action will add information about the start/end time and any errors, but it doesn’t add
information about the query itself for security reasons. Here, we will look at an example of how to
configure the interceptor when using the Spring framework, and the /home/ec-user/java-
scorekeep/src/main/resources/application-pgsql.properties file.

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-sqlclients.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-sqlclients.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-sqlclients.html

Implementing Distributed Tracing Using AWS X-Ray122

The spring.datasource.jdbc-interceptors property is set to com.amazonaws.
xray.sql.postgres.TracingInterceptor, which means that the application uses the
Tracing Interceptor from the AWS X-Ray JDBC Instrumentation library to trace SQL statements sent
to a PostgreSQL database. This allows the X-Ray service to track the performance and other details
of the database queries being executed by the application:

Figure 4.33 – PostgreSQL database tracing interceptor

The resulting trace looks like this for the PostgreSQL database:

Figure 4.34 – Resulting database trace

Instrumenting AWS Lambda functions

Our sample application uses a single Lambda function called random-name. Every time a user starts
a session without typing their name, the main application calls this Lambda, generating a random
name for the user. The CloudFormation template we are using sets up a function to enable X-Ray
tracing. See the following CloudFormation snippet:

End-to-end instrumentation of a sample application deployed in an EC2 instance 123

Figure 4.35 – Tracing Lambda function

When we activate the tracing feature for Lambda functions, we don’t need to create new segments
to trace the lambda execution; the X-Ray SDK does this for us, adding the trace-id property
coming from the request and including it in the execution context. We will discuss AWS Lambda
instrumentation in Chapter 7, Observability for Serverless Applications on AWS.

Instrumenting startup code

So far, we have seen that for any call to our application endpoints, the X-Ray SDK takes care of
creating a trace ID and a trace segment, which we can use to collect even more application data. But
typically, applications have portions of their code that do not run inside the context of a request, such
as initialization code or batch jobs.

In those cases, you need to create segments manually. Let’s learn how we can do this in our initialization
code as part of the /home/ec2-user/java-scorekeep/src/main/java/scorekeep/
RdsWebConfig class:

Implementing Distributed Tracing Using AWS X-Ray124

Figure 4.36 – Tracing startup code

As you can see, this initialization code creates the database schema. To create X-Ray segments
and track the duration and any downstream call, we just need to call the beginSegment() and
endSegment() methods.

Using instrumented clients in worker threads

The application uses a worker thread to send a notification to Amazon SNS when a user wins a game.
The purpose of this code is to send a notification in a separate thread (asynchronously), using a
subsegment to trace the execution of the notification-sending logic. This method is required when
you want to propagate the trace ID in a parent-child entity.

 The X-Ray Java SDK uses ThreadLocal (see https://docs.oracle.com/javase/7/docs/
api/java/lang/ThreadLocal.html) to store and propagate the trace-id property and
segment information. This information is attached to the running thread but is lost if a new thread
is started. And if you try to use the X-Ray Java SDK without creating a new context, it will throw a
SegmentNotFoundException error.

To do it right, you need to use the getTraceEntity method to get a reference of the parent segment
and then reinsert it in the newly created thread. You can see an example in the /home/ec2-user/
java-scorekeep/src/main/java/scorekeep/MoveFactory.java file:

https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html

End-to-end instrumentation of a sample application deployed in an EC2 instance 125

Figure 4.37 – Tracing worker subsegments in an application

The result can be seen in the following trace:

Figure 4.38 – The trace with data from a different thread

In this section, we understood how to instrument a sample application using AWS X-Ray and
understood how AWS X-Ray can be utilized to trace the distributed application spanning EC2,
DynamoDB, Lambda, Postgres data, and SNS notifications. We also understood enhancements that
can be made using subsegments, adding annotations and metadata to the X-Ray traces to provide
additional context to the operations team when troubleshooting issues.

Implementing Distributed Tracing Using AWS X-Ray126

Summary
In this chapter, we saw why AWS X-Ray is required in a distributed application and navigated the
foundations of AWS X-Ray. We understood various components of the AWS X-ray console, such as
the ServiceLens map, AWS X-Ray Analytics, and traces, and how to understand them. Further, we
instrumented a Java application running on EC2 using AWS X-Ray and understood how to read the
trace data and how annotations and metadata can support troubleshooting operational issues and
filter out traces that are relevant to the problem.

At this point, you understand the value of having a distributed tracing tool in your observability
toolbelt and how to apply it correctly to collect all the necessary data.

This is the last chapter of Part 1 of this book, where you gained a good first picture of observability’s
more fundamental building blocks. Part 2 will introduce services that remove much of the manual
work necessary to gather and show the relevant data and introduce innovative machine learning tools
as virtual companions that will assist you in finding the needle in the haystack.

Part 2:
Automated and Machine

Learning-Powered
Observability on AWS

In this part, we will discuss the services available in AWS for automated and machine learning-based
experiences for DevOps engineers. We will also discuss the existing AWS services that make the lives
of observability practitioners much easier, collecting, aggregating, and inferring the application state
automatically with little to no upfront work needed.

This section has the following chapters:

•	 Chapter 5, Insights into Operational Data with CloudWatch

•	 Chapter 6, Observability for Containerized Applications on AWS

•	 Chapter 7, Observability for Serverless Applications on AWS

•	 Chapter 8, End User Experience Monitoring on AWS

5
Insights into Operational Data

with CloudWatch

In the previous chapter, we learned how to implement AWS X-Ray to understand the user journey
and how it provides observability for an application running on an EC2 instance. In this chapter, we
will see how data in CloudWatch metrics can be presented to solve operational issues and enhance the
experience of the operational team. We will then look at instrumenting an application running on an
EC2 instance using AWS Application Insights and how that simplifies the job of an operational team
due to the auto-instrumenting functionality. Further, we will look into deriving and understanding
operational intelligence from CloudWatch Logs using CloudWatch Logs Insights. We will also look
at CloudWatch Contributor Insights and its use cases.

In this chapter, we are going to cover the following topics and learn how to configure services practically:

• Deriving operational intelligence from CloudWatch metrics

• Exploring CloudWatch Application Insights

• Exploring CloudWatch Logs Insights

• Exploring CloudWatch Contributor Insights and its use cases

Technical requirements
To be able to carry out the technical tasks in the chapter, you will need to have the following
technical prerequisites:

• A working AWS account

• Knowledge of the setup and configuration of an EC2 instance in the AWS account

Insights into Operational Data with CloudWatch130

• An understanding of the deployment of CloudFormation templates

• A fundamental understanding of DynamoDB

• An understanding of resource groups in AWS

Deriving operational intelligence from CloudWatch
metrics
In Chapter 3, Gathering Operational Data and Alerting Using Amazon CloudWatch, we discussed what
CloudWatch metrics are and the different metrics that can be sent to CloudWatch. Also, we briefly
explored the CloudWatch metrics explorer in Chapter 2, Overview of the Observability Landscape on
AWS. Now let’s deep dive further into enhancing operational intelligence with CloudWatch metrics!

CloudWatch metrics explorer

CloudWatch metrics explorer is a flexible tag-based tool that filters, aggregates, and visualizes metrics
by resource tags. Tag-based monitoring helps you categorize and compare application resources
through the use of tags so that you can monitor them efficiently. CloudWatch metric explorer could
be used for two different purposes:

• Monitoring: With tag-based monitoring, you create a dynamic application infrastructure health
dashboard that automatically updates as you deploy new resources. Simply assign tags to your
resources and use them to build a comprehensive, real-time view of your infrastructure’s health.
For example, if you are building an Auto Scaling group of EC2 instances for an application and
are looking to provide a dynamic dashboard to the application team whenever a new resource
is deployed without manually adding it to the dashboard, you can build a tag-based monitoring
dashboard to achieve the functionality.

• Troubleshooting: We leverage CloudWatch metrics explorer to troubleshoot by providing sliced
and diced metrics and using the resulting visualizations to spot patterns, correlate the results,
and reduce the time taken for resolution.

Now let’s see how to use the CloudWatch metrics explorer to build a dynamic dashboard for an Auto
Scaling web server group:

1. To carry out the exercises in this section, let’s build an EC2 Auto Scaling web cluster using
AWS CloudFormation using the following template. You can download the CloudFormation
template from the following URL and deploy the EC2 Auto Scaling web cluster:

https://insiders-guide-observability-on-aws-book.s3.amazonaws.
com/chapter-05/autoscalingalbcftemplate.json

We have built an Auto Scaling EC2 web server with two instances supporting an application

https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-05/autoscalingalbcftemplate.json
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-05/autoscalingalbcftemplate.json

Deriving operational intelligence from CloudWatch metrics 131

behind the load balancer. To effectively plan for capacity, let’s say we need to understand the
combined utilization of these two instances. Using the CloudWatch metrics explorer, we will
merge metrics from both instances to gain a comprehensive understanding of their usage.

2. Navigate to AWS Console | CloudWatch | Metrics | Explorer. Metrics explorer provides two
different templates – namely, generic templates and service-based templates, or you can select
an empty explorer.

Figure 5.1 – Templates in metrics explorer

3. For this exercise, select Service based templates and select EC2, and it should select all the
metrics related to EC2, as shown in the following screenshot.

Figure 5.2 – EC2 template

Insights into Operational Data with CloudWatch132

4. In From, select aws:autoscaling:groupName and select the created Auto Scaling cluster, as
shown in the following screenshot.

Figure 5.3 – Selecting the Auto Scaling web server group

5. Look at the Explorer page and you will see that EC2 metrics are displayed as line graphs,
featuring data from both EC2 instances.

Figure 5.4 – Metrics explorer view

Deriving operational intelligence from CloudWatch metrics 133

6. Now, navigate to Aggregate by and select Sum and All resources.

Figure 5.5 – Metric aggregation

This allows the consolidated utilization of data from both EC2 instances and presents a unified
view, as shown in the following figure.

Figure 5.6 – Aggregated view of CloudWatch metrics

Insights into Operational Data with CloudWatch134

7. The view can be further sliced using Split by when you want to understand the utilization
by availability zone to understand where most of your load is being distributed. This can be
helpful and handy if you are troubleshooting an uneven load distribution across availability
zones (AZs).

Figure 5.7 – Split by availability zone

8. You can also add this view to the CloudWatch dashboard by clicking on the Add to Dashboard
button at the top. As the new instances are being built in the Auto Scaling cluster, the new EC2
instances will be added dynamically to the CloudWatch dashboard as we have filtered/grouped
them using the Auto Scaling tag (aws:autoscaling:groupName).

Also, you can achieve equal functionality by leveraging the Explorer widget on the CloudWatch
dashboard.

Deriving operational intelligence from CloudWatch metrics 135

Figure 5.8 – Explorer widget

Through the previous steps, we have gained knowledge of how to use the tag-based metrics explorer
to retrieve metrics and tailor the data to meet specific requirements by slicing and dicing the metrics.

Tag-based monitoring and CloudWatch metrics explorer can be leveraged further in the following scenarios:

• Multi-application environments: Filter performance by a specific application in a multi-
application environment when you are sharing your AWS account

• Multi-AZ deployments: Compare performance trends across availability zones (you can use
the Split by option as discussed earlier)

• Multi-Region deployments: Compare performance trends across regions

• Multi-account deployments: Compare performance trends or combine metrics running in
multiple accounts across multiple regions

• Multiple sub-components: Filter performance by a specific sub-component in a complex
application (leveraging the Split by option)

• Monitoring deployments: You can compare performance by instance type and other resource
properties that help to isolate issues and correlate with operational events such as upgrades
and patching

Insights into Operational Data with CloudWatch136

CloudWatch Metrics Insights

We discussed CloudWatch Metrics Insights in Chapter 2, Overview of the Observability Landscape
on AWS, as a part of Layer 4, a newly released AWS service. CloudWatch Metrics Insights provides a
fast, flexible, high-performance SQL-based query engine that can query metrics at scale in real time.
You can group and aggregate your custom metrics as well as AWS vended metrics in real time based
on use cases and business requirements for up to 3 hours (at the time of writing).

These are some of the use cases you can leverage CloudWatch Metrics Insights for:

• Understanding the top 10 highest-consuming compute instances in the account will help you
understand over-utilized instances

• The Lambda functions that are running for the longest time will help explain performance
issues caused by long-running applications

Metric math expressions

Metric math functionality enables you to query many CloudWatch metrics and use mathematical
expressions to derive meaningful insights from them and create new metrics. The following are some
intriguing use cases that can be achieved by utilizing metric math functions:

• Dynamic time threshold: By utilizing metric math functions, we can create alarms with custom
thresholds based on the time and day of the week. This is especially useful for scenarios where
traffic patterns vary, such as heavy traffic during weekdays compared to weekends.

• Daily difference: When you would like to calculate the difference between the utilization
yesterday versus today or between different times of the day.

• Capacity calculation from metrics: You can calculate capacity metrics such as transactions
per second (TPS) and bytes written to disk per second (BPS).

• Highlighting latency above SLAs: By utilizing metric math functions, you can identify instances
where the latency of certain metrics exceeds the established SLA requirements. An example
where this can be useful is to see the load time of a web page from user experience monitoring
and determine whether it meets the defined SLA requirements.

• Generating high-resolution metrics: You can use metric math functions such as FILL() to
fill data to generate high-resolution metrics. For example, metrics are published once every 5
minutes and you want to generate a metric every 1 minute. You can use the FILL() function
to generate a high-resolution metric of one minute each.

• Filling missing values in nonperiodic traffic: When a metric is not generated often because
of no traffic (for example, website traffic) and you would like to fill in the missing values, you
can use the FILL() function to generate the missing values.

Deriving operational intelligence from CloudWatch metrics 137

Let’s go ahead and practically look at some of these use cases.

Capacity calculation from metrics

Let’s say that you would like to understand the amount of traffic flowing on the load balancer per
second and understand any performance bottlenecks. You can leverage the PERIOD() function to
achieve that functionality.

In the last section, Deriving operational intelligence from CloudWatch metrics, we deployed an
application load balancer using a CloudFormation template. We will see how to calculate the overall
bytes processed by the Application Load Balancer using the metric math expression:

1. Let’s navigate to CloudWatch | Metrics | All metrics | ApplicationELB | per AppELB Metrics |
ProcessedBytes and navigate to the Graphed metrics tab, as shown in the following screenshot,
and change Statistic to Sum.

Figure 5.9 – Bytes processed by the Application Load Balancer

Insights into Operational Data with CloudWatch138

2. Click on Add math and select PERIOD.

Figure 5.10 – PERIOD() function in metric math

3. Rename the label from Expression1 to ProcessedBytesPerInterval.

You can observe the traffic flowing on the load balancer per interval, as selected in the Period
column.

Figure 5.11 – Traffic flowing on the load balancer per interval

Deriving operational intelligence from CloudWatch metrics 139

4. You can quickly add the widget to the dashboard by clicking on Actions | Add to dashboard.

Figure 5.12 – Add the widget to the dashboard

5. You can add to a new dashboard or an existing dashboard by clicking Create new or browsing
the existing dashboards.

Figure 5.13 – Add to dashboard

Given the metric m1, we can use the PERIOD() function to divide the values of the metric by the
period in the Period column, which will provide the value per interval for the selected metric.

This PERIOD() function is useful for calculating capacity-related metrics such as TPS on Elastic
Block Store (EBS) volumes, as well as for measuring I/O (bytes written to disk per second, etc).

Insights into Operational Data with CloudWatch140

Horizontal and vertical annotations

The horizontal annotation feature provides a quick visual representation of metrics crossing the
predefined values, such as SLA limits, offering valuable context for understanding metric values.
You can add lines to represent important key values on the y axis. For example, defining maximum
and minimum values expected for metrics. This will be especially useful in application operations by
incorporating tacit knowledge into dashboards.

If you are visualizing the time series as a part of the x axis, vertical annotations will be useful to mark
events that happened over time and bring tacit knowledge to dashboards. Let’s add annotations to
the widget created earlier.

You can edit the widget created in the last exercise and navigate to Options and add the horizontal
annotation for Min Limit and Max Limit with values of 500 and 2000. Also, add a vertical annotation
called MajorChange, as shown.

Figure 5.14 – Annotations on CloudWatch widgets

Deriving operational intelligence from CloudWatch metrics 141

Then, update the widget. The output will look like the one in the following screenshot:

Figure 5.15 – Annotations on the dashboard

By using vertical annotations in this example, the operations team can quickly reference historical
data points and determine any changes in the application. By using horizontal annotation, we mapped
the expected maximum and minimum threshold. This brings tacit operational knowledge onto
the dashboard.

Filling in missing values or generating high cardinality metrics

In the Calculate capacity from metrics section, you can see that the ProcessedBytes metric is missing
values at certain intervals because of no traffic to the website. If you would like to fill in the missing
values of the time series using mathematical functions to estimate similar traffic patterns, you can
use the FILL command with different parameters:

• FILL(metric, S) – S is the static value to fill. You can see the static value is 1 in the following
screenshot. You can edit and add FILL(m1,1) where m1 is the ID of the metric selected.

Insights into Operational Data with CloudWatch142

Figure 5.16 – Traffic flowing through the load balancer per second

• FILL(metric, REPEAT) – The FILL function is used to fill the missing value with the
most recent actual value before the missing value. You can edit and add FILL(m1,REPEAT)
as shown here.

Figure 5.17 – Traffic flowing through the Load Balancer per second

Deriving operational intelligence from CloudWatch metrics 143

• FILL(metric, LINEAR) – This is used to fill in missing values and create linear interpolation
by rendering a straight line between values at the beginning and the end of the gap. You can
edit and add FILL(m1,LINEAR) as shown in the following screenshot.

Figure 5.18 – Traffic flowing through the load balancer per second

Dynamic threshold based on the weekend and weekdays

We can use metric math functions to define a variable alarm threshold based on the weekend and
weekdays. The IF() function is powerful, given that you can combine multiple functions to create
complex nested expressions. This example shows how to combine IF and TIME_SERIES() and
set an alarm based on the time of the day.

Insights into Operational Data with CloudWatch144

ID Detail Explanation
Metric Select metric Select any metric that you want to calculate

dynamic alarms.

Weekday TIME_SERIES(1) Select the threshold you would like to set for the
metric on weekdays.

Example 1: ActiveConnectionCount on the ALB is
set to 1 on weekdays.

Example 2: CPU utilization >70% should be represented
as TIME_SERIES(70).

Weekend TIME_SERIES(2) Select the threshold you would like to set for the metric
at the weekend.

Example 1: ActiveConnectionCount on the ALB is
set to 2 on weekdays.

Example 2: Expecting more traffic over the weekend.
CPU utilization >90% should be represented as TIME_
SERIES(90).

Dynamic IF(((DAY(week) ==
7 OR (DAY(week) ==
6 AND HOUR(week) >
2)) OR (HOUR(week)
< 8 AND DAY(week)
== 1)),weekend,
weekday)

This function determines whether a given date and
time falls within the weekend or weekday category,
using the following criteria:

If the date falls on a Sunday, or is after 2 AM on a
Saturday, it is considered part of the weekend till
8AM on Monday.

Otherwise, the date is categorized as a weekday, and
the respective weekday threshold is used.

Alarm I F (m e t r i c < =
dynamic,0,1)

Set the alarm value to 0 if the metric is below the
threshold and 1 if above the threshold. You need to set
up notifications when the alarm state has the value of 1.

Deriving operational intelligence from CloudWatch metrics 145

You can see from the graph that it does not trigger the weekend threshold alarm when
ActiveConnectionCount=2, which is equal to or less than the configured threshold of 2.

Figure 5.19 – Threshold breach at the weekend

You can see from the graph that the weekend threshold breach happened only when the value was
ActiveConnectionCount=2.5, which is higher than the configured threshold of 2.

Figure 5.20 – Threshold breach at the weekend

Insights into Operational Data with CloudWatch146

Whereas on the weekday, the alarm was triggered when the value was ActiveConnectionCount=2,
which is higher than the configured threshold of 1.

Figure 5.21 – Threshold breach on a weekday

This way, you can configure different thresholds based on the different days of the week and avoid
false alarms.

Highlighting latency above SLAs

Another powerful usage of the IF() function is to highlight the values that are outside of SLAs
without monitoring every data point. This makes it easy to spot breaches of SLAs at a glance. This will
be especially helpful for metrics related to latency, availability, and so on. The following screenshot
shows a view of the target response time view of the load balancer outside the defined SLA.

Figure 5.22 – Traffic flowing through the Load Balancer breaching the SLA

Deriving operational intelligence from CloudWatch metrics 147

You can create visualization for target response time breaches in a load balancer using the metric
math, as follows.

ID Labels Details Explanation
sla expression1 TIME_SERIES(0.004) Define the SLA value of the

metric in the time series.

n2 TargetResponseTime Metric to define the SLA Select the metric for which
you would like to visualize
SLA breaches.

e2 belowsla IF(n2<sla,n2) Provides time series metrics
that are below the SLA.

e1 abovesla IF(n2>sla,n2) Highlights the time series
that are above the SLA.

This provides a view to visualize breaches above the threshold value to understand issues quickly.

CloudWatch search expressions

Search expressions in metric math help you to search and group metrics across multiple CloudWatch
metric namespaces. Search expressions will help you query and quickly add multiple related metrics
to a graph. They also enable you to create dynamic graphs that automatically add metrics to their
display, even if those metrics don’t exist when you first create the graph. This will be especially useful
when you are transferring CloudWatch dashboards/queries to a new AWS account.

If you would like to understand the overall size of the S3 buckets in the AWS account, we can use
the metric math SEARCH() and SUM() functions to achieve the required functionality. Here is the
search query that will provide a sum of the size of all the buckets in an AWS account:

SUM(SEARCH('{AWS/S3,BucketName,StorageType}
MetricName="BucketSizeBytes"', 'Sum', 300))

Insights into Operational Data with CloudWatch148

You can see the sum of S3 buckets shown in Figure 5.23.

Figure 5.23 – Sum of the data in all S3 buckets in the account

In this section, we have looked at how to leverage metric math to derive intelligence from CloudWatch
metrics using different functions. Let’s go ahead and understand how to use the anomaly detection
feature in CloudWatch metrics.

CloudWatch anomaly detection

We discussed configuring an alarm for anomalous behavior in Chapter 3, Gathering Operational Data
and Alerting Using Amazon CloudWatch, but let’s understand how to configure or adjust the anomalous
settings and understand the parameters in anomaly detection. In the last section, we discussed setting
up dynamic thresholds based on the day/time of the week, but this is still a manual methodology to
determine thresholds. If you are looking to automate this and leverage machine learning, consider
using the CloudWatch anomaly detection tool.

CloudWatch anomaly detection applies machine-learning intelligence to automate, accelerate, and
improve the detection of abnormal system and application behavior. CloudWatch anomaly detection
uses predictive modeling to compare expected behavior against actual metric behavior, providing
developers, systems engineers, and operators with real-time, targeted insights into abnormal system
and application changes. The anomaly detection model is generated by algorithms by continuously
analyzing the metrics of systems and applications and determining normal baselines and identifying
anomalies with minimal user intervention. The model generates a range of expected values that
represent normal metric behavior.

Deriving operational intelligence from CloudWatch metrics 149

Some of the use cases for applying anomaly detection are as follows:

• Detect Unexpected Volume Changes: Capture unexpected volume drops or increases in
CloudWatch metrics, such as abnormal decreases in load balancer requests. Though these
changes may be within the bounds of static alarm thresholds, they can also be indicative of
impending issues, such as resource exhaustion or DDoS attacks.

• Monitor Dynamic Applications: Monitor applications that exhibit cyclical or seasonal behavior
with dynamic alarms that auto-adjust alert thresholds. Examples include increased CloudFront
requests during peak hours or organically changing trends, such as gradual decreases in database
writes as a system is deprecated.

• Identify Deployment Side Effects: When code deployments or resource changes are made, you
can apply anomaly detection to monitor unexpected behavioral changes post-deployment, such
as utilization spikes. This can be useful to monitor whether deployments cause unintentional
side effects and determine whether rollbacks are necessary.

• Proactive Troubleshooting: Identify abnormal metric behavior before critical thresholds are
breached to remediate potential issues. CloudWatch anomaly detection predicts behavior up
to 2 hours into the future and enables you to preemptively identify resource exhaustion and
add capacity in anticipation of future demand.

• Monitor Business Metrics: You can publish custom metrics that measure business KPIs, such
as website order rate, video streaming latency, or API call rate to identify abnormal customer
and business-impacting behavior.

Let’s see how to configure CloudWatch anomaly detection and also delete existing models from CloudWatch:

1. In the AWS Management Console, on the Services menu, click CloudWatch.

2. In the left navigation menu, click on Metrics.

3. Click on ApplicationELB | per AppELB metrics | TargetResponseTime and navigate to the
Graphed metrics tab. Your screen should look like the following.

Figure 5.24 – Enable anomaly detection

Insights into Operational Data with CloudWatch150

4. Click on the Anomaly detection icon, as shown in the preceding screenshot.

5. Anomaly detection (AD) will be enabled immediately. A model is created based on the metric
data from the past 2 weeks. AD will also be enabled even if there is no data available for the
two-week period.

Figure 5.25 – Generated anomaly detection band

6. Notice the expression in the ANOMALY_DETECTION_BAND(m1,2) graph. This indicates
that the metric m1 anomaly detection has been enabled with a standard deviation of 2. You
can adjust the standard deviation number to increase the deviation scope for the metric data
point if required. You can simply edit the expression as follows and click Apply.

Figure 5.26 – Editing anomaly detection band

7. At times, there may be certain data that you wish to exclude from the training model, such as
periods during which traffic deviates from the norm, such as a promotional campaign. You
could do that by clicking on ANOMALY_DETECTION_BAND(m1,3) and clicking on Edit
anomaly detection model as shown.

Deriving operational intelligence from CloudWatch metrics 151

Figure 5.27 – Editing anomaly detection model

8. Select the exclusion time from the model training and click on the Apply button.

Figure 5.28 – Excluding time periods from the model training

Insights into Operational Data with CloudWatch152

9. Select the time zone of the period to exclude or add additional timings to exclude from the AD
model training and click Update.

Figure 5.29 – Adding a time zone

10. To delete the model, you can simply click Delete anomaly detection model and then click Delete.

You can also create alarms, as discussed in Chapter 3, Gathering Operational Data and Alerting
Using Amazon CloudWatch, for anomaly detection based on the model created.

This marks the end of the exploration of metrics and the various operational enhancements that can
apply to metric data generated from various sources. The functionalities discussed in this section can
also be extended to containers and serverless application metrics generated using CloudWatch. We will
see how to gather metrics, logs, and traces from containerized applications and serverless applications
in Chapter 6, Observability for Containerized Applications on AWS, and Chapter 7, Observability for
Serverless Applications on AWS.

We have seen in earlier chapters that metrics, logs, events, alarms, and dashboards form the foundational
components of observability in CloudWatch. In Chapter 3, Gathering Operational Data and Alerting
Using Amazon CloudWatch, we learned how to instrument an EC2 instance manually using the
CloudWatch agent and using SSM. In Chapter 4, Implementing Distributed Tracing Using AWS X-Ray,
we saw how to instrument an application running on EC2 instance using CloudFormation templates.

One challenge with the approaches discussed is where to start, what to set up, and how to set it up.
That is where CloudWatch Application Insights comes into play. In the next section, we will look
at how CloudWatch Application Insights will be useful in instrumenting custom applications, along
with the discovery process. Let’s understand what CloudWatch Application Insights is and how it will
ease the operational burden.

Exploring CloudWatch Application Insights 153

Exploring CloudWatch Application Insights
CloudWatch Application Insights streamlines the monitoring of enterprise applications with its intuitive
and automated setup process. This reduces the time and effort required to configure monitoring, as
it automatically sets up metrics, telemetry, logs, and alarms. The key advantage of using Application
Insights is that it automatically discovers and configures application-specific monitoring, making
it easy to effectively monitor your applications. Furthermore, it leverages ML analysis to perform
in-depth problem analysis based on the gathered data, allowing you to quickly identify correlations
between issues and relevant events.

It provides a dashboard for detected problems and provides insights and observations. It has predefined,
customizable rules for alerting. It also helps you create an AWS System Manager (SSM) OpsItem to
take remediation action with SSM runbooks.

Supported data sources on the Windows operating system include the following:

• Platform Metrics: Built-in platform metrics, advanced custom metrics, CloudWatch metrics

• Application Data: Microsoft IIS Logs, Microsoft SQL Server error log, custom .NET applications,
.NET Core, Prometheus Java metrics

• Windows Performance Counters: .NET CLR, W3SVC_W3WP, Interop CLR, SQL server
metrics, IIS counters

• Windows Event Logs: System, security, and application

• Extensibility for custom log patterns and custom application tiers

CloudWatch Application Insights supports gathering metrics, logs, and application-specific metrics
using the console. Currently, X-Ray tracing is not supported.

You can use two different methods to discover the application using Application Insights:

• Resource group based: You can create a new resource group for an application using AWS
resource group and tags as a component of your CloudFormation template. As part of the
exercise in this section, we will use this method to create a new resource group.

• Account based: By implementing the account-based method, you can create application
monitoring for all the resources in the AWS account. This is ideal when you are looking to
instrument all future applications deployed in your AWS account.

In the previous chapter, we deployed a Java application on an EC2 instance and set up observability
as a part of CloudFormation. We will set up observability for the same application using Application
Insights and get additional insights related to the application besides the path of the user journey
provided by X-Ray.

You can download the changed template for this exercise. To do so, log into your AWS account and
click or copy and paste into your browser window the following Quickstart URL:

Insights into Operational Data with CloudWatch154

https://console.aws.amazon.com/cloudformation/home#/stacks/
new?stackName=scorekeepappinsight&templateURL=https://insiders-
guide-observability-on-aws-book.s3.amazonaws.com/chapter-05/basic-
ec2-template_rg_nomonitoring.yml

If you would like to download the template and verify it before deploying, you can download it from
the following URL:

https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/
chapter-05/basic-ec2-template_rg_nomonitoring.yml

This action will open the AWS CloudFormation console with all the parameters with default values.
You can keep the default values and click on the Next button on all the subsequent pages. On the last
one, named Review scorekeepappinsight, do not forget to check the box with the text The following
resource(s) require capabilities: [AWS::IAM::Role] and click on the Create Stack button.

What we have changed in the CloudFormation template is the following:

• The addition of YAML to create a resource group

• Modification of the IAM role to allow management using AWS Systems Manager (as Application
Insights leverages AWS SSM to install and configure the CloudWatch agent)

• The removal of the installation and configuration of the CloudWatch agent on the EC2 instance

Let’s deploy the application using CloudFormation and provide the stack name to start with: scorekeep.
Once it’s successfully deployed, let’s discover the application using CloudWatch Application Insights:

1. Navigate to Application Insights | Add an application | Resource group based application
| Confirm.

Figure 5.30 – Resource group based discovery in Application Insights

https://console.aws.amazon.com/cloudformation/home#/stacks/new?stackName=scorekeepappinsight&templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-05/basic-ec2-template_rg_nomonitoring.yml
https://console.aws.amazon.com/cloudformation/home#/stacks/new?stackName=scorekeepappinsight&templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-05/basic-ec2-template_rg_nomonitoring.yml
https://console.aws.amazon.com/cloudformation/home#/stacks/new?stackName=scorekeepappinsight&templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-05/basic-ec2-template_rg_nomonitoring.yml
https://console.aws.amazon.com/cloudformation/home#/stacks/new?stackName=scorekeepappinsight&templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-05/basic-ec2-template_rg_nomonitoring.yml
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-05/basic-ec2-template_rg_nomonitoring.yml
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-05/basic-ec2-template_rg_nomonitoring.yml

Exploring CloudWatch Application Insights 155

2. From the dropdown, select my_resource_group and select Automatic monitoring of new
resources, Monitor EventBridge events, and Integrate with AWS Systems Manager OpsCenter
and click Next.

Figure 5.31 – Discovery of resources using resource groups

Insights into Operational Data with CloudWatch156

3. CloudWatch Application Insights discovers all the resources that are deployed as a part
of the CloudFormation template. You can add the components installed on EC2 from the
dropdown as shown in the following screenshot, which will add additional applications to
CloudWatch monitoring.

Figure 5.32 – Application components discovered by Application Insights

4. In Specify component details, you can also add additional logs to be gathered from the Java
application leveraging the CloudWatch agent. Add the log file /tmp/scorekeep.log.
We can also change it at a later stage to accommodate additional run operations if necessary.

Figure 5.33 – Adding logs to CloudWatch monitoring

Exploring CloudWatch Application Insights 157

5. Select Next and Submit to start the onboarding of the application.

Figure 5.34 – Submit application monitoring

6. You can verify that the resource group has been added successfully using Application Insights.

Figure 5.35 – Successfully added application

You can see that it is additionally asking to set up X-Ray, which is already done as a part of
the CloudFormation template and application instrumentation, as discussed in Chapter 4,
Implementing Distributed Tracing Using AWS X-Ray.

Insights into Operational Data with CloudWatch158

7. Once you navigate to Application Insights, you will see monitored assets, telemetry, and a
summary along with the detected problems as a unified dashboard.

Figure 5.36 – Detected problems

Application Insights uses CloudFormation to deploy the required resources to monitor EC2
instances, as shown in the following figure. This will also address the challenge of agent
installation in the newly built instances as a part of the resource group when you are leveraging
Auto Scaling mechanisms as discovery is a continuous process.

Figure 5.37 – CloudFormation template created by Application Insights

Exploring CloudWatch Application Insights 159

8. When you navigate to any problem summary generated by Application Insights, it will provide you
with an insights dashboard for the issue and also request feedback. In the following screenshot,
I have navigated to the CPU issue, where the RDS database instance has high latency and the
proposed action is to scale up the RDS instance.

Figure 5.38 – Problem navigation in Application Insights

9. As we also created an OpsItem in AWS Systems Manager, it has provided a summary of the
related resources and provided navigation of CloudTrail (audit events), CloudFormation
(resources), and also CloudWatch alarms in a single view.

Figure 5.39 – Related resources view in AWS Systems Manager OpsCenter

Application Insights provides a way to setup collecting infrastucutre, application related metrices and logs
and setup alarms and anomaly detection automatically along with installation of CloudWatch agent in in
few clicks compared to instrumenting the application manually. We can also implement Application Insights

Insights into Operational Data with CloudWatch160

using CloudFormation by using the resource type AWS::ApplicationInsights:Application: https://
docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-
applicationinsights-application.html.

Now let’s explore how to derive operational intelligence from CloudWatch Logs using CloudWatch
Logs Insights.

Exploring CloudWatch Logs Insights
We discussed CloudWatch Logs Insights as a part of layer 4 in Chapter 2, Overview of Observability
Landscape on AWS, and learned about the functionalities provided by Logs Insights. Logs Insights is a
feature of CloudWatch Logs that allows querying log groups without exporting them to an external tool.

CloudWatch Logs Insights features a purpose-built query language with the key benefits of fast
execution, query auto-completion, and log field discovery. It provides the ability to save queries and
organize them into folders. It has built-in support for service logs, including discovered fields and
sample queries, and makes log analysis effortless.

Logs Insights discovers fields automatically and works with both AWS logs and custom logs from
custom applications that are in JSON format. Logs Insights generates field names automatically. If
the custom logs are not in JSON format, we can still query them in Logs Insights and split them into
fields using the parse command using the regex model. Logs Insights supports querying multiple
CloudWatch Logs groups – up to 20 (as of this writing) – and visualizing them. We also have support
for adding the log details as a part of the CloudWatch dashboard.

By default, there are five discovered system fields – namely, [@message], [@timestamp], [@
ingestiontime], [@logStream], and [@log]. Field names that start with the @ character
are automatically generated by Logs Insights.

Figure 5.40 – Default fields in CloudWatch Logs Insights

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-applicationinsights-application.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-applicationinsights-application.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-applicationinsights-application.html

Exploring CloudWatch Logs Insights 161

As discussed, it is simple yet powerful as there are only seven commands in Logs Insights – namely,
display, fields, filter, stats, sort, limit, and parse. It has built-in support for
functions and operators such as arithmetic operators (addition, subtraction, multiplication, etc.),
Boolean operators (and, or, not), comparison operators (=, <, >, >=, <=, =!), numeric
operators (greatest, least, ceil, etc.), Datetime functions, general functions (ispresent,
coalesce), string functions (replace, strlen, etc.), and stats aggregation functions (avg,
count, etc.). Each query can include one or more query commands separated by a Unix-style format.

Let’s look at examples of how to leverage CloudWatch Logs Insights. We have generated a few logs
as a part of application logs for AWS Lambda with the log group name /aws/lambda/random-
name. Let’s explore the logs in the log group using Logs Insights:

1. In the AWS Management Console, navigate to CloudWatch | Logs | Logs Insights, as shown
in the following screenshot.

Figure 5.41 – Logs Insights view

2. From the dropdown, select the random-name log group or IISLogs (if you have executed
exercises in Chapter 3, Gathering Operational Data and Alerting Using Amazon CloudWatch)
and click Run query, which will execute the default query from the log. If you don’t see any
results, you can adjust the period in the right corner as required to query the logs:

fields @timestamp, @message
| sort @timestamp desc
| limit 20

Insights into Operational Data with CloudWatch162

Executing the default query, as in the preceding block, will display the timestamp and message
fields, sort them by timestamp in descending order, and limit the number of results to the top
20, as shown in the figure.

Figure 5.42 – Default query execution

3. When you click on the Fields button on the right side, you will see the additional discovered
fields from the logs, and you can also check the percentage field availability against each column.

Figure 5.43 – Discovered fields in Logs Insights query

Exploring CloudWatch Contributor Insights and its use cases 163

4. If you would like to know the overall billed duration for a specific period for a Lambda
function(s), you can select the log groups accordingly and execute the following query to get
the total billed duration for a specific period:

fields @timestamp, @message
| sum(@billedDuration) as TotalDuration

You can see in the following screenshot the total duration of the Lambda function executed
over the selected time period:

Figure 5.44 – Custom query to calculate the total duration of the Lambda function

Let’s explore what CloudWatch Contributor Insights is and the use cases for it.

Exploring CloudWatch Contributor Insights and its use
cases
We briefly discussed CloudWatch Contributor Insights (CCI) in Chapter 3, Gathering Operational
Data and Alerting Using Amazon CloudWatch, as a part of Layer 4 and discussed its functionalities.
CloudWatch Contributor Insights, as the name suggests, will allow you to know the top contributors to a
specific log group(s) or natively supported AWS services such as DynamoDB. CloudWatch Contributor
Insights supports logs in the format of JSON or CLF (short for Common Log Format) (https://
en.wikipedia.org/wiki/Common_Log_Format).

https://en.wikipedia.org/wiki/Common_Log_Format
https://en.wikipedia.org/wiki/Common_Log_Format

Insights into Operational Data with CloudWatch164

A contributor can be any field within a log entry that can be aggregated. The main configuration
object is known as a rule, which can be applied to one or multiple log groups, up to 20 at a time.
The log entries in the selected log groups are evaluated against the rule, and any matching logs are
referred to as events. Rules can be either custom or pre-defined. CCI rules help you evaluate patterns
in structured events in CloudWatch Logs from services such as AWS CloudTrail, Amazon VPC Flow
Logs, and so on, and also for any custom logs sent from your applications or on-premises servers.
You can see metrics generated by CloudWatch Contributor Insights about the top-N contributors, the
total number of unique contributors, and their usage, for example, the top 10 source IPs that queried
Route53. The source IP is a contributor in this case.

Built-in rules currently supported on DynamoDB are as follows:

• Most Accessed Items (Primary Key)

• Most Throttled Items (Primary Key)

• Most Accessed Items (Primary Key + Secondary Key)

• Most Throttled Items (Primary Key + Secondary Key)

By enabling CCI, you are not impacting the performance of DynamoDB as it is asynchronous in
nature. As a part of use cases, you can identify the following:

• Hotkeys in a DynamoDB table

• DynamoDB table access patterns over time

• The top 25 most frequent keys

The output of the CCI can be displayed as a part of CloudWatch dashboards. Let’s look at an example
and enable CCI for DynamoDB.

In the Exploring CloudWatch Application Insights section, we deployed an application with DynamoDB
as the database. Let’s enable CCI for DynamoDB and see how it works:

1. Navigate to DynamoDB | Tables | scorekeep-stateTable-1random | Monitor | Enable
CloudWatch Contributor Insights.

Exploring CloudWatch Contributor Insights and its use cases 165

Figure 5.45 – Enable CloudWatch Contributor Insights

2. Select Enable for both the primary key and secondary key.

Figure 5.46 – Enable CloudWatch Contributor Insights settings on a DynamoDB table

Insights into Operational Data with CloudWatch166

3. After a few application plays of the sample score-keep application, you can verify the most
accessed keys by navigating to CloudWatch | Insights | Contributor Insights. Select the
scorekeep-statetable rule to verify the consumed throughput units

Figure 5.47 – Most accessed keys and consumed throughput units

You can see that the top key in terms of consuming DynamoDB capacity is highlighted in the preceding
screenshot. We learned how to leverage CloudWatch Contributor Insights for DynamoDB in this
section. Further, you can also leverage CloudWatch Contributor Insights for your custom logs.

Summary
In this chapter, we learned how to derive operational intelligence from CloudWatch metrics using
the metrics explorer and query metrics using CloudWatch Metrics Insights. We looked at how to
derive operational intelligence using metric match expressions and search expressions, and also
how to use anomaly detection in metrics. Further, we explored leveraging CloudWatch Application
Insights to observe an application running on an EC2 instance and gather metrics and log files, and
how observability onboarding can be simplified during Day 2 operations with ease. We learned how
to derive operational metrics from CloudWatch Logs and how to leverage CloudWatch Logs Insights
to understand log files in a better way. Finally, we discussed CloudWatch Contributor Insights and
how that can be used to understand the top contributors from DynamoDB tables and the supported
log formats for CCI.

The skills learned in this chapter will help you reduce alarm fatigue, knowing how to leverage features
in CloudWatch to enhance the operational experience.

Questions 167

In the next chapter, we will learn how to set up observability for applications running as container
workloads on AWS. We will also explore how AWS AppMesh can help in extending the observability
of the network layer in Chapter 6, Observability for Containerized Applications on AWS.

Questions
1. If you would like to add tacit knowledge of the operational team to the CloudWatch dashboard,

what features could be leveraged?

2. What is the internal mechanism used by Application Insights to roll out monitoring of
EC2 instances?

3. What are the different commands available in CloudWatch Logs Insights to query log files?

4. What AWS services are supported by CloudWatch Contributor Insights?

6
Observability for Containerized

Applications on AWS

Malcolm Purcell McLean revolutionized the international transport business by introducing modern
containers to reduce the labor required to load ships and trucks with goods of different sizes, reducing
costs, improving reliability, and shortening transit time.

In the same way, container technology is revolutionizing how businesses ship production code to data
centers and the public cloud. It is becoming the standard way of transporting code to run elsewhere,
allowing the standardization of tools and pipelines, realizing the dream “compile once, run everywhere”
promise for any technological stack.

A recent Gartner report says that we will have an increase from 20% in 2019 to 70% in 2023 of global
organizations running more than two containerized applications in production (see https://www.
gartner.com/en/newsroom/press-releases/2020-06-25-gartner-forecasts-
strong-revenue-growth-for-global-co). With all this growth, sooner or later, if not
now, you as a practitioner will face the challenge of a single application or a distributed application
running on containers.

It is better to be prepared and understand all the tools AWS has to offer to help you in your observability
journey for containers.

In this chapter, we will go through some manual and automated tools designed to reduce the effort to
create and collect metrics yourself and what else to do to improve your observability powers on the
two primary container services on AWS: Amazon EKS and Amazon ECS. We will look at AWS App
Mesh, which extends your observability reach to the network layer, which is extremely important
for distributed applications. And finally, we will check how to use the newly acquired knowledge in
a scenario to solve performance bottlenecks in containerized applications. We will go through the
following topics:

• Introduction to CloudWatch Container Insights

• Implementing observability for a distributed application running on Amazon EKS

https://www.gartner.com/en/newsroom/press-releases/2020-06-25-gartner-forecasts-strong-revenue-growth-for-global-co
https://www.gartner.com/en/newsroom/press-releases/2020-06-25-gartner-forecasts-strong-revenue-growth-for-global-co
https://www.gartner.com/en/newsroom/press-releases/2020-06-25-gartner-forecasts-strong-revenue-growth-for-global-co

Observability for Containerized Applications on AWS170

• Implementing observability for a distributed application running on Amazon ECS

• End-to-end visibility of containerized applications using AWS App Mesh

• Understanding and troubleshooting performance bottlenecks in containers

Technical requirements
In your AWS account, it is advisable to experiment with the commands and procedures shown in
this chapter.

Most commands are Bash shell commands, so access to a Unix-like environment is necessary, and
some experience with Bash and command-line interfaces would be helpful.

Introduction to CloudWatch Container Insights
Talking to customers and practitioners, we see a common set of requirements for any observability solution:

• Understand distributed architecture: Bird’s eye view of the application to locate the source
of the problem

• Zoom into individual components: Drill down into specific components or workloads to
learn more

• Derive insights from data collected: Connect the dots across metrics and logs collected

Launched in 2019, the AWS observability team specially tailored CloudWatch Container Insights
to containers on AWS or any other system that runs containers.

CloudWatch Container Insights mainly performs the following functions:

• Collects and aggregates metrics and logs

• Provides reliable, secure metrics and log collections

• Enables automated dashboard creation and analysis

• Provides observability experience across metrics, logs, and traces

• Provides ad hoc analysis

It’s the right tool if you are beginning your journey or want to scale. With CloudWatch Containers
Insight, we don’t need to deploy agents to collect metrics (if you are using Fargate), a time series
database to store them, or even a visualization tool to graph them. All is done for you using the
Amazon Elastic Kubernetes Service (Amazon EKS), Amazon Elastic Container Service (Amazon
ECS), or Kubernetes platforms on Amazon EC2.

Introduction to CloudWatch Container Insights 171

When you open CloudWatch Containers Insights, you see a list of all your resources, such as clusters,
namespaces, services, and pods. See the following screenshot:

Figure 6.1 – A list view of container resources

You can click the Map view button to see a graphical representation of the same resources, showing
the relationship between them. You can select one of the existing heatmaps, CPU-based or memory-
based, to graphically represent the resource usage against its limits. If you hover the mouse over one
of the resources, you can see more details, such as memory utilization, CPU, and network traffic. The
graphical representation is easier to read for a few resources, but as soon you reach a bigger scale,
you will likely use the list view and filters to find a specific resource. List view and map view give
you a birds-eye view of your workloads to locate an application issue. See the following screenshot:

Observability for Containerized Applications on AWS172

Figure 6.2 – Map view of container resources

You can use the map or list view and click on any resource to see more details. As soon as you click
on one resource, you will see a dashboard with relevant data for clusters, nodes, services, namespaces,
and pods.

Let’s open the EKS Nodes view:

Figure 6.3 – Container Insights EKS Nodes view

Introduction to CloudWatch Container Insights 173

It will show all cluster nodes and the usual metrics, such as CPU, memory, disk usage, and so on. You
can hover the mouse over a metric to filter all dashboards on a single node. See the following screenshot:

Figure 6.4 – Container Insights EKS Nodes, filtering on a single node

You can click on the Container insight metrics, open metrics groups created by Container Insights,
and create alarms based on them, as we saw in the previous chapter, in the Exploring CloudWatch
Logs Insights section.

Figure 6.5 – Logs Insights, showing one of the automatically created log groups

Observability for Containerized Applications on AWS174

If you have AWS X-Ray installed in your environment, you can click on a pod and drill down on the
details of the traces related to the pod. See the following screenshot:

Figure 6.6 – Container Insights, showing the option to see the AWS X-Ray traces

And finally, you can access the performance logs. You can access performance-related metadata and
query it using CloudWatch Analytics:

Figure 6.7 – Performance logs showing some of the discovered fields

Introduction to CloudWatch Container Insights 175

In this section, we saw how Container Insights fulfills all the requirements of a containerized
observability tool, such as the following:

• A bird’s eye of your workload

• How you can drill down to see the details of a particular component

• How to derive data using CloudWatch Analytics

In the next subsection, will set up a sandbox environment and see how to use Container Insights for
Amazon EKS.

Set up a Cloud9 development workspace

To have a standard integrated development environment (IDE) with the required set of tools, let’s
create an AWS Cloud9 environment:

1. Please click on the following link to create the required set of resources in your AWS account
based on the AWS CloudFormation template:

https://console.aws.amazon.com/cloudformation/home#/
stacks/quickcreate?templateURL=https://insiders-guide-
observability-on-aws-book.s3.amazonaws.com/common/cloud9.
yaml&stackName=InsidersGuideCloud9Chapter6

2. You can keep the default values and click on the checkbox asking for extra capabilities. Click on
Create stack, and in a few minutes, you can find the environment URL in the CloudFormation
Outputs tab, as in the following screenshot:

Figure 6.8 – CloudFormation Outputs tab, showing the AWS Cloud9 URL

https://console.aws.amazon.com/cloudformation/home#/stacks/quickcreate?templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/common/cloud9.yaml&stackName=InsidersGuideCloud9Chapter6
https://console.aws.amazon.com/cloudformation/home#/stacks/quickcreate?templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/common/cloud9.yaml&stackName=InsidersGuideCloud9Chapter6
https://console.aws.amazon.com/cloudformation/home#/stacks/quickcreate?templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/common/cloud9.yaml&stackName=InsidersGuideCloud9Chapter6
https://console.aws.amazon.com/cloudformation/home#/stacks/quickcreate?templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/common/cloud9.yaml&stackName=InsidersGuideCloud9Chapter6

Observability for Containerized Applications on AWS176

3. The setup of this environment requires some extra time after the CloudFormation execution
to install extra tools. So, after the CloudFormation execution, wait for around 15 minutes
just to be sure. You can check the setup progress by accessing AWS Systems Manager | Run
command, as in the following screenshot:

Figure 6.9 – Systems Manager | Run command – installing tools on the Cloud9 environment

4. If you click on it, you will find a newly configured environment, as in the following screenshot:

Figure 6.10 – AWS Cloud9 welcome page

Introduction to CloudWatch Container Insights 177

Now, let’s set up an Amazon EKS cluster as our sandbox environment.

Set up an Amazon EKS cluster

We will now configure a sandbox environment to use for the exercises in the rest of this chapter:

1. On the Cloud9 environment, run the following command to download the required Bash script:

wget https://insiders-guide-observability-on-aws-book.
s3.amazonaws.com/common/create-eks-ec2-eksctl.sh

After the download, don’t forget to check the content of this script (always a good practice).
Execute the script as follows:

bash create-eks-ec2-eksctl.sh

The preceding command will start the creation of a new EKS cluster. You can see the cluster
status in the command output. The process of creating a new cluster may take a few minutes.

2. After creating the cluster, let’s check the communication between the Cloud9 environment and
the new cluster. Run the following command:

kubectl get svc

You should see an output like this:
ec2-user:~/environment $ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP
 PORT(S) AGE
kubernetes ClusterIP 10.100.0.1 <none>
 443/TCP 7m52s

This command retrieves all services deployed in the default namespace. It shows you can communicate
with the Kubernetes API, and that you have the required permissions to execute commands.

Set up an Amazon ECS cluster

We will set up an Amazon ECS cluster as well to run some of our sample applications. For that, please
run the following command:

aws ecs create-cluster --cluster-name o11y-on-aws

In this section, we had a brief overview of Amazon CloudWatch Container Insights and its features,
and we set up our environment to experiment with it. In the next section, we will see how to apply
CloudWatch Container Insights to one important AWS container service: Amazon EKS.

https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/common/create-eks-ec2-eksctl.sh
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/common/create-eks-ec2-eksctl.sh
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/common/create-eks-ec2-eksctl.sh

Observability for Containerized Applications on AWS178

Implementing observability for a distributed application
running on Amazon EKS
In this section, we will see how to set up your Amazon EKS cluster to use native CloudWatch features
and Container Insights. We will postpone alternative methods using Amazon OpenSearch or Prometheus
and Grafana to later chapters.

We will see two different methods to set up metrics collection on Amazon EKS. Amazon EKS lets
you host your pods using EC2 worker nodes or AWS Fargate. When using EC2 worker nodes, we can
collect metrics directly from the kubelet agent. But, when using AWS serverless compute for Fargate
containers, no pod has access to the kubelet, so we need a different approach.

Let’s see the two different methods in the next subsections.

Container Insights metrics on your EKS EC2 or customer-managed
Kubernetes clusters

Whenever you want a system or workload to call AWS APIs on your behalf, you need to give it the
correct permissions, which is similar to publishing metrics and logs to CloudWatch. Let’s attach the
required policy to your worker node’s role.

Assuming you created the cluster using the script given in the previous section, you can attach
CloudWatchAgentServerPolicy to your worker node’s role by executing the following command:

$ curl -sSL https://insiders-guide-observability-on-aws-book.
s3.amazonaws.com/chapter-06/attach_role_cw_agent.sh | bash

Important
This method is the easiest way to set up the correct permissions for your worker nodes. It
works regardless of using Amazon EKS or deploying Kubernetes on Amazon EC2. But it gives
permissions to all pods running into the worker nodes to write data to CloudWatch. It may be
okay for some workloads, but it doesn’t follow the least privilege security principle. Another
option is to bind IAM roles to service accounts, which allows you to give permissions to only
the required pods. If you prefer this way, see the documentation at https://docs.aws.
amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-
prerequisites.html.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-prerequisites.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-prerequisites.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-prerequisites.html

Implementing observability for a distributed application running on Amazon EKS 179

We are ready to install the necessary software to collect metrics and logs from your cluster. The product
team did a fantastic job creating Docker containers with the required agents and plugins to make
them integrate seamlessly into the AWS ecosystem. We will install two DaemonSet resources, one
for the CloudWatch agent and another for Fluent Bit. Fluent Bit (https://fluentbit.io/) is a
fast, lightweight processor, logging forwarder, and a Cloud Native Computing Foundation (CNCF)
graduate project. Instead of recreating the wheel, the product team used an existing standard to send
the cluster logs to CloudWatch.

Even though we have the necessary Docker containers in public repositories (see https://gallery.
ecr.aws/cloudwatch-agent/cloudwatch-agent and https://gallery.ecr.aws/
aws-observability/aws-for-fluent-bit), we do have the task of writing the Kubernetes
manifests to deploy the DaemonSet resources and all the surrounding objects such as Namespace,
ServiceAccount, ClusterRole, ClusterRoleBinding, and ConfigMaps. The product
team raises the bar once again and provides a Quick Start setup with all the necessary resources
(see https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
Container-Insights-setup-EKS-quickstart.html).

To install all the necessary resources, you need to run the following command:

$ curl -sSL https://insiders-guide-observability-on-aws-book.
s3.amazonaws.com/chapter-06/install_cw_agent_fluentbit_k8s.sh | bash

After installing the DaemonSet resources, you should see the cluster metrics and logs in the Container
Insights console, as shown in the following screenshot:

Figure 6.11 – Container Insights, showing a single EKS cluster metrics

https://fluentbit.io/
https://gallery.ecr.aws/cloudwatch-agent/cloudwatch-agent
https://gallery.ecr.aws/cloudwatch-agent/cloudwatch-agent
https://gallery.ecr.aws/aws-observability/aws-for-fluent-bit
https://gallery.ecr.aws/aws-observability/aws-for-fluent-bit
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-EKS-quickstart.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-EKS-quickstart.html

Observability for Containerized Applications on AWS180

Container Insights metrics on EKS Fargate

Let’s see a different method to enable Container Insights on an EKS cluster, but now using Fargate. We
will use the AWS Distro for OpenTelemetry (ADOT). We have covered ADOT in detail in Chapter 9,
Collecting Metrics and Traces Using OpenTelemetry. However, we will briefly discuss this here for the
sake of continuity on EKS observability.

ADOT is an AWS-supported OpenTelemetry distribution. OpenTelemetry (see https://
opentelemetry.io/) is a collection of tools, SDKs, and APIs. It can be used to generate, collect,
instrument, and export telemetry data (for example, logs, traces, and metrics) in order to analyze the
behavior and performance of your software.

It is not a fork but a packaging of libraries and plugins to make it easy to integrate with the AWS
ecosystem. Because of the way ADOT collects metrics (using the Kubernetes API), ADOT is well
suited to collect metrics when using Fargate.

The following script will install the necessary permissions, and as we have done in the EKS EC2 case, it
will install the ADOT agent, but now as Kubernetes StatefulSets. For that, execute the following command:

$ curl -sSL https://insiders-guide-observability-on-aws-book.
s3.amazonaws.com/chapter-06/enable_container_insights_eks_fargate.sh |
bash

The preceding procedure is another Quick Start recipe provided by the product team. As before, this
command will create not only the ADOT DaemonSet but also the Namespace, ServiceAccount,
ClusterRole, ClusterRoleBinding, and ConfigMap objects required to make it work.

After the installation, you can find your cluster metrics in Container Insights.

In this section, we saw how to publish metrics to Amazon CloudWatch Container Insights when we
use Amazon EKS and Amazon EC2 for worker nodes, or Amazon EKS and the serverless container
compute Fargate. Next, we will see how to publish metrics when we are using the AWS-native container
orchestration service, Amazon ECS.

Implementing observability for a distributed application
running on Amazon ECS
Amazon ECS is similar to Amazon EKS, but as an AWS native container orchestration engine, it is
more integrated into the AWS ecosystem and allows some simplifications.

We will see four procedures to collect metrics and logs from ECS clusters:

1. Collect cluster and service-level metrics.

2. Collect instance-level metrics using the CloudWatch agent.

https://opentelemetry.io/
https://opentelemetry.io/

Implementing observability for a distributed application running on Amazon ECS 181

3. Collect instance-level metrics using ADOT.

4. Collect logs and send them to CloudWatch Logs using FireLens.

Container Insights on Amazon ECS for the cluster- and service-
level metrics

You can activate Container Insights on Amazon ECS for the cluster- and service-level metrics on the
account and cluster levels.

When you activate Container Insights on an account level, every new Amazon ECS cluster created
after that will have Container Insights data collection activated by default.

You can activate Container Insights on the account level using the AWS Management Console UI
or the CLI.

To activate it using the AWS Management Console, go to https://console.aws.amazon.
com/ecs/. In the menu on the left of the page, select Account Settings, click on the Update button
in the top-right corner, and then at the bottom of the page, click on the checkbox under CloudWatch
Container Insights, and then click on Save changes. See the following screenshot:

Figure 6.12 – Activate Container Insights on account level

To activate Container Insights on the account level using the CLI, execute the following command:

$ aws ecs put-account-setting --name "containerInsights" --value
"enabled"

https://console.aws.amazon.com/ecs/.
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/

Observability for Containerized Applications on AWS182

Now, you can activate Container Insights per cluster if you want to save some costs on non-critical/
low-margin environments or non-production environments. For new ECS clusters, you can also do
it using the AWS Console Management UI or the CLI.

To create a new ECS cluster using the AWS Management Console with Container Insights enabled, you
can follow the usual procedure to create a new cluster at https://console.aws.amazon.com/
ecs/, making sure you click on the Enable Container Insights checkbox. See the following screenshot:

Figure 6.13 – Activate Container Insights on a new cluster using the graphical console

If you are creating a new cluster using the CLI, you can do it with Container Insights enabled using
the following command:

$ aws ecs create-cluster --cluster-name myCICluster --settings
"name=containerInsights,value=enabled"

https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/

Implementing observability for a distributed application running on Amazon ECS 183

Activating Container Insights on an existing cluster is also easy. Assuming you have a variable named
clustername with the cluster name, you need to execute the following command:

$ aws ecs update-cluster-settings --cluster ${clustername} --settings
name=containerInsights,value=enabled --region ${AWS_REGION}

Container Insights on Amazon ECS for instance-level metrics
using ADOT

As an alternative to the CloudWatch agent, you can use ADOT to collect instance- and application-
level metrics. As already mentioned, we have covered ADOT in detail in Chapter 9, Collecting Metrics
and Traces Using OpenTelemetry. However, we will briefly discuss this here for the sake of continuity
on ECS observability.

Please execute the following script to see a deployment example:

$ curl -sSL https://insiders-guide-observability-on-aws-book.
s3.amazonaws.com/chapter-06/enable_container_insights_ecs_adot.sh |
bash

The preceding script will deploy an Amazon ECS service comprising the AWS ADOT collector and
two sample applications. It will set up all required permissions, and once done, you can check to
see the deployed workload accessing the Amazon ECS console and o11y-on-aws cluster (check
https://console.aws.amazon.com/ecs/v2/clusters/o11y-on-aws/services),
as in the following screenshot:

Figure 6.14 – Amazon ECS console, o11y-on-aws cluster, highlighting the o11y-on-aws-adot service

https://console.aws.amazon.com/ecs/v2/clusters/o11y-on-aws/services

Observability for Containerized Applications on AWS184

You can then check the Amazon Cloudwatch Container Insights details for the Amazon ECS o11y-
on-aws task, as in the following screenshot:

Figure 6.15 – Amazon CloudWatch Container Insights, ECS Tasks, o11y-on-aws

Collect logs and send them to CloudWatch Logs using FireLens

You can use FireLens to route logs to CloudWatch Logs for storage. Run the following script to deploy
an Amazon ECS task with an example of how to do it:

$ curl -sSL https://insiders-guide-observability-on-aws-book.
s3.amazonaws.com/chapter-06/enable_firelens_ecs.sh | bash

The preceding script will deploy an Amazon ECS service that uses FireLens to forward the applications
log to Amazon CloudWatch Logs. After the execution of the script, you will find a new task accessing
the Amazon ECS console and the o11y-on-aws cluster (check https://console.aws.
amazon.com/ecs/v2/clusters/o11y-on-aws/services), as in the following screenshot:

https://console.aws.amazon.com/ecs/v2/clusters/o11y-on-aws/services
https://console.aws.amazon.com/ecs/v2/clusters/o11y-on-aws/services

Implementing observability for a distributed application running on Amazon ECS 185

Figure 6.16 – Amazon ECS console, o11y-on-aws cluster, highlighting the o11y-on-aws-firelens service

From there, you can visit the Amazon CloudWatch logs console. There’s a new log group created by
the FireLens agent, named firelens-blog. Check the following screenshot:

Figure 6.17 – Amazon CloudWatch, log group named firelens-blog

Observability for Containerized Applications on AWS186

In this section we saw different methods to collect observability signals from Amazon ECS, on the
service and cluster level, on the instance level, and finally, how to better process your logs. Next, we
will see how to achieve better visibility on your network activity using AWS AppMesh.

End-to-end visibility of containerized applications using
AWS App Mesh
AWS App Mesh is a networking service that enables seamless communication between services deployed
across different computing infrastructures. This service helps standardize the communication between
your services, thus providing end-to-end visibility and ensuring high availability for your applications.

Modern applications are typically built using multiple services deployed across various computing
infrastructures, including Amazon EC2, Amazon EKS, and AWS Fargate. As the number of services
grows, it becomes challenging to identify the source of errors, reroute traffic after failures, and safely
deploy code changes. In the past, addressing these challenges required you to incorporate monitoring
and control logic directly into your code and redeploy your service every time there were changes.

AWS App Mesh simplifies service deployment by providing consistent visibility and network traffic
controls for services deployed across different computing infrastructures. With App Mesh, there is
no need to modify your application code to alter the way monitoring data is collected or traffic is
routed between services. Instead, App Mesh configures each service to export monitoring data and
ensures that communication control logic is standardized across your application. This enables you to
quickly identify the source of errors and reroute network traffic automatically when there are failures
or code changes.

You can use App Mesh to run your application at scale with various computing infrastructures,
including AWS Fargate, Amazon EC2, Amazon ECS, Amazon EKS, and Kubernetes running on AWS.
App Mesh leverages the open source Envoy proxy, which makes it compatible with a wide range of
AWS partners and open source tools.

You can access the AWS App Mesh documentation to learn about its components (see https://
docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.
html#app_mesh_components) or the AWS App Mesh Workshop to learn about its benefits
(see https://www.appmeshworkshop.com/introduction/appmesh_benefits/).

Add monitoring and logging capabilities

One of the main benefits of implementing App Mesh is the ability to have visibility around your
microservices and their communications.

AWS App Mesh allows you to integrate the logs generated by the Envoy proxies running in your
infrastructure with Amazon CloudWatch. Let’s see how to do that.

https://docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.html#app_mesh_components
https://docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.html#app_mesh_components
https://docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.html#app_mesh_components
https://www.appmeshworkshop.com/introduction/appmesh_benefits/

End-to-end visibility of containerized applications using AWS App Mesh 187

The first step is to activate Container Insights in your cluster by following the instructions in the
Implement observability for a distributed application running on Amazon EKS section if you are using
an Amazon EKS cluster, or the instructions in the Implement observability for a distributed application
running on Amazon ECS section if you are using an Amazon ECS cluster. Enable CloudWatch for the
container and the Envoy sidecar following the instructions at https://docs.aws.amazon.
com/AmazonECS/latest/userguide/using_awslogs.html.

After a few minutes, you should see the logging details provided by the envoy sidecar, as follows:

Figure 6.18 – Networking details provided by App Mesh Envoy sidecar

Add end-to-end tracing capabilities

The integration of AWS X-Ray and AWS App Mesh allows for the effective management of Envoy
proxies utilized by microservices. Envoy, which is available in App Mesh, can be customized to transmit
trace data to the X-Ray daemon, which operates in a container located in the same pod or task. To
activate the integration of X-Ray with App Mesh Envoy proxies, see the following details.

An envoy task definition for ECS should have the following properties:

 {
 "name": "envoy",
 "image": "840364872350.dkr.ecr.us-west-2.amazonaws.com/aws-
appmesh-envoy:v1.15.1.0-prod",
 "essential": true,
 "environment": [
 {

https://docs.aws.amazon.com/AmazonECS/latest/userguide/using_awslogs.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/using_awslogs.html

Observability for Containerized Applications on AWS188

 "name": "APPMESH_VIRTUAL_NODE_NAME",
 "value": "mesh/myMesh/virtualNode/myNode"
 },
 {
 "name": "ENABLE_ENVOY_XRAY_TRACING",
 "value": "1"
 }
],
 "healthCheck": {
 "command": [
 "CMD-SHELL",
 "curl -s http://localhost:9901/server_info | cut -d' ' -f3
| grep -q live"
],
 "startPeriod": 10,
 "interval": 5,
 "timeout": 2,
 "retries": 3
 }

In the preceding example, the App Mesh envoy image is set together with the ENABLE_ENVOY_
XRAY_TRACING environment variable to 1. That is all that is necessary to activate the X-Ray
integration. Now, for EKS, it is slightly different. Assuming you use Helm as the tool to deploy the
App Mesh Envoy, the deployment command looks like this:

$ helm upgrade -i appmesh-controller eks/appmesh-controller \
--namespace appmesh-system \
--set region=${AWS_REGION} \
--set serviceAccount.create=false \
--set serviceAccount.name=appmesh-controller \
--set tracing.enabled=true \
--set tracing.provider=x-ray

In this section, we saw how to add network observability capabilities using AWS App Mesh. The next
will cover how to use what we have seen so far in a sample application.

Understanding and troubleshooting performance
bottlenecks in containers
Now, let us practice what we have learned in this chapter and troubleshoot container performance
bottlenecks. Let’s get started.

Understanding and troubleshooting performance bottlenecks in containers 189

Workspace

In this section, we will use the same Cloud9 workspace we created in the Set up a Cloud9 development
workspace section. It already contains all the necessary tools.

Build the environments

In the Cloud9 workspace, to ensure the service-linked roles exist for load balancers and ECS, run the
following commands:

aws iam get-role --role-name "AWSServiceRoleForElasticLoadBalancing"
|| aws iam create-service-linked-role --aws-service-name
"elasticloadbalancing.amazonaws.com"

aws iam get-role --role-name "AWSServiceRoleForECS" || aws iam create-
service-linked-role --aws-service-name "ecs.amazonaws.com"

Please download the script that will set up a sample application in our AWS environment with the
following command:

wget https://insiders-guide-observability-on-aws-book.s3.amazonaws.
com/chapter-06/deploy_demo_application.sh

Now execute the script. Feel free to check it beforehand to understand all steps taken:

bash deploy_demo_application.sh

This script will take many minutes to execute, so go and grab a coffee while it goes through the
deployment process of all the different microservices. Now we have the infrastructure and sample
application deployed. Next, let’s set up our container service to publish observability signals.

Set up Container Insights

With the sample application deployed, let’s start to publish observability signals to Amazon CloudWatch
Container Insights.

Execute the following command to enable Container Insights for our cluster:

aws ecs update-cluster-settings --cluster $(aws ecs list-clusters
--query "clusterArns[*]" --output text | sed 's/\s\+/\n/g' | grep
o11y-on-aws-) --settings name=containerInsights,value=enabled --region
${AWS_REGION}

Observability for Containerized Applications on AWS190

Explore Container Insights

After we have deployed the sample application and set the publication of observability signals using
Container Insights, we are ready to monitor the application. Let’s check what we have available to do so.

Check that the logs are streaming into CloudWatch Logs. Navigate to CloudWatch Logs (https://
console.aws.amazon.com/cloudwatch/home#logs:) and search for a log group identified
by /aws/ecs/containerinsights/cluster-name/performance.

Now, navigate to the Amazon CloudWatch Container Insights console (https://console.
aws.amazon.com/cloudwatch/home#container-insights:infrastructure).
From the first drop-down box, select Performance monitoring, and in the two new drop-down boxes
that will appear below, select ECS Clusters and o11y-on-aws (from the second drop-down box), as
shown in the following screenshot:

Figure 6.19 – Select ECS Clusters in Container Insights

You should see a dashboard automatically created with the key metrics of your cluster, as in the
preceding figure.

https://console.aws.amazon.com/cloudwatch/home#logs:
https://console.aws.amazon.com/cloudwatch/home#logs:
https://console.aws.amazon.com/cloudwatch/home#container-insights:infrastructure
https://console.aws.amazon.com/cloudwatch/home#container-insights:infrastructure

Understanding and troubleshooting performance bottlenecks in containers 191

If you return to the resource list, you can select the o11y-on-aws cluster and click on the View
logs button. You will see the CloudWatch Logs Insights, where you can select a log group such as
/aws/ecs/containerinsights/o11y-on-aws/performance, and run queries against
more detailed data points. Check the following screenshot:

Figure 6.20 – Log Insights showing performance logs

Set up load tests

We now have monitoring enabled for our cluster. Let us push the limits of our system to see how the
metrics may change. To perform our load test, we will use the tool Siege (https://github.com/
JoeDog/siege). To install Siege on Cloud9, execute the following command:

$ sudo yum -y install siege

Perform a load test

Run the following command in a terminal window:

$ curl -sSL https://insiders-guide-observability-on-aws-book.
s3.amazonaws.com/chapter-06/run_load_test.sh | bash

https://github.com/JoeDog/siege
https://github.com/JoeDog/siege

Observability for Containerized Applications on AWS192

This command will execute the Siege tool and it will drive 200 concurrent connections to the ECS
application. You should see an output like the following:

Figure 6.21 – Siege tool output

You can leave the tool running for 15-20 seconds and then you can kill the process with Ctrl + C.

Understanding and troubleshooting performance bottlenecks in containers 193

Load testing metrics

Go back to the Container Insights metrics and select Performance monitoring | ECS Service | o11y-
on-aws and the time range of 5 min, as in the following screenshot:

Figure 6.22 – Select Container Insights and a time range of 5 minutes

Or you can access the same dashboard directly from the following link: https://console.
aws.amazon.com/cloudwatch/home#container-insights:performance/
ECS:Service?~(query~(controls~(CW*3a*3aECS.cluster~(~’o11y-on-
aws)))~context~(timeRange~(delta~300000))).

You can see that the metrics are starting to show up on the graph widgets in the following screenshots.
Notice the CPU utilization increasing as Siege increases the load on the application.

Observability for Containerized Applications on AWS194

Figure 6.23 – Container Insights, highlighting the CPU utilization increase

Accessing CloudWatch Logs Insights

Let us explore the CPU utilization increase from another angle, using CloudWatch Logs Insights:

1. Navigate to CloudWatch Logs Insights (https://console.aws.amazon.
com/cloudwatch/home#logs-insights:) and select the /aws/ecs/
containerinsights/cluster-name/performance log group, as shown here:

Figure 6.24 – Logs Insights, cluster group selected

Understanding and troubleshooting performance bottlenecks in containers 195

2. Copy and paste the following filter command:

stats avg(MemoryUtilized) as Avg_Memory, avg(CpuUtilized) as
Avg_CPU by bin(5m)
| filter Type="Task"

3. Select the Visualization tab, then the Bar chart. You will see a screen like the following:

Figure 6.25 – Metrics statistics using Amazon CloudWatch Logs Insights

As you can see, getting CloudWatch Container Insights to work and setting alarms for CPU and
other metrics is pretty easy. With CloudWatch Container Insights, we remove the need to manage
and update your monitoring infrastructure and allow you to use native AWS solutions for which you
don’t have to manage the platform.

Observability for Containerized Applications on AWS196

Summary
In this chapter, we saw how Container Insights helps you automate the collection, aggregation, and
visualization of key container metrics. We saw how to activate it on both Amazon ECS and Amazon
EKS, two major container orchestration services on AWS. We also saw how to integrate App Mesh to
add network spice to our observability recipe. In the end, we saw how to use the acquired new skills
to identify and isolate a CPU peak using the tools.

As we highlighted in the introduction, all those skills will be invaluable as more and more organizations
move their workloads to containers.

As you move forward modernizing your workloads, the next natural step is to use Lambda functions.
In the next chapter, we will explore how to speed up the process of collecting, aggregating, and
visualizing metrics for Lambda functions.

7
Observability for Serverless

Applications on AWS

To summarize the chapters so far, in Chapter 3, Gathering Operational Data and Alerting Using Amazon
CloudWatch, Chapter 4, Implementing Distributed Tracing Using AWS X-Ray, and Chapter 5, Insights
into Operational Data with CloudWatch, we focused on observing applications running on EC2 using
CloudWatch. In Chapter 6, Observability for Containerized Applications on AWS, we delved into
observability for applications running on containers. In this chapter, we will explore the observability
of serverless applications running on AWS, specifically for those running on AWS Lambda.

Amazon Web Services (AWS) introduced AWS Lambda in 2015 as a solution for developers to create
software without the overhead of managing operating systems and scalability. Observability for Lambda
will be important, as the functions are event-driven and loosely coupled, making it challenging to
understand the interactions between them and troubleshoot issues. The stateless nature of the Lambda
functions and the requirement to load some state information from other services only add to the
complexity and make it complex to understand issues affecting performance. Additionally, the cost
of running Lambda functions is directly proportionate to the duration of their execution, making
observability even more important.

In this chapter, we will navigate through the out-of-the-box metrics and logs that come with AWS
Lambda function deployment. We will discuss the Lambda extensions and see how they will support
enhancing observability for Lambda functions. Additionally, we will go through Lambda Insights and
the benefits of leveraging Lambda Insights.

By the end of this chapter, you will gain a comprehensive understanding of application-related
observability through the use of Powertools for logging for Lambda functions. We will equip you to
effectively instrument a Node.js application running on serverless components. Most importantly,
this chapter will help you understand and troubleshoot performance bottlenecks in Lambda compute.

Observability for Serverless Applications on AWS198

We will cover the following main topics in the chapter:

• Deploying a basic serverless application running on AWS Lambda

• Understanding CloudWatch Lambda Insights

• End-to-end tracing of Node.js application running on a serverless component

• Troubleshooting performance issues using X-Ray groups

Technical requirements
To carry out the technical tasks in the chapter, you should have the following:

• A working AWS account

• A fundamental understanding of AWS DynamoDB and API Gateway

• Knowledge of AWS Lambda and basic setup of AWS Lambda

• An understanding of fundamental Node.js functionality

• An understanding of fundamental building blocks of observability

Deploying a basic serverless application running on AWS
Lambda
To gain practical knowledge of the various built-in metrics and logs available in Lambda functions,
we will deploy a basic serverless application on AWS Lambda in this section. This will serve as a
hands-on opportunity to learn how to trace the end-to-end performance of an application running
on serverless components using AWS observability services.

Let’s deploy a basic serverless application using AWS services, namely Amazon API Gateway, AWS
Lambda, and DynamoDB, following the architecture outlined in this diagram:

Deploying a basic serverless application running on AWS Lambda 199

Figure 7.1 – Sample app architecture

You should click on the following CloudFormation YAML file to deploy the sample application. Once
the application is deployed in your AWS account, it will only contain the necessary IAM roles for
accessing and storing data in CloudWatch and other relevant services. It is not yet instrumented for
end-to-end observability. Let’s deploy the sample application by clicking the following link:

https://console.aws.amazon.com/cloudformation/home#/stacks/
new?stackName=serverless-app&templateURL=https://insiders-guide-
observability-on-aws-book.s3.amazonaws.com/chapter-07/init/template.
yaml

You can find the API Gateway URL of the deployed application in the Outputs tab of the CloudFormation
template, as shown in Figure 7.2. The Lambda functions and API Gateway deployed as a part of the
CloudFormation are set to capture only the default out-of-the-box metrics. Further deployed Lambda
functions are enabled to log to CloudWatch log groups:

Figure 7.2 – API Gateway URL for the application

https://console.aws.amazon.com/cloudformation/home#/stacks/new?stackName=serverless-app&templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/init/template.yaml
https://console.aws.amazon.com/cloudformation/home#/stacks/new?stackName=serverless-app&templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/init/template.yaml
https://console.aws.amazon.com/cloudformation/home#/stacks/new?stackName=serverless-app&templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/init/template.yaml
https://console.aws.amazon.com/cloudformation/home#/stacks/new?stackName=serverless-app&templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/init/template.yaml

Observability for Serverless Applications on AWS200

A Postman configuration has been made available at the following URL, allowing non-developers to
easily insert data into the application. You can access this URL to find it: https://documenter.
getpostman.com/view/3349468/VUqoRe3n

Figure 7.3 – Inserting data using the Postman app

You can insert a few items into the application using the Postman application by replacing <REPLACE-ME>
with the value of APIurl, as shown in Figure 7.3. You are inserting the API Gateway information for
the application deployed, which is obtained from the Outputs tab of the CloudFormation template
deployed, as shown in Figure 7.2.

Figure 7.4 – Post the items or items

You can examine the items you have posted by navigating to DynamoDB or by using the Get All
Items option in the Postman app.

https://documenter.getpostman.com/view/3349468/VUqoRe3n
https://documenter.getpostman.com/view/3349468/VUqoRe3n

Deploying a basic serverless application running on AWS Lambda 201

Figure 7.5 – Sample Items from DynamoDB

This shows that the serverless application is successfully deployed and you are ready to use the AWS
observability tools to instrument the application. In the next section, we will look into the built-in
metrics and default Lambda logging that comes out of the box.

Built-in metrics

Let’s look at the default out-of-the-box metrics and logs available when you deploy an application on
AWS Lambda. Lambda comes with 15 default metrics (please visit https://docs.aws.amazon.
com/lambda/latest/dg/monitoring-metrics.html for more information) divided into
three categories: Invocation metrics, Performance metrics, and Concurrency metrics. Some of the
important Lambda metrics are Invocations, Errors, Throttles, Duration, and ConcurrentExecutions.
You can create a widget with the important metrics as shown here:

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html

Observability for Serverless Applications on AWS202

Figure 7.6 – View of important built-in Lambda metrics

To fully understand the performance of Lambda functions, it is crucial to track the duration of the
execution and percentile of requests completed within a period to analyze the performance impact.
Analyzing the P90 metric (the P90 metric provides you with the average duration of execution of
less than or equal to 90% of requests executed for a given period), as seen in Figure 7.7, reveals that
50% of requests are processed within 92.5 ms (milliseconds), 90% within 556 ms, and 95% within
565 ms. These statistics provide valuable insights and can guide you toward optimizing the function’s
configuration for improved performance. For more information on utilizing the statistics and displaying
them in numeric widgets, as shown in Figure 7.7, please refer to Chapter 5, Insights into Operational
Data with CloudWatch.

Figure 7.7 – Percentile metrics for the duration

Deploying a basic serverless application running on AWS Lambda 203

Now that we have explored the default metrics generated by AWS Lambda in CloudWatch, let’s explore
the default logging being provided in AWS Lambda when the out-of-the-box logging feature is enabled.

Lambda logging

When you deploy a Lambda function, logging is enabled by default. It provide logs for every execution
with information about billed duration, memory use, and memory configured, as shown in Figure 7.8.

To verify the logs generated due to Lambda invocation, you can navigate to CloudWatch | Logs |
Log groups and verify the log group name starting with /aws/lambda/serverless-app-
getAllItemsFunction-%%%%. The last few characters are randomly generated. You can select
the log stream to view the logs generated by the Lambda function.

Figure 7.8 – Default Lambda logs

CloudWatch Logs Insights from Lambda logs

You could derive operational intelligence from the Lambda logs using CloudWatch Logs Insights.
For instructions on how to use Logs Insights, please refer to Chapter 5, Insights into Operational Data
with CloudWatch. Here is a sample query to estimate the number of cold starts, the average duration
of the Lambda function execution, and memory usage grouped by a 5-minute time period:

filter @type = "REPORT"
| stats
 count(@type) as countInvocations ,

Observability for Serverless Applications on AWS204

 count(@initDuration) as countColdStarts ,(count(@initDuration)/
count(@type))*100 as percentageColdStarts,
 max(@initDuration) as maxColdStartTime,
 avg(@duration) as averageDuration,
 max(@duration) as maxDuration,
 min(@duration) as minDuration,
 avg(@maxMemoryUsed) as averageMemoryUsed,
 max(@memorySize) as memoryAllocated, (avg(@maxMemoryUsed)/max(@
memorySize))*100 as percentageMemoryUsed
by bin(5m) as timeFrame

The output of this code, when executed, will provide a view as follows:

Figure 7.9 – Intelligence from CloudWatch Logs Insights

To see the important metrics in a unified dashboard, let’s create a CloudWatch dashboard for this
custom application. You can refer to Chapter 4, Implementing Distributed Tracing Using AWS X-Ray,
to create a dashboard for the serverless app, as in the following, for metrics generated from the API
Gateway, Lambda functions, and DynamoDB.

Deploying a basic serverless application running on AWS Lambda 205

Figure 7.10 – Serverless app dashboard

API Gateway metrics and logs

AWS API Gateway provides several default metrics that include Latency, Count, Integration
Latency, 4XX Error, and 5XX Error. To assess the impact of including API Gateway in the
overall solution, it’s important to observe the difference between the Latency metric and the Integration
Latency metric. This difference represents the extra overhead added to the application performance
because of including API Gateway in the architecture.

API Gateway allows you to log two types of logs: API Gateway execution logs and API Gateway
access logs.

API Gateway execution logs can have three different logging levels: namely errors only, error and info
logs, and full request and response logs. You can set logging globally for the entire API Gateway or in
different stages of API Gateway.

API Gateway access logs provide a comprehensive view of who is accessing the API including
information such as IP, HttpMethod, User, Protocol, and Time. These logs provide valuable
insights into the origin of API Gateway invocations.

Please note
We have not enabled logging in the CloudFormation template for this exercise, and it should
be done manually, as shown in Figure 7.11.

Observability for Serverless Applications on AWS206

Figure 7.11 – Enabling API Gateway logging and detailed CloudWatch metrics

Relying solely on the built-in metrics for API Gateway and Lambda function(s) presents difficulties
in understanding the performance issues related to the Lambda functions – for example, network
performance and cold starts. Although we can estimate the count of cold starts from logs, we can
achieve a more comprehensive understanding of performance through Lambda Insights.

CloudWatch Lambda Insights
CloudWatch Lambda Insights is a powerful extension for understanding the performance of Lambda
functions. It provides valuable insights into a range of issues that can affect the performance of Lambda
such as memory leaks, identifying high-cost functions, identifying performance impact caused by
new versions of Lambda functions, and also understanding latency drivers in the Lambda functions.

The traditional method of gathering process-level metrics and logs in an EC2 environment involves
using the CloudWatch agent. In the container setup, we use either a sidecar or a daemon where the
compute power is continuously available. However, in the case of Lambda functions, this method
may not be optimal. Using the same type of model for Lambda, which is a short-lived compute that
is billed for the time it is running, can result in increased costs. This is because the agent would need
to run continuously in the background, even between invocations, resulting in a waste of resources
and an increase in cost, as illustrated in Figure 7.12.

CloudWatch Lambda Insights 207

Figure 7.12 – Lambda invocation life cycle

To overcome this challenge, AWS released Lambda extensions in May 2021 to augment Lambda functions
and provide easy-to-plug-in tools to integrate deeply with Lambda with no complex installation,
configuration, or operational overhead. Extensions extend the invocation of the Lambda life cycle
and only run when there is some functionality to carry. Lambda extensions can run after a function is
invoked to send telemetry data about the invocation, or they can run before the runtime starts or can
do clean-up tasks before the execution environment is spun down. The additional overhead time, as
depicted in Figure 7.13, is minimal compared to running the agent for the full duration. This is because
of the efficient execution of Lambda extensions, resulting in a smaller impact on the overall runtime.

Figure 7.13 – With Lambda extensions

Observability for Serverless Applications on AWS208

Lambda extensions serve several purposes, and one of the use cases is observability and logging. An
example of a Lambda extension available for this purpose is CloudWatch Lambda Insights, which
provides the ability to monitor, troubleshoot, and optimize the performance of your Lambda functions.
CloudWatch Lambda Insights allows you to capture diagnostic information before, during, and after
function invocation, requiring no code changes.

You can enable CloudWatch Lambda Insights from the AWS console. You can navigate to the Lambda
function and then click on Configuration | Monitoring and operations tools | Edit configuration
and then enable Enhanced monitoring, as shown in Figure 7.14:

Figure 7.14 – Lambda enhanced monitoring

When you enable enhanced monitoring, the Lambda Insights extension will add to the Lambda
function as a layer, as shown here:

CloudWatch Lambda Insights 209

Figure 7.15 – Lambda Insights extension

Rather than enabling the same from the AWS console, let’s enable CloudWatch Lambda Insights for
all the functions in the application deployed using CloudFormation.

You can download the CloudFormation template from the following URL and update the CloudFormation
stack to enable the Lambda extension for all three Lambda functions.

Please find the template.yaml file here with Lambda Insights enabled: https://insiders-
guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/
enableinsights/template.yaml.

What we have changed in the CloudFormation template is the addition of the following YAML code,
which adds a new Lambda layer with the Lambda Insights extension with the latest version in the
template.yaml file:

Layers:
 - !Sub "arn:aws:lambda:${AWS::Region}:580247275435:layer:
LambdaInsightsExtension:21"

Enabling Lambda Insights for a Lambda function provides additional metrics related to execution
and also provides logs about the Lambda execution. A dashboard view is available out of the box
for visualizing performance monitoring for a single function or a performance monitoring view for
multiple functions.

Let’s navigate to the Lambda Insights dashboard from the CloudWatch console and understand the
metrics and insights available from the Lambda Insights dashboard.

https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/enableinsights/template.yaml
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/enableinsights/template.yaml
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/enableinsights/template.yaml

Observability for Serverless Applications on AWS210

Single-function view

Single-function view provides detailed performance metrics and logs for a single Lambda function
in your AWS account.

Let’s navigate to the single-function view. Navigate to CloudWatch | Insights | Lambda Insights. Select
the Lambda function of the serverless application deployed in the Deploying a basic serverless application
running on AWS Lambda exercise, namely "serverless-app-getAllItemsFunction-xyz".
It provides CPU, memory, and network usage of the Lambda function. Additionally, it provides a detailed
breakdown of the last 1,000 invocations, including initialization duration, overall duration, memory
used, CPU time, and network I/O. You can also view the application logs generated for your function
by simply navigating to the second tab labeled Application logs, as highlighted in the following figure:

Figure 7.16 – Lambda Insights dashboard view

Multifunction view

The multifunction view offers a comprehensive overview of all Lambda functions in your current AWS
account and region. In the Function summary view, you can examine the aggregate information for
each function, including Invocations, Cold starts, Total cost, Max. memory, CPU time, and Network
IO for all Lambda functions. Important metrics to focus on in this are the cost (Total cost) and usage
metrics (Max. memory and Cold starts).

End-to-end tracing of the Node.js application 211

Figure 7.17 – Multifunction view dashboard

While the default out-of-the-box metrics, CloudWatch Lambda Insights metrics, and Lambda
logs generated by Lambda Insights provide valuable insight into the performance of an individual
Lambda function, they lack context regarding the overall performance of the larger application. The
performance metrics generated by each component of the application, such as API Gateway, Lambda,
and DynamoDB, offer only a limited understanding of their individual performance, without considering
their interconnectedness and impact on the overall application.

To get a complete picture of how a single function affects the overall system, you need to look at its
performance as part of the whole application. This requires enabling tracing for the entire end-to-
end application. Enabling tracing for end-to-end applications provides us with the ability to examine
correlations and pinpoint potential root causes for a specific request. By doing so, we can gain a deeper
understanding of the performance of our application and take action to improve it.

End-to-end tracing of the Node.js application
In the last section, we saw how to enable enhanced metrics for gathering additional metrics for Lambda
functions. Let’s enable X-Ray active tracing. Active tracing is a feature of AWS X-Ray that provides
visibility into the performance of your serverless applications. When enabled, active tracing captures
detailed information about the flow of a request as it travels through the different components of
your application, such as AWS Lambda functions, API Gateway, and DynamoDB. To gain a deeper
understanding of AWS X-Ray and explore the various console-level options available in CloudWatch
X-Ray, please refer to Chapter 4, Implementing Distributed Tracing Using AWS X-Ray.

Observability for Serverless Applications on AWS212

Let’s enable active tracing for both the API Gateway and the Lambda function using the CloudFormation
template in step 3. I describe changes made in the CloudFormation template in steps 1 and 2 as follows:

1. To enable active tracing for the Lambda function(s), I have added a Mode:Active line to
enable active tracing for the Lambda function:

 Function:
 Runtime: nodejs16.x
 Timeout: 100
 Layers:
 - !Sub "arn:aws:lambda:${AWS::Region}:580247275435:layer:
LambdaInsightsExtension:21"
 TracingConfig:
 Mode: Active

2. To enable active tracing for API Gateway, I have added a TracingEnabled: true line
in the CloudFormation template:

 Api:
 TracingEnabled: true # <----- ADD FOR API Tracing

3. To implement the changes, you can download the completed CloudFormation template and
update your CloudFormation stack using the template:

https://insiders-guide-observability-on-aws-book.s3.amazonaws.
com/chapter-07/tracingenabled/template.yaml

4. After successfully deploying the updated template, you can confirm that tracing is enabled for
your Lambda function(s) by navigating to the Lambda function’s configuration page. Navigate
to the Lambda function, click on the Configuration tab, and then verify that Active tracing
is Enabled, as highlighted in Figure 7.18.

https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/tracingenabled/template.yaml
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/tracingenabled/template.yaml

End-to-end tracing of the Node.js application 213

Figure 7.18 – Lambda Active tracing

5. To ensure tracing is enabled for the API Gateway Prod stage, navigate to API Gateway | Stages
| Prod and verify that the Enable X-Ray Tracing option is selected, as shown in Figure 7.19.

Figure 7.19 – API Gateway tracing

Observability for Serverless Applications on AWS214

To test the end-to-end tracing of the application, you can invoke the GetAllItems function or
insert the items using the Put function. You should be able to see the X-Ray traces showcasing
the end-to-end view of the user transaction, as shown in Figure 7.20 from the CloudWatch
service map.

To view the X-Ray trace in the service map, navigate to CloudWatch | X-Ray traces | Service
map. Here, you can see the flow of the requests between Client, API Gateway, and Lambda,
including additional properties, such as each node’s latency, requests/sec, and 5xx errors, without
the need for any code-level instrumentation.

Figure 7.20 – Service map X-Ray

6. By navigating to the Trace details section and viewing Segments Timeline, as shown in
Figure 7.21, you can gain insight into the amount of time spent at each stage and identify
whether the major delay is at the invocation of the Lambda function.

End-to-end tracing of the Node.js application 215

Figure 7.21 – Trace view

The Trace view provides a high-level overview of the user journey, but it may not give enough
detail on where the user is encountering an issue. To get this information, we can use segments in
AWS X-Ray and trace database calls with X-Ray. Leveraging Lambda Powertools can simplify the
implementation process and add these details without sacrificing the maintainability or readability
of the application code.

Observability for Serverless Applications on AWS216

Exploring Lambda Powertools

Lambda Powertools is a suite of utilities and libraries that will help in adopting best practices for tracing,
structured logging, and so on in Lambda functions that are built around the AWS SDKs. Lambda
Powertools will help in implementing observability best practices by keeping the Lambda functions
lean and allowing you to focus on the business logic without writing complex code for logging and
tracing requirements. Lambda Powertools currently supports Lambda functions written in Python,
Java, Node.js, and .NET Lambda runtimes. There are three main core utilities, namely Logger, Metrics,
and Tracer to support the three pillars of observability:

• The Logger utility offers a simple and standardized way to format your logs as a structured JSON.
It allows you to pass in the string or more complex objects and will take care of serializing the
output as a structured JSON. Common use cases include logging the Lambda event payload
and capturing Lambda cold starts. The Logger also supports the use of your own custom log
formatted by “bring your own formatter” to meet your organization’s specific standards.

• The Tracer utility of Lambda Powertools helps you effortlessly monitor serverless functions by
sending traces to AWS X-Ray. This tool provides a clear view into function calls, interactions
with other AWS services, or even external HTTP requests, allowing you to identify and resolve
performance bottlenecks. The Tracer utility is a streamlined and user-friendly interface to the
AWS X-Ray SDK, making it easier to implement observability best practices in your serverless
architecture. With the ability to add annotations to traces, you can better categorize and analyze
your traces, such as grouping by Lambda cold start information or transactions such as buying,
selling, putting, or getting. The Tracer utility is also smart enough to automatically disable
tracing when it is not running in the Lambda environment.

• The Metrics utility in Lambda Powertools makes it effortless to collect custom metrics from your
application by utilizing Embedded Metric Format (EMF). As we briefly discussed in Chapter 2,
Overview of the Observability Landscape on AWS, EMF is a feature in CloudWatch that allows
you to submit custom metrics to custom namespaces in AWS asynchronously. CloudWatch EMF
provides a scalable and reliable solution for collecting custom metrics. Lambda Powertools for
the Metrics utility leverages this EMF functionality, making it easy to store important business
and application metrics in a CloudWatch custom namespace.

Now that you understand Lambda Powertools and its utilities, the next step is to explore how to
effectively integrates these tools into your Lambda functions. Lambda Powertools offers three different
ways to instrument your code, offering flexibility and convenience to suit your specific needs:

• Middy: This is a middleware engine specifically designed for AWS Lambda functions that offers
a quick and straightforward way to incorporate Lambda Powertools into your code with the
fewest lines of code.

End-to-end tracing of the Node.js application 217

• Method Decorator: This method decorator approach is the best method for Lambda functions
written in Typescript as classes and has only limited JavaScript support.

• Manual: The manual approach provides more control and is more verbose, but it also offers the
greatest level of control over how Lambda Powertools is integrated into your Lambda function.

In the example presented in the section, we will use the manual approach to generate logs, metrics,
and traces for the Lambda function.

Now, let’s extend the observability for the application referred to in the Deploying a basic serverless
application running on Lambda section using Lambda Powertools.

Before incorporating Lambda Powertools into our Lambda function, let’s look into current logging
in the CloudWatch logs. As we examine the logs, we’ll notice they are lacking in detail and are not
structured in any particular format. This presents a challenge when trying to gain insight into the
inner workings of the Lambda function, especially when retrieving items from DynamoDB.

Figure 7.22 – Lambda logs in CloudWatch logs

To make it easy for you to carry out the exercise on Lambda Powertools, an updated CloudFormation
template is provided with all the changes we are discussing in this section. You could use this
CloudFormation template and create a new application named serverless-app2. As the
application is in Node.js, I have imported the npm libraries of Lambda Powertools and included them
in the CloudFormation deployment:

https://console.aws.amazon.com/cloudformation/home#/stacks/
new?stackName=serverless-app2&templateURL=https://insiders-guide-
observability-on-aws-book.s3.amazonaws.com/chapter-07/final/template.
yaml

Let’s explore the changes made and why the changes are made from the viewpoint of Lambda Powertools.

https://console.aws.amazon.com/cloudformation/home#/stacks/new?stackName=serverless-app2&templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/final/template.yaml
https://console.aws.amazon.com/cloudformation/home#/stacks/new?stackName=serverless-app2&templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/final/template.yaml
https://console.aws.amazon.com/cloudformation/home#/stacks/new?stackName=serverless-app2&templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/final/template.yaml
https://console.aws.amazon.com/cloudformation/home#/stacks/new?stackName=serverless-app2&templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/final/template.yaml

Observability for Serverless Applications on AWS218

I have included Lambda Powertools only in the get-all-items.js Lambda function in this
exercise. So, please execute the Postman configuration for inserting the records and retrieving the
details, as described in the Deploying a basic serverless application running on AWS Lambda section.
We will examine each modification made to the GetAllItems Lambda function step by step in
order to expand observability for metrics, logs, and traces. We will see how it enhances our ability
to troubleshoot applications and add business context to our observability, resulting in an improved
overall experience.

Lambda Powertools for enhanced logging

The GetAllItems Lambda function has been added with Lambda Powertools to capture information
using the structure JSON format and retrieve additional information about the context of the Lambda
function, such as cold starts, runtime, and so on. Let’s look at the additional code added for structure
in the Lambda function:

1. The code first imports the Logger and injectLambdaContext modules from the
@aws-lambda-powertools/logger library:

//Logging using Lambda powertools with Lambda context support.

//Inclusion of Logger PowerLambda Tools
const { Logger, injectLambdaContext } = require('@aws-lambda-
powertools/logger');

2. A new Logger instance is created where the serviceName property is set to get-all-
items. This is used to identify the source of the logs in the Amazon CloudWatch logs:

//Servicename of the lambda function shown in the CloudWatch
Logs
const logger = new Logger({serviceName: 'get-all-items'});

3. The injectLambdaContext function is then used to log the Lambda context, which
contains information about the function’s execution environment and its interaction with the
AWS infrastructure. You can see that the added Lambda context provides information about
cold starts, function information, and service name. We have also logged output received from
get-all-items into the CloudWatch log:

//Logging Lambda Context and the output of items as a JSON using
logger standard format
 logger.addContext(context);

//Logging Items retrieved as a JSON in CloudWatch Logs.
 logger.info('Items in list:', { items });

End-to-end tracing of the Node.js application 219

4. You can see the full Lambda context along with the number of items retrieved and the details
in the CloudWatch logs, as shown in Figure 7.23.

Figure 7.23 – Enhanced Lambda logging with Lambda Powertools

Lambda Powertools – custom metrics

We have further enhanced our application by retrieving and adding custom business metrics using the
Lambda Powertools metrics functionality. The Lambda function retrieved the item count metric namely
Count of retrieved items as a custom metric and added it into CloudWatch metics using Embedded
Metric Format (EMF). Let’s understand the changes made in the get-all-items.js file:

1. The code first imports the Metrics, MetricUnits, and logMetrics modules from the
@aws-lambda-powertools/metrics library:

//Inclusion of Metrics from Lambda PowerTools
const { Metrics, MetricUnits, logMetrics } = require('@
aws-lambda-powertools/metrics');

Observability for Serverless Applications on AWS220

2. Next, a new Metrics instance is created, where the namespace property is set to getitems
and the serviceName property is set to get-all-items. These properties identify the
source of the metrics in the Amazon CloudWatch custom metrics:

//Custom Metric namespace and service name in CloudWatch Custom
Metrics
const metrics = new Metrics({ namespace: 'getitems',
serviceName: 'get-all-items' });

3. The code then adds a custom metric called 'itemcount' to the Metrics instance, using
the metrics.addMetric method. The metric is set to the count of items in the items
array and has a unit of MetricUnits.Count. Finally, the code calls the metrics.
publishStoredMetrics method to publish the custom metrics to CloudWatch:

// Adding the total retrieved items as a metric in the Custom
namespace called "getitems"
 metrics.addMetric('itemcount', MetricUnits.Count, items.
Count);
 metrics.publishStoredMetrics();

4. You can verify from the CloudWatch logs that the metric count for the total items retrieved is
published to the CloudWatch metric custom namespace called getitems:

Figure 7.24 – Custom metric data in CloudWatch logs

End-to-end tracing of the Node.js application 221

5. Navigate to All metrics | Custom namespaces | getitems.

The getitems namespace is published with the details of the count of items retrieved from
DynamoDB from the structure JSON output from the Lambda log:

Figure 7.25 – The getitemsmetric namespace

6. If you graph the metric over the period, you can understand how the number of items increased
in DynamoDB over some time:

Figure 7.26 – Items in DynamoDB over a period

Observability for Serverless Applications on AWS222

Lambda Powertools – tracing

Now, let’s look into the traceability enhancement made using Lambda Powertools by adding annotations
for the cold start of the Lambda function and adding segments to capture the DynamoDB calls using
the tracer functionality:

1. The code first imports the Tracer and captureLambdaHandler modules from the
@aws-lambda-powertools/tracer library:

//Inclusion of tracer from Lambda Powertools
const { Tracer, captureLambdaHandler } = require('@aws-lambda-
powertools/tracer');

2. Next, a new Tracer instance is created, where the serviceName property is set to get-all-
items. This is used to identify the source of the traces in the AWS X-Ray service:

//X-Ray traces will be added with the servicename "get-all-
items"
const tracer = new Tracer({ serviceName: 'get-all-items' });

3. The code then imports the AWS DynamoDB SDK and creates an instance of the DocumentClient
class. The tracer.captureAWSClient method is used to capture and trace all calls to
the DynamoDB service through this client:

//Inclusion of dynamodb sdk to support tracing
const { DocumentClient} = require('aws-sdk/clients/dynamodb');

//Trace the dynamoDB calls
const docClient = tracer.captureAWSClient(new DocumentClient());

You can look at the X-Ray trace to see that the DynamoDB information is captured along with
the details about the time spent on the DynamoDB querying, as shown here:

Figure 7.27 – AWS X-Ray tracing along with DynamoDB info

End-to-end tracing of the Node.js application 223

4. We have also added annotations to the Lambda function about the cold start with the service
name. We have added the following code to annotate the Lambda function in the X-Ray tracing,
and also added metadata about the event payload to the X-Ray tracing:

tracer.putAnnotation('awsRequestId', context.awsRequestId);
tracer.putMetadata('eventPayload', event);

In Figure 7.28, you can see the annotations about the Lambda cold start, which could help you
in filtering the traces using the search functionality.

Figure 7.28 – Lambda annotations in AWS X-Ray

5. Close the segment using the handlerSegment.close() function:

 finally {
 // Close subsegment (the AWS Lambda one is closed
automatically)
 handlerSegment.close();

 // Set back the facade segment as active again
 tracer.setSegment(segment);
 }

We learned how to utilize the AWS Lambda Powertools library to improve the observability of a
Lambda function by adding X-Ray tracing and DynamoDB information.

Observability for Serverless Applications on AWS224

To summarize what we have learned in the overall end-to-end tracing of the Node.js application, with
structured logging, we can log important information, such as the Lambda context and the output of
the function, in a consistent and well-organized manner. This makes it easier to search and analyze
the logs in Amazon CloudWatch Logs.

By adding custom business metrics, we can track key performance indicators and other relevant
metrics related to the function’s behavior and impact on the overall business. This data can be stored
and visualized in Amazon CloudWatch custom metrics, allowing us to monitor the performance of
the function over time and make informed decisions about the function’s development and operation.

In addition, by using X-Ray tracing, we can gain visibility into the performance and behavior of the
function as it interacts with other AWS services, such as DynamoDB. By capturing and tracing all
calls to the DynamoDB service through the DocumentClient, we can see a complete picture of
the function’s behavior, from the time it is invoked to the time it returns a response. This information
can be analyzed in the X-Ray service, providing us with valuable insights into the performance and
behavior of the function and its interactions with other services.

Overall, leveraging Lambda Powertools to enhance the structured logging, custom metrics, and X-Ray
tracing of a Lambda function can greatly improve the overall observability of the function, making
it easier to troubleshoot issues, understand its impact on the business, and optimize its performance.

In the next section, we will understand how to troubleshoot performance issues and focus on important
traces using AWS X-Ray groups.

Troubleshooting performance issues using X-Ray groups
It would be practically difficult to analyze all the X-Ray traces generated by a complex system and look
at each trace to understand the issues. That’s where X-Ray groups will be helpful. X-Ray groups will help
simplify the process by focusing on the filtered traces based on rule-based criteria when there is a breach
in a specific parameter. For example, if you would like to focus on the traces where the response time
is greater than 3 seconds, you can create an X-Ray group with the criteria of responseTime > 3.
This way, you can quickly isolate and analyze only the traces that indicate a problem, making it easier
to identify and resolve issues. Let’s create an X-Ray group and understand only the problematic traces
from the generated traces:

1. You can see from the following figure that there are three traces with different response times.
You can filter and focus only on the traces with a response time greater than (>) 3 seconds.

Troubleshooting performance issues using X-Ray groups 225

Figure 7.29 – X-Ray traces

2. Now, let’s create an X-Ray group by navigating to CloudWatch | Settings | Groups | View settings:

Figure 7.30 – X-Ray groups

Observability for Serverless Applications on AWS226

3. Click Create group, name the group as LatencyGreaterthan3s, and set Filter expression
to responseTime > 3.

Figure 7.31 – X-Ray group creation

4. Navigate to Traces | Filter by X-Ray group | LatencyGreaterthan3s.

Figure 7.32 – Filter traces based on X-Ray group

5. You should see that only one trace is visible instead of three, as the other traces are filtered out
due to the X-Ray group.

Troubleshooting performance issues using X-Ray groups 227

Figure 7.33 – Visible traces in the AWS X-Ray console

6. You can also repeat the same process to filter the traces based on annotations. In this example,
we have annotated ColdStart in Lambda functions. You can create the filter using annotation
as follows:

annotation.ColdStart = true

You could write a filter expression to focus on only the traces when the AWS Lambda is having
a cold start and observe the pattern of those traces exclusively for any other issues, as shown
in Figure 7.34.

Figure 7.34 – X-Ray group based on annotations

Observability for Serverless Applications on AWS228

X-Ray groups will be fundamentally helpful to filter out traces based on metrics and annotations
and focus on only the problem traces to get a clearer understanding of the issues at hand. This will
help you focus on traces that may have a potential impact on your application rather than focusing
on every trace.

Summary
In this chapter, we looked at how to instrument a serverless application from end to end. We began
by examining the default metrics and logs generated by the Lambda function and then expanded our
monitoring capabilities using Lambda Insights and looked at how Lambda Insights works.

Furthermore, we discussed the importance of Lambda Powertools and walked through an example,
and discussed the step-by-step process of changes made to include them in your Node.js function in
each area of metrics, logs, and traces and how they can enhance the operational experience.

As a part of the custom metrics, we have discussed how to set up important business metrics as part
of Lambda Powertools metrics. Finally, we talked about the benefits of using X-Ray groups to filter
and focus on the traces that are of most interest, making it easier to troubleshoot and resolve issues.

The overall Lambda observability could be summarized in a diagram, as follows:

Figure 7.35 – Lambda observability summary

Questions 229

In the next chapter, we will look at open source observability options available on AWS and how to
instrument applications using Open Telemetry.

Questions
1. What are the drawbacks of only utilizing default metrics and tracing in Lambda?

2. What are Lambda extensions?

3. What are Lambda Insights and the advantages of using Lambda insights?

4. What languages does Lambda Powertools support?

5. What are the utilities in Lambda Powertools?

8
End User Experience

Monitoring on AWS

Welcome to the exciting world of end user experience monitoring on AWS! In Chapters 3, Gathering
Operational Data Using Amazon CloudWatch, through Chapter 7, Observability for Serverless Application
on AWS, we discussed how you can observe the applications running on AWS across different workloads
including EC2, containers, and serverless compute systems such as Lambda, based on the building
blocks of observability of gathering metrics, logs, and traces. While this provided us with a solid
foundation to tackle issues we know about, it’s equally important to consider issues we might not know
about yet. We build and run applications to serve the users, and it is always good to understand how
our applications are performing from the user’s perspective, not just from the server’s standpoint. This
is where end user experience monitoring comes into play, and AWS offers a wide range of services to
help you understand the end user experience.

In this chapter, we will explore different AWS services that allow you to measure the end user experience
and learn how you can leverage them proactively and observe your applications. By doing so, you can
move from being reactive to being proactive in your observability approach, ensuring that you are
always ahead of the game for keeping your users happy and satisfied. Let’s dive into the fascinating
world of end user experience monitoring on AWS.

In this chapter, we are going to understand the following:

• Fundamentals of synthetic monitoring

• Overview of AWS CloudWatch Synthetics canaries

• Implementing synthetic monitoring for a sample website using CloudWatch Synthetics canaries

• Overview of Real User Monitoring (RUM) on AWS

• Implementing and tracking end user experience with RUM

End User Experience Monitoring on AWS232

Technical requirements
To follow along with this chapter, you need to have the following:

• A working AWS account

• An understanding of S3 and the setup of an S3 static website

• Fundamental knowledge of CloudFormation and setup of CloudFormation templates

End user experience monitoring
End user experience monitoring is also known as digital experience monitoring (DEM). As defined by
Gartner, DEM is an “availability and performance monitoring discipline that supports the optimization
of the operational experience and behavior of a digital agent, human or machine as it interacts with
enterprise applications and services.” It offers insights into how the application performs from the user’s
point of view, allowing you to understand the impact on users of the application. DEM provides the
outside-in view of the application performance on how a user is experiencing the application when
accessed. The outside-in view begins with establishing what looks good from the end user’s point
of view. Examples include web page response times, client-side JavaScript errors, visual stability,
interactivity, API latencies, and so on.

If you look at the observability stack referred to in Chapter 2, Overview of the Observability Landscape
on AWS, DEM comes as a part of layer 3 and consists of three different services from AWS, namely
Amazon CloudWatch Synthetics, Amazon CloudWatch RUM, and Amazon CloudWatch Evidently.
From now on, we will refer to them as CloudWatch Synthetics, CloudWatch RUM, and CloudWatch
Evidently for simplicity. Let’s understand what they do briefly before going into the details of each service:

• CloudWatch Synthetics helps you ensure that web applications are available and performing
as expected. The modular and lightweight canary scripts in CloudWatch Synthetics help you
monitor your web applications 24x7 and quickly identify and help address any issues that arise.

• CloudWatch RUM empowers you with valuable insights into the real-time experience of
your end users. By monitoring actual user interactions, CloudWatch RUM provides you with
a comprehensive understanding of your application’s performance and usability based on
actual user data.

• CloudWatch Evidently allows you to launch new application features and validate your web
application decisions by running online experiments. With this feature, you can safely test
new ideas and configurations to determine their impact on application performance and user
experience and measure business outcomes. This will help you make data-driven decisions for
any new application releases.

Let’s go into the details of what CloudWatch Synthetics and CloudWatch RUM are and explore their
unique features and functionalities in this chapter.

CloudWatch Synthetics 233

CloudWatch Synthetics
CloudWatch Synthetics allows you to proactively monitor the website and API endpoints every
minute, 24x7, using modular canary scripts. This service helps you receive instant alerts when your
application does not behave as expected, allowing you to quickly identify and address issues before
they impact your users. Synthetic monitoring is essential for organizations to gain insights into their
application performance from the perspective of their users, and identify intermittent issues that
may go unnoticed with traditional monitoring tools. CloudWatch Synthetics will act like a user and
perform a health check on a defined schedule, even when there is no user traffic, helping you to catch
issues proactively and prevent user-facing problems.

CloudWatch Synthetics helps you gain a comprehensive understanding of the availability and performance
of your web applications and ensures you meet your Service-Level Agreement (SLA) requirements.

Now, let’s explore how CloudWatch Synthetics operates and gain a deeper understanding of its underlying
mechanisms. By learning about its workings, you can effectively leverage the tool to monitor your
web applications and ensure the best possible user experience.

How CloudWatch Synthetics works

Let’s take a closer look at how CloudWatch Synthetics works. Figure 8.1 provides a summary of the
overall operations of the tool:

Figure 8.1 – How CloudWatch Synthetic works

End User Experience Monitoring on AWS234

In Figure 8.1, the left-hand side shows the conceptual flow of CloudWatch Synthetics. CloudWatch
Synthetics leverages a Lambda function that executes browser-based testing using a headless Chromium
browser, which is a part of the managed fleet. This means that AWS automatically manages Lambda
functionality, so you don’t have to worry about managing the underlying infrastructure.

Headless Chromium (https://developer.chrome.com/blog/headless-chrome/) works
by polling the website or API, rendering the results (including JavaScript), and following a predefined
path inside an application based on your scripts. By using this process, CloudWatch Synthetics can
simulate user interactions with your application and identity issues that may affect user experience.

Synthetic canaries check the availability and latency of endpoints. They monitor website URLs, REST
API, and website content. Synthetic canaries use Puppeteer, Node.js, or Python Selenium scripts. They
create Lambda functions in your AWS account that use these languages as a framework. CloudWatch
Synthetics completely manages these Lambda functions and requires no intervention from the users.

CloudWatch Synthetics testing can also take place inside AWS VPCs for applications that are not
accessible from the internet, such as intranet applications or internal application APIs.

Now, let’s turn our attention to the right side of Figure 8.1. The output of CloudWatch Synthetics
consists primarily of metrics, events, logs, and traces (MELT), which are stored in CloudWatch
primary services:

• CloudWatch Metrics: CloudWatch Synthetics provides a range of metrics including 2xx, 4xx,
5xx, duration, failed request count, and success percent. These metrics are available as a
custom CloudWatch metric namespace, which can be used to create custom dashboards, set
alarms, and detect anomalies. You can browse the metrics in two ways: by navigating to the
Synthetics canaries section of CloudWatch and selecting your canary to see its Monitoring
tab, as shown in Figure 8.2, or by viewing All metrics in the CloudWatch console.

Figure 8.2 – CloudWatch Synthetics metrics

CloudWatch Synthetics 235

• X-Ray Traces: AWS X-Ray can record the details of a trace, offering a complete perspective of
the synthetic transaction and enabling the results to be viewed through Service Lens. As of this
writing, X-Ray tracing is only available for Node.js-based Puppeteer scripts. You can visualize
the traces generated by CloudWatch Synthetics, as shown in Figure 8.3:

Figure 8.3 – CloudWatch Synthetics Traces

• CloudWatch Logs: Logs generated during the execution of the synthetic canary are stored in
CloudWatch logs, offering a comprehensive view of activities performed. I show a view of the
CloudWatch logs for a synthetic canary in Figure 8.4:

End User Experience Monitoring on AWS236

Figure 8.4 – CloudWatch Synthetics Logs

• CloudWatch Events: Through CloudWatch Events, you can understand the status of the
Synthetics canaries, including changes in status, failure, and success. You can also configure
notifications for these based on the EventBridge rules, as shown in Figure 8.5:

Figure 8.5 – CloudWatch Synthetics Events

CloudWatch Synthetics 237

• Data Retention Settings: The output data from the execution of Synthetic canaries is saved
in an S3 bucket, and we can adjust the retention settings for this data to manage storage costs.
You can see the configuration settings for this in Figure 8.6:

Figure 8.6 – Data retention settings

Having gained an understanding of how CloudWatch Synthetics operates, let’s explore the various
use cases of this service.

Use cases of CloudWatch Synthetics monitoring

Use cases of CloudWatch Synthetics monitoring include the following:

• Availability and latency monitoring: To monitor URL availability and understand the latency
in loading the website by the users

• Easy web testing: Quick testing of the website experience without any user traffic

• SLAs/SLOs made easy: To measure the availability of the website against the SLA

• Visual regression monitoring: To understand issues in the visual components of the website

• Proactive alerting: To alert for any issues proactively before affecting the end users

• Anomaly detection: To understand any anomalies in the website performance before it affects
the end users

End User Experience Monitoring on AWS238

Now let’s try to understand the configuration supported in CloudWatch Synthetics and understand
how to configure for some of the options.

Understanding CloudWatch Synthetics canaries

Upon logging in to the CloudWatch Synthetics console, you will encounter three distinct options for
creating canaries: using a blueprint, using the inline code editor, or importing scripts from S3. However,
I have grouped these options into five categories based on my practical experience. Specifically, I
consider two of the blueprints, namely Canary Recorder and GUI workflow builder, as a method
to create a synthetic canary. Figure 8.7 shows the classification:

Figure 8.7 – Synthetic canaries methods

Let’s delve into each of these five methods and gain a comprehensive understanding of them. We can
use the following five methods for creating canaries in CloudWatch Synthetics, depending on their
feasibility and requirements:

• Blueprints: Predefined blueprints are available to generate canary scripts automatically based
on configured options for specific use cases.

CloudWatch Synthetics 239

• Canary Recorder: The AWS Canary Recorder is a Chrome browser extension that allows you to
record clicks and actions on a website and auto-generate the script based on the actions performed.

• GUI Workflow Builder: The GUI workflow builder is ideal for creating secure monitoring of
user workflows. For instance, if you want canaries to mimic usernames and passwords but do
not want to store them in the script, this tool allows you to pass them as variables and leverage
AWS Secrets Manager to store the credentials.

• Inline Code Editor: The inline code editor is suitable for creating custom scripts or importing
existing scripts from your own local system.

• Import Scripts from S3: You can also upload your existing Puppeteer or Selenium scripts into
S3 storage and import them into the Synthetic canaries.

Now let’s look into the other default blueprints available in CloudWatch Synthetics after our
recategorization. There are four default blueprints, namely Heartbeat monitoring, API canary,
Broken link checker, and Visual monitoring, as shown in Figure 8.8:

Figure 8.8 – Blueprints

End User Experience Monitoring on AWS240

Let’s go into the details of each blueprint highlighted in Figure 8.8:

• Heartbeat monitoring: Heartbeat monitoring allows you to check the availability of a website
by measuring its basic page-load of a single URL. It’s useful for measuring the Service Level
Objective (SLO) of a website’s availability.

• API canary monitoring: This blueprint is designed to test REST APIs and their availability. By
invoking the methods in the API and verifying the response time and output, you can ensure
that APIs are functioning properly. This will be quite useful for testing the availability of APIs,
as many modern applications rely heavily on APIs.

• Broken link checker: When updating a website with multiple URL references, it’s common for
some of the referenced URLs to become unavailable. This blueprint provides a solution to this
issue by checking all the URLs on the listed website based on the blueprint.

• Visual monitoring: This blueprint is useful for understanding the visual differences in your
web interfaces and comparing any changes to the baseline. It provides a way to monitor the
user experience and quickly identify any issues with the design or layout of the website.

CloudWatch Synthetics offers a comprehensive monitoring solution for proactively tracking endpoints.
With this tool, you can measure latency and availability, detect GUI anomalies, and quickly identify
any visual regressions.

Now let’s look at configuring CloudWatch Synthetics canaries using some methods.

Configuring CloudWatch Synthetics canaries

Let’s take a scenario where you are looking to configure the availability monitoring for a public-facing
website such as aws.amazon.com. You can use the heartbeat blueprint to configure and measure
the availability of the website.

Heartbeat monitoring

Let’s create a heartbeat canary blueprint on the URL aws.amazon.com and monitor the availability
of the URL using the Synthetics canaries:

1. Navigate to AWS Console | CloudWatch | Application monitoring | Synthetics Canaries |
Create canary:

CloudWatch Synthetics 241

Figure 8.9 – Creating Synthetics canaries

2. Select Use a blueprint | Heartbeat monitoring:

Figure 8.10 – Selecting Heartbeat monitoring

End User Experience Monitoring on AWS242

3. Provide awswebsite as the name and https://aws.amazon.com as the application
or endpoint URL. In one synthetic canary, you can add up to five different endpoints. If you
would like to take a screenshot of the website during each canary run, you can select the Take
screenshots checkbox:

Figure 8.11 – Input to canary endpoint

4. When you navigate to Script editor, you will notice that the script is generated automatically
and populated with the parameters based on your selected options. For example, the URL is
included in the script, and the Screenshots option is enabled. You can select your preferred
Runtime version from the drop-down list, with options for either Puppeteer or Selenium
Python scripts, depending on the specific capabilities available with your organization. This
streamlined process makes it easy to customize your script and run it efficiently, without needing
to manually write the code from scratch:

CloudWatch Synthetics 243

Figure 8.12 – Script editor, auto-populate

5. You can easily schedule your canaries to run at specific intervals, either continuously or just
once. You can choose a preset interval or customize your schedule using a CRON expression.
For this exercise, we set the interval to every 5 minutes. This flexibility in scheduling allows
you to tailor your canary runs to your specific needs and also control costs.

End User Experience Monitoring on AWS244

Figure 8.13 – Scheduler for Synthetics canaries

6. Select the Failure data retention and Success data retention intervals. Understand that this
retention setting affects the S3 storage cost. S3 location is auto-populated if it is the first time,
otherwise, select a bucket to store the canary artifacts such as screenshots, HAR (short for
HTTP Archive) information, and so on:

CloudWatch Synthetics 245

Figure 8.14 – Storage settings

Synthetics canaries will create a new AWS IAM role by default to execute the conceptual flow:

Figure 8.15 – Access permissions

End User Experience Monitoring on AWS246

7. You can create CloudWatch alarms by clicking on the Add new alarm button based on
SuccessPercentage and Duration. You can also select a Simple Notification Services (SNS)
service to notify you of any additional actions you would like to take based on the alarms. It
can create an incident in the ITSM system or action of remediation if required:

Figure 8.16 – CloudWatch alarms

8. If your website is hosted within AWS VPC, you have the option to select the VPC as the location
for executing the canary. However, in our current example, the website URL is hosted outside
of our AWS account, hence we have selected No VPC in VPC settings:

Figure 8.17 – VPC settings

CloudWatch Synthetics 247

9. You can enable Active tracing (as we have selected Node.js script) to track how the Synthetics
canary is executing, and click on the Create canary button:

Figure 8.18 – Active X-Ray tracing

It will take a minute or two to create the Synthetics canary.

Now, let’s explore the results of the Synthetics canaries created.

10. You can verify the availability of the website, the last state, and any issues as a Summary view:

Figure 8.19 – Availability metrics for the Synthetics canary

End User Experience Monitoring on AWS248

11. When you navigate to the Availability tab and verify tabs at the bottom-right corner of the
Synthetic canaries created, you can verify Screenshots, Logs, HAR File, and Traces. Additionally,
HAR tells you where the greatest amount of time is spent in loading the website, which will be
further useful to understand where the issues are and fine-tuning the page load times:

Figure 8.20 – Navigating details of Synthetics results

You can also navigate for metrics and alarms, as described in the How CloudWatch Synthetics works
section in this chapter.

API canary

As a second example for using the Synthetics canary blueprints, let’s set up a synthetic canary for the
REST API endpoint that we deployed as a part of Chapter 7, Observability for Serverless Application
on AWS, and understand how to use a canary to understand issues with the API endpoint. If you
have not deployed CloudFormation as a part of Chapter 7, Observability for Serverless Application on
AWS, you can deploy the same from the following Quickstart CloudFormation template and refer to
Chapter 7 for the application overview:

https://console.aws.amazon.com/cloudformation/home#/stacks/
new?stackName=serverless-app2&templateURL=https://insiders-guide-
observability-on-aws-book.s3.amazonaws.com/chapter-07/final/template.
yaml

CloudWatch Synthetics 249

Now, let’s understand how to create a Synthetics canary for an API endpoint and understand the issues
regarding APIs using the canary metrics:

1. Navigate to CloudWatch | Synthetics Canaries | Use a blueprint | API canary and enter the
name apicanary_restapi:

Figure 8.21 – API canary

End User Experience Monitoring on AWS250

2. If the API is a third-party service such as an external API (for example, Boomi or Apigee),
you could directly select Add HTTP request and provide the URL along with the methods to
invoke. As we are using an Amazon API Gateway API, select the I’m using an Amazon API
Gateway API checkbox, then select Choose API | Choose API and stage from API Gateway
| serverless-app2, and set the Stage option to Prod:

Figure 8.22 – Selecting Amazon API Gateway

CloudWatch Synthetics 251

3. Application or endpoint URLs are available to select automatically based on the Amazon API
Gateway URL. Click on Add HTTP request:

Figure 8.23 – Add HTTP request

End User Experience Monitoring on AWS252

4. Select /items for Resource, set Method to GET, and click on Save:

Figure 8.24 – GET method response verification

5. Optionally, if you are looking to capture the headers and response body, you can select the same
in Reporting configuration. This will be especially useful when you would like to analyze the
response details of the API; click Save:

CloudWatch Synthetics 253

Figure 8.25 – Optional response capture

Now when you navigate to Script editor, the Synthetics canaries script has been auto-generated
based on the selected options:

Figure 8.26 – API canary script

End User Experience Monitoring on AWS254

6. Leave the remaining options as default and click Create canary:

Figure 8.27 – Create canary

If you are looking for an explanation of the remaining default ones and to understand the results,
please refer to the Heartbeat monitoring subsection in this chapter.

The implementation of broken link monitoring and visual monitoring could follow a similar approach
to heartbeat monitoring. If the default blueprints are inadequate for the task, we can explore the usage
of the Canary Recorder.

Canary Recorder

CloudWatch Synthetics Recorder is a useful tool that can assist you in recording the steps performed
on a website. This tool is available as a Chrome extension and can be easily installed on your browser:

Figure 8.28 – CloudWatch Synthetics Recorder in the Chrome Web Store

CloudWatch Synthetics 255

Once installed, you can simply click on the Start recording button and the recorder will begin capturing
all the actions you perform on the website:

Figure 8.29 – Recording using CloudWatch Synthetics Recorder

The Synthetics Recorder is helpful when you need to generate Synthetics canary scripts quickly. By
recording the steps you take on the website; the recorder auto-generates the Synthetics canary script
for you. This feature saves time and effort, especially if you are not familiar with scripting.

Using the Synthetics Recorder can be an effective solution if the available default blueprints do not meet
your requirements. With the recorder, you have the flexibility to customize the steps and actions you
want to capture, enabling you to create more tailored and effective monitoring scripts for your website.

So far, we have gained a solid understanding of CloudWatch Synthetics, including how it functions
and the various options for recording synthetic canaries. We have also explored two examples of using
Synthetics for monitoring a website’s heartbeat and API Gateway.

Now, let’s dive into the topic of RUM: how it can be set up on AWS and how to analyze the RUM results.

End User Experience Monitoring on AWS256

CloudWatch RUM
CloudWatch RUM is a monitoring technology that captures and records all the user interactions with
your website or application. With RUM, you can gain valuable insights into your application’s frontend
performance from the perspective of real users. It helps you correlate the client side and server side
and provides an end-to-end view of the application performance.

CloudWatch RUM helps you gain a comprehensive understanding of your website’s performance,
identify areas for improvement, and continually optimize your web application for the best possible user
experience. It will help you identify performance issues of the website, the Application Performance
Index (Apdex) by country, and errors on the website. It also helps you understand the browsers/
devices accessing your website and analyze the sessions and traffic on the website.

Besides these benefits, CloudWatch RUM offers all the benefits of Amazon CloudWatch, such as
metrics, alarms, anomaly detection, and so on. It provides flexibility in configuration, allows you to
customize session samples and capture response times of specific pages, and also add X-Ray tracing.

Now, let’s understand how CloudWatch RUM works.

How CloudWatch RUM works

Here is the high-level workflow overview of how CloudWatch RUM works:

Figure 8.30 – How RUM works

CloudWatch RUM 257

If you look at the left side of Figure 8.30, to enable CloudWatch RUM monitoring for your web
application, the first step is to include a small script in the application’s frontend code. Once the web
application loads in a user’s browser, the script retrieves the credentials from the Cognito identity
pool, which is configured as part of CloudWatch RUM.

With the credentials to post the data to CloudWatch RUM, the CloudWatch RUM script collects client-
side performance telemetry, navigation events, and any JavaScript/HTTP errors that occur during
user journeys on your website. This data provides valuable insights into how users interact with your
application and can identify performance issues and other areas for improvement.

If you look at the right side of Figure 8.30, after receiving data from the CloudWatch RUM script, the
service processes and publishes the collected metrics. You can choose to enable alarms as needed to
notify you of any performance issues. Additionally, CloudWatch RUM provides the option to store
logs in CloudWatch log groups from the RUM persistent data layer. This allows you to maintain a
comprehensive record of user interactions and performance metrics for future analysis.

Finally, CloudWatch RUM automatically creates default dashboards that provide a clear and concise
overview of performance issues based on end user experience. We can customize these dashboards
to meet your specific monitoring and analysis needs, providing a valuable tool for identifying and
addressing performance issues and optimizing your application for the best possible user experience.

The following are the default metrics provided by CloudWatch RUM:

• Users: Active user count, device, screen resolution, browser, and location

• User interaction: Sessions, entry point, exit point, user journey, and top viewed pages

• Site behavior: Page load times, latencies, and web vitals

The logs stored can generate insights by leveraging the CloudWatch Logs Insights service.

In the next section, we will look into how to set up CloudWatch RUM for an S3 static website and
understand the real user performance metrics and issues.

Setting up CloudWatch RUM for an S3 static website

In this practical exercise, we will deploy a static website on Amazon S3 and configure CloudWatch RUM
to monitor user interactions and provide insights into the performance of the Single Page Application
(SPA) running on the S3. By setting up CloudWatch RUM, we can gain a deeper understanding of
how users interact with our SPA, identify potential performance issues, and take steps to optimize
the user experience.

As a part of the first step, let’s deploy the static website and upload a simple HTML page, index.html:

1. Let’s deploy the following CloudFormation template as a quick start, which will deploy an S3
bucket along with making it public using the ACLs. I do not recommend this configuration
for production deployment, as the S3 bucket is made public:

End User Experience Monitoring on AWS258

https://us-east-1.console.aws.amazon.com/cloudformation/
home?region=us-east-1#/stacks/quickcreate?templateUrl=h
ttps%3A%2F%2Finsiders-guide-observability-on-aws-book.
s3.amazonaws.com%2Fchapter-08%2Fcreates3staticwebsite.
yaml&stackName=S3WebappRUM

2. Navigate to the output of the CloudFormation template deployment to confirm the creation
of the S3 website URL. This URL will serve as our endpoint for the website and will be used to
verify and observe the website’s performance using CloudWatch RUM:

Figure 8.31 – S3 SPA

3. Download the index.html file from this URL: https://insiders-guide-
observability-on-aws-book.s3.amazonaws.com/chapter-08/index.html.

This is a simple plain HTML file with a test message. You can right-click on the file and save
it as index.html.

This has been purposefully kept for download and upload to the S3 bucket as RUM requires the
addition of a script to capture the real user data.

4. Browse to the S3 website URL that was noted down in the Outputs tab during Step 2. By visiting
this WebSite URL, we can verify that the S3 static web page is available to users. This step is
essential to ensure that the website is properly deployed and functioning as intended before
proceeding with the CloudWatch RUM setup.

CloudWatch RUM 259

5. The CloudWatch RUM setup is divided into three steps:

 � Add the app you want to monitor

 � Copy and paste the JavaScript code into the header of the application

 � Monitor and troubleshoot the issues:

Figure 8.32 – RUM setup

6. To set up CloudWatch RUM, there are two options available: configuring it through the AWS
Console or using CloudFormation. For this exercise, we will utilize the AWS Console to set
up CloudWatch RUM.

Navigate to AWS Console | CloudWatch | RUM | Add app monitor:

Figure 8.33 – Add app monitor

End User Experience Monitoring on AWS260

7. Provide S3RUM-App as the app monitor name and the website URL as noted in the Step 2
output S3BucketSecureURL without http(s). We are selecting to capture performance
telemetry, JavaScript errors, and HTTP errors, though we do not receive any JavaScript errors
in this exercise.

Figure 8.34 – Add app monitor

CloudWatch RUM 261

8. Select to allow cookies by selecting Check this option to allow the CloudWatch RUM Web
Client to set cookies and type 100% in Session samples, which will allow you to sample 100%
of the sessions. Finally, select Check this option to store your application telemetry data in
your CloudWatch Logs account to log the request to CloudWatch Logs, as shown here:

Figure 8.35 – CloudWatch logging

End User Experience Monitoring on AWS262

9. Select Create new identity pool and configure it to capture information from All pages:

Figure 8.36 – Cognito pool creation and configuring pages

10. Click on Add app monitor:

Figure 8.37 – Clicking on Add app monitor

CloudWatch RUM 263

11. The app monitor will generate a script that needs to be added to the SPA. This process may
take a few minutes. It’s worth noting that if the web application has multiple pages with disjoint
domain names/URLs, the RUM monitor needs to be created separately for each page. This will
ensure that the performance data for each page is captured accurately.

Figure 8.38 – Selecting the HTML script

End User Experience Monitoring on AWS264

12. Copy the script generated and edit index.html using any editor, such as Notepad on
Windows or TextEdit on macOS, and add the script to the header of the HTML page after the
HTML tag <head>:

Figure 8.39 – Changed index file

13. Upload the changed index.html file to the S3 bucket noted in Step 2 by replacing the old
index.html file.

14. To verify that the S3 static website is posting the user experience data to the CloudWatch
RUM, you can browse the S3 static website URL and check the CloudWatch console for the
RUM metrics. This will confirm that the RUM monitor works properly and is collecting data
from the website.

15. Navigate to CloudWatch | RUM and verify the summary of the RUM results:

Apdex is an open standard solution used to measure user satisfaction with the response time
of web applications and services. It is a ratio of total requests made over a period to the value of
the number of satisfied and tolerable requests. The Apdex score measures customer satisfaction.
It will be in the range of 0 to 1, with 0 being the worst and 1 being the best. If you look at the
RUM output, in our case it is 1 as shown in Figure 8.40.

CloudWatch RUM 265

Figure 8.40 – RUM overview

16. Navigate to CloudWatch | RUM | S3RUM-App and verify the statistics provided by
CloudWatch RUM:

Figure 8.41 – CloudWatch RUM performance output

End User Experience Monitoring on AWS266

In Figure 8.41, you can see the overall number of page loads, load time, and any errors caused
while browsing the application:

• Page loads: Page loads provides the number of page loads over the period of time selected.

• Errors: Here, you can find JavaScript and HTTP errors. You can also find the number of sessions
and the number of sessions with errors.

To comprehend the results produced by CloudWatch RUM, it’s important to note that the tool’s
performance output includes the term web vitals, which is a concept introduced by Google (https://
support.google.com/webmasters/answer/9205520) to offer crucial data points for
evaluating the user experience.

Let’s refer to Figure 8.42 to understand the user’s experience details.

Web vitals is an initiative by Google that provides unified guidance for quality signals that are essential
to delivering a great user experience on the web. It is a way to simplify the understanding of the
performance landscape to focus on the metrics that matter the most.

Figure 8.42 – Web vitals in CloudWatch RUM

Core web vitals include Largest Contentful Paint (LCP), First Input Delay (FID), and Cumulative
Layout Shift (CLS), and we could interpret the results as follows along with some possible remediations:

• The LCP metric reports the render time of the largest image or text block visible within the
viewport, relative to when the page first started loading. LCP considers the largest image, video,
and background images of the website, and block-level elements containing text. LCP issues

CloudWatch RUM 267

and solutions include improving server performance, optimizing JS/CSS bundles, compressing/
caching images, pre-fetch data, using server-side rendering (SSR) if possible, and using edge
solutions for your data.

• The FID metric measures the time from when a user first interacts with a page (i.e., when they
click a link, tap on a button, or use a custom JavaScript-powered control) to the time when the
browser can begin processing event handlers in response to that interaction. The ideal score
for this web vital is 100 ms or less. FID solutions include avoiding large blocking times (long
tasks), reviewing your dependencies, removing unused polyfills, caching your assets, and lazy
loading of third-party assets.

• CLS measures visual stability – the percentage of content shifting around your website, caused by
images loading slowly, and new pieces of content pushing items. CLS solutions include adding
size attributes to images/videos, reserving space for slow-loading content (skeleton), allowing
your text to be visible while your fonts are loading, and preloading your fonts.

When you look at Step and duration in Figure 8.43, which is part of the CloudWatch RUM Summary tab,
you can find the duration of the steps. One important metric to look into is Time to first byte (TTFB):

Figure 8.43 – Steps and duration of user experience

TTFB is a metric for determining the responsiveness of a web server. It measures the amount of time
between creating a connection to the server and downloading the contents of a web page

If you are looking to understand the user performance by browser, navigate to the Browsers & Devices
tab and verify the detail metrics by browser and by device:

End User Experience Monitoring on AWS268

Figure 8.44 – Experience of the user by browser or devic

You can also analyze the user journey by navigating the User Journey tab.

In this section, we have understood what CloudWatch RUM is and how it works from the conceptual
point of view. We have further gone ahead with the setup of CloudWatch RUM for an S3 static website
and now have a grasp of the important performance statistics to focus on for analyzing the user
experience on a website. We could adopt the same for any website where we would like to measure
the performance experienced by the end users.

Summary
In this chapter, we have explored the significance of DEM in achieving observability and how it can
help in identifying user issues. We have delved into the AWS services that can be used to measure
DEM. Specifically, we have learned how CloudWatch Synthetics operates, its various use cases, and
how to set it up using a blueprint and canary recorder. Additionally, we have examined the need for
RUM and how it operates, and have gone through the process of setting up an end-to-end RUM for
an S3 static website, including how to analyze the output.

In the next chapter, we will navigate into the open source observability landscape offered by AWS. We
will explore collecting metrics and traces using the OpenTelemetry (OTel) open standard.

Questions 269

Questions
1. What are the services available from AWS for measuring the digital experience of the users?

2. What is the use of synthetic monitoring?

3. What are the different models available to set up CloudWatch Synthetics?

4. What is the use of CloudWatch RUM?

5. What is the importance of web vitals and how couild they be useful to understand the output
from CloudWatch RUM?

Part 3:
Open Source Managed

Services on AWS

In this part, we will discuss the existing software development kits (SDKs), APIs, and AWS services
that support organizations looking for ways to implement observability but using the open source
ecosystem. It shows how AWS services can easily integrate with existing practices, helping to reduce much
of the heavy lift of deploying and managing those open source tools done by the infrastructure team.

This section has the following chapters:

• Chapter 9, Collecting Metrics and Traces Using OpenTelemetry

• Chapter 10, Deploying and Configuring an Amazon Managed Service for Prometheus

• Chapter 11, Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch
Service

9
Collecting Metrics and Traces

Using OpenTelemetry

Regardless of whether you are a seasoned veteran or a beginner on your observability journey, since
you are following this book and doing your homework, you already have all the pieces in place now:
you can now collect metrics, traces, and logs from your application on AWS, whether using Elastic
Compute Cloud (EC2) instances, containers, or Lambda functions.

But let’s take a step back to see the big picture. To collect metrics for an EC2 environment, you need
to install an agent on your virtual machine, a sidecar on your containerized application, or a Lambda
layer on your serverless application. To collect application-specific metrics, you need to use a library
as a dependency and write code to collect it and all the essential context around it. The same can be
said about traces. You need to retrieve the trace ID in your code entry point, send it in every cascaded
call, again using a library or component, and make changes to the code where you want to capture
more granular information.

All of this work is realized using agents, sidecars, instrumentation, and SDKs specific to one observability
provider. This work is required; it doesn’t matter whether your application is in your data center or
in the cloud.

Talking about vendors, now you may realize that on your quest to gather as much information as
possible from your application, you have become highly coupled to a single provider, whether AWS
or not. This does have some advantages, as your provider may evolve new features faster, so your
coupling becomes not an investment but rather a liability. AWS is customer-obsessed, with a history
of a fast development pace, so for an application born in the AWS cloud, this may be less of an issue,
but if you are planning to migrate from/to different observability providers, this becomes a challenge.

In this chapter, we will talk about the OpenTelemetry project, a set of tools, APIs, and SDKs for collecting
telemetry data from your application. OpenTelemetry is a Cloud Native Computing Foundation
incubating project. As such, it is an open source, vendor-neutral project supported by the community
and 23 vendors at the time of writing. OpenTelemetry provides SDKs to many languages and supports
integration with a broad number of backends. OpenTelemetry is on a mission to standardize how we
collect and export metrics. In this chapter, we will cover the following main topics:

Collecting Metrics and Traces Using OpenTelemetry274

• An open standard to collect metrics and traces using AWS Distro for OpenTelemetry

• How to instrument once for multiple monitoring destinations

• Instrumenting a container application running on AWS Elastic Container Service (ECS)
using OpenTelemetry

Technical requirements
In this chapter, you will deploy an Amazon ECS workload using a CloudFormation template. So,
knowledge of containers and how to write CloudFormation templates is needed.

We will see sample code in Python. Python syntax is easy to understand, so if you do not know Python
but know C, C++, Java, or C#, you are well equipped to understand the source code.

All the source code for this chapter can be found here: https://github.com/PacktPublishing/
An-Insider-s-Guide-to-Observability-on-AWS/tree/main/chapter-09.

An open standard to collect metrics and traces using AWS
Distro for OpenTelemetry
OpenTelemetry works on different levels to provide a vendor-agnostic experience. It offers open-
standard semantics so you can write vendor-agnostic code. We can deploy the vendor-neutral
collector binary in various ways. It supports multiple open source and commercial protocols (see
https://github.com/open-telemetry/opentelemetry-collector-contrib/
tree/main/receiver) to export to a vendor-specific backend. It provides a vendor-agnostic
library for these languages:

• .NET

• C++

• Erlang/Elixir

• Go

• Java

• Javascript

• PHP

• Python

• Ruby

• Rust

• Swift

https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/tree/main/chapter-09
https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/tree/main/chapter-09
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/receiver
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/receiver

An open standard to collect metrics and traces using AWS Distro for OpenTelemetry 275

So, in a typical OpenTelemetry-based observability deployment, you have an application using the
OpenTelemetry SDK to manually or automatically instrument the application code. The collected
metric is sent using an agnostic protocol to the OpenTelemetry Collector. The OpenTelemetry Collector
receives, processes, and exports the telemetry data to the backend. The OpenTelemetry Collector
implements modular architectures, where receivers, processors, and exporters can be organized into
pipelines to export the collected telemetry to one or more backends. See the following figure:

Figure 9.1 – A typical OpenTelemetry deployment

As you can see, you need to put together many pieces to make an OpenTelemetry deployment a
success. You need to deploy the OpenTelemetry Collector in your infrastructure. You need to add
configurations to connect the application to the OpenTelemetry Connector and from it to your backend
of choice. And to do so, you need to authenticate to the backend, and mechanisms to authenticate to
the backend are vendor-specific. That is where the OpenTelemetry distributions play a crucial role.

If you use any Linux operating system, you are familiar with the concept of distribution. In the Linux
world, the distribution is a collection of open source software that makes up a cohesive operational
system. Any end user could build their distribution and enjoy the freedom of doing so, but good luck
with that. It is arduous to put together many pieces of software and all the configuration necessary. In
the same way, OpenTelemetry provides many software and modules, and users can combine them in
any way they desire, or trust the work already done by many different vendors. Vendors invest time to
ensure end users can use OpenTelemetry effortlessly on their platforms. AWS provides the AWS Distro
for OpenTelemetry (see https://aws.amazon.com/otel/), a secure, tested, production-ready
OpenTelemetry distribution. AWS Distro for OpenTelemetry will automatically collect metadata from
the AWS environment where your code is running. It supports AWS Lambda, Amazon EC2, Amazon
ECS, and Amazon Elastic Kubernetes Services (EKS), the last two regardless of whether you use
EC2 or AWS Fargate as the compute runtime for your worker nodes. AWS Distro for OpenTelemetry
can export telemetry for all the usual suspects, such as AWS X-Ray, Amazon CloudWatch, Amazon
Managed Service for Prometheus, and a list of third-party monitoring solutions as follows:

• AppDynamics

https://aws.amazon.com/otel/

Collecting Metrics and Traces Using OpenTelemetry276

• Datadog

• Dynatrace

• Grafana

• Honeycomb

• Lightstep

• Logz.io

• New Relic

• Splunk

• Sumo Logic

In this section, you learned that to use OpenTelemetry, you need to instrument your code and deploy
the OpenTelemetry Collector to collect the telemetry data and send it to one of the many backend
services. AWS Distro for OpenTelemetry is the distribution created by AWS to help users to integrate
effortlessly into AWS services and backends. In the next section, let us examine how to instrument
your application in a vendor-agnostic way so you can later export the collected data to any vendor,
including AWS.

How to instrument once for multiple monitoring
destinations
As discussed in the previous section, OpenTelemetry exposes vendor-agnostic semantics and APIs to
your application. All you need to do is to implement your code with a dependency on OpenTelemetry
and configure where to send the telemetry data. With that, you abstract away any vendor-specific
details. To achieve vendor-agnostic semantics, OpenTelemetry classifies the different telemetry data,
or signals, into three distinct categories:

• Traces

• Metrics

• Logs

Let us discuss what they are and how to implement them one by one.

Traces

A trace, also known as distributed trace, contains information about all the steps to fulfill a single
user request inside and among different services. Multiple spans make up a single trace.

How to instrument once for multiple monitoring destinations 277

A span is a single work unit. Spans can be nested, so a span can have a parent span, while the first
span without a parent is known as the root span. A span also has a span context, which contains the
trace ID, an essential piece of information carried around by the different services to aggregate all the
different spans of a single request into a single trace. Many vendors and backends represent traces
and spans as waterfall diagrams, as seen in the following figure:

Figure 9.2 – Example of a trace representation using a waterfall diagram

See an example here of how to add spans to your code (you can see the full code example at https://
github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-
AWS/blob/main/chapter-09/basic_tracer/basic_tracer.py):

...
// Removed code for clarity
11: tracer = trace.get_tracer(__name__)
12: with tracer.start_as_current_span("foo"):
13: print("Hello world!")

In this example, we start a new trace, and inside this trace, we initialize the root span.

Let’s execute this sample code. Go to the root folder of the companion repository you cloned before
and execute the commands:

cd chapter-09/basic_tracer/
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
python3 basic_tracer.py | nl -w2 -s': '

We can see the structure of the trace as a JSON object on the console in the following figure:

https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/blob/main/chapter-09/basic_tracer/basic_tracer.py
https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/blob/main/chapter-09/basic_tracer/basic_tracer.py
https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/blob/main/chapter-09/basic_tracer/basic_tracer.py

Collecting Metrics and Traces Using OpenTelemetry278

Figure 9.3 – JSON output representing a trace

We can see the following data in the preceding JSON:

• Lines 4-8: Here, we see the span context, with the trace ID, which is transferred between services
to glue them together in the same chain of calls

• Line 10: The parent ID but in this case, as this is a root span, it is null

• Lines 20-25: Span attributes, a set of key-value pairs with context information at the time of
the trace execution

Now that we have seen what a trace signal means in OpenTelemetry and how to collect and what
information it contains, let’s take a look at the next signal: metrics.

Metrics

The OpenTelemetry-agnostic definition of a metric is as follows:

“A metric is a measurement about a service, captured at runtime.”

The moment at which you capture a metric is called the metric event, which contains the metric value,
the moment in time, and its metadata.

How to instrument once for multiple monitoring destinations 279

See examples of metric collections in the following source code (you can find the full source
code at https://github.com/PacktPublishing/An-Insider-s-Guide-to-
Observability-on-AWS/blob/main/chapter-09/metrics/example.py):

// Removed code for clarity
19: # Counter
20: counter = meter.create_counter("counter")
21: counter.add(1)

22: # UpDownCounter
23: updown_counter = meter.create_up_down_counter("updown_counter")
24: updown_counter.add(1)
25: updown_counter.add(-5)

26: # Histogram
27: histogram = meter.create_histogram("histogram")
28: histogram.record(99.9)

The important lines in this piece of code are as follows:

• Lines 19-21: We start a simple, monotonic counter, or in other words, it can only go up

• Lines 22-25: We have a non-monotonic counter, so this time, we can increment as well decrement it

• Lines 26-28: We create and add a single data point to a histogram, a collection of recorded
metrics in a compressed format, divided into buckets

Let’s see the code in action. In one terminal window, let’s start an OpenTelemetry collector. Execute
the following command:

docker run \
 -p 4317:4317 \
 -v $(pwd)/otel-collector-config.yaml:/etc/otel/config.yaml \
 otel/opentelemetry-collector-contrib:latest

In a second terminal window, run the following commands:

cd chapter-09/metrics
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

In the OpenTelemetry Collector standard output, you will see an output similar to the following figure:

https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/blob/main/chapter-09/metrics/example.py
https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/blob/main/chapter-09/metrics/example.py

Collecting Metrics and Traces Using OpenTelemetry280

Figure 9.4 – OpenTelemetry Collector output after metric sample code execution

The preceding export shows the following details:

• Lines 10-21: Here, we see all the information captured by the collection about the first counter
we saw in our code. You can see we don’t have just the value, but also the timestamp and
metadata for it.

• Lines 22-33: Here, we have the data about the second counter. As a non-monotonic counter,
IsMonotonic is set to false.

• Lines 34-51: This shows the data from our histogram. As you can see, it keeps the information
about sum, minimum, maximum, and the number of data points.

How to instrument once for multiple monitoring destinations 281

With that, we conclude the OpenTelemetry take on metrics and how the agnostic API is implemented
and represented. Next stop: logs.

Logs

In OpenTelemetry terms, a log is “a timestamped text record, either structured (recommended) or
unstructured, with metadata”.

Let us see an example of how to log data using OpenTelemetry (you can find the full source
code at https://github.com/PacktPublishing/An-Insider-s-Guide-to-
Observability-on-AWS/blob/main/chapter-09/logs/example.py):

// Removed code for clarity

22: log_emitter_provider = LogEmitterProvider(
23: resource=Resource.create(
24: {
25: "service.name": "shoppingcart",
26: "service.instance.id": "instance-12",
27: }
28:),
29:)
30: set_log_emitter_provider(log_emitter_provider)

31: exporter = OTLPLogExporter(insecure=True)
32: log_emitter_provider.add_log_
processor(BatchLogProcessor(exporter))
33: handler = LoggingHandler(
34: level=logging.NOTSET, log_emitter_provider=log_emitter_provider
35:)

36: # Attach OTLP handler to root logger
37: logging.getLogger().addHandler(handler)

38: # Log directly
39: logging.info("Jackdaws love my big sphinx of quartz.")

40: # Create different namespaced loggers
41: logger1 = logging.getLogger("myapp.area1")
42: logger2 = logging.getLogger("myapp.area2")

43: logger1.debug("Quick zephyrs blow, vexing daft Jim.")
44: logger1.info("How quickly daft jumping zebras vex.")
45: logger2.warning("Jail zesty vixen who grabbed pay from quack.")
46: logger2.error("The five boxing wizards jump quickly.")

https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/blob/main/chapter-09/logs/example.py
https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/blob/main/chapter-09/logs/example.py

Collecting Metrics and Traces Using OpenTelemetry282

47: # Trace context correlation
48: tracer = trace.get_tracer(__name__)
49: with tracer.start_as_current_span("foo"):
50: # Do something
51: logger2.error("Hyderabad, we have a major problem.")

52: log_emitter_provider.shutdown()

The important sections of this code snippet are as follows:

• Lines 22-37: Configuration of the log handler and exporter

• Lines 38-46: Normal logging

• Lines 47-51: Attaching a log entry to a trace span

Let’s execute the sample code and see how OpenTelemetry interprets the log data. Let’s start an
OpenTelemetry collector with the following command:

docker run\
 -p 4317:4317 \
 -v $(pwd)/otel-collector-config.yaml:/etc/otel/config.yaml \
 otel/opentelemetry-collector-contrib:latest

In another terminal, type the following commands:

cd chapter-09/logs
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

In the OpenTelemetry Collector standard output, you will see an output like that in the following figure:

How to instrument once for multiple monitoring destinations 283

Figure 9.5 – OpenTelemetry Collector output after sample code execution of logs

The previous output shows the following details:

• Lines 11-26: Log records without a span ID

• Lines 27-34: Log records with a span ID

With that, we have finished examining the vendor-agnostic vocabulary implemented by OpenTelemetry.
With these building blocks, we can implement our application observability independent of the vendor,
and OpenTelemetry will do the translation on a case-by-case basis.

In the next section, we will see how OpenTelemetry can be deployed to ingest data from your
target application.

OpenTelemetry Collector deployment

The OpenTelemetry Collector makes it easy to decouple the application code and binary from the
vendor’s backend and reduces the potential overhead of processing, aggregating, connection handling,
and retrying requests. There are two ways to deploy the OpenTelemetry Collector:

Collecting Metrics and Traces Using OpenTelemetry284

• An agent: The collector runs side by side with the application code in the same host or as a
sidecar in the case of containers

• A gateway: An independent process running to collect telemetry from many applications, one
per workload, cluster, or Availability Zone.

The two deployments have pros and cons. Deploying as an agent has the advantage of simplicity
and resiliency, but it is more challenging to manage and scale the collector according to its resource
requirements, and it also incurs higher overhead. A gateway deployment may be more complex, but
it gives us the freedom to scale the collector independently and fine-tune the provided resources.

In this section, we saw how OpenTelemetry implements a vendor-agnostic API and semantics, taking
care of the details of how to translate what the project calls signals and its vendor-specific implementation
of them. This vendor-agnostic approach allows you to implement observability code once in your
project and, with changes only in configuration, makes it possible to export the observability data to
different vendor-specific backends.

Let’s take a look at one example of how to implement observability using OpenTelemetry using the
AWS-native container orchestrator: Amazon ECS.

Instrumenting a container application running on ECS
using OpenTelemetry
In this section, we will go through all steps to instrument and deploy an application using AWS Distro
for OpenTelemetry.

First, let us deploy the application:

1. Browse this link: https://eu-central-1.console.aws.amazon.com/
cloudformation/home?region=eu-central-1#/stacks/quickcreate
?templateURL=https%3A%2F%2Finsiders-guide-observability-on-
aws-book.s3.amazonaws.com%2Fchapter-09%2Faws-ecs-otel-main.
yaml&stackName=OTELFlaskApp. When you click on this link, you will be redirected
to the CloudFormation stack creation page, with all the details pre-populated. You can leave all
the default values. Just do not forget to check the two checkboxes at the end of the page before
clicking on the Create stack button. Check the following figure:

https://eu-central-1.console.aws.amazon.com/cloudformation/home?region=eu-central-1#/stacks/quickcreate?templateURL=https%3A%2F%2Finsiders-guide-observability-on-aws-book.s3.amazonaws.com%2Fchapter-09%2Faws-ecs-otel-main.yaml&stackName=OTELFlaskApp
https://eu-central-1.console.aws.amazon.com/cloudformation/home?region=eu-central-1#/stacks/quickcreate?templateURL=https%3A%2F%2Finsiders-guide-observability-on-aws-book.s3.amazonaws.com%2Fchapter-09%2Faws-ecs-otel-main.yaml&stackName=OTELFlaskApp
https://eu-central-1.console.aws.amazon.com/cloudformation/home?region=eu-central-1#/stacks/quickcreate?templateURL=https%3A%2F%2Finsiders-guide-observability-on-aws-book.s3.amazonaws.com%2Fchapter-09%2Faws-ecs-otel-main.yaml&stackName=OTELFlaskApp
https://eu-central-1.console.aws.amazon.com/cloudformation/home?region=eu-central-1#/stacks/quickcreate?templateURL=https%3A%2F%2Finsiders-guide-observability-on-aws-book.s3.amazonaws.com%2Fchapter-09%2Faws-ecs-otel-main.yaml&stackName=OTELFlaskApp
https://eu-central-1.console.aws.amazon.com/cloudformation/home?region=eu-central-1#/stacks/quickcreate?templateURL=https%3A%2F%2Finsiders-guide-observability-on-aws-book.s3.amazonaws.com%2Fchapter-09%2Faws-ecs-otel-main.yaml&stackName=OTELFlaskApp

Instrumenting a container application running on ECS using OpenTelemetry 285

Figure 9.6 – CloudFormation step 4, acknowledging the creation of IAM resources

2. You will need to wait around 5-10 minutes for the infrastructure to be deployed. This
CloudFormation template is split into one for the infrastructure, one for the application
deployment, and the main template that orchestrates both. That is why, after deployment, you
will see three Stacks: one being the main template, in which the deployment was initiated by
you, and two more that are initiated by the main template. This technique is useful for creating
modular, reusable templates and to help you handle the complexity of your infrastructure. You can
create nested templates such as the ones you see here by following the instructions on the AWS
documentation page (see https://docs.aws.amazon.com/AWSCloudFormation/
latest/UserGuide/using-cfn-nested-stacks.html). You can easily identify
the ones created by the main template as they are marked as NESTED. See the following figure:

Figure 9.7 – Main template (named OTELFlaskApp) and two nested templates

After deployment, you will have a load-balanced ECS-based web service deployed in your
account. You can see the application architecture in the following figure:

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-nested-stacks.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-nested-stacks.html

Collecting Metrics and Traces Using OpenTelemetry286

Figure 9.8 – Load-balanced web service deployed using Amazon ECS

3. Access the Outputs tab on the main template to find the public URL of the load balancer, as
in the following figure:

Instrumenting a container application running on ECS using OpenTelemetry 287

Figure 9.9 – Main template | Outputs tab | load balancer URL

4. If you click on the public URL of the load balancer under the PublicLoadBalancerDNSName
key name (in my case, http://otelf-publi-1mn1ch1sjupfw-500899047.
eu-central-1.elb.amazonaws.com/, as you can see in the screenshot, but it can
differ for every deployment), or right-click and open it in a new tab (better!), your browser
will be redirected to the main application page, and you will receive a friendly App running!
message, as in the following figure:

Figure 9.10 – Sample application main page

5. Our sample application is implemented in Python, and exposes four endpoints:

 � http://[load-balancer-URL]/: The application main page you see when you click
on the load balancer URL; it just returns a friendly App running! message.

 � http://[load-balancer-URL]/outgoing-http-call: This endpoint makes
a call to an external URL, mimicking a call to an external service, and returns the trace ID
of this call chain.

 � http://[load-balancer-URL]/aws-sdk-call: This endpoint makes a call to
list all S3 buckets of your account, emulating a call to one AWS service, and returns the
trace ID of this call chain.

 � http://[load-balancer-URL]/health: This endpoint is used to check the
application’s health, and it is used by the load balancer to decide whether user traffic can be
redirected to this node.

Collecting Metrics and Traces Using OpenTelemetry288

You can find the application source code and CloudFormation template here: https://github.
com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/tree/
main/chapter-09/manual_instrumentation.

Let’s navigate through the necessary components and configuration that allow this application to
publish metrics using OpenTelemetry, or more specifically, AWS Distro for OpenTelemetry.

The OpenTelemetry Python SDK for traces

To configure exporting application traces, we need to configure the protocol we want to use to
communicate and how often we want to do it. With the Python SDK, you have three main ways to
export the application traces:

• The console exporter: This is easy to set up and is useful for development and debugging

• An OTLP/gRPC exporter: In other words, you use the agnostic protocol developed by the
OpenTelemetry community to communicate to an OTLP-compatible endpoint (for example,
the OpenTelemetry Collector), and use gRPC as the transport medium

• An OTLP/HTTP exporter: In other words, you use the same agnostic protocol developed by
the OpenTelemetry community, but now use HTTP as the transport medium

In our Python application, we use OTLP/gRPC, as it is faster and recommended for production
environments. We also accumulate and send trace information in batches by using the
BatchSpanProcessor class to increase the export throughput. You can see how we configured it
by checking the file at https://github.com/PacktPublishing/An-Insider-s-Guide-
to-Observability-on-AWS/blob/main/chapter-09/manual_instrumentation/
docker/application.py. The following is the most relevant code snippet:

// Removed code for clarityotlp_exporter = OTLPSpanExporter()
span_processor = BatchSpanProcessor(otlp_exporter)
trace.set_tracer_provider(
 TracerProvider(
 active_span_processor=span_processor,
 id_generator=AwsXRayIdGenerator(),
)
)

With this configuration in place, and as the application load balancer adds the X-Amzn-Trace-Id
trace ID header to all requests, we can access the trace information programmatically, as in the
following code snippet:

Test HTTP instrumentation
@app.route("/outgoing-http-call")
def call_http():

https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/tree/main/chapter-09/manual_instrumentation
https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/tree/main/chapter-09/manual_instrumentation
https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/tree/main/chapter-09/manual_instrumentation
https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/blob/main/chapter-09/manual_instrumentation/docker/application.py
https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/blob/main/chapter-09/manual_instrumentation/docker/application.py
https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/blob/main/chapter-09/manual_instrumentation/docker/application.py

Instrumenting a container application running on ECS using OpenTelemetry 289

 requests.get("https://aws.amazon.com/")

 return app.make_response(
 convert_otel_trace_id_to_xray(
 trace.get_current_span().get_span_context().trace_id
)
)

In this section, we saw how we can use the OpenTelemetry API in our small sample application to
collect traces. Next, let’s check how we can do the same, but now for metrics.

The OpenTelemetry Python SDK for metrics

Similar to what we did in the Python application using the SDK for traces, to configure exporting
application metrics, we need to configure how and how often we want to do so. In our sample
application, we use the OTLP/gRPC exporter, and we configure a periodic batch processor, which
exports the metrics at a regular cadence. See the following code snippet:

from opentelemetry import metrics
from opentelemetry.exporter.otlp.proto.grpc.metric_exporter import
OTLPMetricExporter
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import
PeriodicExportingMetricReader

reader = PeriodicExportingMetricReader(
exporter=OTLPMetricExporter(),
export_interval_millis=5000
)

metrics.set_meter_provider(MeterProvider(metric_readers=[reader]))

With that configuration in place, we can create application metrics as follows:

apiBytesSentMetricName = "apiBytesSent"
latencyMetricName = "latency"

apiBytesSentCounter = meter.create_counter(
apiBytesSentMetricName, unit="1", description="API request load sent
in bytes"
)

apiLatencyRecorder = meter.create_histogram(
latencyMetricName, unit="ms", description="API latency time"
)

Collecting Metrics and Traces Using OpenTelemetry290

And then we can use the application metrics as shown in the following code:

@app.after_request
def after_request_func(response):
 if request.path == "/outgoing-http-call":
 apiBytesSentCounter.add(
 response.calculate_content_length() + mimicPayloadSize(),
 {
 DIMENSION_API_NAME: request.path,
 DIMENSION_STATUS_CODE: response.status_code,
 },
)

 apiLatencyRecorder.record(
 int(time.time() * 1_000) - session[REQUEST_START_TIME],
 {
 DIMENSION_API_NAME: request.path,
 DIMENSION_STATUS_CODE: response.status_code,
 },
)
 return response

In this section, we saw how to use the OpenTelemetry APIs to collect metrics from our sample
application. Now that we have both traces and metrics, we need to preprocess them and send them
to our backend of choice. We will see how to do so in the next section.

Deploying the OpenTelemetry Collector

We covered the two OpenTelemetry Collector deployment modes earlier, deploying as an agent and
as a gateway. In our sample application, we decided to use the first one, to deploy it as an agent, which
was the one that we implemented as a sidecar in Kubernetes. This is the simpler way to deploy for
smaller cases – but remember that you can decide to deploy it just once in a group of microservices
controlled by the same team, once per Availability Zone, or once per cluster, whatever makes the most
sense for your architecture, reducing the total overhead.

To see how to set up a sidecar using Amazon ECS, you can check the CloudFormation template:
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/
chapter-09/aws-ecs-otel-flask-application.yaml. We have highlighted the
relevant template snippet here.

In the container definition, we first define the application container:

 ContainerDefinitions:
 - Name: !Ref WorkloadName
 Image: !Ref ContainerImage

https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-09/aws-ecs-otel-flask-application.yaml
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-09/aws-ecs-otel-flask-application.yaml

Instrumenting a container application running on ECS using OpenTelemetry 291

 Cpu: 256
 Memory: 512
 LogConfiguration:
 LogDriver: awslogs
 Options:
 awslogs-region: !Ref AWS::Region
 awslogs-group: !Ref LogGroup
 awslogs-stream-prefix: ecs
 PortMappings:
 - ContainerPort: !Ref ContainerPort

And then we define a second container as a sidecar using the OpenTelemetry Collector image:

 - Name: aws-collector
 Image: 'amazon/aws-otel-collector:latest'
 Command:
 - '--config=/etc/ecs/container-insights/otel-task-metrics-
config.yaml'
 LogConfiguration:
 LogDriver: awslogs
 Options:
 awslogs-create-group: 'True'
 awslogs-group: /ecs/ecs-aws-otel-sidecar-collector
 awslogs-region: !Ref 'AWS::Region'
 awslogs-stream-prefix: ecs

You can see the collector being pulled from the public Amazon ECR repository, amazon/aws-otel-
collector. Setting the right configuration is as important as downloading the right collector binary.
AWS Distro for OpenTelemetry already comes with some default configurations backed in the Docker
image, and you can see we select one to use in the Command directive, /etc/ecs/container-
insights/otel-task-metrics-config.yaml. In the Docker image repository (https://
github.com/aws-observability/aws-otel-collector/tree/main/config),
you can see some of the configurations available. You usually select one based on the features you
want to activate.

Checking the resulting application telemetry

After instrumenting our sample application to collect both traces and metrics using the OpenTelemetry
API, and configuring the OpenTelemetry Collector to ingest the data and translate it into our AWS
backend’s format, our work is done. Time to check the results in Amazon CloudWatch Logs, Amazon
CloudWatch metrics, and AWS X-Ray. Let’s harvest the results of our hard work in the next sections.

https://github.com/aws-observability/aws-otel-collector/tree/main/config
https://github.com/aws-observability/aws-otel-collector/tree/main/config

Collecting Metrics and Traces Using OpenTelemetry292

Seeing container metrics in CloudWatch

Let’s go to the CloudWatch console and select Log groups from the left-hand navigation. Search for
our log group name – /aws/ecs/containerinsights/{ClusterName}/performance
– and then click the log stream name, which is task_id. These logs use the CloudWatch Embedded
Metric Format (EMF) (visit this link for more details: https://docs.aws.amazon.com/
AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_
Format.html) to generate CloudWatch metrics. The following is an example of received logs on
the CloudWatch console.

Figure 9.11 – The CloudWatch console with the Amazon ECS container metrics

Thanks to OpenTelemetry, we have metric data points converted into the Amazon CloudWatch EMF
format, providing container metrics. Next, let’s check application-specific metrics.

Seeing CloudWatch metrics

In the CloudWatch console, from the left-hand panel, select Metrics. You should be able to see the ECS/
ContainerInsights namespace. These are metrics collected from the cluster and container automatically,
ready to be used on your own dashboard. Click on it and you will see the expected metrics.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format.html

Instrumenting a container application running on ECS using OpenTelemetry 293

Figure 9.12 – CloudWatch Container Insights metrics

If you go to the CloudWatch console and select Log groups from the left-hand navigation and search
for a log group named /aws/ecs/application/metrics, you will find the application-specific
metrics we programmatically added before, such as the number of bytes sent when requesting the /
outgoing-http-call path. See the following figure:

Figure 9.13 – CloudWatch application metrics

As we can see, we have the application-specific metrics published to Amazon CloudWatch using the
Amazon CloudWatch EMF format. The last piece comes next: the application traces.

Collecting Metrics and Traces Using OpenTelemetry294

Seeing traces in AWS X-Ray

You can go to the AWS X-Ray console (https://console.aws.amazon.com/xray/home)
and click Traces in the left-hand navigation. You can see the traces that were collected from the
application and sent to AWS X-Ray in the following figure:

Figure 9.14 – List of application trace IDs

You can click on a trace ID to see the trace map as you can see in the following figure:

Figure 9.15 – Trace map from a single trace ID

https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

Instrumenting a container application running on ECS using OpenTelemetry 295

You can click on the Raw data tab to see the same information in JSON format, as you can see in the
following figure:

Figure 9.16 – Trace raw data

In this subsection, we saw the resulting metrics and traces of our sample application on Amazon
CloudWatch after instrumenting it using OpenTelemetry. The last missing piece is logs, which we
will see in the next subsection.

Seeing application logs in CloudWatch

You can go to the AWS CloudWatch console, and in the left-hand navigation, select the /ecs/aws-otel-
flask-app-test-aws-otel-flask-app log group and then the latest log stream. You will see application
logs collected from the application container. See the following figure:

Collecting Metrics and Traces Using OpenTelemetry296

Figure 9.17 – Application log data

OpenTelemetry captures the application logs and sends them to Amazon CloudWatch Logs for storage.
You can see the log history of your infrastructure and your application in a single pane of glass.

In this section, we saw a sample application instrumented using OpenTelemetry, a sample deployment
of this application, and the OpenTelemetry Collector as a sidecar. After generating a load, we could
see application metrics, traces, and logs on the AWS backend services, demonstrating how we can
use the standard vendor-agnostic OpenTelemetry libraries and tools to export observability signals
to any backend, with just a change to the OpenTelemetry configuration.

Summary
In this chapter, you saw how OpenTelemetry approaches the problem of the standardization of SDKs,
protocols, and tools to collect and export application telemetry, and how its implementation can make
your application vendor-agnostic. We also saw how to implement it in a sample application, from the
application SDK to the OpenTelemetry Collector deployment and backend.

With this information, you can now make a judgment call on when to apply OpenTelemetry, its benefits
and drawbacks, and the value it brings to your architecture and observability objectives.

In the next chapter, we will continue our tour of the open source observability tools, talking about
two important projects: Prometheus and Grafana.

10
Deploying and Configuring

an Amazon Managed Service
for Prometheus

Prometheus is a metrics-based monitoring and alerting system initially built at SoundCloud. It is
now an open source project, and has been part of the Cloud Native Compute Foundation since 2016.
It focuses on doing a few things well: it collects and stores metrics as time-series data, and it has a
powerful, highly dimensional data model and query language.

In this chapter, we will discuss Amazon Managed Service for Prometheus (AMP) and Amazon
Managed Grafana (AMG). AMP is a Prometheus-compatible monitoring service, and you can
use the same APIs and query language you are used to for monitoring your workloads. It is highly
available, using multiple availability zones for deployment. And it automatically scales the ingestion,
storage, and querying of operational metrics as your requirements go up and down. AMG is an open
source visualization and analytics tool, often paired with Prometheus, to generate outstanding charts
and dashboards.

In this chapter, we will see the following:

• Prometheus and Grafana overview

• Setting up Amazon Managed Service for Prometheus and Grafana

• Ingesting telemetry data

• Querying Prometheus metrics via APIs and Grafana

• Implementing container monitoring

By the end of this chapter, you will better understand what Prometheus and Grafana are, the value
added by Amazon Managed Service for Prometheus and Grafana, and how to ingest, process, and
query telemetry data using them in a real application. Let’s get started!

Deploying and Configuring an Amazon Managed Service for Prometheus298

Technical requirements
This chapter does not require programming skills, but a knowledge of using the terminal and
understanding AWS CloudFormation templates will help you understand the code we use to deploy
the infrastructure and the sample application.

Prometheus and Grafana overview
As I said in the introduction, Prometheus focuses on doing a few things well, and it doesn’t provide
rich charts or dashboards. Instead, it concentrates on collecting and storing metrics as time-series
data and has a powerful, highly dimensional data model and query language.

Prometheus defines a simple text format that allows any application to expose metrics. Prometheus
collects metrics from targets by scraping metrics from HTTP endpoints following the Prometheus-
specified format. Since Prometheus exposes data in the same manner about itself and about the
endpoints it consumes, it can also scrape and monitor its health or create a hierarchy of Prometheus
systems to reduce the load on a single node and provide aggregated data. You can see an example of
a Prometheus-compatible HTTP endpoint here:

HELP http_requests A counter for the number of HTTP requests.
TYPE http_requests counter
http_requests{method="put",code="200"} 329
http_requests_total{method="delete",code="400"} 5

In the Prometheus data model, time series are identified using a combination of metric names and
key-value pairs known as labels. A metric name is a string that identifies the general type of data being
collected, such as http_requests or cpu_usage. Labels are key-value pairs that provide more
specific information about the data being collected, such as the endpoint that generated the request
or the name of the process using the CPU.

Prometheus uses a combination of metric names and labels to create unique identifiers for time series.
For example, the time series for HTTP requests to a particular endpoint might be identified by the
metric name (http_requests) and the method (GET, POST, PUT, or DELETE) and endpoint
(e.g., /api/users) labels.

When Prometheus scrapes metrics from a target, it organizes the data into time series based on their
identifiers. Each time series represents a stream of data points, each with a timestamp and a numeric
value. These data points represent the value of the metric at a particular point in time, and they can
be used to visualize the performance of a system or to alert on anomalies.

Prometheus and Grafana overview 299

There are Prometheus client libraries in all popular languages and runtimes to instrument code,
including the following:

• C#/.Net

• Erlang

• Golang

• Haskell

• Java/JVM

• Node.js

• Python

• Ruby

• Rust

If third-party software exposes metrics in a non-Prometheus format, you can use exporters. Exporters
act as bridges between these systems and Prometheus, translating their metrics into a format that
Prometheus can understand and scrape.

Prometheus exporters work by exposing an HTTP endpoint that serves metrics in a format that
Prometheus can understand. They collect data from a variety of sources, such as logs, system statistics,
and application performance data, and they convert that data into a format that can be scraped
by Prometheus.

There are many different types of Prometheus exporters available, each designed to collect metrics
from specific systems or applications. Some popular examples of exporters include the following:

• Node Exporter: Collects metrics on system statistics such as CPU usage, memory usage, and
disk I/O

• Blackbox Exporter: Collects metrics on network performance by running tests such as HTTP
requests and DNS lookups

• Redis Exporter: Collects metrics on Redis, an open source, in-memory data structure store,
including the number of connections, memory usage, and cache hits

• Apache Exporter: Collects metrics on the performance of the Apache web server, including
request latency and status codes

Prometheus exporters can be run as standalone processes, or they can be run as sidecar containers
alongside the systems they’re monitoring. They provide a powerful way to collect metrics from a wide
variety of systems and services, enabling users to gain deep insight into the performance and health
of their entire infrastructure.

Deploying and Configuring an Amazon Managed Service for Prometheus300

Prometheus is designed to work seamlessly with dynamic sources, such as those provided by container
orchestration systems such as Kubernetes. To automatically discover and scrape new targets in a
dynamic environment, Prometheus relies on a feature called service discovery.

Service discovery in Prometheus involves periodically querying a data source, such as a Kubernetes
API server, to discover new targets that match a set of predefined criteria. These criteria can include
things such as labels, annotations, and port numbers. Once new targets are discovered, Prometheus
adds them to its list of targets and begins scraping them for metrics.

Prometheus supports a variety of dynamic service discovery mechanisms, including the following:

• Kubernetes service discovery: Prometheus can discover targets in a Kubernetes cluster using the
Kubernetes API server. This can be done using Kubernetes’ native service discovery mechanism,
or by using the Prometheus-specific Kubernetes service discovery mechanism, which allows
for more fine-grained control over target selection.

• Consul service discovery: Prometheus can discover targets in a Consul service mesh using
the Consul API.

• DNS service discovery: Prometheus can discover targets by performing DNS lookups for
targets that match a specified naming convention.

In addition to these built-in mechanisms, Prometheus also supports custom service discovery
mechanisms through its pluggable service discovery API. This allows users to write their own service
discovery mechanisms to integrate with any data source that can be queried via HTTP or DNS.

Overall, Prometheus provides a powerful set of features for dynamically discovering and scraping
new targets in dynamic environments, making it an ideal monitoring solution for modern
cloud-native infrastructure.

Prometheus and Grafana overview 301

The following diagram is a typical Prometheus deployment architecture with some of the optional services:

Figure 10.1 – Prometheus typical deployment

In the architectural diagram, we can see the following components:

• Pushgateway: This allows jobs and short-lived processes to send telemetry data to Prometheus.
As the Prometheus server scrapes the HTTP endpoint at regular intervals, a job or a short-lived
process is over before Prometheus can collect any information. With Pushgateway, jobs and
short-lived processes push this information to it before the process is over, and the Pushgateway
stores it until the next Prometheus scraping cycle.

• Service discovery: As mentioned, this is responsible for collecting information from dynamic
environments such as the Kubernetes cluster, informing the Prometheus server of any application
node that came online or was shut down to add/remove the new node from the scraping process.

• Prometheus server: This is the core Prometheus module, and is responsible for retrieving
metrics using a pull process, storing them in an internal time-series database, and serving any
query received by the Prometheus API.

Deploying and Configuring an Amazon Managed Service for Prometheus302

• Alertmanager: This is responsible for handling the alerts sent by the Prometheus server, routing,
deduplicating, and grouping the alerts, and sending them to one of the provided targets.

• Prometheus web UI: This provides a user interface that allows manual configuration of new
endpoints to scrape, and lets you create simple dashboards and alerts using the PromQL.

Prometheus provides some basic dashboard features, but far from what Grafana provides.

In this section, we saw a brief overview of both Prometheus and Grafana. Next, let’s see how to use
Amazon Managed Service for Prometheus and Grafana to provision both with minimal overhead.

Setting up Amazon Managed Service for Prometheus and
Grafana
The following figure illustrates the overall architecture of AMP and AMG and their interaction with
other components:

Figure 10.2 – Overall architecture of AMP and AMG solutions and components

Let’s look at how to set up some of those components on AWS.

Setting up Amazon Managed Service for Prometheus and Grafana 303

Setting up a Cloud9 development workspace

To have a standard integrated development environment (IDE) with the required set of tools, let’s
create an AWS Cloud9 environment:

1. Please click on the following link to start the deployment process:

https://console.aws.amazon.com/cloudformation/home#/
stacks/quickcreate?templateURL=https://insiders-guide-
observability-on-aws-book.s3.amazonaws.com/common/cloud9.
yaml&stackName=InsidersGuideCloud9Chapter10

2. After clicking on the link, you will be redirected to the AWS CloudFormation stack creation
form. You can keep the default values and click on the checkbox asking for extra capabilities.
Click on Create Stack, and in a few minutes, you will find the environment URL in the
CloudFormation Outputs tab, as in the following figure:

Figure 10.3 – CloudFormation Outputs tab, showing the AWS Cloud9 URL

https://console.aws.amazon.com/cloudformation/home#/stacks/quickcreate?templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/common/cloud9.yaml&stackName=InsidersGuideCloud9Chapter10
https://console.aws.amazon.com/cloudformation/home#/stacks/quickcreate?templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/common/cloud9.yaml&stackName=InsidersGuideCloud9Chapter10
https://console.aws.amazon.com/cloudformation/home#/stacks/quickcreate?templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/common/cloud9.yaml&stackName=InsidersGuideCloud9Chapter10
https://console.aws.amazon.com/cloudformation/home#/stacks/quickcreate?templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/common/cloud9.yaml&stackName=InsidersGuideCloud9Chapter10

Deploying and Configuring an Amazon Managed Service for Prometheus304

3. Click on the URL; this will take you to a newly configured environment, as in the following figure:

Figure 10.4 – AWS Cloud9 welcome page

With our web IDE environment in place, let’s configure Amazon Managed Service for Prometheus.

Setting up an AMP workspace

Let’s get started with setting up an AMP workspace:

1. First, type Prometheus into the Services search box to create a new AMP workspace. The
Amazon Prometheus service is the first one on the list. See the following figure:

Setting up Amazon Managed Service for Prometheus and Grafana 305

Figure 10.5 – Searching for Amazon Managed Service for Prometheus

2. After clicking on the Amazon Prometheus service in the search results box, you will be redirected
to the Amazon Prometheus main page. Once on the main page, click on the Create button, as
in the following figure:

Figure 10.6 – Main Amazon Managed Service for Prometheus page

Deploying and Configuring an Amazon Managed Service for Prometheus306

3. The page will redirect you to the creation form. The only information mandatory is the workspace
name. See the following figure:

Figure 10.7 – AMP creation form

4. Once you have entered a workspace name and clicked on the Create workspace button, you
will see the workspace details page. Wait a few minutes until the workspace status is Active.
You will see a screen like the following:

Setting up Amazon Managed Service for Prometheus and Grafana 307

Figure 10.8 – AMP workspace details page

5. Alternatively, if you prefer to run commands on the command line, you can use the following
command to create a new Amazon Prometheus workspace:

aws amp create-workspace --alias insidersguide --region
$AWS_REGION

Setting up an AMG dashboard

Now let’s configure a new Grafana workspace:

1. First, let’s search for the service. In the AWS Console search box, type Grafana, and the
Amazon Managed Grafana (Amazon Grafana) service will appear as the first result. Check
the following figure:

Deploying and Configuring an Amazon Managed Service for Prometheus308

Figure 10.9 – Searching for Amazon Managed Grafana

2. After clicking on the service link on the search results page, you will see the main service page,
as in the following figure. Click on the Create workspace button.

Figure 10.10 – Amazon Managed Grafana main page

Setting up Amazon Managed Service for Prometheus and Grafana 309

This will redirect you to the AMG creation wizard.

3. In Step 1 (Specify workspace details), type in a workspace name, as in the following figure,
and click on Next:

Figure 10.11 – AMG wizard, Step 1 – Specify workspace details

4. In Step 2 (Configure settings), you must select the form of authentication. You have two
options: AWS IAM Identity Center (previously AWS SSO) and Security Assertion Markup
Language (SAML). We use SAML when federating authentication to a third-party identity
provider, which is outside the scope of this book. Let’s use AWS IAM Identity Center for now,
as it is easier to manage. Also, set Permission type to Service managed and click on Next.
See the following figure:

Deploying and Configuring an Amazon Managed Service for Prometheus310

Figure 10.12 – AMG wizard, Step 2 – Authentication access

5. In Step 3 (Service managed permission settings) of the AMG creation wizard, you select
which accounts should access Grafana, and here we will choose the current account to keep
it simple, and the data sources. Under Data sources, remember to select Amazon Managed
Service for Prometheus to integrate the Prometheus workspace we configured in the previous
section. Click on Next. Check the following figure:

Figure 10.13 – AMG wizard, Step 3 – Service managed permissions settings

Setting up Amazon Managed Service for Prometheus and Grafana 311

6. In Step 4 (Review and create), you can review and confirm your selections. Review them and
click on Create workspace, as in the following figure:

Figure 10.14 – AMG wizard, Step 4 – Review and create

The provisioning of a new workspace may take a few minutes. Wait until the status is Active.
The service will warn you that you must assign users or groups before they can access the
Grafana console, and that’s what we will do next. Check the following figure:

Figure 10.15 – AMG workspace details; there’s a warning in a blue box at the top

Deploying and Configuring an Amazon Managed Service for Prometheus312

7. The last step is to assign a user(s) or group(s) to access the Grafana graphical user interface.
You can learn how to create new users or groups in the AWS documentation here: https://
docs.aws.amazon.com/singlesignon/latest/userguide/addusers.html.

8. If you, like me, already have one, you can click on the Assign new user or group button in the
blue box at the top or, in the Authentication tab, click on the checkbox next to the user’s name
and then click on the Assign users and groups button. Check the following figure:

Figure 10.16 – AMG workspace, Assign user page

9. After adding a new user or group, you can change the permissions by clicking on the user’s
checkbox and then on the Action button. Let’s promote our newly assigned user to admin to
give them enough powers to execute the actions described in the rest of this chapter. See the
following figure:

https://docs.aws.amazon.com/singlesignon/latest/userguide/addusers.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addusers.html

Setting up Amazon Managed Service for Prometheus and Grafana 313

Figure 10.17 – AMG users and groups, changing the user permissions

After accessing your AWS SSO page and selecting the Grafana workspace, you should see the
dashboard as in the following figure:

Figure 10.18 – Grafana dashboard

Deploying and Configuring an Amazon Managed Service for Prometheus314

With the work done so far, we have both Amazon Managed Service for Prometheus and Grafana
provisioned, and ready to be used. In the next subsection, we will create an Amazon EKS cluster as a
sample workload to feed telemetry to both.

Setting up an Amazon EKS cluster and tools

We need a running environment to ingest data in our newly created AMP. We will configure and use a
sandbox environment in the rest of this chapter. On the Cloud9 environment, run the following command:

curl -sSL https://insiders-guide-observability-on-aws-book.
s3.amazonaws.com/common/create-eks-ec2-eksctl.sh | bash

The preceding command will start the creation of a new EKS cluster. You can see the cluster status in
the command output. The process of creating a new cluster may take a few minutes. Wait until the
prompt comes back and you can type new commands. See the following figure:

Figure 10.19 – Amazon EKS cluster creation output

Ingesting telemetry data 315

After creating the cluster, let’s check the communication between the Cloud9 environment and the
new cluster. Run the following command:

kubectl get svc

You should see an output such as this:

ec2-user:~/environment $ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.100.0.1 <none> 443/TCP 7m52s

Now, let’s set up the service accounts in our Kubernetes cluster. Run the following command:

curl -sSL https://insiders-guide-observability-on-aws-book.
s3.amazonaws.com/chapter-10/setup-IAM-roles-service-accounts.sh | bash

The preceding command will execute the following actions:

• Generate an IAM role equipped with an IAM policy that grants authorization for remote
writing to an AMP workspace

• Construct a Kubernetes service account and add annotations assigning it the IAM role

• Form a trust relationship linking the IAM role to the OIDC provider housed within your
Amazon EKS cluster

In this section, we set up both Amazon Managed Service for Prometheus and Grafana, and an
Amazon EKS cluster to be our source of telemetry data. In the next section, we will see the necessary
configuration steps to send telemetry data to them.

Ingesting telemetry data
Now that we have the environment set up, it’s time to set up the data ingestion software and permissions.
We will see two ways to ingest data into AMP:

• Ingestion from a new Prometheus server

• Ingestion using AWS Distro for OpenTelemetry

Deploying and Configuring an Amazon Managed Service for Prometheus316

Ingestion from a new Prometheus server

Let’s configure the data ingestion using a Prometheus server deployed in our EKS cluster:

1. First, let’s create a Prometheus namespace with the following command:

kubectl create namespace prometheus

2. Now, let’s execute the following command to install Prometheus:

curl -sSL https://insiders-guide-observability-on-aws-book.
s3.amazonaws.com/chapter-10/install-prometheus-eks.sh | bash

3. Now, let’s go back and configure the AMP data source on Grafana. Access the Grafana dashboard
and click on the AWS icon on the menu at the left. Select the AWS services option. Check the
following figure:

Figure 10.20 – Grafana dashboard, selecting the AWS services option on the left menu

Ingesting telemetry data 317

4. On the next screen, select the Amazon Managed Service for Prometheus option. See the
following figure:

Figure 10.21 – Grafana dashboard, selecting Amazon Managed Service for Prometheus

5. On the next screen, select the region where you have deployed AMP. The instance will appear
on the list. Click on the checkbox and click on the Add 1 data source button to add the data
source. See the following figure:

Deploying and Configuring an Amazon Managed Service for Prometheus318

Figure 10.22 – Grafana dashboard, selecting the AMP instance as the data source

6. Let’s now import a public Grafana dashboard with metrics from Kubernetes environments.
Hover your cursor over the plus (+) sign in the left navigation bar and select Import:

Figure 10.23 – Grafana dashboard, selecting the Import option on the left menu

Ingesting telemetry data 319

7. On the Import screen, type 3119 into the Import via grafana.com textbox and click Load:

Figure 10.24 – Grafana dashboard, loading public dashboard ID 3119

8. Select the AMP data source in the drop-down box at the bottom and click on Import:

Figure 10.25 – Grafana dashboard, Import dashboard using data from AMP

Deploying and Configuring an Amazon Managed Service for Prometheus320

9. After several minutes, you can find your dashboard using the Dashboard menu on the navigation
bar. After selecting the correct data source at the top, you will see the cluster metrics in real
time. See the following figures:

Figure 10.26 – Grafana dashboard, selecting the AMP data source

Figure 10.27 – Grafana dashboard, showing cluster metrics

Ingesting telemetry data 321

Ingestion using AWS Distro for OpenTelemetry (ADOT)

Let’s install a sample application to test the integration of ADOT with AMP:

1. To deploy the application pods in the existing Amazon EKS cluster, run the following command:

curl -sSL https://insiders-guide-observability-on-aws-
book.s3.amazonaws.com/chapter-10/install-sample-app.sh |
bash

2. You can check whether the application installation went well by checking the status of pods in
the application namespace:

$ kubectl get pods -n aoc-prometheus-pipeline-demo
NAME READY
STATUS RESTARTS AGE
prometheus-sample-app-77b4c985db-fg6zv 1/1
Running 0 11m

3. Now, let’s install the AOT collector. The AOT collector will collect metrics for the application
and forward them to AMP. Execute the following command:

curl -sSL https://insiders-guide-observability-on-aws-
book.s3.amazonaws.com/chapter-10/install-aot-collector.sh
| bash

4. You can check the status of all pods to certify the collector installation using the following command:

$ kubectl get pods -n adot-col
NAME READY STATUS RESTARTS AGE
adot-collector-jx256 1/1 Running 0 26s
adot-collector-qh9rw 1/1 Running 0 26s
adot-collector-zc5mj 1/1 Running 0 26s

5. Let’s check whether we are sending metrics to the AOT collector. Let’s check the logs of one
collector pod, as in the following example:

$ kubectl get pods -A
$ kubectl logs -n adot-col [name_of_your_adot_collector_
pod]

Deploying and Configuring an Amazon Managed Service for Prometheus322

You should see an output, as in the following figure:

Figure 10.28 – ADOT collector output after receiving application metrics

In this section, we saw how to configure both a cluster and a sample application to send telemetry data
to Amazon Managed Service for Prometheus and Grafana. In the next section, we will see different
ways to query the stored information.

Querying Prometheus metrics via API and Grafana
You can use the Prometheus-compatible API and Grafana to query the metrics ingested to Prometheus.
Let’s look at how to do it in the following sections.

Querying Prometheus metrics using Prometheus APIs

To query AMP using the Prometheus-compatible APIs, you need to sign your requests using the AWS
Signature Version 4 process (see https://docs.aws.amazon.com/general/latest/
gr/signature-version-4.html). You can accomplish this requirement in many different
ways, and between them, you can use a proxy such as the AWS Sig4 Proxy (see https://github.
com/awslabs/aws-sigv4-proxy) or use the awscurl tool (see https://github.com/
okigan/awscurl). In this section, we will use the awscurl tool.

Querying Prometheus metrics via API and Grafana 323

So, let’s get started with querying AMP using the Prometheus-compatible APIs:

1. On your Cloud9 shell, execute the following command to install the awscurl tool:

$ pip3 install awscurl

2. To execute requests, you need the Prometheus query endpoint. You can find it on the Amazon
Managed Service for Prometheus console page. Go to the console using https://console.
aws.amazon.com/prometheus/home, click on the workspace we created in this chapter,
and copy the information you find under the Endpoint - query URL section somewhere.
Check the following figure:

Figure 10.29 – Prometheus workspace and the endpoint URLs

3. With this information, you can set an AMP_ENDPOINT environment variable, which you can
use in subsequent commands, using the following command:

export AMP_ENDPOINT=https://aps-workspaces.<Region>.
amazonaws.com/workspaces/<Workspace-id>/api/v1/query

4. Remember to replace the Region and Workspace-id placeholders. You can see the
command I used here:

export AMP_ENDPOINT=https://aps-workspaces.eu-central-1.
amazonaws.com/workspaces/ws-f133f57d-2c2c-46e3-be7d-
c72e9c56901b/api/v1/query

Deploying and Configuring an Amazon Managed Service for Prometheus324

5. With that variable in place, we can execute commands against the Prometheus API, as in the
following example:

$ awscurl -X POST --region eu-central-1 --service aps
"$AMP_ENDPOINT?query=up"
{"status":"success","data":{"resultType":"vector",
"result":[]}}

We saw how to query the Amazon Managed Service for Prometheus using a command-line tool and
the public API. Next, let’s see how to use a graphical user interface, provided by the Amazon Managed
Service for Grafana.

Querying Prometheus metrics using Amazon Managed Grafana

This section will continue from where we left off in the Ingesting telemetry data section. As soon as
AMP receives telemetry data, we have everything necessary to explore metrics exposed by our systems
and the powerful Prometheus Query Language (PromQL). Many users getting to know Prometheus
need help to learn PromQL, and indeed, it can be a challenge to learn a new language to plot and
aggregate your metrics as you see fit. But the Grafana team has implemented a handy query builder,
which supports you in writing the correct query with a few clicks.

Let’s look at how to do it:

1. First, open the AMG console we deployed a few sections ago (you can find your Grafana URL
at https://console.aws.amazon.com/grafana/home). On the left navigation
menu, select the Explore option. See the following figure:

Figure 10.30 – AMG console, left menu, Explore option

Querying Prometheus metrics via API and Grafana 325

2. The browser will redirect you to the Explorer window, where you can type queries against
your data sources. But first, you need to select the correct data source, which we created in
the Ingesting telemetry data section. In the drop-down menu at the top, select the data source
named Prometheus ws-*, as shown in the following figure:

Figure 10.31 – AMG console, Explore window, selecting the Prometheus data source

3. We are ready to build our first query. Click on the Metrics browser link, and you will see all
the options to start building your query. See the following figure:

Deploying and Configuring an Amazon Managed Service for Prometheus326

Figure 10.32 – AMG console, Explore window, metrics browser open

4. You can follow the steps suggested in this window, building your query in this order:

I. Select a metric.

II. Select a label to search in.

III. Select (potentially) multiple values for your label.

5. Let’s build our first query as an example. You can type or scroll to select the container_
memory_usage_bytes metric, the container label, and the prometheus-server
label value. Your screen should look like the following:

Querying Prometheus metrics via API and Grafana 327

Figure 10.33 – AMG console, Explore window, building a query

With that, we are ready to plot the graph. Click on the Use query button at the bottom left to see a
graph as in the following figure:

Figure 10.34 – AMG console, Explore window, PromQL built, and a graph plotted

Deploying and Configuring an Amazon Managed Service for Prometheus328

Congratulations, you have queried the Prometheus API visually using Grafana.

In this section, we saw how to query the telemetry data stored in Amazon Managed Service for
Prometheus using the API and the Amazon Managed Service for Grafana graphical user interface. In
the next section, let’s see how the community uses both to implement container monitoring.

Implementing container monitoring
Once your metrics are published to Prometheus, implementing your monitoring strategy involves
combining the right charts into relevant dashboards. This task is very business- and application-
specific and, as such, hard it is hard to give prescriptive guidance on how to do it. But one Grafana
feature can help you to start from a good place and customize from there as you see fit: the capability
to export and import dashboards.

You can easily export your dashboards and make them available to other teams in your organization
or make them publicly available to the community. There are plenty of dashboards available for you
to use at https://grafana.com/grafana/dashboards/URL. We will check some of the
most useful if you plan to monitor your containerized application.

First, to import a new dashboard, on the AMG console, you need to navigate to the Create | Import
menu on the left-hand side, as you can see in the following figure:

Figure 10.35 – AMG console, Create menu, Import

Implementing container monitoring 329

You can use the Grafana dashboard URL or ID to import a new dashboard. For our example, we will
use only the ID, as we can see in the following figure:

Figure 10.36 – AMG console, import dashboard ID 3119

Let’s see some of the most useful (according to your author) community-provided dashboards available:

• ID 3119, cluster monitoring (see https://grafana.com/grafana/dashboards/3119-
kubernetes-cluster-monitoring-via-prometheus/): With this dashboard,
you can see some cluster-wide metrics such as CPU, memory, filesystem, and network usage,
helping you identify more direct bottlenecks with which your application may suffer. See a
sample dashboard here:

Deploying and Configuring an Amazon Managed Service for Prometheus330

Figure 10.37 – Community dashboard 3119

• ID 741, deployment metrics (see https://grafana.com/grafana/dashboards/741-
deployment-metrics/): This shows the usage of CPU/memory per deployment and the
number of replicas running versus the maximum allowed. This level helps find issues within
a single application. See the following figure:

Figure 10.38 – Community dashboard 741

Implementing container monitoring 331

• ID 747, pod metrics (see https://grafana.com/grafana/dashboards/747-
pod-metrics/): This shows the CPU, memory, filesystem usage, and other statistics, now
per pod. Check the following figure:

Figure 10.39 – Community dashboard 747

• ID 1471, application metrics (see https://grafana.com/grafana/
dashboards/1471-kubernetes-apps/): This shows a rich collection of application-
level metrics, such as the request rate, error rate, response times, pod count, CPU, and memory
usage. See the following figure:

Deploying and Configuring an Amazon Managed Service for Prometheus332

Figure 10.40 – Community dashboard 1471

As you can see, by using the dashboards described in this section, you have a wealth of data in an
easy-to-use view at different levels to help you understand your infrastructure and application behavior
and trends over time. And again, these are some generic dashboards. With time, you and your team
will and should figure out more relevant metrics for your particular use case and add to/create new
dashboards with the appropriate metrics.

Summary
In this chapter, you saw how to set up both Amazon Managed Services for Prometheus and Amazon
Managed Grafana, how to set up the necessary components to monitor containerized workloads, how
to reuse the community-provided dashboards, and how to create your own dashboards.

With the skills learned in this chapter, you can build your observability stack on AWS using open
source tools and protocols, if your team already uses them on-premises and you want to leverage the
team knowledge or if your organization has an open source first strategy toward aimed at telemetry.

In the next chapter, we will continue navigating the available AWS open source solutions to support
your team with your observability needs.

11
 Deploying the Elasticsearch,

Logstash, and Kibana
Stack Using Amazon
OpenSearch Service

In the previous chapter, we understood how to gather metrics and visualize them using Prometheus
and Grafana. Let’s look at Amazon OpenSearch Service in this chapter. The ELK stack comprises
Elasticsearch, Logstash, and Kibana (ELK). You might have used it on-premises for popular use
cases such as log aggregation, observability, and SIEM and want to deploy a managed version on AWS.
AWS used to offer Elasticsearch as a managed service on AWS until 2021.

OpenSearch is the successor of Elasticsearch and is a community-driven open source search and
analytics suite derived from Apache 2.0-licensed Elasticsearch 7.10.2 and Kibana 7.10.2. It is a distributed
search engine powered by Apache Lucene under the hood and provides data visualization and a user
interface called OpenSearch Dashboards. OpenSearch includes a series of add-on tools and plugins.
It includes all the advanced functionality ported over from Open Distro from Elasticsearch such as
security capabilities, machine learning, alerting functionalities, and so on.

We will also dig into Amazon OpenSearch Service (OSS), which is a fully managed service that runs
OpenSearch by making it easy to deploy, manage, and run cost-effectively by providing industry-leading
reliability, scalability, and security functionalities. It provides all the functionalities securely with no
overhead of infrastructure management and helps you focus on your use cases.

In this chapter, we will cover the following main topics:

• Amazon OpenSearch Service overview

• Setup and configuration of Amazon OpenSearch Service

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service334

• Observability of the application traces and logs using Amazon OpenSearch Service

• Security for Amazon OpenSearch Service

• Anomaly detection in Amazon OpenSearch Service

Technical requirements
To follow along with the chapter, you need the following:

• A working AWS account

• An understanding and fundamental knowledge of EC2 operations

• Fundamental knowledge of Docker and Docker Compose operations

• An understanding of how to deploy CloudFormation templates

Amazon OpenSearch Service overview
Amazon OpenSearch Service (OSS) provides dedicated clusters of a community-driven open source
search and analytics service called OpenSearch, providing well-tuned and optimized deployments of
search services with no management overhead of infrastructure provisioning, patching, installation,
or ongoing maintenance. AWS monitors Amazon OSS 24/7 and takes care of ongoing maintenance.
It also supports simple scaling and cluster topology changes with a single click. AWS handles cross-
region replication to support high reliability with no downtime for updates or version upgrades.

Amazon OSS provides Security Assertion Markup Language (SAML) integration, encryption across
use cases with AWS Key Management Service (KMS), fine-grained access control, detailed security
auditing, backward-compatible security patches for all supported versions to minimize required
upgrades, and compliance with the HIPAA, FEDRAMP, SOC, PCI, ISO, and CSA STAR.

Amazon OSS presents numerous opportunities to optimize your search and analytics workflows. Here
are some examples of the diverse use cases where OpenSearch can be effectively leveraged:

• Business Insights: Provides data analytics to improve the user experience by providing
personalized recommendations

• Document Portal: This helps in a fast and relevant document search experience

• Observability: Monitors and debugs applications and infrastructure, log analytics for infrastructure,
application, IoT, and trace analytics for observability

• Security Monitoring: Detects potential threats to systems based on machine learning and alerting

The observability use case, which we will discuss in this chapter, provides a combination of log and
trace analysis. It also provides integrated alerting across use cases with Amazon CloudWatch, scales
up to 3 Pb in a single cluster, alerts in real time, and includes ML-powered anomaly detection for

Amazon OpenSearch Service overview 335

real-time adjustments. Additionally, it only charges for consumed infrastructure and comes bundled
with a dashboard visualization tool called OpenSearch Dashboards.

One of the key benefits of using Amazon OSS is its cost-effectiveness. With Amazon OSS, you can easily
stream data from various log sources using a range of services such as Amazon S3, Amazon Kinesis
Data Streams, Amazon DynamoDB, Amazon Kinesis Data Firehose, Amazon CloudWatch, and AWS
IoT. The best part is that there are no additional software licensing fees, making it a budget-friendly
solution for businesses of all sizes. This allows you to leverage powerful data streaming capabilities
without worrying about costly licensing fees, which can be a significant expense for many organizations.

The advantages of using Amazon OSS include the following:

• Support for multiple query languages (OpenSearch, SQL, and PPL)

• Fast access to virtually unlimited pre-indexed data via cold storage in S3

• Free automated backups for 14 days

• 90% cost reduction with UltraWarm compared to hot storage

Now, with this being the last chapter focused on open source observability, let’s see how it will fit into
all the open source tools using the following figure:

Figure 11.1 – OpenSearch

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service336

The left side of Figure 11.1 shows that while you are collecting metrics, logs, and traces using AWS
Distro for OpenTelemetry (ADOT) or using OpenTelemetry Collector (OTEL) and Fluent Bit, metrics
are aggregated using Prometheus and can be visualized using Amazon Managed Grafana, which we
covered in Chapter 10, Deploying and Configuring an Amazon Managed Service for Prometheus. The
right side of Figure 11.1 shows that we can use Amazon OpenSearch for the aggregation of logs and
traces. Amazon OSS also provides a visualization layer called OpenSearch Dashboards, which could
support building operational dashboards.

Metrics functionality is not yet available at the time of writing. Currently, metrics are not directly
supported for ingestion/collection into OpenSearch. There is a separate project available on GitHub
as a sample: https://github.com/aws-samples/amazon-opensearch-service-
monitor.

In the next section, let’s understand the fundamental components of Amazon OSS and learn how to
set up an Amazon OSS standalone cluster practically, using the AWS Console.

Setup and configuration of Amazon OpenSearch Service
Before going into the setup and configuration of Amazon OSS, let’s try to understand the fundamental
concepts of the OpenSearch Service on AWS. They are as follows:

• Domain or Cluster: A domain or cluster is a collection of nodes that share the same cluster.
name attribute. As nodes are added or removed from the cluster, the system reorganizes itself
to distribute the data across the remaining nodes.

• Nodes: A node is a single server that forms part of a cluster, stores your data, and contributes
to the cluster’s indexing and search capabilities.

• Leader/Master Nodes: Amazon OpenSearch Service master nodes are the ones that will provide
a control plane for managing the cluster. Master nodes perform routine management tasks
such as monitoring the health of all the nodes, tracking the number of indexed documents in
the cluster and shards in each index, and so on.

• Data Nodes: Data nodes hold the data responding to indexes and search queries, and can be a
distributed data cluster. For development workloads, you can combine leader and data nodes
in the same instance, where one of the data nodes will act as a leader node. But for production
workloads, a dedicated master node helps in performing the cluster management tasks without
holding any data.

• UltraWarm Nodes: UltraWarm nodes are data nodes that use S3 as a data store to reduce the
cost of storing older data. You can store large amounts of read-only data on Amazon OSS using
the UltraWarm nodes.

• Indexes: An index is a collection of documents that have somewhat similar characteristics. It
can be thought of as similar to a database.

https://github.com/aws-samples/amazon-opensearch-service-monitor
https://github.com/aws-samples/amazon-opensearch-service-monitor

Setup and configuration of Amazon OpenSearch Service 337

• Cold Storage Indexes: Cold storage also uses S3 as a data store to store any amount of
infrequently accessed or historical data on Amazon OSS. This storage is appropriate for doing
periodic research or forensic analysis. When there is a requirement to query the cold data, it
can be selectively attached to existing UltraWarm nodes.

You can understand the relationship between the cluster/domain, leader nodes, data nodes, UltraWarm
nodes, indexes, and cold storage indexes from the following diagram:

Figure 11.2 – Components of OpenSearch

You can securely install the Amazon OSS domain inside a VPC and use a VPC private endpoint to
ingest traffic from various sources such as Amazon CloudWatch Logs, Amazon Kinesis Data Firehose,
and so on. You can monitor the performance of the Amazon OSS cluster using CloudWatch and
monitor any API activities using AWS CloudTrail. Amazon OpenSearch provides various integration
mechanisms with identity providers such as IAM and Cognito, and SAML providers for providing
the logging for OSS Dashboards.

As we understand the technical services that the Amazon OpenSearch domain consists of, let’s look
at the logical components of Amazon OpenSearch Service:

• Shards: OpenSearch provides the ability to subdivide your index into multiple pieces called shards.

• Replica: A replica is a copy of every single shard.

• Document: A document is a fundamental unit of information that can be indexed. It can be
thought of as similar to a record in a relational database.

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service338

• Segment: Each shard comprises multiple segments, where a segment is an inverted index. A
search within a shard will iteratively search each segment, then combine the results from each
segment to produce the final results for that shard.

Let’s understand the additional components that are required when you are looking to deploy Amazon
OpenSearch Service in your AWS account:

• Authentication: To log in to OSS Dashboards and also access the data nodes/master nodes, you
can integrate Amazon OSS with IAM, Cognito, or SAML-based external authentication services.

• Amazon EC2: Amazon Elastic Compute Cloud (EC2) instances will be used to set up master
and data nodes and are managed automatically by AWS to provide high availability based on
the domain configuration provisioned.

• Amazon VPC: Amazon Virtual Private Cloud (VPC) will be used to communicate and
understand the heartbeat between the master and data nodes.

• Application Load Balancer: An application load balancer (ALB) is required to distribute
incoming search requests to multiple search instances. The ALB also provides features such as
SSL/TLS termination and request routing based on the path or host of the incoming request.
Additionally, the ALB can also be used for health checking of the search instances, and
automatically redirecting traffic to healthy instances in case of failures. It can also be made
public/private based on the configuration for accessing OSS Dashboards.

• AWS CloudFormation/AWS Console: The OSS cluster/domain can be set up either using AWS
CloudFormation or using the AWS Console. You can also leverage other forms of infrastructure
as code (IaC) tools to build the OSS domain.

Overall, the AWS components that would be part of deployment when setting up an Amazon OSS
cluster are depicted in the following figure:

Setup and configuration of Amazon OpenSearch Service 339

Figure 11.3 – AWS components to deploy Amazon OpenSearch Service

We have reviewed the logical and physical components involved in setting up Amazon OSS, and we
have also reviewed the dependent services required for the setup. Next, we will examine the deployment
of a standalone cluster of Amazon OSS through the AWS Console.

Installation of a standalone cluster of Amazon OpenSearch
Service

Let’s proceed with a standalone cluster to understand how to deploy Amazon OpenSearch Service using
the AWS Console. Although this is not recommended for production installations, to keep the costs
low, in this setup, we will not segregate data nodes and leader nodes. This section is hands-on, so log
in to your AWS account and be prepared for the ride. AWS will charge you for the resources deployed
in this section, but for short periods. When you finish, remember to clean up the used resources.

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service340

Let’s get started with the installation:

1. Navigate to the AWS Console and search for Amazon OpenSearch Service:

Figure 11.4 – Searching for Amazon OpenSearch Service

2. Click on Create domain:

Figure 11.5 – Create domain

3. Provide the domain name as observabilitydomain:

Setup and configuration of Amazon OpenSearch Service 341

Figure 11.6 – Providing the domain name

4. Select Development and testing, and for Version, select 1.3:

Figure 11.7 – Deployment type and Version

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service342

5. Select 1-AZ for Availability Zones under Data nodes and t3.small.search for Instance type.
Please note, I do not recommend this for production installation, and also, the t3 series does
not support UltraWarm nodes and cold storage functionality.

Figure 11.8 – Data nodes and Instance type

Setup and configuration of Amazon OpenSearch Service 343

6. Set EBS storage size per node to 10 GB and uncheck Enable dedicated master nodes:

Figure 11.9 – EBS volume and master nodes

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service344

7. For Network, select Public access (not recommended for production):

Figure 11.10 – VPC or Public access

8. For Fine-grained access control, you can embed with either IAM, Cognito, or SAML integration
or a local account in OSS. We are going ahead with creating a new master user:

Figure 11.11 – Local master user

Setup and configuration of Amazon OpenSearch Service 345

9. For Domain access policy, select Only use fine-grained access control, where we are allowing
open access to the domain:

Figure 11.12 – Open access to domain

10. Leave the remaining settings as the defaults and click Create:

Figure 11.13 – Create the OpenSearch domain

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service346

The process will take around 10-15 minutes to complete.

Figure 11.14 – Amazon OSS creation in progress

Metrics related to the OpenSearch performance and the API access will be logged to Amazon
CloudWatch and CloudTrail, respectively.

11. Once the OpenSearch domain is active, log in to OpenSearch Dashboards using the OpenSearch
Dashboards URL as highlighted in the Figure 11.15 with the username and password created
as a part of step 7 during the installation:

Figure 11.15 – Domain active and log in

Setup and configuration of Amazon OpenSearch Service 347

Let’s log in to OpenSearch Dashboards with our username and password:

Figure 11.16 – OpenSearch Dashboards login

12. Let’s select the tenant as Global. This is ideal when you would like to share the data with all users:

Figure 11.17 – Selecting the Global tenant

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service348

13. You can add the sample data by clicking Add sample data and selecting Sample flight data:

Figure 11.18 – Sample flight data

14. You can click on View Data and navigate through the sample dashboard provided by Amazon
OpenSearch Service.

Let’s navigate and verify the Amazon OSS service domain. Amazon OpenSearch Service has several
pre-installed plugins, and you can see them when you click on the navigation bar.

Setup and configuration of Amazon OpenSearch Service 349

Figure 11.19 – OpenSearch Plugins

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service350

In this section, we have successfully deployed an Amazon OpenSearch Service domain and added
sample data as a part of the exercise. If you are looking to deploy Amazon OSS for production, you can
look into the best practices at https://docs.aws.amazon.com/opensearch-service/
latest/developerguide/bp.html.

In the next section, we will look at deploying Amazon OpenSearch Service using CloudFormation and
also setting up the same within the VPC. We will also set up an app to understand the observability
of the application and visualize the same using Amazon OSS.

Observability of the application traces and logs using
Amazon OpenSearch Service
Let’s deploy the Quick Start CloudFormation template by clicking this URL: https://insiders-
guide-observability-on-aws-book.s3.amazonaws.com/chapter-11/ossdeploy.
json. Alternatively, you can download the CloudFormation template and deploy the template. You
will need a key pair to be available in your AWS account to deploy the CloudFormation template.
If you want to create a key pair, please look at https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/create-key-pairs.html. It will take approximately 40 minutes to
complete the full deployment of the test application.

Once you deploy the application and Amazon OSS using the CloudFormation template, you can
navigate to the Outputs tab and should be able to see the OpenSearch Proxy URL and Sample
Application URL, as shown here:

Figure 11.20 – CloudFormation output URLs

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/bp.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/bp.html
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-11/ossdeploy.json
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-11/ossdeploy.json
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-11/ossdeploy.json
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/create-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/create-key-pairs.html

Observability of the application traces and logs using Amazon OpenSearch Service 351

The application website will look as follows:

Figure 11.21 – Sample application website

Once you navigate and click on the listed items on the web app, you should be able to see success/
failure messages at the bottom. You generate application traces by clicking on them.

Now, let’s explore the deployment and high-level architecture of the application and the data flow of
the application. The sample application has multiple containers running inside an EC2 using Docker.
You can see the high-level application and the data flow to OpenSearch Service in Figure 11.22 . The
application is instrumented using OTEL. We covered OTEL in Chapter 10, Deploying and Configuring
an Amazon Managed Service for Prometheus.

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service352

Now let’s understand how to send the data gathered using OTEL into OpenSearch Service. Please refer
to Figure 11.22. It consists of two paths, one for gathering the traces and the other for gathering the
log files. In path 1 (Traces), we are collecting the application traces and transforming the data from
OTEL using Data Prepper version 2.0 and ingesting the data using the HTTP/HTTPS endpoint of
OpenSearch Service. The second path (Logs) is for ingesting application logs into Amazon OSS. The
application logs are captured using the Fluent Bit logs processor and are sent to the sample_app_
logs index using the HTTP/HTTPs endpoint of OpenSearch Service.

Figure 11.22 – Application architecture

Let’s deep-dive into the configuration of Data Prepper and Fluent Bit. The source code for the application,
along with the dataprepper/fluentbit configurations, is available at this GitHub URL: https://
github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-
AWS/tree/main/chapter-11/traceanalytics.

Important files to pay attention to are trace_analytics_no_ssl.yml, fluentbit.conf,
and docker-compose.yml. Let’s understand the configuration and why they are relevant in the
next two sections.

https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/tree/main/chapter-11/traceanalytics
https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/tree/main/chapter-11/traceanalytics
https://github.com/PacktPublishing/An-Insider-s-Guide-to-Observability-on-AWS/tree/main/chapter-11/traceanalytics

Observability of the application traces and logs using Amazon OpenSearch Service 353

Application traces

Let’s start with understanding the trace pipeline and how the data is transformed using Data Prepper and
the relevant configuration in the application deployment. Here are the components of application traces:

• Trace pipeline: This refers to the traces generated from the application leveraging OTEL
instrumentation and captured and segregated into two different formats – raw traces and service
map traces. They are transformed by the Data Prepper pipeline, as shown in the following
figure. The raw pipeline transforms the individual traces and their relevant metrics, such as
delay. The service map pipeline provides you with the relationship between different containers
in the sample application that could be visualized in the Amazon OSS console.

Figure 11.23 – Trace pipeline

• Trace configuration: The configuration for the traces in Data Prepper is shown in the following
figure and is part of the trace_analytics_no_ssl.yml file, where you can see the
entry from OpenTelemetry and segregate application traces into two different pipelines
(raw-pipeline and service-map-pipeline), and both the pipelines send the data
into Amazon OpenSearch Service into two different indices (trace-analytics-raw and
trace-analytics-service-map) using the HTTPS Amazon OSS endpoint.

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service354

Figure 11.24 – Trace configuration

Observability of the application traces and logs using Amazon OpenSearch Service 355

• Data Prepper deployment: To deploy Data Prepper along with the dependencies, we have used
Docker Compose to build the containers. Let’s look at the Docker configuration. You can see
that we are using a Data Prepper 2.0 container image and have used the pipelines as shown in
Figure 11.23 and configuration as shown in Figure 11.25:

Figure 11.25 – Data Prepper deployment

Now let's log in to the OpenSearch Dashboard Proxy URL as shown in the CloudFormation Outputs
tab (Figure 11.20) to visualize the traces and service map generated by the application flow. Once you
log in, you can navigate to Amazon OSS Console | Observability | Trace analytics. This will provide
a list of traces captured by OTEL and visible on the Amazon OSS Dashboard.

Figure 11.26 – Amazon OSS Trace analytics dashboard

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service356

You can click on Amazon OSS Console | Observability | Trace analytics | Services and view the
overall traces by service, as shown in the following figure:

Figure 11.27 – Amazon OSS Services view

Additionally, you can also see the Service map view, as shown in the following figure:

Figure 11.28 – Service map view of the traces

Observability of the application traces and logs using Amazon OpenSearch Service 357

Application logs

We learned about the trace pipeline and configuration files in the last section. Let’s understand the
components of the application logs pipeline into Amazon OSS and the relevant configuration in this
section. We are using a Fluent Bit log processor tool to send the log data from the application into
Amazon OSS. Fluent Bit is an open source and multi-platform log processor tool. It can collect and
aggregate different types of log data and send them to one or more log destinations. You can see the
high-level Fluent Bit log flow in the following figure:

Figure 11.29 – Amazon OSS logs pipeline

As shown in Figure 11.29, Fluent Bit uses the HTTP output plugin to send data to Amazon OSS along
with the required transformation. You can see the HTTP plugin details in the fluentbit.conf
file in Figure 11.30. The fluentbit.conf file provides the configuration to forward the data to
Amazon OpenSearch Service utilizing the HTTP endpoint. You can observe the configuration of the
output to Amazon OSS in the configuration file and note the HTTP endpoint and the type of log file
(docker in this case, as the application is installed as a Docker container):

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service358

Figure 11.30 – Amazon OSS Fluent Bit configuration

Let’s look into the Fluent bit deployment and configuration and verify the logs sent to Amazon OSS:

• Fluent Bit Deployment: Fluent Bit is deployed as a container and the relevant logs are forwarded
to the Fluent Bit container and transformed into an Amazon OSS-understandable format. We
can see relevant configuration details for Docker in Figure 11.31:

Figure 11.31 – Fluent Bit deployment

• Verification of Logs: To match the log format of the sample logs and query them, let’s navigate to
the Amazon OSS URL from the CloudFormation Outputs tab and carry out the following steps:

I. Navigate to Amazon OSS | Management | Stack Management | Create index pattern:

Observability of the application traces and logs using Amazon OpenSearch Service 359

Figure 11.32 – Amazon OSS Create index pattern

II. Input sample_app_logs* and you should see an index matching one source:

Figure 11.33 – Matching index

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service360

III. Select [@timestamp] as the primary field to filter and click on Create index pattern:

Figure 11.34 – Global filter

It will discover the log fields and the type automatically:

Figure 11.35 – Discovered fields

Observability of the application traces and logs using Amazon OpenSearch Service 361

IV. Navigate to OpenSearch Dashboards and click on Discover:

Figure 11.36 – Searching the data using the Discover option

V. Once you click, you can see the time series-based logs generated from the containers in
Amazon OSS. You can further use the OpenSearch Query language and Piped Processing
Language (PPL) to query the log data ingested.

Figure 11.37 – Searchable logs

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service362

In this section, we have learned how to deploy Data Prepper and Fluent Bit and forward the logs and
traces into OSS, and how to query them and visualize them in Dashboards.

In the example shown in this section, we have only discussed how to use two tools, namely Data
Prepper and Fluent Bit, to ingest the data into Amazon OSS. There is a larger number of use cases
such as log analysis, security management, and various sources of ingesting the data from various
AWS-native services that are feasible, but those are beyond the scope of the book.

In the next section, we will understand how to leverage the anomaly detection feature in Amazon
OSS to observe anomalies in the data ingested.

Anomaly detection in Amazon OpenSearch Service
Amazon OSS’s anomaly detection feature uses the Random Cut Forest (RCF) algorithm to detect
anomalies in OpenSearch log data in real time. RCF is an unsupervised machine learning algorithm that
models a sketch of your incoming data stream. It calculates an anomaly score and level of confidence
for each incoming data point. Anomaly detection then uses these scores to distinguish abnormal
data from normal variations. You can also utilize the pre-created anomaly detection features such as
monitoring HTTP responses, monitoring e-commerce orders, and monitoring host health.

 Let’s go ahead and configure anomaly detection for the container logs deployed from the sample application:

1. Navigate to Amazon OSS | OpenSearch Plugins | Anomaly detection | Create detector:

Figure 11.38 – Create detector

2. Let’s set the detector’s Name field to ContainerAppLogs, and for the Data Source field,
select sample_app_logs from the dropdown:

Anomaly detection in Amazon OpenSearch Service 363

Figure 11.39 – Select Data Source to detect anomalies

3. Set Timestamp field to @timestamp:

Figure 11.40 – Select the Timestamp field options to use

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service364

4. Leave Operation settings as the defaults (Detector interval as 10 minutes, and Window
delay as 1):

Figure 11.41 – Anomaly detection operation settings

5. Select Enable custom result index and add sample_logs as the suffix of the index, which
will enable creating a custom index to store the output of anomaly detection, as shown here:

Figure 11.42 – Provide the name for the anomaly detection result index for sample logs

Anomaly detection in Amazon OpenSearch Service 365

6. Configure the model to include the detection of the count of log.keyword received over
some time. You need to set Feature name to LogData, Aggregation method to count(),
and Field to log.keyword, and then click Next:

Figure 11.43 – Configure model

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service366

7. Enable both real-time detection and historical detection by selecting the Start real-time
detector automatically and Run historical analysis detection checkboxes, then click Next
to create the job:

Figure 11.44 – Detector job schedule

In the current implementation, we detect the anomalies for the data ingested every 10 minutes and
also run anomaly detection for historical data. The limits could be adjusted to suit the requirements.

In the next section, we will look at high-level security functionalities provided by AWS in securing
OpenSearch Service.

Security for Amazon OpenSearch Service
Securing Amazon OpenSearch Service at a high level could be classified into the following types:

• Encryption: Keeping your data secure at rest and in transit

• Authentication: Leveraging authentication infrastructure to authenticate to the OpenSearch domain

• Authorization: Granular authorization can be used to control user actions in your cluster

• Auditing: Auditing functionality allows you to track and record all user actions, helping you
to meet compliance requirements such as the HIPAA and PCI

Security for Amazon OpenSearch Service 367

AWS offers various services to meet the objectives of security in Amazon OpenSearch Service:

• Encryption: For encryption of data during transit, you can enable node-to-node encryption
and also enforce HTTPS for the web URL using certificates.

For encryption of data at rest, you can use AWS Key Management Service to store and manage
keys. You can create your own or use the one that is provided by AWS. You could protect the
data at rest for indices, OpenSearch logs, swap files, automated snapshots, and all other data
in the application directory.

• Authentication: Authentication to Amazon OSS could be done either using local authentication
within the cluster or leveraging your existing authentication infrastructure:

 � Basic authentication: Amazon OSS provides a basic authentication service using an internal
DB (which we used in the chapter) with a user and password configured in a local DB on
the service.

 � IAM authentication: You can configure Amazon OSS to use IAM authentication, which
uses STS and can integrate with Amazon Cognito.

 � SAML authentication: You can configure your third-party identity provider. Authentication
will be done by your identity provider and Amazon OSS provides a secure way to integrate
with your SAML provider.

• Authorization: You can get granular access control to control the user’s actions on the OSS cluster:

 � IAM policy: IAM policies can be used to provide permissions on the Amazon OSS control
plane and data plane. You could also use IAM to deploy as short-term credentials.

 � Domain policy: In Amazon OpenSearch Service, the domain policy enables you to define
IP address-based permissions for both the control plane and data plane. Similar to the IAM
policy, this policy provides a way to control access to the cluster and its resources. With the
domain policy, you can specify which IP addresses are allowed or denied access, as well as
what actions can be performed by users or applications associated with those addresses. This
level of control is essential for ensuring the security and integrity of your OpenSearch cluster.

• Auditing: You can track, end to end, all the user actions using Amazon CloudTrail. Additionally,
you can also meet the compliance requirements for the HIPAA and PCI using Amazon Managed
OpenSearch Service.

 Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon OpenSearch Service368

Overall, the security features for Amazon OpenSearch Service can be summarized as follows:

Figure 11.45 – Security features for Amazon OSS

In this section, we have understood various AWS services and options available for securing your
Amazon OpenSearch cluster.

Summary
In this chapter, we understood how to set up Amazon OpenSearch Service and the options for
deploying OSS in our AWS account. Further, we have implemented instrumentation of end-to-end
sample applications for ingesting traces and logs into Amazon OSS and enabled anomaly detection
to understand anomalies in the log data ingested. In the final section, we understood the security
features available in AWS to secure our Amazon OSS implementation.

We learned how Amazon OSS could be helpful in meeting our organization’s observability goals when
we are looking for open source solutions as a part of the observability strategy.

In the next chapter, we will look at the Cloud Adoption framework and how AWS observability services
will support accelerating cloud adoption.

Questions
1. What are the storage options available in Amazon OSS for optimizing the storage costs in AWS?

2. What is Data Prepper and its use case in Amazon OSS?

3. What are the advantages of using Amazon OSS?

4. What is the algorithm used for anomaly detection in Amazon OSS?

Part 4:
Scaled Observability

and Beyond

In this final part, we will look at how to scale the observability techniques and practices we have
seen so far. You will understand observability's role in an organization’s journey to the cloud while
applying the best practices described by the Cloud Adoption Framework. We will also learn about the
relationship between the Well-Architected Framework and the Management and Governance Lens to
reach operational excellence. And finally, we will discuss the limits and challenges users face in highly
complex environments, and what the future may hold in terms of addressing those complexities.

This section includes the following chapters:

• Chapter 12, Augmenting the Human Operator with Amazon DevOps Guru

• Chapter 13, Observability Best Practices at Scale

• Chapter 14, Be Well-Architected for Operational Excellence

• Chapter 15, The Role of Observability in the Cloud Adoption Framework

12
Augmenting the Human

Operator with Amazon
DevOps Guru

Today’s applications are becoming increasingly distributed and complex. We learned in the previous
chapters that we need the three pillars of Metrics, Logs, and Traces to achieve good observability. To
visualize the data that’s been collected, we need dashboards that can correlate data and provide a drill-
down view of the application, such as the CloudWatch service map. While this model is effective for
less complex systems, as the volume and diversity of data increase, it becomes challenging to identify
and troubleshoot issues manually. Developers or administrators may face difficulties in locating and
resolving problems as they need to correlate information manually from multiple sources and tools.
The constant alerts and notifications from different tools can also lead to alarm fatigue and difficulty
in determining the most pressing issue. That’s where DevOps Guru steps in and comes to the rescue.

DevOps Guru is a machine learning (ML)-powered service that learns from your operational data,
such as metrics, application logs, and events, to offer Artificial Intelligence for IT Operations
(AIOps)-based root-cause analysis. This streamlines the process for developers and operators to
identify problems automatically, increasing application uptime and minimizing downtime by linking
issues and offering suggestions for a fast resolution. We can achieve all of this without users having
any prior ML experience. We discovered the observability landscape of AWS in Chapter 2, Overview
of the Observability Landscape on AWS, and DevOps Guru is part of the AI and ML insights. In this
chapter, we are going to do the following:

• Get an overview of Amazon DevOps Guru for enhanced application availability

• Understand RDS database performance issues using Amazon DevOps Guru

• Review Amazon DevOps Guru insights for resources in AWS

• Understand other AI and ML insight services in AWS

Augmenting the Human Operator with Amazon DevOps Guru372

Technical requirements
To follow along with this chapter, you will need the following:

• A working AWS account

• A fundamental understanding of AWS Lambda and Amazon DynamoDB

• An understanding of Amazon RDS and basic performance issues

• A fundamental understanding of Python and running Python scripts

The source code for this chapter can be downloaded from https://github.com/
PacktPublishing/AWS-Observability-Handbook/tree/main/Chapter12.

Overview of Amazon DevOps Guru
Amazon DevOps Guru is an easy-to-use service with no configuration or no prior ML experience
requirements for delivering anomaly detection and observability insights. It helps with continuously
analyzing the streams of metrics and logs from disparate data sources and understanding the application’s
behavior in an automated way by leveraging ML. Amazon DevOps Guru helps in accelerating the
resolution of issues quickly by providing ML-powered insights and recommendations. It also helps
reduce alarm fatigue by automatically correlating and grouping related anomalies. It is easy to scale
and maintain with minimum or no intervention when new AWS resources are added.

DevOps Guru Insights, a component of the DevOps Guru service, automates the process of setting
alarms and thresholds and provides clear, actionable guidance to aid developers and operations teams
in quickly identifying and addressing the underlying cause of an issue.

The DevOps Guru console provides five different views:

• Dashboard: A simple interface that provides a summary of the overall system health, which
consists of a summary of the number of resources analyzed, the impacted cloud formation
stacks, and ongoing reactive and proactive insights.

• Insights: DevOps Guru Insights offers both Reactive and Proactive insights into issues affecting
your analyzed resources. Reactive insights provide recommendations for improving the
performance of your application and reducing the mean time to recover (MTTR), which is
the average time it takes to fix a problem after it has occurred. Proactive insights provide you
with potential issues that may affect your application in the future, allowing you to address
them before they cause disruptions.

• Settings: Settings allows you to set up Amazon DevOps Guru either at the organization level for
resources if you would like to do so in a multi-account environment or at the current account
level. You can also integrate the DevOps Guru insights with AWS System Manager OpsCenter
and enable log anomaly detection to provide insights about logs, not just metrics and traces.

https://github.com/PacktPublishing/AWS-Observability-Handbook/tree/main/Chapter12
https://github.com/PacktPublishing/AWS-Observability-Handbook/tree/main/Chapter12

Overview of Amazon DevOps Guru 373

• Analyzed resources: The Analyzed resources view in Amazon DevOps Guru provides an
overview of the analyzed resources and shows their estimated cost.

• Integrations: The Integrations view will help you if you would like to understand the code-
level performance issues using the Amazon CodeGuru profiler and integrate the findings into
Amazon DevOps Guru:

Figure 12.1 – View of Amazon DevOps Guru

The appearance of the service and the views available when accessing DevOps Guru in your account
may differ from the views shown in Figure 12.1. These variations are determined by the organization-
level configuration, which part of the multi-AWS account management settings.

Enabling Amazon DevOps Guru

Amazon DevOps Guru can be enabled by navigating to Settings, as shown in Figure 12.1, and enabling
the service. You can add the resources later as a second step. This process will create the required
Identity and Access Management (IAM) roles and permissions required by DevOps Guru to analyze
the resources to be deployed to the current account.

Augmenting the Human Operator with Amazon DevOps Guru374

The pricing for analysis in DevOps Guru can be found at https://aws.amazon.com/devops-
guru/pricing.

Let’s enable DevOps Guru and add the necessary resources:

1. Navigate to Amazon DevOps Guru | Settings | Current account:

Figure 12.2 – Getting started with DevOps Guru

2. Select Monitor applications in the current AWS account:

Figure 12.3 – Selecting the scope of resources to be monitored by DevOps Guru

3. DevOps Guru will automatically create and display Amazon DevOps Guru_Role with the
required permissions to evaluate AWS resources:

Figure 12.4 – Automated IAM role creation

https://aws.amazon.com/devops-guru/pricing
https://aws.amazon.com/devops-guru/pricing

Overview of Amazon DevOps Guru 375

4. In the next section, Reviewing Amazon DevOps Guru insights for serverless applications in AWS,
we will enable the analysis of resources. For now, let’s skip the resources to analyze by selecting
Choose later, as shown in the following figure, for Amazon DevOps Guru analysis coverage:

Figure 12.5 – Choose later

5. Click on Enable to enable the DevOps Guru service in your AWS account for usage:

Figure 12.6 – Enable

Once enabled, you will see a message stating Amazon DevOps Guru has been successfully
enabled for this account, and you will also see integration with Amazon CodeGuru Profiler
visible in the view:

Figure 12.7 – A view of the DevOps Guru dashboard

Augmenting the Human Operator with Amazon DevOps Guru376

Analyzing resources using Amazon DevOps Guru

Amazon DevOps Guru lets you discover and analyze resources across different boundaries based on
the properties shown in the following diagram:

Figure 12.8 – DevOps Guru boundaries for resource discovery and analysis

Let’s determine the optimal locations to enable each of these boundaries:

• CloudFormation Stacks: When you have adopted Infrastructure as Code (IaC) and you
deploy your application as a CloudFormation stack, DevOps Guru can be utilized to analyze
the resources generated by the stack.

• Tags: When you have a mix of IaC and console usage to deploy your applications and are also
using third-party tools to deploy your infrastructure, you could use tags as a mechanism to
discover the resources and onboard them to Amazon DevOps Guru.

• Account level: If you would like to analyze all your resources in a specific region and aren’t
worried about missing out on anomalies in any of your workloads, this would be an ideal way
to onboard at the account level.

• Organization level using a management account: When you are working in a multi-account
organizational structure and would like to enable DevOps Guru across the organization in
multiple AWS accounts in a specific region, you can use this functionality. This is not visible
by default and is available in an organizational view/management account view.

If you would like to enable resources to be analyzed by DevOps Guru, navigate to Analyzed resources
and click on Edit analyzed resources:

Figure 12.9 – Edit analyzed resources

Overview of Amazon DevOps Guru 377

You could select one of the methods to discover based on the CloudFormation stack, tags, or the
entire AWS account:

Figure 12.10 – Resource analysis

How DevOps Guru works

Let’s understand how Amazon DevOps Guru works. As you deploy applications in your AWS account,
you can use one of the options discussed in the Analyzing resources using Amazon DevOps Guru section
to discover the resources and analyze them. Amazon DevOps Guru analyzes anomalies based on ML
models by applying them to the data stores generated by the application (such as metrics, logs, and
traces) to AWS-native services such as AWS CloudWatch and AWS X-Ray, as well as the events from
AWS CloudTrail and RDS using RDS Performance Insights. Furthermore, Amazon DevOps Guru
uses CloudTrail events to understand stack changes applied as part of CloudFormation and maps
them to generate insights.

You can enable the generated insights to be created as an AWS Systems Manager OpsItem, which
will help you visualize actions on all insights from a unified console. Alternatively, you can send
notifications using SNS and integrate them with additional third-party collaboration tools such as
Slack or IT service management systems such as ServiceNow for incident creation as required.

Augmenting the Human Operator with Amazon DevOps Guru378

The overall behavior of Amazon DevOps Guru is summarized in the following figure:

Figure 12.11 – DevOps Guru workflow

In this section, we covered the basics of Amazon DevOps Guru, including its uses and how to enable
it in your AWS account. We also discussed the basic configuration for DevOps Guru in an AWS
account and the overall workflow and life cycle of the service. Now, we will explore how to deploy
a serverless application in an AWS account and see how DevOps Guru provides root cause analysis
insights for any issues that may arise.

Reviewing Amazon DevOps Guru insights for serverless
applications in AWS
In Chapter 7, Observability for Serverless Application on AWS, we deployed a serverless application
using a CloudFormation template. We will use the same application to troubleshoot and provide
root cause analysis using DevOps Guru. If you have come to this chapter directly, then execute the
following Quick Start CloudFormation template to deploy the application and insert a few records, as
explained in Chapter 7: https://console.aws.amazon.com/cloudformation/home#/
stacks/new?stackName=serverless-app2&templateURL=https://insiders-
guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/final/
template.yaml.

We will simulate the load on DynamoDB by continuously reading the records that have been inserted as
a part of this example scenario to generate the load on the application and understand reactive insights.

Let’s enable DevOps Guru for the CloudFormation’s Serverless-app2 stack and try to understand the
anomalies and insights generated by DevOps Guru here.

https://console.aws.amazon.com/cloudformation/home#/stacks/new?stackName=serverless-app2&templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/final/template.yaml
https://console.aws.amazon.com/cloudformation/home#/stacks/new?stackName=serverless-app2&templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/final/template.yaml
https://console.aws.amazon.com/cloudformation/home#/stacks/new?stackName=serverless-app2&templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/final/template.yaml
https://console.aws.amazon.com/cloudformation/home#/stacks/new?stackName=serverless-app2&templateURL=https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-07/final/template.yaml

Reviewing Amazon DevOps Guru insights for serverless applications in AWS 379

Discovering and analyzing resources

1. Navigate to Analyzed resources | CloudFormation stacks | Serverless-app2 and click Save:

Figure 12.12 – Adding resources to DevOps Guru for analysis

2. It will prompt you for confirmation. Click on Confirm to save the changes:

Figure 12.13 – Confirming the changes for analysis

Augmenting the Human Operator with Amazon DevOps Guru380

3. You will need to wait approximately 2-3 hours for DevOps Guru to show the analyzed services/
resource and provide insights:

Figure 12.14 – Resources analyzed

The list of resources in the Analyzed resources view, as shown in Figure 12.13, shows that
DevOps Guru has discovered the resources that have been deployed by the CloudFormation stack.

Decreasing DynamoDB capacity

Next, let’s go ahead and decrease the table capacity for DynamoDB for both Read capacity and Write
capacity to 1:

Reviewing Amazon DevOps Guru insights for serverless applications in AWS 381

Figure 12.15 – DynamoDB capacity reduction

Generating traffic to create anomalies

Now, let’s generate some traffic to create anomalies and understand the insights:

1. To generate load and simulate the traffic on Amazon DynamoDB, which is part of the
application, you can download the Python script from the following URL or this book’s GitHub
Chapter12 folder: https://insiders-guide-observability-on-aws-book.
s3.amazonaws.com/chapter-12/sendAPIRequest.py.

2. Replace the variable URL in the Python script with your API from the CloudFormation outputs
section tab, as shown in the following screenshot:

https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-12/sendAPIRequest.py
https://insiders-guide-observability-on-aws-book.s3.amazonaws.com/chapter-12/sendAPIRequest.py

Augmenting the Human Operator with Amazon DevOps Guru382

Figure 12.16 – Replacing the variable URL in the Python script

3. You need to download Python and install it on your computer based on your OS from https://
www.python.org/downloads. Ensure that you set up environment variables such as
path on Windows and env on macOS/Linux.

4. Once Python has been installed, you can execute the following command to generate traffic:

python sendAPIRequest.py

Once traffic has been generated for some time (10 minutes), you can view the anomalies in
the Aggregated metrics section and look at the DevOps Guru-provided recommendations
for us to investigate and resolve issues. We have received both proactive and reactive insights
for the application.

Reactive insights

To check the reactive insights, do the following:

1. Navigate to Insights | Reactive and check for any reactive insights that have been generated.

You should have one reactive insight describing an issue with the Lambda duration. This is an
anomaly that’s been detected in the Serverless-app2 application:

https://www.python.org/downloads
https://www.python.org/downloads

Reviewing Amazon DevOps Guru insights for serverless applications in AWS 383

Figure 12.17 – The Reactive insights dashboard

2. When you click on the insights provided, you will see that DevOps Guru has analyzed the metrics
and logs and provided an overview of the anomalies and recommendations for remediation,
as shown in the following screenshot:

Figure 12.18 – Analysis carried out by DevOps Guru

3. DevOps Guru captured the timeline of events that occurred as a part of the analysis. You can
see the CloudTrail events in the following screenshot:

Augmenting the Human Operator with Amazon DevOps Guru384

Figure 12.19 – CloudTrail events timeline view

Based on the analysis, DevOps Guru provided three recommendations for Serverless-app2:

• Rollback the Amazon Dynamo DB table update capacity changes based on the event changes
reported as part of CloudTrail:

Figure 12.20 – Recommendation 1 – Rollback the Amazon Dynamo DB table update

As we have decreased the capacity of DynamoDB from 5 to 1, it is recommended that we revert
the changes to the earlier state.

Reviewing Amazon DevOps Guru insights for serverless applications in AWS 385

• Troubleshoot throttling in Amazon DynamoDB:

Figure 12.21 – Recommendation 2 – Troubleshoot throttling in Amazon DynamoDB

DevOps Guru has recommended resizing the throttling capacity for DynamoDB and included
a knowledge article on how to achieve that.

• Configure provisioned concurrency for AWS Lambda:

Figure 12.22 – Recommendation 3 – Configure provisioned concurrency for AWS Lambda

DevOps Guru has recommended increasing the provisioned concurrency for the Lambda
function since it has been left at its default concurrency.

When you navigate to Graphed anomalies, you will see the relevant metrics and anomalies:

Figure 12.23 – Metric anomalies detected by DevOps Guru

Augmenting the Human Operator with Amazon DevOps Guru386

Proactive insights

DevOps Guru also provides proactive insights. In this example, it has provided the recommendation
to enable DynamoDB point-in-time recovery for the DynamoDB:

Figure 12.24 – Proactive insights

With no configured thresholds or correlation, it’s apparent that Amazon DevOps Guru can identify
the likely root cause of the problem and offer suggestions for resolving it.

In this section, we learned how DevOps Guru can help provide root cause analysis by examining
the metrics and logs generated by the underlying services in your application stack and generating
ML-based insights that enable you to take quick action.

In the next section, we’ll explore the database Performance Insights provided by DevOps Guru for
Amazon Relational Database Service (RDS).

Understanding Relational Database Service (RDS)
performance issues using DevOps Guru
Amazon DevOps Guru for RDS is an ML-powered capability that assists developers and DevOps
engineers in detecting, troubleshooting, and resolving issues related to Amazon RDS. DevOps
Guru for RDS identifies issues related to databases, such as excessive resource usage, suggests index
creation for certain keys, detects problematic SQL queries, and delivers diagnostic information and
recommendations that expedite the issue resolution process.

Understanding Relational Database Service (RDS) performance issues using DevOps Guru 387

Enabling Performance Insights on RDS is a prerequisite for Amazon DevOps Guru to provide
database performance analysis. Performance Insights is a feature in RDS that provides database
performance tuning insights and a detailed view of which SQL statements are causing the load,
along with key performance metrics such as the active transaction count, deadlocks, and more. The
following screenshot shows an example Performance Insights dashboard for an AWS RDS instance:

Figure 12.25 – Metric view in RDS Performance Insights

While we did not specifically explore an example of deploying an RDS database and analyzing it using
DevOps Guru in this chapter, the process is identical once you have an RDS database in your AWS
account. You can enable DevOps Guru for RDS databases using one of the methods described in the
Analyzing resources using Amazon DevOps Guru section.

Once you have enabled it, DevOps Guru will collect, baseline, and understand the performance issues
that are impacting your application and provide recommendations for resolving any issues. DevOps
Guru reports two different types of anomalies based on the Performance Insights metrics:

• Casual anomalies: A casual anomaly is a top-level anomaly with insight into, for example,
database load.

• Contextual anomalies: A contextual anomaly is a finding within the database load such as
the instance size being small, the CPU capacity being exceeded, and so on, due to which the
database is having performance issues.

Augmenting the Human Operator with Amazon DevOps Guru388

The following screenshot shows a casual anomaly caused due to the database load:

Figure 12.26 – DevOps Guru DB load insights

This casual anomaly is high database load, while the contextual anomaly is the high CPU utilization
metric of the database load. The analysis also suggests a solution – upgrading the RDS database
instance to the next size:

Figure 12.27 – Database recommendation from DevOps Guru

In this section, we learned that Amazon DevOps Guru can be utilized to identify performance issues
in Amazon RDS and offer suggestions to optimize your application’s databases by utilizing insights
from RDS Performance Insights.

AI and ML insights
In Chapter 2, Overview of the Observability Landscape on AWS, we discussed two additional services
alongside Amazon DevOps Guru in terms of AI and ML insights: Amazon CodeGuru and Amazon
Lookout for Metrics. Let’s briefly look at these two services since we don’t have an explicit chapter
concerning them.

AI and ML insights 389

Amazon CodeGuru

Amazon CodeGuru is comprised of two different services: Amazon CodeGuru Reviewer, which
is a static analysis tool that helps improve code quality by scanning for critical issues, identifying
hard-to-find bugs, and recommending how to remediate them, and Amazon CodeGuru Profiler,
which helps developers visualize their application to find the most expensive lines of code that impact
application performance.

The relationship between these two services in terms of the software flow can be understood as follows:

Figure 12.28 – Amazon CodeGuru – Software Lifecycle

While writing code, you can use CodeGuru Reviewer to provide recommendations about code
quality, and you can use Amazon CodeGuru Profiler while building, deploying, and measuring the
performance of your code to understand the expensive lines that will impact application performance.

You can integrate the recommendations from Amazon CodeGuru Profiler into DevOps Guru, as
shown in the following figure:

Augmenting the Human Operator with Amazon DevOps Guru390

Figure 12.29 – CodeGuru Profiler integration with DevOps Guru

The integration between these two services allows DevOps teams to leverage CodeGuru’s expertise
in identifying performance issues in code and use DevOps Guru’s ML capabilities to quickly detect
anomalies and provide actionable insights to improve the application performance. This integration
enables teams to quickly diagnose performance issues and apply best practices to optimize the
performance of their applications. Overall, this integration helps teams save time, increase efficiency,
and improve the reliability and availability of their applications.

Amazon Lookout for Metrics

Amazon Lookout for Metrics provides a similar service to DevOps Guru, but from the perspective
of business metrics for different datasets. The life cycle of Amazon Lookout for Metrics can be seen
in the following figure:

AI and ML insights 391

Figure 12.30 – Stages in Amazon Lookout for Metrics

Let’s look at these stages in more detail:

1. Create a detector: Detectors are ML models that find outliers in your data. First, you set up a
detector and configure the anomaly detection interval so that it meets your use case.

2. Add a dataset: Lookout for Metrics supports analyzing different types of datasets. It supports
over 19 data sources, including S3, CloudWatch, Salesforce, ServiceNow, Marketo, and others.

3. Activate detector: When you’re ready, activate the detector to begin data analysis. You can
view the detector’s progress in real time.

4. Set up alerts: Setting up alerts is optional and can be done based on your requirements.

Configuring Amazon Lookout for Metrics

In Amazon Lookout for Metrics, creating a detector is a crucial step that enables you to monitor your
metrics effectively. By creating a detector, you can specify the data source, time range, and frequency
of data ingestion to generate anomaly detection results. This process involves specifying the data to
analyze, such as metrics from Amazon CloudWatch, and setting up the data frequency to ensure that
the detector is continually updated with new data:

1. Navigate to Amazon Lookout for Metrics | Create detector:

Figure 12.31 – Creating a detector in Amazon Lookout for Metrics

Augmenting the Human Operator with Amazon DevOps Guru392

2. Set the name of the detector to my-detector1 and set Interval to 5 minute intervals:

Figure 12.32 – Naming the detector and setting an interval

3. Then, click Create:

Figure 12.33 – Creating a detector

AI and ML insights 393

Adding a dataset

The next step is to add the dataset. Amazon Lookout for Metrics supports different datasets. For this
example, we will use CloudWatch as the dataset:

1. Click Add a dataset:

Figure 12.34 – Adding a dataset to the detector

2. Call the dataset my-dateset1:

Figure 12.35 – Naming the dataset

Augmenting the Human Operator with Amazon DevOps Guru394

3. Set Datasource to Amazon CloudWatch and set Detector mode to Continuous to monitor
anomalies in real time:

Figure 12.36 – Configuring Datasource and selecting a Detector mode option

4. Select Create and use a new service role so that you have access to CloudWatch data for
Lookout for Metrics. Then, click Next:

Figure 12.37 – Setting up an IAM role to gain access to CloudWatch data

AI and ML insights 395

It will take some time to create the role and load the data:

Figure 12.38 – Validating the data and creating an IAM role

5. Select AWS/EC2 as the metric’s Namespace and select InstanceId under Dimensions. If you
don’t see the AWS/EC2 namespace, then you must create an EC2 instance (https://docs.
aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html):

Figure 12.39 – Selecting a CloudWatch metrics Namespace

6. Select CPUUtilization under Metric and AVG under Aggregation Function. We are analyzing
anomaly detection when the average CPU utilization is beyond the specified boundaries:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

Augmenting the Human Operator with Amazon DevOps Guru396

Figure 12.40 – Selecting Metric and Aggregation Function

7. Ensure you understand the cost of Amazon Lookout for Metrics for the selected metrics and
click Save dataset:

Figure 12.41 – Understanding the cost and saving the dataset

AI and ML insights 397

Next, you activate the detector to understand the anomalies in the data in real time:

1. Click on Activate detector:

Figure 12.42 – Activate detector

2. Select Activate:

Figure 12.43 – Activating the detector

Augmenting the Human Operator with Amazon DevOps Guru398

The detector will import the selected metric data and activate the detector so that it can
understand anomalies:

Figure 12.44 – Initializing and activating the detector

3. You can adjust the anomaly threshold to fine-tune the recommendations. Simply navigate to
Anomalies and adjust the Severity score property:

Figure 12.45 – Fine-tuning anomaly threshold

Summary 399

Some of the use cases that you can leverage Amazon Lookout for Metrics for include web response
times, a sudden increase/decrease in the number of orders, and more.

In this section, we learned about Amazon Lookout for Metrics and how to configure it and understood
its use cases.

Summary
In this chapter, we examined the difficulties faced in modern application operations and explored how
Amazon DevOps Guru, with its AIOps capabilities, can aid in addressing these challenges. We covered
the process of activating Amazon DevOps Guru in your AWS account and the available options. We
also delved into identifying performance issues in serverless applications and how DevOps Guru can
assist in resolving these issues via AWS’s RDS. We saw how the tool’s recommendations can facilitate
faster resolution of database problems.

We also delved into Amazon CodeGuru and its integration with DevOps Guru. In addition, we
examined Amazon Lookout for Metrics and its various use cases.

In the next chapter, we will explore best practices for observability in a multi-account, multi-region
environment at scale. Businesses operating across multiple geographic regions face challenges in
managing a distributed system, making it crucial to have a comprehensive observability strategy in
place to quickly detect and diagnose issues, regardless of the region or account in which they occur,
by monitoring key metrics, logs, and events across all regions and accounts.

Questions
Answer the following questions to test your knowledge of this chapter:

1. What is AIOps?

2. How can Amazon DevOps Guru help in identifying issues in applications?

3. What are Performance Insights in RDS?

4. What options are available in AWS so that you can enable DevOps Guru for your workloads?

13
Observability Best Practices

at Scale

As organizations adopt cloud technology, they must have a comprehensive observability strategy in
place to ensure their applications are running smoothly and efficiently. In this chapter, we will look
into observability best practices when applications are at scale and are spread across multiple Amazon
Web Services (AWS) accounts and Regions. As organizations adopt multi-account and multi-Region
strategies, this will create additional complexities in terms of observability and troubleshooting. In
this chapter, we will take a deep dive into the various aspects of managing observability solutions in
such a scenario.

In this chapter, we will look into these main topics:

• Observability best practices at scale

• Understanding cross-account cross-Region CloudWatch

• Beyond observability

Observability best practices at scale
An organization may adopt a multi-account and multi-Region strategy to improve security, manage
costs, comply with regulations, prepare for disaster recovery, reduce latency, and improve performance.
By creating separate accounts for different parts of the organization, sensitive data can be isolated,
reducing the risk of a data breach and improving security. A multi-Region strategy helps organizations
meet compliance requirements and ensure business continuity in the event of an outage or disaster.
This strategy also helps to minimize the impact or blast radius of any potential security incidents or
failures by limiting their scope to a specific account or Region. Let’s look at the common deployment
model of applications in multi-account, multi-Region topologies and how organizations manage them.

Observability Best Practices at Scale402

Understanding multi-account and multi-Region topologies

Let’s have a look at how multi-account and multi-Region topologies are created in AWS. AWS
Organizations is a powerful tool for managing multiple AWS accounts, and it can help customers
simplify AWS management, improve their security and compliance posture, and better manage their
costs. Whether you are a small business or a large enterprise, AWS Organizations is an essential tool
for managing your AWS resources effectively and efficiently. AWS Organizations helps customers to
manage multiple AWS accounts from a single parent account, called the root account, and then manage
those accounts as an individual entity. This helps customers simplify multi-account management and
ensures that all their AWS accounts are aligned with their overall IT governance policies.

The AWS Organizations service helps you manage multiple AWS accounts simultaneously. The
organization is made up of two types of accounts: a management account that creates and has complete
control over the organization and one or more member accounts that can either join the organization
or be created within it. You can visualize the management and member accounts in the organization,
as shown in Figure 13.1:

Figure 13.1 – Management account and member accounts in AWS Organizations

We can arrange the accounts in a tree-like structure with root and organizational units. The AWS
Organizations console allows us to view the details and policies of the accounts in the organization.
To access a member account, you can switch identity access management (IAM) roles in the AWS
Management console using IAM user credentials. You can visualize the tree structure in AWS
Organizations in Figure 13.2:

Observability best practices at scale 403

Figure 13.2 – AWS Organizations tree view in the AWS Console

The number of organizational units (OU) and the number of AWS accounts in each OU depends
on the segregation requirements for applications and the hierarchical structure of the company
leveraging AWS. As a part of the best practices, AWS recommends leveraging AWS Control Tower,
which provides a pre-configured setup for a secure and compliant multi-account environment on
AWS. It automates the landing zone setup, which includes the creation of a multi-account structure,
IAM roles and policies, and baselining network and security configuration.

AWS recommends having a separate Security OU with one or multiple accounts managing security
tooling and auditing/logging accounts, and an infrastructure OU with one or more AWS accounts
managing the network, operations tooling such as automation, and so on:

Observability Best Practices at Scale404

Figure 13.3 - AWS recommendation for OUs

During re:Invent 2022, AWS introduced a new feature called cross-account observability. With Amazon
CloudWatch cross-account observability, you can monitor and troubleshoot applications that span
multiple accounts within a Region. You can search, visualize, and analyze your metrics, logs, and traces
in any of the linked accounts without account boundaries. However, the placement of this unified
account, called a monitoring account, in an AWS Organizations structure has not been provided.
But as per my understanding and experience, it should be under Infrastructure OU. A new AWS
account should be created with the Observability/Monitoring account name and should be used to
do cross-account observability when you would like your organization to have a bird’s-eye view of all
applications metrics, logs, and traces. Also, you can use the observability account/monitoring account
to understand the interactions from the applications spread across multiple accounts.

Now that we’ve established the ideal location for the monitoring/observability account in a multi-
account environment, let’s explore CloudWatch’s cross-account observability feature for AWS Native
Services. We’ll delve into how to configure it and its limitations.

Exploring CloudWatch cross-account observability

AWS CloudWatch cross-account observability is a feature that allows you to query and monitor
resources across multiple AWS accounts for resources in a Region from a single AWS account. This
feature simplifies the process of analyzing data across multiple accounts, allowing you to quickly
identify and resolve issues.

With CloudWatch cross-account observability, you can search, analyze and visualize cross-application
telemetry data, including logs, metrics, and traces, as if you are operating in a single account without
any account boundaries.

Observability best practices at scale 405

The benefits of using cross-account observability are as follows:

• Unified view: It provides a bird’s-eye view across your organization so that you can pinpoint
application issues at scale and identify the affected users easily

• Reduced mean time to resolution (MTTR): It will help you reduce the average time to resolve
an issue as you can understand distributed tracing in not just a single application but across
applications running in multiple accounts

• Easy to set up: It is easy to set up in a standalone AWS account scenario or when you are
working in a standard AWS Organizations-based multi-account setup

It also comes with no additional cost, as you are querying the data and visualizing from a unified location.

Cross-account CloudWatch observability can be set up in two different scenarios:

• Multiple individual AWS accounts

• AWS Organizations

Even though it supports both scenarios, AWS recommends using the AWS Organizations’ way of
setup as part of the multi-account management best practices. As we discussed in the Understanding
multi-account and multi-Region topologies section, it is best to create an AWS monitoring account in
the infrastructure OU and configure a central monitoring account to visualize the CloudWatch data
across multiple accounts and multiple Regions. You can learn more about creating organizations and
multi-account setup here: https://docs.aws.amazon.com/organizations/latest/
userguide/orgs_tutorials_basic.html.

How cross-account observability works

To better understand the concept of a source account, it’s important to note that this refers to a child
account where your application runs. In order to enable cross-account monitoring, each source account
must provide permission to query the data from the monitoring account.

You can visualize the relationship between monitoring accounts and source accounts in Figure 13.4:

Figure 13.4 – Monitoring account and the source AWS accounts

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_tutorials_basic.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_tutorials_basic.html

Observability Best Practices at Scale406

With this configuration, all of your metrics, logs, and traces will still be stored within your own
account, but the monitoring account will have the ability to query and analyze them. This allows
you to maintain full control over your data while still benefiting from a comprehensive, centralized
monitoring solution.

Configuring CloudWatch cross-account observability

Let’s look into how to configure Observability in this monitoring account from AWS CloudWatch Console:

1. Let’s navigate to CloudWatch | Settings:

Figure 13.5 – CloudWatch Settings view in a monitoring account

2. Navigate to the Global | Monitoring account configuration option and then click on Configure:

Figure 13.6 – Configuration of the monitoring account

Observability best practices at scale 407

3. Select Logs, Metrics, and Traces and provide the account numbers from which you would like
to query the metrics, as shown in Figure 13.7:

Figure 13.7 – Allow Logs, Metrics, and Traces to query from the monitoring account

We are sharing all three types of golden signals, namely logs, metrics, and traces, with the
monitoring account from the List source accounts section. In this example, we have listed
two source account numbers separated by a comma. Alternatively, you can also use the AWS
organization ID.

4. To identify each account that has been added as a source account, you can use the default
options for the Account name and $Accountname fields as variables, as shown in Figure 13.8.
Then click Configure:

Observability Best Practices at Scale408

Figure 13.8 – Display name of the source accounts in the monitoring account

You should see a success message saying You have successfully enabled the monitoring account:

Figure 13.9 – Confirmation message that the monitoring account is successfully configured

5. Once you have enabled the monitoring account feature in your AWS account, you can download
the CloudFormation template and deploy the same in each AWS account where you would
like to share the data with the monitoring account. Do this by navigating to the Resources to
link accounts tab, as shown in Figure 13.10:

Observability best practices at scale 409

Figure 13.10 – Resources to link accounts

You will have two different options to link the source accounts to the monitoring account. Either
using AWS Organization or Any Account. It is recommended to use AWS Organizations
when you have multiple accounts used in your organization. We have discussed the placement
of the AWS monitoring account in an AWS organization in the Understanding multi-account
and multi-Region topologies section.

In this exercise, I have a multi-account organization structure, and I am choosing the AWS
Organization and downloading the CloudFormation template:

Figure 13.11 – Monitoring account CloudFormation template in an AWS organization

Observability Best Practices at Scale410

6. Now, let’s log in to your second AWS account and navigate to CloudFormation and deploy
the CloudFormation template into the second AWS account (referred to as SourceAccount1)
to share the data with the monitoring account:

Figure 13.12 – Deployment of the CloudFormation template in SourceAccount1

Upon successfully deploying the CloudFormation template, you should see the corresponding
confirmation message, illustrated in Figure 13.13:

Figure 13.13 – Successful deployment of the CloudFormation template

At this point, you should be able to view and query the data of the source account from the
monitoring account.

Observability best practices at scale 411

7. Switch to the AWS monitoring account to see whether the configuration is successful. Navigate
to CloudWatch | Settings | Global and click on Manage source accounts:

Figure 13.14 – Manage source accounts from the monitoring account

You should be able to see the linked source account in the monitoring account:

Figure 13.15 – Source account information from the monitoring account

You can repeat the same for multiple AWS accounts in your organization.

Observability Best Practices at Scale412

Now, let’s look into the outcome of the configuration carried out till now:

1. AWS has added a new label to identify the monitoring account, which you should be able to
quickly identify when you log in to the CloudWatch console of Monitoring account, as shown
in Figure 13.16:

Figure 13.16 – The Monitoring account label in the CloudWatch console

2. If you go to CloudWatch | Metrics or CloudWatch | Log groups, you’ll be able to view all the
metrics and search logs from all the source accounts:

Figure 13.17 – Visibility of CloudWatch Log groups from the monitoring account

Cross-account observability is helpful in scenarios where your applications are spread across multiple
accounts but are in the same Region.

It is necessary to repeat the procedure in all Regions to comprehend them all within an AWS account.

In this section, we learned about the need for AWS CloudWatch cross-account observability and how
to configure it using the AWS Console in a multi-account environment.

In the next section, we will look into another AWS functionality called CloudWatch Cross-Account
Cross-Region, which is helpful when you want to query data and build a dashboard from a unified
AWS CloudWatch dashboard without switching multiple AWS accounts.

Exploring cross-account cross-Region CloudWatch 413

Exploring cross-account cross-Region CloudWatch
Cross-account cross-Region CloudWatch is a feature offered by AWS that enables you to monitor your
resources across multiple AWS accounts and Regions from a central location. This feature allows you
to access metrics and logs from multiple accounts and Regions within a single dashboard.

This is a two-step process, where you enable cross-account cross-Region functionality in your AWS
Organizations master account and then add each source account to share the data with your AWS
Organizations monitoring account. Let’s look at how to configure this now.

Configuring AWS cross-account cross-Region in AWS
Organizations

Step 1: Follow these steps to enable cross-account cross-Region functionality in your AWS Organization
master account:

1. First, log in to your AWS Organizations master account.

2. Then navigate to CloudWatch | Settings | View cross-account cross-region, and click Configure:

Figure 13.18 – Cross-account cross-region configuration in CloudWatch

Observability Best Practices at Scale414

3. Select AWS Organization account selector, then Save Changes:

Figure 13.19 – Enabling AWS Organization to share the CloudWatch data

This will allow you to query the data across your AWS organization from the delegated AWS
Monitoring account.

Step 2: Add each source account to share the data with your AWS Organizations monitoring account.

As a part of this step, you need to allow each source account to share the data with the monitoring
account by deploying a CloudFormation template to allow sharing the data:

1. Log in to the AWS source account (to deploy the CloudFormation template). Select CloudWatch
| Settings and then select Configure under Share your CloudWatch data:

Exploring cross-account cross-Region CloudWatch 415

Figure 13.20 – Enabling source accounts to share the CloudWatch data with the monitoring account

2. Provide the AWS account number for the monitoring account from which you would like to
query the data:

Figure 13.21 – Providing the AWS monitoring account number to share the data with

Observability Best Practices at Scale416

3. Click on Launch CloudFormation template to deploy the CloudFormation template to create
the required IAM roles:

Figure 13.22 – Deploy the CloudFormation template to deploy the IAM role

The deployment of the CloudFormation template is now complete:

Figure 13.23 – Deploy the CloudFormation template to deploy the IAM role

When you switch to your monitoring account, you should be able to visualize drop-down
options for account and Region to query the metrics and create dashboards.

You can see in the following screenshot that you can visualize the X-Ray traces in the US East (Ohio)
Region in the source account from your monitoring account in the N. Virginia Region:

Exploring cross-account cross-Region CloudWatch 417

Figure 13.24 – Visualizing X-Ray traces in a cross-account cross-Region scenario

Next, let’s look into the gaps in cross-account and cross-Region observability and see what additional
consideration would be required for the customers.

Limitations of CloudWatch cross-account cross-Region
observability

When dealing with disaster recovery scenarios for applications spread across multiple AWS Regions,
the cross-account cross-Region functionality can be a valuable tool for gaining insights into the
application’s performance. However, it’s important to note that this functionality has some limitations,
particularly when it comes to end-to-end tracing.

While the cross-account cross-Region functionality can provide metrics and aggregate them across
Regions, it may not be sufficient to gain a complete picture of the application’s performance. To truly
understand how the application functions, you may need to switch to each Region individually to
visualize the application trace and query relevant logs.

This means that when using this functionality, it’s important to be aware of its limitations and have a
plan in place for accessing the necessary logs and traces in each Region as needed. By staying proactive
and prepared, you can help ensure that you have the insights you need to effectively manage your
application’s performance and minimize downtime in the event of a disaster.

Observability Best Practices at Scale418

Summary
In this chapter, we have explored two key functionalities of CloudWatch: cross-account observability
and cross-account cross-Region observability. Cross-account observability allows you to monitor
resources that are located in different AWS accounts, making it possible to share and collaborate
on monitoring data across multiple accounts. Meanwhile, cross-account cross-Region observability
takes it a step further by enabling monitoring across multiple AWS accounts and Regions, providing
a unified view of all the resources in use.

While these solutions offer many benefits in achieving observability for applications running under
multiple accounts and Regions, we have also looked into their limitations when dealing with complex
applications that are spread across multiple Regions and accounts.

In the next chapter, we will look into Well-Architected Framework and see how that could be applied to
various observability services on AWS. Additionally, we will explore the Management and Governance
Lens and how interoperable functions with observability could provide benefits the organization.

Questions
1. Describe the use of AWS Organizations.

2. What are the requirements of cross-account observability?

3. What are the use cases of cross-account observability?

4. Explain the difference between cross-account and cross-Region observability.

14
Be Well-Architected for
Operational Excellence

In the previous chapter, we discussed using observability services from AWS to help you accelerate your
cloud adoption journey. In this chapter, we will examine using the Well-Architected Framework for
observability workloads, such as CloudWatch metrics, Logs, X-Ray traces, and open source managed
services from AWS. We will also learn about best practices according to the AWS Well-Architected
Framework pillars and about tools from AWS and the community that can help with adopting best
practices for optimizing observability workloads and achieving the desired business outcomes.

Observability is one of the important parts of achieving the Well-Architected Framework for cloud
workloads. Designing an observability toolset or observability solution on AWS that adheres to the best
practices outlined in the the Well-Architected Framework requires consideration of multiple aspects.

In this chapter, we will understand how to apply the Well-Architected Framework for your observability
solutions on AWS and look at cost optimization techniques for observability solutions. Then, we will
dig deeper to understand how observability is an important part of your cloud journey and understand
interoperable functions of observability through a management and governance lens.

This chapter covers the following main topics:

• AWS' Well-Architected Framework

• Applying the Well-Architected Framework and exploring automated solutions

• Understanding management and governance in the Well-Architected Framework

Technical requirements
You will need to have a working AWS account to look into the concepts being discussed and verify
them as we progress in the chapter.

Be Well-Architected for Operational Excellence420

If you are an architect and looking to design a solution for observability, it is always a good idea to
look into the AWS Well-Architected Framework, which provides you with the foundations of best
practices to follow when designing a workload to run in AWS. Let’s understand the foundations of the
Well-Architected Framework before we go into the practice of implementing them for observability
solutions on AWS.

An overview of the AWS Well-Architected Framework
The AWS Well-Architected Framework is a set of guiding tenets that will help you improve the quality
of the workload. It consists of six pillars, namely Operational Excellence, Security, Reliability,
Performance Efficiency, Cost Optimization, and Sustainability. You can see the six pillars in the
following figure:

Figure 14.1 – AWS Well-Architected Framework pillars

Now, let’s understand the fundamental concepts of each pillar in the AWS Well-Architected Framework:

• Operational Excellence: This pillar centers on optimizing operational efficiency through effective
workload monitoring and the ongoing improvement of processes and procedures. To attain
operational excellence, we will explore how an operations-first approach can be incorporated
into the design of an observability framework to achieve the desired state.

• Security: This pillar focuses on protecting information and systems. To achieve the necessary
security measures for observability workloads, we will explore account management and
separation considerations for observability workloads and also discuss how to operate
observability workloads such as CloudWatch Logs encryption securely as a part of achieving
security goals for observability workloads.

Applying the Well-architected framework and exploring automated solutions 421

• Reliability: This pillar focuses on restoring applications to full functionality in the event of
failure. To ensure reliability for observability applications running on instances such as Amazon
OpenSearch Service, we will examine how to prioritize reliability and achieve this goal for
observability workloads.

• Performance Efficiency: This pillar provides guidance on efficiently scaling architecture to
meet users’ demands. To prioritize performance optimization, we will explore adopting various
AWS-native solutions.

• Cost Optimization: This pillar provides guidance on optimizing workload costs. We will
explore the available cost optimization techniques and tools available to optimize the cost of
the observability workloads running on AWS.

• Sustainability: This pillar focuses on the environmental impact of the workloads. We will
explore how adopting AWS observability solutions can minimize the environmental impact and
investigate various scenarios available in designing observability strategies to be more sustainable.

You can read more about the Well-Architected Framework and the best practices to follow for your
workloads in the documentation at https://aws.amazon.com/architecture/well-
architected/.

Now that we have an overview of the Well-Architected framework, let’s dig deeper and explore how
to apply it based on my experience with observability on AWS!

Applying the Well-architected framework and exploring
automated solutions
Let’s understand how you can apply the Well-architected framework for your cloud observability
solution and understand the automated solutions available to meet the business requirements, such
as high availability, resiliency, and failover mechanisms.

Operational excellence

The Operational Excellence design principles focus on five major components: perform operations as
a code; make frequent, small, and reversible changes; refine operations procedures frequently; anticipate
failures; and learn from all operational failures. I suggest you look into the details of the Operational
Excellence pillar and go through the design principles and the best practice definitions from AWS
at https://docs.aws.amazon.com/wellarchitected/latest/operational-
excellence-pillar/welcome.html.

Now let’s see how we can apply these design principles and understand the best practice recommendations
from AWS and how they are relevant for observability workloads.

https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/architecture/well-architected/
https://docs.aws.amazon.com/wellarchitected/latest/operational-excellence-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/operational-excellence-pillar/welcome.html

Be Well-Architected for Operational Excellence422

Evaluating customer needs

As a part of the Organization Priorities best practices (OPS01-BP01, OPS01-BP02, and OPS01-BP06),
evaluating both your internal and external customer requirements is one of the best practices to follow
for your observability workload.

The observability toolset in AWS provides different tools for meeting your customer needs. As discussed
in Chapter 2, Overview of Observability Landscape on AWS, you have two different options to choose
from the toolset: either cloud-native services such as CloudWatch or open source managed services
such as Prometheus, Grafana, and Amazon OpenSearch. It is also possible to select the best of both
worlds and design your observability strategy based on that. Always evaluate the internal and external
customer needs and look into the selection of the services required to meet the business requirements.

Fully automating integration and the deployment of agent workloads

OPS05-BP10 speaks about fully automating the integration and deployment of workloads. One of the
important things to consider in deployment and integration is observability agent deployment for
workloads running on different compute platforms such as EC2, containers, and Lambda functions
and their configuration.

Designing with operations in mind requires the architecture team to prioritize automating the
onboarding of different agents’ installation for workloads running on AWS. Based on the toolset
being adopted for observability as discussed in Chapter 2, Overview of the Observability Landscape
on AWS, there are four different agents that are discussed in this book the: CloudWatch agent, AWS
X-Ray agent, OpenTelemetry agent, and FireLens agent. Based on the workload you are looking
to instrument, you could leverage CloudFormation as a method to roll out the agent as a part of the
workload deployment.

It is not always possible to use CloudFormation as a method to roll out agents as a part of a workload
deployment. In this case, if you are looking to automate the overall agent rollout along with application
monitoring, AWS Application Insights provides a method to automate the agent installation along
with the configuration of best practices for your application monitoring for the supported workloads.

If you are looking for agent rollout for EC2 instances, you could also leverage AWS Simple System
Manager (SSM) automation to install the agents and configure your workloads in a standard way.

We have covered various methods to automate agent installation for different workloads running on AWS
on EC2, ECS, EKS, and Lambda in Chapter 3, Gathering Operational Data and Alerting Using Amazon
CloudWatch; Chapter 6, Observability for Containerized Applications on AWS; Chapter 7, Observability
for Serverless Applications on AWS; and Chapter 9, Collecting Metrics and Traces Using OpenTelemetry.

If you are using a third-party tool such as Terraform to provision your infrastructure, you can include
the agent deployment and configuration as a part of your Terraform templates.

Applying the Well-architected framework and exploring automated solutions 423

For specific workloads such as serverless, if you are using a serverless application model for deployment
of serverless applications, you could include observability configuration as a part of the serverless
application model (SAM) templates.

Using a process for event, incident, and problem management

You could look into building an observability dashboard that covers the operational health of your
observability workloads. You could look into prescriptive guidance on the different types of dashboards
such as Customer Experience, System-Level, Cost Optimization, and so on, for enhancing your
operations at https://aws.amazon.com/builders-library/building-dashboards-
for-operational-visibility/.

Alerting when workload outcomes are at risk

As a part of OPS09-BP06 best practices, it is important to set up alerts when operations outcomes
are at risk. In the case of the non-availability of CloudWatch, X-Ray, and so on, or managed AWS
services such as Amazon Managed Grafana and Prometheus, you should have a mechanism when
the core service itself is not available.

AWS provides a Health Dashboard (e) to provide the availability and operations of AWS services.
You can personalize the Health Dashboard to get the service health of AWS observability services
that are being used as a part of your observability solution to understand any outages that may affect
your application monitoring and availability metrics.

Tracking CloudWatch alarm changes

As a part of OPS06-BP01 and OPS06-BP02, there should be a plan for unsuccessful changes along with
testing and validating the changes. One of the frequent changes made at runtime is the CloudWatch alarms.

During the operational changes, we have difficulty changing alarm configurations and receive a flood
of alerts when the alarm configuration goes wrong. AWS Config provides a method to track the current
and historical configuration of your alarm and notify you via Amazon Simple Notification Services
(SNS) when your alarm configuration changes. You can use the config rules to verify whether AWS
resources are having CloudWatch alarms for the specified metrics, and create a notification when the
settings are not right. You can also monitor whether you configured all the alarms with at least one
action, as an alarm without an action is not much use. When you use AWS Config to monitor these
settings, it will alert you when an operations noise is created because of unwanted changes and all
your alarms have some sort of action associated.

https://aws.amazon.com/builders-library/building-dashboards-for-operational-visibility/
https://aws.amazon.com/builders-library/building-dashboards-for-operational-visibility/

Be Well-Architected for Operational Excellence424

You could enable the following config rules to streamline changes and the configuration of AWS
CloudWatch alarms using AWS Config rules:

a. CloudWatch-Alarm-settings-check

b. CloudWatch-alarm-resource-check

c. CloudWatch-alarm-action-enabled-check

d. CloudWatch-alarm-action-check

Additional details about the AWS config rules can be found at https://aws.amazon.com/
blogs/mt/aws-config-support-for-amazon-cloudwatch-alarms/.

Alternatively, you can leverage the AWS Config Conformance packs, Operational Best Practices
for CloudWatch, found at https://docs.aws.amazon.com/config/latest/
developerguide/operational-best-practices-for-amazon-cloudwatch.
html, which will deploy the four AWS config rules listed previously and one additional config rule
for log group encryption. This will streamline the deployment process of operational best practices
for CloudWatch.

Security

The Well-Architected Framework Security pillar focuses on seven design principles: implement a strong
identity foundation; enable traceability; apply security at all layers; automate security best practices; protect
data in transit and at rest; keep people away from data; and prepare for security events. I suggest you
look into the details of the Security pillar and go through the design principles and the best practice
definitions from AWS at https://docs.aws.amazon.com/wellarchitected/latest/
security-pillar/welcome.html. Now, let’s look into applying some of the best practices for
your observability workloads on AWS.

Identity management

For delegating permissions on AWS-native observability solutions such as CloudWatch and X-Ray,
you could integrate your preferred identity provider with IAM Identity Center in AWS and delegate
the permissions as required by the creation and segregation of roles.

If you have a multi-account and multi-region environment, there are two different ways to streamline
or query the AWS-native observability setup.

Creating a monitoring account

As a part of the SEC01-BP01 (separate workloads using accounts) best practice, AWS recommends
having separate monitoring and logging accounts. With AWS CloudWatch adding cross-account and
cross-region functionality, it is recommended to have a separate monitoring account, which will help
you in querying the metrics, logs, and traces from a single place.

https://aws.amazon.com/blogs/mt/aws-config-support-for-amazon-cloudwatch-alarms/
https://aws.amazon.com/blogs/mt/aws-config-support-for-amazon-cloudwatch-alarms/
https://docs.aws.amazon.com/config/latest/developerguide/operational-best-practices-for-amazon-cloudwatch.html
https://docs.aws.amazon.com/config/latest/developerguide/operational-best-practices-for-amazon-cloudwatch.html
https://docs.aws.amazon.com/config/latest/developerguide/operational-best-practices-for-amazon-cloudwatch.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html

Applying the Well-architected framework and exploring automated solutions 425

AWS provides a method to query metrics, logs, traces, and dashboards for multiple account scenarios
by leveraging cross-account, cross-region functionality. In a multi-account scenario, you could look
into creating a dedicated monitoring account and query metrics, logs, and traces from multiple
account scenarios and multiple region scenarios. You can find more about this feature at https://
docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-
Unified-Cross-Account-Setup.html. This centralizes the permissions management access
control for all your observability data from the central place. We discussed this setup in Chapter 13,
Observability Best Practices at Scale, to understand how this will improve operational visibility and
support in the best practice in a complex enterprise organization.

Centralized or distributed accounts for CloudWatch

If you are not looking to adopt the first option (creating a separate monitoring account) and you already
have multiple accounts and multiple regions, AWS provides prescriptive guidance on the optimized
way to delegate permissions for metrics and logs. It is recommended to keep the metrics and logs in
the workload account where your applications are running and to centralize the logs into a separate
logging account to query and search the logs from a unified location by leveraging Amazon OpenSearch
Service. You can learn about additional considerations for metrics and logging at https://docs.
aws.amazon.com/prescriptive-guidance/latest/implementing-logging-
monitoring-cloudwatch/cloudwatch-centralized-distributed-accounts.
html.

AWS Managed Services for observability in a multi-account setup

If you are using Amazon-Managed Prometheus, Amazon-Managed Grafana, and Amazon OpenSearch
Service, you could leverage the central monitoring account methodology to ingest the metrics, logs,
and traces from multiple AWS accounts into an Amazon Managed Prometheus (AMP) workspace
being run in the centralized monitoring account. This approach will allow you to delegate permission
on the AMP workspace or Amazon Managed Grafana from a central place and track changes to the
security delegation from a central place. You can find more information on how to set up cross-account
ingestion on the AWS blog for Amazon-Managed Prometheus at https://aws.amazon.com/
blogs/opensource/setting-up-cross-account-ingestion-into-amazon-
managed-service-for-prometheus/ and Amazon-Managed Grafana at https://aws.
amazon.com/blogs/opensource/setting-up-amazon-managed-grafana-cross-
account-data-source-using-customer-managed-iam-roles/.

Protecting data in transit and at rest

SEC08-BP03 requires enforcing encryption at rest for sensitive data in your cloud environment.
Fortunately, CloudWatch provides robust encryption options to ensure that your data is secure, both
in transit and at rest.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account-Setup.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account-Setup.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account-Setup.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/implementing-logging-monitoring-cloudwatch/cloudwatch-centralized-distributed-accounts.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/implementing-logging-monitoring-cloudwatch/cloudwatch-centralized-distributed-accounts.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/implementing-logging-monitoring-cloudwatch/cloudwatch-centralized-distributed-accounts.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/implementing-logging-monitoring-cloudwatch/cloudwatch-centralized-distributed-accounts.html
https://aws.amazon.com/blogs/opensource/setting-up-cross-account-ingestion-into-amazon-managed-service-for-prometheus/
https://aws.amazon.com/blogs/opensource/setting-up-cross-account-ingestion-into-amazon-managed-service-for-prometheus/
https://aws.amazon.com/blogs/opensource/setting-up-cross-account-ingestion-into-amazon-managed-service-for-prometheus/
https://aws.amazon.com/blogs/opensource/setting-up-amazon-managed-grafana-cross-account-data-source-using-customer-managed-iam-roles/
https://aws.amazon.com/blogs/opensource/setting-up-amazon-managed-grafana-cross-account-data-source-using-customer-managed-iam-roles/
https://aws.amazon.com/blogs/opensource/setting-up-amazon-managed-grafana-cross-account-data-source-using-customer-managed-iam-roles/

Be Well-Architected for Operational Excellence426

CloudWatch log groups can be encrypted using AWS KMS keys, providing you with complete control
over the encryption keys used to protect your data. This enables you to manage and rotate your
encryption keys as per your security policies.

If you are using Amazon-Managed Grafana, Amazon-Managed Prometheus, or Amazon OpenSearch
Service, AWS follows the shared responsibility model for data protection. In this model, AWS is
responsible for securing the underlying infrastructure of these services, while you are responsible for
securing your data and any custom code you may use with these services. In terms of data encryption,
these services automatically encrypt data in transit using SSL, ensuring that your data is protected
during transmission. You can also encrypt your data at rest using AWS KMS, which provides robust
encryption options and makes it easy to manage encryption keys.

Compliance

As per SEC07-BP02 (define data identification and classification), it is good to enforce protection
for log data for any personalized information. To safeguard sensitive application information and
Personally Identifiable Information (PII), you can enable data protection for CloudWatch log groups.
You can protect the data in CloudWatch Logs by applying data protection policies, which can help
you discover the sensitive data logged by systems and applications and protect them as per the data
protection policies configured. This will help in potentially reducing the exposure of sensitive data
due to application security vulnerabilities. If you would like to look into the details of protecting the
data, you can refer to https://aws.amazon.com/blogs/aws/protect-sensitive-
data-with-amazon-cloudwatch-logs/.

The following is the configuration capability of protecting sensitive data from CloudWatch log groups
based on the type of data being exposed:

https://aws.amazon.com/blogs/aws/protect-sensitive-data-with-amazon-cloudwatch-logs/
https://aws.amazon.com/blogs/aws/protect-sensitive-data-with-amazon-cloudwatch-logs/

Applying the Well-architected framework and exploring automated solutions 427

Figure 14.2 – CloudWatch log group data protection

If you are looking for an industry-standard compliance mechanism for CloudWatch, Amazon
CloudWatch is FedRAMP- and PCI-compliant.

For Amazon OpenSearch Service, you can leverage AWS Config to measure the compliance of security
best practices by deploying the Security Best Practices for Amazon OpenSearch Service conformance
pack by region. This automates the measurement of compliance as per the best practices from AWS
for Amazon OpenSearch Service. You can find the sample template, as shown in the following figure,
in AWS Config:

Be Well-Architected for Operational Excellence428

Figure 14.3 – AWS Config conformance pack

Enabling traceability

You can integrate and configure automation for CloudTrial logging by setting up the destination for
CloudTrial management logs to CloudWatch, which will help you query and set up automation for
any security-related incidents based on the CloudTrail logging information.

Reliability

The Well-Architected Framework Reliability pillar focuses on five design principles: automatically recover
from failure; test recovery procedures; scale horizontally to increase aggregate workload availability; stop
guessing capacity; and manage change through automation. I suggest you look into the details of the
Reliability pillar and go through the design principles and the best practice definitions from AWS at

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/
welcome.html. Now, let’s look into applying some of the best practices for your observability
workloads on AWS.

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html

Applying the Well-architected framework and exploring automated solutions 429

Managing service quotas and constraints

As per REL01-BP01 (aware of service quotas and constraints), REL01-BP02 (manage service quotas
across accounts and regions), and REL01-BP05 (automate quota management), it is best practice to
manage service quotas for services and automate where possible. To manage the service quotas for
CloudWatch, you can create a CloudWatch dashboard using the metric math functionality. If you
would like to understand more about metric math, please refer to Chapter 5, Insights into Operational
Data with CloudWatch. A helpful document on how to configure the service quotas for CloudWatch
using metric math can be found at https://docs.aws.amazon.com/AmazonCloudWatch/
latest/monitoring/CloudWatch-Quotas-Visualize-Alarms.html.

If you are looking for a more comprehensive solution for all the supported services, there is a ready-
made solution implementation from AWS called Quota Monitor. This can be deployed to monitor
actions on the service alerts and integrate with your favorite notification mechanism as required. It
can be found at https://aws.amazon.com/solutions/implementations/quota-
monitor/.

Failure management

As per REL10-BP01 (deployment of workloads to multiple locations), when you have a publicly
accessible application in different regions and would like to set up observability across regions, you
could use the deep application observability solution to understand the failover and deployment of
best practices for application observability from the solution at https://aws.amazon.com/
solutions/guidance/deep-application-observability-on-aws/.

Implementing change

As per REL08-BP05 (deploy changes with automation), one of the changes you may require to do is the
CloudWatch agent configuration. If you are using the CloudWatch unified agent, you could look into
managing the agent configuration in your S3 bucket and push the configuration using SSM automation.
Alternatively, you could also leverage the Git repository to publish your agent configuration and push
the configuration to the CloudWatch agents as a part of change management. We have discussed this
configuration in Chapter 3, Gathering Operational Data and Alerting Using Amazon CloudWatch, on
how to automate the CloudWatch agent using SSM automation.

Performance efficiency

The Well-Architected Framework Performance Efficiency pillar focuses on five design principles,
namely democratize advanced technologies; go global in minutes; use serverless architectures; experiment
more often; and consider mechanical sympathy. You could find details about this definition of the design
principles and best practices in the documentation at https://docs.aws.amazon.com/
wellarchitected/latest/performance-efficiency-pillar/welcome.html.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Quotas-Visualize-Alarms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Quotas-Visualize-Alarms.html
https://aws.amazon.com/solutions/implementations/quota-monitor/
https://aws.amazon.com/solutions/implementations/quota-monitor/
https://aws.amazon.com/solutions/guidance/deep-application-observability-on-aws/
https://aws.amazon.com/solutions/guidance/deep-application-observability-on-aws/
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/welcome.html

Be Well-Architected for Operational Excellence430

Let’s look at some of the best practices we could adopt for the observability workloads from the
Performance Efficiency design principle point of view.

Performance architecture selection

PERF01-BP01 describes the available services and resources. We have discussed the overall observability
solutions available on AWS as a part of Chapter 2, Overview of the Observability Landscape on AWS.
You should look into the available services and select the services that are best for your applications.

Architecture considerations

As per PERF02-BP1, to evaluate the available compute options, CloudWatch is a managed service
from AWS. If you are looking to adopt any of the open source observability solutions, it is always
good to consider using Amazon-Managed Grafana or Amazon-Managed Prometheus as a first choice
before deploying and managing them on your own on an EC2 instance. If you are looking to adopt
OpenSearch Service, consider looking into OpenSearch Serverless (https://aws.amazon.
com/opensearch-service/features/serverless/) instead of deploying OpenSearch
on a managed EC2 cluster from AWS. This not only improves the scalability but also helps you with
performance optimization based on the number of queries being executed.

Cost optimization

The Cost Optimization pillar in the Well-Architected Framework provides five design principles for
optimizing the cost, namely implement Cloud Financial Management (CFM); adopt a consumption
model; measure overall efficiency; stop spending money on undifferentiated heavy lifting; and analyze
and attribute expenditure. I suggest you look into the details of the Cost Optimization pillar and go
through the design principles and the best practice definitions from AWS at https://docs.aws.
amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.
html.html.

Let’s look into implementing these best practices for the observability workloads on AWS.

Practicing CFM

It is recommended to implement CFM as an organization in the overall cloud governance function.
AWS provides various tools for understanding the optimize the cost model. AWS Cost Explorer is a
tool that provides dashboards and reports for your overall cloud spend. You could filter the usage of
the Cost Explorer only by the service, CloudWatch, and understand the top API operations, which
are the high-cost consumers. A high-level summary report is shown in the following figure. If you
look into the details, the high cost is caused by CloudWatch Logs, which are used for the embedded
metric format and PutLogEvents API.

https://aws.amazon.com/opensearch-service/features/serverless/
https://aws.amazon.com/opensearch-service/features/serverless/
https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html.html
https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html.html
https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html.html

Applying the Well-architected framework and exploring automated solutions 431

Figure 14.4 – AWS Cost Explorer

Expenditure and usage awareness

As per the best practice COST03-BP02, it is recommended to identify cost attribution categories and
COST03-BP04 (configure billing and cost management) tools. Also, as a part of COST01-BP06, we
should have tools to understand the overall cost and categorize them by workload. To address this, AWS
has a solution called Cloud Intelligence Dashboards (https://github.com/aws-samples/
aws-cudos-framework-deployment). As a part of Cloud Intelligence Dashboards, you have
a tab for Monitoring and Observability, which will help you in understanding the cost along with
detailed information about the top 10 CloudWatch resources that are generating the cost. This will
help you in fine-tuning the cost. You can look into the sample dashboard provided by the tool in the
following figure:

https://github.com/aws-samples/aws-cudos-framework-deployment
https://github.com/aws-samples/aws-cudos-framework-deployment

Be Well-Architected for Operational Excellence432

Figure 14.5 – Monitoring and Observability in the Cloud Intelligence Dashboards

You can also find the GitHub repo for the Cloud Intelligence Dashboards from AWS in the GitHub
repository at https://github.com/aws-samples/aws-cudos-framework-deployment.
AWS also provides guidance on reducing the CloudWatch cost based on the Cloud Intelligence
Dashboards at https://aws.amazon.com/premiumsupport/knowledge-center/
cloudwatch-understand-and-reduce-charges/?nc1=h_ls and https://aws.
amazon.com/premiumsupport/knowledge-center/cloudwatch-logs-bill-
increase/.

Optimizing over time

As per COST10-BP01, you should have a process to review your workload and optimize it in terms
of cost. Let’s look into one of the examples of optimizing the CloudWatch cost for the Elastic
Kubernetes Service (EKS) workload. When leveraging Container Insights along with AWS Distro for
OpenTelemetry (ADOT), which was discussed as a part of Chapter 10, Deploying and Configuring an
Amazon Managed Service for Prometheus , you could look at reducing the cost of Container Insights.
AWS has published a blog on how the cost could be optimized when ADOT along with Container
Insights in two different ways, namely filtering metrics using processors and customizing metrics and

https://github.com/aws-samples/aws-cudos-framework-deployment
https://aws.amazon.com/premiumsupport/knowledge-center/cloudwatch-understand-and-reduce-charges/?nc1=h_ls
https://aws.amazon.com/premiumsupport/knowledge-center/cloudwatch-understand-and-reduce-charges/?nc1=h_ls
https://aws.amazon.com/premiumsupport/knowledge-center/cloudwatch-logs-bill-increase/
https://aws.amazon.com/premiumsupport/knowledge-center/cloudwatch-logs-bill-increase/
https://aws.amazon.com/premiumsupport/knowledge-center/cloudwatch-logs-bill-increase/

Applying the Well-architected framework and exploring automated solutions 433

dimensions (https://aws.amazon.com/blogs/containers/cost-savings-by-
customizing-metrics-sent-by-container-insights-in-amazon-eks/). You
can see that overall cost-reducing is close to 60%.

Metric Math

You can use CloudWatch metric math, which was discussed in Chapter 5, Insights into Operational
Data with CloudWatch, to derive new metrics from existing metrics rather than ingest a new metric,
which will increase the cost of CloudWatch. For example, if you are looking to derive the sum of
overall sales, you can use the metric math functions to sum the individual sales. This can reduce the
volume of data sent to CloudWatch and help reduce the cost of using the service.

CloudWatch log group cost optimization

To manage the cost of your CloudWatch logs effectively, it’s advisable to establish a retention period that
aligns with your business needs. By doing so, you can avoid retaining logs for longer than necessary,
which can result in higher storage costs.

It’s also important to consider any compliance requirements that apply to your logs. Depending on
your industry or regulatory environment, you may need to retain logs for a specific duration or ensure
that they are stored securely to meet compliance obligations.

Based on the type of data being stored in each CloudWatch log group, set the retention timelines. You
can edit the log group retention setting and set up the retention timeline as shown in the following figure:

Figure 14.6 – Configure CloudWatch log retention

Managed services

Always prefer adopting managed services or serverless options over building your own solution. This
approach offers several benefits including reduced maintenance requirements, a lower total cost of
ownership, and faster time to market. For example, leverage Amazon Managed Grafana over installing
your own Grafana on Elastic Compute Cloud (EC2). Leverage the serverless Amazon OpenSearch
Service over the EC2-based OpenSearch Service. This not only optimizes the cost but also helps you
achieve your sustainability goals.

https://aws.amazon.com/blogs/containers/cost-savings-by-customizing-metrics-sent-by-container-insights-in-amazon-eks/
https://aws.amazon.com/blogs/containers/cost-savings-by-customizing-metrics-sent-by-container-insights-in-amazon-eks/

Be Well-Architected for Operational Excellence434

Leveraging logs for sending metric data

If you are looking to optimize the cost of storing metrics in the CloudWatch namespace, you could
consider sending the metric data as a log stream into CloudWatch Logs, using metric filters to create
metrics for the required dimension, and also querying the data on demand as a metric. This will help
in optimizing the cost when you are looking to publish the metric in multiple dimensions.

Sustainability

The Sustainability pillar’s design principles are understand your impact; establish sustainability goals;
maximize utilization; anticipate and adopt new, more efficient hardware and software offerings; and use
managed services and reduce the downstream impact of your cloud workloads. You can find more details
about these design principles and best practices for sustainability for your workload at https://
docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/
sustainability-pillar.html.

Scaling infrastructure with user load

As a part of SUS-BP01 (scale infrastructure with user load), it is advisable to choose serverless or
managed services over EC2 instances and building your own service. For observability workloads,
use CloudWatch-native services as relevant and fall back on AWS Managed Services as required for
additional functionalities, or use a hybrid approach based on the workload demands.

Optimizing logging strategies

Send only relevant information to CloudWatch Logs. You could use the filtering option available in the
CloudWatch agent to limit the amount of data being sent for retention in the CloudWatch log groups.
This will reduce the amount of data being stored and support sustainability goals for your organization.

In this section, we understood the pillars of the AWS Well-Architected framework and discussed how
to implement the best practices for your observability solutions on AWS. In the next section, we will
look through the management and governance lens in the Well-Architected framework.

Understanding management and governance in the
Well-Architected Framework
The AWS Well-Architected Framework provides the best practices and guidelines to follow when you
are designing your workload to run on AWS. To strengthen the framework, the management and
governance lens especially focuses on applying these principles to ensure that you have the necessary
processes, tools, and practices to build cloud-ready environments. The goal of the management and
governance (M&G) lens focuses on four key parts:

• Use what you know: Allows for quick implementation of scalable and secure cloud management,
removing the need for re-investment by using familiar and existing tools

https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html
https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html
https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html

Understanding management and governance in the Well-Architected Framework 435

• Increase speed to value: Accelerate cloud migrations by following the best practices learned
from thousands of successful migrations and activations

• Increase efficiency with interoperability: Capabilities should interoperate and inform each
other to achieve greater scale than possible if they are considered in isolation

• Balance agility and governance: The M&G lens provides prescriptive guidance on how to
reduce the friction between the ability to govern and the ability to be agile while reducing
friction in operational capabilities

When you are on a migration journey to the cloud, and you use different migration approaches such
as migrating/lifting and shifting, modernizing or re-architecting applications, or building new, you
need a cloud-ready environment that takes into consideration all the M&G functions. The M&G lens
provides prescriptive best practices that help you define how you can manage and govern across the
life cycle of the cloud. There are eight functions that are most pertinent for successful customers in
cloud-ready environments. Let’s look at these eight functions:

• Controls and Guardrails: This function covers the policies, procedures, and technical controls
that help ensure compliance with relevant regulations and standards, as well as the overall
integrity and security of your cloud environment

• Network Connectivity: This function covers the design and management of your network
infrastructure, including the connectivity between your on-premises environment and the cloud

• Identity Management: This function covers the management of user identities, authentication,
and access control in your cloud environment

• Security Management: This function covers the policies, procedures, and technical controls
that help protect your cloud environment from security threats

• IT Service Management (ITSM): This function covers the management of IT services, including
the planning, design, delivery, and support of those services

• Observability: This function covers the monitoring and analysis of your cloud environment
to help identify issues, optimize performance, and improve reliability

• CFM: This function covers the management of costs and billing in your cloud environment,
including the optimization of resource utilization and the tracking of spending

• Sourcing and Distribution: This function covers the management of resources in your cloud
environment, including the procurement of hardware and software, as well as the distribution
of those resources to meet the needs of your organization

If you are looking to understand what each function is all about, you can find the reference and prescriptive
guidance on adopting M&G at https://docs.aws.amazon.com/wellarchitected/
latest/management-and-governance-guide/management-and-governance-
cloud-environment-guide.html.

https://docs.aws.amazon.com/wellarchitected/latest/management-and-governance-guide/management-and-governance-cloud-environment-guide.html
https://docs.aws.amazon.com/wellarchitected/latest/management-and-governance-guide/management-and-governance-cloud-environment-guide.html
https://docs.aws.amazon.com/wellarchitected/latest/management-and-governance-guide/management-and-governance-cloud-environment-guide.html

Be Well-Architected for Operational Excellence436

How those functions interoperate is a critical factor in their success. What I mean by interoperate
is the interaction between functions. The output of one function should feed input to another. As
an example, the output of the Security Management function (logs of API calls and events) is used
as input for the Observability function (monitoring and analyzing system behavior). The output of
the Observability function (resource utilization and performance data) is used as input for the CFM
function (analyzing and optimizing costs). By interoperating in this way, the M&G functions can
work together to create a more effective and efficient cloud environment.

Here is the snapshot of the AWS services that are supporting these functions:

Figure 14.7 – M&G with AWS services

Now let’s look at the Observability functionality in the M&G lens.

Observability is essential for all teams who operate and manage cloud applications and services. It
helps teams understand the behavior and performance of their systems by providing visibility into
workload events and operations metrics. This information can then be used to take appropriate action
and improve the reliability and efficiency of the cloud environment. The Observability function of
M&G provides guidance on how to prioritize the implementation of observability in your cloud
environment. Implementation priorities as defined for Observability in M&G are as follows:

• Collect, aggregate, and protect event and log data:

Logs, metrics, and traces should be collected across the different observability categories. You
should look into gathering, compiling, and securing event and log information by utilizing
various observability tools.

Understanding management and governance in the Well-Architected Framework 437

Utilize AWS CloudTrail logging for control plane observability, and Amazon VPC Flow
Logs, VPC Reachability Analyzer, and Amazon Inspector Network reachability services for
network observability, including the monitoring of network firewalls, intrusion detection and
prevention, load balancers, WAF, and proxy tools. Also, implement distributed tracing within
your application for observability of serverless, container, storage, and database workloads.

• Build capabilities to analyze and visualize logs events and traces:

As your organization grows on AWS, it becomes increasingly important to have the ability
to organize, present, and monitor your log data and metrics. By utilizing the correlation of
logs and performance metrics from multiple sources, you can gain valuable insights and an
understanding of your systems. To ensure the security of your organization, it is essential to
implement rules that quickly respond to any identified security incidents or patterns in your logs.
A consistent monitoring plan will allow you to adapt and evolve your observability capabilities
as your organization continues to migrate and develop solutions on AWS.

• Add detection and alerts for anomalous patterns across environments:

Take a proactive approach to identify known vulnerabilities and detect abnormal patterns
of events and activities. You should begin with identifying patterns or signs of unauthorized
account access or privileges, such as login activity to cloud management consoles, modifications
or attempted modifications to crucial cloud objects and data, and the creation, deletion, or
alteration of credentials or cryptographic keys. Additionally, detect incidents and patterns
of denied access, unidentified network traffic, unusual increases in cloud service costs, and
uncommon application traffic behavior.

• Define, automate, and measure response and remediation:

Define acceptable behavior limits in conjunction with business metrics to comprehend key
performance indicators for workloads and environments. Identify appropriate incident and
response actions to take. Utilize security information and event management (SIEM)
solutions to observe workloads in real time, discover security issues, and hasten root-cause
analysis. Leverage security orchestration, automation, and response (SOAR) platforms along
with responses generated from recorded events using tools such as AWS Lambda. Implement
a procedure to continuously enhance the mean time to identify (MTTI) the root cause and
mean time to respond (MTTR) to problems.

The M&G lens provides guidance on the essential eight capabilities for creating a cloud-ready environment
that is prepared for migration, able to scale, and operating efficiently. When considering these capabilities,
it is important to consider how they interoperate, what priority should be given to their implementation,
and which native AWS and partner services can support them. By designing the functions to work
together effectively, you can create a more effective and efficient cloud environment. This can be done
using a combination of manual, tightly integrated, loosely coupled, or automated mechanisms.

Be Well-Architected for Operational Excellence438

The interoperability of these functions can be understood from an observability point of view to gain
visibility into the operation of your cloud environment. It is important to define, capture, and analyze
operations metrics. The Controls and Guardrails function can help observe changes and highlight
them in observability tools, while the Network function can capture network flow logs and send them
to central infrastructure log archives and aggregation tools. The Identity Management function can
record changes with observability tools and set up automated alerting. By tuning observability and
monitoring with inputs from the Security Management function, you can reduce static and improve
the reliability of your systems. The Service Management function can integrate observability with
operational tooling, and the CFM function can include observability measures to alert for changes in
incurred and forecasted costs. The Sourcing and Distribution function can ensure that customers and
purchased solutions include instrumentation to support observability and monitoring capabilities. By
using these interdependent management and governance functions, you can create a more effective
and efficient cloud environment.

Summary
In this chapter, we looked at an overview of the AWS Well-Architected framework and looked into
the six pillars of the framework. Further, we have gone through how to apply the Well-Architected
framework best practices to observability workloads running on AWS and explored various tools
and solutions available to optimize the workloads as per the best practice requirements. Further, we
talked about the M&G lens and the role of observability in the M&G lens. The M&G lens provides
guidance beyond observability and throws light on how different functions should interoperate to
derive the maximum benefits when running workloads on AWS. Then, we looked into how to set up
an interoperable environment for the M&G pillars with respect to a observability solution and how
they could be reused in other pillars to prepare your cloud-ready environment.

In the next chapter, we’ll delve into the Cloud Adoption Framework and explore the critical factors to
consider when establishing an effective observability strategy for your organization. We’ll also examine
how observability can play a vital role in accelerating the adoption of cloud services and discuss other
essential considerations beyond observability from a cloud operations perspective. By understanding
these key concepts, you can develop a comprehensive approach to managing and optimizing your
cloud environment to meet your business needs.

Questions
1. What are the six pillars of the AWS Well-Architected Framework?

2. What is the significance of the M&G lens in the Well-Architected Framework?

3. How will interoperability between the M&G lens pillars help you achieve success?

4. What are the best practices to adopt from the Security pillar for your observability workloads?

15
The Role of Observability in the

Cloud Adoption Framework

The Cloud Adoption Framework (CAF) provides customers with a set of guidelines and best practices
to assist them in digitally transforming business outcomes by innovatively using AWS. The CAF has
undergone several updates, with versions 1.0 and 2.0, and the current version, 3.0. In version 1.0,
the framework consists of seven perspectives, each containing a group of components and activities
necessary for successful cloud adoption. In version 2.0, the perspectives were consolidated to six and
a new governance perspective was added. This version focuses on the capabilities that will be affected
in an organization during the move to the cloud. With version 3.0, the focus has shifted from cloud
adoption to accelerating digital transformation and achieving desired business outcomes through
the adoption of the cloud. The high-level changes in the CAF across its versions can be understood
from the following figure:

Figure 15.1 – History of the CAF

The Role of Observability in the Cloud Adoption Framework440

In this chapter, we will look at the following main topics:

• Overview of Cloud Adoption Framework 3.0

• Developing an observability strategy for an organization

• Role of observability in the CAF and the best practices for quicker adoption of cloud

Let’s navigate into CAF 3.0 and understand the different aspects that need to be considered to achieve
the desired business outcome, how observability could support achieving those outcomes, and look
into the observability strategy.

Overview of Cloud Adoption Framework 3.0
Let’s understand the various components of CAF 3.0. The CAF discusses and provides guidance on
multiple components:

• Phases of the cloud transformation journey

• Transformation domains

• Foundational capabilities

• Business outcomes

You could visualize the same in the AWS CAF 3.0 value chain figure here:

Figure 15.2 – AWS CAF value chain

Cloud transformation journey 441

Let’s deep dive into each of these components.

Cloud transformation journey
The cloud transformation journey discusses the agile approach for organizations on realizing the
business value of the cloud. If you look at the outer circle in the CAF, there are four different phases,
namely Envision, Align, Launch, and Scale.

Let’s dive deeper into them and look at the focus of the phases in the cloud transformation journey:

• Envision: The envision phase focuses on how customers identify and prioritize transformation
opportunities in line with their strategic objectives. So it is always working backward from
customer strategic business objectives to identify transformation opportunities in an organization.
As a part of this exercise, you would look into identifying key stakeholders for driving business
decisions, which is one of the critical aspects of the envision phase.

• Align: In the align phase, the focus is on identifying the broader set of stakeholders across the
organization and also focus on cross-organizational dependencies and capability gaps. So, this
phase will help customers create strategies for improving their cloud readiness as well as ensure
stakeholder alignment and facilitate relevant organizational change in management activities.

• Launch: In the launch phase, the focus is on delivering pilots in production relatively rapidly.
So, within 60-90 days, look at providing incremental business value quickly. These pilots should
be highly impactful and, when successful, they should influence the future direction. Learning
from pilots can help customers adjust their approach before scaling to full production.

• Scale: Upon successful pilot evaluations, expand service across the organization for maximum
business impact and scale the service across the organization. Ensure cloud investments yield
sustained benefits over the long term.

Figure 15.3 – Phases of the cloud journey in the CAF

Next is to look into the transformation domains, which are spread across technology, process,
organization, and product.

The Role of Observability in the Cloud Adoption Framework442

Transformation domains

The cloud transformation value chain focuses on four transformation domains that will help you
realize the full value and potential of the cloud – namely technological transformation, process
transformation, organization transformation, and product transformation.

Let’s see what they focus on:

• Technological transformation: Technological transformation focuses on using the cloud to
migrate and modernize your legacy infrastructure, applications, data, and analytics platforms
by utilizing the cloud.

• Process transformation: Process transformation aims to digitize, automate, and optimize
your business operations. This could involve using new data and machine learning to enhance
customer service, employee productivity and decision-making, business, and so on. The outcome
of this transformation will result in improved operational efficiency, reduced operating costs,
and a better experience for employees and customers.

• Organization transformation: Organization transformation centers on rethinking your
operating model, which outlines how your business and technology teams work together to
deliver customer value and achieve strategic goals.

• Product transformation: Product transformation involves rethinking your business model
by developing innovative value propositions and revenue streams, enabling you to target new
customers and penetrate new markets.

Figure 15.4 – Transformation domains in the CAF

Cloud transformation journey 443

Foundational capabilities

Next comes the foundational capabilities, which are grouped into six different perspectives. A
capability is an organizational ability to leverage processes to deploy resources to achieve a particular
outcome. The AWS CAF identifies 47 foundational capabilities that will help you with successful cloud
transformations. These capabilities will provide you with the best practice guidance that helps you
improve your cloud readiness and support your digital transformation goals.

The AWS CAF categorizes these 47 capabilities into 6 perspectives, namely Business, People, Governance,
Platform, Security, and Operations. Each perspective encompasses a set of related capabilities that
are owned or managed by specific stakeholders during the cloud transformation journey:

• The Business perspective helps ensure that your cloud investments speed up your digital
transformation ambitions and business outcomes

• The People perspective serves as a bridge between technology and business in accelerating
your cloud journey to help organizations grow to a culture of continuous growth and learning,
where change will be treated as business-as-normal, with a focus on culture, organizational
structure, leadership, and workforce

• The Governance perspective helps you orchestrate your cloud initiatives while maximizing
organizational benefits and minimizing cloud transformation-related risks

• The Platform perspective helps you build an enterprise-grade, scalable, hybrid cloud platform,
modernize your existing workloads, and implement cloud-native solutions

• The Security perspective focuses on ensuring the confidentiality, integrity, and availability of
your data and cloud workloads

• The Operations perspective helps you ensure that your cloud services are delivered at a level
that meets the needs of your business

The Role of Observability in the Cloud Adoption Framework444

Figure 15.5 – Perspective and capabilities in the CAF

Business outcomes

When you look at the outcomes of CAF 3.0, the benefits of adopting the CAF help businesses reduce
the risk profile by improving reliability, business continuity, increasing performance, and enhancing
security. The other benefits are improvement in environmental, social, and governance (ESG)
performance by providing insights into sustainability. The CAF also helps a business to grow new
revenue streams through rapid innovation in their products and services by cloud transformation and
increases operational efficiency by reducing operating costs, improving productivity, and enhancing
customer experience.

Now, let’s see how we can adopt the CAF from the point of observability solutions and look into how
it will support accelerating your cloud transformation journey.

Developing an observability strategy for your
organization
An observability strategy is essential for any organization looking to gain a deeper understanding of
its IT operations and systems. It addresses key questions such as the following:

• How do we effectively monitor our systems in the cloud?

Developing an observability strategy for your organization 445

• How can we gain visibility into serverless workloads?

• Why do certain workloads experience issues, and how can we prevent them from recurring?

• Which monitoring tools are best suited for our specific needs?

If you are facing any of these challenges, it is time to consider developing an observability strategy
for your organization.

Having an effective observability strategy is crucial for gaining a thorough understanding of IT
operations, workloads, and their effect on business outcomes and risks. It enables organizations to reduce
downtime, enhance customer satisfaction, enhance operational control, and increase efficiency. The
observability strategy is based on the golden triangle of observability, which includes metrics, logs,
and traces, as discussed in Chapter 1, Observability 101. Defining an observability strategy is beneficial
as it helps organizations realize its value and its impact on the overall success of the organization.

Benefits of defining an observability strategy

We could summarize the benefits of defining the observability strategy using the observability value
curve. The observability value curve provides organizations with a clear understanding of the benefits
they can expect to see by implementing the observability strategy. Let’s look at the observability
value curve:

• Understanding operational health: This is a crucial aspect of ensuring the smooth functioning
of any system. It involves revealing the health of both primary and supporting resources to
identify potential issues and address them proactively. Observing critical signals and metrics
is key in improving the mean time to detect (MTTD) failures, which is the average time
to identify a problem in a system. By focusing on operational health and reducing MTTD,
organizations can minimize downtime and ensure the availability of their systems, which is
critical to delivering high-quality services to their customers.

• Reducing mean time to recover (MTTR): This aspect helps to quickly identify the root cause
of issues and minimize the time needed to diagnose and resolve problems, restoring systems
from failure more efficiently through targeted troubleshooting.

• Identification of strategic improvement opportunities: By identifying the weak links in your
distributed application environment, you can uncover opportunities for strategic improvements
that will enhance the overall performance and reliability of your systems. This process involves
evaluating the various components of your application infrastructure and determining where
improvements can be made to optimize performance, reduce downtime, and improve overall
customer satisfaction. The identification of strategic improvement opportunities can help
organizations stay ahead of potential issues and prevent system failures, leading to a more
resilient and efficient application environment.

The Role of Observability in the Cloud Adoption Framework446

• Enabling data-driven decisions: By leveraging observability data, organizations can enhance
their decision-making capabilities and move away from relying on symptoms or intuition.
Observability data provides organizations with a comprehensive view of their systems and the
underlying data, enabling them to make informed decisions that are based on facts and evidence.
This data-driven approach can help organizations avoid deciding a course of action based on
assumptions or guesses, which can lead to unintended consequences and suboptimal outcomes.

• Improving business and technical agility: By utilizing observability to monitor systems,
organizations can speed up developer velocity and help developers release code with confidence.
Observability provides organizations with a comprehensive view of their systems, enabling
developers to identify potential issues and resolve them more quickly. This proactive approach
helps to reduce the time to market for new features and services. Observability not only helps
organizations improve the quality and speed of their software development process but it also
provides them with greater operational visibility and control, leading to improved business
and technical agility.

The observability value curve can be summarized as shown in the following figure:

Figure 15.6 – Observability value curve

The output of the observability strategy

Once you have completed your observability strategy, you should look at achieving the following output:

• Develop a clear plan for implementing observability tools and techniques to address areas of
uncertainty and gain deeper insights into the IT environment

• By having a well-defined observability plan, you can clearly identify what metrics are important to
track and how to measure them to support decision-making and drive continuous improvement

Now that we have understood the benefits, outcomes, and output of defining the observability strategy,
let’s look into how to approach the observability strategy and the techniques that could be leveraged
to derive the same.

Developing an observability strategy for your organization 447

Applying an observability strategy

The overall circle of observability strategy planning for an organization can be understood from the
following figure:

Figure 15.7 – Overview of an observability strategy

An observability strategy in an organization involves establishing a people-focused culture, gaining
insight into the system architecture, defining telemetry needs based on that architecture, selecting the
appropriate observability tools to meet those needs, generating operational insights, and taking action
based on those insights. This continuous cycle transforms operational data into actionable information,
leading to improved understanding and knowledge, and resulting in the ability to swiftly address any
issues and maintain a stable system. Let’s look into the first aspect of people culture.

People culture in an observability strategy

One of the important transformations required is the people transformation.

Starting the observability culture

When considering people’s transformation in your organization, think of observability as a service or
product that you can offer to internal teams. To effectively implement observability, it’s important to
establish an observability team that can provide a holistic approach, standardize tooling, and educate
teams on how to effectively use observability solutions. However, it’s important to be aware of potential
downsides, such as reliance on the observability team, a focus on cause-based alerting, lack of design,
and the potential for multiple tools and a high workload.

The Role of Observability in the Cloud Adoption Framework448

An observability team in a Cloud Center of Excellence (CCOE) will help you to do the following:

• Ensure full-stack observability for all applications

• Efficiently select tools for log, trace, and metric collection

• Enforce standards for consistent logging across all applications

• Put in place a strategy for centralized log collection, storage, and analysis

• Establish KPIs to measure workload performance

• Standardize a set of metrics to measure the achievement of KPIs

• Put in place a plan to remediate performance-related issues for observability service

When establishing an observability culture within an organization, there are three key areas to consider:
product offering, commonality, and training/education. Each of these aspects plays a crucial role in
ensuring the success of your observability strategy. Let’s dive into the details of these:

• Product offering: To implement observability in an organization, start by considering it as
a product offering and determining the user experience you want to provide for your teams.
Adhere to the 80:20 rule, where you focus on standardizing common use cases and making
them easy to adopt, while also providing flexibility for building more complex use cases.

• Commonality: To successfully achieve the adoption of observability within your organization,
it’s important to focus on commonality and ease of use. Use out-of-the-box functionality to
make it simpler for teams to adopt. Integrate observability into your application stack, use shared
code, and establish common alerting mechanisms and dashboards for commonly used services
on AWS in your organization. This will make it easy for teams to use observability without
spending time on standardization. Standardize the structure and format of the dashboards
across different teams and encourage the use of common observability patterns, such as log
formatting, exception handling, and metric conventions.

• Promote education and training: To effectively implement observability within your organization,
it’s important to educate internal teams on how to use it. Create bootcamp-style training
sessions for teams transitioning to the cloud or for new employees joining the organization.
These sessions can cover topics such as how to use observability tools, foundational use cases,
and leveraging the same in adopting different types of applications. Establish a clear process
for requesting help and support when teams need help with adopting observability for their
applications. Through education and training, teams will be better equipped to quickly adopt
and effectively use observability services.

Developing an observability strategy for your organization 449

Observability culture can be summarized as shown in the following figure:

Figure 15.8 – Adoption for the people culture

Maintaining the observability culture

Once the observability culture has been established, the next step is to ensure its ongoing success.
It is crucial to maintain the culture and continuously improve the observability offering within
the organization:

• Help: To sustain the culture, provide clear channels of communication and support. Standardize
the process for requesting help and support, establish chat channels for discussing relevant
topics, and create a mechanism for raising exceptions when the standard process is not suitable.
Schedule regular meetings with teams to gather feedback and improve the roadmap.

• Share: Regularly communicate new developments and improvements to the teams, share customer
success stories, and continually roll out new features and enhancements. Organize demos and
gather feedback during these sessions, and promote testimonials from satisfied customers.

• Practice: Remember that humans learn best by doing. Expertise is not evenly distributed, so
consider organizing events such as game days, chaos management, and testing opportunities
to improve observability practice.

• Feedback: Take feedback seriously, ask for improvements, and gather feedback through survey
forms, embedded forms in alerts, and dashboards. Pay attention during the incidents related
to observability and learn from the failures to improvise the observability system as a part of
agile methodology.

Maintaining observability culture can be summarized as follows:

Figure 15.9 – Maintaining the observability culture

The Role of Observability in the Cloud Adoption Framework450

System architecture in an observability strategy

The system architecture is a crucial component of an observability strategy in an organization.
Understanding the architecture of the systems being monitored is essential for defining the telemetry
requirements and selecting the appropriate tools. A clear understanding of the architecture helps
to identify the areas that need visibility and where telemetry data should be captured, stored, and
analyzed. This, in turn, enables the creation of an effective observability strategy that provides the
necessary insights into system performance and behavior.

When examining the system architecture in the cloud, it’s important to keep in mind that it differs
from traditional on-premises architecture. There are several cloud architecture patterns to choose
from, including multi-tier architecture, microservices architecture, serverless architecture, event-
driven architecture, edge computing architecture, or hybrid cloud architecture. Each pattern has its
own unique benefits and considerations. It is crucial to consider and map the data flows, identify
dependencies and interconnections, and determine the critical components that need to be monitored.
Once the architecture is understood, it is possible to determine the telemetry requirements, such as
the types of data that need to be captured, the frequency at which data needs to be collected, and the
sources of that data.

The architecture plays a key role in determining the appropriate toolsets required for effective
observability. This includes selecting tools that can integrate with the existing architecture, handle
the volume and variety of data, and provide the required functionality for analysis and reporting.

In summary, the system architecture is an essential aspect of an observability strategy, as it provides the
foundation for defining telemetry requirements, selecting tools, and generating operational insights. It
is important to take the time to fully understand the architecture to ensure a successful observability
strategy. In Chapter 3, Gathering Operational Data and Alerting Using Amazon CloudWatch, to
Chapter 7, Observability for Serverless Application on AWS, we covered observability services available
from AWS for multi-tier architecture, microservices architecture, and serverless architecture. We also
covered the open source managed services available on AWS in Chapters 9, Collecting Metrics and
Traces Using OpenTelemetry, Chapter 10, Deploying and Configuring an Amazon Managed Service for
Prometheus, and Chapter 11, Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon
OpenSearch Service.

Telemetry in an observability strategy

When building an observability strategy, it’s important to start with a clear understanding of your
business outcomes and goals. This will ensure that the strategy aligns with the needs of the organization
and supports decision-making. A five-step approach can be used to define the observability strategy
as telemetry and the outcome is outlined in the following figure:

Developing an observability strategy for your organization 451

Figure 15.10 – Approach to observability strategy

Let’s look into understanding each of the processes in the approach to observability strategy:

• Understand your business outcomes: Work backward based on your desired business outcomes
by consulting with relevant stakeholders and understanding their priorities. Document these
outcomes for reference. We are looking to start with the end in mind as a part of this process.

• Identify KPIs: Develop KPIs that align with the business outcomes and can be used to track
progress. Keep in mind that monitoring and measuring these KPIs is an ongoing effort. This
will help you set up clear goals for observability based on business outcomes.

• Determine how to measure KPIs: KPIs are definitions of what is required to evaluate the success
of business outcomes, but they are not specific metrics. Translate the KPIs into specific metrics
that can be tracked and measured. This will involve collaboration between business and IT
teams to identify the relevant workloads and components that need to be observed. Consider
the level of granularity that will be necessary for accurate measurement.

• Develop telemetry: Use the identified metrics and measurement criteria to develop the telemetry
infrastructure to support data collection and analysis.

• Continuously evaluate the business and technical impact: Regularly assess the effectiveness
of the KPIs and technical measurements in achieving the desired business outcomes. Make
adjustments as necessary to ensure they remain aligned with the overall objectives.

The Role of Observability in the Cloud Adoption Framework452

Capturing the observability discussions

When you are conducting the workshop for identifying the business outcomes, you could look into
capturing the input, output, and outcomes as a part of the simple template that will help you further
guide in defining the technical requirements based on the business outcomes. We show a simple
template here that could help you capture end-to-end tracking of your observability strategy:

Figure 15.11 – Observability strategy template

Now that you clearly understand the need for an observability strategy, as well as the approach and
method for conducting a workshop, let’s dive into identifying the specific details required to fulfill
the template:

1. First, identify all internal and external stakeholders. Internal stakeholders typically include
business owners, product owners, operations teams, developers, and security and compliance
teams. Typically, you could group them into operations, developers/engineers, and management.
External stakeholders include end users, partners, vendors, suppliers, and providers. Make
sure to also consider any compliance requirements that need to be met, such as those from
government regulators, accreditation bodies, or industry organizations. Once you have identified
all stakeholders, create personas for each, such as a chief operating officer, site reliability engineer,
or development team, and map out the required insights for each persona.

2. Next, focus on identifying the business outcomes required by each stakeholder. Examples of
typical business outcomes include improving the quality of the user experience to drive increased
revenue and compliance reporting to meet regulatory requirements. Derive KPIs from these
business outcomes. For example, to improve the user experience for a web application, you
should focus service-level objectives (SLOs) on the site availability and responsiveness, and for
compliance reporting, you should focus on the time it takes to identify and mitigate vulnerabilities.

Developing an observability strategy for your organization 453

3. The next step is to determine the telemetry needed based on the system architecture to measure
these KPIs. Look at service-level indicators (SLIs) such as sentiment customer scores, web
page response times, and other metrics to understand the user experience and measure against
the KPIs. Additionally, consider system-level metrics to assess the operational effectiveness
of the website. Ensure that all telemetry requirements are specific, measurable, achievable,
relevant, and time-bound (SMART). On a high level, the telemetry related to metrics, logs,
traces, and end user experience supports mapping against all the KPIs being identified as a
part of the exercise.

4. The next step is to map the technology or tools that will help you in measuring the telemetry
defined. You can adopt one of the following approaches based on the system architecture and
telemetry requirements to achieve the desired business outcomes. There could be multiple
approaches to finalizing the tooling requirements, but we listed a few here:

 � Cloud-Native: AWS offers a wide range of cloud-native observability solutions, which we
have discussed in Chapter 2, Overview of the Observability Landscape on AWS. We also
covered details about them from Chapter 3, Gathering Operational Data and Alerting Using
Amazon CloudWatch, through Chapter 8, End User Experience Monitoring on AWS, and in
Chapter 12, Augmenting the Human Operator with Amazon DevOps Guru.

 � Open Source Observability: AWS offers a range of open source managed observability
solutions for a variety of workloads running either on the cloud or on-premises. We have
covered details about them from Chapter 9, Collecting Metrics and Traces Using OpenTelemetry,
through Chapter 11, Deploying the Elasticsearch, Logstash, and Kibana Stack Using Amazon
OpenSearch Service.

 � Cloud Native and Open Source Managed: Observability requirements for an organization
at times would be complex and we may need to adopt a combination of AWS native services
and also open source managed services for our requirements.

 � Partner Tools: AWS offers a wide range of Partner tools from the AWS marketplace. Based
on the complexity of the requirements and the metrics you are looking to measure against
the KPIs, you could adopt one or more of the tools for your cloud observability requirements.

Insights into the observability strategy

We have previously discussed how people, system architecture, and telemetry play a crucial role in
determining an observability strategy. However, without proper insights and actions, the strategy will
not be fully effective. We can group insights from the information into six different categories. Let’s
delve deeper into each of these insights:

• Fault management: Monitoring your applications to prevent or respond to incidents.

• Configuration management: Monitoring and tracking configurations and changes made to
a cloud infrastructure supporting your application components.

The Role of Observability in the Cloud Adoption Framework454

• Accounting management: Monitoring the usage of cloud resources and allocating costs to specific
users, departments, or projects based on resource utilization. This helps organizations track
and control their cloud expenses, promote cost-effectiveness, and optimize resource utilization.

• Performance management: A critical aspect of cloud computing that involves monitoring the
performance of cloud components to ensure they are functioning as expected. This includes
monitoring for any constraints or limitations in cloud resources. This helps organizations
identify and resolve performance issues in a timely manner, preventing potential downtime
and ensuring the smooth operation of cloud-based systems and services.

• Security management: Monitoring access and security controls, and identifying inappropriate
or malicious activities.

• User Experience (UX): Understanding how users interact with your system and what is
important for them to navigate across your application.

By understanding these insights, organizations will make data-driven decisions, detect issues before
they become critical, improve system performance, and ensure compliance and security. Insights
generated from observability can be presented in various formats, such as dashboards, knowledge
bases for known issues, and determining corrective actions. You could look at the overall observability
plan as shown in the following figure:

Figure 15.12 – Observability model

Actions in an observability strategy

Organizations can take it a step further by automating the response process. By building run books
for corrective actions and triggering them automatically based on identified issues, organizations can
improve their incident response time and minimize the impact of incidents on the system and users.
This can also help in identifying patterns of issues and creating preventative measures.

Developing an observability strategy for your organization 455

Automation can also help reduce the workload of operations and development teams, allowing them
to focus on other important tasks. By automating the incident response process, organizations can
ensure that someone consistently takes the right actions in a timely manner, eliminating human errors,
and improving overall system stability and availability.

Till now, we have discussed strategy management from the business perspective and looked at applying
the same to observability. Now, let’s look at the other dimensions relevant to the CAF from the adoption
of the observability strategy in an organization.

Operations perspective in the CAF

In the operations perspective, there is an Observability and Event Management (AIOps) capability that
should be looked into when you are looking into the tooling strategy for observability on AWS. We have
covered general guidance on observability tooling in this chapter in the Telemetry in an observability
strategy section. We will cover best practices when applying the Well-Architected Framework for your
observability workloads as a part of Chapter 14, Be Well-Architected for Operational Excellence. Let’s
look into the observability maturity model from an operations perspective for different workloads.

Observability maturity model

An organization could look into the observability maturity model to determine the level of adoption
of observability and make sure that they could leverage full-stack observability options available on
AWS to determine their roadmap to maturity. We have summarized a roadmap to maturity in the
following figure as a guide. You should look into tweaking the maturity model to suit your organization’s
requirements based on the observability strategy output. Based on the level of criticality of the
application from the business perspective, you could leverage a maturity model.

Figure 15.13 – Indicative observability maturity model

The Role of Observability in the Cloud Adoption Framework456

When adopting the maturity model, there are still fundamental best practices in metrics, logging, and
tracing that will help you in getting the full potential of the adoption of the model.

Let’s look into some of the best practices in metrics, logging, and tracing.

Best practices for metrics collection

Best practices for metrics collection include identifying KPIs, defining workload metrics, collecting and
analyzing workload metrics, establishing baselines for workload metrics, learning expected patterns of
activity for workload, using monitoring to generate alarm-based notifications, and reviewing metrics
at regular intervals.

First, it’s important to identify KPIs that apply to the organization’s goals and objectives. These KPIs will
serve as a guide for the metrics that need to be collected. Once the KPIs are identified, it’s important
to define specific workload metrics that will measure the performance of the systems and applications.

Next, it’s important to collect and analyze the workload metrics in order to gain insights into the
performance and health of the systems and applications. This analysis can establish baselines for the
workload metrics, which can be used as a reference point for future analysis. By learning the expected
patterns of activity for the workload, organizations can identify anomalies and potential issues.

Monitoring tools should generate alarm-based notifications when metrics deviate from the established
baselines or expected patterns of activity. This can help organizations quickly identify and address
issues before they become critical problems.

Finally, it’s important to review metrics at regular intervals to ensure that they are still relevant and to
identify any changes in the systems or applications that may require adjustments to the metrics being
collected. This will help organizations to maintain an accurate understanding of the performance and
health of their systems and applications, which is essential for improving reliability and availability.

Best practices for logging

Best practices for logging include instrumenting applications to write logs to the STDOUT (short for
Standard Output) and STDERR (short for Standard Error) streams, avoiding writing any logs to the
container filesystem, keeping log formats consistent, setting resource limits on log collection daemons,
and using managed services such as Amazon Macie to discover sensitive data.

First, it’s important to instrument your applications to write logs to the STDOUT and STDERR streams.
This allows logs to be easily collected and centralized by log collection daemons such as Fluentd. This
also allows logs to be easily viewed and analyzed using log management tools, such as OpenSearch
and CloudWatch Logs.

To make logs more easily searchable and analyzable, it’s important to keep log formats consistent.
This will help to ensure that logs are easy to search, filter, and aggregate, making it easier to identify
and troubleshoot issues.

Developing an observability strategy for your organization 457

It’s important to set resource limits on log collection daemons in containers that will help you avoid
any issues with system performance. One option to receive information based on requirements is to
consider switching between different log levels. This will ensure that log collection daemons don’t
consume too many resources and cause issues with other system processes.

Finally, it’s important to use managed services such as Amazon Macie to discover sensitive data in
logs. This can help organizations to detect and address data breaches or unauthorized access to data
in a timely manner, improving security and compliance.

Best practices for tracing

Best practices for tracing include ensuring that all services in the application stack emit trace data,
tracing calls to AWS-managed services from your application, tracing calls to other microservices or
public HTTP APIs, and creating subsegments around critical subsections of your application code.
Overall, by using these best practices, organizations can gain a more complete understanding of the
performance and behavior of their applications, which can help to improve reliability and troubleshoot
issues more quickly.

AIOpS
AWS provides different services such as DevOps Guru, CodeGuru, AWS Systems Manager
OpsCenter, CloudWatch Metric-based anomaly detection, and Amazon Lookout for metrics to
leverage machine learning for your operational effectiveness without configuring manual rule-
based thresholds. It should be always a good practice to leverage new features and technologies
to increase operational effectiveness.

Best practices for faster observability maturity

The following are foundational practices that will help you in reaching observability maturity faster:

• Instrument by default: Whether you are using EC2, containers, or serverless infrastructure,
the observability sources should be captured, aggregated, and evaluated.

• Track performance metrics: Utilize a monitoring and visibility service to track key performance
metrics, such as database transactions, slow queries, I/O latency, HTTP request rate, service
latency, and others.

• Investigate metrics during an incident: During an event or incident, utilize monitoring
dashboards or reports to identify and diagnose the effects. These views give a clear understanding
of the workload components that are not functioning optimally.

• Define KPIs to gauge workload performance: Determine the KPIs that indicate whether
the workload is performing as desired. For instance, the response latency for an API-based
workload can serve as a performance indicator, while the number of purchases can be the KPI
for an e-commerce site.

The Role of Observability in the Cloud Adoption Framework458

• Create automated alerts based on observability: Establish KPIs to gauge the performance of
your workload. Then, set up a monitoring system that sends out alarms automatically when
the KPIs fall outside of their predetermined bounds using anomaly detection if available, or
else using a threshold-based alerting mechanism.

• Periodically review collected metrics: During regular maintenance or in response to events/
incidents, evaluate the metrics collected. These evaluations can help identify which metrics were
crucial in resolving issues and which additional metrics, if tracked, could assist in identifying,
resolving, or avoiding future issues.

• Be proactive with observability and alarms: By combining KPIs with observability and alerting
systems, you can proactively address performance issues. Use alarms to initiate automated
responses to resolve problems whenever possible. If an automatic solution is not feasible,
escalate the alarm to those who are able to respond.

In this section, we discussed the importance of an observability strategy for an organization and the
benefits that it brings. We then outlined the key components of an observability strategy, including
its definition and potential outcomes. Additionally, we examined the process of implementing an
observability strategy and the five crucial considerations involved. Moving on, we explored the operational
aspect of observability in the context of cloud adoption. Finally, we outlined various observability
maturity models and highlighted best practices for swiftly achieving a mature observability strategy.

In the upcoming section, we will examine the advantages of incorporating observability best practices
to expedite your team’s cloud adoption process.

Role of observability in the CAF and the best practices for
quicker adoption of the cloud
As you are migrating to the cloud, observability forms a core pillar that will provide confidence to your
site reliability engineers (SREs), DevOps engineers, and cloud operations team in faster adoption
when they know that metrics are available for them to track the efficiency of their work. Some outcomes
that would help increase the team’s confidence because of observability are as follows:

• Real-time visibility: AWS observability tools provide real-time visibility into the performance
and health of systems and applications. You can additionally create business KPI dashboards,
as discussed in Chapter 5, Insights into Operational Data with CloudWatch, which will allow
organizations to quickly identify and troubleshoot issues.

• Root cause analysis: DevOps Guru provides detailed insights into the root cause analysis and
provides context and the resolution that can help organizations identify the root cause of issues,
rather than just symptoms

Beyond observability 459

• Cost optimization: You could leverage the performance data from CloudWatch and AWS Trusted
Advisor to right-size the workload and achieve cost optimization by identifying underutilized
resources or inefficient configurations

• Performance optimization: CloudWatch could help you identify and optimize bottlenecks
and performance issues, leading to improved application performance

• Security: DevOps Guru anomaly detection integrates with CloudTrail to understand the API
calls and any changes that happened at the application deployment to detect and investigate
security issues, such as a data breach or unauthorized access to data

• Automated monitoring and troubleshooting: AWS Application Insights-based automated
onboarding and ML-based monitoring could help organizations to onboard quickly and identify
and resolve issues in their systems and applications, reducing downtime and improving availability

• Predictive maintenance: DevOps Guru Proactive Insights will help you with AI-driven
predictive maintenance opportunities that can help organizations proactively identify and
address potential issues before they become critical problems, reducing the need for reactive
maintenance and improving system uptime

• Self-healing systems: DevOps Guru Insights could be integrated as AWS Systems Manager
OpsItems and could be associated with run books to provide self-healing systems that automatically
detect and resolve issues without human intervention, which can help organizations to improve
their ability to manage and operate their systems in the cloud

• Error tracking: When leveraging AWS DevOps tools to deploy your applications, you could
use AWS Evidently along with AWS DevOps Guru for error tracking, and CloudTrail can
collect and aggregate error logs and events, making it easier to identify, diagnose and fix errors

Overall, observability and AIOps can help organizations to improve the availability, performance, and
security of their systems and applications in the cloud, which will speed up cloud adoption.

In the next section, we will look into the set of practices and techniques that will help you go beyond
traditional monitoring and alerting and help organizations better manage cloud infrastructure.

Beyond observability
We discussed various observability best practices in Chapter 14, Be Well-Architected for Operational
Excellence. We discussed interoperability in Chapter 14 while discussing the management and governance
lens. From the perspective of cloud operations, we can consolidate the necessary requirements for
observability into six subsections.

Observability

Throughout Chapter 1, Observability 101, to Chapter 12, Augmenting the Human Operator with
Amazon DevOps Guru, we explored the multitude of options available in CloudWatch observability.

The Role of Observability in the Cloud Adoption Framework460

When it comes to selecting the right observability services, it’s important to carefully consider the
specific requirements of your organization. This includes generating metrics, logs, traces, and events
that align with your unique needs and priorities.

By leveraging CloudWatch’s powerful capabilities, you can gain a deep understanding of your end
user experience and identify any areas that may require improvement. This can help you optimize
your applications and services and, ultimately, drive better business outcomes.

However, to truly maximize the value of CloudWatch observability, it’s crucial to select the right
combination of services and tools for your specific use case. By carefully considering your requirements
and selecting the most appropriate services, you can gain valuable insights and make data-driven
decisions that enhance the performance and reliability of your applications and infrastructure.

AIOps-based operations

AIOps (short for Artificial Intelligence for IT Operations) is a method that leverages machine
learning algorithms and other advanced technologies to optimize IT operations. Anomaly detection,
correlation, dynamic thresholding, and alert rules are all key components of an AIOps system.

Amazon DevOps Guru is a fully managed AIOps service that is specifically designed to help AWS
customers enhance the availability and reliability of their applications. By leveraging a range of advanced
technologies, including machine learning algorithms and anomaly detection, DevOps Guru can help
organizations quickly identify operational issues and receive recommendations for remediation.

Besides its sophisticated anomaly detection capabilities, DevOps Guru also correlates data from
multiple services to identify patterns or relationships that may contribute to issues. By taking a holistic
approach to data analysis, DevOps Guru can provide customers with valuable insights into application
performance and identify the root causes of issues.

DevOps Guru can automatically adjust its recommendations based on current conditions, helping
IT teams respond more effectively to issues as they arise. This automated root cause analysis can help
reduce the time and effort required to identify and address issues, enabling organizations to enhance
their operational efficiency and focus on driving better business outcomes.

Event management

Event management is a critical component of IT operations, and AWS Systems Manager OpsCenter
offers powerful capabilities for managing events across a range of systems and applications. To optimize
event management, OpsCenter leverages advanced technologies such as event normalization, event
enrichment, and event deduplication:

• Event normalization involves transforming raw event data into a standard format that can be
easily analyzed and understood. This allows IT teams to quickly identify relevant data points
and gain insights into the root causes of issues. By normalizing events, OpsCenter can help
reduce the time and effort required to analyze and respond to issues.

Beyond observability 461

• Event enrichment involves enhancing event data with additional context and information.
This can include data such as server or application metadata, user information, or system logs.
By enriching event data, OpsCenter can provide IT teams with more comprehensive insights
into issues and help them better understand the impact on their systems and applications.

• Event deduplication involves identifying and removing duplicate events from event streams.
This can help reduce noise and improve the accuracy of event analysis. By deduplicating events,
OpsCenter can help IT teams focus on the most relevant data and avoid wasting time and
resources on redundant information.

With these advanced event management capabilities, OpsCenter can help IT teams streamline their
operations and respond more effectively to issues as they arise. By providing automated event analysis,
insights, and recommendations, OpsCenter can help organizations optimize their IT operations and
enhance the performance and reliability of their applications and systems.

Service management

In today’s digital landscape, companies are constantly striving to improve their service management
capabilities. While many organizations rely on a standard service management system to manage
an incident, change, release, knowledge, and problem management, there are additional tools and
technologies that can be leveraged to enhance these processes.

For example, cloud resources generate a significant amount of events that can be used to create automated
incidents using AWS Systems Manager OpsCenter. By integrating this tool with your existing service
management system, you can streamline incident resolution and reduce downtime for your users.

Furthermore, it’s important to understand the impact of releases on your observability and change
windows. By tracking major changes and monitoring their impact on application performance, you
can proactively identify and address potential issues before they impact your users.

In addition to these tools and techniques, it’s also important to leverage knowledge bases to improve
incident resolution times. Amazon DevOps Guru provides valuable recommendations that can be
integrated into your organization’s specific knowledge base for quicker incident resolution.

Overall, effective service management requires a comprehensive approach that integrates the latest
tools and technologies with existing processes. By continuously improving your service management
capabilities, you can enhance your organization’s ability to deliver high-quality services that meet the
needs of your users.

Automated resolution

Traditionally, incident resolution has been a manual process that relies heavily on the organization’s
knowledge base. However, in today’s fast-paced digital landscape, it’s crucial to optimize incident
resolution and reduce downtime for users. AWS Systems Manager provides an automated approach
to resolving issues, which can help organizations streamline their incident management processes.

The Role of Observability in the Cloud Adoption Framework462

By creating Systems Manager documents and mapping them to related AWS Systems Manager OpsItems,
you can automate the resolution of known issues. This approach allows you to look at automating
the resolution of issues via Systems Manager automation, rather than executing steps manually. By
automating incident resolution, you can optimize your workforce management, reduce the risk of
human error, and improve overall business KPIs.

In addition, AWS Systems Manager provides a centralized location for managing resources and
automating tasks, which can help organizations improve operational efficiency and reduce costs. By
leveraging Systems Manager automation, you can free up valuable resources to focus on more strategic
initiatives that drive business growth.

Overall, automated incident resolution using AWS Systems Manager provides a modern, streamlined
approach to incident management that can help organizations optimize their workforce, reduce
downtime, and improve overall business performance.

Dashboards

In today’s complex digital landscape, it’s crucial to have end-to-end visibility into your applications
and business metrics. One way to achieve this is by leveraging Amazon CloudWatch and Amazon
QuickSight to create different types of dashboards that provide valuable insights into your data.

By creating an application dashboard, you can get a comprehensive view of your application’s
performance, including metrics such as latency, errors, and availability. This view can help you quickly
identify and address issues that may impact user experience.

In addition, a business dashboard can provide insights into the impact of issues on your business
metrics, such as revenue, customer retention, and engagement. This view can help you make informed
decisions about how to prioritize and address issues that may impact your business goals.

A KPI dashboard is another important tool that can help you track your service-level agreements
(SLAs) and understand the impact of issues on your operational performance. This view can help
you proactively identify and address issues before they impact your SLAs.

Finally, a dashboard that provides an overview of the customer experience can help you understand
how users are interacting with your applications and identify areas for improvement. This view can
help you deliver a better user experience and drive customer satisfaction.

Overall, by leveraging different types of dashboards in Amazon CloudWatch and Amazon QuickSight,
you can simplify your operations, improve observability data, and make informed decisions that drive
business growth.

Summary 463

Things beyond observability can be visualized in Figure 15.14:

Figure 15.14 – Beyond observability for operational excellence

In this section, we understood the need to look into the holistic approach for cloud operations by
looking beyond observability metrics. Considering the larger picture and analyzing factors such as
AIOps, event management, automation, dashboards, and service management can optimize your
cloud resources, improve operational efficiency, and enhance user experience.

Summary
In this chapter, we have looked into the transformation of the Cloud Adoption Framework over the
years and looked into different aspects of the CAF V3.0. Further, we have emphasized the importance
of an observability strategy for an organization and looked into the tools and techniques on how to
effectively create an observability strategy, and looked at sustaining it. Further, we have looked into
building an observability maturity model and best practices for quick attainment. Finally, we have
explored how important observability is for organizations embarking on the journey to the cloud.

When an organization is embarking on a new journey, it is always important to track progress and
share metrics for improved visibility. Observability is a key component of your cloud adoption, which
provides insights into the success and areas of improvement. Observability should be considered an
essential part of your cloud adoption journey.

The Role of Observability in the Cloud Adoption Framework464

Moreover, we have delved into how operational excellence can be achieved beyond observability,
through the implementation of additional layers that support cloud operations. For instance, by
adopting a comprehensive incident management system and utilizing automation tools such as
AWS Systems Manager, organizations can enhance their incident response capabilities and optimize
workforce management.

To conclude, achieving operational excellence in cloud operations requires a multifaceted approach
that considers observability metrics, incident management, automation, event management, and
dashboards. By leveraging the right tools and strategies, organizations can ensure high performance,
scalability, and cost efficiency, and drive business growth in today’s rapidly evolving digital landscape.

Congratulations on completing this book and gaining a comprehensive understanding of the role of
observability in cloud operations, as well as the various AWS services available in this area. I hope
you found this information useful and informative and that it helps you adopt best practices in your
cloud operations.

Whether you are a solutions architect, DevOps engineer, or cloud engineer, the knowledge gained from
this book will undoubtedly prove valuable in your professional endeavors. By leveraging the power of
observability in your cloud operations, you can enhance the reliability, scalability, and performance
of your applications and infrastructure.

I hope that the insights gained from this book will help you achieve even greater success in your career.

Questions
1. Explain the importance of the CAF.

2. What are the different components of the CAF?

3. What are the benefits of defining an observability strategy in an organization?

4. What are the important aspects of a people strategy in an observability strategy?

5. What is the importance of observability in the CAF?

Index

A
agent 284
AI and ML insights

Amazon CodeGuru 388
Amazon Lookout for Metrics 390

AIOPs 41
AIOps-based operations 460
Amazon CloudWatch 24
Amazon CloudWatch Evidently 232
Amazon CloudWatch Metrics 24, 25
Amazon CloudWatch RUM 232
Amazon CloudWatch Synthetics 232
Amazon CodeGuru 24, 42, 389

software lifecycle 389
Amazon CodeGuru Profiler 42, 389

integration, with DevOps Guru 390
Amazon CodeGuru Reviewer 42, 389
Amazon DevOps Guru 41

Analyzed resources view 373
Dashboard 372
enabling 373-375
Insights 372
Integrations view 373
overview 372, 373
reference link 374
resources, analyzing with 376

settings 372
used, for enabling Performance

Insights on RDS 387, 388
workflow 377, 378

Amazon DevOps Guru insights
discovery 379
DynamoDB capacity, decreasing 380
proactive insights 386
reactive insights, checking 382-385
resources, analyzing 379, 380
reviewing for serverless applications 378
traffic generation, for creating

anomalies 381, 382
Amazon DynamoDB calls 119
Amazon EC2

CloudWatch agent, installing 117
Amazon ECS cluster

setting up 177
Amazon EKS cluster

setting up 177
Amazon Elastic Compute Cloud (EC2) 45

CloudWatch agent, installing 117
Amazon Elastic Container Service

(Amazon ECS) 33, 170
Amazon Elastic Kubernetes Service

(Amazon EKS) 33, 170, 275

Index466

Amazon EventBridge 28
architecture 84
overview 84-90

Amazon Lookout for Metrics 24, 43, 390
configuring 391, 392
dataset, adding 393-399
stages 391

Amazon Managed Grafana
(AMG) 24, 40, 41, 297

using, in Query Prometheus
metrics 324-328

Amazon Managed Service for
Grafana (AMG)

dashboard, setting up 307-314
setting up 302

Amazon Managed Service for Prometheus
(AMP) 23, 39, 297, 425

Amazon EKS cluster and tools,
setting up 314, 315

Cloud9 development workspace,
setting up 303, 304

setting up 302
workspace, setting up 304-307

Amazon OpenSearch Dashboards 40
Amazon OpenSearch Service

Log Analytics 40
Amazon OpenSearch Service (OSS) 40

advantages 335
anomaly detection 362-366
components 337
configuration 336-339
fundamental concepts 336, 337
overview 334-336
security 366-368
setting up 336-339
standalone cluster, installing 339-350

used, for observability application
logs 350-352

used, for observability application
traces 350-352

Amazon OpenSearch Service
Trace Analytics 40

Amazon Web Services (AWS) 21, 197
adoption, of observability services 46
ApplicationInsights 160
cloud native and open source managed 453
cloud-native observability solutions 453
digital experience monitoring 21
distributed tracing 21
infrastructure monitoring 21
native observability services 24
observability tools 22-24
open source managed observability

solutions 453
partner tools 453
vended monitoring 21

anomaly detection (AD) 74, 150
in Amazon OpenSearch Service

(OSS) 362, 364-366
API

used, for Query Prometheus metrics 322
API Gateway access logs 205
API Gateway execution logs 205
API Gateway metrics and logs 205, 206
Application Health 23
Application Insights 23, 54
application load balancer (ALB) 338
application logs 357-362

observability, with Amazon
OpenSearch Service 350-352

viewing, in CloudWatch 295
application metrics

reference link 331

Index 467

Application Performance Index
(Apdex) 256, 264

application telemetry
checking 291

application traces 353, 356
components 353, 355
observability, with Amazon OpenSearch

Service (OSS) 350-352
artificial intelligence (AI) 41
Artificial Intelligence for IT

Operations (AIOps) 457, 460
auto instrumentation 94
auto-instrumentation agent 45
automated incident resolution 461, 462
automated solutions

applying 421
Availability Zones (AZs) 90, 134
AWS App Mesh

reference link 186
used, for end-to-end visibility of

containerized applications 186
AWS App Mesh Workshop

reference link 186
AWS CAF 3.0 value chain 440
AWS Control Tower 403
awscurl tool

reference link 322
AWS Distro for Open Telemetry

(ADOT) 23, 45, 180, 336, 432
used, for collecting metrics 274-276
used, for collecting traces 274-276
used, for instrumenting container

application running on ECS 284-288
AWS Fargate 33
AWS Health Dashboard

reference link 423

AWS Lambda
serverless application, deploying 198-201

AWS Lambda functions 23
AWS-managed open source

observability services 39
AI and ML insights 41
Amazon Managed Grafana (AMG) 40, 41
Amazon Managed Service for

Prometheus (AMP) 39
Amazon OpenSearch Service (OSS) 40
instrumentation 44

AWS Management Console
reference link 181

AWS namespaces 50
AWS Organizations 402
AWS Sig4 Proxy

reference link 322
AWS System Manager (SSM) 54, 153

used, for installation and configuration
of unified CloudWatch agent 67-73

AWS Well-Architected Framework
overview 420, 421

AWS Well-Architected Framework, pillars
Cost Optimization 421
Operational Excellence 420
Performance Efficiency 421
Reliability 421
Security 420
Sustainability 421

AWS X-Ray 27
annotations and metadata 93
concepts 93
filter expression 93
groups 93
instrumentation 93
overview 92
sampling 93

Index468

segments 93
service graph 93
subsegments 93
traces 93
traces, viewing in 294, 295
tracing header 93

AWS X-Ray Agent 422
AWS X-Ray console

application, navigating 98, 99
AWS CloudWatch X-Ray user

interface, navigating 99-106
CloudWatch ServiceLens map,

overview 106, 107
navigating 94, 95
sample application, deploying 95-98
X-Ray Analytics, overview 107

AWS X-Ray SDK 119
AWS X-Ray services 23

B
blast radius 401
blueprints, CloudWatch Synthetics

API canary monitoring 240
Broken link checker 240
heartbeat monitoring 240
visual monitoring 240

building blocks, observability 9
adapting to 16
logs 12-15
metrics 10, 11
relationship between 16
traces 15, 16

bytes written to disk per second (BPS) 136

C
canaries, CloudWatch Synthetics

API canary 248-254
heartbeat monitoring 240-248
Recorder 254, 255

capability 443
Cloud9 development workspace

setting up 175-177
cloud adoption

best practices 458
Cloud Adoption Framework 3.0

overview 440
Cloud Adoption Framework (CAF) 439

business outcomes 444
foundational capabilities 443
observability, role 458
operations perspective 455
transformation domains 442

Cloud Center of Excellence (CCOE) 448
Cloud Financial Management 435, 438
CloudFormation

reference link 92
Cloud Intelligence Dashboard 431

reference link 432
Cloud Native Computing

Foundation (CNCF) 179
cloud transformation journey 441

align phase 441
envision phase 441
launch phase 441
scale phase 441

CloudWatch
application logs, viewing in 295
container metrics, viewing in 292

Index 469

CloudWatch agent 23, 44, 50, 422
configuring, in EC2 instance 51, 52
deploying, in EC2 instance 51, 52
installing, on Amazon EC2 117

CloudWatch agent, in Windows OS
components 54

CloudWatch alarms 73
anomaly detection 74
composite alarms 74
creating 74-80
metric math expressions 74
static threshold 73

CloudWatch Alarms 23, 28
CloudWatch anomaly detection 148

configuring 149-152
existing models, deleting from 149-152
use cases 149

CloudWatch Application Insights 35, 152
exploring 153-159

CloudWatch Container Insights 33, 170-175
Amazon ECS cluster, setting up 177
Amazon EKS cluster, setting up 177
Cloud9 development workspace,

setting up 175-177
functions 170

CloudWatch Contributor
Insights (CCI) 34, 35

enabling, for DynamoDB 164-166
exploring 163, 164
use cases 163, 164

CloudWatch cross-account observability
benefits 405
configuring 406-408, 410-412
exploring 404
scenarios 405
working 405, 406

CloudWatch dashboard 23, 29, 80-83
automatic dashboards 80
custom dashboards 80
widgets 80

CloudWatch Evidently 23, 32, 232
CloudWatch Lambda Insights 33, 206-209

multifunction view 210, 211
single-function view 210

CloudWatch log event
properties 51

CloudWatch log group 199
CloudWatch logs 23, 26

log event 51
log group 51
log stream 51
overview 50, 51

CloudWatch Logs Insights 37, 203
exploring 160-163
from Lambda logs 203, 204

CloudWatch metric namespace 50
CloudWatch metrics 23

dimensions 51
operational intelligence, deriving from 130
overview 50, 51
viewing 292, 293

CloudWatch metrics explorer 130
leveraging, scenarios 135
monitoring 130
troubleshooting 130
using, to build dynamic dashboard 130-134

CloudWatch Metrics Insights 36, 136
use cases 136

CloudWatch RUM 232, 256
default metrics 257
setting up, for S3 static website 257-268
working 256, 257

CloudWatch search expressions 147, 148
CloudWatch ServiceLens 23, 38, 39

Index470

CloudWatch ServiceLens map
overview 106, 107

CloudWatch Synthetics 23, 30, 232, 233
canaries 238, 239
canaries, configuring 240
data retention settings 237
events 236
logs 235
metrics 234
monitoring, use cases 237, 238
traces 235
working 233, 234

CloudWatch Synthetics, canaries methods
blueprints 238
Canary Recorder 239
GUI workflow builder 239
inline code editor 239
scripts, importing from S3 239

cluster monitoring
reference link 329

Collectd protocols 52
Common Log Format (CLF)

reference link 163
composite alarms 74
concurrency metrics 201
console exporter 288
containerized applications

end-to-end visibility
AWS App Mesh, using 186
end-to-end tracing capabilities,

adding 187, 188
monitoring and logging capabilities,

adding 186, 187
container metrics

viewing, in CloudWatch 292
container monitoring

implementing 328-332

containers performance bottlenecks
CloudWatch Logs Insights,

accessing 194, 195
Container Insights, exploring 190, 191
Container Insights, setting up 189
environments, building 189
load testing metrics 193
load tests, setting up 191
troubleshooting 188
workspace 189

Contributor Insights for
CloudWatch Logs 34

Contributor Insights for DynamoDB 34
Controls and Guardrails function 438
Cost Optimization 420, 421

design principles 430
managed services, benefits 433

Cost Optimization, design principles
Cloud Financial Management

(CFM), implementing 430
CloudWatch logs groups

retention, setting up 433
cost attribution categories,

identifying 431, 432
logs, leveraging to send metric data 434
managed services, benefits 433
metric math, using 433
workload, optimizing 432, 433

Cost Optimization, design principles
and best practice

reference link 430
CPU alarm 74
cross-account cross-Region CloudWatch

configuring, in AWS Organizations 413-416
exploring 413
limitations 417

cross-account observability 404
Cumulative Layout Shift (CLS) 266

Index 471

custom event bus 84
custom namespaces 50

D
dashboards 462, 463
Data Prepper version 2.0 352
deployment metrics

reference link 330
DevOps Guru boundaries

account level 376
CloudFormation Stacks 376
organization level, using

management account 376
tags 376

digital experience monitoring
(DEM) 18, 232

dimensions 51
distributed application environment

observability, need for 5-9
distributed application on Amazon ECS

Container Insights on Amazon ECS,
for cluster-level metrics 181, 182

Container Insights on Amazon
ECS, for instance-level metrics
using ADOT 183, 184

Container Insights on Amazon ECS,
for service-level metrics 181, 182

FireLens, used for collecting logs to
CloudWatch Logs 184, 186

FireLens, used for sending logs to
CloudWatch Logs 184, 186

observability, implementing 180
distributed application on Amazon EKS

Container Insights metrics on customer-
managed Kubernetes clusters 178, 179

Container Insights metrics on
EKS EC2 178, 179

Container Insights metrics on
EKS Fargate 180

observability, implementing 178
distributed trace 276

E
EC2 instance

CloudWatch agent, configuring 51, 52
CloudWatch agent, deploying 51, 52
end-to-end instrumentation

application, deploying 108
EC2 Windows instance

monitoring, with unified
CloudWatch agent 53

Elastic Block Store (EBS) 139
Elastic Compute Cloud (EC2) 273, 338, 433
Elastic Container Service (ECS) 23, 94
Elastic Kubernetes Service (EKS) 23, 432
Embedded Metric Format

(EMF) 33, 216, 292
end-to-end instrumentation application

annotations, creating 120, 121
AWS Lambda functions, instrumenting 122
AWS X-Ray daemon, installing

on Amazon EC2 116
AWS X-Ray SDK 119
calls, instrumenting to PostgreSQL

database 121, 122
CloudWatch agent, installing

on Amazon EC2 117
components, exploring on EC2 instance 114
deploying, in EC2 instance 108
EC2 instance, accessing 114-116
environment, preparing 108-111
instrumented clients, using in

worker threads 124, 125
metadata, creating 120, 121

Index472

setup 118
startup code, instrumenting 123
subsegments, creating 120, 121
testing 111-113
X-Ray annotations and metadata 119

end user experience monitoring 232
environmental, social, and

governance (ESG) 444
EventBridge 23

architecture 85
event buses 84
event deduplication 461
event enrichment 461
event management 460, 461
event normalization 460
event sources 84

F
Firelens agent 422
First Input Delay (FID) 266
Flask

reference link 6
fluentbit 23, 45

reference link 179
Fluent Bit logs 352
fluentd 45
foundational capabilities 443

G
gateway 284
golden triangle of observability 445
Gradle

reference link 118
Grafana

overview 298
used, for Query Prometheus metrics 322

H
horizontal annotation 140, 141
HTTP Archive (HAR) 244

I
IAM Identity Center 424
Identity and Access Management

(IAM) 373, 402
Identity Management function 435, 438
incident resolution 461
Infrastructure as Code (IaC) 54, 338, 376
infrastructure OU 403
Input/output operations per

second (IOPS) 6
InstanceId 51
InstanceType 51
instrumentation options

auto instrumentation 94
library instrumentation 94
manual instrumentation 94

integrated development environment
(IDE) 175, 303

Internet Information Services
(IIS) web server

using, to set up Windows EC2 instance 54
invocation metrics 201
IT Service Management (ITSM)

function 435

J
Jaeger 45

K
Key Management Service (KMS) 334

Index 473

L
Lambda Insights 206
Lambda logging 203
Lambda Powertools

custom metrics 219-221
exploring 216, 217
for enhanced logging 218, 219
manual 217
method decorator 217
middy 216
tracing 222-224

Largest Contentful Paint (LCP) 266
library instrumentation 94
load test

performing 191, 192
setting up 191

Logger 216
logging

best practices 456, 457
log group 51
logs 12-15, 281

implementing 281-283
Logs Insights 23
log stream 51

M
machine learning (ML) 41
management and governance

(M&G) 434, 436, 437
Cloud Financial Management function 435
Controls and Guardrails function 435
functions 435
IT Service Management

(ITSM) function 435
observability function 435

Security Management function 435
Sourcing and Distribution function 435

manual instrumentation 94
mean time to detect (MTTD) 17, 445
mean time to identify (MTTI) 437
mean time to recover (MTTR) 372
mean time to resolve (MTTR) 17
mean time to respond (MTTR) 437
metric 50
Metric Insights 23
metric math expressions 74
metric math functions 136

CloudWatch search expressions 147, 148
metric math functions, use cases

capacity metrics, calculating 136-139
daily difference, calculating 136
dynamic time threshold 136, 143-146
high-resolution metrics, generating 136
horizontal annotation 140, 141
latency, highlighting above

SLAs 136, 146, 147
missing values, filling in nonperiodic

traffic 136, 141, 143
vertical annotation 140, 141

metrics 10, 11, 278
collecting, with AWS Distro for

OpenTelemetry 274-276
implementing 279, 280

Metrics 216
metrics collection

best practices 456
metrics, events, logs, and traces (MELT) 234
Metrics Explorer 25
monitoring account 404
monitoring e-commerce orders 362
monitoring host health 362
monitoring HTTP responses 362
multifunction view 210, 211

Index474

N
nano editor

reference link 116
native observability services, AWS 24

Amazon CloudWatch Logs 26
Amazon CloudWatch Metrics 24, 25
Amazon EventBridge 28
AWS X-Ray 27
CloudWatch Alarms 28
CloudWatch Application Insights 35
CloudWatch Container Insights 33
CloudWatch Contributor Insights 34, 35
CloudWatch Dashboards 29
CloudWatch Evidently 32
CloudWatch Lambda Insights 33
CloudWatch Logs Insights 37
CloudWatch Metric Insights 36
CloudWatch ServiceLens 38, 39
CloudWatch Synthetics 30
Real User Monitoring (RUM) 31

Network Connectivity function 435
Node.js application

end-to-end tracing 211-214
Lambda Powertools, exploring 216, 217

O
o11y. See observability
observability 4, 459, 460

advantages 458, 459
benefits 17
building blocks 9
need for, in distributed application

environment 5-9
role, in CAF 458

Observability and Event
Management (AIOps) 455

observability, benefits
cost, controlling 18
customer experience, improving with

application health and performance 17
developer productivity, improving 17
Digital Experience Monitoring (DEM) 18
planning capacity 18

observability, best practices 401
CloudWatch cross-account observability,

configuring 406-412
CloudWatch cross-account

observability, exploring 404, 405
CloudWatch cross-account

observability workflow 405, 406
cross-account cross-Region CloudWatch 413
multi-account and multi-Region

topologies 402, 404
observability culture

initiating 447, 448
maintaining 449

observability function 435
observability, implementing in organization

commonality 448
education and training, promoting 448
product offering 448

Observability in M&G 436
implementing 436, 437

observability maturity model 455
logging, best practices 456, 457
metrics collection, best practices 456
speeding up, best practices 457, 458
tracing, best practices 457

observability strategy
actions 454
applying 447
defining, benefits 445
developing, for organization 444
insights 453, 454

Index 475

output 446
overview 447
people culture 447
system architecture 450
telemetry 450, 451
template 452

observability tools, AWS 22-24
observability value curve

business and technical agility, improving 446
data-driven decisions, enabling 446
mean time to recover (MTTR), reducing 445
operational health, identifying 445
strategic improvement opportunities,

identifying 445
OpenSearch 23, 334

diverse use cases, example 334
OpenSearch Serverless

reference link 430
Open Source Managed services 23
OpenTelemetry

reference link 180
OpenTelemetry Agent 422
OpenTelemetry Collector (OTEL) 45, 336

deploying 290, 291
deployment 283

OpenTelemetry library/SDK 45
OpenTelemetry Python SDK

for metrics 289, 290
for traces 288

Operating System (OS) logs 52
Operational Excellence 420

components 421
design principles 421

Operational Excellence, design principles
agent workloads, deployment

automating 422
agent workloads, integration automating 422

alerting, when workload
outcomes at risk 423

CloudWatch alarm changes,
tracking 423, 424

customer needs, evaluating 422
process, using for event management 423
process, using for incident management 423
process, using for problem management 423
reference link 421

operational intelligence
deriving, from CloudWatch metrics 130

organization
observability strategy, developing 444

organizational units (OU) 403
OTLP/gRPC exporter 288
OTLP/HTTP exporter 288

P
partner events 84
people culture, in observability strategy 447

observability culture, initiating 447, 448
observability culture, maintaining 449

Performance Efficiency 420, 421
architecture considerations 430
design principles 429

Performance Efficiency, design principles
architecture considerations 430
performance architecture selection 430

Performance Efficiency pillar
reference link 429

Performance Insights metrics
casual anomalies 387
contextual anomalies 387

performance issues
troubleshooting, with X-Ray groups 224-228

performance metrics 201

Personally Identifiable
Information (PII) 426

Piped Processing Language (PPL) 361
pod metrics

reference link 331
PowerShell

using 59
Powertools for logging 197
Procstat 52
Prometheus

client libraries 299
overview 298-300

Prometheus APIs
using, in Query Prometheus

metrics 322, 323
Prometheus deployment

architecture components
alertmanager 302
Prometheus server 301
Prometheus web UI 302
pushgateway 301
service discovery 301

Prometheus, dynamic service
discovery mechanisms

Consul service discovery 300
DNS service discovery 300
Kubernetes service discovery 300

Prometheus exporters, types
Apache Exporter 299
Blackbox Exporter 299
Node Exporter 299
Redis Exporter 299

Prometheus Query Language (PromQL) 324
Prometheus server

AWS Distro for OpenTelemetry
(ADOT), using 321

used, for ingesting telemetry data 316-320

Python
reference link 382

Q
Query Prometheus metrics

Amazon Managed Grafana, using 324-328
Prometheus APIs, using 322, 323
via API 322
via Grafana 322

Quota Monitor 429

R
Random Cut Forest (RCF) 362
raw traces 353
Real User Monitoring (RUM) 21, 23, 31, 231
Relational Database Service (RDS) 386

Performance Insights, enabling with
DevOps Guru 387, 388

Reliability 420, 421
design principles 428
failure management 429

Reliability, design principles
failure management 429
service quotas and constraints,

managing 429
Reliability pillar

reference link 428
Remote Desktop Protocol (RDP) 54
rules 84, 164

S
S3 static website

used, for setting up CloudWatch
RUM 257-268

SaaS event bus 84

Index 477

Security 420
design principles 424

Security Assertion Markup
Language (SAML) 334

Security, design principles
AWS Managed Services, for observability

in multi-account setup 425
centralized/distributed accounts,

for CloudWatch 425
compliance 426, 427
data, protecting in transit and at rest 425
identity management 424
monitoring account, creating 424
traceability, enabling 428

security information and event
management (SIEM) 437

Security Management function 435
security orchestration, automation,

and response (SOAR) 437
Security OU 403
Security pillar

reference link 424
serverless application

API Gateway metrics and logs 205, 206
built-in metrics 201, 202
CloudWatch Logs Insights, from

Lambda logs 203, 204
deploying, on AWS Lambda 198-201
Lambda logging 203

serverless application model (SAM) 423
server-side rendering (SSR) 267
service-level agreements (SLAs) 233, 462
service-level indicators (SLIs) 17, 453
service-level objectives (SLOs) 17, 240, 452
service management 461
service map 93
service map traces 353

Siege tool
reference link 191

Simple Notification Service
(SNS) 74, 246, 423

Simple System Manager (SSM) 422
single-function view 210
Single Page Application (SPA) 257
site reliability engineers (SREs) 83, 458
Software as a Service (SaaS) 84
source account 405
Sourcing and Distribution function 435, 438
span 277
specific, measurable, achievable, relevant,

and time-bound (SMART) 453
Standard Error (STDERR) 456
Standard Output (STDOUT) 456
static threshold 73
Statsd 52
Sustainability 420, 421

design principles 434
Sustainability, design principles 434

logging strategies, optimizing 434
scale infrastructure, with user load 434
reference link 434

Systems Manager (SSM) 64

T
tag-based monitoring 130

leveraging, scenarios 135
targets 84
telemetry data

ingesting 315
ingesting, from Prometheus server 316-320

template.yaml file
reference link 209

Time to first byte (TTFB) 267
Tracer 216

Index478

traces 15, 16, 276
collecting, with AWS Distro for

OpenTelemetry 274-276
implementing 277
viewing, in AWS X-Ray 294, 295

tracing
best practices 457

transactions per second (TPS) 136, 139
transformation domains, CAF 442

organization transformation 442
process transformation 442
product transformation 442
technological transformation 442

U
unified CloudWatch agent 52

installation and configuration, steps 55-66
installation and configuration, with

AWS Systems Manager 67-73
used, for monitoring EC2

Windows instance 53

V
vertical annotation 140, 141
vim editor

reference link 116
Virtual Private Cloud (VPC) 338

W
web vitals

reference link 266
Well-Architected Framework

applying 421
management and governance

(M&G) 434-437

Windows EC2 instance
setting up, with IIS web server 54

X
X-Ray Agent 23, 44
X-Ray Analytics

overview 107
X-Ray configuration setup

reference link 116
X-Ray daemon installation instructions

reference link 116
X-Ray groups

used, for troubleshooting
performance issues 224-228

X-Ray SDKs for Java libraries
reference link 118

Z
Zipkin 45

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

AWS FinOps Simplified

Peter Chung

ISBN: 9781803247236

• Use AWS services to monitor and govern your cost, usage, and spend

• Implement automation to streamline cost optimization operations

• Design the best architecture that fits your workload and optimizes on data transfer

• Optimize costs by maximizing efficiency with elasticity strategies

• Implement cost optimization levers to save on compute and storage costs

• Bring value to your organization by identifying strategies to create and govern cost metrics

https://packt.link/9781803247236

481Other Books You May Enjoy

Cloud-Native Observability with OpenTelemetry

Alex Boten

ISBN: 9781801077705

• Understand the core concepts of OpenTelemetry

• Explore concepts in distributed tracing, metrics, and logging

• Discover the APIs and SDKs necessary to instrument an application using OpenTelemetry

• Explore what auto-instrumentation is and how it can help accelerate application instrumentation

• Configure and deploy the OpenTelemetry Collector

• Get to grips with how different open-source backends can be used to analyze telemetry data

• Understand how to correlate telemetry in common scenarios to get to the root cause of a problem

https://packt.link/9781801077705

482

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts

Share Your Thoughts
Now you’ve finished AWS Observability Handbook, we’d love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this book and
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1804616710

483

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook
purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804616710

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804616710

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Part 1:
Getting Started with Observability on AWS
	Chapter 1: Observability 101
	Technical requirements
	What is observability?
	The need for observability in a distributed application environment
	Building blocks of observability
	Metrics
	Logs
	Traces
	What is the relationship between the three pillars?

	Benefits of observability
	Understanding application health and performance to improve customer experience
	Improving developer productivity
	Getting more insight with visualizations
	Digital eperience monitoring
	Controlling cost and planning capacity

	Summary
	Questions

	Chapter 2: Overview of the
Observability Landscape
on AWS
	Technical requirements
	Overview of observability tools in AWS
	Overview of native observability services in AWS
	Amazon CloudWatch Metrics
	Amazon CloudWatch Logs
	AWS X-Ray
	Amazon EventBridge
	CloudWatch Alarms
	CloudWatch Dashboards
	CloudWatch Synthetics
	Real User Monitoring (RUM)
	CloudWatch Evidently
	CloudWatch Container Insights
	CloudWatch Lambda Insights
	CloudWatch Contributor Insights
	CloudWatch Application Insights
	CloudWatch Metric Insights
	CloudWatch Logs Insights
	CloudWatch ServiceLens

	Overview of AWS-managed open source observability services in AWS
	Amazon Managed Service for Prometheus
	Amazon OpenSearch Service
	Amazon Managed Grafana
	AI and ML insights
	Instrumentation

	Adoption of observability services in AWS
	Summary
	Questions

	Chapter 3: Gathering Operational Data and Alerting Using Amazon CloudWatch
	Technical requirements
	Overview of CloudWatch metrics and logs
	Deployment and configuration of the CloudWatch agent in an EC2 instance
	The unified CloudWatch agent
	EC2 Windows instance monitoring with the unified CloudWatch agent
	Manual installation and configuration of the CloudWatch agent
	Automated installation using AWS Systems Manager

	Overview of CloudWatch alarms and dashboards
	CloudWatch alarms
	CloudWatch dashboards

	Overview of Amazon EventBridge
	Summary
	Questions

	Chapter 4: Implementing Distributed Tracing Using AWS X-Ray
	Technical requirements
	Overview of AWS X-Ray
	X-Ray concepts

	Navigating the AWS X-Ray console
	Step 1 – deploying a sample application
	Step 2 – navigating the application
	Step 3 – navigating the AWS CloudWatch X-Ray user interface
	Overview of the CloudWatch ServiceLens map
	Overview of X-Ray Analytics

	End-to-end instrumentation of a sample application deployed in an EC2 instance
	Preparing the environment
	Testing the sample application
	Exploring the sample application running on an EC2 instance

	Summary

	Part 2:
Automated and Machine Learning-Powered Observability on AWS
	Chapter 5: Insights into Operational Data with CloudWatch
	Technical requirements
	Deriving operational intelligence from CloudWatch metrics
	CloudWatch metrics explorer
	CloudWatch Metrics Insights
	Metric math expressions
	CloudWatch anomaly detection

	Exploring CloudWatch Application Insights
	Exploring CloudWatch Logs Insights
	Exploring CloudWatch Contributor Insights and its use cases
	Summary
	Questions

	Chapter 6: Observability for Containerized Applications on AWS
	Technical requirements
	Introduction to CloudWatch Container Insights
	Set up a Cloud9 development workspace
	Set up an Amazon EKS cluster
	Set up an Amazon ECS cluster

	Implementing observability for a distributed application running on Amazon EKS
	Container Insights metrics on your EKS EC2 or customer-managed Kubernetes clusters
	Container Insights metrics on EKS Fargate

	Implementing observability for a distributed application running on Amazon ECS
	Container Insights on Amazon ECS for the cluster- and service-level metrics
	Container Insights on Amazon ECS for instance-level metrics using ADOT
	Collect logs and send them to CloudWatch Logs using FireLens

	End-to-end visibility of containerized applications using AWS App Mesh
	Add monitoring and logging capabilities
	Add end-to-end tracing capabilities

	Understanding and troubleshooting performance bottlenecks in containers
	Workspace
	Build the environments
	Set up Container Insights
	Explore Container Insights
	Set up load tests
	Load testing metrics
	Accessing CloudWatch Logs Insights

	Summary

	Chapter 7: Observability for Serverless Applications on AWS
	Technical requirements
	Deploying a basic serverless application running on AWS Lambda
	Built-in metrics
	Lambda logging
	CloudWatch Logs Insights from Lambda logs
	API Gateway metrics and logs

	CloudWatch Lambda Insights
	Single-function view
	Multifunction view

	End-to-end tracing of the Node.js application
	Exploring Lambda Powertools
	Lambda Powertools for enhanced logging
	Lambda Powertools – custom metrics
	Lambda Powertools – tracing

	Troubleshooting performance issues using X-Ray groups
	Summary
	Questions

	Chapter 8: End User Experience Monitoring on AWS
	Technical requirements
	End user experience monitoring
	CloudWatch Synthetics
	How CloudWatch Synthetics works
	Use cases of CloudWatch Synthetics monitoring
	Understanding CloudWatch Synthetics canaries
	Configuring CloudWatch Synthetics canaries

	CloudWatch RUM
	How CloudWatch RUM works
	Setting up CloudWatch RUM for an S3 static website

	Summary
	Questions

	Part 3:
Open Source Managed
Services on AWS
	Chapter 9: Collecting Metrics and Traces Using OpenTelemetry
	Technical requirements
	An open standard to collect metrics and traces using AWS Distro for OpenTelemetry
	How to instrument once for multiple monitoring destinations
	Traces
	Metrics
	Logs
	OpenTelemetry Collector deployment

	Instrumenting a container application running on ECS using OpenTelemetry
	The OpenTelemetry Python SDK for traces
	The OpenTelemetry Python SDK for metrics
	Deploying the OpenTelemetry Collector
	Checking the resulting application telemetry

	Summary

	Chapter 10: Deploying and Configuring
an Amazon Managed Service for Prometheus
	Technical requirements
	Prometheus and Grafana overview
	Setting up Amazon Managed Service for Prometheus and Grafana
	Setting up a Cloud9 development workspace
	Setting up an AMP workspace
	Setting up an AMG dashboard
	Setting up an Amazon EKS cluster and tools

	Ingesting telemetry data
	Ingestion from a new Prometheus server
	Ingestion using AWS Distro for OpenTelemetry (ADOT)

	Querying Prometheus metrics via API and Grafana
	Querying Prometheus metrics using Prometheus APIs
	Querying Prometheus metrics using Amazon Managed Grafana

	Implementing container monitoring
	Summary

	Chapter 11: Deploying the Elasticsearch, Logstash, and Kibana
Stack Using Amazon OpenSearch Service
	Technical requirements
	Amazon OpenSearch Service overview
	Setup and configuration of Amazon OpenSearch Service
	Installation of a standalone cluster of Amazon OpenSearch Service

	Observability of the application traces and logs using Amazon OpenSearch Service
	Application traces
	Application logs

	Anomaly detection in Amazon OpenSearch Service
	Security for Amazon OpenSearch Service
	Summary
	Questions

	Part 4:
Scaled Observability
and Beyond
	Chapter 12: Augmenting the Human Operator with Amazon
DevOps Guru
	Technical requirements
	Overview of Amazon DevOps Guru
	Enabling Amazon DevOps Guru
	Analyzing resources using Amazon DevOps Guru
	How DevOps Guru works

	Reviewing Amazon DevOps Guru insights for serverless applications in AWS
	Discovering and analyzing resources
	Decreasing DynamoDB capacity
	Generating traffic to create anomalies
	Reactive insights
	Proactive insights

	Understanding Relational Database Service (RDS) performance issues using DevOps Guru
	AI and ML insights
	Amazon CodeGuru
	Amazon Lookout for Metrics

	Summary
	Questions

	Chapter 13: Observability Best Practices
at Scale
	Observability best practices at scale
	Understanding multi-account and multi-Region topologies
	Exploring CloudWatch cross-account observability
	How cross-account observability works
	Configuring CloudWatch cross-account observability

	Exploring cross-account cross-Region CloudWatch
	Configuring AWS cross-account cross-Region in AWS Organizations
	Limitations of CloudWatch cross-account cross-Region observability

	Summary
	Questions

	Chapter 14: Be Well-Architected for Operational Excellence
	Technical requirements
	An overview of the AWS Well-Architected Framework
	Applying the Well-architected framework and exploring automated solutions
	Operational excellence
	Security
	Reliability
	Performance efficiency
	Cost optimization
	Sustainability

	Understanding management and governance in the
Well-Architected Framework
	Summary
	Questions

	Chapter 15: The Role of Observability in the Cloud Adoption Framework
	Overview of Cloud Adoption Framework 3.0
	Cloud transformation journey
	Transformation domains
	Foundational capabilities
	Business outcomes

	Developing an observability strategy for your organization
	Benefits of defining an observability strategy
	The output of the observability strategy
	Applying an observability strategy
	Operations perspective in the CAF
	Observability maturity model
	Best practices for faster observability maturity

	Role of observability in the CAF and the best practices for quicker adoption of the cloud
	Beyond observability
	Observability
	AIOps-based operations
	Event management
	Service management
	Automated resolution
	Dashboards

	Summary
	Questions

	Index
	Other Books You May Enjoy

