
M A N N I N G

Andreas Wittig
Michael Wittig
FOREWORD BY Ben Whaley

Amazon Web Services in Action

Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Amazon Web Services
in Action

MICHAEL WITTIG
ANDREAS WITTIG

M A N N I N G
Shelter Island

Licensed to Thomas Snead <n.ordickan@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.
The following are trademarks of Amazon.com, Inc. or its affiliates in the United States and/or
other countries: Amazon Web Services, AWS, Amazon EC2, EC2, Amazon Elastic Compute
Cloud, Amazon Virtual Private Cloud, Amazon VPC, Amazon S3, Amazon Simple Storage
Service, Amazon CloudFront, CloudFront, Amazon SQS, SQS, Amazon Simple Queue Service,
Amazon Simple Email Service, Amazon Elastic Beanstalk, Amazon Simple Notification Service,
Amazon Route 53, Amazon RDS, Amazon Relational Database, Amazon CloudWatch, AWS
Premium Support, Elasticache, Amazon Glacier, AWS Marketplace, AWS CloudFormation,
Amazon CloudSearch, Amazon DynamoDB, DynamoDB, Amazon Redshift, and Amazon Kinesis.

The icons in this book are reproduced with permission from Amazon.com or under a Creative
Commons license as follows:

■ AWS Simple Icons by Amazon.com (https://aws.amazon.com/architecture/icons/)
■ File icons by Freepik (http://www.flaticon.com/authors/freepik) License: CC BY 3.0
■ Basic application icons by Freepik (http://www.flaticon.com/authors/freepik) License: CC BY 3.0

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Dan Maharry
20 Baldwin Road Technical development editor Jonathan Toms
PO Box 761 Copyeditor: Tiffany Taylor
Shelter Island, NY 11964 Proofreader: Melody Dolab

Technical proofreader: Doug Warren
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617292880
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

Licensed to Thomas Snead <n.ordickan@gmail.com>

www.manning.com
https://aws.amazon.com/architecture/icons/
http://www.flaticon.com/authors/freepik
http://www.flaticon.com/authors/freepik

v

brief contents
PART 1 GETTING STARTED ..1

1 ■ What is Amazon Web Services? 3

2 ■ A simple example: WordPress in five minutes 34

PART 2 BUILDING VIRTUAL INFRASTRUCTURE WITH SERVERS

 AND NETWORKING...51

3 ■ Using virtual servers: EC2 53

4 ■ Programming your infrastructure: the command line,
 SDKs, and CloudFormation 91

5 ■ Automating deployment: CloudFormation, Elastic
 Beanstalk, and OpsWorks 124

6 ■ Securing your system: IAM, security groups, and VPC 152

PART 3 STORING DATA IN THE CLOUD...183

7 ■ Storing your objects: S3 and Glacier 185

8 ■ Storing your data on hard drives: EBS and instance
 store 204

Licensed to Thomas Snead <n.ordickan@gmail.com>

BRIEF CONTENTSvi

9 ■ Using a relational database service: RDS 225

10 ■ Programming for the NoSQL database service:
 DynamoDB 253

PART 4 ARCHITECTING ON AWS..279

11 ■ Achieving high availability: availability zones, auto-scaling,
 and CloudWatch 281

12 ■ Decoupling your infrastructure: ELB and SQS 310

13 ■ Designing for fault-tolerance 331

14 ■ Scaling up and down: auto-scaling and CloudWatch 363

Licensed to Thomas Snead <n.ordickan@gmail.com>

vii

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxi
about the authors xxiv
about the cover illustration xxv

PART 1 GETTING STARTED ..1

1 What is Amazon Web Services? 3
1.1 What is cloud computing? 4

1.2 What can you do with AWS? 5
Hosting a web shop 5 ■ Running a Java EE application in your
private network 6 ■ Meeting legal and business data archival
requirements 7 ■ Implementing a fault-tolerant system
architecture 9

1.3 How you can benefit from using AWS 10
Innovative and fast-growing platform 10 ■ Services solve common
problems 11 ■ Enabling automation 11 ■ Flexible capacity
(scalability) 11 ■ Built for failure (reliability) 12 ■ Reducing
time to market 12 ■ Benefiting from economies of scale 12
Worldwide 12 ■ Professional partner 12

Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTSviii

1.4 How much does it cost? 13
Free Tier 13 ■ Billing example 13 ■ Pay-per-use opportunities 15

1.5 Comparing alternatives 15

1.6 Exploring AWS services 17

1.7 Interacting with AWS 20
Management Console 20 ■ Command-line interface 20
SDKs 22 ■ Blueprints 22

1.8 Creating an AWS account 23
Signing up 23 ■ Signing In 27 ■ Creating a key pair 29
Creating a billing alarm 32

1.9 Summary 32

2 A simple example: WordPress in five minutes 34
2.1 Creating your infrastructure 35

2.2 Exploring your infrastructure 41
Resource groups 41 ■ Web servers 42 ■ Load balancer 44
MySQL database 45

2.3 How much does it cost? 46

2.4 Deleting your infrastructure 48

2.5 Summary 49

PART 2 BUILDING VIRTUAL INFRASTRUCTURE WITH SERVERS
AND NETWORKING...51

3 Using virtual servers: EC2 53
3.1 Exploring a virtual server 53

Launching a virtual server 54 ■ Connecting to a virtual
server 65 ■ Installing and running software manually 68

3.2 Monitoring and debugging a virtual server 69
Showing logs from a virtual server 69 ■ Monitoring the load of a
virtual server 70

3.3 Shutting down a virtual server 71

3.4 Changing the size of a virtual server 72

3.5 Starting a virtual server in another data center 74

3.6 Allocating a public IP address 78

3.7 Adding an additional network interface to a virtual server 80

Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTS ix

3.8 Optimizing costs for virtual servers 83
Reserve virtual servers 84 ■ Bidding on unused virtual servers 84

3.9 Summary 90

4 Programming your infrastructure: the command line, SDKs, and
CloudFormation 91

4.1 Infrastructure as code 93
Automation and the DevOps movement 93 ■ Inventing an
infrastructure language: JIML 94

4.2 Using the command-line interface 97
Installing the CLI 97 ■ Configuring the CLI 98 ■ Using the
CLI 103

4.3 Programming with the SDK 107
Controlling virtual servers with SDK: nodecc 108 ■ How nodecc
creates a server 109 ■ How nodecc lists servers and shows server
details 110 ■ How nodecc terminates a server 111

4.4 Using a blueprint to start a virtual server 112
Anatomy of a CloudFormation template 113 ■ Creating your first
template 117

4.5 Summary 123

5 Automating deployment: CloudFormation, Elastic Beanstalk, and
OpsWorks 124

5.1 Deploying applications in a flexible cloud environment 126
5.2 Running a script on server startup using CloudFormation 126

Using user data to run a script on server startup 127 ■ Deploying
OpenSwan as a VPN server to a virtual server 127 ■ Starting from
scratch instead of updating 132

5.3 Deploying a simple web application with Elastic Beanstalk 132
Components of Elastic Beanstalk 132 ■ Using Elastic Beanstalk to
deploy Etherpad, a Node.js application 133

5.4 Deploying a multilayer application with OpsWorks 138
Components of OpsWorks 138 ■ Using OpsWorks to deploy an
IRC chat application 140

5.5 Comparing deployment tools 149
Classifying the deployment tools 149 ■ Comparing the deployment
services 150

5.6 Summary 150

Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTSx

6 Securing your system: IAM, security groups, and VPC 152
6.1 Who’s responsible for security? 153

6.2 Keeping your software up to date 154
Checking for security updates 154 ■ Installing security updates on
server startup 155 ■ Installing security updates on running
servers 157

6.3 Securing your AWS account 157
Securing your AWS account’s root user 158 ■ Identity and Access
Management service 159 ■ Policies for authorization 160
Users for authentication, and groups to organize users 161
Roles for authentication of AWS resources 163

6.4 Controlling network traffic to and from your virtual server 164
Controlling traffic to virtual servers with security
groups 166 ■ Allowing ICMP traffic 167 ■ Allowing SSH
traffic 168 ■ Allowing SSH traffic from a source IP
address 168 ■ Allowing SSH traffic from a source security
group 170 ■ Agent forwarding with PuTTY 172

6.5 Creating a private network in the cloud: Virtual
Private Cloud (VPC) 173

Creating the VPC and an internet gateway (IGW) 175 ■ Defining
the public bastion host subnet 175 ■ Adding the private Apache
web server subnet 178 ■ Launching servers in the subnets 178
Accessing the internet from private subnets via a NAT server 179

6.6 Summary 181

PART 3 STORING DATA IN THE CLOUD183

7 Storing your objects: S3 and Glacier 185
7.1 Concept of an object store 186

7.2 Amazon S3 186

7.3 Backing up your data 187

7.4 Archiving objects to optimize costs 190
Creating an S3 bucket for use with Glacier 190 ■ Adding a lifecycle
rule to a bucket 191 ■ Experimenting with Glacier and your
lifecycle rule 193

7.5 Storing objects programmatically 195
Setting up an S3 bucket 195 ■ Installing a web application that
uses S3 196 ■ Reviewing code access: S3 with SDK 196

Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTS xi

7.6 Using S3 for static web hosting 198
Creating a bucket and uploading a static
website 199 ■ Configuring a bucket for static web
hosting 199 ■ Accessing a website hosted on S3 200

7.7 Internals of the object store 201
Ensuring data consistency 201 ■ Choosing the right keys 202

7.8 Summary 203

8 Storing your data on hard drives: EBS and instance store 204
8.1 Network-attached storage 205

Creating an EBS volume and attaching it to your
server 206 ■ Using Elastic Block Store 206 ■ Tweaking
performance 208 ■ Backing up your data 210

8.2 Instance stores 212
Using an instance store 214 ■ Testing performance 215
Backing up your data 216

8.3 Comparing block-level storage solutions 216

8.4 Hosting a shared file system backed by an instance store and
EBS 217

Security groups for NFS 218 ■ NFS server and volume 220
NFS server installation and configuration script 221 ■ NFS
clients 223 ■ Sharing files via NFS 223

8.5 Summary 224

9 Using a relational database service: RDS 225
9.1 Starting a MySQL database 228

Launching a WordPress platform with an Amazon RDS
database 228 ■ Exploring an RDS database instance with a
MySQL engine 231 ■ Pricing for Amazon RDS 233

9.2 Importing data into a database 234

9.3 Backing up and restoring your database 236
Configuring automated snapshots 236 ■ Creating snapshots
manually 237 ■ Restoring a database 238 ■ Copying a
database to another region 240 ■ Calculating the cost of
snapshots 240

9.4 Controlling access to a database 241
Controlling access to the configuration of an RDS database 241
Controlling network access to an RDS database 243 ■ Controlling
data access 243

Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTSxii

9.5 Relying on a highly available database 244
Enabling high-availability deployment for an RDS database 245

9.6 Tweaking database performance 246
Increasing database resources 246 ■ Using read replication to
increase read performance 248

9.7 Monitoring a database 250

9.8 Summary 251

10 Programming for the NoSQL database service: DynamoDB 253
10.1 Operating DynamoDB 255

Administration 255 ■ Pricing 255 ■ RDS comparison 255

10.2 DynamoDB for developers 256
Tables, items, and attributes 256 ■ Primary keys 257 ■ NoSQL
comparison 257 ■ DynamoDB Local 258

10.3 Programming a to-do application 258

10.4 Creating tables 260
Users with hash keys 260 ■ Tasks with hash and range keys 262

10.5 Adding data 263
Adding a user 265 ■ Adding a task 265

10.6 Retrieving data 266
Getting by key 267 ■ Querying by key and filter 268 ■ Using
secondary indexes for more flexible queries 270 ■ Scanning and
filtering all of your table’s data 272 ■ Eventually consistent data
retrieval 273

10.7 Removing data 273

10.8 Modifying data 274

10.9 Scaling capacity 275

10.10 Summary 277

PART 4 ARCHITECTING ON AWS......................................279

11 Achieving high availability: availability zones, auto-scaling, and
CloudWatch 281
11.1 Recovering from server failure with CloudWatch 283

Creating a CloudWatch alarm 285 ■ Monitoring and recovering
a virtual server based on a CloudWatch alarm 286

Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTS xiii

11.2 Recovering from a data center outage 289
Availability zones: multiple data centers per region 290
Using auto-scaling to ensure that a virtual server is always
running 294 ■ Recovering a failed virtual server to another
availability zone with the help of auto-scaling 296 ■ Pitfall:
network-attached storage recovery 299 ■ Pitfall: network
interface recovery 303

11.3 Analyzing disaster-recovery requirements 307
RTO and RPO comparison for a single virtual server 308

11.4 Summary 309

12 Decoupling your infrastructure: ELB and SQS 310
12.1 Synchronous decoupling with load balancers 312

Setting up a load balancer with virtual servers 313 ■ Pitfall:
connecting a server too early 315

More use cases 316

12.2 Asynchronous decoupling with message queues 322
Turning a synchronous process into an asynchronous one 323
Architecture of the URL2PNG application 324 ■ Setting up a
message queue 324 ■ Producing messages programmatically 324
Consuming messages programmatically 326 ■ Limitations of
messaging with SQS 329

12.3 Summary 330

13 Designing for fault-tolerance 331
13.1 Using redundant EC2 instances to increase availability 333

Redundancy can remove a single point of failure 334
Redundancy requires decoupling 336

13.2 Considerations for making your code fault-tolerant 337
Let it crash, but also retry 337 ■ Idempotent retry makes fault-
tolerance possible 337

13.3 Architecting a fault-tolerant web application: Imagery 340
The idempotent image-state machine 343 ■ Implementing a
fault-tolerant web service 345 ■ Implementing a fault-tolerant
worker to consume SQS messages 351 ■ Deploying the
application 354

13.4 Summary 362

Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTSxiv

14 Scaling up and down: auto-scaling and CloudWatch 363
14.1 Managing a dynamic server pool 365

14.2 Using metrics and schedules to trigger scaling 370
Scaling based on a schedule 371 ■ Scaling based on CloudWatch
metrics 372

14.3 Decoupling your dynamic server pool 375
Scaling a dynamic server pool synchronously decoupled by a load
balancer 377 ■ Scaling a dynamic server pool asynchronously
decoupled by a queue 382

14.4 Summary 385

index 387

Licensed to Thomas Snead <n.ordickan@gmail.com>

xv

foreword
Throughout the late 90s and early 2000s, I worked in the rank and file of system admin-
istrators who endeavored to keep network services online, secure, and available to users.
At that time, working with systems was a tedious, monotonous affair involving cable
slinging, server racking, operating system installation from optical media, and manual
software configuration. Any businesses wishing to engage in the emerging online mar-
ketplace bore the burden of managing physical servers, accepting the associated capital
and operating costs, and hoping for enough success to justify those expenses.

 When Amazon Web Services emerged in 2006, it signaled a shift in the industry.
Many of the previously repetitive, time-consuming tasks became unnecessary, and the
cost of launching new services plummeted. Suddenly anyone with a good idea and the
ability to execute could build a global business on world-class infrastructure at a start-
ing cost of just a few cents per hour. In terms of cumulative disruption of an estab-
lished market, a few technologies stand above all others, and AWS is among them.

 Today the march of progress continues unabated. In November 2014, at its annual
re:Invent conference in Las Vegas, AWS announced to more than 13,000 live attendees
that the number of major new features and services had nearly doubled each year
since 2008. Usage of existing services grew on a similar scale, with a roughly 100%
year-over-year increase for S3 and EC2. This growth offers new opportunities for the
engineers and businesses that strive to solve some of the most challenging problems in
building an online marketplace.

 Needless to say, this unprecedented power and flexibility comes at the expense of
considerable complexity. In response to and often in anticipation of customer

Licensed to Thomas Snead <n.ordickan@gmail.com>

FOREWORDxvi

demand, AWS has assembled dozens of services with thousands of features that enable
yet confound new users. The benefits are accompanied by a brand-new lexicon and
distinct architectural and technical best practices. This motley collection of sometimes
overlapping services usually intimidates the beginner.

 Amazon Web Services in Action slices through the challenges of learning AWS by using
examples to cement knowledge in the minds of readers. Andreas and Michael focus
on the most prominent services and features that users are likely to encounter. Secu-
rity considerations are placed front and center, helping to establish that hosting sys-
tems in the cloud can be safe for even the most sensitive applications. And because
many readers will be footing the bill from AWS personally, any examples that incur
charges are called out explicitly throughout the text.

 As a consultant, author, and, at heart, an engineer, I celebrate all efforts to intro-
duce the wonderful world of cloud computing to new users. Amazon Web Services in
Action is at the head of the pack as a confident, practical guide through the maze of
the industry’s leading cloud platform.

 With this book as your sidekick, what will you build on the AWS cloud?

 BEN WHALEY

AWS COMMUNITY HERO AND AUTHOR OF

THE UNIX AND LINUX SYSTEM ADMINISTRATION HANDBOOK

Licensed to Thomas Snead <n.ordickan@gmail.com>

xvii

preface
When we started to develop software, we didn’t care about operations. We wrote code,
and someone else was responsible for deployment and operations. There was a huge
gap between software development and IT operations. On top of that, releasing new
features was a huge risk because it was impossible to test all the changes to software
and infrastructure manually. Every six months, when new features needed to be
deployed, we experienced a nightmare.

 Time passed, and we became responsible for a product. Our goal was to iterate
quickly and to be able to release new features to the product every week. Our software
was responsible for managing money, so the quality of the software and infrastructure
was as important as the ability to innovate. But the inflexible on-premises infrastruc-
ture and the outdated process of deploying software made that goal impossible to
reach. We started to look for a better way.

 Our search lead us to Amazon Web Services, which offered us a flexible and reli-
able way to build and operate our applications. The possibility of automating every
part of our infrastructure was fascinating. Step by step, we dove into the different AWS
services, from virtual servers to distributed message queues. Being able to outsource
tasks like operating a SQL database or terminating HTTPS connections on a load bal-
ancer saved us a lot of time. We invested this time in automating testing and opera-
tions for our entire infrastructure.

 Technical aspects weren’t the only things that changed during this transformation to
the cloud. After a while the software architecture changed from a monolithic application
to microservices, and the separation between software development and operations

Licensed to Thomas Snead <n.ordickan@gmail.com>

PREFACExviii

disappeared. Instead we built our organization around the core principle of DevOps:
you build it, you run it.

 Our company became the first bank running on AWS in Germany. We learned a lot
about Amazon Web Services, microservices, and DevOps during this journey.

 Today we work as consultants, helping our clients to get the most out of AWS. The
interesting thing is that most of them aren’t concerned about saving money. Instead,
they’re transforming their organizations to benefit from the innovative space that AWS
offers to outperform their competitors.

 We were completely surprised when we were asked to write a book about AWS in
January 2015. But, after experiencing the level of professionalism at Manning Publica-
tions during our first phone calls, we became more and more confident. We love read-
ing books as well as teaching and sharing our knowledge, so writing a book seemed to
be a perfect fit.

 Due to the tremendous support from Manning Publications and our MEAP read-
ers, we were able to finish this book in only nine months. We enjoyed the feedback
loop among ourselves, our editors, and MEAP readers. And it was a lot of fun to create
and improve all the examples that are part of Amazon Web Services in Action.

Licensed to Thomas Snead <n.ordickan@gmail.com>

xix

acknowledgments
Writing a book is time consuming. We invested our time, and other people did as well.
We think that time is the most valuable resource on Earth, and we want to honor every
minute spent by the people who helped us with this book.

 To all the readers who bought the MEAP edition of the book, who motivated us by
their confidence in us to finish the book, and who shared their interest in AWS: thank
you for reading the book. We hope you learned a lot.

 Thank you to all the people who posted comments in the book’s Author Online
forum and who provided excellent feedback that improved the book.

 Thank you to all the reviewers who provided detailed comments from the first to the
last page: Arun Allamsetty, Carm Vecchio, Chris Bridwell, Dieter Vekeman, Ezra Sim-
eloff, Henning Kristensen, Jani Karhunen, Javier Muñoz Mellid, Jim Amrhein, Nestor
Narvaez, Rambabu Posa, Scott Davidson, Scott M. King, Steffen Burzlaff, Tidjani Bel-
mansour, and William E. Wheeler. Your input helped shape this book—we hope you
like it as much as we do.

 We also want to thank Manning Publications for placing their trust in us. This is
our first book, so we know this was a high-risk venture for them. We want to thank the
following staff at Manning for their excellent work:

■ Dan Maharry, who helped us to teach AWS without missing important steps.
Thanks for your patience when we made the same mistake multiple times. We
also want to thank Jennifer Stout and Susanna Kline for helping out when Dan
was on vacation.

Licensed to Thomas Snead <n.ordickan@gmail.com>

ACKNOWLEDGMENTSxx

■ Jonathan Thoms, who helped us think about how our code teaches the ideas
behind it.

■ Doug Warren, who checked that our code examples worked as expected.
■ Tiffany Taylor, who perfected our English. We know you had a hard time with

us, but our mother tongue is German, and we thank you for your efforts.
■ Candace Gillhoolley and Ana Romac, who helped us to promote this book.
■ Benjamin Berg, who answered our many questions regarding the technical

aspects of writing a book.
■ Mary Piergies, Kevin Sullivan, Melody Dolab, and all the others who worked

behind the scenes and who took our rough draft and turned it into a real book.

Many thanks to Ben Whaley for contributing the foreword to our book.
 Thanks also to Christoph Metzger, Harry Fix, and the Tullius Walden Bank team

for providing us with an incredible workplace where we acquired many of our AWS
skills by migrating the IT of the first bank in Germany to do so to AWS.

 Last but not least, we want to thank the significant people in our lives who sup-
ported us as we worked on the book. Andreas wants to thank his wife Simone, and
Michael wants to thank his partner Kathrin, for their patience and encouragement
during the past nine months.

Licensed to Thomas Snead <n.ordickan@gmail.com>

xxi

about this book
This book introduces the most important AWS services and how you can combine
them to get the most out of Amazon Web Services. Most of our examples use typical
web applications to demonstrate important points. We pay a lot of attention to secu-
rity topics, so we followed the principle of “least privilege” in this book. And we used
official AWS tools whenever possible.

 Automation sneaks in throughout the book, so by the end you’ll be comfortable
with using the automation tool CloudFormation to set up everything you’ve learned
in an automated way; this will be one of the most important things you will learn from
our book.

 You’ll find three types of code listings in this book: Bash, JSON, and Node.js/
JavaScript. We use Bash to create tiny scripts to interact with AWS in an automated way.
JSON is used to describe infrastructure in a way that CloudFormation can understand.
And we use the Node.js platform to create small applications in JavaScript when pro-
gramming is required to use services.

 We focus on Linux as the operating system for virtual servers in the book. Exam-
ples are based on open source software whenever possible.

Roadmap
Chapter 1 introduces cloud computing and AWS. You’ll learn about key concepts and
basics, and you’ll create and set up your AWS account.

 Chapter 2 brings Amazon Web Services into action. You’ll spin up and dive into a
complex cloud infrastructure with ease.

Licensed to Thomas Snead <n.ordickan@gmail.com>

ABOUT THIS BOOKxxii

 Chapter 3 is about working with a virtual server. You’ll learn about the key con-
cepts of EC2 services with the help of a handful of practical examples.

 Chapter 4 presents different approaches to automating your infrastructure. You’ll
learn how to use infrastructure as code by using three different approaches: your ter-
minal, a programming language, and a tool called CloudFormation.

 Chapter 5 introduces three different ways to deploy software to AWS. You’ll use
each of the tools to deploy an application to AWS in an automated fashion.

 Chapter 6 is about security. You’ll learn how to secure your system with private net-
works and firewalls. You’ll also learn how to protect your AWS account.

 Chapter 7 introduces S3, a service offering object storage, and Glacier, a service
offering long-term storage. You’ll learn how to integrate object storage into your
applications to implement a stateless server by creating an image gallery.

 Chapter 8 is about block-level storage for virtual servers offered by AWS. This is
interesting if you plan to operate legacy software on block-level storage. You also take
some performance measurements to get a good idea of the options available on AWS.

 Chapter 9 introduces RDS, a service offering you managed relational database sys-
tems like PostgreSQL, MySQL, Oracle, and Microsoft SQL Server. If your applications
use such a relational database system, this is an easy way to implement a stateless
server architecture.

 Chapter 10 introduces DynamoDB, a service offering a NoSQL database. You can
integrate this NoSQL database into your applications to implement a stateless server.
You’ll implement a to-do application in this chapter.

 Chapter 11 lays the foundation for becoming independent of losing a single server
or a complete data center. You’ll learn how to recover a single EC2 instance in the
same or in another data center.

 Chapter 12 introduces the concept of decoupling your system to increase reliabil-
ity. You’ll learn how to use synchronous decoupling with the help of load balancers on
AWS. Asynchronous decoupling is also part of this chapter; we explain how to use SQS,
a distributed queuing service, to build a fault-tolerant system.

 Chapter 13 shows you how to use many services you’ve learned about to build a
fault-tolerant application. In this chapter, you’ll learn everything you need to design
a fault-tolerant web application based on EC2 instances, which aren’t fault-tolerant
by default.

 Chapter 14 is all about flexibility. You’ll learn how to scale the capacity of your
infrastructure based on a schedule or based on the current load of your system.

Code conventions and downloads
All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing, and sometimes we needed to break a line into two or more to fit on the

Licensed to Thomas Snead <n.ordickan@gmail.com>

ABOUT THIS BOOK xxiii

page. In our Bash code we used the continuation backslash. In our JSON and Node.js/
JavaScript code, an artificial line break is indicated by this symbol: ➥.

 The code for the examples in this book is available for download from the pub-
lisher’s website at www.manning.com/books/amazon-web-services-in-action and from
GitHub at https://github.com/AWSinAction/code.

Author Online
Purchase of Amazon Web Services in Action includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
books/amazon-web-services-in-action. This page provides information on how to get
on the forum once you’re registered, what kind of help is available, and the rules of
conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It isn’t a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

 The AO forum and the archives of previous discussions will be accessible from the
publisher’s website as long as the book is in print.

Licensed to Thomas Snead <n.ordickan@gmail.com>

www.manning.com/books/amazon-web-services-in-action
www.manning.com/books/amazon-web-services-in-action
www.manning.com/books/amazon-web-services-in-action
https://github.com/AWSinAction/code

xxiv

about the authors
Andreas Wittig and Michael Wittig work as software engineers and consultants focusing
on AWS and web and mobile application development. They work with clients around
the globe. Together, they migrated the complete IT infrastructure of a German bank to
AWS—the first bank in Germany to do so. They have expertise in distributed system
development and architecture, algorithmic trading, and real-time analytics. Andreas
and Michael are proponents of the DevOps model. They are both AWS Certified Solu-
tions Architects, Professional Level.

Licensed to Thomas Snead <n.ordickan@gmail.com>

xxv

about the cover illustration
The figure on the cover of Amazon Web Services in Action is captioned “Paysan du Can-
ton de Lucerne,” or a peasant from the canton of Lucerne in central Switzerland. The
illustration is taken from a collection of dress costumes from various countries by
Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différent Pays, pub-
lished in France in 1797. Each illustration is finely drawn and colored by hand.

 The rich variety of Grasset de Saint--Sauveur’s collection reminds us vividly of how
culturally apart the world’s towns and regions were just 200 years ago. Isolated from
each other, people spoke different dialects and languages. In the streets or in the
countryside, it was easy to identify where they lived and what their trade or station in
life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Part 1

Getting started

Have you watched a blockbuster on Netflix, bought a gadget on Ama-
zon.com, or synced files with Dropbox today? If so, you’ve used Amazon Web
Services (AWS) in the background. As of December 2014, AWS operated 1.4 mil-
lion servers and therefore is a big player in the cloud computing market. The
data centers of AWS are distributed throughout the United States, Europe, Asia,
and South America. But the cloud doesn’t consist of hardware and computing
power alone. Software is part of every cloud platform and makes the difference
for you as a customer. The information technology research firm Gartner has
classified AWS as a leader in the Magic Quadrant for Cloud Infrastructure as a
Service in 2015 for the fourth time. The speed and quality of innovation on the
AWS platform is extremely high.

 The first part of this book will guide you through your first steps with AWS
and give you an idea of how you can use AWS to improve your IT infrastructure.
Chapter 1 introduces cloud computing and AWS; you’ll learn about key concepts
and basics. Chapter 2 brings Amazon Web Service into action; you’ll dive into a
complex cloud infrastructure with ease.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://www.amazon.com
https://www.amazon.com

Licensed to Thomas Snead <n.ordickan@gmail.com>

3

What is
 Amazon Web Services?

Amazon Web Services (AWS) is a platform of web services offering solutions for
computing, storing, and networking, at different layers of abstraction. You can use
these services to host web sites, run enterprise applications, and mine tremendous
amounts of data. The term web service means services can be controlled via a web
interface. The web interface can be used by machines or by humans via a graphical
user interface. The most prominent services are EC2, which offers virtual servers,
and S3, which offers storage capacity. Services on AWS work well together; you can
use them to replicate your existing on-premises setup or design a new setup from
scratch. Services are charged for on a pay-per-use pricing model.

This chapter covers
■ Overview of Amazon Web Services
■ Benefits of using Amazon Web Services
■ Examples of what you can do with Amazon Web

Services
■ Creating and setting up an Amazon Web Services

account

Licensed to Thomas Snead <n.ordickan@gmail.com>

4 CHAPTER 1 What is Amazon Web Services?

 As an AWS customer, you can choose among different data centers. AWS data cen-
ters are distributed in the United States, Europe, Asia, and South America. For exam-
ple, you can start a virtual server in Japan in the same way you can start a virtual server
in Ireland. This enables you to serve customers worldwide with a global infrastructure.

 The map in figure 1.1 shows the data centers available to all customers.

In more general terms, AWS is known as a cloud computing platform.1

1.1 What is cloud computing?
Almost every IT solution is labeled with the term cloud computing or just cloud nowa-
days. A buzzword may help to sell, but it’s hard to work with in a book.

 Cloud computing, or the cloud, is a metaphor for supply and consumption of IT
resources. The IT resources in the cloud aren’t directly visible to the user; there are
layers of abstraction in between. The level of abstraction offered by the cloud may vary
from virtual hardware to complex distributed systems. Resources are available on
demand in enormous quantities and paid for per use.

1 Bernard Golden, “Amazon Web Services (AWS) Hardware,” For Dummies, http://mng.bz/k6lT.

Which hardware powers AWS?
AWS keeps secret the hardware used in its data centers. The scale at which AWS
operates computing, networking, and storage hardware is tremendous. It probably
uses commodity components to save money compared to hardware that charges ex-
tra for a brand name. Handling of hardware failure is built into real-world processes
and software.1

AWS also uses hardware especially developed for its use cases. A good example is
the Xeon E5-2666 v3 CPU from Intel. This CPU is optimized to power virtual servers
from the c4 family.

Germany
Ireland

Japan

Brazil
Australia

Singapore

U.S. East

U.S. West 1

U.S. West 2

Figure 1.1 AWS data center locations

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://mng.bz/k6lT

5What can you do with AWS?

Here's a more official definition from the National Institute of Standards and
Technology:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.

 —The NIST Definition of Cloud Computing,
 National Institute of Standards and Technology

Clouds are often divided into the following types:

■ Public—A cloud managed by an organization and open to use by the general
public

■ Private—A cloud that virtualizes and shares the IT infrastructure within a single
organization

■ Hybrid—A mixture of a public and a private cloud

AWS is a public cloud. Cloud computing services also have several classifications:

■ Infrastructure as a service (IaaS)—Offers fundamental resources like computing,
storage, and networking capabilities, using virtual servers such as Amazon EC2,
Google Compute Engine, and Microsoft Azure virtual machines

■ Platform as a service (PaaS)—Provides platforms to deploy custom applications to
the cloud, such as AWS Elastic Beanstalk, Google App Engine, and Heroku

■ Software as a service (SaaS)—Combines infrastructure and software running in
the cloud, including office applications like Amazon WorkSpaces, Google Apps
for Work, and Microsoft Office 365

The AWS product portfolio contains IaaS, PaaS, and SaaS. Let’s take a more concrete
look at what you can do with AWS.

1.2 What can you do with AWS?
You can run any application on AWS by using one or a combination of services. The
examples in this section will give you an idea of what you can do with AWS.

1.2.1 Hosting a web shop

John is CIO of a medium-sized e-commerce business. His goal is to provide his custom-
ers with a fast and reliable web shop. He decided to host the web shop on-premises,
and three years ago he rented servers in a data center. A web server handles requests
from customers, and a database stores product information and orders. John is evalu-
ating how his company can take advantage of AWS by running the same setup on AWS,
as shown in figure 1.2.

Licensed to Thomas Snead <n.ordickan@gmail.com>

6 CHAPTER 1 What is Amazon Web Services?

John realized that other options are available to improve his setup on AWS with addi-
tional services:

■ The web shop consists of dynamic content (such as products and their prices)
and static content (such as the company logo). By splitting dynamic and static
content, John reduced the load for his web servers and improved performance
by delivering the static content over a content delivery network (CDN).

■ John uses maintenance-free services including a database, an object store, and a
DNS system on AWS. This frees him from managing these parts of the system,
decreases operational costs, and improves quality.

■ The application running the web shop can be installed on virtual servers. John
split the capacity of the old on-premises server into multiple smaller virtual serv-
ers at no extra cost. If one of these virtual servers fails, the load balancer will
send customer requests to the other virtual servers. This setup improves the web
shop’s reliability.

Figure 1.3 shows how John enhanced the web shop setup with AWS.
 John started a proof-of-concept project and found that his web application can be

transferred to AWS and that services are available to help improve his setup.

1.2.2 Running a Java EE application in your private network

Maureen is a senior system architect in a global corporation. She wants to move parts
of the business applications to AWS when the company’s data-center contract expires
in a few months, to reduce costs and gain flexibility. She found that it’s possible to run
enterprise applications on AWS.

DatabaseWeb server

Maintenance free

On-premises server

DatabaseWeb
server

Managed by you with updates,
monitoring, and so on

Internet

User

Figure 1.2 Running a web shop
on-premises vs. on AWS

Licensed to Thomas Snead <n.ordickan@gmail.com>

7What can you do with AWS?

To do so, she defines a virtual network in the cloud and connects it to the corpo-
rate network through a virtual private network (VPN) connection. The company
can control access and protect mission-critical data by using subnets and control
traffic between them with access-control lists. Maureen controls traffic to the
internet using Network Address Translation (NAT) and firewalls. She installs
application servers on virtual machines (VMs) to run the Java EE application. Mau-
reen is also thinking about storing data in a SQL database service (such as Oracle
Database Enterprise Edition or Microsoft SQL Server EE). Figure 1.4 illustrates Mau-
reen’s architecture.

 Maureen has managed to connect the on-premises data center with a private net-
work on AWS. Her team has already started to move the first enterprise application to
the cloud.

1.2.3 Meeting legal and business data archival requirements

Greg is responsible for the IT infrastructure of a small law office. His primary goal is to
store and archive all data in a reliable and durable way. He operates a file server to

Database

Internet
User

Load balancer DNS CDN

Object store

Dynamic

Web server

Static

Maintenance free Managed by you with updates,
monitoring, and so on

Improve
reliability

Improve
performance

Decrease
maintenance
costs

Figure 1.3 Running a web shop on AWS with CDN for better performance, a load balancer for
high availability, and a managed database to decrease maintenance costs

Licensed to Thomas Snead <n.ordickan@gmail.com>

8 CHAPTER 1 What is Amazon Web Services?

offer the possibility of sharing documents within the office. Storing all the data is a
challenge for him:

■ He needs to back up all files to prevent the loss of critical data. To do so, Greg
copies the data from the file server to another network-attached storage, so he
had to buy the hardware for the file server twice. The file server and the backup
server are located close together, so he is failing to meet disaster-recovery
requirements to recover from a fire or a break-in.

■ To meet legal and business data archival requirements, Greg needs to store data
for a long time. Storing data for 10 years or longer is tricky. Greg uses an expen-
sive archive solution to do so.

To save money and increase data security, Greg decided to use AWS. He transferred
data to a highly available object store. A storage gateway makes it unnecessary to buy
and operate network-attached storage and a backup on-premises. A virtual tape deck
takes over the task of archiving data for the required length of time. Figure 1.5
shows how Greg implemented this use case on AWS and compares it to the
on-premises solution.

 Greg is fine with the new solution to store and archive data on AWS because he was
able to improve quality and he gained the possibility of scaling storage size.

SQL database

Private subnet
10.10.2.0/24

Internet

Private subnet
10.10.1.0/24

Private subnet
10.10.0.0/24

Virtual network
10.10.0.0/16

Java EE server

NAT
Internet
gateway

VPN
gatewayCorporate network

10.20.0.0/16

VPN

Figure 1.4 Running a Java EE application with enterprise networking on AWS

Licensed to Thomas Snead <n.ordickan@gmail.com>

9What can you do with AWS?

1.2.4 Implementing a fault-tolerant system architecture

Alexa is a software engineer working for a fast-growing startup. She knows that Mur-
phy’s Law applies to IT infrastructure: anything that can go wrong, will go wrong. Alexa
is working hard to build a fault-tolerant system to prevent outages from ruining the
business. She knows that there are two type of services on AWS: fault-tolerant services
and services that can be used in a fault-tolerant way. Alexa builds a system like the one
shown in figure 1.6 with a fault-tolerant architecture. The database service is offered
with replication and failover handling. Alexa uses virtual servers acting as web servers.
These virtual servers aren’t fault tolerant by default. But Alexa uses a load balancer and
can launch multiple servers in different data centers to achieve fault tolerance.

 So far, Alexa has protected the startup from major outages. Nevertheless, she and
her team are always planning for failure.

 You now have a broad idea of what you can do with AWS. Generally speaking, you
can host any application on AWS. The next section explains the nine most important
benefits AWS has to offer.

User UserUser

Network-attached
storage (NAS)

Tape deck

Backup Archive

Archive

Synchronize

Local company network

Virtual
tape drive

Object
store

NAS (backup)

Data storage in a single
location is a disaster risk.

With high-availability
services, no backup
is required.

User UserUser

Storage gateway

Local company network

Internet

Maintenance free Managed by you with updates,
monitoring, and so on

Figure 1.5 Backing up and archiving data on-premises and on AWS

Licensed to Thomas Snead <n.ordickan@gmail.com>

10 CHAPTER 1 What is Amazon Web Services?

1.3 How you can benefit from using AWS
What’s the most important advantage of using AWS? Cost savings, you might say. But
saving money isn’t the only advantage. Let’s look at other ways you can benefit from
using AWS.

1.3.1 Innovative and fast-growing platform

In 2014, AWS announced more than 500 new services and features during its yearly
conference, re:Invent at Las Vegas. On top of that, new features and improvements
are released every week. You can transform these new services and features into inno-
vative solutions for your customers and thus achieve a competitive advantage.

 The number of attendees to the re:Invent conference grew from 9,000 in 2013
to 13,500 in 2014.2 AWS counts more than 1 million businesses and government agen-
cies among its customers, and in its Q1 2014 results discussion, the company said it
will continue to hire more talent to grow even further.3 You can expect even more new
features and services in the coming years.

2 Greg Bensinger, “Amazon Conference Showcases Another Side of the Retailer’s Business,” Digits, Nov. 12, 2014,
http://mng.bz/hTBo.

3 “Amazon.com’s Management Discusses Q1 2014 Results - Earnings Call Transcript,” Seeking Alpha, April 24, 2014,
http://mng.bz/60qX.

Data center A

Web server

Database
(master)

Load
balancer

Internet
User Data center B

Web server

Database
(standby)

Fault tolerant by default Fault tolerant usage possibleHighly available

Figure 1.6 Building a fault-tolerant system on AWS

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://mng.bz/hTBo
http://mng.bz/60qX

11How you can benefit from using AWS

1.3.2 Services solve common problems

As you’ve learned, AWS is a platform of services. Common problems such as load bal-
ancing, queuing, sending email, and storing files are solved for you by services. You don’t
need to reinvent the wheel. It’s your job to pick the right services to build complex sys-
tems. Then you can let AWS manage those services while you focus on your customers.

1.3.3 Enabling automation

Because AWS has an API, you can automate everything: you can write code to create
networks, start virtual server clusters, or deploy a relational database. Automation
increases reliability and improves efficiency.

 The more dependencies your system has, the more complex it gets. A human can
quickly lose perspective, whereas a computer can cope with graphs of any size. You
should concentrate on tasks a human is good at—describing a system—while the com-
puter figures out how to resolve all those dependencies to create the system. Setting
up an environment in the cloud based on your blueprints can be automated with the
help of infrastructure as code, covered in chapter 4.

1.3.4 Flexible capacity (scalability)

Flexible capacity frees you from planning. You can scale from one server to thousands
of servers. Your storage can grow from gigabytes to petabytes. You no longer need to
predict your future capacity needs for the coming months and years.

 If you run a web shop, you have seasonal traffic patterns, as shown in figure 1.7.
Think about day versus night, and weekday versus weekend or holiday. Wouldn’t it be
nice if you could add capacity when traffic grows and remove capacity when traffic
shrinks? That’s exactly what flexible capacity is about. You can start new servers within
minutes and throw them away a few hours after that.

 The cloud has almost no capacity constraints. You no longer need to think about
rack space, switches, and power supplies—you can add as many servers as you like. If
your data volume grows, you can always add new storage capacity.

12am 6pm6am

S
ys

te
m

 lo
ad

S
ys

te
m

 lo
ad

Thursday SundayMonday

S
ys

te
m

 lo
ad

DecemberJanuary

Figure 1.7 Seasonal traffic patterns for a web shop

Licensed to Thomas Snead <n.ordickan@gmail.com>

12 CHAPTER 1 What is Amazon Web Services?

Flexible capacity also means you can shut down unused systems. In one of our last proj-
ects, the test environment only ran from 7:00 a.m. to 8:00 p.m. on weekdays, allowing
us to save 60%.

1.3.5 Built for failure (reliability)

Most AWS services are fault-tolerant or highly available. If you use those services, you
get reliability for free. AWS supports you as you build systems in a reliable way. It pro-
vides everything you need to create your own fault-tolerant systems.

1.3.6 Reducing time to market

In AWS, you request a new virtual server, and a few minutes later that virtual server is
booted and ready to use. The same is true with any other AWS service available. You
can use them all on demand. This allows you to adapt your infrastructure to new
requirements very quickly.

 Your development process will be faster because of the shorter feedback loops. You
can eliminate constraints such as the number of test environments available; if you
need one more test environment, you can create it for a few hours.

1.3.7 Benefiting from economies of scale

At the time of writing, the charges for using AWS have been reduced 42 times since 2008:

■ In December 2014, charges for outbound data transfer were lowered by up to 43%.
■ In November 2014, charges for using the search service were lowered by 50%.
■ In March 2014, charges for using a virtual server were lowered by up to 40%.

As of December 2014, AWS operated 1.4 million servers. All processes related to oper-
ations must be optimized to operate at that scale. The bigger AWS gets, the lower the
prices will be.

1.3.8 Worldwide

You can deploy your applications as close to your customers as possible. AWS has data
centers in the following locations:

■ United States (northern Virginia, northern California, Oregon)
■ Europe (Germany, Ireland)
■ Asia (Japan, Singapore)
■ Australia
■ South America (Brazil)

With AWS, you can run your business all over the world.

1.3.9 Professional partner

AWS is compliant with the following:

■ ISO 27001—A worldwide information security standard certified by an indepen-
dent and accredited certification body

Licensed to Thomas Snead <n.ordickan@gmail.com>

13How much does it cost?

■ FedRAMP & DoD CSM—Ensures secure cloud computing for the U.S. Federal
Government and the U.S. Department of Defense

■ PCI DSS Level 1—A data security standard (DSS) for the payment card industry
(PCI) to protect cardholders data

■ ISO 9001—A standardized quality management approach used worldwide and
certified by an independent and accredited certification body

If you’re still not convinced that AWS is a professional partner, you should know that
Airbnb, Amazon, Intuit, NASA, Nasdaq, Netflix, SoundCloud, and many more are run-
ning serious workloads on AWS.

 The cost benefit is elaborated in more detail in the next section.

1.4 How much does it cost?
A bill from AWS is similar to an electric bill. Services are billed based on usage. You pay
for the hours a virtual server was running, the used storage from the object store (in
gigabytes), or the number of running load balancers. Services are invoiced on a
monthly basis. The pricing for each service is publicly available; if you want to calcu-
late the monthly cost of a planned setup, you can use the AWS Simple Monthly Calcu-
lator (http://aws.amazon.com/calculator).

1.4.1 Free Tier

You can use some AWS services for free during the first 12 months after you sign up.
The idea behind the Free Tier is to enable you to experiment with AWS and get some
experience. Here is what’s included in the Free Tier:

■ 750 hours (roughly a month) of a small virtual server running Linux or Win-
dows. This means you can run one virtual server the whole month or you can
run 750 virtual servers for one hour.

■ 750 hours (or roughly a month) of a load balancer.
■ Object store with 5 GB of storage.
■ Small database with 20 GB of storage, including backup.

If you exceed the limits of the Free Tier, you start paying for the resources you con-
sume without further notice. You’ll receive a bill at the end of the month. We’ll show
you how to monitor your costs before you begin using AWS. If your Free Tier ends
after one year, you pay for all resources you use.

 You get some additional benefits, as detailed at http://aws.amazon.com/free. This
book will use the Free Tier as much as possible and will clearly state when additional
resources are required that aren’t covered by the Free Tier.

1.4.2 Billing example

As mentioned earlier, you can be billed in several ways:

■ Based on hours of usage—If you use a server for 61 minutes, that’s usually counted
as 2 hours.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://aws.amazon.com/calculator
http://aws.amazon.com/free

14 CHAPTER 1 What is Amazon Web Services?

■ Based on traffic—Traffic can be measured in gigabytes or in number of requests.
■ Based on storage usage—Usage can be either provisioned capacity (for example, 50 GB

volume no matter how much you use) or real usage (such as 2.3 GB used).

Remember the web shop example from section 1.2? Figure 1.8 shows the web shop
and adds information about how each part is billed.

Let’s assume your web shop started successfully in January, and you decided to run a
marketing campaign to increase sales for the next month. Lucky you: you were able to
increase the number of visitors of your web shop fivefold in February. As you already
know, you have to pay for AWS based on usage. Table 1.1 shows your bills for January
and February. The number of visitors increased from 100,000 to 500,000, and your
monthly bill increased from 142.37 USD to 538.09 USD, which is a 3.7-fold increase.
Because your web shop had to handle more traffic, you had to pay more for services,
such as the CDN, the web servers, and the database. Other services, like the storage of
static files, didn’t experience more usage, so the price stayed the same.

 With AWS, you can achieve a linear relationship between traffic and costs. And
other opportunities await you with this pricing model.

Database

Internet
User

Load balancer DNS CDN

Object
storage

Web server

Billed by storage usageBilled by hours of usage Billed by traffic

Dynamic Static

Figure 1.8 Web shop billing example

Licensed to Thomas Snead <n.ordickan@gmail.com>

15Comparing alternatives

1.4.3 Pay-per-use opportunities

The AWS pay-per-use pricing model creates new opportunities. You no longer need to
make upfront investments in infrastructure. You can start servers on demand and only
pay per hour of usage; and you can stop using those servers whenever you like and no
longer have to pay for them. You don’t need to make an upfront commitment regard-
ing how much storage you’ll use.

 A big server costs exactly as much as two smaller ones with the same capacity. Thus
you can divide your systems into smaller parts, because the cost is the same. This
makes fault tolerance affordable not only for big companies but also for smaller
budgets.

1.5 Comparing alternatives
AWS isn’t the only cloud computing provider. Microsoft and Google have cloud offer-
ings as well.

 OpenStack is different because it’s open source and developed by more than 200
companies including IBM, HP, and Rackspace. Each of these companies uses Open-
Stack to operate its own cloud offerings, sometimes with closed source add-ons. You
could run your own cloud based on OpenStack, but you would lose most of the bene-
fits outlined in section 1.3.

 Comparing cloud providers isn’t easy, because open standards are mostly missing.
Functionality like virtual networks and message queuing are realized differently. If you
know what features you need, you can compare the details and make your decision.

Table 1.1 How an AWS bill changes if the number of web shop visitors increases

Service January usage February usage February charge Increase

Visits to website 100,000 500,000

CDN 26 M requests +
25 GB traffic

131 M requests +
125 GB traffic

113.31 USD 90.64 USD

Static files 50 GB used
storage

50 GB used
storage

1.50 USD 0.00 USD

Load balancer 748 hours +
50 GB traffic

748 hours +
250 GB traffic

20.30 USD 1.60 USD

Web servers 1 server = 748
hours

4 servers = 2,992
hours

204.96 USD 153.72 USD

Database (748
hours)

Small server +
20 GB storage

Large server +
20 GB storage

170.66 USD 128.10 USD

Traffic (outgoing
traffic to internet)

51 GB 255 GB 22.86 USD 18.46 USD

DNS 2 M requests 10 M requests 4.50 USD 3.20 USD

Total cost 538.09 USD 395.72 USD

Licensed to Thomas Snead <n.ordickan@gmail.com>

16 CHAPTER 1 What is Amazon Web Services?

Otherwise, AWS is your best bet because the chances are highest that you’ll find a solu-
tion for your problem.

 Following are some common features of cloud providers:

■ Virtual servers (Linux and Windows)
■ Object store
■ Load balancer
■ Message queuing
■ Graphical user interface
■ Command-line interface

The more interesting question is, how do cloud providers differ? Table 1.2 compares
AWS, Azure, Google Cloud Platform, and OpenStack.

Table 1.2 Differences between AWS, Microsoft Azure, Google Cloud Platform, and OpenStack

AWS Azure
Google Cloud

Platform
OpenStack

Number of services Most Many Enough Few

Number of locations
(multiple data cen-
ters per location)

9 13 3 Yes (depends on the
OpenStack provider)

Compliance Common standards
(ISO 27001, HIPAA,
FedRAMP, SOC), IT
Grundschutz (Ger-
many), G-Cloud (UK)

Common standards
(ISO 27001, HIPAA,
FedRAMP, SOC), ISO
27018 (cloud pri-
vacy), G-Cloud (UK)

Common standards
(ISO 27001, HIPAA,
FedRAMP, SOC)

Yes (depends on the
OpenStack provider)

SDK languages Android, Browsers
(JavaScript), iOS,
Java, .NET, Node.js
(JavaScript), PHP,
Python, Ruby, Go

Android, iOS, Java,
.NET, Node.js
(JavaScript), PHP,
Python, Ruby

Java, Browsers
(JavaScript), .NET,
PHP, Python

-

Integration into
development
process

Medium, not linked
to specific ecosys-
tems

High, linked to the
Microsoft ecosys-
tem (for example,
.NET development)

High, linked to the
Google ecosystem
(for example,
Android)

-

Block-level storage
(attached via net-
work)

Yes Yes (can be used by
multiple virtual serv-
ers simultaneously)

No Yes (can be used by
multiple virtual serv-
ers simultaneously)

Relational
database

Yes (MySQL, Postgr-
eSQL, Oracle Data-
base, Microsoft SQL
Server)

Yes (Azure SQL Data-
base, Microsoft SQL
Server)

Yes (MySQL) Yes (depends on the
OpenStack provider)

NoSQL database Yes (proprietary) Yes (proprietary) Yes (proprietary) No

DNS Yes No Yes No

Licensed to Thomas Snead <n.ordickan@gmail.com>

17Exploring AWS services

In our opinion, AWS is the most mature cloud platform available at the moment.

1.6 Exploring AWS services
Hardware for computing, storing, and networking is the foundation of the AWS cloud.
AWS runs software services on top of the hardware to provide the cloud, as shown in
figure 1.9. A web interface, the API, acts as an interface between AWS services and your
applications.

 You can manage services by sending requests to the API manually via a GUI or pro-
grammatically via a SDK. To do so, you can use a tool like the Management Console, a
web-based user interface, or a command-line tool. Virtual servers have a peculiarity:
you can connect to virtual servers through SSH, for example, and gain administrator

Virtual network Yes Yes No Yes

Pub/sub messag-
ing

Yes (proprietary, JMS
library available)

Yes (proprietary) Yes (proprietary) No

Machine-learning
tools

Yes Yes Yes No

Deployment tools Yes Yes Yes No

On-premises data-
center integration

Yes Yes Yes No

Table 1.2 Differences between AWS, Microsoft Azure, Google Cloud Platform, and OpenStack (continued)

AWS Azure
Google Cloud

Platform
OpenStack

Administrator

Manage
services

Compute:
App:

Enterprise:
Deployment:

Storage:
Database:

Networking:

Virtual server
Queues, search
Directory service, mail
Access rights, monitoring
Object store, archiving
Relational, NoSQL
DNS, virtual network

Services

Compute

Software
Hardware

Storage
Network

API

Figure 1.9 The AWS cloud is composed of hardware and software services accessible via an API.

Licensed to Thomas Snead <n.ordickan@gmail.com>

18 CHAPTER 1 What is Amazon Web Services?

access. This means you can install any software you like on a virtual server. Other ser-
vices, like the NoSQL database service, offer their features through an API and hide
everything that’s going on behind the scenes. Figure 1.10 shows an administrator
installing a custom PHP web application on a virtual server and managing dependent
services such as a NoSQL database used by the PHP web application.

 Users send HTTP requests to a virtual server. A web server is installed on this virtual
server along with a custom PHP web application. The web application needs to talk to
AWS services in order to answer HTTP requests from users. For example, the web
application needs to query data from a NoSQL database, store static files, and send
email. Communication between the web application and AWS services is handled by
the API, as figure 1.11 shows.

 The number of different services available can be scary at the outset. The following
categorization of AWS services will help you to find your way through the jungle:

■ Compute services offer computing power and memory. You can start virtual serv-
ers and use them to run your applications.

■ App services offer solutions for common use cases like message queues, topics,
and searching large amounts of data to integrate into your applications.

Administrator

Manage
services

Install and configure
software remotely

API Services

Static file
storage

NoSQL
database

Sending
email

Virtual
server

Figure 1.10 Managing a custom application running on a virtual server and dependent services

Licensed to Thomas Snead <n.ordickan@gmail.com>

19Exploring AWS services

■ Enterprise services offer independent solutions such as mail servers and directory
services.

■ Deployment and administration services work on top of the services mentioned so
far. They help you grant and revoke access to cloud resources, monitor your vir-
tual servers, and deploy applications.

■ Storage is needed to collect, persist, and archive data. AWS offers different stor-
age options: an object store or a network-attached storage solution for use with
virtual servers.

■ Database storage has some advantages over simple storage solutions when you
need to manage structured data. AWS offers solutions for relational and NoSQL
databases.

■ Networking services are an elementary part of AWS. You can define private net-
works and use a well-integrated DNS.

Be aware that we cover only the most important categories and services here. Other
services are available, and you can also run your own applications on AWS.

 Now that we’ve looked at AWS services in detail, it’s time for you to learn how to
interact with those services.

Users

HTTP request

Virtual
server

API Services

Static file
storage

NoSQL
database

Sending
email

Figure 1.11 Handling an HTTP request with a custom web application using additional
AWS services

Licensed to Thomas Snead <n.ordickan@gmail.com>

20 CHAPTER 1 What is Amazon Web Services?

1.7 Interacting with AWS
When you interact with AWS to configure or use services, you make calls to the API.
The API is the entry point to AWS, as figure 1.12 demonstrates.

 Next, we’ll give you an overview of the tools available to make calls to the AWS API.
You can compare the ability of these tools to automate your daily tasks.

1.7.1 Management Console

You can use the web-based Management Console to interact with AWS. You can manu-
ally control AWS with this convenient GUI, which runs in every modern web browser
(Chrome, Firefox, Safari 5, IE 9); see figure 1.13.

 If you’re experimenting with AWS, the Management Console is the best place to
start. It helps you to gain an overview of the different services and achieve success
quickly. The Management Console is also a good way to set up a cloud infrastructure
for development and testing.

1.7.2 Command-line interface

You can start a virtual server, create storage, and send email from the command line.
With the command-line interface (CLI), you can control everything on AWS; see fig-
ure 1.14.

API

Manual

Automation

Services

Web-based
management

Console

Blueprints

SDKs for Java,
Python, JavaScript,...

Command-
line interface

Figure 1.12 Tools to interact with the AWS API

Licensed to Thomas Snead <n.ordickan@gmail.com>

21Interacting with AWS

Figure 1.13 Management Console

Figure 1.14 Command-line interface

Licensed to Thomas Snead <n.ordickan@gmail.com>

22 CHAPTER 1 What is Amazon Web Services?

The CLI is typically used to automate tasks on AWS. If you want to automate parts of
your infrastructure with the help of a continuous integration server like Jenkins, the
CLI is the right tool for the job. The CLI offers a convenient way to access the API and
combine multiple calls into a script.

 You can even begin to automate your infrastructure with scripts by chaining multi-
ple CLI calls together. The CLI is available for Windows, Mac, and Linux, and there’s
also a PowerShell version available.

1.7.3 SDKs

Sometimes you need to call AWS from within your application. With SDKs, you can use
your favorite programming language to integrate AWS into your application logic. AWS
provides SDKs for the following:

SDKs are typically used to integrate AWS services into applications. If you’re doing soft-
ware development and want to integrate an AWS service like a NoSQL database or a
push-notification service, an SDK is the right choice for the job. Some services, such as
queues and topics, must be used with an SDK in your application.

1.7.4 Blueprints

A blueprint is a description of your system containing all services and dependencies. The
blueprint doesn’t say anything about the necessary steps or the order to achieve the
described system. Figure 1.15 shows how a blueprint is transferred into a running system.

■ Android ■ Node.js (JavaScript)

■ Browsers (JavaScript) ■ PHP

■ iOS ■ Python

■ Java ■ Ruby

■ .NET ■ Go

Database

Load balancer

Tool

CDN

Static files

Web servers

DNS
{
 infrastructure: {
 loadbalancer: {
 server: { ... }
 },
 cdn: { ... },
 database: { ... },
 dns: { ... },
 static: { ... }
 }
}

Figure 1.15 Infrastructure
automation with blueprints

Licensed to Thomas Snead <n.ordickan@gmail.com>

23Creating an AWS account

Consider using blueprints if you have to control many or complex environments.
Blueprints will help you to automate the configuration of your infrastructure in the
cloud. You can use blueprints to set up virtual networks and launch different servers
into that network, for example.

 A blueprint removes much of the burden from you because you no longer need to
worry about dependencies during system creation—the blueprint automates the
entire process. You’ll learn more about automating your infrastructure in chapter 4.

 It’s time to get started creating your AWS account and exploring AWS practice after
all that theory.

1.8 Creating an AWS account
Before you can start using AWS, you need to create an account. An AWS account is a
basket for all the resources you own. You can attach multiple users to an account if
multiple humans need access to the account; by default, your account will have one
root user. To create an account, you need the following:

■ A telephone number to validate your identity
■ A credit card to pay your bills

1.8.1 Signing up

The sign-up process consists of five steps:

1 Provide your login credentials.
2 Provide your contact information.
3 Provide your payment details.
4 Verify your identity.
5 Choose your support plan.

Point your favorite modern web browser to https://aws.amazon.com, and click the
Create a Free Account / Create an AWS Account button.

1. PROVIDING YOUR LOGIN CREDENTIALS

The Sign Up page, shown in figure 1.16, gives you two choices. You can either create
an account using your Amazon.com account or create an account from scratch. If you
create the account from scratch, follow along. Otherwise, skip to step 5.

 Fill in your email address, and select I Am a New User. Go on to the next step to cre-
ate your login credentials. We advise you to choose a strong password to prevent misuse

Using an old account?
You can use your existing AWS account while working on the examples in this book. In
this case, your usage may not be covered by the Free Tier, and you may have to pay for
your usage.

Also, if you created your existing AWS account before December 4, 2013, you should create
a new one: there are legacy issues that may cause trouble when you try our examples.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://aws.amazon.com

24 CHAPTER 1 What is Amazon Web Services?

of your account. We suggest a password with 16 characters, numbers, and symbols. If
someone gets access to your account, they can destroy your systems or steal your data.

2. PROVIDING YOUR CONTACT INFORMATION

The next step, as shown in figure 1.17, is to provide your contact information. Fill in
all the required fields, and continue.

Figure 1.16 Creating an AWS
account: Sign Up page

Figure 1.17 Creating an
AWS account: providing
your contact information

Licensed to Thomas Snead <n.ordickan@gmail.com>

25Creating an AWS account

3. PROVIDE YOUR PAYMENT DETAILS

Now the screen shown in figure 1.18 asks for your payment information. AWS supports
MasterCard and Visa. You can set your preferred payment currency later, if you don’t
want to pay your bills in USD; supported currencies are EUR, GBP, CHF, AUD, and some
others.

4. VERIFYING YOUR IDENTITY

The next step is to verify your identity. Figure 1.19 shows the first step of the process.

Figure 1.18 Creating an AWS account: providing your payment details

Licensed to Thomas Snead <n.ordickan@gmail.com>

26 CHAPTER 1 What is Amazon Web Services?

After you complete the first part, you’ll receive a call from AWS. A robot voice will ask
you for your PIN, which will be like the one shown in figure 1.20. Your identity will be
verified, and you can continue with the last step.

Figure 1.19 Creating an AWS account: verifying your identity (1 of 2)

Figure 1.20 Creating an AWS account: verifying your identity (2 of 2)

Licensed to Thomas Snead <n.ordickan@gmail.com>

27Creating an AWS account

5. CHOOSING YOUR SUPPORT PLAN

The last step is to choose a support plan; see figure 1.21. In this case, select the Basic
plan, which is free. If you later create an AWS account for your business, we recom-
mend the Business support plan. You can even switch support plans later.

 High five! You’re done. Now you can log in to your account with the AWS Manage-
ment Console.

1.8.2 Signing In

You have an AWS account and are ready to sign in to the AWS Management Console at
https://console.aws.amazon.com. As mentioned earlier, the Management Console is
a web-based tool you can use to control AWS resources. The Management Console

Figure 1.21 Creating an AWS account: choosing your support plan

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://console.aws.amazon.com

28 CHAPTER 1 What is Amazon Web Services?

uses the AWS API to make most of the functionality available to you. Figure 1.22 shows
the Sign In page.

 Enter your login credentials and click Sign In Using Our Secure Server to see the
Management Console, shown in figure 1.23.

Figure 1.22 Sign in to the Management Console.

Figure 1.23 AWS Management Console

Licensed to Thomas Snead <n.ordickan@gmail.com>

29Creating an AWS account

The most important part is the navigation bar at the top; see figure 1.24. It consists of
six sections:

■ AWS—Gives you a fast overview of all resources in your account.
■ Services—Provides access to all AWS services.
■ Custom section (Edit)—Click Edit and drag-and-drop important services here to

personalize the navigation bar.
■ Your name—Lets you access billing information and your account, and also lets

you sign out.
■ Your region—Lets you choose your region. You’ll learn about regions in section

3.5. You don’t need to change anything here now.
■ Support—Gives you access to forums, documentation, and a ticket system.

Next, you’ll create a key pair so you can connect to your virtual servers.

1.8.3 Creating a key pair

To access a virtual server in AWS, you need a key pair consisting of a private key and a
public key. The public key will be uploaded to AWS and inserted into the virtual server.
The private key is yours; it’s like your password, but much more secure. Protect your
private key as if it’s a password. It’s your secret, so don’t lose it—you can’t retrieve it.

 To access a Linux server, you use the SSH protocol; you’ll authenticate with the
help of your key pair instead of a password during login. You access a Windows server
via Remote Desktop Protocol (RDP); you’ll need your key pair to decrypt the adminis-
trator password before you can log in.

 The following steps will guide you to the dashboard of the EC2 service, which offers
virtual servers, and where you can obtain a key pair:

1 Open the AWS Management Console at https://console.aws.amazon.com.
2 Click Services in the navigation bar, find the EC2 service, and click it.
3 Your browser shows the EC2 Management Console.

The EC2 Management Console, shown in figure 1.25, is split into three columns. The first
column is the EC2 navigation bar; because EC2 is one of the oldest services, it has many

Resource
overview

Jump to
a service

Quick access to services
(customizable)

Account and
billing

Region
selector

Help
section

Figure 1.24 AWS Management Console navigation bar

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://console.aws.amazon.com

30 CHAPTER 1 What is Amazon Web Services?

features that you can access via the navigation bar. The second column gives you a brief
overview of all your EC2 resources. The third column provides additional information.

 Follow these steps to create a new key pair:

1 Click Key Pairs in the navigation bar under Network & Security.
2 Click the Create Key Pair button on the page shown in figure 1.26.
3 Name the Key Pair mykey. If you choose another name, you must replace the

name in all the following examples!

During key-pair creation, you downloaded a file called mykey.pem. You must now pre-
pare that key for future use. Depending on your operating system, you may need to do
things differently, so please read the section that fits your OS.

Figure 1.25 EC2 Management Console

Using your own key pair
It’s also possible to upload the public key part from an existing key pair to AWS. Doing
so has two advantages:

■ You can reuse an existing key pair.
■ You can be sure that only you know the private key part of the key pair. If you use

the Create Key Pair button, AWS knows (at least briefly) your private key.

We decided against that approach in this case because it’s less convenient to imple-
ment in a book.

Licensed to Thomas Snead <n.ordickan@gmail.com>

31Creating an AWS account

LINUX AND MAC OS X

The only thing you need to do is change the access rights of mykey.pem so that only
you can read the file. To do so, run chmod 400 mykey.pem in the terminal. You’ll learn
about how to use your key when you need to log in to a virtual server for the first time
in this book.

WINDOWS

Windows doesn’t ship a SSH client, so you need to download the PuTTY installer for
Windows from http://mng.bz/A1bY and install PuTTY. PuTTY comes with a tool
called PuTTYgen that can convert the mykey.pem file into a mykey.ppk file, which
you’ll need:

1 Run the application PuTTYgen. The screen shown in figure 1.27 opens.
2 Select SSH-2 RSA under Type of Key to Generate.
3 Click Load.
4 Because PuTTYgen displays only *.pkk files, you need to switch the file exten-

sion of the File Name field to All Files.
5 Select the mykey.pem file, and click Open.
6 Confirm the dialog box.
7 Change Key Comment to mykey.
8 Click Save Private Key. Ignore the warning about saving the key without a

passphrase.

Your .pem file is now converted to the .pkk format needed by PuTTY. You’ll learn how
to use your key when you need to log in to a virtual server for the first time in this book.

Figure 1.26 EC2 Management Console key pairs

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://mng.bz/A1bY

32 CHAPTER 1 What is Amazon Web Services?

1.8.4 Creating a billing alarm

Before you use your AWS account in the next chapter, we advise you to create a billing
alarm. If you exceed the Free Tier, an email is sent to you. The book warns you when-
ever an example isn’t covered by the Free Tier. Please make sure that you carefully fol-
low the cleanup steps after each example. To make sure you haven’t missed something
during cleanup, please create a billing alarm as advised by AWS: http://mng.bz/M7Sj.

1.9 Summary
■ Amazon Web Services (AWS) is a platform of web services offering solutions for

computing, storing, and networking that work well together.
■ Cost savings aren’t the only benefit of using AWS. You’ll also profit from an

innovative and fast-growing platform with flexible capacity, fault-tolerant ser-
vices, and a worldwide infrastructure.

■ Any use case can be implemented on AWS, whether it’s a widely used web appli-
cation or a specialized enterprise application with an advanced networking
setup.

Figure 1.27 PuTTYgen allows you to convert the downloaded .pem file into the .pkk
file format needed by PuTTY.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://mng.bz/M7Sj

33Summary

■ You can interact with AWS in many different ways. You can control the different ser-
vices by using the web-based GUI; use code to manage AWS programmatically from
the command line or SDKs; or use blueprints to set up, modify, or delete your infra-
structure on AWS.

■ Pay-per-use is the pricing model for AWS services. Computing power, storage,
and networking services are billed similarly to electricity.

■ Creating an AWS account is easy. Now you know how to set up a key pair so you
can log in to virtual servers for later use.

Licensed to Thomas Snead <n.ordickan@gmail.com>

34

A simple example:
 WordPress in five minutes

In chapter 1, we looked at why AWS is such a great choice to run web applications in
the cloud. In this chapter, you’ll evaluate migrating the blogging infrastructure of
your imaginary company to AWS.

This chapter covers:
■ Creating a blogging infrastructure
■ Analyzing costs of a blogging infrastructure
■ Exploring a blogging infrastructure
■ Shutting down a blogging infrastructure

Example is 100% covered by the Free Tier
The example in this chapter is covered by the Free Tier. As long as you don’t run
this example longer than a few days, you won’t pay anything for it. Keep in mind
that this applies only if you created a fresh AWS account for this book and there
are no other things going on in your AWS account. Try to complete the chapter
within a few days, because you’ll clean up your account at the end of the chapter.

Licensed to Thomas Snead <n.ordickan@gmail.com>

35Creating your infrastructure

Your imaginary company currently uses WordPress to host over 1,000 blogs on your
own servers. The blogging infrastructure must be highly available, because customers
don’t tolerate outages. To evaluate whether a migration is possible, you need to do the
following:

■ Set up a highly available blogging infrastructure
■ Estimate monthly costs of the infrastructure

WordPress is written in PHP and uses a MySQL database to store data. Apache is used
as the web server to serve the pages. With this information in mind, it’s time to map
your requirements to AWS services.

2.1 Creating your infrastructure
You’ll use four different AWS services to copy the old infrastructure to AWS:

■ Elastic Load Balancing (ELB)—AWS offers a load balancer as a service. The Elastic
Load Balancer (ELB) distributes traffic to a bunch of servers behind it. It’s
highly available by default.

■ Elastic Compute Cloud (EC2)—A virtual server is provided by the Elastic Compute
Cloud (EC2) service. You’ll use a Linux server with an optimized distribution
called Amazon Linux to install Apache, PHP, and WordPress. You aren’t limited
to Amazon Linux; you could also choose Ubuntu, Debian, Red Hat, or Win-
dows. Virtual servers can fail, so you need at least two of them. The load bal-
ancer will distribute the traffic between them. In case of a server failure, the
load balancer will stop sending traffic to the failed server, and the remaining
server will need to handle all the requests until the failed server is replaced.

■ Relational Database Service (RDS) for MySQL—WordPress relies on the popular
MySQL database. AWS provides MySQL as a Relational Database Service (RDS).
You choose the database size (storage, CPU, RAM), and RDS takes care of the
rest (backups, updates). RDS can also provide a highly available MySQL data-
base by replication.

■ Security groups—Security groups are a fundamental service of AWS to control
network traffic like a firewall. Security groups can be attached to a lot of services
like ELB, EC2, and RDS. With security groups, you can configure your load bal-
ancer so that it only accepts requests on port 80 from the internet, web servers
only accept connections on port 80 from the load balancer, and MySQL only
accepts connections on port 3306 from the web servers. If you want to log in to
your web servers via SSH, you must also open port 22.

Figure 2.1 shows all the parts of the infrastructure in action. Sounds like a lot of stuff
to set up, so let’s get started!

Licensed to Thomas Snead <n.ordickan@gmail.com>

36 CHAPTER 2 A simple example: WordPress in five minutes

If you expect pages of instructions, you’ll be happy to know that you can create all that
with a few clicks. The following tasks are performed automatically in the background:

1 Creating an ELB

2 Creating a RDS MySQL database
3 Creating and attaching security groups
4 Creating two web servers:

– Creating two EC2 virtual servers
– Installing Apache and PHP via yum install php, php-mysql, mysql, httpd
– Downloading and extracting the latest version of WordPress from http://

wordpress.org/latest.tar.gz
– Configuring WordPress to use the created RDS MySQL database
– Starting Apache

To create the blogging infrastructure, open the AWS Management Console at https://
console.aws.amazon.com. Click Services in the navigation bar, and click the Cloud-
Formation service. You’ll see a page like the one shown in figure 2.2.

NOTE All examples in this book use N. Virginia (also called us-east-1) as the
default region. Exceptions are indicated. Please make sure you switch to the
region N. Virginia before working on an example. When using the AWS Man-
agement Console, you can check and switch the region on the right side of
the main navigation bar.

Incoming
requests

Distribute traffic
to web servers

Security groups act as a virtual firewall.
AWS takes care of them to protect your
system from malicious traffic.

Elastic Load Balancing
(ELB) is a SaaS providing
a managed load balancer.
The service is fault-tolerant.

Users

Load balancer

Firewall

Database

Firewall

Web servers

Firewall

Firewall

Separate database
for performance

Relational Database
Service (RDS) is a SaaS
providing a managed
MySQL database. AWS
takes care of backups,
updates, and replication.

Elastic Compute Cloud
(EC2) is an IaaS providing
virtual servers (Linux and
Windows). You can install
any software you like on
them.

Figure 2.1 The company’s blogging infrastructure consists of two load-balanced web servers running
WordPress and a MySQL database server.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://wordpress.org/latest.tar.gz
http://wordpress.org/latest.tar.gz
https://console.aws.amazon.com
https://console.aws.amazon.com

37Creating your infrastructure

Click Create Stack to start the four-step wizard, as shown in figure 2.3.

Click to create a
new infrastructure
from a blueprint.

Reload
the page.

You haven’t created
an infrastructure from a
blueprint at the moment.

Figure 2.2 CloudFormation screen

Step 1 of 4
Name your
infrastructure.

Here you select the blueprint
for the infrastructure. You
can select a sample,
upload, or provide an
URL. Insert URL of
CloudFormation
template.

Figure 2.3 Creating a blogging infrastructure: step 1 of 4

Licensed to Thomas Snead <n.ordickan@gmail.com>

38 CHAPTER 2 A simple example: WordPress in five minutes

Enter wordpress as the Name. For Source, select Specify an Amazon S3 Template
URL, and copy this URL: https://s3.amazonaws.com/awsinaction/chapter2/template
.json. Click Next to set the KeyName to mykey, as shown in figure 2.4.

 Click Next to create a tag for your infrastructure. A tag consists of a key-value pair
and can be used add information to all parts of your infrastructure. You can use tags
to differentiate between testing and production resources, add the cost center to eas-
ily track costs in your organization, or mark resources that belong to a certain applica-
tion if you host multiple applications in the same AWS account.

In this example, you’ll use a tag to mark all resources that belong to the wordpress
system. This will help you later to easily find your infrastructure. Use system as the key
and wordpress as the value. Figure 2.5 shows how to configure the tag.

Step 2 of 4 Specify the key pair you
created in chapter 1.

Figure 2.4 Creating a blogging infrastructure: step 2 of 4

Pitfall: media uploads and plugins
WordPress uses a MySQL database to store articles and users. But by default, Word-
Press stores media uploads (images) and plugins in a folder called wp-content on the
local file system: the server isn’t stateless. Using multiple servers isn’t possible by
default because each request will be served by another server, but media uploads
and plugins are stored on only one of the servers.

The example in this chapter is incomplete because it doesn’t handle this problem. If
you’re interested in a solution, see chapter 14, where plugins are installed automati-
cally during bootstrapping virtual servers and media uploads are outsourced to an ob-
ject-storage service.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://s3.amazonaws.com/awsinaction/chapter2/template.json
https://s3.amazonaws.com/awsinaction/chapter2/template.json

39Creating your infrastructure

Click Next. Finally, you’ll see a confirmation page, as shown in figure 2.6. In the Estimate Cost
row, click Cost. This will open a new browser tab in the background; you’ll deal with it in the
next section. Switch back to the original browser tab and click Create.

Step 3 of 4
Use tags to identify
your infrastructure.

A tag consists of
a key-value pair.

Figure 2.5 Creating a blogging infrastructure: step 3 of 4

Step 4 of 4
Name of your
infrastructure

URL for the wordpress
blueprint from the book

Specified key
pair you created
in chapter 1

Opens a new browser tab
to estimate costs with the
Simple Monthly Calculator

Tags identify your
infrastructure.

Figure 2.6 Creating a blogging infrastructure: step 4 of 4

Licensed to Thomas Snead <n.ordickan@gmail.com>

40 CHAPTER 2 A simple example: WordPress in five minutes

Your infrastructure will now be created. Figure 2.7 shows that wordpress is in state
CREATE_IN_PROGRESS. It’s a good time to take a break; come back in 5-15 minutes,
and you’ll be surprised.

 Take a look at the result by refreshing the page. Select the Wordpress row, where
Status should be CREATE_COMPLETE. If the status is still CREATE_IN_PROGRESS, be
patient until the status becomes CREATE_COMPLETE. Switch to the Outputs tab, as
shown in figure 2.8. There you’ll find the URL to your wordpress system; click it to
visit the system.

Infrastructure
is being created.

You have created one
infrastructure from a
blueprint at the moment.

Reload
the page.

Figure 2.7 Review screen

URL to your newly
created WordPress

Infrastructure
has been created

Figure 2.8 Blogging infrastructure result

Licensed to Thomas Snead <n.ordickan@gmail.com>

41Exploring your infrastructure

You may ask yourself, how does this work? The answer is automation.

You’ll explore the blogging infrastructure in the next section to get a better under-
standing of the services you’re using.

2.2 Exploring your infrastructure
Now that you’ve created your blogging infrastructure, let’s take a closer look at it. Your
infrastructure consists of the following:

■ Web servers
■ Load balancer
■ MySQL database

You’ll use the resource groups feature of the Management Console to get an overview.

2.2.1 Resource groups

A resource group is a collection of AWS resources. Resource is an abstract term for some-
thing in AWS like an EC2 server, a security group, or a RDS database. Resources can be
tagged with key-value pairs. Resource groups specify what tags are needed for a
resource to belong to the group. Furthermore, a resource group specifies the
region(s) the resource must reside in. You can use resource groups to group resources
if you run multiple systems in the same AWS account.

 Remember that you tagged the blogging infrastructure with the key system and
the value wordpress. From now on, we’ll use this notation for key-value pairs:
(system:wordpress). You’ll use that tag to create a resource group for your
WordPress infrastructure. In the AWS part of the navigation bar in figure 2.9, click
Create a Resource Group.

Automation references
One of the key concepts of AWS is automation. You can automate everything. In the
background, your blogging infrastructure was created based on a blueprint. You’ll
learn more about blueprints and the concept of programming your infrastructure in
chapter 4. You’ll learn to automate the installation of software in chapter 5.

Figure 2.9 Creating a new resource group

Licensed to Thomas Snead <n.ordickan@gmail.com>

42 CHAPTER 2 A simple example: WordPress in five minutes

You’ll now create a new resource group:

1 Set Group Name to wordpress or whatever you like.
2 Add the tag system with the value wordpress.
3 Select the region N. Virginia.

The form should look like figure 2.10. Save the resource group.

2.2.2 Web servers

Now you’ll see the screen shown in figure 2.11. Select Instances under EC2 on the left
to see your web servers. By clicking the arrow icon in the Go column, you can easily
jump to the details of a single web server.

Figures with cueballs
In some figures, as in figure 2.9, you’ll see numbered cueballs. They mark the order
of clicks you should follow to execute the process being discussed in the surrounding
text.

Use the
system:wordpress
tag to identify your
infrastructure.

Choose US East (Northern Virginia)
for CloudFormation. If in doubt,
select all regions.

Choose whatever you
like to name your group.

Global means that
resource groups are not
bound to a specific region.

Figure 2.10 Creating a resource group for your blogging infrastructure

Licensed to Thomas Snead <n.ordickan@gmail.com>

43Exploring your infrastructure

You’re now looking at the details of your web server, also called an EC2 instance. Fig-
ure 2.12 shows an extract of what you see. The interesting details are as follows:

■ Instance type—Tells you about how powerful your instance is. You’ll learn more
about instance types in chapter 3.

■ Public IP address—The IP address that’s reachable over the internet. You can use
that IP address to connect to the server via SSH.

■ Security groups—If you click View Rules, you’ll see the active firewall rules like
the one that enabled port 22 from all sources (0.0.0.0/0).

■ AMI ID—Remember that you used the Amazon Linux operating system (OS). If
you click the AMI ID, you’ll see the version number of the OS, among others.

A virtual server is also
called an instance.

Figure 2.11 Blogging infrastructure web servers via resource groups

Select the tab to see
some monitoring charts.

Use this IP to
connect via SSH.

Figure 2.12 Details of web servers running the blogging infrastructure

Licensed to Thomas Snead <n.ordickan@gmail.com>

44 CHAPTER 2 A simple example: WordPress in five minutes

Select the Monitoring tab to see how your web server is utilized. This will become part
of your job: really knowing how your infrastructure is doing. AWS collects some metrics
and shows them in the Monitoring section. If the CPU is utilized more than 80%, you
should add a third server to prevent page load times from increasing.

2.2.3 Load balancer

You can find your load balancer by selecting Load Balancers under EC2 on the left to
open the page shown in figure 2.13. By clicking the arrow icon in the Go column, you
can easily jump to the details of the load balancer.

You’re now looking at the details of your load balancer. Figure 2.14 shows an extract
of what you’ll see. The most interesting part is how the load balancer forwards traffic

Your load balancer distributes
traffic between two web servers.

Figure 2.13 Blogging infrastructure load balancer via resource groups

The health check for the
virtual server was successful,
so two instances are in service.

The load balancer forwards traffic on
port 80 to web servers also on port 80.

Figure 2.14 Details of load balancers serving the blogging infrastructure

Licensed to Thomas Snead <n.ordickan@gmail.com>

45Exploring your infrastructure

to the web servers. The blogging infrastructure runs on port 80, which is the default
HTTP port. The load balancer accepts only HTTP connections to forward to one of the
web servers that also listen on port 80. The load balancer performs a health check on
the virtual servers attached. Both virtual servers are working as expected, so the load
balancer routes traffic to them.

 As before, there’s a Monitoring tab where you can find interesting metrics that you
should watch in production. If the traffic pattern changes suddenly, this indicates a
potential problem with your system. You’ll also find metrics indicating the number of
HTTP errors, which will help you to monitor and debug your system.

2.2.4 MySQL database

Last but not least, let’s look at the MySQL database. You can find your database in a
resource group named wordpress. Select DB Instances under RDS at left. By clicking
the arrow icon in the Go column (shown in figure 2.15), you can easily jump to the
details of the database.

 The details of your MySQL database are shown in figure 2.16. The benefit of
using RDS is that you no longer need to worry about backups because AWS performs
them automatically. Updates are performed by AWS in a custom maintenance win-
dow. Keep in mind that you can choose the right database size in terms of storage,
CPU, and RAM, depending on your needs. AWS offers many different instance classes,

The storage of your MySQL
database can be increased
at any time.

Figure 2.15 Blogging infrastructure MySQL via resource groups

Licensed to Thomas Snead <n.ordickan@gmail.com>

46 CHAPTER 2 A simple example: WordPress in five minutes

from 1 core with 1 GB RAM up to 32 cores with 244 GB RAM. You’ll learn more about
this in chapter 9.

 Now it’s time to evaluate costs. You’ll analyze the costs of your blogging infrastruc-
ture in the next section.

2.3 How much does it cost?
Part of the evaluation is a cost estimation. To analyze the cost of your blogging
infrastructure, you’ll use the AWS Simple Monthly Calculator. Remember that
you clicked the Cost link in the previous section to open a new browser tab.
Switch to that browser tab, and you’ll see a screen like figure 2.17. If you closed the
tab, go to https://s3.amazonaws.com/awsinaction/chapter2/cost.html instead. Click

Your MySQL database uses
normal disks at the moment.
You could also use SSD disks
to improve performance.

AWS takes care of
backing up your data.

You can specify a window
when AWS can apply updates
to your database.

Figure 2.16 Details of the MySQL database storing data for the blogging infrastructure

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://s3.amazonaws.com/awsinaction/chapter2/cost.html

47How much does it cost?

Estimate of Your Monthly Bill, and expand the Amazon EC2 Service and Amazon
RDS Service rows.

 In this example, your infrastructure will cost around $60 per month. Table 2.1
shows the detailed costs of this infrastructure.

Table 2.1 Blogging infrastructure cost calculation with AWS Simple Monthly Calculator

AWS service Infrastructure Monthly cost

Amazon EC2 compute Web servers $ 26.04

Amazon EC2 elastic LBs Load balancer $ 18.30

Amazon RDS DB instances MySQL database $ 12.45

Amazon RDS storage MySQL database $ 0.58

$ 57.37

Figure 2.17 Blogging infrastructure cost calculation

Licensed to Thomas Snead <n.ordickan@gmail.com>

48 CHAPTER 2 A simple example: WordPress in five minutes

Keep in mind that this is only an estimate. You’re billed based on actual use at the end
of the month. Everything is on-demand and usually billed by hours of usage or by
gigabytes of usage. But what influences usage for this infrastructure?

■ Traffic processed by the load balancer—Expect costs to go down in December and
the summer when people are on vacation and not looking at blogs.

■ Storage needed for the database—If your company increases the number of blogs,
the database will grow, so the cost of storage will increase.

■ Number of web servers needed—A single web server is billed by hours of usage. If
two web servers aren’t enough to handle all the traffic during the day, you may
need a third server. In that case, you’ll consume more hours of virtual servers.

Estimating the cost of your infrastructure is a complicated task, but that’s true even if
your infrastructure doesn’t run in AWS. The benefit of using AWS is that it’s flexible. If
your estimated number of web servers is too high, you can get rid of a server and stop
paying for it.

 Now that you’ve had an overview of the blogging infrastructure, it’s time to shut
down the infrastructure and complete your migration evaluation.

2.4 Deleting your infrastructure
You successfully determined that your company can migrate its blogging infrastruc-
ture to AWS for around $60 per month. Now you can decide whether a migration
should be performed.

 To complete the migration evaluation, you need to delete the blogging infrastruc-
ture and get rid of all the resources. You don’t need to worry about losing data
because you only created useless data during the evaluation.

 Go to the CloudFormation service in the Management Console and do the
following:

1 Select the Wordpress row.
2 Click Delete Stack, as shown in figure 2.18.

Figure 2.18 Delete your blogging infrastructure.

Licensed to Thomas Snead <n.ordickan@gmail.com>

49Summary

After you confirm the deletion of the infrastructure, as shown in figure 2.19, it takes a
few minutes for AWS to delete all of the infrastructure’s dependencies.

 This is an efficient way to manage your infrastructure. Just as the infrastructure’s
creation was automated, its deletion is also completely automated. You can create and
delete infrastructure on-demand whenever you like, and you only pay for infrastruc-
ture when you create and run it.

2.5 Summary
■ Creating a blogging infrastructure can be fully automated.
■ Infrastructure can be created at any time on-demand without any up-front com-

mitment for how long you’ll use it.
■ You pay for your infrastructure depending on how many hours you use it.
■ Infrastructure consists of several parts, such as virtual servers, load balancers,

and databases.
■ Infrastructure can be deleted with one click. The process is powered by automation.

Figure 2.19 Confirm deletion of your blogging infrastructure.

Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Part 2

Building virtual infrastructure
with servers and networking

Computing power and network connectivity have become basic needs for
private households, medium-sized enterprises, and big corporations alike. Oper-
ating hardware in-house or in outsourced data centers covered these needs in
the past. Today, the cloud is revolutionizing the way we access computing power.
Virtual servers can be started and stopped on demand to fulfill computing needs
within minutes. Being able to install software on virtual servers enables you to
execute computing tasks without having to buy or rent hardware.

 If you want to understand AWS, you have to dive into the possibilities offered
by the API working behind the scenes. You can control every service on AWS by
sending requests to a REST API. Based on this API, a variety of solutions can help
you to automate your overall infrastructure. Infrastructure automation is a
major advantage of the cloud, compared to on-premises solutions.

 This part of the book will introduce you to infrastructure orchestration and
automated deployment of applications. Creating virtual networks allows you to
build closed, secure network environments on AWS and to connect them with
your home or corporate network. Chapter 3 explores working with a virtual
server; you’ll learn key concepts of the EC2 service. Chapter 4 discusses
approaches to automating your infrastructure and using infrastructure as code.
Chapter 5 shows you three different ways to deploy software to AWS. Finally,
chapter 6 is about networking; you’ll learn how to secure your system with a vir-
tual private network and firewalls.

Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

53

Using virtual servers: EC2

It’s impressive what you can achieve with the computing power of the smartphone
in your pocket or the laptop in your bag. But if your task requires massive
computing power or high network traffic or needs to run reliably 24/7, a virtual
server is a better fit. With a virtual server, you’ll get a part of a server located in a
data center. On AWS, virtual servers are offered by the service called Elastic
Compute Cloud (EC2).

3.1 Exploring a virtual server
A virtual server is part of a physical server that’s isolated by software from other
virtual servers on the same physical server; it consists of CPUs, memory, network-
ing interfaces, and storage. The physical server is also called the host server, and
the virtual servers running on it are called guests. A hypervisor is responsible for

This chapter covers
■ Launching a virtual server with Linux
■ Controlling a virtual server remotely via SSH
■ Monitoring and debugging a virtual server
■ Reducing costs for virtual servers

Licensed to Thomas Snead <n.ordickan@gmail.com>

54 CHAPTER 3 Using virtual servers: EC2

isolating the guests from each other and for scheduling requests to the hardware.
Figure 3.1 shows these layers of server virtualization.

Typical use cases for a virtual server are as follows:

■ Hosting a web application
■ Executing enterprise applications
■ Transforming or analyzing data

3.1.1 Launching a virtual server

It takes only a few clicks to launch a virtual server:

1 Open the AWS Management Console at https://console.aws.amazon.com.
2 Make sure you’re in the N. Virginia (US East) region (see figure 3.2), because

we optimized our examples for this region.

Not all examples are covered by the Free Tier
The examples in this chapter are not all covered by the Free Tier. A special warning
message appears when an example incurs costs. As long as you don’t run all other
examples longer than a few days, you won’t pay anything for them. Keep in mind that
this applies only if you created a fresh AWS account for this book and nothing else is
going on in your AWS account. Try to complete the examples of the chapter within a
few days; you’ll clean up your account at the end of each example.

Your virtual server

Schedules and isolates
requests to hardware

Bare metal server
hardware

Guest 1 Guest 3Guest 2

Hypervisor

Host server

Figure 3.1 Layers of server virtualization

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://console.aws.amazon.com

55Exploring a virtual server

3 Find the EC2 service in the navigation bar under Services and click it. You’ll see
a page like the one shown in figure 3.3.

4 To start the wizard for launching a virtual server, click Launch Instance.

Make sure you’re
in the N. Virginia region.

Resource
overview

Jump to
a service.

Quick access to services
(customizable)

Region
selector

Help
section

Figure 3.2 Making sure you're in the correct region

Starting a new
virtual server

Figure 3.3 Overview of the EC2 service for virtual servers, with the Launch Instance button

Licensed to Thomas Snead <n.ordickan@gmail.com>

56 CHAPTER 3 Using virtual servers: EC2

The wizard will guide you through the following steps:

1 Selecting an OS
2 Choosing the size of your virtual server
3 Configuring details
4 Reviewing your input and selecting a key pair for SSH

SELECTING AN OS

The first step is to choose a bundle of an OS and preinstalled software for your virtual
server, called an Amazon Machine Image (AMI). Select Ubuntu Server 14.04 LTS
(HVM) for your virtual server, as shown in figure 3.4.

Free AMIs
available to
everybody

HVM indicates the
latest and fastest
virtualization type.

Select this AMI
for Ubuntu OS.

Common AMIs
include Linux
and Windows.

Third-party AMIs
with preinstalled
software

Figure 3.4 Choosing an OS for the virtual server

Licensed to Thomas Snead <n.ordickan@gmail.com>

57Exploring a virtual server

An AMI is the basis your virtual server starts from. AMIs are offered by AWS, by third-
party providers, and by the community. AWS offers the Amazon Linux AMI, which
includes a Red Hat Enterprise Linux derivative optimized for use with EC2. You’ll also
find popular Linux distributions and AMIs with Microsoft Windows Server. In addi-
tion, the AWS Marketplace offers AMIs with preinstalled third-party software.

CHOOSING THE SIZE OF YOUR VIRTUAL SERVER

It’s now time to choose the computing power needed for your virtual server. Figure 3.5
shows the next step of the wizard. On AWS, computing power is classified into instance
types. An instance type primarily describes the number of CPUs and the amount
of memory.

Virtual appliances on AWS
A virtual appliance is an image containing an OS and preconfigured software that can
be run on a hypervisor. It’s the hypervisor’s job to run one or more virtual appliances.
Because a virtual appliance contains a fixed state, every time you start the virtual ap-
pliance, you’ll get exactly the same result. You can reproduce virtual appliances as
often as needed, so you can use them to eliminate the cost of installing and config-
uring complex stacks of software. Virtual appliances are used by virtualization tools
from VMware, Microsoft, and Oracle and for infrastructure as a service offerings in
the cloud.

The AMI is the virtual appliance image in AWS. It’s a special virtual appliance for use
with the EC2 service for virtual servers. An AMI technically consists of a read-only file-
system including the OS, additional software, and configuration; it doesn’t include
the kernel of the OS. The kernel is loaded from an Amazon Kernel Image (AKI). You
can also use AMIs for deploying software on AWS.

AWS uses Xen, an open source hypervisor, as the underlying technology for the EC2
service. The current generations of virtual servers on AWS use hardware-assisted vir-
tualization. The technology is called Hardware Virtual Machine (HVM) and uses the
Intel VT-x platform. A virtual server run by an AMI based on HVM uses a fully virtual-
ized set of hardware and can take advantage of hardware extensions that provide fast
access to the underlying hardware.

Using a 3.8+ kernel for your virtual Linux servers will provide the best performance.
To do so, you should use at least Amazon Linux 13.09, Ubuntu 14.04, or RHEL7. If
you’re starting new virtual servers, make sure you’re using HVM images.

Instance types and families
The names for different instance types are all structured in the same way. The in-
stance family groups instance types for the same focus. AWS releases new instance
types and families from time to time; the different versions are called and marked as
generations. The instance size defines the capacity of CPU, memory, storage, and net-
working.

Licensed to Thomas Snead <n.ordickan@gmail.com>

58 CHAPTER 3 Using virtual servers: EC2

Table 3.1 shows examples of instance types for different use cases. All prices in USD are
valid for US East (N. Virginia) and a virtual server based on Linux on April 14, 2015.

There are also instance types and families optimized for compute-intensive workloads,
workloads with high networking I/O, and storage-intensive workloads. Other instance
types provide access to GPUs for server-side graphics workloads. Our experience indi-
cates that you’ll over-estimate the resource requirements for your applications. We
recommend that you try to start your application with a smaller instance type than you
first think you need.

 Computers are getting faster and more specialized. AWS is constantly introducing
new instance types and families. Some of them are improvements of existing instance
families, and others are focused on specific workloads. For example, instance family
d2 was introduced in March 2015. It provides instances for workloads requiring high
sequential read and write access, such as some databases and log processing.

 The smallest and cheapest virtual server will be enough for your first experiments.
In the wizard screen shown in figure 3.5, choose the instance type t2.micro. Then
click Next: Configure Instance Details to proceed.

Table 3.1 Overview of instance families and instance types

Instance
type

Virtual
CPUs

Memory Description Typical use case
Hourly cost

(USD)

t2.micro 1 1 GB Smallest and cheapest instance
type, with moderate baseline perfor-
mance and the ability to burst CPU
performance above the baseline

Testing and development
environments, and applica-
tions with low traffic

0.013

m3.large 2 7.5 GB Has a balanced ratio of CPU, mem-
ory, and networking performance

All kinds of applications,
such as medium databases,
HTTP servers, and enterprise
applications

0.140

r3.large 2 15 GB Optimized for memory-intensive
applications with extra memory

In-memory caches and enter-
prise application servers

0.175

(continued)
For example, the instance type t2.micro tells you the following:

1 The instance family is t. It groups small, cheap virtual servers with low base-
line CPU performance but with the ability to burst significantly over baseline
CPU performance for a short time.

2 You’re using generation 2 of this instance type.
3 The size is micro, indicating that the instance is very small.

Licensed to Thomas Snead <n.ordickan@gmail.com>

59Exploring a virtual server

INSTANCE DETAILS, STORAGE, FIREWALL, AND TAGS

The next four steps of the wizard are easy because you don’t need to change the
defaults. You’ll learn about these settings in detail later in the book.

 Figure 3.6 shows the next step of the wizard. You can change the details for your
virtual server, such as the network configuration or the number of servers to launch.
For now, keep the defaults, and click Next: Add Storage to proceed.

Select t2.micro
for your server.

Only network-attached
storage is available.

Click here
to proceed.

Filter outdated
instance types.

HDs connected
to the server

Filter by special
operation purpose.

Figure 3.5 Choose the size of the virtual server.

Licensed to Thomas Snead <n.ordickan@gmail.com>

60 CHAPTER 3 Using virtual servers: EC2

There are different options for storing data on AWS, which we’ll cover in detail in the
following chapters. Figure 3.7 shows the possibility of adding network-attached stor-
age to your virtual server. Keep the defaults, and click Next: Tag Instance.

Settings for shutdown
and monitoring

Networking interface
for the virtual server

Start one or
multiple virtual
servers at once.

Network settings for
the virtual server

Access control for
server accessing
other AWS services

Click here
to proceed.

Figure 3.6 Details for the virtual server

Licensed to Thomas Snead <n.ordickan@gmail.com>

61Exploring a virtual server

A tidy house indicates a tidy mind. Tags help you to organize resources on AWS. A tag
is nothing more than a key-value pair. Add at least a Name tag to your resources to help
you find your stuff later. Use Name as the key and myserver as the value, as figure 3.8
shows. Then click Next: Configure Security Group.

Use network-attached
storage for the virtual server.

Encrypt
your data?

Click here
to proceed.

Delete disk after
server termination.

Use SSD or
magnetic HDDs.

Size of the network-
attached disk.

Figure 3.7 Add network-attached storage to your virtual server.

Naming helps you to
find your server later.

Use Name as the Key value
for naming your server.

Click here
to proceed.Create additional tags to

query and organize servers.

Figure 3.8 Name your virtual server with a Name tag.

Licensed to Thomas Snead <n.ordickan@gmail.com>

62 CHAPTER 3 Using virtual servers: EC2

A firewall helps to secure your virtual server. Figure 3.9 shows the settings for a default
firewall allowing access via SSH from anywhere. This is exactly what you need, so keep
the defaults and click Review and Launch.

REVIEWING YOUR INPUT AND SELECTING A KEY PAIR FOR SSH

You’re almost finished. The wizard should show a review of your new virtual server
(see figure 3.10). Make sure you chose Ubuntu Server 14.04 LTS (HVM) as the OS and
t2.micro as the instance type. If everything is fine, click the Launch button.

Create a new set
of firewall rules
for your server.

Name and
description
for organizing

Click here
to proceed.

Allow access to
SSH from anywhere.

Figure 3.9 Configuring the firewall for your virtual server

Licensed to Thomas Snead <n.ordickan@gmail.com>

63Exploring a virtual server

Last but not least, the wizard asks for your new virtual server’s key.

Warning because you’re allowing
access to SSH from anywhere,
which is necessary in this case

Click here
to launch
the server.

AMI with Ubuntu
operating system

Instance type,
called t2.micro
for your server

Figure 3.10 Review the instance launch for the virtual server.

Missing your key?
Logging in to your virtual server requires a key. You use a key instead of a password
to authenticate yourself. A key is much more secure than a password, and using keys
for SSH is enforced for virtual servers running Linux on AWS. If you skipped the cre-
ation of a key in section 1.8.3, follow these steps to create a personal key:

Licensed to Thomas Snead <n.ordickan@gmail.com>

64 CHAPTER 3 Using virtual servers: EC2

Choose the option Choose an Existing Key Pair, select the key pair mykey, and click
Launch Instances (see figure 3.11).

(continued)
1 Open the AWS Management Console at https://console.aws.amazon.com.

Find the EC2 service in the navigation bar under Services and click it.
2 Switch to Key Pair via the submenu.
3 Click Create Key Pair.
4 Enter mykey for Key Pair Name, and click Create. Your browser downloads the

key automatically.
5 Open a terminal and switch to your download folder.
6 OS X and Linux only: change the access rights of the file mykey.pem by running

chmod 400 mykey.pem in the console.

Windows only: Windows doesn’t ship a SSH client, so you need to install
PuTTY. PuTTY comes with a tool called PuTTYgen that can convert the
mykey.pem file into a mykey.ppk file, which you’ll need. Open PuTTYgen and
select SSH-2 RSA under Type of Key to Generate. Click Load. Because PuTTY-
gen displays only *.pkk files, you need to switch the file extension of the File
Name Input to All Files. Now you can select the mykey.pem file and click Open.
Confirm the dialog box. Change Key Comment to mykey and Click Save Private
Key. Ignore the warning about saving the key without a passphrase. Your .pem
file is now converted to the .pkk format needed by PuTTY.

You’ll find a more detailed explanation about how to create a key in chapter 1.

Click here to
launch the server.

Select the option Choose
an Existing Key Pair.

Select the key
pair mykey.

Figure 3.11 Choosing a key pair for the virtual server

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://console.aws.amazon.com

65Exploring a virtual server

Your virtual server launches. Open an overview by clicking View Instances, and wait
until the server reaches the Running state. To take full control over your virtual server,
you need to log in remotely.

3.1.2 Connecting to a virtual server

Installing additional software and running commands on your virtual server can be
done remotely. To log in to the virtual server, you have to figure out its public IP address:

1 Click the EC2 service in the navigation bar under Services and click Instances in
the submenu at left to jump to an overview of your virtual server.

2 Select the virtual server from the table by clicking it. Figure 3.12 shows the
server overview and the available actions.

3 Click Connect to open the instructions for connecting to the virtual server.
4 Figure 3.13 shows the dialog with instructions to connect to the virtual server. Find

the public IP address of your virtual server, such as 52.4.216.201 in our example.

Select a virtual server from the list
to open details and execute actions.

Shows details of
your virtual server

Helps to connect
to your server

Control and change
your virtual server.

Figure 3.12 Overview of your virtual server with actions to control it

Licensed to Thomas Snead <n.ordickan@gmail.com>

66 CHAPTER 3 Using virtual servers: EC2

With the public IP address and your key, you can connect to your virtual server. Con-
tinue with the next sections, depending on your OS on your local machine.

LINUX AND MAC OS X

Open your terminal and type ssh -i $PathToKey/mykey.pem ubuntu@$PublicIp,
replacing $PathToKey with the path to the key file you downloaded in section 1.8.3
and $PublicIp with the public IP address shown in the connect dialog in the AWS
Management Console. Answer Yes to the security alert regarding the authenticity of
the new host.

WINDOWS

Follow these steps:

1 Find the mykey.ppk file you created in section 1.8.3 and open it by double-
clicking.

2 PuTTY Pageant should appear in the task bar as an icon. If not, you may need to
install or reinstall PuTTY as described in section 1.8.3.

Figure 3.13 Instructions for connecting to the virtual server with SSH

Licensed to Thomas Snead <n.ordickan@gmail.com>

67Exploring a virtual server

3 Start PuTTY. Fill in the public IP address shown in the Connect dialog in the
AWS Management Console, and click Open (see figure 3.14).

4 Answer Yes to the security alert regarding the authenticity of the new host, and
type ubuntu as the login name. Press Enter.

LOGIN MESSAGE

Whether you’re using Linux, Mac OS X, or Windows, after a successful login you
should see a message like the following:

ssh -i ~/Downloads/mykey.pem ubuntu@52.4.216.201
Warning: Permanently added '52.4.216.201' (RSA) to the list of known hosts.
Welcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-44-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information as of Wed Mar 4 07:05:42 UTC 2015

System load: 0.24 Memory usage: 5% Processes: 83
Usage of /: 9.8% of 7.74GB Swap usage: 0% Users logged in: 0

Graph this data and manage this system at:
https://landscape.canonical.com/

Public IP address
of the virtual server

52.4.216.201

Figure 3.14 Connecting to the virtual server with PuTTY on Windows

Licensed to Thomas Snead <n.ordickan@gmail.com>

68 CHAPTER 3 Using virtual servers: EC2

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

0 packages can be updated.
0 updates are security updates.

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

~$

You’re now connected to your virtual server and ready to run a few commands.

3.1.3 Installing and running software manually

You’ve started a virtual server with an Ubuntu OS. It’s easy to install additional soft-
ware with the help of the package manager apt. To begin, you’ll install a tiny tool
called linkchecker that allows you to find broken links on a website:

$ sudo apt-get install linkchecker -y

Now you’re ready to check for links pointing to websites that no longer exist. To do so,
choose a website and run the following command:

$ linkchecker https://...

The output of checking the links looks something like this:

[...]
URL `http://www.linux-mag.com/blogs/fableson'
Name `Frank Ableson's Blog'
Parent URL http://manning.com/about/blogs.html, line 92, col 27
Real URL http://www.linux-mag.com/blogs/fableson
Check time 1.327 seconds
Modified 2015-07-22 09:49:39.000000Z
Result Error: 404 Not Found

URL `/catalog/dotnet'
Name `Microsoft & .NET'
Parent URL http://manning.com/wittig/, line 29, col 2
Real URL http://manning.com/catalog/dotnet/
Check time 0.163 seconds
D/L time 0.146 seconds
Size 37.55KB
Info Redirected to `http://manning.com/catalog/dotnet/'.

235 URLs parsed.
Modified 2015-07-22 01:16:35.000000Z
Warning [http-moved-permanent] HTTP 301 (moved permanent)

encountered: you should update this link.
Result Valid: 200 OK
[...]

Licensed to Thomas Snead <n.ordickan@gmail.com>

69Monitoring and debugging a virtual server

Depending on the number of web pages, the crawler may need some time to check all
of them for broken links. At the end, it lists the broken links and gives you the chance
to find and fix them.

3.2 Monitoring and debugging a virtual server
If you need to find the reason for an error or misbehavior of an application, it’s
important to have access to tools that can help with monitoring and debugging. AWS
provides tools that let you monitor and debug your virtual servers. One approach is to
examine the virtual server’s logs.

3.2.1 Showing logs from a virtual server

If you need to find out what your virtual server was doing during and after startup,
there’s a simple solution. AWS allows you to show the server’s logs with the help of the
Management Console (the web interface you use to start and stop virtual servers). Fol-
low these steps to open your virtual server’s logs:

1 Open the EC2 service from the main navigation, and select Instances from the
submenu.

2 Select the running virtual server by clicking the row in the table.
3 In the Actions menu, choose Instance Settings > Get System Log.

A window opens and shows you the system logs from your virtual server that would
normally be displayed on a physical monitor during startup (see figure 3.15).

Figure 3.15 Debugging a virtual server with the help of logs

Licensed to Thomas Snead <n.ordickan@gmail.com>

70 CHAPTER 3 Using virtual servers: EC2

This is a simple and efficient way to access your server’s system logs without a SSH con-
nection. Note that it will take several minutes for a log message to appear in the log
viewer.

3.2.2 Monitoring the load of a virtual server

AWS can help you answer another question: is your virtual server close to its maximum
capacity? Follow these steps to open the server’s metrics:

1 Open the EC2 service from the main navigation and select Instances from the
submenu.

2 Select the running virtual server by clicking the row in the table.
3 Select the Monitoring tab at lower right.
4 Click the Network In chart to dive into the details.

You’ll see a graph that shows the virtual server’s utilization of incoming networking
traffic, similar to figure 3.16. There are metrics for CPU usage, network usage, and
disk usage. Unfortunately, there is no metric for memory usage. The metrics are
updated every five minutes if you use basic monitoring or every minute if you enable
detailed monitoring of your virtual server. Detailed monitoring incurs a cost for some
of the instance types.

 Metrics and logs will help you monitor and debug your virtual servers. Both tools
can help ensure that you’re providing high-quality services in a cost-efficient manner.

Figure 3.16 Gaining insight into a virtual server’s incoming network traffic with the CloudWatch metric

Licensed to Thomas Snead <n.ordickan@gmail.com>

71Shutting down a virtual server

3.3 Shutting down a virtual server
To avoid incurring charges, you should always turn off unused virtual servers. You can
use the following four actions to control a virtual server’s state:

■ Start—You can always start a stopped virtual server. If you want to create a com-
pletely new server, you’ll need to launch a virtual server.

■ Stop—You can always stop a running virtual server. A stopped virtual server isn’t
billed and can be started later. If you’re using network-attached storage, your
data persists. A stopped virtual server doesn’t incur charges, except for attached
resources like network-attached storage.

■ Reboot—Have you tried turning it off and on again? If you need to reboot your
virtual server, this action will help. You won’t lose any data when rebooting a vir-
tual server, and all software is still installed after a reboot.

■ Terminate—Terminating a virtual server means deleting it. You can’t start a vir-
tual server that you’ve already terminated. The virtual server is deleted,
together with dependencies like network-attached storage and public and pri-
vate IP addresses. A terminated virtual server doesn’t incur charges.

WARNING The difference between stopping and terminating a virtual server is
important. You can start a stopped virtual server. This isn’t possible with a ter-
minated virtual server. If you terminate a virtual server, you delete it.

Figure 3.17 illustrates the difference between stopping and terminating an instance,
with the help of a flowchart.

 Stopping or terminating unused virtual servers saves money and prevents an unex-
pected bill from AWS. If you start a virtual server for a short-term task, always create a

Running TerminatedRunningStopped TerminateStartStop

Running Terminated StartTerminate

It’s always possible to stop a running
server and to start a stopped server.

You can’t start a terminated
virtual server again.

Figure 3.17 Difference between stopping and terminating a virtual server

Licensed to Thomas Snead <n.ordickan@gmail.com>

72 CHAPTER 3 Using virtual servers: EC2

termination reminder. After you terminate a virtual server, it’s no longer available and
eventually disappears from the list of virtual servers.

3.4 Changing the size of a virtual server
It’s always possible to change the size of a virtual server. This is an advantage of the
cloud and gives you the ability to scale vertically. If you need more computing power,
increase the size of the server.

 In this section, you’ll learn how to change the size of a running virtual server. To
begin, follow these steps to start a small virtual server:

1 Open the AWS Management Console and choose the EC2 service.
2 Start the wizard to launch a new virtual server by clicking the Launch Instance

button.
3 Select Ubuntu Server 14.04 LTS (HVM) as the AMI for your virtual server.
4 Choose the instance type t2.micro.
5 Click Review and Launch to start the virtual server.
6 Check the summary for the new virtual server and click the Launch button.
7 Choose the option Choose an Existing Key Pair, select the key pair mykey, and

click Launch Instances.
8 Switch to the overview of EC2 instances and wait for the new virtual server’s state

to switch to Running.

You’ve started a virtual server with the instance type t2.micro. This is one of the small-
est virtual servers available on AWS.

 Use SSH to connect to your server, as shown in the previous section, and execute
cat /proc/cpuinfo and free -m to gain information about the server’s CPU and mem-
ory. The output should look similar to this:

$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 62
model name : Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz
stepping : 4

Cleaning up
Terminate the virtual server named myserver that you started at the beginning of this
chapter:

1 Open the EC2 service from the main navigation and select Instances from the
submenu.

2 Select the running virtual server by clicking the row in the table.
3 In the Actions menu, choose Instance State > Terminate.

Licensed to Thomas Snead <n.ordickan@gmail.com>

73Changing the size of a virtual server

microcode : 0x416
cpu MHz : 2500.040
cache size : 25600 KB
[...]

$ free -m
total used free shared buffers cached

Mem: 992 247 744 0 8 191
-/+ buffers/cache: 48 944
Swap: 0 0 0

Your virtual server can use a single CPU core and offers 992 MB of memory.
 If you need more CPUs, more memory, or more networking capacity, there are

many other sizes to choose from. You can even change the virtual server’s instance
family and version. To increase the size of your virtual server, you first need to stop it:

1 Open the AWS Management Console and choose the EC2 service.
2 Click Instances in the submenu to jump to an overview of your virtual servers.
3 Select your running virtual server from the list by clicking it.
4 Choose Instance State > Stop from the Actions menu.

After waiting for the virtual server to stop, you can change the instance type:

1 Choose Change Instance Type from the Actions menu under Instance Settings.
As shown in figure 3.18, a dialog opens in which you can choose the new
instance type for your virtual server.

2 Select m3.large for Instance Type.
3 Save your changes by clicking Apply.

You’ve now changed the size of your virtual server and are ready to start it again.

WARNING Starting a virtual server with instance type m3.large incurs charges.
Go to http://aws.amazon.com/ec2/pricing if you want to find out the cur-
rent on-demand hourly price for an m3.large virtual server.

To do so, select your virtual server and choose Start from the Actions menu under
Instance State. Your virtual server starts with more CPUs, more memory, and more net-
working capabilities. The public and private IP addresses have changed. Grab the new
public IP address to reconnect via SSH; you’ll find it in the virtual server’s details view.

Figure 3.18 Increase the size of
your virtual server by selecting
m3.large for Instance Type.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://aws.amazon.com/ec2/pricing

74 CHAPTER 3 Using virtual servers: EC2

Use SSH to connect to your server, and execute cat /proc/cpuinfo and free -m to
gain information about its CPU and memory. The output should look similar to this:

$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 62
model name : Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz
stepping : 4
microcode : 0x415
cpu MHz : 2494.066
cache size : 25600 KB
[...]

processor : 1
vendor_id : GenuineIntel
cpu family : 6
model : 62
model name : Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz
stepping : 4
microcode : 0x415
cpu MHz : 2494.066
cache size : 25600 KB
[...]

$ free -m
total used free shared buffers cached

Mem: 7479 143 7336 0 6 49
-/+ buffers/cache: 87 7392
Swap: 0 0 0

Your virtual server can use two CPU cores and offers 7,479 MB of memory. Compare
this to a single CPU core and 992 MB of memory before you increased the server’s size.

3.5 Starting a virtual server in another data center
AWS offers data centers all over the world. To achieve low latency for requests over the
internet, it’s important to choose the closest data center for the majority of your users.
Changing a data center is simple. The Management Console always shows the current
data center you’re working in, on the right side of the main navigation. So far, you’ve
worked in the data center N. Virginia (US) called us-east-1. To change the data center,

Cleaning up
Terminate the virtual server with instance type m3.large to stop paying for it:

1 Open the EC2 service from the main navigation and select Instances from the
submenu.

2 Select the running virtual server by clicking the row in the table.
3 In the Actions menu, choose Instance State > Terminate.

Licensed to Thomas Snead <n.ordickan@gmail.com>

75Starting a virtual server in another data center

click N. Virginia and select Sydney from the menu. Figure 3.19 shows how to jump to
the data center in Sydney called ap-southeast-2.

 AWS groups its data centers into these regions:

You can specify the region for most AWS services. The regions are completely indepen-
dent of each other; data isn’t transferred between regions. Typically, a region is a col-
lection of three or more data centers located in the same area. Those data centers are

■ Asia Pacific, Tokyo
(ap-northeast-1)

■ EU, Frankfurt (eu-central-1) ■ US East, N. Virginia
(us-east-1)

■ Asia Pacific, Singapore
(ap-southeast-1)

■ EU, Ireland (eu-west-1) ■ US West, N. California
(us-west-1)

■ Asia Pacific, Sydney
(ap-southeast-2)

■ South America, Sao Paulo
(sa-east-1)

■ US West, Oregon
(us-west-2)

The region you’re working in

Select Asia Pacific (Sydney)
as the region to work in.

Figure 3.19 Changing
the data center in the Man-
agement Console from N.
Virginia to Sydney

Licensed to Thomas Snead <n.ordickan@gmail.com>

76 CHAPTER 3 Using virtual servers: EC2

well connected and offer the ability to build a highly available infrastructure, as you’ll
discover later in this book. Some AWS services, like the content delivery network
(CDN) service and the Domain Name System (DNS) service, act globally on top of
these regions and even some additional data centers.

 After you change to the EC2 service in the Management Console, you may wonder
why no key pair is listed in the EC2 overview. You created a key pair for SSH logins in
the region N. Virginia (US). But the regions are independent, so you have to create a
new key pair for the Sydney region. Follow these steps (see section 1.2 if you need
more details):

1 Open the EC2 service from the main navigation and select Key Pairs from the
submenu.

2 Click Create Key Pair, and type in sydney as the key pair name.
3 Download and save the key pair.
4 Windows only: Open PuTTYgen and select SSH-2 RSA under Type of Key to

Generate. Click Load. Select the sydney.pem file and click Open. Confirm the
dialog box. Click Save Private Key.

5 Linux and OS X only: Change the access rights of the file sydney.pem by run-
ning chmod 400 sydney.pem in the console.

You’re ready to start a virtual server in the data center in Sydney. Follow these steps to
do so:

1 Open the EC2 service from the main navigation and select Instances from the
submenu.

2 Click Launch Instance to start a wizard that will guide you through starting a
new virtual server.

3 Select the Amazon Linux AMI (HVM) machine image.
4 Choose t2.micro as the instance type, and click Review and Launch to take the

shortcut for starting a new virtual server.
5 Click Edit Security Groups to configure the firewall. Change Security Group

Name to webserver and Description to HTTP and SSH. Add a rule of type SSH
and another of type HTTP. Allow access to SSH and HTTP from anywhere by
defining 0.0.0.0/0 as the source for both rules. Your firewall configuration
should look like figure 3.20. Click Review and Launch.

6 Click Launch and select sydney as the existing key pair with which to launch
your virtual server.

7 Click View Instances to change to the overview of virtual servers, and wait for
your new virtual server to start.

You’re finished! A virtual server is running in a data center in Sydney. Let’s proceed
with installing a web server on it. To do so, you have to connect to your virtual server
via SSH. Grab the current public IP address of your virtual server from the details
page.

Licensed to Thomas Snead <n.ordickan@gmail.com>

77Starting a virtual server in another data center

Open a terminal and type ssh -i $PathToKey/sydney.pem ec2-user@$PublicIp with
$PathToKey replaced by the path to the key file sydney.pem you downloaded and
$PublicIp replaced by the public IP address from the details of your virtual server.
Answer Yes to the security alert regarding the authenticity of the new host.

 After establishing a SSH session, you can install a default web server by executing
sudo yum install httpd -y. To start the web server, type sudo service httpd start
and press Return to execute the command. Your web browser should show a place-
holder site if you open http://$PublicIp with $PublicIp replaced by the public IP
address of your virtual server.

Change the name
and description.

Add a rule to allow HTTP
requests from anywhere.

Click here
to proceed.

Figure 3.20 Configuring the firewall for a web server in Sydney

Licensed to Thomas Snead <n.ordickan@gmail.com>

78 CHAPTER 3 Using virtual servers: EC2

NOTE You’re using two different operating systems in this chapter. You started
with a virtual server based on Ubuntu at the beginning of the chapter. Now
you’re using Amazon Linux, a distribution based on Red Hat Enterprise Linux.
That’s why you have to execute different commands to install software.
Ubuntu uses apt-get, and Amazon Linux is using yum to do so.

Next, you’ll attach a fixed public IP address to the virtual server.

3.6 Allocating a public IP address
You’ve already launched some virtual servers while reading this book. Each virtual
server was connected to a public IP address automatically. But every time you
launched or stopped a virtual server, the public IP address changed. If you want to
host an application under a fixed IP address, this won’t work. AWS offers a service
called Elastic IP addresses for allocating fixed public IP addresses.

 You can allocate and associate a public IP address to a virtual web server with the
following steps:

1 Open the Management Console and go to the EC2 service.
2 Choose Elastic IPs from the submenu. You’ll see an overview of public IP

addresses, as shown in figure 3.21.
3 Allocate a public IP address by clicking Allocate New Address.

Now you can associate the public IP address with a virtual server of your choice:

1 Select your public IP address and choose Associate Address from the Actions
menu. A dialog similar to figure 3.22 appears.

2 Enter your virtual server’s instance ID in the Instance field. Your web server is
the only virtual server running at the moment, so you can begin typing i- and
use auto-completion to choose the server ID.

3 Click Associate to finish the process.

Your virtual server is now accessible through the public IP address you allocated at the
beginning of this section. Point your browser to this IP address, and you should see
the placeholder page as you did in section 3.5.

 Allocating a public IP address can be useful if you have to make sure the endpoint
to your application doesn’t change, even if you have to replace the virtual server
behind the scenes. For example, assume that virtual server A is running and has an

Windows
Find the sydney.ppk file you created after downloading the new key pair and open it
by double-clicking. The PuTTY Pageant should appear in the task bar as an icon. Next,
start PuTTY and connect to the public IP address from the details of your virtual serv-
er. Answer Yes to the security alert regarding the authenticity of the new host, and
type in ubuntu as the login name. Press Enter.

Licensed to Thomas Snead <n.ordickan@gmail.com>

79Allocating a public IP address

Delete a fixed
public IP address.

Click Elastic IPs to manage
your fixed static IPs.

Click to allocate a new
public IP for your account.

List of fixed public IP addresses
connected with your account

Figure 3.21 Overview of public IP addresses connected to your account in current region

Select the ID of your
virtual server.

Figure 3.22 Associating a public IP address with your web server

Licensed to Thomas Snead <n.ordickan@gmail.com>

80 CHAPTER 3 Using virtual servers: EC2

associated Elastic IP address. The following steps let you replace the virtual server with
a new one without interruption:

1 Start a new virtual server B to replace running server A.
2 Install and start applications and all dependencies on virtual server B.
3 Disassociate the Elastic IP from virtual server A, and associate it with virtual

server B.

Requests using the Elastic IP address will now be routed to virtual server B without
interruption.

 You can also connect multiple public IP addresses with a virtual server by using
multiple network interfaces, as described in the next section. This can be useful if you
need to host different applications running on the same port or if you want to use a
unique fixed public IP address for different websites.

WARNING IPv4 addresses are rare. To prevent stockpiling Elastic IP addresses,
AWS will charge you for Elastic IP addresses that aren’t associated with a
server. You’ll clean up the allocated IP address at the end of the next section.

3.7 Adding an additional network interface to a virtual server
In addition to managing public IP addresses, you can control your virtual server’s network
interfaces. It’s possible to add multiple network interfaces to a virtual server and control
the private and public IP addresses associated with those network interfaces. You use an
additional network interface to connect a second public IP address to your web server.

 Follow these steps to create an additional networking interface for your virtual
server (see figure 3.23):

1 Open the Management Console and go to the EC2 service.
2 Select Network Interfaces from the submenu.
3 Click Create Network Interface. A dialog opens.
4 Enter 2nd interface as the description.
5 Choose your virtual server’s subnet as the subnet for the new networking inter-

face. You can look this up in your server’s details view from the instances overview.
6 Leave Private IP Address empty.
7 Select the Security Groups that have webserver in their description.
8 Click Yes, Create.

Figure 3.23 Creating an additional networking interface for your virtual server

Licensed to Thomas Snead <n.ordickan@gmail.com>

81Adding an additional network interface to a virtual server

When the new network interface’s
state changes to Available, you can
attach it to your virtual server.
Select the new 2nd Interface net-
work interface, and choose Attach
from the menu. A dialog opens, as
shown in figure 3.24. Choose the ID
of the running virtual server and
click Attach.

 You’ve attached an additional
networking interface to your vir-
tual server. Next, you’ll connect an
additional public IP address to the additional networking interface. To do so, note the
network interface ID of the additional network interface shown in the overview, and
follow these steps:

1 Open the Management Console and go to the EC2 service.
2 Choose Elastic IPs from the submenu.
3 Click Allocate New Address to allocate a new public IP address, as you did in sec-

tion 3.6.
4 Choose Associate Address from the Actions menu, and link it to the additional

networking interface you just created by typing in the network interface ID
under Network Interface (see figure 3.25).

Select the networking
interface you just created.

Figure 3.25 Associating a public IP address with the additional networking interface

Figure 3.24 Attaching an additional networking inter-
face to your virtual server

Licensed to Thomas Snead <n.ordickan@gmail.com>

82 CHAPTER 3 Using virtual servers: EC2

Your virtual server is now reachable under two different public IP addresses. This
enables you to serve two different websites, depending on the public IP address. You
need to configure the web server to answer requests depending on the public IP address.

 After connecting to your virtual server via SSH and insert ifconfig into the termi-
nal, you can see your new networking interface attached to the virtual server, as shown
in the following code:

$ ifconfig
eth0 Link encap:Ethernet HWaddr 12:C7:53:81:90:86

inet addr:172.31.1.208 Bcast:172.30.0.255 Mask:255.255.255.0
inet6 addr: fe80::10c7:53ff:fe81:9086/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:62185 errors:0 dropped:0 overruns:0 frame:0
TX packets:9179 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:89644521 (85.4 MiB) TX bytes:582899 (569.2 KiB)

eth1 Link encap:Ethernet HWaddr 12:77:12:53:39:7B
inet addr:172.31.4.197 Bcast:172.30.0.255 Mask:255.255.255.0
inet6 addr: fe80::1077:12ff:fe53:397b/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:13 errors:0 dropped:0 overruns:0 frame:0
TX packets:13 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1256 (1.2 KiB) TX bytes:1374 (1.3 KiB)

[...]

Each network interface is connected to a private and a public IP address. You’ll need
to configure the web server to deliver different websites depending on the IP address.
Your virtual server doesn’t know anything about its public IP address, but you can dis-
tinguish the requests based on the private IP address.

 First you need two websites. Run the following commands via SSH on your virtual
server in Sydney to download two simple placeholder websites:

$ sudo -s
$ mkdir /var/www/html/a
$ wget -P /var/www/html/a https://raw.githubusercontent.com/AWSinAction/\
code/master/chapter3/a/index.html
$ mkdir /var/www/html/b
$ wget -P /var/www/html/b https://raw.githubusercontent.com/AWSinAction/\
code/master/chapter3/b/index.html

Next you need to configure the web server to deliver the websites depending on the
called IP address. To do so, add a file named a.conf under /etc/httpd/conf.d with the
following content. Change the IP address from 172.31.x.x to the IP address from the
ifconfig output for the networking interface eth0:

<VirtualHost 172.31.x.x:80>
DocumentRoot /var/www/html/a

</VirtualHost>

Licensed to Thomas Snead <n.ordickan@gmail.com>

83Optimizing costs for virtual servers

Repeat the same process for a configuration file named b.conf under /etc/httpd/
conf.d with the following content. Change the IP address from 172.31.y.y to the IP
address from the ifconfig output for the networking interface eth1:

<VirtualHost 172.31.y.y:80>
DocumentRoot /var/www/html/b

</VirtualHost>

To activate the new web server configuration, execute sudo service httpd restart
via SSH. Change to the Elastic IP overview in the Management Console. Copy both
public IP addresses and open them with your web browser. You should get the answer
“Hello A!” or a “Hello B!” depending on the public IP address you’re calling. Thus you
can deliver two different websites, depending on the public IP address the user is call-
ing. Congrats—you’re finished!

WARNING You switched to the AWS region in Sydney earlier. Now you need to
switch back to the region US East (N. Virginia). You can do so by selecting US
East (N. Virginia) from the region chooser in the main navigation of the
Management Console.

3.8 Optimizing costs for virtual servers
Usually you launch virtual servers on demand in the cloud to gain maximum flexibility.
You can start and stop an on-demand instance whenever you like, and you’re billed for
every hour the instance (virtual server) is running. If you want to save money, you have
two options: spot instances or reserved instances. Both help to reduce costs but decrease
your flexibility. With a spot instance, you bid for unused capacity in an AWS data center;
the price is based on supply and demand. You can use reserved instances if you need a
virtual server for a year or longer; you agree to pay for the given time frame and receive
a discount in advance. Table 3.2 shows the differences between these options.

Table 3.2 Differences between on-demand, spot, and reserved virtual servers

On-demand Reserved Spot

Price High Medium Low

Flexibility High Low Medium

Reliability Medium High Low

Cleaning up
It’s time to clean up your setup:

1 Terminate the virtual server.
2 Go to Networking Interfaces and select and delete the networking interface.
3 Change to Elastic IPs, and select and release the two public IP addresses by

clicking Release Addresses from the Actions menu.

That’s it. Everything is cleaned up, and you’re ready for the next section.

Licensed to Thomas Snead <n.ordickan@gmail.com>

84 CHAPTER 3 Using virtual servers: EC2

3.8.1 Reserve virtual servers

Reserving a virtual server means to commit to using a specific virtual server in a specific
data center. You have to pay for a reserved virtual server whether it’s running or not.
In return, you benefit from a price reduction of up to 60%. On AWS, you can choose
one of the following options if you want to reserve a virtual server:

■ No Upfront, 1-year term
■ Partial Upfront, 1-year or 3-year term
■ All Upfront, 1-year or 3-year term

Table 3.3 shows what this means for a virtual server with 1 CPU, 3.75 GB of memory,
and a 4 GB SSD called m3.medium.

You can trade cost reductions against flexibility by reserving virtual servers on AWS.
But there’s more. If you own a reservation for a virtual server (a reserved instance), the
capacity for this virtual server is reserved for you in the public cloud. Why is this
important? Suppose demand increases for virtual servers in a data center, perhaps
because another data center broke down and many AWS customers have to launch
new virtual servers to replace their broken ones. In this rare case, the orders for
on-demand virtual servers will pile up, and it may become nearly impossible to start a
new virtual server. If you plan to build a highly available setup across multiple data
centers, you should also think about reserving the minimum capacity you’ll need to
keep your applications running. We recommend that you start with on-demand serv-
ers and switch to a mix of on-demand and reserved servers later.

3.8.2 Bidding on unused virtual servers

In addition to reserved virtual servers, there’s another option for reducing costs: spot
instances. With a spot instance, you bid for unused capacity in the AWS cloud. A spot
market is a market where standardized products are traded for immediate delivery. The
price of the products on the market depend on supply and demand. On the AWS spot

Table 3.3 Potential cost savings for a virtual server (m3.medium)

Monthly cost Upfront cost
Effective

monthly cost
Savings vs.
on-demand

On-demand 48.91 USD 0.00 USD 48.91 USD

No Upfront, 1-year term 35.04 USD 0.00 USD 35.04 USD 28%

Partial Upfront, 1-year term 12.41 USD 211.00 USD 29.99 USD 39%

All Upfront, 1-year term 0.00 USD 353.00 USD 29.42 USD 40%

Partial Upfront, 3-year term 10.95 USD 337.00 USD 20.31 USD 58%

All Upfront, 3-year term 0.00 USD 687.00 USD 19.08 USD 61%

Licensed to Thomas Snead <n.ordickan@gmail.com>

85Optimizing costs for virtual servers

market, the traded products are virtual servers, and they’re delivered by starting a vir-
tual server.

 Figure 3.26 shows the price chart for a specific instance type for a virtual server. If
the current spot price is lower than your maximum price for a specific virtual server in
a specific data center, your spot request will be fulfilled, and a virtual server will start.
If the current spot price exceeds your bid, your virtual server will be terminated (not
stopped) by AWS after two minutes.

 The spot price can be more or less flexible depending on the size of the virtual
servers and the data center. We’ve seen a spot price of 10% of the on-demand price
and even a spot price greater than the on-demand price. As soon as the spot price
exceeds your bid, your server will be terminated within two minutes. You shouldn’t
use spot instances for tasks like web or mail servers, but you can use them to run asyn-
chronous tasks like analyzing data or encoding media assets. You can even use a spot
instance to check for broken links on your website, as you did in section 3.1, because
this isn’t a time-critical task.

 Let’s start a new virtual server that uses the price reductions of the spot market.
First you have to place your order on the spot market; figure 3.27 shows the starting
point for requesting virtual servers. You get there by choosing the EC2 service from
the main navigation and selecting Spot Requests from the submenu. Click to open the
Pricing History, where you can see the prices for virtual servers; historical prices are
available for the different server sizes and different data centers.

Time

Your maximum price

Terminating
server

Starting
server

P
ric

e
Virtual server

terminated

Virtual server
running

+

Figure 3.26 Functionality of the spot market for virtual servers

Licensed to Thomas Snead <n.ordickan@gmail.com>

86 CHAPTER 3 Using virtual servers: EC2

In section 3.1, you started a virtual server. Requesting a spot instance is pretty much
the same. Start the wizard by clicking one of the buttons labeled Request Spot
Instances. Select Ubuntu Server 14.04 LTS (HVM) as the OS of your virtual server.

 You’ve also seen the step shown in figure 3.28, where you choose the size for your
virtual server. You can’t start a spot instance with an instance type from the t2 family,
so instance types like t2.micro are disabled.

WARNING Starting a virtual server with instance type m3.medium via spot
request incurs charges. The maximum price (bid) is $0.07 per hour in the fol-
lowing example.

Choose the smallest available virtual server class, m3.medium, and click Next: Config-
ure Instance Details.

Show the pricing history
of the spot market.

Open an overview
of the spot servers.

Start a wizard to
start a spot server.

Figure 3.27 Requesting a spot instance

Licensed to Thomas Snead <n.ordickan@gmail.com>

87Optimizing costs for virtual servers

The next step, as shown in figure 3.29, is to configure the details of your virtual server
and the spot request. Set the following parameters:

1 Set Number of Instances for the spot request to 1.
2 Choose 0.070 as the Maximum Price for the virtual server. This is the on-demand

price for the server size.
3 Select the default Network, with IP address range 172.30.0.0/16.
4 Look at the Current Price section and search for the lowest price. Choose the

Subnet with the same description.

Not available for
spot instance

Click here
to proceed.

The Review and
Launch button
is missing.

Select instance
type m3.medium.

Figure 3.28 When you’re choosing the size of a spot server, AWS greys out instance types that aren’t available.

Licensed to Thomas Snead <n.ordickan@gmail.com>

88 CHAPTER 3 Using virtual servers: EC2

Current price for
a virtual server
on the spot market

Maximum price
for your server

No time
restrictions for
a spot request

Click here
to proceed.

Keep the default
settings for networking
and access control.

Figure 3.29 Choosing details for the virtual server and specifying a maximum hourly price

Licensed to Thomas Snead <n.ordickan@gmail.com>

89Optimizing costs for virtual servers

Click Review and Launch to complete the wizard. You’ll see a summary of all the set-
tings you made. Click Launch and choose your key pair with the name mykey to
request the spot instance.

 After you finish the wizard, your request for a virtual server is placed on the mar-
ket. Clicking View Spot Requests will direct you to the overview of spot requests from
which you started. You should see a spot request as shown in figure 3.30. It may take
several minutes for your request to be fulfilled. Look at the Status of your request for a
virtual server: because the spot market is unpredictable, it’s possible for a request to
fail. If this happens, repeat the process to create another request, and choose another
subnet in which to launch the virtual server.

 When the state of your requests flips to Fulfilled, a virtual server is started. You can
look at it after switching to Instances via the submenu; you’ll find a running or start-
ing instance listed in the overview of virtual servers. You’ve successfully started a vir-
tual server that is billed as spot instance!

Wait until State
changes to Fulfilled.

Figure 3.30 Waiting for the spot request to be fulfilled and the virtual server to start

Cleaning up
Terminate the virtual server with instance type m3.medium to stop paying for it:

1 Open the EC2 service from the main navigation and select Instances from the
submenu.

2 Select the running virtual server by clicking the row in the table.
3 In the Actions menu, choose Instance State > Terminate.
4 Switch to the Spot Requests overview. Double-check whether your spot request

was canceled. If not, select the spot request and click Cancel.

Licensed to Thomas Snead <n.ordickan@gmail.com>

90 CHAPTER 3 Using virtual servers: EC2

3.9 Summary
■ You can choose an OS when starting a virtual server.
■ Using logs and metrics can help you to monitor and debug a virtual server.
■ Changing the size of your virtual server gives you the flexibility to change the

number of CPUs, memory, and storage.
■ You can start a virtual server in different regions, consisting of multiple data

centers, all over the world.
■ Allocating and associating a public IP address to your virtual server gives you the

flexibility to replace a virtual server without changing the public IP address.
■ You can save on costs by reserving virtual servers or bidding for unused capacity

on the virtual server spot market.

Licensed to Thomas Snead <n.ordickan@gmail.com>

91

Programming
 your infrastructure: the

 command line, SDKs,
 and CloudFormation

Imagine that you want to create room lighting as a service. To switch off the light in
a room with software, you need a hardware device like a relay that can break the cir-
cuit. This hardware device must have some kind of interface that lets you send it
commands like on and off via software. With a relay and an interface, you can offer
room lighting as a service. This also applies to virtual server as a service. If you want
to start a virtual server via software, you need hardware that can handle and fulfill
your request. AWS provides infrastructure that can be controlled via an interface

This chapter covers
■ Understanding the idea of infrastructure as code
■ Using the CLI to start a virtual server
■ Using the JavaScript SDK for Node.js to start a virtual server
■ Using CloudFormation to start a virtual server

Licensed to Thomas Snead <n.ordickan@gmail.com>

92 CHAPTER 4 Programming your infrastructure: the command line, SDKs, and CloudFormation

called an application programming interface (API). You can control every part of AWS over
the API. Calling the API is possible with SDKs for most programming languages, the
command line, and more sophisticated tools.

On AWS, everything can be controlled via an API. You interact with AWS by making calls
to the REST API using the HTTPS protocol, as figure 4.1 illustrates. Everything is avail-
able through the API. You can start a server with a single API call, create 1 TB of storage,
or start a Hadoop cluster over the API. By everything, we mean everything. You’ll need
some time to understand the consequences of this. By the time you finish this book,
you’ll ask why the world wasn’t always that easy. Let’s look at how the API works.

To list all the files in the S3 object store, you can send a GET request to the API endpoint:

GET / HTTP/1.1
Host: BucketName.s3.amazonaws.com
Authorization: [...]

Not all examples are covered by the Free Tier
The examples in this chapter are not all covered by the Free Tier. A special warning
message appears when an example incurs costs. As long as you don’t run the other
examples longer than a few days, you won’t pay anything for them. Keep in mind that
this applies only if you created a fresh AWS account for this book and nothing else is
going on in your AWS account. Try to complete the examples of the chapter within a
few days; you’ll clean up your account at the end of each example.

Administrator

Manage
services

Compute:
App:

Enterprise:
Deployment:

Storage:
Database:

Networking:

Virtual server
Queues, search
Directory service, mail
Access rights, monitoring
Object store, archiving
Relational, NoSQL
DNS, virtual network

Services

Compute

Software
Hardware

Storage
Network

API

Figure 4.1 Interacting with AWS by making calls to the REST API

Licensed to Thomas Snead <n.ordickan@gmail.com>

93Infrastructure as code

The response will look like this:

HTTP/1.1 200 OK
x-amz-id-2: [...]
x-amz-request-id: [...]
Date: Mon, 09 Feb 2015 10:32:16 GMT
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
[...]
</ListBucketResult>

Calling the API directly using plain HTTPS requests is inconvenient. The easy way to
talk to AWS is by using the command-line interface or SDKs, as you learn in this chap-
ter. But the API is the foundation of all those tools.

4.1 Infrastructure as code
Infrastructure as code describes the idea of using a high-level programming language to
control IT systems. In software development tools like automated tests, code reposito-
ries, and build servers are increasing the quality of software engineering. If your infra-
structure can be treated as code, you can apply the same techniques to infrastructure
code that you do to your application code. In the end, you’ll improve the quality of
your infrastructure by using automated tests, code repositories, and build servers.

WARNING Don’t mix up the terms infrastructure as code and infrastructure as a
service (IaaS)! IaaS means renting servers, storage, and network with a pay-per-
use pricing model.

4.1.1 Automation and the DevOps movement

DevOps (Development operations) is an approach driven by software development to
bring development and operations closer together. The goal is to deliver rapidly devel-
oped software to the customer without a negative impact on quality. Communication
and collaboration between development and operations are therefore necessary.

 Multiple deploys per day are possible only if your pipeline from code changes to
deployment is fully automated. If you commit into the repository, the source code is
automatically built and tested against your automated tests. If the build passes the
tests, it’s automatically installed in your testing environment. Perhaps some integra-
tion tests are triggered. After the integration tests have been passed, the change is
propagated into production. But this isn’t the end of the process; now you need to
carefully monitor your system and analyze the logs in real time to ensure that the
change was successful.

 If your infrastructure is automated, you can spawn a new system for every change
introduced to the code repository and run the integration tests isolated from other
changes that were pushed to the repository at the same time. Whenever a change is
made to the code, a new system is created (servers, databases, networks, and so on) to
run the change in isolation.

Licensed to Thomas Snead <n.ordickan@gmail.com>

94 CHAPTER 4 Programming your infrastructure: the command line, SDKs, and CloudFormation

4.1.2 Inventing an infrastructure language: JIML

For the purpose of understanding infrastructure as code in detail, let’s invent a new
language to describe infrastructure: JSON Infrastructure Markup Language (JIML).
Figure 4.2 shows the infrastructure that will be created.

The infrastructure consists of the following:

■ Load balancer (LB)
■ Virtual servers
■ Database (DB)
■ DNS entry
■ Content delivery network (CDN)
■ Bucket for static files

To reduce issues with syntax, let’s say JIML is based on JSON. The following JIML program
creates the infrastructure shown in figure 4.2. The $ indicates a reference to an ID.

{
"region": "us-east-1",
"resources": [{
"type": "loadbalancer",
"id": "LB",
"config": {

Listing 4.1 Infrastructure description in JIML

Database

Load balancer

Tool

CDN

Static files

Web servers

DNS
{
 infrastructure: {
 loadbalancer: {
 server: { ... }
 },
 cdn: { ... },
 database: { ... },
 dns: { ... },
 static: { ... }
 }
}

Figure 4.2 From JIML blueprint to infrastructure: infrastructure automation

Licensed to Thomas Snead <n.ordickan@gmail.com>

95Infrastructure as code

"server": {
"cpu": 2,
"ram": 4,
"os": "ubuntu",
"waitFor": "$DB"

},
"servers": 2

}
}, {
"type": "cdn",
"id": "CDN",
"config": {

"defaultSource": "$LB",
"sources": [{

"path": "/static/*",
"source": "$BUCKET"

}]
}

}, {
"type": "database",
"id": "DB",
"config": {

"password": "***",
"engine": "MySQL"

}
}, {
"type": "dns",
"config": {

"from": "www.mydomain.com",
"to": "$CDN"

}
}, {
"type": "bucket",
"id": "BUCKET"

}]
}

How can this JSON be turned into AWS API calls?

1 Parse the JSON input.
2 The JIML interpreter creates a dependency graph by connecting the resources

with their dependencies.
3 The JIML interpreter derives a linear flow of commands from the dependency

graph by traversing the tree from the bottom (leaves) to the top (root). The
commands are expressed in a pseudo language.

4 The commands in pseudo language are translated into AWS API calls by the
JIML runtime.

Let’s look at the dependency graph created by the JIML interpreter, shown in figure 4.3.
 Traverse the dependency graph from bottom to top and from left to right. The

nodes at the bottom have no children: DB B and bucket D. Nodes without children
have no dependencies. The server C nodes depend on the DB B node. The LB E

Licensed to Thomas Snead <n.ordickan@gmail.com>

96 CHAPTER 4 Programming your infrastructure: the command line, SDKs, and CloudFormation

depends on the server C nodes. The CDN F node depends on the LB E node and the
bucket D node. Finally, the DNS G node depends on the CDN node.

 The JIML interpreter turns the dependency graph into a linear flow of commands
using pseudo language. The pseudo language represents the steps that are needed to
create all the resources in the correct order. The nodes at the bottom have no depen-
dencies and are therefore easy to create; that’s why they’re created first.

References

References

References

References

Wait for Wait for

References

JIML dependency graphJIML code

JIML
interpreter

ServerServer

BucketDB

LB

CDN

DNS
{
 "region": "us-east-1",
 "resources": [{
 "type": "loadbalancer",
 "id": "LB",
 "config": {
 "server": {
 "cpu": 2, "ram": 4, "os": "ubuntu",
 "waitFor": "$DB
 },
 "servers": 2
 }
 }, {
 "type": "cdn",
 "id": "CDN",
 "config": {
 "defaultSource": "$LB",
 "sources": [{
 "path": "/static/*", "source": "$BUCKET"
 }]
 }
 }, {
 "type": "database",
 "id": "DB",
 "config": {
 "password": ***", "engine": "MySQL"
 }
 }, {
 "type": "dns",
 "config": {
 "from": "www.mydomain.com", "to": "$CDN"
 }
 }, {
 "type": "bucket",
 "id": "BUCKET"
 }]
}

Figure 4.3 The JIML interpreter figures out the order in which resources need to be created.

Licensed to Thomas Snead <n.ordickan@gmail.com>

97Using the command-line interface

$DB = database create {"password": "***", "engine": "MySQL"}
$BUCKET = bucket create {}

await $DB
$SERVER1 = server create {"cpu": 2, "ram": 4, "os": "ubuntu"}
$SERVER2 = server create {"cpu": 2, "ram": 4, "os": "ubuntu"}

await [$SERVER1, $SERVER2]
$LB = loadbalancer create {"servers": [$_SERVER1, $_SERVER2]}

await [$LB, $BUCKET]
$CDN = cdn create {...}

await $CDN
$DNS = dns create {...}

await $DNS

The last step—translating the commands of the pseudo language into AWS API calls—
is skipped. You already learned everything you need to know about infrastructure as
code: it’s all about dependencies.

 Now that you know how important dependencies are to infrastructure as code,
let’s see how you can use the command line to create infrastructure. The command
line is one tool to implement infrastructure as code.

4.2 Using the command-line interface
The AWS command-line interface (CLI) is a convenient way to use AWS from your
command line. It runs on Linux, Mac, and Windows and is written in Python. It pro-
vides a unified interface for all AWS services. Unless otherwise specified, the output is
in JSON format.

 You’re now going to install and configure the CLI. After that, you can get your
hands dirty.

4.2.1 Installing the CLI

How you proceed depends on your OS. If you’re having difficulty installing the CLI,
consult http://mng.bz/N8L6 for a detailed description of many installation options.

LINUX AND MAC OS X

The CLI requires Python (2.6.5 and greater, 2.7.x and greater, 3.3.x and greater, or 3.4.x
and greater) and pip. pip is the recommended tool for installing Python packages. To
check your Python version, run python --version in your terminal. If you don’t have
Python installed or your version is too old, you’ll need to find an alternate way to install
Python. To find out if you have pip already installed, run pip --version in your termi-
nal. If a version appears, you’re fine; otherwise, execute the following to install pip:

$ curl "https://bootstrap.pypa.io/get-pip.py" -o "get-pip.py"
$ sudo python get-pip.py

Listing 4.2 Linear flow of commands in pseudo language

Create the database.Create the bucket.

Create the
servers.

Wait for the
dependencies.

Create
the load

balancer.
Create
the CDN.

Create the
DNS entry.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://mng.bz/N8L6

98 CHAPTER 4 Programming your infrastructure: the command line, SDKs, and CloudFormation

Verify your pip installation by running pip --version in your terminal again. Now it’s
time to install the AWS CLI:

$ sudo pip install awscli

Verify your AWS CLI installation by running aws --version in your terminal.

WINDOWS

The following steps guide you through installing the AWS CLI on Windows using the
MSI Installer:

1 Download the AWS command-line interface (32-bit or 64-bit) MSI installer from
http://aws.amazon.com/cli/.

2 Run the downloaded installer, and install the CLI by going through the installa-
tion wizard.

3 Run PowerShell as administrator by searching for the PowerShell entry in the
Start menu and choosing Run as Administrator from its context menu.

4 Type Set-ExecutionPolicy Unrestricted into PowerShell, and press Enter to
execute the command. This allows you to execute the unsigned PowerShell
scripts from our examples.

5 Close the PowerShell window; you don’t need to work as administrator any longer.
6 Run PowerShell via the PowerShell entry in the Start menu.
7 Verify whether the CLI is working by executing aws --version in PowerShell.

4.2.2 Configuring the CLI

To use the CLI, you need to authenticate. Until now, you’ve used the root AWS
account. This account can do everything, good and bad. It’s strongly recommended
that you not use the AWS root account (you’ll learn more about security in chapter 6),
so let’s create a new user.

 To create a new user, open the AWS Management Console at https://console.aws
.amazon.com. Click Services in the navigation bar, and click the IAM (AWS Identity
and Access Management) service. A page opens as shown in figure 4.4; select Users
at left.

Click to create
a new user.

You haven’t
created a user.

Figure 4.4 IAM users (empty)

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://aws.amazon.com/cli/
https://console.aws.amazon.com
https://console.aws.amazon.com

99Using the command-line interface

Follow these steps to create a new user:

1 Click Create New Users to open the page shown in figure 4.5.
2 Enter mycli as the user name for the first user.
3 Leave the other fields blank, and select Generate an Access Key for Each User.
4 Click the Create button.

The page shown in figure 4.6 opens. Click Show User Security Credentials to display
the User Security Credentials box—it’s visible only once! You now need to copy the
credentials to your CLI configuration. Read on to learn how this works.

The user name of the
new user is mycli.

Select the Generate an Access
Key for Each User option.

Figure 4.5 Creating an IAM user

The Access Key ID together
with the Secret Access Key
are used for authentication.

Figure 4.6 Creating an IAM user: showing credentials

Licensed to Thomas Snead <n.ordickan@gmail.com>

100 CHAPTER 4 Programming your infrastructure: the command line, SDKs, and CloudFormation

Open the terminal on your computer (PowerShell on Windowso or a Bash shell on OS
X and Linux, not the AWS Management Console), and run aws configure. You’re
asked for four pieces of information:

■ AWS access key ID—Copy and paste this value from the User Security Credentials
box (your browser window).

■ AWS secret access key—Copy and paste this value from the User Security Creden-
tials box (your browser window).

■ Default region name—Enter us-east-1.
■ Default output format—Enter json.

In the end, the terminal should look like this:

$ aws configure
AWS Access Key ID [None]: AKIAJXMDAVKCM5ZTX7PQ
AWS Secret Access Key [None]: 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
Default region name [None]: us-east-1
Default output format [None]: json

The CLI is now configured to authenticate as the user mycli. Switch back to the
browser window and click Close to finish the user-creation wizard. The page shown in
figure 4.7 opens.

 Next you need to deal with authorization to determine what the user mycli is
allowed to do. At the moment, the user isn’t allowed to do anything (which is the
default). Click the mycli user to see the page shown in figure 4.8.

 In the Permissions section, in the Managed Policies box, click the Attach Policy
button. The page shown in figure 4.9 opens.

You have now
created a user.

Click the user to add
authorization information.

Figure 4.7 IAM users

Licensed to Thomas Snead <n.ordickan@gmail.com>

101Using the command-line interface

Attach a policy to
grant permissions.

The mycli user isn’t
allowed to do anything.

Figure 4.8 IAM user mycli without any permissions

Select the policy to grant
admin permissions.

Search for Admin to find the
AdministratorAccess policy.

Figure 4.9 Attaching a managed policy to an IAM user

Licensed to Thomas Snead <n.ordickan@gmail.com>

102 CHAPTER 4 Programming your infrastructure: the command line, SDKs, and CloudFormation

Select the policy AdministratorAccess by searching for Admin. Click Attach Policy. Now
your mycli user looks like figure 4.10.

 It’s time to test whether the CLI works. Switch to the terminal window and enter
aws ec2 describe-regions to get a list of all available regions:

$ aws ec2 describe-regions
{

"Regions": [
{

"Endpoint": "ec2.eu-central-1.amazonaws.com",
"RegionName": "eu-central-1"

},
{

"Endpoint": "ec2.sa-east-1.amazonaws.com",
"RegionName": "sa-east-1"

},
[...]

The mycli user is now very powerful with
the AdministratorAccess policy attached.

Figure 4.10 IAM user mycli with admin permissions

Licensed to Thomas Snead <n.ordickan@gmail.com>

103Using the command-line interface

{
"Endpoint": "ec2.ap-southeast-2.amazonaws.com",
"RegionName": "ap-southeast-2"

},
{

"Endpoint": "ec2.ap-southeast-1.amazonaws.com",
"RegionName": "ap-southeast-1"

}
]

}

It works! You can begin to use the CLI.

4.2.3 Using the CLI

Suppose you want to get a list of all EC2 instances of type t2.micro. Execute aws in your
terminal, as shown here:

$ aws ec2 describe-instances --filters "Name=instance-type,Values=t2.micro"
{

"Reservations": []
}

To use the AWS CLI, you need to specify a service and an action. In the previous exam-
ple, the service is ec2 and the action is describe-instances. You can add options
with --key value:

$ aws <service> <action> [--key value ...]

An important feature of the CLI is the help keyword. You can get help at three levels
of detail:

■ aws help—Shows all available services
■ aws <service> help—Shows all actions available for a certain service
■ aws <service> <action> help—Shows all options available for the particular

service action

Sometimes you need temporary computing power, like a Linux server to test some-
thing via SSH. To do this, you can write a script that creates a virtual server for you.
The script will run on your local computer and output how you connect to the server
via SSH. After you complete your tests, the script should be able to terminate the vir-
tual server. The script is used like this:

$./server.sh
waiting for i-c033f117 ...
i-c033f117 is accepting SSH connections under ec2-54-164-72-62 ...
ssh -i mykey.pem ec2-user@ec2-54-[...]aws.com
Press [Enter] key to terminate i-c033f117 ...
[...]
terminating i-c033f117 ...
done.

Empty list because you
haven’t created an EC2
instance

Waits until started

SSH connection string

Waits until terminated

Licensed to Thomas Snead <n.ordickan@gmail.com>

104 CHAPTER 4 Programming your infrastructure: the command line, SDKs, and CloudFormation

Your server runs until you press the Enter key. When you press Enter, the server is
terminated.

 The limitations of this solution are as follows:

■ It can handle only one server at a time.
■ There’s a different version for Windows than for Linux and Mac OS X.
■ It’s a command-line application, not graphical.

Nonetheless, the CLI solution solves the following use cases:

■ Creating a virtual server
■ Getting the public name of a virtual server to connect via SSH
■ Terminating a virtual server if it’s no longer needed

Depending on your OS, you’ll use either Bash (Linux and Mac OS X) or PowerShell
(Windows) to script.

 One important feature of the CLI needs explanation before you can begin. The
--query option uses JMESPath, which is a query language for JSON, to extract data
from the result. This can be useful because usually you only need a specific field from
the result. Look at the following JSON to see JMESPath in action. This is the result of
aws ec2 describe-images and shows a list of available AMIs. To start an EC2 instance,
you need the ImageId, and with JMESPath you can extract that information:

{
"Images": [
{

"ImageId": "ami-146e2a7c",
"State": "available"

},
{

"ImageId": "ami-b66ed3de",
"State": "available"

}
]

}

To extract the first ImageId, the path is Images[0].ImageId; the result of this query is
"ami-146e2a7c". To extract all State, the path is Images[*].State; the result of this
query is ["available", "available"]. With this short introduction to JMESPath,
you’re well equipped to extract the data you need.

Where is the code located?
All code can be found in the book’s code repository on GitHub: https://github.com/
AWSinAction/code. You can download a snapshot of the repository at https://
github.com/AWSinAction/code/archive/master.zip.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/AWSinAction/code
https://github.com/AWSinAction/code
https://github.com/AWSinAction/code/archive/master.zip
https://github.com/AWSinAction/code/archive/master.zip

105Using the command-line interface

Linux and Mac OS X can interpret Bash scripts, whereas Windows prefers PowerShell
scripts. We’ve created two versions of the same script.

LINUX AND MAC OS X

You can find the following listing in /chapter4/server.sh in the book’s code folder.
You can run it either by copying and pasting each line into your terminal or by execut-
ing the entire script via chmod +x server.sh && ./server.sh.

#!/bin/bash -e
AMIID=$(aws ec2 describe-images --filters "Name=description, \
Values=Amazon Linux AMI 2015.03.? x86_64 HVM GP2" \
--query "Images[0].ImageId" --output text)

VPCID=$(aws ec2 describe-vpcs --filter "Name=isDefault, Values=true" \
--query "Vpcs[0].VpcId" --output text)

SUBNETID=$(aws ec2 describe-subnets --filters "Name=vpc-id, Values=$VPCID" \
--query "Subnets[0].SubnetId" --output text)

SGID=$(aws ec2 create-security-group --group-name mysecuritygroup \
--description "My security group" --vpc-id $VPCID --output text)

aws ec2 authorize-security-group-ingress --group-id $SGID \
--protocol tcp --port 22 --cidr 0.0.0.0/0

INSTANCEID=$(aws ec2 run-instances --image-id $AMIID --key-name mykey \
--instance-type t2.micro --security-group-ids $SGID \
--subnet-id $SUBNETID --query "Instances[0].InstanceId" --output text)

echo "waiting for $INSTANCEID ..."

aws ec2 wait instance-running --instance-ids $INSTANCEID

PUBLICNAME=$(aws ec2 describe-instances --instance-ids $INSTANCEID \
--query "Reservations[0].Instances[0].PublicDnsName" --output text)

echo "$INSTANCEID is accepting SSH connections under $PUBLICNAME"
echo "ssh -i mykey.pem ec2-user@$PUBLICNAME"
read -p "Press [Enter] key to terminate $INSTANCEID ..."
aws ec2 terminate-instances --instance-ids $INSTANCEID
echo "terminating $INSTANCEID ..."

aws ec2 wait instance-terminated --instance-ids $INSTANCEID
aws ec2 delete-security-group --group-id $SGID

Listing 4.3 Creating and terminating a server from the CLI (Bash)

Abort if the
command fails.

Get the ID of
Amazon Linux AMI.

Get the
 default VPC ID.

Get the default subnet ID.

Create a security group.
Allow

inbound SSH
connections.

Create and start the server.

Wait until the server is started.

Get the public name of server.

Terminate
the server.

Wait until
the server is
terminated.Delete the security group.

Licensed to Thomas Snead <n.ordickan@gmail.com>

106 CHAPTER 4 Programming your infrastructure: the command line, SDKs, and CloudFormation

WINDOWS

You can find the following listing in /chapter4/server.ps1 in the book’s code folder.
Right-click the server.ps1 file and select Run with PowerShell to execute the script.

$ErrorActionPreference = "Stop"

$AMIID=aws ec2 describe-images --filters "Name=description, \
Values=Amazon Linux AMI 2015.03.? x86_64 HVM GP2" \
--query "Images[0].ImageId" --output text

$VPCID=aws ec2 describe-vpcs --filter "Name=isDefault, Values=true" \
--query "Vpcs[0].VpcId" --output text

$SUBNETID=aws ec2 describe-subnets --filters "Name=vpc-id, Values=$VPCID" \
--query "Subnets[0].SubnetId" --output text

$SGID=aws ec2 create-security-group --group-name mysecuritygroup \
--description "My security group" --vpc-id $VPCID \
--output text

aws ec2 authorize-security-group-ingress --group-id $SGID \
--protocol tcp --port 22 --cidr 0.0.0.0/0

$INSTANCEID=aws ec2 run-instances --image-id $AMIID --key-name mykey \
--instance-type t2.micro --security-group-ids $SGID \
--subnet-id $SUBNETID \
--query "Instances[0].InstanceId" --output text

Write-Host "waiting for $INSTANCEID ..."
aws ec2 wait instance-running --instance-ids $INSTANCEID

$PUBLICNAME=aws ec2 describe-instances --instance-ids $INSTANCEID \
--query "Reservations[0].Instances[0].PublicDnsName" --output text

Write-Host "$INSTANCEID is accepting SSH under $PUBLICNAME"
Write-Host "connect to $PUBLICNAME via SSH as user ec2-user"

Listing 4.4 Creating and terminating a server from the CLI (PowerShell)

Cleaning up
Make sure you terminate the server before you go on!

Abort if the
command fails.

Get the ID of
Amazon Linux AMI.

Get the default
VPC ID.

Get the default subnet ID.

Create the security group.

Allow inbound SSH connections.

Create and start
the server.

Wait until
the server
is started.

Get the public
name of server.

Licensed to Thomas Snead <n.ordickan@gmail.com>

107Programming with the SDK

Write-Host "Press [Enter] key to terminate $INSTANCEID ..."
Read-Host
aws ec2 terminate-instances --instance-ids $INSTANCEID
Write-Host "terminating $INSTANCEID ..."
aws ec2 wait instance-terminated --instance-ids $INSTANCEID
aws ec2 delete-security-group --group-id $SGID

WHY SHOULD YOU SCRIPT?

Why should you script instead of using the graphical AWS Management Console? A
script can be reused and will save you time in the long run. You can build new archi-
tectures quickly with ready-to-use modules from your former projects. By automating
your infrastructure creation, you can also enhance the automation of your deploy-
ment pipeline.

 Another benefit is that a script is the most accurate documentation you can imag-
ine (even a computer understands it). If you want to reproduce on Monday what you
did last Friday, a script is worth its weight in gold. If you’re sick and a coworker needs
to take care of your tasks, they’ll appreciate your scripts.

4.3 Programming with the SDK
AWS offers software development kits (SDKs) for a number of programming languages:

An AWS SDK is a convenient way to make calls to the AWS API from your favorite pro-
gramming language. The SDK takes care of things like authentication, retry on error,
HTTPS communication, and JSON (de)serialization. You’re free to choose the SDK for
your favorite language, but in this book all examples are written in JavaScript and run
in the Node.js runtime environment.

■ Android ■ Node.js (JavaScript)

■ Browsers (JavaScript) ■ PHP

■ iOS ■ Python

■ Java ■ Ruby

■ .NET ■ Go

Terminate
the server.

Wait until
the server is
terminated.Delete the security group.

Cleaning up
Make sure you terminate the server before you go on!

Installing and getting started with Node.js
Node.js is a platform to execute JavaScript in an event-driven environment and easily build
network applications. To install Node.js, visit https://nodejs.org and download the
package that fits your OS. Linux users can also install Node.js via package manager
(https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager).

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://nodejs.org
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

108 CHAPTER 4 Programming your infrastructure: the command line, SDKs, and CloudFormation

To understand how the AWS SDK for Node.js (JavaScript) works, let’s create a Node.js
(JavaScript) application that controls EC2 servers via the AWS SDK.

4.3.1 Controlling virtual servers with SDK: nodecc

The Node Control Center for AWS (nodecc) is an advancement in managing multiple
temporary EC2 servers with a text UI written in JavaScript. nodecc has the following
features:

■ It can handle multiple servers.
■ It’s written in JavaScript and runs in Node.js, so it’s portable across platforms.
■ It uses a textual UI.

Figure 4.11 shows what nodecc looks like.

(continued)
After Node.js is installed, you can verify that everything works by typing node
--version into your terminal. Your terminal should respond with something similar
to v0.12.*. Now you’re ready to run our JavaScript examples, like the Node Control
Center for AWS.

Your Node.js installation comes with a important tool called npm, which is the package
manager for Node.js. Verify the installation by running npm --version in your terminal.

To run a JavaScript script in Node.js, enter node script.js in your terminal. We use
Node.js in this book because it’s easy to install, it requires no IDE, and the syntax is
familiar to most programmers.

Don’t be confused by the terms JavaScript and Node.js. If you want to be precise,
JavaScript is the language and Node.js is the execution environment. But don’t ex-
pect anybody to make that distinction. Node.js is also called node.

Choose the action you want to use,
and press Enter. Press the left arrow
key to return to the Actions menu

Figure 4.11 Node Control Center for AWS: start screen

Licensed to Thomas Snead <n.ordickan@gmail.com>

109Programming with the SDK

You can find the nodecc application at /chapter4/nodecc/ in the book’s code folder.
Switch to that directory and run npm install in your terminal to install all needed
dependencies. To start nodecc, run node index.js. You can always go back with the
left arrow key. You can quit the application by pressing Esc or q.

 The SDK uses the same settings you created for the CLI, so you’re using the mycli
user when running nodecc.

4.3.2 How nodecc creates a server

Before you can do anything with nodecc, you need at least one server. To start a server,
choose the AMI, as figure 4.12 shows.

The code that fetches the list of the available AMIs is located at lib/listAMIs.js.

var jmespath = require('jmespath');
var AWS = require('aws-sdk');

var ec2 = new AWS.EC2({"region": "us-east-1"});

module.exports = function(cb) {
ec2.describeImages({
"Filters": [{

"Name": "description",
"Values": ["Amazon Linux AMI 2015.03.? x86_64 HVM GP2"]

Listing 4.5 /lib/listAMIs.js

Choose the AMI you want to
use for the new EC2 server.

Figure 4.12 nodecc: creating a server (step 1 of 2)

require is used to
load modules. Configure

an EC2
endpoint. module.exports

makes this
function available
to users of the
listAMIs module.

Action

Licensed to Thomas Snead <n.ordickan@gmail.com>

110 CHAPTER 4 Programming your infrastructure: the command line, SDKs, and CloudFormation

}]
}, function(err, data) {
if (err) {

cb(err);
} else {

var amiIds = jmespath.search(data, 'Images[*].ImageId');
var descriptions = jmespath.search(data, 'Images[*].Description');
cb(null, {"amiIds": amiIds, "descriptions": descriptions});

}
});

};

The code is structured in such a way that each action is implemented in the lib folder.
The next step to create a server is to choose the subnet in which the server should be
started. You haven’t learned about subnets yet, so for now select one randomly; see fig-
ure 4.13. The corresponding script is located at lib/listSubnets.js.

 After you select the subnet, the server is created by lib/createServer.js, and you
see a Starting screen. Now it’s time to find out the public name of the newly created
server. Use the left arrow key to switch to the navigation section.

4.3.3 How nodecc lists servers and shows server details

One important use case that nodecc must support is showing the public name of a
server that you can use to connect via SSH. Because nodecc handles multiple servers,
the first step is to select a server, as shown in figure 4.14.

 Look at lib/listServers.js to see how a list of servers can be retrieved with the
AWS SDK. After you select the server, you can display its details; see figure 4.15. You
could use the PublicDnsName to connect to the instance via SSH. Press the left arrow
key to switch back to the navigation section.

In case of failure,
err is set.

Otherwise, data
contains all AMIs.

Choose the subnet you want
to use for the new EC2 server.

Figure 4.13 nodecc: creating a server (step 2 of 2)

Licensed to Thomas Snead <n.ordickan@gmail.com>

111Programming with the SDK

4.3.4 How nodecc terminates a server

To terminate a server, you first have to select it. To list the servers, use lib/
listServers.js again. After the server is selected, lib/terminateServer.js takes
care of termination.

 That’s nodecc: a text UI program to control temporary EC2 servers. Take some
time to think about what you could create by using your favorite language and the
AWS SDK. Chances are high that you might come up with a new business idea!

All running servers are listed
by their EC2 instance ID.

Figure 4.14 nodecc: listing servers

The public name of the
server. Can be used for SSH.

Figure 4.15 nodecc: showing server details

Licensed to Thomas Snead <n.ordickan@gmail.com>

112 CHAPTER 4 Programming your infrastructure: the command line, SDKs, and CloudFormation

4.4 Using a blueprint to start a virtual server
Earlier, we talked about JIML to introduce the concept of infrastructure as code. Luck-
ily, AWS already offers a tool that does much better than JIML: AWS CloudFormation.
CloudFormation is based on templates, which up to now we’ve called blueprints.

NOTE We use the term blueprint when discussing infrastructure automation in
general. Blueprints used for AWS CloudFormation, a configuration manage-
ment service, are called templates.

A template is a description of your infrastructure in JSON that can be interpreted by
CloudFormation. The idea of describing something rather than listing the necessary
actions is called a descriptive approach. Descriptive means you tell CloudFormation how
your infrastructure should look and how it’s connected. You aren’t telling CloudFor-
mation what actions are needed to create that infrastructure, and you don’t specify
the sequence in which the actions need to be executed. Again, it’s all about depen-
dencies—but CloudFormation offers you more benefits:

 The benefits of CloudFormation are as follows:

■ It’s a consistent way to describe infrastructure on AWS. If you use scripts to create your
infrastructure, everyone will solve the same problem differently. This is a hurdle
for new developers and operators trying to understand what the code is doing.
CloudFormation templates are a clear language to define infrastructure.

■ It can handle dependencies. Ever tried to register a web server with a load balancer
that wasn’t yet available? At first glance, you’ll miss a lot of dependencies. Trust
us: never try to set up complex infrastructure using scripts. You’ll end up in
dependency hell!

■ It’s replicable. Is your test environment an exact copy of your production environ-
ment? Using CloudFormation, you can create two identical infrastructures and
keep them in sync.

■ It’s customizable. You can insert custom parameters into CloudFormation to cus-
tomize your templates as you wish.

■ It’s testable. Your infrastructure is testable if you can create it from a template.
Just start a new infrastructure, run your tests, and shut it down again.

■ It’s updatable. CloudFormation supports updates to your infrastructure. It will
figure out the parts of the template that have changed and apply those changes
as smoothly as possible to your infrastructure.

■ It minimizes human failure. CloudFormation doesn’t get tired—even at 3:00 a.m.

Cleaning up
Make sure you terminate all servers before you go on!

Licensed to Thomas Snead <n.ordickan@gmail.com>

113Using a blueprint to start a virtual server

■ It’s the documentation for your infrastructure. A CloudFormation template is a JSON
document. You can treat it as code and use a version control system like Git to
keep track of the changes.

■ It’s free. Using CloudFormation comes at no additional charge.

We think CloudFormation is one of the most powerful tools available to manage infra-
structure on AWS.

4.4.1 Anatomy of a CloudFormation template

A basic CloudFormation template is structured into five parts:

1 Format version—The latest template format version is 2010-09-09, and this is cur-
rently the only valid value. Specify this; the default is the latest version, which
will cause problems if a new format version is introduced in the future.

2 Description—What is this template about?
3 Parameters—Parameters are used to customize a template with values: for exam-

ple, domain name, customer ID, and database password.
4 Resources—A resource is the smallest block you can describe. Examples are a vir-

tual server, a load balancer, or an elastic IP address.
5 Outputs—An output is comparable to a parameter, but the other way around.

An output returns something from your template, such as the public name of
an EC2 server.

A basic template looks like the following listing.

{
"AWSTemplateFormatVersion": "2010-09-09",
"Description": "CloudFormation template structure",
"Parameters": {
[...]

},
"Resources": {
[...]

},
"Outputs": {
[...]

}
}

Let’s take a closer look at parameters, resources, and outputs.

FORMAT VERSION AND DESCRIPTION

The only valid AWSTemplateFormatVersion value at the moment is "2010-09-09".
Always specify the format version. If you don’t, the latest version is assumed by
CloudFormation. As mentioned earlier, this means that if a new format version is
introduced in the future, you’ll get into serious trouble.

Listing 4.6 CloudFormation template structure

The only valid version

What is this
template about?

Defines parameters

Defines resources

Defines outputs

Licensed to Thomas Snead <n.ordickan@gmail.com>

114 CHAPTER 4 Programming your infrastructure: the command line, SDKs, and CloudFormation

 Description isn’t mandatory, but we encourage you to take some time to docu-
ment what the template is about. A meaningful description will help you in the future
to remember what the template is for. It will also help your coworkers.

PARAMETERS

A parameter has at least a name and a type. We encourage you to add a description as well,
as shown in the following listing.

{
[...]
"Parameters": {
"NameOfParameter": {

"Type": "Number",
"Description": "This parameter is for demonstration"
[...]

}
},
[...]

}

Valid types are listed in table 4.1.

Listing 4.7 CloudFormation parameter structure

Table 4.1 CloudFormation parameter types

Type Description

String
CommaDelimitedList

A string or a list of strings separated by
commas

Number
List<Number>

An integer or float or a list of integers or
floats

AWS::EC2::Instance::Id
List<AWS::EC2::Instance::Id>

An EC2 instance ID (virtual server) or a
list of EC2 instance IDs

AWS::EC2::Image::Id
List<AWS::EC2::Image::Id>

An AMI ID or a list of AMIs

AWS::EC2::KeyPair::KeyName An Amazon EC2 key-pair name

AWS::EC2::SecurityGroup::Id
List<AWS::EC2::SecurityGroup::Id>

A security group ID or a list of security
group IDs

AWS::EC2::Subnet::Id
List<AWS::EC2::Subnet::Id>

A subnet ID or a list of subnet IDs

AWS::EC2::Volume::Id
List<AWS::EC2::Volume::Id>

An EBS volume ID (network attached
storage) or a list of EBS volume IDs

AWS::EC2::VPC::Id
List<AWS::EC2::VPC::Id>

A VPC ID (virtual private cloud) or a list of
VPC IDs

AWS::Route53::HostedZone::Id
List<AWS::Route53::HostedZone::Id>

A DNS zone ID or a list of DNS zone IDs

Name of the parameter This parameter
represents a
number.

Licensed to Thomas Snead <n.ordickan@gmail.com>

115Using a blueprint to start a virtual server

In addition to using the Type and Description properties, you can enhance a parame-
ter with the properties listed in table 4.2.

A parameter section of a CloudFormation template could look like this:

{
[...]
"Parameters": {
"KeyName": {

"Description": "Key Pair name",
"Type": "AWS::EC2::KeyPair::KeyName"

},
"NumberOfServers": {

"Description": "How many servers do you like?",
"Type": "Number",
"Default": "1",
"MinValue": "1",
"MaxValue": "5"

},
"WordPressVersion": {

"Description": "Which version of WordPress do you want?",
"Type": "String",
"AllowedValues": ["4.1.1", "4.0.1"]

}
},
[...]

}

Now you should have a better feel for parameters. If you want to know everything
about them, see http://mng.bz/jg7B or follow along in the book and learn by doing.

RESOURCES

A resource has at least a name, a type, and some properties, as shown in the following
listing.

Table 4.2 CloudFormation parameter properties

Property Description Example

Default A default value for the parameter

NoEcho Hides the parameter value in all graphical
tools (useful for passwords)

"NoEcho": true

AllowedValues Specifies possible values for the parameter "AllowedValues": ["1", "2", "3"]

AllowedPattern More generic than AllowedValues
because it uses a regular expression

"AllowedPattern": "[a-zA-Z0-9]*"
allows only a–z, A–Z, and 0–9 with any length

MinLength,
MaxLength

Used in combination with the String type to
define minimum and maximum length

MinValue,
MaxValue

Used in combination with the Number
type to define lower and upper bounds

Only key names
are allowed.

The default is
one server.

Prevent massive costs
with an upper bound.

Restricted to
certain versions

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://mng.bz/jg7B

116 CHAPTER 4 Programming your infrastructure: the command line, SDKs, and CloudFormation

{
[...]
"Resources": {
"NameOfResource": {

"Type": "AWS::EC2::Instance",
"Properties": {

[...]
}

}
},
[...]

}

When defining resources, you need to know about the type and the properties of that
type. In this book, you’ll get to know a lot of resource types and their respective prop-
erties. An example of a single EC2 server is shown in the next listing. If you see
{"Ref": "NameOfSomething"}, think of it as a placeholder for what’s referenced by
the name. You can reference parameters and resources to create dependencies.

{
[...]
"Resources": {
"Server": {

"Type": "AWS::EC2::Instance",
"Properties": {

"ImageId": "ami-1ecae776",
"InstanceType": "t2.micro",
"KeyName": {"Ref": "KeyName"},
"SubnetId": {"Ref": "Subnet"}

}
}

},
[...]

}

Now you’ve described the server, but how can you output its public name?

OUTPUTS

A CloudFormation template’s output includes at least a name (like parameters and
resources) and a value, but we encourage you to add a description as well. You can use
outputs to pass data from within your template to the outside (see the following listing).

{
[...]
"Outputs": {
"NameOfOutput": {

Listing 4.8 CloudFormation resources structure

Listing 4.9 CloudFormation EC2 server resource

Listing 4.10 CloudFormation outputs structure

Name of the parameter

Defines an
EC2 server

Properties needed for
the type of resource

Name of the resource

Defines an EC2 server

Some hard-coded settings

The settings are defined
by parameters.

Name of the output

Licensed to Thomas Snead <n.ordickan@gmail.com>

117Using a blueprint to start a virtual server

"Value": "1",
"Description": "This output is always 1"

}
}

}

Static outputs aren’t very useful. You’ll mostly use values that reference the name of a
resource or an attribute of a resource, like its public name, as shown in the next listing.

{
[...]
"Outputs": {
"ServerEC2ID": {

"Value": {"Ref": "Server"},
"Description": "EC2 ID of the server"

},
"PublicName": {

"Value": {"Fn::GetAtt": ["Server", "PublicDnsName"]},
"Description": "Public name of the server"

}
}

}

You’ll get to know the most important attributes of Fn::GetAtt later in the book. If
you want to know about all of them, see http://mng.bz/q5I4.

 Now that we’ve taken a brief look at the core parts of a CloudFormation template,
it’s time to make one of your own.

4.4.2 Creating your first template

Suppose you’ve been asked to provide a virtual server for a developer team. After a few
months, the developer team realizes the virtual server needs more CPU power, because
the usage pattern has changed. You can handle that request with the CLI and the SDK,
but as you learned in section 3.4, before the instance type can be changed, you must stop
the instance. The process will be as follows: stop the instance, wait for the instance to
stop, change the instance type, start the instance, and wait for the instance to start.

 A descriptive approach like that used by CloudFormation is simpler: just change
the InstanceType property and update the template. InstanceType can be passed to
the template via a parameter. That’s it! You can begin creating the template, as shown
in the next listing.

{
"AWSTemplateFormatVersion": "2010-09-09",
"Description": "AWS in Action: chapter 4",
"Parameters": {
"KeyName": {

"Description": "Key Pair name",

Listing 4.11 CloudFormation outputs example

Listing 4.12 Template to create an EC2 instance with CloudFormation

Value of the output

References the
EC2 server

Get the attribute
PublicDnsName
of the EC2 server.

The user defines
which key to use.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://mng.bz/q5I4

118 CHAPTER 4 Programming your infrastructure: the command line, SDKs, and CloudFormation

"Type": "AWS::EC2::KeyPair::KeyName",
"Default": "mykey"

},
"VPC": {

[...]
},
"Subnet": {

[...]
},
"InstanceType": {

"Description": "Select one of the possible instance types",
"Type": "String",
"Default": "t2.micro",
"AllowedValues": ["t2.micro", "t2.small", "t2.medium"]

}
},
"Resources": {
"SecurityGroup": {

"Type": "AWS::EC2::SecurityGroup",
"Properties": {

[...]
}

},
"Server": {

"Type": "AWS::EC2::Instance",
"Properties": {

"ImageId": "ami-1ecae776",
"InstanceType": {"Ref": "InstanceType"},
"KeyName": {"Ref": "KeyName"},
"SecurityGroupIds": [{"Ref": "SecurityGroup"}],
"SubnetId": {"Ref": "Subnet"}

}
}

},
"Outputs": {
"PublicName": {

"Value": {"Fn::GetAtt": ["Server", "PublicDnsName"]},
"Description": "Public name (connect via SSH as user ec2-user)"

}
}

}

You can find the full code for the template at /chapter4/server.json in the book’s
code folder. Please don’t worry about VPC, subnets, and security groups at the
moment; you’ll get to know them in chapter 6.

You’ll learn
about this
in section

6.5.
You’ll learn
about this in
section 6.5.

The user defines
the instance type.

You’ll learn about
this in section 6.4.

Defines a minimal
EC2 instance

Returns the public name
of the EC2 instance

Where is the template located?
You can find the template on GitHub. You can download a snapshot of the repository
at https://github.com/AWSinAction/code/archive/master.zip. The file we talk about
is located at chapter4/server.json. On S3, the same file is located at https://s3.am-
azonaws.com/awsinaction/chapter4/server.json.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/AWSinAction/code/archive/master.zip
https://s3.amazonaws.com/awsinaction/chapter4/server.json
https://s3.amazonaws.com/awsinaction/chapter4/server.json

119Using a blueprint to start a virtual server

If you create an infrastructure from a template, CloudFormation calls it a stack. You
can think of template versus stack much like class versus object. The template exists only
once, whereas many stacks can be created from the same template.

 Open the AWS Management Console at https://console.aws.amazon.com. Click
Services in the navigation bar, and then click the CloudFormation service. Figure 4.16
shows the initial CloudFormation screen with an overview of all the stacks.

 The following steps will guide you through creating your stack:

1 Click the Create Stack button to start a four-step wizard.
2 Give the stack a name like server1.
3 Select Specify an Amazon S3 Template URL, and enter https://s3.amazonaws

.com/awsinaction/chapter4/server.json as shown in figure 4.17.

In the second step, you define parameters:

1 InstanceType: Select t2.micro.
2 KeyName: Select mykey.
3 Subnet: Select the first value in the drop-down list. You’ll learn about subnets

later.
4 VPC: Select the first value in the drop-down list. You’ll learn about VPCs later.

Click to create a
new infrastructure
from a blueprint.

Reload
the page.

You haven’t created
an infrastructure from
a blueprint.

Figure 4.16 Overview of CloudFormation stacks

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://console.aws.amazon.com
https://s3.amazonaws.com/awsinaction/chapter4/server.json
https://s3.amazonaws.com/awsinaction/chapter4/server.json

120 CHAPTER 4 Programming your infrastructure: the command line, SDKs, and CloudFormation

Figure 4.18 shows the parameters step. Click Next after you’ve chosen a value for
every parameter to proceed with the next step.

Figure 4.17 Creating a CloudFormation stack: selecting a template (step 1 of 4)

Figure 4.18 Creating a CloudFormation stack: defining parameters (step 2 of 4)

Licensed to Thomas Snead <n.ordickan@gmail.com>

121Using a blueprint to start a virtual server

In the third step, you can define tags for the stack. All resources created by the stack
will be tagged with these tags automatically. Create a new tag by typing system for the
Key value and tempserver for Value. Click Next. Step 4 displays a summary of the
stack, as shown in figure 4.19.

 Click Create. The stack is now created. If the process is successful, you’ll see the
screen shown in figure 4.20. As long as Status is CREATE_IN_PROGRESS, you need to
be patient. When Status is CREATE_COMPLETE, select the stack and click the Outputs
tab to see the public name of the server.

Figure 4.19 Creating a CloudFormation stack: summary (step 4 of 4)

Figure 4.20 The CloudFormation stack has been created.

Licensed to Thomas Snead <n.ordickan@gmail.com>

122 CHAPTER 4 Programming your infrastructure: the command line, SDKs, and CloudFormation

It’s time to test the new feature: instance type modification. Select the stack and click
the Update Stack button. The wizard that starts is similar to the one you used during
stack creation. Figure 4.21 shows the first step of the wizard.

 Check that Use Existing Template is selected as the Source. In step 2, you need to
change InstanceType: choose t2.small to double or t2.medium to quadruple the com-
puting power of your server.

WARNING Starting a virtual server with instance type t2.small or t2.medium
will incur charges. See http://aws.amazon.com/ec2/pricing to find out the
current hourly price.

Step 3 is about sophisticated options during the update of the stack. You don’t need
any of these features now, so skip the step by clicking Next. Step 4 is a summary; click
Update. The stack now has Status UPDATE_IN_PROGRESS. After a few minutes, Status
should change to UPDATE_COMPLETE. You can select the stack and get the public
name by looking at the Outputs tab.

Figure 4.21 Updating the CloudFormation stack: summary (step 1 of 4)

Alternatives to CloudFormation
If you don’t want to write plain JSON to create templates for your infrastructure, there
are a few alternatives to CloudFormation. Tools like Troposphere, a library written in
Python, help you to create CloudFormation templates without having to write JSON.
They add another abstraction level on top of CloudFormation to do so.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://aws.amazon.com/ec2/pricing

123Summary

When you changed the parameter, CloudFormation figured out what needed to be
done to achieve the end result. That’s the power of a descriptive approach: you say
what the end result should look like, not how the end result should be achieved.

4.5 Summary
■ Use the command-line interface (CLI), one of the SDKs, or CloudFormation to

automate your infrastructure on AWS.
■ Infrastructure as code describes the approach to program the creation and

modification of your infrastructure including virtual servers, networking, stor-
age, and more.

■ You can use the CLI to automate complex processes in AWS with scripts (Bash
and PowerShell).

■ You can use SDKs for nine programming languages to embed AWS into your
applications and create applications like nodecc.

■ CloudFormation uses a descriptive approach in JSON: you only define the end
state of your infrastructure, and CloudFormation figures out how this state can
be achieved. The major parts of a CloudFormation template are parameters,
resources, and outputs.

(continued)
There are also tools that allow you to use infrastructure as code without needing
CloudFormation. Terraform and Ansible let you describe your infrastructure as code,
for example.

Cleaning up
Delete the stack by selecting it and clicking the Delete Stack button.

Licensed to Thomas Snead <n.ordickan@gmail.com>

124

Automating deployment:
CloudFormation, Elastic

Beanstalk, and OpsWorks

Whether you want to use software from in-house development, open source proj-
ects, or commercial vendors, you need to install, update, and configure the applica-
tion and its dependencies. This process is called deployment. In this chapter, you’ll
learn about three tools for deploying applications to virtual servers on AWS:

This chapter covers
■ Running a script on server startup to deploy applications
■ Deploying common web applications with the help of AWS

Elastic Beanstalk
■ Deploying multilayer applications with the help of AWS

OpsWorks
■ Comparing the different deployment services available

on AWS

Licensed to Thomas Snead <n.ordickan@gmail.com>

125

■ Deploying a VPN solution with the help of AWS CloudFormation and a script
started at the end of the boot process.

■ Deploying a collaborative text editor with AWS Elastic Beanstalk. The text editor
Etherpad is a simple web application and a perfect fit for AWS Elastic Beanstalk,
because the Node.js platform is supported by default.

■ Deploying an IRC web client and IRC server with AWS OpsWorks. The setup con-
sists of two parts: a Node.js server that delivers the IRC web client and the IRC
server itself. The example consists of multiple layers and is perfect for AWS
OpsWorks.

We’ve chosen examples that don’t need a storage solution for this chapter, but all
three deployment solutions would support delivering an application together with a
storage solution. You’ll find examples using storage in the next part of the book.

Which steps are required to deploy a typical web application like WordPress—a widely
used blogging platform—to a server?

1 Install an Apache HTTP server, a MySQL database, a PHP runtime environment,
a MySQL library for PHP, and an SMTP mail server.

2 Download the WordPress application and unpack the archive on your server.
3 Configure the Apache web server to serve the PHP application.
4 Configure the PHP runtime environment to tweak performance and increase

security.
5 Edit the wp-config.php file to configure the WordPress application.
6 Edit the configuration of the SMTP server, and make sure mail can only be sent

from the virtual server to avoid misuse from spammers.
7 Start the MySQL, SMTP, and HTTP services.

Steps 1–2 handle installing and updating the executables. These executables are con-
figured in steps 3–6. Step 7 starts the services.

 System administrators often perform these steps manually by following how-tos.
Deploying applications manually is no longer recommended in a flexible cloud envi-
ronment. Instead your goal will be to automate these steps with the help of the tools
you’ll discover next.

Examples are 100% covered by the Free Tier
The examples in this chapter are completely covered by the Free Tier. As long as you
don’t run the examples for longer than a few days, you won’t pay anything. Keep in
mind that this only applies if you created a fresh AWS account for this book and noth-
ing else is going on in your AWS account. Try to complete the examples of the chapter
within a few days; you'll clean up your account at the end of each example.

Licensed to Thomas Snead <n.ordickan@gmail.com>

126 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

5.1 Deploying applications in a flexible cloud environment
If you want to use cloud advantages like scaling the number of servers depending on
the current load or building a highly available infrastructure, you’ll need to start new
virtual servers several times a day. On top of that, the number of virtual servers you’ll
have to supply with updates will grow. The steps required to deploy an application
don’t change, but as figure 5.1 shows, you need to perform them on multiple servers.
Deploying software manually to a growing number of servers becomes impossible over
time and has a high risk of human failure. This is why we recommend that you auto-
mate the deployment of applications.

The investment in an automated deployment process will pay off in the future by
increasing efficiency and decreasing human failures.

5.2 Running a script on server startup using CloudFormation
A simple but powerful and flexible way of automating application deployment is to
run a script on server startup. To go from a plain OS to a fully installed and configured
server, you need to follow these three steps:

1 Start a plain virtual server containing just an OS.
2 Execute a script at the end of the boot process.
3 Install and configure your applications with the help of a script.

First you need to choose an AMI from which to start your virtual server. An AMI bun-
dles the OS and preinstalled software for your virtual server. When you’re starting your
server from an AMI containing a plain OS without any additional software installed,
you need to provision the virtual server at the end of the boot process. Translating the

SSH/RDP Automated
deployment

Doesn’t scale Does scale

Virtual servers starting dynamically several times a day

Executable

Library and runtime

Configuration

#!/bin/bash

Figure 5.1 Deployment must be automated in a flexible and scalable cloud environment.

Licensed to Thomas Snead <n.ordickan@gmail.com>

127Running a script on server startup using CloudFormation

necessary steps to install and configure your application into a script allows you to
automate this task. But how do you execute this script automatically after booting your
virtual server?

5.2.1 Using user data to run a script on server startup

You can inject a small amount—not more than 16 KB—of data called user data into
every virtual server. You specify the user data during the creation of a new virtual
server. A typical way of using the user data feature is built into most AMIs, such as the
Amazon Linux Image and the Ubuntu AMI. Whenever you boot a virtual server based
on these AMIs, user data is executed as a shell script at the end of the boot process.
The script is executed as user root.

 The user data is always accessible from the virtual server with a HTTP GET request
to http://169.254.169.254/latest/user-data. The user data behind this URL is only
accessible from the virtual server itself. As you’ll see in the following example, you can
deploy applications of any kind with the help of user data executed as a script.

5.2.2 Deploying OpenSwan as a VPN server to a virtual server

If you’re working with a laptop from a coffee house over Wi-Fi, you may want to tunnel
your traffic to the internet through a VPN. You’ll learn how to deploy a VPN server to a
virtual server with the help of user data and a shell script. The VPN solution, called
OpenSwan, offers an IPSec-based tunnel that’s easy to use with Windows, OS X, and
Linux. Figure 5.2 shows the example setup.

Open your command line and execute the commands shown in the next listing step
by step to start a virtual server and deploy a VPN server on it. We’ve prepared a Cloud-
Formation template that starts the virtual server and its dependencies.

$ VpcId=$(aws ec2 describe-vpcs --query Vpcs[0].VpcId --output text)

$ SubnetId=$(aws ec2 describe-subnets --filters Name=vpc-id,Values=$VpcId \
--query Subnets[0].SubnetId --output text)

Listing 5.1 Deploying a VPN server to a virtual server: CloudFormation and a shell script

VPN

Virtual server
with OpenSwan

Insecure network
(e.g. coffee house)

Internet

Figure 5.2 Using OpenSwan on a virtual server to tunnel traffic from a personal computer

Gets the default VPC
Gets the default subnet

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://169.254.169.254/latest/user-data

128 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

$ SharedSecret=$(openssl rand -base64 30)

$ Password=$(openssl rand -base64 30)

$ aws cloudformation create-stack --stack-name vpn --template-url \
https://s3.amazonaws.com/awsinaction/chapter5/vpn-cloudformation.json \
--parameters ParameterKey=KeyName,ParameterValue=mykey \
ParameterKey=VPC,ParameterValue=$VpcId \
ParameterKey=Subnet,ParameterValue=$SubnetId \
ParameterKey=IPSecSharedSecret,ParameterValue=$SharedSecret \
ParameterKey=VPNUser,ParameterValue=vpn \
ParameterKey=VPNPassword,ParameterValue=$Password

$ aws cloudformation describe-stacks --stack-name vpn \
--query Stacks[0].Outputs

The output of the last command should print out the public IP address of the VPN
server, a shared secret, the VPN username, and the VPN password. You can use this
information to establish a VPN connection from your computer, if you like:

[...]
[

{
"Description": "Public IP address of the vpn server",
"OutputKey": "ServerIP",
"OutputValue": "52.4.68.225"

},
{
"Description": "The shared key for the VPN connection (IPSec)",
"OutputKey": "IPSecSharedSecret",
"OutputValue": "sqmvJll/13bD6YqpmsKkPSMs9RrPL8itpr7m5V8g"

},
{
"Description": "The username for the vpn connection",

Creates a random shared secret (if openssl
doesn’t work, create your own random sequence).

Creates a random password (if
openssl doesn’t work, create
your own random sequence).

Creates a CloudFormation stack

If the status is not
COMPLETE, retry
in a minute.

Shortcut for OS X and Linux
You can avoid typing these commands manually at your command line by using the
following command to download a bash script and execute it directly on your local
machine. The bash script contains the same steps as shown in listing 5.1:

$ curl -s https://raw.githubusercontent.com/AWSinAction/\
code/master/chapter5/\
vpn-create-cloudformation-stack.sh | bash -ex

Licensed to Thomas Snead <n.ordickan@gmail.com>

129Running a script on server startup using CloudFormation

"OutputKey": "VPNUser",
"OutputValue": "vpn"

},
{
"Description": "The password for the vpn connection",
"OutputKey": "VPNPassword",
"OutputValue": "aZQVFufFlUjJkesUfDmMj6DcHrWjuKShyFB/d0lE"

}
]

Let’s take a deeper look at the deployment process of the VPN server. You’ll dive into
the following tasks, which you’ve used unnoticed so far:

■ Starting a virtual server with custom user data and configuring a firewall for the
virtual server with AWS CloudFormation

■ Executing a shell script at the end of the boot process to install an application
and its dependencies with the help of a package manager, and to edit configu-
ration files

USING CLOUDFORMATION TO START A VIRTUAL SERVER WITH USER DATA

You can use CloudFormation to start a virtual server and configure a firewall. The
template for the VPN server includes a shell script packed into user data, as shown in
listing 5.2.

{
"AWSTemplateFormatVersion": "2010-09-09",
"Description": "Starts an virtual server (EC2) with OpenSwan [...]",
"Parameters": {
"KeyName": {

"Description": "key for SSH access",
"Type": "AWS::EC2::KeyPair::KeyName"

},
"VPC": {

Listing 5.2 Parts of a CloudFormation template to start a virtual server with user data

Fn::Join and Fn::Base64
The CloudFormation template includes two new functions: Fn::Join and Fn::Base64.
With Fn::Join, you can join a set of values to make a single value with a specified
delimiter:

{"Fn::Join": ["delimiter", ["value1", "value2", "value3"]]}

The function Fn::Base64 encodes the input with Base64. You’ll need this function
because the user data must be encoded in Base64:

{"Fn::Base64": "value"}

Parameters to make
it possible to reuse
the template

Licensed to Thomas Snead <n.ordickan@gmail.com>

130 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

"Description": "Just select the one and only default VPC.",
"Type": "AWS::EC2::VPC::Id"

},
"Subnet": {

"Description": "Just select one of the available subnets.",
"Type": "AWS::EC2::Subnet::Id"

},
"IPSecSharedSecret": {

"Description": "The shared secret key for IPSec.",
"Type": "String"

},
"VPNUser": {

"Description": "The VPN user.",
"Type": "String"

},
"VPNPassword": {

"Description": "The VPN password.",
"Type": "String"

}
},
"Resources": {
"EC2Instance": {

"Type": "AWS::EC2::Instance",
"Properties": {

"InstanceType": "t2.micro",
"SecurityGroupIds": [{"Ref": "InstanceSecurityGroup"}],
"KeyName": {"Ref": "KeyName"},
"ImageId": "ami-1ecae776",
"SubnetId": {"Ref": "Subnet"},
"UserData":

{"Fn::Base64": {"Fn::Join": ["", [
"#!/bin/bash -ex\n",
"export IPSEC_PSK=", {"Ref": "IPSecSharedSecret"}, "\n",
"export VPN_USER=", {"Ref": "VPNUser"}, "\n",
"export VPN_PASSWORD=", {"Ref": "VPNPassword"}, "\n",
"export STACK_NAME=", {"Ref": "AWS::StackName"}, "\n",
"export REGION=", {"Ref": "AWS::Region"}, "\n",
"curl -s https://…/vpn-setup.sh | bash -ex\n"

]]}}
},
[...]

},
[...]

},
"Outputs": {
[...]

}
}

Basically, the user data contains a small script to fetch and execute the real script,
vpn-setup.sh, which contains all the commands for installing the executables and
configuring the services. Doing so frees you from inserting scripts in the unreadable
format needed for the JSON CloudFormation template.

Describes the
virtual server

Defines a shell script as user
data for the virtual server

Concatenates
and encodes a

string value

Exports parameters
to environment

variables to make
them available in
an external shell
script called next Fetches the

shell script
via HTTP and
executes it

Licensed to Thomas Snead <n.ordickan@gmail.com>

131Running a script on server startup using CloudFormation

INSTALLING AND CONFIGURING A VPN SERVER WITH A SCRIPT

The vpn-setup.sh script shown in listing 5.3 installs packages with the help of the pack-
age manager yum and writes some configuration files. You don’t have to understand the
details of the configuration of the VPN server; you just need to know that this shell script
is executed during the boot process to install and configure a VPN server.

#!/bin/bash -ex

[...]

PRIVATE_IP=`curl -s http://169.254.169.254/latest/meta-data/local-ipv4`

PUBLIC_IP=`curl -s http://169.254.169.254/latest/meta-data/public-ipv4`

yum-config-manager --enable epel && yum clean all

yum install -y openswan xl2tpd

cat > /etc/ipsec.conf <<EOF
[...]
EOF

cat > /etc/ipsec.secrets <<EOF
$PUBLIC_IP %any : PSK "${IPSEC_PSK}"
EOF

cat > /etc/xl2tpd/xl2tpd.conf <<EOF
[...]
EOF

cat > /etc/ppp/options.xl2tpd <<EOF
[...]
EOF

service ipsec start && service xl2tpd start

chkconfig ipsec on && chkconfig xl2tpd on

That’s it. You’ve learned how to deploy a VPN server to a virtual server with the help of
EC2 user data and a shell script. After you terminate your virtual server, you’ll be ready
to learn how to deploy a common web application without writing a custom script.

Listing 5.3 Installing packages and writing configuration files on server startup

Fetches the private
IP address of the

virtual server
Fetches the

public IP
address of the
virtual server

Adds extra packages
to the package
manager yum

Installs
software
packages

Writes a
configuration file for
IPSec (OpenSwan)

Writes a file containing the
shared secret for IPSec

Writes a
configuration

file for the
L2TP tunnel

Writes a
configuration file
for the PPP service

Starts the
services

need for the
VPN server

Configures the runlevel
for the VPN services

Cleaning up
You’ve reached the end of the VPN server example. Don’t forget to terminate your
virtual server and clean up your environment. To do so, enter aws cloudformation
delete-stack --stack-name vpn at your terminal.

Licensed to Thomas Snead <n.ordickan@gmail.com>

132 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

5.2.3 Starting from scratch instead of updating

You’ve learned how to deploy an application with the help of user data in this section.
The script from the user data is executed at the end of the boot process. But how do
you update your application with this approach?

 You’ve automated the installation and configuration of software during the boot
process of your virtual server, so you can start a new virtual server without any extra
effort. If you have to update your application or its dependencies, you can do so with
the following steps:

1 Make sure the up-to-date version of your application or software is available
through the package repository of your OS, or edit the user data script.

2 Start a new virtual server based on your CloudFormation template and user
data script.

3 Test the application deployed to the new virtual server. Proceed with the next
step if everything works as it should.

4 Switch your workload to the new virtual server (for example, by updating a DNS
record).

5 Terminate the old virtual server, and throw away its unused dependencies.

5.3 Deploying a simple web application with
Elastic Beanstalk
It isn’t necessary to reinvent the wheel if you have to deploy a common web applica-
tion. AWS offers a service that can help you to deploy web applications based on PHP,
Java, .NET, Ruby, Node.js, Python, Go, and Docker; it’s called AWS Elastic Beanstalk.
With Elastic Beanstalk, you don’t have to worry about your OS or virtual servers
because it adds another layer of abstraction on top of them.

 Elastic Beanstalk lets you handle the following recurring problems:

■ Providing a runtime environment for a web application (PHP, Java, and so on)
■ Installing and updating a web application automatically
■ Configuring a web application and its environment
■ Scaling a web application to balance load
■ Monitoring and debugging a web application

5.3.1 Components of Elastic Beanstalk

Getting to know the different components of Elastic Beanstalk will help you to under-
stand its functionality. Figure 5.3 shows these elements:

■ An application is a logical container. It contains versions, environments, and con-
figurations. If you start to use Elastic Beanstalk in a region, you have to create
an application first.

■ A version contains a specific version of your application. To create a new version,
you have to upload your executables (packed into an archive) to the service

Licensed to Thomas Snead <n.ordickan@gmail.com>

133Deploying a simple web application with Elastic Beanstalk

Amazon S3, which stores static files. A version is basically a pointer to this
archive of executables.

■ A configuration template contains your default configuration. You can manage
your application’s configuration (such as the port your application listens on)
as well as the environment’s configuration (such as the size of the virtual server)
with your custom configuration template.

■ An environment is where Elastic Beanstalk executes your application. It consists
of a version and the configuration. You can run multiple environments for one
application using the versions and configurations multiple times.

Enough theory for the moment. Let’s proceed with deploying a simple web application.

5.3.2 Using Elastic Beanstalk to deploy Etherpad, a Node.js application

Editing a document collaboratively can be painful with the wrong tools. Etherpad is an
open source online editor that lets you edit a document with many people in real
time. You’ll deploy this Node.js-based application with the help of Elastic Beanstalk in
three steps:

1 Create an application: the logical container.
2 Create a version: a pointer to a specific version of Etherpad.
3 Create an environment: the place where Etherpad will run.

CREATING AN APPLICATION FOR AWS ELASTIC BEANSTALK

Open your command line and execute the following command to create an applica-
tion for the Elastic Beanstalk service:

$ aws elasticbeanstalk create-application --application-name etherpad

Application

Environment:
Version 0.3, config A

Environment:
Version 0.3, config B

Version 0.3

Version 0.2

Configuration:
Template A

Configuration:
Template B

Environment:
Version 0.2, config A

Logical
container

Specific version
of application

Runtime environment
for your application

Configure application
and environment

Figure 5.3 An Elastic Beanstalk application consists of versions, configurations, and environments.

Licensed to Thomas Snead <n.ordickan@gmail.com>

134 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

You’ve created a container for all the other components that are necessary to deploy
Etherpad with the help of AWS Elastic Beanstalk.

CREATING A VERSION FOR AWS ELASTIC BEANSTALK

You can create a new version of your Etherpad application with the following command:

$ aws elasticbeanstalk create-application-version \
--application-name etherpad --version-label 1.5.2 \
--source-bundle S3Bucket=awsinaction,S3Key=chapter5/etherpad.zip

For this example, we uploaded a zip archive containing version 1.5.2 of Etherpad. If
you want to deploy another application, you can upload your own application to the
AWS S3 service for static files.

CREATING AN ENVIRONMENT TO EXECUTE ETHERPAD WITH ELASTIC BEANSTALK

To deploy Etherpad with the help of Elastic Beanstalk, you have to create an environ-
ment for Node.js based on Amazon Linux and the version of Etherpad you just cre-
ated. To get the latest Node.js environment version, called a solution stack name, run
this command:

$ aws elasticbeanstalk list-available-solution-stacks --output text \
--query "SolutionStacks[?contains(@, 'running Node.js')] | [0]"\
64bit Amazon Linux 2015.03 v1.4.6 running Node.js

The option EnvironmentType = SingleInstance launches a single virtual server with-
out the ability to scale and load-balance automatically. Replace $SolutionStackName
with the output from the previous command:

$ aws elasticbeanstalk create-environment --environment-name etherpad \
--application-name etherpad \
--option-settings Namespace=aws:elasticbeanstalk:environment,\
OptionName=EnvironmentType,Value=SingleInstance \
--solution-stack-name "$SolutionStackName" \
--version-label 1.5.2

HAVING FUN WITH ETHERPAD

You’ve created an environment for Etherpad. It will take several minutes before you
can point your browser to your Etherpad installation. The following command helps
you track the state of your Etherpad environment:

$ aws elasticbeanstalk describe-environments --environment-names etherpad

If Status turns to Ready and Health turns to Green, you’re ready to create your first
Etherpad document. The output of the describe command should look similar to
the following example.

Licensed to Thomas Snead <n.ordickan@gmail.com>

135Deploying a simple web application with Elastic Beanstalk

{
"Environments": [{
"ApplicationName": "etherpad",
"EnvironmentName": "etherpad",
"VersionLabel": "1",
"Status": "Ready",
"EnvironmentId": "e-pwbfmgrsjp",
"EndpointURL": "23.23.223.115",
"SolutionStackName": "64bit Amazon Linux 2015.03 v1.4.6 running Node.js",
"CNAME": "etherpad-cxzshvfjzu.elasticbeanstalk.com",
"Health": "Green",
"Tier": {

"Version": " ",
"Type": "Standard",
"Name": "WebServer"

},
"DateUpdated": "2015-04-07T08:45:07.658Z",
"DateCreated": "2015-04-07T08:40:21.698Z"

}]
}

You’ve deployed a Node.js web application to AWS with three commands. Point your
browser to the URL shown in CNAME and open a new document by typing in a name for
it and clicking the OK button. Figure 5.4 shows an Etherpad document in action.

Listing 5.4 Describing the status of the Elastic Beanstalk environment

Wait until Status
turns to Ready.

DNS record for the
environment (for
example, to open
with a browser)

Wait until Health
turns to Green.

Figure 5.4 Online text editor Etherpad in action

Licensed to Thomas Snead <n.ordickan@gmail.com>

136 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

EXPLORING ELASTIC BEANSTALK WITH THE MANAGEMENT CONSOLE

You’ve deployed Etherpad with the help of Elastic Beanstalk and the AWS command-line
interface (CLI) by creating an application, a version, and an environment. You can also
control the Elastic Beanstalk service with the help of the Management Console, a web-
based user interface:

1 Open the AWS Management Console at https://console.aws.amazon.com.
2 Click Services in the navigation bar, and click the Elastic Beanstalk service.
3 Click the etherpad environment, represented by a green box. An overview of

the Etherpad application is shown, as in figure 5.5.

Health state of your
Etherpad application

Events triggered by
Elastic Beanstalk service

Information about
environment configuration

URL pointing to
Etherpad application

Version of Etherpad
running in environment

Figure 5.5 Overview of AWS Elastic Beanstalk environment running Etherpad

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://console.aws.amazon.com

137Deploying a simple web application with Elastic Beanstalk

You can also fetch the log messages from your application with the help of Elastic
Beanstalk. Download the latest log messages with the following steps:

1 Choose Logs from the submenu. You’ll see a screen like that shown in figure 5.6.
2 Click Request Logs, and choose Last 100 Lines.
3 After a few seconds, a new entry will appear in the table. Click Download to

download the log file to your computer.

Select Logs from
the submenu.

Download the
latest log messages.

Choose Last
100 Lines.

Figure 5.6 Downloading logs from a Node.js application via AWS Elastic Beanstalk

Cleaning up
Now that you’ve successfully deployed Etherpad with the help of AWS Elastic Be-
anstalk and learned about the service’s different components, it’s time to clean
up. Run the following command to terminate the Etherpad environment:

$ aws elasticbeanstalk terminate-environment --environment-name etherpad

You can check the state of the environment by executing the following command:

$ aws elasticbeanstalk describe-environments --environment-names etherpad

Wait until Status has changed to Terminated, and then proceed with the following
command:

$ aws elasticbeanstalk delete-application --application-name etherpad

That’s it. You’ve terminated the virtual server providing the environment for Etherpad
and deleted all components of Elastic Beanstalk.

Licensed to Thomas Snead <n.ordickan@gmail.com>

138 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

5.4 Deploying a multilayer application with OpsWorks
Deploying a basic web application with the help of Elastic Beanstalk is convenient. But
if you have to deploy a more complex application consisting of different services—
also called layers—you’ll reach the limits of Elastic Beanstalk. In this section, you’ll
learn about AWS OpsWorks, a free service offered by AWS that can help you to deploy a
multilayer application.

 OpsWorks helps you control AWS resources like virtual servers, load balancers, and
databases and lets you deploy applications. The service offers some standard layers
with the following runtimes:

You can also add a custom layer to deploy anything you want. The deployment is con-
trolled with the help of Chef, a configuration-management tool. Chef uses recipes orga-
nized in cookbooks to deploy applications to any kind of system. You can adopt the
standard recipes or create your own.

In addition to letting you deploy applications, OpsWorks helps you to scale, monitor
and update your virtual servers running beneath the different layers.

5.4.1 Components of OpsWorks

Getting to know the different components of OpsWorks will help you understand its
functionality. Figure 5.7 shows these elements:

■ HAProxy (load balancer) ■ PHP app server ■ MySQL (database)

■ Rails app server
(Ruby on Rails)

■ Java app server
(Tomcat server)

■ Memcached
(in-memory cache)

■ Static web server ■ AWS Flow (Ruby) ■ Ganglia (monitoring)

About Chef
Chef is a configuration-management tool like Puppet, SaltStack, and Ansible. Chef
transforms templates (recipes) written in a domain-specific language (DSL) into ac-
tions, to configure and deploy applications. A recipe can include packages to install,
services to run, or configuration files to write, for example. Related recipes can be
combined into cookbooks. Chef analyzes the status quo and changes resources
where necessary to reach the described state from the recipe.

You can reuse cookbooks and recipes from others with the help of Chef. The commu-
nity publishes a variety of cookbooks and recipes at https://supermarket.chef.io un-
der open source licenses.

Chef can be run in solo or client/server mode. It acts as a fleet-management tool in
client/server mode. This can help if you have to manage a distributed system con-
sisting of many virtual servers. In solo mode, you can execute recipes on a single vir-
tual server. AWS OpsWorks uses solo mode integrated in its own fleet management
without needing to configure and operate a setup in client/server mode.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://supermarket.chef.io

139Deploying a multilayer application with OpsWorks

■ A stack is a container for all other components of OpsWorks. You can create one or
more stacks and add one or more layers to each stack. You could use different stacks
to separate the production environment from the testing environment, for exam-
ple. Or you could use different stacks to separate different applications.

■ A layer belongs to a stack. A layer represents an application; you can also call it a
service. OpsWorks offers predefined layers for standard web applications like
PHP and Java, but you’re free to use a custom stack for any application you can
think of. A layer is responsible for configuring and deploying software to virtual
servers. You can add one or multiple virtual servers to a layer. The virtual servers
are called instances in this context.

■ An instance is the representation for a virtual server. You can launch one or
multiple instances for each layer. You can use different versions of Amazon
Linux and Ubuntu or a custom AMI as a basis for the instances, and you can
specify rules for launching and terminating instances based on load or time-
frames for scaling.

■ An app is the software you want to deploy. OpsWorks deploys your app to a suit-
able layer automatically. You can fetch apps from a Git or Subversion repository
or as archives via HTTP. OpsWorks helps you to install and update your apps
onto one or multiple instances.

Let’s look at how to deploy a multilayer application with the help of OpsWorks.

Stack

Web server layer:
PHP web application Instance

App

Instance

App

API server layer:
Java application
with REST API

Instance

App

Instance

App

Database layer:
MySQL database Instance

DB

Virtual server

Logical
container

Represents an
application/service

Software to deploy

Internet

Figure 5.7 Stacks, layers, instances, and apps are the main components of OpsWorks.

Licensed to Thomas Snead <n.ordickan@gmail.com>

140 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

5.4.2 Using OpsWorks to deploy an IRC chat application

Internet Relay Chat (IRC) is still a
popular means of communication.
In this section, you’ll deploy kiwiIRC,
a web-based IRC client, and your own
IRC server. Figure 5.8 shows the
setup of a distributed system consist-
ing of a web application delivering
the IRC client and an IRC server.

 kiwiIRC is an open source web
application written in JavaScript
for Node.js. The following steps are necessary to deploy a two-layer application with
the help of OpsWorks:

1 Create a stack, the container for all other components.
2 Create a Node.js layer for kiwiIRC.
3 Create a custom layer for the IRC server.
4 Create an app to deploy kiwiIRC to the Node.js layer.
5 Add an instance for each layer.

You’ll learn how to handle these steps with the Management Console. You can also
control OpsWorks from the command line, as you did Elastic Beanstalk, or with
CloudFormation.

CREATING A NEW OPSWORKS STACK

Open the Management Console at https://console.aws.amazon.com/opsworks, and
create a new stack. Figure 5.9 illustrates the necessary steps:

1 Click Add Stack under Select Stack or Add Your First Stack.
2 For Name, type in irc.
3 For Region, choose US East (N. Virginia).
4 The default VPC is the only one available. Select it.
5 For Default Subnet, select us-east-1a.
6 For Default Operating System, choose Ubuntu 14.04 LTS.
7 For Default Root Device Type, select EBS Backed.
8 For IAM Role, choose New IAM Role. Doing so automatically creates the neces-

sary dependency.
9 Select your SSH key, mykey, for Default SSH Key.

10 For Default IAM Instance Profile, choose New IAM Instance Profile. Doing so
automatically creates the necessary dependency.

11 For Hostname Theme, choose Layer Dependent. Your virtual servers will be
named depending on their layer.

12 Click Add Stack to create the stack.

HTTP IRC

Virtual server
kiwiIRC application

Virtual server
IRC server

Figure 5.8 Building your own IRC infrastructure consist-
ing of a web application and an IRC server

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://console.aws.amazon.com/opsworks

141Deploying a multilayer application with OpsWorks

You’re redirected to an overview of your irc stack. Everything is ready for you to create
the first layer.

CREATING A NODE.JS LAYER FOR AN OPSWORKS STACK

kiwiIRC is a Node.js application, so you need to create a Node.js layer for the irc stack.
Follow these steps to do so:

1 Select Layers from the submenu.
2 Click the Add Layer button.
3 For Layer Type, select Node.js App Server, as shown in figure 5.10.
4 Select the latest 0.10.x version of Node.js.
5 Click Add Layer.

Debugging your server
over a SSH connection
requires a SSH key.

Name your servers
with the layer name
(such as Node.js App).

IRC server packages
are available on
Ubuntu by default.

Select the default
VPC, the only item
in the list.

Figure 5.9 Creating a new stack with OpsWorks

Licensed to Thomas Snead <n.ordickan@gmail.com>

142 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

You’ve created a Node.js layer. Now you need to repeat these steps to add another
layer and deploy your own IRC server.

CREATING A CUSTOM LAYER FOR AN OPSWORKS STACK

An IRC server isn’t a typical web application, so the default layer types are out of the
question. You’ll use a custom layer to deploy an IRC server. The Ubuntu package
repository includes various IRC server implementations; you’ll use the ircd-ircu
package. Follow these steps to create a custom stack for the IRC server:

1 Select Layers from the submenu.
2 Click Add Layer.
3 For Layer Type, select Custom, as shown in figure 5.11.
4 For Name and for Short Name, type in irc-server.
5 Click Add Layer.

Runtime for kiwiIRC
running on Node.js

Choose the latest
Node.js 0.10.x version.

Figure 5.10 Creating a layer with Node.js for kiwiIRC

For Layer Type,
select Custom.

Insert a name
and a short name.

Figure 5.11 Creating a custom layer to deploy an IRC server

Licensed to Thomas Snead <n.ordickan@gmail.com>

143Deploying a multilayer application with OpsWorks

You’ve created a custom layer.
 The IRC server needs to be reachable through port 6667. To allow access to this

port, you need to define a custom firewall. Execute the commands shown in listing 5.5
to create a custom firewall for your IRC server.

$ aws ec2 describe-vpcs --query Vpcs[0].VpcId --output text

$ aws cloudformation create-stack --stack-name irc \
--template-url https://s3.amazonaws.com/awsinaction/\
chapter5/irc-cloudformation.json \
--parameters ParameterKey=VPC,ParameterValue=$VpcId

$ aws cloudformation describe-stacks --stack-name irc \
--query Stacks[0].StackStatus

Next you need to attach this custom firewall configuration to the custom OpsWorks
layer. Follow these steps:

1 Select Layers from the submenu.
2 Open the irc-server layer by clicking it.
3 Change to the Security tab and click Edit.
4 For Custom Security Groups, select the security group that starts with irc, as

shown in figure 5.12.
5 Click Save.

You need to configure one last thing for the IRC server layer: the layer recipes to
deploy an IRC server. Follow these steps to do so:

1 Select Layers from the submenu.
2 Open the irc-server layer by clicking it.
3 Change to the Recipes tab and click Edit.
4 For OS Packages, add the package ircd-ircu, as shown in figure 5.13.
5 Click the + button and then the Save button.

Listing 5.5 Creating a custom firewall with the help of CloudFormation

Shortcut for OS X and Linux
You can avoid typing these commands manually to your command line by using the
following command to download a bash script and execute it directly on your local
machine. The bash script contains the same steps as shown in listing 5.5:

$ curl -s https://raw.githubusercontent.com/AWSinAction/\
code/master/chapter5/irc-create-cloudformation-stack.sh \
| bash -ex

Gets the default VPC, remember
as $VpcId

Creates a
CloudFormation stack

If the status is not COMPLETE,
retry in 10 seconds.

Licensed to Thomas Snead <n.ordickan@gmail.com>

144 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

You’ve successfully created and configured a custom layer to deploy the IRC server.
Next you’ll add the kiwiIRC web application as an app to OpsWorks.

Change to the
Security tab.

Add security group
starting with “irc” to
Custom Security Groups.

Save your
changes.

Figure 5.12 Adding a custom firewall configuration to the IRC server layer

Type in “ircd-ircu”. Click the + button.

Figure 5.13 Adding an IRC package to a custom layer

Licensed to Thomas Snead <n.ordickan@gmail.com>

145Deploying a multilayer application with OpsWorks

ADDING AN APP TO THE NODE.JS LAYER

OpsWorks can deploy apps to a default layer. You’ve already created a Node.js layer.
With the following steps, you’ll add an app to this layer:

1 Select Apps from the submenu.
2 Click the Add an App button.
3 For Name, type in kiwiIRC.
4 For Type, select Node.js.
5 For Repository Type, select Git, and type in https://github.com/AWSinAction/

KiwiIRC.git for Repository URL, as shown in figure 5.14.
6 Click the Add App button.

Your first OpsWorks stack is now fully configured. Only one thing is missing: you need
to start some instances.

Choose a name
for the app.

Select Node.js as
the environment.

Access the public
GitHub repository.

Figure 5.14 Adding kiwiIRC, a Node.js app, to OpsWorks

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/AWSinAction/KiwiIRC.git
https://github.com/AWSinAction/KiwiIRC.git

146 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

ADDING INSTANCES TO RUN THE IRC CLIENT AND SERVER

Adding two instances will bring the kiwiIRC client and the IRC server into being. Add-
ing a new instance to a layer is easy—follow these steps:

1 Select Instances from the submenu.
2 Click the Add an Instance button on the Node.js App Server layer.
3 For Size, select t2.micro, the smallest and cheapest virtual server, as shown in

figure 5.15.
4 Click Add Instance.

You’ve added an instance to the Node.js App Server layer. Repeat these steps for the
irc-server layer as well.

 The overview of instances should be similar to figure 5.16. To start the instances,
click Start for both.

 It will take some time for the virtual servers to boot and the deployment to run. It’s
a good time to get some coffee or tea.

Click to add a new instance
to the Node.js layer.

Select t2.micro, the smallest
virtual server type.

Figure 5.15 Adding a new instance to the Node.js layer

Licensed to Thomas Snead <n.ordickan@gmail.com>

147Deploying a multilayer application with OpsWorks

HAVING FUN WITH KIWIIRC

Be patient until the status of both instances changes to Online, as shown in figure 5.17.
You can now open kiwiIRC in your browser by following these steps:

1 Keep in mind the public IP address of the instance irc-server1. You’ll need it to
connect to your IRC server later.

2 Click the public IP address of the nodejs-app1 instance to open the kiwiIRC web
application in a new tab of your browser.

Check for
size t2.micro.

Start the
instance.

The instance
will run 24/7.

Figure 5.16 Starting the instances for the IRC web client and server

Wait for Status to
change to Online.

Click to open kiwiIRC
in a new browser tab.

Keep this IP
address in mind.

Figure 5.17 Waiting for deployment to open kiwiIRC in the browser

Licensed to Thomas Snead <n.ordickan@gmail.com>

148 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

The kiwiIRC application should load in your browser, and you should see a login
screen like the one shown in figure 5.18. Follow these steps to log in to your IRC server
with the kiwiIRC web client:

1 Type in a nickname.
2 For Channel, type in #awsinaction.
3 Open the details of the connection by clicking Server and Network.
4 Type the IP address of irc-server1 into the Server field.
5 For Port, type in 6667.
6 Disable SSL.
7 Click Start, and wait a few seconds.

Congratulations! You’ve deployed a web-based IRC client and an IRC server with the
help of AWS OpsWorks.

Choose your
nickname for
the chat.

Select #awsinaction as
the channel to chat in.

Type in the
IP address of
irc-server1.

Type in
port 6667.

Disable SSL.

Figure 5.18 Using kiwiIRC to log in to your IRC server on channel #awsinaction

Licensed to Thomas Snead <n.ordickan@gmail.com>

149Comparing deployment tools

5.5 Comparing deployment tools
You have deployed applications in three ways in this chapter:

■ Using AWS CloudFormation to run a script on server startup
■ Using AWS Elastic Beanstalk to deploy a common web application
■ Using AWS OpsWorks to deploy a multilayer application

In this section, we’ll discuss the differences between these solutions.

5.5.1 Classifying the deployment tools

Figure 5.19 classifies the three AWS deployment options. The effort required to deploy
an application with the help of AWS Elastic Beanstalk is low. To benefit from this, your
application has to fit into the conventions of Elastic Beanstalk. For example, the appli-
cation must run in one of the standardized runtime environments. If you’re using
OpsWorks, you’ll have more freedom to adapt the service to the needs of your applica-
tion. For example, you can deploy different layers that depend on each other, or you
can use a custom layer to deploy any application with the help of a Chef recipe; this
takes extra effort but gives you additional freedom. On the other end of the spectrum,
you’ll find CloudFormation and deploying applications with the help of a script run-
ning at the end of the boot process. You can deploy any application with the help of
CloudFormation. The disadvantage of this approach is that you have to do more work
because you don’t use standard tooling.

Cleaning up
It’s time to clean up. Follow these steps to avoid unintentional costs:

1 Open the OpsWorks service with the Management Console.
2 Select the irc stack by clicking it.
3 Select Instances from the submenu.
4 Stop both instances and wait until Status is Stopped for both.
5 Delete both instances, and wait until they disappear from the overview.
6 Select Apps from the submenu.
7 Delete the kiwiIRC app.
8 Select Stack from the submenu.
9 Click the Delete Stack button, and confirm the deletion.
10 Execute aws cloudformation delete-stack --stack-name irc from your

terminal.

Elastic Beanstalk OpsWorks CloudFormation
with custom scripts

ControlConventions

Figure 5.19 Comparing
different ways to deploy
applications on AWS

Licensed to Thomas Snead <n.ordickan@gmail.com>

150 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

5.5.2 Comparing the deployment services

The previous classification can help you decide the best fit to deploy an application.
The comparison in table 5.1 highlights other important considerations.

Many other options are available for deploying applications on AWS, from open
source software to third-party services. Our advice is to use one of the AWS deployment
services because they’re well integrated into many other AWS services. We recommend
that you use CloudFormation with user data to deploy applications because it’s a flexi-
ble approach. It is also possible to manage Elastic Beanstalk and Ops Works with the
help of CloudFormation.

 An automated deployment process will help you to iterate and innovate more
quickly. You’ll deploy new versions of your applications more often. To avoid service
interruptions, you need to think about testing changes to software and infrastructure in
an automated way and being able to roll back to a previous version quickly if necessary.

5.6 Summary
■ It isn’t advisable to deploy applications to virtual servers manually because vir-

tual servers pop up more often in a dynamic cloud environment.
■ AWS offers different tools that can help you deploy applications onto virtual

servers. Using one of these tools prevents you from reinventing the wheel.

Table 5.1 Differences between using CloudFormation with a script on server startup,
 Elastic Beanstalk, and OpsWorks

CloudFormation with a
script on server startup

Elastic Beanstalk OpsWorks

Configuration-
management tool

All available tools Proprietary Chef

Supported
platforms

Any ■ PHP

■ Node.js

■ IIS

■ Java/Tomcat

■ Python

■ Ruby

■ Docker

■ Ruby on Rails

■ Node.js

■ PHP

■ Java/Tomcat

■ Custom/any

Supported deploy-
ment artifacts

Any Zip archive on Amazon S3 Git, SVN, archive (such
as Zip)

Common use case Complex and nonstan-
dard environments

Common web application Micro-services
environment

Update without
downtime

Possible Yes Yes

Vendor lock-in effect Medium High Medium

Licensed to Thomas Snead <n.ordickan@gmail.com>

151Summary

■ You can throw away a server to update an application if you’ve automated your
deployment process.

■ Injecting Bash or PowerShell scripts into a virtual server during startup allows
you to initialize servers individually—for example, for installing software or
configuring services.

■ OpsWorks is good for deploying multilayer applications with the help of Chef.
■ Elastic Beanstalk is best suited for deploying common web applications.
■ CloudFormation gives you the most control when you’re deploying more com-

plex applications.

Licensed to Thomas Snead <n.ordickan@gmail.com>

152

Securing
 your system: IAM,

 security groups, and VPC

If security is a wall, you’ll need a lot of bricks to build that wall. This chapter focuses
on the four most important bricks to secure your systems on AWS:

■ Installing software updates—New security vulnerabilities are found in software
every day. Software vendors release updates to fix those vulnerabilities. It’s
your job to install those updates as quickly as possible after they’re released.
Otherwise, your system will be an easy victim for hackers.

This chapter covers
■ Keeping your software up to date
■ Controlling access to your AWS account with users

and roles
■ Keeping your traffic under control with security groups
■ Using CloudFormation to create a private network
■ Who is responsible for security?

Licensed to Thomas Snead <n.ordickan@gmail.com>

153Who’s responsible for security?

■ Restricting access to your AWS account—This becomes even more important if you
aren’t the only one accessing your AWS account (if coworkers and scripts are
also accessing it). A script with a bug can easily terminate all your EC2 instances
instead of the one you intended. Granting least permissions is key to securing
your AWS resources from accidental or intended disastrous actions.

■ Controlling network traffic to and from your EC2 instances—You only want ports to be
accessible if they must be. If you run a web server, the only ports you need to
open to the outside world are port 80 for HTTP traffic and 443 for HTTPS traf-
fic. Close down all the other ports!

■ Creating a private network in AWS—You can create subnets that aren’t reachable
from the internet. And if they’re not reachable, nobody can access them.
Nobody? You’ll learn how you can get access to them while preventing others
from doing so.

One important brick is missing: securing your self-developed applications. You need
to check user input and allow only the necessary characters, don’t save passwords in
plain text, use SSL to encrypt traffic between your servers and your users, and so on.

6.1 Who’s responsible for security?
AWS is a shared-responsibility environment, meaning responsibility is shared between
AWS and you. AWS is responsible for the following:

■ Protecting the network through automated monitoring systems and robust
internet access to prevent Distributed Denial of Service (DDoS) attacks

■ Performing background checks on employees who have access to sensitive areas

Examples are 100% covered by the Free Tier
The examples in this chapter are completely covered by the Free Tier. As long as you
don’t run the examples for longer than a few days, you won’t pay anything. Keep in
mind that this only applies if you created a fresh AWS account for this book and noth-
ing else is going on in your AWS account. Try to complete the examples of the chapter
within a few days; you’ll clean up your account at the end of each example.

Chapter requirements
To fully understand this chapter, you should be familiar with the following concepts:

■ Subnet ■ Firewall

■ Route table ■ Port

■ Access control list (ACL) ■ Access management

■ Gateway ■ Basics of the Internet Protocol (IP), including IP addresses

Licensed to Thomas Snead <n.ordickan@gmail.com>

154 CHAPTER 6 Securing your system: IAM, security groups, and VPC

■ Decommissioning storage devices by physically destroying them after end of life
■ Ensuring physical and environmental security of data centers, including fire

protection and security staff

The security standards are reviewed by third parties; you can find an up-to-date over-
view at http://aws.amazon.com/compliance/.

 What are your responsibilities?

■ Encrypting network traffic to prevent attackers from reading or manipulating
data (for example, HTTPS)

■ Configuring a firewall for your virtual private network that controls incoming
and outgoing traffic with security groups and ACLs

■ Managing patches for the OS and additional software on virtual servers
■ Implementing access management that restricts access to AWS resources like S3

and EC2 to a minimum with IAM

Security in the cloud involves an interaction between AWS and you, the customer. If
you play by the rules, you can achieve high security standards in the cloud.

6.2 Keeping your software up to date
Not a week goes by without the release of important updates to fix security vulnerabil-
ities. Sometimes your OS is affected; or software libraries like OpenSSL; or environ-
ments like Java, Apache, and PHP; or applications like WordPress. If a security update
is released, you must install it quickly, because the exploit may have been released with
the update or because everyone can look at the source code to reconstruct the vulner-
ability. You should have a working plan for how to apply updates to all running servers
as quickly as possible.

6.2.1 Checking for security updates

If you log in to an Amazon Linux EC2 instance via SSH, you’ll see the following mes-
sage of the day:

$ ssh ec2-user@ec2-52-6-25-163.compute-1.amazonaws.com
Last login: Sun Apr 19 07:08:08 2015 from [...]

__| __|_)
_| (/ Amazon Linux AMI

___|___|___|

https://aws.amazon.com/[...]/2015.03-release-notes/
4 package(s) needed for security, out of 28 available
Run "sudo yum update" to apply all updates.

This example shows that four security updates are available; this number will vary
when you look for updates. AWS won’t apply updates for you on your EC2 instances—
you’re responsible for doing so.

4 security updates
are available.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://aws.amazon.com/compliance/

155Keeping your software up to date

 You can use the yum package manager to handle updates on Amazon Linux. Run
yum --security check-update to see which packages require a security update:

$ yum --security check-update
4 package(s) needed for security, out of 28 available

[...]
openssl.x86_64 1:1.0.1k-1.84.amzn1 amzn-updates
[...]
unzip.x86_64 6.0-2.9.amzn1 amzn-updates
[...]

We encourage you to follow the Amazon Linux AMI Security Center at https://
alas.aws.amazon.com to receive security bulletins affecting Amazon Linux. Whenever
a new security update is released, you should check whether you’re affected.

 When dealing with security updates, you may face either of these two situations:

■ When the server starts the first time, many security updates need to be installed
in order for the server to be up to date.

■ New security updates are released when your server is running, and you need to
install these updates while the server is running.

Let’s look how to handle these situations.

6.2.2 Installing security updates on server startup

If you create your EC2 instances with CloudFormation templates, you have three
options for installing security updates on startup:

■ Install all updates on server start. Include yum -y update in your user-data script.
■ Install only security updates on server start. Include yum -y --security update in

your user-data script.
■ Define the package versions explicitly. Install updates identified by a version number.

The first two options can be easily included in the user data of your EC2 instance. You
install all updates as follows:

[...]
"Server": {

"Type": "AWS::EC2::Instance",
"Properties": {
[...]
"UserData": {"Fn::Base64": {"Fn::Join": ["", [

"#!/bin/bash -ex\n",
"yum -y update\n"

]]}}
}

}
[...]

The output will be
different when you
run the command.

OpenSSL is a
library for SSL
encryption.

unzip can
(de)compress files.

Installs all updates
on server start

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://alas.aws.amazon.com
https://alas.aws.amazon.com

156 CHAPTER 6 Securing your system: IAM, security groups, and VPC

To install only security updates, do the following:

[...]
"Server": {

"Type": "AWS::EC2::Instance",
"Properties": {
[...]
"UserData": {"Fn::Base64": {"Fn::Join": ["", [

"#!/bin/bash -ex\n",
"yum -y --security update\n"

]]}}
}

}
[...]

The problem with installing all updates is that your system becomes unpredictable. If
your server was started last week, all updates were applied that were available last
week. But in the meantime, new updates have been released. If you start a new server
today and install all updates, you’ll end up with a different server than the server from
last week. Different can mean that for some reason it’s not working anymore. That’s
why we encourage you to explicitly define the updates you want to install. To install
security updates with an explicit version, you can use the yum update-to command.
yum update-to updates a package to an explicit version instead of the latest:

yum update-to openssl-1.0.1k-1.84.amzn1 \
unzip-6.0-2.9.amzn1

Using a CloudFormation template to describe an EC2 instance with explicitly defined
updates looks like this:

[...]
"Server": {

"Type": "AWS::EC2::Instance",
"Properties": {
[...]
"UserData": {"Fn::Base64": {"Fn::Join": ["", [

"#!/bin/bash -ex\n",
"yum -y update-to openssl-1.0.1k-1.84.amzn1 unzip-6.0-2.9.amzn1\n"

]]}}
}

}
[...]

The same approach works for non-security-related package updates. Whenever a new
security update is released, you should check whether you’re affected and modify the
user data to keep new systems secure.

Installs only security
updates on server start

Updates openssl to
version 1.0.1k-1.84.amzn1

Updates unzip to
version 6.0-2.9.amzn1

Licensed to Thomas Snead <n.ordickan@gmail.com>

157Securing your AWS account

6.2.3 Installing security updates on running servers

From time to time, you must install security updates on all your running servers. You
could manually log in to all your servers using SSH and run yum -y --security update
or yum update-to [...], but if you have many servers or the number of servers grows,
this can be annoying. One way to automate this task is to use a small script that gets a
list of your servers and executes yum in all of them. The following listing shows how
this can be done in Bash. You can find the code in /chapter6/update.sh in the
book’s code folder.

PUBLICNAMES=$(aws ec2 describe-instances \
--filters "Name=instance-state-name,Values=running" \
--query "Reservations[].Instances[].PublicDnsName" \
--output text)

for PUBLICNAME in $PUBLICNAMES; do
ssh -t -o StrictHostKeyChecking=no ec2-user@$PUBLICNAME \
"sudo yum -y --security update"

done

Now you can quickly apply updates to all of your running servers.
 Some security updates require you to reboot the virtual server—for example, if you

need to patch the kernel of your virtual servers running on Linux. You can automate
the reboot of the servers or switch to an updated AMI and start new virtual servers
instead. For example, a new AMI of Amazon Linux is released four times a year.

6.3 Securing your AWS account
Securing your AWS account is critical. If someone gets access to your AWS account,
they can steal your data, destroy everything (data, backups, servers), or steal your
identity to do bad stuff. Figure 6.1 shows an AWS account. Each AWS account comes
with a root user. In this book’s example, you’re using the root user when you use the
Management Console; if you use the CLI, you’re using the mycli user that you created
in section 4.2. In addition to the root user, an AWS account is a basket for all the
resources you own: EC2 instances, CloudFormation stacks, IAM users, and so on.

 To access your AWS account, an attacker must be able to authenticate with your
account. There are three ways to do so: using the root user, using a normal user, or
authenticating as an AWS resource like an EC2 instance. To authenticate as a (root) user,
the attacker needs the password or the access key. To authenticate as an AWS resource
like an EC2 server, the attacker needs to send API/CLI requests from that EC2 instance.

 In this section, you’ll begin protecting your root user with multifactor authentica-
tion (MFA). Then you’ll stop using the root user, create a new user for daily opera-
tions, and learn to grant least permissions to a role.

Listing 6.1 Installing security updates on all running EC2 instances

Gets all public names of
running EC2 instances

Connects
via ssh…

…and executes a
yum update

Licensed to Thomas Snead <n.ordickan@gmail.com>

158 CHAPTER 6 Securing your system: IAM, security groups, and VPC

6.3.1 Securing your AWS account’s root user

We advise you to enable multifactor authentication (MFA) for your root user if you’re
going to use AWS in production. After MFA is activated, you need a password and a
temporary token to log in as the root user. Thus an attacker needs not only your pass-
word, but also your MFA device.

 Follow these steps to enable MFA, as shown in figure 6.2:

1 Click your name in the navigation bar at the top of the Management Console.
2 Click Security Credentials.
3 A pop-up may show up the first time. You need to select: Continue to Security

Credentials.
4 Install a MFA app on your smartphone (such as Google Authenticator).
5 Expand the Multi-Factor Authentication (MFA) section.
6 Click Activate MFA.
7 Follow the instructions in the wizard. Use the MFA app on your smartphone to

scan the QR code that is displayed.

If you’re using your smartphone as a virtual MFA device, it’s a good idea not to log in
to the Management Console from your smartphone or to store the root user’s pass-
word on the phone. Keep the MFA token separate from your password.

Management
Console

CloudFormation
stack

$ cli
>

Terminal

Root user

IAM user
mycli

EC2
instance

AWS account

Resources

Figure 6.1 An AWS
account contains all
the AWS resources
and comes with a root
user by default.

Licensed to Thomas Snead <n.ordickan@gmail.com>

159Securing your AWS account

6.3.2 Identity and Access Management service

The Identity and Access Management (IAM) service provides everything needed for
authentication and authorization with the AWS API. Every request you make to the
AWS API goes through IAM to check whether the request is allowed. IAM controls who
(authentication) can do what (authorization) in your AWS account: who’s allowed to
create EC2 instances? Is the user allowed to terminate a specific EC2 instance?

 Authentication with IAM is done with users or roles, whereas authorization is done
by policies. How do users and roles differ? Table 6.1 shows the differences. Roles
authenticate an EC2 instance; a user should be used for everything else.

IAM users and IAM roles use policies for authorization. Let’s look at policies first as we
continue with users and roles. Keep in mind that users and roles can’t do anything
until you allow certain actions with a policy.

Table 6.1 Differences between root user, IAM user, and IAM role

Root user IAM user IAM role

Can have a password Always Yes No

Can have an access key Yes (not recommended) Yes No

Can belong to a group No Yes No

Can be associated with an EC2 instance No No Yes

Figure 6.2 Protect your root user with multifactor authentication (MFA).

Licensed to Thomas Snead <n.ordickan@gmail.com>

160 CHAPTER 6 Securing your system: IAM, security groups, and VPC

6.3.3 Policies for authorization

A policy is defined in JSON and contains one or more statements. A statement can
either allow or deny specific actions on specific resources. You can find an overview of
all the actions available for EC2 resources at http://mng.bz/WQ3D. The wildcard
character * can be used to create more generic statements.

 The following policy has one statement that allows every action for the EC2 service
for all resources:

{
"Version": "2012-10-17",
"Statement": [{
"Sid": "1",
"Effect": "Allow",
"Action": ["ec2:*"],
"Resource": ["*"]

}]
}

If you have multiple statements that apply to the same action, Deny overrides Allow.
The following policy allows all EC2 actions except terminating instances:

{
"Version": "2012-10-17",
"Statement": [{
"Sid": "1",
"Effect": "Allow",
"Action": ["ec2:*"],
"Resource": ["*"]

}, {
"Sid": "2",
"Effect": "Deny",
"Action": ["ec2:TerminateInstances"],
"Resource": ["*"]

}]
}

The following policy denies all EC2 actions. The ec2:TerminateInstances statement
isn’t crucial, because Deny overrides Allow. When you deny an action, you can’t allow
that action with another statement:

{
"Version": "2012-10-17",
"Statement": [{
"Sid": "1",
"Effect": "Deny",
"Action": ["ec2:*"],
"Resource": ["*"]

}, {
"Sid": "2",
"Effect": "Allow",
"Action": ["ec2:TerminateInstances"],
"Resource": ["*"]

}]
}

Specifies 2012-10-17 to
lock down the version

Allows (the
other option

is Deny) …

… every EC2 action
(wildcard *) …… and every

resource
… and every

resource

Denies …

… termination of
EC2 instances

Denies every
EC2 action

Allow isn’t crucial;
Deny overrides Allow.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://mng.bz/WQ3D

161Securing your AWS account

So far, the Resource part has been ["*"] for every resource. Resources in AWS have an
Amazon Resource Name (ARN); figure 6.3 shows the ARN of an EC2 instance.

 To find out the account ID, you can use the CLI:

$ aws iam get-user --query "User.Arn" --output text
arn:aws:iam::878533158213:user/mycli

If you know your account ID, you can use ARNs to allow access to specific resources of
a service:

{
"Version": "2012-10-17",
"Statement": [{
"Sid": "2",
"Effect": "Allow",
"Action": ["ec2:TerminateInstances"],
"Resource": ["arn:aws:ec2:us-east-1:878533158213:instance/i-3dd4f812"]

}]
}

There are two types of policies:

■ Managed policy—If you want to create policies that can be reused in your
account, a managed policy is what you’re looking for. There are two types of
managed policies:
– AWS managed policy—A policy that is maintained by AWS. There are policies

that grant admin rights, read-only rights, and so on.
– Customer managed—Could be a policy that represents the roles in your

organization.
■ Inline policy—A policy that belongs to a certain IAM role, user, or group. The

inline policy can’t exist without the IAM role, the user, or the group.

With CloudFormation, it’s easy to maintain inline policies; that’s why we use inline
policies most of the time in this book. One exception is the mycli user: this user has
the AWS managed policy AdministratorAccess attached.

6.3.4 Users for authentication, and groups to organize users

A user can authenticate with either a password or an access key. When you log in to
the Management Console, you’re authenticating with your password. When you use
the CLI from your computer, you use an access key to authenticate as the mycli user.

Resource type (only if service
offers multiple resources)

arn:aws:ec2:us-east-1:878533158213:instance/i-3dd4f812

Service

Region Account ID Resource

Figure 6.3 Components
of an Amazon Resource
Name (ARN) identifying
an EC2 instance

Account ID has 12 digits
(878533158213)

Licensed to Thomas Snead <n.ordickan@gmail.com>

162 CHAPTER 6 Securing your system: IAM, security groups, and VPC

 You’re using the root user at the moment to log in to the Management Console.
Because using least permissions is always a good idea, you’ll create a new user for the
Management Console. To make things easier if you want to add users in the future,
you’ll first create a group for all admin users. A group can’t be used to authenticate,
but it centralizes authorization. If you want to stop your admin users from terminating
EC2 servers, you only need to change the policy for the group instead of changing it
for all admin users. A user can be the member of none, one, or multiple groups.

 It’s easy to create groups and users with the CLI. Replace $Password with a secure
password:

$ aws iam create-group --group-name "admin"
$ aws iam attach-group-policy --group-name "admin" \
--policy-arn "arn:aws:iam::aws:policy/AdministratorAccess"
$ aws iam create-user --user-name "myuser"
$ aws iam add-user-to-group --group-name "admin" --user-name "myuser"
$ aws iam create-login-profile --user-name "myuser" --password "$Password"

The user myuser is ready to be used. But you must use a different URL to access the
Management Console if you aren’t using the root user: https://$accountId.signin
.aws.amazon.com/console. Replace $accountId with the account ID that you
extracted earlier with the aws iam get-user call.

WARNING Stop using the root user from now on. Always use myuser and the
new link to the Management Console.

WARNING You should never copy a user’s access key to an EC2 instance; use
IAM roles instead! Don’t store security credentials in your source code. And
never ever check them into your Git or SVN repository. Try to use IAM roles
instead whenever possible.

Enabling MFA for IAM users
We encourage you to enable MFA for all users as well. If possible, don’t use the
same MFA device for your root user and everyday users. You can buy hardware MFA
devices for $13 from AWS partners like Gemalto. To enable MFA for your users, fol-
low these steps:

1 Open the IAM service in the Management Console.
2 Choose Users at left.
3 Select the myuser user.
4 Click the Manage MFA Device button in the Sign-In Credentials section at the

bottom of the page. The wizard is the same as for the root user.

You should have MFA activated for all users who have a password—users who can
be used with the Management Console.

Licensed to Thomas Snead <n.ordickan@gmail.com>

163Securing your AWS account

6.3.5 Roles for authentication of AWS resources

An IAM role can be used to authenticate AWS resources like virtual servers. You can
attach no roles, one role, or multiple roles to an EC2 instance. Each AWS API request
from an AWS resource (like an EC2 instance) will authenticate with the roles attached.
If the AWS resource has one role or multiple roles attached, IAM will check all policies
attached to those roles to determine whether the request is allowed. By default, EC2
instances have no role and therefore aren’t allowed to make any calls to the AWS API.

 Do you remember the temporary EC2 instances from chapter 4? It appeared that
temporary servers weren’t terminated—people forget to do so. A lot of money was
wasted because of that. You’ll now create an EC2 instance that stops itself after a while.
The at command stops the instance after a 5-minute delay:

echo "aws ec2 stop-instances --instance-ids i-3dd4f812" | at now + 5 minutes

The EC2 instance needs permission to stop itself. You can use an inline policy to allow
this. The following listing shows how you define a role as a resource in CloudFormation:

"Role": {
"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {

"Version": "2012-10-17",
"Statement": [{

"Effect": "Allow",
"Principal": {

"Service": ["ec2.amazonaws.com"]
},
"Action": ["sts:AssumeRole"]

}]
},
"Path": "/",
"Policies": [{

"PolicyName": "ec2",
"PolicyDocument": {

"Version": "2012-10-17",
"Statement": [{

"Sid": "Stmt1425388787000",
"Effect": "Allow",
"Action": ["ec2:StopInstances"],
"Resource": ["*"],
"Condition": {

"StringEquals": {"ec2:ResourceTag/aws:cloudformation:stack-id":
{"Ref": "AWS::StackId"}}

}
}]

}
}]

}
}

Magic: copy
and paste

Policies
begin

Policy
definition

Creates EC2 instance
after role: can’t {“Ref”}
an instance ID!

Condition can
solve the

problem: only
allow if tagged

with the stack ID

Licensed to Thomas Snead <n.ordickan@gmail.com>

164 CHAPTER 6 Securing your system: IAM, security groups, and VPC

To attach an inline role to an instance, you must first create an instance profile:

"InstanceProfile": {
"Type": "AWS::IAM::InstanceProfile",
"Properties": {
"Path": "/",
"Roles": [{"Ref": "Role"}]

}
}

Now you can combine the role with the EC2 instance:

"Server": {
"Type": "AWS::EC2::Instance",
"Properties": {
"IamInstanceProfile": {"Ref": "InstanceProfile"},
[...],
"UserData": {"Fn::Base64": {"Fn::Join": ["", [

"#!/bin/bash -ex\n",
"INSTANCEID=`curl -s ",
"http://169.254.169.254/latest/meta-data/instance-id`\n",
"echo \"aws --region us-east-1 ec2 stop-instances ",
"--instance-ids $INSTANCEID\" | at now + 5 minutes\n"

]]}}
}

}

Create the CloudFormation stack with the template located at https://s3.amazonaws
.com/awsinaction/chapter6/server.json. You can specify the lifetime of the server via
a parameter. Wait until the lifetime is reached and see if your instance is stopped. The
lifetime begins when the server is fully started and booted.

6.4 Controlling network traffic to and from your virtual server
You only want traffic to enter or leave your EC2 instance that has to do so. With a fire-
wall, you can control ingoing (also called inbound or ingress) and outgoing (also
called outbound or egress) traffic. If you run a web server, the only ports you need to
open to the outside world are port 80 for HTTP traffic and 443 for HTTPS traffic. All
other ports should be closed down. Only open ports that must be open, just as you
grant least permissions with IAM. If you have a strict firewall, you shut down a lot of
possible security holes. You can also prevent the accidental sending of mail to custom-
ers from a test system by not opening outgoing SMTP connections for test systems.

 Before network traffic can enter or leave your EC2 instance, it goes through a fire-
wall provided by AWS. The firewall inspects the network traffic and uses rules to decide
whether the traffic is allowed or denied.

Cleaning up
Don’t forget to delete your stack after you finish this section to clean up all used re-
sources. Otherwise you’ll likely be charged for the resources you use.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://s3.amazonaws.com/awsinaction/chapter6/server.json
https://s3.amazonaws.com/awsinaction/chapter6/server.json

165Controlling network traffic to and from your virtual server

Figure 6.4 shows how an SSH request from a source IP address 10.0.0.10 is inspected by
the firewall and received by the destination IP address 10.10.0.20. In this case, the fire-
wall allows the request because there’s a rule that allows TCP traffic on port 22
between the source and the destination.

IP vs. IP address
The abbreviation IP is used for Internet Protocol, whereas an IP address is something
like 84.186.116.47.

Source vs. destination
Inbound security-group rules filter based on the source of the network traffic. The
source is either an IP address or a security group. Thus you can allow inbound traffic
only from specific source IP address ranges.

Outbound security-group rules filter based on the destination of the network traffic.
The destination is either an IP address or a security group. You can allow outbound
traffic to only specific destination IP address ranges.

Source
(10.0.0.10)

Destination
(10.10.0.20)

Inbound

Outbound

Source IP address: 10.0.0.10
Destination IP address: 10.0.0.20
Protocol: TCP
Destination port: 22

IP

TCP

Firewall

Inspect traffic
to filter based

on rules.

Client (source) sends a
SSH (port 22) request to
IP address 10.10.0.20.

Firewall checks based on
rules if a TCP request on
port 22 is allowed from
10.0.0.10 to 10.10.0.20.

Request is received. A
response is sent back
to the source.

Allow

Deny
Rules

Network package (simplified)

Figure 6.4 How an SSH request travels from source to destination, controlled by a firewall

Licensed to Thomas Snead <n.ordickan@gmail.com>

166 CHAPTER 6 Securing your system: IAM, security groups, and VPC

AWS is responsible for the firewall, but you’re responsible for the rules. By default, all
inbound traffic is denied and all outbound traffic is allowed. You can then begin to
allow inbound traffic. If you add rules for outgoing traffic, the default will switch from
allow all to deny all, and only the exceptions you add will be allowed.

6.4.1 Controlling traffic to virtual servers with security groups

A security group can be associated with AWS resources like EC2 instances. It’s common
for EC2 instances to have more than one security group associated with them and for
the same security group to be associated with many EC2 instances.

 A security group follows a set of rules. A rule can allow network traffic based on the
following:

■ Direction (inbound or outbound)
■ IP protocol (TCP, UDP, ICMP)
■ Source/destination IP address
■ Port
■ Source/destination security group (works only in AWS)

You can define rules that allow all traffic to enter and leave your server; AWS won’t pre-
vent you from doing so. But it’s good practice to define your rules so they’re as restric-
tive as possible.

 A security group resource in CloudFormation is of type AWS::EC2::SecurityGroup.
The following listing is in /chapter6/firewall1.json in the book’s code folder: the
template describes an empty security group associated with a single EC2 instance.

{
"Parameters": {
"KeyName": {

"Type": "AWS::EC2::KeyPair::KeyName",
"Default": "mykey"

},
"VPC": {

[...]
},
"Subnet": {

[...]
}

},
"Resources": {
"SecurityGroup": {

"Type": "AWS::EC2::SecurityGroup",
"Properties": {

"GroupDescription": "My security group",
"VpcId": {"Ref": "VPC"}

}
},
"Server": {

"Type": "AWS::EC2::Instance",

Listing 6.2 Empty security group associated with a single EC2 instance

You’ll learn
about this in
section 6.5.

You’ll learn
about this in
section 6.5.

Security
group

description

EC2 instance
description

Licensed to Thomas Snead <n.ordickan@gmail.com>

167Controlling network traffic to and from your virtual server

"Properties": {
"ImageId": "ami-1ecae776",
"InstanceType": "t2.micro",
"KeyName": {"Ref": "KeyName"},
"SecurityGroupIds": [{"Ref": "SecurityGroup"}],
"SubnetId": {"Ref": "Subnet"}

}
}

}
}

To explore security groups, you can try the CloudFormation template located at
https://s3.amazonaws.com/awsinaction/chapter6/firewall1.json. Create a stack
based on that template, and then copy the PublicName from the stack output.

6.4.2 Allowing ICMP traffic

If you want to ping an EC2 instance from your computer, you must allow inbound
Internet Control Message Protocol (ICMP) traffic. By default, all inbound traffic is
blocked. Try ping $PublicName to make sure ping isn’t working:

$ ping ec2-52-5-109-147.compute-1.amazonaws.com
PING ec2-52-5-109-147.compute-1.amazonaws.com (52.5.109.147): 56 data bytes
Request timeout for icmp_seq 0
Request timeout for icmp_seq 1
[...]

You need to add a rule to the security group that allows inbound traffic, where the pro-
tocol equals ICMP. The following listing can be found at /chapter6/firewall2.json in
the book’s code folder.

{
[...]
"Resources": {

"SecurityGroup": {
[...]

},
"AllowInboundICMP": {
"Type": "AWS::EC2::SecurityGroupIngress",
"Properties": {

"GroupId": {"Ref": "SecurityGroup"},
"IpProtocol": "icmp",
"FromPort": "-1",
"ToPort": "-1",
"CidrIp": "0.0.0.0/0"

}
},
"Server": {
[...]

}
}

}

Listing 6.3 Security group that allows ICMP

Associates a
security group

with an EC2
instance by Ref

Allow ICMP rule
description

Type of
inbound

rules Connects a rule
with a security
group

Specifies the
protocol

-1 means
every port.

0.0.0.0/0 means
every source IP

address is allowed.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://s3.amazonaws.com/awsinaction/chapter6/firewall1.json

168 CHAPTER 6 Securing your system: IAM, security groups, and VPC

Update the CloudFormation stack with the template located at https://s3.amazonaws
.com/awsinaction/chapter6/firewall2.json, and retry the ping command. It should
now look like this:

$ ping ec2-52-5-109-147.compute-1.amazonaws.com
PING ec2-52-5-109-147.compute-1.amazonaws.com (52.5.109.147): 56 data bytes
64 bytes from 52.5.109.147: icmp_seq=0 ttl=49 time=112.222 ms
64 bytes from 52.5.109.147: icmp_seq=1 ttl=49 time=121.893 ms
[...]
round-trip min/avg/max/stddev = 112.222/117.058/121.893/4.835 ms

Everyone’s inbound ICMP traffic (every source IP address) is now allowed to reach the
EC2 instance.

6.4.3 Allowing SSH traffic

Once you can ping your EC2 instance, you want to log in to your server via SSH. To do
so, you must create a rule to allow inbound TCP requests on port 22.

[...]
"AllowInboundSSH": {

"Type": "AWS::EC2::SecurityGroupIngress",
"Properties": {
"GroupId": {"Ref": "SecurityGroup"},
"IpProtocol": "tcp",
"FromPort": "22",
"ToPort": "22",
"CidrIp": "0.0.0.0/0"

}
},
[...]

Update the CloudFormation stack with the template located at https://s3.amazonaws
.com/awsinaction/chapter6/firewall3.json. You can now log in to your server using
SSH. Keep in mind that you still need the correct private key. The firewall only con-
trols the network layer; it doesn’t replace key-based or password-based authentication.

6.4.4 Allowing SSH traffic from a source IP address

So far, you’re allowing inbound traffic on port 22 (SSH) from every source IP address.
You can restrict access to only your IP address.

 Hard-coding the public IP address into the template isn’t a good solution because
this changes from time to time. But you already know the solution: parameters. You
need to add a parameter that holds your current public IP address, and you need to
modify the AllowInboundSSH rule. You can find the following listing in /chapter6/
firewall4.json in the book’s code folder.

Listing 6.4 Security group that allows SSH

Allow SSH rule
description

SSH is based
on the TCP

protocol.

The default SSH
port is 22.You can allow a

range of ports
or set FromPort

= ToPort.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://s3.amazonaws.com/awsinaction/chapter6/firewall2.json
https://s3.amazonaws.com/awsinaction/chapter6/firewall2.json
https://s3.amazonaws.com/awsinaction/chapter6/firewall3.json
https://s3.amazonaws.com/awsinaction/chapter6/firewall3.json

169Controlling network traffic to and from your virtual server

[...]
"Parameters": {

[...]
"IpForSSH": {
"Description": "Your public IP address to allow SSH access",
"Type": "String"

}
},
"Resources": {

"AllowInboundSSH": {
"Type": "AWS::EC2::SecurityGroupIngress",
"Properties": {

"GroupId": {"Ref": "SecurityGroup"},
"IpProtocol": "tcp",
"FromPort": "22",
"ToPort": "22",
"CidrIp": {"Fn::Join": ["", [{"Ref": "IpForSSH"}, "/32"]]}

}
},
[...]

}

Update the CloudFormation stack with the template located at https://s3.amazonaws
.com/awsinaction/chapter6/firewall4.json. Type in your public IP address $IPForSSH
when asked for parameters. Now only your IP address can open SSH connections to
your EC2 instance.

Listing 6.5 Security group that allows SSH only from specific IP address

Public IP address
parameter

Uses $IpForSSH/32
as a value

What’s the difference between public and private IP addresses?
On my local network, I’m using private IP addresses that start with 192.168.0.*. My
laptop uses 192.168.0.10, and my iPad uses 192.168.0.20. But if I access the in-
ternet, I have the same public IP (such as 79.241.98.155) for my laptop and iPad.
That’s because only my internet gateway (the box that connects to the internet) has
a public IP address, and all requests are redirected by the gateway (if you want to
dive deep into this, search for network address translation). Your local network
doesn’t know about this public IP address. My laptop and iPad only know that the
internet gateway is reachable under 192.168.0.1 on the private network.

To find out your public IP address, visit http://api.ipify.org. For most of us, our public
IP address changes from time to time, usually when we reconnect to the internet
(which happens every 24 hours in my case).

Classless Inter-Domain Routing (CIDR)
You may wonder what /32 means in listing 6.5. To understand what’s going on, you need
to switch your brain into binary mode. An IP address is 4 bytes or 32 bits long. The /32
defines how many bits (32, in this case) should be used to form a range of addresses.
If you want to define the exact IP address that’s allowed, you must use all 32 bits.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://s3.amazonaws.com/awsinaction/chapter6/firewall4.json
https://s3.amazonaws.com/awsinaction/chapter6/firewall4.json
http://api.ipify.org

170 CHAPTER 6 Securing your system: IAM, security groups, and VPC

Now you can control network traffic that comes from outside AWS or goes outside AWS
by filtering based on protocol, port, and source IP address.

6.4.5 Allowing SSH traffic from a source security group

If you want to control traffic from one AWS resource (like an EC2 instance) to another,
security groups are powerful. You can control network traffic based on whether the
source or destination belongs to a specific security group. For example, you can
define that a MySQL database can only be accessed if the traffic comes from your web
servers, or that only your web cache servers are allowed to access the web servers.
Because of the elastic nature of the cloud, you’ll likely deal with a dynamic number of
servers, so rules based on source IP addresses are difficult to maintain. This becomes
easy if your rules are based on source security groups.

 To explore the power of rules based on a source security group, let’s look at the
concept of a bastion host for SSH access (some people call it a jump box). The trick is
that only one server, the bastion host, can be accessed via SSH from the internet (it
should be restricted to a specific source IP address). All other servers can only be
reached via SSH from the bastion host. This approach has two advantages:

■ You have only one entry point into your system, and that entry point does noth-
ing but SSH. The chances of this box being hacked are small.

■ If one of your web servers, mail servers, FTP servers, and so on, is hacked, the
attacker can’t jump from that server to all the other servers.

To implement the concept of a bastion host, you must follow these two rules:

■ Allow SSH access to the bastion host from 0.0.0.0/0 or a specific source address.
■ Allow SSH access to all other servers only if the traffic source is the bastion host.

Figure 6.5 shows a bastion host with two servers that are only reachable via SSH from
the bastion host.

(continued)
But sometimes it makes sense to define a range of allowed IP addresses. For example,
you can use 10.0.0.0/8 to create a range between 10.0.0.0 and 10.255.255.255,
10.0.0.0/16 to create a range between 10.0.0.0 and 10.0.255.255, or 10.0.0.0/
24 to create a range between 10.0.0.0 and 10.0.0.255. You aren’t required to use
the binary boundaries (8, 16, 24, 32), but they’re easier for most people to understand.
You already used 0.0.0.0/0 to create a range that contains every possible IP address.

Licensed to Thomas Snead <n.ordickan@gmail.com>

171Controlling network traffic to and from your virtual server

The following listing shows the SSH rule that allows traffic from a specific source secu-
rity group.

[...]
"SecurityGroupPrivate": {

"Type": "AWS::EC2::SecurityGroup",
"Properties": {
"GroupDescription": "My security group",
"VpcId": {"Ref": "VPC"}

}
},
"AllowPrivateInboundSSH": {

"Type": "AWS::EC2::SecurityGroupIngress",
"Properties": {
"GroupId": {"Ref": "SecurityGroupPrivate"},
"IpProtocol": "tcp",
"FromPort": "22",
"ToPort": "22",
"SourceSecurityGroupId": {"Ref": "SecurityGroup"}

}
},
[...]

Update the CloudFormation stack with the template located at https://s3.amazonaws
.com/awsinaction/chapter6/firewall5.json. If the update is completed, the stack
shows three outputs:

■ BastionHostPublicName—Use the bastion host to connect via SSH from your
computer.

Listing 6.6 Security group that allows SSH from bastion host

Bastion host

ServerServer

Your IP
address

SSH
allowed

SSH
allowed

SSH
allowed

SSH
denied

SSH
denied

SSH
denied X

X

X Figure 6.5 The bastion host is the only
SSH access point to the system from
which you can reach all the other servers
via SSH (realized with security groups).

New security group

Allow only if the
source is the other
security group.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://s3.amazonaws.com/awsinaction/chapter6/firewall5.json
https://s3.amazonaws.com/awsinaction/chapter6/firewall5.json

172 CHAPTER 6 Securing your system: IAM, security groups, and VPC

■ Server1PublicName—You can connect to this server only from the bastion host.
■ Server2PublicName—You can connect to this server only from the bastion host.

Now connect to BastionHostPublicName via SSH using ssh -i $PathToKey/mykey.pem
-A ec2-user@$BastionHostPublicName. Replace $PathToKey with the path to your
SSH key and $BastionHostPublicName with the public name of the bastion host. The
-A option is important to enable AgentForwarding; agent forwarding lets you authen-
ticate with the same key you used to log in to the bastion host for further SSH logins
initiated from the bastion host.

 Execute the following command to add your key to the SSH agent. Replace $Path-
ToKey with the path to the SSH key:

ssh-add $PathToKey/mykey.pem

6.4.6 Agent forwarding with PuTTY

To make agent forwarding work with PuTTY, you need to make sure your key is loaded
to PuTTY Pageant by double-clicking the private key file. You must also enable Con-
nection > SSH > Auth > Allow Agent Forwarding, as shown in figure 6.6.

Enable agent forwarding.

Figure 6.6 Allow agent forwarding with PuTTY.

Licensed to Thomas Snead <n.ordickan@gmail.com>

173Creating a private network in the cloud: Virtual Private Cloud (VPC)

From the bastion host, you can then continue to log in to $Server1PublicName or
$Server2PublicName:

[computer]$ ssh -i mykey.pem -A ec2-user@ec2-52-4-234-102.[...].com
Last login: Sat Apr 11 11:28:31 2015 from [...]
[...]
[bastionh]$ ssh ec2-52-4-125-194.compute-1.amazonaws.com
Last login: Sat Apr 11 11:28:43 2015 from [...]
[...]

The bastion host can be used to add a layer of security to your system. If one of your
servers is compromised, an attacker can’t jump to other servers in your system. This
reduces the potential damage an attacker can inflict. It’s important that the bastion
host does nothing but SSH, to reduce the chance of it becoming a security risk. We use
the bastion-host pattern frequently to protect our clients.

6.5 Creating a private network in the cloud: Virtual
Private Cloud (VPC)
By creating a Virtual Private Cloud (VPC), you get your own private network on AWS. Pri-
vate means you can use the address ranges 10.0.0.0/8, 172.16.0.0/12, or 192.168.0.0/16
to design a network that isn’t necessarily connected to the public internet. You can cre-
ate subnets, route tables, access control lists (ACLs), and gateways to the internet or a
VPN endpoint.

 A subnet allows you to separate concerns. Create a new subnet for your data-
bases, web servers, caching servers, or application servers, or whenever you can sepa-
rate two systems. Another rule of thumb is that you should have at least two subnets:
public and private. A public subnet has a route to the internet; a private subnet
doesn’t. Your web servers should be in the public subnet, and your database resides
in the private subnet.

 For the purpose of understanding how a VPC works, you’ll create a VPC to host an
enterprise web application. You’ll re-implement the bastion host concept from the
previous section by creating a public subnet that contains only the bastion host server.
You’ll also create a private subnet for your web servers and one public subnet for your
web caches. The web caches absorb most of the traffic by responding with the latest
version of the page they have in their cache, and they redirect traffic to the private
web servers. You can’t access a web server directly over the internet—only through the
web caches.

Log in to the
bastion host.

Log in to
$Server1PublicName
from the bastion host.

Cleaning up
Don’t forget to delete your stack after you finish this section to clean up all used re-
sources. Otherwise you’ll likely be charged for the resources you use.

Licensed to Thomas Snead <n.ordickan@gmail.com>

174 CHAPTER 6 Securing your system: IAM, security groups, and VPC

 The VPC uses the address space 10.0.0.0/16. To separate concerns, you’ll create
two public subnets and one private subnet in the VPC:

■ 10.0.1.0/24 public SSH bastion host subnet
■ 10.0.2.0/24 public Varnish web cache subnet
■ 10.0.3.0/24 private Apache web server subnet

Network ACLs restrict traffic that goes from one subnet to another like a firewall. The
SSH bastion host from section 6.4 can be implemented with these ACLs:

■ SSH from 0.0.0.0/0 to 10.0.1.0/24 is allowed.
■ SSH from 10.0.1.0/24 to 10.0.2.0/24 is allowed.
■ SSH from 10.0.1.0/24 to 10.0.3.0/24 is allowed.

To allow traffic to the Varnish web cache and the HTTP servers, additional ACLs are
required:

■ HTTP from 0.0.0.0/0 to 10.0.2.0/24 is allowed.
■ HTTP from 10.0.2.0/24 to 10.0.3.0/24 is allowed.

Figure 6.7 shows the architecture of the VPC.

What does 10.0.0.0/16 mean?
10.0.0.0/16 represents all IP addresses between 10.0.0.0 and 10.0.255.255. It’s
using CIDR notation (explained earlier in the chapter).

10.0.0.0/16

SSH

SSH
SSH

HTTP

HTTP

HTTP

HTTP

SSH

SSH

10.0.1.0/24

SSH bastion

Route tableACL

10.0.2.0/24

Varnish

Route tableACL

10.0.3.0/24

Apache

Route tableACL

Internet
gateway
(IGW)

Router

Internet

Figure 6.7 VPC
with three subnets
to secure a web ap-
plication

Licensed to Thomas Snead <n.ordickan@gmail.com>

175Creating a private network in the cloud: Virtual Private Cloud (VPC)

You’ll use CloudFormation to describe the VPC with its subnets. The template is split
into smaller parts to make it easier to read in the book. As usual, you’ll find the code
in the book’s code repository on GitHub: https://github.com/AWSinAction/code.
The template is located at /chapter6/vpc.json.

6.5.1 Creating the VPC and an internet gateway (IGW)

The first resources in the template are the VPC and the internet gateway (IGW). The
IGW will translate the public IP addresses of your virtual servers to their private IP
addresses using network address translation (NAT). All public IP addresses used in the
VPC are controlled by this IGW:

"VPC": {
"Type": "AWS::EC2::VPC",
"Properties": {
"CidrBlock": "10.0.0.0/16",
"EnableDnsHostnames": "true"

}
},
"InternetGateway": {

"Type": "AWS::EC2::InternetGateway",
"Properties": {
 [...]
}

},
"VPCGatewayAttachment": {

"Type": "AWS::EC2::VPCGatewayAttachment",
"Properties": {
"VpcId": {"Ref": "VPC"},
"InternetGatewayId": {"Ref": "InternetGateway"}

}
},

Next you’ll define the subnet for the bastion host.

6.5.2 Defining the public bastion host subnet

The bastion host subnet will only run a single machine to secure SSH access:

"SubnetPublicSSHBastion": {
"Type": "AWS::EC2::Subnet",
"Properties": {
"AvailabilityZone": "us-east-1a",
"CidrBlock": "10.0.1.0/24",
"VpcId": {"Ref": "VPC"}

}
},
"RouteTablePublicSSHBastion": {

"Type": "AWS::EC2::RouteTable",
"Properties": {
"VpcId": {"Ref": "VPC"}

}
},
"RouteTableAssociationPublicSSHBastion": {

Address space

Accesses the internet and NAT
for public IP addresses via IGW

Attaches the
gateway to the VPC

You’ll learn about
this in chapter 11.

Address
space

Route table

Associates the
route table with
the subnet

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/AWSinAction/code

176 CHAPTER 6 Securing your system: IAM, security groups, and VPC

"Type": "AWS::EC2::SubnetRouteTableAssociation",
"Properties": {
"SubnetId": {"Ref": "SubnetPublicSSHBastion"},
"RouteTableId": {"Ref": "RouteTablePublicSSHBastion"}

}
},
"RoutePublicSSHBastionToInternet": {

"Type": "AWS::EC2::Route",
"Properties": {
"RouteTableId": {"Ref": "RouteTablePublicSSHBastion"},
"DestinationCidrBlock": "0.0.0.0/0",
"GatewayId": {"Ref": "InternetGateway"}

},
"DependsOn": "VPCGatewayAttachment"

},
"NetworkAclPublicSSHBastion": {

"Type": "AWS::EC2::NetworkAcl",
"Properties": {
"VpcId": {"Ref": "VPC"}

}
},
"SubnetNetworkAclAssociationPublicSSHBastion": {

"Type": "AWS::EC2::SubnetNetworkAclAssociation",
"Properties": {
"SubnetId": {"Ref": "SubnetPublicSSHBastion"},
"NetworkAclId": {"Ref": "NetworkAclPublicSSHBastion"}

}
},

The definition of the ACL follows:

"NetworkAclEntryInPublicSSHBastionSSH": {
"Type": "AWS::EC2::NetworkAclEntry",
"Properties": {
"NetworkAclId": {"Ref": "NetworkAclPublicSSHBastion"},
"RuleNumber": "100",
"Protocol": "6",
"PortRange": {

"From": "22",
"To": "22"

},
"RuleAction": "allow",
"Egress": "false",
"CidrBlock": "0.0.0.0/0"

}
},
"NetworkAclEntryInPublicSSHBastionEphemeralPorts": {

"Type": "AWS::EC2::NetworkAclEntry",
"Properties": {
"NetworkAclId": {"Ref": "NetworkAclPublicSSHBastion"},
"RuleNumber": "200",
"Protocol": "6",
"PortRange": {

"From": "1024",
"To": "65535"

Routes everything
(0.0.0.0/0) to the IGW

ACL

Associates the ACL
with the subnet

Allows inbound SSH
from everywhere

Inbound

Ephemeral ports used
for short-lived TCP/IP
connections

Licensed to Thomas Snead <n.ordickan@gmail.com>

177Creating a private network in the cloud: Virtual Private Cloud (VPC)

},
"RuleAction": "allow",
"Egress": "false",
"CidrBlock": "10.0.0.0/16"

}
},
"NetworkAclEntryOutPublicSSHBastionSSH": {

"Type": "AWS::EC2::NetworkAclEntry",
"Properties": {
"NetworkAclId": {"Ref": "NetworkAclPublicSSHBastion"},
"RuleNumber": "100",
"Protocol": "6",
"PortRange": {

"From": "22",
"To": "22"

},
"RuleAction": "allow",
"Egress": "true",
"CidrBlock": "10.0.0.0/16"

}
},
"NetworkAclEntryOutPublicSSHBastionEphemeralPorts": {

"Type": "AWS::EC2::NetworkAclEntry",
"Properties": {
"NetworkAclId": {"Ref": "NetworkAclPublicSSHBastion"},
"RuleNumber": "200",
"Protocol": "6",
"PortRange": {

"From": "1024",
"To": "65535"

},
"RuleAction": "allow",
"Egress": "true",
"CidrBlock": "0.0.0.0/0"

}
},

There’s an important difference between security groups and ACLs: security groups
are stateful, but ACLs aren’t. If you allow an inbound port on a security group, the out-
bound response that belongs to a request on the inbound port is allowed as well. A
security group rule will work as you expect it to. If you open inbound port 22 on a
security group, you can connect via SSH.

 That’s not true for ACLs. If you open inbound port 22 on an ACL for your subnet,
you can’t connect via SSH. In addition, you need to allow outbound ephemeral ports
because sshd (SSH daemon) accepts connections on port 22 but uses an ephemeral
port for communication with the client. Ephemeral ports are selected from the range
starting at 1024 and ending at 65535.

 If you want to make a SSH connection from within your subnet, you have to open
outbound port 22 and inbound ephemeral ports as well. If you aren’t familiar with all
this, you should go with security groups and allow everything on the ACL level.

Allows outbound
SSH to VPC

Outbound

Ephemeral
ports

Licensed to Thomas Snead <n.ordickan@gmail.com>

178 CHAPTER 6 Securing your system: IAM, security groups, and VPC

6.5.3 Adding the private Apache web server subnet

The subnet for the Varnish web cache is similar to the bastion host subnet because it’s
also a public subnet; that’s why we’ll skip it. You’ll continue with the private subnet for
the Apache web server:

"SubnetPrivateApache": {
"Type": "AWS::EC2::Subnet",
"Properties": {
"AvailabilityZone": "us-east-1a",
"CidrBlock": "10.0.3.0/24",
"VpcId": {"Ref": "VPC"}

}
},
"RouteTablePrivateApache": {

"Type": "AWS::EC2::RouteTable",
"Properties": {
"VpcId": {"Ref": "VPC"}

}
},
"RouteTableAssociationPrivateApache": {

"Type": "AWS::EC2::SubnetRouteTableAssociation",
"Properties": {
"SubnetId": {"Ref": "SubnetPrivateApache"},
"RouteTableId": {"Ref": "RouteTablePrivateApache"}

}
},

The only difference between a public and a private subnet is that a private subnet
doesn’t have a route to the IGW. Traffic between subnets of a VPC is always routed by
default. You can’t remove the routes between the subnets. If you want to prevent traf-
fic between subnets in a VPC, you need to use ACLs attached to the subnets.

6.5.4 Launching servers in the subnets

Your subnets are ready and you can continue with the EC2 instances. First you describe
the bastion host:

"BastionHost": {
"Type": "AWS::EC2::Instance",
"Properties": {
"ImageId": "ami-1ecae776",
"InstanceType": "t2.micro",
"KeyName": {"Ref": "KeyName"},
"NetworkInterfaces": [{

"AssociatePublicIpAddress": "true",
"DeleteOnTermination": "true",
"SubnetId": {"Ref": "SubnetPublicSSHBastion"},
"DeviceIndex": "0",
"GroupSet": [{"Ref": "SecurityGroup"}]

}]
}

},

Address
space

No route to
the IGW

Assigns a public
IP address

Launches in
the bastion
host subnet

This security group
allows everything.

Licensed to Thomas Snead <n.ordickan@gmail.com>

179Creating a private network in the cloud: Virtual Private Cloud (VPC)

The Varnish server looks similar. But again, the private Apache web server differs in
configuration:

"ApacheServer": {
"Type": "AWS::EC2::Instance",
"Properties": {
"ImageId": "ami-1ecae776",
"InstanceType": "t2.micro",
"KeyName": {"Ref": "KeyName"},
"NetworkInterfaces": [{

"AssociatePublicIpAddress": "false",
"DeleteOnTermination": "true",
"SubnetId": {"Ref": "SubnetPrivateApache"},
"DeviceIndex": "0",
"GroupSet": [{"Ref": "SecurityGroup"}]

}]
"UserData": {"Fn::Base64": {"Fn::Join": ["", [

"#!/bin/bash -ex\n",
"yum -y install httpd24-2.4.12\n",
"service httpd start\n"

]]}}
}

}

You’re now in serious trouble: installing Apache won’t work because your private sub-
net has no route to the internet.

6.5.5 Accessing the internet from private subnets via a NAT server

Public subnets have a route to the internet gateway. You can use a similar mechanism
to provide internet access for private subnets without having a direct route to the
internet: use a NAT server in a public subnet, and create a route from your private sub-
net to the NAT server. A NAT server is a virtual server that handles network address
translation. Internet traffic from your private subnet will access the internet from the
public IP address of the NAT server.

WARNING Traffic from your EC2 instances to other AWS services that are
accessed via the API (Object Store S3, NoSQL database DynamoDB) will go
through the NAT instance. This can quickly become a major bottleneck. If
your EC2 instances need to communicate heavily with the internet, the NAT
instance is most likely not a good idea. Consider launching these instances in
a public subnet instead.

To keep concerns separated, you’ll create a new subnet for the NAT server. AWS pro-
vides an image (AMI) for a virtual server that has the configuration done for you:

"SubnetPublicNAT": {
"Type": "AWS::EC2::Subnet",
"Properties": {
"AvailabilityZone": "us-east-1a",
"CidrBlock": "10.0.0.0/24",
"VpcId": {"Ref": "VPC"}

No public IP
address: private

Launches in the Apache
web server subnet

Installs Apache
from the internet

10.0.0.0/24 is
the NAT subnet.

Licensed to Thomas Snead <n.ordickan@gmail.com>

180 CHAPTER 6 Securing your system: IAM, security groups, and VPC

}
},
"RouteTablePublicNAT": {

"Type": "AWS::EC2::RouteTable",
"Properties": {
"VpcId": {"Ref": "VPC"}

}
},
[...]
"RoutePublicNATToInternet": {

"Type": "AWS::EC2::Route",
"Properties": {
"RouteTableId": {"Ref": "RouteTablePublicNAT"},
"DestinationCidrBlock": "0.0.0.0/0",
"GatewayId": {"Ref": "InternetGateway"}

},
"DependsOn": "VPCGatewayAttachment"

},
[...]
"NatServer": {

"Type": "AWS::EC2::Instance",
"Properties": {
"ImageId": "ami-303b1458",
"InstanceType": "t2.micro",
"KeyName": {"Ref": "KeyName"},
"NetworkInterfaces": [{

"AssociatePublicIpAddress": "true",
"DeleteOnTermination": "true",
"SubnetId": {"Ref": "SubnetPublicNAT"},
"DeviceIndex": "0",
"GroupSet": [{"Ref": "SecurityGroup"}]

}],
"SourceDestCheck": "false"

}
},
[...]
"RoutePrivateApacheToInternet": {

"Type": "AWS::EC2::Route",
"Properties": {
"RouteTableId": {"Ref": "RouteTablePrivateApache"},
"DestinationCidrBlock": "0.0.0.0/0",
"InstanceId": {"Ref": "NatServer"}

}
},

Now you’re ready to create the CloudFormation stack with the template located at
https://s3.amazonaws.com/awsinaction/chapter6/vpc.json. Once you’ve done so,
copy the VarnishServerPublicName output and open it in your browser. You’ll see an
Apache test page that was cached by Varnish.

The NAT subnet is
public with a route
to the internet.

AWS provides a
configured image
for NAT instances.

Public IP address that will be
the source of all traffic from
private subnets to the internet

By default, an instance must be the source or
destination of any traffic it sends or receives.
Disable it for NAT instances.

Route from the Apache
subnet to the NAT instance

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://s3.amazonaws.com/awsinaction/chapter6/vpc.json

181Summary

6.6 Summary
■ AWS is a shared-responsibility environment in which security can be achieved

only if you and AWS work together. You’re responsible for securely configuring
your AWS resources and your software running on EC2 instances while AWS pro-
tects buildings and host systems.

■ Keeping your software up to date is key and can be automated.
■ The Identity and Access Management (IAM) service provides everything

needed for authentication and authorization with the AWS API. Every request
you make to the AWS API goes through IAM to check whether the request is
allowed. IAM controls who can do what in your AWS account. Grant least permis-
sions to your users and roles to protect your AWS account.

■ Traffic to or from AWS resources like EC2 instances can be filtered based on pro-
tocol, port, and source or destination with the help of security groups.

■ A bastion host is a well-defined, single point of access to your system. It can be
used to secure SSH access to your servers. Implementation can be done with
security groups or ACLs.

■ A VPC is a private network in AWS where you have full control. With VPCs, you
can control routing, subnets, ACLs, and gateways to the internet or your com-
pany network via VPN.

■ You should separate concerns in your network to reduce potential damage if,
for example, one of your subnets is hacked. Keep every system in a private sub-
net that doesn’t need to be accessed from the public internet, to reduce your
attackable surface.

Cleaning up
Don’t forget to delete your stack after finishing this section, to clean up all used
resources. Otherwise you’ll likely be charged for the resources you use.

Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Part 3

Storing data in the cloud

Suppose there’s a guy named Singleton in your office who knows all about the
file server. If Singleton is out of the office, no one else can maintain the file server.
When Singleton goes on vacation, the file server crashes—no one knows where
the backup is located, and the boss needs the document now or the company will
lose a lot of money. If Singleton had stored his knowledge in a database, cowork-
ers could look up the information. But because the knowledge and Singleton are
tidily coupled, the data is unavailable.

 Now imagine a server with important files located on a hard disk. As long as the
server is up and running, everything is fine. But things fail all the time—and so
will the server, eventually. If a user uploads a document on your website, where is
it stored? Chances are high that the document is persisted to hard disk on the
server. Suppose the document is uploaded to your website but persisted as an
object in an independent object store: if the server fails, the document is still avail-
able. If you need two servers to handle the load on your website, they both have
access to that document because it isn’t coupled to a single server. If you separate
your state from your server, your system can become fault-tolerant and elastic.
Highly specialized solutions like object stores and databases can persist your state.

 Chapter 7 introduces S3, a service offering object storage. You’ll learn how to
integrate the object store into your applications to implement a stateless server.
Chapter 8 discusses block-level storage for virtual servers offered by AWS and how
to operate legacy software on block-level storage. Chapter 9 introduces RDS, a ser-
vice offering you managed relational database systems like PostgreSQL, MySQL,
Oracle, and Microsoft SQL server. If your applications use such a relational database
system, this is an easy way to implement a stateless server architecture. Chapter 10
introduces DynamoDB, a service that offers a NoSQL database; you can integrate
this NoSQL database into your applications to implement a stateless server.

Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

185

Storing your objects:
 S3 and Glacier

You can store images, videos, documents, and executables with the help of an
object store. You’ll learn about the concept of an object store in this chapter. In
addition, we’ll introduce a managed service on AWS offering an object store: Ama-
zon S3. You’ll also learn about Amazon Glacier, a backup and archiving store.

This chapter covers
■ Transferring files to S3 with the help of the terminal
■ Integrating S3 into your applications with SDKs
■ Hosting a static website with S3
■ Diving into the internals of the S3 object store

Not all examples are covered by the Free Tier
The examples in this chapter are not all covered by the Free Tier. A special warning
message appears when an example incurs costs. As long as you don’t run all other
examples longer than a few days, you won’t pay anything for them. Keep in mind
that this applies only if you created a fresh AWS account for this book and nothing
else is going on in your AWS account. Try to complete the examples of the chapter
within a few days; you’ll clean up your account at the end of each example.

Licensed to Thomas Snead <n.ordickan@gmail.com>

186 CHAPTER 7 Storing your objects: S3 and Glacier

7.1 Concept of an object store
Back in the old days, data was managed as files in a hierarchy consisting of folders and
files. The file was the representation of the data. In an object store, data is stored as
objects. Each object consists of a globally unique identifier, some metadata, and the
data itself, as figure 7.1 illustrates. An object’s globally unique identifier is also known as
its key; addressing the object from different devices and machines in a distributed sys-
tem is possible with the globally unique identifier.

The separation of metadata and data allows clients to work only with the metadata for
managing and querying data. You only have to load the data if you really need it. Meta-
data is also used to store access-control information and for other management tasks.

7.2 Amazon S3
The Amazon S3 object store is one of the oldest services on AWS. Amazon S3 is an
acronym for Amazon Simple Storage Service. It’s a typical web service that lets you
store and retrieve data via an API reachable over HTTPS.

 The service offers unlimited storage space and stores your data in a highly avail-
able and durable way. You can store any kind of data, such as images, documents, and
binaries, as long as the size of a single object doesn’t exceed 5 TB. You have to pay for
every GB you store in S3, and you also incur minor costs for every request and trans-
ferred data. As figure 7.2 shows, you can access S3 via HTTPS using the Management
Console, the command-line interface (CLI), SDKs, and third-party tools, to upload and
download objects.

Object

Globally unique key

Metadata
Access control

File type
Tags
Size

Creation date

Data
HTML and CSS
Image and video

JSON
Executable

BLOB

Object

/awsinaction/img/cloud.png

Metadata
Public read
Image/png

Cloud,nature
20 KB

2015-01-01

Data

Figure 7.1 Objects stored in an object store have three parts: a unique ID, metadata
describing the content, and the content itself (such as an image).

Upload/download
an object

User Amazon S3

Internet

Figure 7.2 Uploading and downloading an object to S3 via HTTPS

Licensed to Thomas Snead <n.ordickan@gmail.com>

187Backing up your data

S3 uses buckets to group objects. A bucket is a container for objects. You can create up
to 100 buckets, each of which has a globally unique name. By unique we really mean
unique—you have to choose a bucket name that isn’t used by any other AWS customer
in any other region, so we advise you to prefix the buckets with your domain name
(such as com.mydomain.*) or your company name. Figure 7.3 shows the concept.

 Typical use cases are as follows:

■ Backing up and restoring files with S3 and the help of the AWS CLI
■ Archiving objects with Amazon Glacier to save money compared to Amazon S3
■ Integrating Amazon S3 into applications with the help of the AWS SDKs to store

and fetch objects such as images
■ Hosting static web content that can be viewed by anyone with the help of S3

7.3 Backing up your data
Critical data needs to be backed up to avoid loss. Depending on your requirements,
you may need to back up data on multiple devices and/or at an offsite location. You
can store any data in the form of objects to S3, so you can use S3 as a backup space.

 In this section, you’ll learn how to use the AWS CLI to upload and download data to
and from S3. This approach isn’t limited to the use case of an offsite backup; you can
use it in many other scenarios as well.

 First you need to create a bucket for your data on S3. As we mentioned earlier, the
name of the bucket must be unique among all other S3 buckets, even those in other
regions and those of other AWS customers. Run the following command in the termi-
nal, replacing $YourName with your name:

$ aws s3 mb s3://awsinaction-$YourName

Object

/awsinaction/img/cloud.png

Bucket

Name: awsinaction

Metadata
Public read
Image/png

Cloud,nature
20 KB

2015-01-01

Data

Figure 7.3 S3 uses buckets with a globally unique name to group objects.

Licensed to Thomas Snead <n.ordickan@gmail.com>

188 CHAPTER 7 Storing your objects: S3 and Glacier

Your command should look similar to this one:

$ aws s3 mb s3://awsinaction-awittig

If your bucket name conflicts with an existing bucket, you’ll get an error like this one:

A client error (BucketAlreadyExists) [...]

In this case, you’ll need to use a different $YourName.
 Everything is ready to upload your data. Choose a folder you’d like to back up, such

as your Desktop folder. Try to choose a folder with a total size of less than 1 GB with less
than 1000 files in it, to avoid long waiting times and exceeding the Free Tier. The fol-
lowing command uploads the data from your local folder to your S3 bucket. Replace
$Path with the path to your folder and $YourName with your name. sync compares your
folder with the /backup folder in your S3 bucket and uploads only new or changed files:

$ aws s3 sync $Path s3://awsinaction-$YourName/backup

Your command should look similar to this one:

$ aws s3 sync /Users/andreas/Desktop s3://awsinaction-awittig/backup

Depending on the size of your folder and the speed of your internet connection, the
upload can take some time.

 After uploading your folder to your S3 bucket to back it up, you can test the
restore process. Execute the following command in your terminal, replacing $Path
with a folder you’d like to use for the restore (don’t use the folder you backed up) and
$YourName with your name. Your Downloads folder would be a good place to test the
restore process:

$ aws s3 cp --recursive s3://awsinaction-$YourName/backup $Path

Your command should look similar to this one:

$ aws s3 cp --recursive s3://awsinaction-awittig/backup/ \
/Users/andreas/Downloads/restore

Again, depending on the size of your folder and the speed of your internet connec-
tion, the download may take a while.

Versioning for objects
By default, S3 versioning is disabled for every bucket. Suppose you use the following
steps to upload two objects:

1 Add an object with key A and data 1.
2 Add an object with key A and data 2.

If you download, also known as get, the object with key A, you’ll download data 2. The
old data 1 doesn’t exist anymore.

Licensed to Thomas Snead <n.ordickan@gmail.com>

189Backing up your data

You no longer need to worry about losing data. S3 is designed for 99.999999999%
durability of objects over a year.

You’re finished—you’ve uploaded and downloaded files to S3 with the help of the CLI.

(continued)
You can change this behavior by turning on versioning for a bucket. The following com-
mand activates versioning for your bucket. Replace $YourName with your name:

$ aws s3api put-bucket-versioning --bucket awsinaction-$YourName \
--versioning-configuration Status=Enabled

If you repeat the previous steps, the first version of object A consisting of data 1 will
be accessible even after you add an object with key A and data 2. The following com-
mand retrieves all objects and versions:

$ aws s3api list-object-versions --bucket awsinaction-$YourName

You can now download all versions of an object.

Versioning can be useful in backup and archiving scenarios. Keep in mind that the
size of the bucket you’ll have to pay for will grow with every new version.

Cleaning up
Execute the following command to remove the S3 bucket containing all the objects
from your backup. You’ll have to replace $YourName with your name to select the right
bucket. rb removes the bucket; the force option triggers a delete for every object in
the bucket before the bucket itself is deleted:

$ aws s3 rb --force s3://awsinaction-$YourName

Your command should look similar to this one:

$ aws s3 rb --force s3://awsinaction-awittig

Removing bucket causes BucketNotEmpty error
If you turn on versioning for your bucket, removing the bucket will cause a Bucket-
NotEmpty error. Use the Management Console to delete the bucket in this case:

1 Open the Management Console with your browser.
2 Go to the S3 service with the help of the main navigation.
3 Select your bucket.
4 Execute the Delete Bucket action from the Actions submenu.

Licensed to Thomas Snead <n.ordickan@gmail.com>

190 CHAPTER 7 Storing your objects: S3 and Glacier

7.4 Archiving objects to optimize costs
You used S3 to back up your data in the previous section. If you want to reduce the
cost of backup storage, you should consider another AWS service: Amazon Glacier. The
price of storing data with Glacier is about a third of what you pay to store data with S3.
But what’s the catch? Table 7.1 shows the differences between S3 and Glacier.

You can use Glacier as a standalone service accessible via HTTPS or use the integration
into S3, as you will in the following example.

7.4.1 Creating an S3 bucket for use with Glacier

In this section, you’ll learn how to use the S3 integration of Glacier to reduce the cost
of storing data. This can be helpful if you’re doing an offsite backup, as in the previ-
ous section. First you need to create a new S3 bucket:

1 Open the Management Console at https://console.aws.amazon.com.
2 Move to the S3 service with the help of the main menu.
3 Click the Create Bucket button.
4 Type in a unique name for your bucket and choose US Standard as the bucket

region, as shown in figure 7.4.
5 Click the Create button.

Table 7.1 Differences between storing data with S3 and Glacier

S3 Glacier

Cost per GB $0.03 USD $0.01 USD

Accessibility Immediate upon request 3–5 hours after request

Durability Designed annual durability
of 99.999999999%

Designed annual durability
of 99.999999999%

Type in a unique
name for your
bucket.

Select US
Standard
region.

Figure 7.4 Creating an S3 bucket via the Management Console

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://console.aws.amazon.com

191Archiving objects to optimize costs

7.4.2 Adding a lifecycle rule to a bucket

You can add one or multiple lifecycle rules to a bucket to manage the life of your
objects. A lifecycle rule can be used to archive or delete objects after a given number of
days. Archiving an object with the help of a lifecycle rule moves it from S3 to Glacier.

 To add a lifecycle rule that moves objects to Glacier, follow these steps:

1 Open the S3 service with the Management Console.
2 Open your bucket’s properties by clicking the magnifier next to the bucket’s

line, as shown in figure 7.5.
3 The properties are shown at right. Click the Lifecycle section.
4 Click the Add Rule button.

WARNING Using Glacier is not covered by the Free Tier. The example will
incur a very low cost. Go to https://aws.amazon.com/glacier/pricing if you
want to find out the current pricing.

A wizard starts that will guide you through the process of creating a new lifecycle rule
for your bucket. The first step is to choose the target for your lifecycle rule. Choose
the Whole Bucket option, as shown in figure 7.6, and click Configure Rule to proceed
with the next step.

Select the bucket
by clicking it.

Open the section
with a click.

Click to add
a lifecycle rule.

Figure 7.5 Adding a lifecycle rule to move objects to Glacier automatically

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://aws.amazon.com/glacier/pricing

192 CHAPTER 7 Storing your objects: S3 and Glacier

The next step configures the lifecycle rule. For Action on Objects, select Archive Only
to move objects from S3 to Glacier with this rule. To trigger the lifecycle rule as
quickly as possible after an object is created, choose 0 days as the time lag for the rule,
as shown in figure 7.7. Click Review to proceed with the last step of the wizard.

 One more thing: name your lifecycle rule as shown in figure 7.8, and review the
rule’s details. If everything is fine, click the Create and Activate Rule button.

Apply the rule to every
object from the bucket.

Figure 7.6 Choosing the target for the lifecycle rule

Move objects
to Glacier.

Move objects
on creation day.

Figure 7.7 Editing the rule to move objects to Glacier the same day they’re created

Licensed to Thomas Snead <n.ordickan@gmail.com>

193Archiving objects to optimize costs

7.4.3 Experimenting with Glacier and your lifecycle rule

You’ve successfully created a lifecycle rule that will automatically move all objects from
the bucket to Glacier.

NOTE It will take up to 24 hours for the lifecycle rule to move your objects to
Glacier. The restore process from Glacier to S3 will take 3 to 5 hours, so feel
free to go on reading without executing the steps from the example yourself.

You can open your bucket by clicking the bucket name. To upload files, click Upload in
the Management Console. In figure 7.9, we’ve uploaded three files to S3. By default, all
files are stored with storage class Standard, which means they’re stored in S3.

Name the rule so you
can find it again later.

Review the details, and
check that objects will
be archived after 0 days.

Figure 7.8 Naming and reviewing the lifecycle rule for an S3 bucket

Starts a wizard
to upload files

Stored in S3, waiting
to be moved to Glacier

Figure 7.9 The lifecycle rule will move objects to Glacier after a few hours.

Licensed to Thomas Snead <n.ordickan@gmail.com>

194 CHAPTER 7 Storing your objects: S3 and Glacier

The lifecycle rule will move the created objects to Glacier. But even though the cho-
sen time gap is 0 days, the move will take up to 24 hours. After your objects have
moved to Glacier, the storage class will switch to Glacier.

 You can’t directly download files stored in Glacier, but you can trigger a restore of
an object from Glacier to S3. Follow these steps to trigger a restore with the help of
the Management Console:

1 Open the S3 bucket.
2 Select the object you want to restore from Glacier to S3 by clicking it.
3 Choose Actions > Initiate Restore.
4 A dialog appears in which you choose the number of days the object will be

available via S3 after the restore from Glacier, as shown in figure 7.10.
5 Click OK to initiate the restore.

Restoring an object usually takes 3 to 5 hours. After the restore is complete, you can
download the object.

You’ve learned how to use S3 with the help of the CLI and the Management Console.
Next we’ll show you how to integrate S3 into your applications with the help of SDKs.

Number of days your data
will be available after restore

Figure 7.10 A restore from Glacier to S3 is simple but takes 3–5 hours.

Cleaning up
Delete your bucket after you finish the Glacier example. You can do this with the help
of the Management Console by following these steps:

1 Open the S3 service with the Management Console.
2 Open the properties of your bucket by clicking the magnifier symbol at the

beginning of the bucket’s line.
3 Choose Actions > Delete.
4 Click OK to confirm the deletion.

Licensed to Thomas Snead <n.ordickan@gmail.com>

195Storing objects programmatically

7.5 Storing objects programmatically
S3 is accessible over an API via HTTPS. This enables you to integrate S3 into your appli-
cations by making requests to the API programmatically. If you’re using a common
programming language like Java, JavaScript, PHP, Python, Ruby, or .NET, you can use a
primary SDK offered by AWS for free. You can execute the following operations with
the help of a SDK directly from your application:

■ Listing buckets and their objects
■ Creating, removing, updating, and deleting (CRUD) objects and buckets
■ Managing access to and the cycle of objects

You can integrate S3 into your application in the following use cases, for example:

■ Allow a user to upload a profile picture. Store the image in S3 and make it publicly
accessible. Integrate the image into your website via HTTPS.

■ Generate monthly reports (such as PDFs) and make them accessible to users. Create the
documents and upload them to S3. If users want to download documents, fetch
them from S3.

■ Share data between different applications. You can access documents from different
applications. For example, application A can write an object with the latest infor-
mation about sales, and application
B can download the document and
analyze the data.

Integrating S3 into an application is a
way to implement the concept of a state-
less server. In this section, you’ll dive into
a simple web application called Simple
S3 Gallery. The web application is built
on top of Node.js and uses the AWS SDK
for JavaScript and Node.js. You can easily
transfer what you learn from this exam-
ple to SDKs for other programming lan-
guages; the concepts are the same.
Simple S3 Gallery allows you to upload
images to S3 and shows all the images
you’ve already uploaded. Figure 7.11
shows Simple S3 Gallery in action. Let’s
set up S3 to start your own gallery.

7.5.1 Setting up an S3 bucket

To begin, you need to set up an empty bucket. Execute the following command,
replacing $YourName with your name or nickname:

$ aws s3 mb s3://awsinaction-sdk-$YourName

Figure 7.11 The Simple S3 Gallery app lets you
upload images to an S3 bucket and then download
them from the bucket for display.

Licensed to Thomas Snead <n.ordickan@gmail.com>

196 CHAPTER 7 Storing your objects: S3 and Glacier

Your bucket is ready to go. Installing the web application is the next step.

7.5.2 Installing a web application that uses S3

You can find the Simple S3 Gallery application in /chapter7/gallery/ in the book’s
code folder. Switch to that directory, and run npm install in your terminal to install
all needed dependencies.

 To start the web application, run the following command. Replace $YourName with
your name; the name of the S3 bucket is passed to the web application:

$ node server.js awsinaction-sdk-$YourName

After you start the server, you can open the gallery application. To do so, open http://
localhost:8080 with your browser. Try uploading a few images.

7.5.3 Reviewing code access: S3 with SDK

You’ve seen Simple S3 Gallery upload and show images from S3. Inspecting parts of
the code will help you to understand how you can integrate S3 into your own applica-
tions. It’s not a problem if you don’t follow all the details of the programming lan-
guage (JavaScript) and the Node.js platform; we want you to get an idea of how to use
S3 via SDKs.

UPLOADING AN IMAGE TO S3

You can upload an image to S3 with the putObject() function of the S3 service from
the SDK. Your application will connect to the S3 service and transfer the image via
HTTPS. The following listing shows how to do so.

[...]
var AWS = require("aws-sdk");
[...]
var s3 = new AWS.S3({"region": "us-east-1"});

var bucket = "[...]";

function uploadImage(image, response) {
var params = {
Body: image,
Bucket: bucket,

Listing 7.1 Uploading an image with the AWS SDK for S3

Where is the code located?
You can find all the code in the book’s code repository on GitHub: https://
github.com/AWSinAction/code. You can download a snapshot of the repository at
https://github.com/AWSinAction/code/archive/master.zip.

Inserts the
AWS SDKConfigures

the AWS
SDK

Parameters
for uploading

an image
Image content

Name of the bucket

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/AWSinAction/code
https://github.com/AWSinAction/code
https://github.com/AWSinAction/code/archive/master.zip

197Storing objects programmatically

Key: uuid.v4(),
ACL: "public-read",
ContentLength: image.byteCount

};
s3.putObject(params, function(err, data) {

if (err) {
console.error(err);
response.status(500);
response.send("Internal server error.");

} else {
response.redirect("/");

}
});

}
[...]

The AWS SDK takes care of sending all the necessary HTTPS requests to the S3 API in
the background.

LISTING ALL THE IMAGES IN THE S3 BUCKET

To display a list of images, the application needs to list all the objects in your bucket.
This can be done with the listObjects() function of the S3 service. The next listing
shows the implementation of the corresponding function in the server.js JavaScript
file, acting as a web server.

[...]
var bucket = "[...]";

function listImages(response) {
var params = {
Bucket: bucket

};
s3.listObjects(params, function(err, data) {
if (err) {

console.error(err);
response.status(500);
response.send("Internal server error.");

} else {
var stream = mu.compileAndRender("index.html",

{
Objects: data.Contents,
Bucket: bucket

}
);
stream.pipe(response);

}
});

}

Listing 7.2 Retrieving all the image locations from the S3 bucket

Generating a
unique key

for the object
Allows everybody
to read the image
from the bucket

Size of the
image in

bytes

Uploads the
image to S3

Handles errors (such as
networking problems)

Handles
success

Defines parameters
for the list-objects
operation

Calls the list-
objects operation

The resulting data
contains the objects
from the bucket list.

Licensed to Thomas Snead <n.ordickan@gmail.com>

198 CHAPTER 7 Storing your objects: S3 and Glacier

Listing the objects returns all the images from the bucket, but the list doesn’t include
the image content. During the uploading process, the access rights to the images are
set to public read. This means anyone can download the images with the bucket name
and a random key directly from S3. The following listing shows an excerpt of the
index.html template, which is rendered on request. The Objects variable contains all
the objects from the bucket.

[...]
<h2>Images</h2>
{{#Objects}}

<p>

 </p>
{{/Objects}}
[...]

You’ve now seen the three important parts of the Simple S3 Gallery integration with
S3: uploading an image, listing all images, and downloading an image.

You’ve learned how to use S3 with the help of the AWS SDK for JavaScript and Node.js.
Using the AWS SDK for other programming languages is similar.

7.6 Using S3 for static web hosting
You can host a static website with S3 and deliver static content like HTML, CSS, images
(such as PNG and JPG), audio, and videos. You can’t execute server-side scripts like
PHP or JSP, but it’s possible to deliver client-side scripts (such as JavaScript) from S3.

Listing 7.3 Template to render the data as HTML

Iterates over
all objects

Puts together
the URL to fetch

an image from
the bucket

Cleaning up
Don’t forget to clean up and delete the S3 bucket used in the example. Use the fol-
lowing command, replacing $YourName with your name:

$ aws s3 rb --force s3://awsinaction-sdk-$YourName

Increasing speed by using a CDN
Using a content-delivery network (CDN) helps reduce the load time for static web con-
tent. A CDN distributes static content like HTML, CSS, and images to servers all
around the world. If a user sends out a request for some static content, the CDN
serves that request from the nearest available server with the lowest latency.

Amazon S3 isn’t a CDN, but you can easily use S3 as the back end for the CDN ser-
vice of AWS: Amazon CloudFront. See the CloudFront documentation at http://
mng.bz/Kctu if you want to set this up; we won’t cover it in this book.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://mng.bz/Kctu
http://mng.bz/Kctu

199Using S3 for static web hosting

In addition, S3 offers the following features for hosting a static website:

■ Define a custom index document and error documents.
■ Define redirects for all or specific requests.
■ Set up a custom domain for S3 bucket.

7.6.1 Creating a bucket and uploading a static website

First you need to create a new S3 bucket. To do so, open your terminal and execute
the following command. Replace $BucketName with your own bucket name. As we’ve
mentioned, the bucket name has to be globally unique, so it’s a good idea to use your
domain name as the bucket name (for example, static.yourdomain.com). If you want
to redirect your domain name to S3, it’s even mandatory that you use your entire
domain name as the bucket name:

$ aws s3 mb s3://$BucketName

The bucket is empty; you’ll place a HTML document in it next. We’ve prepared a
placeholder HTML file. Download it to your local machine from the following URL:

https://raw.githubusercontent.com/AWSinAction/

➥ code/master/chapter7/helloworld.html

You can now upload the file to S3. Execute the following command to do so, replacing
$PathToPlacerholder with the path to the HTML file you downloaded in the previous
step and $BucketName with the name of your bucket:

$ aws s3 cp $PathToPlaceholder/helloworld.html \
s3://$BucketName/helloworld.html

You’ve now created a bucket and uploaded an HTML document called helloworld
.html. You need to configure the bucket next.

7.6.2 Configuring a bucket for static web hosting

By default, only you, the owner, can access files from your S3 bucket. You want to use
S3 to deliver your static website, so you’ll need to allow everyone to view or download
the documents included in your bucket. A bucket policy will help you control access to
bucket objects globally. You already know about IAM policies from chapter 6: an IAM
policy is defined in JSON and contains one or more statements, and a statement can
either allow or deny specific actions on specific resources. A bucket policy is similar to
an IAM policy.

 Download our bucket policy from the following URL:

https://raw.githubusercontent.com/AWSinAction/code/

➥ master/chapter7/bucketpolicy.json

Licensed to Thomas Snead <n.ordickan@gmail.com>

200 CHAPTER 7 Storing your objects: S3 and Glacier

You need to edit the bucketpolicy.json file next. The following listing explains the pol-
icy. Open the file with the editor of your choice, and replace $BucketName with the
name of your bucket.

{
"Version":"2012-10-17",
"Statement":[
{

"Sid":"AddPerm",
"Effect":"Allow",
"Principal": "*",
"Action":["s3:GetObject"],
"Resource":["arn:aws:s3:::$BucketName/*"]

}
]

}

You can add the bucket policy to your bucket with the following command. Replace
$BucketName with the name of your bucket and $PathToPolicy with the path to the
bucketpolicy.json file:

$ aws s3api put-bucket-policy --bucket $BucketName \
--policy file://$PathToPolicy/bucketpolicy.json

Every object in the bucket can now be downloaded by anyone. You need to enable and
configure the static web-hosting feature of S3 next. To do so, execute the following
command, replacing $BucketName with the name of your bucket:

$ aws s3 website s3://$BucketName --index-document helloworld.html

Your bucket is now configured to deliver a static website. The HTML document
helloworld.html is used as index page. You’ll learn how to access your website next.

7.6.3 Accessing a website hosted on S3

You can now access your static website with a browser. To do so, you need to choose the
right endpoint. The endpoints for S3 static web hosting depend on your bucket’s region:

$BucketName.s3-website-$Region.amazonaws.com

Your bucket was created in the default region us-east-1, so enter $BucketName to put
together the endpoint for your bucket, and replace $Region with us-east-1:

$BucketName.s3-website-us-east-1.amazonaws.com

Open this URL with your browser, and you should be welcomed by a Hello World
website.

Listing 7.4 Bucket policy allowing read-only access to every object in a bucket

Allows
access …

… for anyone …

… to download
objects …

… from your bucket

Licensed to Thomas Snead <n.ordickan@gmail.com>

201Internals of the object store

7.7 Internals of the object store
It’s valuable to know about some internals of the S3 object store when using the ser-
vice via the CLI or integrating it into your applications. A big difference between S3
and many other approaches to object stores is the fact that they’re eventually consistent.
If you don’t consider this, you’ll observe strange behavior if you try to read objects
immediately after you update them. Another challenge is creating object keys that
offer maximum I/O performance on S3. You’ll learn more about both topics next.

7.7.1 Ensuring data consistency

If you’re creating, updating, or deleting an object on S3, this operation is atomic.
This means if you’re reading an object after a create, an update, or a delete, you’ll
never get corrupted or partial data. But it’s possible that a read will return the old
data for a while.

 S3 provides eventual consistency. If you upload a new version of an existing object to
S3 and your request is successful, your data is safely stored. But downloading the
updated object immediately can return the old version, as shown in figure 7.12. If you
retry downloading the object, after a while the new version will be available.

Linking a custom domain to an S3 bucket
If you want to avoid hosting static content under a domain like awsinaction.s3-web-
site-us-east-1.amazonaws.com, you can link a custom domain to an S3 bucket. All
you have to do is to add a CNAME record for your domain, pointing to the bucket’s
S3 endpoint.

The CNAME record will only work if you comply with the following requirements:

■ Your bucket name must match the CNAME record name. For example, if you want
to create a CNAME for static.yourdomain.com, your bucket name must be
static.yourdomain.com as well.

■ CNAME records won’t work for the primary domain name. You need to use a sub-
domain for CNAMEs like static or www, for example. If you want to link a primary
domain name to an S3 bucket, you need to use the Route 53 DNS service from
AWS.

Cleaning up
Don’t forget to clean up your bucket after you finish the example. To do so, execute
the following command, replacing $BucketName with the name of your bucket:

$ aws s3 rb --force s3://$BucketName

Licensed to Thomas Snead <n.ordickan@gmail.com>

202 CHAPTER 7 Storing your objects: S3 and Glacier

Read requests after uploading a new object will be consistent if you use the
s3-external-1.amazonaws.com endpoint to access your S3 bucket in US Standard; the
same is true for buckets in regions other than US Standard. But read requests after
an update or delete will be eventually consistent.

7.7.2 Choosing the right keys

Naming variables or files is one of the most difficult tasks in IT. This is especially true for
choosing the right keys for objects you want to store in S3. In S3, keys are stored in alpha-
betical order in an index. The key name determines which partition the key is stored in.
If your keys begin with the same characters, the maximum I/O performance of your S3
bucket will be limited. Instead, you should choose keys for your objects that begin with
different characters. As figure 7.13 shows, this will give you maximum I/O performance.

Upload new version
of existing object

Still downloading
old version

DownloadDownload

Wait and
try again

Figure 7.12 Eventual consistency: if you update an object and try to read it, the object
may contain the old version. After some time passes, the latest version is available.

image1.png

a17c3-image1.png

ff211-image2.png

l10e2-image3.png

rd717-image4.png

Limited I/O performance

Maximum I/O performance

image2.png

image3.png

image4.png

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Keys starting with
different characters

Keys starting with
the same characters

Figure 7.13 To improve I/O performance with S3, don’t use keys that start with the same characters.

Licensed to Thomas Snead <n.ordickan@gmail.com>

203Summary

Using a slash (/) in the key name acts like creating a folder for your object. If you cre-
ate an object with the key folder/object.png, the folder will become visible as folder
if you’re browsing your bucket with a GUI like the Management Console, for example.
But technically, the key of the object still is folder/object.png.

 Suppose you need to store images that were uploaded by different users. You come
up with the following naming schema for your object keys:

$ImageId.png

$ImageId is an ascending numerical ID. A list of your objects might look like this:

/image1.png
/image2.png
/image3.png
/image4.png

The object keys are in alphabetical order, and your maximum throughput with S3
won’t be optimal. You can fix this by adding a hash prefix to each object. For example,
you can use the MD5 hash of the original key name and prepend it to the key:

/a17c3-image1.png
/ff211-image2.png
/l10e2-image3.png
/rd717-image4.png

This will help distribute your keys across partitions and increase the I/O performance
of S3. Knowing about the internals of S3 helps you to optimize your usage.

7.8 Summary
■ An object consists of a unique identifier, metadata to describe and manage the

object, and the content itself. You can save images, documents, executables, or
any other content as an object in an object store.

■ Amazon S3 is an object store accessible only via HTTPS. You can upload, man-
age, and download objects with the CLI, SDKs, or the Management Console.

■ Integrating S3 into your applications will help you implement the concept of a
stateless server because you don’t have to store objects locally on the server.

■ You can define a lifecycle for your objects that will move the objects from Ama-
zon S3 to Amazon Glacier, a special service to archive data that you don’t need
to access frequently. Doing so reduces your cost for storing data.

■ S3 is an eventually consistent object store. You have to consider this if you inte-
grate it into your applications and processes to avoid unpleasant surprises.

Licensed to Thomas Snead <n.ordickan@gmail.com>

204

Storing your
 data on hard drives:

 EBS and instance store

Block-level storage with a disk file system (FAT32, NTFS, ext3, ext4, XFS, and so on)
can be used to store files as you do on a personal computer. A block is a sequence
of bytes and the smallest addressable unit. The OS is the intermediary between the
application that wants to access files and the underlying file system and block-level
storage. The disk file system manages where (at what block address) your files are
persisted on the underlying block-level storage. You can use block-level storage only
in combination with an EC2 instance where the OS runs.

This chapter covers
■ Attaching network storage to your EC2 instance
■ Using the instance store of your EC2 instance
■ Backing up your block-level storage
■ Testing and tweaking the performance of your block-

level storage
■ Instance storage versus network-attached storage

Licensed to Thomas Snead <n.ordickan@gmail.com>

205Network-attached storage

 The OS provides access to block-level storage via open, write, and read system calls.
The simplified flow of a read request goes like this:

1 An application wants to read the file /path/to/file.txt and makes a read sys-
tem call.

2 The OS forwards the read request to the file system.
3 The file system translates /path/to/file.txt to the block on the disk where

the data is stored.

Applications like databases that read or write files by using system calls must have
access to block-level storage for persistence. You can’t tell a MySQL database to store
its files in an object store because MySQL uses system calls to access files.

AWS provides two kinds of block-level storage: network-attached storage (NAS) and
instance storage. NAS is (like iSCSI) attached to your EC2 instance via a network con-
nection, whereas instance storage is a normal hard disk that the host system provides to
your EC2 instance. NAS is the best choice for most problems because it provides 99.999%
availability of your data. Instance storage is interesting if you’re optimizing for perfor-
mance. The next three sections will introduce and compare the two block-level storage
solutions by connecting block-level storage with an EC2 instance, doing performance
tests, and exploring how to back up the data. After that, you’ll set up a shared file system
using instance storage and NAS.

8.1 Network-attached storage
Elastic Block Store (EBS) provides network-attached,
block-level storage with 99.999% availability. Figure 8.1
shows how you can use EBS volumes with EC2 instances.

 EBS volumes

■ Aren’t part of your EC2 instances; they’re
attached to your EC2 instance via a network con-
nection. If you terminate your EC2 instance, the
EBS volumes remain.

■ Can be attached to no EC2 instances or one EC2
instance at a time.

Not all examples are covered by the Free Tier
The examples in this chapter are not all covered by the Free Tier. A special warning
message appears when an example incurs costs. As long as you don’t run all other
examples longer than a few days, you won’t pay anything for them. Keep in mind that
this applies only if you created a fresh AWS account for this book and nothing else is
going on in your AWS account. Try to complete the examples of the chapter within a
few days; you’ll clean up your account at the end of each example.

EBS volumeEC2 instance

Figure 8.1 EBS volumes are in-
dependent resources but can
only be used when attached to an
EC2 instance.

Licensed to Thomas Snead <n.ordickan@gmail.com>

206 CHAPTER 8 Storing your data on hard drives: EBS and instance store

■ Can be used like normal hard disks.
■ Are comparable to RAID1: your data is saved to multiple disks in the background.

WARNING You can’t attach the same EBS volume to multiple servers!

8.1.1 Creating an EBS volume and attaching it to your server

The following example demonstrates how to create an EBS volume and attach it to an
EC2 instance with the help of CloudFormation:

"Server": {
"Type": "AWS::EC2::Instance",
"Properties": {
[...]

}
},
"Volume": {

"Type":"AWS::EC2::Volume",
"Properties": {
"AvailabilityZone": {"Fn::GetAtt": ["Server", "AvailabilityZone"]},
"Size": "5",
"VolumeType": "gp2"

}
},
"VolumeAttachment": {

"Type": "AWS::EC2::VolumeAttachment",
"Properties": {
"Device": "/dev/xvdf",
"InstanceId": {"Ref": "Server"},
"VolumeId": {"Ref": "Volume"}

}
}

An EBS volume is a standalone resource. This means your EBS volume can exist with-
out an EC2 server, but you need an EC2 server to use the EBS volume.

8.1.2 Using Elastic Block Store

To help you explore EBS, we’ve prepared a CloudFormation template located at
https://s3.amazonaws.com/awsinaction/chapter8/ebs.json. Create a stack based on
that template, and set the AttachVolume parameter to yes. Then, copy the Public-
Name output and connect via SSH.

 You can see the attached EBS volumes with the help of fdisk. Usually, EBS volumes
can be found at /dev/xvdf to /dev/xvdp. The root volume (/dev/xvda) is an excep-
tion—it’s based on the AMI you choose when you launch the EC2 instance and con-
tains everything needed to boot the instance (your OS files):

$ sudo fdisk -l
Disk /dev/xvda: 8589 MB [...]
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes

EBS volume
description

5 GB
capacity

SSD backed

Attach EBS volume
to server

Device
name

Root volume (your
OS lives here)

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://s3.amazonaws.com/awsinaction/chapter8/ebs.json

207Network-attached storage

I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: gpt

Start End Size Type Name
 1 4096 16777182 8G Linux filesyste Linux
128 2048 4095 1M BIOS boot parti BIOS Boot Partition

Disk /dev/xvdf: 5368 MB [...]
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

The first time you use a newly created EBS volume, you must create a file system. You
could also create partitions, but in this case the volume size is only 5 GB, so you proba-
bly don’t want to split it up further. It’s also best practice to not use partitions with EBS
volumes. Create volumes with the size you need; if you need two separate “partitions,”
create two volumes. In Linux, you can create a file system with the help of mkfs. The
following example creates an ext4 file system:

$ sudo mkfs -t ext4 /dev/xvdf
mke2fs 1.42.12 (29-Aug-2014)
Creating filesystem with 1310720 4k blocks and 327680 inodes
Filesystem UUID: e9c74e8b-6e10-4243-9756-047ceaf22abc
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736

Allocating group tables: done
Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: done

After the file system has been created, you can mount the device:

$ sudo mkdir /mnt/volume/
$ sudo mount /dev/xvdf /mnt/volume/

To see mounted volumes, use df -h:

$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/xvda1 7.8G 1.1G 6.6G 14% /
devtmpfs 490M 60K 490M 1% /dev
tmpfs 499M 0 499M 0% /dev/shm
/dev/xvdf 4.8G 10M 4.6G 1% /mnt/volume

EBS volumes have one big advantage: they aren’t part of the EC2 instance; they’re
independent resources. To see how an EBS volume is independent of the server, you’ll
now save a file to the volume and then unmount and detach the volume:

$ sudo touch /mnt/volume/testfile
$ sudo umount /mnt/volume/

Attached EBS volume

Root volume (your
OS lives here)

EBS volume

Creates testfile
in /mnt/volume/

Licensed to Thomas Snead <n.ordickan@gmail.com>

208 CHAPTER 8 Storing your data on hard drives: EBS and instance store

Update the CloudFormation stack, and change the AttachVolume parameter to no.
This will detach the EBS volume from the EC2 instance. After the update is completed,
only your root device is left:

$ sudo fdisk -l
Disk /dev/xvda: 8589 MB, 8589934592 bytes, 16777216 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: gpt

Start End Size Type Name
 1 4096 16777182 8G Linux filesyste Linux
128 2048 4095 1M BIOS boot parti BIOS Boot Partition

The testfile in /mnt/volume/ is also gone:

$ ls /mnt/volume/testfile
ls: cannot access /mnt/volume/testfile: No such file or directory

Now you’ll attach the EBS volume again. Update the CloudFormation stack, and
change the AttachVolume parameter to yes. After the update is completed, /dev/xvdf
is again available:

$ sudo mount /dev/xvdf /mnt/volume/
$ ls /mnt/volume/testfile
/mnt/volume/testfile

Voilà: the file testfile that you created in /mnt/volume/ is still there.

8.1.3 Tweaking performance

Performance testing of hard disks is divided between read and write tests. Many tools are
available. One of the simpler tools is dd, which can perform block-level reads and writes
between a source if=/path/to/source and a destination of=/path/to/destination:

$ sudo dd if=/dev/zero of=/mnt/volume/tempfile bs=1M count=1024 \
conv=fdatasync,notrunc

1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 16.9858 s, 63.2 MB/s

$ echo 3 | sudo tee /proc/sys/vm/drop_caches

$ sudo dd if=/mnt/volume/tempfile of=/dev/null bs=1M count=1024
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 16.3157 s, 65.8 MB/s

Checks whether testfile
is still in /mnt/volume/

Writes 1 MB 1,024 times63.2 MB/s
write

performance

Flushes
caches

Reads 1 MB 1,024 times

65.8 MB/s read
performance

Licensed to Thomas Snead <n.ordickan@gmail.com>

209Network-attached storage

Keep in mind that depending on your actual workload, performance can vary. The
example assumes that the file size is 1 MB. If you’re hosting websites, you’ll most likely
deal with lots of small files instead.

 But EBS performance is a bit more complicated. Performance depends on the EC2
instance type and the EBS volume type. Table 8.1 gives an overview of EC2 instance
types that are EBS-optimized by default or can be optimized for an additional hourly
charge. Input/output operations per second (IOPS) are measured using 16 KB I/O
size. Performance depends heavily on your workload: read versus write, and the size of
your I/O operations. These numbers are illustrations, and your mileage may vary.

Depending on your storage workload, you must choose an EC2 instance that can
deliver the bandwidth you require. Additionally, your EBS volume must be able to satu-
rate the bandwidth. Table 8.2 shows the different EBS volume types available and how
they perform.

EBS volumes are charged for based on the size of the volume, no matter how much
you use of that size. If you provision a 100 GiB volume, you pay for 100 GiB even if you
have no data on the volume. If you use magnetic volumes, you must also pay for every
I/O operation you perform. A provisioned IOPS (SSD) volume is additionally charged

Table 8.1 What performance can be expected from EBS optimized instance types?

Use case Instance type
Max bandwidth

(MiB/s)
Max IOPS

EBS optimized
by default?

General purpose m3.xlarge–c4.large 60–120 4,000–8,000 No

Compute optimized c3.xlarge–3.4xlarge 60–240 4,000–16,000 No

Compute optimized c4.large–c4.8xlarge 60–480 4,000–32,000 Yes

Memory optimized r3.xlarge–r3.4xlarge 60–240 4,000–16,000 No

Storage optimized i2.xlarge–i2.4xlarge 60–240 4,000–16,000 No

Storage optimized d2.xlarge–d2.8xlarge 90–480 6,000–32,000 Yes

Table 8.2 How EBS volume types differ

EBS volume type Size
Maximum

throughput MiB/s
IOPS IOPS burst Price

Magnetic 1 GiB–1 TiB 40–90 100 Hundreds $

General
purpose (SSD)

1 GiB–16 TiB 160 3 per GiB (up to 10,000) 3,000 $$

Provisioned
IOPS (SSD)

4 GiB–16 TiB 320 As much as you provision
(up to 30 per GiB or 20,000)

- $$$

Licensed to Thomas Snead <n.ordickan@gmail.com>

210 CHAPTER 8 Storing your data on hard drives: EBS and instance store

for based on the provisioned IOPS. Use the AWS Simple Monthly Calculator at http://
aws.amazon.com/calculator to determine how much your storage setup will cost.

 We advise you to use general-purpose (SSD) volumes as the default. If your workload
requires more IOPS, then go with provisioned IOPS (SSD). You can attach multiple EBS
volumes to a single instance to increase overall capacity or for additional performance.

 You can increase performance by combining two (or more) volumes together in a
software RAID0, also called striping. RAID0 means that if you have two disks, your data is
distributed over those two disks, but data resides only on one disk. A software RAID
can be created with mdadm in Linux.

8.1.4 Backing up your data

EBS volumes offer 99.999% availability, but you should still create backups from time
to time. Fortunately, EBS offers an optimized, easy-to-use way of backing up EBS vol-
umes with EBS snapshots. A snapshot is a block-level incremental backup that is saved
on S3. If your volume is 5 GB in size and you use 1 GB of data, your first snapshot will
be around 1 GB in size. After the first snapshot is created, only the changes will be
saved to S3 to reduce the size of the backup. EBS snapshots are charged for based on
how many gigabytes you use.

 You’ll now create a snapshot with the help of the CLI. Before you can do so, you
need to know the EBS volume ID. You can find it as the VolumeId output of the Cloud-
Formation stack or by running the following:

$ aws --region us-east-1 ec2 describe-volumes \
--filters "Name=size,Values=5" --query "Volumes[].VolumeId" \
--output text
vol-fd3c0aba

With the volume ID, you can go on to create a snapshot:

$ aws --region us-east-1 ec2 create-snapshot --volume-id $VolumeId
{

"Description": null,
"Encrypted": false,
"VolumeId": "vol-fd3c0aba",
"State": "pending",
"VolumeSize": 5,

GiB and TiB
The terms gibibyte (GiB) and tebibyte (TiB) aren’t used often; you’re probably more
familiar with gigabyte and terabyte. But AWS uses them in some places. Here’s what
they mean:

■ 1 GiB = 2^30 bytes = 1,073,741,824 bytes
■ 1 GiB is ~ 1.074 GB
■ 1 GB = 10^9 bytes = 1,000,000,000 bytes

Your $VolumeId

Replace
with your
$VolumeId

Status of your
snapshot

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://aws.amazon.com/calculator
http://aws.amazon.com/calculator

211Network-attached storage

"Progress": null,
"StartTime": "2015-05-04T08:28:18.000Z",
"SnapshotId": "snap-cde01a8c",
"OwnerId": "878533158213"

}

Creating a snapshot can take some time, depending on how big your volume is and
how many blocks have changed since the last backup. You can see the status of the
snapshot by running the following:

$ aws --region us-east-1 ec2 describe-snapshots --snapshot-ids $SnapshotId
{

"Snapshots": [
{

"Description": null,
"Encrypted": false,
"VolumeId": "vol-fd3c0aba",
"State": "completed",
"VolumeSize": 5,
"Progress": "100%",
"StartTime": "2015-05-04T08:28:18.000Z",
"SnapshotId": "snap-cde01a8c",
"OwnerId": "878533158213"

}
]

}

Creating a snapshot of an attached, mounted volume is possible but can cause prob-
lems with writes that aren’t flushed to disk. If you must create a snapshot while the vol-
ume is in use, you can do so safely as follows:

1 Freeze all writes by running fsfreeze -f /mnt/volume/ on the server.
2 Create a snapshot.
3 Resume writes by running fsfreeze -u /mnt/volume/ on the server.
4 Wait until the snapshot is completed.

You must only freeze when snapshot creation is requested. You must not freeze until
the snapshot is completed.

 To restore a snapshot, you must create a new EBS volume based on that snapshot.
When you launch an EC2 instance from an AMI, AWS creates a new EBS volume (root
volume) based on a snapshot (an AMI is a snapshot).

Your $SnapshotId

Replace with your
$SnapshotId

A value of completed means
the snapshot is finished.

Progress
of your

snapshot

Cleaning up
Don’t forget to delete the snapshot:

$ aws --region us-east-1 ec2 delete-snapshot --snapshot-id $SnapshotId

Also delete your stack after you finish this section to clean up all used resources.
Otherwise, you’ll likely be charged for the resources you use.

Licensed to Thomas Snead <n.ordickan@gmail.com>

212 CHAPTER 8 Storing your data on hard drives: EBS and instance store

8.2 Instance stores
An instance store provides block-level storage like a normal hard disk. Figure 8.2
shows that the instance store is part of an EC2 instance and available only if your
instance is running; it won’t persist your data if you stop or terminate the instance.
Therefore you don’t pay separately for an instance store; instance store charges are
included in the EC2 instance price.

 In comparison to an EBS volume, which is attached via network to your virtual
server, an instance store is included in the virtual server and can’t exist without the vir-
tual server.

 Don’t use an instance store for data that must not be lost; use it for caching, tem-
porary processing, or applications that replicate data to several servers as some data-
bases do. If you want to set up your favorite NoSQL database, chances are high that
data replication is handled by the application and you can use an instance store to get
the highest available I/O performance.

WARNING If you stop or terminate your EC2 instance, the instance store is
lost. Lost means all data is destroyed and can’t be restored!

AWS offers SSD and HDD instance stores from 4 GB up to 48 TB. Table 8.3 shows all EC2
instance families with instance stores.

Depending on the instance type,
a virtual server has access to an
instance store to persist files.

Your virtual server

SSD disks used to provide
instance store to guests

Schedules and isolates
requests to hardware

Bare metal server
hardware

Guest 1 Guest 3

Hypervisor

Host server

Guest 2
with

instance store

Figure 8.2 The instance store is part of an EC2 instance.

Licensed to Thomas Snead <n.ordickan@gmail.com>

213Instance stores

If you want to launch an EC2 instance with an instance store manually, open the Man-
agement Console and start the Launch Instance wizard as you did in section 3.1.1:

WARNING Starting a virtual server with instance type m3.medium will incur
charges. See http://aws.amazon.com/ec2/pricing if you want to find out the
current hourly price.

■ Go through steps 1 to 3: choose an AMI, choose the m3.medium instance type,
and configure the instance details.

■ In step 4, configure an instance store as shown in figure 8.3:
1 Click the Add New Volume button.
2 Select Instance Store 0.
3 Set the device name to /dev/sdb.

■ Complete steps 5 to 7: tag the instance, configure a security group, and review
the instance launch.

The instance store can now be used by your EC2 instance.

Table 8.3 Instance families with instance stores

Use case Instance type Instance store type Instance store size in GB

General purpose m3.medium–m3.2xlarge SSD 1 × 4–2 × 80

Compute optimized c3.large–c3.8xlarge SSD 2 × 16–2 × 320

Memory optimized r3.large–r3.8xlarge SSD 1 × 32–2 × 320

Storage optimized i2.xlarge–i2.8xlarge SSD 1 × 800–8 × 800

Storage optimized d2.xlarge–d2.8xlarge HDD 3 × 2,000–24 × 2,000

Add a new
volume.

Select volume type
Instance Store 0.

Set the device
name to /dev/sdb.

Figure 8.3 Adding an instance store volume during manual EC2 instance launch

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://aws.amazon.com/ec2/pricing

214 CHAPTER 8 Storing your data on hard drives: EBS and instance store

Listing 8.1 demonstrates how to use an instance store with the help of CloudFormation.
If you launch an EC2 instance from an EBS-backed root volume (which is the default),
you must define a BlockDeviceMappings to map EBS and instance store volumes to
device names. Compared to the EBS template snippet, an instance store isn’t a stand-
alone resource like an EBS volume; the instance store is part of your EC2 instance:
Depending on the instance type, you’ll have zero, one, or multiple instance store vol-
umes for mapping.

"Server": {
"Type": "AWS::EC2::Instance",
"Properties": {
"InstanceType": "m3.medium",
[...]
"BlockDeviceMappings": [{

"DeviceName": "/dev/xvda",
"Ebs": {

"VolumeSize": "8",
"VolumeType": "gp2"

}
}, {

"DeviceName": "/dev/xvdb",
"VirtualName": "ephemeral0"

}]
}

}

8.2.1 Using an instance store

To help you explore instance stores, we created the CloudFormation template located
at https://s3.amazonaws.com/awsinaction/chapter8/instance_store.json.

Listing 8.1 Connecting an instance store with an EC2 instance with CloudFormation

Choose an
InstanceType with
an instance store.

EBS root volume
(your OS lives here)

The
instance

store will
appear as /

dev/xvdb.

The instance store
has a virtual name like
ephemeral0 or ephemeral1.

Windows-based EC2 instances
The same BlockDeviceMappings applies to Windows-based EC2 instances. Device-
Name isn’t the same as the drive letter (C:/, D:/, and so on). To go from DeviceName
to the drive letter, the volume must be mounted. The instance store volume from list-
ing 8.1 will be mounted to Z:/. Read on to see how mounting works on Linux.

Cleaning up
Delete your manually started EC2 instance after you finish this section to clean up
all used resources. Otherwise you’ll likely be charged for the resources you use.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://s3.amazonaws.com/awsinaction/chapter8/instance_store.json

215Instance stores

WARNING Starting a virtual server with instance type m3.medium will incur
charges. See http://aws.amazon.com/ec2/pricing to find out the current
hourly price.

Create a stack based on that template, copy the PublicName output, and connect via
SSH. You can see the attached instance store volumes with the help of fdisk. Usually,
instance stores are found at /dev/xvdb to /dev/xvde:

$ sudo fdisk -l
Disk /dev/xvda: 8589 MB [...]
Units = Sektoren of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: gpt

Start End Size Type Name
 1 4096 16777182 8G Linux filesyste Linux
128 2048 4095 1M BIOS boot parti BIOS Boot Partition

Disk /dev/xvdb: 4289 MB [...]
Units = Sektoren of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

To see the mounted volumes, use this command:

$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/xvda1 7.8G 1.1G 6.6G 14% /
devtmpfs 1.9G 60K 1.9G 1% /dev
tmpfs 1.9G 0 1.9G 0% /dev/shm
/dev/xvdb 3.9G 1.1G 2.7G 28% /media/ephemeral0

Your instance store is mounted automatically to /media/ephemeral0. If your EC2
instance has more than one instance store, ephemeral1, ephemeral2, and so on will
be used. Now it’s time to run some performance tests.

8.2.2 Testing performance

Let’s take the same performance measurements to see the difference between the
instance store and EBS volumes:

$ sudo dd if=/dev/zero of=/media/ephemeral0/tempfile bs=1M count=1024 \
conv=fdatasync,notrunc

1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 5.93311 s, 181 MB/s

Root volume (your
OS lives here)

Instance store

Root volume (your
OS lives here)

The instance
store is mounted
automatically.

3 × write
performance
compared with EBS

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://aws.amazon.com/ec2/pricing

216 CHAPTER 8 Storing your data on hard drives: EBS and instance store

$ echo 3 | sudo tee /proc/sys/vm/drop_caches
3

$ sudo dd if=/media/ephemeral0/tempfile of=/dev/null bs=1M count=1024
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 3.76702 s, 285 MB/s

Keep in mind that performance can vary, depending on your actual workload. This
example assumes a file size of 1 MB. If you’re hosting websites, you’ll most likely deal
with lots of small files instead. But this performance measurement shows that the
instance store is a normal hard disk and has performance characteristics like those of
a normal hard disk.

8.2.3 Backing up your data

There is no built-in backup mechanism for instance store volumes. Based on what you
learned in section 7.2, you can use a combination of cron and S3 to back up your data
periodically:

$ aws s3 sync /path/to/data s3://$YourCompany-backup/serverdata

But if you need to back up data from an instance store, you should probably use more
durable, block-level storage like EBS. An instance store is better used for ephemeral
persistence requirements.

8.3 Comparing block-level storage solutions
Table 8.4 shows how S3, EBS, and instance stores differ. Use this table to decide what
option is best for your use case. A rule of thumb: if your application supports S3, use
S3; otherwise, choose EBS.

Table 8.4 S3 vs. block-level storage solutions in AWS

S3 EBS Instance store

Common use
cases

Integrated into
your application to
store user uploads

Persistence for traditional data-
bases or legacy applications
that require block-level storage

Temporary persistence or high-performance
storage for applications that handle replica-
tion internally to protect against data loss

Independent
resource

Yes Yes No

4 × read performance
compared with EBS

Cleaning up
Delete your stack after you finish this section, to clean up all used resources. Other-
wise you’ll likely be charged for the resources you use.

Licensed to Thomas Snead <n.ordickan@gmail.com>

217Hosting a shared file system backed by an instance store and EBS

Next, you’ll look at a real-world example using instance store and EBS volumes.

8.4 Hosting a shared file system backed by an instance
store and EBS
There is an important problem that you can’t solve with AWS block-level storage solu-
tions: sharing block-level storage between multiple EC2 instances at the same time.
You can solve this problem with the help of the Network File System (NFS) protocol.

Figure 8.4 shows how one EC2 instance acts as a NFS server and exports a share via
NFS. Other EC2 instances (NFS clients) then mount the NFS share from the NFS server
via a network connection. To enhance performance in terms of latency, an instance
store is used on the NFS server. But you already learned that an instance store isn’t
very durable, so you must take care of that. An EBS volume is attached to the NFS
server, and data is synchronized at a regular interval. The worst-case scenario would be
if all data modified since the last sync was lost. In some scenarios (such as sharing PHP
files between web servers), this data loss is acceptable because the files can be
uploaded again.

How it can be
accessed

HTTPS API EC2 instance / system calls EC2 instance / system calls

Has a file
system?

No Yes Yes

Protection
against data
loss

Very high High Low

Cost per GB
stored

$$ $$$ $

Effort to
maintain

None Little Medium

Table 8.4 S3 vs. block-level storage solutions in AWS (continued)

S3 EBS Instance store

Amazon Elastic File System is coming
AWS is working on a service called Amazon Elastic File System (EFS). EFS is a distrib-
uted file system service based on the Network File System version 4 (NFSv4) proto-
col. As soon as EFS is available, you should choose it if you need to share block-level
storage between multiple servers. Find out if EFS is available in the meantime by vis-
iting http://aws.amazon.com/efs.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://aws.amazon.com/efs

218 CHAPTER 8 Storing your data on hard drives: EBS and instance store

You’ll now create a CloudFormation template and Bash scripts to turn this system dia-
gram into reality. Step by step you’ll do the following:

1 Add security groups to create a secure NFS setup.
2 Add the NFS server EC2 instance and the EBS volume.
3 Create the installation and configuration script for the NFS server.
4 Add the NFS client EC2 instances.

Let’s get started.

8.4.1 Security groups for NFS

Who talks to whom? That’s the question determining how security groups must be
designed. To make things easier (you won’t use a bastion host here), SSH access
should be allowed from the public internet (0.0.0.0/0) on all EC2 instances. The NFS
server also must be reachable on the needed ports for NFS (TCP and UDP: 111, 2049),
but only clients should have access to the NFS ports.

EBS volume

NFS client NFS client

The instance store is backed
up to an EBS volume every
5 minutes via rsync.

NFS clients mount
the exported NFS
share to have access
to the same files
(read and write).

A snapshot is
created every
30 minutes.

EBS snapshotNFS server

Figure 8.4 NFS can be used to share (block-level storage) files between EC2 instances.

NFS setup is a single point of failure
The NFS setup is most likely not what you want to run in mission-critical production
environments. The NFS server is a single point of failure: if the EC2 instance fails, no
NFS clients can access the shared files. Think twice about whether you want a shared
file system. In most cases, S3 is a good alternative that can be used with a few
changes to the application. If you really need a shared file system, consider Amazon
EFS (when it’s released) or set up GlusterFS.

Licensed to Thomas Snead <n.ordickan@gmail.com>

219Hosting a shared file system backed by an instance store and EBS

"SecurityGroupClient": {
"Type": "AWS::EC2::SecurityGroup",
"Properties": {

"GroupDescription": "My client security group",
"VpcId": {"Ref": "VPC"}

}
},
"SecurityGroupServer": {

"Type": "AWS::EC2::SecurityGroup",
"Properties": {

"GroupDescription": "My server security group",
"VpcId": {"Ref": "VPC"},
"SecurityGroupIngress": [{
"SourceSecurityGroupId": {"Ref": "SecurityGroupClient"},
"IpProtocol": "tcp",
"FromPort": 111,
"ToPort": 111

}, {
"SourceSecurityGroupId": {"Ref": "SecurityGroupClient"},
"IpProtocol": "udp",
"FromPort": 111,
"ToPort": 111

}, {
"SourceSecurityGroupId": {"Ref": "SecurityGroupClient"},
"IpProtocol": "tcp",
"FromPort": 2049,
"ToPort": 2049

}, {
"SourceSecurityGroupId": {"Ref": "SecurityGroupClient"},
"IpProtocol": "udp",
"FromPort": 2049,
"ToPort": 2049

}]
}

},
"SecurityGroupCommon": {

"Type": "AWS::EC2::SecurityGroup",
"Properties": {

"GroupDescription": "My security group",
"VpcId": {"Ref": "VPC"},
"SecurityGroupIngress": [{
"CidrIp": "0.0.0.0/0",
"FromPort": 22,
"IpProtocol": "tcp",
"ToPort": 22

}]
}

}

Listing 8.2 Security groups for NFS

Security group associated with NFS
clients. This group contains no rules:
it only marks traffic from clients.

Security group associated
with NFS serverAllows inbound

Portmapper
port 111 (TCP)

from NFS
clients

(SecurityGroup
Client as the

source)

Allows port 111
(UDP) as wellAllows inbound

nfsd port 2049
(TCP and UDP)

from NFS
clients

Common security group
associated with the NFS
server and clients

Allows inbound
SSH from the
public internet

Licensed to Thomas Snead <n.ordickan@gmail.com>

220 CHAPTER 8 Storing your data on hard drives: EBS and instance store

The interesting part is that SecurityGroupClient contains no rules. It’s only needed
to mark traffic from NFS clients. SecurityGroupServer uses SecurityGroupClient as
a source to allow traffic only from NFS clients.

8.4.2 NFS server and volume

The instance type of the NFS server must provide an instance store. You’ll use
m3.medium in this example because it’s the cheapest instance store available, but it
offers only 4 GB. If you need a larger size, you must choose another instance type. The
server has two security groups attached: SecurityGroupCommon to allow SSH and
SecurityGroupServer to allow NFS-related ports. The server must also install and
configure NFS on startup, so you’ll use a bash script; you’ll create this script in the
next section. Using a bash script makes things more readable—the UserData format is
a bit annoying over time. To prevent data loss, you’ll create an EBS volume as a backup
for the instance store.

"Server": {
"Type": "AWS::EC2::Instance",
"Properties": {
"IamInstanceProfile": {"Ref": "InstanceProfile"},
"ImageId": "ami-1ecae776",
"InstanceType": "m3.medium",
"KeyName": {"Ref": "KeyName"},
"SecurityGroupIds": [{"Ref": "SecurityGroupCommon"},

{"Ref": "SecurityGroupServer"}],
"SubnetId": {"Ref": "Subnet"},
"BlockDeviceMappings": [{

"Ebs": {
"VolumeSize": "8",
"VolumeType": "gp2"

},
"DeviceName": "/dev/xvda"

}, {
"VirtualName": "ephemeral0",
"DeviceName": "/dev/xvdb"

}],
"UserData": {"Fn::Base64": {"Fn::Join": ["", [

"#!/bin/bash -ex\n",
"curl -s https://[...]/nfs-server-install.sh | bash -ex\n"

]]}}
}

},
"Volume": {

"Type": "AWS::EC2::Volume",
"Properties": {
"AvailabilityZone": {"Fn::GetAtt": ["Server", "AvailabilityZone"]},
"Size": "5",
"VolumeType": "gp2"

}

Listing 8.3 NFS server and volume

m3.medium provides a
 4 GB SSD instance store.

Uses the server
security group
to filter traffic

Maps the root
EBS volume to
/dev/xvda Maps the instance

store to /dev/xvdb

Downloads the install script
and executes it (only from

trusted sources!)

Creates the 5 GB backup
volume (enough space to back
up the 4 GB instance store)

Licensed to Thomas Snead <n.ordickan@gmail.com>

221Hosting a shared file system backed by an instance store and EBS

},
"VolumeAttachment": {

"Type": "AWS::EC2::VolumeAttachment",
"Properties": {
"Device": "/dev/xvdf",
"InstanceId": {"Ref": "Server"},
"VolumeId": {"Ref": "Volume"}

}
}

You can now install and configure the NFS server with a bash script on startup.

8.4.3 NFS server installation and configuration script

To get NFS running, you need to install the relevant software packages with yum and
configure and start them. To back up the instance store volumes at a regular interval,
you also need to mount the EBS volume and run a cron job from time to time to copy
the data to the EBS volume. Finally, you’ll create an EBS snapshot from the EBS vol-
ume, as shown in the next listing.

#!/bin/bash -ex

yum -y install nfs-utils nfs-utils-lib
service rpcbind start
service nfs start
chmod 777 /media/ephemeral0
echo "/media/ephemeral0 *(rw,async)" >> /etc/exports
exportfs -a

while ! ["$(fdisk -l | grep '/dev/xvdf' | wc -l)" -ge "1"]; \
do sleep 10; done

if [["$(file -s /dev/xvdf)" != *"ext4"*]]
then

mkfs -t ext4 /dev/xvdf
fi

mkdir /mnt/backup
echo "/dev/xvdf /mnt/backup ext4 defaults,nofail 0 2" >> /etc/fstab
mount -a

INSTANCEID=$(curl -s http://169.254.169.254/latest/meta-data/instance-id)
VOLUMEID=$(aws --region us-east-1 ec2 describe-volumes \
--filters "Name=attachment.instance-id,Values=$INSTANCEID" \
--query "Volumes[0].VolumeId" --output text)

cat > /etc/cron.d/backup << EOF

Listing 8.4 NFS installation and configuration script

Attaches the volume to
the server (to /dev/xvdf)

Installs NFS packagesStarts
rpcbind
 (an NFS

dependency)
Starts the NFS daemon

Allows all
users to read
and write to
the instance

store volume

Exports the
instance store
volume via NFS
to other NFS
clients

Reloads to
apply export

config changes

Waits until the EBS
volume is available

Formats the EBS
volume if not yet ext4
(first server start)

Mounts
the EBS
volume

Gets the EBS volume’s ID

Copies all text in EOF to the
cron job definition. /etc/dron.d/

contains cron job definitions.

Licensed to Thomas Snead <n.ordickan@gmail.com>

222 CHAPTER 8 Storing your data on hard drives: EBS and instance store

SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin:/opt/aws/bin
MAILTO=root
HOME=/
*/15 * * * * root rsync -av --delete /media/ephemeral0/ /mnt/backup/ ; \
fsfreeze -f /mnt/backup/ ; \
aws --region us-east-1 ec2 create-snapshot --volume-id $VOLUMEID ; \
fsfreeze -u /mnt/backup/
EOF

Because the script makes calls to the AWS API via the CLI, the EC2 instance needs permis-
sion to make those calls. This can be done with an IAM role, as shown in the next listing.

"InstanceProfile": {
"Type": "AWS::IAM::InstanceProfile",
"Properties": {
"Path": "/",
"Roles": [{"Ref": "Role"}]

}
},
"Role": {

"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {

"Version": "2012-10-17",
"Statement": [{

"Effect": "Allow",
"Principal": {

"Service": ["ec2.amazonaws.com"]
},
"Action": ["sts:AssumeRole"]

}]
},
"Path": "/",
"Policies": [{

"PolicyName": "ec2",
"PolicyDocument": {

"Version": "2012-10-17",
"Statement": [{

"Sid": "Stmt1425388787000",
"Effect": "Allow",
"Action": ["ec2:DescribeVolumes", "ec2:CreateSnapshot"],
"Resource": ["*"]

}]
}

}]
}

}

Listing 8.5 IAM role

Ensures that /opt/aws/bin is in
the PATH to have AWS available

Syncs all files
from the instance

store volume to
the EBS volume

every 15 minutes

Freezes the
 EBS volume for a

consistent snapshot

Creates
the EBS

snapshot

Unfreezes the
EBS volume

Attaches the IAM
profile to the
NFS server

Defines the
IAM role

Lets you describe
volumes and

create snapshots

Licensed to Thomas Snead <n.ordickan@gmail.com>

223Hosting a shared file system backed by an instance store and EBS

Only one thing is missing: clients. You’ll add them next.

8.4.4 NFS clients

An NFS share can be mounted by multiple clients. For demonstration purposes, two
clients will be enough: Client1 and Client2. Client2 is a copy of Client1.

"Client1": {
"Type": "AWS::EC2::Instance",
"Properties": {
"ImageId": "ami-1ecae776",
"InstanceType": "t2.micro",
"KeyName": {"Ref": "KeyName"},
"SecurityGroupIds": [{"Ref": "SecurityGroupCommon"},

{"Ref": "SecurityGroupClient"}],
"SubnetId": {"Ref": "Subnet"},
"UserData": {"Fn::Base64": {"Fn::Join": ["", [

"#!/bin/bash -ex\n",
"yum -y install nfs-utils nfs-utils-lib\n",
"mkdir /mnt/nfs\n",
"echo \"", {"Fn::GetAtt": ["Server", "PublicDnsName"]},

":/media/ephemeral0 /mnt/nfs nfs rw 0 0\" >> /etc/fstab\n",
"mount -a\n"

]]}}
}

}

It’s time to try sharing files via NFS.

8.4.5 Sharing files via NFS

To help you explore NFS, we’ve prepared a CloudFormation template located at
https://s3.amazonaws.com/awsinaction/chapter8/nfs.json.

WARNING Starting a virtual server with instance type m3.medium will incur
charges. See http://aws.amazon.com/ec2/pricing/ if you want to find out
the current hourly price.

Create a stack based on that template, copy the Client1PublicName output, and con-
nect via SSH.

Listing 8.6 NFC client

rsync with lots of small files
If your use case requires many small files (more than 1 million), rsync will take a
long time and consume many CPU cycles. You may want to consider DRBD to asyn-
chronously sync the instance store to the EBS volume. The setup is slightly more com-
plicated (at least, if you use Amazon Linux), but you get much better performance.

Associates the
common and client
security groups

NFS share
entry into
fstab

Mounts the
NFS share

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://aws.amazon.com/ec2/pricing/
https://s3.amazonaws.com/awsinaction/chapter8/nfs.json

224 CHAPTER 8 Storing your data on hard drives: EBS and instance store

 Place a file in /mnt/nfs/:

$ touch /mnt/nfs/test1

Now, connect to the second client via SSH by copying the Client2PublicName output
from the stack. List all files in /mnt/nfs/:

$ ls /mnt/nfs/
test1

Voilà! You can share files between multiple EC2 instances.

8.5 Summary
■ Block-level storage can only be used in combination with an EC2 instance

because the OS is needed to provide access to the block-level storage (including
partitions, file systems, and read/write system calls).

■ EBS volumes are connected to your EC2 instance via network. Depending on
your instance type, this network connection can use more or less bandwidth.

■ EBS snapshots are a powerful way to back up your EBS volumes to S3 because
they use a block-level, incremental approach.

■ An instance store is part of an EC2 instance, and it’s fast and cheap. But all your
data will be lost if the EC2 instance is stopped or terminated.

■ You can use NFS to share files between EC2 instances.

Cleaning up
Delete your stack after you finish this section to clean up all used resources. Other-
wise you’ll be charged for the resources you use.

Licensed to Thomas Snead <n.ordickan@gmail.com>

225

Using a relational
 database service: RDS

Relational databases are the de facto standard for storing and querying structured
data, and many applications are built on top of a relational database system such as
MySQL, Oracle Database, Microsoft SQL Server, or PostgreSQL. Typically, relational
databases focus on data consistency and guarantee ACID database transactions (ato-
micity, consistency, isolation, and durability). Storing and querying structured data
like the accounts and transactions in an accounting application is a typical task for
a relational database.

This chapter covers
■ Launching and initializing relational databases with RDS
■ Creating and restoring database snapshots
■ Setting up a highly available database
■ Tweaking database performance
■ Monitoring a database

Licensed to Thomas Snead <n.ordickan@gmail.com>

226 CHAPTER 9 Using a relational database service: RDS

 If you want to use a relational database on AWS, you have two options:

■ Use the managed relational database service Amazon RDS, which is offered by AWS.
■ Operate a relational database yourself on top of virtual servers.

The Amazon Relational Database Service (Amazon RDS) offers ready-to-use relational
databases. Under the hood, Amazon RDS operates a common relational database. As we
write this book, MySQL, Oracle Database, Microsoft SQL Server, and PostgreSQL are sup-
ported. If your application supports one of these relational database systems, the migra-
tion to Amazon RDS is easy.

RDS is a managed service. A managed service is offered by a managed services pro-
vider—in the case of Amazon RDS, the managed service provider is AWS. The man-
aged service provider is responsible for providing a defined set of services—in the case
of Amazon RDS, for operating a relational database system. Table 9.1 compares using
an RDS database and hosting a database on virtual servers yourself.

You’d need considerable time and know-how to build a comparable relational data-
base environment based on virtual servers, so we recommend using Amazon RDS for
relational databases whenever possible to decrease operational costs and improve
quality. That’s why we won’t cover hosting a relational database on virtual servers in
this book. Instead, we’ll introduce Amazon RDS in detail.

Table 9.1 Managed service RDS vs. a self-hosted database on virtual servers

Amazon RDS Self-hosted on virtual servers

Cost for AWS
services

Higher because RDS costs more than
virtual servers (EC2)

Lower because virtual servers (EC2) are
cheaper than RDS

Total cost of
ownership

Lower because operating costs are split
among many customers

Much higher because you need your own
manpower to manage your database

Quality AWS professionals are responsible for
the managed service.

You’ll need to build a team of professionals
and implement quality control yourself.

Flexibility High, because you can choose a rela-
tional database system and most of the
configuration parameters

Higher, because you can control every part
of the relational database system you
installed on virtual servers

Amazon Aurora is coming
AWS is working on a database engine called Amazon Aurora. Aurora is MySQL com-
patible but offers better availability and performance at a lower cost. You can use Au-
rora to replace a MySQL setup. To find out if Aurora is available, visit https://
aws.amazon.com/rds/aurora.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://aws.amazon.com/rds/aurora
https://aws.amazon.com/rds/aurora

227Starting a MySQL database

In this chapter, you’ll launch a MySQL database with the help of Amazon RDS. Chap-
ter 2 introduced a WordPress setup like the one shown in figure 9.1; you’ll reuse this
example in this chapter, focusing on the database part. After the MySQL database
based on Amazon RDS is running, you’ll learn how to import, back up, and restore
data. More advanced topics like setting up a highly available database and improving
the performance of the database will follow.

All the examples in this chapter use a MySQL database used by a WordPress application.
You can easily transfer what you learn to other database engines such as Oracle Data-
base, Microsoft SQL Server, and PostgreSQL, and to applications other than WordPress.

Starting a MySQL database

Incoming
requests

Distribute traffic
to web servers.

Security groups act as a virtual firewall.
AWS takes care of them to protect your
system from malicious traffic.

Elastic Load Balancing
(ELB) service is a SaaS
providing a managed
load balancer. The
service is fault
tolerant.

Users

Load balancer

Firewall

Database

Firewall

Web servers

Firewall

Firewall

Separate database
for performance

Relational Database
Service (RDS) is a SaaS
providing a managed
MySQL database. AWS
takes care of backups,
updates, and replication.

Elastic Compute Cloud
(EC2) service is an IaaS
providing virtual servers
(Linux and Windows). You
can install any software
you like on them.

Figure 9.1 The company’s blogging infrastructure consists of two load-balanced web servers running Word-
Press and a MySQL database server.

Examples are 100% covered by the Free Tier
The examples in this chapter are completely covered by the Free Tier. As long as you
don’t run the examples for longer than a few days, you won’t pay anything. Keep in
mind that this only applies if you created a fresh AWS account for this book and noth-
ing else is going on in your AWS account. Try to complete the examples of the chapter
within a few days; you’ll clean up your account at the end of each example.

Licensed to Thomas Snead <n.ordickan@gmail.com>

228 CHAPTER 9 Using a relational database service: RDS

9.1 Starting a MySQL database
The popular blogging platform WordPress is built on top of a MySQL relational data-
base. If you want to host a blog based on WordPress on your server, you’ll need to run
the PHP application—for example, with the help of an Apache web server—and you’ll
need to operate a MySQL database where WordPress stores the articles, comments,
and authors. Amazon RDS offers a MySQL database as a managed service. You no lon-
ger need to install, configure, and operate a MySQL database yourself.

9.1.1 Launching a WordPress platform with an Amazon RDS database

Launching a database consists of two steps:

■ Launching a database instance
■ Connecting an application to the database endpoint

To set up a WordPress blogging platform with a MySQL database, you’ll use the same
CloudFormation template you used in chapter 2. You also used Amazon RDS there.
The template can be found on GitHub and on S3. You can download a snapshot of
the repository at https://github.com/AWSinAction/code/archive/master.zip. The
file we talk about is located at chapter9/template.json. On S3, the same file is located
at https://s3.amazonaws.com/awsinaction/chapter9/template.json.

 Execute the following command to create a CloudFormation stack containing an
RDS database instance with a MySQL engine and web servers serving the WordPress
application:

$ aws cloudformation create-stack --stack-name wordpress --template-url \
https://s3.amazonaws.com/awsinaction/chapter9/template.json \
--parameters ParameterKey=KeyName,ParameterValue=mykey \
ParameterKey=AdminPassword,ParameterValue=test1234 \
ParameterKey=AdminEMail,ParameterValue=your@mail.com

It will take several minutes in the background until the CloudFormation stack is cre-
ated, so you’ll have enough time to learn the details of the RDS database instance
while the template is launching. Listing 9.1 shows parts of the CloudFormation tem-
plate used to create the wordpress stack.

Pitfall: media uploads and plugins
WordPress uses a MySQL database to store articles and users. But by default, Word-
Press stores media uploads (such as images) and plugins in a folder called wp-content
on the local file system. The server isn’t stateless. You can’t use multiple servers by
default, because each request will be served by another server but media uploads
and plugins are stored on only one of the servers.

The example in this chapter is incomplete because it doesn’t handle this problem. If
you’re interested in a solution, see chapter 14, where plugins are installed automat-
ically when you bootstrap virtual servers and media uploads are outsourced to an ob-
ject store.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/AWSinAction/code/archive/master.zip
https://s3.amazonaws.com/awsinaction/chapter9/template.json

229Starting a MySQL database

Table 9.2 shows the attributes needed when starting an RDS database with the help of
CloudFormation or manually with the Management Console.

An RDS database can be deployed into a virtual private network (VPC). We recommend
that you do so instead of deploying with a public reachable IP address to protect your
data from the outside world. If you deploy your RDS instance into a VPC, you can use a
private IP to communicate with the RDS instance. Thus you can’t directly communicate
with your database from the internet. If you want to deploy an RDS instance into your
VPC, you need to specify the subnets for the database, as shown in the following listing.

{
[...]
"Resources": {

[...]
"DatabaseSecurityGroup": {
"Type": "AWS::EC2::SecurityGroup",
"Properties": {

"GroupDescription": "awsinaction-db-sg",
"VpcId": {"Ref": "VPC"},
"SecurityGroupIngress": [{

"IpProtocol": "tcp",
"FromPort": "3306",
"ToPort": "3306",
"SourceSecurityGroupId": {

"Ref": "WebServerSecurityGroup"
}

}]
}

},
"Database": {
"Type": "AWS::RDS::DBInstance",
"Properties": {

Table 9.2 Attributes needed to connect to an RDS database

Attribute Description

AllocatedStorage Storage size of your database in GB

DBInstanceClass Size, also known as instance type, of the underlying virtual server

Engine Database engine (MySQL, Oracle Database, Microsoft SQL Server,
or PostgreSQL) you want to use

DBInstanceIdentifier Identifier for the database instance

DBName Identifier for the database

MasterUsername Name for the master user

MasterUserPassword Password for the master user

Listing 9.1 Extract from the CloudFormation template setting up an RDS database

Security group for the database
instance, allowing incoming
traffic on the MySQL default
port for web servers

The default
MySQL port

is 3306.

References
the security

group for
web servers

Creates a
database instance
with Amazon RDS

Licensed to Thomas Snead <n.ordickan@gmail.com>

230 CHAPTER 9 Using a relational database service: RDS

"AllocatedStorage": "5",
"DBInstanceClass": "db.t2.micro",
"DBInstanceIdentifier": "awsinaction-db",
"DBName": "wordpress",
"Engine": "MySQL",
"MasterUsername": "wordpress",
"MasterUserPassword": "wordpress",
"VPCSecurityGroups": [

{"Fn::GetAtt": ["DatabaseSecurityGroup", "GroupId"]}
],
"DBSubnetGroupName":

{"Ref": "DBSubnetGroup"}
}

},
"DBSubnetGroup" : {

"Type" : "AWS::RDS::DBSubnetGroup",
"Properties" : {

"DBSubnetGroupDescription" : "DB subnet group",
"SubnetIds": [

{"Ref": "SubnetA"},
{"Ref": "SubnetB"}

]
}

},
[...]

},
[...]

}

See if the CloudFormation stack named wordpress has reached the state CREATE
_COMPLETE with the following command:

$ aws cloudformation describe-stacks --stack-name wordpress

Search for StackStatus in the output, and check whether the status is CREATE_COMPLETE.
If not, you need to wait a few minutes longer (it can take up to 15 minutes to create the
stack) and re-run the command. If the status is CREATE_COMPLETE, you’ll also find the
attribute OutputKey in the output section. The corresponding OutputValue contains
the URL for the WordPress blogging platform. The following listing shows the output in
detail. Open this URL in your browser; you’ll find a running WordPress setup.

$ aws cloudformation describe-stacks --stack-name wordpress
{

"Stacks": [{
"StackId": "...",
"Description": "AWS in Action: chapter 9",
"Parameters": [{

"ParameterValue": "mykey",

Listing 9.2 Checking the state of the CloudFormation stack

The database provides
5 GB of storage. The size of the

database server is
t2.micro, the smallest
available size.

Identifier for the
RDS database

Creates a default
database named
wordpress

Uses MySQL as the
database engine

The username for
the master user of

the MySQL database

The password for the
master user of the

MySQL database
References the
security group
for the databaseDefines the

subnets the RDS
database instance

will launch into
Creates a subnet
group to define
the subnets for
the database
instance

Uses subnet A or B to
launch RDS database
instances

Licensed to Thomas Snead <n.ordickan@gmail.com>

231Starting a MySQL database

"ParameterKey": "KeyName"
}],
"Tags": [],
"Outputs": [{

"Description": "Wordpress URL",
"OutputKey": "URL",
"OutputValue": "http://[...].com/wordpress"

}],
"StackStatusReason": "",
"CreationTime": "2015-05-16T06:30:40.515Z",
"StackName": "wordpress",
"NotificationARNs": [],
"StackStatus": "CREATE_COMPLETE",
"DisableRollback": false

}]
}

Launching and operating a relational database like MySQL is that simple. Of course,
you can also use the Management Console to launch an RDS database instance instead
of using a CloudFormation template. RDS is a managed service, and AWS handles most
of the tasks necessary to operate your database in a secure and reliable way. You only
need to do a few things:

■ Monitor the available storage of your database and make sure you increase the
allocated storage as needed.

■ Monitor the performance of your database and make sure you increase I/O and
computing performance as needed.

Both tasks can be handled with the help of CloudWatch monitoring, as you’ll learn
later in the chapter.

9.1.2 Exploring an RDS database instance with a MySQL engine

The CloudFormation stack created an RDS database instance with a MySQL engine.
Each RDS database instance offers an endpoint for SQL requests. Applications can
send their requests to this endpoint to query or store data. The endpoint and detailed
information of an RDS database instance can be requested with a describe command:

$ aws rds describe-db-instances

The output of this request contains detailed information about the RDS database
instance, as shown in listing 9.2. The most important attributes that are needed to
connect to an RDS database are described in table 9.3.

Table 9.3 Attributes needed to connect to an RDS database

Attribute Description

Endpoint Host name and port of the database endpoint needed to connect your applications to the
database. This interface receives SQL commands.

DBName Name of the default database that’s automatically created at launch.

Open this URL in your
browser to open the
WordPress application.

Wait for state
CREATE_COMPLETE for
the CloudFormation stack.

Licensed to Thomas Snead <n.ordickan@gmail.com>

232 CHAPTER 9 Using a relational database service: RDS

There are many other attributes. You’ll learn more about most of them in this chapter.
The following listing describes a MySQL relational database instance.

{
"DBInstances": [{
"PubliclyAccessible": false,
"MasterUsername": "wordpress",
"LicenseModel": "general-public-license",
"VpcSecurityGroups": [{

"Status": "active",
"VpcSecurityGroupId": "sg-7a84aa1e"

}],
"InstanceCreateTime": "2015-05-16T06:40:33.107Z",
"OptionGroupMemberships": [{

"Status": "in-sync",
"OptionGroupName": "default:mysql-5-6"

}],
"PendingModifiedValues": {},
"Engine": "mysql",
"MultiAZ": false,
"LatestRestorableTime": "2015-05-16T08:00:00Z",
"DBSecurityGroups": [],
"DBParameterGroups": [{

"DBParameterGroupName": "default.mysql5.6",
"ParameterApplyStatus": "in-sync"

}],
"AutoMinorVersionUpgrade": true,
"PreferredBackupWindow": "06:01-06:31",
"DBSubnetGroup": {

"Subnets": [{
"SubnetStatus": "Active",
"SubnetIdentifier": "subnet-f045c9db",
"SubnetAvailabilityZone": {

"Name": "us-east-1a"
}

}, {
"SubnetStatus": "Active",
"SubnetIdentifier": "subnet-42e4a235",
"SubnetAvailabilityZone": {

MasterUsername Name of the master user for the database. The password isn’t shown again; you have to
remember it or look it up in the CloudFormation template. The master user can create
additional database users. The handling depends on the underlying database.

Engine Describes the relational database system offered by this RDS instance. This is MySQL in
the example.

Listing 9.3 Describing a MySQL RDS database instance

Table 9.3 Attributes needed to connect to an RDS database (continued)

Attribute Description

The database isn’t reachable
from the internet—only from

a private network (VPC). The username of
the master user for
MySQL database

The security group for the
database, which only allows
web servers to access port 3306

Option groups are used for
additional database-specific
configuration.

The
database
instance

is running
a MySQL
engine.

High-availability setup is
disabled. You’ll learn more
about this in section 9.5.Parameter

groups are used
to configure the

database
engine. RDS will automatically

execute minor upgrades
of your database.The time frame

in which RDS
will create

snapshots of
your database

every day (UTC)

The subnets used to
launch the database
instance

Licensed to Thomas Snead <n.ordickan@gmail.com>

233Starting a MySQL database

"Name": "us-east-1b"
}

}],
"DBSubnetGroupName": "wordpress-dbsubnetgroup-1lbc2t9palsej",
"VpcId": "vpc-941e29f1",
"DBSubnetGroupDescription": "DB subnet group",
"SubnetGroupStatus": "Complete"

},
"ReadReplicaDBInstanceIdentifiers": [],
"AllocatedStorage": 5,
"BackupRetentionPeriod": 1,
"DBName": "wordpress",
"PreferredMaintenanceWindow": "mon:06:49-mon:07:19",
"Endpoint": {

"Port": 3306,
"Address": "awsinaction-db.czwgnecjynmj.us-east-1.rds.amazonaws.com"

},
"DBInstanceStatus": "available",
"EngineVersion": "5.6.22",
"AvailabilityZone": "us-east-1b",
"StorageType": "standard",
"DbiResourceId": "db-SVHSQQOW4CPNR57LYLFXVHYOVU",
"CACertificateIdentifier": "rds-ca-2015",
"StorageEncrypted": false,
"DBInstanceClass": "db.t2.micro",
"DBInstanceIdentifier": "awsinaction-db"

}]
}

The RDS database is running, but what does it cost?

9.1.3 Pricing for Amazon RDS

A database on Amazon RDS is priced according to the size of the underlying virtual serv-
ers and the amount and type of allocated storage. Compared to a database running on
a plain virtual server (EC2), you’ll pay an extra charge of about 30%. In our opinion, the
Amazon RDS service is worth the extra charge because you don’t need to perform typical
DBA tasks like installation, patching, upgrades, migration, backups, and recovery. For-
ester has analyzed that a DBA spends more than 50% of their time on these tasks.

 Table 9.4 shows a pricing example for a medium-sized RDS database instance in the
N. Virginia region without failover for high availability.

Private network (VPC) in
which the RDS database
instance is launched

RDS allows read
replicas for

some database
engines. You’ll

learn about this
in section 9.6.

5 GB of storage is allocated for
the database. You can increase
this if needed.

Snapshots of
the database

will be stored
as a backup

for 1 day. The name of the default database

Time frame in which
RDS will execute
minor patches of

the database engine
(Mondays between

06:49 and 07:19
UTC)

The endpoint of the
database instance.

Applications can
send their SQL

requests to this
endpoint. In this

case it’s a private IP
address because the

database isn’t
reachable from the

internet.

The status of the database
The version of the
database engine:
in this case,
MySQL 5.6.22

The data center
where the database
instance is running

Storage type is
standard, which means
magnetic drives. You’ll
learn about using SSDs
and provisioned IOPS
later in the chapter.Indicates whether data is encrypted

before being written to disk

The size of the virtual server the database is running
on. db.t2.micro is the smallest available size.

Identifier of the database instance

Licensed to Thomas Snead <n.ordickan@gmail.com>

234 CHAPTER 9 Using a relational database service: RDS

You’ve launched an RDS database instance for use with a WordPress web application.
You’ll learn about importing data to the RDS database in the next section.

9.2 Importing data into a database
A database without data isn’t useful. In many cases, you’ll need to import data into a new
database. If you move your on-premises environment to AWS, you’ll need to transfer
the database as well. This section will guide you through the process of importing a
MySQL database dump to an RDS database with a MySQL engine. The process is similar
for all other database engines (Oracle Database, Microsoft SQL Server, and PostgreSQL).

 To import a database from your on-premises environment to Amazon RDS, follow
these steps:

1 Export the on-premises database.
2 Start a virtual server in the same region and VPC as the RDS database.
3 Upload the database dump from export to the virtual server.
4 Run an import of the database dump to the RDS database on the virtual server.

We’ll skip the first step of exporting a MySQL database. The following sidebar gives
you some hints if you want to export an existing MySQL database.

Table 9.4 Monthly cost for a medium-sized RDS instance

Description Monthly price

Database instance db.m3.medium $65.88 USD

50 GB of general purpose (SSD) $5.75 USD

Additional storage for database snapshots (300 GB) $28.50 USD

Total $100.13 USD

Exporting a MySQL database
MySQL, and every other database system, offer a way to export and import databas-
es. We recommend the command-line tools from MySQL for exporting and importing
databases. You may need to install the MySQL client on your machine remove, as it
includes these tools.

The following command exports all databases from localhost and dumps them into a
file called dump.sql. Replace $UserName with the MySQL admin or master user, and
enter the password when prompted:

$ mysqldump -u $UserName -p --all-databases > dump.sql

You can also specify only some databases for the export. To do so, replace $Data-
baseName with the name of the database you want to export:

$ mysqldump -u $UserName -p $DatabaseName > dump.sql

Licensed to Thomas Snead <n.ordickan@gmail.com>

235Importing data into a database

Theoretically, you could import a database to RDS from any machine in your
on-premises or local network. But the higher latency over the internet or VPN con-
nection will slow down the import process dramatically. Because of this, we recom-
mend adding a second step: upload the database dump to a virtual server running in
the same region and VPC, and start to import the database to RDS from there.

 To do so, we’ll guide you through the following steps:

1 Get the public IP address of the virtual server running the WordPress applica-
tion with a connection to the RDS database.

2 Connect to the virtual server via SSH.
3 Download the database dump from S3 to the virtual server.
4 Run an import of the database dump to the RDS database from the virtual

server.

Fortunately, you already started two virtual servers that can connect to the MySQL
database on RDS because they’re serving the WordPress application. To find out the
public IP address of one of these two virtual servers, run the following command on
your local machine:

$ aws ec2 describe-instances --filters Name=tag-key,\
Values=aws:cloudformation:stack-name Name=tag-value,\
Values=wordpress --output text \
--query Reservations[0].Instances[0].PublicIpAddress

Open an SSH connection to the virtual server with the public IP address from the pre-
vious command. Use the SSH key mykey to authenticate, and replace $PublicIpAddress
with the IP address of the virtual server running the WordPress application:

$ ssh -i $PathToKey/mykey.pem ec2-user@$PublicIpAddress

We prepared a MySQL database dump of a WordPress blog as an example. Download
this database dump from S3 with the following command on the virtual server:

$ wget https://s3.amazonaws.com/awsinaction/chapter9/wordpress-import.sql

Now you’re ready to import the MySQL database dump containing the data of a
WordPress blog to the RDS database instance. You’ll need the port and hostname,
also called the endpoint, of the MySQL database on RDS to do so. Don’t remember

(continued)
And of course you can export a database over a network connection. To connect to a
database server to export a database, replace $Host with the host name or IP ad-
dress of your database:

$ mysqldump -u $UserName -p $DatabaseName --host $Host > dump.sql

See the MySQL documentation if you need more information about the mysqldump
tool.

Licensed to Thomas Snead <n.ordickan@gmail.com>

236 CHAPTER 9 Using a relational database service: RDS

the endpoint? The following command will print it out for you. Run this on your
local machine:

$ aws rds describe-db-instances --query DBInstances[0].Endpoint

Run the following command on the virtual server to import the data from the file
wordpress-import.sql into the RDS database instance; replace $DBHostName with the
RDS endpoint you printed to the terminal with the previous command. Type in the
password wordpress when asked for a password:

$ mysql --host $DBHostName --user wordpress -p < wordpress-import.sql

Point your browser to the WordPress blog again, and you’ll find many new posts and
comments there. If you don’t remember the URL, run the following command on
your local machine to fetch it again:

$ aws cloudformation describe-stacks --stack-name wordpress \
--query Stacks[0].Outputs[0].OutputValue --output text

9.3 Backing up and restoring your database
Amazon RDS is a managed service, but you still need backups of your database in case
something or someone harms your data and you need to restore from a snapshot in
time, or you need to duplicate a database in the same or another region. RDS offers
manual and automated snapshots for point-in-time recovery of RDS database instances.

 In this section, you’ll learn how to use RDS snapshots:

■ Configuring the retention period and time frame for automated snapshots
■ Creating snapshots manually
■ Restoring snapshots by starting new database instances based on a snapshot
■ Copying a snapshot to another region for disaster recovery or relocation

9.3.1 Configuring automated snapshots

The RDS database of the WordPress blogging platform you started in section 9.1 will
automatically create snapshots of your database. Automated snapshots are created
once a day during a specified time frame. If no time frame is specified, RDS picks a
random 30-minute time frame during the night. Automated snapshots are deleted
after one day by default; you can change this retention period to a value between 1
and 35.

 Creating a snapshot requires a brief freeze of all disk activity. Requests to the data-
base may be delayed or even fail because of a timeout, so we recommend that you
choose a time frame for the automated snapshot that has the least impact on applica-
tions and users.

 The following command changes the time frame for automated backups to 05:00–06:00
UTC and the retention period to three days. Use the terminal on your local machine to exe-
cute it:

Licensed to Thomas Snead <n.ordickan@gmail.com>

237Backing up and restoring your database

$ aws cloudformation update-stack --stack-name wordpress --template-url \
https://s3.amazonaws.com/awsinaction/chapter9/template-snapshot.json \
--parameters ParameterKey=KeyName,UsePreviousValue=true \
ParameterKey=AdminPassword,UsePreviousValue=true \
ParameterKey=AdminEMail,UsePreviousValue=true

The RDS database will be modified based on a slightly modified CloudFormation tem-
plate, as shown in the following listing.

[...]
"Database": {

"Type": "AWS::RDS::DBInstance",
"Properties": {
"AllocatedStorage": "5",
"DBInstanceClass": "db.t2.micro",
"DBInstanceIdentifier": "awsinaction-db",
"DBName": "wordpress",
"Engine": "MySQL",
"MasterUsername": "wordpress",
"MasterUserPassword": "wordpress",
"VPCSecurityGroups": [

{"Fn::GetAtt": ["DatabaseSecurityGroup", "GroupId"]}
],
"DBSubnetGroupName": {"Ref": "DBSubnetGroup"},
"BackupRetentionPeriod": 3,
"PreferredBackupWindow": "05:00-06:00"

}
}
[...]

If you want to disable automated snapshots, you need to change the retention period
to 0. As usual, you can configure automated backups with the help of CloudFormation
templates, the Management Console, or SDKs.

9.3.2 Creating snapshots manually

Manual snapshots can be triggered in addition to automated snapshots whenever
needed. The following command creates a manual snapshot called wordpress-manual-
snapshot:

$ aws rds create-db-snapshot --db-snapshot-identifier \
wordpress-manual-snapshot \
--db-instance-identifier awsinaction-db

It will take a few minutes for the snapshot to be created. You can check the current
state of the snapshot with the following command:

$ aws rds describe-db-snapshots \
--db-snapshot-identifier wordpress-manual-snapshot

Listing 9.4 Modifying an RDS database’s snapshot time frame and retention time

Keep
snapshots
for three

days.

Create snapshots
automatically between
05:00 and 06:00 UTC.

Licensed to Thomas Snead <n.ordickan@gmail.com>

238 CHAPTER 9 Using a relational database service: RDS

RDS doesn’t delete manual snapshots automatically; you need to delete them yourself
if you don’t need them any longer. You’ll learn how to do this at the end of the section.

9.3.3 Restoring a database

If you restore a database from an automated or a manual snapshot, a new database is
created based on the snapshot. As figure 9.2 shows, you can’t restore a snapshot to an
existing database.

 As figure 9.3 illustrates, a new database is created to restore a database snapshot.

Copying an automated snapshot as a manual snapshot
There’s a difference between automated and manual snapshots. Automated
snapshots are deleted automatically after the retention period is over, but manual
snapshots aren’t. If you want to keep an automated snapshot even after the
retention period is over, you have to copy the automated snapshot to a new
manual snapshot.

Get the snapshot identifier of an automated snapshot from the RDS database of the
WordPress blogging platform you started in section 9.1 by running the following com-
mand at your local terminal:

$ aws rds describe-db-snapshots --snapshot-type automated \
--db-instance-identifier awsinaction-db \
--query DBSnapshots[0].DBSnapshotIdentifier \
--output text

The following command copies an automated snapshot to a manual snapshot named
wordpress-copy-snapshot. Replace $SnapshotId with the output from the previ-
ous command:

$ aws rds copy-db-snapshot --source-db-snapshot-identifier \
$SnapshotId --target-db-snapshot-identifier \
wordpress-copy-snapshot

The copy of the automated snapshot is named wordpress-copy-snapshot. It won’t
be removed automatically.

Snapshot

Existing database

Create snapshot

You can’t restore a snapshot
to an existing database.

Figure 9.2 A snapshot can’t be restored into an existing database.

Licensed to Thomas Snead <n.ordickan@gmail.com>

239Backing up and restoring your database

To create a new database in the same VPC as the WordPress blogging platform you
started in section 9.1, you need to find out the subnet group of the existing database.
Execute the following command to do so:

$ aws cloudformation describe-stack-resource \
--stack-name wordpress --logical-resource-id DBSubnetGroup \
--query StackResourceDetail.PhysicalResourceId --output text

You’re ready to create a new database based on the manual snapshot you created at
the beginning of this section. Execute the following command after replacing
$SubnetGroup with the output of the previous command:

$ aws rds restore-db-instance-from-db-snapshot \
--db-instance-identifier awsinaction-db-restore \
--db-snapshot-identifier wordpress-manual-snapshot \
--db-subnet-group-name $SubnetGroup

A new database named awsinaction-db-restore is created based on the manual
snapshot. After the database is created, you can switch the WordPress application to
the new endpoint.

 If you’re using automated snapshots, you can also restore your database from a
specified moment in time because RDS keeps the database’s change logs. This allows
you to jump back to any point in time from the backup retention period to the last
five minutes.

Snapshot

Existing database New database

Create
snapshot

Restore
snapshot

Figure 9.3 A new da-
tabase is created to
restore a snapshot.

Using a DNS CNAME to point to your database
Each RDS database instance gets a DNS name like awsinaction-db.czwgnecjynmj.us-
east-1.rds.amazonaws.com. If you create a database instance from a snapshot, the
new database instance will get a new name. If you hard-code the name into your ap-
plication configuration, your application won’t work because it doesn’t use the new
DNS name. To avoid this, you can create a DNS record like mydatabase.mycompany
.com that points to the database’s DNS name with a CNAME. If you need to restore
your database, change the DNS record to point to the new name; your application will
work again because the application uses mydatabase.mycompany.com to connect to
the database. The DNS service in AWS is called Route 53.

Licensed to Thomas Snead <n.ordickan@gmail.com>

240 CHAPTER 9 Using a relational database service: RDS

 Execute the following command after replacing $SubnetGroup with the output of
the earlier describe-stack-resource command and replacing $Time with a UTC
timestamp from five minutes ago (for example, 2015-05-23T12:55:00Z):

$ aws rds restore-db-instance-to-point-in-time \
--target-db-instance-identifier awsinaction-db-restore-time \
--source-db-instance-identifier awsinaction-db \
--restore-time $Time --db-subnet-group-name $SubnetGroup

A new database named awsinaction-db-restore-time is created based on the source
database from five minutes ago. After the database is created, you can switch the
WordPress application to the new endpoint.

9.3.4 Copying a database to another region

Copying a database to another region is easy with the help of snapshots. The main rea-
sons for doing so are as follows:

■ Disaster recovery—You can recover from an unlikely region-wide outage.
■ Relocating—You can move your infrastructure to another region so you can

serve your customers with lower latency.

You can easily copy a snapshot to another region. The following command copies the
snapshot named wordpress-manual-snapshot from the region us-east-1 to the
region eu-west-1. You need to replace $AccountId before you execute the command:

$ aws rds copy-db-snapshot --source-db-snapshot-identifier \
arn:aws:rds:us-east-1:$AccountId:snapshot:\
wordpress-manual-snapshot --target-db-snapshot-identifier \
wordpress-manual-snapshot --region eu-west-1

NOTE Moving data from one region to another region may violate privacy laws
or compliance rules, especially if the data crosses frontiers. Make sure you’re
allowed to copy the data to another region if you’re working with real data.

If you can’t remember your account ID, you can look it up with the help of the CLI:

$ aws iam get-user --query "User.Arn" --output text
arn:aws:iam::878533158213:user/mycli

After the snapshot is copied to the region eu-west-1, you can restore a database from
it as described in the previous section.

9.3.5 Calculating the cost of snapshots

Snapshots are billed based on the storage they use. You can store snapshots up to the
size of your database instance for free. In the example setup for a WordPress blogging
platform, you can store up to 5 GB of snapshots for free. On top of that, you pay per
GB per month of used storage. As we’re writing this book, the cost is $0.095 for each
GB every month (region us-east-1).

Account ID has 12 digits (878533158213)

Licensed to Thomas Snead <n.ordickan@gmail.com>

241Controlling access to a database

9.4 Controlling access to a database
The shared-responsibility model applies to the RDS service, as well as to AWS services
in general. AWS is responsible for security of the cloud in this case—for example, for
the security of the underlying OS. You, the customer, need to specify the rules control-
ling access to the data and the RDS database.

 Figure 9.4 shows the three layers that control access to an RDS database:

■ Controlling access to the configuration of the RDS database
■ Controlling network access to the RDS database
■ Controlling data access with the help of the user and access management of the

database itself

9.4.1 Controlling access to the configuration of an RDS database

Access to the RDS service is controlled with the help of the Identity and Access Man-
agement (IAM) service. The IAM service is responsible for controlling access to actions
like creating, updating, and deleting an RDS database instance. IAM doesn’t manage
access inside the database; that’s the job of the database engine (see section 9.4.3). An
IAM policy defines the configuration and management actions a user or group is
allowed to execute on the RDS service. Attaching the IAM policy to IAM users, groups,
or roles controls which entity can use the policy to configure an RDS database.

Cleaning up
It’s time to clean up the snapshots and restore the databases. Execute the following
commands step by step:

$ aws rds delete-db-instance --db-instance-identifier \
awsinaction-db-restore --skip-final-snapshot
$ aws rds delete-db-instance --db-instance-identifier \
awsinaction-db-restore-time --skip-final-snapshot
$ aws rds delete-db-snapshot --db-snapshot-identifier \
wordpress-manual-snapshot
$ aws rds delete-db-snapshot --db-snapshot-identifier \
wordpress-copy-snapshot
$ aws --region eu-west-1 rds delete-db-snapshot --db-snapshot-identifier \
wordpress-manual-snapshot

Keep the rest of the setup, because you’ll use it in the following sections.

Deletes the database with data
from the snapshot restore

Deletes the
database with
data from the
point-in-time
restore

Deletes the manual snapshot

Deletes the
copied snapshotDeletes the snapshot

copied to another region

Licensed to Thomas Snead <n.ordickan@gmail.com>

242 CHAPTER 9 Using a relational database service: RDS

The following listing shows an IAM policy that allows access to all configuration and
management actions of the RDS service. You could attach this policy to only certain
IAM users and groups to limit access.

{
"Version": "2012-10-17",
"Statement": [{
"Sid": "Stmt1433661637000",
"Effect": "Allow",
"Action": ["rds:*"],
"Resource": "*"

}]
}

Only people and machines that really need to make changes to RDS databases should
be allowed to do so. See chapter 6 if you’re interested in more details about the IAM
service.

Listing 9.5 IAM policy allowing access to manage RDS

Configuration
access management

IAM policies control access to the
configuration of network access management

and the configuration of the database.

Network
access management

Firewall rules control access to the
database at the network level: security groups

for the database instance and ACLs for subnets.

Database
access management

User and access management
from the database system
controls access to data.

Data
Sensitive data

must be protected from
unauthorized access.

Figure 9.4 Your data is
protected by the access
management of the data-
base itself, security
groups, and IAM.

The IAM policy allows the
specified actions on the
specified resources.

All possible actions on the RDS service
are specified (for example, changes to
the database configuration).All RDS databases are specified.

Licensed to Thomas Snead <n.ordickan@gmail.com>

243Controlling access to a database

9.4.2 Controlling network access to an RDS database

An RDS database is linked to security groups. A security group consists of rules for a
firewall controlling inbound and outbound database traffic. You already know about
security groups in combination with virtual servers.

 The next listing shows the configuration of the security group attached to the RDS
database in the WordPress example. Inbound connections to port 3306, the default
port for MySQL, are only allowed from virtual servers linked to the security group
called WebServerSecurityGroup.

{
[...]
"Resources": {
[...]
"DatabaseSecurityGroup": {

"Type": "AWS::EC2::SecurityGroup",
"Properties": {

"GroupDescription": "awsinaction-db-sg",
"VpcId": {"Ref": "VPC"},
"SecurityGroupIngress": [{

"IpProtocol": "tcp",
"FromPort": "3306",
"ToPort": "3306",
"SourceSecurityGroupId": {"Ref": "WebServerSecurityGroup"}

}]
}

},
[...]

},
[...]

}

Only machines that really need to connect to the RDS database should be allowed to
do so on the network level. See chapter 6 if you’re interested in more details about
firewall rules and security groups.

9.4.3 Controlling data access

A database engine implements access control. User management of the database
engine has nothing to do with IAM users and access rights; it’s only responsible for
controlling access to the database. For example, you typically define a user for each
application and grant rights to access and manipulate tables as needed.

 Typical use cases are as follows:

■ Limiting write access to a database to a few database users (for example, only
for an application)

Listing 9.6 CloudFormation template extract: firewall rules for an RDS database

Security group for the
database instance, allowing
incoming traffic on the MySQL
default port for web servers

The default MySQL port is 3306.

References the security
group for web servers

Licensed to Thomas Snead <n.ordickan@gmail.com>

244 CHAPTER 9 Using a relational database service: RDS

■ Limiting access to specific tables to a few users (for example, to a department of
the organization)

■ Limiting access to tables to isolate different applications (for example, hosting
multiple applications for different customers on the same database)

User and access management varies between database systems. We don’t cover this
topic in this book; refer to your database system’s documentation for details.

9.5 Relying on a highly available database
A database is typically the most important part of a system. Applications won’t work if
they can’t connect to the database, and the data stored in the database is mission-critical,
so the database must be highly available and store data durably.

 Amazon RDS lets you launch a highly available database. Compared to a default
database consisting of a single database instance, a highly available RDS database con-
sists of two database instances: a master and a standby database. You also pay for two
instances if you run a highly available RDS database. All clients send requests to the
master database. Data is replicated between the master and the standby database syn-
chronously, as shown in figure 9.5.

 If the master database becomes unavailable due to hardware or network failures,
RDS starts the failover process. The standby database becomes the master database. As
figure 9.6 shows, the DNS name is updated and clients begin to use the former standby
database for their requests.

 RDS detects the need for a failover automatically and executes it without human
intervention. We highly recommend using high-availability deployment for all data-
bases that handle production workloads.

Replicate
synchronously

awsinaction-db...rds.amazonaws.com

Master database Standby database

Application client

Resolve DNS name

awsinaction-db...rds.amazonaws.com

Master database Standby database

Application client

Resolve DNS name

Figure 9.5 The master database is replicated to
the standby database when running in high-avail-
ability mode.

Figure 9.6 The client fails over to the
standby database if the master database
fails, using DNS resolution.

Licensed to Thomas Snead <n.ordickan@gmail.com>

245Relying on a highly available database

9.5.1 Enabling high-availability deployment for an RDS database

Execute the following command at your local terminal to enable high-availability
deployment for the RDS database of the WordPress blogging platform you started in
section 9.1:

$ aws cloudformation update-stack --stack-name wordpress --template-url \
https://s3.amazonaws.com/awsinaction/chapter9/template-multiaz.json \
--parameters ParameterKey=KeyName,UsePreviousValue=true \
ParameterKey=AdminPassword,UsePreviousValue=true \
ParameterKey=AdminEMail,UsePreviousValue=true

WARNING Starting a highly available RDS database will incur charges. See
https://aws.amazon.com/rds/pricing/ if you want to find out the current
hourly price.

The RDS database is updated based on a slightly modified CloudFormation template.

[...]
"Database": {

"Type": "AWS::RDS::DBInstance",
"Properties": {
"AllocatedStorage": "5",
"DBInstanceClass": "db.t2.micro",
"DBInstanceIdentifier": "awsinaction-db",
"DBName": "wordpress",
"Engine": "MySQL",
"MasterUsername": "wordpress",
"MasterUserPassword": "wordpress",
"VPCSecurityGroups": [

{"Fn::GetAtt": ["DatabaseSecurityGroup", "GroupId"]}
],
"DBSubnetGroupName": {"Ref": "DBSubnetGroup"},
"MultiAZ": true

}
}
[...]

It will take several minutes for the database to be deployed in high-availability mode.
But there is nothing more you need to do—the database is now highly available.

Listing 9.7 Modifying the RDS database by enabling high availability

Enables high-availability
deployment for the RDS
database

What is Multi-AZ?
Each AWS region is split into multiple independent data centers, also called availabil-
ity zones. We’ll introduce the concept of availability zones in chapter 11. That’s why
we’ve skipped one aspect of high-availability deployment for RDS: the master and
standby databases are launched into two different availability zones. AWS calls the
high-availability deployment of RDS Multi-AZ deployment.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://aws.amazon.com/rds/pricing/

246 CHAPTER 9 Using a relational database service: RDS

In addition to the fact that a high-availability deployment of an RDS database increases
the reliability of your database, there’s another important advantage. Reconfiguring
or maintaining a single-mode database causes short downtimes. A high-availability
deployment of an RDS database solves this problem because you can switch to the
standby database during maintenance.

9.6 Tweaking database performance
An RDS database, or an SQL database in general, can only be scaled vertically. If the
performance of your database becomes insufficient, you must increase the perfor-
mance of the underlying hardware:

■ Faster CPU
■ More memory
■ Faster I/O

In comparison, an object store like S3 or a NoSQL-database like DynamoDB can be
scaled horizontally. You can increase performance by adding more nodes to the cluster.

9.6.1 Increasing database resources

When you start an RDS database, you choose an instance type. An instance type
defines the computing power and memory of a virtual server (like when you start an
EC2 instance). Choosing a bigger instance type increases computing power and mem-
ory for RDS databases.

 You started an RDS database with instance type db.t2.micro, the smallest available
instance type. You can change the instance type with the help of the CloudFormation
template, the CLI, the Management Console, or AWS SDKs. The following listing
shows how to change the CloudFormation template to increase the instance type
from db.t2.micro with 1 virtual core and 615 MB memory to db.m3.large with 2 faster
virtual cores and 7.5 GB memory. You’ll do this only in theory—don’t increase your
running database.

{
[...]
"Resources": {
[...]
"Database": {

"Type": "AWS::RDS::DBInstance",
"Properties": {

"AllocatedStorage": "5",
"DBInstanceClass": "db.m3.large",
"DBInstanceIdentifier": "awsinaction-db",
"DBName": "wordpress",
"Engine": "MySQL",
"MasterUsername": "wordpress",

Listing 9.8 Modifying the instance type to improve performance of an RDS database

Increases the size of the
underlying virtual server
for the database instance
from db.t2.micro to
db.m3.large

Licensed to Thomas Snead <n.ordickan@gmail.com>

247Tweaking database performance

"MasterUserPassword": "wordpress",
"VPCSecurityGroups": [

{"Fn::GetAtt": ["DatabaseSecurityGroup", "GroupId"]}
],
"DBSubnetGroupName": {"Ref": "DBSubnetGroup"}

}
},
[...]

},
[...]

}

Because a database has to read and write data to a disk, I/O performance is important
for the database’s overall performance. RDS offers three different types of storage, as
you already know from the block storage service EBS:

■ General purpose (SSD)
■ Provisioned IOPS (SSD)
■ Magnetic

You should choose general purpose (SSD) or even provisioned IOPS (SSD) storage for
production workloads. The options are exactly the same as for the block storage ser-
vice EBS you can use for virtual servers. If you need to guarantee a high level of read or
write throughput, you should use the provisioned IOPS (SSD) option. The general
purpose (SSD) option offers moderate baseline performance with the ability to burst.
The throughput for general purpose (SSD) depends on the initialized storage size.
Magnetic storage is an option if you need to store data at a low cost or if you don’t
need to access it in a predictable, performant way. The next listing shows how to
enable general purpose (SSD) storage with the help of a CloudFormation template.

{
[...]
"Resources": {
[...]
"Database": {

"Type": "AWS::RDS::DBInstance",
"Properties": {

"AllocatedStorage": "5",
"DBInstanceClass": "db.t2.micro",
"DBInstanceIdentifier": "awsinaction-db",
"DBName": "wordpress",
"Engine": "MySQL",
"MasterUsername": "wordpress",
"MasterUserPassword": "wordpress",
"VPCSecurityGroups": [

{"Fn::GetAtt": ["DatabaseSecurityGroup", "GroupId"]}
],
"DBSubnetGroupName": {"Ref": "DBSubnetGroup"},

Listing 9.9 Modifying the storage type to improve performance of an RDS database

Licensed to Thomas Snead <n.ordickan@gmail.com>

248 CHAPTER 9 Using a relational database service: RDS

"StorageType": "gp2"
}

},
[...]

},
[...]

}

9.6.2 Using read replication to increase read performance

SQL databases can also be scaled hori-
zontally in special circumstances. A data-
base suffering from many read requests
can be scaled horizontally by adding
additional database instances for read
replication. As figure 9.7 shows, changes
to the database are asynchronously rep-
licated to an additional read-only data-
base instance. The read requests can be
distributed between the master database
and its read-replication databases to
increase read throughput.

 Tweaking read performance with rep-
lication makes sense only if an applica-
tion generates many read requests and
few write requests. Fortunately, most
applications read more than they write.

CREATING A READ-REPLICATION DATABASE

Amazon RDS supports read replication
for MySQL and PostgreSQL databases.
To use read replication, you need to enable automatic backups for your database, as
shown in the last section of this chapter.

 Execute the following command from your local machine to create a read-
replication database for the database of the WordPress blogging platform you started
in section 9.1:

$ aws rds create-db-instance-read-replica \
--db-instance-identifier awsinaction-db-read \
--source-db-instance-identifier awsinaction-db

RDS automatically triggers the following steps in the background:

1 Creating a snapshot from the source database, also called the master database
2 Launching a new database based on that snapshot
3 Activating replication between the master and read-replication databases
4 Creating an endpoint for SQL read requests to the read-replication database

Uses general purpose (SSD)
storage to increase I/O
performance

Replicate
asynchronously

Master database
Read replica

database

Application client

Read and write Read only

Figure 9.7 Read requests are distributed between
the master and read-replication databases for higher
read performance.

Licensed to Thomas Snead <n.ordickan@gmail.com>

249Tweaking database performance

After the read-replication database is successfully created, it’s available to answer SQL
read requests. The application using the SQL database must support the use of a read-
replication database. WordPress, for example, doesn’t support the use of a read rep-
lica by default, but you can use a plugin called HyperDB to do so; the configuration is
a little tricky, so we’ll skip this part. Creating or deleting a read replica doesn’t affect
the availability of the master database.

PROMOTING A READ REPLICA TO A STANDALONE DATABASE

If you create a read-replication database to migrate a database from one region to
another, or if you have to perform heavy and load-intensive tasks on your database,
such as adding an index, it’s helpful to switch your workload from the master database
to a read-replication database. The read replica must become the new master data-
base. Promoting read-replication databases to become master databases is possible for
MySQL and PostgreSQL databases with RDS.

 The following command promotes the read-replication database you created in
this section to a standalone master database. Note that the read-replication database
will perform a restart and be unavailable for a few minutes:

$ aws rds promote-read-replica --db-instance-identifier awsinaction-db-read

The RDS database instance named awsinaction-db-read will accept write requests after
the transformation from a read-replication database to a master database is successful.

Using read replication to transfer data to another region
RDS supports read replication between regions for MySQL databases. You can repli-
cate your data from the data centers in North Virginia to the data centers in Ireland,
for example. There are three major use cases for this feature:

1 Backing up data to another region for the unlikely case of an outage of a com-
plete region

2 Transferring data to another region to be able to answer read requests with
lower latency

3 Migrating a database to another region

Creating read replication between two regions incurs an additional cost because you
have to pay for the transferred data.

Cleaning up
It’s time to clean up to avoid unwanted expense. Execute the following command:

$ aws rds delete-db-instance --db-instance-identifier \
awsinaction-db-read --skip-final-snapshot

Licensed to Thomas Snead <n.ordickan@gmail.com>

250 CHAPTER 9 Using a relational database service: RDS

You’ve gained some experience with the AWS relational database service in this
chapter. We’ll end the chapter by having a closer look at the monitoring capabilities of
RDS.

9.7 Monitoring a database
RDS is a managed service. Nevertheless, you need to monitor some metrics to make
sure your database can respond to all requests from applications. RDS publishes sev-
eral metrics to AWS CloudWatch, a monitoring service for the AWS cloud. You can
watch these metrics through the Management Console, as shown in figure 9.8, and
define alarms for when a metric reaches a threshold.

Chart shows the
CPU utilization of
the DB instance

Monitor free
storage for
the database

Toggle
monitoring

Monitor I/O utilization of the database

Figure 9.8 Metrics to monitor an RDS database from the Management Console

Licensed to Thomas Snead <n.ordickan@gmail.com>

251Summary

The following steps will guide you to the metrics of the RDS database you started for
the WordPress blogging platform:

1 Open the Management Console at https://console.aws.amazon.com.
2 Select the CloudWatch service from the main navigation.
3 Choose RDS Metrics from the submenu at left.
4 Select a metric of your choice by selecting the check box in the table row.

There are up to 18 metrics per RDS database instance. Table 9.5 shows the most
important ones; we recommend that you keep an eye on them by creating alarms.

We recommend that you monitor these metrics in particular, to make sure your data-
base isn’t the cause of application performance problems.

In this chapter, you’ve learned how to use the RDS service to manage relational data-
bases for your applications. The next chapter will focus on a NoSQL database.

9.8 Summary
■ RDS is a managed service providing relational databases.
■ You can choose between MySQL, PostgreSQL, Microsoft SQL, and Oracle data-

bases.
■ The fastest way to import data into an RDS database is to copy it to a virtual

server in the same region and pump it into the RDS database from there.

Table 9.5 Important metrics for RDS databases from CloudWatch

Name Description

FreeStorageSpace Available storage in bytes. Make sure you don’t run out of storage space.

CPUUtilization The usage of the CPU as a percentage. High utilization can be an indicator of a
bottleneck due to insufficient CPU performance.

FreeableMemory Free memory in bytes. Running out of memory can cause performance problems.

DiskQueueDepth Number of outstanding requests to the disk. A long queue indicates that the data-
base has reached the storage’s maximum I/O performance.

Cleaning up
It’s time to clean up, to avoid unwanted expense. Execute the following command to
delete all resources corresponding to the WordPress blogging platform based on an
RDS database:

$ aws cloudformation delete-stack --stack-name wordpress

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://console.aws.amazon.com

252 CHAPTER 9 Using a relational database service: RDS

■ You can control access to data with a combination of IAM policies and firewall
rules, and on the database level.

■ You can restore an RDS database to any time in the retention period (a maxi-
mum of 35 days).

■ RDS databases can be highly available. You should launch RDS databases in
Multi-AZ mode for production workloads.

■ Read replication can improve the performance of read-intensive workloads on
a SQL database.

Licensed to Thomas Snead <n.ordickan@gmail.com>

253

Programming for the NoSQL
database service: DynamoDB

Scaling a traditional, relational database is difficult because transactional guaran-
tees (atomicity, consistency, isolation, and durability, also known as ACID) require
communication among all nodes of the database. The more nodes you add, the
slower your database becomes, because more nodes must coordinate transactions
between each other. The way to tackle this has been to use databases that don’t
adhere to these guarantees. They’re called NoSQL databases.

 There are four types of NoSQL databases—document, graph, columnar, and
key-value store—each with its own uses and applications. Amazon provides a
NoSQL database service called DynamoDB. Unlike RDS, which effectively provides

This chapter covers
■ The DynamoDB NoSQL database service
■ Creating tables and secondary indexes
■ Integrating DynamoDB into your service stack
■ Designing a key-value optimized data model
■ Tuning performance

Licensed to Thomas Snead <n.ordickan@gmail.com>

254 CHAPTER 10 Programming for the NoSQL database service: DynamoDB

several common RDBMS engines like MySQL, Oracle Database, Microsoft SQL Server,
and PostgreSQL, DynamoDB is a fully managed, proprietary, closed source key-value
store. If you want to use a different type of NoSQL database—a document database
like MongoDB, for example—you’ll need to spin up an EC2 instance and install Mon-
goDB directly on that. Use the instructions in chapters 3 and 4 to do so. DynamoDB is
highly available and highly durable. You can scale from one item to billions and from
one request per second to tens of thousands of requests per second.

 This chapter looks in detail at how to use DynamoDB: both how to administer
it like any other service and how to program your applications to use it. Administer-
ing DynamoDB is simple. You can create tables and secondary indexes, and there’s
only one option to tweak: its read and write capacity, which directly affects its cost
and performance.

 We’ll look at the basics of DynamoDB and demonstrate them by walking through a
simple to-do application called nodetodo, the Hello World of modern applications.
Figure 10.1 shows the to-do application nodetodo in action.

Figure 10.1 You can manage your tasks with the command-line to-do application nodetodo.

Examples are 100% covered by the Free Tier
The examples in this chapter are totally covered by the Free Tier. As long as you don’t
run the examples longer than a few days, you won’t pay anything for it. Keep in mind
that this applies only if you created a fresh AWS account for this book and there are
no other things going on in your AWS account. Try to complete the chapter within a
few days, because you’ll clean up your account at the end of the chapter.

Licensed to Thomas Snead <n.ordickan@gmail.com>

255Operating DynamoDB

Before you get started with nodetodo, you need to know about DynamoDB 101.

10.1 Operating DynamoDB
DynamoDB doesn’t require administration like a traditional relational database;
instead, you have other tasks to take care of. Pricing depends mostly on your storage
usage and performance requirements. This section also compares DynamoDB to RDS.

10.1.1 Administration

With DynamoDB, you don’t need to worry about installation, updates, servers, storage,
or backups:

■ DynamoDB isn’t software you can download. Instead, it’s a NoSQL database as a
service. Therefore, you really can’t install DynamoDB like you install MySQL or
MongoDB. This also means you don’t have to update your database; the soft-
ware is maintained by AWS.

■ DynamoDB runs on a fleet of servers operated by AWS. They take care of the OS
and all security-related questions. From a security perspective, it’s your job to
grant the right permissions in IAM to the users your of DynamoDB tables.

■ DynamoDB replicates your data among multiple servers and across multiple
data centers. There’s no need for a backup from a durability point of view—the
backup is already in the database.

Now you know some administrative tasks that are no longer necessary if you use Dyna-
moDB. But you still have things to consider when using DynamoDB in production: cre-
ating tables (see section 10.4), creating secondary indexes (section 10.6), monitoring
capacity usage, and provisioning read and write capacity (section 10.9).

10.1.2 Pricing

If you use DynamoDB, you pay the following monthly:

■ $ 0.25 per used GB of storage (secondary indexes consume storage as well)
■ $ 0.47 per provisioned write-capacity unit of throughput (throughput is explained

in section 10.9)
■ $ 0.09 per provisioned read-capacity unit of throughput

These prices are valid for the North Virginia (us-east-1) region. No additional traffic
charges apply if you use AWS resources like EC2 servers to access DynamoDB in the
same region

10.1.3 RDS comparison

Table 10.1 compares DynamoDB and RDS. Keep in mind that this is like comparing
apples and oranges; the only thing DynamoDB and RDS have in common is that both
are called databases.

Licensed to Thomas Snead <n.ordickan@gmail.com>

256 CHAPTER 10 Programming for the NoSQL database service: DynamoDB

10.2 DynamoDB for developers
DynamoDB is a key-value store that organizes your data in tables. Each table contains
items (values) that are identified by keys. A table can also maintain secondary indexes
for data look-up in addition to the primary key. In this section, you’ll look at these basic
building blocks of DynamoDB, ending with a brief comparison of NoSQL databases.

10.2.1 Tables, items, and attributes

A DynamoDB table has a name and organizes a collection of items. An item is a collec-
tion of attributes. An attribute is a name-value pair. The attribute value can be scalar
(number, string, binary, boolean), multivalued (number set, string set, binary set), or
a JSON document (object, array). Items in a table aren’t required to have the same
attributes; there is no enforced schema.

 You can create a table with the Management Console, CloudFormation, SDKs, or
the CLI. The following example shows how you create a table with the CLI (don’t try to
run this command now—you’ll create a table later in the chapter):

$ aws dynamodb create-table --table-name app-entity \
--attribute-definitions AttributeName=id,AttributeType=S \

Table 10.1 Differences between DynamoDB and RDS

Task DynamoDB RDS

Creating a table Management Console, SDK, or CLI aws
dynamodb create-table

SQL CREATE TABLE statement

Inserting, updating, or
deleting data

SDK SQL INSERT, UPDATE, or DELETE
statement, respectively

Querying data If you query the primary key: SDK.
Querying non-key attributes isn’t possible,
but you can add a secondary index or scan
the entire table.

SQL SELECT statement

Increasing storage No action needed: DynamoDB grows with
your items.

Provision more storage.

Increasing performance Horizontal, by increasing capacity.
DynamoDB will add more servers under
the hood.

Vertical, by increasing instance size; or
horizontal, by adding read replicas. There
is an upper limit.

Installing the database
on your machine

DynamoDB isn’t available for download. You
can only use it as a service.

Download MySQL, Oracle Database,
Microsoft SQL Server, or PostgreSQL,
and install it on your machine.

Hiring an expert Search for special DynamoDB skills. Search for general SQL skills or special
skills, depending on the database engine.

Choose a name
for your table,
like app-entity.

The attribute named
id is of type string.

Licensed to Thomas Snead <n.ordickan@gmail.com>

257DynamoDB for developers

--key-schema AttributeName=id,KeyType=HASH \
--provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

If you plan to run multiple applications that use DynamoDB, it’s good practice to prefix
your tables with the name of your application. You can also add tables via the Manage-
ment Console. Keep in mind that you can’t change the name of a table and the key
schema. But you can add attribute definitions and change the provisioned throughput.

10.2.2 Primary keys

A primary key is unique within a table and identifies an item. You need the primary
key to look up an item. The primary key is either a hash or a hash and a range. Hash
keys
A hash key uses a single attribute of an item to create a hash index. If you want to look
up an item based on its hash key, you need to know the exact hash key. A user table
could use the user’s email as a hash primary key. A user then can be retrieved if you
know the hash key (email, in this case).

HASH AND RANGE KEYS

A hash and range key uses two attributes of an item to create a more powerful index.
The first attribute is the hash part of the key, and the second part is the range. To look
up an item, you need to know the exact hash part of the key, but you don’t need to know
the range part. The range part is sorted within the hash. This allows you to query the
range part of the key from a certain starting point. A message table can use a hash and
range as its primary key; the hash is the email of the user, and the range is a timestamp.
You can now look up all messages of a user that are newer than a specific timestamp.

10.2.3 NoSQL comparison

Table 10.2 compares DynamoDB to several NoSQL databases. Keep in mind that all of
these databases have pros and cons, and the table shows only a high-level comparison
of how they can be used on top of AWS.

Table 10.2 Differences between DynamoDB and some NoSQL databases

Task
DynamoDB

Key-value store
MongoDB

Document store
Neo4j

Graph store
Cassandra

Columnar store
Riak KV

Key-value store

Run the data-
base on AWS
in production.

One click: it’s a
managed service.

Cluster of EC2
instances, self-
maintained.

Cluster of EC2
instances, self-
maintained.

Cluster of EC2
instances, self-
maintained.

Cluster of EC2
instances, self-
maintained.

Increase avail-
able storage
while running.

Not necessary. The
database grows
automatically.

Add more EC2
instances
(replica set).

Not possible (the
increasing size of
EBS volumes
requires downtime).

Add more EC2
instances.

Add more EC2
instances.

The primary key uses
the id attribute.

You’ll learn about this in section 10.9.

Licensed to Thomas Snead <n.ordickan@gmail.com>

258 CHAPTER 10 Programming for the NoSQL database service: DynamoDB

10.2.4 DynamoDB Local

Imagine a team of developers working on a new app using DynamoDB. During devel-
opment, each developer needs an isolated database so as not to corrupt the other
team members’ data. They also want to write unit tests to make sure their app is work-
ing. You could create a unique set of DynamoDB tables with a CloudFormation stack
per developer to separate them, or you could use a local DynamoDB. AWS provides a
Java mockup of DynamoDB, which is available for download at http://mng.bz/27h5.
Don’t run it in production! It’s only made for development purposes and provides the
same functionality as DynamoDB, but it uses a different implementation: only the API
is the same.

10.3 Programming a to-do application
To minimize the overhead of a programming language, you’ll use Node.js/JavaScript
to create a small to-do application that can be used via the terminal on your local
machine. Let’s call the application nodetodo. nodetodo will use DynamoDB as a data-
base. With nodetodo, you can do the following:

■ Create and delete users
■ Create and delete tasks
■ Mark tasks as done
■ Get a list of all tasks with various filters

nodetodo supports multiple users and can track tasks with or without a due date. To
help users deal with many tasks, a task can be assigned to a category. nodetodo is
accessed via the terminal. Here’s how you would use nodetodo via the terminal to add
a user (don’t try to run this command now—it’s not yet implemented):

node index.js user-add <uid> <email> <phone>
$ node index.js user-add michael michael@widdix.de 0123456789
=> user added with uid michael

To add a new task, you would do the following (don’t try to run this command now—
it’s not yet implemented):

node index.js task-add <uid> <description> \
[<category>] [--dueat=<yyyymmdd>]
$ node index.js task-add michael "plan lunch" --dueat=20150522
=> task added with tid 1432187491647

Abstract description
of the CLI: parameters
are enclosed in < >.

Executes nodetodo
in the terminal

nodetodo’s output is
written to STDOUT.

Optional parameters
are enclosed in [].

Named parameters are
used with --name=value.

tid is the task ID.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://mng.bz/27h5

259Programming a to-do application

You would mark a task as finished as follows (don’t try to run this command now—it’s
not yet implemented):

node index.js task-done <uid> <tid>
$ node index.js task-done michael 1432187491647
=> task completed with tid 1432187491647

You should also be able to list tasks. Here’s how you would use nodetodo to do that
(don’t try to run this command now—it’s not yet implemented):

node index.js task-ls <uid> [<category>] [--overdue|--due|...]
$ node index.js task-ls michael
=> tasks [...]

To implement an intuitive CLI, nodetodo uses docopt, a command-line interface
description language, to describe the CLI interface. The supported commands are as
follows:

■ user-add—Adds a new user to nodetodo
■ user-rm—Removes a user
■ user-ls—Lists users
■ user—Shows the details of a single user
■ task-add—Adds a new task to nodetodo
■ task-rm—Removes a task
■ task-ls—Lists user tasks with various filters
■ task-la—Lists tasks by category with various filters
■ task-done—Marks a task as finished

In the rest of the chapter, you’ll implement those commands. The following listing
shows the full CLI description of all the commands, including parameters.

nodetodo

Usage:
nodetodo user-add <uid> <email> <phone>
nodetodo user-rm <uid>
nodetodo user-ls [--limit=<limit>] [--next=<id>]
nodetodo user <uid>
nodetodo task-add <uid> <description> \
[<category>] [--dueat=<yyyymmdd>]
nodetodo task-rm <uid> <tid>
nodetodo task-ls <uid> [<category>] \
[--overdue|--due|--withoutdue|--futuredue]
nodetodo task-la <category> \
[--overdue|--due|--withoutdue|--futuredue]
nodetodo task-done <uid> <tid>
nodetodo -h | --help

Listing 10.1 CLI description language docopt: using nodetodo (cli.txt)

The named
parameters limit and
next are optional.

The category
parameter is optional.

Pipe indicates either/or.

help prints information
about how to use nodetodo.

Licensed to Thomas Snead <n.ordickan@gmail.com>

260 CHAPTER 10 Programming for the NoSQL database service: DynamoDB

nodetodo --version

Options:
-h --help Show this screen.
--version Show version.

DynamoDB isn’t comparable to a traditional relational database in which you create,
read, update, or delete data with SQL. You’ll access DynamoDB with an SDK to call the
HTTP REST API. You must integrate DynamoDB into your application; you can’t take
an existing application that uses a SQL database and run it on DynamoDB. To use
DynamoDB, you need to write code!

10.4 Creating tables
A table in DynamoDB organizes your data. You aren’t required to define all the attri-
butes that table items will have. DynamoDB doesn’t need a static schema like a rela-
tional database, but you must define the attributes that are used as the primary key
in your table. In other words, you must define the table’s primary key. To do so,
you’ll use the AWS CLI. The aws dynamodb create-table command has four manda-
tory options:

■ table-name—Name of the table (can’t be changed).
■ attribute-definitions—Name and type of attributes used as the primary key.

A definition AttributeName=attr1,AttributeType=S can be repeated multiple
times, separated by a space character. Valid types are S (String), N (Number),
and B (Binary).

■ key-schema—Name of attributes that are part of the primary key (can’t be
changed). Contains a single AttributeName=attr1,KeyType=HASH entry or two
separated by spaces for the hash and range key. Valid types are HASH and RANGE.

■ provisioned-throughput—Performance settings for this table defined as
ReadCapacityUnits=5,WriteCapacityUnits=5 (you’ll learn about this in sec-
tion 10.9).

You’ll now create a table for the users of the nodetodo application and a table that will
contain all the tasks.

10.4.1 Users with hash keys

Before you create a table for nodetodo users, you must think carefully about the
table’s name and primary key. We suggest that you prefix all your tables with the name
of your application. In this case, the table name is todo-user. To choose a primary
key, you have to think about the queries you’ll make in the future and whether there is
something unique about your data items. Users will have a unique ID, called uid, so it
makes sense to choose the uid attribute as the primary key. You must also be able to
look up users based on the uid to implement the user command. If you want a single
attribute to be your primary key, you can always create a hash index: an unordered

Version information

Licensed to Thomas Snead <n.ordickan@gmail.com>

261Creating tables

index based on the hash key. The following example shows a user table where uid is
used as the primary hash key:

"michael" => {
"uid": "michael",
"email": "michael@widdix.de",
"phone": "0123456789"

}
"andreas" => {

"uid": "andreas",
"email": "andreas@widdix.de",
"phone": "0123456789"

}

Because users will only be looked up based on the known uid, it’s fine to use a hash
key. Next you’ll create the user table, structured like the previous example, with the
help of the AWS CLI:

$ aws dynamodb create-table --table-name todo-user \
--attribute-definitions AttributeName=uid,AttributeType=S \
--key-schema AttributeName=uid,KeyType=HASH \
--provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

Creating a table takes some time. Wait until the status changes to ACTIVE. You can
check the status of a table as follows:

$ aws dynamodb describe-table --table-name todo-user
{

"Table": {
"AttributeDefinitions": [

{
"AttributeName": "uid",
"AttributeType": "S"

}
],
"ProvisionedThroughput": {

"NumberOfDecreasesToday": 0,
"WriteCapacityUnits": 5,
"ReadCapacityUnits": 5

},
"TableSizeBytes": 0,
"TableName": "todo-user",
"TableStatus": "ACTIVE",
"KeySchema": [

uid (“michael”) is the primary
hash key; everything in { } is
the item.

Hash keys have
no order.

Prefixing tables with the
name of your application
will prevent name
clashes in the future.

Items must at least have one
attribute uid of type string.

The primary hash key
uses the uid attribute.

You’ll learn about
this in section 10.9.

CLI command to check
the table status

Attributes defined
for that table

Status
of the
table Attributes used as

the primary key

Licensed to Thomas Snead <n.ordickan@gmail.com>

262 CHAPTER 10 Programming for the NoSQL database service: DynamoDB

{
"KeyType": "HASH",
"AttributeName": "uid"

}
],
"ItemCount": 0,
"CreationDateTime": 1432146267.678

}
}

10.4.2 Tasks with hash and range keys

Tasks always belong to a user, and all commands that are related to tasks include the
user’s ID. To implement the task-ls command, you need a way to query the tasks
based on the user’s ID. In addition to the hash key, you can use a hash and range key.
Because all interactions with tasks require the user’s ID, you can choose uid as the
hash part and a task ID (tid), the timestamp of creation, as the range part of the key.
Now you can make queries that include the user’s ID and, if needed, the task’s ID.

NOTE This solution has one limitation: users can add only one task per time-
stamp. Our timestamp comes with millisecond resolution, so it should be fine.
But you should take care to prevent strange things from happening when the
user should be able to add two tasks at the same time.

A hash and range key uses two of your table attributes. For the hash part of the key, an
unordered hash index is maintained; the range part is kept in a sorted range index.
The combination of the hash and the range uniquely identifies the item. The follow-
ing data set shows the combination of unsorted hash parts and sorted range parts:

["michael", 1] => {
"uid": "michael",
"tid": 1,
"description": "prepare lunch"

}
["michael", 2] => {

"uid": "michael",
"tid": 2,
"description": "buy nice flowers for mum"

}
["michael", 3] => {

"uid": "michael",
"tid": 3,
"description": "prepare talk for conference"

}
["andreas", 1] => {

"uid": "andreas",
"tid": 1,
"description": "prepare customer presentation"

}
["andreas", 2] => {

uid (“michael”) is the hash portion
and tid (1) is the range portion of
the primary key.

The range is sorted
within a hash.

There is no order in the hash.

Licensed to Thomas Snead <n.ordickan@gmail.com>

263Adding data

"uid": "andreas",
"tid": 2,
"description": "plan holidays"

}

nodetodo offers the ability to get all tasks for a user. If the tasks have only a primary
hash key, this will be difficult, because you need to know the key to extract them from
DynamoDB. Luckily, the hash and range key makes things easier, because you only
need to know the hash portion of the key to extract the items. For the tasks, you’ll use
uid as the known hash portion. The range part is tid. The task ID is defined as the
timestamp of task creation. You’ll now create the task table, using two attributes to cre-
ate a hash and range index:

$ aws dynamodb create-table --table-name todo-task \
--attribute-definitions AttributeName=uid,AttributeType=S \
AttributeName=tid,AttributeType=N \

--key-schema AttributeName=uid,KeyType=HASH \
AttributeName=tid,KeyType=RANGE \
--provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

Wait until the table status changes to ACTIVE when you run aws dynamodb describe-
table --table-name todo-task. When both tables are ready, you’ll add some data.

10.5 Adding data
You have two tables up and running. To use them, you need to add some data. You’ll
access DynamoDB via the Node.js SDK, so it’s time to set up the SDK and some boiler-
plate code before you implement adding users and tasks.

To get started with Node.js and docopt, you need some magic lines to load all the
dependencies and do some configuration work. Listing 10.2 shows how this can be
done.

At least two attributes are needed
for a primary hash and range key.

The tid attribute is the range
portion of the primary key.

Installing and getting started with Node.js
Node.js is a platform to execute JavaScript in an event-driven environment so you can
easily build network applications. To install Node.js, visit https://nodejs.org and down-
load the package that fits your OS.

After Node.js is installed, you can verify if everything works by typing node --version
into your terminal. Your terminal should respond with something similar to v0.12.*.
Now you’re ready to run JavaScript examples like nodetodo for AWS.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://nodejs.org

264 CHAPTER 10 Programming for the NoSQL database service: DynamoDB

Docopt is responsible for reading all the arguments passed to the process. It returns a
JavaScript object, where the arguments are mapped to the described parameters in
the CLI description.

var fs = require('fs');
var docopt = require('docopt');
var moment = require('moment');
var AWS = require('aws-sdk');
var db = new AWS.DynamoDB({

"region": "us-east-1"
});

var cli = fs.readFileSync('./cli.txt', {"encoding": "utf8"});
var input = docopt.docopt(cli, {

"version": "1.0",
"argv": process.argv.splice(2)

});

Next you’ll implement the features of nodetodo. You can use the putItem SDK opera-
tion to add data to DynamoDB like this:

var params = {
"Item": {

"attr1": {"S": "val1"},
"attr2": {"N": "2"}

},
"TableName": "app-entity"

};
db.putItem(params, function(err) {

if (err) {
console.error('error', err);

} else {
console.log('success');

}
});

The first step is to add data to nodetodo.

Listing 10.2 nodetodo: using docopt in Node.js (index.js)

Where is the code located?
As usual, you’ll find the code in the book’s code repository on GitHub: https://
github.com/AWSinAction/code. nodetodo is located in /chapter10/.

Loads the fs module to
access the file systemLoads the

docopt module
to read input

arguments
Loads the moment module
to simplify temporal types
in JavaScript

Loads the
AWS SDK

module Reads the CLI description
from the file cli.txt

Parses the
arguments
and saves

them to an
input variable

All item attribute
name-value pairsStrings are

indicated by an S.

Numbers (floats
and integers) are
indicated by an N.Adds Item to

the app-entity
table Invokes the

putItem operation
on DynamoDBHandles errors

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/AWSinAction/code
https://github.com/AWSinAction/code

265Adding data

10.5.1 Adding a user

You can add a user to nodetodo by calling nodetodo user-add <uid> <email>
<phone>. In Node.js, you do this using the code in the following listing.

if (input['user-add'] === true) {
var params = {

"Item": {
"uid": {"S": input['<uid>']},
"email": {"S": input['<email>']},
"phone": {"S": input['<phone>']},

},
"TableName": "todo-user",
"ConditionExpression": "attribute_not_exists(uid)"

};
db.putItem(params, function(err) {

if (err) {
console.error('error', err);

} else {
console.log('user added with uid ' + input['<uid>']);

}
});

}

When you make a call to the AWS API, you always do the following:

1 Create a JavaScript object (map) filled with the needed parameters (the params
variable).

2 Invoke the function on the AWS SDK.
3 Check whether the response contains an error, or process the returned data.

Therefore you only need to change the content of params if you want to add a task
instead of a user.

10.5.2 Adding a task

You can add a task to nodetodo by calling nodetodo task-add <uid> <description>
[<category>] [--dueat=<yyyymmdd>]. In Node.js, you do this with the code shown in
the following listing.

if (input['task-add'] === true) {
var tid = Date.now();
var params = {

Listing 10.3 nodetodo: adding a user (index.js)

Listing 10.4 nodetodo: adding a task (index.js)

Item contains all attributes. Keys
are also attributes, and that’s why
you must not tell DyndmoDB which
attributes are keys if you add data.

The uid attribute is of type
string and contains the uid
parameter value.

The email
attribute is of

type string and
contains the

email parameter
value.

The phone attribute is of
type string and contains the
phone parameter value.

Specifies the
user table

If putItem is called twice on the
same key, data is replaced.

ConditionExpression allows the
putItem only if the key isn’t yet

present.

Invokes the
putItem

operation on
DynamoDB

Creates the task ID (tid)
based on the current
timestamp

Licensed to Thomas Snead <n.ordickan@gmail.com>

266 CHAPTER 10 Programming for the NoSQL database service: DynamoDB

"Item": {
"uid": {"S": input['<uid>']},
"tid": {"N": tid.toString()},
"description": {"S": input['<description>']},
"created": {"N": moment().format("YYYYMMDD")}

},
"TableName": "todo-task",
"ConditionExpression":
 "attribute_not_exists(uid) and attribute_not_exists(tid)"

};
if (input['--dueat'] !== null) {

params.Item.due = {"N": input['--dueat']};
}
if (input['<category>'] !== null) {

params.Item.category = {"S": input['<category>']};
}
db.putItem(params, function(err) {

if (err) {
console.error('error', err);

} else {
console.log('task added with tid ' + tid);

}
});

}

Now you can add users and tasks to nodetodo. Wouldn’t it be nice if you could retrieve
all this data?

10.6 Retrieving data
DynamoDB is a key-value store. The key is usually the only way to retrieve data from
such a store. When designing a data model for DynamoDB, you must be aware of that
limitation when you create tables (you did so in section 10.4). If you can use only one
key to look up data, you’ll soon or later experience difficulties. Luckily, DynamoDB
provides two other ways to look up items: a secondary index key lookup and the scan
operation. You’ll start by retrieving data with its primary key and continue with more
sophisticated methods of data retrieval.

The tid attribute is of type
number and contains the

tid value. The created
attribute is of
type number
(format
20150525).

Specifies the
task table

If the optional
named parameter

dueat is set, add this
value to the item.

If the optional
named parameter

category is set,
add this value to

the item.
Invokes the putItem
operation on DynamoDB

DynamoDB Streams
DynamoDB lets you retrieve changes to a table as soon as they’re made. A stream
provides all write (create, update, delete) operations to your table items. The order
is consistent within a hash key:

■ If your application polls the database for changes, DynamoDB Streams solves
the problem in a more elegant way.

■ If you want to populate a cache with the changes made to a table, DynamoDB
Streams can help.

■ If you want to replicate a DynamoDB table to another region, DynamoBD
Streams can do it.

Licensed to Thomas Snead <n.ordickan@gmail.com>

267Retrieving data

10.6.1 Getting by key

The simplest form of data retrieval is looking up a single item by its primary key. The
getItem SDK operation to get a single item from DynamoDB can be used like this:

var params = {
"Key": {
"attr1": {"S": "val1"}

},
"TableName": "app-entity"

};
db.getItem(params, function(err, data) {

if (err) {
console.error('error', err);

} else {
if (data.Item) {

console.log('item', data.Item);
} else {

console.error('no item found');
}

}
});

The command nodetodo user <uid> must retrieve a user by the user’s ID (uid). Trans-
lated to the Node.js AWS SDK, this looks like the following listing.

function mapUserItem(item) {
return {

"uid": item.uid.S,
"email": item.email.S,
"phone": item.phone.S

};
}

if (input['user'] === true) {
var params = {

"Key": {
"uid": {"S": input['<uid>']}

},
"TableName": "todo-user"

};
db.getItem(params, function(err, data) {

if (err) {
console.error('error', err);

} else {
if (data.Item) {

console.log('user', mapUserItem(data.Item));
} else {

console.error('user not found');
}

}
});

}

Listing 10.5 nodetodo: retrieving a user (index.js)

Specifies the attributes
that form the key

Invokes the getItem
operation on DynamoDB

Checks whether an
item was found

Helper function to
transform DynamoDB
result

Looks up a user by
primary uid key

Specifies the
user table

Invokes the getItem
operation on DynamoDB

Checks whether
data was found for

the primary key

Licensed to Thomas Snead <n.ordickan@gmail.com>

268 CHAPTER 10 Programming for the NoSQL database service: DynamoDB

You can also use the getItem operation to retrieve data by primary hash and range
key. The only change is that that Key has two entries instead of one. getItem returns
one item or no items; if you want to get multiple items, you need to query DynamoDB.

10.6.2 Querying by key and filter

If you want to retrieve not a single item but a collection of items, you must query
DynamoDB. Retrieving multiple items by primary key only works if your table has a
hash and range key. Otherwise, the hash will only identify a single item. The query
SDK operation to get a collection of items from DynamoDB can be used like this:

var params = {
"KeyConditionExpression": "attr1 = :attr1val AND attr2 = :attr2val",
"ExpressionAttributeValues": {
":attr1val": {"S": "val1"},
":attr2val": {"N": "2"}

},
"TableName": "todo-task"

};
db.query(params, function(err, data) {

if (err) {
console.error('error', err);

} else {
console.log('items', data.Items);

}
});

The query operations also lets you specify an optional FilterExpression. The syntax
of FilterExpression works like KeyConditionExpression, but no index is used for
filters. Filters are applied to all matches that KeyConditionExpression returns.

 To list all tasks for a certain user, you must query DynamoDB. The primary key of a
task is the combination of the uid hash part and the tid range part. To get all tasks for
a user, KeyConditionExpression only requires the equality of the hash part of the pri-
mary key. The implementation of nodetodo task-ls <uid> [<category>] [--overdue
|--due|--withoutdue|--futuredue] is shown next.

function getValue(attribute, type) {
if (attribute === undefined) {
return null;

}
return attribute[type];

}

function mapTaskItem(item) {
return {
"tid": item.tid.N,

Listing 10.6 nodetodo: retrieving tasks (index.js)

Condition the key must match. Use AND if you’re using a hash and range key
condition. Allowed operator for hash keys: = . Allowed operators for range

keys: =, >, <, >=, <=, BETWEEN ... ANDDynamic
values are
referenced

in the
expression.

Always specify the
correct type (S, N, B).

Invokes the query
operation on DynamoDB

Helper function to
access optional
attributes

Helper function
to transform the
DynamoDB result

Licensed to Thomas Snead <n.ordickan@gmail.com>

269Retrieving data

"description": item.description.S,
"created": item.created.N,
"due": getValue(item.due, 'N'),
"category": getValue(item.category, 'S'),
"completed": getValue(item.completed, 'N')

};
}

if (input['task-ls'] === true) {
var now = moment().format("YYYYMMDD");
var params = {
"KeyConditionExpression": "uid = :uid",
"ExpressionAttributeValues": {

":uid": {"S": input['<uid>']}
},
"TableName": "todo-task"

};
if (input['--overdue'] === true) {
params.FilterExpression = "due < :yyyymmdd";
params.ExpressionAttributeValues[':yyyymmdd'] = {"N": now};

} else if (input['--due'] === true) {
params.FilterExpression = "due = :yyyymmdd";
params.ExpressionAttributeValues[':yyyymmdd'] = {"N": now};

} else if (input['--withoutdue'] === true) {
params.FilterExpression = "attribute_not_exists(due)";

} else if (input['--futuredue'] === true) {
params.FilterExpression = "due > :yyyymmdd";
params.ExpressionAttributeValues[':yyyymmdd'] = {"N": now};

}
if (input['<category>'] !== null) {
if (params.FilterExpression === undefined) {

params.FilterExpression = '';
} else {

params.FilterExpression += ' AND ';
}
params.FilterExpression += 'category = :category';
params.ExpressionAttributeValues[':category'] = {"S": input['<category>']};

}
db.query(params, function(err, data) {
if (err) {

console.error('error', err);
} else {

console.log('tasks', data.Items.map(mapTaskItem));
}

});
}

Two problems arise with the query approach:

■ Depending on the result size from the primary key query, filtering may be slow.
Filters work without an index: every item must be inspected. Imagine you have
stock prices in DynamoDB, with a primary hash and range key: the hash is AAPL,
and the range is a timestamp. You can make a query to retrieve all stock prices
of Apple (AAPL) between two timestamps (20100101 and 20150101). But if you

Primary key query. The task
table uses a primary hash
and range key. Only the hash
is defined in the query, so all
ranges are returned.

Query
attributes

must be
passed

this way.

Filtering uses no index;
it’s applied over all
elements returned from
the primary key query.

Filter attributes must be
passed this way.

Attribute_not_exists(due) is
true when the attribute is

missing (opposite of
attribute_exists).

Multiple
filters

 can be
combined

with logical
operators.

Invokes the query
operation on
DynamoDB

Licensed to Thomas Snead <n.ordickan@gmail.com>

270 CHAPTER 10 Programming for the NoSQL database service: DynamoDB

only want to return prices on Mondays, you need to filter over all prices to
return only 20% of them. That’s wasting a lot of resources!

■ You can only query the primary key. Returning a list of all tasks that belong to a
certain category for all users isn’t possible, because you can’t query the cate-
gory attribute.

You can solve those problems with secondary indexes. Let’s look at how they work.

10.6.3 Using secondary indexes for more flexible queries

A secondary index is a projection of your original table that’s automatically maintained
by DynamoDB. You can query a secondary index like you query the index containing
all the primary keys of a table. You can imagine a global secondary index as a read-
only DynamoDB table that’s automatically updated by DynamoDB: whenever you
change the parent table, all indexes are asynchronously (eventually consistent!)
updated as well. Figure 10.2 shows how a secondary index works.

 A secondary index comes at a price: the index requires storage (the same cost as
for the original table). You must provision additional write-capacity units for the index
as well because a write to your table will cause a write to the secondary index.

 A huge benefit of DynamoDB is that you can provision capacity based on your
workload. If one of your table indexes gets tons of read traffic, you can increase the
read capacity of that index. You can fine-tune your database performance by provi-
sioning sufficient capacity for your tables and indexes. You’ll learn more about that in
section 10.9.

 Back to nodetodo. To implement the retrieval of tasks by category, you’ll add a sec-
ondary index to the todo-task table. This will allow you to make queries by category.
A hash and range key is used: the hash is the category attribute, and the range is the

DynamoDB updates the secondary
index asynchronously on table updates.

tid

1

4

2

1

2

4

uid

michael

michael

andreas

description,category

..., home

..., work

..., home

description, uid

..., michael

..., andreas

..., michael

Task table Secondary index

Read and write Read

category

home

home

work

tid

Figure 10.2 A secondary index contains a copy (projection) of your table’s data to provide fast lookup
on another key.

Licensed to Thomas Snead <n.ordickan@gmail.com>

271Retrieving data

tid attribute. The index also needs a name: category-index. You can find the follow-
ing CLI command in the README.md file in nodetodo’s code folder:

$ aws dynamodb update-table --table-name todo-task \
--attribute-definitions AttributeName=uid,AttributeType=S \
AttributeName=tid,AttributeType=N \
AttributeName=category,AttributeType=S \
--global-secondary-index-updates '[{\
"Create": {\
"IndexName": "category-index", \
"KeySchema": [{"AttributeName": "category", "KeyType": "HASH"}, \
{"AttributeName": "tid", "KeyType": "RANGE"}], \
"Projection": {"ProjectionType": "ALL"}, \
"ProvisionedThroughput": {"ReadCapacityUnits": 5, \
"WriteCapacityUnits": 5}\
}}]'

A global secondary index takes some time to be created. You can use the CLI to find
out if the index is active:

$ aws dynamodb describe-table --table-name=todo-task \
--query "Table.GlobalSecondaryIndexes"

The following listing shows how the implementation of nodetodo task-la <category>
[--overdue|...] uses the query operation.

if (input['task-la'] === true) {
var now = moment().format("YYYYMMDD");
var params = {
"KeyConditionExpression": "category = :category",
"ExpressionAttributeValues": {

":category": {"S": input['<category>']}
},
"TableName": "todo-task",
"IndexName": "category-index"

};
if (input['--overdue'] === true) {
params.FilterExpression = "due < :yyyymmdd";
params.ExpressionAttributeValues[':yyyymmdd'] = {"N": now};

}
[...]
db.query(params, function(err, data) {
if (err) {

console.error('error', err);
} else {

console.log('tasks', data.Items.map(mapTaskItem));
}

});
}

Listing 10.7 nodetodo: retrieving tasks from a category index (index.js)

You can add a global secondary
index after the table is created.

Adds a
category
attribute

because the
attribute will

be used in
the index.

Creates a new
secondary

index

The category attribute is
the hash portion of the

key, and the tid attribute
is the range portion.

All attributes
are projected
into the index.

A query against an
index works the same
as a query against the
primary key …

… but you must
specify the index
you want to use.

Filtering works
the same as with
primary keys.

Licensed to Thomas Snead <n.ordickan@gmail.com>

272 CHAPTER 10 Programming for the NoSQL database service: DynamoDB

But there are still situations where a query doesn’t work: you can’t retrieve all users.
Let’s look at what a table scan can do for you.

10.6.4 Scanning and filtering all of your table’s data

Sometime you can’t work with keys; instead, you need to go through all the items in
the table. That’s not efficient, but in some situations, it’s okay. DynamoDB provides
the scan operation to scan all items in a table:

var params = {
"TableName": "app-entity",
"Limit": 50

};
db.scan(params, function(err, data) {

if (err) {
console.error('error', err);

} else {
console.log('items', data.Items);
if (data.LastEvaluatedKey !== undefined) {

console.log('more items available');
}

}
});

The next listing shows the implementation of nodetodo user-ls [--limit=<limit>]
[--next=<id>]. A paging mechanism is used to prevent too many items from being
returned.

if (input['user-ls'] === true) {
var params = {
"TableName": "todo-user",
"Limit": input['--limit']

};
if (input['--next'] !== null) {
params.ExclusiveStartKey = {

"uid": {"S": input['--next']}
};

}
db.scan(params, function(err, data) {
if (err) {

console.error('error', err);
} else {

console.log('users', data.Items.map(mapUserItem));
if (data.LastEvaluatedKey !== undefined) {

console.log('more users available with
 ➥ --next=' + data.LastEvaluatedKey.uid.S);

}
}

});
}

Listing 10.8 nodetodo: retrieving all users with paging (index.js)

Specifies the
maximum number
of items to return

Invokes the scan
operation on DynamoDB

Checks whether there
are more items that
can be scanned

Maximum
number of
items returned

The named parameter
next contains the last
evaluated key.

Invokes the scan
operation on DynamoDB

Checks whether
the last item has
been reached

Licensed to Thomas Snead <n.ordickan@gmail.com>

273Removing data

The scan operation reads all items in the table. This example didn’t filter any data,
but you can use FilterExpression as well. Note that you shouldn’t use the scan oper-
ation too often—it’s flexible but not efficient.

10.6.5 Eventually consistent data retrieval

DynamoDB doesn’t support transactions the same way a traditional database does. You
can’t modify (create, update, delete) multiple documents in a single transaction—the
atomic unit in DynamoDB is a single item.

 In addition, DynamoDB is eventually consistent. That means it’s possible that if you
create an item (version 1), update that item to version 2, and then get that item, you
may see the old version 1; if you wait and get the item again, you’ll see version 2. Fig-
ure 10.3 shows this process. The reason for this behavior is that the item is persisted
on multiple servers in the background. Depending on which server answers your
request, the server may not have the latest version of the item.

You can prevent eventually consistent reads by adding "ConsistentRead": true to the
DynamoDB request to get strongly consistent reads. Strongly consistent reads are sup-
ported by getItem, query, and scan operation. But a strongly consistent read takes
longer and consumes more read capacity than an eventually consistent read. Reads
from a global secondary index are always eventually consistent because the index itself
is eventually consistent.

10.7 Removing data
Like the getItem operation, the deleteItem operation requires that you specify the
primary key you want to delete. Depending on whether your table uses a hash or a
hash and range key, you must specify one or two attributes.

Update item
(version 2)

Server 2

Server 1

Time

Eventually consistent

Item v1

Item v1

Item v2

Item v2

Read item
(version 2)

Read item
(version 1)

Write item
(version 1)

Figure 10.3 Eventually consistent reads can return old values after a write op-
eration until the change is propagated to all servers.

Licensed to Thomas Snead <n.ordickan@gmail.com>

274 CHAPTER 10 Programming for the NoSQL database service: DynamoDB

 You can remove a user with nodetodo by calling nodetodo user-rm <uid>. In
Node.js, this is as shown in the following listing.

if (input['user-rm'] === true) {
var params = {
"Key": {

"uid": {"S": input['<uid>']}
},
"TableName": "todo-user"

};
db.deleteItem(params, function(err) {
if (err) {

console.error('error', err);
} else {

console.log('user removed with uid ' + input['<uid>']);
}

});
}

Removing a task is similar: nodetodo task-rm <uid> <tid>. The only change is that
the item is identified by a hash and range key and the table name, as shown in the
next listing.

if (input['task-rm'] === true) {
var params = {
"Key": {

"uid": {"S": input['<uid>']},
"tid": {"N": input['<tid>']}

},
"TableName": "todo-task"

};
db.deleteItem(params, function(err) {
if (err) {

console.error('error', err);
} else {

console.log('task removed with tid ' + input['<tid>']);
}

});
}

You’re now able to create, read, and delete items in DynamoDB. The only operation
missing is updating.

10.8 Modifying data
You can update an item with the updateItem operation. You must identify the item
you want to update by its key; you can also provide an UpdateExpression to specify
the updates you want to perform. You can use one or a combination of the following
update actions:

Listing 10.9 nodetodo: removing a user (index.js)

Listing 10.10 nodetodo: removing a task (index.js)

Identifies an item
by hash key

Specifies the user table

Invokes the
deleteItem operation
on DynamoDB

Identifies an item by
hash and range key

Specifies the task table

Licensed to Thomas Snead <n.ordickan@gmail.com>

275Scaling capacity

■ Use SET to override or create a new attribute. Examples: SET attr1 = :attr1val,
SET attr1 = attr2 + :attr2val, SET attr1 = :attr1val, attr2 = :attr2val.

■ Use REMOVE to remove an attribute. Examples: REMOVE attr1, REMOVE attr1,
attr2.

In nodetodo, you can mark a task as done by calling nodetodo task-done <uid>
<tid>. To implement this feature, you need to update the task item, as shown in
Node.js in the following listing.

if (input['task-done'] === true) {
var now = moment().format("YYYYMMDD");
var params = {
"Key": {

"uid": { "S": input['<uid>']},
"tid": { "N": input['<tid>']}

},
"UpdateExpression": "SET completed = :yyyymmdd",
"ExpressionAttributeValues": {

":yyyymmdd": {"N": now}
},
"TableName": "todo-task"

};
db.updateItem(params, function(err) {
if (err) {

console.error('error', err);
} else {

console.log('task completed with tid ' + input['<tid>']);
}

});
}

That’s it! You’ve implemented all of nodetodo’s features.

10.9 Scaling capacity
When you create a DynamoDB table or a global secondary index, you must provision
throughput. Throughput is divided into read and write capacity. DynamoDB uses
ReadCapacityUnits and WriteCapacityUnits to specify the throughput of a table or
global secondary index. But how is a capacity unit defined? Let’s start by doing some
experimentation with the command-line interface:

$ aws dynamodb get-item --table-name todo-user \
--key '{"uid": {"S": "michael"}}' \
--return-consumed-capacity TOTAL \
--query "ConsumedCapacity"
{

"CapacityUnits": 0.5,
"TableName": "todo-user"

}

Listing 10.11 nodetodo: updating a task as done (index.js)

Identifies the item by
a hash and range key

Defines which attributes
should be updated

Update attributes must
be passed this way.

Invokes the updateItem
operation on DynamoDB

Tells DynamoDB to return
the used capacity units

getItem requires 0.5
capacity units.

Licensed to Thomas Snead <n.ordickan@gmail.com>

276 CHAPTER 10 Programming for the NoSQL database service: DynamoDB

$ aws dynamodb get-item --table-name todo-user \
--key '{"uid": {"S": "michael"}}' \
--consistent-read --return-consumed-capacity TOTAL \
--query "ConsumedCapacity"
{

"CapacityUnits": 1.0,
"TableName": "todo-user"

}

More abstract rules for throughput consumption are as follows:

■ An eventually consistent read takes half the capacity compared to a strongly
consistent read.

■ A strongly consistent getItem requires one read capacity unit if the item isn’t
larger than 4 KB. If the item is larger than 4 KB, you need additional read capac-
ity units. You can calculate the required read capacity units using
roundUP(itemSize / 4).

■ A strongly consistent query requires one read capacity unit per 4 KB of item
size. This means if your query returns 10 items, and each item is 2 KB, the item
size is 20 KB and you need 5 read units. This is in contrast to 10 getItem opera-
tions, for which you would need 10 read capacity units.

■ A write operation needs one write capacity unit per 1 KB of item size. If your
item is larger than 1 KB, you can calculate the required write capacity units
using roundUP(itemSize).

If capacity units aren’t your favorite unit, you can use the AWS Simple Monthly Calcu-
lator at http://aws.amazon.com/calculator to calculate your capacity needs by provid-
ing details of your read and write workload.

 The provision throughput of a table or a global secondary index is defined in sec-
onds. If you provision five read capacity units per second with ReadCapacityUnits=5,
you can make five strongly consistent getItem requests for that table if the item size
isn’t larger than 4 KB per second. If you make more requests than are provisioned,
DynamoDB will first throttle your request. If you make many more requests than are
provisioned, DynamoDB will reject your requests.

 It’s important to monitor how many read and write capacity units you require. For-
tunately, DynamoDB sends some useful metrics to CloudWatch every minute. To see
the metrics, open the AWS Management Console, navigate to the DynamoDB service,
and select one of the tables. Figure 10.4 shows the CloudFormation metrics for the
todo-user table.

 You can modify the provisioned throughput whenever you like, but you can only
decrease the throughput capacity of a single table four times a day.

A consistent read …

… needs twice as
many capacity units.

Cleaning up
Don’t forget to delete your DynamoDB tables after you finish this section. Use the
Management Console to do so.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://aws.amazon.com/calculator

277Summary

10.10 Summary
■ DynamoDB is a NoSQL database service that removes all the operational bur-

dens from you, scales well, and can be used in many ways as the storage back
end of your applications.

■ Looking up data in DynamoDB is based on keys. A hash key can only be looked
up if you know the key. But DynamoDB also supports hash and range keys,
which combine the power of a hash key with another key that is sorted.

■ You can retrieve a single item by its key with the getItem operation.
■ Strongly consistent reads (getItem, query, and scan) can be enforced if

needed. Reads from a global secondary index are always eventually consistent.

Consumed read
capacity units

When you consume
too much, requests

are throttled.

More read units
consumed than

provisioned

Figure 10.4 Monitoring provisioned and consumed capacity units of the DynamoDB table

Licensed to Thomas Snead <n.ordickan@gmail.com>

278 CHAPTER 10 Programming for the NoSQL database service: DynamoDB

■ DynamoDB doesn’t support SQL. Instead, you must use the SDK to communi-
cate with DynamoDB from your application. This also implies that you can’t use
an existing application to run with DynamoDB without touching the code.

■ DynamoDB uses expressions to make more complex interactions with the data-
base possible, such as when you update an item.

■ Monitoring consumed read and write capacity is important if you want to provi-
sion enough capacity for your tables and indices.

■ DynamoDB is charged for per gigabyte of storage and per provisioned read or
write capacity.

■ You can use the query operation to query primary keys or secondary indexes.
■ The scan operation is flexible but not efficient and shouldn’t be used too often.

Licensed to Thomas Snead <n.ordickan@gmail.com>

Part 4

Architecting on AWS

Werner Vogels, CTO of Amazon.com, is quoted as saying, “Everything fails
all the time.” This is an important concept behind AWS. Instead of trying to
reach the unreachable goal of being an unbreakable system, AWS is built for fail-
ure. Hard drives fail, so S3 stores data on multiple hard drives to prevent loss of
data. Computing hardware fails, so virtual servers can be automatically restarted
on another machine if necessary. Data centers fail, so there are multiple data
centers per region that can be used in parallel or on demand.

 In this part of the book, you’ll learn how to prevent an outage of your appli-
cations running on AWS by using the right tools and architecture. The following
table lists the most important services and their approach to handling failure:

Designing for failure is a fundamental principle of AWS; another is using the
elasticity of the cloud. You’ll also learn how to increase the number of virtual
servers based on the current workload and architect reliable systems on AWS.

Description Examples

Fault tolerant Services can recover from failure auto-
matically without any downtime.

S3 (object storage), DynamoDB
(NoSQL database), Route 53 (DNS)

Highly
available

Services can recover from some failures
automatically with a brief downtime.

RDS (relational database), EBS
(network attached storage)

Manual failure
handling

Services don’t recover from failure by
default but offer tools to build a highly
available infrastructure on top of them.

EC2 (virtual server)

Licensed to Thomas Snead <n.ordickan@gmail.com>

Chapter 11 lays the foundation for becoming independent of the risk of losing a sin-
gle server or a complete data center. You’ll learn how to recover a single EC2 instance
in the same data center or in another data center. Chapter 12 discusses decoupling
your system to increase reliability: using synchronous decoupling with the help of load
balancers, and using asynchronous decoupling via Amazon SQS, a distributed queuing
service, to build a fault-tolerant system. Chapter 13 covers designing a fault-tolerant
web application based on EC2 instances (which aren’t fault-tolerant by default). Chap-
ter 14 is all about elasticity and auto-scaling; you’ll learn to scale capacity based on a
schedule or on the current system load.

Licensed to Thomas Snead <n.ordickan@gmail.com>

281

Achieving high
 availability: availability zones,
 auto-scaling, and CloudWatch

In this chapter, we’ll teach you how to build a high-availability architecture based
on EC2 instances. A virtual server isn’t highly available by default. The following
scenarios cause an outage of your virtual server:

■ The virtual server fails because of a software issue (the OS of the virtual
server).

This chapter covers
■ Using a CloudWatch alarm to recover a failed virtual

server
■ Understanding availability zones in an AWS region
■ Using auto-scaling to guarantee running virtual

servers
■ Analyzing disaster-recovery requirements

Licensed to Thomas Snead <n.ordickan@gmail.com>

282 CHAPTER 11 Achieving high availability: availability zones, auto-scaling, and CloudWatch

■ A software issue occurs on the host server, causing the virtual server to crash
(the OS of the host server or virtualization layer).

■ The computing, storage, or networking hardware of the physical host fails.
■ Necessary parts of the data center that the virtual server depends on fail: net-

work connectivity, the power supply, or the cooling system.

For example, if the computing hardware of a physical host server fails, all EC2
instances running on this host server will fail. If you’re running an application on an
affected virtual server, this application will fail and cause downtime until somebody—
probably you—intervenes by starting a new virtual server running on another physical
host server. To avoid this, you should aim for a highly available virtual server that can
recover from failure automatically without human intervention.

High availability describes a system that’s operating with almost no downtime. Even if a
failure occurs, the system can provide its services at a high probability. Although a
short interruption might be necessary to recover from a failure, there’s no need for
human interaction. The Harvard Research Group (HRG) defines high availability with
the classification AEC-2, which requires an uptime of 99.99 % over a year.

AWS offers tools for building highly available systems based on EC2 instances:

■ Monitoring the health of virtual servers with CloudWatch and triggering recov-
ery automatically if needed

■ Building a highly available infrastructure by using multiple isolated data cen-
ters, called availability zones, within a region

■ Using auto-scaling to have a guaranteed number of virtual servers running and
replace failed instances automatically

Examples are 100% covered by the Free Tier
The examples in this chapter are completely covered by the Free Tier. As long as you
don’t run the examples for longer than a few days, you won’t pay anything. Keep in
mind that this only applies if you created a fresh AWS account for this book and noth-
ing else is going on in your AWS account. Try to complete the examples of the chapter
within a few days; you’ll clean up your account at the end of each example.

High availability vs. fault tolerance
A highly available system can recover from a failure automatically with a short down-
time. A fault-tolerant system, in contrast, requires the system to provide its services
without interruption in case of a component failure. We’ll show you how to build a
fault-tolerant system in chapter 13.

Licensed to Thomas Snead <n.ordickan@gmail.com>

283Recovering from server failure with CloudWatch

11.1 Recovering from server failure with CloudWatch
The status of every virtual server is checked by the EC2 service automatically. Checks
are performed every minute and are available as CloudWatch metrics. AWS CloudWatch
is a service offering metrics, logs, and alarms for AWS resources. You used CloudWatch
to gain insights into the current load of a relational database instance in chapter 9.
Figure 11.1 shows how to manually set up a CloudWatch alarm based on the system
check of an EC2 instance from the details page of an EC2 instance.

A system status check detects a loss of network connectivity or power and software or
hardware issues on the physical host. AWS needs to be involved to repair failures
detected by the system status check. One possible strategy to resolve such failures is to
recover by moving the virtual machine to another physical host.

 Figure 11.2 shows the process in the case of an outage affecting a virtual server:

1 The physical server’s hardware fails and causes the virtual server to fail as well.
2 The EC2 service detects the outage and reports the failure to CloudWatch metrics.
3 Recovery of the virtual server is triggered by the CloudWatch alarm.
4 The virtual server is launched on another physical host.
5 The EBS volume and Elastic IP stay the same and are linked to the new virtual

server.

Trigger the recovery of the
EC2 instance if necessary.

Define the condition
for the alarm.

This chart shows the metric with
a count of failed system checks.

Figure 11.1 Creating a CloudWatch alarm based on a system-check metric, to trigger a recovery of the EC2 instance
in case of a failure

Licensed to Thomas Snead <n.ordickan@gmail.com>

284 CHAPTER 11 Achieving high availability: availability zones, auto-scaling, and CloudWatch

After the recovery, a new virtual server is running with the same ID and private IP
address. Data on EBS volumes, the network-attached storage, is restored as well. No
data is lost because the EBS volume stays the same. Virtual servers with local disks
(instance storage) aren’t supported for the CloudWatch alarm-based recovery pro-
cess. If the old virtual server was connected to an Elastic IP address, the new server is
connected to the same public IP address.

CloudWatch

5. The new virtual server is assigned the same ID
 and public/private IP addresses as the old virtual
 server and linked to the same EBS volume.

1. A hardware or
 software failure
 affects the virtual
 server.

2. CloudWatch’s regular
 health check spots that
 the virtual server has failed.

3. CloudWatch starts the
 recovery of the virtual server.

4. A new virtual server is launched on
 a different set of server hardware.

Server hardware
hosting virtual servers

Server hardware
hosting virtual servers

Virtual server

EBS volume

Elastic IP

Figure 11.2 In the case of a hardware failure, CloudWatch triggers the recovery of the virtual server.

Requirements for recovering EC2 instances
A virtual server must fulfill the following requirements if you want to use the recovery
feature:

■ It must be running in a virtual private cloud (VPC) network.
■ The instance family must be c3 (compute optimized), c4 (compute optimized),

m3 (general), r3 (memory optimized), or t2 (burstable performance). Earlier
instance families aren’t supported (such as t1).

■ The EC2 instance must use EBS volumes exclusively because data on instance
storage would be lost after a recovery of the instance.

Licensed to Thomas Snead <n.ordickan@gmail.com>

285Recovering from server failure with CloudWatch

11.1.1 Creating a CloudWatch alarm

A CloudWatch alarm consists of the following:

■ A metric that monitors data (health check, CPU usage, and so on)
■ A rule defining a threshold based on a statistical function over a period of time
■ Actions to trigger if the state of the alarm changes (such as triggering a recovery

of an EC2 instance if the state changes to ALARM)

The following states are available for an alarm:

■ OK—Everything is fine; the threshold hasn’t been reached.
■ INSUFFICIENT_DATA—There isn’t enough data to evaluate the alarm.
■ ALARM—Something is broken: the threshold has been overstepped.

To monitor the health of a virtual server and recover it in case of a failure of the under-
lying host system, you can use a CloudWatch alarm like the one shown in listing 11.1.
This listing is an excerpt from a CloudFormation template.

 Listing 11.1 creates a CloudWatch alarm based on a metric called
StatusCheckFailed_System (linked by attribute MetricName). This metric contains
the results of the system status checks for a virtual server performed by the EC2 service
every minute. If the check fails, a measurement point with value of 1 is added to the
metric StatusCheckFailed_System. Because the EC2 service publishes this metric, the
Namespace is called AWS/EC2 and the Dimension of the metric is the ID of a virtual server.

 The CloudWatch alarm checks the metric every 60 seconds as defined by the Period
attribute. As defined in EvaluationPeriods, the alarm will check the last five periods,
which means the last five minutes in this case. The check runs a statistical function spec-
ified in Statistic on the periods. The result of the statistical function, a minimum
function in this case, is compared with ComparisonOperator against Threshold. If the
result is negative, the alarm actions defined in AlarmActions are executed—in the fol-
lowing listing, the recovery of the virtual server—a built-in action for EC2 instances.

[...]
"RecoveryAlarm": {

"Type": "AWS::CloudWatch::Alarm",
"Properties": {
"AlarmDescription": "Recover server when underlying hardware fails.",
"Namespace": "AWS/EC2",
"MetricName": "StatusCheckFailed_System",
"Statistic": "Minimum",
"Period": "60",

Listing 11.1 Creating a CloudWatch alarm to monitor the health of an EC2 instance

Creates a CloudWatch alarm to monitor
the health of the virtual server

The metric to monitor is provided
by the EC2 service with namespace
AWS/EC2.

Metric name of the health check
of the EC2 instance containing

events for failed system checks

Statistical
function to

apply to the
metric. The

minimum is to
be informed if
a single status

check failed.

Time over which the statistical
function is applied, in seconds.
Must be a multiple of 60.

Licensed to Thomas Snead <n.ordickan@gmail.com>

286 CHAPTER 11 Achieving high availability: availability zones, auto-scaling, and CloudWatch

"EvaluationPeriods": "5",
"ComparisonOperator": "GreaterThanThreshold",
"Threshold": "0",
"AlarmActions": [{

"Fn::Join": ["", ["arn:aws:automate:", {"Ref": "AWS::Region" },
":ec2:recover"]]

}],
"Dimensions": [{"Name": "InstanceId", "Value": {"Ref": "Server"}}]

}
}
[...]

In summary, the status of the virtual server is checked every minute by AWS. The result
of these checks is written to the StatusCheckFailed_System metric. The alarm checks
this metric. If there are five consecutive failed checks, the alarm trips.

11.1.2 Monitoring and recovering a virtual server based on a CloudWatch alarm

Suppose that your team is developing software in an agile development process. To accel-
erate the process, your team decides to automate the testing, build, and deployment of
the software. You’ve been asked to set up a continuous integration server (CI server).
You’ve chosen to use Jenkins, an open source application written in Java and running in
a servlet container such as Apache Tomcat. Because you’re using infrastructure as code,
you’re planning to deploy changes to your infrastructure with Jenkins as well.1

 A Jenkins server is a typical use case for a high-availability setup. It’s an important
part of your infrastructure because your colleagues won’t be able to test and deploy
new software if the application suffers from downtime. But a short downtime in the
case of a failure with automatic recovery won’t break your business, so you don’t need
a fault-tolerant system.

 In this example, you’ll do the following:

1 Create a virtual network in the cloud (VPC).
2 Launch a virtual server in the VPC, and automatically install Jenkins during

bootstrap.
3 Create a CloudWatch alarm to monitor the health of the virtual server.

We’ll guide you through these steps with the help of a CloudFormation template.
 You can find the CloudFormation template for this example on Github and on S3.

You can download a snapshot of the repository at https://github.com/AWSinAction/
code/archive/master.zip. The file we talk about is located at chapter11/recovery.json.
On S3, the same file is located at https://s3.amazonaws.com/awsinaction/chapter11/
recovery.json.

1 Learn more about Jenkins by using its documentation at https://wiki.jenkins-ci.org/display/JENKINS/
Use+Jenkins.

Number of periods over which data is
compared to the threshold

Operator for comparing
the output of the statistical
function with the threshold

Threshold
triggering
an alarm

Action to perform in case of
an alarm. Uses the predefined
recovery action for EC2 instances.

The virtual server is a
dimension of the metric.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://wiki.jenkins-ci.org/display/JENKINS/Use+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Use+Jenkins
https://github.com/AWSinAction/code/archive/master.zip
https://github.com/AWSinAction/code/archive/master.zip
https://s3.amazonaws.com/awsinaction/chapter11/recovery.json
https://s3.amazonaws.com/awsinaction/chapter11/recovery.json

287Recovering from server failure with CloudWatch

 The following command starts a CloudFormation template containing an EC2
instance with a CloudWatch alarm triggering a recovery if the virtual server fails.
Replace $Password with a password consisting of 8–40 characters and digits. A Jenkins
server is automatically installed while starting the virtual server:

$ aws cloudformation create-stack --stack-name jenkins-recovery \
--template-url https://s3.amazonaws.com/\
awsinaction/chapter11/recovery.json \
--parameters ParameterKey=JenkinsAdminPassword,ParameterValue=$Password

The CloudFormation template contains the definition of a private network and secu-
rity configuration. But the most important parts of the template are these:

■ Virtual server with user data containing a bash script to install a Jenkins server
during bootstrapping

■ Public IP address assigned to the virtual server so you can access the new server
after a recovery under the same public IP address as before

■ CloudWatch alarm based on the system-status metric published by the EC2 service

The following listing shows the important parts of the template.

[...]
"ElasticIP": {

"Type": "AWS::EC2::EIP",
"DependsOn": "GatewayToInternet",
"Properties": {
"InstanceId": {"Ref": "Server"},
"Domain": "vpc"

}
},
"Server": {

"Type": "AWS::EC2::Instance",
"Properties": {
"InstanceType": "t2.micro",
"KeyName": {"Ref": "KeyName"},
"UserData": {"Fn::Base64": {"Fn::Join": ["", [

"#!/bin/bash -ex\n",
"wget http://pkg.jenkins-ci.org/redhat/

 ➥ jenkins-1.616-1.1.noarch.rpm\n",
"rpm --install jenkins-1.616-1.1.noarch.rpm\n",
[...]
"service jenkins start\n"

]]}},
[...]

}
},
"RecoveryAlarm": {

"Type": "AWS::CloudWatch::Alarm",
"Properties": {
"AlarmDescription": "Recover server when underlying hardware fails.",
"Namespace": "AWS/EC2",

Listing 11.2 Starting an EC2 instance running a Jenkins CI server with a recovery alarm

The public IP
address stays

the same after
recovery when

using an
Elastic IP.

Launches
a virtual

server to
run a

Jenkins
server

Recovery is supported
for t2 instance types.

User data containing
a shell script that is
executed during
bootstrapping of the
virtual server to
install a Jenkins
server

Creates a CloudWatch alarm
to monitor the health of the
virtual server

The metric to
monitor is

provided by
 the EC2 service

 with namespace
AWS/EC2.

Licensed to Thomas Snead <n.ordickan@gmail.com>

288 CHAPTER 11 Achieving high availability: availability zones, auto-scaling, and CloudWatch

"MetricName": "StatusCheckFailed_System",
"Statistic": "Minimum",
"Period": "60",
"EvaluationPeriods": "5",
"ComparisonOperator": "GreaterThanThreshold",
"Threshold": "0",
"AlarmActions": [{

"Fn::Join": ["", ["arn:aws:automate:", {"Ref": "AWS::Region" },
":ec2:recover"]]

}],
"Dimensions": [{"Name": "InstanceId", "Value": {"Ref": "Server"}}]

}
}
[...]

It will take a few minutes for the CloudFormation stack to be created and Jenkins to
be installed on the virtual server. Run the following command to get the output of the
stack. If the output is empty, retry after a few more minutes:

$ aws cloudformation describe-stacks --stack-name jenkins-recovery \
--query Stacks[0].Outputs

If the query returns output as shown here, containing a URL, a user, and a password, the
stack has been created and the Jenkins server is ready to use. Open the URL in your
browser, and log in to the Jenkins server with user admin and the password you’ve chosen:

[
{
"Description": "URL to access web interface of Jenkins server.",
"OutputKey": "JenkinsURL",
"OutputValue": "http://54.152.240.91:8080"

},
{
"Description": "Administrator user for Jenkins.",
"OutputKey": "User",
"OutputValue": "admin"

},
{
"Description": "Password for Jenkins administrator user.",
"OutputKey": "Password",
"OutputValue": "********"

}
]

You’re now ready to create your first job on the Jenkins server. To do so, you have to
log in with the username and password from the previous output. Figure 11.3 shows
the Jenkins server’s login form.

Metric name of the health check
of the EC2 instance containing
events for failed system checks

Statistical function to apply to the
metric. The minimum is to be informed
if a single status check failed.

Time over which
the statistical

function is
applied, in

seconds. Must be
a multiple of 60. Number of periods over which data

is compared to the threshold

Operator for
comparing the
output of the

statistical function
with the threshold

Threshold triggering an alarm

Action to perform in case of an
alarm. Uses the predefined

recovery action for EC2 instances.

The virtual
server is a
dimension

of the
metric.

Open this URL in your browser
to access the web interface of
the Jenkins server.

Use this user to log in
to the Jenkins server.

Use this password to log
in to the Jenkins server.

Licensed to Thomas Snead <n.ordickan@gmail.com>

289Recovering from a data center outage

The Jenkins server runs on a virtual server with automated recovery. If the virtual
server fails because of issues with the host system, it will be recovered with all data and
the same public IP address. The URL doesn’t change because you use an Elastic IP for
the virtual server. All data is restored because the new virtual server uses the same EBS
volume as the previous virtual server.

 Unfortunately, you can’t test the recovery process. The CloudWatch alarm moni-
tors the health of the host system, which can only be controlled by AWS.

11.2 Recovering from a data center outage
Recovering a virtual server after a failure of the underlying software and hardware is
possible with system status checks and CloudWatch, as described in the previous sec-
tion. But what happens if the entire data center fails because of a power outage, a fire,
or some other issue? The recovery of a virtual server as described in section 11.1 will
fail because it tries to launch an EC2 instance in the same data center.

Figure 11.3 Web interface of the Jenkins server

Cleaning up
Now that you’ve finished this example, it’s time to clean up to avoid unwanted costs.
Execute the following command to delete all resources corresponding to the Jenkins
setup:

$ aws cloudformation delete-stack --stack-name jenkins-recovery
$ aws cloudformation describe-stacks --stack-name jenkins-recovery

Rerun this command until the status changes
to DELETE_COMPLETE or an errors occurs

stating that the stack does not exist.

Licensed to Thomas Snead <n.ordickan@gmail.com>

290 CHAPTER 11 Achieving high availability: availability zones, auto-scaling, and CloudWatch

 AWS is built for failure, even in the rare case that an entire data center fails. The
AWS regions consist of multiple data centers called availability zones. Combined with
the ability to define the number and type of virtual servers AWS should always keep
running, with the help of auto-scaling, you can start virtual servers that can recover
from a data center outage with a short downtime. There are two pitfalls when building
a highly available setup over multiple availability zones:

■ Data stored on network-attached storage (EBS) won’t be available after a
failover to another data center by default.

■ You can’t start a new virtual server into another data center with the same pri-
vate IP address. In addition, you can’t keep the same public IP address automat-
ically after a recovery, as was the case in the previous section with a CloudWatch
alarm triggering a recovery.

In this section, you’ll improve the Jenkins setup from the previous section, add the ability
to recover from an outage of an entire data center, and work around the pitfalls afterward.

11.2.1 Availability zones: multiple data centers per region

As you’ve learned, AWS operates multiple locations worldwide, called regions. You’ve
used region US East (N. Virginia), also called us-east-1, if you’ve followed the exam-
ples so far. In total, there are nine public available regions in the US, South America,
Europe, and Asia Pacific.

 Each region consists of multiple availability zones. You can think of an availability
zone as an isolated data center and a region as an area where multiple isolated data
centers are located at a sufficient distance. The availability zones are connected
through low-latency links, so requests between different availability zones aren’t as
expensive as requests across the internet in terms of latency. The number of availabil-
ity zones depends on the region. Region US East (N. Virginia) consists of four avail-
ability zones, and region EU (Frankfurt) offers two availability zones at the moment.
Figure 11.4 illustrates the concept of availability zones within a region.

Region
us-east-1

Availability zone A
us-east-1a

Availability zone C
us-east-1c

Availability zone E
us-east-1e

Availability zone B
us-east-1b

The number of availability
zones depends on the region.

An availability zone
is an isolated location
within a region.

Availability zones are
connected through
low-latency links.

Figure 11.4 A region con-
sists of multiple availability
zones connected through
low-latency links.

Licensed to Thomas Snead <n.ordickan@gmail.com>

291Recovering from a data center outage

Some AWS services are highly available or even fault-tolerant by default. For some ser-
vices, you have to use the available tools to build a highly available architecture your-
self. The same is true for using multiple availability zones or even multiple regions to
build a highly available architecture, as figure 11.5 shows:

■ There are services operating globally over multiple regions: Route 53 (DNS)
and CloudFront (CDN).

■ Some services are using multiple availability zones within a region so they can
recover from a data center outage: S3 (object store) and DynamoDB (NoSQL
database).

■ The relational database service (RDS) offers the ability to deploy a master-
standby setup, called Multi-AZ deployment, so you can failover into another
availability zone if necessary.

■ A virtual server runs in a single availability zone. But AWS offers tools to build an
architecture based on EC2 instances that can failover into another availability
zone.

Region

Global

CloudFront
CDN

Route 53
DNS

DynamoDB
NoSQL database

S3
object storage

Availability zone 1 Availability zone 2

Services are running
globally over multiple
regions and edge
locations.

Services are running region-wide
and span multiple availability
zones by default.

RDS master-standby setup
running in a single availability
zone; fails over into another
availability zone

Virtual server
running in a single
availability zone

EC2
virtual server

RDS (multi-AZ)
SQL database

Figure 11.5 AWS services can operate in a single availability zone, over multiple availability
zones within a region, or even globally.

Licensed to Thomas Snead <n.ordickan@gmail.com>

292 CHAPTER 11 Achieving high availability: availability zones, auto-scaling, and CloudWatch

The identifier of an availability zone consists of the identifier of the region (such as us-
east-1) and a character (a, b, c, d, or e). us-east-1a is the identifier of an availability
zone in region us-east-1. To distribute resources across the different availability zones,
the identifier of an availability zone is generated randomly for each AWS account. This
means us-east-1a points to another physical data center in your AWS account, as it does
in our AWS account.

 You can use the following commands to discover all regions available for your AWS
account:

$ aws ec2 describe-regions
{

"Regions": [
{
"Endpoint": "ec2.eu-central-1.amazonaws.com",
"RegionName": "eu-central-1"
},
{

"Endpoint": "ec2.sa-east-1.amazonaws.com",
"RegionName": "sa-east-1"

},
{

"Endpoint": "ec2.ap-northeast-1.amazonaws.com",
"RegionName": "ap-northeast-1"

},
{

"Endpoint": "ec2.eu-west-1.amazonaws.com",
"RegionName": "eu-west-1"

},
{

"Endpoint": "ec2.us-east-1.amazonaws.com",
"RegionName": "us-east-1"

},
{

"Endpoint": "ec2.us-west-1.amazonaws.com",
"RegionName": "us-west-1"

},
{

"Endpoint": "ec2.us-west-2.amazonaws.com",
"RegionName": "us-west-2"

},
{

"Endpoint": "ec2.ap-southeast-2.amazonaws.com",
"RegionName": "ap-southeast-2"

},
{

"Endpoint": "ec2.ap-southeast-1.amazonaws.com",
"RegionName": "ap-southeast-1"

}
]

}

Licensed to Thomas Snead <n.ordickan@gmail.com>

293Recovering from a data center outage

To list all availability zones for a region, execute the following command and replace
$Region with a RegionName from the previous command:

$ aws ec2 describe-availability-zones --region $Region
{

"AvailabilityZones": [
{

"State": "available",
"RegionName": "us-east-1",
"Messages": [],
"ZoneName": "us-east-1a"

},
{

"State": "available",
"RegionName": "us-east-1",
"Messages": [],
"ZoneName": "us-east-1b"

},
{

"State": "available",
"RegionName": "us-east-1",
"Messages": [],
"ZoneName": "us-east-1c"

},
{

"State": "available",
"RegionName": "us-east-1",
"Messages": [],
"ZoneName": "us-east-1e"

}
]

}

Before you start to create a high-availability architecture based on EC2 instances with
failover to multiple availability zones, there’s one more lesson to learn. If you define a
private network in AWS with the help of the virtual private cloud (VPC) service, you
need to know the following:

■ A VPC is always bound to a region.
■ A subnet within a VPC is linked to an availability zone.
■ A virtual server is launched into a single subnet.

Figure 11.6 illustrates these dependencies.
 Next, you’ll learn how to launch a virtual server that will automatically restart in

another availability zone if a failure occurs.

Licensed to Thomas Snead <n.ordickan@gmail.com>

294 CHAPTER 11 Achieving high availability: availability zones, auto-scaling, and CloudWatch

11.2.2 Using auto-scaling to ensure that a virtual server is always running

Auto-scaling is part of the EC2 service and helps you to ensure that a specified number
of virtual servers is running. You can use auto-scaling to launch a virtual server and
make sure a new virtual server is started if the original virtual server fails. With auto-
scaling, you can start EC2 instances in multiple subnets. In case of an outage of an
entire availability zone, a new virtual server can be launched into another subnet in
another availability zone.

 To configure auto-scaling, you need to create two parts of the configuration:

■ A launch configuration contains all information needed to launch a virtual
server: instance type (size of virtual server) and image (AMI) to start from.

■ An auto-scaling group tells the EC2 service how many virtual servers should be
started with a specific launch configuration, how to monitor the instances, and
in which subnets virtual servers should be started.

Figure 11.7 illustrates this process.
 Listing 11.3 shows how to use auto-scaling to make sure a single EC2 instance is

always running. The parameters are explained in table 11.1.

VPC (virtual private cloud)
10.0.0.0/16

Region

Availability zone 1

Subnet A
10.0.0.0/24
public subnet

Subnet B
10.0.2.0/24
private subnet

Subnet C
10.0.1.0/24
public subnet

Subnet D
10.0.3.0/24
private subnet

Availability zone 2

A subnet is linked to
an availability zone.

Figure 11.6 A VPC is bound to a region, and a subnet is linked to an availability zone.

Licensed to Thomas Snead <n.ordickan@gmail.com>

295Recovering from a data center outage

Table 11.1 Required parameters for the launch configuration and auto-scaling group

Context Property Description Values

LaunchConfiguration ImageId The ID of the AMI the virtual
server should be started from.

Any AMI ID accessible from
your account.

LaunchConfiguration InstanceType The size of the virtual server. All available instance sizes,
such as t2.micro,
m3.medium, and c3.large.

AutoScalingGroup DesiredCapacity The number of virtual servers
desired at the moment.

Any positive number. Use 1 if
you want a single virtual
server to be started based on
the launch configuration.

AutoScalingGroup MinSize The minimum number of vir-
tual servers this auto-scaling
group ensures are running at
the same time.

Any positive number. Use 1 if
you want a single virtual
server to be started based on
the launch configuration.

AutoScalingGroup MaxSize The maximum number of vir-
tual servers this auto-scaling
group allows to run at the
same time.

Any positive number. Use 1 if
you want a single virtual
server to be started based on
the launch configuration.

AutoScalingGroup VPCZoneIdentifier The subnet IDs you want to
start virtual servers in.

Any subnet ID from a VPC from
your account. Subnets must
belong to the same VPC.

AutoScalingGroup HealthCheckType The health check used to iden-
tify failed virtual servers. If the
health check fails, the auto-
scaling group replaces the vir-
tual server with a new one.

EC2 to use the status checks
of the virtual server, or ELB
to use the health check of
the load balancer (see chap-
ter 13).

EC2
virtual servers

1. Monitoring health
 check of virtual
 servers.

2. If there aren’t enough healthy
 virtual servers, new ones are launched
 based on the launch configuration.

Auto-scaling group
• Min/max/desired
 number of virtual servers
• Health check for virtual
 servers
• Subnets to launch virtual
 servers in

Launch configuration
• Image (AMI) to start new
 server from
• Size of virtual server

Figure 11.7 Auto-scaling ensures
that a specified number of virtual
servers are running.

Licensed to Thomas Snead <n.ordickan@gmail.com>

296 CHAPTER 11 Achieving high availability: availability zones, auto-scaling, and CloudWatch

[...]
"LaunchConfiguration": {

"Type": "AWS::AutoScaling::LaunchConfiguration",
"Properties": {
"ImageId": "ami-1ecae776" [
"InstanceType": "t2.micro",

}
},
"AutoScalingGroup": {

"Type": "AWS::AutoScaling::AutoScalingGroup",
"Properties": {
"LaunchConfigurationName": {"Ref": "LaunchConfiguration"},
"DesiredCapacity": 1,
"MinSize": 1,
"MaxSize": 1,
"VPCZoneIdentifier": [

{"Ref": "SubnetA"},
{"Ref": "SubnetB"}

],
"HealthCheckType": "EC2"

}
}
[...]

An auto-scaling group is also used if you need to scale the number of virtual servers
based on usage of your system. You’ll learn how to scale the number of servers based
on current load in chapter 14. In this chapter, you only need to make sure a single vir-
tual server is always running. Because you need a single virtual server, set the following
parameters for auto-scaling to 1:

■ DesiredCapacity
■ MinSize
■ MaxSize

The next section will reuse the Jenkins example from the beginning of the chapter to
show you how high availability can be achieved with auto-scaling in practice.

11.2.3 Recovering a failed virtual server to another availability zone
with the help of auto-scaling

In the first part of the chapter, you used a CloudWatch alarm to trigger the recovery of
a virtual server, running a Jenkins CI server, in case of a failure. This mechanism
launches an identical copy of the original virtual server if necessary. Doing so is only
possible in the same availability zone because the private IP address and the EBS volume
of a virtual server are bound to a single subnet and a single availability zone. But sup-
pose your team isn’t happy about the fact that they won’t be able to use the Jenkins
server to test, build, and deploy new software in case of a data center outage in a AWS
region. You begin looking for a tool that will let you recover in another availability zone.

Listing 11.3 Configuring an auto-scaling group and a launch configuration

Launch configuration
used for auto-scaling

Image (AMI) to
start the virtual

server from

Size of the virtual server

Auto-scaling
group

responsible
to launch
thevirtual

server Link to the launch
configuration

Desired
number

of EC2
instances Minimum

number of
EC2 instances

Maximum
number of

EC2 instances Launches the virtual servers in
subnet A (created in availability
zone A) and subnet B (created in
availability zone B)Uses the internal health

check of the EC2 service

Licensed to Thomas Snead <n.ordickan@gmail.com>

297Recovering from a data center outage

 A failover into another availability zone for a virtual server running Jenkins is
possible with the help of auto-scaling. You can find the CloudFormation template for
this example on Github and on S3. You can download a snapshot of the repository at
https://github.com/AWSinAction/code/archive/master.zip. The file we talked about
is located at chapter11/multiaz.json. On S3, the same file is located at https://
s3.amazonaws.com/awsinaction/chapter11/multiaz.json.

 Execute the following command to create a virtual server that can recover in
another availability zone if necessary with the help of auto-scaling. Replace $Password
with a password consisting of 8–40 characters and digits. The command uses the
CloudFormation template shown in listing 11.3 to set up the environment:

$ aws cloudformation create-stack --stack-name jenkins-multiaz \
--template-url https://s3.amazonaws.com/\
awsinaction/chapter11/multiaz.json \
--parameters ParameterKey=JenkinsAdminPassword,ParameterValue=$Password

You’ll find both a launch configuration and an auto-scaling group in the CloudFormation
template shown in listing 11.4. The most important parameters for the launch
configuration were already used when starting a single virtual server with the CloudWatch
recovery alarm in the previous section:

■ ImageId—ID of the image (AMI) for virtual server
■ InstanceType—Size of the virtual server
■ KeyName—Name of the SSH key pair
■ SecurityGroupIds—Link to the security groups
■ UserData—Script executed during bootstrap to install the Jenkins CI server

There’s one important difference between the definition of a single EC2 instance and
the launch configuration: the subnet for the virtual server isn’t defined in the launch
configuration but in the auto-scaling group, as shown in the next listing.

[...]
"LaunchConfiguration": {

"Type": "AWS::AutoScaling::LaunchConfiguration",
"Properties": {

"InstanceMonitoring": false,
"ImageId": {"Fn::FindInMap": [
"EC2RegionMap",
{"Ref": "AWS::Region"},
"AmazonLinuxAMIHVMEBSBacked64bit"

]},
"KeyName": {"Ref": "KeyName"},
"SecurityGroups": [{"Ref": "SecurityGroupJenkins"}],
"AssociatePublicIpAddress": true,
"InstanceType": "t2.micro",

Listing 11.4 Jenkins CI server with auto-scaling in two availability zones

Launch
configuration used
for auto-scaling

By default, EC2 sends metrics to
CloudWatch every 5 minutes. But
you can enable detailed instance
monitoring to get metrics every
minute for an additional cost.

Image (AMI)
to start the

virtual
server from

Key for the SSH
connections to

the virtual
server

Security groups
attached to the

virtual server

Enables the public
IP address for the

virtual server
Size of the virtual server

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/AWSinAction/code/archive/master.zip
https://s3.amazonaws.com/awsinaction/chapter11/multiaz.json
https://s3.amazonaws.com/awsinaction/chapter11/multiaz.json

298 CHAPTER 11 Achieving high availability: availability zones, auto-scaling, and CloudWatch

"UserData": {
"Fn::Base64": {
 "Fn::Join": [

"",
[

"#!/bin/bash -ex\n",
"wget http://pkg.jenkins-ci.org/redhat/

 ➥ jenkins-1.616-1.1.noarch.rpm\n",
"rpm --install jenkins-1.616-1.1.noarch.rpm\n",
[...]
"service jenkins start\n"

]
]

}
}

}
},
"AutoScalingGroup": {

"Type": "AWS::AutoScaling::AutoScalingGroup",
"Properties": {
"LaunchConfigurationName": {"Ref": "LaunchConfiguration"},
"Tags": [

{
"Key": "Name",
"Value": "jenkins",
"PropagateAtLaunch": true

}
],
"DesiredCapacity": 1,
"MinSize": 1,
"MaxSize": 1,
"VPCZoneIdentifier": [

{"Ref": "SubnetA"},
{"Ref": "SubnetB"}

],
"HealthCheckType": "EC2"

}
}
[...]

The creation of the CloudFormation stack will take a few minutes—time to grab some
coffee or tea and take a short break. Execute the following command to grab the pub-
lic IP address of the virtual server. If no IP address appears, the virtual server isn’t
started yet. Wait another minute, and try again:

$ aws ec2 describe-instances --filters "Name=tag:Name,\
Values=jenkins-multiaz" "Name=instance-state-code,Values=16" \
--query "Reservations[0].Instances[0].\
[InstanceId, PublicIpAddress, PrivateIpAddress, SubnetId]"
[

"i-e8c2063b",
"52.4.11.10",
"10.0.1.56",
"subnet-36257a41"

]

User data containing a script
executed during bootstrapping of
the virtual server that installs a
Jenkins server on the virtual server

Auto-scaling group
responsible for launching

the virtual server Link to
 the launch

configurationTags for the
auto-scaling

group

Attaches the same tags to
the virtual server started
by this auto-scaling group

Desired
number of

EC2 instances
Minimum
number of EC2
instances

Maximum
number of

EC2 instances
Launches the virtual servers in
subnet A (created in availability
zone A) and subnet B (created in
availability zone B)

Uses the internal
health check of
the EC2 service

Instance ID of
the virtual

server

Public IP address of
the virtual server

Private IP
address of the
virtual server

Subnet ID of the virtual server

Licensed to Thomas Snead <n.ordickan@gmail.com>

299Recovering from a data center outage

Open http://$PublicIP:8080 in your browser, and replace $PublicIP with the public
IP address from the output of the previous describe command. The web interface
from the Jenkins server appears.

 Execute the following command to terminate the virtual server and test the recov-
ery process with auto-scaling. Replace $InstanceId with the instance ID from the out-
put of the previous describe command:

$ aws ec2 terminate-instances --instance-ids $InstanceId

After a few minutes, the auto-scaling group detects that the virtual server was termi-
nated and starts a new virtual server. Rerun the describe-instances command until
the output contains a new running virtual server:

$ aws ec2 describe-instances --filters "Name=tag:Name,\
Values=jenkins-multiaz" "Name=instance-state-code,Values=16" \
--query "Reservations[0].Instances[0].\
[InstanceId, PublicIpAddress, PrivateIpAddress, SubnetId]"
[

"i-5e4f68f7",
"54.88.118.96",
"10.0.0.36",
"subnet-aa29b281"

]

The instance ID, the public IP address, the private IP address, and probably even the
subnet ID have changed for the new instance. Open http://$PublicIP:8080 in your
browser, and replace $PublicIP with the public IP address from the output of the pre-
vious describe command. The web interface from the Jenkins server appears.

 You’ve built a highly available architecture consisting of an EC2 server with the
help of auto-scaling. There are two issues with the current setup:

■ The Jenkins server stores data on disk. When a new virtual server is started to
recover from a failure, this data is lost because a new disk is created.

■ The public and private IP addresses of the Jenkins server change after a new vir-
tual server is started for recovery. The Jenkins server is no longer available
under the same endpoint.

You’ll learn how to solve these problems in the next part of the chapter.

11.2.4 Pitfall: network-attached storage recovery

The EBS service offers network-attached storage for virtual servers. EC2 instances are
linked to a subnet, which is linked to an availability zone. EBS volumes are also
located in a single availability zone. If your virtual server is started in another avail-
ability zone because of an outage, the data stored on the EBS volume is no longer
available. Figure 11.8 illustrates the problem.

Licensed to Thomas Snead <n.ordickan@gmail.com>

300 CHAPTER 11 Achieving high availability: availability zones, auto-scaling, and CloudWatch

There are multiple solutions to this problem:

■ Outsource the state of your virtual server to a managed service that uses multi-
ple availability zones by default: relational database service (RDS), DynamoDB
(NoSQL database), or S3 (object store).

■ Create snapshots of your EBS volumes, and use these snapshots if a virtual server
needs to recover in another availability zone. EBS snapshots are stored on S3 to
be available in multiple availability zones.

■ Use a distributed third-party storage solution to store your data in multiple
availability zones: GlusterFS, DRBD, MongoDB, and so on.

The Jenkins server stores data directly on disk. To outsource the state of the virtual
server, you can’t use RDS, DynamoDB, or S3; you need a block-level storage solution
instead. As you learned, an EBS volume is only available in a single availability zone, so
this isn’t the best fit for the problem. Using a distributed third-party storage solution
would be possible but introduces a lot of complexity that’s out of the scope of this
book. You’ll learn how to use EBS snapshots to recover a virtual server in another avail-
ability zone without losing the complete state stored on the EBS volume. Instead,
you’ll lose all data since the last snapshot.

Launch new virtual server
in other availability zone

EBS volume is bound
to availability zone A

New and empty EBS volume

Availability zone A Availability zone B

Virtual server

EBS volume

Virtual server

EBS volume

Figure 11.8 An EBS volume is only available in a single availability zone.

Licensed to Thomas Snead <n.ordickan@gmail.com>

301Recovering from a data center outage

 You can specify a custom image (AMI) for a virtual server started by auto-scaling
with the help of the launch configuration, as shown in listing 11.5. An AMI is similar to
an EBS snapshot; it contains additional information regarding the virtualization of the
OS. You can also launch a new virtual server based on a AMI. But it’s not possible to
use an EBS snapshot to create a root volume. You can create an image (AMI) of every
running virtual server. In comparison to the EBS volume itself, an EBS snapshot or AMI
is stored in multiple availability zones within a region, so you can use it to recover in
another availability zone.

[...]
"LaunchConfiguration": {

"Type": "AWS::AutoScaling::LaunchConfiguration",
"Properties": {
"InstanceMonitoring": false,
"ImageId": {"Ref": "AMISnapshot"},
"KeyName": {"Ref": "KeyName"},
"SecurityGroups": [{"Ref": "SecurityGroupJenkins"}],
"AssociatePublicIpAddress": true,
"InstanceType": "t2.micro",
"UserData": {

"Fn::Base64": {
"Fn::Join": [

"",
[

"#!/bin/bash -ex\n",
"wget http://pkg.jenkins-ci.org/redhat/

➥ jenkins-1.616-1.1.noarch.rpm\n",
"rpm --install jenkins-1.616-1.1.noarch.rpm\n",
[...]
"service jenkins start\n"

]
]

}
}

}
}
[...]

We’ll guide you through the following steps:

1 Add a job for Jenkins CI server.
2 Create an AMI with a snapshot of the current state of the virtual server.
3 Update the launch configuration.
4 Test the recovery.

Execute the following command to get the instance ID and public IP address of the
running virtual server:

Listing 11.5 Updating the image a new virtual server starts from in case of recovery

Auto-scaling starts new
virtual servers based
on the specified AMI.

Licensed to Thomas Snead <n.ordickan@gmail.com>

302 CHAPTER 11 Achieving high availability: availability zones, auto-scaling, and CloudWatch

$ aws ec2 describe-instances --filters "Name=tag:Name,\
Values=jenkins-multiaz" "Name=instance-state-code,Values=16" \
--query "Reservations[0].Instances[0].[InstanceId, PublicIpAddress]"
[

"i-5e4f68f7",
"54.88.118.96"

]

Now, create a new Jenkins job by following these steps:

1 Open http://$PublicIP:8080/newJob in your browser, and replace $PublicIP
with the public IP address from the output of the previous describe command.

2 Log in with user admin and the password you chose when starting the Cloud-
Formation template.

3 Type in AWS in Action as the name for the new job.
4 Select Freestyle Project as the job type, and click OK to save the job.

You’ve made some changes to the state of the virtual server stored on the EBS root
volume.

 To make sure this new job doesn’t get lost if a new virtual server is started by the
auto-scaling group in case of a failure, you need to create an AMI as a snapshot of the
current state. Execute the following command to do so, replacing $InstanceId with
the instance ID from the previous describe command:

$ aws ec2 create-image --instance-id $InstanceId --name jenkins-multiaz
{

"ImageId": "ami-0dba4266"
}

Wait until the AMI is available. Execute the following command to check the current sta-
tus, replacing $ImageId with the ImageId printed from the create-image command:

$ aws ec2 describe-images --image-id $ImageId --query "Images[].State"

You need to update the launch configuration with the CloudFormation template
shown in listing 11.5. Execute the following command to do so, replacing $ImageId
with the ImageId:

$ aws cloudformation update-stack --stack-name jenkins-multiaz \
--template-url https://s3.amazonaws.com/awsinaction/\
chapter11/multiaz-ebs.json --parameters \
ParameterKey=JenkinsAdminPassword,UsePreviousValue=true \
ParameterKey=AMISnapshot,ParameterValue=$ImageId

Wait a few minutes until CloudFormation has changed the launch configuration.
Check the status by running aws cloudformation describe-stacks --stack-name
jenkins-multiaz and wait until status changes to UPDATE_COMPLETE. It’s now time to
simulate an outage of the virtual server. Execute the following command to terminate
the virtual server, replacing $InstanceId with the output from the describe command:

$ aws ec2 terminate-instances --instance-ids $InstanceId

ID of new AMI used to update
the launch configuration with
the help of the CloudFormation

Licensed to Thomas Snead <n.ordickan@gmail.com>

303Recovering from a data center outage

It will take up to five minutes for the auto-scaling group to detect the missing virtual
server and start a new virtual server. Run the following command to get information
about the new virtual server. If the output is empty, retry the command after a few
minutes:

$ aws ec2 describe-instances --filters "Name=tag:Name,\
Values=jenkins-multiaz" "Name=instance-state-code,Values=16" \
--query "Reservations[0].Instances[0].[InstanceId, PublicIpAddress]"

Open http://$PublicIP:8080 in your browser, and replace $PublicIP with the public
IP address from the output of the previous describe command. You should find a job
named AWS in Action available in the Jenkins web interface.

11.2.5 Pitfall: network interface recovery

Recovering a virtual server with the help of a CloudWatch alarm in the same availabil-
ity zone, as described at the beginning of this chapter, is easy because the private IP
address and the public IP address stay the same automatically. You can use these IP
addresses as an endpoint to access the server even after a failover.

 You can’t do this when using auto-scaling to recover from a server or data center
outage. If a virtual server has to be started in another availability zone to recover from
a data center outage, it must be started in another subnet. It’s not possible to use the
same private IP address for the new virtual server, as figure 11.9 shows.

 By default, you also can’t use an Elastic IP as a public IP address for a virtual server
launched by auto-scaling. But the requirement for a static endpoint to receive
requests is common. For the use case of a Jenkins server, developers want to bookmark

Cleaning up
It’s time to clean up to avoid unwanted costs. Execute the following command to pre-
pare for the deletion of unused resources:

$ aws ec2 describe-images --owners self \
--query Images[0].[ImageId,BlockDeviceMappings[0]\
.Ebs.SnapshotId]

The output contains the ID of the image (AMI) and the ID of the corresponding snap-
shot. Execute the following commands to delete all resources corresponding to the
Jenkins setup, replacing $ImageId with the image ID and $SnapshotId with the
snapshot ID from the previous output:

$ aws cloudformation delete-stack --stack-name jenkins-multiaz
$ aws cloudformation describe-stacks --stack-name jenkins-multiaz
$ aws ec2 deregister-image --image-id $ImageId
$ aws ec2 delete-snapshot --snapshot-id $SnapshotId

Rerun this command until the status
changes to DELETE_COMPLETE or an error
occurs stating that the stack doesn’t exist.

Licensed to Thomas Snead <n.ordickan@gmail.com>

304 CHAPTER 11 Achieving high availability: availability zones, auto-scaling, and CloudWatch

an IP address or a hostname to reach the web interface. There are different possibili-
ties to provide a static endpoint when using auto-scaling to build high availability for a
single virtual server:

■ Allocate an Elastic IP, and associate this public IP address during the bootstrap
of the virtual server.

■ Create or update a DNS entry linking to the current public or private IP address
of the virtual server.

■ Use an Elastic Load Balancer (ELB) as a static endpoint that forwards requests
to the current virtual server.

To use the second solution, you need to link a domain with the Route 53 (DNS) ser-
vice; we’ve chosen to skip this solution because you need a registered domain to
implement it. The ELB solution is covered in chapter 12, so we’ll skip it in this chapter

VPC (virtual private cloud)
10.0.0.0/16

Region

Availability zone 1

Subnet A
10.0.0.0/24
public subnet

Subnet B
10.0.2.0/24
private subnet

Subnet C
10.0.1.0/24
public subnet

Subnet D
10.0.3.0/24
private subnet

Availability zone 2

The private IP address has to change because
the virtual server is recovered in another subnet.

Virtual server
10.0.0.100

Virtual server
10.0.1.100

Figure 11.9 The virtual server starts in another subnet in case of a failover and
changes the private IP address.

Licensed to Thomas Snead <n.ordickan@gmail.com>

305Recovering from a data center outage

as well. We’ll focus on the first solution: allocating an Elastic IP and associating this
public IP address during the bootstrap of the virtual server started by auto-scaling.

 Execute the following command to create the Jenkins setup based on auto-scaling
again, using an Elastic IP address as static endpoint:

$ aws cloudformation create-stack --stack-name jenkins-elasticip \
--template-url https://s3.amazonaws.com/\
awsinaction/chapter11/multiaz-elasticip.json \
--parameters ParameterKey=JenkinsAdminPassword,ParameterValue=$Password \
--capabilities CAPABILITY_IAM

The command creates a stack based on the template shown in listing 11.6. The differ-
ences from the original template spinning up a Jenkins server with auto-scaling are as
follows:

■ Allocating an Elastic IP
■ Adding the association of an Elastic IP to the script in the user data
■ Creating an IAM role and policy to allow the EC2 instance to associate an Elastic IP

[...]
"IamRole": {

"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": {"Service": ["ec2.amazonaws.com"]

},
"Action": ["sts:AssumeRole"]

}
]

},
"Path": "/",
"Policies": [

{
"PolicyName": "root",
"PolicyDocument": {

"Version": "2012-10-17",
"Statement": [

{
"Action": ["ec2:AssociateAddress"],
"Resource": ["*"],
"Effect": "Allow"

}
]

}
}

]
}

Listing 11.6 Using an Elastic IP as a static endpoint

Creates an IAM
role used by the
EC2 instance

Associating an Elastic IP is
allowed for EC2 instances
using this IAM role.

Licensed to Thomas Snead <n.ordickan@gmail.com>

306 CHAPTER 11 Achieving high availability: availability zones, auto-scaling, and CloudWatch

},
"IamInstanceProfile": {

"Type": "AWS::IAM::InstanceProfile",
"Properties": {
"Path": "/",
"Roles": [{"Ref": "IamRole"}]

}
},
"ElasticIP": {

"Type": "AWS::EC2::EIP",
"Properties": {
"Domain": "vpc"

}
},
"LaunchConfiguration": {

"Type": "AWS::AutoScaling::LaunchConfiguration",
"DependsOn": "ElasticIP",
"Properties": {
"InstanceMonitoring": false,
"IamInstanceProfile": {"Ref": "IamInstanceProfile"},
"ImageId": {"Fn::FindInMap": [

"EC2RegionMap",
{"Ref": "AWS::Region"},
"AmazonLinuxAMIHVMEBSBacked64bit"

]},
"KeyName": {"Ref": "KeyName"},
"SecurityGroups": [{"Ref": "SecurityGroupJenkins"}],
"AssociatePublicIpAddress": true,
"InstanceType": "t2.micro",
"UserData": {

"Fn::Base64": {
"Fn::Join": [

"",
[

"#!/bin/bash -ex\n",
"aws configure set default.region ", {"Ref": "AWS::Region"},",
"aws ec2 associate-address --instance-id ",
"$INSTANCE_ID --allocation-id ",
{"Fn::GetAtt": ["ElasticIP", "AllocationId"]},
"\n",
"wget http://pkg.jenkins-ci.org/redhat/

➥ jenkins-1.616-1.1.noarch.rpm\n",
"rpm --install jenkins-1.616-1.1.noarch.rpm\n",
[...]
"service jenkins start\n"

]
]

}
}

}
}
[...]

Allocates an Elastic IP for
the virtual server running
Jenkins

Creates an Elastic
IP for VPC

Waits for the Elastic
IP to be available

Sets the default region for
AWS CLI to the region the
virtual server is running in.

Gets the instance ID
from the instance

metadata

Associates the
Elastic IP with

the virtual
server

Licensed to Thomas Snead <n.ordickan@gmail.com>

307Analyzing disaster-recovery requirements

If the following query returns output containing a URL, a user, and a password, the
stack is created and the Jenkins server is ready to use. Open the URL in your browser,
and log in to the Jenkins server with user admin and the password you’ve chosen. If
the output is empty, try again in a few minutes:

$ aws cloudformation describe-stacks --stack-name jenkins-elasticip \
--query Stacks[0].Outputs

You can now test whether the recovery of the virtual server works as expected. To do
so, you’ll need to know the instance ID of the running virtual server. Run the following
command to get this information:

$ aws ec2 describe-instances --filters "Name=tag:Name,\
Values=jenkins-elasticip" "Name=instance-state-code,Values=16" \
--query "Reservations[0].Instances[0].InstanceId" --output text

Execute the following command to terminate the virtual server and test the recovery
process triggered by auto-scaling. Replace $InstanceId with the instance from the
output of the previous command:

$ aws ec2 terminate-instances --instance-ids $InstanceId

Wait a few minutes for the recovery of your virtual server. Because you’re using an
Elastic IP assigned to the new virtual server on bootstrapping, you can open the same
URL in your browser as you did before the termination of the old instance.

Now the public IP address of your virtual server running Jenkins won’t change even if
the running virtual server needs to be replaced by another virtual server in another
availability zone.

11.3 Analyzing disaster-recovery requirements
Before you begin implementing highly available or even fault-tolerant architectures
on AWS, you should start by analyzing your disaster-recovery requirements. Disaster
recovery is easier and cheaper in the cloud than in a traditional data center, but it
increases the complexity and therefore the initial and operating costs of your system.
The recovery time objective (RTO) and recovery point objective (RPO) are standard

Cleaning up
It’s time to clean up to avoid unwanted costs. Execute the following command to de-
lete all resources corresponding to the Jenkins setup:

$ aws cloudformation delete-stack --stack-name jenkins-elasticip
$ aws cloudformation describe-stacks --stack-name jenkins-elasticip

Rerun this command until the status
changes to DELETE_COMPLETE or an errors
occurs stating that the stack does not exist.

Licensed to Thomas Snead <n.ordickan@gmail.com>

308 CHAPTER 11 Achieving high availability: availability zones, auto-scaling, and CloudWatch

for defining the importance of disaster recovery for a system from the business point
of view.

 The recovery time objective (RTO) is the time it takes for a system to recover from a fail-
ure; it’s the length of time until the system service level is reached after an outage. In
the example with a Jenkins server, the RTO would be the time until a new virtual server
is started and Jenkins is installed and running after an outage of a virtual server or an
entire data center.

 The recovery point objective (RPO) is the acceptable data-loss time caused by a failure.
The amount of data loss is measured in time. If an outage happens at 10:00 AM and
the system recovers with a data snapshot from 09:00 AM, the time span of the data loss
is one hour. In the example with a Jenkins server using auto-scaling, the RPO would be
the maximum time span between two EBS snapshots. Configuration and results from
Jenkins jobs that changed after the last EBS snapshot would be lost in case of a recov-
ery in another data center. Figure 11.10 illustrates the definitions of RTO and RPO.

11.3.1 RTO and RPO comparison for a single virtual server

You’ve learned about two possible solutions to make a single server highly available.
Table 11.2 compares the solutions.

Table 11.2 Comparison of high availability for a single virtual server

RTO RPO Availability

Virtual server with recov-
ery triggered by a Cloud-
Watch alarm

About 10
minutes

No data loss. Recovers from a failure
of a virtual server but
not from an outage of an
entire availability zone

Virtual server with auto-
scaling for recovery

About 10
minutes

All data since the last snapshot
is lost. Practicable time span
for snapshots is between 30
minutes and 24 hours.

Recovers from a failure
of a virtual server and
from an outage of an
entire availability zone

Last backup

Part of the system
fails. Beginning of
the service outage.

Service is operating
again. Data from the
last backup is restored.

RPO RTO

Failure Recovery

Figure 11.10 Definitions of RTO and RPO

Licensed to Thomas Snead <n.ordickan@gmail.com>

309Summary

If you want to be able to recover from an outage of an availability zone and need to
decrease the RPO, you should try to achieve a stateless server. Using storage services
like RDS, S3, and DynamoDB can help you to do so. See part 3 of the book if you need
help with using these services.

11.4 Summary
■ A virtual server fails if the underlying hardware or software fails.
■ You can recover a failed virtual server with the help of a CloudWatch alarm.
■ An AWS region consists of multiple isolated data centers called availability zones.
■ Recovering from a data center outage is possible when using multiple availabil-

ity zones.
■ Some AWS services use multiple availability zones by default, but virtual servers

run in a single availability zone.
■ You can use auto-scaling to guarantee that a single virtual server is always run-

ning even if an availability zone fails.
■ Recovering data in another availability zone is tricky when stored on EBS vol-

umes instead of managed storage services like RDS, S3, and DynamoDB.

Licensed to Thomas Snead <n.ordickan@gmail.com>

310

Decoupling
 your infrastructure:

 ELB and SQS

Imagine that you want some advice on using AWS from us, and therefore we plan to
meet in a café. To make this meeting successful, we must

■ Be available at the same time
■ Be at the same place
■ Find each other at the café

The problem with our meeting is that it’s tightly coupled to a location. We can solve
that issue by decoupling our meeting from the location, so we change plans and
schedule a Google Hangout session. Now we must

This chapter covers
■ The reasons for decoupling a system
■ Synchronous decoupling with load balancers
■ Asynchronous decoupling with message queues

Licensed to Thomas Snead <n.ordickan@gmail.com>

311

■ Be available at the same time
■ Find each other in Google Hangout

Google Hangout (this also works with all other video/voice chats) does synchronous
decoupling. It removes the need to be at the same place while still requiring us to
meet at the same time.

 We can even decouple from time by using an e-mail conversation. Now we must

■ Find each other via email
Email does asynchronous decoupling. You can send an email when the recipient is
asleep, and they’ll respond when they’re awake.

NOTE To fully understand this chapter, you’ll need to have read and under-
stood the concept of auto-scaling covered in chapter 11.

A meeting isn’t the only thing that can be decoupled. In software systems, you can
find a lot of tightly coupled components:

■ A public IP address is like the location of our meeting. To make a request to a
web server, you must know its public IP address, and the server must be con-
nected to that address. If you want to change the public IP address, both parties
are involved in making the appropriate changes.

■ If you want to make a request to a web server, the web server must be online
at the same time. Otherwise your request will fail. There are many reasons a
web server can be offline: someone is installing updates, a hardware failure,
and so on.

AWS offers a solution for both of these problems. The Elastic Load Balancing (ELB) ser-
vice provides a load balancer that sits between your web servers and the public inter-
net to decouple your servers synchronously. For asynchronous decoupling, AWS offers
a Simple Queue Service (SQS) that provides a message queue infrastructure. You’ll learn
about both services in this chapter. Let’s start with ELB.

Examples are 100% covered by the Free Tier
The examples in this chapter are totally covered by the Free Tier. As long as you
don’t run the examples longer than a few days, you won’t pay anything for it. Keep
in mind that this applies only if you created a fresh AWS account for this book
and there are no other things going on in your AWS account. Try to complete
the chapter within a few days, because you’ll clean up your account at the end of
the chapter.

Licensed to Thomas Snead <n.ordickan@gmail.com>

312 CHAPTER 12 Decoupling your infrastructure: ELB and SQS

12.1 Synchronous decoupling with load balancers
Exposing a single web server to the outside world introduces a dependency: the public
IP address of the EC2 instance. From this point on, you can’t change the public IP
address again because it’s used by many clients sending requests to your server. You’re
faced with the following issues:

■ Changing the public IP address is no longer possible because many clients rely
on it.

■ If you add an additional server (and IP address) to handle increasing load, it’s
ignored by all current clients: they’re still sending all requests to the public IP
address of the first server.

You can solve these issues with a DNS name pointing to your server. But DNS isn’t fully
under your control. DNS servers cache entries, and sometimes they don’t respect your
time to live (TTL) settings. A better solution is to use a load balancer.

 A load balancer can help to decouple a system where the requester awaits an
immediate response. Instead of exposing your web servers to the outside world, you
only expose the load balancer to the outside world. The load balancer then redirects
requests to the web servers behind it. Figure 12.1 shows how this works.

10.0.0.0/16

10.0.1.0/24

Web server 2Web server 1

Load balancer

Internet

The load balancer is accessible from
the internet with a public name.

The load balancer routes
incoming requests to one of
the two back-end web servers.

The web server is
only accessible through
the load balancer.

Figure 12.1 A load balancer synchronously decouples your server.

Licensed to Thomas Snead <n.ordickan@gmail.com>

313Synchronous decoupling with load balancers

AWS offers load balancers through the ELB service. The AWS load balancer is fault-
tolerant and scalable. For each ELB, you pay $ 0.025 per hour and $ 0.008 per GB of
processed traffic. The prices are valid for the North Virginia (us-east-1) region.

NOTE The ELB service doesn’t have an independent Management Console.
It’s integrated into the EC2 service.

A load balancer can be used with more than web servers—you can use load balancers
in front of any systems that deal with request/response kind of communication.

12.1.1 Setting up a load balancer with virtual servers

AWS shines when it comes to integrating services together. In chapter 11, you learned
about auto-scaling groups. You’ll now put a Elastic Load Balancer (ELB) in front of an
auto-scaling group to decouple traffic to web servers. The auto-scaling group will
make sure you always have two servers running. Servers that are started in the auto-
scaling group will automatically register with the ELB. Figure 12.2 shows how the setup
will look. The interesting part is that the web servers are no longer accessible directly
from the public internet. Only the load balancer is accessible and redirects request to
the back-end servers behind it; this is done with security groups, which you learned
about in chapter 6.

10.0.0.0/16

10.0.1.0/24

Web server 2Web server 1

Internet

The auto-scaling group observes
two web servers. If a new server
is started, the auto-scaling group
registers it with the ELB.

Figure 12.2 Auto-scaling groups work closely with ELB: they register a new server with the load balancer.

Licensed to Thomas Snead <n.ordickan@gmail.com>

314 CHAPTER 12 Decoupling your infrastructure: ELB and SQS

An ELB is described by the following:

■ The subnets it’s attached to. There can be more than one.
■ A mapping of the load balancer port to the port on the servers behind the ELB.
■ The security groups that are assigned to the ELB. You can restrict traffic to the

ELB in the same ways you can with EC2 instances.
■ Whether the load balancer should be accessible from the public internet.

The connection between the ELB and the auto-scaling group is made in the auto-scaling
group description by specifying LoadBalancerNames.

 The next listing shows a CloudFormation template snippet to create an ELB and
connect it with an auto-scaling group. The listing implements the example shown in
figure 12.2.

[...]
"LoadBalancerSecurityGroup": {

"Type": "AWS::EC2::SecurityGroup",
"Properties": {
"GroupDescription": "elb-sg",
"VpcId": {"Ref": "VPC"},
"SecurityGroupIngress": [{

"CidrIp": "0.0.0.0/0",
"FromPort": 80,
"ToPort": 80,
"IpProtocol": "tcp"

}]
}

},
"LoadBalancer": {

"Type": "AWS::ElasticLoadBalancing::LoadBalancer",
"Properties": {
"Subnets": [{"Ref": "Subnet"}],
"LoadBalancerName": "elb",
"Listeners": [{

"InstancePort": "80",
"InstanceProtocol": "HTTP",
"LoadBalancerPort": "80",
"Protocol": "HTTP"

}],
"SecurityGroups": [{"Ref": "LoadBalancerSecurityGroup"}],
"Scheme": "internet-facing"

}
},
"LaunchConfiguration": {

"Type": "AWS::AutoScaling::LaunchConfiguration",
"Properties": {
[...]

}
},

Listing 12.1 Creating a load balancer and connecting it with an auto-scaling group

The load balancer only
accepts traffic on port 80.

Attaches the ELB
to the subnet

Maps the load-balancer
port to a port on the
servers behind it.

Assigns a
security

group.

The ELB is publicly
accessible (use internal
instead of internet-facing
to define a load balancer
reachable from private
network only).

Licensed to Thomas Snead <n.ordickan@gmail.com>

315Synchronous decoupling with load balancers

"AutoScalingGroup": {
"Type": "AWS::AutoScaling::AutoScalingGroup",
"Properties": {
"LoadBalancerNames": [{"Ref": "LoadBalancer"}],
"LaunchConfigurationName": {"Ref": "LaunchConfiguration"},
"MinSize": "2",
"MaxSize": "2",
"DesiredCapacity": "2",
"VPCZoneIdentifier": [{"Ref": "Subnet"}]

}
}

To help you explore ELBs, we created a CloudFormation template, located at https://
s3.amazonaws.com/awsinaction/chapter12/loadbalancer.json. Create a stack based
on that template, and then visit the URL output of your stack with your browser. Every
time you reload the page, you should see one of the private IP addresses of a back-end
web server.

12.1.2 Pitfall: connecting a server too early

The auto-scaling group is responsible for connecting a newly launched EC2 instance
with the load balancer. But how does the auto-scaling group knows when the EC2
instance is installed and ready to accept traffic? Unfortunately, the auto-scaling group
doesn’t know whether the server is ready; it will register the EC2 instance with the load
balancer as soon as the instance is launched. If traffic is sent to a server that’s
launched but not installed, the request will fail and your users will be unhappy.

 But the ELB can send periodic health checks to each server that’s connected to
find out whether the server can serve requests. In the web server example, you want to
check whether you get a status code 200 response for a particular resource, such as
/index.html. The following listing shows how this can be done with CloudFormation.

"LoadBalancer": {
"Type": "AWS::ElasticLoadBalancing::LoadBalancer",
"Properties": {

[...]
"HealthCheck": {
"Target": "HTTP:80/index.html",
"Interval": "10",
"Timeout": "5",
"HealthyThreshold": "3",

Listing 12.2 ELB health checks to determine whether a server can answer requests

Connects the
auto-scaling
group with

the ELB.
Belongs to MinSize,
MaxSize and
DesiredCapacity.

Cleaning up
Delete the stack you created.

Are the servers
retuning status code
200 on /index.html?

Checks every
10 seconds

Timeout after 5
seconds (must be

less than Interval)
The check must
pass three times in
a row to be healthy.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://s3.amazonaws.com/awsinaction/chapter12/loadbalancer.json
https://s3.amazonaws.com/awsinaction/chapter12/loadbalancer.json

316 CHAPTER 12 Decoupling your infrastructure: ELB and SQS

"UnhealthyThreshold": "2"
}

}
}

Instead of /index.html, you can also request a dynamic page like /healthy.php that
does some additional checks to decide whether the web server is ready to handle
requests. The contract is that you must return an HTTP status code 200 when the
server is ready. That’s it.

By default, an auto-scaling group determines if an EC2 instance is healthy based on
the heath check that EC2 performs every minute. You can configure an auto-scaling
group to use the health check of the load balancer instead. The auto-scaling group
will now terminate servers not only if the hardware fails, but also if the application
fails. Set "HealthCheckType": "ELB" in the auto-scaling group description. Some-
times this setting makes sense because restarting can solve issues like memory, thread
pool, or disk overflow, but it can also cause unwanted restarts of EC2 instances in the
case of a broken application.

12.1.3 More use cases

So far, you’ve seen the most common use case for ELB: load-balancing incoming web
requests to some web servers over HTTP. As mentioned earlier, ELB can do far more
than that. In this section, we’ll look at four more typical use cases:

1 ELB can balance TCP traffic. You can place almost any application behind a load
balancer.

2 ELB can turn SSL-encrypted traffic into plain traffic if you add your SSL certifi-
cate to AWS.

3 ELB can log each request. Logs are stored on S3.
4 ELB can distribute your requests evenly across multiple availability zones.

HANDLING TCP TRAFFIC

Until now, you’ve only used ELB to handle HTTP traffic. You can also configure ELB to
redirect plain TCP traffic, to decouple databases or legacy applications with proprie-
tary interfaces. Compared to an ELB configuration that handles HTTP traffic, you

The check must
fail two times
in a row to be

unhealthy.

Aggressive health checks can cause downtime
If a server is too busy to answer a health check, the ELB will stop sending traffic to
that server. If the situation is caused by a general load increase on your system, the
ELB’s response will make the situation worse! We’ve seen applications experience
downtime due to overly aggressive health checks. You need proper load testing to
understand what’s going on. An appropriate solution is application-specific and can’t
be generalized.

Licensed to Thomas Snead <n.ordickan@gmail.com>

317Synchronous decoupling with load balancers

must change Listeners and HealthCheck to handle TCP traffic with ELB. The health
check doesn’t check for a specific response as it did when dealing with HTTP; health
checks for TCP traffic are healthy when the ELB can open a socket. The following list-
ing shows how you can redirect TCP traffic to MySQL back ends.

"LoadBalancer": {
"Type": "AWS::ElasticLoadBalancing::LoadBalancer",
"Properties": {
"Subnets": [{"Ref": "SubnetA"}, {"Ref": "SubnetB"}],
"LoadBalancerName": "elb",
"Listeners": [{

"InstancePort": "3306",
"InstanceProtocol": "TCP",
"LoadBalancerPort": "3306",
"Protocol": "TCP"

}],
"HealthCheck": {

"Target": "TCP:3306",)
"Interval": "10",
"Timeout": "5",
"HealthyThreshold": "3",
"UnhealthyThreshold": "2"

},
"SecurityGroups": [{"Ref": "LoadBalancerSecurityGroup"}],
"Scheme": "internal"

}
}

You can also configure port 80 to be handled as TCP traffic, but you’ll lose the ability
to do health checks based on the status code that’s returned by your web server.

TERMINATING SSL

An ELB can be used to terminate SSL without the need to do the configuration on your
own. Terminating SSL means the ELB offers an SSL-encrypted endpoint that forwards
requests unencrypted to your back-end servers. Figure 12.3 shows how this works.

 You can use predefined security policies from AWS to get a secure SSL configura-
tion that takes care of SSL vulnerabilities in the wild. You can accept requests on
port 443 (HTTPS); the ELB terminates SSL and forwards the request to port 80 on a
web server. That’s an easy solution to offer SSL-encrypted communication. SSL termi-
nation doesn’t just work for HTTP requests; it also works for TCP traffic (such as
POP3, SMTP, FTP).

NOTE The following example only works if you already own an SSL certificate.
If you don’t, you need to buy an SSL certificate or skip the example. AWS
doesn’t offer SSL certificates at the moment. You could use a self-signed certif-
icate for testing purposes.

Listing 12.3 ELB handling plain TCP traffic (not only HTTP)

Redirects traffic on
port 3306 (MySQL) to
the back-end servers

Healthy when ELB can open a
socket on port 3306 on the
back-end server

The MySQL database
shouldn’t be public; choose
an internal load balancer.

Licensed to Thomas Snead <n.ordickan@gmail.com>

318 CHAPTER 12 Decoupling your infrastructure: ELB and SQS

Before you can activate SSL encryption, you must upload your SSL certificate to IAM
with the help of the CLI:

$ aws iam upload-server-certificate \
--server-certificate-name my-ssl-cert \
--certificate-body file://my-certificate.pem \
--private-key file://my-private-key.pem \
--certificate-chain file://my-certificate-chain.pem

Now you can use your SSL certificate by referencing my-ssl-cert. The following list-
ing shows how encrypted HTTP communication can be configured with the help of
the ELB.

"LoadBalancer": {
"Type": "AWS::ElasticLoadBalancing::LoadBalancer",
"Properties": {
"Subnets": [{"Ref": "SubnetA"}, {"Ref": "SubnetB"}],
"LoadBalancerName": "elb",
"Policies": [{

"PolicyName": "ELBSecurityPolicyName",
"PolicyType": "SSLNegotiationPolicyType",
"Attributes": [{

"Name": "Reference-Security-Policy",
"Value": "ELBSecurityPolicy-2015-05"

Listing 12.4 Terminating SSL with ELB to offer encrypted communication

10.0.0.0/16

10.0.1.0/24

Web server 2Web server 1

Internet

SSL-encrypted traffic on port 443 reaches the ELB.
Internally, the traffic is decrypted with the private
key. The ELB forwards decrypted (plain HTTP)
traffic to back-end servers on port 80.

Figure 12.3 A load balancer can accept encrypted traffic, decrypt the traffic, and forward un-
encrypted traffic to the back end.

Configures
SSL

Uses a predefined
security policy as
a configuration

Licensed to Thomas Snead <n.ordickan@gmail.com>

319Synchronous decoupling with load balancers

}]
}],
"Listeners": [{

"InstancePort": "80",
"InstanceProtocol": "HTTP",
"LoadBalancerPort": "443",
"Protocol": "HTTPS",
"SSLCertificateId": "my-ssl-cert",
"PolicyNames": ["ELBSecurityPolicyName"]

}],
"HealthCheck": {

[...]
},
"SecurityGroups": [{"Ref": "LoadBalancerSecurityGroup"}],
"Scheme": "internet-facing"

}
}

Terminating SSL with the help of the ELB eliminates many administrative tasks that
are critical to providing secure communication. We encourage you to offer HTTPS
with the help of an ELB to protect your customers from all kinds of attacks while
they’re communicating with your servers.

WARNING It’s likely that the security policy ELBSecurityPolicy-2015-05 is no
longer the most up-to-date. The security policy defines what versions of SSL are
supported, what ciphers are supported, and other security-related options. If
you aren’t using the latest security policy version, your SSL setup is probably
vulnerable. Visit http://mng.bz/916U to get the latest version.

We recommend that you offer only SSL-encrypted communication to your users. In
addition to protecting sensitive data, it also has a positive impact on Google rankings.

LOGGING

ELB can integrate with S3 to provide access logs. Access logs contain all the requests
processed by the ELB. You may be familiar with access logs from web servers like
Apache web server; you can use access logs to debug problems with your back end and
analyze how many requests have been made to your system.

 To activate access logging, the ELB must know to which S3 bucket logs should be
written. You can also specify how often the access logs should be written to S3. You
need to set up an S3 bucket policy to allow the ELB to write to the bucket, as shown in
the following listing.

{
"Id": "Policy1429136655940",
"Version": "2012-10-17",
"Statement": [{
"Sid": "Stmt1429136633762",

Listing 12.5 policy.json

The back-end servers listen
on port 80 (HTTP).

The ELB accepts
requests on port
443 (HTTPS).

References the
previously uploaded
SSL certificate

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://mng.bz/916U

320 CHAPTER 12 Decoupling your infrastructure: ELB and SQS

"Action": ["s3:PutObject"],
"Effect": "Allow",
"Resource": "arn:aws:s3:::elb-logging-bucket-$YourName/*",
"Principal": {

"AWS": [
"127311923021", "027434742980", "797873946194",
"156460612806", "054676820928", "582318560864",
"114774131450", "783225319266", "507241528517"

]
}

}]
}

To create the S3 bucket with the policy, use the CLI—but don’t forget to replace
$YourName with your name or nickname to prevent name clashes with other readers.
This also applies to the policy.json file. To save some time, you can download the pol-
icy from https://s3.amazonaws.com/awsinaction/chapter12/policy.json:

$ aws s3 mb s3://elb-logging-bucket-$YourName
$ aws s3api put-bucket-policy --bucket elb-logging-bucket-$YourName \
--policy file://policy.json

You can activate access logging with the following CloudFormation description.

"LoadBalancer": {
"Type": "AWS::ElasticLoadBalancing::LoadBalancer",
"Properties": {
[...]
"AccessLoggingPolicy": {

"EmitInterval": 10,
"Enabled": true,
"S3BucketName": "elb-logging-bucket-$YourName",
"S3BucketPrefix": "my-application/production"

}
}

}

The ELB will now write access-log files to the specified S3 bucket from time to time.
The access log is similar to the one created by the Apache web server, but you can’t
change the format of the information it contains. The following snippet shows a single
line of an access log:

2015-06-23T06:40:08.771608Z elb 92.42.224.116:17006 172.31.38.190:80
0.000063 0.000815 0.000024 200 200 0 90
"GET http://elb-....us-east-1.elb.amazonaws.com:80/ HTTP/1.1"
"Mozilla/5.0 (Macintosh; ...) Gecko/20100101 Firefox/38.0" - -

Here are examples of the pieces of information an access log always contains:

■ Time stamp: 2015-06-23T06:40:08.771608Z
■ Name of the ELB: elb

Listing 12.6 Activating access logs written by ELB

How often logs should
be written to S3, in
minutes (5–60)Name of

the S3
bucket

You can prefix access
logs if you want to
save multiple access
logs to the same S3
bucket (optional).

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://s3.amazonaws.com/awsinaction/chapter12/policy.json

321Synchronous decoupling with load balancers

■ Client IP address and port: 92.42.224.116:17006
■ Back-end IP address and port: 172.31.38.190:80
■ Number of seconds the request was processed in the load balancer: 0.000063
■ Number of seconds the request was processed in the back end: 0.000815
■ Number of seconds the response was processed in the load balancer: 0.000024
■ HTTP status code returned by the load balancer: 200
■ HTTP status code returned by back end: 200
■ Number of bytes received: 0
■ Number of bytes sent: 90
■ Request: "GET http://elb-....us-east-1.elb.amazonaws.com:80/ HTTP/1.1"
■ User agent: "Mozilla/5.0 (Macintosh; ...) Gecko/20100101 Firefox/38.0"

CROSS-ZONE LOAD BALANCING

The ELB is a fault-tolerant service. If you create an ELB, you receive a public name like
elb-1079556024.us-east-1.elb.amazonaws.com as the endpoint. It’s interesting to
see what’s behind that name. You can use the command-line application dig (or
nslookup on Windows) to ask a DNS server about a particular name:

$ dig elb-1079556024.us-east-1.elb.amazonaws.com
[...]
;; ANSWER SECTION:
elb-1079556024.us-east-1.elb.amazonaws.com. 42 IN A 52.0.40.9
elb-1079556024.us-east-1.elb.amazonaws.com. 42 IN A 52.1.152.202
[...]

The name elb-1079556024.us-east-1.elb.amazonaws.com resolves to two IP
addresses: 52.0.40.9 and 52.1.152.202. When you create a load balancer, AWS starts two
instances in the background and uses DNS to distributed between the two. To make
the servers fault-tolerant, AWS spawns the load-balancer instances in different avail-
ability zones. By default, each load-balancer instance of the ELB sends traffic only to
EC2 instances in the same availability zone. If you want to distribute requests across
availability zones, you can enable cross-zone load balancing. Figure 12.4 shows a scenario
in which cross-zone load balancing is important.

 The following CloudFormation snippet shows how this can be activated:

"LoadBalancer": {
"Type": "AWS::ElasticLoadBalancing::LoadBalancer",
"Properties": {
[...]
"CrossZone": true

}
}

Cleaning up
Remove the S3 bucket you created in the logging example:

$ aws s3 rb --force s3://elb-logging-bucket-$YourName

Licensed to Thomas Snead <n.ordickan@gmail.com>

322 CHAPTER 12 Decoupling your infrastructure: ELB and SQS

We recommend that you enable cross-zone load balancing, which is disabled by
default, to ensure that requests are routed evenly across all back-end servers.

 In the next section, you’ll learn more about asynchronous decoupling.

12.2 Asynchronous decoupling with message queues
Synchronous decoupling with ELB is easy; you don’t need to change your code to do
it. But for asynchronous decoupling, you have to adapt your code to work with a mes-
sage queue.

 A message queue has a head and a tail. You can add new messages to the tail while
reading messages from the head. This allows you to decouple the production and con-
sumption of messages. The producers and consumers don’t know each other; they
both only know about the message queue. Figure 12.5 illustrates this principle.

 You can put new messages onto the queue while no one is reading messages, and
the message queue acts as a buffer. To prevent message queues from growing infinitely
large, messages are only saved for a certain amount of time. If you consume a message
from a message queue, you must acknowledge the successful processing of the mes-
sage to permanently delete it from the queue.

10.0.0.0/16

10.0.1.0/24

Web server 2

10.0.2.0/24

Web server 1

Load balancer

Internet

Figure 12.4 Enabling cross-zone load balancing to distribute traffic between availability zones

Queue headQueue tail
Message
producers

Message
consumers

Figure 12.5 Producers send messages to a message queue, and consumers read messages.

Licensed to Thomas Snead <n.ordickan@gmail.com>

323Asynchronous decoupling with message queues

The Simple Queue Service (SQS) is a fully managed AWS service. SQS offers message
queues that guarantee the delivery of messages at least once:

■ Under rare circumstances, a single message will be available for consumption
twice. This may sound strange if you compare it to other message queues, but
you’ll see how to deal with this problem later in the chapter.

■ SQS doesn’t guarantee the order of messages, so you may read messages in a dif-
ferent order than they were produced.

This limitation of SQS is also beneficial:

■ You can put as many messages into SQS as you like.
■ The message queue scales with the number of messages you produce and

consume.

The pricing model is also simple: you pay $0.00000050 per request to SQS or $0.5 per
million requests. Producing a message is one request, and consuming is another
request (if your payload is larger than 64 KB, every 64 KB chunk counts as one
request).

12.2.1 Turning a synchronous process into an asynchronous one

A typical synchronous process looks like this: a user makes a request to your server,
something happens on the server, and a result is returned to the user. To make things
more concrete, we’ll talk about the process of creating a preview image of an URL in
the following example:

1 The user submits a URL.
2 The server downloads the content at the URL and converts it into a PNG image.
3 The server returns the PNG to the user.

With one small trick, this process can be made asynchronous:

1 The user submits a URL.
2 The server puts a message onto a queue that contains a random ID and the URL.
3 The server returns a link to the user where the PNG image will be found in the

future. The link contains the random ID (http://$Bucket.s3-website-us-east-1
.amazonaws.com/$RandomId.png).

4 In the background, a worker consumes the message from the queue, downloads
the content, converts the content into a PNG, and uploads the image to S3.

5 At some point in time, the user tries to download the PNG at the known location.

If you want to make a process asynchronous, you must manage the way the process ini-
tiator tracks the status of the process. One way of doing that is to return an ID to the
initiator that can be used to look up the process. During the process, the ID is passed
from step to step.

Licensed to Thomas Snead <n.ordickan@gmail.com>

324 CHAPTER 12 Decoupling your infrastructure: ELB and SQS

12.2.2 Architecture of the URL2PNG application

You’ll now create a simple but decoupled piece of software named URL2PNG that con-
verts the URL of a web page into a PNG. Again, you’ll use Node.js to do the program-
ming part, and you’ll use SQS. Figure 12.6 shows how the URL2PNG application works.

 To complete the example, you need to create an S3 bucket with web hosting
enabled. Execute the following commands, replacing $YourName with your name or
nickname to prevent name clashes with other readers:

$ aws s3 mb s3://url2png-$YourName
$ aws s3 website s3://url2png-$YourName --index-document index.html \
--error-document error.html

Web hosting is needed so users can later download the images from S3. Now it’s time
to create the message queue.

12.2.3 Setting up a message queue

Creating an SQS queue is simple—you only need to specify the name of the queue:

$ aws sqs create-queue --queue-name url2png
{

"QueueUrl": "https://queue.amazonaws.com/878533158213/url2png"
}

The returned QueueUrl is needed later in the example, so be sure to save it.

12.2.4 Producing messages programmatically

You now have an SQS queue to send messages to. To produce a message, you need to
specify the queue and a payload. You’ll again use Node.js in combination with the AWS
SDK to connect your program with AWS.

{ "id": "1",
 "url": "..." }

User sends URL and
gets an ID in return.

Node.js consumer receives message
and creates a PNG image from the URL.
The image is saved on S3. The ID is the
name of the image.

Node.js producer sends a
message to queue. Payload
contains ID and URL.

User downloads the
image from S3 with
the known ID.

Figure 12.6 How the URL2PNG application works

Licensed to Thomas Snead <n.ordickan@gmail.com>

325Asynchronous decoupling with message queues

Here’s how the message is produced with the help of the AWS SDK for Node.js; it will
later be consumed by the URL2PNG worker. The Node.js script can then be used like
this (don’t try to run this command now—you need to install and configure URL2PNG
first):

$ node index.js "http://aws.amazon.com"
PNG will be available soon at
http://url2png-$YourName.s3-website-us-east-1.amazonaws.com/XYZ.png

As usual, you’ll find the code in the book’s code repository on GitHub https://
github.com/AWSinAction/code. The URL2PNG example is located at /chapter12/
url2png/. The following listing shows the implementation of index.js.

var AWS = require('aws-sdk');
var uuid = require('node-uuid');
var sqs = new AWS.SQS({

"region": "us-east-1"
});

if (process.argv.length !== 3) {
console.log('URL missing');
process.exit(1);

}

var id = uuid.v4();
var body = {

"id": id,
"url": process.argv[2]

};

var params = {
"MessageBody": JSON.stringify(body),
"QueueUrl": "$QueueUrl"

};

sqs.sendMessage(params, function(err) {
if (err) {
console.log('error', err);

} else {
console.log('PNG will be available soon at http://url2png-$YourName.s3-

 ➥ website-us-east-1.amazonaws.com/' + id + '.png');
}

});

Listing 12.7 index.js: sending a message to the queue

Installing and getting started with Node.js
To install Node.js, visit https://nodejs.org and download the package that fits your
OS.

Creates an SQS endpoint

Checks whether a
URL was provided

Creates a
random ID

The payload contains
the random ID and
the URL.Converts

the payload
into a

 JSON string Queue to which the message
is sent (was returned when
creating the queue)

Invokes the sendMessage
operation on SQS

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/AWSinAction/code
https://github.com/AWSinAction/code
https://nodejs.org

326 CHAPTER 12 Decoupling your infrastructure: ELB and SQS

Before you can run the script, you need to install the Node.js modules. Run npm
install in your terminal to install the dependencies. You’ll find a config.json file that
needs to be modified. Make sure to change QueueUrl to the queue you created at the
beginning of this example and change Bucket to url2png-$YourName.

 Now you can run the script with node index.js "http://aws.amazon.com". The
program should response with something like “PNG will be available soon at http://
url2png-$YourName.s3-website-us-east-1.amazonaws.com/XYZ.png”. To verify that the
message is ready for consumption, you can ask the queue how many messages are
inside:

$ aws sqs get-queue-attributes \
--queue-url $QueueUrl \
--attribute-names ApproximateNumberOfMessages
{

"Attributes": {
"ApproximateNumberOfMessages": "1"

}
}

Next, it’s time to work on the worker that consumes the message and does all the work
of generating a PNG.

12.2.5 Consuming messages programmatically

Processing a message with SQS takes three steps:

1 Receive a message.
2 Process the message.
3 Acknowledge successful message processing.

You’ll now implement each of these steps to change a URL into a PNG.
 To receive a message from an SQS queue, you must specify the following:

■ The queue
■ The maximum number of messages you want to receive. To get higher through-

put, you can get batches of messages.
■ The number of seconds you want to take this message from the queue to pro-

cess it. Within that time, you must delete the message from the queue, or it will
be received again.

■ The maximum number of seconds you want to wait to receive messages. Receiving
messages from SQS is done by polling the API. But the API allows long-polling for
a maximum of 10 seconds.

The next listing shows how this is done with the SDK.

var fs = require('fs');
var AWS = require('aws-sdk');
var webshot = require('webshot');

Listing 12.8 worker.js: receiving a message from the queue

Licensed to Thomas Snead <n.ordickan@gmail.com>

327Asynchronous decoupling with message queues

var sqs = new AWS.SQS({
"region": "us-east-1"

});
var s3 = new AWS.S3({

"region": "us-east-1"
});

function receive(cb) {
var params = {

"QueueUrl": "$QueueUrl",
 "MaxNumberOfMessages": 1,
"VisibilityTimeout": 120,
"WaitTimeSeconds": 10

};
sqs.receiveMessage(params, function(err, data) {

if (err) {
cb(err);

} else {
if (data.Messages === undefined) {

cb(null, null);
} else {

cb(null, data.Messages[0]);
}

}
});

}

The receive step has now been implemented. The next step is to process the message.
Thanks to a Node.js module called webshot, it’s easy to create a screenshot of a
website.

function process(message, cb) {
var body = JSON.parse(message.Body);
var file = body.id + '.png';
webshot(body.url, file, function(err) {

if (err) {
cb(err);

} else {
fs.readFile(file, function(err, buf) {

if (err) {
cb(err);

} else {
var params = {

"Bucket": "url2png-$YourName",
"Key": file,
"ACL": "public-read",
"ContentType": "image/png",
"Body": buf

};
s3.putObject(params, function(err) {

if (err) {
cb(err);

Listing 12.9 worker.js: processing a message (take screenshot and upload to S3)

Consumes not more than
one message at once

Takes the
message
from the

queue for
120 seconds Long poll for 10 seconds

to wait for new messages

Invokes the
receiveMessage

operation on
SQS

Invokes the
receiveMessage

operation on
SQS Checks whether a

message is available

Gets the one and
only message

The message body is a JSON
string. You convert it back
into a JavaScript object.

Creates the
screenshot with

the webshot
module

Opens the screenshot
that was saved to
local disk by the
webshot module

Allows everyone
to read the

screenshot on S3

Uploads the
screenshot to S3

Licensed to Thomas Snead <n.ordickan@gmail.com>

328 CHAPTER 12 Decoupling your infrastructure: ELB and SQS

} else {
fs.unlink(file, cb);

}
});

}
});

}
});

}

The only step that’s missing is to acknowledge that the message was successfully con-
sumed. If you receive a message from SQS, you get a ReceiptHandle, which is a unique
ID that you need to specify when you delete a message from a queue.

function acknowledge(message, cb) {
var params = {
"QueueUrl": "$QueueUrl",
"ReceiptHandle": message.ReceiptHandle

};
sqs.deleteMessage(params, cb);

}

You have all the parts; now it’s time to connect them.

function run() {
receive(function(err, message) {
if (err) {

throw err;
} else {

if (message === null) {
console.log('nothing to do');
setTimeout(run, 1000);

} else {
console.log('process');
process(message, function(err) {

if (err) {
throw err;

} else {
acknowledge(message, function(err) {

if (err) {
throw err;

} else {
console.log('done');
setTimeout(run, 1000);

}
});

}
});

Listing 12.10 worker.js: acknowledging a message (deletes the message from the queue)

Listing 12.11 worker.js: connecting the parts

Removes the screenshot
from local disk

ReceiptHandle is unique for
each receipt of a message.

Invokes the
deleteMessage operation

Receives a
message

Checks
whether a

message is
available

Calls the run method
again in one second

Processes the
message

Acknowledges
the message

Calls the run method
again in one second

Licensed to Thomas Snead <n.ordickan@gmail.com>

329Asynchronous decoupling with message queues

}
}

});
}

run();

Now you can start the worker to process the message that is already in the queue. Run
the script with node worker.js. You should see some output that says the worker is in
the process step and that then switches to Done. After a few seconds, the screenshot
should be uploaded to S3. Your first asynchronous application is complete.

 You’ve created an application that is asynchronously decoupled. If the URL2PNG ser-
vice becomes popular and millions of users start using it, the queue will become longer
and longer because your worker can’t produce that many PNGs from URLs. The cool
thing is that you can add as many workers as you like to consume those messages.
Instead of only 1 worker, you can start 10 or 100. The other advantage is that if a worker
dies for some reason, the message that was in flight will become available for consump-
tion after two minutes and will be picked up by another worker. That’s fault-tolerant! If
you design your system asynchronously decoupled, it’s easy to scale and a good foun-
dation to be fault-tolerant. The next chapter will concentrate on this topic.

12.2.6 Limitations of messaging with SQS

Earlier in the chapter, we mentioned a few limitations of SQS. This section covers
them in more detail.

SQS DOESN’T GUARANTEE THAT A MESSAGE IS DELIVERED ONLY ONCE

If a received message isn’t deleted within VisibilityTimeout, the message will be
received again. This problem can be solved by making the receive idempotent. Idempo-
tent means that no matter how often the message is consumed, the result stays the
same. In the URL2PNG example, this is true by design: if you process the message mul-
tiple times, the same image is uploaded to S3 multiple times. If the image is already
available on S3, it’s replaced. Idempotence solves many problems in distributed sys-
tems that guarantee at least single delivery of messages.

 Not everything can be made idempotent. Sending an e-mail is a good example: if
you process a message multiple times and it sends an email each time, you’ll annoy

Calls the run
method to start

Cleaning up
Delete the message queue as follows:

$ aws sqs delete-queue --queue-url $QueueUrl

And don’t forget to clean up and delete the S3 bucket used in the example. Issue the
following command, replacing $YourName with your name:

$ aws s3 rb --force s3://url2png-$YourName

Licensed to Thomas Snead <n.ordickan@gmail.com>

330 CHAPTER 12 Decoupling your infrastructure: ELB and SQS

the addressee. As a workaround, you can use a database to track whether you already
sent the email.

 In many cases, at least once is a good trade-off. Check your requirements before
using SQS if this trade-off fits your needs.

SQS DOESN’T GUARANTEE THE MESSAGE ORDER

Messages may be consumed in a different order than the order in which you pro-
duced them. If you need a strict order, you should search for something else. SQS is a
fault-tolerant and scalable message queue. If you need a stable message order, you’ll
have difficulty finding a solution that scales like SQS. Our advice is to change the
design of your system so you no longer need the stable order or produce the order at
the client side.

SQS DOESN’T REPLACE A MESSAGE BROKER

SQS isn’t a message broker like ActiveMQ—SQS is only a message queue. Don’t expect
features like those offered by message brokers. Considering SQS versus ActiveMQ is like
comparing DynamoDB to MySQL.

12.3 Summary
■ Decoupling makes things easier because it reduces dependencies.
■ Synchronous decoupling requires two sides to be available at the same time, but

the sides don’t know each other.
■ With asynchronous decoupling, you can communicate without both sides being

available.
■ Most applications can be synchronously decoupled without touching the code,

using the load balancer offered by the Elastic Load Balancing service.
■ A load balancer can make periodic health checks to your application to deter-

mine whether the back end is ready to serve traffic.
■ Asynchronous decoupling is only possible with asynchronous processes. But you

can modify a synchronous process to be an asynchronous one most of the time.
■ Asynchronous decoupling with SQS requires programming against SQS with

one of the SDKs.

Licensed to Thomas Snead <n.ordickan@gmail.com>

331

Designing
 for fault-tolerance

Failure is inevitable for hard disks, networks, power, and so on. Fault-tolerance deals
with that problem. A fault-tolerant system is built for failure. If a failure occurs, the
system isn’t interrupted, and it continues to handle requests. If your system has a sin-
gle point of failure, it’s not fault-tolerant. You can achieve fault-tolerance by intro-
ducing redundancy into your system and by decoupling the parts of your system in
such a way that one side doesn’t rely on the uptime of the other.

 The most convenient way to make your system fault-tolerant is to compose the sys-
tem of fault-tolerant blocks. If all blocks are fault-tolerant, the system is fault-tolerant

This chapter covers
■ What fault-tolerance is and why you need it
■ Using redundancy to remove single point of failures
■ Retrying on failure
■ Using idempotent operations to achieve retry on

failure
■ AWS service guarantees

Licensed to Thomas Snead <n.ordickan@gmail.com>

332 CHAPTER 13 Designing for fault-tolerance

as well. Many AWS services are fault-tolerant by default. If possible, use them. Otherwise
you’ll need to deal with the consequences.

 Unfortunately, one important service isn’t fault-tolerant by default: EC2 instances. A
virtual server isn’t fault-tolerant. This means a system that uses EC2 isn’t fault-tolerant by
default. But AWS provides the building blocks to deal with that issue. The solution con-
sists of auto-scaling groups, Elastic Load Balancing (ELB), and SQS.

 It’s important to differentiate among services that guarantee the following:

■ Nothing (single point of failure)—No requests are served in case of failure.
■ High availability—In case of failure, it takes some time until requests are served

as before.
■ Fault-tolerance—In case of failure, requests are served as before without any

availability issues.

Following are the guarantees of the AWS services covered in this book in detail. Single point
of failure (SPOF) means this service will fail if, for example, a hardware failure occurs:

■ Amazon Elastic Compute Cloud (EC2) instance—A single EC2 instance can fail for
many reasons: hardware failure, network problems, availability-zone problems,
and so on. Use auto-scaling groups to have a fleet of EC2 instances serve
requests in a redundant way to achieve high availability or fault-tolerance.

■ Amazon Relational Database Service (RDS) single instance—A single RDS instance
can fail for many reasons: hardware failure, network problems, availability zone
problems, and so on. Use Multi-AZ mode to achieve high availability.

Highly available (HA) means that when a failure occurs the service won’t be available
for a short time but will come back automatically:

■ Elastic Network Interface (ENI)—A network interface is bound to an AZ (availability
zone), so if this AZ goes down, your network interface is down.

■ Amazon Virtual Private Cloud (VPC) subnet—A VPC subnet is bound to an AZ, so if
this AZ goes down, your subnet is down. Use multiple subnets in different AZs to
remove the dependency on a single AZ.

■ Amazon Elastic Block Store (EBS) volume—An EBS volume is bound to an AZ, so if this
AZ goes down, your volume is unavailable (your data won’t be lost). You can create
EBS snapshots from time to time so you can recreate an EBS volume in another AZ.

■ Amazon Relational Database Service (RDS) Multi-AZ instance—When running in
Multi-AZ mode, a short downtime (one minute) is expected if an issue occurs with
the master instance while changing DNS records to switch to the standby instance.

Fault-tolerant means that if a failure occurs, you won’t notice it:

■ Elastic Load Balancing (ELB), deployed to at least two AZs
■ Amazon EC2 Security Group
■ Amazon Virtual Private Cloud (VPC) with an ACL and a route table
■ Elastic IP Address (EIP)
■ Amazon Simple Storage Service (S3)

Licensed to Thomas Snead <n.ordickan@gmail.com>

333Using redundant EC2 instances to increase availability

■ Amazon Elastic Block Store (EBS) snapshot
■ Amazon DynamoDB
■ Amazon CloudWatch
■ Auto-scaling group
■ Amazon Simple Queue Service (SQS)
■ AWS Elastic Beanstalk
■ AWS OpsWorks
■ AWS CloudFormation
■ AWS Identity and Access Management (IAM, not bound to a single region; if you

create an IAM user, that user is available in all regions)

Why should you care about fault-tolerance? Because in the end, a fault-tolerant system
provides the highest quality to your end users. No matter what happens in your system,
the user is never affected and can continue to consume content, buy stuff, or have con-
versations with friends. A few years ago it was expensive to achieve fault-tolerance, but
in AWS, providing fault-tolerant systems is an affordable standard.

In this chapter, you’ll learn everything you need to design a fault-tolerant web applica-
tion based on EC2 instances (which aren’t fault-tolerant by default).

13.1 Using redundant EC2 instances to increase availability
Unfortunately, EC2 instances aren’t fault-tolerant. Under your virtual server is a host
system. These are a few reasons your virtual server might suffer from a crash caused by
the host system:

■ If the host hardware fails, it can no longer host the virtual server on top of it.
■ If the network connection to/from the host is interrupted, the virtual server

loses the ability to communicate via network as well.
■ If the host system is disconnected from a power supply, the virtual server also

goes down.

Chapter requirements
To fully understand this chapter, you need to have read and understood the following
concepts:

■ EC2 (chapter 3)
■ Auto-scaling (chapter 11)
■ Elastic Load Balancing (chapter 12)
■ SQS (chapter 12)

The example makes intensive use of the following:

■ Elastic Beanstalk (chapter 5)
■ DynamoDB (chapter 10)
■ Express, a Node.js web application framework

Licensed to Thomas Snead <n.ordickan@gmail.com>

334 CHAPTER 13 Designing for fault-tolerance

But the software running on top of the virtual server may also cause a crash:

■ If your software has a memory leak, you’ll run out of memory. It may take a day,
a month, a year, or more, but eventually it will happen.

■ If your software writes to disk and never deletes its data, you’ll run out of disk
space sooner or later.

■ Your application may not handle edge cases properly and instead just crashes.

Regardless of whether the host system or your software is the cause of a crash, a single
EC2 instance is a single point of failure. If you rely on a single EC2 instance, your sys-
tem will blow up—the only question is when.

13.1.1 Redundancy can remove a single point of failure

Imagine a production line that makes fluffy cloud pies. Producing a fluffy cloud pie
requires several production steps (simplified!):

1 Produce a pie crust.
2 Cool the pie crust.
3 Put the fluffy cloud mass on top of the pie crust.
4 Cool the fluffy cloud pie.
5 Package the fluffy cloud pie.

The current setup is a single production line. The big problem with this setup is that
whenever one of the steps crashes, the entire production line must be stopped. Fig-
ure 13.1 illustrates the problem when the second step (cooling the pie crust)
crashes. The following steps no longer work, either, because they don’t receive cool
pie crusts.

 Why not have multiple production lines? Instead of one line, suppose we have
three. If one of the lines fails, the other two can still produce fluffy cloud pies for all
the hungry customers in the world. Figure 13.2 shows the improvements; the only
downside is that we need three times as many machines.

Cool-down machine
is broken.

Production line 1

X
Produce a
pie crust.

Put fluffy cloud mass
on top of the pie crust.

Package the
fluffy cloud pie.Cool down. Cool down.

Complete chain
is broken.

Figure 13.1 A single point of failure affects not only itself, but the entire system.

Licensed to Thomas Snead <n.ordickan@gmail.com>

335Using redundant EC2 instances to increase availability

The example can be transferred to EC2 instances as well. Instead of having only one
EC2 instance, you can have three of them running your software. If one of those
instances crashes, the other two are still able to serve incoming requests. You can also
minimize the cost impact of one versus three instances: instead of one large EC2
instance, you can choose three small ones. The problem that arises with a dynamic
server pool is, how can you communicate with the instances? The answer is decoupling :
put a load balancer between your EC2 instances and the requestor or a message
queue. Read on to learn how this works.

Production line 1

Produce a
pie crust.

Put fluffy cloud mass
on top of the pie crust.

Package the
fluffy cloud pie.Cool down. Cool down.

Production line 3

Production line 2

X
Cool-down machine
is broken.

Complete chain
is broken.

Figure 13.2 Redundancy eliminates single points of failure and makes the system more stable.

Licensed to Thomas Snead <n.ordickan@gmail.com>

336 CHAPTER 13 Designing for fault-tolerance

13.1.2 Redundancy requires decoupling

Figure 13.3 shows how EC2 instances can be made fault-tolerant by using redundancy
and synchronous decoupling. If one of the EC2 instances crashes, ELB stops to route
requests to the crashed instances. The auto-scaling group replaces the crashed EC2
instance within minutes, and ELB begins to route requests to the new instance.

Take a second look at figure 13.3 and see what parts are redundant:

■ Availability zones—Two are used. If one AZ goes down, we still have EC2 instances
running in the other AZ.

■ Subnets—A subnet is tightly coupled to an AZ. Therefore we need one subnet in
each AZ, and subnets are also redundant.

■ EC2 instances—We have multi-redundancy for EC2 instances. We have multiple
instances in a single subnet (AZ), and we have instances in two subnets (AZs).

Figure 13.4 shows a fault-tolerant system built with EC2 that uses the power of redun-
dancy and asynchronous decoupling to process messages from an SQS queue.

10.0.0.0/16

10.0.1.0/24 10.0.2.0/24

Web servers in
availability zone B

Web servers in
availability zone A

Load balancer

Internet

Auto-scaling group Figure 13.3 Fault-tol-
erant EC2 servers with
an auto-scaling group
and ELB

10.0.0.0/16

Worker servers in
availability zone B

Worker servers in
availability zone A

Auto-scaling group

Queue

10.0.1.0/24 10.0.2.0/24

Figure 13.4 Fault-tolerant
EC2 servers with an auto-
scaling group and SQS

Licensed to Thomas Snead <n.ordickan@gmail.com>

337Considerations for making your code fault-tolerant

In both figures, the load balancer/SQS queue appears only once. This doesn’t mean
ELB or SQS is a single point of failure; on the contrary, ELB and SQS are fault-tolerant
by default.

13.2 Considerations for making your code fault-tolerant
If you want fault-tolerance, you must achieve it within your code. You can design fault-
tolerance into your code by following two suggestions presented in this section.

13.2.1 Let it crash, but also retry

The Erlang programming language is famous for the concept of “let it crash.” That
simply means whenever the program doesn’t know what to do, it crashes, and some-
one needs to deal with the crash. Most often people overlook the fact that Erlang is
also famous for retrying. Letting it crash without retrying isn’t useful—if you can’t
recover from a crashed situation, your system will be down, which is the opposite of
what you want.

 You can apply the “let it crash” concept (some people call it “fail-fast”) to synchro-
nous and asynchronous decoupled scenarios. In a synchronous decoupled scenario,
the sender of a request must implement the retry logic. If no response is returned
within a certain amount of time, or an error is returned, the sender retries by sending
the same request again. In an asynchronous decoupled scenario, things are easier. If a
message is consumed but not acknowledged within a certain amount of time, it goes
back to the queue. The next consumer then grabs the message and processes it again.
Retrying is built into asynchronous systems by default.

 “Let it crash” isn’t useful in all situations. If the program wants to respond to
tell the sender that the request contained invalid content, this isn’t a reason for
letting the server crash: the result will stay the same no matter how often you retry.
But if the server can’t reach the database, it makes a lot of sense to retry. Within a
few seconds the database may be available again and able to successfully process the
retried request.

 Retrying isn’t that easy. Imagine that you want to retry the creation of a blog post.
With every retry, a new entry in the database is created, containing the same data as
before. You end up with many duplicates in the database. Preventing this involves a
powerful concept that’s introduced next: idempotent retry.

13.2.2 Idempotent retry makes fault-tolerance possible

How can you prevent a blog post from being added to the database multiple times
because of a retry? A naïve approach would be to use the title as primary key. If the
primary key is already used, you can assume that the post is already in the database
and skip the step of inserting it into the database. Now the insertion of blog posts is
idempotent, which means no matter how often a certain action is applied, the outcome
must be the same. In the current example, the outcome is a database entry.

Licensed to Thomas Snead <n.ordickan@gmail.com>

338 CHAPTER 13 Designing for fault-tolerance

 Let’s try it with a more complicated example. Inserting a blog post is more compli-
cated in reality, and the process looks something like this:

1 Create a blog post entry in the database.
2 Invalidate the cache because data has changed.
3 Post the link to the blog’s Twitter feed.

Let’s take a close look at each step.

1. CREATING A BLOG POST ENTRY IN THE DATABASE

We covered this step earlier by using the title as
a primary key. But this time, let’s use a univer-
sally unique identifier (UUID) instead of the
title as the primary key. A UUID like 550e8400-
e29b-11d4-a716-446655440000 is a random ID
that’s generated by the client. Because of the
nature of a UUID, it’s unlikely that two equal
UUIDs will be generated. If the client wants to
create a blog post, it must send a request to the
ELB containing the UUID, title, and text. The
ELB routes the request to one of the back-end
servers. The back-end server checks whether
the primary key already exists. If not, a new
record is added to the database. If it exists, the
insertion continues. Figure 13.5 shows the flow.

 Creating a blog post is a good example of an
idempotent operation that’s guaranteed by
code. You can also use your database to handle
this problem. Just send an insert to your database. Three things can happen:

■ Your database inserts the data. The step is successfully completed.
■ Your database responds with an error that the primary key is already in use. The

step is successfully completed.
■ Your database responds with a different error. The step crashes.

Think twice about the best way of implementing idempotence!

2. INVALIDATING THE CACHE

This step sends an invalidation message to a caching layer. You don’t need to worry
about idempotency too much here: it doesn’t hurt if the cache is invalidated more
often than needed. If the cache is invalidated, then the next time a request hits the
cache, the cache won’t contain data, and the original source (in this case, the data-
base) will be queried for the result. The result is then put in the cache for subsequent
requests. If you invalidate the cache multiple times because of a retry, the worst thing
that can happen is that you may need to make a few more calls to your database.
That’s easy.

Blog post with UUID
should be saved in

database.

Is the UUID already
in the database?

Yes

No

Create
database

entry

Figure 13.5 Idempotent database insert:
creating a blog post entry in the database
only if it doesn’t already exist

Licensed to Thomas Snead <n.ordickan@gmail.com>

339Considerations for making your code fault-tolerant

3. POSTING TO THE BLOG’S TWITTER FEED

To make this step idempotent, you need to use some tricks because you interact with a
third party that doesn’t support idempotent operations. Unfortunately, no solution
will guarantee that you post exactly one status update to Twitter. You can guarantee
the creation is at least one (one or more than one) status update, or at most one (one
or none) status update. An easy approach could be to ask the Twitter API for the latest
status updates; if one of them matches the status update that you want to post, you
skip the step because it’s already done.

 But Twitter is an eventually consistent system: there’s no guarantee that you’ll see a
status update immediately after you post it. You can end up having your status update
posted multiple times. Another approach would be to save in a database whether you
already posted the blog post status update. But imagine saving to the database that
you posted to Twitter and then making the request to the Twitter API—but at that
moment, the system crashes. Your database will say that the Twitter status update was
posted, but in reality it wasn’t. You need to make a choice: tolerate a missing status
update, or tolerate multiple status updates. Hint: it’s a business decision. Figure 13.6
shows the flow of both solutions.

 Now it’s time for a practical example! You’ll design, implement, and deploy a dis-
tributed, fault-tolerant web application on AWS. This example will demonstrate how
distributed systems work and will combine most of the knowledge in this book.

Share Twitter
status update.

Solution 1

Ask Twitter if
the status update
is already there

Ask database if
post was already
shared via Twitter

Yes

No

Create
status
update

Share Twitter
status update.

Yes

No

Create
status
update

Update
database

Solution 2

Figure 13.6 Idempotent Twitter status update: only share a status update if it hasn’t already been done.

Licensed to Thomas Snead <n.ordickan@gmail.com>

340 CHAPTER 13 Designing for fault-tolerance

13.3 Architecting a fault-tolerant web application: Imagery
Before you begin the architecture and design of the fault-tolerant Imagery applica-
tion, we’ll talk briefly about what the application should do in the end. A user should
be able to upload an image. This image is then transformed with a sepia filter so that it
looks old. The user can then view the sepia image. Figure 13.7 shows the process.

The problem with the process shown in figure 13.7 is that it’s synchronous. If the
server dies during request and response, the user’s image won’t be processed.
Another problem arises when many users want to use the Imagery app: the system
becomes busy and may slow down or stop working. Therefore the process should be
turned into an asynchronous one. Chapter 12 introduced the idea of asynchronous
decoupling by using a SQS message queue, as shown in figure 13.8.

 When designing an asynchronous process, it’s important to keep track of the pro-
cess. You need some kind of identifier for it. When a user wants to upload an image,
the user creates a process first. This process creation returns a unique ID. With that ID,
the user is able to upload an image. If the image upload is finished, the server begins
to process the image in the background. The user can look up the process at any time

File Browse...

Imagery upload

Upload

ResponseRequest

User uploads
an image.

A filter is applied to the image.
The resulting image is uploaded
and can be accessed from
the internet.

Figure 13.7 The user uploads an image to Imagery, where a filter is applied.

Queue headQueue tail
Message
producers

Message
consumers

Figure 13.8 Producers send messages to a message queue, and consumers
read messages.

Licensed to Thomas Snead <n.ordickan@gmail.com>

341Architecting a fault-tolerant web application: Imagery

with the process ID. While the image is being processed, the user can’t see the sepia
image. But as soon as the image is processed, the lookup process returns the sepia
image. Figure 13.9 shows the asynchronous process.

 Now that you have an asynchronous process, it’s time to map that process to AWS
services. Keep in mind that most services on AWS are fault-tolerant by default, so it
makes sense to pick them whenever possible. Figure 13.10 shows one way of doing it.

 To make things as easy as possible, all the actions will be accessible via a REST API,
which will be provided by EC2 instances. In the end, EC2 instances will provide the
process and make calls to all the AWS services shown in figure 13.10.

 You’ll use many AWS services to implement the Imagery application. Most of them
are fault-tolerant by default, but EC2 isn’t. You’ll deal with that problem using an
idempotent image-state machine, as introduced in the next section.

User

Worker

1. Create 2. Upload

3. Process

Create

Upload

5. View4. Wait

A worker picks up the job to
process the image by applying
the sepia filter to it.

User creates
an image process
and gets back an ID.

User uploads an
image to the process
identified by the ID.

User needs to
wait until image
is processed
asynchronously.

User finally can
access the sepia
image by the ID.

Figure 13.9 The user asynchronously uploads an image to Imagery, where a filter is applied.

Licensed to Thomas Snead <n.ordickan@gmail.com>

342 CHAPTER 13 Designing for fault-tolerance

User

Worker

1. Create 2. Upload

3. Process

5. View4. Wait

SQS message is consumed by an EC2 instance. The raw message
is downloaded from S3 and processed, and the sepia image is
uploaded to S3. The process in DynamoDB is updated with the
new state "processed" and the S3 key of the sepia image.

User creates
a process with
a unique ID.
Process is stored
in DynamoDB.

With the process ID, the user
uploads an image to S3. The S3
key is persisted to DynamoDB
together with the new process
state "uploaded". A SQS message
is produced to trigger processing.

DynamoDB contains
the current state of
the process. Wait
until state switches
to “processed”.

S3 contains
the sepia image.
DynamoDB knows
the S3 key.

SQS

S3DynamoDB

EC2

S3 S3

SQS

DynamoDB DynamoDB

DynamoDB DynamoDB

Figure 13.10 Combining AWS services to implement the asynchronous Imagery process

Example is 100% covered by the Free Tier
The examples in this chapter are totally covered by the Free Tier. As long as you don’t
run the examples longer than a few days, you won’t pay anything for it. Keep in mind
that this applies only if you created a fresh AWS account for this book and there are
no other things going on in your AWS account. Try to complete the chapter within a
few days, because you’ll clean up your account at the end of the chapter.

Licensed to Thomas Snead <n.ordickan@gmail.com>

343Architecting a fault-tolerant web application: Imagery

13.3.1 The idempotent image-state machine

An idempotent image-state machine sounds complicated. We’ll take some time to
explain it because it’s the heart of the Imagery application. Let’s look at what a state
machine is and what idempotent means in this context.

THE FINITE STATE MACHINE

A state machine has at least one start state and one end state (we’re talking about
finite state machines). Between the start and the end state, the state machine can have
many other states. The machine also defines transitions between states. For example,
a state machine with three states could look like this:

(A) -> (B) -> (C).

This means

■ State A is the start state.
■ There is a transition possible from state A to B.
■ There is a transition possible from state B to C.
■ State C is the end state.

But there’s no transition possible between (A) -> (C) or (B) -> (A). The Imagery state
machine could look like this:

(Created) -> (Uploaded) -> (Processed)

AWS Lambda and Amazon API Gateway are coming
AWS is working on a service called Lambda. With Lambda, you can upload a code
function to AWS and then execute that function on AWS. You no longer need to pro-
vide your own EC2 instances; you only have to worry about the code. AWS Lambda
is made for short-running processes (up to 60 seconds), so you can’t create a web
server with Lambda. But AWS will offer many integration hooks: for example, each
time an object is added to S3, AWS can trigger a Lambda function; or a Lambda
function is triggered when a new message arrives on SQS. Unfortunately, AWS
Lambda isn’t available in all regions at the time of writing, so we decided not to in-
clude this service.

Amazon API Gateway gives you the ability to run a REST API without having to run any
EC2 instances. You can specify that whenever a GET /some/resource request is re-
ceived, it will trigger a Lambda function. The combination of Lambda and Amazon API
Gateway lets you build powerful services without a single EC2 instance that you must
maintain. Unfortunately, Amazon API Gateway isn’t available in all regions at the time
of writing.

Licensed to Thomas Snead <n.ordickan@gmail.com>

344 CHAPTER 13 Designing for fault-tolerance

Once a new process (state machine) is created, the only transition possible is to
Uploaded. To make this transition happen, you need the S3 key of the uploaded raw
image. The transition between Created -> Uploaded can be defined by the function
uploaded(s3Key). Basically, the same is true for the transition Uploaded -> Processed.
This transition can be done with the S3 key of the sepia image: processed(s3Key).

 Don’t be confused because the upload and the image filter processing don’t
appear in the state machine. These are the basic actions that happen, but we’re only
interested in the results; we don’t track the progress of the actions. The process isn’t
aware that 10% of the data has been uploaded or that 30% of the image processing is
done. It only cares whether the actions are 100% done. You can probably imagine a
bunch of other states that could be implemented but that we’re skipping for the pur-
pose of simplicity in this example; Resized and Shared are just two examples.

IDEMPOTENT STATE TRANSITIONS

An idempotent state transition must have the same result no matter how often the tran-
sition takes place. If you know that your state transitions are idempotent, you can do a
simple trick: in case of a failure during transitioning, you retry the entire state transition.

 Let’s look at the two state transitions you need to implement. The first transition
Created -> Uploaded can be implemented like this (pseudo code):

uploaded(s3Key) {
process = DynamoDB.getItem(processId)
if (process.state !== "Created") {
throw new Error("transition not allowed")

}
DynamoDB.updateItem(processId, {"state": "Uploaded", "rawS3Key": s3Key})
SQS.sendMessage({"processId": processId, "action": "process"});

}

The problem with this implementation is that it’s not idempotent. Imagine that
SQS.sendMessage fails. The state transition will fail, so you retry. But the second call to
uploaded(s3Key) will throw a “transition not allowed” error because DynamoDB
.updateItem was successful during the first call.

 To fix that, you need to change the if statement to make the function idempotent:

uploaded(s3Key) {
process = DynamoDB.getItem(processId)
if (process.state !== "Created" && process.state !== "Uploaded") {
throw new Error("transition not allowed")

}
DynamoDB.updateItem(processId, {"state": "Uploaded", "rawS3Key": s3Key})
SQS.sendMessage({"processId": processId, "action": "process"});

}

If you retry now, you’ll make multiple updates to DynamoDB, which doesn’t hurt. And
you may send multiple SQS messages, which also doesn’t hurt, because the SQS mes-
sage consumer must be idempotent as well. The same applies to the transition
Uploaded -> Processed.

 Next, you’ll begin to implement the Imagery server.

Licensed to Thomas Snead <n.ordickan@gmail.com>

345Architecting a fault-tolerant web application: Imagery

13.3.2 Implementing a fault-tolerant web service

We’ll split the Imagery application into two parts: a server and a worker. The server is
responsible for providing the REST API to the user, and the worker handles consum-
ing SQS messages and processing images.

The server will support the following routes:

■ POST /image—A new image process is created when executing this route.
■ GET /image/:id—This route returns the state of the process specified with the

path parameter :id.
■ POST /image/:id/upload—This route offers a file upload for the process speci-

fied with the path parameter :id.

To implement the server, you’ll again use Node.js and the Express web application
framework. You’ll only use Express framework a little, so you won’t be bothered by it.

SETTING UP THE SERVER PROJECT

As always, you need some boilerplate code to load dependencies, initial AWS end-
points, and things like that, as shown in the next listing.

var express = require('express');
var bodyParser = require('body-parser');
var AWS = require('aws-sdk');
var uuid = require('node-uuid');
var multiparty = require('multiparty');

var db = new AWS.DynamoDB({
"region": "us-east-1"

});
var sqs = new AWS.SQS({

"region": "us-east-1"
});
var s3 = new AWS.S3({

"region": "us-east-1"
});

var app = express();
app.use(bodyParser.json());

[...]

Listing 13.1 Initializing the Imagery server (server/server.js)

Where is the code located?
As usual, you’ll find the code in the book’s code repository on GitHub: https://
github.com/AWSinAction/code. Imagery is located in /chapter13/.

Loads Node.js modules
(dependencies)

Creates a DynamoDB
endpoint

Creates
an SQS

endpoint

Creates an S3
endpointCreates an

Express
application

Tells Express to parse
the request bodies

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/AWSinAction/code
https://github.com/AWSinAction/code

346 CHAPTER 13 Designing for fault-tolerance

app.listen(process.env.PORT || 8080, function() {
console.log("Server started. Open http://localhost:"
+ (process.env.PORT || 8080) + " with browser.");

});

Don’t worry too much about the boilerplate code; the interesting parts will follow.

CREATING A NEW IMAGERY PROCESS

To provide a REST API to create image processes, a fleet of EC2 instances will run
Node.js code behind a load balancer. The image processes will be stored in Dyna-
moDB. Figure 13.11 shows the flow of a request to create a new image process.

You’ll now add a route to the Express application to handle POST /image requests, as
shown in the next listing.

app.post('/image', function(request, response) {
var id = uuid.v4();
db.putItem({
"Item": {

"id": {
"S": id

},
"version": {

"N": "0"
},

Listing 13.2 Imagery server: POST /image creates an image process

Starts Express on the port defined by the
environment variable PORT, or defaults to 8080

User sends a POST / image
request. User gets a
process ID in return.

ELB distributes
request to one of
the EC2 instances.

Node.js code
is executed.

Add an item to
DynamoDB table.

User EC2
Instances running in
auto-scaling group

ELB DynamoDB

Figure 13.11 Creating a new image process in Imagery

Registers the route
with Express

Creates a
unique ID for

the process Invokes the putItem
operation on DynamoDB

The id attribute
will be the primary
key in DynamoDB. Use the version for optimistic

locking (explained in the
following sidebar).

Licensed to Thomas Snead <n.ordickan@gmail.com>

347Architecting a fault-tolerant web application: Imagery

"state": {
"S": "created"

}
},
"TableName": "imagery-image",
"ConditionExpression": "attribute_not_exists(id)"

}, function(err, data) {
throw err;

} else {
response.json({"id": id, "state": "created"});

}
});

});

A new process can now be created.

The next route you need to implement is to look up the current state of a process.

The process is now in
the created state:
this attribute will

change when state
transitions happen.

The DynamoDB table
will be created later
in the chapter.

Prevents the item from being
replaced if it already exists.

Responds
with the

process ID

Optimistic locking
To prevent multiple updates to a DynamoDB item, you can use a trick called optimistic
locking. When you want to update an item, you must tell which version you want to
update. If that version doesn’t match the current version of the item in the database,
your update will be rejected.

Imagine the following scenario. An item is created in version 0. Process A looks up
that item (version 0). Process B also looks up that item (version 0). Now process A
wants to make a change by invoking the updateItem operation on DynamoDB. There-
fore process A specifies that the expected version is 0. DynamoDB will allow that
modification because the version matches; but DynamoDB will also change the
item’s version to 1 because an update was performed. Now process B wants to make
a modification and sends a request to DynamoDB with the expected item version 0.
DynamoDB will reject that modification because the expected version doesn’t match
the version DynamoDB knows of, which is 1.

To solve the problem for process B, you can use the same trick introduced earlier:
retry. Process B will again look up the item, now in version 1, and can (you hope)
make the change.

There’s one problem with optimistic locking: if many modifications happen in parallel,
a lot of overhead is created because of many retries. But this is only a problem if you
expect a lot of concurrent writes to a single item, which can be solved by changing
the data model. That’s not the case in the Imagery application. Only a few writes are
expected to happen for a single item: optimistic locking is a perfect fit to make sure
you don’t have two writes where one overrides changes made by another.

The opposite of optimistic locking is pessimistic locking. A pessimistic lock strategy
can be implemented by using a semaphore. Before you change data, you need to lock
the semaphore. If the semaphore is already locked, you wait until the semaphore be-
comes free again.

Licensed to Thomas Snead <n.ordickan@gmail.com>

348 CHAPTER 13 Designing for fault-tolerance

LOOKING UP AN IMAGERY PROCESS

You’ll now add a route to the Express application to handle GET /image/:id requests.
Figure 13.12 shows the request flow.

 Express will take care of the path parameter :id by providing it within request
.params.id. The implementation needs to get an item from DynamoDB based on the
path parameter ID.

function mapImage(item) {
return {
"id": item.id.S,
"version": parseInt(item.version.N, 10),
"state": item.state.S,
"rawS3Key": [...]
"processedS3Key": [...]
"processedImage": [...]

};
};

function getImage(id, cb) {
db.getItem({
"Key": {

"id": {
"S": id

}
},
"TableName": "imagery-image"

}, function(err, data) {
if (err) {

Listing 13.3 Imagery server: GET /image/:id looks up an image process

User sends a GET
/image/:id request

ELB distributes
request to one of
the EC2 instances

Node.js code
is executed.

Get an item from
DynamoDB table.

User EC2
Instances running in
auto-scaling group

ELB DynamoDB

Figure 13.12 Looking up an image process in Imagery to return its state

Helper function to map
a DynamoDB result to a
JavaSscript object

Invokes the
getItem operation
on DynamoDB

id is the primary
hash key.

Licensed to Thomas Snead <n.ordickan@gmail.com>

349Architecting a fault-tolerant web application: Imagery

cb(err);
} else {

if (data.Item) {
cb(null, mapImage(data.Item));

} else {
cb(new Error("image not found"));

}
}

});
}
app.get('/image/:id', function(request, response) {

getImage(request.params.id, function(err, image) {
if (err) {

throw err;
} else {

response.json(image);
}

});
});

The only thing missing is the upload part, which comes next.

UPLOADING AN IMAGE

Uploading an image via POST request requires several steps:

1 Upload the raw image to S3.
2 Modify the item in DynamoDB.
3 Send an SQS message to trigger processing.

Figure 13.13 shows this flow.

Registers the
route with
Express

Responds with the
image process

User sends a POST
/image/:id/upload
request.

ELB distributes
request to one of
the EC2 instances.

Node.js code
is executed.

Process state
is updated in
DynamoDB.

Raw image is
stored on S3.

A SQS message
is sent to trigger
image processing
by a worker.

User EC2
Instances running in
auto-scaling group

ELB DynamoDBS3 SQS

Figure 13.13 Uploading a raw image to Imagery and triggering image processing

Licensed to Thomas Snead <n.ordickan@gmail.com>

350 CHAPTER 13 Designing for fault-tolerance

The following listing shows the implementation of these steps.

function uploadImage(image, part, response) {
var rawS3Key = 'upload/' + image.id + '-' + Date.now();
s3.putObject({
"Bucket": process.env.ImageBucket,
"Key": rawS3Key,
"Body": part,
"ContentLength": part.byteCount

}, function(err, data) {
if (err) {

throw err;
} else {

db.updateItem({
"Key": {

"id": {
"S": image.id

}
},
"UpdateExpression": "SET #s=:newState,

 ➥ version=:newVersion, rawS3Key=:rawS3Key",
"ConditionExpression": "attribute_exists(id)

 ➥ AND version=:oldVersion
 ➥ AND #s IN (:stateCreated, :stateUploaded)",

"ExpressionAttributeNames": {
"#s": "state"

},
"ExpressionAttributeValues": {

":newState": {
"S": "uploaded"

},
":oldVersion": {

"N": image.version.toString()
},
":newVersion": {

"N": (image.version + 1).toString()
},
":rawS3Key": {

"S": rawS3Key
},
":stateCreated": {

"S": "created"
},
":stateUploaded": {

"S": "uploaded"
}

},
"ReturnValues": "ALL_NEW",
"TableName": "imagery-image"

}, function(err, data) {
if (err) {

Listing 13.4 Imagery server: POST /image/:id/upload uploads an image

Creates a key for the S3 object
Invokes

putObject
on S3

The S3 bucket name is passed in
as an environment variable (the
bucket will be created later in
the chapter).

body is the
uploaded

stream of data.

Invokes updateItem
on DynamoDB

Updates the
state, version,

and raw S3 key

Updates only when item
exists. Version equals the

expected version, and state
is one of those allowed.

Licensed to Thomas Snead <n.ordickan@gmail.com>

351Architecting a fault-tolerant web application: Imagery

throw err;
} else {

sqs.sendMessage({
"MessageBody": JSON.stringify({

 "imageId": image.id,
 "desiredState": "processed"
 }),

"QueueUrl": process.env.ImageQueue,
}, function(err) {

if (err) {
throw err;

} else {
response.json(lib.mapImage(data.Attributes));

}
});

}
});

}
});

}

app.post('/image/:id/upload', function(request, response) {
getImage(request.params.id, function(err, image) {

if (err) {
throw err;

} else {
var form = new multiparty.Form();
form.on('part', function(part) {

uploadImage(image, part, response);
});
form.parse(request);

}
});

});

The server side is finished. Next you’ll continue to implement the processing part in
the Imagery worker. After that, you can deploy the application.

13.3.3 Implementing a fault-tolerant worker to consume SQS messages

The Imagery worker does the asynchronous stuff in the background: processing
images into sepia images while applying a filter. The worker handles consuming SQS
messages and processing images. Fortunately, consuming SQS messages is a common
task that’s solved by Elastic Beanstalk, which you’ll use later to deploy the application.
Elastic Beanstalk can be configured to listen to SQS messages and execute an HTTP
POST request for every message. In the end, the worker implements a REST API that’s
invoked by Elastic Beanstalk. To implement the worker, you’ll again use Node.js and
the Express framework.

SETTING UP THE SERVER PROJECT

As always, you need some boilerplate code to load dependencies, initial AWS end-
points, and so on, as shown in the following listing.

Invokes sendMessage
on SQS

Message contains
the process ID

The queue URL is
passed in as an
environment
variable.

Registers the route
with Express

Magic lines
to handle

uploads

Licensed to Thomas Snead <n.ordickan@gmail.com>

352 CHAPTER 13 Designing for fault-tolerance

var express = require('express');
var bodyParser = require('body-parser');
var AWS = require('aws-sdk');
var assert = require('assert-plus');
var Caman = require('caman').Caman;
var fs = require('fs');

var db = new AWS.DynamoDB({
"region": "us-east-1"

});
var s3 = new AWS.S3({

"region": "us-east-1"
});

var app = express();
app.use(bodyParser.json());

app.get('/', function(request, response) {
response.json({});

});

[...]

app.listen(process.env.PORT || 8080, function() {
console.log("Worker started on port " + (process.env.PORT || 8080));

});

The Node.js module caman is used to create sepia images. You’ll wire that up next.

HANDLING SQS MESSAGES AND PROCESSING THE IMAGE

The SQS message to trigger the raw image processing is handled in the worker. Once a
message is received, the worker starts to download the raw image from S3, applies the
sepia filter, and uploads the processed image back to S3. After that, the process state
in DynamoDB is modified. Figure 13.14 shows the steps.

Listing 13.5 Initializing the Imagery worker (worker/worker.js)

Loads Node.js modules
(dependencies)

Creates a DynamoDB
endpoint

Creates an S3
endpoint

Creates an Express
application

Registers a route for
health checks that
returns an empty object

Starts Express on a port defined
by the environment variable
PORT, or defaults to 8080

A SQS message is sent to
trigger image processing
by a worker.

Node.js code
is executed. Process state

is updated in
DynamoDB.

Raw image
is downloaded
from S3.

Sepia image is
stored on S3.

EC2
Instances running in
auto-scaling group

DynamoDB

S3

SQS S3

Figure 13.14
Processing a raw im-
age to upload a se-
pia image to S3

Licensed to Thomas Snead <n.ordickan@gmail.com>

353Architecting a fault-tolerant web application: Imagery

Instead of receiving messages directly from SQS, you’ll take a shortcut. Elastic Beanstalk,
the deployment tool you’ll use, provides a feature that consumes messages from a queue
and invokes a HTTP POST request for every message. You configure the POST request to be
made to the resource /sqs. The following listing shows the implementation.

function processImage(image, cb) {
var processedS3Key = 'processed/' + image.id + '-' + Date.now() + '.png';
// download raw image from S3
// process image
// upload sepia image to S3
cb(null, processedS3Key);

}

function processed(image, request, response) {
processImage(image, function(err, processedS3Key) {
if (err) {

throw err;
} else {

db.updateItem({
"Key": {

"id": {
"S": image.id

}
},
"UpdateExpression": "SET #s=:newState,

 ➥ version=:newVersion, processedS3Key=:processedS3Key",
"ConditionExpression": "attribute_exists(id)

 ➥ AND version=:oldVersion
 ➥ AND #s IN (:stateUploaded, :stateProcessed)",

"ExpressionAttributeNames": {
"#s": "state"

},
"ExpressionAttributeValues": {

":newState": {
"S": "processed"

},
":oldVersion": {

"N": image.version.toString()
},
":newVersion": {

"N": (image.version + 1).toString()
},
":processedS3Key": {

"S": processedS3Key
},
":stateUploaded": {

"S": "uploaded"
},

Listing 13.6 Imagery worker: POST /sqs handles SQS messages

The implementation of processImage
isn’t shown here; you can find it in
the book’s source folder.

Invokes the updateItem
operation on DynamoDB

Updates the state, version,
and processed S3 key

Updates only when an
item exists, version
equals the expected
version, and state is
one of those allowed

Licensed to Thomas Snead <n.ordickan@gmail.com>

354 CHAPTER 13 Designing for fault-tolerance

":stateProcessed": {
"S": "processed"

}
},
"ReturnValues": "ALL_NEW",
"TableName": "imagery-image"

}, function(err, data) {
if (err) {

throw err;
} else {

response.json(lib.mapImage(data.Attributes));
}

});
}

});
}

app.post('/sqs', function(request, response) {
assert.string(request.body.imageId, "imageId");
assert.string(request.body.desiredState, "desiredState");
getImage(request.body.imageId, function(err, image) {
if (err) {

throw err;
} else {

if (request.body.desiredState === 'processed') {
processed(image, request, response);

} else {
throw new Error("unsupported desiredState");

}
}

});
});

If the POST /sqs route responds with a 2XX HTTP status code, Elastic Beanstalk consid-
ers the message delivery successful and deletes the message from the queue. Other-
wise the message is redelivered.

 Now you can process the SQS message to process the raw image and upload a sepia
image to S3. The next step is to deploy all that code to AWS in a fault-tolerant way.

13.3.4 Deploying the application

As mentioned previously, you’ll use Elastic Beanstalk to deploy the server and the
worker. You’ll use CloudFormation to do so. This may sounds strange because you use
an automation tool to use another automation tool. But CloudFormation does a bit
more than deploy two Elastic Beanstalk applications. It defines the following:

■ S3 bucket for raw and processed images
■ DynamoDB table imagery-image
■ SQS queue and dead-letter queue
■ IAM roles for the server and worker EC2 instances
■ Elastic Beanstalk application for the server and worker

Responds with the
process’s new state

Registers the route
with Express

The implementation of getImage is
the same as on the server.

Invokes the processed function if
the SQS message’s desiredState
equals “processed”.

Licensed to Thomas Snead <n.ordickan@gmail.com>

355Architecting a fault-tolerant web application: Imagery

It takes quite a while to create that CloudFormation stack; that’s why you should do so
now. After you’ve created the stack, we’ll look at the template. After that, the stack
should be ready to use.

 To help you deploy Imagery, we created a CloudFormation template located at https:
//s3.amazonaws.com/awsinaction/chapter13/template.json. Create a stack based on
that template. The stack output EndpointURL returns the URL that can be accessed from
your browser to use Imagery. Here’s how to create the stack from the terminal:

$ aws cloudformation create-stack --stack-name imagery \
--template-url https://s3.amazonaws.com/\
awsinaction/chapter13/template.json \
--capabilities CAPABILITY_IAM

Now let’s look at the CloudFormation template.

DEPLOYING S3, DYNAMODB, AND SQS

The following CloudFormation snippet describes the S3 bucket, DynamoDB table,
and SQS queue.

{
"AWSTemplateFormatVersion": "2010-09-09",
"Description": "AWS in Action: chapter 13",
"Parameters": {
"KeyName": {

"Description": "Key Pair name",
"Type": "AWS::EC2::KeyPair::KeyName",
"Default": "mykey"

}
},
"Resources": {
"Bucket": {

"Type": "AWS::S3::Bucket",
"Properties": {

"BucketName": {"Fn::Join": ["-",
 ["imagery", {"Ref": "AWS::AccountId"}]]},

"WebsiteConfiguration": {
"ErrorDocument": "error.html",
"IndexDocument": "index.html"

}
}

},
"Table": {

"Type": "AWS::DynamoDB::Table",
"Properties": {

"AttributeDefinitions": [{
"AttributeName": "id",
"AttributeType": "S"

}],
"KeySchema": [{

"AttributeName": "id",
"KeyType": "HASH"

Listing 13.7 Imagery CloudFormation template: S3, DynamoDB, and SQS

S3 bucket for uploaded and
processed images, with web
hosting enabled

The bucket name contains
the account ID to make the
name unique.

DynamoDB table
containing the
image processes

The id attribute
is used as the
primary hash key.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://s3.amazonaws.com/awsinaction/chapter13/template.json
https://s3.amazonaws.com/awsinaction/chapter13/template.json

356 CHAPTER 13 Designing for fault-tolerance

}],
"ProvisionedThroughput": {

"ReadCapacityUnits": 1,
"WriteCapacityUnits": 1

},
"TableName": "imagery-image"

}
},
"SQSDLQueue": {

"Type": "AWS::SQS::Queue",
"Properties": {

"QueueName": "message-dlq"
}

},
"SQSQueue": {

"Type": "AWS::SQS::Queue",
"Properties": {

"QueueName": "message",
"RedrivePolicy": {

"deadLetterTargetArn": {"Fn::GetAtt":
 ["SQSDLQueue", "Arn"]},

"maxReceiveCount": 10
}

}
},
[...]

},
"Outputs": {
"EndpointURL": {

"Value": {"Fn::GetAtt": ["EBServerEnvironment", "EndpointURL"]},
"Description": "Load Balancer URL"

}
}

}

The concept of a dead-letter queue needs a short introduction here as well. If a single
SQS message can’t be processed, the message becomes visible again on the queue for
other workers. This is called a retry. But if for some reason every retry fails (maybe you
have a bug in your code), the message will reside in the queue forever and may waste
a lot of resources because of many retries. To avoid this, you can configure a dead-letter
queue (DLQ). If a message is retried more than a specific number of times, it’s removed
from the original queue and forwarded to the DLQ. The difference is that no worker lis-
tens for messages on the DLQ. But you should create a CloudWatch alarm that triggers
if the DLQ contains more than zero messages because you need to investigate this prob-
lem manually by looking at the message in the DLQ.

 Now that the basic resources have been designed, let’s move on to the more spe-
cific resources.

IAM ROLES FOR SERVER AND WORKER EC2 INSTANCES

Remember that it’s important to only grant the privileges that are needed. All server
instances must be able to do the following:

SQS queue that receives
messages that can’t be
processed

SQS queue to trigger
image processing

If a message is received more
than 10 times, it’s moved to
the dead-letter queue.

Visit the output with
your browser to use
Imagery.

Licensed to Thomas Snead <n.ordickan@gmail.com>

357Architecting a fault-tolerant web application: Imagery

■ sqs:SendMessage to the SQS queue created in the template to trigger image
processing

■ s3:PutObject to the S3 bucket created in the template to upload a file to S3
(you can further limit writes to the upload/ key prefix)

■ dynamodb:GetItem, dynamodb:PutItem, and dynamodb:UpdateItem to the
DynamoDB table created in the template

■ cloudwatch:PutMetricData, which is an Elastic Beanstalk requirement
■ s3:Get*, s3:List*, and s3:PutObject, which is an Elastic Beanstalk requirement

All worker instances must be able to do the following:

■ sqs:ChangeMessageVisibility, sqs:DeleteMessage, and sqs:ReceiveMessage
to the SQS queue created in the template

■ s3:PutObject to the S3 bucket created in the template to upload a file to S3
(you can further limit writes to the processed/ key prefix)

■ dynamodb:GetItem and dynamodb:UpdateItem to the DynamoDB table created
in the template

■ cloudwatch:PutMetricData, which is an Elastic Beanstalk requirement
■ s3:Get*, s3:List*, and s3:PutObject, which is an Elastic Beanstalk requirement

If you don’t feel comfortable with IAM roles, take a look at the book’s code repository
on GitHub at https://github.com/AWSinAction/code. The template with IAM roles
can be found in /chapter13/template.json.

 Now it’s time to design the Elastic Beanstalk applications.

ELASTIC BEANSTALK FOR THE SERVER

Let’s have a short refresher on Elastic Beanstalk, which we touched on in section 5.3.
An Elastic Beanstalk consists of these elements:

■ An application is a logical container. It contains versions, environments, and con-
figurations. To use AWS Elastic Beanstalk in a region, you have to create an
application first.

■ A version contains a specific version of your application. To create a new version,
you have to upload your executables (packed into an archive) to S3. A version is
basically a pointer to this archive of executables.

■ A configuration template contains your default configuration. You can manage the
configuration of your application (such as the port your application listens on)
as well as the configuration of the environment (such as the size of the virtual
server) with your custom configuration template.

■ An environment is the place where AWS Elastic Beanstalk executes your
application. It consists of a version and the configuration. You can run multiple
environments for one application by using the versions and configurations
multiple times.

Figure 13.15 shows the parts of an Elastic Beanstalk application.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/AWSinAction/code

358 CHAPTER 13 Designing for fault-tolerance

Now that you’ve refreshed your memory, let’s look at the Elastic Beanstalk application
that deploys the Imagery server.

"EBServerApplication": {
"Type": "AWS::ElasticBeanstalk::Application",
"Properties": {
"ApplicationName": "imagery-server",
"Description": "Imagery server: AWS in Action: chapter 13"

}
},
"EBServerConfigurationTemplate": {

"Type": "AWS::ElasticBeanstalk::ConfigurationTemplate",
"Properties": {
"ApplicationName": {"Ref": "EBServerApplication"},
"Description": "Imagery server: AWS in Action: chapter 13",
"SolutionStackName":

 "64bit Amazon Linux 2015.03 v1.4.6 running Node.js",
"OptionSettings": [{

"Namespace": "aws:autoscaling:asg",
"OptionName": "MinSize",
"Value": "2"

}, {
"Namespace": "aws:autoscaling:launchconfiguration",
"OptionName": "EC2KeyName",
"Value": {"Ref": "KeyName"}

}, {
"Namespace": "aws:autoscaling:launchconfiguration",
"OptionName": "IamInstanceProfile",

Listing 13.8 Imagery CloudFormation template: Elastic Beanstalk for the server

Application

Environment:
Version 0.3, config A

Environment:
Version 0.3, config B

Version 0.3

Version 0.2

Configuration:
Template A

Configuration:
Template B

Environment:
Version 0.2, config A

Logical
container

Specific version
of application

Runtime environment
for your application

Configure application
and environment

Figure 13.15 An AWS Elastic Beanstalk application consists of versions, configurations, and en-
vironments.

Describes
the server

application
container

Uses Amazon
Linux 2015.03
running Node.js
0.12.6

Minimum of
two EC2

instances for
fault-tolerance

Passes a value
 from the Key-

Name parameter

Licensed to Thomas Snead <n.ordickan@gmail.com>

359Architecting a fault-tolerant web application: Imagery

"Value": {"Ref": "ServerInstanceProfile"}
}, {

"Namespace": "aws:elasticbeanstalk:container:nodejs",
"OptionName": "NodeCommand",
"Value": "node server.js"

}, {
"Namespace": "aws:elasticbeanstalk:application:environment",
"OptionName": "ImageQueue",
"Value": {"Ref": "SQSQueue"}

}, {
"Namespace": "aws:elasticbeanstalk:application:environment",
"OptionName": "ImageBucket",
"Value": {"Ref": "Bucket"}

}, {
"Namespace": "aws:elasticbeanstalk:container:nodejs:staticfiles",
"OptionName": "/public",
"Value": "/public"

}]
}

},
"EBServerApplicationVersion": {

"Type": "AWS::ElasticBeanstalk::ApplicationVersion",
"Properties": {
"ApplicationName": {"Ref": "EBServerApplication"},
"Description": "Imagery server: AWS in Action: chapter 13",
"SourceBundle": {

"S3Bucket": "awsinaction",
"S3Key": "chapter13/build/server.zip"

}
}

},
"EBServerEnvironment": {

"Type": "AWS::ElasticBeanstalk::Environment",
"Properties": {
"ApplicationName": {"Ref": "EBServerApplication"},
"Description": "Imagery server: AWS in Action: chapter 13",
"TemplateName": {"Ref": "EBServerConfigurationTemplate"},
"VersionLabel": {"Ref": "EBServerApplicationVersion"}

}
}

Under the hood, Elastic Beanstalk uses an ELB to distribute the traffic to the EC2
instances that are also managed by Elastic Beanstalk. You only need to worry about the
configuration of Elastic Beanstalk and the code.

ELASTIC BEANSTALK FOR THE WORKER

The worker Elastic Beanstalk application is similar to the server. The differences are
highlighted in the following listing.

"EBWorkerApplication": {
"Type": "AWS::ElasticBeanstalk::Application",
"Properties": {

Listing 13.9 Imagery CloudFormation template: Elastic Beanstalk for the worker

Links to the IAM
instance profile

created in the
previous section

Start command

Passes the SQS
queue into an
environment

variable

Passes the S3
bucket into an

environment
variable

Serves all files
from /public
as static files

Loads code from the
book’s S3 bucket

Describes the worker
application container

Licensed to Thomas Snead <n.ordickan@gmail.com>

360 CHAPTER 13 Designing for fault-tolerance

"ApplicationName": "imagery-worker",
"Description": "Imagery worker: AWS in Action: chapter 13"

}
},
"EBWorkerConfigurationTemplate": {

"Type": "AWS::ElasticBeanstalk::ConfigurationTemplate",
"Properties": {
"ApplicationName": {"Ref": "EBWorkerApplication"},
"Description": "Imagery worker: AWS in Action: chapter 13",
"SolutionStackName":

 "64bit Amazon Linux 2015.03 v1.4.6 running Node.js",
"OptionSettings": [{

"Namespace": "aws:autoscaling:launchconfiguration",
"OptionName": "EC2KeyName",
"Value": {"Ref": "KeyName"}

}, {
"Namespace": "aws:autoscaling:launchconfiguration",
"OptionName": "IamInstanceProfile",
"Value": {"Ref": "WorkerInstanceProfile"}

}, {
"Namespace": "aws:elasticbeanstalk:sqsd",
"OptionName": "WorkerQueueURL",
"Value": {"Ref": "SQSQueue"}

}, {
"Namespace": "aws:elasticbeanstalk:sqsd",
"OptionName": "HttpPath",
"Value": "/sqs"

}, {
"Namespace": "aws:elasticbeanstalk:container:nodejs",
"OptionName": "NodeCommand",
"Value": "node worker.js"

}, {
"Namespace": "aws:elasticbeanstalk:application:environment",
"OptionName": "ImageQueue",
"Value": {"Ref": "SQSQueue"}

}, {
"Namespace": "aws:elasticbeanstalk:application:environment",
"OptionName": "ImageBucket",
"Value": {"Ref": "Bucket"}

}]
}

},
"EBWorkerApplicationVersion": {

"Type": "AWS::ElasticBeanstalk::ApplicationVersion",
"Properties": {
"ApplicationName": {"Ref": "EBWorkerApplication"},
"Description": "Imagery worker: AWS in Action: chapter 13",
"SourceBundle": {

"S3Bucket": "awsinaction",
"S3Key": "chapter13/build/worker.zip"

}
}

},
"EBWorkerEnvironment": {

"Type": "AWS::ElasticBeanstalk::Environment",

Configures the HTTP
resource that’s
invoked when an SQS
message is received

Licensed to Thomas Snead <n.ordickan@gmail.com>

361Architecting a fault-tolerant web application: Imagery

"Properties": {
"ApplicationName": {"Ref": "EBWorkerApplication"},
"Description": "Imagery worker: AWS in Action: chapter 13",
"TemplateName": {"Ref": "EBWorkerConfigurationTemplate"},
"VersionLabel": {"Ref": "EBWorkerApplicationVersion"},
"Tier": {

"Type": "SQS/HTTP",
"Name": "Worker",
"Version": "1.0"

}
}

}

After all that JSON reading, the CloudFormation stack should be created. Verify the
status of your stack:

$ aws cloudformation describe-stacks --stack-name imagery
{

"Stacks": [{
[...]
"Description": "AWS in Action: chapter 13",
"Outputs": [{

"Description": "Load Balancer URL",
"OutputKey": "EndpointURL",
"OutputValue": "awseb-...582.us-east-1.elb.amazonaws.com"

}],
"StackName": "imagery",
"StackStatus": "CREATE_COMPLETE"

}]
}

The EndpointURL output of the stack is the URL to access the Imagery application.
When you open Imagery in your web browser, you can upload an image as shown in
figure 13.16.

 Go ahead and upload some images. You’ve created a fault-tolerant application!

Switches to the worker
environment tier (pushes
SQS messages to your app)

Copy this output into
your web browser.

Wait until CREATE_COMPLETE
is reached.

Cleaning up
To find out your 12-digit account ID (878533158213), you can use the CLI:

$ aws iam get-user --query "User.Arn" --output text
arn:aws:iam::878533158213:user/mycli

Delete all the files in the S3 bucket s3://imagery-$AccountId (replace $AccountId
with your account ID) by executing

$ aws s3 rm s3://imagery-$AccountId --recursive

Execute the following command to delete the CloudFormation stack:

$ aws cloudformation delete-stack --stack-name imagery

Stack deletion will take some time.

Licensed to Thomas Snead <n.ordickan@gmail.com>

362 CHAPTER 13 Designing for fault-tolerance

13.4 Summary
■ Fault-tolerance means to expect that failures happen. Design your systems in

such a way that they can deal with failure.
■ To create a fault-tolerant application, you can use idempotent actions to trans-

fer from one state to the next.
■ State shouldn’t reside on the server (a stateless server) as a prerequisite for

fault-tolerance.
■ AWS offers fault-tolerant services and gives you all the tools you need to create

fault-tolerant systems. EC2 is one of the few services that isn’t fault-tolerant out
of the box.

■ You can use multiple EC2 instances to eliminate the single point of failure.
Redundant EC2 instances in different availability zones, started with an auto-
scaling group, are the way to make EC2 fault-tolerant.

Figure 13.16 The Imagery application in action

Licensed to Thomas Snead <n.ordickan@gmail.com>

363

Scaling up and down:
 auto-scaling and CloudWatch

Suppose you’re organizing a party to celebrate your birthday. How much food and
drink do you need to buy? Calculating the right numbers for your shopping list is
difficult:

■ How many people will actually attend? You received several confirmations,
but some guests will need to cancel at short notice or show up without letting
you know in advance, so the number of guests is vague.

This chapter covers
■ Creating an auto-scaling group with launch

configuration
■ Using auto-scaling to adapt the number of virtual

servers
■ Scaling a synchronous decoupled app behind an ELB
■ Scaling an asynchronous decoupled app using SQS
■ Using CloudWatch alarms to modify an auto-scaling

group

Licensed to Thomas Snead <n.ordickan@gmail.com>

364 CHAPTER 14 Scaling up and down: auto-scaling and CloudWatch

■ How much will your guests eat and drink? Will it be a hot day, with everybody
drinking a lot? Will your guests be hungry? You need to guess the demand for
food and drink based on experiences from previous parties.

Solving the equation is a challenge because there are many unknown factors. Behav-
ing as a good host, you’ll order more food and drink than needed to have a solid buf-
fer, and no guest will be hungry or thirsty for long.

 Planning to meet future demands is nearly impossible. To prevent a supply gap,
you need to add extra capacity on top of the planned demand to prevent running
short of resources.

 The same was true when we planned the capacity of our IT infrastructure. When
procuring hardware for a data center, we always had to buy hardware based on the
demands of the future. There were many uncertainties when making these decisions:

■ How many users would need to be served by the infrastructure?
■ How much storage would the users need?
■ How much computing power would be required to handle their requests?

To avoid supply gaps, we had to order more or faster hardware than needed, causing
unnecessary expenses.

 On AWS, you can use services on demand. Planning capacity is less and less impor-
tant. Scaling from one server to thousands of servers is possible. Storage can grow
from gigabytes to petabytes. You can scale on demand, thus replacing capacity plan-
ning. The ability to scale on demand is called elasticity by AWS.

 Public cloud providers like AWS can offer needed capacity with a short waiting
time. AWS is serving a million customers, and at that scale, it isn’t a problem to provide
you with 100 additional virtual servers within minutes if you need them suddenly. This
allows you to address another problem: typical traffic patterns, as shown in figure 14.1.
Think about the load on your infrastructure during the day versus at night, on a week-
day versus the weekend, or before Christmas versus the rest of year. Wouldn’t it be
nice if you could add capacity when traffic grows and remove capacity when traffic
shrinks? In this chapter, you’ll learn how to scale the number of virtual servers based
on current load.

12am 6pm6am

S
ys

te
m

 lo
ad

S
ys

te
m

 lo
ad

Thursday SundayMonday

S
ys

te
m

 lo
ad

DecemberJanuary

Figure 14.1 Typical traffic patterns for a web shop

Licensed to Thomas Snead <n.ordickan@gmail.com>

365Managing a dynamic server pool

Scaling the number of virtual servers is possible with auto-scaling groups and scaling poli-
cies on AWS. Auto-scaling is part of the EC2 service and helps you to scale the number
of EC2 instances needed to fulfill the current load of your system. We introduced auto-
scaling groups in chapter 11 to ensure that a single virtual server was running even if
an outage of an entire data center occurred. In this chapter, you’ll learn how to use a
dynamic server pool:

■ Using auto-scaling groups to launch multiple virtual servers of the same kind
■ Changing the number of virtual servers based on CPU load with the help of

CloudWatch
■ Changing the number of virtual servers based on a schedule, to be able to adapt

to recurring traffic patterns
■ Using a load balancer as an entry point to the dynamic server pool
■ Using a queue to decouple the jobs from the dynamic server pool

There are two prerequisites for being able to scale your application horizontally,
which means increasing and decreasing the number of virtual servers based on the
current workload:

■ The servers you want to scale need to be stateless. You can achieve stateless
servers by storing data with the help of a service like RDS (SQL database),
DynamoDB (NoSQL database), or S3 (object store) instead of storing data on
local or network-attached disks that are only available to a single server.

■ An entry point to the dynamic server pool is needed to be able to distribute the
workload across multiple servers. Servers can be decoupled synchronously with
a load balancer or asynchronously with a queue.

We introduced the concept of the stateless servers in part 3 of this book and explained
how to use decoupling in chapter 12. You’ll return to the concept of the stateless
server and also work through an example of synchronous and asynchronous decou-
pling in this chapter.

14.1 Managing a dynamic server pool
Imagine that you need to provide a scalable infrastructure to run a web application, such
as a blogging platform. You need to launch uniform virtual servers when the number of
requests grows and terminate virtual servers when the number of requests shrinks. To
adapt to the current workload in an automated way, you need to be able to launch and

Examples are 100% covered by the Free Tier
The examples in this chapter are completely covered by the Free Tier. As long as you
don’t run the examples for longer than a few days, you won’t pay anything. Keep in mind
that this only applies if you created a fresh AWS account for this book and nothing else
is going on in your AWS account. Try to complete the examples of the chapter within a
few days; you’ll clean up your account at the end of each example.

Licensed to Thomas Snead <n.ordickan@gmail.com>

366 CHAPTER 14 Scaling up and down: auto-scaling and CloudWatch

terminate virtual servers automatically. The configuration and deployment of the blog-
ging platform needs to be done during bootstrapping, without human interaction.

 AWS offers a service to manage such a dynamic server pool, called auto-scaling
groups. Auto-scaling groups help you to

■ Run a desired number of virtual servers that can be adjusted dynamically
■ Launch, configure, and deploy uniform virtual servers

As figure 14.2 shows, auto-scaling consists of three parts:

■ A launch configuration that defines the size, image, and configuration of virtual
servers

■ An auto-scaling group that specifies how many virtual servers need to be running
based on the launch configuration

■ Scaling policies that adjust the desired number of servers in the auto-scaling group

Because the auto-scaling group references a launch configuration, you need to create a
launch configuration before you can create an auto-scaling group. If you use a template, as
you will in this chapter, this dependency will be resolved by CloudFormation automatically.

Define the maximum and minimum
number of servers. Update the desired
number of virtual servers as needed.

Min/max/desired number
of virtual servers

Auto-scaling group

Trigger the launch
of virtual server.

Terminate
virtual servers.

Multiple virtual servers need to
be stateless and decoupled.

Template and configuration
for virtual servers

Launch configuration

Auto-scaling defines a dynamic
server pool and consists of an
auto-scaling group and a
launch configuration.

Monitor the health of
virtual servers by checking
the instance state or the
health of the application.

Launch a virtual server
based on the template from

the launch configuration.

Figure 14.2 Auto-scaling consists of an auto-scaling group and a launch configuration,
launching and terminating uniform virtual servers.

Licensed to Thomas Snead <n.ordickan@gmail.com>

367Managing a dynamic server pool

If you want multiple servers to handle a workload, it’s important to start identical vir-
tual servers to build a homogeneous foundation. You use a launch configuration to
define and configure new virtual servers. Table 14.1 shows the most important param-
eters for a launch configuration.

After you create a launch configuration, you can create an auto-scaling group refer-
encing it. The auto-scaling group defines the maximum, minimum, and desired num-
ber of virtual servers. Desired means this number of servers should be running. If the
current number of servers is below the desired number, the auto-scaling group will
add servers. If the current number of servers is above the desired number, servers will
be terminated.

 The auto-scaling group also monitors whether EC2 instances are healthy and
replaces broken instances. Table 14.2 shows the most important parameters for an
auto-scaling group.

 If you specify multiple subnets with the help of VPCZoneIdentifier for the auto-
scaling group, EC2 instances will be evenly distributed among these subnets and thus
among availability zones.

Table 14.1 Launch configuration parameters

Name Description Possible values

ImageId Image from which to start a virtual
server

ID of Amazon Machine Image
(AMI)

InstanceType Size for new virtual servers Instance type (such as t2.micro)

UserData User data for the virtual server used to
execute a script during bootstrapping

BASE64-encoded String

KeyName Name of the SSH key pair Name of an EC2 key pair

AssociatePublicIpAddress Associates a public IP address with the
virtual server

True or false

SecurityGroups Attaches security groups to new virtual
servers

List of security group names

IamInstanceProfile Attaches an IAM instance profile linked
to an IAM role

Name or Amazon Resource
Name (ARN, an ID) of an IAM
instance profile

SpotPrice Uses a spot instance instead of an on-
demand instance with the maximum price

Maximum price for the spot
instance per hour (such as 0.10)

EbsOptimized Enables EBS optimization for the EC2
instance offering a dedicated throughput
to EBS root volumes with the IOPS
defined in the image (AMI)

True or false

Licensed to Thomas Snead <n.ordickan@gmail.com>

368 CHAPTER 14 Scaling up and down: auto-scaling and CloudWatch

Table 14.2 Auto-scaling group parameters

Name Description Possible values

DesiredCapacity Desired number of healthy virtual
servers

Integer

MaxSize Maximum number of virtual servers;
scaling limit

Integer

MinSize Minimum number of virtual servers;
scaling limit

Integer

Cooldown Minimum time span between two
scaling actions

Number of seconds

HealthCheckType How the auto-scaling group checks
the health of virtual servers

EC2 (health of the instance) or ELB
(health check of instance performed
by a load balancer)

HealthCheckGracePeriod Period for which the health check is
paused after the launch of a new
instance, to wait until the instance is
fully bootstrapped

Number of seconds

LaunchConfigurationName Name of the launch configuration
used to start new virtual servers

Name of a launch configuration

LoadBalancerNames Load balancers at which auto-scaling
registers new instances automatically

List of load-balancer names

TerminationPolicies Policies used to determine which
instance is terminated first

OldestInstance,
NewestInstance,
OldestLaunchConfiguration,
ClosestToNextInstanceHour,
or Default

VPCZoneIdentifier List of subnets in which to launch
EC2 instances

List of subnet identifiers of a VPC

Avoid unnecessary scaling with a cooldown and a grace period
Be sure to define reasonable Cooldown and HealthCheckGracePeriod values. The
tendency is to specify short Cooldown and HealthCheckGracePeriod periods. But
if your Cooldown period is too short, you’ll scale up and down too early. If your
HealthCheckGracePeriod is too short, the auto-scaling group will launch a new in-
stance because the previous instance isn’t bootstrapped quickly enough. Both will
launch unnecessary instances and cause unnecessary expense.

Licensed to Thomas Snead <n.ordickan@gmail.com>

369Managing a dynamic server pool

You can’t edit a launch configuration. If you need to make changes to a launch config-
uration, follow these steps:

1 Create a new launch configuration.
2 Edit the auto-scaling group, and reference the new launch configuration.
3 Delete the old launch configuration.

Fortunately, CloudFormation does this for you when you make changes to a launch
configuration in a template. The following listing shows how to set up such a dynamic
server pool with the help of a CloudFormation template.

[...]
"LaunchConfiguration": {

"Type": "AWS::AutoScaling::LaunchConfiguration",
"Properties": {

"ImageId": "ami-b43503a9",
"InstanceType": "t2.micro",
"SecurityGroups": ["webapp"],
"KeyName": "mykey",
"AssociatePublicIpAddress": true,
"UserData": {"Fn::Base64": {"Fn::Join": ["", [
"#!/bin/bash -ex\n",
"yum install httpd\n",

]]}}
}

},
"AutoScalingGroup": {

"Type": "AWS::AutoScaling::AutoScalingGroup",
"Properties": {

"LoadBalancerNames": [{"Ref": "LoadBalancer"}],
"LaunchConfigurationName": {"Ref": "LaunchConfiguration"},
"MinSize": "2",
"MaxSize": "4",
"DesiredCapacity": "2",
"Cooldown": "60",
"HealthCheckGracePeriod": "120",
"HealthCheckType": "ELB",
"VPCZoneIdentifier": ["subnet-a55fafcc", "subnet-fa224c5a"]

}
}
[...]

Auto-scaling groups are a useful tool if you need to start multiple virtual servers of the
same kind across multiple availability zones.

Listing 14.1 Auto-scaling for a web app with multiple EC2 instances

Image (AMI) from which to
launch new virtual servers

Instance type
for new EC2

instances

Attach these security
groups when launching

new virtual servers.

Name of the key
pair used for
new virtual
servers

Associates a
public IP

address with
new virtual

servers
Script executed during the

bootstrap of virtual servers

Registers new virtual
servers at the ELB References

the launch
configuration

Minimum number
of servers

Maximum number of serversDesired number of
healthy virtual servers
the auto-scaling group

tries to reach

Waits 60 seconds between 2 scaling actions
(such as starting a new virtual server)

Waits 120 seconds after the launch of a virtual
server before starting to monitor its health

Uses the health
check from the

ELB to check the
health of the EC2

instances Starts the virtual servers in
these two subnets of the VPC

Licensed to Thomas Snead <n.ordickan@gmail.com>

370 CHAPTER 14 Scaling up and down: auto-scaling and CloudWatch

14.2 Using metrics and schedules to trigger scaling
So far in this chapter, you’ve learned how to use an auto-scaling group and a launch
configuration to launch virtual servers. You can change the desired capacity of the
auto-scaling group manually, and new instances will be started or old instances will be
terminated to reach the new desired capacity.

 To provide a scalable infrastructure for a blogging platform, you need to increase
and decrease the number of virtual servers in the dynamic server pool automatically
by adjusting the desired capacity of the auto-scaling group with scaling policies.

 Many people surf the web during their lunch break, so you might need to add vir-
tual servers every day between 11:00 AM and 1:00 PM. You also need to adapt to unpre-
dictable load patterns—for example, if articles hosted on your blogging platform are
shared frequently through social networks.

 Figure 14.3 illustrates two different ways of changing the number of virtual servers:

■ Using a CloudWatch alarm to increase or decrease the number of virtual servers
based on a metric (such as CPU usage or number of requests on the load balancer)

■ Defining a schedule to increase or decrease the number of virtual servers
according to recurring load patterns (such as decreasing the number of virtual
servers at night)

Multiple virtual servers

Auto-scaling

CloudWatch alarm Schedule

The auto-scaling group increases or
decreases the number of virtual servers
in reaction to the alarm or schedule.

CPU load > 75%: +1 server
CPU load < 25%: –1 server

11 am: +2 servers
4 pm: –2 servers

Launching and terminating
an EC2 instance based on

the launch configuration

Auto-scaling
respects the
minimum and
maximum
number of
servers you
specify in your
auto-scaling
group.

Figure 14.3 Triggering auto-scaling based
on CloudWatch alarms or schedules

Licensed to Thomas Snead <n.ordickan@gmail.com>

371Using metrics and schedules to trigger scaling

Scaling based on a schedule is less complex than scaling based on a CloudWatch met-
ric because it’s difficult to find a metric to scale on reliably. On the other hand, scaling
based on a schedule is less precise.

14.2.1 Scaling based on a schedule

When operating a blogging platform, you might notice recurring load patterns:

■ Many people seem to read articles during their lunch break, between 11:00 AM
and 1:00 PM.

■ Requests to your registration page increase heavily after you run a TV advertise-
ment in the evening.

You can react to patterns in the utilization of your system with different types of sched-
uled scaling actions:

■ One-time-only actions, creating using the starttime parameter
■ Recurring actions, created using the recurrence parameter

You can create both types of scheduled scaling actions with the help of the CLI. The com-
mand shown in the next listing created a scheduled scaling action that sets the desired
capacity of the auto-scaling group called webapp to 4 on January 1, 2016 at 12:00 (UTC).
Don’t try to run this command now—you haven’t created the auto-scaling group webapp
to play with.

$ aws autoscaling put-scheduled-update-group-action \
--scheduled-action-name ScaleTo4 \
--auto-scaling-group-name webapp \
--start-time "2016-01-01T12:00:00Z" \
--desired-capacity 4

You can also schedule recurring scaling actions using cron syntax. The next listing sets the
desired capacity of an auto-scaling group to 2 every day at 20:00 UTC. Don’t try to run this
command now—you haven’t created the auto-scaling group webapp to play with.

$ aws autoscaling put-scheduled-update-group-action \
--scheduled-action-name ScaleTo2 \
--auto-scaling-group-name webapp \
--recurrence "0 20 * * *" \
--desired-capacity 2

Listing 14.2 Scheduling a one-time scaling action

Listing 14.3 Scheduling a recurring scaling action that runs at 20:00 o’clock UTC every day

Name of the scheduled
scaling action

Name of the auto-
scaling groupStart time

(UTC) to
trigger the

scaling
action

Desired
capacity to set
for the auto-
scaling group

Name of the scheduled
scaling action

Name of the auto-
scaling groupTriggers an

action every
day at

20:00, as
defined in
Unix cron

syntax (UTC)
Desired capacity to
set for the auto-
scaling group

Licensed to Thomas Snead <n.ordickan@gmail.com>

372 CHAPTER 14 Scaling up and down: auto-scaling and CloudWatch

Recurrence is defined in Unix cron syntax format as shown here:

* * * * *
| | | | |
| | | | +- day of week (0 - 6) (0 Sunday)
| | | +--- month (1 - 12)
| | +----- day of month (1 - 31)
| +------- hour (0 - 23)
+--------- min (0 - 59)

You could add another scheduled recurring scaling action to add capacity in the
morning that you removed during the night. Use scheduled scaling actions whenever
the load on your infrastructure is predictable. For example, internal systems may be
mostly needed during work hours, or marketing actions may go live at a certain time.

14.2.2 Scaling based on CloudWatch metrics

Predicting the future is a hard task. Traffic will increase or decrease beyond known
patterns from time to time. For example, if an article published on your blogging plat-
form is heavily shared through social media, you need to be able to react to
unplanned load changes and scale the number of servers.

 You can adapt the number of EC2 instances to handle the current workload with
the help of CloudWatch and scaling policies. CloudWatch helps monitor virtual serv-
ers and other services on AWS. Typically, a service publishes usage metrics to Cloud-
Watch, helping you to evaluate the available capacity. To trigger scaling based on the
current workload, you use metrics, alarms, and scaling policies. Figure 14.4 illustrates.

Multiple virtual servers

Auto-scaling

• CloudWatch metric
• CPU load
• Network usage
• Custom metric 1. Increase or decrease

 desired capacity if the
 threshold is reached.

2. Launching and terminating
 EC2 instance

CloudWatch alarm

Monitoring metric

Publishing metrics with
the current workload

Figure 14.4 Triggering
auto-scaling based on a
CloudWatch metric and
alarm

Licensed to Thomas Snead <n.ordickan@gmail.com>

373Using metrics and schedules to trigger scaling

An EC2 instance publishes several metrics to CloudWatch by default: CPU, network,
and disk utilization are the most important. Unfortunately, there is currently no met-
ric for a virtual server’s memory usage. You can use these metrics to scale the number
of virtual servers if a bottleneck is reached. For example, you can add servers if the
CPU is working to capacity.

 The following parameters describe a CloudWatch metric:

■ Namespace—Defines the source of the metric (such as AWS/EC2)
■ Dimensions—Defines the scope of the metric (such as all virtual servers belong-

ing to an auto-scaling group)
■ MetricName—Unique name of the metric (such as CPUUtilization)

A CloudWatch alarm is based on a CloudWatch metric. Table 14.3 explains the alarm
parameters in detail.

The following listing creates an alarm that increases the number of virtual servers with
the help of auto-scaling if the average CPU utilization of all virtual servers belonging to
the auto-scaling group exceeds 80%.

Table 14.3 Parameters for a CloudWatch alarm that triggers scaling based on CPU utilization of all virtual
 servers belonging to an auto-scaling group

Context Name Description Possible values

Condition Statistic Statistical function applied
to a metric

Average, Sum, Minimum, Maximum,
SampleCount

Condition Period Defines a time-based slice
of values from a metric

Seconds (multiple of 60)

Condition EvaluationPeriods Number of periods to evaluate
when checking for an alarm

Integer

Condition Threshold Threshold for an alarm Number

Condition ComparisonOperator Operator to compare the
threshold against the result
from a statistical function

GreaterThanOrEqualToThreshold,
GreaterThanThreshold,
LessThanThreshold,
LessThanOrEqualToThreshold

Metric Namespace Source of the metric AWS/EC2 for metrics from the EC2 service

Metric Dimensions Scope of the metric Depends on the metric, references the auto-
scaling group for an aggregated metric over
all associated servers

Metric MetricName Name of the metric For example, CPUUtilization

Action AlarmActions Actions to trigger if the
threshold is reached

Reference to the scaling policy

Licensed to Thomas Snead <n.ordickan@gmail.com>

374 CHAPTER 14 Scaling up and down: auto-scaling and CloudWatch

"CPUHighAlarm": {
"Type": "AWS::CloudWatch::Alarm",
"Properties": {
"EvaluationPeriods": "1",
"Statistic": "Average",
"Threshold": "80",
"AlarmDescription": "Alarm if CPU load is high.",
"Period": "60",
"AlarmActions": [{"Ref": "ScalingUpPolicy"}],
"Namespace": "AWS/EC2",
"Dimensions": [{

"Name": "AutoScalingGroupName",
"Value": {"Ref": "AutoScalingGroup"}

}],
"ComparisonOperator": "GreaterThanThreshold",
"MetricName": "CPUUtilization"

}
}

If the threshold is reached, the CloudWatch alarm triggers an action. To connect the
alarm with the auto-scaling group, you need a scaling policy. A scaling policy defines the
scaling action executed by the CloudWatch alarm.

 Listing 14.5 creates a scaling policy with CloudFormation. The scaling policy is
linked to an auto-scaling group. There are three different options to adjust the
desired capacity of an auto-scaling group:

■ ChangeInCapacity—Increases or decreases the number of servers by an abso-
lute number

■ PercentChangeInCapacity—Increases or decreases the number of servers by a
percentage

■ ExactCapacity—Sets the desired capacity to a specified number

"ScalingUpPolicy": {
"Type": "AWS::AutoScaling::ScalingPolicy",
"Properties": {
"AdjustmentType": "ChangeInCapacity",
"AutoScalingGroupName": {"Ref": "AutoScalingGroup"},
"Cooldown": "60",
"ScalingAdjustment": "1"

}
}

Listing 14.4 CloudWatch alarm based on CPU load of an auto-scaling group

Listing 14.5 Scaling policy that will add one server when triggered

Evaluates only
one period

Calculates the average over
values from the metric

The threshold is 80%
CPU utilization. Description

of the alarm
A period is defined

as 60 seconds.

Triggers a scaling policy if
the threshold is reached

The metric is
published by

the EC2 service.

Uses a metric that
aggregates CPU

utilization from all
servers belonging to

a specific auto-
scaling group

Fires an alarm if
average CPU
utilization is greater
than the thresholdMetric containing the CPU

utilization of EC2 instances

Changes the
capacity by an
absolute number

References
the auto-

scaling
group

Waits at least 60
seconds until the
next scaling action
can happen

Adds 1 to the
desired

capacity of
the auto-

scaling group

Licensed to Thomas Snead <n.ordickan@gmail.com>

375Decoupling your dynamic server pool

You can define alarms on many different metrics. You’ll find an overview of all
namespaces, dimensions, and metrics that AWS offers at http://mng.bz/8E0X. You
can also publish custom metrics—for example, metrics directly from your application
like thread pool usage, processing times, or user sessions.

Many times it’s a good idea to scale up faster than you scale down. Consider adding
two servers instead of one every 5 minutes but only scaling down one server every 10
minutes. Also, test your scaling policies by simulating real-world traffic. For example,
replay an access log as fast as your servers can handle the requests. But keep in mind
that servers need some time to start; don’t expect that auto-scaling can double your
capacity within a few seconds.

 You’ve learned how to use auto-scaling to adapt the number of virtual servers to
the workload. Time to bring this into action.

14.3 Decoupling your dynamic server pool
If you need to scale the number of virtual servers running your blogging platform
based on demand, auto-scaling groups can help you provide the needed number of
uniform virtual servers, and a scaling schedule or CloudWatch alarms will increase or
decrease the desired number of servers automatically. But how can users reach the
servers in the dynamic server pool to browse the hosted articles? Where should the
HTTP request be routed?

 Chapter 12 introduced the concept of decoupling: synchronous decoupling with
the help of ELB, and asynchronous decoupling with the help of SQS. Decoupling
allows you to route requests or messages to one or multiple servers. Sending requests
to a single server is no longer possible in a dynamic server pool. If you want to use
auto-scaling to grow and shrink the number of virtual servers, you need to decouple
your server because the interface that’s reachable from outside the system needs to

Scaling based on CPU load with virtual servers offering burstable performance
Some virtual servers, such as instance family t2, offer burstable performance. These
virtual servers offer a baseline CPU performance and can burst performance for a
short time based on credits. If all credits are spent, the instance operates at the
baseline. For a t2.micro instance, baseline performance is 10% of the performance
of the underlying physical CPU.

Using virtual servers with burstable performance can help you react to load spikes.
You save credits in times of low load and spend credits to burst performance in times
of high load. But scaling the number of virtual servers with burstable performance
based on CPU load is tricky because your scaling strategy must take into account
whether your instances have enough credits to burst performance. Consider search-
ing for another metric to scale (such as number of sessions) or using an instance
type without burstable performance.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://mng.bz/8E0X

376 CHAPTER 14 Scaling up and down: auto-scaling and CloudWatch

stay the same no matter how many servers are working behind the load balancer or
message queue. Figure 14.5 shows how to build a scalable system based on synchro-
nous or asynchronous decoupling.

 A decoupled and scalable application requires stateless servers. A stateless server
stores any shared data remotely in a database or storage system. The following two
examples implement the concept of a stateless server:

■ WordPress blog—Decoupled with ELB, scaled with auto-scaling and CloudWatch
based on CPU utilization, and data outsourced to RDS and S3

■ URL2PNG taking screenshots of URLs—Decoupled with SQS (queue), scaled with
auto-scaling and CloudWatch based on queue length, data outsourced to
DynamoDB and S3

Request

Load balancer

Auto-scaling

Web servers
1..n

Synchronous decoupling

SQS message queue

Message
producers

Auto-scaling

Worker servers
1..n

Asynchronous decoupling

Figure 14.5 Decoupling allows you
to scale the number of virtual servers
dynamically.

Licensed to Thomas Snead <n.ordickan@gmail.com>

377Decoupling your dynamic server pool

14.3.1 Scaling a dynamic server pool synchronously decoupled by a load balancer

Answering HTTP(S) requests is a synchronous task. If a user wants to use your web
application, the web server has to answer the corresponding requests immediately.
When using a dynamic server pool to run a web application, it’s common to use a load
balancer to decouple the servers from user requests. A load balancer forwards
HTTP(S) requests to multiple servers, acting as a single entry point to the dynamic
server pool.

 Suppose your company is using a corporate blog to publish announcements and
interact with the community. You’re responsible for the hosting of the blog. The mar-
keting department complains about page speed in the evening, when traffic reaches
its daily peak. You want to use the elasticity of AWS by scaling the number of servers
based on the current workload.

 Your company uses the popular blogging platform WordPress for its corporate
blog. Chapters 2 and 9 introduced a WordPress setup based on EC2 instances and RDS
(MySQL database). In this last chapter of the book, we’ll complete the example by
adding the ability to scale.

 Figure 14.6 shows the final, extended WordPress example. The following services
are used for this highly available scaling architecture:

■ EC2 instances running Apache to serve WordPress, a PHP application
■ RDS offering a MySQL database that’s highly available through Multi-AZ

deployment
■ S3 to store media files such as images and videos, integrated with a WordPress

plug-in
■ ELB to synchronously decouple the web servers from visitors
■ Auto-scaling and CloudWatch to

scale the number of web servers
based on the current CPU load of
all running virtual servers

So far, the WordPress example can’t
scale based on current load and contains
a pitfall: WordPress stores uploaded
media files in the local file system as
shown in figure 14.6. As a result, the
server isn’t stateless. If you upload an
image for a blog post, it’s only available
on a single server.

 This is a problem if you want to run
multiple servers to handle the load.
Other servers won’t be able to service the
uploaded image and will deliver a 404
(not found) error. To fix that, you’ll

Load balancerVisitor

Store and query
database

Auto-scaling

Multiple web servers

RDS
MySQL database

Problem: media
files are stored
on the disks of
virtual servers.

Figure 14.6 WordPress running on multiple virtu-
al servers, storing data on RDS but media files on
the disks of virtual servers

Licensed to Thomas Snead <n.ordickan@gmail.com>

378 CHAPTER 14 Scaling up and down: auto-scaling and CloudWatch

install a WordPress plug-in called amazon-s3-and-cloudfront that stores and delivers
media files with the help of S3. You’re outsourcing the state of the server as you did
with the MySQL database running on RDS. Figure 14.7 shows the improved version of
the WordPress setup.

 As usual, you’ll find the code in the book’s code repository on GitHub: https://
github.com/AWSinAction/code. The CloudFormation template for the WordPress
example is located in /chapter14/wordpress.json.

 Execute the following command to create a CloudFormation stack that spins up
the scalable WordPress setup. Replace $BlogID with a unique ID for your blog (such as
awsinaction-andreas), $AdminPassword with a random password, and $AdminEMail
with your e-mail address:

$ aws cloudformation create-stack --stack-name wordpress \
--template-url https://s3.amazonaws.com/\
awsinaction/chapter14/wordpress.json \
--parameters ParameterKey=BlogID,ParameterValue=$BlogID \
ParameterKey=AdminPassword,ParameterValue=$AdminPassword \
ParameterKey=AdminEMail,ParameterValue=$AdminEMail \
--capabilities CAPABILITY_IAM

Load balancerVisitor

Store and query
database

Send
metrics

Store media
files

Auto-scaling

Trigger
scaling

Multiple web servers

RDS
MySQL database

S3 object store
media files

CloudWatch
metric and alarm

Figure 14.7 Auto-scaling web
servers running WordPress, storing
data on RDS and S3, decoupled,
with a load balancer scaling based
on load

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/AWSinAction/code
https://github.com/AWSinAction/code

379Decoupling your dynamic server pool

It will take up to 10 minutes for the stack to be created. This is a perfect time to grab
some coffee or tea. Log in to the AWS Management Console, and navigate to the AWS
CloudFormation service to monitor the process of the CloudFormation stack named
wordpress. You have time to look through the most important parts of the Cloud-
Formation template, shown in the following two listings.

"LaunchConfiguration": {
"Type": "AWS::AutoScaling::LaunchConfiguration",
"Metadata": [...],
"Properties": {

"ImageId": [...]
"InstanceType": "t2.micro",
"SecurityGroups": [
{"Ref": "WebServerSecurityGroup"}

],
"KeyName": {"Ref": "KeyName"},
"AssociatePublicIpAddress": true,
"UserData": [...]

}
},
"AutoScalingGroup": {

"Type": "AWS::AutoScaling::AutoScalingGroup",
"Properties": {

"LoadBalancerNames": [{"Ref": "LoadBalancer"}],
"LaunchConfigurationName": {
"Ref": "LaunchConfiguration"

},
"MinSize": "2",
"MaxSize": "4",
"DesiredCapacity": "2",
"Cooldown": "60",
"HealthCheckGracePeriod": "120",
"HealthCheckType": "ELB",
"VPCZoneIdentifier": [
{"Ref": "SubnetA"}, {"Ref": "SubnetB"}

],
"Tags": [{
"PropagateAtLaunch": true,
"Value": "wordpress",
"Key": "Name"

}]
}
[...]

}

Listing 14.6 Scalable and highly available WordPress setup (part 1 of 2)

Creates a launch
configuration for auto-scalingImage (AMI) from

which to start a
virtual server

Size of the
virtual
server

Security group
with firewall
rules for virtual
servers

Key pair for
SSH access

Associates a public IP address
with virtual servers

Script to install
and configure

WordPress
automatically

Creates an auto-scaling group

Registers virtual
servers at the
load balancer

References the
launch configuration

Ensure that at least
two virtual servers

are running, one for
each of the two

availability zones for
high availability

Launches not more than four
virtual servers, to limit costs

Launches with two desired web
servers, changed later by the
CloudWatch alarm if necessary

Waits at least
60 seconds

between
scaling actions

Waits at least 120
seconds before

starting to monitor
the health of a

launching virtual
server

Uses the ELB
health check to
monitor the
health of the
virtual serversLaunches virtual

servers into two
different subnets in

two different
availability zones

for high availabilityAdds a tag including a name
for all virtual servers launched

by the auto-scaling group

Licensed to Thomas Snead <n.ordickan@gmail.com>

380 CHAPTER 14 Scaling up and down: auto-scaling and CloudWatch

The scaling policies and CloudWatch alarms follow in the next listing.

"ScalingUpPolicy": {
"Type": "AWS::AutoScaling::ScalingPolicy",
"Properties": {
"AdjustmentType": "ChangeInCapacity",
"AutoScalingGroupName": {

"Ref": "AutoScalingGroup"
},
"Cooldown": "60",
"ScalingAdjustment": "1"

}
},
"CPUHighAlarm": {

"Type": "AWS::CloudWatch::Alarm",
"Properties": {
"EvaluationPeriods": "1",
"Statistic": "Average",
"Threshold": "60",
"AlarmDescription": "Alarm if CPU load is high.",
"Period": "60",
"AlarmActions": [{"Ref": "ScalingUpPolicy"}],
"Namespace": "AWS/EC2",
"Dimensions": [{

"Name": "AutoScalingGroupName",
"Value": {"Ref": "AutoScalingGroup"}

}],
"ComparisonOperator": "GreaterThanThreshold",
"MetricName": "CPUUtilization"

}
},
"ScalingDownPolicy": {

[...]
},
"CPULowAlarm": {

[...]
}

Follow these steps after the CloudFormation stack reaches the state CREATE_COMPLETE
to create a new blog post containing an image:

1 Select the CloudFormation stack wordpress and switch to the Outputs tab.
2 Open the link shown for key URL with a modern web browser.

Listing 14.7 Scalable and highly available WordPress setup (part 2 of 2)

Creates a scaling policy that can be
triggered by a CloudWatch alarm to

increase the number of desired instances Changes the
capacity of the
desired virtual
servers

References the
auto-scaling group

Waits at least 60
seconds between

two changes of the
desired capacity
triggered by the

scaling policy

Adds 1 to the current desired
capacity of the auto-scaling group

Creates a new CloudWatch
alarm to monitor CPU usage

Number of periods to
evaluate when checking
for the alarm

Average function
applied to the metric

Defines 60%
CPU usage as
the threshold
for the alarm

Defines a time-based
60-second slice of

values from the metric

References the scaling
policy as an action to
trigger state changes

to the alarm Source of the metric

Scope of the metric,
referencing the auto-
scaling group for the

aggregated metric
over all associated

servers

Triggers the alarm
if the average is
greater than the
threshold

Uses the metric
containing CPU

usage

Scaling policy to scale
down (opposite of the
scaling policy to scale up)

CloudWatch alarm to
scale down if CPU usage

falls below the threshold

Licensed to Thomas Snead <n.ordickan@gmail.com>

381Decoupling your dynamic server pool

3 Search for the Log In link in the navigation bar and click it.
4 Log in with username admin and the password you specified when creating the

stack with the CLI.
5 Click Posts in the menu at left.
6 Click Add New.
7 Type in a title and text, and upload an image to your post.
8 Click Publish.
9 Move back to the blog by entering the URL from step 1 again.

Now you’re ready to scale. We’ve prepared a load test that will send 10,000 requests to
the WordPress setup in a short amount of time. New virtual servers will be launched to
handle the load. After a few minutes, when the load test is finished, the additional vir-
tual servers will disappear. Watching this is fun; you shouldn’t miss it.

NOTE If you plan to do a big load test, consider the AWS Acceptable Use Pol-
icy at https://aws.amazon.com/aup and ask for permission before you begin
(see also https://aws.amazon.com/security/penetration-testing).

Update the CloudFormation stack with the following command to start the load test:

$ aws cloudformation update-stack --stack-name wordpress \
--template-url https://s3.amazonaws.com/\
awsinaction/chapter14/wordpress-loadtest.json \
--parameters ParameterKey=BlogID,UsePreviousValue=true \
ParameterKey=AdminPassword,UsePreviousValue=true \
ParameterKey=AdminEMail,UsePreviousValue=true \
--capabilities CAPABILITY_IAM

Watch for the following things to happen, with the help of the AWS Management Console:

1 Open the CloudWatch service, and click Alarms at left.
2 When the load test starts, the alarm called wordpress-CPUHighAlarm-* will

reach the ALARM state after a few minutes.

Simple HTTP load test
We’re using a tool called Apache Bench to perform a load test of the WordPress set-
up. The tool is part of the httpd-tools package available from the Amazon Linux
package repositories.

Apache Bench is a basic benchmarking tool. You can send a specified number of
HTTP requests by using a specified number of threads. We’re using the following com-
mand for the load test, to send 10,000 requests to the load balancer using two
threads. $UrlLoadBalancer is replaced by the URL of the load balancer:

$ ab -n 10000 -c 2 $UrlLoadBalancer

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://aws.amazon.com/aup
https://aws.amazon.com/security/penetration-testing

382 CHAPTER 14 Scaling up and down: auto-scaling and CloudWatch

3 Open the EC2 service and list all EC2 instances. Watch for two additional
instances to launch. At the end, you’ll see five instances total (four web servers
and the server running the load test).

4 Go back to the CloudWatch service and wait until the alarm named wordpress-
CPULowlarm-* reaches the ALARM state.

5 Open the EC2 service and list all EC2 instances. Watch for the two additional
instances to disappear. At the end, you’ll see three instances total (two web serv-
ers and the server running the load test).

The entire process will take about 20 minutes.
 You’ve watched auto-scaling in action: your WordPress setup can now adapt to the

current workload. The problem with pages loading slowly in the evening is solved.

14.3.2 Scaling a dynamic server pool asynchronously decoupled by a queue

Decoupling a dynamic server pool in an asynchronous way offers an advantage if you
want to scale based on your workload: because requests don’t need to be answered
immediately, you can put requests into a queue and scale the number of servers based
on the length of the queue. This gives you a very accurate metric to scale, and no
requests will be lost during a load peak because they’re stored in a queue.

 Imagine that you’re developing a social bookmark service where users can save
and share their bookmarks. Offering a preview that shows the website behind a link is
an important feature. But the conversion from URL to PNG is slow during the evening
when most users add new bookmarks to your service. Customers are dissatisfied that
previews don’t show up immediately.

 To handle the peak load in the evening, you want to use auto-scaling. To do so, you
need to decouple the creation of a new bookmark and the process of generating a
preview of the website. Chapter 12 introduced an application called URL2PNG that
transforms a URL into a PNG image. Figure 14.8 shows the architecture, which consists
of an SQS queue for asynchronously decoupling and S3 to store generated images.
Creating a bookmark will trigger the following process:

1 A message is sent to an SQS queue containing the URL and the unique ID of the
new bookmark.

2 EC2 instances running a Node.js application poll the SQS queue.
3 The Node.js application loads the URL and creates a screenshot.

Cleaning up
Execute the following commands to delete all resources corresponding to the Word-
Press setup, remembering to replace $BlogID:

$ aws s3 rb s3://$BlogID --force
$ aws cloudformation delete-stack --stack-name wordpress

Licensed to Thomas Snead <n.ordickan@gmail.com>

383Decoupling your dynamic server pool

4 The screenshot is uploaded to an S3 bucket, and the object key is set to the
unique ID.

5 Users can download the screenshot of the website directly from S3 with the help
of the unique ID.

A CloudWatch alarm is used to monitor the length of the SQS queue. If the length of
the queue reaches the limit of five, a new virtual server is started to handle the work-
load. If the queue length is less than five, another CloudWatch alarm decreases the
desired capacity of the auto-scaling group.

 The code is in the book’s code repository on GitHub at https://github.com/AWSi-
nAction/code. The CloudFormation template for the URL2PNG example is located in
/chapter14/url2png.json.

 Execute the following command to create a CloudFormation stack that spins up
the URL2PNG application. Replace $ApplicationID with a unique ID for your applica-
tion (such as url2png-andreas):

$ aws cloudformation create-stack --stack-name url2png \
--template-url https://s3.amazonaws.com/\
awsinaction/chapter14/url2png.json \
--parameters ParameterKey=ApplicationID,ParameterValue=$ApplicationID \
--capabilities CAPABILITY_IAM

Message
producers

SQS message queue CloudWatch
metric and alarm

Convert the URL to
an image (PNG)

Fetch job
from queue

Trigger scaling

Insert job
into queue

Send
metrics

S3 object store
media files

Upload the image
(PNG) to S3

Auto-scaling

Figure 14.8 Auto-scaling virtual serv-
ers that convert URLs into images, de-
coupled by an SQS queue

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/AWSinAction/code
https://github.com/AWSinAction/code

384 CHAPTER 14 Scaling up and down: auto-scaling and CloudWatch

It will take up to five minutes for the stack to be created. Log in to the AWS Manage-
ment Console, and navigate to the AWS CloudFormation service to monitor the pro-
cess of the CloudFormation stack named url2png.

 The CloudFormation template is similar to the template you used to create the
synchronously decoupled WordPress setup. The following listing shows the main dif-
ference: the CloudWatch alarm monitors the length of the SQS queue instead of CPU
usage.

[...]
"HighQueueAlarm": {

"Type": "AWS::CloudWatch::Alarm",
"Properties": {
"EvaluationPeriods": "1",
"Statistic": "Sum",
"Threshold": "5",
"AlarmDescription": "Alarm if queue length is higher than 5.",
"Period": "300",
"AlarmActions": [{"Ref": "ScalingUpPolicy"}],
"Namespace": "AWS/SQS",
"Dimensions": [{

"Name": "QueueName",
"Value" : {"Fn::GetAtt":

 ["SQSQueue", "QueueName"]}
}],
"ComparisonOperator": "GreaterThanThreshold",
"MetricName": "ApproximateNumberOfMessagesVisible"

}
}
[...]

You’re ready to scale. We’ve prepared a load test that will quickly generate 250 mes-
sages for the URL2PNG application. New virtual servers will be launched to handle the
load. After a few minutes, when the load test is finished, the additional virtual servers
will disappear.

 Update the CloudFormation stack with the following command to start the load
test:

$ aws cloudformation update-stack --stack-name url2png \
--template-url https://s3.amazonaws.com/\
awsinaction/chapter14/url2png-loadtest.json \
--parameters ParameterKey=ApplicationID,UsePreviousValue=true \
--capabilities CAPABILITY_IAM

Watch for the following things to happen, with the help of the AWS Management
Console:

Listing 14.8 Monitoring the length of the SQS queue

Number of periods
to evaluate when
checking for an
alarm

Sums up all
values in a period

Alarm if the threshold
of 5 is reached

Uses a period of
300 seconds
because SQS
metrics are

published every
5 minutes

Increases the number
of desired instances

by 1 through the
scaling policy

The metric is
published by

the SQS service.

The queue, referenced by
name, is used as the
dimension of the metric.

Alarm if the sum of the values within the
period is greater than the threshold of 5

The metric contains an approximate number
of messages pending in the queue.

Licensed to Thomas Snead <n.ordickan@gmail.com>

385Summary

1 Open the CloudWatch service and click Alarms at left.
2 When the load test starts, the alarm called url2png-HighQueueAlarm-* will

reach the ALARM state after a few minutes.
3 Open the EC2 service and list all EC2 instances. Watch for an additional

instance to launch. At the end, you’ll see three instances total (two workers and
the server running the load test).

4 Go back to the CloudWatch service and wait until the alarm named url2png-
LowQueueAlarm-* reaches the ALARM state.

5 Open the EC2 service and list all EC2 instances. Watch for the additional
instance to disappear. At the end, you’ll see two instances total (one worker and
the server running the load test).

The entire process will take about 15 minutes.
 You’ve watched auto-scaling in action. The URL2PNG application can now adapt to

the current workload, and the problem with slowly generated screenshots for new
bookmarks is solved.

14.4 Summary
■ You can use auto-scaling to launch multiple virtual servers the same way by

using a launch configuration and an auto-scaling group.
■ EC2, SQS, and other services publish metrics to CloudWatch (CPU utilization,

queue length, and so on).
■ A CloudWatch alarm can change the desired capacity of an auto-scaling group.

This allows you to increase the number of virtual servers based on CPU utiliza-
tion or other metrics.

■ Servers need to be stateless if you want to scale them according to your current
workload.

■ Synchronous decoupling with the help of a load balancer or asynchronous
decoupling with a message queue is necessary in order to distribute load among
multiple virtual servers.

Cleaning up
Execute the following commands to delete all resources corresponding to the
URL2PNG setup, remembering to replace $ApplicationID:

$ aws s3 rb s3://$ApplicationID --force
$ aws cloudformation delete-stack --stack-name url2png

Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

387

index

Symbols

* (wildcard character) 160

A

Acceptable Use Policy 381
access control

network access control 243
overview 243–244
using IAM service 241–242

access control lists. See ACLs
account, AWS

creating
choosing support plan 27
contact information 24
creating key pair 29–32
login credentials 23–24
payment details 25
signing in 27–29
verifying identity 25–26

security
authentication roles

163–164
authorization policies

160–161
creating users 161–162
IAM service 159
importance of 157–162
root user 158

ACID (atomicity, consistency,
isolation, and
durability) 225, 253

ACLs (access control lists)
173, 177

agent forwarding 172

AKI (Amazon Kernel Image) 57
ALARM state 285
alarms, CloudWatch 285–286
AllocatedStorage attribute 229
Amazon API Gateway 343
Amazon Kernel Image. See AKI
Amazon Resource Name. See

ARN
Amazon Web Services. See AWS
AMI (Amazon Machine

Image) 56–57, 126–127
Ansible 123
Apache Bench 381
APIs (application programming

interfaces) 91
apt package manager 68
archiving objects 191
ARN (Amazon Resource

Name) 161
AssociatePublicIpAddresss

property 367
asynchronous decoupling

consuming messages 326–329
converting synchronous pro-

cess to asynchronous 323
creating SQS queue 324
overview 322–323
sending messages to

queue 324–326
SQS messaging

limitations 329–330
URL2PNG application

example 324
atomic operations 201

atomicity, consistency, isolation,
and durability. See ACID

AttachVolume parameter
206, 208

attributes, DynamoDB table 256
Aurora 226
authentication roles 163–164
authorization policies 160–161
auto-scaling

groups for 294–295, 365–366
overview 294–299
triggering

based on CloudWatch
metrics 372–375

based on schedule 371–372
overview 370–371

availability zones 245
data center outages and

289–293
defined 290
recovering failed server to

another 296–299
redundancy using 336

AWS (Amazon Web Services)
account creation

choosing support plan 27
contact information 24
creating key pair 29–32
login credentials 23–24
payment details 25
signing in 27–29
verifying identity 25–26

advantages of
automation capabilities 11
cost 12
fast-growing platform 10

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX388

AWS (Amazon Web Services)
(continued)
platform of services 11
reducing time to market 12
reliability 12
scalability 11–12
standards compliance

12–13
worldwide deployments 12

alternatives to 15–17
as cloud computing

platform 4–5
costs

billing example 13–14
Free Tier 13
overview 13
pay-per-use pricing

model 15
services overview 17–19
tools for

blueprints 22–23
CLI 20–22
Management Console 20
SDKs 22

uses for
data archiving 7–8
fault-tolerant systems 9
running Java EE

applications 6–7
running web shop 5–6

AWS Elastic Beanstalk
applications in Management

Console 136–137
creating application 133–134
creating environment 134
deleting applications 137
deployment 357
deployment options

comparison 150
describing status of

installation 134–135
overview 132–133
uploading Zip archive 134

AWS OpsWorks
deployment options

comparison 150
multilayer applications using

accessing kiwiIRC 147–148
adding app to Node.js

layer 145
adding client and server

instances for IRC
chat 146

components of 138–139

creating custom layers
142–144

creating Node.js layer
141–142

creating stack 140–141
deleting stacks 149

overview 138–139
AWSTemplateFormatVersion

value 113–114
Azure 16–17

B

backup
automated snapshots

236–237
copying database to other

region 240
manual snapshots 237–238
restoring database 238–240

bastion host 170
benchmarking 381
block-level storage

comparison of options
216–217

instance stores
backups and 216
overview 212–214
performance testing

215–216
viewing and mounting

volumes 214–215
network-attached storage

backing up data from
210–211

creating volumes 206
managing volumes

206–208
overview 205–206
performance

improvements
208–210

shared file systems
instance store for 220–221
mounting by clients 223
overview 217–218
running server 221–223
security groups 218–220
sharing files 223–224

BlockDeviceMappings 214
blueprints

AWSTemplateFormatVersion
value 113–114

example template 117
outputs structure 116–117

overview 22–23, 112–113
parameters structure 114–115
resources structure 115–116

bucket policies 199
BucketNotEmpty error 189
buckets, S3

configuring 199–200
creating

programmatically 199
defined 187
deleting 194
linking custom domain to 201
listing files in 197–198
setting up 195–196
versioning for 188–189

burstable performance 375

C

cache, invalidating 338
calculator for monthly costs 13
Cassandra 257
CDN (content delivery

network) 6, 76, 198
ChangeInCapacity option 374
check-update command 155
Chef 138, 150
CIDR (Classless Inter-Domain

Routing) 169–170
CLI (command-line

interface) 186
advantages of using

scripts 107
configuring user

authentication 98–103
creating virtual server using

script 103–105
help keyword 103
installing

on Linux 97–98
on Mac OS X 97–98
on Windows 98

listing EC2 instances 103
overview 20–22
--query option 104
usage overview 103

cloud computing
deployment environment 126
overview 4–5

CloudFormation
alternatives to 122–123
blueprints

AWSTemplateFormatVer-
sion value 113–114

example template 117

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX 389

CloudFormation (continued)
outputs structure 116–117
overview 112–113
parameters structure

114–115
resources structure

115–116
starting virtual server with

user data 129–130
CloudFront 198
CloudWatch

creating alarm 285–286
Jenkins CI server with

recovery 286
overview 283–284
triggering auto-scaling based

on metric 372–375
CNAME records 201, 239
command-line interface. See CLI
compute services 18
configuration templates

133, 357
consistency, data 201–202
ConsistentRead option 273
content delivery network. See

CDN
cookbooks, Chef 138
Cooldown property 368
cost

advantages of AWS 12
billing example 13–14
DynamoDB service 255
Free Tier 13
MySQL databases 233–234
optimizing for virtual servers

overview 83
reserved virtual servers 84
spot instances 84–89

overview 13
pay-per-use pricing model 15
WordPress blogs example

46–48
CPU load 375
CREATE_COMPLETE state

40, 230, 380
CREATE_IN_PROGRESS

state 40
create-table command 260
cross-zone load balancing

321–322
CRUD (create, remove, update,

delete) 195

D

data archiving 7–8
data centers

hardware used 4
locations of 4, 12
outages

auto-scaling 294–296
availability zones 289–293
IP addresses and 303–307
network-attached storage

and 299
recovering failed server to

another availability
zone 296–299

starting virtual server in
different 74–78

data security standard. See DSS
databases

defined 19
network access control 243
WordPress blogs example

45–46
DBInstanceClass attribute 229
DBInstanceIdentifier

attribute 229
DBName attribute 229, 231
dd utility 208
DDoS (Distributed Denial of

Service) attacks 153
dead-letter queue. See DLQ
decoupling

asynchronous, with message
queues
consuming messages

326–329
converting synchronous

process to
asynchronous 323

creating SQS queue 324
overview 322–323
sending messages to

queue 324–326
SQS messaging

limitations 329–330
URL2PNG application

example 324
concept explained 310–311
dynamic server pools

by load balancer 377–382
overview 375–384
by queue 382–385

redundant EC2 instances
and 336–337

synchronous, with load
balancers
cross-zone load balancing

use case 321–322
handling TCP traffic use

case 316–317
logging use case 319–321
overview 312–313
setting up load

balancer 313–315
terminating SSL use

case 317–319
using health checks to

determine server
readiness 315–316

default region setting 36
deleteItem operation 273–274
dependencies 112
deployment

comparison of options
149–150

defined 124
multilayer applications with

AWS OpsWorks
accessing kiwiIRC 147–148
adding app to Node.js

layer 145
adding client and server

instances for IRC
chat 146

components of 138–139
creating custom layers

142–144
creating Node.js layer

141–142
creating stack 140–141
deleting stacks 149

running script on server
startup
application update

process 132
overview 126–127
using user data 127

in scalable cloud
environment 126

VPN server using OpenSwan
installing VPN with

script 131
overview 127–129
using CloudFormation to

start virtual server with
user data 129–130

web applications with AWS
Elastic Beanstalk
components of 132–133

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX390

deployment (continued)
creating application

133–134
creating environment 134
deleting applications 137
describing status of

installation 134–135
in Management

Console 136–137
uploading Zip archive 134

worldwide support 12
describe command 134, 231
describe-instances

command 299
describe-table command 263
descriptive approach 112
DesiredCapacity property

295, 368
DevOps (development

operations) movement 93
df command 207
dig command 321
disaster recovery 307–309
Distributed Denial of Service

attacks. See DDoS attacks
DLQ (dead-letter queue) 356
DNS (Domain Name

System) 76, 239
domain names, linking to

bucket 201
DSL (domain-specific

language) 138
DSS (data security standard) 13
dynamic server pools

decoupling
by load balancer 377–382
overview 375–384
by queue 382–385

managing 365–369
DynamoDB service

administrative tasks 255
costs 255
deleting data 273–274
deployment 355–356
eventual consistency 273
modifying data 274–275
NoSQL comparison 257
overview 253–255
primary keys 257
querying data

by key 267–268
by key and filter 268–270
overview 266
retrieving all items 272–273

using secondary
indexes 270–272

RDS vs. 255–256
running locally 258
scaling 275–276
tables

creating 260
overview 256–257
using hash and range

keys 262–263
using hash keys 260–261

to-do application example
adding tasks 265–266
adding users 265
overview 258–260
setting up Node.js 263–264

E

EBS (Elastic Block Store)
backing up data from

210–211
comparison of options

216–217
creating volumes 206
defined 332
managing volumes 206–208
overview 205–206
performance

improvements 208–210
EbsOptimized property 367
EC2 (Elastic Compute Cloud)

service
defined 3, 35
failures possible for 332
recovering instances of 284
See also virtual servers

EFS (Elastic File System) 217
Elastic Beanstalk. See AWS Elastic

Beanstalk
Elastic Block Store. See EBS
Elastic Compute Cloud service.

See EC2 service
Elastic File System. See EFS
Elastic IP addresses 78
Elastic Network Interface. See

ENI
elasticity 364
ELB (Elastic Load Balancing)

service 35, 311, 313
Endpoint attribute 231
Engine attribute 229, 232
ENI (Elastic Network

Interface) 332
enterprise services 19

environment 357
EnvironmentType option 134
Erlang programming

language 337
Etherpad

creating application 133–134
creating environment 134
describing status of

installation 134–135
in Management Console

136–137
uploading Zip archive 134

eventual consistency
201, 273, 339

ExactCapacity option 374

F

failure recovery
with CloudWatch

creating alarm 285–286
Jenkins CI server with

recovery 286
overview 283–284

data center outages
auto-scaling 294–296
availability zones 289–293
IP addresses and 303–307
network-attached storage

and 299
recovering failed server to

another availability
zone 296–299

fault-tolerance
AWS use cases 9
code considerations 337–339
defined 332
high availability vs. 282
overview 331–333
redundant EC2 instances

decoupling required
for 336–337

overview 333–334
removing single point of

failure 334–335
web application

creating process 346–347
idempotent state

machine 343–344
idempotent state

transitions 344
Imagery application

overview 340
looking up process

348–349

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX 391

fault-tolerance (continued)
uploading files 349–351
worker for consuming SQS

messages 351–354
web application deployment

DynamoDB 355–356
Elastic Beanstalk for

worker 359
IAM roles 356–357
overview 354–355
S3 355–356
SQS 355–356

fdisk utility 206, 215
FilterExpression 268
firewalls 62, 143
Fn::Base64/Fn::Join

functions 129
force option 189
Free Tier 13
fsfreeze command 211

G

generations 57
getItem operation 267–268, 276
GiB (gibibyte) 210
Glacier service

adding lifecyle rule to
bucket 191–192

creating S3 bucket for 190
moving objects to and

from 193–194
S3 service vs. 190

globally unique identifiers
186–187

GlusterFS 218
Google Cloud Platform 16–17
guests 53

H

HA (high availability)
for databases 244–246
defined 282, 332
disaster-recovery

requirements 307–309
fault tolerance vs. 282
recovering from data center

outages
auto-scaling 294–296
availability zones 289–293
IP addresses and 303–307
network-attached storage

and 299
recovering failed server to

another availability
zone 296–299

recovering from server failure
with CloudWatch
creating alarm 285–286
Jenkins CI server with

recovery 286
overview 283–284

redundant EC2 instances for
decoupling required

for 336–337
overview 333–334
removing single point of

failure 334–335
web application

deployment 357–359
hardware 4
Hardware Virtual Machine. See

HVM
hash and range keys

257, 262–263
hash keys 257, 260–261
health checks 315–316
HealthCheckGracePeriod

property 368
HealthCheckType property

295, 368
help keyword 103
high availability. See HA
host servers 53
httpd-tools package 381
HVM (Hardware Virtual

Machine) 57
Hyper DB 249

I

IaaS (infrastracture as a
service) 5, 93

IAM (Identity and Access Man-
agement) service 159, 222,
241–242, 356–357

IamInstanceProfile
property 367

ICMP (Internet Control Message
Protocol) 167–168

idempotent
defined 329, 337
retry 337–339
state machine 343–344
state transitions 344

Identity and Access Management
service. See IAM service

IGW (internet gateway) 175
ImageId property 295, 367

Imagery application
example 340

infrastracture as a service. See
IaaS

infrastructure as code
blueprints

AWSTemplateFormatVer-
sion value 113–114

example template 117
outputs structure 116–117
overview 112–113
parameters structure

114–115
resources structure

115–116
CLI

advantages of using
scripts 107

configuring user
authentication 98–103

creating virtual server using
script 103–105

help keyword 103
installing 97–98
listing EC2 instances 103
--query option 104
usage overview 103

defined 93
DevOps movement 93
JIML 94–97
using SDKs

creating servers 109–110
listing server details 110
overview 108–109
terminating servers 111

inline policy 161
input/output operations per

second. See IOPS
installation

CLI
on Linux 97–98
on Mac OS X 97–98
on Windows 98

software on virtual servers
68–69

instance family groups 57–58
instance stores

backups and 216
comparison of options

216–217
overview 212–214
performance testing 215–216
viewing and mounting

volumes 214–215
instances, defined 139

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX392

InstanceType property
117, 295, 367

INSUFFICIENT_DATA
state 285

Internet Control Message
Protocol. See ICMP

internet gateway. See IGW
Internet Relay Chat. See IRC
IOPS (input/output operations

per second) 209–210
IP (Internet Protocol) 165
IP addresses

allocating for virtual
server 78–80

data center outages and
303–307

public vs. private 169
IRC (Internet Relay Chat) 140
ircd-ircu package 142

J

Java EE applications 6–7
JIML (JSON Infrastructure

Markup Language) 94–97
JMESPath 104
jump boxes 170

K

key pair for SSH
creating 29–32
selecting for virtual server

62–65
key-value stores 253, 266
KeyConditionExpression 268
KeyName property 367
keys, object 186, 202–203
kiwiIRC

accessing 147–148
adding app to Node.js

layer 145
adding client and server

instances for IRC chat 146
creating custom layers 142–

144
creating Node.js layer 141–142
creating stack 140–141

L

Lambda service 343
large size 58, 73
launch configurations 294–295
LaunchConfigurationName

property 368
layers 138–139

See also multilayer applications
"let it crash" concept 337
lifecyle rules 191–192
linkchecker tool 68
Linux

connecting to virtual servers
from 66

creating virtual server using
script 105–123

installing CLI on 97–98
key file permissions 31

listObjects() function 197
load balancers

decoupling dynamic server
pools by 377–382

synchronous decoupling with
cross-zone load balancing

use case 321–322
handling TCP traffic use

case 316–317
logging use case 319–321
overview 312–313
setting up load

balancer 313–315
terminating SSL use

case 317–319
using health checks to

determine server
readiness 315–316

WordPress blogs example
44–45

See also ELB service
load monitoring 70
load tests 381
LoadBalancerNames

property 368
logs

viewing for AWS Elastic
Beanstalk application 137

viewing for virtual servers
69–70

M

Mac OS X
connecting to virtual servers

from 66
creating virtual server using

script 105–123
installing CLI on 97–98
key file permissions 31

managed policy 161
Management Console

AWS Elastic Beanstalk
applications in 136–137

overview 20
signing in 27

MasterUsername attribute
229, 232

MasterUserPassword
attribute 229

MaxSize property 295, 368
message queues

consuming messages 326–329
converting synchronous pro-

cess to asynchronous 323
creating SQS queue 324
overview 322–323
sending messages to

queue 324–326
SQS messaging

limitations 329–330
URL2PNG application

example 324
metadata 186
MFA (multifactor

authentication) 157–158
micro size 57–58
MinSize property 295, 368
mkfs command 207
MongoDB 257
monitoring 69–70
multifactor authentication. See

MFA
multilayer applications

accessing kiwiIRC 147–148
adding app to Node.js

layer 145
adding client and server

instances for IRC chat 146
components of 138–139
creating custom layers

142–144
creating Node.js layer

141–142
creating stacks 140–141
deleting stacks 149

MySQL databases
Aurora and 226
costs 233–234
database instance

information 231–233
exporting 234
WordPress platform using

45–46, 228–231

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX 393

N

Name tag 61
NAT (Network Address

Translation) 6, 169, 175,
179–181

Neo4j 257
network access control 243
Network File System version 4.

See NFSv4
Network File System. See NFS
network-attached storage

backing up data from
210–211

creating volumes 206
data center outages and 299
managing volumes 206–208
overview 205–206
performance

improvements 208–210
networking

controlling traffic
allowing ICMP traffic

167–168
allowing SSH traffic 168
allowing SSH traffic from IP

address 168–170
allowing SSH traffic from

security group 170–173
overview 164–166
using security groups

166–167
for virtual servers

allocating fixed public IP
address 78–80

creating additional net-
work interface 80–83

NFS (Network File System)
instance store for 220–221
mounting by clients 223
overview 217–218
running server 221–223
security groups 218–220
sharing files 223–224

NFSv4 (Network File System
version 4) 217

Node Control Center for AWS.
See nodecc

Node.js
installing 107–108, 263
multilayer applications using

adding app to Node.js
layer 145

creating Node.js layer
141–142

nodecc (Node Control Center
for AWS)

creating servers 109–110
listing server details 110
overview 108–109
terminating servers 111

NoSQL databases
administrative tasks 255
deleting data 273–274
DynamoDB costs 255
eventual consistency 273
modifying data 274–275
NoSQL comparison 257
overview 253–255
primary keys 257
querying data

by key 267–268
by key and filter 268–270
overview 266
retrieving all items 272–273
using secondary

indexes 270–272
RDS vs. DynamoDB 255–256
running DynamoDB

locally 258
scaling 275–276
tables

creating 260
overview 256–257
using hash and range

keys 262–263
using hash keys 260–261

to-do application example
adding tasks 265–266
adding users 265
overview 258–260
setting up Node.js 263–264

nslookup command 321

O

object stores
backing up data using

187–189
concepts of 186
data consistency 201–202
Glacier service

adding lifecyle rule to
bucket 191–192

creating S3 bucket for 190
moving objects to and

from 193–194
S3 service vs. 190

S3 service 186–187

selecting keys for objects
202–203

static web hosting using
accessing website 200
configuring bucket

199–200
creating bucket for 199
overview 198–199

storing objects
programmatically
installing web

application 196
listing files in bucket

197–198
overview 195
setting up S3 bucket

195–196
uploading files to S3

196–197
OK state 285
on-demand instances 83
OpenStack 15–17
OpenSwan VPN server

installing VPN with script 131
overview 127–129
using CloudFormation to start

virtual server with user
data 129–130

optimistic locking 347
OS (operating system)

43, 56–57

P

PaaS (platform as a service) 5
PCI (payment card industry) 13
PercentChangeInCapacity

option 374
performance

database
increasing database

resources 246–247
using read replication

248–250
EBS 208–210
increasing speed using

CDN 198
pessimistic locking 347
pip tool 97
platform as a service. See PaaS
policies, authorization 160–161
primary keys, DynamoDB 257
private IP addresses 169
public bastion host subnet

175–177

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX394

public IP addresses 78–80, 169
putItem operation 264
putObject() function 196
PuTTY 31–32, 172
Python packages 97

Q

--query option 104
querying data from DynamoDB

by key 267–268
by key and filter 268–270
overview 266
retrieving all items 272–273
using secondary indexes

270–272
queue, decoupling server pools

by 382–385

R

RAID0 210
rb command 189
RDP (Remote Desktop

Protocol) 29
RDS (Relational Database

Service)
access control

network access control 243
overview 243–244
using IAM service 241–242

backup/restore
automated snapshots

236–237
copying database to other

region 240
costs 240
manual snapshots 237–238
restoring database 238–240

defined 35
DynamoDB service vs.

255–256
failures possible for 332
high availability 244–246
importing data 234–236
monitoring database 250–251
MySQL databases

costs 233–234
database instance

information 231–233
WordPress platform

using 228–231
overview 225–227

performance
increasing database

resources 246–247
using read replication

248–250
ReadCapacityUnits 275–276
recovery point objective. See

RPO
recovery time objective. See RTO
regions 36, 290
Relational Database Service. See

RDS
reliability 12
Remote Desktop Protocol. See

RDP
reserved instances 83–84
resource groups 41–42
REST API 92–93
restoring database 238–240
retries 356
Riak KV 257
roles, authentication 163–164
root user 158–159
RPO (recovery point

objective) 308
rsync command 223
RTO (recovery time

objective) 308

S

S3 (Simple Storage Service)
backing up data using

187–189
comparison of storage

options 216–217
data consistency 201–202
defined 3
deployment 355–356
Glacier service vs. 190
linking custom domain to

bucket 201
overview 186–187
selecting keys for objects

202–203
static web hosting using

accessing website 200
configuring bucket

199–200
creating bucket for 199
overview 198–199

storing objects programmati-
cally
installing web

application 196

listing files in bucket
197–198

overview 195
setting up S3 bucket

195–196
uploading files to S3

196–197
versioning for 188–189

SaaS (software as a service) 5
scaling

advantages of AWS 11–12
based on CPU load 375
decoupling dynamic server

pool
by load balancer 377–382
overview 375–384
by queue 382–385

DynamoDB service 275–276
general discussion 363–365
managing dynamic server

pool 365–369
policies 365, 374
triggering auto-scaling

based on CloudWatch
metrics 372–375

based on schedule 371–372
overview 370–371

scan operation 272–273
SDKs (software development

kits)
overview 22
platform and language

support 107
using nodecc

creating servers 109–110
listing server details 110
overview 108–109
terminating servers 111

secondary indexes 270–272
security

AWS account
authentication roles

163–164
authorization policies

160–161
creating users 161–162
IAM service 159
importance of

securing 157–162
root user 158

controlling network traffic
allowing ICMP traffic

167–168
allowing SSH traffic 168

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX 395

security (continued)
allowing SSH traffic from IP

address 168–170
allowing SSH traffic from

security group
170–173

overview 164–166
using security groups

166–167
creating VPC

accessing internet via NAT
server 179–181

adding private Apache web
server subnet 178

creating IGW 175
defining public bastion host

subnet 175–177
launching servers in

subnets 178–179
overview 173–175

shared responsibility with
AWS 153–154

updating software
checking for security

updates 154–155
installing updates on

running servers 157
installing updates on server

startup 155–156
security groups 218–220

allowing SSH traffic
from 170–173

defined 35
overview 166–167

security policy 319
SecurityGroupClient

property 220
SecurityGroupCommon

property 220
SecurityGroups property 367
SecurityGroupServer

property 220
Set-ExecutionPolicy

command 98
shared file systems

instance store for 220–221
mounting by clients 223
overview 217–218
running server 221–223
security groups 218–220
sharing files 223–224

Simple Queue Service. See SQS
single point of failure. See SPOF

snapshots, database 210
automated 236–237
copying automated as

manual 238
manual 237–238

software as a service. See SaaS
software development kits. See

SDKs
SPOF (single point of

failure) 218, 332, 334–335
spot instances 83–89
SpotPrice property 367
SQS (Simple Queue Service)

consuming messages 326–329
creating queue 324
creating worker for consum-

ing messages 351–354
defined 311
deployment 355–356
limitations of 329–330
sending messages to

queue 324–326
SSH traffic

allowing 168
allowing from IP

address 168–170
allowing from security

group 170–173
stacks 119, 139
standards compliance 12–13
stateless servers 195, 365
static web hosting

accessing website 200
configuring bucket 199–200
creating bucket for 199
overview 198–199

StatusCheckFailed_System
metric 285–286

stopping vs. terminating
servers 71

storage
comparison of options

216–217
defined 19
instance stores

backups and 216
overview 212–214
performance testing

215–216
viewing and mounting

volumes 214–215
network-attached storage

backing up data from
210–211

creating volumes 206

managing volumes
206–208

overview 205–206
performance

improvements
208–210

shared file systems
instance store for 220–221
mounting by clients 223
overview 217–218
running server 221–223
security groups 218–220
sharing files 223–224

See also DynamoDB service;
RDS

See also object stores
streams, DynamoDB 266
striping 210
strongly consistent reads

273, 276
subnets 336
sync command 188
synchronous decoupling

cross-zone load balancing use
case 321–322

handling TCP traffic use
case 316–317

logging use case 319–321
overview 312–313
setting up load balancer

313–315
terminating SSL use

case 317–319
using health checks to deter-

mine server readiness
315–316

system status checks 283

T

tables, DynamoDB
creating 260
overview 256–257
using hash and range

keys 262–263
using hash keys 260–261

tags 61
templates, CloudFormation

AWSTemplateFormatVersion
value 113–114

example of 117
outputs structure 116–117
overview 112–113
parameters structure 114–115
resources structure 115–116

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX396

terminating vs. stopping
servers 71

TerminationPolicies
property 368

Terraform 123
TiB (tebibyte) 210
time to live. See TTL
to-do application example

adding tasks 265–266
adding users 265
overview 258–260
querying data

by key 267–268
by key and filter 268–270
overview 266
retrieving all items 272–273
using secondary

indexes 270–272
setting up Node.js 263–264
tables

creating 260
using hash and range

keys 262–263
using hash keys 260–261

tools
blueprints 22–23
CLI 20–22
Management Console 20
SDKs 22

Troposphere 122
TTL (time to live) 312

U

universally unique identifier. See
UUID

update command 155, 157
UPDATE_COMPLETE state 122
UPDATE_IN_PROGRESS

state 122
update-to command 156–157
updateItem operation

274–275, 347
updates, security

checking for 154–155
installing on running

servers 157
installing on server

startup 155–156
URL2PNG application 324
use cases

data archiving 7–8
fault-tolerant systems 9
running Java EE

applications 6–7
running web shop 5–6

user data 127, 367
users, creating 161–162
UUID (universally unique

identifier) 338

V

versioning
for applications 132
for S3 buckets 188–189

virtual appliances 57
virtual machines. See VMs
Virtual Private Cloud. See VPC
Virtual Private Network. See VPN
virtual servers 35

allocating fixed public IP
address for 78–80

changing size of 72–74
connecting to

from Linux 66
login message when

connecting 67–68
from Mac OS X 66
overview 65–68
from Windows 66

cost optimization
overview 83
reserved virtual servers 84
spot instances 84–89

creating additional network
interface for 80–83

creating using CLI script
103–105

determining readiness using
health checks 315–316

installing software on 68–69
launching

choosing size of 57–58
naming 59–62
overview 54–56
selecting key pair for

SSH 62–65
selecting OS 56–57

listing instances using
CLI 103

monitoring 69–70
overview 53–69
running script on server

startup
application update

process 132
overview 126–127
using user data 127

security updates for
checking for 154–155

installing on running
servers 157

installing on server
startup 155–156

shutting down 71–72
starting in another data

center 74–78
See also EC2 service

VisibilityTimeout 329
VMs (virtual machines) 7
VolumeId value 210
VPC (Virtual Private

Cloud) 229, 284, 293
accessing internet via NAT

server 179–181
adding private Apache web

server subnet 178
creating IGW 175
defined 332
defining public bastion host

subnet 175–177
launching servers in

subnets 178–179
overview 173–175

VPCZoneIdentifier
property 295, 368

VPN (Virtual Private Network) 6
installing VPN with script 131
overview 127–129
using CloudFormation to start

virtual server with user
data 129–130

W

web applications
deployment

Elastic Beanstalk 357–359
IAM roles 356–357
overview 354–355
See also AWS OpsWorks

fault-tolerance
creating process 346–347
idempotent state

machine 343–344
idempotent state

transitions 344
Imagery application

overview 340
looking up process

348–349
server 345–346
uploading files 349–351
worker for consuming SQS

messages 351–354

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX 397

web applications (continued)
using AWS Elastic Beanstalk

components of 132–133
creating application

133–134
creating environment 134
deleting 137
describing status of

installation 134–135
in Management

Console 136–137
uploading Zip archive 134

WebServerSecurityGroup 243
webshot module 327
wildcard character (*) 160

Windows
connecting to virtual servers

from 66
creating virtual server using

script 106
EC instances on 214
installing CLI on 98
SSH client on 31–32

WordPress
AWS installation example

costs 46–48
creating infrastructure

35–41
deleting infrastructure

48–49
load balancer 44–45
MySQL database 45–46

resource groups 41–42
web servers 42–44

creating MySQL
database 228–231

scaling example 377–381
traditional installation

overview 125
WriteCapacityUnits 275

X

Xen 57

Y

yum package manager 77–78,
131, 155, 221

Licensed to Thomas Snead <n.ordickan@gmail.com>

For ordering information go to www.manning.com

Java 8 in Action
Lambdas, streams, and functional-style programming
by Raoul-Gabriel Urma, Mario Fusco,

and Alan Mycroft

ISBN: 9781617291999
424 pages, $49.99
August 2014

Functional Programming in Scala
by Paul Chiusano and Rúnar Bjarnason

ISBN: 9781617290657
320 pages, $44.99
September 2014

Storm Applied
Strategies for real-time event processing
by Sean T. Allen, Matthew Jankowski, and

Peter Pathirana

ISBN: 9781617291890
280 pages, $49.99
March 2015

Big Data
Principles and best practices of scalable realtime
data systems
by Nathan Marz with James Warren

ISBN: 9781617290343
328 pages, $49.99
April 2015

RELATED MANNING TITLES

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://www.manning.com/books/functional-programming-in-scala
https://www.manning.com/books/java-8-in-action
https://www.manning.com/books/storm-applied
https://www.manning.com/books/big-data
https://www.manning.com/books/java-8-in-action
https://www.manning.com/books/functional-programming-in-scala
https://www.manning.com/books/storm-applied
https://www.manning.com/books/big-data
www.manning.com

Andreas and Michael Wittig

P
hysical data centers require lots of equipment and take
time and resources to manage. If you need a data center,
but don’t want to build your own, Amazon Web Services

may be your solution. Whether you’re analyzing real-time
data, building software as a service, or running an e-commerce
site, AWS offers you a reliable cloud-based platform with
services that scale.

Amazon Web Services in Action introduces you to computing,
storing, and networking in the AWS cloud. You’ll start with an
overview of cloud computing and then begin setting up your
account. You’ll learn how to automate your infrastructure by
programmatically calling the AWS API to control every part of
AWS. Next, you’ll learn options and techniques for storing
your data. You’ll also learn how to isolate your systems using
private networks to increase security. Finally, this book teaches
you how to design for high availability and fault tolerance.

What’s Inside
● Overview of cloud concepts and patterns
● Deploy applications on AWS
● Integrate Amazon’s pre-built services
● Manage servers on EC2 for cost-effectiveness

Written for developers and DevOps engineers moving distri-
buted applications to the AWS platform.

Andreas Wittig and Michael Wittig are software engineers and
consultants focused on AWS and web development.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/amazon-web-services-in-action

$49.99 / Can $57.99 [INCLUDING eBOOK]

Amazon Web Services IN ACTION

SOFTWARE ENGINEERING

M A N N I N G

“A confi dent, practical
guide through the maze
of the industry’s leading

 cloud platform.”
—From the Foreword

 by Ben Whaley

“Fantastic introduction to
cloud basics with excellent
 real-world examples.”

—Rambabu Posa, GL Assessment

“A very thorough and
practical guide to

everything AWS …
highly recommended.”
—Scott M. King, Amazon

“Cuts through the vast
expanse of offi cial

documentation and gives
you what you need to make

 AWS work now!”—Carm Vecchio, Computer
Science Corporation (CSC)

SEE INSERT

	Amazon Web Services in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Author Online

	about the authors
	about the cover illustration
	Part 1: Getting started
	Chapter 1: What is Amazon Web Services?
	1.1 What is cloud computing?
	1.2 What can you do with AWS?
	1.2.1 Hosting a web shop
	1.2.2 Running a Java EE application in your private network
	1.2.3 Meeting legal and business data archival requirements
	1.2.4 Implementing a fault-tolerant system architecture

	1.3 How you can benefit from using AWS
	1.3.1 Innovative and fast-growing platform
	1.3.2 Services solve common problems
	1.3.3 Enabling automation
	1.3.4 Flexible capacity (scalability)
	1.3.5 Built for failure (reliability)
	1.3.6 Reducing time to market
	1.3.7 Benefiting from economies of scale
	1.3.8 Worldwide
	1.3.9 Professional partner

	1.4 How much does it cost?
	1.4.1 Free Tier
	1.4.2 Billing example
	1.4.3 Pay-per-use opportunities

	1.5 Comparing alternatives
	1.6 Exploring AWS services
	1.7 Interacting with AWS
	1.7.1 Management Console
	1.7.2 Command-line interface
	1.7.3 SDKs
	1.7.4 Blueprints

	1.8 Creating an AWS account
	1.8.1 Signing up
	1.8.2 Signing In
	1.8.3 Creating a key pair
	1.8.4 Creating a billing alarm

	1.9 Summary

	Chapter 2: A simple example: WordPress in five minutes
	2.1 Creating your infrastructure
	2.2 Exploring your infrastructure
	2.2.1 Resource groups
	2.2.2 Web servers
	2.2.3 Load balancer
	2.2.4 MySQL database

	2.3 How much does it cost?
	2.4 Deleting your infrastructure
	2.5 Summary

	Part 2: Building virtual infrastructure with servers and networking
	Chapter 3: Using virtual servers: EC2
	3.1 Exploring a virtual server
	3.1.1 Launching a virtual server
	3.1.2 Connecting to a virtual server
	3.1.3 Installing and running software manually

	3.2 Monitoring and debugging a virtual server
	3.2.1 Showing logs from a virtual server
	3.2.2 Monitoring the load of a virtual server

	3.3 Shutting down a virtual server
	3.4 Changing the size of a virtual server
	3.5 Starting a virtual server in another data center
	3.6 Allocating a public IP address
	3.7 Adding an additional network interface to a virtual server
	3.8 Optimizing costs for virtual servers
	3.8.1 Reserve virtual servers
	3.8.2 Bidding on unused virtual servers

	3.9 Summary

	Chapter 4: Programming your infrastructure: the command line, SDKs, and CloudFormation
	4.1 Infrastructure as code
	4.1.1 Automation and the DevOps movement
	4.1.2 Inventing an infrastructure language: JIML

	4.2 Using the command-line interface
	4.2.1 Installing the CLI
	4.2.2 Configuring the CLI
	4.2.3 Using the CLI

	4.3 Programming with the SDK
	4.3.1 Controlling virtual servers with SDK: nodecc
	4.3.2 How nodecc creates a server
	4.3.3 How nodecc lists servers and shows server details
	4.3.4 How nodecc terminates a server

	4.4 Using a blueprint to start a virtual server
	4.4.1 Anatomy of a CloudFormation template
	4.4.2 Creating your first template

	4.5 Summary

	Chapter 5: Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks
	5.1 Deploying applications in a flexible cloud environment
	5.2 Running a script on server startup using CloudFormation
	5.2.1 Using user data to run a script on server startup
	5.2.2 Deploying OpenSwan as a VPN server to a virtual server
	5.2.3 Starting from scratch instead of updating

	5.3 Deploying a simple web application with Elastic Beanstalk
	5.3.1 Components of Elastic Beanstalk
	5.3.2 Using Elastic Beanstalk to deploy Etherpad, a Node.js application

	5.4 Deploying a multilayer application with OpsWorks
	5.4.1 Components of OpsWorks
	5.4.2 Using OpsWorks to deploy an IRC chat application

	5.5 Comparing deployment tools
	5.5.1 Classifying the deployment tools
	5.5.2 Comparing the deployment services

	5.6 Summary

	Chapter 6: Securing your system: IAM, security groups, and VPC
	6.1 Who’s responsible for security?
	6.2 Keeping your software up to date
	6.2.1 Checking for security updates
	6.2.2 Installing security updates on server startup
	6.2.3 Installing security updates on running servers

	6.3 Securing your AWS account
	6.3.1 Securing your AWS account’s root user
	6.3.2 Identity and Access Management service
	6.3.3 Policies for authorization
	6.3.4 Users for authentication, and groups to organize users
	6.3.5 Roles for authentication of AWS resources

	6.4 Controlling network traffic to and from your virtual server
	6.4.1 Controlling traffic to virtual servers with security groups
	6.4.2 Allowing ICMP traffic
	6.4.3 Allowing SSH traffic
	6.4.4 Allowing SSH traffic from a source IP address
	6.4.5 Allowing SSH traffic from a source security group
	6.4.6 Agent forwarding with PuTTY

	6.5 Creating a private network in the cloud: Virtual Private Cloud (VPC)
	6.5.1 Creating the VPC and an internet gateway (IGW)
	6.5.2 Defining the public bastion host subnet
	6.5.3 Adding the private Apache web server subnet
	6.5.4 Launching servers in the subnets
	6.5.5 Accessing the internet from private subnets via a NAT server

	6.6 Summary

	Part 3: Storing data in the cloud
	Chapter 7: Storing your objects: S3 and Glacier
	7.1 Concept of an object store
	7.2 Amazon S3
	7.3 Backing up your data
	7.4 Archiving objects to optimize costs
	7.4.1 Creating an S3 bucket for use with Glacier
	7.4.2 Adding a lifecycle rule to a bucket
	7.4.3 Experimenting with Glacier and your lifecycle rule

	7.5 Storing objects programmatically
	7.5.1 Setting up an S3 bucket
	7.5.2 Installing a web application that uses S3
	7.5.3 Reviewing code access: S3 with SDK

	7.6 Using S3 for static web hosting
	7.6.1 Creating a bucket and uploading a static website
	7.6.2 Configuring a bucket for static web hosting
	7.6.3 Accessing a website hosted on S3

	7.7 Internals of the object store
	7.7.1 Ensuring data consistency
	7.7.2 Choosing the right keys

	7.8 Summary

	Chapter 8: Storing your data on hard drives: EBS and instance store
	8.1 Network-attached storage
	8.1.1 Creating an EBS volume and attaching it to your server
	8.1.2 Using Elastic Block Store
	8.1.3 Tweaking performance
	8.1.4 Backing up your data

	8.2 Instance stores
	8.2.1 Using an instance store
	8.2.2 Testing performance
	8.2.3 Backing up your data

	8.3 Comparing block-level storage solutions
	8.4 Hosting a shared file system backed by an instance store and EBS
	8.4.1 Security groups for NFS
	8.4.2 NFS server and volume
	8.4.3 NFS server installation and configuration script
	8.4.4 NFS clients
	8.4.5 Sharing files via NFS

	8.5 Summary

	Chapter 9: Using a relational database service: RDS
	9.1 Starting a MySQL database
	9.1.1 Launching a WordPress platform with an Amazon RDS database
	9.1.2 Exploring an RDS database instance with a MySQL engine
	9.1.3 Pricing for Amazon RDS

	9.2 Importing data into a database
	9.3 Backing up and restoring your database
	9.3.1 Configuring automated snapshots
	9.3.2 Creating snapshots manually
	9.3.3 Restoring a database
	9.3.4 Copying a database to another region
	9.3.5 Calculating the cost of snapshots

	9.4 Controlling access to a database
	9.4.1 Controlling access to the configuration of an RDS database
	9.4.2 Controlling network access to an RDS database
	9.4.3 Controlling data access

	9.5 Relying on a highly available database
	9.5.1 Enabling high-availability deployment for an RDS database

	9.6 Tweaking database performance
	9.6.1 Increasing database resources
	9.6.2 Using read replication to increase read performance

	9.7 Monitoring a database
	9.8 Summary

	Chapter 10: Programming for the NoSQL database service: DynamoDB
	10.1 Operating DynamoDB
	10.1.1 Administration
	10.1.2 Pricing
	10.1.3 RDS comparison

	10.2 DynamoDB for developers
	10.2.1 Tables, items, and attributes
	10.2.2 Primary keys
	10.2.3 NoSQL comparison
	10.2.4 DynamoDB Local

	10.3 Programming a to-do application
	10.4 Creating tables
	10.4.1 Users with hash keys
	10.4.2 Tasks with hash and range keys

	10.5 Adding data
	10.5.1 Adding a user
	10.5.2 Adding a task

	10.6 Retrieving data
	10.6.1 Getting by key
	10.6.2 Querying by key and filter
	10.6.3 Using secondary indexes for more flexible queries
	10.6.4 Scanning and filtering all of your table’s data
	10.6.5 Eventually consistent data retrieval

	10.7 Removing data
	10.8 Modifying data
	10.9 Scaling capacity
	10.10 Summary

	Part 4: Architecting on AWS
	Chapter 11: Achieving high availability: availability zones, auto-scaling, and CloudWatch
	11.1 Recovering from server failure with CloudWatch
	11.1.1 Creating a CloudWatch alarm
	11.1.2 Monitoring and recovering a virtual server based on a CloudWatch alarm

	11.2 Recovering from a data center outage
	11.2.1 Availability zones: multiple data centers per region
	11.2.2 Using auto-scaling to ensure that a virtual server is always running
	11.2.3 Recovering a failed virtual server to another availability zone with the help of auto-scaling
	11.2.4 Pitfall: network-attached storage recovery
	11.2.5 Pitfall: network interface recovery

	11.3 Analyzing disaster-recovery requirements
	11.3.1 RTO and RPO comparison for a single virtual server

	11.4 Summary

	Chapter 12: Decoupling your infrastructure: ELB and SQS
	12.1 Synchronous decoupling with load balancers
	12.1.1 Setting up a load balancer with virtual servers
	12.1.2 Pitfall: connecting a server too early
	12.1.3 More use cases

	12.2 Asynchronous decoupling with message queues
	12.2.1 Turning a synchronous process into an asynchronous one
	12.2.2 Architecture of the URL2PNG application
	12.2.3 Setting up a message queue
	12.2.4 Producing messages programmatically
	12.2.5 Consuming messages programmatically
	12.2.6 Limitations of messaging with SQS

	12.3 Summary

	Chapter 13: Designing for fault-tolerance
	13.1 Using redundant EC2 instances to increase availability
	13.1.1 Redundancy can remove a single point of failure
	13.1.2 Redundancy requires decoupling

	13.2 Considerations for making your code fault-tolerant
	13.2.1 Let it crash, but also retry
	13.2.2 Idempotent retry makes fault-tolerance possible

	13.3 Architecting a fault-tolerant web application: Imagery
	13.3.1 The idempotent image-state machine
	13.3.2 Implementing a fault-tolerant web service
	13.3.3 Implementing a fault-tolerant worker to consume SQS messages
	13.3.4 Deploying the application

	13.4 Summary

	Chapter 14: Scaling up and down: auto-scaling and CloudWatch
	14.1 Managing a dynamic server pool
	14.2 Using metrics and schedules to trigger scaling
	14.2.1 Scaling based on a schedule
	14.2.2 Scaling based on CloudWatch metrics

	14.3 Decoupling your dynamic server pool
	14.3.1 Scaling a dynamic server pool synchronously decoupled by a load balancer
	14.3.2 Scaling a dynamic server pool asynchronously decoupled by a queue

	14.4 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

