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Foreword
Virtually everyone struggles with operationalizing machine learning models. Training 
your first model can sometimes seem like an insurmountable challenge, until you realize 
that you also need an end-to-end pipeline to supply new data for inference and retraining 
the model when its performance inevitably degrades. Although AWS offers the broadest 
and deepest set of machine learning services, figuring out where to get started and how 
to tie all those options together normally requires months of painful experimentation. 
This book cuts through the uncertainty based on Trenton's first-hand experiences 
working with both the most sophisticated technology companies in the world as well as 
organizations new to machine learning.

I've worked with hundreds of companies around the world trying to get value from 
artificial intelligence and machine learning. The problem is that machine learning can 
mean very different things even within the same company, much less across different 
organizations or industries. Some teams are just starting to invest in AI and machine 
learning and want to build their first model, while other teams in the same organization 
want to scale up sophisticated experimentation and monitoring frameworks to support 
thousands of models in production. Most companies hire data scientists or machine 
learning engineers with skill mismatches in the hope that they'll figure it out. Trenton 
has the rare advantage of seeing how large organizations have successfully scaled up their 
modeling pipelines as well as where they've faltered. Even more importantly, he has hard-
won experience helping them solve those challenges.

The machine learning space evolves so quickly that focusing on any single algorithm, 
package, or platform can lead to outdated content. Trenton avoids this trap by translating 
timeless software engineering concepts like continuous integration and continuous 
delivery to the machine learning space. Unlike many approaches, however, he punctuates 
each concept with hands-on examples to illustrate how everything works in practice so 
that you don't need to struggle to translate theory to real life applications.

For example, data scientists often view automated machine learning with disdain due 
to previous exposure to automation that felt more like a straitjacket than an accelerant. 
People new to machine learning as well as sophisticated data scientist can overlook 
AutoML on AWS due to inexperience or ignorance of its benefits. Understanding when 
and why to use AutoML to get an initial benchmark on a new project or avoid manually 
selecting and tuning algorithms every time you retrain a model can reduce the time you 
spend on model training by an order of magnitude.



Even more importantly, learning how to think about the long-term maintenance of the 
machine learning pipelines will help you avoid painful decisions on whether to spend 
time refactoring existing models or deliver new projects. Software engineers have been 
leveraging CI/CD processes for over a decade at this point, but most machine learning 
practitioners aren't aware of best practices from the DevOps space. Most data scientists 
discover the need for this process only after they've built a few models and realized that 
reusable model assets and pipelines are required if they want to do anything beyond 
maintaining brittle modeling workflows by hand.

Finally, Trenton highlights concepts like source-code and data-centric machine learning 
that normally require hiring working at a top technology company that's overcome scaling 
challenges that most companies don't experience early on in their machine learning 
journeys. Most people and organizations hit a wall after implanting a CI/CD pipeline 
and building their first. They run up against the challenges of scheduling, tracking, and 
monitoring their machine learning pipelines. This book is the only example I'm aware 
of that offers prescriptive guidance on how to structure long-term machine learning 
pipelines and avoid the common pitfalls that machine learning teams typically encounter.

In short, the concepts in this book will help you move beyond the hopes and dreams  
of machine learning, to getting machine learning applications into production and 
delivering value.

Jonathan Dahlberg

Head of ML Solution Engineering

Snorkel AI
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Preface
AWS provides a wide range of solutions to help automate a machine learning (ML) 
workflow with just a few lines of code. With this practical book, you'll learn how to 
automate an ML pipeline using the various AWS services.

Automated Machine Learning on AWS begins with a quick overview of what the ML 
pipeline/process looks like and highlights the typical challenges you may face when 
building a pipeline. By reading the book, you'll become well versed in various AWS 
solutions, such as Amazon SageMaker Autopilot, AutoGluon, AWS Step Functions, 
and more, and will learn how to automate an end-to-end ML process with the help of 
hands-on examples. The book will show you how to build, monitor, and execute a CI/
CD pipeline for the ML process and how the various CI/CD services within AWS can 
be applied to a use case with the Cloud Development Kit (CDK). You'll understand 
what a data-centric ML process is by working with Amazon Managed Services for 
Apache Airflow and will build a managed Airflow environment. You'll also cover the key 
success criteria for an Machine Learning Software Development Life Cycle (MLSDLC) 
implementation and the process of creating a self-mutating CI/CD pipeline using the 
CDK from the perspective of the platform engineering team.

By the end of the book, you'll be able to effectively automate a complete ML pipeline and 
deploy it to production.

Who this book is for
This book is for novice as well as experienced ML practitioners looking to automate the 
process of building, training, and deploying ML-based solutions into production, using 
both purpose-built and other AWS services. A basic understanding of the end-to-end ML 
process and concepts, Python programming, and AWS is necessary to make the most out 
of the book.
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What this book covers
Chapter 1, Getting Started with Automated Machine Learning on AWS, provides an 
overview of what the ML pipeline/process looks like and highlights the typical challenges 
you will face when building the pipeline. The main challenge to highlight is overcoming 
the interactive nature of the process and why automation is crucial to a successful process. 
Subsequently, we will introduce the concept of AutoML and highlight how it can alleviate 
the aforementioned challenges.

Chapter 2, Automating Machine Learning Model Development Using SageMaker Autopilot, 
provides an overview of what SageMaker Autopilot is and how it can be useful in 
automating the ML process. By using an example use case (ACME Fishing Logistics), the 
chapter will further educate you on how to practically leverage SageMaker Autopilot and 
apply it to the use case. The chapter accomplishes this by walking you through each step 
of the process, comparing it to the model framing example to highlight the benefits of 
process automation.

Chapter 3, Automating Complicated Model Development with AutoGluon, provides you 
with an overview of what AutoGluon is, how it differs from SageMaker Autopilot, and the 
value it adds for use cases that involve deep learning models that make use of text, image, 
and tabular data. It further elaborates on AutoGluon's capabilities for process automation 
by walking you through the hands-on, ACME Fishing Logistics example, and a deep 
learning-based model for computer vision.

Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for Machine 
Learning, introduces you to the concept of continuous integration and continuous 
deployment (CI/CD) and how specifically it can be applied to an ML use case. The 
chapter accomplishes this by introducing DevOps culture and highlighting how the 
DevOps process can evolve into an MLOps process. This chapter also introduces and 
focuses on how the various CI/CD services within AWS can be applied to the use case, 
by introducing you to the Cloud Development Kit (CDK) and the Cloud9 development 
environment. The chapter will also practically show you how to set up the development 
workspace, install and configure the CDK, set up the artifact repositories, and start 
codifying the primary artifacts that will be leveraged by the CI/CD pipeline.

Chapter 5, Continuous Deployment of a Production ML Model, introduces you to the 
typical tasks performed by the ML practitioner, within the context of the deployed CI/
CD pipeline and DevOps culture. The chapter will walk you through creating the model 
assets, which trigger the pipeline execution, and show you how to manage and monitor 
the progress. 
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Chapter 6, Automating the Machine Learning Process Using AWS Step Functions, highlights 
how the CI/CD process can be further optimized, by including the ML practitioner  
in the majority of the pipeline build process. This chapter shows how this can be done  
by introducing AWS Step Functions and the Data Science SDK for Step Functions.  
It will then walk you through how to integrate the Data Science SDK into the CI/CD 
pipeline process.

Chapter 7, Building the ML Workflow Using AWS Step Functions, elaborates on the role and 
tasks of the ML practitioner, within the context of further optimizing the CI/CD pipeline, 
by walking you through how to build the codified ML workflow, perform integration 
testing on the workflow, and deploy the ML model into production, using the workflow.

Chapter 8, Automating the Machine Learning Process Using Apache Airflow, introduces you 
to a data-centric workflow, why its application to the ML process is important, and the 
team members normally responsible for executing this part of the process. The chapter 
elaborates on the common tools used to perform this function, namely Apache Airflow, 
and the Amazon managed service for Apache Airflow. The chapter will then walk you 
through how to build a managed Airflow environment.

Chapter 9, Building the ML Workflow Using Amazon Managed Workflows for Apache 
Airflow, leverages the environment created in the previous chapter and focuses on the role 
and tasks that the ML practitioner performs, within the context of further optimizing the 
CI/CD pipeline. The chapter accomplishes this by walking you through how to build the 
codified ML workflow, perform integration testing on the workflow, and deploy the ML 
model into production, using the workflow running on the MWAA environment.

Chapter 10, An Introduction to the Machine Learning Software Development Life Cycle 
(MLSDLC), introduces you to the MLSDLC methodology and explains why adopting 
this methodology encompasses a holistic solution for automating the entirety of the 
ML-based application. The chapter highlights the key success criteria for an MLSDLC 
implementation – the cross-functional and agile team. It showcases this success criteria 
by walking through each of the team member roles, how they interact with the other team 
members, and building the codified artifacts that each role is responsible for.



xvi     Preface

Chapter 11, Continuous Integration, Deployment, and Training for the MLSDLC, walks 
through the process of creating a self-mutating CI/CD pipeline using the CDK, from 
the perspective of the platform engineering team. The chapter will show you how to 
take the various cross-functional teams' artifacts and combine them into an automated 
process for CI of both the ACME Fishing Logistics application and the ML model in 
a development and QA environment. The chapter will also highlight how to include 
automated integration and QA test procedures for the web application, plus ML model 
inferences, in the overall MLSDLC workflow. The chapter will then show you how to take 
the application from the test environment into the production environment, to produce 
the production version of the overall ML application. The last part of the chapter will 
focus on the various tasks and procedures from the perspective of the data engineering 
team, to essentially close the loop on the MLSDLC process, by walking you through how to 
apply continuous training of the pipeline, based on new data and the lessons learned from 
chapter 8, Automating the Machine Learning Process Using Apache Airflow.

To get the most out of this book
You will need a functional AWS account to run the examples. 

It is recommended that you use an AWS Cloud9 integrated development environment as 
it meets the software/hardware and operating system requirements.

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code from the book's GitHub repository (a link is available in the next 
section). Doing so will help you avoid any potential errors related to the copying and 
pasting of code.

Where possible, applicable AWS services have been used to automate the example ML 
workflow. We encourage you to review how the provided examples could be further 
adapted to use additional AWS services, such as Amazon SageMaker Pipelines, or even 
open source alternatives, such as Kubeflow Pipelines.



Preface     xvii

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Automated-Machine-Learning-on-AWS. If 
there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801811828_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "We define a train() function to capture the input parameters and 
fit an ImagePredictor() to training_data."

A block of code is set as follows:

import boto3 

import sagemaker

aws_region = sagemaker.Session().boto_session.region_name

!sm-docker build --build-arg REGION={aws_region} .

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

import sagemaker

import datetime

image_uri = "<Enter the Image URI from the sm-docker output>"

role = sagemaker.get_execution_role()

session = sagemaker.session.Session()

bucket = session.default_bucket()

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS
https://github.com/PacktPublishing/
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Bold: Indicates a new term, an important word, or words that you see onscreen. For 
instance, words in menus or dialog boxes appear in bold. Here is an example: "Using the 
Amazon SageMaker management console, click the Open SageMaker Studio button."

Tips or important notes 
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us  
at customercare@packtpub.com and mention the book title in the subject  
of your message.

Errata: Although we have taken every care to ensure the accuracy of our content,  
mistakes do happen. If you have found a mistake in this book, we would be grateful  
if you would report this to us. Please visit www.packtpub.com/support/errata 
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
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Share Your Thoughts
Once you've read Automated Machine Learning on AWS, we'd love to hear your thoughts! 
Please click here to go straight to the Amazon review page for this book and share your 
feedback.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.

https://packt.link/r/1801811822




This section will educate you on the complexities of the machine learning process, what 
AutoML is, and how it can be used to streamline the process.

This section comprises the following chapters:

• Chapter 1, Getting Started with Automated Machine Learning on AWS

• Chapter 2, Automating Machine Learning Model Development Using  
SageMaker Autopilot

• Chapter 3, Automating Complicated Model Development with AutoGluon

Section 1: 
Fundamentals of the 
Automated Machine 

Learning Process 
and AutoML on AWS





1
Getting Started  

with Automated 
Machine Learning 

on AWS
If you have ever had the pleasure of successfully driving a production-ready Machine 
Learning (ML) application to completion or you are currently in the process of 
developing your first ML project, I am sure that you will agree with me when I say, "This is 
not an easy task!"

Why do I say that? Well, if we ignore the intricacies involved in gathering the right 
training data, analyzing and understanding that data, and then building and training the 
best possible model, I am sure you will agree that the ML process in itself is a complicated 
task process, time-consuming, and entirely manual, making it extremely difficult to 
automate. And it is these factors, plus many more, that contribute to ML tasks being 
difficult to automate.
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The primary goal of this chapter is to emphasize these challenges by reviewing a practical 
example that sets the stage for why automating the ML process is difficult. This chapter 
will highlight what governing factors should be considered when performing this 
automation and how leveraging various Amazon Web Services (AWS) capabilities can 
make the task of driving ML projects into production less daunting and fully automated. 
By the end of this chapter, we will have established a common foundation for overcoming 
these challenges through automation.

Therefore, in this chapter, we will cover the following topics:

• Overview of the ML process

• Complexities in the ML process

• An example of the end-to-end ML process

• How AWS can make automating ML development and the deployment  
process easier

Technical requirements
You will need access to the Jupyter Notebook environment to follow along with the 
example in this chapter. Although sample code has been provided for the various steps 
of the ML process, a Jupyter Notebook example has been provided in this book's GitHub 
repository (https://github.com/PacktPublishing/Automated-Machine-
Learning-on-AWS/blob/main/Chapter01/ML%20Process%20Example.
ipynb) for you to work through the entire example at your own pace.

For further instructions on how to set up a Jupyter Notebook environment, you can refer 
to the installation guide (https://jupyterlab.readthedocs.io/en/stable/
getting_started/installation.html) to either set up JupyterLab or classic 
Jupyter Notebook. Alternatively, for local notebook development using a development IDE, 
such as Visual Studio Code, you can refer to the VS Code documentation (https://
code.visualstudio.com/docs/datascience/jupyter-notebooks).

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter01/ML%20Process%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter01/ML%20Process%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter01/ML%20Process%20Example.ipynb
https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html
https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html
https://code.visualstudio.com/docs/datascience/jupyter-notebooks
https://code.visualstudio.com/docs/datascience/jupyter-notebooks
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Overview of the ML process
Unfortunately, there is no established how-to guide when performing ML. This is because 
every ML use case is unique and specific to the application that leverages the resultant ML 
model. Instead, there is a general process pattern that most data scientists, ML engineers, 
and ML practitioners follow. This process model is called the Cross-Industry Standard 
Process for Data Mining (CRISP-DM) and while not everyone follows the specific steps 
of the process verbatim, most production ML models have probably, in some shape or 
form, been built by using the guardrails that the CRISP-DM methodology provides.

So, when we refer to the ML process, we are invariably referring to the overall 
methodology of building production-ready ML models using the guardrails from 
CRSIP-DM. 

The following diagram shows an overview of the CRISP-DM guidelines for creating a 
typical process that an ML practitioner might follow:

Figure 1.1 – Overview of a typical ML process

In a nutshell, the process starts with the ML practitioner being tasked with providing an 
ML model that addresses a specific business use case. The ML practitioner then finds, 
ingests, and analyzes an appropriate dataset that can be effectively leveraged to accomplish 
the goals of the ML project. 
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Once the data has been analyzed, the ML practitioner determines the most applicable 
modeling techniques that extract the most relevant information from the data to address 
the use case. These techniques include the following:

1. Determining the most applicable ML algorithm
2. Creating new aspects (engineering new features) of the data that can further 

improve the chosen model's overall effectiveness
3. Separating the data into training and testing sets for model training and evaluation

The ML practitioner then codifies the algorithm's architecture and training/testing/
evaluation routines. These routines are then executed to determine the best possible model 
parameters – ones that optimize the model to fit both the data and the business use case. 

Finally, the best model is deployed into production to serve predictions that match the 
initial objective of the business use case.

As you can see, the overall process seems relatively straightforward and easy to follow. So, 
you may be wondering what all the fuss is about. For example, you may be asking yourself, 
Where is the complexity in this process? or Why do you say that this is so hard to automate?

While the process may look simplistic, the reality when executing it is vastly different. The 
following diagram provides a more realistic representation of what an ML practitioner 
may observe when developing an ML use case:

Figure 1.2 – Overview of a realistic ML process
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As you can see, the overall process is far more convoluted than the typical representation 
shown in Figure 1.1. There are potentially multiple different paths that can be taken 
through the process. Each course of action is based on the results captured from the 
previous step in the process. Additionally, taking a particular course of action may not 
always yield the desired results, thus forcing the ML practitioner to have to reset or go 
back and choose a different set of criteria that will hopefully produce a better result.

So, now that we have provided a high-level overview of what the typical ML process 
should entail, let's examine some of the complexities and challenges that make the ML 
process difficult.

Complexities in the ML process
Each iteration through the process is an experiment to see whether the changes that 
were made in a previous part of the process will yield a better result or a more optimized 
ML model. It is this process of iteration that makes the ML workflow hard and difficult 
to automate. The goal of each iteration or experiment is to improve the model's overall 
predictive capabilities. During each iteration, we fine-tune the parameters, discover 
new variables, and verify that these changes improve the overall accuracy of the model's 
prediction. Each experiment also provides further insight into where we are in the overall 
process and what the next steps might be. In essence, having to potentially go back and 
tweak a previous step or even go back to the very beginning of the process and start with 
a different set of data, parameters, or even a different ML model altogether is a manual 
process. But even unsuccessful experiments have value since they allow us to learn from 
our mistakes and hopefully steer us toward a successful outcome.

Note
Tolerating failures and not letting them derail the overall ML process is a key 
factor in any successful ML strategy.

So, if the overall process is complicated and executing the methodology yields failures, this 
will hopefully lead to a more successful outcome that will impact the overall ML strategy. It 
becomes noticeably clear why automating the entire process is challenging but necessary, as 
it now becomes a crucial part of the overall success criteria of any ML project.

Now that we have a good idea of what makes the ML process difficult, let's explore these 
challenges further by covering a practical example. 
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An example of the end-to-end ML process
To better illustrate that the overall ML process is hard and that automation is challenging 
but crucial, we will set the stage with a hands-on example use case. 

Introducing ACME Fishing Logistics
ACME Fishing Logistics is a fictitious organization that's concerned with the overfishing 
of the Sea Snail or Abalone population. Their primary goal is to educate fishermen on 
how to determine whether an abalone is old enough for breeding. What makes the 
age determination process challenging is that to verify the abalone's age, it needs to be 
shucked so that the inside of the shell can be stained and then the number of rings can be 
counted through a microscope. This involves destroying the abalone to determine whether 
it is old enough to be kept or returned to the ocean. So, ACME's charter and the goal 
behind their website is to help fishermen evaluate the various physical characteristics of an 
abalone so that they can determine its age without killing it.

The case for ML
As you can probably imagine, ACME has not been incredibly successful in its endeavor to 
prevent abalone overfishing through a simple education process. The CTO has determined 
that a more proactive strategy must be implemented. Due to this, they have tasked the 
website manager to make use of ML to make a more accurate prediction of an abalone's 
age when fishermen enter the physical characteristics of their catch into the new Age 
Calculator module of the website. This is where you come in, as ACME's resident ML 
practitioner – it is your job to create the ML model that serves abalone age predictions to 
the new Age Calculator. 

We can start by using the CRISP-DM guidelines and frame the business use case. The 
business use case is an all-encompassing step that establishes the overall framework and 
incorporates the individual steps of the CRISP-DM process.
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The purpose of this stage of the process is to establish what the business goals are and to 
create a project plan that achieves these goals. This stage also includes determining the 
relevant criteria that define whether, from a business perspective, the project is deemed a 
success; for example:

• Business Goal: The goal of this initiative is to create an Age Calculator web 
application that enables fishermen to determine the age of their abalone catch to 
determine whether it is below the breeding age threshold. To establish how this 
business goal can be achieved, several questions arise. For example, how accurate 
does the age prediction need to be? What evaluation metrics will be used to 
determine the prediction's accuracy? What is the acceptable accuracy threshold? Is 
there valid data for the use case? How long will the project take? Having questions 
like these helps set realistic goals for planning.

• Project Plan: A project plan can be formulated by investigating what the answers 
to some of these questions might be. For example, by investigating what data to use 
and where to find it, we can start to formulate the difficulties in acquiring the data, 
which impacts how long the project might take. Additionally, understanding about 
the model's complexity, which also impacts project timelines, as more complicated 
models require more time to build, evaluate, and tweak.

• Success Criteria: As the project plan starts to formulate, we start to get a picture of 
what success looks like and how to measure it. For example, if we know that creating 
a complicated model will negatively impact the delivery timeline, we can relax the 
acceptable prediction accuracy criteria for the model and reduce the time it takes 
to develop a production-grade model. Additionally, if the business goal is simply 
to help the fishermen determine the abalone age but we have no way of tracking 
whether they abide by the recommendation, then our success criteria can be 
measured – not in terms of the model's accuracy but how often the Age Calculator is 
accessed and used. For instance, if we get 10 application hits a day, then the project 
can be deemed successful.

While these are only examples of what this stage of the process might look like, it illustrates 
that careful forethought and planning, along with a very specific set of objectives, must be 
outlined before any ML processes can start. It also illustrates that this stage of the process 
cannot be automated, though having a set plan with predefined objectives creates the 
foundation on which an automation framework could potentially be incorporated.
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Getting insights from the data
Now that the overall business case is in place, we can dive into the meat of the actual ML 
process, starting with the data stage. As shown in the following diagram, the data stage is 
the first individual step within the framework of the business case: 

Figure 1.3 – The data stage

It is at this point that we determine what data is available, how to ingest the data, what the 
data looks like, what characteristics of the data are most relevant to predicting the age, and 
which features need to be re-engineered to create the most optimal production-ready model.

Important Note
It is a well-known fact that the data acquisition and exploratory analysis part of 
the process can account for 70%–80% of the overall effort.

A model worthy of being considered production-ready is only as good as the data it has 
been trained on. The data needs to be fully analyzed and completely understood to extract 
the most relevant features for model building and training. We can accomplish this using 
a technique commonly referred to as Exploratory Data Analysis (EDA), where we assess 
the statistical components of the data, potentially visualizing and creating charts to fully 
grasp feature relevance. Once we have grasped the feature's importance, we might choose 
to get more important data, remove unimportant data, and potentially engineer new facets 
of the data, all to have the trained model learn from these optimal features.

Let's walk through an example of what this stage of the process might look like for the Age 
Calculator use case.
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Sourcing, ingesting, and understanding the data
For our example, we will be using the Abalone Dataset. 

Note
The Abalone Dataset is sourced from the University of California, Irvine's ML 
repository: Dua, D. and Graff, C. (2019). UCI Machine Learning Repository 
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of 
California, School of Information and Computer Science.

This dataset contains the various physical characteristics of the abalone that can be used  
to determine its age. The following steps will walk you through how to access and explore 
the dataset:

1. We can load the dataset with the following sample Python code, which uses the 
pandas library (https://pandas.pydata.org) to ingest the data in a comma-
separated value (csv) format using the read_csv() method. Since the source data 
doesn't have any column names, we can review the Attribute Information section of 
the dataset website and manually create our column_names:

import pandas as pd

column_names = ["sex", "length", "diameter", "height", 
"whole_weight", "shucked_weight", "viscera_weight", 
"shell_weight", "rings"]

abalone_data = pd.read_csv("http://archive.ics.uci.edu/
ml/machine-learning-databases/abalone/abalone.data", 
names=column_names)

2. Now that the data has been downloaded, we can start analyzing it as a DataFrame. 
First, we will take a sample of the first five rows of the data to ensure we have 
successfully downloaded it and verify that it matches the attribute information 
highlighted on the website. The following sample Python code calls the head() 
method on the abalone_data DataFrame:

abalone_data.head()

http://archive.ics.uci.edu/ml
https://pandas.pydata.org
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The following screenshot shows the output of executing this call:

Figure 1.4 – The first five rows of the Abalone Dataset
Although we are only viewing the first five rows of the data, it matches the attribute 
information provided by the repository website. For example, we can see that the 
sex column has nominal values showing if the abalone is male (M), female (F), or 
an infant (I). We also have the rings column, which is used to determine the age  
of the abalone. The additional columns, such as weight, diameter, and height, 
detail additional characteristics of the abalone. These characteristics all contribute 
to determining its age (in years). The age is calculated using the number of rings, 
plus 1.5.

3. Next, we can use the following sample code to call the describe() method on the 
abalone_data DataFrame:

abalone_data.describe()

The following screenshot shows the summary statistics of the dataset, as well as various 
statistical details, such as the percentile, mean, and standard deviation:

Figure 1.5 – The summary statistics of the Abalone Dataset
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Note
At this point, we can gain an understanding of the data by visualizing and 
plotting any correlations between the key features to further understand how 
the data is distributed, as well as to determine the most important features in 
the dataset. We should also determine whether we have missing data and if we 
have enough data.

Only using summary statistics to understand the data can often be misleading. 
Although we will not be performing these visualization tasks on this 
example, you can review why using graphical techniques is so important to 
understanding data by looking at the Anscombe's Quartet example on Kaggle 
(https://www.kaggle.com/carlmcbrideellis/anscombe-
s-quartet-and-the-importance-of-eda).

The previous tasks highlight a few important observations we derived from the summary 
statistics of the dataset. For example, after reviewing the descriptive statistics from the 
dataset (Figure 1.5), we made the following important observations:

• The count value for each column is 4177. We can deduce that we have the same 
number of observations for each feature and therefore, no missing values. This 
means that we won't have to somehow infer what these missing values might be  
or remove the row containing them from the data. Most ML algorithms fail if data  
is missing.

• If you look at the 75% value for the rings column, there is a significant variance 
between the 11 rings and that of the max amount of rings, which is 29. This means 
that the data potentially contains outliers that could add unnecessary noise and 
influence the overall model effectiveness of the trained model. 

• While the sex column is visible in Figure 1.4, the summary statistics displayed in 
Figure 1.5 do not include it. This is because of the type of data in this column. If 
you refer to the Attribute Information section of the dataset's website (https://
archive.ics.uci.edu/ml/datasets/abalone), you will see that this sex 
column is comprised of nominal data. This type of data is used to provide a label or 
category for data that doesn't have a quantitative value. Since there is no quantitative 
value, the summary statistics for this column cannot be displayed. Depending on 
the type of ML algorithm that's selected to address the business objective, we may 
need to convert this data into a quantitative format as not all ML algorithms will 
work with nominal data.

https://www.kaggle.com/carlmcbrideellis/anscombe-s-quartet-and-the-importance-of-eda
https://www.kaggle.com/carlmcbrideellis/anscombe-s-quartet-and-the-importance-of-eda
https://archive.ics.uci.edu/ml/datasets/abalone
https://archive.ics.uci.edu/ml/datasets/abalone
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The next set of steps will help us apply what we have learned from the dataset to make it 
more compatible with the model training part of the process:

1. In this step, we focus on converting the sex column into quantitative data. The 
sample code highlights using the get_dummies() method on the abalone_data 
DataFrame, which will convert the categories of Male (M), Female (F), and Infant (I) 
into separate feature columns. Here, the data in these new columns will either reflect 
one of the categories, represented by a one (1) if true or a zero (0) if false:

abalone_data = pd.get_dummies(abalone_data)

2. Running the head() method again now shows the first five rows of the newly 
converted data:

Abalone_data.head()

The following screenshot shows the first five rows of the converted dataset. Here, 
you can see that the sex column has been removed and that, in its place, there are 
three new columns (one for each new category) with the data now represented as 
discrete values of 1 or 0:

Figure 1.6 – The first five rows of the converted Abalone Dataset

3. The next step in preparing the data for model building and training is to separate 
the rings column from the data to establish it as the target, or variable, we are trying 
to predict. The following sample code shows this:

y = abalone_data.rings.values

del abalone_data["rings"]
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4. Now that the target variable has been isolated, we can normalize the features. Not 
all datasets require normalization, however. By looking at Figure 1.5, we can see that 
the summary statistics show that the features have different ranges. These different 
ranges, especially if the values are large, can influence the overall effectiveness of the 
model during training. Thus, by normalizing the features, the model can converge to 
a global minimum much faster. The following code sample shows how the existing 
features can be normalized by first converting it into a NumPy array (https://
numpy.org) and then using the normalize() method from the scikit-learn or 
sklearn Python library (https://scikit-learn.org/stable/):

import numpy as np

from sklearn import preprocessing

X = abalone_data.values.astype(np.float)

X = preprocessing.normalize(X)

Based on the initial observations from the dataset, we have applied the necessary 
transformations to prepare the features for model training. For example, we converted the 
sex column from a nominal data type into a quantitative data type since this data will play 
an important part in determining the age of an abalone.

From this example, you can see that goal of the Data step is to focus on exploring and 
understanding the dataset. We also use this step to apply what we've learned and change 
the data or preprocess it into a representation that suits the downstream model building 
and training process.

Building the right model
Now that the data has been ingested, analyzed, and processed, we are ready to move onto 
the next stage of the ML process, where we will look at building the right ML model to 
suit both the business use case as well as to match it to our newly acquired understanding 
of the data:

Figure 1.7 – The model building stage

https://numpy.org
https://numpy.org
https://scikit-learn.org/stable/
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Unfortunately, there is no one size fits all algorithm that can be applied to every use case. 
However, by taking the knowledge we have gleaned from both the business objective and 
dataset, we can define a list of potential algorithms to use.

For example, we know from our business case that we want to predict the age of the 
abalone by using the number of rings to get its age. We also know from analyzing and 
understanding the dataset that we have a target or labeled variable from the rings column. 
This target variable is a discrete, numerical value between 1 and 29, so we can refine our 
list of possible algorithms to a supervised learning algorithm that predicts a numerical 
value among a discrete set of possible values.

The following are just a few of the possible algorithms that could be applied to the 
example business case:

• Linear regression

• Support vector machines

• Decision trees

• Naïve Bayes

• Neural networks

Once again, there is no one algorithm in this list that perfectly matches the use case and 
the data. Therefore, the ML process is an experiment to work through multiple possible 
permutations, get insight from each permutation, and apply what has been learned to 
further refine the optimal model.

Some of the additional factors that influence which algorithm to start with are based on 
the ML practitioner's experience, plus how the chosen algorithm addresses the required 
business goals and success measurements. For example, if a required success criterion is to 
have the model completed within 2 weeks, then that might eliminate the option to use a 
more complicated algorithm.

Building a neural network model
Continuing with the Age Calculator experiment, we will implement a neural network 
algorithm, also referred to as Artificial Neural Network (ANN), Deep Neural Network 
(DNN), or Multilayer Perceptron (MLP).
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At a high level, a neural network is an artificial construct modeled on the brain, whereby 
small, non-linear calculations are made on the data by what is commonly referred to 
as a neuron or perceptron. By grouping these neurons into individual layers and then 
compounding these layers together, we can assemble the building blocks of a mechanism 
that takes the data as input and finds the dependencies (or correlations) for the output  
(or target). Through an optimization process, these dependencies are further refined to get 
the predicted output as close as possible to the actual target value. 

Note
The primary reason a neural network model is being used in this example is 
to introduce a deep learning framework. Deep learning frameworks, such as 
PyTorch (https://pytorch.org/), TensorFlow (https://www.
tensorflow.org/), and MXNet (https://mxnet.apache.
org/), can be used to create more complicated neural networks. However, 
from the perspective of ML process automation, they can also introduce several 
complexities. So, by making use of a deep learning framework, we can lay the 
foundation to address some of these complexities later in this book.

The following is a graphical representation of the neural network architecture that we will 
be building for our example:

Figure 1.8 – Neural network architecture

https://pytorch.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://mxnet.apache.org/
https://mxnet.apache.org/
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The individual components that make up this architecture will be explained in the 
following steps:

1. To start building the model architecture, we need to load the necessary libraries 
from the TensorFlow deep learning framework. Along with the tensorflow 
libraries, we will also import the Keras API. The Keras (https://keras.io/)  
library allows us to create higher-level abstractions of the neural network 
architecture that are easier to understand and work with. For example, from Keras, 
we also load the Sequential and Dense classes. These classes allow us to define 
a model architecture that uses sequential neural network layers and define the type 
and quantity of neurons in each of these layers:

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

2. Next, we can use the Dense class to define the list of layers that make up the  
neural network:

network_layers = [

    Dense(256, activation='relu', kernel_
initializer="normal", input_dim=10),

    Dense(128, activation='relu'),

    Dense(64, activation='relu'),

    Dense(32, activation='relu'),

    Dense(1, activation='linear')

]

3. Next, we must define the model as being a Sequential() model or simply a list 
of layers:

model = Sequential(network_layers)

4. Once the model structure has been defined, we must compile it for training using 
the compile() method:

model.compile(optimizer="adam", loss="mse", 
metrics=["mae", "accuracy"])

https://keras.io/
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5. Once the model has been compiled, the summary() method can be called to view 
its architecture:

model.summary()

The following screenshot shows the results of calling this method. Even though it's 
showing text output, the network architecture matches the one shown in Figure 1.8:

Figure 1.9 – Summary of the compiled neural network architecture

As you can see, the first layer of the model matches Layer 1 in Figure 1.8, where the 
Dense() class is used to express that this layer has 256 neurons, or units, that connect  
to every neuron in the next layer. Layer 1 also initializes the parameters (model weights 
and bias) so that each neuron behaves differently and captures the different patterns we 
wish to optimize through training. Layer 1 is also configured to expect input data that  
has 10 dimensions. These dimensions correspond to the following features of the  
Abalone Dataset:

• Length

• Diameter

• Height

• Whole Weight

• Shucked Weight
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• Viscera Weight

• Shell Weight

• Sex_F

• Sex_I

• Sex_M

Layer 1 is also configured to use the nonlinear Rectified Linear Unit (ReLU) activation 
function, which allows the neural network to learn complex relationships from the 
dataset. We then repeat the process, adding Layer 2 through Layer 4, specifying that each 
of these layers has 128, 64, 32, and 1 neuron(s) or unit(s), respectively. The final Layer only 
has a single output – the predicted number of rings. Since the objective of the model is 
to determine how this output relates to the actual number of rings in the dataset, a linear 
activation function is used.

Once we have constructed the model architecture, we use the following important 
parameters to compile the model using the compile() method:

• Loss: This parameter specifies the type of objective function (also referred to as the 
cost function) that will be used. At a high level, the objective function calculates 
how far away or how close the predicted result is to the actual value. It calculates 
the amount of error between the number of rings that the model predicts, based on 
the input data, versus what the actual number of rings is. In this example, the Mean 
Squared Error (MSE) is used as the objective function, where the average amount 
of error is measured across all the data points.

• Optimizer: The objective during training is to minimize the amount of error 
between the predicted number of rings and the actual number of rings. The Adam 
optimizer is used to iteratively update the neural network weights that contribute to 
reducing the loss (or error).

• Metrics: The evaluation metrics, Mean Absolute Error (MAE), and prediction 
accuracy are captured during model training and used to provide insight into how 
effectively the model is learning from the input data.
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Note
If you are unfamiliar with any of these terms, there are a significant amount 
of references available when you search for them. Additionally, you may find 
it helpful to take the Deep Learning Specialization course offered by Coursera 
(https://www.coursera.org/specializations/deep-
learning). Further details on these parameters can be found in the Keras 
API documentation (https://keras.io/api/models/model_
training_apis/#compile-method).

Now that we have built the architecture for the neural network algorithm, we need to see 
how it fits on top of the preprocessed dataset. This task is commonly referred to as training 
the model. 

Training the model
The next step of the ML process, as illustrated in the following diagram, is to train the 
dataset on the preprocessed abalone data:

Figure 1.10 – The model training stage

https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://keras.io/api/models/model_training_apis/#compile-method
https://keras.io/api/models/model_training_apis/#compile-method
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Training the compiled model is relatively straightforward. The following steps outline how 
to kick off the model training part of the process:

1. This first step is not necessary to train the model, but sometimes, the output from 
the training process can be unwieldy and difficult to interpret. Therefore, a custom 
class called cleanPrint() can be created to ensure that the training output is 
neat. This class uses the Keras Callback() method to print a dash ("-") as the 
training output:

class cleanPrint(keras.callbacks.Callback):

    def on_epoch_end(self, epoch, logs):

        if epoch+1 % 100 == 0:

            print("!")

        else:

            print("-", end="")

Note
It is a good practice to display the model's performance at each epoch as this 
provides insight into the improvements after each epoch. However, since we are 
training for 2000 epochs, we are using the cleanPrint() class to make 
the output neater. We will remove this callback later. 

2. Next, we must separate the preprocessed abalone data into two main groups –  one 
for the training data and one for testing data. The splitting process is performed by 
using the train_test_split() method from the model_selection() class 
of the sklearn library:

from sklearn.model_selection import train_test_split 

training_features, testing_features, training_labels, 
testing_labels = train_test_split(X, y, test_size=0.2, 
random_state=42)

3. The final part of the training process is to launch the model training process. 
This is done by calling the fit() method on the compiled model and supplying 
the training_features and training_labels datasets, as shown in the 
following example code:

training_results = model.fit(training_features, training_
labels, validation_data=(testing_features, testing_
labels), batch_size=32, epochs=2000, shuffle=True, 
verbose=0, callbacks=[cleanPrint()])
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Now that the model training process has started, we can review a few key aspects of our 
code. First, splitting the data into training and testing datasets is typically performed 
as part of the data preprocessing step. However, we are performing this task during the 
model training step to provide additional context to the loss and optimization functions. 
For example, creating these two separate datasets is an important part of evaluating 
how well the model is being trained. The model is trained using the training dataset and 
then its effectiveness is evaluated against the testing dataset. This evaluation procedure 
guides the model (using the loss function and the optimization function) to reduce the 
amount of error between the predicted number of rings and the actual number of rings. 
In essence, this makes the model better or optimizes the model. To create a good split of 
training and testing data, we must provide four additional variables, as follows:

• training_features: The 10 columns of the Abalone Dataset that correspond to 
the abalone attributes, comprising 80% of these observations.

• testing_features: The same 10 columns of the Abalone Dataset, comprising 
the other 20% of the observations.

• training_labels: The number of rings (target label) for each observation in the 
training_features dataset.

• testing_labels: The number of rings (target label) for each observation in the 
testing_features dataset. 

Tip
Further details about each of these parameters, as well as more parameters 
that you can use to tweak the training process, can be found in the Keras 
API documentation (https://keras.io/api/models/model_
training_apis/#fit-method).

Secondly, once the data has been successfully split, we can use the fit() method and add 
the following parameters to further govern the training process: 

• validation_data: The testing_features and testing_labels datasets, 
which the model uses to evaluate how well the trained neural network weights 
reduce the amount of error between the predicted number of rings and the actual 
number of rings in the testing data.

• batch_size: This parameter defines the number of samples from the training 
data that are propagated through the neural network. This parameter can be used 
to influence the overall speed of the training process. The higher batch_size is, 
the higher the number of samples that are used from the training data, which means 
the higher the number of samples that are combined to estimate the loss before 
updating the neural network's weights.

https://keras.io/api/models/model_training_apis/#fit-method
https://keras.io/api/models/model_training_apis/#fit-method
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• epochs: This parameter defines how many times the training process will iterate 
through the training data. The higher epochs is, the more iterations must be made 
through the training data to optimize the neural network's weights.

• shuffle: This parameter specifies whether to shuffle the data before starting a 
training iteration. Shuffling the data each time the model iterates through the data 
forces the model to generalize better and prevent it from learning ordered patterns 
in the training data.

• verbose and callbacks: These parameters are related to displaying the training 
progress and output for each epoch. Setting the output to zero and using the 
cleanPrint() class will simply display a dash (-) as the output for each epoch.

The training process should take 12 minutes to complete, providing us with a trained 
model object. In the next section, we will use the trained model to evaluate how well it 
makes predictions on new data.

Evaluating the trained model
Once the model has been trained, we can move on to the next stage of the ML process: the 
model evaluation stage. It is at this stage that the trained model is evaluated against the 
objectives and success criterion that have been established within the business use case, 
with the goal being to determine if the trained model is ready for production or not:

Figure 1.11 – The model evaluation step
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When evaluating a trained model, most ML practitioners simply score the quality of the 
model predictions using an evaluation metric that is suited to the type of model. Other 
ML practitioners go one step further to visualize and further understand the predictions. 
The following steps will walk you through using the latter of these two approaches:

1. Using the following sample code, we can load the necessary Python libraries. 
The first library is matplotlib. The pyplot() class is a collection of different 
functions that allow for interactive and programmatic plot generation. The second 
library, mean_squarred_error(), comes from the sklearn package and 
provides the ML practitioner with an easy way to evaluate the quality of the model 
using the Root Mean Squared Error (RMSE) metric. Since the neural network 
model is a supervised learning-based regression model, RMSE is a popular method 
that's used to measure the error rate of the model predictions:

import matplotlib.pyplot as plt

from sklearn.metrics import mean_squared_error

2. The imported libraries are then used to visualize the predictions to provide a better 
understanding of the model's quality. The following code generates a plot that 
incorporates the information that's required to quantify the prediction's quality:

fig, ax = plt.subplots(figsize=(15, 10))

ax.plot(testing_labels, model.predict(testing_features), 
"ob")

ax.plot([0, 25], [0, 25], "-r")

ax.text(8, 1, f"RMSE = {mean_squared_error(testing_
labels, model.predict(testing_features), 
squared=False)}", color="r", fontweight=1000)

plt.grid()

plt.title("Abalone Model Evaluation", fontweight="bold", 
fontsize=12)

plt.xlabel("Actual 'Rings'", fontweight="bold", 
fontsize=12)

plt.ylabel("Predicted 'Rings'", fontweight="bold", 
fontsize=12)

plt.legend(["Predictions", "Regression Line"], loc="upper 
left", prop={"weight": "bold"})

plt.show()
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Executing this code will create two sub-plots. The first sub-plot is a scatterplot displaying 
the model predictions from the test dataset, as well as the ground truth labels. The second 
sub-plot superimposes a regression line over these predictions to highlight the linear 
relationship between the predicted number of rings versus the actual number of rings. The 
rest of the code labels the various properties of the plot and displays the RMSE score of 
the predictions. The following is an example of this plot:

Figure 1.12 – An example Abalone Model Evaluation scatterplot

Three things should immediately stand out here:

• The RMSE evaluation metric scores the trained model at 2.54.

• The regression line depicting the correlation between the actual number of rings and 
the predicted number of rings does not pass through the majority of the predictions.

• There are a significant number of predictions that are far away from the regression 
line on both the positive and negative scales. This shows a high error rate between the 
number of rings that are predicted versus the actual number of rings for a data point.
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These observations and others should be compared to the objectives and success criteria 
that are outlined in the business use case. Both the ML practitioner and business owner 
can then judge whether the trained model is ready for production.

For example, if the primary objective of the Age Calculator application is to use the model 
predictions as a rough guide for the fishermen to get a simple idea of the abalone age, then 
the model does this and can therefore be considered ready for production. If, on the other 
hand, the primary goal of the Age Calculator application is to provide an accurate age 
prediction, then the example model probably cannot be considered production-ready. 

So, if we determine that the model is not ready for production, what are the subsequent 
steps of the ML process? The next section will review some options.

Exploring possible next steps
Since the model has been deemed unfit for production, several approaches can be taken 
after the model evaluation stage. The following diagram highlights three possible options 
that can be considered as possible next steps:

Figure 1.13 – Next step options

Let's explore these three possible next steps in more depth to determine which option best 
suits the objectives of the Age Calculator use case.
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Option 1 – get mode data
The first option requires the ML practitioner to go back to the beginning of the process 
and acquire more data. Since the UCI abalone repository is the only publicly available 
dataset, this task might involve physically gathering more observations by manually 
fishing for abalone or conducting a survey with fishermen on their catch. Either way, this 
takes time!

However, simply adding more observations to the dataset does not necessarily translate 
to a better-quality model. So, getting more data could also mean getting better-quality 
features. This means that the ML practitioner would need to reevaluate the existing data, 
dive further into the analysis to better understand which of the features are of the most 
importance, and then re-engineer those features or create new features from them. This 
too is time-consuming! 

Option 2 – choose another model
The second option to consider involves building an entirely new model using a completely 
different algorithm that still matches the use case. For example, the ML practitioner might 
investigate using another supervised learning, regression-based algorithm.

Different algorithms might also require the data to be restructured so that it's more suited 
to the algorithm's required type of input. For example, choosing a Gradient Boosting 
Regression algorithm, such as XGBoost, requires the target label to be the first column in 
the dataset. Choosing another algorithm and reengineering the data requires additional time!

Option 3 – tuning the existing model
Recall that when the existing neural network model was built, there were a few tunable 
parameters that were configured during its compilation. For example, the model was 
compiled using particular optimizer and loss functions. 

Additionally, when the existing neural network model was trained, other tunable 
parameters were supplied, such as the number of epochs and the batch size.

Note
There is no best practice for choosing the right option. Remember that each 
iteration through the process is an experiment whereby the goal is to glean 
more information from the experiment to determine the next course of action 
or next option.
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While Option 3 may seem straightforward, in the next section, you will see that this 
option also involves multiple potential iterations and is therefore also time-consuming.

Tuning our model
As we've already highlighted, multiple parameters or hyperparameters can be tuned 
to better tune or optimize an existing model. Hence, this stage of the process is also 
referred to as hyperparameter optimization. The following diagram shows what the 
hyperparameter optimization process entails:

Figure 1.14 – The hyperparameter optimization process

After evaluating the model to determine which hyperparameters can be tweaked, the 
model is trained using these parameters. The trained model is, once again, compared to 
the business objectives and success criterion to determine if it is ready for production. 
This process is then repeated, constantly tweaking, training, and evaluating until a 
production-ready model is produced.
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Determining the best hyperparameters to tune
Once again, there is no exact approach to getting the optimal hyperparameters. Each 
iteration through the process helps narrow down which combination of hyperparameters 
contributes to a more optimized model.

However, a good place to start the process is to dive deeper into what is happening during 
model training and derive further insights into how the model is learning from the data.

You will recall that, when executing the fit() method to train the model and by binding 
the results to the training_results parameter, we are able to get additional metrics 
that were needed for model tuning. The following steps will walk you through an example 
of how to extract and visualize these metrics:

1. By using the history() method on the training_results parameter, we can 
use the following sample code to plot the prediction error for both the training and 
testing processes.

plt.rcParams["figure.figsize"] = (15, 10)

plt.plot(training_results.history["loss"])

plt.plot(training_results.history["val_loss"])

plt.title("Training vs. Testing Loss", fontweight="bold", 
fontsize=14)

plt.ylabel("Loss", fontweight="bold", fontsize=14)

plt.xlabel("Epochs", fontweight="bold", fontsize=14)

plt.legend(["Training Loss", "Testing Loss"], loc="upper 
right", prop={"weight": "bold"})

plt.grid()

plt.show()

The following is an example of what the plot might look like after executing the 
preceding code:
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Figure 1.15 – Training vs. Testing Loss

2. Similarly, by replacing the loss and val_loss parameters in the sample code 
with mae and val_mae, respectively, we can see a consistent trend:

plt.rcParams["figure.figsize"] = (15, 10)

plt.plot(training_results.history["mae"])

plt.plot(training_results.history["val_mae"])

plt.title("Training vs. Testing Mean Absolute Error", 
fontweight="bold", fontsize=14)

plt.ylabel("mae", fontweight="bold", fontsize=14)

plt.xlabel("Epochs", fontweight="bold", fontsize=14)

plt.legend(["Training MAE", "Testing MAE"], loc="upper 
right", prop={"weight": "bold"})

plt.grid()

plt.show()
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After executing the preceding code, we will get the following output:

Figure 1.16 – Training vs. Testing Mean Absolute Error

Both Figure 1.16 and Figure 1.15 clearly show a few especially important trends:

• There is a clear divergence between what the model is learning from the training data 
and its predictions on the testing data. This indicates that the model is not learning 
anything new as it trains and is essentially overfitting the data. The model relates to 
the training data and is unable to relate to new, unseen data in the testing dataset. 

• This divergence seems to happen around 250 epochs/training iterations. Since the 
training process was set to 2,000 epochs, this indicates that the model is being over-
trained, which could be the reason it is overfitting the training data.

• Both the testing MAE and the testing loss have an erratic gradient. This means 
that as the model parameters are being updated through the training process, the 
magnitude of the updates is too large, resulting in an unstable neural network, and 
therefore unstable predictions on the testing data. So, the fluctuations depicted by 
the plot essentially highlight an exploding gradient problem, indicating that the 
model is overfitting the data.
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Based on these observations, several hyperparameters can be tuned. For example, an 
obvious parameter to change is the number of epochs or training iterations to prevent 
overfitting. Similarly, we could change the optimization function from Adam to 
Stochastic Gradient Descent (SGD). SGD allows a specific learning rate to be set as one 
of its parameters, as opposed to the adaptive learning rate used by the Adam optimizer. By 
specifying a small learning rate parameter, we are essentially rescaling the model updates 
to ensure that they are small and controlled.

Another solution might be to use a regularization technique, such as L1 or L2 regularization, 
to penalize some of the neurons on the model, thus creating a simpler neural network. 
Likewise, simplifying the neural network architecture by reducing the number of layers and 
neurons within each layer would have the same effect as regularization.

Lastly, reducing the number of samples or batch size can control the stability of the 
gradient during training.

Now that we have a fair idea of which hyperparameters to tweak, the next section will 
show you how to further optimize the model.

Tuning, training, and reevaluating the existing model
We can start model tuning by walking through the following steps:

1. The first change we must make is to the neural network architecture itself. The 
following example code depicts the new structure, where only two network layers 
are used instead of four. Each layer only has 64 neurons:

network_layers = [

    Dense(64, activation='relu', kernel_
initializer="normal", input_dim=10),

    Dense(64, activation='relu'),

    Dense(1, activation='linear')

]

2. Once again, the model is recompiled using the same parameters as those from the 
previous example:

model = Sequential(network_layers)

model.compile(optimizer="adam", loss="mse", 
metrics=["mae", "accuracy"])

model.summary()
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The following screenshot shows the text summary of the tuned neural  
network architecture:

Figure 1.17 – Summary of the tuned neural network architecture
The following diagram shows a visual representation of the turned neural  
network architecture:

Figure 1.18 – Tuned neural network architecture
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3. Lastly, the fit() method is called on the new model. However, this time, the 
number of epochs has been reduced to 200 and batch_size has also been 
reduced to 8:

training_results = model.fit(training_features, 
training_labels, validation_data=(testing_features, 
testing_labels), batch_size=8, epochs=200, shuffle=True, 
verbose=1)

Note
In the previous code example, the cleanPrint() callback has been 
removed to show the evaluation metrics on both the training and validation 
data at 200 epochs.

4. Once the new model training has been completed, the previously used evaluation 
code can be re-executed to display the evaluation scatterplot. The following is an 
example of this scatterplot:

Figure 1.19 –Abalone Evaluation scatterplot
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The new model does not capture all the predictions as there are still several outliers on the 
positive and negative scales. However, there is a drastic improvement to the overall fit on 
most data points. This is further quantified by the RMSE score dropping from 2.54 to 2.08.

Once again, these observations should be compared to the objectives and the success 
criteria that are outlined in the business use case to gauge whether the model is ready  
for production.

As the following diagram illustrates, if a production-ready model cannot be found, then 
the options to further tune the model, get and engineer more data, or build a completely 
different model are still available:

Figure 1.20 – Additional process options

Should the model be deemed as production-ready, the ML practitioner can move onto 
the final stage of the ML process, As shown in the following diagram this is the model 
deployment stage:
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Figure 1.21 – The model deployment stage

In the next section, we will review the processes involved in deploying the model  
into production.

Deploying the optimized model into production
Model deployment is somewhat of a gray area in that some ML practitioners do not 
apply this stage to their ML process. For example, some ML practitioners may feel that 
the scope of their task is to simply provide a production-ready ML model that addresses 
the business use case. Once this model has been trained, they simply hand it over to the 
application development teams or application owners for them to test and integrate the 
model into the application.

Alternatively, some ML practitioners will work with the application teams to deploy the 
model into a test or Quality Assurance (QA) environment to ensure that the trained 
model successfully integrates with the application.

Whatever the scope of the ML practitioner role, model deployment is part of the 
CRISP-DM methodology and should always be factored into the overall ML process, 
especially if the ML process is to be automated.
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While the CRISP-DM methodology ends with the model deployment stage, as shown in 
the preceding diagram, the process is, in fact, a continuous process. Once the model has 
been deployed into a production application, it needs to be constantly monitored to ensure 
that it does not drift from its intended purpose, to consistently provide accurate predictions 
on unseen data or new data. Should this situation arise, the ML practitioner will be called 
upon to start the ML process again to reoptimize the model and make it generalize to this 
new data. The following diagram shows what the ML process looks like in reality:

Figure 1.22 – Closing the loop

So, once again, why is the ML process hard? 

Using this simple example use case, you can hopefully see that not only are there inherent 
complexities to the process of exploring the data, as well as building, training, evaluating, 
tuning, deploying, and monitoring the model – the entire process is also complex, manual, 
iterative, and continuous.

How can we streamline the process to ensure that the outcome is always an optimized model 
that matches the business use case? This is where AutoML comes into play.

Streamlining the ML process with AutoML
AutoML is a broad term that has different a meaning depending on who you ask. 
When referring to AutoML, some ML practitioners may point to a dedicated software 
application, a set of tools/libraries, or even a dedicated cloud service. In a nutshell, 
AutoML is a methodology that allows you to create a repeatable, reliable, streamlined, 
and, of course, automated ML process.
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The process is repeatable in that it follows the same pattern every time it is executed. The 
process is reliable in that it guarantees that an optimized model that matches the use case 
is always produced. The process is streamlined and any unnecessary steps are removed, 
making it as efficient as possible. Finally, and most importantly, the process can be started 
and executed automatically and triggered by an event, such as retraining the model after 
model concept drift has been detected.

AWS provides multiple capabilities that can be used to build a streamlined AutoML 
process. In the next section, I will highlight some of the dedicated cloud services, as well 
as other services, that can be leveraged to make the ML process easier and automated.

How AWS makes automating the ML 
development and deployment process easier
The focus of the remaining chapters in this book will be to practically showcase, using 
hands-on examples, how the ML process can be automated on AWS. By expanding on the 
Age Calculator example, you will see how various AWS capabilities and services can be 
used to do this. For example, the next two chapters of this book will focus on how to use 
some of the native capabilities of the AWS AI/ML stack, such as the following:

• Using SageMaker Autopilot to automatically create, manage, and deploy an 
optimized abalone prediction model using both codeless as well as coded methods.

• Using the AutoGluon libraries to determine the best deep learning algorithm to use 
for the abalone model, as well as an example for more complicated ML use cases, 
such as computer vision.

Parts two, three, and four of this book will focus on leveraging other AWS services that are 
not necessarily part of the AI/ML stack, such as the following:

• AWS CodeCommit and CodePipeline, which will deliver the abalone use case using 
a Continuous Integration and Continuous Delivery (CI/CD) pipeline.

• AWS Step Functions and the Data Science Python SDK, to create a codified pipeline 
to produce the abalone model.

• Amazon Managed Workflows for Apache Airflow (MWAA), to automate and 
manage the ML process.

Finally, part five of this book will expand on some of the central topics that were covered 
in parts two and three to provide you with a hands-on example of how a cross-functional, 
agile team can implement the end-to-end Abalone Calculator example as part of a 
Machine Learning Software Development Life Cycle (MLSDLC).
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Summary
As I stated from the outset, the primary goal of this chapter was to emphasize the many 
challenges an ML practitioner may face when building an ML solution for a business  
use case. In this chapter, I introduced you to an example ML use case – the Abalone 
Calculator – and I used it to show you just how hard the ML process is in reality.

By walking through each step of the process, I explained the complexities involved 
therein, as well as the challenges you could potentially encounter. I also highlighted why 
the ML process is complicated, manual, iterative, and continuous, which set the stage for 
an automated process that is repeatable, streamlined, and reliable using AutoML.

In the next chapter, we will explore how to start implementing an AutoML methodology 
by introducing you to a native AWS service called SageMaker Autopilot.



2
Automating 

Machine Learning 
Model Development 

Using SageMaker 
Autopilot

AWS offers a number of approaches for automating ML model development. In this 
chapter, I will present one such method, SageMaker Autopilot. Autopilot is a framework 
that automatically executes the key steps of a typical ML process. This allows both the 
novice, as well as the experienced ML practitioner to delegate the manual tasks of data 
exploration, algorithm selection, model training, and model optimization to a dedicated 
AWS service, basically, automating the end-to-end ML process.

Before we can start diving and getting hands-on exposure to the native capabilities that 
AWS offers for ML process automation, it is important to first understand the landscape of 
where they fit, what these capabilities are, and how we will use them.
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In this chapter, we will introduce you to some of the AWS capabilities that focus on ML 
solutions, as well as ML automation. By the end of the chapter, you will have a hands-on 
overview of how to automate the ACME Fishing Logistics use case using AWS services to 
implement an AutoML methodology. We will be covering the following topics:

• Introducing the AWS AI and ML landscape

• Overview of SageMaker Autopilot

• Overcoming automation challenges with SageMaker Autopilot

• Using the SageMaker SDK to automate the ML experiment

Technical requirements
You should have the following prerequisites before getting started with this chapter:

• Familiarity with AWS and its basic usage.

• A web browser (for the best experience, it is recommended that you use the Chrome 
or Firefox browser).

• An AWS account (if you are unfamiliar with how to get started with an AWS account, 
you can go to this link: https://aws.amazon.com/getting-started/).

• Familiarity with the AWS Free Tier (the Free tier will allow you to access some of 
the AWS services for free, depending on resource limits; you can familiarize yourself 
with these limits at this link: https://aws.amazon.com/free/).

• Example Jupyter notebooks for this chapter are provided in the companion GitHub 
repository (https://github.com/PacktPublishing/Automated-
Machine-Learning-on-AWS/blob/main/Chapter02/Autopilot%20
Example.ipynb).

Introducing the AWS AI and ML landscape
AWS provides its customers with an extensive assortment of Artificial Intelligence (AI) 
and ML capabilities. To further help its customers to better understand these capabilities, 
AWS has grouped and organized them together into what is typically referred to as the 
AI/ML Stack. The primary goal behind the AI/ML stack is to provide the necessary 
resources that a developer or ML practitioner might use, depending on their level of 
expertise. Basically, it puts AI and ML capabilities into the hands of every developer, no 
matter whether they are considered a novice or an expert. Figure 2.1 shows the layers that 
comprise the AWS AI/ML stack.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter02/Autopilot%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter02/Autopilot%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter02/Autopilot%20Example.ipynb
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Figure 2.1 – Layers of the AWS AI/ML stack

As you can see from Figure 2.1, the AI/ML stack delivers on the goal of putting AI and ML 
capabilities into the hands of every developer, by grouping the AWS capabilities into three 
specific layers, where each layer comprises the typical AWS AI/ML resources that meet 
both the use case requirements and the practitioner's level of comfort and expertise.

For example, should an expert ML practitioner desire to build their own model training 
and hosting architecture using Kubernetes, then the bottom layer of the AI/ML stack 
will provide them with all the AWS resources they will need to build this infrastructure. 
Resources such as dedicated Elastic Compute Cloud (EC2) instances with all the ML 
libraries pre-packaged as Amazon Machine Images (AMIs) for both CPU-based and 
GPU-based model training and hosting. Hence the bottom-most layer of the AI/ML stack 
requires a high degree of expertise, as the ML practitioner has the most flexibility, but also 
the most difficult task of creating their own ML infrastructure to address the ML use case.
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Alternatively, should a novice ML practitioner need to deliver an ML model that addresses 
a specific use case, such as Object Detection in images and video, and they don't have the 
necessary expertise, then the top layer of the AI/ML stack will provide them with the AWS 
resources to accomplish this. For instance, one of the dedicated AI services within the top 
layer, Amazon Rekognition, provides a pre-built capability to identify objects in both 
images and video. This means that the ML practitioner can simply integrate the Rekognition 
service into their production application without having to build, train, optimize, or even 
host their own ML model. So, by using these applied AI services in the top layer of the stack, 
details about the model, the training data used, or which hyperparameters were tuned are 
abstracted away from the user. Consequently, these applied AI services are easier to use and 
provide a faster mean time to delivery for the business use case.

As we go down the stack, we see that the ML practitioner is responsible for configuring 
specific details about the model, the tuned hyperparameters, and the training datasets. 
So, to help their customers with these tasks, AWS provides a dedicated service at the 
middle layer of the AI/ML stack, called Amazon SageMaker. SageMaker fits comfortably 
into the middle in that it caters to experienced ML practitioners by providing them with 
the flexibility and functionality to handle complex ML use cases without having to build 
and maintain any infrastructure. From the perspective of the novice ML practitioner, 
SageMaker allows them to use its built-in capabilities to easily build, train, and deploy 
simple and advanced ML use cases. 

Even though SageMaker is a single AWS service, it has several capabilities or modules 
that take care of all the heavy lifting for each step of the ML process. Both novice and 
experienced ML practitioners can leverage the integrated ML development environment 
(SageMaker Studio) or the Python SDK (SageMaker SDK) to explore and wrangle large 
quantities of data and then build, train, tune, deploy, and monitor their ML models at 
scale. Figure 2.2 shows how some of these SageMaker modules map to and scale each step 
of the ML process:
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Figure 2.2 – Overview of SageMaker's capabilities

We will not be diving deeper into the capabilities highlighted in Figure 2.2, as we will be 
leveraging some of the features in later chapters and, as such, we will be explaining how 
they work then. For now, let's dive deeper into the native SageMaker module responsible 
for automating the ML process, called SageMaker Autopilot. 

Overview of SageMaker Autopilot
SageMaker Autopilot is the AWS service that provides AutoML functionality to its 
customers. Autopilot addresses the various requirements for AutoML by piecing together 
the following SageMaker modules into an automated framework:

• SageMaker Processing: Processing jobs take care of the heavy lifting and scaling 
requirements of organizing, validating, and feature engineering the data, all using a 
simplified and managed experience. 

• SageMaker Built-in Algorithms: SageMaker helps ML practitioners to get started 
with model-building tasks by providing several pre-built algorithms that cater to 
multiple use case types.

• SageMaker Training: Training jobs take care of the heavy lifting and scaling tasks 
associated with provisioning the required compute resources to train the model.
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• Automatic Model Tuning: Model tuning or hyperparameter tuning scales the 
model tuning task by allowing the ML practitioner to execute multiple training 
jobs, each with a subset of the required parameters, in parallel. This removes the 
iterative task of having to sequentially tune, evaluate, and re-train the model. By 
default, SageMaker model tuning uses Bayesian Search (Random Search can 
also be configured) to essentially create a probabilistic model of the performance 
of previously used hyperparameters to select future hyperparameters that better 
optimize the model.

• SageMaker Managed Deployment: Once an optimized model has been trained, 
SageMaker Hosting can be used to deploy either a single model or multiple models 
as a fully functioning API for production applications to consume in an elastic and 
scalable fashion.

Tip
For more information on these SageMaker modules, you can refer to the AWS 
documentation (https://docs.aws.amazon.com/sagemaker/
latest/dg/whatis.html).

Autopilot links these capabilities together, to create an automated workflow. The only 
piece that the ML practitioner must supply is the raw data. Autopilot, therefore, makes 
it easy for even the novice ML practitioner to automatically create a production-ready 
model, just by simply supplying the data. 

Let's get started with Autopilot so you can see for yourself just how easy this process  
really is.

Overcoming automation challenges with 
SageMaker Autopilot
In Chapter 1, Getting Started with Automated Machine Learning on AWS, we practically 
highlighted the challenges that ML practitioners face when creating production-ready ML 
models. By way of a recap, these challenges are grouped into two main categories:

• The challenges imposed by building the best ML model, such as sourcing and 
understanding the data and then building the best model for the use case

• The challenges imposed by the ML process itself, the fact that it is complicated, 
manual, iterative, and continuous

https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
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So, in order to better understand just how Autopilot overcomes these challenges, we must 
understand the anatomy of the Autopilot workflow and how it compares to the example 
ML process we discussed in Chapter 1, Getting Started with Automated Machine Learning 
on AWS.

Before we begin to use Autopilot, we need to understand that there are multiple ways to 
interface with the service. For example, we can use the AWS Command-Line Interface 
(CLI), call the service Application Programing Interface (API) programmatically using 
the Software Development Kits (SDKs), or simply use the SageMaker Python SDK. 
However, Autopilot offers an additional, easy-to-use interface that is incorporated into 
SageMaker Studio. We will use the SageMaker Studio IDE for this example.

The following section will walk you through applying an AutoML methodology to the 
Abalone Calculator use case, with SageMaker Autopilot.

Getting started with SageMaker Studio
Depending on your personal or organizational usage requirements, SageMaker Studio 
offers multiple ways to get started. For example, should an ML practitioner be working 
as part of a team, AWS Single Sign-On (SSO) or AWS Identity & Access users can be 
configured for the team. However, for this example use case, we will onboard to Studio 
using the QuickStart procedure as it is the most convenient for individual user access.  
The following steps will walk you through setting up the Studio interface:

1. Log into your AWS account and select an AWS region where SageMaker  
is supported.

Note
If you are unsure which AWS regions support SageMaker, refer to the following 
link: SageMaker Supported Regions and Quotas (https://docs.aws.
amazon.com/sagemaker/latest/dg/regions-quotas.html).

2. Navigate to the SageMaker service console by entering SageMaker in the search 
bar, or by clicking on Amazon SageMaker from the Services dropdown.

3. Using the left-hand navigation panel, click Studio, under the SageMaker  
Domain option.

https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html
https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html
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4. Since this is the first time a SageMaker Studio domain is being configured, the 
Setup SageMaker Domain console will offer two setup options, namely Quick 
setup and Standard setup. Figure 2.3 shows what the screen should look like:

Figure 2.3 – Getting started with SageMaker Studio

5. Select the Quick setup option, leaving Name, under User profile, as the default.
6. Click on the Default execution role dropdown and select Create a new role.
7. Once the Create an IAM role dialog opens, select the Any S3 Bucket option, as 

shown in Figure 2.4:
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Figure 2.4 – Create an IAM role dialog

8. Click on the Create role button to close the dialog box and return to the Setup 
SageMaker Domain screen.

9. Click on the newly created IAM role to open the IAM console summary  
page dashboard.

10. Now click on the Add inline policy link, in the Permissions policies section,  
to open the Create policy screen.

11. Click the Import managed policy option, at the top right of the Create  
policy screen.

12. Once the Import managed policies dialog opens, check the radio button next to 
AdministratorAccess, and then click on the Import button.

13. On the Create policy screen, click on the Review policy button.
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14. Once the Review policy screen opens, provide a name for the policy, such as 
AdminAccess-InlinePolicy, and then click the Create policy button.

Note
Providing administrator access to the SageMaker execution role is not a 
recommended practice in a production scenario. Since we will access various 
other AWS services throughout the hands-on examples within this book, we 
will use the administrator access policy to streamline service permissions.

15. Close the IAM console tab and go back to the SageMaker console.
16. Leave the rest of the Setup SageMaker Domain options as their defaults and click 

the Submit button.
17. If you are prompted to select a VPC and subnet, select any subnet in the default 

VPC and click the Save and continue button.

Note
If you are unfamiliar with what a VPC is, you can refer to the following AWS 
documentation (https://docs.aws.amazon.com/vpc/latest/
userguide/what-is-amazon-vpc.html).

18. After a few minutes, the SageMaker Studio domain and user will be configured and, 
as shown in Figure 2.5, you should see the SageMaker domain:

Figure 2.5 – Studio control panel

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
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19. Click on the Launch app drop-down box next to the default name you created in 
step 5 and click Studio to launch the Studio IDE web interface.

20. Studio will take a few minutes to launch since this is the first time the Jupyter server 
is being initialized.

Now that we have the Studio UI online, we can start using Autopilot. But first, we need 
our raw data.

Preparing the experiment data
Autopilot treats every invocation of the ML process as an experiment and, as you will see, 
creating an experiment using Studio is simple and straightforward. However, before the 
experiment can be initiated, we need to provide the experiment with raw data.

Recall from Chapter 1, Getting Started with Automated Machine Learning on AWS, that 
the raw data was downloaded from the UCI repository. We have provided a copy of this 
data, along with the column names already added in the accompanying GitHub repository 
(https://github.com/PacktPublishing/Automated-Machine-Learning-
on-AWS/blob/main/Chapter02/abalone_with_headers.csv). In order for 
any of the SageMaker modules to interact with data, the data needs to be uploaded to the 
AWS cloud and stored as an object, using the Amazon Simple Storage Service (S3).

Note
You can review the product website (https://aws.amazon.com/s3) if 
you are unfamiliar with what S3 is and how it works.

Use the following procedure to upload the raw data, for the Autopilot experiment, to S3:

1. Download the preceding file from the accompanying repository to your  
local machine.

2. To upload the file to Amazon S3, open the S3 console (https://s3.console.
aws.amazon.com/s3) in a new web browser tab and then click the bucket name 
that starts with sagemaker-studio. This S3 bucket was automatically created for you 
when you used the QuickStart process to onboard to Studio.

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter02/abalone_with_headers.csv
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter02/abalone_with_headers.csv
https://aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
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3. As Figure 2.6 shows, the sagemaker-studio-… bucket is empty. To upload the  
raw data file to the bucket, click the Upload button to open the dialog shown in 
Figure 2.6:

Figure 2.6 – SageMaker Studio bucket

4. On the Upload dialog screen, simply drag and drop the abalone_with_
headers.csv file from its download location to the Upload dialog screen. Then 
click the Upload button, as shown in Figure 2.7:
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Figure 2.7 – File upload

5. Once the file has been uploaded, click the Close button.

Now we have our data residing in AWS, we can use it to initiate the Autopilot experiment.
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Starting the Autopilot experiment
Now that the data has been uploaded, we can use it to kick off the Autopilot experiment:

1. Using the Studio UI, click the SageMaker Components and registries icon on the 
left sidebar:

Figure 2.8 – SageMaker Component and registries icon
This will open the SageMaker resources navigation pane. 

Tip
If you are unfamiliar with navigating the Studio UI, refer to the Amazon 
SageMaker Studio UI Overview in the AWS documentation (https://
docs.aws.amazon.com/sagemaker/latest/dg/studio-ui.
html).

2. From the drop-down menu, select Experiments and trials and then click the 
Create Autopilot Experiment button, as shown in Figure 2.9, to launch the Create 
experiment tab:

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-ui.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-ui.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-ui.html
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Figure 2.9 – Create Autopilot Experiment

3. The Create experiment tab enables you to set the key configuration parameters for 
the Autopilot experiment.

4. In the AUTOPILOT EXPERIMENT SETTINGS dialog, enter the following 
important settings for the experiment (all other settings can be left at their defaults):

 � Experiment name: This is the name of the experiment and it must be unique, 
in order to track lineage and the various assets created by Autopilot. For this 
example, enter abalone-v0 as the experiment name:

Figure 2.10 – Experiment name

Tip
In practice, it is a good idea to include the date and time the experiment 
was initiated or some other form of versioning information, as part of 
the experiment name. This way, the ML practitioner can easily track the 
experiment lineage as well as the various experiment assets and ensure these 
are distinguishable between multiple experiments. For example, if we were 
creating an experiment for the abalone dataset on July 1, 2021, we could name 
the experiment abalone-712021-v0.
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 � Input Data Location: This is the S3 bucket location that contains the raw dataset 
you uploaded in the previous section. Using the S3 bucket name dropdown, select 
the bucket that starts with sagemaker-studio. Under Dataset file name, select the 
abalone_with_headers.csv file that you previously uploaded:

Figure 2.11 – Input data location

 � Target Attribute Name: This is the name of the feature column, within the raw 
dataset, on which Autopilot will learn to make accurate predictions. In the Target 
drop-down box, select rings as the target attribute:

Figure 2.12 – Target attribute name

Note
The fact that the ML practitioner must supply a target label highlights  
a critical factor that must be taken into consideration when using Autopilot. 
Autopilot only supports supervised learning use cases. Basically, Autopilot  
will only try to fit supported models for regression and classification  
(binary and multi-class) problems.
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 � Output data location: The S3 bucket location for any artifacts that are produced 
by the experiment. From the S3 bucket name dropdown, select the bucket that 
starts with sagemaker-studio. Then, enter output for Dataset directory name to 
store the experiment output data:

Figure 2.13 – Output data location

 � Problem Type: This field specifies the type of ML problem to solve. As already 
noted, this can be a regression, binary classification, or multiclass classification 
problem. For this example, we will let Autopilot determine which of these 
problems we are trying to solve by selecting Auto from the drop-down box:

Figure 2.14 – Problem type

Tip
Some of the more experienced ML practitioners might be able to immediately 
determine the type of problem, based on the use case, and can therefore specify 
the Autopilot problem type. Should a novice ML practitioner not be able to 
deduce the type of ML problem, they should set this parameter to Auto, since 
Autopilot has the capability to determine the type of ML problem.
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 � Auto deploy: This option specifies whether to automatically deploy the best model 
as a production-ready, SageMaker-hosted endpoint. For this example, set the Auto 
deploy option to Off so as not to incur unnecessary AWS costs:

Figure 2.15 – Auto deploy

5. To start the automated experiment, click the Create Experiment button. 

The experiment is now running and, as you can see, the process of creating a production-
grade model using Autopilot is straightforward. However, you are probably wondering 
what's actually happening in the background, to produce this production-grade model. 
Let's take a behind-the-scenes look at what's actually going on in the experiment.

Running the Autopilot experiment
Once the experiment has been created, Autopilot will create the best possible candidate 
for production. The overall process will take approximately 2 hours to complete and the 
progress can be tracked in a Studio UI tab dedicated to the experiment. Figure 2.16 shows 
an example experiment tab:

Figure 2.16 – Experiment tab
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As the experiment progresses, the various trails that make up the experiment will be 
displayed in the experiment tab, along with the trial that produces the best model and its 
overall evaluation score. Figure 2.17 shows an example of a completed experiment:

Figure 2.17 – Completed experiment

Once the experiment has been completed, you can right-click on the best model (or any 
of the other trials) and view the specific details. The following important details on the 
model are provided:

• The type of ML problem that Autopilot evaluated, based on the raw data 

• The algorithm it used to address the assessed ML problem

• The metrics obtained from training the model and used to assess its performance

• The optimization parameters used to tune the model

• The S3 location for the various artifacts that were produced throughout the process 

• An explainability report detailing the contribution of each feature, within the raw 
dataset, to the prediction

• The capability to deploy the model as a SageMaker hosted endpoint 

So, by means of a simple process, all the heavy lifting tasks for data analysis, model 
building, training, evaluation, and tuning have been automated and managed by 
Autopilot, making it easy for the novice ML practitioner to overcome the two main 
challenges imposed by the ML process.
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While this may suffice for an inexperienced application developer or novice ML 
practitioner to simply get a model into production, a more experienced ML practitioner 
may require more proof of why the particular model is the best and how it was produced. 
Figure 2.18 shows an overview of how Autopilot produces the best models:

Figure 2.18 – Overview of the AutoML process used by Autopilot

As you can see from Figure 2.18, there are six key tasks that Autopilot is automatically 
executing in the background:

1. Data Analysis
2. Candidate Generation
3. Feature Engineering
4. Candidate Tuning
5. Best Candidate
6. Candidate Deployment

Let's follow each step of the process in detail.
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Data preprocessing
The first step of the ML process is to access the raw dataset and understand it, in order 
to clean it up and prepare it for model training. Autopilot does this automatically for 
us executing the data analysis and preprocessing step. Here, Autopilot leverages the 
SageMaker Processing module to statistically analyze the raw dataset and determine 
whether there are any missing values. Autopilot then shuffles and splits the data for model 
training and stores the output data in S3. Once the raw data has been preprocessed, it's 
ready for the model candidate generation step.

Should Autopilot encounter any missing values within the dataset, it will attempt to fill 
in the missing data using a number of different techniques. For example, for any missing 
categorical values, Autopilot will create a distinct unknown category feature. Alternatively, 
for any missing numeric values, Autopilot will try to impute the value using the mean or 
median of the feature column.

Generating AutoML candidates
The next step that Autopilot performs is to generate model candidates. In essence, each 
candidate is an AutoML pipeline definition that details the individual parts of a workflow 
that produces an optimized model candidate, or best model. Based on Autopilot's 
statistical understanding of the data, each candidate definition details the type of model to 
be trained and then, based on that model candidate, the data transformations necessary to 
engineer features that best suit the algorithm.

Depending on which problem type setting was specified when creating the experiment, 
Autopilot will select the appropriate algorithm from SageMaker's built-in estimators. In 
the case of the Abalone Calculator example, Auto was selected, and therefore, Autopilot 
deduces from analyzing the dataset that this is a regression problem, so it creates 
candidate definitions that each implement a variation of the Linear Learner Algorithm, 
XGBoost Algorithm, and a Multi-layer Perceptron deep learning algorithm. Each of these 
candidates has its own set of training and testing data, as well as the specific ranges of 
hyperparameters to tune on. Autopilot creates up to 10 candidate definitions.

Tip
For more information on Autopilot's supported algorithms, you can review 
the Model Support and Validation section of the AWS documentation 
(https://docs.aws.amazon.com/sagemaker/latest/dg/
autopilot-model-support-validation.html).

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html
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Figure 2.18 highlights the outputs from the Candidate Generation step, two  
Jupyter notebooks:

• Data Exploration Notebooks: This notebook provides an overview of the data that 
was analyzed during the Data Analysis step and provides guidance for the ML 
practitioner to investigate further.

• Candidate Definition Notebooks: This notebook provides a detailed overview 
of the model candidates, recommended data processing for the candidate, and 
what hyperparameters should be tuned to optimize the candidate. The notebook 
even generates Python code cells, with the appropriate SageMaker SDK calls, to 
reproduce the candidate pipeline, thus giving the novice ML practitioner a how-to 
guide on reproducing a production-ready model.

If you recall from Chapter 1, Getting Started with Automated Machine Learning on AWS, 
one of the earmarks of an efficient AutoML process is the fact that the process must be 
repeatable. By providing candidate definition notebooks, not only does Autopilot provide 
a how-to guide for the ML practitioner but also allows them to build upon the process and 
create their own candidate pipelines.

Tip
Since AutoML technically only needs to be executed once, to get the best 
candidate for production deployment, these notebooks can be used as a 
foundation to further customize and develop the model.

Before these model candidates can be trained, the raw data must be formatted to suit the 
specific algorithm that the candidate pipeline will use. This process happens next.

Automated feature engineering
The next step of the AutoML process is the feature engineering stage. Here, Autopilot 
once again leverages the SageMaker Processing module to engineer these new features, 
specific to each model candidate. Autopilot then creates training and validation dataset 
variations that include these features and stores these on S3. Each candidate now has its 
own formatted training and testing dataset. Now the training process can begin.

Automated model tuning
At this stage of the process, Autopilot has the necessary components to train each of 
the candidate models. Unlike the typical ML process, where each candidate is trained, 
tuned, and evaluated, Autopilot leverages SageMaker's automatic model tuning module to 
execute the process in parallel.
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As explained at the outset of this chapter, the hyperparameter optimization module uses 
Bayesian Search to find the best parameters for the model. However, Autopilot takes 
this one step further and leverages SageMaker's native capability to extend the tuning 
capability across multiple algorithms as well. In essence, Autopilot not only finds the best 
hyperparameters for an individual model candidate but the best hyperparameters when 
compared to all the other model candidates.

As already mentioned, Autopilot performs this process in parallel, training, tuning, and 
evaluating each model candidate with a subset of hyperparameters in order to get the best 
model candidate and associated hyperparameters for that subset, as a trial. The process 
is then repeated, constantly refining the hyperparameters, up to the default of 250 trials. 
This capability greatly reduces the overall time taken to produce an optimized model to a 
matter of hours as opposed to days or weeks when using a manual ML process.

The tuning process produces up to 250 candidate models. Let's review these candidate 
models next.

Candidate model selection
As Figure 2.17 highlights, the model that produces the best evaluation metric result is 
labeled Best.

The outputs from this step are the models and the associated artifacts for each trial and 
an explainability report. Autopilot uses another SageMaker module, called SageMaker 
Clarify, to produce this report.

Clarify helps ML practitioners understand how and why trained models make certain 
predictions, by quantifying the contribution that each feature of the dataset makes 
towards the model's overall prediction. This helps not only the ML practitioner but also 
the use case stakeholders, to understand how the model determines its predictions. 
Understanding why a model makes certain predictions promotes further trust in the 
model's capability to address the goals and requirements of the business use case.

Tip
For more information on the process that SageMaker Clarify uses to  
quantify feature attributions, you can refer to the Model Explainability  
page in the SageMaker documentation (https://docs.aws.
amazon.com/sagemaker/latest/dg/clarify-model-
explainability.html).

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-explainability.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-explainability.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-explainability.html
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The experiment is now complete, so all that's left for the ML practitioner to do is deploy 
the best candidate into production.

Candidate model deployment
The best model can now be automatically, or manually, deployed as a SageMaker Hosted 
Endpoint. This means that the best candidate is now an API that can be programmatically 
called upon to provide predictions for the production application. However, simply 
deploying the model into production doesn't stop the ML process. The process is 
continuous and there are a number of tasks still to be performed after experimentation.

Post-experimentation tasks
In the previous chapter, we emphasized that the CRISP-DM methodology ends  
with the model being deployed into production, and we also highlighted that  
producing a production-ready model is not necessarily the conclusion of an  
ML practitioner's responsibilities.

The same concepts apply to the AutoML process. While Autopilot takes care of the 
various steps to generate a production-ready model, this is typically a one-time process 
for the specific use case and Autopilot concludes the experiment after the model has been 
deployed. On the other hand, the ML practitioner's obligations are ongoing since the 
production model needs to be continuously monitored to ensure that it does not drift 
from its intended purpose.

However, by providing all the output artifacts for each model candidate as well as the 
candidate notebooks, Autopilot lays a firm foundation for the novice ML practitioner to 
close the loop on the ML process and continuously optimize future production models, 
should the deployed model drift from its intended purpose.

Additionally, SageMaker hosted endpoints provide added functionality to assist with the 
process of continuously monitoring the production model for concept drift. For example, 
should the ML practitioner decide to manually deploy the best candidate model in the 
Studio UI, they can enable data capture when selecting the best candidate and clicking on 
the Deploy Model button. Figure 2.19 shows the options available before deploying the 
model using the Studio UI:
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Figure 2.19 – Deployment options

Enabling the Data capture settings configures the endpoint to capture all incoming 
requests for prediction as well as the prediction responses from the deployed model. 
The captured data can be used by SageMaker's Model Monitor feature to monitor the 
production model in real time, continuously assessing its performance on unseen requests 
and looking for concept deviations.
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Tip
For more information on the types of monitoring that SageMaker Model 
Monitor performs, you can refer to the SageMaker documentation 
(https://docs.aws.amazon.com/sagemaker/latest/dg/
model-monitor.html).

From this example, you can see that by utilizing the Studio UI to create and manage an 
AutoML experiment (with Autopilot), a software developer or novice ML practitioner 
can easily produce a production-grade ML model with little to no experience and without 
writing any code.

However, some experienced ML practitioners may prefer documents and codify the 
experiment using a Jupyter notebook so that it is reproducible. In the next section, we will 
look at how to codify the AutoML experiment.

Using the SageMaker SDK to automate  
the ML experiment
In Chapter 1, Getting Started with Automated Machine Learning on AWS, you were 
provided with sample code to walk through the manual and iterative ML process. Since 
SageMaker is an AWS web service, we can also use code to interact with its various 
modules using the Python SDK for AWS, or boto3. More importantly, AWS also provides 
a dedicated Python SDK for SageMaker, called the SageMaker SDK.

In essence, the SageMaker SDK is a higher-level SDK that uses the underlying boto3 SDK 
with a focus on ML experimentation. For example, to deploy a model as a SageMaker 
hosted endpoint, an ML practitioner would have to use three different boto3 calls:

1. The ML practitioner must instantiate a trained model using the output artifact from a 
SageMaker training job. This is accomplished using the create_model() method 
from boto3's low-level SageMaker client, boto3.client("sagemaker").

2. Next, the ML practitioner must create a SageMaker hosted endpoint configuration, 
specifying the underlying computer resources and additional configuration settings 
for the endpoint. This is done using the create_endpoint_config() method 
from the SageMaker client.

3. Finally, the create_endpoint() method is used to deploy the trained model 
with the endpoint configuration settings.

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
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Alternatively, the ML practitioner could accomplish the same objective by simply using 
the deploy() method on an already trained model, using the SageMaker SDK. The 
SageMaker SDK creates the underlying model, endpoint configuration, and automatically 
deploys the endpoint. 

Using the SageMaker SDK makes ML experimentation much easier for the more 
experienced ML practitioner. In this next section, you will start familiarizing yourself with 
the SageMaker SDK by working through an example to codify the AutoML experiment.

Codifying the Autopilot experiment
In the same way that an ML practitioner uses a Jupyter notebook to execute a manual and 
interactive ML experiment, the Studio UI can also be used to accomplish these same tasks. 
The Studio IDE provides basic Jupyter Notebook functionality and comes pre-installed 
with all the Python libraries and deep learning frameworks an ML practitioner might use, 
in the form of AWS engineered Jupyter kernels. 

Tip
If you are unfamiliar with the concept of a Jupyter Kernel and how they 
are used, you can refer to the Jupyter documentation website (https://
jupyter-notebook-beginner-guide.readthedocs.io/en/
latest/what_is_jupyter.html#kernel).

Let's see how this works by using a Jupyter notebook to execute the following sample code:

1. Using the Studio UI menu bar, select File | New | Notebook to open a blank  
Jupyter notebook. 

2. As Figure 2.20 shows, you will be prompted to select an appropriate kernel from  
the selection of pre-installed kernels. From the drop-down list, select Python 3 
(Data Science):

Figure 2.20 – Jupyter kernel selection

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
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3. In the background, Studio will initialize a dedicated compute environment, called a 
KernelGateway. This compute environment, with 2 x vCPUs and 4 GB of RAM, is in 
essence the engine that executes the various code cells within the Jupyter notebook. 
It may take 2–3 minutes to initialize this compute environment.

4. Once the Kernel has started, we can create the first code cell, where we import 
the SageMaker SDK and configure the SageMaker session by initializing the 
Session() class. The Session() class is a wrapper for the underlying boto3 
client, which governs all interactions with the SageMaker API, as well as other 
necessary AWS services:

import sagemaker

import pandas as pd

role = sagemaker.get_execution_role()

session = sagemaker.session.Session()

Tip
If you are new to navigating through a Jupyter notebook, to execute a code 
cell, you can either click on the run icon or press the Shift + Enter keys on the 
highlighted cell.

5. Next, we can use the same code we used in Chapter 1, Getting Started with 
Automated Machine Learning on AWS, to download the raw abalone dataset from 
the UCI repository, add the necessary column headings, and then save the file as a 
CSV file called abalone_with_headers.csv:

column_names = ["sex", "length", "diameter", "height", 
"whole_weight", "shucked_weight", "viscera_weight", 
"shell_weight", "rings"]

abalone_data = pd.read_csv("http://archive.ics.uci.edu/
ml/machine-learning-databases/abalone/abalone.data", 
names=column_names)

abalone_data.to_csv("abalone_with_headers.csv", 
index=False)

6. Now, we can configure the Autopilot experiment, using the AutoML() class and 
using the following example code to create a variable called automl_job:

from sagemaker.automl.automl import AutoML

automl_job = AutoML(

    role=role,

    target_attribute_name="rings",
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    output_path=f"s3://{session.default_bucket()}/
abalone-v1/output",

    base_job_name="abalone",

    sagemaker_session=session,

    max_candidates=250

)

This variable will interact with the Autopilot experiment. As we did in the previous 
section, we also supply the important parameters for the experiment:

 � target_attribute_name: The name of the feature column within the raw 
dataset on which Autopilot will learn to make accurate predictions. Recall that this 
is the rings attribute.

 � output_path: Where any artifacts that are produced by the experiment are 
stored in S3. In the previous example, we used the default S3 bucket that was 
created during the Studio onboarding process. However, in this example, we will 
use the default bucket provided by the SageMaker Session() class.

 � base_job_name or the name of the Autopilot experiment. Since we already have 
a version zero, we will name this experiment abalone-v1.

Note
No versioning information has been supplied to the base_job_name 
parameter. This is because the SDK automatically binds the current date and 
time for versioning.

7. To initiate the Autopilot experiment, we call the fit() method on the automl_
job variable, supplying it with the S3 location of the raw training data. We also call 
the SageMaker session upload() method, as a parameter to the fit() method 
since the data has not yet been uploaded to the default S3 bucket. The upload() 
method takes the bucket name (the SageMaker default bucket) and the prefix (the 
folder structure) as parameters to automatically upload the raw data to S3. The 
following code shows an example of how to correctly call the fit() method:

automl_job.fit(inputs=session.upload_data("abalone_with_
headers.csv", bucket=session.default_bucket(), key_
prefix="abalone-v1/input"), wait=False)

At this point, the Autopilot experiment has been started and, as was shown in the previous 
section, the experiment can be monitored using the Experiments and trials dropdown in 
the SageMaker Components and registries section of the Studio UI. Right-click on the 
current Autopilot experiment and select Describe AutoML Job.
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Alternatively, we can use the describe_auto_ml_job() method on the  
automl_job variable to programmatically get the current overview of the Autopilot job.

Note
Make a note of the automatically generated versioning information that the 
SDK appends to the job name. As you will see later, this job name is used to 
programmatically explore the experiment as well as to clean it up.

To make the experiment reproducible, some ML practitioners might want to include a 
visual comparison of the resultant models. Now that the AutoML experiment is underway, 
we can wait for it to complete to see how the models compare and explore how the 
SageMaker SDK enables experiment analysis.

Analyzing the Autopilot experiment with code
Once the Autopilot experiment has been completed, we can use the analytics() class 
from the SageMaker SDK to programmatically explore the various model candidates (or 
trials) to compare candidate evaluation results, in the same way we used the Studio UI in 
the previous section. 

Let's analyze the experiment by using the same Jupyter notebook to execute the following 
sample code:

1. The first thing we need to do is load the ExperimentAnalytics() class from 
the SageMaker SDK to get the trial component data and make them available for 
analysis. By providing the name of the Autopilot experiment, the following sample 
code instantiates the automl_experiment variable, whereby we can interact 
with the experiment results. Additionally, since the SageMaker SDK automatically 
generates the versioning information for the experiment name, we can once again 
use the describe_auto_ml_job() method to find the AutoMLJobName:

from sagemaker.analytics import ExperimentAnalytics

automl_experiment = ExperimentAnalytics(

    sagemaker_session=session,

    experiment_name="{}-aws-auto-ml-job".format(automl_
job.describe_auto_ml_job()["AutoMLJobName"])

)

2. Next, the following sample code converts the returned experiment analytics 
object into a pandas DataFrame for easier analysis:

df = automl_experiment.dataframe()
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3. An example of such analysis might be to visually compare the evaluation results 
of the top five trials. The following sample code filters the DataFrame by the 
latest evaluation accuracy metrics, validation:accuracy – Last and 
train:accuracy - Last, on both the training dataset and validation dataset 
respectively, and then sorts these values in ascending order:

df = df.filter(["TrialComponentName","validation:accuracy 
- Last", "train:accuracy - Last"])

df = df.sort_values(by="validation:accuracy - Last", 
ascending=False)[:5]

df

Figure 2.21 shows what an example of this DataFrame would look like:

Figure 2.21 – Sample top 5 trials

4. We can further visualize the comparison using a plot by means of the  
matplotlib library:

import matplotlib.pyplot as plt

%matplotlib inline

legend_colors = ["r", "b", "g", "c", "m"]

ig, ax = plt.subplots(figsize=(15, 10))

legend = []

i = 0

for column, value in df.iterrows():

    ax.plot(value["train:accuracy - Last"], 
value["validation:accuracy - Last"], "o", c=legend_
colors[i], label=value.TrialComponentName)

    i +=1

plt.title("Training vs.Testing Accuracy", 
fontweight="bold", fontsize=14)
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plt.ylabel("validation:accuracy - Last", 
fontweight="bold", fontsize=14)

plt.xlabel("train:accuracy - Last", fontweight="bold", 
fontsize=14)

plt.grid()

plt.legend()

plt.show()

Figure 2.22 shows an example of the resultant plot:

Figure 2.22 – Plot of the top 5 trials

Using the ExperimentAnalytics() class is a great way to interact with the various 
trials of the experiment, however, you want to simply see which trial produces the best 
candidate. By calling the best_candidate() method on the Autopilot job, we can  
not only see which trial produced the best candidate, but also the value of the candidate's 
final evaluation metric. For example, the following sample code produces the name of the 
best candidate:

automl_job.best_candidate()["CandidateName"]
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When executing the preceding code in the Jupyter notebook, you will see an output 
similar to the following:

'abalone-2021-07-05-17-07-15-99Qg-240-9bfa065e'

Likewise, the following sample code can be executed in an additional notebook cell to see 
the best candidate's evaluation metrics:

automl_job.best_candidate()["FinalAutoMLJobObjectiveMetric"]

The results of this code will be similar to the following:

{'MetricName': 'validation:accuracy', 'Value': 
0.292638897895813}

Additionally, just as with the example in the previous section, you can also 
programmatically view the S3 location of the Data Exploration notebook, Candidate 
Definition notebook, and the Explainability Report.

The following code samples can be used to get this information:

• Data Exploration Notebook:

automl_job.describe_auto_ml_job()["AutoMLJobArtifacts"]
["DataExplorationNotebookLocation"]

• Candidate Definition Notebook:

automl_job.describe_auto_ml_job()["AutoMLJobArtifacts"]
["CandidateDefinitionNotebookLocation"]

• Explainability Report:

automl_job.describe_auto_ml_job()["BestCandidate"]
["CandidateProperties"]["CandidateArtifactLocations"]
["Explainability"]

Using the analytics() class of the SageMaker SDK and, the various Autopilot output 
artifacts has allowed us to gain further insight into the experiment. All that's left is to 
deploy the production model.
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Deploying the best candidate
The last part of the AutoML process is to deploy the best model as a production API, as a 
SageMaker hosted endpoint. To provide for this functionality, the SageMaker SDK once 
again provides a simple method, called deploy().

Note
Hosting the best model on SageMaker will incur AWS usage costs that exceed 
what is provided by the free tier. 

Let's run the following code to deploy the best model: 

automl_job.deploy(

    initial_instance_count=1,

    instance_type="ml.m5.xlarge",

    candidate=automl_job.best_candidate(),

    sagemaker_session=session,

    endpoint_name="-".join(automl_job.best_candidate()
["CandidateName"].split("-")[0:7])

)

As was the case with the fit() method, simply calling the deploy() method and 
providing some important parameters will create a hosted endpoint:

• We need to supply the type of computer resources to process inference requests  
by supplying the instance_type parameter. In this case, we selected the  
ml.m5.xlarge instance.

• We then need to specify the number of instances. In this case, we are specifying  
one instance.

• We can either deploy a specific candidate, by providing the Python dictionary for 
the specific candidate or, if no candidate is provided, the deploy() method will 
automatically use the best candidate.

• Lastly, we need to provide the unique name for the endpoint. This name will be used 
to provide model predictions to the business application.
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Tip
When naming the endpoint, it is a good practice to use the versioning 
information supplied to the experiment in order to tie specific endpoints 
to the experiment that produced them. From the preceding sample Python 
code, you can see that we derived endpoint_name by using the best_
candidate() method and filtering the response by "CandidateName".

Once the code cell is executed, SageMaker will automatically deploy the best model on the 
specific compute resources and make the endpoint API available for inference requests, 
thus completing the experiment.

Note
Unlike the preceding example, where the Studio UI is used to deploy the 
model, using the AutoML() class from the SageMaker SDK does not include 
the ability to enable data capture when deploying a model. Recall that the 
ability to capture both inference requests and inference responses enables 
the ML practitioner to use this data to continuously monitor a production 
model. It is recommended that you use the SageMaker SDK's Model() class 
to deploy the model. This class allows you to specify the data_capture_
config parameter, should you wish to close the loop on continuous model 
monitoring. You can learn more about the Model() class in the SageMaker 
SDK documentation (https://sagemaker.readthedocs.io/en/
stable/api/inference/model.html#sagemaker.model.
Model.deploy).

As was the case with the typical ML process, highlighted in Chapter 1, Getting Started 
with Automated Machine Learning on AWS, the deployed model can now be handed over 
to the application development owners for them to test and integrate the model into 
the production application. However, since the intended purpose of this example was 
to simply demonstrate how to make the required SageMaker SDK calls to execute the 
AutoML experiment, we are not going to use the model to test inferences. Instead, the 
next section demonstrates how to delete the endpoint.
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Cleaning up
To avoid unnecessary AWS usage costs, you should delete the SageMaker hosted endpoint. 
This can be accomplished by using the AWS SageMaker console (https://console.
aws.amazon.com/sagemaker) or by using the AWS CLI. Run the following 
commands in the Jupyter notebook to clean up the deployment:

1. Using the AWS CLI, delete the SageMaker hosted endpoint:

!aws sagemaker delete-endpoint --endpoint-name {"-".
join(automl_job.best_candidate()["CandidateName"].
split("-")[0:7])}

2. Then use the AWS CLI to also delete the endpoint configuration:

!aws sagemaker delete-endpoint-config --endpoint-
config-name {"-".join(automl_job.best_candidate()
["CandidateName"].split("-")[0:7])}

Tip
If you wish to further clean up the various trials from the experiment, 
you can refer to the Clean Up section of the SageMaker documentation 
(https://docs.aws.amazon.com/sagemaker/latest/dg/
experiments-cleanup.html).

From the perspective of automating the ML process, you should now be acquainted with 
how the Autopilot module can be used to realize an AutoML methodology, and how the 
SageMaker SDK can be used to create a codified and documented AutoML experiment.

https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker
https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-cleanup.html
https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-cleanup.html
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Summary
This chapter introduced you to some of AWS's AI and ML capabilities, specifically Amazon 
SageMaker's. You saw how to interact with the service via the SageMaker Studio UI and the 
SageMaker SDK. Using hands-on examples, you learned how Autopilot's implementation 
of the AutoML methodology addresses not only the two challenges imposed by the typical 
ML process but also the overall criteria for automation. Particularly, how using Autopilot 
ensures that the ML process is reliable and streamlined. The only task required to be done 
by the ML practitioner is to upload the raw data to Amazon S3.

This chapter also highlights an important aspect of the AutoML methodology. While the 
AutoML process is repeatable in the sense that it will always produce an optimized model, 
once you have the model in production, there is no real need to recreate it, unless, of 
course, the business use case changes. Nevertheless, Autopilot creates a solid foundation 
to help an ML practitioner continuously optimize the production model, by providing 
Candidate Notebooks, model Explainability Reports, and enabling Data Capture to 
monitor the model for concept drift. So, using the AutoML methodology is a great way for 
ML practitioners to automate their initial ML experiments.

Worth noting is a drawback of Autopilot's implementation of the AutoML methodology. 
Autopilot only supports Supervised Learning use cases – ones that use Regression or 
Classification models.

In the next chapter, you will learn how to apply the AutoML methodology to more 
complicated ML use cases that require advanced deep learning models, using the 
AutoGluon package.
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In Chapter 1, Getting Started with Automated Machine Learning on AWS, you were 
introduced to the ACME Fishing Logistics use case, where you created a production-
grade MLP model using a typical ML process. While the example only highlights a basic 
artificial neural network architecture, it also provides a suitable introduction to the 
concept of deep learning. 

Deep learning is an advanced ML technique that can be used to solve complex and 
challenging use cases such as customer sentiment analysis, language translation, and 
object detection images and videos. These complex use cases often require the ML 
practitioner to create very intricate, as well as exceptionally large, neural network 
architectures. Some of these architectures can have hundreds of thousands, even billions, 
of trainable parameters. The more complicated the network, the more challenging it 
becomes to train and therefore, the more challenging it becomes to automate.
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As we highlighted in the previous chapter, SageMaker Autopilot only supports tabular 
data. Thus, more complicated deep learning use cases that would require image data are 
not supported. So how can we apply an AutoML methodology to automate the ML process 
for these complex use cases, ones that require deep learning models?

In this chapter, we will investigate how this can be accomplished by using the AutoGluon 
Python library and illustrate how Amazon SageMaker can still be used to effectively apply 
an AutoML methodology to some of these more complex deep learning use cases. We will 
also use this opportunity to show you some of the cutting-edge capabilities of SageMaker 
by introducing you to SageMaker's Bring Your Own Container (BYOC) functionality, as 
well as AWS Deep Learning Containers. We will be making use of this capability quite 
extensively throughout the book. Specifically, we will focus on the following topics:

• Introducing the AutoGluon library

• Using AutoGluon for tabular data

• Using AutoGluon for image data

By the end of the chapter, you will have a practical understanding of what the AutoGluon 
library is and how to use it.

Technical requirements
Since we will once again be using the SageMaker Studio UI, the technical requirements for 
this chapter are the same as Chapter 2, Automating Machine Learning Model Development 
Using SageMaker Autopilot:

• A web browser (for the best experience, it is recommended that you use a Chrome 
or Firefox browser).

• Access to the AWS account that you used in Chapter 2, Automating Machine 
Learning Model Development Using SageMaker Autopilot.

• We will once again be working within the usage limits of the AWS Free Tier to avoid 
exceeding unnecessary costs.
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Introducing the AutoGluon library
AutoGluon is a Python library developed by AWS and open sourced at their annual 
re:Invent conference, in 2019. The primary design goal behind AutoGluon is similar  
to SageMaker's Autopilot module – to resolve all the complexities and challenges an  
ML practitioner faces in a typical ML process and resolve these with a single Python 
library. In essence, AutoGluon empowers the ML practitioner to organize their training 
data and apply several ML approaches to generate an optimized model, all with just a  
few lines of code.

AutoGluon overcomes some of the limitations that AutoPilot has in that it can address 
the more complex ML use cases that involve compound types of data, such as cluttered 
text data and images. Of course, AutoGluon also works with tabular data. AutoGluon 
accomplishes this by creating separate predictors for each data type and, hence, each 
type of ML use case that the data type supports. For example, AutoGluon includes the 
following predictors:

• Tabular Predictor: This predictor is like Autopilot's functionality as it is used to 
create an optimized model to predict column values from tabular data and, just like 
Autopilot, this applies to both the classification and regression use cases.

• Image Predictor: This predictor focuses on generating models that predict the 
named category for entire images. For example, if we had a dataset containing 
labeled images of cats and dogs, the image predictor would create an optimized 
model to predict whether a new image falls under the cat or dog category.

• Object Detector: Using this predictor builds an optimized model with the ability 
to distinctly recognize different objects in a single image. For example, if we supply 
a model trained using the object detector with an image of a boy and his dog, the 
model would be able to differentiate between the two individual objects.

• Text Predictor: This predictor provides functionality similar to the Tabular 
Predictor in that it creates an optimized model to perform regression and 
classification prediction tasks on text data. For example, if a model were optimized 
using the Text Predictor, given a string of text, it would be able to classify the 
sentiment of the sentence.

Note
The Text Predictor uses tabular training data for classification and regression in 
a similar way to how the Tabular Predictor uses tabular data. The key difference 
is that the Tabular Predictor will feature the text while the Text Predictor will fit 
directly to the raw text. In other words, the Tabular Predictor will convert the 
text columns of the tabular data into a vector (or numerical) representation. On 
the other hand, the Text Predictor will work directly with the raw text.
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While this is just a high-level introduction to AutoGluon, the best way to see its 
capabilities in action is to work through a hands-on example. Let's experiment with 
AutoGluon on the ACME Fishing Logistics use case.

Tip
For more information on these built-in predictors and how to make a single 
Python call to fit these onto the raw data, you can review the AutoGluon 
documentation (https://auto.gluon.ai/stable/api/
autogluon.predictor.html). 

Using AutoGluon for tabular data
In the previous chapter, we used Autopilot to see an example AutoML experiment  
that applies to the ACME Fishing Logistics use case. In this example, we are going to 
reproduce this experiment with AutoGluon. So, let's see how we can use AutoGluon to 
automate this task.

Note
The AutoGluon Tabular library benefits from compute instances with as  
much memory as possible. It is, therefore, recommended that AWS M5 
instances (https://aws.amazon.com/ec2/instance-types/
m5/) are used for tabular experiments. We will be using an m5.xlarge 
instance in this example and, therefore, running the example will incur AWS 
resource costs.

Prerequisites 
Before we begin, there are a few fundamental topics that need to be accounted for, namely:

• At the time of writing, the AutoGluon library is not natively included as one of 
SageMaker's built-in estimators. This means that we will have to create our own 
Docker container for AutoGluon, using the SageMaker BYOC methodology and 
AWS Deep Learning Containers.

• Unless we use SageMaker managed notebook instances (https://docs.aws.
amazon.com/sagemaker/latest/dg/nbi.html), which have native 
support for the Docker daemon, there is no inherent functionality for building 
Docker containers when using SageMaker Studio. 

https://auto.gluon.ai/stable/api/autogluon.predictor.html
https://auto.gluon.ai/stable/api/autogluon.predictor.html
https://aws.amazon.com/ec2/instance-types/m5/
https://aws.amazon.com/ec2/instance-types/m5/
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To address these constraints while still using the Studio UI for this example, AWS has 
provided an open source CLI utility called sagemaker-studio-image-build 
(https://github.com/aws-samples/sagemaker-studio-image-build-
cli). This utility allows us to build a SageMaker-compatible container within the Studio 
UI and, that way, we can now build and run the AutoGluon example from within the 
Studio environment. In the background, the sagemaker-studio-image-build 
library uses the fully managed build service, AWS CodeBuild, to build the Docker image. 
To access the service, the Studio execution role requires the appropriate access. 

Note
If you are unfamiliar with AWS CodeBuild and how it works, you can refer to 
the product web page (https://aws.amazon.com/codebuild).

Configuring service permissions
The following steps will walk you through how to configure the appropriate permissions 
for the SageMaker execution role:

1. Log in to your AWS account, navigate to the Amazon SageMaker management 
console, and click the SageMaker Domain link in the left-hand navigation panel.

Note
You should already have onboarded to SageMaker Studio. If not, refer to 
the Getting started with SageMaker Studio section in Chapter 2, Automating 
Machine Learning Model Development Using SageMaker Autopilot.

2. Once the SageMaker Domain screen is open, make a note of the name of the 
Execution role in the Domain section. We will use the Amazon Resource Name 
(ARN) of the execution role to assign it the necessary permissions.

3. Now, open the Identity and Access Management (IAM) console (https://
console.aws.amazon.com/iam/home) in a new browser tab. 

4. On the left-hand navigation panel, click on Roles, under the Access management 
section, to open the Roles dashboard.

5. Find the execute role that you made a note of in step 2 and click on it. The role name 
should start with AmazonSageMaker-ExecutionRole-XXX.

6. In the role's Summary dashboard, click on the Trust relationships tab and then the 
Edit trust relationship button.

https://aws.amazon.com/codebuild
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
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7. Delete the existing Policy Document name and paste the following policy into 
the window. This will provide the execution role with trust access to both the 
SageMaker service and the CodeBuild service:

{

  "Version": "2012-10-17",

  "Statement": [

    {

      "Effect": "Allow",

      "Principal": {

        "Service": [

          "codebuild.amazonaws.com",

          "sagemaker.amazonaws.com"

        ]

      },

      "Action": "sts:AssumeRole"

    }

  ]

}

8. Click on the Update Trust Policy button.

Now that we have the necessary permissions to access the CodeBuild service, we can now 
use the Studio UI to prepare the custom SageMaker container.

Building a deep learning container
In order to build a custom container for AutoGluon, we need to provide detailed  
build instructions. For containers, these build instructions are included in a file called  
a Dockerfile.

Note
If you are unfamiliar with how to build Docker containers or how to construct 
a Dockerfile, you can refer to the Dockerfile reference documentation 
(https://docs.docker.com/engine/reference/builder/).

https://docs.docker.com/engine/reference/builder
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However, instead of building a Dockerfile from scratch, AWS provides pre-built 
container images and Dockerfile references for SageMaker, called Deep Learning 
Containers, or DL Containers (https://aws.amazon.com/machine-learning/
containers/). These DL container images are engineered by AWS to support multiple 
deep learning frameworks (TensorFlow, PyTorch, and Apache MXNet) and are optimized 
for running ML use cases on the AWS cloud. Using these container images means you 
don't have to worry about configuring all the necessary Python dependencies and versions 
that these frameworks normally require. Alongside these deep learning frameworks, 
AWS also provides a pre-packaged DL container for AutoGluon (https://github.
com/aws/deep-learning-containers/blob/master/available_images.
md#autogluon-inference-containers). 

The following steps will walk you through how to use the pre-built AutoGluon container 
and customize it for our requirements: 

1. Using the Amazon SageMaker management console, click the Open SageMaker 
Studio button.

2. Click the Open Studio link to launch the Studio UI.
3. Within the Studio UI, click on the folder icon in the left sidebar.
4. Right-click in the folder navigation panel and click New Folder.
5. Name the new folder Tabular and double-click to open the folder.
6. In the menu bar, click File | New |Notebook and, when prompted, select the 

Python 3 (Data Science) kernel from the dropdown. Click the Select button to 
launch the KernelGateway. After a couple of minutes, the kernel will be ready.

Tip
You can create a new Jupyter notebook or use the example notebook 
from the companion GitHub repository (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/
blob/main/Chapter03/Tabular/AutoGluon%20Tabular%20
Example.ipynb).

7. In the first code cell, we will install the sagemaker-studio-image-build 
utility. Using the following code, we call the Python executable to run the Python 
package manager and install the utility: 

%%capture

import sys

import warnings

https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/machine-learning/containers/
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-inference-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-inference-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-inference-containers
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter03/Tabular/AutoGluon%20Tabular%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter03/Tabular/AutoGluon%20Tabular%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter03/Tabular/AutoGluon%20Tabular%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter03/Tabular/AutoGluon%20Tabular%20Example.ipynb
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warnings.filterwarnings('ignore')

%matplotlib inline

!{sys.executable} -m pip install -U pip sagemaker-studio-
image-build

8. Next, we open a new code cell to build the AutoGluon training and test script. This 
script is, in essence, the runtime that will be executed with the custom SageMaker 
container to generate and test the various AutoGluon tabular models to determine 
the best-fitting model. Using the following code, we won't execute this script inside 
the Jupyter notebook code cell, but rather use the %%writefile Jupyter magic 
command to create a script file called train.py: 

%%writefile train.py

import os

import json

import boto3

import json

import warnings

import numpy as np

import pandas as pd

from autogluon.tabular import TabularDataset, 
TabularPredictor

warnings.filterwarnings("ignore", 
category=DeprecationWarning)

prefix = "/opt/ml"

input_path = os.path.join(prefix, "input/data")

output_path = os.path.join(prefix, "output")

model_path = os.path.join(prefix, "model")

param_path = os.path.join(prefix, 'input/config/
hyperparameters.json')

Tip
If you are unfamiliar with the Jupyter built-in magic commands, such as 
%%writefile, you can refer to the Jupyter documentation website 
(https://ipython.readthedocs.io/en/stable/
interactive/magics.html#built-in-magic-commands) to 
learn more about these commands and how they can be used.

https://ipython.readthedocs.io/en/stable/interactive/magics.html#built-in-magic-commands
https://ipython.readthedocs.io/en/stable/interactive/magics.html#built-in-magic-commands
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9. Using the following code, while still in the current code cell, we now define the 
train() function. This function takes in the various parameters, such as the 
prediction target label, and fits TabularPredictor() for this target, against 
training_dataset. Once the predictor has automatically determined the best 
models, we save the results as a Fit_Summary.txt file:

def train(params):

    label = params["label"]

    channel_name = "training"

    training_path = os.path.join(input_path, channel_
name)

    training_dataset = TabularDataset(os.path.
join(training_path, "training.csv"))

    predictor = TabularPredictor(label=label, path=model_
path).fit(training_dataset)

    with open(os.path.join(model_path, "Fit_Summary.
txt"), "w") as f:

        print(predictor.fit_summary(), file=f)

    return predictor

10. In the following code, while still in the current code cell, we define the test() 
function. This function once again takes the target label, as well as the trained 
predictor, and evaluates the generated values on testing_data. The evaluation 
results are saved as a Model_evaluation.txt file. The test() function also 
generates a leaderboard of the best model and saves this list as a Leaderboard.
csv file:

def test(params, predictor):

    label = params["label"]

    channel_name = "testing"

    testing_path = os.path.join(input_path, channel_name)

    testing_dataset = TabularDataset(os.path.
join(testing_path, "testing.csv"))

    ground_truth = testing_dataset[label]

    testing_data = testing_dataset.drop(columns=label)

    predictions = predictor.predict(testing_data)

    with open(os.path.join(model_path, "Model_Evaluation.
txt"), "w") as f:

        print(

            json.dumps(
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                predictor.evaluate_predictions(

                    y_true=ground_truth,

                    y_pred=predictions,

                    auxiliary_metrics=True

                ),

                indent=4

            ),

            file=f

        )

    leaderboard = predictor.leaderboard(testing_dataset, 
silent=True)

    leaderboard.to_csv(os.path.join(model_path, 
"Leaderboard.csv"))

11. In the following code, and still within the current code cell, we define the main 
program routine that loads the execution parameters, calls the train() function 
to train the various predictors on the training data, and then calls the test() 
function to evaluate the predictor performance on the test dataset:

if __name__ == "__main__":

    print("Loading Parameters\n")

    with open(param_path) as f:

        params = json.load(f)

    print("Training Models\n")

    predictor = train(params)

    print("Testing Models\n")

    test(params, predictor)

    print("AutoGluon Job Complete")

12. Next, we create a new code cell and apply the same technique, using the 
%%writefile magic command, to create the custom container build instructions 
or a Dockerfile. The following code contains the instructions that the Docker 
daemon will use to build the container:

%%writefile Dockerfile

ARG REGION

FROM 763104351884.dkr.ecr.${REGION}.amazonaws.com/
autogluon-training:0.3.1-cpu-py37-ubuntu18.04

RUN pip install -U pip
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RUN pip install bokeh==2.0.1

RUN mkdir -p /opt/program

RUN mkdir -p /opt/ml

COPY train.py /opt/program

WORKDIR /opt/program

ENTRYPOINT ["python", "train.py"]

13. Now, we can use the build CLI to create the customer container:

import boto3

import sagemaker

aws_region = sagemaker.Session().boto_session.region_name

!sm-docker build --build-arg REGION={aws_region} .

The container should take about 10 minutes to build, with the logs from the CodeBuild 
execution redirected to, and displayed in, the Jupyter notebook. 

Note
Make sure to capture the Image Uniform Resource Identifier (URI) container 
from the code cell output, as we will be using this later. The code cell output 
should resemble this: Image URI: 123456789012.dkr.ecr.us-
west-2.amazonaws.com/sagemaker-studio-d-abcdefghij
kl:default-1234567890123.

You may be wondering exactly what the previous code cells accomplished. Firstly, let's 
walk through the train.py file. In this file, we've created two main Python functions, 
train() and test():

• The train() function takes a training dataset called training.csv and creates 
a default AutoGluon Tabular predictor called predictor. The default predictor 
produces several different types of ML models that predict the target label by 
training on the other columns of the dataset. This process is similar to Autopilot's 
Auto setting, which was used in the example from Chapter 2, Automating Machine 
Learning Model Development Using SageMaker Autopilot. We will see later, when we 
execute the AutoGluon experiment, just exactly what these default models are and 
how well they perform on this training data.

• After the training process has been completed, the train() function returns these 
models as an AutoGluon TabularPredictor object.
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The test() function takes the trained models as an input and then evaluates the various 
AutoGluon Tabular models, produced by the train() function, and evaluates them on a 
test dataset, called testing.csv. As a result of this process, the test() function stores 
the overall evaluation results for each model as well as a summary of the best model's 
score. As we will see later, these assets are eventually stored in S3 for review.

Now, let's review the Dockerfile. As already mentioned, the Dockerfile  
contains the instructions to build the Docker container that will execute the train.
py script. The first build command to be executed is a command to download the 
AutoGluon DL container. The Docker daemon pulls this container from a public AWS 
ECR repository, called 

763104351884.dkr.ecr.${REGION}.amazonaws.com/autogluon-
training:0.3.1-cpu-py37-ubuntu18.04, where ${REGION} is a build 
argument specifying the AWS region you are currently using. 

Tip
For a list of the public ECR repositories containing the latest DLC images,  
refer to the project's GitHub repository (https://github.com/aws/
deep-learning-containers/blob/master/available_
images.md).

The Docker daemon then installs the necessary Python packages for AutoGluon, sets up 
the code path required by SageMaker, and copies the training script into the container.

Note
To install AutoGluon in the container, we have used the default installation 
requirements from the AutoGluon documentation (https://auto.
gluon.ai/stable/index.html#installation).

In the last part of the Dockerfile, we specify the container's ENTRYPOINT, thus 
instructing the container to execute the training script when it starts.

Lastly, we executed the sm-docker build command, specifying the current AWS 
region as the build argument and the location of the Dockerfile in the current directory. 
Since we do not supply any further parameters, sm-docker assumes the default settings.

Tip
To see some of the additional settings that can be used instead of the defaults, 
refer to the utility documentation website (https://github.com/aws-
samples/sagemaker-studio-image-build-cli).

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://auto.gluon.ai/stable/index.html#installation
https://auto.gluon.ai/stable/index.html#installation
https://github.com/aws-samples/sagemaker-studio-image-build-cli
https://github.com/aws-samples/sagemaker-studio-image-build-cli
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Using the default settings, the CLI automatically calls AWS CodeBuild in the background. 
CodeBuild, in turn, executes the following tasks:

• It creates an ECR repository, named after the Studio Domain ID, for example, 
sagemaker-studio-d-abcdefghijkl. 

• It builds the container image, with a unique image tag, for example, default-
1234567890123.

• It uploads the image to the newly created repository. 

Tip
To view the build process and configuration settings that the CodeBuild 
service executes, you can view and manage the process in the CodeBuild 
console (https://console.aws.amazon.com/codesuite/
codebuild/home).

Now that the build process has been completed, we have, in essence, brought out our 
own AutoGluon container to SageMaker. In the next section, we will use this container to 
conduct an AutoML experiment for the ACME Fishing Logistics use case.

Creating the AutoML experiment with AutoGluon
In the same way that we created an AutoML experiment in Chapter 2, Automating 
Machine Learning Model Development Using SageMaker Autopilot, using the SageMaker 
SDK, we will reproduce a similar experiment by working with AutoGluon. The following 
steps will walk you through creating the experiment within the existing Jupyter notebook:

1. Firstly, we need to download the Abalone dataset once again. Using the following 
Python code, download the dataset from the UCI repository, add the relevant 
column names, and split the data into two separate CSV files, training.csv and 
testing.csv. The training file comprises 90% of the data, while the testing file 
covers the remaining 10%. As already highlighted, these two datasets will be used 
by the train() and test() functions within our container. In a new code cell, 
execute the following example code:

import numpy as np

import pandas as pd 

from sklearn.model_selection import train_test_split

column_names = ["sex", "length", "diameter", "height", 
"whole_weight", "shucked_weight", "viscera_weight", 
"shell_weight", "rings"]



92     Automating Complicated Model Development with AutoGluon

abalone_data = pd.read_csv("http://archive.ics.uci.edu/
ml/machine-learning-databases/abalone/abalone.data", 
names=column_names)

training_data, testing_data = train_test_split(abalone_
data, test_size=0.1)

training_data.to_csv("training.csv")

testing_data.to_csv("testing.csv")

2. Now that we have our datasets, we can configure the various parameters for the 
experiment. Using the following code, we can define important parameters, such 
as the name of the experiment (job_name), the specific version to trace the 
experiment (job_version), the SageMaker default S3 bucket to store the datasets, 
the output artifacts (bucket), and the container URI (image_uri):

import sagemaker

import datetime

image_uri = "<Enter the Image URI from the sm-docker 
output>"

role = sagemaker.get_execution_role()

session = sagemaker.session.Session()

bucket = session.default_bucket()

job_version = datetime.datetime.now().strftime("%Y-%m-%d-
%H-%M-%S-%f")[:-3]

job_name = f"abalone-autogluon-{job_version}"

Note
For the image_uri parameter, enter the URI from the output of the sm-
docker code cell we executed earlier in step 10 of the previous section.

3. Using a new code cell, we use these parameters and the SageMaker SDK to create 
a SageMaker estimator. An estimator is a high-level interface for a SageMaker 
training job. The following code uses the generic sagemaker.estimator.
Estimator() class, allowing us to create a training job using our custom 
AutoGluon container. As you can see, we also supply additional hyperparameters 
where we specify the type of compute instance (ml.m5.xlarge) to use to execute 
the training job as well as the parameters to be supplied to the train.py script, 
such as the target label in our dataset (rings):

from sagemaker.estimator import Estimator

autogluon = Estimator(
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    image_uri=image_uri,

    role=role,

    output_path=f"s3://{bucket}/{job_name}",

    base_job_name=job_name,

    instance_count=1,

    instance_type="ml.m5.xlarge",

    hyperparameters={

        "label": "rings",

        "bucket": bucket,

        "training_job": job_name

    },

    volume_size=20

)

Tip
For more information on the generic Estimator() class, refer to 
the SageMaker SDK documentation (https://sagemaker.
readthedocs.io/en/stable/api/training/estimators.
html#sagemaker.estimator.Estimator).

4. Now that the estimator has been defined, we can use the fit() method to call 
SageMaker and have it execute the training job, using our custom AutoGluon 
container. As you can see in the following code, we tell SageMaker where to get 
the training and test data by uploading these datasets to S3, using the upload_
data() method:

autogluon.fit(

    inputs={

        "training": session.upload_data(

            "training.csv",

            bucket=bucket,

            key_prefix=f"{job_name}/input"

        ),

        "testing": session.upload_data(

            "testing.csv",

            bucket=bucket,

            key_prefix=f"{job_name}/input"

        )

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator
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    }

)

After calling the fit() method, SageMaker will instantiate an ml.m5.xlarge instance 
with 4vCPUs and 16 GB of RAM to execute our custom AutoGluon container. The output 
from the inside of the container's runtime environment is redirected to, and displayed 
in, the Jupyter notebook. You can review each line of the output to see what is going on. 
Alternatively, Figure 3.1 provides a high-level overview of the output from the SageMaker 
training job:

Figure 3.1 – AutoGluon process overview

As you can see from Figure 3.1, five specific steps are executed by the train() function 
and a single step is performed by the test() function. Let's examine each step and 
correlate it with the output:

1. The first step that AutoGluon does is to preprocess the data. Here, AutoGluon 
analyzes the data to try and determine the type of ML problem. For example, 
AutoGluon may determine that the ML problem is multiclass because the target 
label's data type is an integer and there are very few unique values observed. Once 
AutoGluon has determined the ML problem type, it further performs preprocessing 
of the input data for the specific model.
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Tip
If you already know the type of ML you are trying to solve, you can specifically 
add it as an argument, called problem_type, to AutoGluon's fit() 
method.

2. The second step involves AutoGluon using several pre-built data generators 
to clean up data and engineer new features. For example, AutoGluon 
uses FillNaFeatureGenerator to automatically determine the 
type of values to replace any missing values present in the dataset, plus 
CategoryFeatureGenerator to encode categorical features. The final part  
of this step involves splitting the processed dataset into separate training and  
testing sets. 

3. In the third step, AutoGluon trains its pre-built ML models for tabular data 
against the training dataset. For a list of the 10 specific models and the 3 ensemble 
models that AutoGluon Tabular fits on the training set, refer to the AutoGluon 
documentation (https://auto.gluon.ai/stable/api/autogluon.
tabular.models.html#module-autogluon.tabular.models).

4. The final step of the train() process evaluates the trained models against the 
validation dataset to determine the model's overall validation score and see how 
each model generalizes to accurately predict the target label. The default metric for 
evaluation is accuracy. Each model is serialized and stored as a Python object using 
the pickle library.

Tip
To change the default evaluation metric, you can specify it as an argument, 
called eval_metric, to AutoGluon's fit() method. 

5. To complete the process, the test() function is then executed to provide a 
final evaluation on unseen data, using the testing.csv dataset. This final step 
provides us with the overall performance of each of the trained models to generate 
the best model. The final results of the evaluation are captured as an output artifact 
along with the pickled models.

https://auto.gluon.ai/stable/api/autogluon.tabular.models.html#module-autogluon.tabular.models
https://auto.gluon.ai/stable/api/autogluon.tabular.models.html#module-autogluon.tabular.models
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Once SageMaker has executed the train.py script, the models and evaluation summary 
artifacts are compressed and uploaded to S3. SageMaker displays how long the training 
job took to execute and, hence, the total amount of Billable seconds.

Now that we have created and implemented the AutoGluon Tabular experiment on the 
Abalone dataset, we can evaluate the models generated to determine which can be used in 
production. The next section will show how this is done.

Evaluating the experiment results
As was highlighted in the previous section, the model evaluation results and pickled 
models are captured as an output artifact, called model.tar.gz, and uploaded to S3. 
Using the existing Jupyter notebook, let's take a look at these artifacts to assess the results 
of the AutoML experiment and determine which model best suits the production use case:

1. The following example code uses the SageMaker SDK's S3Downloader class to 
download and extract the AutoGluon estimator's output artifact to a folder called 
extract, using the model_data property:

!mkdir extract sagemaker.s3.S3Downloader.
download(autogluon.model_data, "./")

!tar xfz ./model.tar.gz -C extract

2. You can look through the extracted contents, in the extract folder, to see the 
various evaluation reports, and double-click on the models folder to see the pickled 
model artifacts. Figure 3.2 shows the extracted artifact files: 
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Figure 3.2 – Extracted artifact folder structure
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3. The first file we will look at is the Leaderboard.csv file and see the overall 
performance evaluation of each of the trained models. The following code  
opens the model leaderboard as a pandas DataFrame and sorts the models  
in descending order:

df = pd.read_csv("./extract/Leaderboard.csv")

df = df.filter(["model", "score_test", "score_val"]).
sort_values(by="score_val", ascending=False).reset_
index().drop(columns="index")

df

4. You can now review the models that the AutoGluon Tabular predictor trained. 
The best model, based on the accuracy of its predictions on the test dataset, is 
displayed first. Figure 3.3 shows an example of the leaderboard table and, as you can 
see, WeightedEnsemble_L2 (https://auto.gluon.ai/stable/api/
autogluon.tabular.models.html#weightedensemblemodel) provided 
the best validation accuracy score (score_val).

Figure 3.3 – Example model leaderboard 

https://auto.gluon.ai/stable/api/autogluon.tabular.models.html#weightedensemblemodel
https://auto.gluon.ai/stable/api/autogluon.tabular.models.html#weightedensemblemodel
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Note
AutoGluon generates evaluation metric scores in a higher is better form. 
Therefore, the higher the evaluation score, the better the model.

5. Just like the Autopilot example in Chapter 2, Automating Machine Learning Model 
Development Using SageMaker Autopilot, we can visually compare the models in 
the leaderboard with code. However, AutoGluon Tabular automatically constructs 
a model comparison plot, as an output artifact, called SummaryOfModels.html. 
The following example code will display the plot in the Jupyter notebook:

import IPython

IPython.display.HTML(filename="./extract/SummaryOfModels.
html")

Note
If the SummaryofModels.html file does not display immediately when 
running the code in step 5, rerun the code cell again.
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6. Figure 3.4 shows an example of the displayed SummaryOfModels.html file. 
Interact with the plot by mousing over the generated scatterplot and viewing the 
metadata for each of the models.

Figure 3.4 – Example summary of the models' scatterplot

Once again, we have used an AutoML methodology, this time using the AutoGluon 
Tabular predictor, to create a feasible production-grade ML model for our use case. 
As with the typical ML process, an ML practitioner can provide the best model to the 
application teams for testing and integration into the Age Calculator application.

One thing you may be wondering is why we didn't simply execute the AutoGluon training 
and evaluation process inside the existing Jupyter notebook. Why did we create a custom 
container and run the entire process as a SageMaker training job?
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The answer to this question is basically cost. To elaborate, in the next example,  
we will review a use case that requires Graphical Processing Units (GPUs) to train  
and evaluate intricate computer vision models. This use case will highlight the benefits 
of offloading resource-intensive model training jobs to SageMaker, using the AutoGluon 
ImagePredictor.

Using AutoGluon for image data
Up to this point, we have been exploring AutoML methodologies on an Artificial 
Neural Network (ANN) algorithm. However, many use cases might require more 
complicated algorithms, such as Convolutional Neural Networks (CNNs) for image 
classification and image recognition, or Long-Short-Term Memory (LSTM) networks, 
for speech recognition and text data. Due to the complexity of these algorithms, many 
ML practitioners may have to leverage multiple machines for distributed training and 
potentially multiple GPUs to handle the multi-dimensional matrix calculations. In this 
section, we are going to segue from the Age Calculator use case to explore how AutoGluon 
can be used to apply an AutoML methodology to an image classification use case.

Note
Since we will be utilizing GPU-based AWS instances, running this example  
will exceed the usage limits of the AWS Free Tier and, therefore, incur 
additional costs.

Prerequisites
As was the case with the previous example, to leverage GPUs for the image classification 
task, we will need to build a custom container. Once again, AWS provides a DL container 
for Apache MXNet with GPU support. So, all we need to do is build the appropriate 
AutoGluon runtime into the pre-built container. 

Tip
You can create a new Jupyter notebook or use the example notebook 
from the companion GitHub repository (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/
blob/main/Chapter03/Image/AutoGluon%20Image%20
Example.ipynb).

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter03/Image/AutoGluon%20Image%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter03/Image/AutoGluon%20Image%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter03/Image/AutoGluon%20Image%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter03/Image/AutoGluon%20Image%20Example.ipynb
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The following steps will walk you through how to do this:

1. Within the same Studio environment from the previous example, click the folder 
icon in the left sidebar.

2. Right-click in the folder navigation panel and click New Folder.
3. Name the new folder Image and double-click to open the folder.
4. In the menu bar, click File | New | Notebook and, when prompted, select the 

Python 3 (Data Science) kernel from the dropdown. Click the Select button to 
launch the KernelGateway. After a couple of minutes, the kernel will be ready.

5. In the first code cell, we will once again install the sagemaker-studio-image-
build utility by executing the following code:

%%capture

import sys

import warnings

warnings.filterwarnings('ignore')

%matplotlib inline

!{sys.executable} -m pip install -U pip sagemaker-studio-
image-build

6. Next, we will build the AutoGluon training and test script. This script is, in  
essence, the runtime that will be executed with the custom SageMaker container  
to generate and test the various AutoGluon ImagePredictor models to 
determine the best- fitting model. Since we are capturing the contents of the code 
cell to a file, we use the %%writefile Jupyter magic command to create a script 
file called train.py: 

%%writefile train.py

import os

import json

import boto3

import json

import warnings

import numpy as np

import pandas as pd

from autogluon.vision import ImagePredictor

warnings.filterwarnings("ignore", 
category=DeprecationWarning)
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prefix = "/opt/ml"

input_path = os.path.join(prefix, "input/data")

output_path = os.path.join(prefix, "output")

model_path = os.path.join(prefix, "model")

param_path = os.path.join(prefix, "input/config/
hyperparameters.json")

7. Within the same code cell, we define a train() function to capture the input 
parameters and fit an ImagePredictor() to training_data. We also capture 
a summary of the training results in a file called FitSummary.csv and save the 
trained model:

def train(params):

    time_limit = int(params["time_limit"])

    presets = "".join([str(i) for i in 
list(params["presets"])])

    channel_name = "training"

    training_path = os.path.join(input_path, channel_
name)

    training_dataset = ImagePredictor.Dataset.from_
folder(training_path)

    predictor = ImagePredictor().fit(training_dataset, 
time_limit=time_limit, presets=presets)

    with open(os.path.join(model_path, "FitSummary.
json"), "w") as f:

        json.dump(predictor.fit_summary(), f)

    predictor.save(os.path.join(model_path, 
"ImagePredictor.Autogluon"))

    return "AutoGluon Job Complete"
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8. Lastly, within the same code cell, we define the main program to load the input 
parameters and execute the model's training by calling the train() function and 
capturing the results:

if __name__ == "__main__":

    print("Loading Parameters\n")

    with open(param_path) as f:

        params = json.load(f)

    print("Training Models\n")

    result = train(params)

    print(result)

9. As with the tabular example, we provide the build instructions for the custom 
container by creating a Dockerfile:

%%writefile Dockerfile

ARG REGION

FROM 763104351884.dkr.ecr.${REGION}.amazonaws.com/
autogluon-training:0.3.1-gpu-py37-cu102-ubuntu18.04

RUN mkdir -p /opt/program

RUN mkdir -p /opt/ml

COPY train.py /opt/program

WORKDIR /opt/program

ENTRYPOINT ["python", "train.py"]

Note
Once again, we are using the autogluon-training container, 
provided by AWS (https://github.com/aws/deep-learning-
containers/blob/master/available_images.md), but 
this time, we will be using the GPU version of the image, denoted by the 
0.3.1-gpu-py37-cu102-ubuntu18.04 image tag. Using the DL 
containers means that we don't have to manually build and configure the 
GPU environment, CUDA libraries(https://blogs.nvidia.com/
blog/2012/09/10/what-is-cuda-2/), and runtime since AWS has 
done this for us.

10. Now, we can use the build CLI to create the customer container:

import boto3

import sagemaker

https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/
https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/
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aws_region = sagemaker.Session().boto_session.region_name

!sm-docker build --build-arg REGION={aws_region} .

The container should take about 10 minutes to build, with the logs from the CodeBuild 
execution redirected to, and displayed in, the Jupyter notebook. 

Note
As was the case with the previous example, make sure to capture the 
Image Uniform Resource Identifier (URI) container from the code cell 
output as we will be using this later. The code cell output should resemble 
this: Image URI: 123456789012.dkr.ecr.us-west-2.
amazonaws.com/sagemaker-studio-d-abcdefghijkl:defa
ult-1234567890123.

As you can see, the procedures executed in the example code closely resemble the 
procedures we ran for the Tabular example, except for the train.py script. Here, we 
make use of AutoGluon's ImagePredictor class, instead of the TabularPredictor 
class, whereby the train() function in this example takes a list of presets and fits 
multiple pre-trained and highly accurate CNN models on the image dataset provided. 
The fit() method automatically tries to improve the classification accuracy of the 
pre-trained models by employing additional hyperparameter optimization techniques, 
with the result being an optimized model and a set of model optimization parameters for 
reproducibility. 

Unlike the Tabular example, we haven't made use of a test() function, since the image 
predictor automatically splits the image dataset into training and validation datasets, using 
a 90%/10% split ratio.

Let's see this in action by creating an experiment in the next section.

Creating an image prediction experiment
For this experiment, we will be using the Rock Paper Scissors dataset that has kindly  
been provided by Laurence Moroney (https://laurencemoroney.com/
datasets.html).

Note
This dataset is licensed under a Creative Commons 2.0 Attribution 2.0 
Unported License (https://creativecommons.org/licenses/
by/2.0/).

https://laurencemoroney.com/datasets.html
https://laurencemoroney.com/datasets.html
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This dataset includes Computer-Generated Imagery (CGI) of different hand gestures, 
indicating either a Rock, Paper, or Scissors pose. Figure 3.5 shows an example of each of 
these poses:

Figure 3.5 – Examples of the Rock Paper Scissors dataset

In the same way that we created a tabular experiment using the SageMaker SDK, we will 
reproduce a similar experiment by working through the following steps in the existing 
Jupyter notebook:

1. The first step is to download the training image data from Laurence Moroney's 
website (https://storage.googleapis.com/laurencemoroney-blog.
appspot.com/rps.zip). Since the dataset is provided in a compressed ZIP  
file, we will also need to extract it locally. The following sample code shows how  
this is accomplished:

import io

import urllib

import zipfile

dataset_url = "https://storage.googleapis.com/
laurencemoroney-blog.appspot.com/rps.zip"

with urllib.request.urlopen(dataset_url) as rps_zipfile:

    with zipfile.ZipFile(io.BytesIO(rps_zipfile.read())) 
as z:

        z.extractall("data")

https://storage.googleapis.com/laurencemoroney-blog.appspot.com/rps.zip
https://storage.googleapis.com/laurencemoroney-blog.appspot.com/rps.zip
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2. Once the dataset has been downloaded, you should see a data folder containing 
the various sub-directories for each type or classification of image. For example,  
you will see a sub-directory called rock, which contains the training images 
depicting the pose for rock. AutoGluon will automatically use these sub-directories 
as the target label with which to classify the images. Next, we configure the  
various parameters for the experiment. Using the following code, we can define 
important parameters, such as the name of the experiment (job_name), the 
specific version to trace the experiment (job_version), the SageMaker default 
S3 bucket to store the datasets and the output artifacts (bucket), and the container 
URI (image_uri):

import sagemaker

import datetime

image_uri = "<Enter the Image URI from the sm-docker 
output>"

role = sagemaker.get_execution_role()

session = sagemaker.session.Session()

bucket = session.default_bucket()

job_version = datetime.datetime.now().strftime('%Y-%m-%d-
%H-%M-%S-%f')[:-3]

job_name = f"autogluon-image-{job_version}"

Note
Make sure to enter the URI from the output of the sm-docker code cell we 
executed in step 8 of the previous section.

3. Now that we have the various experiment parameters configured, we can create the 
AutoGluon estimator. The following example code applies a process similar to the 
tabular example, except for some of the hyperparameters:

from sagemaker.estimator import Estimator

autogluon = Estimator(

    image_uri=image_uri,

    role=role,

    output_path=f"s3://{bucket}/{job_name}",

    base_job_name=job_name,

    instance_count=1,
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    instance_type="ml.p2.xlarge",

    hyperparameters={

        "presets": "medium_quality_faster_train",

        "time_limit": "600",

        "bucket": bucket,

        "training_job": job_name

    },

    volume_size=50

)

4. The final step in executing the experiment is to call SageMaker and have it execute 
the training job. Just as with the Tabular example, the following code executes the 
fit() method on the estimator and tells SageMaker where to get the image data by 
uploading the dataset to S3:

autogluon.fit(

    inputs={

        "training": session.upload_data(

            "data/rps",

            bucket=bucket,

            key_prefix=f"{job_name}/input"

        )

    }

)

Once the fit() method has been called, SageMaker will provision a GPU-based instance 
(ml.p2.xlarge), initialize the GPU-based container image, and execute the train() 
function. As part of this process, the AutoGluon ImagePredictor will determine the 
number of separate image classes, based on the sub-directories in the dataset, and start 
downloading various pre-trained CNN models to execute hyperparameter optimization 
tasks. The specific pre-trained models and hyperparameters are governed by the presets 
we've defined. For example, when creating the estimator, we specified medium_
quality_faster_train as one of the presets. This preset will only use the resnet50 
pre-trained model to provide medium predictive accuracy as well as very fast inference 
and training times. 



Using AutoGluon for image data     109

Note
We chose to use the medium_quality_faster_train preset 
and set a time limit of 10 minutes (600 seconds) to reduce the amount 
of AWS usage costs associated with running the experiment. AutoGluon 
provides a number of alternative presets that will provide a better-quality 
model but incur additional AWS usage costs. You can learn more about 
the additional preset configurations that are available by referencing the 
ImagePredictor documentation (https://auto.gluon.ai/
dev/api/autogluon.task.html#autogluon.vision.
ImagePredictor.fit).

When the training job is complete, the next step is to evaluate the result.

Evaluating the experiment results
As we saw in the tabular example, SageMaker will store the resulting model artifact in S3. 
Continuing in the Jupyter notebook, the following steps will walk you through how to 
evaluate the AutoML experiment:

1. Download and extract the model.tar.gz artifact to a folder called extract 
within the Studio environment by running the following code:

!mkdir extract

sagemaker.s3.S3Downloader.download(autogluon.model_data, 
"./")

!tar xfz ./model.tar.gz -C extract

2. The model artifact contains two files, ImagePredictor.Autogluon and 
FitSummary.json. We can explore the model training summary by running the 
following code and viewing the FitSummary.json file:

import json

with open("extract/FitSummary.json", "r") as f:

    fit_summary = json.load(f)

print(json.dumps(fit_summary, indent=4))

print(f"""Best Model Training Accuracy: {fit_
summary["train_acc"]} \nBest Model Validation Accuracy: 
{fit_summary["valid_acc"]}""")
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After executing the previous code cell, you should see an output similar to the following 
JSON snippet:

...

    "best_config": {

        "model": "resnet50d",

        "lr": 0.01,

        "num_trials": 1,

        "epochs": 50,

        "batch_size": 64,

        "nthreads_per_trial": 128,

        "ngpus_per_trial": 8,

        "time_limits": 600,

        "search_strategy": "random",

        "dist_ip_addrs": null,

        "log_dir": "/opt/program/85cde890",

        "searcher": "random",

        "scheduler": "local",

        "early_stop_patience": 5,

        "early_stop_baseline": -Infinity,

        "early_stop_max_value": Infinity,

        "num_workers": 4,

        "gpus": [0],

        "seed": 206,

        "final_fit": false,

        "wall_clock_tick": 1640286670.9024706,

        "problem_type": "multiclass"

    },

...
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As you can see from this JSON snippet, the resnet50d model provided the best 
configuration. Included in the JSON snippet is the best hyperparameter configuration 
for us to reproduce the model again without having to run another AutoML experiment. 
Additionally, if you review the last few lines of the JSON output, you will see the 
evaluation results of the best model. The following snippet shows an example of the 
model's accuracy metrics:

...

Best Model Training Accuracy: 0.8929924242424242 

Best Model Validation Accuracy: 0.996031746031746

...

From this final snippet, you can see that the resnet50d model achieved an 89% 
accuracy on the training dataset, and a 99% accuracy on the validation dataset. So, 
depending on this use case, these metrics might qualify the model to be put into 
production, and therefore the ImagePredictor.Autogluon artifact, stored in the 
extract folder, can be provided to the application development teams.

So, by means of this example, we have accomplished two main goals:

• We have created an AutoML experiment to address a complex use case (Computer 
Vision), requiring a more complicated ML algorithm, such as a CNN model. Just as 
with the tabular example, we used the AutoGluon library to generate the best-fitting 
model for the image data.

• While the Studio UI provides the capability to run a GPU-based KernelGateway 
(https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-
available-instance-types.html), we further alleviated unnecessary 
AWS costs to run the Jupyter notebook while exploring how to run the AutoGluon 
model and configure the various CUDA libraries for GPU management. Instead, 
we created a training runtime artifact, as a custom image from the pre-built DL 
container, and offloaded the AutoML processing to a SageMaker training job.

In later chapters, we will leverage the technique of building a runtime artifact to further 
streamline the ML automation process. 

https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-available-instance-types.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-available-instance-types.html
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Summary
This chapter introduced you to an open source alternative for creating an AutoML process 
using the AutoGluon Python library. We also used AutoGluon's Tabular predictor to 
advance the Age Calculator use case and demonstrated how to find the best-suited model 
for the tabular dataset. 

We further expanded on the AutoML methodology to address a complicated computer 
vision use case by finding the best-suited CNN model for the Rock Paper Scissors dataset. 
This was accomplished using AutoGluon's Image predictor and further optimized using 
SageMaker's GPU-based ML instances. This chapter also introduced the concept of a 
runtime process artifact, in the form of a container image. 

In the next chapter, we will continue to expound on this concept and introduce how an 
ML runtime artifact can further streamline the ML process, especially when the artifact is 
used in conjunction with other AWS services.



This section will introduce you to the concepts of CI/CD, and how they can be applied 
to the ML process, by combining both DevOps and MLOps methodologies. We will 
showcase the various AWS services that can be used to build and execute a CI/CD 
pipeline for the ML process. This section will walk you through how to construct the CI/
CD pipeline as a cloud-native application using the Cloud Development Kit (CDK). 

Section 2:  
Automating 

the Machine 
Learning Process 
with Continuous 
Integration and 

Continuous  
Delivery (CI/CD)



This section comprises the following chapters:

• Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for  
Machine Learning

• Chapter 5, Continuous Deployment of a Production ML Model



4
Continuous 
Integration  

and Continuous 
Delivery (CI/CD) for 

Machine Learning
While working through the code examples, in both Chapter 2, Automating Machine 
Learning Model Development Using SageMaker Autopilot, and Chapter 3, Automating 
Complicated Model Development with AutoGluon, for the age calculator use case, you 
would've noticed a common trend that highlighted a drawback in using either the 
Autopilot or AutoGluon methodologies – specifically, that there is a disconnect in both 
processes between creating a production-grade ML (machine learning) model and then 
actually deploying the model into production.
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Whether an ML practitioner leverages the CRISP-DM methodology or an AutoML 
methodology, the scope of their responsibilities ends once they have produced an optimal 
ML model. After their task is complete, the ML practitioner simply hands the model over 
to the various teams responsible for deploying and managing the model in production. 
This handover creates a disconnect in the overall process and leads to further challenges 
when trying to automate the overall process. More importantly, this disconnect can often 
impact the overall delivery timeline and cause a delay in the successful completion of the 
overall project.

The primary goal of this chapter is to highlight one of the ways to bridge this apparent gap 
in model deployment and further automate the process, using a Continuous Integration 
and Continuous Delivery (CI/CD) methodology. I'm also going to introduce you to the 
concept of an agile, cross-functional team by showing you how an ML practitioner can 
better interface with the application development and operations teams, and by the end of 
the chapter, you will see how this methodology can consistently create production-grade 
ML models and deploy them. To accomplish this, we will focus on the following topics:

• Introducing the CI/CD methodology

• Automating ML with CI/CD

• Creating a CI/CD pipeline on AWS

Technical requirements
This chapter will use the following resources:

• A web browser (for the best experience, it is recommended that you use the Chrome 
or Firefox browser).

• Access to the AWS account that you used in Chapter 3, Automating Complicated 
Model Development with AutoGluon.

• Access to an Integrated Development Environment (IDE) if you choose not to use 
the AWS Cloud9 service.

• We will once again be working within the usage limits of the AWS Free Tier to avoid 
exceeding unnecessary costs.

• Source code example, access policy documents, and Jupyter notebooks are provided 
in the companion GitHub repository for this chapter (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/tree/
main/Chapter04).

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter04
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter04
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter04
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Introducing the CI/CD methodology
The CI/CD pattern has become a very popular methodology to automate the development 
and release of software into production. The main idea behind this practice is to make 
incremental, reliable, and frequent software code changes, and then deploy these changes 
automatically and seamlessly into production. 

While this practice has been around for several years and employed by many DevOps 
engineers, the practice is starting to gain traction within the ML practitioner community, 
in the form of MLOps or Machine Learning Operations. However, before diving into 
how this methodology can be applied to ML, let's familiarize ourselves with the specific 
steps of the process, starting with CI.

Introducing the CI part of CI/CD
At a high level, the CI part of CI/CD comprises four key stages; Figure 4.1 shows a  
high-level overview of what these stages are:

Figure 4.1 – An overview of the stages in CI
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As you can see from Figure 4.1, the CI phase comprises the following key stages:

1. Source Artifacts
2. Asset Build
3. Integration Testing
4. Release

Let's review exactly what the steps of this process (or pipeline) entail.

Creating or updating source artifacts
The source artifacts stage doesn't really perform a specific task within the CI process, 
other than to start the entire process. In essence, this stage serves as a repository  
where developers store the source code or the pieces of software that comprise the 
production application. Adding new software artifacts (such as new features) or  
updating existing software artifacts (such as bug fixes) into this repository triggers  
the start of the entire pipeline.

For example, when application developers make code changes, add new features, or fix 
application bugs, they add these updates to the shared version control system (such as 
GitHub, Bitbucket, or AWS CodeCommit). These saved changes are called commits, with 
each commit having an associated description or message that explains why a particular 
change was made. These commits sum up the history of all the changes so that other 
contributors can understand what's been done to the code and why. Once a commit is 
created, the developer can open a Pull Request (PR). PRs are the nucleus of developer 
collaboration in that they start a discussion between team members over proposed 
changes and request that other developers review and pull the updates into their branch 
of the code repository. Once these additions are approved, they are then merged into the 
main branch of the repository to initiate or trigger a build of an updated application.

Note
Software developers don't simply add random features or updates to a 
repository; they must first test the new code in their local or cloud-based 
development environment to validate that the new code is functional. This 
process is commonly referred to as unit testing.
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Building the pipeline assets
The next stage of the pipeline is where the various software artifacts (and their 
dependencies) are compiled or built. Essentially, these assets are, at a high level, the result 
of building the source code artifacts into an asset that is specific to the current release, 
or, in other words, assets that are specific to the current execution of the pipeline. For 
example, the build stage compiles C++ code into a release binary or the build stage can be 
used to build a Docker container image.

Testing the pipeline assets
Once the pipeline assets have been built, the next stage of the pipeline is to not only test 
that these assets are functional but also test that they fit into the overall architecture or 
application. It's at this stage that developers leverage testing scripts, automated testing, or 
even a testing architecture (called a test or QA environment) to perform system testing. 
The primary goal of this step is to verify that built assets will function correctly once they 
have been deployed into production. By testing the overall system, application developers 
can be assured that the overall integrity of the solution, in its entirety, is maintained once 
it's deployed into production.

Approving the release
Once the overall system or application integrity has been tested, the final part of the CI 
phase is to approve it for production. This stage of the process can either consist of a 
person (or team) approving the results of the test or, in the case of frequent code changes, 
be automated. 

Once the release is approved, the CI phase of the pipeline is complete, and the release  
can then move onto the CD phase for production deployment. Let's review what the CD 
phase entails.

Introducing the CD part of CI/CD
The CD phase of the pipeline is just a continuation of the CI phase and is comprised of 
four individual stages that focus on the operational tasks of the production application. 
The four stages that constitute the CD phase of the CI/CD pipeline are as follows:

1. Asset Deployment
2. Operations
3. Monitoring
4. Operational Feedback
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Figure 4.2 shows an overview of these four stages:

Figure 4.2 – An overview of the stages in CD

Let's look at what these stages entail.

Deploying the release into production
When deploying the built and tested software into production, there are two primary 
components of the process. The first component is a deployment process, while the second 
component is a deployment strategy.

For example, a deployment strategy may involve deploying a duplicate application  
into production and, over a period of time, redirecting new usage requests to the new 
release, while eventually phasing out the older release. This strategy is often called a blue/
green deployment. 
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On the other hand, a deployment process is an underlying mechanism of putting a 
new release into production. This process varies depending on the type of software or 
compiled asset being deployed. For example, if the deployed asset is a container image, 
the deployment process might involve downloading and running the container image by 
means of a container orchestration solution, such as Kubernetes.

Managing and monitoring the solution
To ensure that the solution functions the way it is supposed to, there are multiple 
tasks that are typically performed at the operations stage, which can also overlap with 
application monitoring tasks. So, typically, the operations and monitoring tasks are 
performed by the infrastructure or IT team at the same time. For example, these  
tasks might include updating underlying operating system patches, or ensuring that  
the architecture automatically scales to address an increase in usage by monitoring 
application performance.

Production feedback reporting
The feedback stage is also an extension of the management and monitoring tasks; 
however, it also involves parsing the various logs and reporting dashboards to isolate 
any failures, bugs or, issues from the production application. For example, this stage 
can involve looking for application errors from the applicable logs and generating a bug 
report. However, simply cataloging the bugs accomplishes nothing if the information is 
not communicated back to the application developers. 

Therefore, the CI/CD process does not end at this stage. So, in the next section, we will 
look at how this feedback report is used to close the loop and ensure that the CI/CD 
process lives up to its namesake.
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Closing the loop
Figure 4.3 shows why the CI/CD methodology is effective for deploying incremental, 
reliable, and frequent software code changes into production:

Figure 4.3 – Creating a continuous process

As Figure 4.3 highlights, providing production feedback to developers, in essence, closes 
the loop, creating a continuous process whereby the developers can address the errors 
from the report, fix the source code, and update the artifact repository. Upon updating the 
artifact repository, a new release change of the CI/CD pipeline is triggered, resulting in the 
fixes being deployed into production.

So, as you can see, the CI/CD methodology inherently provides a continuous mechanism 
to deploy new software, software updates, or software fixes into production. Additionally, 
it should be evident that a successful implementation of the CI/CD pipeline requires 
multiple different teams, from software developers to infrastructure and IT teams.

This then begs the question, would implementing a CI/CD methodology for ML address the 
deployment limitations highlighted at the outset? 

In the next section, we will answer this question, by exploring how the CI/CD 
methodology can be adapted to address an ML use case.
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Automating ML with CI/CD 
If you recall from Chapter 1, Getting Started with Automated Machine Learning on AWS,  
I highlighted that the typical ML process is manual and iterative. If you compare  
Figure 1.2, showing a realistic overview of the ML process, with Figure 4.3, showing  
the CI/CD process, I'm sure you will note that there are significant dissimilarities between 
the two processes: 

Figure 4.4 – A realistic overview of the ML process

However, since the focus of this chapter is to address the limitations of both the typical 
ML process and the AutoML methodology, specifically when it comes to bridging the gap 
for model deployment, there are several similarities between these processes. So, if you 
take a deployment-centric approach (Figure 4.3), as opposed to an experiment-centric 
approach (Figure 1.2), the procedure for deploying an optimized model into production is 
exactly the same as the procedure for deploying software code changes into production.
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Taking a deployment-centric approach
Figure 4.5 shows what the resultant pipeline would look like if we were to take  
a deployment-centric approach to the ML process, using a software release  
CI/CD methodology:

Figure 4.5 – Model deployment using CI/CD

As Figure 4.5 shows, by treating a model deployment as a change release, we can automate 
the process using the CI/CD methodology. To further elaborate on exactly how this works, 
let's review each step of the process.

Building model artifacts
There are several components that can be considered model artifacts. For example, there 
is the algorithm code itself, as well as the various routines that leverage the algorithm code 
for training and evaluation. So, unlike the CI/CD pipeline that handles software code 
releases, there is no code compilation in the ML version of the CI/CD pipeline.
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However, we can apply a similar methodology to the ones we used in Chapter 3, 
Automating Complicated Model Development with AutoGluon. By creating a container 
image with the relevant model artifacts, we can compile the image as a holistic model 
artifact. For example, if you refer to the Building a deep learning container section in 
Chapter 3, Automating Complicated Model Development with AutoGluon, you will recall 
that we created a train.py file to capture the model training and testing runtimes. We 
then built a Dockerfile deep learning container to capture the image build instructions 
so that we could use the sm-docker-build CLI (command-line interface) utility to 
compile the image as a holistic model artifact. 

So, by storing the model artifacts in the pipeline repository, we can start the pipeline 
release cycle and compile or build a container image from the model artifacts.

Building data artifacts
Preparing training data is not an actual stage within the software release pipeline. 
However, if we view the task as building or compiling appropriate model training data and 
supplying a suitable runtime artifact to pre-process the data, then the data build task can 
then be thought of as a pipeline build task.

Note
You may recall from the previous section that a CI/CD release pipeline is 
triggered when code is added to or updated within a source code repository. 
This fact highlights a potential limitation in using the CI/CD methodology to 
deploy ML models. Since training data is not typically classified as source code, 
updating raw or training data won't trigger the release pipeline.

Building models
Training a model with the correct preprocessed data, as well as the correct parameters, 
can once again be viewed as building or compiling an optimized model. So, by changing 
our perspective on model training and optimization, and just like the data processing step, 
by supplying a suitable runtime artifact to execute the training process, we can treat the 
model training task as a pipeline build task.
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Approving the model release
Just as with the software release pipeline, it follows that whether we are approving  
a software release for production or evaluating a trained model's performance, both  
of these tasks are in essence the same. In the case of a trained model, its performance  
is evaluated against the business criteria to determine whether or not it can be  
considered production-grade. If the model meets the business criteria, it can be  
released into production.

Deploying the model as a SageMaker endpoint
Once the model has been evaluated and approved for production, it can easily be  
deployed as a SageMaker hosted endpoint. SageMaker endpoints are essentially an 
endpoint address that can represent multiple models or, alternatively, multiple model 
versions (called variants). This translates to the fact that a SageMaker endpoint can 
inherently support a blue/green deployment strategy.

Releasing a new version of a trained model into an existing production endpoint means 
that SageMaker will automatically start redirecting new requests to the new model version 
while systematically phasing out the older model. 

Therefore, incorporating SageMaker endpoints into the CI/CD pipeline provides the ML 
practitioner with the same deployment strategies as the software engineer.

Managing the SageMaker endpoint
Another compelling reason to deploy the released model as a SageMaker hosted endpoint 
is the fact that the SageMaker endpoint is an AWS managed service; therefore, there is no 
real need to manage any underlying operating system patches. 

Additionally, hosted endpoints can be configured to automatically scale out as well as scale 
in, based on the number of usage requests. 

Therefore, offloading the model deployment task to SageMaker significantly minimizes 
the operational overhead of managing the deployed model in production.
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Monitoring the model's performance using Amazon SageMaker 
Model Monitor
Unlike the software release pipeline where logs, dashboards, and reports are used 
to provide feedback to developers, SageMaker endpoints can be incorporated into 
Amazon SageMaker Model Monitor to automatically verify that the production model is 
performing its intended purpose.

Amazon SageMaker Model Monitor statistically compares the responses from the 
production model against a baseline to automatically determine whether or not it is 
drifting from its intended purpose. If any of these constraint violations are detected,  
the ML practitioner can be alerted in order to address them as part of the next release  
of the pipeline, thus closing the feedback loop and making the entire deployment  
process continuous. 

Note
Amazon SageMaker Model Monitor is capable of automating the monitoring 
tasks of the pipeline, provided endpoint data capture is enabled (https://
docs.aws.amazon.com/sagemaker/latest/dg/model-
monitor-data-capture.html) and a baseline is created (https://
docs.aws.amazon.com/sagemaker/latest/dg/model-
monitor-create-baseline.html).

As you can see, it is possible to use the CI/CD methodology to address the model 
deployment limitations highlighted at the outset, using a deployment-centric approach. 
But where do ML experiments fit into this methodology? 

In the next section, we will explore how the process of finding the best model and its 
parameters can be incorporated into a CI/CD pipeline.

Creating an MLOps methodology
In the first section, Introducing the CI/CD methodology, I noted that software developers 
don't simply add new features or random updates to a code repository. They must perform 
a unit test to ensure that updates are functional before deploying changes into production.

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-create-baseline.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-create-baseline.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-create-baseline.html
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This outcome corresponds to the overall objective behind performing an ML experiment. 
The goal behind the ML experiment is to get the best candidate model, with its associated 
parameters, before deploying it into production. Integrating the ML experiment into 
the development and operate methodology of DevOps is the basis of an MLOps 
methodology; Figure 4.6 provides an overview of the process:

Figure 4.6 – An MLOps process overview

Figure 4.6 clearly shows how an ML practitioner can take a two-phased approach to 
automating the ML process using the MLOps methodology. By using an AutoML 
methodology to automate the ML experiment, and generate the best candidate  
artifacts, the resultant artifacts can be submitted into the source repository to trigger  
a production-grade deployment using the CI/CD pipeline.

So, now we have the necessary background on how the CI/CD methodology functions 
and how to integrate ML into the process, we can now apply these techniques to the  
age calculator use case. However, before diving into a hands-on example, in the next 
section, we are going to review the various capabilities that AWS provides to create a  
CI/CD pipeline.



Creating a CI/CD pipeline on AWS     129

Creating a CI/CD pipeline on AWS
AWS provides an entire suite of developer tools that address the many requirements for 
hosting code, and building and deploying pipeline assets. To create a CI/CD pipeline 
on AWS, we will be making use of three primary services within the AWS developer 
toolchain. To further simplify the construction and automation of the pipeline, we will 
make use of two additional services within the AWS development suite. 

Note
To learn more about the development tools available from AWS, you can 
reference the product page (https://aws.amazon.com/products/
developer-tools/). 

Let's review the important services that make up the CI/CD pipeline.

Using the AWS CI/CD toolchain
The three core components that make up a CI/CD pipeline are as follows:

• A component to store the various pipeline artifacts

• A component process to build the various pipeline assets

• A component to automate the pipeline execution

To facilitate creating these three core components, AWS provides dedicated services to 
match the required capabilities of each component, namely the following:

• AWS CodeCommit

• AWS CodeBuild

• AWS CodePipeline

While there are other CI/CD pipeline components and associated AWS services, we will 
be focusing on these three to provide the necessary capabilities for ML release automation.

https://aws.amazon.com/products/developer-tools/
https://aws.amazon.com/products/developer-tools/
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AWS CodeCommit
CodeCommit (https://aws.amazon.com/codecommit/) is a cloud-based source 
code and version control service. In essence, it is the AWS-managed alternative to GitHub. 
We will be using CodeCommit to store all the various pipeline and ML model artifacts.

Note
If you are unfamiliar with the concept of source code and version control, AWS 
provides an overview on their website (https://aws.amazon.com/
devops/source-control/).

AWS CodeBuild
CodeBuild (https://aws.amazon.com/codebuild/) is the heart of the continuous 
integration phase of the CI/CD pipeline. This service is responsible for compiling or 
building the various artifacts into usable pipeline assets. In the case of ML release 
automation, CodeBuild builds the required model training and serves runtimes, as well as 
executing the data processing, model training, and model evaluation processes. 

AWS CodePipeline
CodePipeline (https://aws.amazon.com/codepipeline/) handles the 
continuous deployment phase of the CI/CD pipeline. This service contains the structure of 
the pipeline and is responsible for automating the task of releasing the trained model into 
production as a SageMaker hosted endpoint. 

Now that we have a brief overview of the core AWS services and their purposes, in 
the next section, I'll highlight some additional AWS capabilities to build the service 
infrastructure.

Working with additional AWS developer tools
We will be making use of two additional AWS developer tools, and while these services 
are not critical to the success of a CI/CD implementation, they make it easier to develop 
an entire solution. For example, we will use the AWS Cloud Development Kit (CDK) to 
codify the entire solution. Thus, not only are the pipeline artifacts sourced and managed 
as code but also the pipeline itself and the associated AWS infrastructure. This makes the 
entire solution a cloud-native application. 

https://aws.amazon.com/codecommit/
https://aws.amazon.com/devops/source-control/
https://aws.amazon.com/devops/source-control/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codepipeline/
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Note
You will see in later chapters how creating the entire solution as a cloud-native 
application can further streamline the end-to-end process for ML automation. 
As you will see, the CDK framework (https://aws.amazon.com/
cdk/) will play a fundamental part in enhancing the process. If you are new 
to the notion of using the CDK to codify a cloud-native solution, it is highly 
recommended that you review the CDK documentation (https://docs.
aws.amazon.com/cdk/api/latest/), refer to the samples in the 
CDK GitHub repository (https://github.com/aws-samples/
aws-cdk-examples), and look at the official AWS CDK workshop 
(https://cdkworkshop.com/).

To ensure consistency and ease of use for the hands-on example, we will make use 
of AWS's cloud-based IDE service called Cloud9 (https://aws.amazon.com/
cloud9/). While it is possible to run through the hands-on example with a local IDE, 
Cloud9 has all the associated tools, programming libraries, and utilities pre-installed. 

We now have an overview of the CI/CD process, how it can be applied to automatically 
release ML models into production, and the AWS services we can use to build the solution 
as a cloud-native application. So, let's apply what we've learned to the age calculator use 
case by means of a hands-on example.

Creating a cloud-native CI/CD pipeline for a production 
ML model
As a guide to successfully implementing a CI/CD pipeline for the age calculator use case, 
we will be performing the following tasks:

1. Preparing the development environment
2. Creating the pipeline artifact repository
3. Developing the application artifacts
4. Deploying the pipeline application
5. Creating the ML model artifacts
6. Executing the automated ML model deployment

https://aws.amazon.com/cdk/
https://aws.amazon.com/cdk/
https://docs.aws.amazon.com/cdk/api/latest/
https://docs.aws.amazon.com/cdk/api/latest/
https://github.com/aws-samples/aws-cdk-examples
https://github.com/aws-samples/aws-cdk-examples
https://cdkworkshop.com/
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Furthermore, as we build out the solution, using the previous steps, I will break the 
various tasks down into two separate categories. One category will center around the 
various tasks performed by the application development team, and the other category 
will encompass the tasks that are typically performed by the ML practitioner. My primary 
objective in doing this is to highlight the roles of a cross-functional team.

Effective coordination between the ML practitioners and the DevOps engineering team 
establishes the fundamental foundation for successful model deployment. This process  
of working together at a foundational level, thus establishing a cross-functional team,  
is the primary success criteria for successful model deployment. 

By the end of this section, you will see that it's not only the toolchain used or even 
the execution of the pipeline itself that determines the successful implementation of a 
production-grade ML model; rather, the key element is a cross-functional team.

Now, let's get started by creating the Cloud9 development environment.

Tip
Reference files for the following code examples can be found in the companion 
GitHub repository (https://github.com/PacktPublishing/
Automated-Machine-Learning-on-AWS/tree/main/
Chapter04/) for this chapter.

Preparing the development environment
To begin, we will start by looking at this undertaking from the perspective of the DevOps 
engineer, by preparing the Cloud9 environment for application development. The 
following steps will walk you through this process:

1. Log into the AWS account you've been using and open the Cloud9 management 
console (https://console.aws.amazon.com/cloud9) for your supported 
AWS Region.

2. Create a Cloud9 environment by clicking the Create environment button.
3. When prompted, provide a name and an optional description. Then, click the  

Next step button. Figure 4.7 shows an example of naming the environment:

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter04/
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter04/
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter04/
https://console.aws.amazon.com/cloud9
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Figure 4.7 – Naming the Cloud9 environment

4. On the Configure settings page, accept the default Environment settings by 
clicking the Next step button.

Note
Accepting the default settings will ensure that the Cloud9 environment is 
eligible for the AWS Free Tier. However, it is recommended that you use a 
t3.small instance, which is not eligible for the Free Tier.

5. On the Review page, confirm the settings and click Create environment. After  
a few minutes, you will be redirected to the IDE web interface.

Tip
To familiarize yourself with the IDE and how to use the various panels, review 
the basic tour documentation on the AWS website (https://docs.aws.
amazon.com/cloud9/latest/user-guide/tutorial-tour-
ide.html). 

https://docs.aws.amazon.com/cloud9/latest/user-guide/tutorial-tour-ide.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/tutorial-tour-ide.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/tutorial-tour-ide.html
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6. Now that the Cloud9 workspace is ready, we will need to provide the appropriate 
access to the various AWS services we will be using. To configure the permissions, 
click on the A icon in the top right-hand corner of the IDE and select Manage EC2 
Instance. Figure 4.8 shows an example of what the process looks like:

Figure 4.8 – Manage EC2 Instance

7. A new web browser tab will open, taking you to the EC2 management  
console, displaying the Cloud9 EC2 instance. Select your Cloud9 instance  
by clicking the checkbox next to the instance name. Then, click the Actions  
button, and from the drop-down menus, select the Security option. After the 
security menu expands, select Modify IAM role. Figure 4.9 shows an example  
of the expanded menu settings:

Figure 4.9 – The EC2 instance security menus

8. When the Modify IAM role page opens, click the Create new IAM role link to 
open the IAM management console in a new browser tab. Figure 4.10 shows an 
example of the Modify IAM role page:
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Figure 4.10 – Modify IAM role

9. Within the IAM management console, click the Create role button to create a new 
instance administrator role.

10. On the Create role page, select EC2, under the Common use cases section, and 
then click the Next: Permissions button. Figure 4.11 shows an example of selecting 
the EC2 use case:

Figure 4.11 – The EC2 common use case
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11. Using the provided search bar in the Attach permissions policies section, enter 
administrator as the search term. You will see the various policies containing 
administrator listed. Select the checkbox next to AdministratorAccess and 
then click the Next: Tags button. Figure 4.12 shows an example of selecting the 
AdministratorAccess policy:

Figure 4.12 – Selecting the AdministratorAccess policy

12. Skip the Add tags (optional) section by clicking on the Next: Review button.
13. On the Review page, enter an appropriate role name and click the Create role 

button. Figure 4.13 shows an example of providing a role name:

Figure 4.13 – Providing a role name
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14. Once the role has been created, you can close the IAM console and return to the 
Modify IAM role tab from step 8. 

15. Click the refresh icon and, using the dropdown, select the role you created in  
step 13. Figure 4.14 shows an example of what the page looks like:

Figure 4.14 – Selecting the IAM role

16. Click the Save button.
17. Go back to the browser tab displaying the Cloud9 workspace and attach the newly 

created role by clicking on the gear icon in the top right-hand corner.
18. In the workspace Preferences tab, select the AWS SETTINGS option and disable 

the AWS managed temporary credentials switch. Figure 4.15 shows an example of 
what the final AWS Settings page will look like:

Figure 4.15 – Disabling AWS managed temporary credentials
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Now that the development environment has been set up, we can proceed to the next task 
of creating the pipeline artifact repository.

Creating the pipeline artifact repository
Using the development environment, we will now create a CodeCommit repository to 
store the various pipelines and, eventually, the ML model artifacts. Although there are 
multiple ways to create a CodeCommit repository, we will be using the AWS CLI, which 
is already installed and configured in the Cloud9 workspace. The following steps will walk 
us through this process:

1. Using the terminal pane (the bottom section of the Cloud9 workspace), run the 
following CLI command to ensure that the CLI region settings are correct. Make 
sure to replace <REGION> with the AWS Region you are currently using:

$ aws configure set region <REGION>

2. Create a CodeCommit repository called abalone-cicd-pipeline, using the 
following command:

$ aws codecommit create-repository --repository-name 
abalone-cicd-pipeline --repository-description "Automated 
ML on AWS using CI/CD"

3. Next, we capture the URL for the newly created repository in order to clone it. Run 
the following command to create the CLONE_URL parameter:

$ CLONE_URL=$(aws codecommit get-repository --repository-
name abalone-cicd-pipeline --query "repositoryMetadata.
cloneUrlHttp" --output text)

4. Run the following command to clone the empty repository, locally, in the Cloud9 
workspace:

$ git clone $CLONE_URL

You should now see the abalone-cicd-pipeline folder in the left-hand navigation 
pane of the Cloud9 workspace. Now that we have our project repository, we can proceed 
to the next task of building out the application artifacts.

Developing the application artifacts
Before we can start codifying the entire solution, we need to configure the application 
environment. The next set of steps will configure the environment to use the AWS CDK.



Creating a CI/CD pipeline on AWS     139

Creating and configuring the CDK project
If you refer to the CDK documentation (https://docs.aws.amazon.com/cdk/
latest/guide/getting_started.html), there are certain prerequisites that need 
to be configured before using the CDK. Fortunately, AWS assists with these prerequisites 
by pre-configuring them within the Cloud9 IDE. So, all we need to do before building out 
the application is to update to the latest version of the CDK and set up the environmental 
variables, following these steps:

Note
At the time of writing, the latest version of the AWS CDK is 2.3.0 (build 
beaa5b2). In order to maintain the functionality of the code within this 
example, we will use version 2.3.0 of the CDK:

1. Before building the codified CDK application, run the following command to 
ensure that we have a consistent version of the CDK installed:

$ npm install -g aws-cdk@2.3.0 --force

2. Run the following command to confirm that version 2.3.0 is the current version of 
the CDK:

$ cdk --version

Note
Make sure to remember the version of the CDK, as this information will be 
required in a later step.

3. Next, we run the following set of commands to configure some of the CDK 
environment variables, such as our AWS account and the AWS Region we are 
currently using:

$ export CDK_DEFAULT_ACCOUNT=$(aws sts get-caller-
identity --query "Account" --output text)

$ echo "export CDK_DEFAULT_ACCOUNT=$(aws sts get-caller-
identity --query "Account" --output text)" >> ~/.bashrc 

$ export CDK_DEFAULT_REGION=$(aws configure get region) 

$ echo "export CDK_DEFAULT_REGION=$(aws configure get 
region)" >> ~/.bashrc
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4. Create an empty CDK project and specify Python as the project's programming 
language by running the following command: 

$ cd abalone-cicd-pipeline && cdk init --language python

5. Since the CDK Python project will interface with the artifact repository, we can 
create the primary branch for the project using the following commands:

$ git add –A

$ git commit -m "Started CDK Project"

$ git branch main

$ git checkout main

6. Next, we can configure the Python environment by running the following 
commands:

$ source .venv/bin/activate

$ python -m pip install --upgrade pip pylint boto3

$ pip install -r requirements.txt

With the CDK project created and configured, we can now move on to building the 
application artifacts.

Creating the application
Now that we have prepared the CDK project environment, it's at this stage of the process 
that cross-team collaboration becomes crucial to the continued success of the project. We, 
as the application developers, now need to work with the ML practitioner team to assess 
the following key elements of the application:

• We need to understand what the final applications will look like. In this case, the 
final application will be a production-grade ML model, deployed as a SageMaker 
hosted endpoint.

• We also need to understand what the ML practitioner team will be contributing as 
their pipeline artifacts. In this case, the ML practitioner team will deliver a customer 
SageMaker container image, such as the container images we worked with in 
Chapter 3, Automating Complicated Model Development with AutoGluon.

• We will need to understand how to build or compile these artifacts. In essence, we 
need to understand what the build runtime logic will entail. In this case, the ML 
practitioners will want to use SageMaker to process the training data, train the ML 
model, and evaluate its performance against the business criteria for the use case.
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• We will need to understand what dependencies are required by the ML practitioner 
artifacts. For instance, the model data processing and training components will 
require access to the raw source data. 

• Just as important, we need to assess what security and access requirements are 
needed by the relevant AWS services, as well as the various teams creating and 
updating the application artifacts.

Once we have captured, reviewed, and all team members have signed off on these 
requirements, we can go ahead and build out the application. The first part of the overall 
application we are going to develop is the final piece, the SageMaker hosted endpoint.

Note
It may seem counterintuitive to start the application development process by 
focusing on the final piece of the pipeline – in this case, the production-grade 
model. In most situations, it is a good practice to start the development of 
an automated workflow by focusing on the outcome. This way, you can work 
backward, from the end result, to understand and develop the necessary code 
that eventually produces the final outcome.

Codifying the SageMaker endpoint
Since this may be your first time working with the CDK, code for the different  
constructs has already been provided for you in the companion GitHub repository  
for this chapter. Use the following steps to add the SageMaker endpoint construct into  
the CDK environment:

1. Using the terminal windows within the Cloud9 workspace, run the following 
command to clone the companion GitHub repository:

$ cd ~/environment/ && git clone https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS src

2. Copy the pre-built abalone_endpoint_stack.py file into the abalone_
cicd_pipeline folder with the following commands:

$ cd ~/environment/abalone-cicd-pipeline

$ cp ~/environment/src/Chapter04/cdk/abalone_endpoint_
stack.py abalone_cicd_pipeline/
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3. Using the left-hand navigation panel of the Cloud9 workspace, expand the 
abalone-cicd-pipeline folder, and then expand the abalone_cicd_
pipeline folder to reveal the abalone_endpoint_stack.py file.

4. Double-click on the abalone_endpoint_stack.py file so that we can review 
the code.

Now that the abalone_endpoint_stack.py file is open in the Cloud9 editor, we can 
walk through the code to review how we build the hosted endpoint. The first thing you 
will see once opening the file is that we need to import the necessary CDK modules for 
our construct and the aws_sagemaker modules. We then initialize a Python class for 
EndpointStack() as a cdk.Stack construct; thus, we are essentially instantiating a 
new CloudFormation stack with the relevant SageMaker endpoint resources.

Note
If you are unfamiliar with what a CloudFormation stack is, or how the CDK 
initializes the AWS resources as components of the stack construct, you 
can refer to the AWS documentation for stacks (https://docs.aws.
amazon.com/AWSCloudFormation/latest/UserGuide/
stacks.html) and constructs (https://docs.aws.amazon.com/
cdk/latest/guide/constructs.html).

Next, we define parameters for the CloudFormation stack, such as the name of the S3 bucket 
housing our data or the bucket_name parameter. As you will see later in this chapter, these 
parameters will be supplied to the stack as outputs from a pipeline execution.

After declaring the various CloudFormation stack parameters, we instantiate a 
representation of the trained model, using the CfnModel() module from the aws_
sagemaker library. Here, we define the necessary parameters to create to tell SageMaker 
about the trained model so that it can be hosted as a SageMaker endpoint.

Note
For more information on the different parameters required to represent a 
trained model, you can refer to the CfnModel documentation (https://
docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.
aws_sagemaker/CfnModel.html).

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/cdk/latest/guide/constructs.html
https://docs.aws.amazon.com/cdk/latest/guide/constructs.html
https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnModel.html
https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnModel.html
https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnModel.html
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After defining the model, we specify the necessary configuration parameters required to 
actually host the trained model. This is done using the CfnEndpointConfig() module 
from the aws_sagemaker library. Here, we define the type and amount of compute 
resources to host the model. You can see that we also specify the data_capture_
config parameter to tell SageMaker where to store the inference request payload coming 
into the hosted model, as well as the inference response output coming from the hosted 
model. This way, we are essentially logging the endpoint usage so that we can monitor the 
model in production.

Lastly, we define the endpoint itself, using the CfnEndpoint() module. Here, we define 
a name for the endpoint and specify the endpoint configuration to use.

Next, we will build the runtime logic to retrieve the specific CfnParamater() values 
from the pipeline execution.

Configuring the deployment parameters
In order to provide the required CfnParamater() parameters to the 
EndpointStack() construct, as shown in the previous steps, we need to capture and 
store the pipeline execution parameters in a JSON file called params.json. You will see 
that once we define the actual pipeline construct, this file then serves as the input to the 
endpoint CloudFormation stack. The following steps show you how to copy the runtime 
script for review:

1. Using the terminal within the Cloud9 workspace, create a folder to store the 
pre-built scripts by running the following command:

$ cd ~/environment/abalone-cicd-pipeline/

$ mkdir –p artifacts/scripts/

$ cp ~/environment/src/Chapter04/scripts/deploy.py 
artifacts/scripts/

2. Using the left-hand navigation panel of the Cloud9 workspace, expand the newly 
created artifacts folder.

3. Now, expand the scripts folder and double-click on deploy.py for review.

With the deploy.py file open in the Cloud9 editor panel, we can review just how to get 
the execution parameters from a running pipeline and create the params.json file.
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After importing the necessary Python libraries for the script, you will see from the 
following code snippet that we configure the AWS SDK for Python to access both the 
SageMaker and CodePipeline SDK clients after we've set up logging and configured our 
global environment parameters:

...

logger = logging.getLogger()

logging_format = "%(levelname)s: [%(filename)s:%(lineno)s] 
%(message)s"

logging.basicConfig(format=logging_format, level=os.environ.
get("LOGLEVEL", "INFO").upper())

codepipeline_client = boto3.client("codepipeline")

sagemaker_client = boto3.client("sagemaker")

pipeline_name = os.environ["PIPELINE_NAME"]

model_name = os.environ["MODEL_NAME"]

role_arn = os.environ["ROLE_ARN"]

...

Setting up logging is important for us to verify how the script is being executed and  
ensure that it's functioning correctly, and if not, logging errors will allow us to 
troubleshoot and debug. 

Next, we've created two Python functions, namely the get_execution_id() and 
get_model_artifact() functions. These functions are used in the __main__ 
program to get the unique pipeline execution ID from CodePipeline, as well as the name 
of the trained ML model from the SageMaker model registry.

The __main__ program then takes the parameters returned by both the get_
execution_id() and get_model_artifact() functions to populate the params.
json file. We will use the pipeline execution ID for asset versioning. As you will see later, 
we will append this ID to the various assets, specific to the release, in order to track the 
model's lineage from source to the release.

Now that we have the necessary Python code to query the pipeline, and have retrieved 
the necessary execution parameters to supply them to the deployment construct, we have 
essentially created the necessary artifacts we need to run the continuous deployment 
phase of the pipeline. Next, we can work on the artifacts required by the continuous 
integration phase of the pipeline.



Creating a CI/CD pipeline on AWS     145

Configuring the build artifacts
As we continue with the backward-working methodology, in this next step, we are going 
to create the artifacts needed to build, train, and evaluate the ML model. The following 
steps will walk you through how to do this:

1. Using the terminal within the Cloud9 workspace, run the following command to 
copy the pre-built build.py script into the scripts folder:

$ cd ~/environment/abalone-cicd-pipeline/

$ cp ~/environment/src/Chapter04/scripts/build.py 
artifacts/scripts/

2. Using the left-hand navigation panel of the Cloud9 workspace, double-click on 
build.py for review.

As you saw with the build.py file, the deploy.py script imports the necessary  
Python libraries, sets up logging, and also defines the same get_execution_id()  
and get_model_artifact() Python functions. We also create specific Python 
functions to initiate the appropriate stage of the ML process. For example, to train 
the ML model, we call the handle_training() function. This function makes the 
necessary API call to SageMaker to start the training job. As you can see, we apply the 
same approach to both the handle_data() function to preprocess the training and 
validation datasets, as well as the handle_evluation() function to evaluate the 
trained ML model's performance. 

We also create a new function called handle_status(), which acts as a wrapper for 
each step of the ML process. The following code snippet shows the handle_status() 
Python function:

...

def handle_status(task=None, job_name=None):

    if task == "preprocess" or task == "evaluate":

        status = sagemaker_client.describe_processing_
job(ProcessingJobName=job_name)["ProcessingJobStatus"]

        while status == "InProgress":

            time.sleep(60)

            logger.info(f"Task: {task},  Status: {status}")

            status = sagemaker_client.describe_processing_
job(ProcessingJobName=job_name)["ProcessingJobStatus"]

        return status

    elif task == "train":
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        status = sagemaker_client.describe_training_
job(TrainingJobName=job_name)["TrainingJobStatus"]

        while status == "InProgress":

            time.sleep(60)

            logger.info(f"Task: {task}, Status: {status}")

            status = sagemaker_client.describe_training_
job(TrainingJobName=job_name)["TrainingJobStatus"]

        return status

...

As you can see from the code snippet, depending on the current stage of the pipeline's 
execution, denoted by the task parameter, the handle_status() function will call 
the appropriate handle function to get the status of the SageMaker job associated with 
the particular task or stage of the ML process. For example, to train the ML model, the 
handle_status() function determines from the task parameter that it needs to 
get the status of the SageMaker training job and log whether the task it has is currently 
running or in progress.

Finally, we have the __main__ function, shown in the following snippet, as the primary 
execution point for the script:

...

if __name__ == "__main__":

    task = sys.argv[1]

    execution_id = get_execution_id(name=pipeline_name, 
task=task)

    logger.info(f"Executing {task.upper()} task")

    if task == "preprocess":

        job_name = handle_data(model_name=model_name, 
execution_id=execution_id)

        status = handle_status(task=task, job_name=job_name)

    elif task == "train":

        job_name = handle_training(model_name=model_name, 
execution_id=execution_id)

        status = handle_status(task=task, job_name=job_name)

    elif task == "evaluate":

        job_name = handle_evaluation(model_name=model_name, 
execution_id=execution_id)

        status = handle_status(task=task, job_name=job_name)

    else:
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        error = "Invalid argument: Specify 'preprocess', 
'train' or 'evaluate'"

        logger.error(error)

        sys.exit(255)

    if status == "Completed":

        logger.info(f"Task: {task}, Final Status: {status}")

        sys.exit(0)

    else:

        error = f"Task: {task}, Failed! See CloudWatch Logs for 
further information"

        logger.error(error)

        sys.exit(255)

...

As you can see from the preceding code snippet, the __main__ function takes the 
current pipeline stage as input and calls the appropriate handler function for that stage. 
For example, if the pipeline is currently executing the training stage, the __main__ 
function determines from the task input that it needs to call the handle_training() 
function to initiate the SageMaker training job, and then the handle_status() 
function to track and manage the execution of that training job. 

Note
Refer to the AWS SDK for Python documentation for more information on 
the various parameters to create a SageMaker processing job (https://
boto3.amazonaws.com/v1/documentation/api/latest/
reference/services/sagemaker.html#SageMaker.
Client.create_processing_job) and SageMaker training job  
(https://boto3.amazonaws.com/v1/documentation/
api/latest/reference/services/sagemaker.
html#SageMaker.Client.create_training_job).

While it may not seem inherently intuitive at this point, by creating both the build.
py, and deploy.py scripts, we have just produced the fundamental mechanisms by 
which the pipeline will execute the continuous integration and continuous deployment 
process. For example, by executing the build.py script, the pipeline can build, train, 
and evaluate a production-grade ML model. And, by executing the deploy.py script, 
the pipeline can process the relevant parameters from the integration to deploy the model 
into production by means of the endpoint CDK construct.
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However, before moving on to the next chapter, it is a good practice to commit the current 
work in progress to the source code repository. The following steps will walk you through 
how to checkpoint your progress:

1. Using the terminal within the Cloud9 workspace, run the following commands to 
add the changes we've made to the working directory:

$ cd ~/environment/abalone-cicd-pipeline/

$ git add -A

2. Now, run the command to commit these changes to the repository history:

$ git commit -m "Checkpoint"

3. Finally, we can push the changes to the source code repository by running the 
following command:

$ git push --set-upstream origin main

So, now that these intrinsic artifacts have been created and committed to the repository, 
we can continue to develop the pipeline itself in the next chapter.

Summary
In this chapter, you were introduced to the concept of a CI/CD process as a way to close 
the gap between building a production-grade ML and getting the model into production. 
Making use of this methodology, an ML practitioner doesn't simply hand over the trained 
model to the platform teams but rather integrates the model artifacts into the overall 
process. 

While we haven't as yet shown how the ML practitioner contributes these model artifacts 
into a process, we have established a pattern of codifying the process by introducing 
and setting up an AWS CDK project. By using the CDK, we practically demonstrated a 
backward-working approach for how the engineering team can deploy a trained model as 
a SageMaker-hosted endpoint CDK construct. We also demonstrated how the engineering 
teams built the fundamental mechanisms that will eventually automate the integration of 
the model training and evaluation procedures into the process.

In the next chapter, we will continue building out the CI/CD pipeline, adding the model 
artifacts and automatically deploying the trained model into production.



5
Continuous 

Deployment of  
a Production  

ML Model
In Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for Machine 
Learning, we were introduced to the concept of continuous integration, and continuous 
deployment, as a means of bridging the gap between ML model development and ML 
model deployment. We were also introduced to the AWS CDK, as a way to further close 
this gap, by bringing the different artifacts that software engineers and ML practitioners 
develop into a single cloud-native application. Thus, allowing us to codify a CI/CD 
pipeline that automates the entirety of the ML process. Closing this gap, and helping to 
facilitate this inter-team synergy, is one of the core design philosophies behind why AWS 
originally created the CDK. 
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Note
For more information on the AWS CDK philosophy, you can read the 
best practices for developing cloud applications in the AWS CDK blog 
post (https://aws.amazon.com/blogs/devops/best-
practices-for-developing-cloud-applications-with-
aws-cdk/). 

Although we started creating the core mechanisms for training and deploying the ML 
model, we have yet to create the overall pipeline, responsible for orchestrating the process. 
In this chapter, we will pick up from where we left off, by continuing to codify the CI/CD 
pipeline construct, as well as the ML model artifacts. The following topics will emphasize 
how we will accomplish these tasks:

• Deploying the CI/CD pipeline

• Building the ML model artifacts

• Executing the CI/CD pipeline

Technical requirements
This chapter will use the following resources:

• A web browser (for the best experience, it is recommended that you use the Chrome 
or Firefox browser).

• Access to the AWS account that you've been using in the previous chapters.

• Access to the Cloud9 IDE that you used to start building the CDK application  
in Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for  
Machine Learning.

• Access to the same SageMaker Studio UI we used in Chapter 3, Automating 
Complicated Model Development with AutoGluon.

• We will once again be working within the usage limits of the AWS Free Tier to avoid 
exceeding unnecessary costs.

• Source code samples for the CDK constructs, and ML model artifacts, are provided 
in the companion GitHub repository for this chapter (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/tree/
main/Chapter05).

https://aws.amazon.com/blogs/devops/best-practices-for-developing-cloud-applications-with-aws-cdk/
https://aws.amazon.com/blogs/devops/best-practices-for-developing-cloud-applications-with-aws-cdk/
https://aws.amazon.com/blogs/devops/best-practices-for-developing-cloud-applications-with-aws-cdk/
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter05
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter05
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter05
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Deploying the CI/CD pipeline
You will recall from Chapter 4, Continuous Integration and Continuous Delivery (CI/
CD) for Machine Learning, that we concluded the chapter by checkpointing the intrinsic 
artifacts, namely the buld.py and deploy.py scripts, and committing them into the 
CodeCommit repository. Whereas these artifacts fundamentally create and deploy a 
trained ML model, we still need to wrap them in a continuous integration and continuous 
deployment process. To accomplish this, we will continue using the AWS CDK to create a 
codified CI/CD pipeline construct.

Codifying the pipeline construct
The penultimate component of the application is the pipeline construct itself. Using the 
following steps, we will once again leverage the AWS CDK to create the pipeline:

1. If you don't already have the Cloud9 environment open in your web browser, log 
into the AWS account you've been using, and open the Cloud9 management console 
(https://console.aws.amazon.com/cloud9) for your AWS region. Click 
on the Open IDE button to launch the Cloud9 instance. Once the Cloud9 instance 
is online, use the Terminal panel to activate the Python virtual environment, by 
running the following commands:

$ cd ~/environment/abalone-cicd-pipeline/

$ source .venv/bin/activate

2. Now, run the following command to add the pre-built pipeline  
construct, abalone_cicd_pipeline_stack.py, into the abalone_cicd_
pipeline folder:

$ cp ~/environment/src/Chapter05/cdk/abalone_cicd_
pipeline_stack.py ~/environment/abalone-cicd-pipeline/
abalone_cicd_pipeline/
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Note
When we initialized the CDK application in the previous chapter, a templatized 
abalone_cicd_pipeline_stack.py construct was created for 
you. We will be replacing this file with an updated version, pre-built for our 
example. If you have not already cloned the companion GitHub repository, 
you can refer to the Codifying the SageMaker Endpoint section in Chapter 4, 
Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning. 

3. Using the left-hand navigation panel of the Cloud9 workspace, double-click on the 
updated version of the abalone_cicd_pipeline_stack.py file for review.

The first thing you will note as we walk through the code is that we import the necessary 
CDK modules we will be using to create the construct resources. The primary modules we 
will be using within this contract are the aws_codepipeline, aws_codpipeline_
actions, aws_codebuild, and aws_iam modules.

Next, as you can see from the following code snippet, we define the PipelineStack() 
class, as cdk.Stack, and initialize it:

...

class PipelineStack(cdk.Stack):

    def __init__(self, scope: Construct, id: str, *, model_
name: str=None, repo_name: str=None, cdk_version: str=None, 
**kwargs) -> None:

        super().__init__(scope, id, **kwargs)

...

As you see from the previous code snippet, we also supply some key parameters, namely 
model_name, repo_name, and cdk_version to initialize the class. These parameters 
are specific to our CDK application and will be defined later in this chapter when we 
instantiate the CDK application itself.

Once we've initialized the construct, the first resource we need to create is sagemaker_
role. This is an IAM role that the runtime logic scripts, namely build.py and 
deploy.py, will assume to execute the various SageMaker tasks. For example, 
sagemaker_role has FullAccess to the SageMaker service, in order to process the 
training data, train, evaluate and deploy the model.

Next, we define variables for the repositories that will contain the artifact source code. 
For example, we define a variable called container_repo to declare the CodeCommit 
repository, as well as the variable called s3_bucket where the raw training data and 
pipeline execution artifacts will be stored.
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Next, we define the first of four CodeBuild projects. These CodeBuild projects execute 
the runtime logic to essentially build the required pipeline assets that preprocess the data, 
train the ML model, evaluate the ML model, and construct the deployment parameters 
needed to deploy the model. For example, and as shown in the following code snippet, the 
container_build project takes the ML model artifact and executes the runtime logic 
to build and store the artifact as a Docker image:

...

                        build=dict(

                            commands=[

                                "echo Build started on `date`",

                                "echo Building the Docker 
image...",

                                "docker build -t $IMAGE_REPO_
NAME:$IMAGE_TAG --build-arg REGION=$AWS_DEFAULT_REGION ."

                            ]

                        ),

                        post_build=dict(

                            commands=[

                                "echo Build completed on 
`date`",

                                "echo Pushing the Docker 
image...",

                                "docker push $IMAGE_REPO_
NAME:$IMAGE_TAG"

                            ]

                        )

...

Since we will be basing our Docker container image on the AWS Deep Learning 
Containers, using the same methodology from Chapter 3, Automating Complicated Model 
Development with AutoGluon, we also need to provide the CodeBuild project with the 
necessary permissions to access the container repositories. You can see from the following 
code snippet that we add an IAM PolicyStatement() to the CodeBuild project, 
giving the IAM role access to the DLC container repositories:

...

        container_build.role.add_to_policy(

            iam.PolicyStatement(

                resources=[
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                    "arn:aws:ecr:*:763104351884:repository/*",

                    "arn:aws:ecr:*:217643126080:repository/*",

                    "arn:aws:ecr:*:727897471807:repository/*",

                    "arn:aws:ecr:*:626614931356:repository/*",

                    "arn:aws:ecr:*:683313688378:repository/*",

                    "arn:aws:ecr:*:520713654638:repository/*",

                    "arn:aws:ecr:*:462105765813:repository/*"

                ],

                actions=[

                    "ecr:BatchGetImage",

                    "ecr:GetDownloadUrlForLayer"

                ],

                effect=iam.Effect.ALLOW

            )

        )

...

The next CodeBuild project we define, called data_build, executes the runtime logic 
for the data processing task. As you can see from the following code snippet, we run the 
previously created build.py script, and supply the preprocess argument, telling the 
Python script to make an API call for SageMaker to run the processing Job:

...

                        "build": {

                            "commands": [

                                "echo Build started on `date`",

                                "python ./artifacts/scripts/
build.py preprocess"

                            ]

                        },

...
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The next two CodeBuild projects, namely model_build and evaluation_build, 
execute the same runtime logic as the data_build project. Except that model_build 
supplies the train parameter to the build.py script to make an API call for SageMaker 
to run the ML model training job. For example, you can see the following code snippet, 
where the train parameter is supplied to the CodeBuild project:

...

                        "build": {

                            "commands": [

                                "echo Build started on `date`",

                                "python ./artifacts/scripts/
build.py train"

                            ]

                        },

...

Alternatively, the evaluation_build project supplies the evaluate parameter to the 
build.py script to make an API call to SageMaker to run a processing Job that evaluates 
the trained ML model. 

The final CodeBuild project we create is called deployment_build. Here, we define 
the runtime logic for the deploy.py file. You will recall from Chapter 4, Continuous 
Integration and Continuous Delivery (CI/CD) for Machine Learning, that the deploy.
py script captures the execution parameters from the pipeline to deploy the SageMaker 
Endpoint Stack. 

As you can see from the following code snippet, the deployment_build project 
synthesizes, or generates, the CloudFormation template for the Endpoint Stack, called 
EndpointStack.template.json. 

After the template file has been created, the deployment_build project then executes 
the deploy.py script to generate the necessary CloudFormation parameters, required to 
deploy the stack template, and stores these parameters in the params.json file:

...

                        "build": {

                            "commands": [

                                "echo Synthesizing cdk 
template",

                                "npx cdk synth -o output"

                            ]
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                        },

                        "post_build": {

                            "commands": [

                                "python ./artifacts/scripts/
deploy.py"

                            ]

                        }

                    },

                    artifacts={

                        "base-directory": "output",

                        "files": [

                            "EndpointStack.template.json",

                            "params.json"

                        ]

                    }

...

Now that we have the relevant runtime logic to build the model artifact container image, 
preprocess the training data, train the ML model, and then evaluate the ML model's 
performance, we put can put these components together to construct the CI/CD pipeline 
to automate the process. Using the pipeline variable, we define the overall structure 
of the pipeline and, as you can see, the pipeline is comprised of four consecutive steps or 
Pipeline Stages:

1. Source
2. Build
3. Approval
4. Deploy

The Source stage refers to our CodeCommit repository, which is comprised of two 
branches. Updating any of these sources will trigger a release execution of the pipeline:

• The main branch contains the codified pipeline.

• The model branch contains the ML model artifacts.
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The Build stage executes the four CodeBuild projects, as pipeline actions, to create the 
continuous integration phase of the process, and compiles or builds the ML model assets. 
The four pipeline actions are as follows:

1. The ContainerBuild action creates the container image, from the model source, 
and uploads it to the ECR repository.

2. The Preprocess action executes the build.py script to create a SageMaker 
processing job, whereby the raw training data is preprocessed to make it ready for 
model training.

3. The Train action also executes the build.py script, passing in the train 
parameter to create a SageMaker training job to build the optimized model.

4. Finally, the Evaluate action also calls the build.py script, passing in the 
evaluate parameter to create a SageMaker processing job that evaluates the 
performance of the trained model to assess its readiness for production.

The Approval stage will pause the pipeline by creating a manual decision gate, whereby 
the application owners will assess the model's performance results, and manually Approve 
or Deny the model for production. If the evaluation is denied, the pipeline execution halts 
and the cross-functional team assesses what source changes need to be made to improve 
the model. If the evaluation is approved, the pipeline automatically transitions to the 
Deploy stage.

The Deploy stage is essentially the continuous deployment phase of the process and, is 
comprised of pipeline actions:

1. The DeploymentBuild action is a CodeBuild project that synthesizes the 
endpoint CDK construct and executes the deploy.py script to gather the 
deployment parameters from the running pipeline. 

2. The DeployEndpoint action deploys the synthesized CloudFormation template 
to create the endpoint stack and deploy the approved model into production.

Now that the various application components have been created, the final task is to 
configure the CDK application.
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Creating the CDK application
The following steps will walk you through the process of adding the final code to complete 
the CDK application:

1. Using the navigation panel of the Cloud9 workspace, run the following commands 
to copy the app.py file from the companion GitHub repository to replace the 
template file created during the CDK initialization:

$ cd ~/environment/abalone-cicd-pipeline/

$ cp ~/environment/src/Chapter05/cdk/app.py .

2. Now, double-click on the app.py file so we can review it.

As we review the app.py file, you can see that we import the necessary  
libraries, as well as the EndpointStack() and PipelineStack() classes,  
that we created earlier. Next, as you can see from the following code snippet, we 
define the parameters specific to our application, namely the name of the ML 
model, the name of the CodeCommit repository, and the current version of the 
AWS CDK we have installed:...

MODEL = "abalone"

CODECOMMIT_REPOSITORY = "abalone-cicd-pipeline"

CDK_VERSION = "2.3.0"

... 

Next, we define the CDK application itself, using cdk.App(), and as the following code 
snippet shows, we declare an instance of the EndpointStack() class, while supplying 
the necessary CDK application parameters, including the current AWS region as well as 
the AWS account we are using:

...

EndpointStack(

    app,

    "EndpointStack",

    env=cdk.Environment(account=os.getenv("CDK_DEFAULT_
ACCOUNT"), region=os.getenv("CDK_DEFAULT_REGION")),

    model_name=MODEL

)

...
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Lastly, as the next code snippet shows, we declare an instance of PipelineStack(), 
and also supply the required CDK application parameters required by the construct:

...

PipelineStack(

    app,

    CODECOMMIT_REPOSITORY,

    env=cdk.Environment(account=os.getenv("CDK_DEFAULT_
ACCOUNT"), region=os.getenv("CDK_DEFAULT_REGION")),

    model_name=MODEL,

    repo_name=CODECOMMIT_REPOSITORY,

    cdk_version=CDK_VERSION

)

...

We've now created our CDK application and it's ready to be deployed. The next section 
will show you how to deploy the application.

Deploying the pipeline application
Deploying the application on AWS is relatively straightforward. The following steps will 
walk you through this process, using the Cloud9 workspace terminal:

1. Before deploying the application, we need to finalize the application dependencies. 
Since the ML model will require raw training data, we need to download the data 
from the UCI repository. Run the following commands to get the training data:

$ cd ~/environment/abalone-cicd-pipeline/ && mkdir -p 
artifacts/data

$ wget -c -P artifacts/data https://archive.ics.uci.edu/
ml/machine-learning-databases/abalone/abalone.data

2. Next, we need to configure the CDK environment by specifying the AWS region we 
are using, as well as our AWS account. Run the following command to bootstrap the 
CDK environment:

$ cdk bootstrap aws://${CDK_DEFAULT_ACCOUNT}/${CDK_
DEFAULT_REGION}
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3. Now we can deploy the pipeline application, by running the following command:

$ cdk deploy abalone-cicd-pipeline

Note
When prompted Do you wish to deploy these changes (y/n)?, enter y, and  
hit Enter.

The application should take around 2 minutes to deploy and you can view the progress 
within the Cloud9 terminal or the CloudFormation console (https://console.aws.
amazon.com/cloudformation/). 

After the CloudFormation stack has been completed, we can trigger a pipeline release 
by committing the application code into the CodeCommit repository. Run the following 
commands to create an initial commit of the CDK application:

$ git add –A

$ git commit -m "Initial commit of Pipeline Artifacts"

$ git push

Now you can view the pipeline in the CodePipeline console (https://console.aws.
amazon.com/codesuite/codepipeline/) and click on Pipeline in the console's 
navigation pane. Figure 5.1 shows an example of what you might see:

Figure 5.1 – CodePipeline console

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
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As you can see from Figure 5.1, abalone-cicd-pipeline has Failed. If you click on the 
pipeline to open the details, you will see that the Source stage of it has failed, as shown  
in Figure 5.2.

Figure 5.2 – Failed Source stage

Figure 5.2 shows the Source stage of the pipeline, and as you can see from the example, 
the ModelSource action has failed. This is because the ML practitioner team hasn't 
created any model source artifacts yet. In the next section, we will work through creating 
these artifacts.

Building the ML model artifacts
Up to this point, we have focused on the various tasks that are typically performed by the 
application development teams, creating a CDK application for the overall structure of 
the automated process. In this section, we will continue this undertaking, but from the 
perspective of the ML practitioners, whereby we will create the ML model itself, as well 
as the artifacts responsible for executing the data processing, ML model training, and ML 
model evaluation processes. The following steps will show you how an ML practitioner 
might do this:

1. Using your AWS account, open the SageMaker console (https://console.
aws.amazon.com/sagemaker/home). 

2. Using the left-hand menu panel, click on the Studio option to open the SageMaker 
Domain dashboard.

3. In the SageMaker Domain dashboard, click on the Launch app drop-down menu 
and select Studio to launch the Studio UI in the browser.

https://console.aws.amazon.com/sagemaker/home
https://console.aws.amazon.com/sagemaker/home


162     Continuous Deployment of a Production ML Model  

Note
You should have a SageMaker Domain already configured in the SageMaker 
console. If not, please refer to the Getting started with SageMaker Studio  
section in Chapter 2, Automating Machine Learning Development Using 
SageMaker Autopilot.

4. Once the Studio UI has been launched, click the File menu, then click New, and 
select Terminal, to launch a new terminal.

5. Next, we will clone the companion GitHub repository to access the pre-built 
artifacts. In the terminal, run the following commands:

$ cd ~

$ git clone https://github.com/PacktPublishing/Automated-
Machine-Learning-on-AWS src

6. Now, we will clone the pipeline repository. Run the following commands in the 
terminal, get the address of the CodeCommit repository, and clone it:

$ CLONE_URL=$(aws codecommit get-repository --repository-
name abalone-cicd-pipeline --query "repositoryMetadata.
cloneUrlHttp" --output text)

$ git clone $CLONE_URL

7. Run the following commands to create the model artifact branch:

$ cd ~/abalone-cicd-pipeline/ 

$ git checkout -b model

8. Before we can create the model artifacts, we need to clear out the existing code from 
the new branch. Run the following command to create a fresh branch:

$ git rm -rf .

9. Copy the pre-built Jupyter notebook from the cloned companion GitHub repository 
to the model branch by running the following command:

$ cp ~/src/Chapter05/Notebook/Abalone\ CICD\ Example.
ipynb .

10. In the navigation panel of the Studio UI, double-click on Abalone CICD Example.
ipynb to open the notebook for review.
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Note
The Jupyter Notebook requires the Python 3 (Data Science) kernel, which may 
take up to 2 minutes to launch.

11. Once the Jupyter kernel has started, from the Kernel menu, click the Restart Kernel 
and Run all Cells … option to execute all the notebook code cells.

Once all the code cells have been executed, you should see that we have followed a 
similar methodology to the one we used in Chapter 3, Automating Complicated Model 
Development with AutoGluon, where the ML practitioner built a deep learning container 
image for AutoGluon. In the same way, we have created the necessary component files to 
construct the container image that represents our model artifact. Hence, you should now 
see five new files in the left-hand navigation panel of the Studio UI:

• model.py

• app.py

• nginx.conf

• wsgi.py

• Dockerfile

Let's review what each of these component files does, within the context of our  
container image.

Reviewing the modeling file
The model.py file is primarily responsible for all tasks pertaining to the ML model itself. 
As you will see, there are three central Python functions to handle the tasks of preparing 
the training data, training the ML model, and evaluating the ML model. For example, 
the preprocess() function will take the raw data, preprocess the dataset by encoding 
the categorical values, and then split the data into a training (80% of the data) dataset, 
validation (15% of the data) dataset, and testing (5% of the data) dataset. 

Once the data has been processed, we use the train() function to compile and  
fit the TensorFlow model to the data. The trained model is then saved for evaluation  
and inference.

The last function we will create as part of the model runtime is the evaluate() 
function. This function will load the model, using the load_model() function, evaluate 
the quality of the trained model, and then save the report by means of the save_
report() function. 
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So, by creating these core functions in the modeling file, we have a single runtime  
script that handles the primary function of producing a production model candidate  
for approval.

Let's further review just how the modeling file is used, as well diving into app.py next.

Reviewing the application file
Within the context of continuous integration and continuous deployment, the model 
artifact will perform two functions, model training and model hosting. To wrap the 
runtime logic for determining which of these two tasks the model artifact performs,  
the second file generated by the notebook is the app.py file. This file serves as the main 
entry point to the container image and depending on the arguments passed to this entry 
point, the runtime logic within the app.py file will determine whether to train or host 
the model. 

As an example, if you refer to the build.py file that we created in the previous section, 
and as shown in the following code snippet, to preprocess the data as a SageMaker 
processing job, the handle_data() function calls the create_processing_job() 
SageMaker API. As part of the AppSpecification parameter for the API call, we 
provide the container image URI, along with the preprocess argument for the app.py 
entry point: 

...

def handle_data(model_name=None, execution_id=None):

    try:

        response = sagemaker_client.create_processing_job(

            ProcessingJobName=f"{model_name}-ProcessingJob-
{execution_id}",

            ProcessingResources={

                'ClusterConfig': {

                    'InstanceCount': 1,

                    'InstanceType': 'ml.m5.xlarge',

                    'VolumeSizeInGB': 30

                }

            },

            StoppingCondition={

                'MaxRuntimeInSeconds': 3600

            },

            AppSpecification={
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                'ImageUri': f"{image_uri}:latest",

                'ContainerEntrypoint': ["python", "app.py", 
"preprocess"]

            },

...

So, when SageMaker initializes the container image to run the processing job, it will run 
app.py as the entry point, and supply the preprocess argument. Now if we refer to 
the __main__ routine within the app.py file, as highlighted in the next code snippet, 
we can see that when the preprocess argument is provided, the main program will in 
turn execute the preprocess() function within the model.py file:

...

if __name__ == "__main__":

    print(f"Tensorflow Version: {tf.__version__}")

    if len(sys.argv) < 2 or ( not sys.argv[1] in [ "serve", 
"train", "preprocess", "evaluate"] ):

        raise Exception("Invalid argument: you must specify 
'train' for training mode, 'serve' for predicting mode, 
'preprocess' for preprocessing mode or 'evaluate' for 
evaluation mode.") 

    preprocess = sys.argv[1] == "preprocess"

    train = sys.argv[1] == "train"

    evaluate = sys.argv[1] == "evaluate"

    if preprocess:

        model.preprocess()

    elif train:

        model.train()

    elif evaluate:

        model.evaluate()

    else:

        cpu_count = multiprocessing.cpu_count()

        model_server_timeout = os.environ.get('MODEL_SERVER_
TIMEOUT', 60)

        model_server_workers = int(os.environ.get('MODEL_
SERVER_WORKERS', cpu_count))

        start_server(model_server_timeout, model_server_
workers)

...
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Now, if you continue to examine the previous code snippet, you can further see that 
the same overall concept applies for the model training, as well as the model evaluation 
processes, if the train or evaluate arguments are supplied to the entry point.

Alternatively, if none of these arguments are supplied, the application wrapper will 
perform the hosting task, consequently providing the trained model as a hosted endpoint. 
Next, we'll examine the additional artifact files necessary for hosting the model.

Reviewing the model serving files
Since the model will be served using Python's Flask framework (https://flask.
palletsprojects.com), we need to add web serving components, such as NGINX 
(https://www.nginx.com/) and WSGI (https://www.palletsprojects.
com/p/werkzeug/). The configurations for these web serving components are stored in 
the nginx.conf and wsgi.py files.

Reviewing the container build file
The final file we created within the notebook is the Dockerfile. This file will  
execute the container build instructions to download a TensorFlow 2.5 deep learning 
container from AWS, configure the web serving packages, and copy the model artifacts 
into the container. 

So now that we've reviewed the files that make up the container image artifact, we can go 
ahead and update the source code repository.

Committing the ML artifacts
The final task that the ML practitioner performs is to commit the model artifacts into the 
CodeCommit repository and thus trigger a release of the CI/CD pipeline. To do this, run 
the following commands using the Terminal tab of the Studio UI:

$ cd ~/ abalone-cicd-pipeline/

$ git add –A

$ git config --global user.email "<ENTER YOUR EMAIL ADDRESS>"

$ git config --global user.name "<ENTER YOUR NAME>"

$ git commit -m "Initial commit of model artifacts"

$ git push --set-upstream origin model
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Note
Make sure to substitute your unique email address and username when 
committing the new artifacts. This way, any code changes that trigger a new 
release can be tracked.

If we assume that the ML practitioner has executed the appropriate unit tests, to ensure 
that the data processing, model training, and evaluation functions work, and since we 
have committed these artifacts into the CodeCommit repository, we can finally automate 
the deployment of the ML model into production. The next section will review the model 
release process.

Executing the automated ML  
model deployment
Reviewing the pipeline execution is done through the CodePipeline console  
(https://console.aws.amazon.com/codesuite/codepipeline/home), 
and then by clicking on the abalone-cicd-pipeline name. Once the pipeline dashboard 
opens, the first thing you will immediately see (as shown in Figure 5.3) is that the Source 
stage has succeeded. 

Figure 5.3 – Succeeded Source stage
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Once the Source stage succeeds, the pipeline automatically moves onto the Build stage 
to essentially execute the continuous integration phase of the CI/CD process. Figure 5.4 
shows the four stage actions that cover continuous integration.

Figure 5.4 – Continuous integration phase of the pipeline
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From Figure 5.4, there are a few items to take note of. Firstly, note the Pipeline execution 
ID. This ID is used to track the lineage of the ML model's release, as it is embedded 
into each the name of the various SageMaker jobs. The ID is also used as an S3 folder 
containing all the relevant assets used by the pipeline. For example, by opening the ID 
folder in the S3 console (https://s3.console.aws.amazon.com), you can  
see the model assets, training, validation, and testing datasets, as well as the model 
evaluation report.

Secondly, by clicking on the Details link for every stage action, you can review the  
output from each CodeBuild project. Recall that a CodeBuild project was created to 
execute the container image build, data processing, model training, and model  
evaluation steps of the pipeline.

So, if you click on the Details link for the Train stage action, you are redirected to the 
Build status dashboard for the ModelTrainingBuild project. If you scroll down, you'll 
see the output from the Build logs. Figure 5.5 shows an example of the CodeBuild log 
output for the ML model training.

Figure 5.5 – CodeBuild log output for model training

As you can see from Figure 5.5, the CodeBuild project executes the build.py script 
and supplies the train argument. You will recall that the train argument instructs 
the build.py file to execute the handle_train() function, whereby SageMaker is 
instructed to run a training Job, and use the model artifact container image to train the 
ML model.

Note
Since the various CodeBuild projects execute API calls to trigger SageMaker 
jobs for data processing, model training, and model evaluation, you can 
review the SageMaker specific logs using the SageMaker console (https://
console.aws.amazon.com/sagemaker/home). 

https://console.aws.amazon.com/sagemaker/home
https://console.aws.amazon.com/sagemaker/home


170     Continuous Deployment of a Production ML Model  

Lastly, by clicking on the source code commit IDs of both the MainSource and 
ModelSource branches of the pipeline, you can track what code changes were made for 
the release as well as who made those code changes. 

So, once the continuous integration phase of the pipeline has been completed and the 
trained model evaluated, the pipeline pauses to wait for manual approval. Figure 5.6 shows 
an example of the Approval stage:

Figure 5.6 – Manual Approval stage

As you see from Figure 5.6, the pipeline is in a Pending state, waiting for the use case's 
acceptance criteria to be met, in order to proceed with the model's deployment. It is at 
this stage that the various application owners review the quality of the trained model 
candidate and determine whether or not the model is considered to be production-grade. 

Since the evaluation report is a pipeline asset, it can be viewed using the S3 console. By 
opening the pipeline's S3 bucket, expanding the folder for the pipeline's execution ID, 
and then opening the evaluation sub-folder, the application owners can then open the 
evaluation.json file to review the evaluation report. The following is an example of 
what evaluation.json might look like:

{

    "regression_metrics": {

        "rmse": {

            "value": 1.4838999769750487
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        },

        "mse": {

            "value": 2.20195914166655

        }

    }

}

Within the report, the application owners can see the rmse and mse evaluation  
metric results to decide if they approve or reject the model. This determination is then 
applied to the pipeline, by clicking the Review button, within the CodePipeline console, 
and adding any optional comments. The application owners can then click either the 
Reject or Approve buttons. Figure 5.7 shows an example of what the pipeline Review 
process might resemble:

Figure 5.7 – Pipeline Review
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Once the pipeline review has been approved, the pipeline execution proceeds onto the 
continuous deployment phase. It is at this point that the appropriate CloudFormation 
parameters are captured from the current pipeline execution, by the DeploymentBuild 
action, and the SageMaker endpoint is deployed using the DeployEndpoint action. Figure 
5.8 shows an example of the continuous deployment phase of the pipeline:

Figure 5.8 – Continuous deployment phase of the pipeline

As shown in Figure 5.8, once the DeployEndpoint action is complete, we now have an 
approved production model that can be integrated into the Age Calculator application, to 
serve abalone age predictions.

Since the CDK application artifacts and the ML artifacts exist in their own dedicated 
branch of the code repository, any further development on the pipeline or ML artifacts is 
owned and managed by the respective application team or ML practitioners. Any fixes or 
updates made to these branches from the feedback loop will cause a release change to the 
CI/CD pipeline and deploy a new version of the ML model into production.

So, now that we have shown how to continuously integrate, and continuously deploy the 
Age Calculator example, we can clean up the various resources.
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Cleanup
To save on AWS resource costs, it is recommended that the deployment and pipeline 
assets are deleted. The following steps will guide you through this process: 

1. Open the CloudFormation console (https://console.aws.amazon.com/
cloudformation/home) and click on EndpointStack to open the stack details. 

2. Now click on the Delete button to delete the SageMaker endpoint, endpoint 
configuration, and the trained model artifact.

3. Once the stack has been deleted, repeat the same process for the abalone-cicd-
pipeline stack.

Note
Since the pipeline's S3 bucket and the abalone ECR repository are not empty, 
the stack deletion should fail. You will have to manually empty these resources 
and then try to delete the stack. You may also delete the abalone-cicd-pipeline 
CodeCommit repository. However, do not delete the Cloud9 environment as 
we will be using this in the next chapter.

Summary
In this chapter, we continued to build on the CDK application we started in Chapter 4, 
Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning. In doing 
so, you were further presented with how to deploy the CDK application and automate the 
deployment of an optimized ML model. 

You were also introduced to the importance of an agile, cross-function team as being 
integral to the success of an automated ML solution. We saw how these various teams 
bridged the gap between the ML modeling process (from the perspective of ML 
practitioners), all the way to automated model deployment (from the perspective of 
application development and operations teams). 

Additionally, in this chapter, you saw how the AWS development tools, namely 
CodeCommit, CodeBuild, and CodePipeline, can be used to orchestrate the CI/CD 
process. Though the hands-on example, you saw for yourself how the typical ML process 
introduced in Chapter 1, Getting Started with Automated Machine Learning on AWS, 
can be integrated into the DevOps methodology, using the CI/CD process to create a 
foundation for MLOps.

In the next few chapters, we will continue to expand on the concepts of Processes, Tools, 
and People to build up to an automated machine learning software development lifecyle 
for the Age Calculator use case.





This section will introduce you to the limitations of the overall CI/CD process and  
how to further integrate the role of the ML practitioner into the pipeline build process. 
The section will also introduce how this role integration streamlines the automation 
process and present you with an optimized methodology by introducing you to AWS  
Step Functions.

This section comprises the following chapters:

• Chapter 6, Automating the Machine Learning Process Using AWS Step Functions

• Chapter 7, Building the ML Workflow Using AWS Step Functions

Section 3: 
Optimizing a Source 

Code-Centric 
Approach  

to Automated 
Machine Learning





6
Automating the 

Machine Learning 
Process Using AWS 

Step Functions
In the first three chapters of the book, we saw a fundamental process flaw that can impact 
the automation of an ML use case, namely the handover of a production-grade model, 
produced by the ML practitioner, to the application development and operations teams. In 
Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning, 
we examined how this issue could be addressed by combining the ML processing into the 
DevOps process using the CI/CD process methodology.

While that solution inherently addresses the issue, you can also conclude that in terms 
of overall ownership, the development or platform teams were primarily responsible 
for building the majority of the final solution. For instance, you will recall from the CI/
CD example we used in the previous chapter, the application development teams built 
the pipeline foundation, as well as the integrations for offloading the data processing, 
model training, and model evaluation tasks to SageMaker. These integrations require 
the development teams to have a fundamental understanding of ML in general, and the 
overall ML process.
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While the example did show the ML practitioner providing more than just an optimized 
model to this cross-functional team in the form of a packaged container image, the 
fact remains that most of the solution's development was still the responsibility of 
the application and platform developers, thus requiring them to, in essence, be ML 
practitioners themselves.

Granted, the disproportion of assigned responsibilities may be because not all ML 
practitioners are themselves DevOps engineers and, organizationally speaking, not all ML 
practitioners are part of the same team as the developers and infrastructure staff.

Either way, how do we further streamline the ML automation process without having to 
further skill up the development and ML teams, or change the organizational structure?

Answering this question will be the primary focus of this chapter, where we will continue 
to build upon the foundation we established in the previous chapter and continue to 
streamline the Age Calculator example. To this end, we will cover the following topics:

• Introducing AWS Step Functions

• Using the AWS Step Functions Data Science SDK for CI/CD

• Building the CI/CD pipeline resources

Technical requirements 
Here is a list of the technical requirements for this chapter:

• A web browser (for the best experience, it is recommended that you use Chrome  
or Firefox).

• Access to the AWS account that you used in Chapter 4, Continuous Integration and 
Continuous Delivery (CI/CD) for Machine Learning.

• Access to the Cloud9 development environment we used in Chapter 4, Continuous 
Integration and Continuous Delivery (CI/CD) for Machine Learning.

• We will once again be working within the usage limits of the AWS Free Tier to avoid 
exceeding unnecessary costs.

• Source code examples and Jupyter Notebooks are provided in the 
companion GitHub repository for this chapter (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/tree/
main/Chapter06). The code examples should already be available in the Cloud9 
development environment. If not, refer to the section entitled Developing the 
Application Artifacts in Chapter 4, Continuous Integration and Continuous Delivery 
(CI/CD) for Machine Learning.

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06
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Introducing AWS Step Functions
At re:Invent 2016, AWS announced the Step Functions service as a way to orchestrate 
common business processes by creating a workflow. A workflow, also referred to as a 
state machine, is essentially a series of event-driven steps, or States, that denote a single 
process unit. By chaining these units of work together we are effectively creating an 
automated process to accomplish an overall goal. 

In the case of automating the ML process, we can create a state machine that chains 
together individual steps to process the training data, train an ML model, evaluate the 
trained model's performance, and even deploy the model into production.

The advantage of using Step Functions for the ML process, or automating any workflow 
for that matter, is that we can re-direct the flow based on conditions our outcomes of each 
step. For example, if a specific step within the workflow fails, we can retry it or redirect the 
overall flow to follow some alternate process logic.

Creating a state machine
To create the overall workflow, we start by creating the individual states within the state 
machine. This is achieved by defining these states using the Amazon States Language 
(https://states-language.net/spec.html). The States Language is a JSON-
based schema whereby you manually define each state as a JSON object. The following 
code shows an example of what a state machine might look like when using the States 
Language to define it:

{

    "Comment": "A simple minimal example of the States 
language",

    "StartAt": "Hello World",

    "States": {

    "Hello World": {

      "Type": "Task",

      "Resource": "arn:aws:lambda:us-east-1:123456789012:functi
on:HelloWorld",

      "End": true

    }

  }

}
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Note
This example is provided under the Apache License, Version 2.0, and is derived 
directly from the online copy of the Amazon States Language specification 
(https://states-language.net/spec.html).

Figure 6.1 shows the graphical representation of the workflow, or state machine definition, 
derived from the States Language JSON schema:

Figure 6.1 – State machine definition 

As you can see from Figure 6.1, as well as the JSON schema example, we've defined a state 
called Hello World. We've further specified that this type of state is a Task state, whereby 
its unit of work is to execute an AWS Lambda function. Additionally, we've defined the 
workflow to start with this task and end after the task has been executed. 

So, while this may seem very straightforward, as we will see in Chapter 7, Building the ML 
Workflow Using AWS Step Functions, when we start defining states that include retries and 
failures and incorporate different choice paths, the resultant JSON schema definition can 
be extremely intricate.

Addressing state machine complexity
Since creating the Step Function service, AWS has provided a couple of mechanisms to 
overcome the complexities associated with manually defining a state machine using the 
States Language.

For example, in July of 2019, AWS introduced the AWS Toolkit for Visual Studio Code 
(https://aws.amazon.com/visualstudiocode/). As part of this toolkit, 
AWS provided developers with the ability to define, visualize, execute, and update state 
machines from within the VS Code IDE. Along with code completion and state machine 
validation, developers can overcome some of the complexities associated with defining 
state machines with the States Language when using VS Code.

https://states-language.net/spec.html
https://aws.amazon.com/visualstudiocode/
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Additionally, in March of 2021, AWS introduced the ability to define state machines using 
the YAML Ain't Markup Language (YAML) serialization language instead of JSON, thus 
making it easier for the developer to build state machines if YAML is their serialization 
language of choice.

Furthermore, in July 2021, AWS announced Workflow Studio. This is a visual workflow 
design tool that allows developers to use a graphical design tool, within the AWS console, 
to build state machines by simply dragging and dropping workflow and task states onto 
a canvas, and integrate them using a minimal amount of code, consequently making it 
easier for developers to build complicated workflows.

However, even though these added capabilities make it easier to define ML-based 
workflows, the question remains: who is ultimately is responsible for defining the state 
machine schema? Is it the application development teams or the ML practitioner?

In the next section, we will evaluate using Step Functions capabilities to help the data 
scientist and ML practitioner to further streamline and automate the ML workflow.

Using the Step Functions Data Science  
SDK for CI/CD
In November 2019, AWS introduced the AWS Step Functions Data Science SDK 
for Amazon SageMaker. This SDK allows data science and ML practitioners to 
programmatically construct Step Function workflows to deliver production-grade ML 
models. The SDK is designed to be used within a Jupyter Notebook to construct a process 
that delivers a reproducible ML experiment in the form of a Step Functions workflow, as 
opposed to reproducing the experiment itself.

Basically, what this means is instead of the ML practitioner exploring data, building 
algorithms, training models, and evaluating the trained model's performance, they instead 
construct a state machine to accomplish these tasks automatically. On top of this, the 
resulting state machine is constructed programmatically, instead of manually defining it 
with the States Language specification. Therefore, to answer the questions raised in the 
previous section, the ML practitioner can now own the task of defining the automation 
process to produce a production-grade ML model. 
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How so?

Previously we saw how the ML practitioner delivered pre-packaged container images as 
an artifact to the CI/CD process. This artifact contained the various runtime processes to 
handle the data, train the model, and evaluate the model's performance. We also saw how 
the development and operations teams had to re-factor the CI/CD pipeline to incorporate 
the typical ML process.

Now, in the spirit of a cross-functional team, the ML practitioner can rather deliver a state 
machine that automates the entire process as a CI/CD pipeline artifact. Plus, by using the 
Data Science SDK, the state machine can be programmatically defined without having to 
up-skill the ML practitioner team. On the other hand, the development teams don't have 
to up-skill their ML knowledge to incorporate the ML process into the CI/CD pipeline.

To demonstrate exactly how an agile and cross-functional team would create this solution, 
let's re-factor the previously used CI/CD process from scratch. Figure 6.2 provides an 
overview of the resulting re-factored process.

Figure 6.2 – Re-factored CI/CD process
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As you can see in Figure 6.2, the process is slightly different when you compare it to 
the process outlined in Figure 4.5 in Chapter 4, Continuous Integration and Continuous 
Delivery (CI/CD) for Machine Learning. In the re-factored process, the ML practitioner 
takes on more of a significant role. While the CI and CD phases remain mostly the same, 
the ML practitioner is now responsible for developing the workflow assets that will 
orchestrate these processes.

For example, in the re-factored process, the ML practitioner is not only responsible for 
providing the optimal model artifacts from the ML experiment, but now they are also 
responsible for building and testing the automated ML process using the Step Functions 
Data Science SDK. This automated ML workflow artifact is responsible for preprocessing 
the training data, training the ML model, and evaluating whether or not the model is 
ready for production.

However, before the workflow assets can be integrated, the development engineers must 
also build the CI/CD pipeline. The next section will walk you through how to do that.

Building the CI/CD pipeline resources
To begin re-factoring the Age Calculator use case, we are going to work through the 
initial setup steps from the perspective of the development and operations teams. We 
will be using the same Cloud9 development environment that we created in Chapter 
4, Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning, to 
perform the following tasks:

• Updating the development environment

• Creating the pipeline artifact repository

• Building the pipeline application artifacts

• Deploying the CI/CD pipeline

Let's get started.

Updating the development environment
Start by logging into the same AWS account you've been using up to this point and  
open the AWS Cloud9 console (https://console.aws.amazon.com/cloud9). 
Under Your environments, click the Open IDE button to launch the MLOps-IDE 
development environment.
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Note
If you have not provisioned the MLOps-IDE environment, please refer to 
the Preparing the development environment section of Chapter 4, Continuous 
Integration and Continuous Delivery (CI/CD) for Machine Learning.

To update the environment, execute the following steps:

1. Run the following command to ensure that we have version 2.3.0 of the  
CDK installed:

$ cdk --version

Note
At the time of writing, the latest version of the CDK is 2.3.0 (build beaa5b2). 
If you are not running this version within the Cloud9 environment, refer 
to Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for 
Machine Learning, for instructions on how to install it.

Now that we have updated the environment to the latest version of the CDK, we can create 
the source code repository.

Creating the pipeline artifact repository
Execute the following steps to create a new abalone-cicd-pipeline  
CodeCommit repository:

1. Using the workspace terminal, run the following CLI command to ensure that the 
CLI region settings are correct. Make sure to replace <REGION> with the AWS 
Region you are currently using:

$ aws configure set region <REGION>

Note
Since we are re-factoring the previous solution, we will be using the same 
repository name as in Chapter 4, Continuous Integration and Continuous 
Delivery (CI/CD) for Machine Learning. Therefore, make sure that you have 
cleaned up any existing resources. If not, make sure to manually delete the 
abalone-cicd-pipeline CodeCommit repository in the CodeCommit 
management console (https://console.aws.amazon.com/
codesuite/codecommit/repositories).

https://console.aws.amazon.com/codesuite/codecommit/repositories
https://console.aws.amazon.com/codesuite/codecommit/repositories
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2. Create the new CodeCommit repository called abalone-cicd-pipeline, using 
the following command:

$ aws codecommit create-repository --repository-name 
abalone-cicd-pipeline --repository-description "Automated 
ML on AWS using the Step Functions Data Science SDK"

3. Next, capture the URL for the newly created repository in order to clone it. Run the 
following command to create the CLONE_URL parameter:

$ CLONE_URL=$(aws codecommit get-repository --repository-
name abalone-cicd-pipeline --query "repositoryMetadata.
cloneUrlHttp" --output text)

4. Run the following command to clone the empty repository, locally:

$ git clone $CLONE_URL

Now that we have our new project repository, we can proceed to the next task of building 
out the application artifacts.

Building the pipeline application artifacts
Use the following steps to build out the pipeline application:

1. Initialize a new CDK project by running the following command:

$ cd ~/environment/abalone-cicd-pipeline && cdk init 
--language python

2. Set the primary branch of the source repository by running the  
following commands:

$ git add -A

$ git commit -m "Started Pipeline Project"

$ git branch main

$ git checkout main

3. Configure the Python environment by running the following commands:

$ source .venv/bin/activate

$ python -m pip install -U pip pylint boto3

$ pip install -r requirements.txt
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You will recall from the original example in Chapter 4, Continuous Integration and 
Continuous Delivery (CI/CD) for Machine Learning, that we started building out the CDK 
application by looking at the final goal for the application and working backward to 
develop the artifacts that accomplish the objective. Since the final goal of the pipeline is 
to have a production-grade ML model, hosted as a SageMaker endpoint, we need to build 
out what the endpoint stack looks like. By working with the ML practitioner team, we (as 
the development team) can gather the functional requirements to build out the endpoint 
using the following steps:

1. Using the navigation panel of the Cloud9 workspace, expand the abalone-ci-
cd-pipeline folder, then right-click on the abalone_cicd_pipeline folder 
and select the New File option.

2. Name the newly created file abalone_endpoint_stack.py and double-click 
on it for editing.

Note
A complete copy of the abalone_endpoint_stack.py is available for 
review in the companion GitHub repository (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/
tree/main/Chapter06/cdk). The file should also available be available 
for review in the ~/environment/src/Chapter06/cdk/ folder 
within the Cloud9 environment.

3. Inside the Python file, add the following code to import the CDK modules for  
the endpoint:

...

import aws_cdk as cdk

import aws_cdk.aws_sagemaker as sagemaker

...

4. Next, create a Python class called EndpointStack() as a CDK stack construct by 
adding the following code:

...

class EndpointStack(cdk.Stack):

    def __init__(self, app: cdk.App, id: str, *, model_
name: str=None, repo_name: str=None, **kwargs) -> None:

        super().__init__(app, id, **kwargs)

...

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/cdk
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/cdk
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/cdk
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5. Now, we use the following code to create the required pipeline parameters for the S3 
bucket and the pipeline execution ID. These parameters will be derived during the 
pipeline execution:

...

        bucket_name = cdk.CfnParameter(

            self,

            "BucketName",

            type="String"

        )

        

        execution_id = cdk.CfnParameter(

            self,

            "ExecutionId",

            type="String"

        )

...

6. Since we have instantiated the parameters for the endpoint construct, we can now 
define the endpoint configuration in the following code snippet. This configuration 
details what compute resources to run the endpoint on, as well as the trained model 
to host for the endpoint, plus where to store the inference and response data for 
model monitoring. The following code shows how to instantiate the endpoint_
config variable as a CfnEndpointConfig():

...

        endpoint_config = sagemaker.CfnEndpointConfig(

            self,

            "EndpointConfig",

            endpoint_config_name="{}-config-{}".
format(model_name.capitalize(), execution_id.value_as_
string),

            production_variants=[

                sagemaker.CfnEndpointConfig.
ProductionVariantProperty(

                    initial_instance_count=2,

                    initial_variant_weight=1.0,

                    instance_type="ml.m5.large",

                    model_name="{}-{}".format(model_name, 
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execution_id.value_as_string),

                    variant_name="AllTraffic"

                )

            ],

...

7. Continuing from the previous code snippet, we continue defining 
the CfnEndpointConfig() and specify the data_capture_
config parameter. As the following code snippet shows, we specify a 
DataCaptureConfigProperty() that configures the endpoint to  
capture 100% of the input data to the endpoint, as well as the output data  
from the endpoint, to S3:

...

            data_capture_config=sagemaker.
CfnEndpointConfig.DataCaptureConfigProperty(

                capture_content_type_header=sagemaker.
CfnEndpointConfig.CaptureContentTypeHeaderProperty(

                    csv_content_types=[

                        "text/csv"

                    ]

                ),

                capture_options=[

                    sagemaker.CfnEndpointConfig.
CaptureOptionProperty(capture_mode="Input"),

                    sagemaker.CfnEndpointConfig.
CaptureOptionProperty(capture_mode="Output")

                ],

                destination_s3_uri="s3://{}/endpoint-
data-capture".format(bucket_name.value_as_string),

                enable_capture=True,

                initial_sampling_percentage=100.0

            )

        )

...
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8. The final part of the construct is the endpoint itself. We use the following code to 
declare the endpoint, and then save the file:

...

        endpoint = sagemaker.CfnEndpoint(

            self,

            "AbaloneEndpoint",

            endpoint_config_name=endpoint_config.attr_
endpoint_config_name,

            endpoint_name="{}-Endpoint".format(model_
name.capitalize())

        )

        endpoint.add_depends_on(endpoint_config)

...

Since the endpoint deployment construct has been created, we now need to create the 
build script that captures execution parameters from a running CI/CD pipeline. The 
following steps will walk you through the process:

1. Using the Cloud9 terminal, run the following commands to create the necessary 
artifacts folder:

$ mkdir -p ~/environment/abalone-cicd-pipeline/artifacts/
scripts

2. Using the navigation panel, right-click on newly created scripts folder and select 
the New File option. 

3. Name the file deploy.py and double-click on it for editing.

Note
A complete copy of the deploy.py is available for review in the companion 
GitHub repository (https://github.com/PacktPublishing/
Automated-Machine-Learning-on-AWS/tree/main/
Chapter06/scripts). The file should also available be available for 
review in the ~/environment/src/Chapter06/scripts/ folder 
within the Cloud9 environment.

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/scripts
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/scripts
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/scripts
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4. In the deploy.py file, the first thing we do is add the following code snippet to 
import the Python libraries we'll be using:

...

import boto3

import logging

import os

import json

import sys

from botocore.exceptions import ClientError

...

5. Next, we add the following snippet of code to specify the global parameters,  
such as logging and the AWS Python SDK (boto3) clients for CodePipeline  
and SageMaker:

...

logger = logging.getLogger()

logging_format = "%(levelname)s: [%(filename)s:%(lineno)
s] %(message)s"

logging.basicConfig(format=logging_format, level=os.
environ.get("LOGLEVEL", "INFO").upper())

codepipeline_client = boto3.client("codepipeline")

sagemaker_client = boto3.client("sagemaker")

pipeline_name = os.environ["PIPELINE_NAME"]

model_name = os.environ["MODEL_NAME"]

...

6. The following code snippet shows a function called get_execution_id(). 
This function makes a call to the running CI/CD pipeline and returns the current 
execution ID. This ID is used to version the model that will be hosted as a 
SageMaker endpoint:

...

def get_execution_id(name=None, task=None):

    try:

        response = codepipeline_client.get_pipeline_
state(name=name)

        for stage in response["stageStates"]:

            if stage["stageName"] == "Deploy":
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                for action in stage["actionStates"]:

                    if action["actionName"] == task:

                        return stage["latestExecution"]
["pipelineExecutionId"]

    except ClientError as e:

        error = e.response["Error"]["Message"]

        logger.error(error)

        raise Exception(error)

...

7. Lastly, the following code snippet instantiates the main program. This program 
creates and stores the execution ID and S3 bucket name in a params.json file. 
This JSON file will be used as input parameters to the endpoint deployment stack:

...

if __name__ == "__main__":

    task = "DeploymentBuild"

    execution_id = get_execution_id(name=pipeline_name, 
task=task)

    logger.info("Creating Stack Parameters")

    params = {

        "ExecutionId": execution_id,

        "BucketName": os.environ["BUCKET_NAME"]

    }

    try:

        with open(os.path.join(os.environ["CODEBUILD_SRC_
DIR"], "output/params.json"), "w") as f:

            json.dump(params, f)

        logger.info(json.dumps(params, indent=4)),

        sys.exit(0)

    except Exception as error:

        logger.error(error)

        sys.exit(255)

...

8. After entering the previous code in the deploy.py file, make sure to save it.
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At this point, we have created the necessary CDK constructs and supporting deployment 
code for hosting the model as a SageMaker endpoint. Now we can move on to creating the 
CI/CD pipeline construct by using the following steps:

1. Within the Cloud9 navigation panel, expand the abalone_cicd_pipeline 
folder and double-click on the abalone_cicd_pipeline_stack.py file  
for editing.

Note
A complete copy of the abalone_cicd_pipeline_stack.py file 
is available for review in the companion GitHub repository (https://
github.com/PacktPublishing/Automated-Machine-
Learning-on-AWS/tree/main/Chapter06/scripts). The file 
should also available be available for copying into the abalone_cicd_
pipeline folder, from the ~/environment/src/Chapter06/
cdk/ folder within the Cloud9 environment.

2. If you choose to create the file from scratch, delete any existing template code within 
the file so we can start with a blank file, and add the following code to import the 
necessary CDK modules for the pipeline construct:

...

import os

import aws_cdk.core as cdk

import aws_cdk.aws_codecommit as codecommit

import aws_cdk.aws_codepipeline as codepipeline

import aws_cdk.aws_codepipeline_actions as pipeline_
actions

import aws_cdk.aws_codebuild as codebuild

import aws_cdk.aws_iam as iam

import aws_cdk.aws_ecr as ecr

import aws_cdk.aws_s3 as s3

import aws_cdk.aws_s3_deployment as s3_deployment

import aws_cdk.aws_ssm as ssm

from constructs import Construct

...

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/scripts
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/scripts
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/scripts
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3. Next, we add the following code snippet to create a new Python class called 
PipelineStack() as a CDK stack construct:

...

class PipelineStack(cdk.Stack):

    def __init__(self, scope: Construct, id: str, *, 
model_name: str=None, repo_name: str=None, cdk_version: 
str=None, **kwargs) -> None:

        super().__init__(scope, id, **kwargs)

...

4. The first component we define for the CDK construct is a placeholder for the 
CodeCommit repository. As you can see in the following code snippet, we reference 
the previously created abalone-cicd-pipeline CodeCommit repository using 
the from_repository_name method, and reference our repository variable as 
repo_name:

...

        code_repo = codecommit.Repository.from_
repository_name(

            self,

            "PipelineSourceRepo",

            repository_name=repo_name

        )

...

5. The next component to create is an IAM policy document. This policy will be used 
by the IAM role to not only execute the state machine but also access the various 
AWS resources used within the workflow. We define a variable called workflow_
policy_document and create a Python dictionary to store the various IAM 
policy statements. The following code snippet shows an excerpt from the Action 
statement of the IAM policy. Here, you can see that we give the IAM role access 
to get the current CI/CD pipeline execution and invoke any Lambda functions 
contained within the state machine itself. We also give the role the ability to manage 
the state machine by providing it with the ability to create, delete, describe, and start 
any state machines:

...

            "Statement": [

                {

                    "Effect": "Allow",



194     Automating the Machine Learning Process Using AWS Step Functions

                    "Action": [

                        "codepipeline:GetPipelineState",

                        "lambda:InvokeFunction",

                        "lambda:UpdateFunctionCode",

                        "lambda:CreateFunction",

                        "states:CreateStateMachine",

                        "states:UpdateStateMachine",

                        "states:DeleteStateMachine",

                        "states:DescribeStateMachine",

                        "states:StartExecution"

                    ],

                    "Resource": "*"

                },

...

Note
As you can see from the previous code snippet, the IAM policy is fairly open to 
the type of AWS resources used, since we specify "*" for all AWS resources. 
This is not recommended for a production use case. For more information 
on granting least privilege access to AWS resources, see the IAM security best 
practices documentation (https://docs.aws.amazon.com/IAM/
latest/UserGuide/best-practices.html#grant-least-
privilege).

6. Now that we've defined the policy statement, we can create the workflow execution 
role that uses the policy by declaring the workflow_role variable:

...

        workflow_role = iam.Role(

            self,

            "WorkflowExecutionRole",

            assumed_by=iam.CompositePrincipal(

                iam.ServicePrincipal("codebuild.
amazonaws.com")

            )

        )

...

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
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7. The following code snippet shows how we apply the policy document  
to the workflow_role as an inline policy using the attach_inline_
policy() method:

...

        workflow_role.attach_inline_policy(

            iam.Policy(

                self,

                "WorkflowRoleInlinePolicy",

                document=iam.PolicyDocument.from_
json(workflow_policy_document)

            )

        )

...

8. Since any Lambda function within the state machine, as well as the state machine 
itself, requires an AWS service role, we add these two service principals to the 
workflow_role, giving the role access to assume the service roles. The following 
code snippet shows how we use the add_statements() method to provide the 
AssumeRole capability: 

...

        workflow_role.assume_role_policy.add_statements(

            iam.PolicyStatement(

                actions=[

                    "sts:AssumeRole"

                ],

                effect=iam.Effect.ALLOW,

                principals=[

                    iam.ServicePrincipal("lambda.
amazonaws.com"),

                    iam.ServicePrincipal("sagemaker.
amazonaws.com"),

                    iam.ServicePrincipal("states.
amazonaws.com")

                ]

            )

        )

...
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9. Since the workflow will be executing various SageMaker functions to train, evaluate, 
and host the ML model, the following code snippet shows how we supply the 
AmazonSageMakerFullAccess managed IAM policy to the workflow_role 
by using the add_managed_policy() method:

...

        workflow_role.add_managed_policy(

            iam.ManagedPolicy.from_aws_managed_policy_
name("AmazonSageMakerFullAccess")

        )

...

10. Now we add this Amazon Resource Name (ARN) as a parameter. This parameter 
will be used by the ML practitioner when defining the workflow, and it will be 
stored in the AWS Systems Manager Parameter Store (SSM). This way, when the 
ML practitioner teams need to reference the role, they can do so by using an API 
call to the parameter store:

...

        workflow_role_param = ssm.StringParameter(

            self,

            "WorkflowRoleParameter",

            description="Step Functions Workflow 
Execution Role ARN",

            parameter_name="WorkflowRoleParameter",

            string_value=workflow_role.role_arn

        )

        workflow_role_param.grant_read(workflow_role)

...

11. Next, we define a SageMaker execution role. SageMaker will use this role to access 
the various services it needs to process training data, train the model, and evaluate 
the model:

...

        sagemaker_role = iam.Role(

            self,

            "SageMakerBuildRole",

            assumed_by=iam.CompositePrincipal(

                iam.ServicePrincipal("sagemaker.
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amazonaws.com")

            ),

            managed_policies=[

                iam.ManagedPolicy.from_aws_managed_
policy_name("AmazonSageMakerFullAccess")

            ]

        )

…

12. The following code snippet shows how to create an S3 bucket to store the various 
assets created during the CI/CD pipeline execution:

…

        s3_bucket = s3.Bucket(

            self,

            "PipelineBucket",

            bucket_name=f"{repo_name}-{cdk.Aws.REGION}-
{cdk.Aws.ACCOUNT_ID}",

            removal_policy=cdk.RemovalPolicy.DESTROY,

            versioned=True

        )

        s3_bucket.grant_read_write(sagemaker_role)

        s3_bucket.grant_read_write(workflow_role)

…

13. As was the case with the SageMaker role, we also need to provide access to the 
name of the S3 bucket to the ML practitioners for usage outside of the pipeline. The 
following code snippet shows how we store the name of the S3 bucket in the SSM 
parameter store:

…

        s3_bucket_param = ssm.StringParameter(

            self,

            "PipelineBucketParameter",

            description="Pipeline Bucket Name",

            parameter_name="PipelineBucketName",

            string_value=s3_bucket.bucket_name

        )

…
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14. Now that the S3 bucket has been created, we can copy the raw training dataset using 
the BucketDeployment() method:

…

        s3_deployment.BucketDeployment(

            self,

            "DeployData",

            sources=[

                s3_deployment.Source.asset(os.path.
join(os.path.dirname(__file__), '../artifacts/data'))

            ],

            destination_bucket=s3_bucket,

            destination_key_prefix="abalone_data/raw",

            retain_on_delete=False

        )

…

15. You will recall from Chapter 4, Continuous Integration and Continuous Delivery 
(CI/CD) for Machine Learning, that we created multiple CodeBuild projects. 
Each project correlated to a specific task within the ML process. Since the ML 
practitioners will be automating the entirety of the ML process as a Step Functions 
state machine, we now only need to define a single CodeBuild project to build the 
state machine artifact as a pipeline asset. The following code snippet shows how we 
define this single project and instantiate it as the workflow_build variable:

...

        workflow_build = codebuild.Project(

            self,

            "WorkflowBuildProject",

            project_name="WorkflowBuildProject",

            description="CodeBuild Project for Building 
and Executing the ML Workflow",

            role=workflow_role,

            source=codebuild.Source.code_commit(

                repository=code_repo

            ),

            environment=codebuild.BuildEnvironment(

                build_image=codebuild.LinuxBuildImage.
STANDARD_5_0
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            ),

            environment_variables={

                "PIPELINE_NAME": codebuild.
BuildEnvironmentVariable(

                    value=repo_name

                ),

                "MODEL_NAME": codebuild.
BuildEnvironmentVariable(

                    value=model_name

                ),

                "BUCKET_NAME": codebuild.
BuildEnvironmentVariable(

                    value=s3_bucket.bucket_name

                )

            }

        )

...

16. We also need to create an additional CodeBuild project to build out the model 
deployment parameters by executing the deploy.py script that we previously 
created. The following code snippet shows how to create the additional CodeBuild 
project and instantiate it by declaring the deployment_build parameter:

...

        deployment_build = codebuild.PipelineProject(

            self,

            "DeploymentBuild",

            project_name="DeploymentBuild",

            description="CodeBuild Project to Synthesize 
a SageMaker Endpoint CloudFormation Template",

            environment=codebuild.BuildEnvironment(

                build_image=codebuild.LinuxBuildImage.
STANDARD_5_0

            ),

            environment_variables={

                "BUCKET_NAME": codebuild.
BuildEnvironmentVariable(

                    value=s3_bucket.bucket_name

                ),
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                "PIPELINE_NAME": codebuild.
BuildEnvironmentVariable(

                    value=repo_name

                ),

                "MODEL_NAME": codebuild.
BuildEnvironmentVariable(

                    value=model_name

                )

            },

...

17. The build specification, or build instructions, for deployment_build has  
three phases, namely install, build, and post_build. The following code 
snippet shows the install phase, where we provide commands to install the  
AWS CDK and the relevant Python libraries required to create the endpoint 
deployment construct:

...

                        "install": {

                            "runtime-versions": {

                                "python": 3.8,

                                "nodejs": 12

                            },

                            "commands": [

                                "echo Updating build 
environment",

                                "npm install aws-cdk@{}".
format(cdk_version),

                                "python -m pip install 
--upgrade pip",

                                "python -m pip install -r 
requirements.txt"

                            ]

                        },

...
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18. After the relevant libraries have been installed, in the install phase, we 
synthesize the endpoint deployment construct and create an output of the  
resultant CloudFormation template, in JSON format, called EndpointStack.
template.json. The following code snippet shows the build commands used  
in the build phase:

...

                        "build": {

                            "commands": [

                                "echo Synthesizing cdk 
template",

                                "npx cdk synth -o output"

                            ]

                        },

...

19. Once the CloudFormation template has been synthesized, the final phase of the 
build specification is to execute deploy.py. You will recall from the previous 
steps, the deploy.py file creates the params.json file to store the current CI/
CD pipeline execution parameters. The following code snippet shows an example of 
the post_build phase:

...

                        "post_build": {

                            "commands": [

                                "python ./artifacts/
scripts/deploy.py"

                            ]

                        }

                    },

...
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20. Now that all the required components and artifacts for the CI/CD pipeline have 
been defined, we can finally define the CI/CD pipeline itself. However, before we 
define the pipeline, we need to define output artifact variables. These variables 
correspond to the initial source code, as well as the various output files created by 
deployment_build. The following code snippet shows the main_source_
output, model_source_output, and deployment_build_output 
variables being declared:

...

        main_source_output = codepipeline.Artifact()

        model_source_output = codepipeline.Artifact()

        deployment_build_output = codepipeline.
Artifact("DeploymentBuildOutput")

...

21. Now that we've declared the various source artifact, we can move onto defining 
the CI/CD pipeline using the Pipeline() method from the codepipeline 
CDK nodule. The pipeline has four stages, namely the Source stage, the Build stage, 
the Approval stage, and the Deploy stage. The following code snippet defines the 
Source stage. As you can see, within this stage, we declare the two branches of our 
CodeCommit repository, once for the pipeline CDK code (the main branch) and 
one for the model workflow artifacts (the model branch):

...

                    stage_name="Source",

                    actions=[

                        pipeline_actions.
CodeCommitSourceAction(

                            action_name="MainSource",

                            branch="main",

                            repository=code_repo,

                            output=main_source_output

                        ),

                        pipeline_actions.
CodeCommitSourceAction(

                            action_name="ModelSource",

                            branch="model",

                            repository=code_repo,

                            output=model_source_output

                        )
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                    ]

                ),

...

22. Within the Build stage, we define an action that calls the workflow_build 
CodeBuild project. You will recall that this is the CodeBuild project to create and 
execute the Step Functions state machine. The following code snippet declares the 
BuildModel stage action that references the workflow_build project:

...

                codepipeline.StageProps(

                    stage_name="Build",

                    actions=[

                        pipeline_actions.CodeBuildAction(

                            action_name="BuildModel",

                            project=workflow_build,

                            input=model_source_output,

                            run_order=1

                        )

                    ]

                ),

...

23. The penultimate stage of the CI/CD pipeline is the Approval stage. As you 
can see in the following code snippet, here we create a stage action called 
EvaluationApproval whereby we use the ManualApprovalAction() 
method from the pipeline_actions CDK module to add a manual approval 
step to the pipeline. It's at this point in the pipeline's execution that the process 
owners will verify that the model is ready to be deployed into production:

                codepipeline.StageProps(

                    stage_name="Approval",

                    actions=[

                        pipeline_actions.
ManualApprovalAction(

                            action_
name="EvaluationApproval",

                            additional_information="Is 
the Model Ready for Production?"

                        )
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                    ]

                ),

...

24. The final stage of the pipeline is where the trained model is deployed as a SageMaker 
hosted endpoint. It's at this stage that the previously defined EndpointStack() 
construct is deployed using the DeployEndpoint stage action. However, as 
you can see in the following code snippet, before the CDK construct can be 
used, we define a stage action called DeploymentBuild whereby we run the 
deployment_build CodeBuild project to synthesize the CloudFormation 
template, as well as the CloudFormation parameters file, needed to execute 
CloudFormationCreateUpdateStackAction():

...

                codepipeline.StageProps(

                    stage_name="Deploy",

                    actions=[

                        pipeline_actions.CodeBuildAction(

                            action_
name="DeploymentBuild",

                            project=deployment_build,

                            input=main_source_output,

                            outputs=[deployment_build_
output],

                            run_order=1

                        ),

                        pipeline_actions.
CloudFormationCreateUpdateStackAction(

                            action_name="DeployEndpoint",

                            stack_name="EndpointStack",

                            template_path=deployment_
build_output.at_path(

                                "EndpointStack.template.
json"

                            ),

                            admin_permissions=True,

                            parameter_overrides={

                                "ExecutionId": 
deployment_build_output.get_param("params.json", 
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"ExecutionId"),

                                "BucketName": deployment_
build_output.get_param("params.json", "BucketName"),

                            },

                            extra_inputs=[deployment_
build_output],

                            run_order=2

                        )

                    ]

                )

            ]

        )

...

Now that all the CDK constructs have been defined, we can put them all together and 
define the CDK application. The following steps will show you how to do this:

1. In the abalone-cicd-pipeline folder, open the app.py file for editing.
2. Delete the existing template code and add the following code to define the  

CDK application:

#!/usr/bin/env python3

import os

from aws_cdk import core as cdk

from abalone_cicd_pipeline.abalone_endpoint_stack import 
EndpointStack

from abalone_cicd_pipeline.abalone_cicd_pipeline_stack 
import PipelineStack

MODEL = "abalone"

CODECOMMIT_REPOSITORY = "abalone-cicd-pipeline"

CDK_VERSION = "2.3.0"

app = cdk.App()

EndpointStack(

    app,

    "EndpointStack",

    env=cdk.Environment(account=os.getenv("CDK_DEFAULT_
ACCOUNT"), region=os.getenv("CDK_DEFAULT_REGION")),

    model_name=MODEL,

    repo_name=CODECOMMIT_REPOSITORY
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)

PipelineStack(

    app,

    CODECOMMIT_REPOSITORY,

    env=cdk.Environment(account=os.getenv("CDK_DEFAULT_
ACCOUNT"), region=os.getenv("CDK_DEFAULT_REGION")),

    model_name=MODEL,

    repo_name=CODECOMMIT_REPOSITORY,

    cdk_version=CDK_VERSION

)

app.synth()

3. Save and close the app.py file.

Since the CI/CD pipeline has been codified, we can go ahead and deploy it.

Deploying the CI/CD pipeline
Execute the following commands to deploy the CDK application and create the  
CI/CD pipeline:

1. Using the Terminal windows of the Cloud9 workspace, run the following 
commands to download the abalone training data from the UCI repository:

$ cd ~/environment/abalone-cicd-pipeline/ && mkdir -p 
artifacts/data

$ wget -c -P artifacts/data https://archive.ics.uci.edu/
ml/machine-learning-databases/abalone/abalone.data

2. To ensure that all the code we've just created is committed to the CodeCommit 
repository, run the following commands to update these changes:

$ git add -A

$ git commit -m "Initial commit of Pipeline Artifacts"

$ git push --set-upstream origin main

3. Now, run the following command to deploy the CDK application:

$ cdk deploy abalone-cicd-pipeline
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As we saw in the previous chapter, you can view the pipeline in the CodePipeline console 
(https://console.aws.amazon.com/codesuite/codepipeline/) by 
clicking on Pipeline in the console's navigation pane. Figure 6.3 shows an example of what 
you might see:

Figure 6.3 – CodePipeline console

As you can see in Figure 6.3, abalone-cicd-pipeline has failed. If you click on the pipeline 
to open the details, you will see that the pipeline failed because there is no ModelSource. 
This is because the ML practitioner team hasn't created any model source artifacts yet. In 
the next chapter, we will work through creating the state machine artifacts using the Data 
Science SDK.

Summary
In this chapter, we re-factored the Age Calculator example from Chapter 4, Continuous 
Integration and Continuous Delivery (CI/CD) for Machine Learning, to further streamline 
the overall ML process by integrating the development teams and ML practitioner teams 
based on their areas of expertise.

For example, with this re-factored process, the development teams can now focus their 
expertise on building and developing the CI/CD components, while the ML practitioner 
teams can focus on codifying the ML process by using the Data Science SDK. 

In the next chapter, we will switch personas to the ML practitioner team and review how 
they can codify the ML workflow as a Step Functions state machine.





7
Building the ML 

Workflow Using AWS 
Step Functions

In this chapter, we will continue from where we left off in Chapter 6, Automating the 
Machine Learning Process Using AWS Step Functions. You will recall from that chapter that 
the primary goal we are working toward achieving is to streamline the process gap that was 
originally highlighted in Chapter 4, Continuous Integration and Continuous Delivery (CI/
CD) for Machine Learning—namely, to automate the handover of trained machine learning 
(ML) models from the ML practitioner teams to the development teams. Since we've 
already created continuous integration/continuous delivery (CI/CD) pipeline artifacts, as 
the application development engineers, the next step to achieving our goal is to provide the 
ML practitioner's contribution to further automate the end-to-end (E2E) process.

So, in this chapter, we are going to create a processing process that creates training and 
testing datasets, trains an ML model, and then evaluates the model's predictive quality, 
assessing whether it can be deployed into production. As you will see, the automated 
process will be codified as a CI/CD pipeline artifact using the Amazon Web Services 
(AWS) Step Functions Data Science Software Development Kit (SDK) for Python and 
developed from the perspective of the ML practitioner, without the need to upskill the 
development team members with capabilities outside their domain of expertise. 
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Once we've codified the E2E ML process as an AWS Step Functions state machine, we 
will continue to automate the Age Calculator use case by integrating the ML practitioner's 
modeling and workflow assets into the previously built CI/CD pipeline. To this end, we 
will be covering the following topics in this chapter:

• Building the state machine workflow 

• Performing the integration test 

• Monitoring the pipeline's progress

Technical requirements
To follow along with the code examples in this chapter, you will need the following:

• Web browser (for the best experience, it is recommended that you use Chrome or 
Firefox browsers).

• Access to the AWS account that we used in Chapter 6, Automating the Machine 
Learning Process Using AWS Step Functions.

• Access to the Cloud9 development environment we used in Chapter 6, Automating 
the Machine Learning Process Using AWS Step Functions. 

• We will once again be working within the usage limits of the AWS Free Tier to avoid 
incurring unnecessary costs.

• Access to the SageMaker Studio environment we created in Chapter 2, Automating 
Machine Learning Model Development Using SageMaker Autopilot.

• Source code examples and Jupyter Notebooks are provided in the 
companion GitHub repository for this chapter (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/tree/
main/Chapter07). The code examples should already be available in the Cloud9 
development environment; if not, refer to the Developing the application artifacts 
section of Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for 
Machine Learning.

Building the state machine workflow
From the Deploying the CI/CD pipeline section of Chapter 6, Automating the Machine 
Learning Process Using AWS Step Functions, you will recall that we deployed a CI/
CD pipeline to orchestrate the E2E ML process as a Cloud Development Kit (CDK) 
application. However, as you saw in Figure 6.3, the abalone-cicd-pipeline 
execution failed as there were no ModelSource artifacts. 
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Consequently, it's at this stage of the overall process that the ML practitioner must  
create these source artifacts to build the ML workflow, using the AWS Step Functions  
Data Science SDK for Python. We will therefore switch our perspective to that of the  
ML practitioner and build these source artifacts, using the SageMaker Studio user 
interface (UI). 

Setting up the service permissions
Before we can begin defining the state machine workflow within a Jupyter Notebook, 
we need to assign additional access permissions for the SageMaker execution role to 
accommodate the Data Science SDK. According to the SDK documentation (https://
aws-step-functions-data-science-sdk.readthedocs.io/en/stable/
readmelink.html#aws-permissions), using the SDK in SageMaker Studio doesn't 
require any additional Identity and Access Management (IAM) permissions outside of 
those required by the Step Functions service. For example, if we were to use AWS Lambda 
functions within the workflow, we would need to add AWS Lambda permissions to the 
SageMaker execution role.

However, you may recall from Chapter 2, Automating Machine Learning Model 
Development Using SageMaker Autopilot that we added an extra inline IAM policy  
called AdminAccess-InlinePolicy to the SageMaker execution role. So, since  
the SageMaker execution role already has the necessary permissions to create and test  
the workflow, we can go ahead and actually build out the workflow using the Data  
Science SDK. 

Creating an ML workflow
Since the Data Science SDK was primarily created to be executed within a Jupyter 
Notebook, we will use the following steps to codify the ML process as a notebook:

1. Using the Amazon SageMaker Management Console (https://console.aws.
amazon.com/sagemaker/home), click the SageMaker Domain option in the 
left-hand navigation panel to open the SageMaker Domain dashboard.

2. Within the SageMaker Domain dashboard, click the Launch app dropdown and 
select the Studio option to launch the Studio UI.

https://console.aws.amazon.com/sagemaker/home
https://console.aws.amazon.com/sagemaker/home
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Note
After opening the Studio UI, if you already see an abalone-cicd-
pipeline folder in the left-hand Studio navigation panel, this means  
that the repository we cloned in Chapter 5, Continuous Deployment of a 
Production ML Model has not been deleted. Since we are using the same 
repository name for this chapter, simply right-click on the abalone-cicd-
pipeline folder and then click Delete so that we can add the new repository 
we created in Chapter 6, Automating the Machine Learning Process Using AWS 
Step Functions.

3. Once the Studio UI has been launched, click on the Git icon in the left sidebar, and 
then click the Clone a Repository button, as illustrated in the following screenshot:

Figure 7.1 – Clone a Repository

4. In the Clone a Repository dialog window, enter the HyperText Transfer 
Protocol Secure (HTTPS) Uniform Resource Locator (URL) for the pipeline 
repository created by the development teams. The URL should be https://
git-codecommit.<AWS Region>.amazonaws.com/v1/repos/
abalone-cicd-pipeline, where <AWS Region> is the current region you 
are using. For example, if you are using us-west-2 as the current region, then the 
URL would be https://git-codecommit.us-west-2.amazonaws.com/
v1/repos/abalone-cicd-pipeline. 
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5. Click on the CLONE button to clone the pipeline repository.
6. Once the repository has been cloned, open the abalone-cicd-pipeline folder 

in the Studio navigation panel by double-clicking on the folder.
7. Now, click on the Git icon again to open the folder as the current repository. 
8. Click on the drop-down arrow next to Current Branch and click the New Branch 

button, as illustrated in the following screenshot:

Figure 7.2 – New Branch
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9. In the Create a Branch dialog, enter model as the new branch name and click 
Create Branch, as illustrated in the following screenshot:

Figure 7.3 – Create a Branch dialog

Note
For more information on cloning a Git repository in the Studio UI, see the 
SageMaker documentation (https://docs.aws.amazon.com/
sagemaker/latest/dg/studio-tasks-git.html).

10. Now, go back to the abalone-cicd-pipeline folder and delete the  
existing contents.

11. Right-click inside the folder and select the New Folder menu option. Name the 
folder notebook and double-click to open it.

12. Create a new Jupyter Notebook by clicking the File menu, then clicking the New 
menu option, and then clicking on Notebook.

13. When prompted, make sure to select the Python 3 (Data Science) kernel and click 
the Select button.

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-tasks-git.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-tasks-git.html
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14. Once the new notebook has been launched and the kernel has been started, we can 
go ahead and create our workflow, using the subsequent code.

Note
An example of the notebook is provided in the companion GitHub repository 
(https://github.com/PacktPublishing/Automated-
Machine-Learning-on-AWS/blob/main/Chapter07/
Notebook/Abalone%20Step%20Functions%20Workflow%20
Example.ipynb). Since the following code examples show full Jupyter 
Notebook cells, as well as partial code snippets, it is recommended that you use 
this example notebook as a reference.

15. In the first code cell, enter the following code to install the necessary Data Science 
SDK and SageMaker SDK:

%%capture

!pip install stepfunctions==2.2.0 sagemaker==2.49.1

Note
We are hardcoding the versions of the stepfunctions and sagemaker 
libraries as these have been tested to work within the context of the example. 

16. You will recall from the Building the pipeline application artifacts section of 
Chapter 6, Automating the Machine Learning Process Using AWS Step Functions, 
that we constructed the ML workflow orchestration as a CodeBuild project called 
workflow_build. Now, we will create a runtime process that will be executed 
within the CodeBuild environment by using the following code to instantiate the 
CodeBuild environment variables. These environment variables will make sense 
when we start using them later in the notebook; however, as you can see from the 
following code snippet, we are calling the Systems Manager Parameter Store 
(SSM) to fetch the Simple Storage Service (S3) bucket variable that was defined in 
the CDK application:

import os

import boto3

os.environ["MODEL_NAME"] = "abalone"

os.environ["PIPELINE_NAME"] = "abalone-cicd-pipeline"

os.environ["BUCKET_NAME"] = f"""{boto3.client("ssm").
get_parameter(Name="PipelineBucketName")["Parameter"]
["Value"]}"""
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os.environ["DATA_PREFIX"] = "abalone_data"

os.environ["EPOCHS"] = "200"

os.environ["BATCH_SIZE"] = "8"

os.environ["THRESHOLD"] = "2.1"

17. In the next cell, we are going to build a custom cell magic. In previous examples, 
we've used a %%writefile magic to capture the cell contents to a file. However, 
the %%writefile magic does not execute the cell contents. Since we are building 
and testing a workflow creation script, the following code will create a custom 
magic called %%custom_writefile, whereby we capture the cell contents to a 
file, as well as run the contents:

from IPython.core.magic import register_cell_magic

@register_cell_magic

def custom_writefile(line, cell):

    print("Writing {}".format(line.split()[0]))

    with open(line.split()[0], "a") as f:

        f.write(cell)

    print("Running Cell")

    get_ipython().run_cell(cell)

Note
The %%custom_writefile magic is based on the examples 
provided in the official IPython documentation (https://ipython.
readthedocs.io/en/stable/config/custommagics.
html#defining-custom-magics). The only downside to using this 
methodology is that if we make a coding mistake in a particular cell, we have to 
delete any files that %%custom_writefile creates and start afresh from 
the beginning of the notebook.

18. Next, we create a folder called workflow, wherein we define a build script to create 
the workflow. Enter and execute the following code into a new cell:

!mkdir ../workflow

19. Now, we can start building our primary script, called main.py. In a new code cell, 
add the following code to start importing and capturing the various Python libraries 
to build the workflow:

%%custom_writefile ../workflow/main.py

import io

https://ipython.readthedocs.io/en/stable/config/custommagics.html#defining-custom-magics
https://ipython.readthedocs.io/en/stable/config/custommagics.html#defining-custom-magics
https://ipython.readthedocs.io/en/stable/config/custommagics.html#defining-custom-magics
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import os

import random

import time

import uuid

import boto3

import botocore

import zipfile

import json

from time import gmtime, strftime, sleep

from botocore.exceptions import ClientError

20. Next, we load the libraries required by the Data Science SDK, as follows:

%%custom_writefile ../workflow/main.py

import stepfunctions

from stepfunctions import steps

from stepfunctions.inputs import ExecutionInput

from stepfunctions.steps import (

    Chain,

    ChoiceRule,

    ModelStep,

    ProcessingStep,

    TrainingStep,

    TuningStep,

    TransformStep,

    Task,

    EndpointConfigStep,

    EndpointStep,

    LambdaStep

)

from stepfunctions.template import TrainingPipeline

from stepfunctions.template.utils import replace_
parameters_with_jsonpath

from stepfunctions.workflow import Workflow
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21. And lastly, we load the libraries from the SageMaker SDK, as follows:

%%custom_writefile ../workflow/main.py

import sagemaker

from sagemaker.tensorflow import TensorFlow

from sagemaker.tuner import IntegerParameter, 
ContinuousParameter, HyperparameterTuner

from sagemaker import get_execution_role

from sagemaker.amazon.amazon_estimator import get_image_
uri

from sagemaker.processing import ProcessingInput, 
ProcessingOutput, Processor

from sagemaker.s3 import S3Uploader

from sagemaker.sklearn.processing import SKLearnProcessor

22. After importing the relevant Python libraries, we use the following code to define 
connections to the various AWS services used through the workflow:

%%custom_writefile ../workflow/main.py

sagemaker_session = sagemaker.Session()

region = sagemaker_session.boto_region_name

role = get_execution_role()

sfn_client = boto3.client("stepfunctions")

lambda_client = boto3.client("lambda")

codepipeline_client = boto3.client("codepipeline")

ssm_client = boto3.client("ssm")

23. Now that we have loaded the required libraries, we are going to define some helper 
functions. The first helper function we will need is the get_execution_role() 
function. The following code defines this function to get the SSM parameter for the 
workflow execution role that was created as part of the CDK application:

%%custom_writefile ../workflow/main.py

def get_workflow_role():

    try:

        response = ssm_client.get_parameter(

            Name="WorkflowRoleParameter",

        )

        return response["Parameter"]["Value"]

    except ClientError as e:
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        error_message = e.response["Error"]["Message"]

        print(error_message)

        raise Exception(error_message)

24. The following code defines a second function, called update_lambda(). This 
function will update any AWS Lambda function's code if the function already exists:

%%custom_writefile ../workflow/main.py

def update_lambda(name, zip_name):

    lambda_client.update_function_code(

        FunctionName=name,

        ZipFile=open(zip_name, mode="rb").read(),

        Publish=True

    )

25. The next helper function is called get_lambda(). This function takes any defined 
AWS Lambda code, zips it, and creates a new Lambda function. If the Lambda 
function already exists, get_lambda() will call update_lambda() to update 
the existing Lambda function with the updated code. The code is illustrated in the 
following snippet:

%%custom_writefile ../workflow/main.py

def get_lambda(name, bucket, description):

    print("Creating Lambda Package ")

    zip_name = f"../artifacts/{name}.zip"

    lambda_src = f"../artifacts/{name}.py"

    z = zipfile.ZipFile(zip_name, mode="w")

    z.write(lambda_src, arcname=lambda_src.split("/")
[-1])

    z.close()

    print("Uploading Lambda Package to S3 ")

    S3Uploader.upload(

        local_path=zip_name,

        desired_s3_uri=f"s3://{bucket}/lambda",

    )

    try:

        print(f"Creating Lambda Function '{name}' …")

        lambda_client.create_function(

            FunctionName=name,
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            Runtime="python3.8",

            Role=get_workflow_role(),

            Handler=f"{name}.lambda_handler",

            Code={

                "S3Bucket": bucket,

                "S3Key": f"lambda/{name}.zip"

            },

            Description=description,

            Timeout=120,

            MemorySize=128

        )

    except ClientError as e:

        print(f"Lambda Function '{name}' already exists, 
re-creating ...")

        update_lambda(name, zip_name)

    return name

26. The final helper function we will define is called get_execution_id(). This 
function calls CodePipeline to get the identifier (ID) of the current execution. 
You will recall that for this, we will be versioning the workflow execution, and 
thus pipeline assets, based on the current execution ID. If there is no execution ID, 
then we will use the current time as a versioning ID. The code is illustrated in the 
following snippet:

%%custom_writefile ../workflow/main.py

def get_execution_id(name=None):

    try:

        response = codepipeline_client.get_pipeline_
state(name=name)

        for stage in response["stageStates"]:

            if stage["stageName"] == "Build":

                for action in stage["actionStates"]:

                    if action["actionName"] == 
"BuildModel":

                        return stage["latestExecution"]
["pipelineExecutionId"]

    except KeyError:

        return strftime('%Y%m%d%H%M%S', gmtime())
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Note
SageMaker expects unique names for each job, trained model, and endpoint. If 
these names are not unique then execution will fail. So, if we are unit testing the 
workflow code and not running it as part of the CI/CD pipeline, then we need to 
supply a unique version to the SageMaker job.

27. Now that we have created helper functions, we can proceed to declaring additional 
parameters that are specific to the workflow itself, as well as unique to a workflow 
execution. The following code defines unique workflow parameters:

%%custom_writefile ../workflow/main.py

execution_id = get_execution_id(name=os.
environ["PIPELINE_NAME"])

model = os.environ["MODEL_NAME"]

data_prefix = os.environ["DATA_PREFIX"]

model_prefix = execution_id

bucket_name = os.environ["BUCKET_NAME"]

model_name = f"{model}-{execution_id}"

training_job_name = f"{model}-TrainingJob-{execution_id}"

preprocessing_job_name = f"{model}-ProcessingJob-
{execution_id}"

evaluation_job_name = f"{model}-EvaluationJob-{execution_
id}"

deeplearning_container_image = f"763104351884.dkr.ecr.
{region}.amazonaws.com/tensorflow-training:2.5.0-cpu-
py37-ubuntu18.04-v1.0"

28. Next, we define execution parameters as an ExecutionInput() schema. The 
schema defines the type of parameters that will be provided to start a workflow 
execution. The code is illustrated in the following snippet:

%%custom_writefile ../workflow/main.py

execution_input = ExecutionInput(

    schema={

        "ModelName": str,

        "PreprocessingJobName": str,

        "TrainingJobName": str,

        "EvaluationProcessingJobName": str

    }

)
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29. The final set of parameters we define specifies the data configuration. Here, we 
define an S3 location to get the raw abalone data, as well as an S3 location for the 
data once it has been processed:

%%custom_writefile ../workflow/main.py

s3_bucket_base_uri = f"s3://{bucket_name}"

input_data = os.path.join(s3_bucket_base_uri,  data_
prefix, "raw/abalone.data")

output_data = os.path.join(s3_bucket_base_uri, data_
prefix)

preprocessed_training_data = os.path.join(output_data, 
"input", "training")

preprocessed_testing_data = f"{output_data}/testing"

model_data_s3_uri = f"{s3_bucket_base_uri}/{model_
prefix}/{training_job_name}/output/model.tar.gz"

output_model_evaluation_s3_uri = f"{s3_bucket_base_uri}/
{model_prefix}/{training_job_name}/evaluation"

Now that we've defined the required global variables, helper functions, and overall 
workflow parameters, the next stage is to codify the workflow itself. The following steps 
will walk you through how to create the steps that make up the workflow:

1. The first step in the workflow is to process the raw abalone data as a SageMaker 
processing job. However, before defining the processing step, we need to provide 
SageMaker with a processing script. The following code cell creates an artifacts 
folder to store the various script artifacts:

!mkdir ../artifacts

2. Now, we use the following code to capture the preprocessing.py processing 
artifact script: 

%%writefile ../artifacts/preprocessing.py

import os

import pandas as pd

import numpy as np

prefix = "/opt/ml"

processing_path = os.path.join(prefix, "processing")

preprocessing_input_path = os.path.join(processing_path, 
"input")

preprocessing_output_path = os.path.join(processing_path, 
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"output")

if __name__ == "__main__":

    print("Preprocessing Data")

    column_names = ["sex", "length", "diameter", 
"height", "whole_weight", "shucked_weight", "viscera_
weight", "shell_weight", "rings"]

    data = pd.read_csv(os.path.join(preprocessing_input_
path, "abalone.data"), names=column_names)

    y = data.rings.values.reshape(len(data), 1)

    del data["rings"]

    print("Creating Catagorical Features")

    data = pd.get_dummies(data).to_numpy()

    X = np.concatenate((y, data), axis=1)

    print("Splitting Data into Training, Validation and, 
Test Datasets")

    training, validation, testing = np.split(X, 
[int(.8*len(X)), int(.95*len(X))])

    pd.DataFrame(training).to_csv(os.path.
join(preprocessing_output_path, "training/training.csv"), 
header=False, index=False)

    pd.DataFrame(validation).to_csv(os.path.
join(preprocessing_output_path, "training/validation.
csv"), header=False, index=False)

    pd.DataFrame(testing).to_csv(os.path.
join(preprocessing_output_path, "testing/testing.csv"), 
header=False, index=False)

    print("Done!")

Note
As you can see, this script contains the same data processing methodology 
we've been using throughout the book for the abalone dataset.
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3. Now that we have the script for the processing job, we can define a workflow step 
definition to call SageMaker and execute the processing job as a task within the 
workflow. In the following code snippet, we start defining processing_step as a 
ProcessingStep() state machine:

...

%%custom_writefile ../workflow/main.py

processing_step = ProcessingStep(

    "Pre-process Data",

...

4. Next, we specify the type of processing job as SKLearnProcessor() and the 
type of compute resources to use for the processing job, as follows:

...

    processor=SKLearnProcessor(

        framework_version="0.23-1",

        role=role,

        instance_type="ml.m5.xlarge",

        instance_count=1,

        max_runtime_in_seconds=1200,

    ),

    job_name=execution_input["PreprocessingJobName"],

...

5. As the following code snippet shows, we now specify the location of the input data 
for the processing job, as well as the location of the processing.py script we 
created in Step 2:

...

    inputs=[

        ProcessingInput(

            source=input_data,

            destination="/opt/ml/processing/input",

            input_name="input"

        ),

        ProcessingInput(

            source=sagemaker_session.upload_data(

                path="../artifacts/preprocessing.py",
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                bucket=bucket_name,

                key_prefix=os.path.join(data_prefix, 
"code")

            ),

            destination="/opt/ml/processing/input/code",

            input_name="code"

        )

    ],

...

6. Once inputs have been defined, we can define outputs. In the following code 
snippet, we define output locations for both the training and testing data. 
These datasets will be stored in the S3 bucket we defined in Step 7 earlier:

...

    outputs=[

        ProcessingOutput(

           source="/opt/ml/processing/output/training",

           destination=os.path.join(output_data, "input", 
"training"),

           output_name="training"

        ),

        ProcessingOutput(

            source="/opt/ml/processing/output/testing",

            destination=os.path.join(output_data, 
"testing"),

            output_name="testing"

        )

    ],

...

7. The final part of the processing_step state machine, as shown in the following 
code snippet, is to specify the preprocessing.py script as the execution entry 
point to processing_step:

...

    container_entrypoint=["python3", "/opt/ml/processing/
input/code/preprocessing.py"],

)

...
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8. Once the data has been processed, we can move on to the next step of the workflow, 
where we train the model. In this step, we will call SageMaker to run a training 
job. Before we can define the workflow step, we need to provide SageMaker with 
the model training code as an artifact. The following code snippet shows how a 
model_training.py artifact is created. As you can see, we define a process to 
train a TensorFlow model using the same methodology as the previous examples:

...

if __name__ == "__main__":

    print(f"Tensorflow Version: {tf.__version__}")

    column_names = ["rings", "length", "diameter", 
"height", "whole weight", "shucked weight", "viscera 
weight", "shell weight", "sex_F", "sex_I", "sex_M"]

    parser = argparse.ArgumentParser()

    parser.add_argument('--epochs', type=int, default=2)

    parser.add_argument('--batch-size', type=int, 
default=8)

    parser.add_argument('--model-dir', type=str, 
default=os.environ['SM_MODEL_DIR'])

    parser.add_argument('--training', type=str, 
default=os.environ['SM_CHANNEL_TRAINING'])

    args, _ = parser.parse_known_args()

    epochs = args.epochs

    batch_size = args.batch_size

    training_path = args.training

    model_path = args.model_dir

    train_data = pd.read_csv(os.path.join(training_path, 
'training.csv'), sep=',', names=column_names)

    val_data = pd.read_csv(os.path.join(training_path, 
'validation.csv'), sep=',', names=column_names)

    train_y = train_data['rings'].to_numpy()

    train_X = train_data.drop(['rings'], axis=1).to_
numpy()

    val_y = val_data['rings'].to_numpy()

    val_X = val_data.drop(['rings'], axis=1).to_numpy()

    train_X = preprocessing.normalize(train_X)

    val_X = preprocessing.normalize(val_X)

    network_layers = [Dense(64, activation="relu", 
kernel_initializer="normal", input_dim=10), Dense(64, 



Building the state machine workflow     227

activation="relu"), Dense(1, activation="linear")]

    model = Sequential(network_layers)

    model.compile(optimizer='adam', loss='mse', 
metrics=['mae', 'accuracy'])

    model.summary()

    model.fit(train_X, train_y, validation_data=(val_X, 
val_y), batch_size=batch_size, epochs=epochs, 
shuffle=True, verbose=1)

    model.save(os.path.join(model_path, 'model.h5'))

    model_version = 1

    export_path = os.path.join(model_path, str(model_
version))

    tf.keras.models.save_model(model, export_path, 
overwrite=True, include_optimizer=True, save_format=None, 
signatures=None, options=None)

...

9. Now that the training artifact is created, we define a training_step workflow 
step to define an instance of the TrainingStep() workflow task. As part of the 
task, we specify the location of the training script, the hyperparamaters, the job 
name, the type of compute resources to use, and the S3 location of the processed 
training data. The code is illustrated in the following snippet:

%%custom_writefile ../workflow/main.py

training_step = TrainingStep(

    "Model Training",

    estimator=TensorFlow(

        entry_point='../artifacts/model_training.py',

        role=role,

        hyperparameters={

            'epochs': int(os.environ['EPOCHS']),

            'batch-size': int(os.environ['BATCH_SIZE']),

        }, 

        train_instance_count=1,

        train_instance_type='ml.m5.xlarge',

        framework_version='2.4',

        py_version="py37",

        script_mode=True,

        output_path=os.path.join(s3_bucket_base_uri, 
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model_prefix)

    ),

    data={"training": sagemaker.inputs.
TrainingInput(preprocessed_training_data, content_
type="csv")},

    job_name=execution_input["TrainingJobName"],

    wait_for_completion=True,

)

10. After the model has been trained, we need to evaluate whether or not it qualifies as 
a production-grade model. We will define a SageMaker processing job to execute 
the evaluation, and as we did with the data processing task, we define a script 
artifact called evaluate.py. This artifact will load the trained model, plus the 
testing dataset, and capture the model inference output to an evaluation.json 
file in S3. The following code creates an artifact and loads the necessary Python 
libraries for the evaluation:

%%writefile ../artifacts/evaluate.py

import json

import os

import tarfile

import pandas as pd

import numpy as np

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.optimizers import Adam

from sklearn import preprocessing

11. Next, we define a Python function to load and compile the trained TensorFlow 
model, as follows:

%%writefile -a ../artifacts/evaluate.py

def load_model(model_path):

    model = tf.keras.models.load_model(os.path.
join(model_path, 'model.h5'))

    model.compile(optimizer='adam', loss='mse')

    return model
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12. Now, we append another function to the artifact to capture the inferences from the 
loaded model and store the results in S3, as follows:

%%writefile -a ../artifacts/evaluate.py

def evaluate_model(prefix, model):

    column_names = ["rings", "length", "diameter", 
"height", "whole weight", "shucked weight",

                    "viscera weight", "shell weight", 
"sex_F", "sex_I", "sex_M"]

    input_path = os.path.join(prefix, "processing/
testing")

    output_path = os.path.join(prefix, "processing/
evaluation")

    predictions = []

    truths = []

    test_df = pd.read_csv(os.path.join(input_path, 
"testing.csv"), names=column_names)

    y = test_df['rings'].to_numpy()

    X = test_df.drop(['rings'], axis=1).to_numpy()

    X = preprocessing.normalize(X)

    for row in range(len(X)):

        payload = [X[row].tolist()]

        result = model.predict(payload)

        print(result[0][0])

        predictions.append(float(result[0][0]))

        truths.append(float(y[row]))

    report = {

        "GroundTruth": truths,

        "Predictions": predictions

    }

    with open(os.path.join(output_path, "evaluation.
json"), "w") as f:

        f.write(json.dumps(report))

13. Finally, we append the main program to execute the evaluation, as follows:

%%writefile -a ../artifacts/evaluate.py

if __name__ == "__main__":

    print("Extracting model archive ...")
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    prefix = "/opt/ml"

    model_path = os.path.join(prefix, "model")

    tarfile_path = os.path.join(prefix, "processing/
model/model.tar.gz")

    with tarfile.open(tarfile_path) as tar:

        tar.extractall(path=model_path)

    print("Loading Trained Model ...")

    model = load_model(model_path)

    print("Evaluating Trained Model ...")

    evaluate_model(prefix, model)

    print("Done!")

14. As with the data processing step, we use the following code to define another 
ProcessingStep() workflow to execute the evaluation.py artifact, as follows:

%%custom_writefile ../workflow/main.py

evaluation_step = ProcessingStep(

    "Model Evaluation",

    processor=Processor(

        image_uri=deeplearning_container_image,

        instance_count=1,

        instance_type="ml.m5.xlarge",

        role=role,

        max_runtime_in_seconds=1200

    ),

    job_name=execution_
input["EvaluationProcessingJobName"],

    inputs=[

        ProcessingInput(

            source=preprocessed_testing_data,

            destination="/opt/ml/processing/testing",

            input_name="input"

        ),

        ProcessingInput(

            source=model_data_s3_uri,

            destination="/opt/ml/processing/model",

            input_name="model"

        ),
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        ProcessingInput(

            source=sagemaker_session.upload_data(

                path="../artifacts/evaluate.py",

                bucket=bucket_name,

                key_prefix=os.path.join(data_prefix, 
"code")

            ),

            destination="/opt/ml/processing/input/code",

            input_name="code"

        )

    ],

    outputs=[

        ProcessingOutput(

            source="/opt/ml/processing/evaluation",

            destination=output_model_evaluation_s3_uri,

            output_name="evaluation"

        )

    ],

    container_entrypoint=["python3", "/opt/ml/processing/
input/code/evaluate.py"]

)

Note
SageMaker processing jobs natively support processing data using Apache 
Spark or the scikit-learn Python libraries. Since we are evaluating a 
TensorFlow model, which isn't natively supported, we leverage the TensorFlow 
training deep learning (DL) container image (https://github.
com/aws/deep-learning-containers/blob/master/
available_images.md#general-framework-containers), 
using the image_uri parameter to perform the model evaluation within the 
ProcessingStep() state machine.

15. Since we've captured the inference result in the evaluation.json file, we need 
to assess the results against an evaluation metric. To do this, we will use an AWS 
Lambda function. The following code snippet shows the lambda_handler() 
definition, as an artifact called analyze_results.py:

...

def lambda_handler(event, context):

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#general-framework-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#general-framework-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#general-framework-containers
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    logger.debug("## Environment Variables ##")

    logger.debug(os.environ)

    logger.debug("## Event ##")

    logger.debug(event)

    s3 = boto3.client("s3")

    if ("Bucket" in event):

        bucket = event["Bucket"]

    else:

        raise KeyError("S3 'Bucket' not found in Lambda 
event!")

    if ("Key" in event):

        key = event["Key"]

    else:

        raise KeyError("S3 'Key' not found in Lambda 
event!")

    logger.info("Downloading evlauation results file 
...")

    json_file = json.loads(s3.get_object(Bucket = bucket, 
Key = key)['Body'].read())

    logger.info("Analyzing Model Evaluation Results ...")

    y = json_file["GroundTruth"]

    y_hat = json_file["Predictions"]

    summation = 0

    for i in range (0, len(y)):

        squared_diff = (y[i] - y_hat[i])**2

        summation += squared_diff

    rmse = math.sqrt(summation/len(y))

    logger.info("Root Mean Square Error: {}".
format(rmse))

    logger.info("Done!")

    return {

        "statusCode": 200,

        "Result": rmse,

    }

...
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16. To run the Lambda function as a step within the workflow, we define a 
LambdaStep() function and use the helper functions to create a Lambda,  
as follows:

%%custom_writefile ../workflow/main.py

analyze_results_step = LambdaStep(

    "Analyze Evaluation Results",

    parameters={

        "FunctionName": get_lambda(

            "analyze_results",

            bucket_name,

            "Analyze the results from the Model 
Evaluation"

        ),

        "Payload": {

            "Bucket": bucket_name,

            "Key": f"""{model_prefix}/{training_job_
name}/evaluation/evaluation.json"""

        }

    }

)

17. The final task within the workflow is to register the trained model as a SageMaker 
model. This is the model that will be deployed as a hosted endpoint during the CD 
phase of the CI/CD pipeline. The following code creates a ModelStep() function 
and points to the trained model from the TrainingStep() workflow task:

%%custom_writefile ../workflow/main.py

register_model_step = ModelStep(

    "Register Trained Model",

    model=training_step.get_expected_model(),

    model_name=execution_input["ModelName"],

    instance_type="ml.m5.large"

)
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18. Now that we have all the steps of the workflow, we need to put them together and 
define the flow of the state machine. To do this, we will work backward from the 
various end results of workflow execution to build up the workflow. In the following 
code snippet, we define the resultant state of a failed workflow and connect each 
step to the failed state, if they should fail:

%%custom_writefile ../workflow/main.py

workflow_failed_state = stepfunctions.steps.states.Fail(

    "ML Workflow Failed", 
cause="SageMakerProcessingJobFailed"

)

catch_state = stepfunctions.steps.states.Catch(error_
equals=["States.TaskFailed"], next_step=workflow_failed_
state)

processing_step.add_catch(catch_state)

training_step.add_catch(catch_state)

evaluation_step.add_catch(catch_state)

analyze_results_step.add_catch(catch_state)

register_model_step.add_catch(catch_state)

If the trained model fails the evaluation—or, in other 
words, is above the  
threshold we establish for a production-grade model—the 
workflow should  
also fail. In the next code snippet, we define a failure 
state for the model exceeding the evaluation criteria:

%%custom_writefile ../workflow/main.py

threshold_fail_state = stepfunctions.steps.states.Fail(

    "Model Evaluation Exceeds Threshold"

)

Along with declaring the final failure states of the 
workflow, we also need to create a final state whereby 
the model's evaluation determines it to be below the 
evaluation threshold, and therefore a production-grade 
model. The following code snippet defines this Pass() 
state:

%%custom_writefile ../workflow/main.py

threshold_pass_state = stepfunctions.steps.states.Pass(

    "Model Evaluation Below Threshold"

)



Building the state machine workflow     235

19. To determine whether or not the model evaluation is above or below the evaluation 
criteria, we define a Choice() state and configure a ChoiceRule() function to 
determine whether the output of the analyze_results_step task is less than 
the THRESHOLD variable, as follows:

%%custom_writefile ../workflow/main.py

check_threshold_step = steps.states.Choice(

    "Threshold Evaluation Check"

)

threshold_rule = steps.choice_rule.ChoiceRule.
NumericLessThan(

    variable=analyze_results_step.output()['Payload']
['Result'],

    value=float(os.environ["THRESHOLD"])

)

check_threshold_step.add_choice(rule=threshold_rule, 
next_step=threshold_pass_state)

check_threshold_step.default_choice(next_step=threshold_
fail_state)

20. We've just created all of our steps and states of the ML workflow, as well as the 
supporting artifacts the various steps will use. The final part of creating our 
workflow is to put them all together. The following code chains the various steps 
together and creates a workflow graph:

%%custom_writefile ../workflow/main.py

_graph = Chain(

    [

        processing_step,

        training_step,

        register_model_step,

        evaluation_step,

        analyze_results_step,

        check_threshold_step

    ]

)



236     Building the ML Workflow Using AWS Step Functions

21. We now have our workflow defined, using the Data Science SDK. If we refer to 
Figure 6.2 of Chapter 6, Automating the Machine Learning Process Using AWS Step 
Functions, we can see that the next part of the process for the ML practitioner to 
perform is to unit test, and validate the code works. The following code creates a 
workflow called abalaone-workflow-unit-test, and then executes it:

ml_workflow = Workflow(ml_workflow

    name="abalone-workflow-unit-test",

    definition=ml_workflow_graph,

    role=get_workflow_role(),

)

ml_workflow.create()

execution = ml_workflow.execute(

    inputs={

        "ModelName": model_name,

        "PreprocessingJobName": preprocessing_job_name,

        "TrainingJobName": training_job_name,

        "EvaluationProcessingJobName": evaluation_job_
name,

    }

)

execution_output = execution.get_output(wait=True)

Note
Executing a unit test on the workflow will incur additional AWS resource  
costs outside of the Free Tier. You can forego the previous step to avoid 
additional charges.
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22. Based on the success of the unit-test procedure, the final addition to the main.py 
script is to capture the process to execute a production state machine. The following 
code will create an abalone-workflow production workflow and provide the 
execution-specific parameters for a production execution:

%%writefile -a ../workflow/main.py

print("Creating ML Workflow")

ml_workflow = Workflow(

    name="abalone-workflow",

    definition=ml_workflow_graph,

    role=get_workflow_role(),

)

try:

    print("Creating Step Functions State Machine")

    ml_workflow.create()

except sfn_client.exceptions.StateMachineAlreadyExists:

    print("Found Existing State Machine, Updating the 
State Machine definition")

else:

    ml_workflow.update(ml_workflow_graph)

    time.sleep(120)

print("Executing ML Workflow State Machine")

ml_workflow.execute(

    inputs={

        "ModelName": model_name,

        "PreprocessingJobName": preprocessing_job_name,

        "TrainingJobName": training_job_name,

        "EvaluationProcessingJobName": evaluation_job_
name

    }

)

23. This completes the ML practitioner's contribution to the refactored solution. All 
that's left to do is to commit these changes to the repository. To do this, click on the 
Git icon. 

24. Click the plus (+) icon for both the Changed and Untracked sections, to move the 
changes into the Staged section.
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25. In the Summary (required) field, provide a summary of these changes, by  
entering Initial commit of Workflow Artifacts, as illustrated in  
the following screenshot:

Figure 7.4 – Staged changes
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26. Click the Commit button to commit the changes to the model branch.
27. Once the changes have been committed, click Git from the menu bar, and select 

Push to Remote.

Note
If prompted, provide your email address and name.

By checking in this code, we, as the ML practitioner, have completed our contribution to 
the refactored solution. We have used the Data Science SDK to codify an ML workflow 
and create a state machine, without having to use the Amazon States Language. The 
following screenshot shows a graphical representation of our ML workflow:

Figure 7.5 – ML workflow state machine
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However, even though the state machine code has been checked in, the overall CI/
CD pipeline still won't execute as we have not yet defined the integration between the 
pipeline and the state machine. In the next section, we will once again perform the final 
integration, from the perspective of the development engineer.

Performing the integration test
To finalize the CI/CD pipeline for release, we need to integrate the code that the 
ML practitioner submitted into the build process. We do this by providing the build 
instructions to the CodeBuild stage by creating a buildspec.yml file.

Note
You can find a complete copy of the buildspec.yml file, for your 
reference, in the companion GitHub repository (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/
blob/main/Chapter07/Files/buildspec.yml).

The following steps will walk you through the integration process, performed from the 
perspective of the development engineer:

1. Using the Cloud9 environment, run the following command within the Terminal 
window to pull the latest changes that the ML practitioner made:

$ cd ~/environment/abalone-cicd-pipeline/ && git pull

2. Change to the model branch by running the following command:

$ git checkout model

3. Right-click on the abalone-cicd-pipeline folder in the navigation panel and 
select New File.

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter07/Files/buildspec.yml
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter07/Files/buildspec.yml
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter07/Files/buildspec.yml
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4. Name the file buildspec.yml and double-click on it for editing.
5. Add the following code to declare instructions for loading the necessary Python 

libraries and executing the main.py script:

version: 0.2

env:

  variables:

    DATA_PREFIX: abalone_data

    EPOCHS: 200

    BATCH_SIZE: 8

    THRESHOLD: 2.1

phases:

  install:

    runtime-versions:

      python: 3.8

    commands:

      - printenv

      - echo "Updating Build Environment"

      - apt-get update

      - python -m pip install --upgrade pip

      - python -m pip install --upgrade boto3 awscli 
sagemaker==2.49.1 stepfunctions==2.2.0

  build:

    commands:

      - echo Build started on 'date'

      - echo "Creating ML Workflow "

      - |

        sh -c """

        cd workflow/

        python main.py

        """

  post_build:

    commands:

      - echo "Build Completed"
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6. Save the file.
7. Within the Terminal window, run the following command to add the buildspec.

yml file to the file repository file index:

$ git add -A

8. Commit the integration to the CodeCommit repository by running the  
following command:

$ git commit -m "Add Integration Artifacts"

9. Now, push the changes to the repository with the following command:

$ git push

We have now integrated the workflow into the CI/CD pipeline, and by committing  
these changes, we have also created a pipeline release. In the next section, we will  
monitor the pipeline.

Monitoring the pipeline's progress
Monitoring the pipeline execution is done through the CodePipeline console. In the  
web browser, open the AWS CodePipeline Management Console (https://console.
aws.amazon.com/codesuite/codepipeline/home), and then click on the name 
of the pipeline—abalone-cicd-pipeline. The following screenshot depicts the 
pipeline execution:

https://console.aws.amazon.com/codesuite/codepipeline/home
https://console.aws.amazon.com/codesuite/codepipeline/home
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Figure 7.6 – CodePipeline console
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If you compare Figure 7.6 with the pipeline in Figure 5.4 of Chapter 5, Continuous 
Deployment of a Production ML Model, the first thing you will notice is that the Build 
stage has been significantly compressed to a action called BuildModel. This is because we 
are offloading the ML modeling process to the Step Functions state machine, instead of 
capturing the modeling process into the pipeline itself.

To review the progress of the state machine in a new web browser tab, open the AWS Step 
Functions Management Console (https://console.aws.amazon.com/states) 
and select the abalone-workflow state machine. You will see a list of executions. 
Click on the latest execution to review its progress. The following screenshot shows the 
succeeded execution: 

Figure 7.7 – Succeeded state machine execution

https://console.aws.amazon.com/states
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As you can see from Figure 7.7, the workflow has successfully completed, producing 
a trained ML model that is below the pre-established evaluation criteria. To verify the 
evaluation criteria, click on the Analyze Evaluation Results step of the Graph inspector, 
and then click on the Step output tab. The following screenshot shows an example result 
of the model evaluation:

Figure 7.8 – Analyze Evaluation Results: Step output

This completes the CI phase of the pipeline, and we can once again approve the model  
for deployment. 

Note
See the Executing the automated ML model deployment and Cleanup sections 
of Chapter 5, Continuous Deployment of a Production ML Model, to see how to 
approve a model and continue with the CD phase of a pipeline. 

Once the DeployEndpoint action of CodePipeline is complete, we have a production 
model that can be integrated into the Age Calculator application and serve abalone  
age predictions. 
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Summary
In this chapter, we continued refactoring the Age Calculator example that we started in 
Chapter 6, Automating the Machine Learning Process Using AWS Step Functions, to further 
streamline the overall ML automation process, using AWS Step Functions. 

Not only have we seen how ML practitioner teams can tighten their integration with 
the development (or platform) teams by providing the entire ML workflow as a CI/CD 
pipeline artifact, but we also saw how—when combined with the codified artifacts created 
in Chapter 6, Automating the Machine Learning Process Using AWS Step Functions—each 
team can focus on their specific area of expertise. Now, the development teams don't have 
to upskill their understanding of how the ML process works to adapt the CI/CD pipeline 
to accommodate the ML process. Alternatively, the ML practitioner team can contribute 
their expertise to the pipeline development, instead of simply providing a trained ML 
model and expecting the other teams to figure out how to deploy it into production.

However, in both this and the previous chapters, we have focused our attention on 
releasing production-grade models based on source code changes. Conversely, how does 
the CI/CD process adapt to changes (or updates) to the training data?

In the next chapter, we will review how to automate the ML process when there are source 
data changes.



This section introduces you to what a data-centric ML process is, how it differs from  
a code-centric approach, and the services typically used for this methodology, namely, 
Apache Airflow and Amazon Managed Workflows for Apache Airflow.

This section comprises the following chapters:

• Chapter 8, Automating the Machine Learning Process Using Apache Airflow

• Chapter 9, Building the ML Workflow Using Amazon Managed Workflows  
for Apache Airflow

Section 4: 
Optimizing a Data-

Centric Approach  
to Automated 

Machine Learning





8
Automating the 

Machine Learning 
Process Using 

Apache Airflow
When building an ML model, there is a fundamental principle that all ML practitioners 
are aware of; namely, an ML model is only as robust as the data on which it was trained. 
In the previous four chapters, we have primarily focused on automating the ML 
process using a source code-centric mechanism. In other words, we applied a DevOps 
methodology of Continuous Integration and Continuous Deployment to automate the 
ML process by supplying the model source code, tuning parameters, and the ML workflow 
source code. Any changes to these artifacts would trigger a release change process of the 
CI/CD pipeline.

However, we also supplied static abalone data, downloaded from the UCI Machine 
Learning Repository, as a source artifact, but we never made any changes to this data. So, 
using a typical DevOps methodology, the data artifact is static and therefore won't trigger 
a change release of the CI/CD process.
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Accordingly, data becomes the key differentiator between applying a DevOps 
methodology to automate the ML process, versus an MLOps strategy. For a successful 
MLOps strategy, we basically need to provide the ability to automate the ML process when 
the data changes. In essence, just as the ML automation process is triggered when source 
code is added or updated, we also need to trigger the automation process when existing 
data is updated, or new data is added.

This then begs the question; how can we automate the ML process when we have  
new data?

To answer this question, in this chapter, we will focus on automating the ML process  
on AWS, using a data-centric approach. The overall objective of this chapter is to  
duplicate the foundation that we've established in both Chapter 4, Continuous  
Integration and Continuous Delivery (CI/CD) for Machine Learning, as well as Chapter 6, 
Automating the Machine Learning Process Using AWS Step Functions, to automate the Age 
Calculator example, with new training data. We will be accomplishing this by means of the 
following topics:

• Introducing Apache Airflow

• Introducing Amazon MWAA

• Using Airflow to process the abalone dataset

• Configuring the MWAA prerequisites

• Configuring the MWAA environment

Technical requirements
We will use the following resources in this chapter:

• A web browser (for the best experience, it is recommended that you use Chrome  
or Firefox).

• Access to the AWS account that you used in Chapter 7, Building the ML Workflow 
Using AWS Step Functions.

• Access to the Cloud9 development environment we used in Chapter 7, Building the 
ML Workflow Using AWS Step Functions.

• We will once again be working within the usage limits of the AWS Free Tier to avoid 
incurring unnecessary costs.
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• Source code examples are provided in the companion GitHub repository for 
this chapter (https://github.com/PacktPublishing/Automated-
Machine-Learning-on-AWS/tree/main/Chapter07). The code examples 
should already be available in the Cloud9 development environment; if not, refer to 
the Developing the application artifacts section in Chapter 4, Continuous Integration 
and Continuous Delivery (CI/CD) for Machine Learning.

Introducing Apache Airflow
Data for ML model training can come from various sources, such as databases, data 
warehouses, or even data lakes. These data repositories store data in a wide variety of 
different data formats. For example, data may be stored as unstructured objects, as in the 
case of image, video, or sound files. Objects may be stored as semi-structured data, such as 
JSON data that doesn't conform to a standardized tabular schema. In the case of relational 
databases, or data warehouses, the data is stored in an organized and structured format, 
but it may have multiple different types of schemas.

To make matters worse, some datasets can be very large, often terabytes, or even petabytes 
in size, where joining, merging, and transforming the data, often referred to as Extract, 
Transform and Load (ETL) processes, requires large compute clusters, such as Hadoop 
and Apache Spark clusters. AWS provides infrastructure resources and dedicated services 
to scale these big data workloads in the form of AWS Glue (a managed ETL service) and 
Amazon Elastic Map Reduce, or EMR (big data platform).

However, performing ETL tasks on these different types of big data, and their varying 
sources, often requires daisy-chaining multiple separate ETL tasks together as part of 
an orchestrated workflow, where the data output from one ETL task becomes the input 
to another ETL task, and so on. As you can imagine, creating such a workflow can be a 
daunting task.

So, to simplify the process, many data engineers rely on Apache Airflow (https://
airflow.apache.org/), a platform that allows them to programmatically construct, 
execute, and manage these potentially complex data workflows. The Airflow platform 
comprises three key components, namely:

• A web-based management interface

• A scheduler, responsible for scheduling and coordinating the resources to execute 
the various steps, or tasks, within the workflow

• Multiple workers to execute the code for each specific task within the workflow
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To use the Airflow platform, a data engineer creates a codified representation of a 
workflow in the form of a Directed Acyclic Graph (DAG). Figure 8.1 shows an example of 
what an Airflow DAG looks like:

Figure 8.1 – Airflow DAG example

Note
Figure 8.1 is made available under the Apache 2.0 license and can be referenced 
in the Airflow GitHub repository (https://github.com/apache/
airflow/blob/main/docs/apache-airflow/img/edge_
label_example.png). 

As you can see from Figure 8.1, the DAG is made up of various sequential, or directed, 
tasks that are programmatically defined as a Python construct. Once the DAG is 
submitted to the scheduler, the scheduler coordinates its execution by assigning each task 
to a worker. Each worker, in turn, processes the code for the individual task to which it 
was assigned.

So, using Airflow significantly simplifies the data engineer's task or orchestrates these 
complex data transformation tasks. However, having yet another platform to manage 
now adds additional complexity for the infrastructure and operations teams, as now these 
teams must manage the big data processing platforms (such as Hadoop and Spark), as well 
as the Airflow platform.

How can the platform management tasks also be simplified?

To answer this question, we will explore Amazon Managed Workflows for Apache 
Airflows (MWAA) next.

Introducing Amazon MWAA
Managing big data platforms isn't typically part of the ML practitioner's portfolio of tasks. 
Oftentimes, the ML practitioner and data engineering teams rely on the infrastructure and 
operations teams to manage these platforms. 

https://github.com/apache/airflow/blob/main/docs/apache-airflow/img/edge_label_example.png
https://github.com/apache/airflow/blob/main/docs/apache-airflow/img/edge_label_example.png
https://github.com/apache/airflow/blob/main/docs/apache-airflow/img/edge_label_example.png
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Including Airflow as part of the big data infrastructure means that these platform teams 
must now manage additional compute resources, orchestrate their deployment, update 
software and operating system patches, and monitor these resources to ensure that 
they are constantly addressing workload scaling requirements and other Service-Level 
Agreements (SLAs). 

AWS offers multiple big data managed services, such as EMR and Glue, to help offload 
these management tasks from the platform teams and, in November 2020, AWS launched 
Amazon MWAA to help offload the management of the Airflow platform. With MWAA, 
the platform teams can run a highly available and scalable Airflow cluster without having 
to individually provision, update, and monitor the Web UI server, scheduler, or even the 
worker nodes. This means that the ML practitioner and data engineering teams can focus 
on developing the data workflow without relying on the platform teams.

To illustrate just how MWAA can work in practice, we are going to leverage the service for 
the Age Calculator use case.

Using Airflow to process the abalone dataset
To set the scene, you will recall from Chapter 1, Getting Started with Automated Machine 
Learning on AWS, that the ACME Fishing Logistics company uses an outdated dataset, 
found in the UCI Machine Learning Repository, to train the ML model. The ML 
practitioners have found that since an ML model is only as good as the data it's trained 
on, they can tweak and tune the model as much as they want, but without newer data, the 
production model can't be improved upon.

To resolve this problem, ACME has hired an external company to survey abalone catches 
and supply daily updates of the surveyed dataset. This means that the already tuned ML 
model can be retrained on fresh data, and thus be further optimized. This also means that 
the data engineering teams need to orchestrate a process, or data pipeline, to merge the 
original dataset with the new survey data and supply the new training, validation, and 
testing dataset to a new model training pipeline, all using the MWAA service.

Let's see how the various ACME teams would approach this task.
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Configuring the MWAA prerequisites
Before we can launch the MWAA service, there are a few prerequisites that need to be 
addressed, namely:

• MWAA requires access to an S3 bucket where the DAGs are stored.

• MWAA needs to access a requirements.txt file, also stored on S3, to load any 
unique Python libraries that the workers would need to execute their assigned tasks.

• Although not required by MWAA, we need to also configure various IAM roles to 
access backend services such as Glue and SageMaker.

• We also need to provide the artifacts that the various backend services would 
require. For example, we need to provide ETL scripts in order for the Glue service 
to execute.

In the following steps, we will provide these prerequisites as a CDK application:

1. Log in to the same AWS account you've been using in the previous  
chapter and open the AWS Cloud9 console (https://console.aws.amazon.
com/cloud9).

2. In the Your environments section, click the Open IDE button for the MLOps-IDE 
development environment.

Note
If you've been following along up to this point, you should already have the 
MLOps-IDE environment configured, along with version 2.3.0 of the AWS 
CDK. If not, please refer to the Preparing the development environment section 
in Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for 
Machine Learning.

3. Next, we will create a CodeCommit repository to store the various codified artifacts 
for the entire solution:

$ cd ~/environment

$ aws codecommit create-repository --repository-name 
abalone-data-pipeline --repository-description "Automated 
ML on AWS using Managed Workflows for Apache Airflow"
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4. Now we can capture the repository's URI for cloning:

$ CLONE_URL=$(aws codecommit get-repository --repository-
name abalone-data-pipeline --query "repositoryMetadata.
cloneUrlHttp" --output text)

5. Run the following command to clone the repository:

$ git clone $CLONE_URL

6. Run the following commands to initialize the CDK application within the  
new repository:

$ cd abalone-data-pipeline && cdk init --language python

$ git add -A

$ git commit -m "Started CDK Project"

$ git branch main

$ git checkout main

$ source .venv/bin/activate

7. Next, we will install the necessary development libraries by running the  
following commands:

$ python -m pip install -U pip pylint boto3 
sagemaker==2.49.1 apache-airflow

$ pip install –r requirements.txt

8. Now that we have the relevant libraries installed, we can start defining the various 
data pipeline resources. Using the Cloud9 navigation panel, on the left-hand 
side, expand the abalone_data_pipeline folder and double-click on the 
abalone_data_pipeline_stack.py file for editing.

Note
Examples of the CDK code can be found in the companion GitHub repository 
for this chapter (https://github.com/PacktPublishing/
Automated-Machine-Learning-on-AWS/tree/main/
Chapter08/cdk).

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter08/cdk
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter08/cdk
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter08/cdk
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9. Delete the template code and add the following to import the necessary  
CDK libraries:

import os

import aws_cdk.aws_codecommit as codecommit

import aws_cdk.aws_codebuild as codebuild

import aws_cdk as cdk

import aws_cdk.aws_s3 as s3

import aws_cdk.aws_ssm as ssm

import aws_cdk.aws_s3_deployment as s3_deployment

import aws_cdk.aws_iam as iam

import aws_cdk.aws_glue as glue

import aws_cdk.aws_lambda as lambda_

import aws_cdk.aws_events_targets as targets

from constructs import Construct

10. Next, we initialize the DataPipelineStack class by adding the following code:

class DataPipelineStack(cdk.Stack):

    def __init__(self, scope: Construct, id: str, *, 
airflow_environment_name: str=None, model_name: str=None, 
repo_name: str=None, **kwargs) -> None:

        super().__init__(scope, id, **kwargs)

11. The first construct we will build is a reference to the CodeCommit  
repository. Adding the following code registers the CodeCommit  
repository as a CDK construct:

        code_repo = codecommit.Repository.from_
repository_name(

            self,

            "SourceRepository",

            repository_name=repo_name

        )

12. Now, we create the S3 bucket to store the relevant data and store the bucket name as 
an SSM parameter so that it can be referenced in the Airflow DAG:
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Note
Since this is a data-centric solution, we will store all relevant assets for the 
workflow in a dedicated data bucket, as opposed to the pipeline bucket that 
we've used in previous examples.

        Data_bucket = s3.Bucket(

            self,

            "AirflowDataBucket",

            bucket_name=f"{model_name}-data-{cdk.Aws.
REGION}-{cdk.Aws.ACCOUNT_ID}",

            block_public_access=s3.BlockPublicAccess.
BLOCK_ALL,

            auto_delete_objects=True,

            removal_policy=cdk.RemovalPolicy.DESTROY,

            versioned=True

        )

        ssm.StringParameter(

            self,

            "DataBucketParameter",

            description="Airflow Data Bucket Name",

            parameter_name="AirflowDataBucket",

            string_value=data_bucket.bucket_name

        )

13. Next, we create a SageMaker role, which allows the Airflow workflow to  
initiate SageMaker API calls. We need to ensure that this role has access to  
the data bucket and is referenceable in the Airflow DAG. So, we also store  
the role ARN as an SSM parameter:

        sagemaker_role = iam.Role(

            self,

            "SageMakerBuildRole",

            assumed_by=iam.CompositePrincipal(

                iam.ServicePrincipal("sagemaker.
amazonaws.com")

            ),

            managed_policies=[

                iam.ManagedPolicy.from_aws_managed_
policy_name("AmazonSageMakerFullAccess")
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            ]

        )

        data_bucket.grant_read_write(sagemaker_role)

        ssm.StringParameter(

            self,

            "SageMakerRoleParameter",

            description="SageMaker Role ARN",

            parameter_name="SageMakerRoleARN",

            string_value=sagemaker_role.role_arn

        )

14. In the previous chapter, we created an AWS Lambda function to analyze the  
results from the ML model evaluation. This was done during the ML workflow  
build process. Since we are building out the various resources for the Airflow 
workflow, we are going to codify the Lambda function here. The function is also 
granted access to read the evaluation results file in the data bucket and is stored as 
an SSM parameter:

        analyze_results_lambda = lambda_.Function(

            self,

            "AnalyzeResults",

            handler="index.lambda_handler",

            runtime=lambda_.Runtime.PYTHON_3_8,

            code=lambda_.Code.from_asset(os.path.join(os.
path.dirname(__file__), "../artifacts/lambda/analyze_
results")),

            memory_size=128,

            timeout=cdk.Duration.seconds(60)

        )

        data_bucket.grant_read(analyze_results_lambda)

        ssm.StringParameter(

            self,

            "AnalyzeResultsParameter",

            description="Analyze Results Lambda Function 
Name",

            parameter_name="AnalyzeResultsLambda",
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            string_value=analyze_results_lambda.function_
name

        )

15. Next, we will use the following code to create the necessary resources to process the 
training, validation, and testing datasets. As already mentioned, we need to scale the 
data processing to handle potentially large datasets. So, to streamline this process, 
we will leverage the AWS Glue ETL service. The first resource that Glue requires is 
an IAM role with the necessary permissions to the data bucket:

        glue_role = iam.Role(

            self,

            "GlueRole",

            assumed_by=iam.CompositePrincipal(

                iam.ServicePrincipal("glue.amazonaws.
com")

            ),

            managed_policies=[

                iam.ManagedPolicy.from_aws_managed_
policy_name("service-role/AWSGlueServiceRole")

            ]

        )

        data_bucket.grant_read_write(glue_role)

16. We can now create a Glue Catalog to store references to the new abalone data:

        glue_catalog = glue.CfnDatabase(

            self,

            "GlueDatabase",

            catalog_id=cdk.Aws.ACCOUNT_ID,

            database_input=glue.CfnDatabase.
DatabaseInputProperty(

                name=f"{model_name}_new"

            )

        )
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17. To populate the Glue Catalog with the new abalone data, use the following code to 
create a Glue Crawler. The crawler will crawl the new data in our data bucket and 
append it to the Glue Catalog: 

        glue_crawler = glue.CfnCrawler(

            self,

            "GlueCrawler",

            name=f"{model_name}-crawler",

            role=glue_role.role_arn,

            database_name=glue_catalog.ref,

            targets={

                "s3Targets": [

                    {

                        "path": f"s3://{data_bucket.
bucket_name}/{model_name}_data/new/"

                    }

                ]

            }

        )

18. We also need to store the crawler's name as an SSM parameter so that it can be 
referenced in the Airflow workflow:

        ssm.StringParameter(

            self,

            "GlueCrawlerParameter",

            description="Glue Crawler Name",

            parameter_name="GlueCrawler",

            string_value=glue_crawler.name

        )
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19. Once the new data has been added to the Glue Catalog, we can create the  
Glue Job that reads this data, merges it with the original abalone dataset,  
and performs the necessary data preprocessing tasks to make the entire dataset 
ready for model training: 

        glue_job = glue.CfnJob(

            self,

            "GlueETLJob",

            name=f"{model_name}-etl-job",

            description="AWS Glue ETL Job to merge new + 
raw data, and process training data",

            role=glue_role.role_arn,

            glue_version="2.0",

            execution_property=glue.CfnJob.
ExecutionPropertyProperty(

                max_concurrent_runs=1

            ),

            command=glue.CfnJob.JobCommandProperty(

                name="glueetl",

                python_version="3",

                script_location=f"s3://{data_bucket.
bucket_name}/airflow/scripts/preprocess.py"

            ),

            default_arguments={

                "--job-language": "python",

                "--GLUE_CATALOG": glue_catalog.ref,

                "--S3_BUCKET": data_bucket.bucket_name,

                "--S3_INPUT_KEY_PREFIX": f"{model_name}_
data/raw/abalone.data",

                "--S3_OUTPUT_KEY_PREFIX": f"{model_name}_
data",

                "--TempDir": f"s3://{data_bucket.bucket_
name}/glue-temp"

            },

            allocated_capacity=5,

            timeout=10

        )
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20. Since the Airflow workflow will be calling the Glue Job, we also store the job name 
as an SSM parameter:

        ssm.StringParameter(

            self,

            "GlueJobParameter",

            description="Glue Job Name",

            parameter_name="GlueJob",

            string_value=glue_job.name

        )

21. To ensure that the original abalone dataset is also available to the Glue ETL Job, 
we use the following code to create an S3 bucket deployment that uploads the raw 
dataset to S3:

        s3_deployment.BucketDeployment(

            self,

            "DeployData",

            sources=[

                s3_deployment.Source.asset(os.path.
join(os.path.dirname(__file__), "../artifacts/data"))

            ],

            destination_bucket=data_bucket,

            destination_key_prefix=f"{model_name}_data/
raw",

            retain_on_delete=False

        )

22. Finally, we create a CodeBuild project that allows the Airflow DAG to be 
continuously updated. Although we are building a data-centric workflow, we 
also need to ensure that any updates, or changes, to the codified workflow itself 
can automatically be applied. The following code snippet instantiates the code_
deployment variable as a codebuild.Project():

...

        code_deployment = codebuild.Project(

            self,

            "CodeDeploymentProject",

            project_name="CodeDeploymentProject",

            description="CodeBuild Project to Copy 
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Airflow Artifacts to S3",

            source=codebuild.Source.code_commit(

                repository=code_repo

            ),

            environment=codebuild.BuildEnvironment(

                build_image=codebuild.LinuxBuildImage.
STANDARD_5_0

            ),

            environment_variables={

                "DATA_BUCKET": codebuild.
BuildEnvironmentVariable(

                    value=data_bucket.bucket_name

                )

            },

...

23. The CodeBuild project has three phases that make up the BuildSpec, or build 
instructions, namely, the install, build, and post_build phases. The 
following code snippet shows the install phase, where the latest version of the 
AWS CLI is installed:

...

                        "install": {

                            "runtime-versions": {

                                "python": 3.8

                            },

                            "commands": [

                                "printenv",

                                "echo 'Updating Build 
Environment'",

                                "python -m pip install 
--upgrade pip",

                                "python -m pip install 
--upgrade boto3 awscli"

                            ]

                        },

...
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24. The following code snippet shows the AWS CLI commands that update the Airflow 
assets. During the build phase of the CodeBuild project, we sync the Airflow 
workflow assets to S3 so that once these have been copied to the data bucket, the 
MWAA scheduler will automatically import the new DAG code: 

...

                        "build": {

                            "commands": [

                                "echo 'Deploying Airflow 
Artifacts to S3'",

                                "cd artifacts",

                                "aws s3 sync airflow 
s3://${DATA_BUCKET}/airflow"

                            ]

                        },

...

25. To ensure that the CodeBuild project has the appropriate access to synchronize the 
Airflow assets to S3, the following code snippet grants the code_deploy role read 
and write access to data_bucket:

...

        data_bucket.grant_read_write(code_deployment.
role)

...

26. To ensure that the workflow changes are applied, we create an event trigger  
that starts the CodeBuild project every time any changes are committed to the 
source repository:

        code_repo.on_commit(

            "StartDeploymentProject",

            target=targets.CodeBuildProject(code_
deployment)

        )

27. Save and close the abalone_data_pipeline_stack.py file.
28. Now that we have defined the necessary resources as a CDK construct, we can 

define the CDK application to deploy these resources. Using the workspace 
navigation panel, open the app.py file in the abalone-data-pipeline folder 
and delete the existing template code.



Configuring the MWAA prerequisites     265

Note
A full example of the app.py code can be found in the companion 
GitHub repository for this chapter (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/
tree/main/Chapter08/cdk).

29. Delete the existing template code and add the following code to define the  
CDK application:

#!/usr/bin/env python3

import os

import aws_cdk as cdk

from abalone_data_pipeline.abalone_data_pipeline_stack 
import DataPipelineStack

MODEL = "abalone"

CODECOMMIT_REPOSITORY = "abalone-data-pipeline"

app = cdk.App()

DataPipelineStack(

    app,

    CODECOMMIT_REPOSITORY,

    env=cdk.Environment(account=os.getenv("CDK_DEFAULT_
ACCOUNT"), region=os.getenv("CDK_DEFAULT_REGION")),

    model_name=MODEL,

    repo_name=CODECOMMIT_REPOSITORY,

    airflow_environment_name=f"{MODEL}-airflow-
environment"

)

app.synth()

30. Save and close the app.py file.
31. Before we can deploy the CDK application for our workflow resources, we need to 

download the original abalone dataset from the UHCI repository. Run the following 
commands in the Cloud9 terminal:

$ cd ~/environment/abalone-data-pipeline/

$ mkdir -p artifacts/data

$ wget -c -P artifacts/data https://archive.ics.uci.edu/
ml/machine-learning-databases/abalone/abalone.data

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter08/cdk
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter08/cdk
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter08/cdk
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32. The next artifact is the source code for the analyze_results Lambda function. 
Run the following command to create the necessary folders:

$ cd ~/environment/abalone-data-pipeline/

$ mkdir -p artifacts/lambda/analyze_results

33. To define the Lambda function handler, we can reuse the code we created  
in Chapter 7, Building the ML Workflow Using AWS Step Functions. Run the 
following command to copy the index.py file from the already cloned  
companion GitHub repository:

$ cp ~/environment/src/Chapter08/lambda/analyze_results/
index.py ~/environment/abalone-data-pipeline/artifacts/
lambda/analyze_results/

Note
If you are unfamiliar with how the analyze_results Lambda  
function assesses the model evaluation results against the Root Mean  
Squared Error (RMSE) evaluation metric, you can review the code in  
the Creating the ML workflow section of Chapter 7, Building the ML Workflow 
Using AWS Step Functions.

34. The last artifact we need to configure is the evaluate.py file. You will  
recall from Chapter 7, Building the ML Workflow Using AWS Step Functions,  
that this script is executed as a SageMaker processing job to evaluate the trained 
model's performance on the testing dataset. Run the following commands to create 
the artifact folder and reuse the evaluate.py file provided in the companion 
GitHub repository:

$ cd ~/environment/abalone-data-pipeline/

$ mkdir -p artifacts/airflow/scripts

$ cp ~/environment/src/Chapter08/airflow/scripts/
evaluate.py ~/environment/abalone-data-pipeline/
artifacts/airflow/scripts/

Note
Should you need to re-familiarize yourself with the evaluate.py code, you 
can refer to the Creating the ML workflow section of Chapter 7, Building the ML 
Workflow Using AWS Step Functions.
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35. Since we have all the necessary artifacts for the CDK application, we can go ahead 
and deploy it by running the following command in the terminal window:

cdk deploy

Note
The CDK should take approximately 5 minutes to deploy, and you can track 
the progress in the CloudFormation console (https://console.aws.
amazon.com/cloudformation/home).

36. Once the resource stack has been deployed, we can add the initial Airflow artifacts. 
These artifacts are needed before we can deploy the MWAA environment. To do 
this, run the following commands to set up the artifact source folders:

$ cd ~/environment/abalone-data-pipeline/

$ mkdir -p artifacts/airflow/dags

37. The first Airflow artifact we will define is the .airflowignore file. This is a 
useful file for adding any DAG files that we want the Airflow scheduler to ignore. 
Run the following command to create this file:

$ touch artifacts/airflow/dags/.airflowignore

38. Next, we define the requirements.txt file. This file specifies the various Python 
dependencies that the Airflow DAG will need to install on the workers. Using the 
Cloud9 navigation panel, right-click on the airflow folder and select New File. 
Name the file requirements.txt and open it for editing.

Note
For more information on the best practices for managing Python dependencies 
in MWAA, see the MWAA documentation (https://docs.aws.
amazon.com/mwaa/latest/userguide/best-practices-
dependencies.html).

39. In the requirements.txt file, add the following dependencies:

sagemaker==2.49.1

s3fs==0.5.1

boto3>=1.17.4

https://console.aws.amazon.com/cloudformation/home
https://console.aws.amazon.com/cloudformation/home
https://docs.aws.amazon.com/mwaa/latest/userguide/best-practices-dependencies.html
https://docs.aws.amazon.com/mwaa/latest/userguide/best-practices-dependencies.html
https://docs.aws.amazon.com/mwaa/latest/userguide/best-practices-dependencies.html
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Note
The only reason we are using version 2.49.1 of the SageMaker SDK is  
to ensure conformity with the ML experiment that the ML practitioner 
conducted in the previous chapter. It is good practice to keep the Python 
dependency versions constant with any source code provided by the data 
engineer or ML practitioner.

40. Save and close the requirements.txt file.
41. Since we have the necessary artifacts required for deploying the MWAA 

environment, we can run the following commands to commit these changes to the 
CodeCommit repository and have the CodeBuild project automatically update 
them in the data bucket:

$ git add -A

$ git commit -m "Initial commit of workflow artifacts"

$ git push --set-upstream origin main

The update should take about a minute to complete. We can view the output from 
the CodeBuild project in the console (https://console.aws.amazon.com/
codesuite/codebuild/projects), selecting CodeDeploymentProject in the 
Build projects dashboard. As you can see, we now have a mechanism for deploying new 
and updated DAGs to MWAA. 

Thus, we can move on to the next part of the process; deploying and configuring the 
MWAA environment.

Configuring the MWAA environment
Now that the necessary resources and prerequisites have been deployed, we can go  
ahead and provision the MWAA environment. The following steps will walk you  
through this procedure:

1. Open the MWAA console (https://console.aws.amazon.com/mwaa/
home) in a new browser tab and click the Create environment button.

2. On the Specify details page, scroll down to the DAG code in Amazon S3 section, 
and click the Browse S3 button to our data bucket.

3. In the Choose S3 bucket window, check the radio button next to the bucket called 
abalone-data-<REGION>-<ACCOUNT ID> and then click Choose.

https://console.aws.amazon.com/codesuite/codebuild/projects
https://console.aws.amazon.com/codesuite/codebuild/projects
https://console.aws.amazon.com/mwaa/home
https://console.aws.amazon.com/mwaa/home
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Note
Make sure that <REGION> and <ACCOUNT ID> in the bucket name match 
your environment.

4. Clicking Choose will return you to the Specify details page. On this page, click the 
Browse S3 button under the DAGs folder section to open the Choose DAG path in 
S3 window. Figure 8.2 shows an example of this window:

Figure 8.2 – Choose DAG path in S3 window

5. As you can see from Figure 8.2, click the airflow folder to open it.
6. Once the airflow folder is open, select the radio button next to the dags folder, 

as shown in Figure 8.3:

Figure 8.3 – Selecting the dags folder
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7. As you can see from Figure 8.3, once you have selected the dags folder, click the 
Choose button to return to the previous screen.

8. Now, click the Browser S3 button under the Requirements file – optional section 
to choose the location of the requirements.txt file.

9. Repeat steps 5 and 6, but this time, click the radio button next to the 
requirements.txt file, as shown in Figure 8.4: 

Figure 8.4 – Selecting the requirements.txt file

10. As you can see from Figure 8.4, once the requirements.txt file has been 
selected, click on the Choose button to return to the previous screen.

11. On the Specify details screen, click on the Next button, which will take you to the 
Configure advanced settings screen.

12. Under the Networking section of the Configure advanced settings screen, click on 
the Create MWAA VPC button to create a dedicated Virtual Private Cloud (VPC) 
for MWAA. This will launch the Quick create stack CloudFormation console in a 
new browser tab.

13. Leave all the fields as their defaults and click the Create stack button. The stack 
should take around 2 minutes to build, and once the status registers as CREATE_
COMPLETED, go back to the browser tab hosting the MWAA console.

14. Under the Networking section, click the refresh button and then, using the Choose 
VPC dropdown, select the VPC called MWAA-VPC, as shown in Figure 8.5:
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Figure 8.5 – MWAA VPC

15. As you can see from Figure 8.5, selecting the MWAA-VPC automatically populates 
the Subnet 1 and Subnet 2 fields with the correct private subnets.

16. Scroll down to the Web server access section and click on the radio button next to 
the Public network (no additional setup) option.

17. Leave the rest of the fields at their defaults and then click the Next button.

Note
Take note of the role name that is automatically created in the Permissions 
section. We will be assigning additional permissions for AWS services to  
this role.

18. Review the MWAA environment configuration and click the Create  
environment button.

Note
Deploying the MWAA environment will incur additional AWS usage costs that 
exceed the Free Tier usage. For more information on MWAA pricing, refer 
to the product pricing documentation (https://aws.amazon.com/
managed-workflows-for-apache-airflow/pricing/). 

https://aws.amazon.com/managed-workflows-for-apache-airflow/pricing/
https://aws.amazon.com/managed-workflows-for-apache-airflow/pricing/
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19. While the environment is being provisioned, open the IAM console (https://
console.aws.amazon.com/iamv2/home?#/home) in a new browser tab.

20. In the left-hand navigation panel of the IAM console, click on Roles.
21. In the Roles dashboard, scroll down until you see the IAM role that was created 

during the MWAA setup and then click on it.
22. In the Role Summary dashboard, click on the Attach policies button.
23. Using the search bar in the Attach permissions screen, search for and select the 

AmazonS3FullAccess, AWSLambda_FullAccess, AmazonSSMFullAccess, 
AWSGlueConsoleFullAccess, and AmazonSageMakerFullAccess policies.

24. Click the Attach policies button. 
25. The Summary screen should resemble Figure 8.6:

Figure 8.6 – MWAA Role Permissions

https://console.aws.amazon.com/iamv2/home?#/home
https://console.aws.amazon.com/iamv2/home?#/home
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26. As you can see from Figure 8.6, we have added the necessary access to the various 
AWS services that the Airflow DAG will be leveraging. 

Note
Providing full access to the necessary AWS services is not recommended in a 
production environment. We leverage these policies here for simplicity, within 
the context of our example.

27. After approximately 20 to 30 minutes, the MWAA environment should be 
Available. Figure 8.7 shows what the Airflow environments screen should  
look like:

Figure 8.7 – Airflow environments

As you can see from Figure 8.7, the MWAA environment has been deployed and is 
available for us. Now we have all the prerequisites as well as an Airflow platform. In the 
next chapter, we will use this MWAA environment to create an automated, data-centric 
ML process.

Summary
In this chapter, we introduced a new approach to automating the ML workflow on 
AWS, namely, the data-centric approach. To orchestrate this data-centric workflow, we 
introduced a platform, typically used by data engineering teams, called Apache Airflow, 
and showed how to build such an environment using Amazon MWAA.

In the next chapter, we will see how to continue using the environment we've just created 
and create a DAG to automate the ML process for creating the Age Calculator model.





9
Building the ML 
Workflow Using 

Amazon Managed 
Workflows for 

Apache Airflow
In previous iterations of the Age Calculator example, we learned how applying a source 
code-centric methodology for ML workflow automation has been accomplished through 
cross-functional collaboration between the ML practitioner and developer teams. In 
Chapter 8, Automating the Machine Learning Process Using Apache Airflow, we explained 
how data engineering teams can use Amazon's MWAA to create the platform where the 
ML practitioner can automate the ML workflow as an Airflow DAG.
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So, to build a successful data-centric ML workflow, we need to apply the same 
methodology to create an agile, cross-functional collaboration between the ML 
practitioner and data engineering teams. Therefore, in this chapter, we are going to 
continue where we left off in Chapter 8, Automating the Machine Learning Process 
Using Apache Airflow. In the previous chapter, we used the AWS CDK to construct the 
MWAA prerequisites, namely a Lambda Function to analyze the results from an ML 
model evaluation, a Glue Catalog to store our training data, a Glue Job to merge the new 
training data with the data already stored in the catalog, and a Codebuild project to sync 
an Airflow DAG with the MWAA environment. Along with these CDK artifacts, we also 
created an MWAA environment that will execute the data-centric workflow. 

Thus, the primary motivation for this chapter is to highlight just how both the data 
engineering and ML practitioner teams can construct, execute, and manage the automated 
ML process on Apache Airflow by building and executing the Airflow DAG that's 
responsible for this data-centric workflow. By the end of the chapter, you will know how 
adding new training data will trigger the automated, end-to-end ML process and be able 
to generate a production-grade Age Calculator model. 

To accomplish this, we will cover the following topics:

• Developing the data-centric workflow

• Creating synthetic Abalone survey data

• Executing the data-centric workflow

Technical requirements
For this chapter, you will need the following:

• A web browser (for the best experience, it is recommended that you use either 
Chrome or Firefox.)

• Access to the AWS account that you used in Chapter 8, Automating the Machine 
Learning Process Using Apache Airflow.

• Access to the Cloud9 development environment we used in Chapter 8, Automating 
the Machine Learning Process Using Apache Airflow.
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• A reference to the usage limits of the AWS Free Tier to avoid exceeding  
unnecessary costs.

• The source code examples for this chapter, which are provided in this book's  
GitHub repository: https://github.com/PacktPublishing/
Automated-Machine-Learning-on-AWS/tree/main/Chapter09). The 
code examples should already be available in the Cloud9 development environment. 
If not, please refer to the Developing the application artifacts section of Chapter 4, 
Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning.

Developing the data-centric workflow
In Chapter 8, Automating the Machine Learning Process Using Apache Airflow, we created 
the environment components that are required to execute the data-centric ML workflow. 
Now, we can start developing it. The following diagram shows what this workflow 
development process looks like:

Figure 9.1 – Workflow development process
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As you can see, the data engineering teams must develop two primary artifacts that make 
up the overall process, as follows:

• The unit tested data ETL artifacts

• The unit tested Airflow DAG

Once the data engineering team has created and tested the ETL artifacts that are 
responsible for merging and preparing the training data, they can combine them 
with the ML model artifacts to create the Airflow DAG, which represents the data-
centric workflow. Upon unit testing this Airflow DAG, to ensure that both the data 
transformation code and the ML model code successfully integrate, the resultant workflow 
can be released to production.

Let's start building the ETL artifacts from the perspective of the data engineering team.

Building and unit testing the data ETL artifacts 
Within the context of the overall data-centric workflow, the primary goal behind the ETL 
task is to merge any new data with the existing data so that the resulting dataset can be 
further split into separate training, validation, and testing datasets. However, as the data 
engineering team builds the code behind this task, they need to bear in mind that it's not 
always possible to pre-determine the exact amount of new data that needs to be merged. 
So, in this section, we will create the code artifacts for the ETL task and ensure the task 
is scalable by using an AWS Glue Job to execute the task as a Spark script. The AWS Glue 
Job that will be used to execute the ETL task was created as a CDK construct in Chapter 8, 
Automating the Machine Learning Process Using Apache Airflow. 

Tip
To help the data engineering team create and unit test this Spark script, AWS 
has provided a Docker container that's bundled with the necessary libraries 
to construct and test Glue ETL Jobs. AWS has published this information in 
a blog post entitled Developing AWS Glue ETL jobs locally using a container 
(https://aws.amazon.com/blogs/big-data/developing-
aws-glue-etl-jobs-locally-using-a-container/). Should 
you use the solution referenced within the blog post, it is recommended that 
you install version 0.24.1 of the pandas library. This version of pandas is 
required to copy a CSV file directly to S3.

https://aws.amazon.com/blogs/big-data/developing-aws-glue-etl-jobs-locally-using-a-container/
https://aws.amazon.com/blogs/big-data/developing-aws-glue-etl-jobs-locally-using-a-container/
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So, to start building the ETL Job, we will create a Python script called preprocess.
py. This script will read from the Glue Catalog, which contains the updated Abalone 
data and merge this with the original Abalone dataset and provide the overall feature 
transformations that are needed by the ML model.

Note
Since the core focus of this book is not on how to construct a Spark script, the 
basis for the preprocess.py file comes from the AWS SageMaker GitHub 
repository (https://github.com/aws/amazon-sagemaker-
examples/tree/master/advanced_functionality/
inference_pipeline_sparkml_xgboost_abalone). This 
example is licensed under the Apache 2.0 License. We will build upon this 
example and customize it for our use case.

To create the ETL script, we will continue using the Cloud9 environment. Follow  
these steps:

1. Using the navigation panel of the Cloud9 environment, navigate to the abalone-
data-pipeline folder. 

Note
We created the abalone-data-pipeline folder in Chapter 8, 
Automating the Machine Learning Process Using Apache Airflow.

2. Within the abalone-data-pipeline folder, expand the artifacts folder, 
and then expand the airflow folder. Right-click on the scripts folder and select 
the New File option. Create a file called preprocess.py and open it for editing.

3. Within the preprocess.py file, add the following code to import the necessary 
PySpark and AWS Glue libraries:

import sys

import os

import boto3

import pyspark

import pandas as pd

from functools import reduce

from pyspark.sql import SparkSession, DataFrame

from pyspark.ml import Pipeline

from pyspark.sql.types import StructField, StructType, 

https://github.com/aws/amazon-sagemaker-examples/tree/master/advanced_functionality/inference_pipeline_sparkml_xgboost_abalone
https://github.com/aws/amazon-sagemaker-examples/tree/master/advanced_functionality/inference_pipeline_sparkml_xgboost_abalone
https://github.com/aws/amazon-sagemaker-examples/tree/master/advanced_functionality/inference_pipeline_sparkml_xgboost_abalone
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StringType, DoubleType

from pyspark.ml.feature import StringIndexer, 
VectorIndexer, OneHotEncoder, VectorAssembler

from pyspark.sql.functions import *

from awsglue.job import Job

from awsglue.transforms import *

from awsglue.context import GlueContext

from pyspark.context import SparkContext

from awsglue.utils import getResolvedOptions

from awsglue.dynamicframe import DynamicFrame

from awsglue.utils import getResolvedOptions

4. Next, we will build some utility functions to help process the data. The first utility 
function is called csv_line(), whereby we supply a line of text data from a Spark 
Resilient Distributed Dataset (RDD) and create a comma-delimited string. This 
string will eventually be written to a CSV file on S3:

def csv_line(data):

    r = ','.join(str(d) for d in data[1])

    return str(data[0]) + "," + r

5. The next function that we will create is called toS3(). This function extracts 
the relevant features from the dataset, including the target feature, calls the csv_
line() function to create a comma-delimited string for each line, converts the 
dataset into a pandas DataFrame, and writes the DataFrame to S3:

def toS3(df, path):

    rdd = df.rdd.map(lambda x: (x.rings, x.features))

    rdd_lines = rdd.map(csv_line)

    spark_df = rdd_lines.map(lambda x: str(x)).map(lambda 
s: s.split(",")).toDF()

    pd_df = spark_df.toPandas()

    pd_df = pd_df.drop(columns=["_3"])

    pd_df.to_csv(f"s3://{path}", header=False, 
index=False)
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Note
Working with Spark DataFrames allows us to overcome the memory 
limitations of pandas DataFrames by distributing the dataset across multiple 
Spark nodes. However, when a Spark DataFrame is written to disk, it creates 
multiple part files, depending on the number of RDD partitions. To create a 
single CSV file, we must convert the Spark DataFrame into a single pandas 
DataFrame, thus writing the dataset to a single file. Using this technique may 
not scale if the single pandas DataFrame exceeds certain memory limitations. 
However, since the example dataset is not large, we can use pandas to create a 
single file.

6. Finally, we must create the main() function. Using the following code 
snippet, we can initialize the spark and glueContext() classes to wrap the 
SparkContext object:

...

def main():

    glueContext = GlueContext(SparkContext.getOrCreate())

    spark = SparkSession.builder.
appName("PySparkAbalone").getOrCreate()

    spark.sparkContext._jsc.hadoopConfiguration().
set("mapred.output.committer.class", "org.apache.hadoop.
mapred.FileOutputCommitter")

...

Note
Since AWS Glue is essentially a serverless Spark Processing Job, 
SparkContext represents the connection to the serverless Spark 
cluster, which is created and managed in the background by AWS. For 
more information on the SparkContext class, please refer to the Spark 
documentation (https://spark.apache.org/docs/latest/
api/java/org/apache/spark/SparkContext.html). 

7. Since we will be passing the preprocess.py file as a script, along with the 
command argument to AWS Glue, the following code snippet shows how we can 
declare the args variable using the getResolvedOptions() function. This is a 
utility function that's provided by AWS Glue to access the command arguments that 
are passed with the preprocess.py script:

...

    args = getResolvedOptions(sys.argv, ["GLUE_CATALOG", 

https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
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"S3_BUCKET", "S3_INPUT_KEY_PREFIX", "S3_OUTPUT_KEY_
PREFIX"])

...

8. To read in the Abalone data as a Spark DataFrame, we must supply the appropriate 
schema for each of the column data types. In the following code snippet, we're 
declaring the schema variable, which contains the type or structure of the data 
that's found in each column of the dataset:

...

    schema = StructType(

        [

            StructField("sex", StringType(), True),

            StructField("length", DoubleType(), True),

            StructField("diameter", DoubleType(), True),

            StructField("height", DoubleType(), True),

            StructField("whole_weight", DoubleType(), 
True),

            StructField("shucked_weight", DoubleType(), 
True),

            StructField("viscera_weight", DoubleType(), 
True),

            StructField("shell_weight", DoubleType(), 
True),

            StructField("rings", DoubleType(), True)

        ]

    )

...

9. Next, we must write the following code to merge the new data from the Glue 
Catalog, along with the original Abalone dataset, to create a DataFrame called 
distinct_df. This DataFrame is strict in the sense that any duplicate rows are 
removed after the merge process:

...

    columns = ["sex", "length", "diameter", "height", 
"whole_weight", "shucked_weight", "viscera_weight", 
"shell_weight", "rings"]

    new = glueContext.create_dynamic_frame_from_
catalog(database=args["GLUE_CATALOG"], table_name="new", 
transformation_ctx="new")
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    new_df = new.toDF()

    new_df = new_df.toDF(*columns)

    raw_df = spark.read.csv(("s3://{}".format(os.path.
join(args["S3_BUCKET"], args["S3_INPUT_KEY_PREFIX"]))), 
header=False, schema=schema)

    merged_df = reduce(DataFrame.unionAll, [raw_df, new_
df])

    distinct_df = merged_df.distinct()

...

10. Now that we have a unique DataFrame, we can set up the ETL pipeline and start 
transforming the dataset to prepare it for ML training. As shown in the following 
code snippet, the first part of the ETL process is to index the sex column as a 
training feature using the StringIndexer() class. Once the sex feature has 
been indexed, we can categorically encode the feature, thus creating vectors for each 
gender, by using the OneHotEncoder() class:

...

    sex_indexer = StringIndexer(inputCol="sex", 
outputCol="indexed_sex")

    sex_encoder = OneHotEncoder(inputCol="indexed_sex", 
outputCol="sex_vec")

...

11. The output of OneHotEncoder is a new set of columns, called sex_vec, that 
represent each gender. The next step is to use the VectorAssembler() class to 
merge the sex_vec columns with the original columns of the dataset. As shown 
in the following code snippet, here, we must instantiate VectorAssembler and 
define the assembler variable:

...

    assembler = VectorAssembler(

        inputCols=[

            "sex_vec",

            "length",

            "diameter",

            "height",

            "whole_weight",

            "shucked_weight",

            "viscera_weight",
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            "shell_weight"

        ],

        outputCol="features"

    )

...

12. As shown in the following code snippet, by combining sex_indexer, 
sex_encoder, and assembler into a Pipeline, and then fitting it onto 
the distinct_df DataFrame, we have a preprocessed transformed_df 
DataFrame, ready for model training:

...

    pipeline = Pipeline(stages=[sex_indexer, sex_encoder, 
assembler])

    model = pipeline.fit(distinct_df)

    transformed_df = model.transform(merged_df)

...

13. The final step is to split the data into the relative training, validation, and testing 
datasets. As shown in the following code snippet, we must call the toS3() function 
to write these datasets to the data bucket as CSV files:

    (train_df, validation_df, test_df) = transformed_
df.randomSplit([0.8, 0.15, 0.05])

    toS3(train_df, os.path.join(args["S3_BUCKET"], 
args["S3_OUTPUT_KEY_PREFIX"], "training/training.csv"))

    toS3(validation_df, os.path.join(args["S3_BUCKET"], 
args["S3_OUTPUT_KEY_PREFIX"], "training/validation.csv"))

    toS3(test_df, os.path.join(args["S3_BUCKET"], 
args["S3_OUTPUT_KEY_PREFIX"], "testing/testing.csv"))

...

14. With that, the main program is created to execute the data preprocessing task:

...

if __name__ == "__main__":

    main()

...

This completes the ETL script for the Glue Job. After unit testing the script, the data 
engineer can start creating the data processing workflow itself, in the form of an Airflow 
DAG. Let's go ahead and start building this DAG.
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Building the Airflow DAG
Now, the data engineer must create the overall workflow for Airflow to execute, in the 
form of a DAG. You will recall that an Airflow DAG is a set of consecutive tasks, or 
operations, that are performed by the Airflow workers. To streamline the process of 
creating these consecutive operations, Airflow provides several prepackaged operators. 
These operators essentially encompass the logic for each task within the workflow. Since 
we are offloading the actual execution of these operations to AWS services, such as 
Glue and SageMaker, AWS provides several pre-built operators (https://airflow.
apache.org/docs/apache-airflow-providers-amazon/stable/
operators/index.html) for these and many other services. 

However, using these AWS provider operators requires the data engineer or the ML 
practitioner to fully understand the relevant task operator, and thus how the AWS 
service executes the task. To simplify the DAG creation process, we will mostly use 
the standard PythonOperator() class (https://airflow.apache.org/
docs/apache-airflow/stable/_api/airflow/operators/python/
index.html?highlight=pythonoperator#airflow.operators.python.
PythonOperator) to call the SageMaker service. This means that the data engineer 
can copy and paste the SageMaker SDK code from the ML experiment notebook into 
the workflow DAG. Doing this makes it easier for both the ML practitioner and data 
engineer to integrate the ML process into the data workflow. As you will see, using the 
PythonOperator() class within the DAG allows for further customizations to be made 
that the AWS provider operators don't provide.

Note
The AWS team provides numerous examples that showcase how to leverage 
the AWS provider operators for SageMaker (https://sagemaker.
readthedocs.io/en/stable/workflows/airflow/index.
html). However, since we will be using PythonOperator() to construct 
the SageMaker service calls, we will be basing our solution on another AWS 
example (https://github.com/aws/amazon-sagemaker-
examples/blob/master/sagemaker-experiments/track-
an-airflow-workflow/track-an-airflow-workflow.
ipynb). This example is provided under the Apache 2.0 License. We will be 
building on this example to make our DAG resemble the ML workflow we 
configured in Chapter 7, Building the ML Workflow Using AWS Step Functions. 
You can review the ML workflow by referencing Figure 7.1 in the Creating the 
ML workflow section.

https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/operators/index.html
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/operators/index.html
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/operators/index.html
https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/operators/python/index.html?highlight=pythonoperator#airflow.operators.python.PythonOperator
https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/operators/python/index.html?highlight=pythonoperator#airflow.operators.python.PythonOperator
https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/operators/python/index.html?highlight=pythonoperator#airflow.operators.python.PythonOperator
https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/operators/python/index.html?highlight=pythonoperator#airflow.operators.python.PythonOperator
https://sagemaker.readthedocs.io/en/stable/workflows/airflow/index.html
https://sagemaker.readthedocs.io/en/stable/workflows/airflow/index.html
https://sagemaker.readthedocs.io/en/stable/workflows/airflow/index.html
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-experiments/track-an-airflow-workflow/track-an-airflow-workflow.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-experiments/track-an-airflow-workflow/track-an-airflow-workflow.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-experiments/track-an-airflow-workflow/track-an-airflow-workflow.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-experiments/track-an-airflow-workflow/track-an-airflow-workflow.ipynb
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To start building the Airflow DAG, follow these steps:

1. Within your Cloud9 workspace, right-click on the dags folder and select the New 
Folder option to create a folder called model.

2. To define the Lambda Function handler, we can reuse the code we created in 
Chapter 7, Building the ML Workflow Using AWS Step Functions. Run the following 
command to copy the model_training.py file from the already cloned 
companion GitHub repository:

$ cp ~/environment/src/Chapter09/Files/airflow/dags/
model/model_training.py ~/environment/abalone-data-
pipeline/artifacts/airflow/dags/model/

Note
If you need to refamiliarize yourself with the model_training.py file, 
you can review the code in the Creating the ML workflow section of Chapter 7, 
Building the ML Workflow Using AWS Step Functions.

3. Next, right-click on the dags folder and select the New File option, creating a file 
called abalone_data_pipeline.py. 

4. Double-click on the file for editing and add the following code to import the base 
Python libraries:

import boto3

import json

from datetime import timedelta

5. Next, we must add the following SageMaker SDK libraries:

import sagemaker

from sagemaker.tensorflow import TensorFlow

from sagemaker.tensorflow.serving import Model

from sagemaker.processing import ProcessingInput, 
ProcessingOutput, Processor

from sagemaker.model_monitor import DataCaptureConfig

Note
These are the same SageMaker SDK libraries that the ML practitioner uses for 
the ML experiment notebook.
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6. Now, using the following code, we can import the AWS provider operators, as well 
as the Airflow provider operators:

import airflow

from airflow import DAG

from airflow.operators.python_operator import 
PythonOperator

from airflow.providers.amazon.aws.operators.glue import 
AwsGlueJobOperator

from airflow.providers.amazon.aws.operators.glue_crawler 
import AwsGlueCrawlerOperator

from airflow.providers.amazon.aws.hooks.lambda_function 
import AwsLambdaHook

from airflow.operators.python_operator import 
BranchPythonOperator

from airflow.operators.dummy import DummyOperator

7. Next, we must use the following code to define our global variables, as well as get 
the stored parameters that we defined in the CDK application:

sagemaker_seesion = sagemaker.Session()

region_name = sagemaker_seesion.boto_region_name

model_name = "abalone"

data_prefix = "abalone_data"

data_bucket = f"""{boto3.client("ssm", region_
name=region_name).get_parameter(Name="AirflowDataBucket")
["Parameter"]["Value"]}"""

glue_job_name = f"""{boto3.client("ssm", region_
name=region_name).get_parameter(Name="GlueJob")
["Parameter"]["Value"]}"""

crawler_name = f"""{boto3.client("ssm", region_
name=region_name).get_parameter(Name="GlueCrawler")
["Parameter"]["Value"]}"""

sagemaker_role = f"""{boto3.client("ssm", region_
name=region_name).get_parameter(Name="SageMakerRoleARN")
["Parameter"]["Value"]}"""

lambda_function = f"""{boto3.
client("ssm", region_name=region_name).get_
parameter(Name="AnalyzeResultsLambda")["Parameter"]
["Value"]}"""

container_image = f"763104351884.dkr.ecr.{region_name}.
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amazonaws.com/tensorflow-training:2.5.0-cpu-py37-
ubuntu18.04-v1.0"

training_input = f"s3://{data_bucket}/{data_prefix}/
training"

testing_input = f"s3://{data_bucket}/{data_prefix}/
testing"

data_capture = f"s3://{data_bucket}/endpoint-data-
capture"

Note
As we saw in Chapter 7, Building the ML Workflow Using AWS Step Functions, 
SageMaker Processing Jobs don't provide TensorFlow containers. Therefore, we 
must leverage the Deep Learning TensorFlow container and reference it using 
the container_image variable.

8. The final variable we must define is default_args for the Airflow DAG. In the 
following code, we have specified some of the defaults that the Airflow scheduler 
requires to execute the DAG:

default_args = {

    "owner": "airflow",

    "depends_on_past": False,

    "start_date": airflow.utils.dates.days_ago(1),

    "retries": 0,

    "retry_delay": timedelta(minutes=2)

}

9. Since we are using the PythonOperator() class to interface with the 
SageMaker service, we must define multiple functions that encapsulate the logic 
of the service call. As we mentioned previously, these functions can be cut and 
pasted from the ML experiment notebook. For example, the following code 
creates the training() function, which utilizes the SageMaker SDK to create a 
TensorFlow() estimator, and calls the fit() method to train the model as a 
SageMaker Training Job:

def training(data, **kwargs):

    estimator = TensorFlow(

        base_job_name=model_name,

        entry_point="/usr/local/airflow/dags/model/model_
training.py",
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        role=sagemaker_role,

        framework_version="2.4",

        py_version="py37",

        hyperparameters={"epochs": 200, "batch-size": 8},

        script_mode=True,

        instance_count=1,

        instance_type="ml.m5.xlarge",

    )

    estimator.fit(data)

    kwargs["ti"].xcom_push(

        key="TrainingJobName",

        value=str(estimator.latest_training_job.name)

    )

10. The next Python function, called evaluation(), executes a SageMaker 
Processing Job to execute the evaluate.py file that we created in Chapter 8, 
Automating the Machine Learning Process Using Apache Airflow, and evaluate the 
trained model's inference on the test dataset. The following code snippet shows how 
the evaluation() function is instantiated – that is, by specifying the name of the 
SageMaker Training Job that was defined in Step 9 to instantiate it as a TensorFlow 
estimator so that we can get the location of the trained model:

...

def evaluation(ds, **kwargs):

    training_job_name = kwargs["ti"].xcom_
pull(key="TrainingJobName")

    estimator = TensorFlow.attach(training_job_name)

    model_data = estimator.model_data,

...

11. As part of the evaluation() function, we must also define the processor variable 
to initialize an instance of the SageMaker Processor class. The following code 
snippet shows how we must provide the necessary parameters to execute the 
Processing Job, namely the Processing Job name, the location of the processing 
container image, the processing script to execute, the SageMaker IAM role, and the 
type of compute resources to use for the Processing Job:

...

    processor = Processor(

        base_job_name=f"{model_name}-evaluation",
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        image_uri=container_image,

        entrypoint=[

            "python3",

            "/opt/ml/processing/input/code/evaluate.py"

        ],

        instance_count=1,

        instance_type="ml.m5.xlarge",

        role=sagemaker_role,

        max_runtime_in_seconds=1200

    )

...

12. The following code snippet shows how the processor.run() method is called to 
execute the Processing Job we defined in Step 11. To run the Processing Job, we must 
supply the S3 location of the test dataset (testing_input), the S3 location of the 
trained ML model (model_data), and the S3 location of the evaluate.py script:

...

    processor.run(

        inputs=[

            ProcessingInput(

                source=testing_input,

                destination="/opt/ml/processing/testing",

                input_name="input"

            ),

            ProcessingInput(

                source=model_data[0],

                destination="/opt/ml/processing/model",

                input_name="model"

            ),

            ProcessingInput(

                source="s3://{}/airflow/scripts/evaluate.
py".format(data_bucket),

                destination="/opt/ml/processing/input/
code",

                input_name="code"
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            )

        ],

...

13. Along with the defining inputs in Step 12, the following code snippet shows how 
to define the S3 location for the Processing Job results as an output parameter:

...

        outputs=[

            ProcessingOutput(

                source="/opt/ml/processing/evaluation",

                destination="s3://{}/{}/evaluation".
format(data_bucket, data_prefix),

                output_name="evaluation"

            )

        ]

    )

14. Now that we have functions to train and evaluate the ML model, we must define a 
function to deploy the trained model as a SageMaker Hosted Endpoint by using the 
deploy() method on the trained TensorFlow estimator:

def deploy_model(ds, **kwargs):

    training_job_name = kwargs["ti"].xcom_
pull(key="TrainingJobName")

    estimator = TensorFlow.attach(training_job_name)

    model = Model(

        model_data=estimator.model_data,

        role=sagemaker_role,

        framework_version="2.4",

        sagemaker_session=sagemaker.Session()

    )

    model.deploy(

        initial_instance_count=2,

        instance_type="ml.m5.large",

        data_capture_config=DataCaptureConfig(

            enable_capture=True,

            sampling_percentage=100,

            destination_s3_uri=data_capture
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        )

    )

15. Previously, as part of the CDK application, we defined a Lambda function to 
calculate the RMSE evaluation metric for the trained model. In the following code, 
we are leveraging the AWS provider operator to invoke this Lambda function:

def get_results(ds, **kwargs):

    hook = AwsLambdaHook(

        function_name=lambda_function,

        aws_conn_id="aws_default",

        invocation_type="RequestResponse",

        log_type="None",

        qualifier="$LATEST",

        config=None

    )

    request = hook.invoke_lambda(

        payload=json.dumps(

            {

                "Bucket": data_bucket,

                "Key": f"{data_prefix}/evaluation/
evaluation.json"

            }

        )

    )

    response = json.loads(request["Payload"].read().
decode())

    kwargs["ti"].xcom_push(

        key="Results",

        value=response["Result"]

    )

16. The last function we must create will take the RMSE score and compare it to 
the evaluation threshold to determine whether the trained model is considered 
production-grade. If the evaluation is approved, the model will be deployed as 
a SageMaker Hosted Endpoint. Alternatively, if the model is above the predefined 
threshold, the workflow will be categorized as rejected:

def branch(ds, **kwargs):
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    result = kwargs["ti"].xcom_pull(key="Results")

    if result > 3.1:

        return "rejected"

    else:

        return "approved"

Note
To ensure that this workflow example completes successfully and deploys the 
trained model, we must set the evaluation threshold higher than the threshold 
we used in Chapter 7, Building the ML Workflow Using AWS Step Functions. 
After successfully testing the Airflow DAG, you can set the threshold lower to 
mimic a more realistic ML model evaluation.

17. Now that we have created the processing logic for each step of the workflow, we can 
use the following code to define the DAG itself. Here, we are using the DAG() class 
to initialize the DAG, provide the name of the workflow and the default arguments, 
and schedule the DAG to automatically execute every night at midnight:

with DAG(

    dag_id=f"{model_name}-data-workflow",

    default_args=default_args,

    schedule_interval="@daily",

    concurrency=1,

    max_active_runs=1,

) as dag:

18. The first step that the DAG executes is crawler_task. Here, the Airflow 
Scheduler calls the AWS Glue Crawler to read the new data, infer the data schema, 
and append the data to the Glue Catalog. In the following code, we are defining the 
task using the AWS-provided AwsGlueCrawlerOperator():

    crawler_task = AwsGlueCrawlerOperator(

        task_id="crawl_data",

        config={"Name": crawler_name}

    )
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19. The second step of the workflow is called etl_task. In this task, we call the 
AWS-provided AwsGlueJobOperator() to run the Glue Job we defined in the 
CDK application. You will recall that this Job merges the initial Abalone dataset 
with the new data from the Glue Catalog, and then preprocesses it to create the 
training, validation, and test datasets:

    etl_task = AwsGlueJobOperator(

        task_id="preprocess_data",

        job_name=glue_job_name

    )

20. Now that the dataset has been prepared and stored in the data bucket, we can 
use the PythonOperator() class to call our training() function. This task 
supplies the location of the preprocessed training data and calls SageMaker to run a 
Training Job using the TensorFlow estimator:

    training_task = PythonOperator(

        task_id="training",

        python_callable=training,

        op_args=[training_input],

        provide_context=True,

        dag=dag

    )

21. The next task in the workflow is evaluation_task. Here, we're using 
PythonOperator() to call the evaluation() function, whereby we  
instruct SageMaker to execute a Processing Job and test the trained model  
against the testing dataset:

    evaluation_task = PythonOperator(

        task_id="evaluate_model",

        python_callable=evaluation,

        provide_context=True,

        dag=dag

    )
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Note
Note that in the evaluation() function, we use Airflow cross-
communications, or Xcoms (https://airflow.apache.org/
docs/apache-airflow/stable/concepts/xcoms.html), to 
pass the name of the SageMaker Training Job between tasks. This is one of the 
primary reasons we leverage the PythonOperator() class instead of the 
AWS-provided operators for SageMaker.

22. The next task is the Lambda function that determines the model evaluation results 
from the test dataset. analyze_results_task uses PythonOperator()  
to call the get_results() Python function. You will recall that this  
Python function causes the AnalyzeResults Lambda function to return  
the RMSE score:

    analyze_results_task = PythonOperator(

        task_id="analyze_results",

        python_callable=get_results,

        provide_context=True,

        dag=dag

    )

23. Based on the returned RMSE results, the next task within the workflow is to 
determine whether the model is ready for production. Here, we're using the 
BranchPythonOperator() class to call the branch() Python function and 
evaluate the returned results against the pre-determined threshold:

    check_threshold_task = BranchPythonOperator(

        task_id="check_threshold",

        python_callable=branch,

        provide_context=True,

        dag=dag

    )

24. Should the model evaluation result be lower than the threshold value, the workflow 
will move on to deployment_task. This task calls the deploy_model() 
Python function to create a SageMaker Hosted Endpoint:

    deployment_task = PythonOperator(

        task_id="deploy_model",

        python_callable=deploy_model,

        provide_context=True,

https://airflow.apache.org/docs/apache-airflow/stable/concepts/xcoms.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts/xcoms.html
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        dag=dag

    )

25. Finally, we must create the placeholder tasks by using DummyOperator() to 
create placeholders for the start, end, rejected, and approved states within 
the workflow:

    start_task = DummyOperator(

        task_id="start",

        dag=dag

    )

    end_task = DummyOperator(

        task_id="end",

        dag=dag

    )

    rejected_task = DummyOperator(

        task_id="rejected",

        dag=dag

    )

    approved_task = DummyOperator(

        task_id="approved",

        dag=dag

    )

26. Now that the various tasks of the workflow have been defined, we must create the 
overall flow of the DAG. In the following code, we're defining the dependencies 
between each of the specific tasks:

    start_task >> crawler_task >> etl_task >> training_
task >> evaluation_task >> analyze_results_task >> check_
threshold_task >> [rejected_task, approved_task]

    approved_task >> deployment_task >> end_task

    rejected_task >> end_task
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27. The workflow DAG is now complete. Now, we must save the file and run the 
following commands in the Cloud9 Terminal window to check the code into  
the repository:

$ git add -A

$ git commit -m "Initial commit of workflow DAG"

$ git push

Note
Before pushing the DAG to the CodeCommit repository, the data engineer 
may want to perform local unit tests to ensure that the DAG is fully functional 
before it is imported by MWAA. AWS provides a command-line interface 
utility called aws-mwaa-local-runner (https://github.com/aws/
aws-mwaa-local-runner) that reproduces an MWAA environment 
locally using a Docker container. By using this utility, the data engineer can not 
only unit test the DAG, but also verify that the Python dependencies will work 
on MWAA (https://docs.aws.amazon.com/mwaa/latest/
userguide/working-dags-dependencies.html).

Now that we've created the workflow DAG and its associated artifacts we must commit the 
changes to the CodeCommit repository. This will cause the build to deploy these files to 
the data bucket. Once there, and after about 5 minutes, the MWAA scheduler will import 
the DAG. You can now view the DAG in the MWAA web UI. The following steps will walk 
you through how to access the MWAA web UI:

1. Open the MWAA console (https://console.aws.amazon.com/mwaa/
home) and select your MWAA environment, called MyAirflowEnvironment.

2. Click the Open Airflow UI link to open the MWAA web UI.
3. Once the UI has opened in a new browser tab, you should eventually see the 

abalone-data-pipeline DAG. The following screenshot shows an example of the 
newly imported abalone-data-workflow DAG in the web UI:

Figure 9.2 – abalone-data-workflow DAG

https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner
https://docs.aws.amazon.com/mwaa/latest/userguide/working-dags-dependencies.html
https://docs.aws.amazon.com/mwaa/latest/userguide/working-dags-dependencies.html
https://console.aws.amazon.com/mwaa/home
https://console.aws.amazon.com/mwaa/home
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4. Click on the DAG to open it.

Note
Do not enable the DAG just yet since we haven't supplied any new data for the 
workflow to successfully execute.

5. Click on the Graph View link to view the DAG as a graph. The following diagram 
shows the overall workflow as a graph:

Figure 9.3 – Workflow graph

Note that this data-centric workflow is similar to the ML workflow we created in Chapter 
7, Building the ML Workflow Using AWS Step Functions, except for the Glue Crawler and 
scalable Glue ETL Job. However, before we can see the workflow in action, we need to 
simulate the process of adding new Abalone survey data. Let's get started.

Creating synthetic Abalone survey data
In the previous section, we created the two primary artifacts – from the perspective of 
the data engineering team – that are required to successfully implement the data-centric 
workflow, with the first being the ETL artifacts that merge the raw Abalone data with 
new data to create the training, validation, and test datasets. We also integrated these ETL 
artifacts into a data-centric workflow, in the form of an Airflow DAG artifact, to automate 
the ML process whereby we can train, evaluate, and deploy a production-grade Age 
Calculator model.

As you may recall from the Using Airflow to process the Abalone dataset section of Chapter 
8, Automating the Machine Learning Process Using Apache Airflow, we established the 
context for the data-centric workflow by expanding the ACME Fishing Logistics use case 
to address the need to add updated Abalone survey data.

So, before we can execute the data-centric workflow, we must address the next step. The 
following diagram illustrates the next step we will be addressing in this section – that is, 
simulating new Abalone survey data to further optimize the ML model:
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Figure 9.4 – Simulating new Abalone survey data

Since the Abalone Survey Company is a fictional entity in our example, we are going to 
have to somehow get new Abalone data; since there are no new sources for the data, we 
will have to synthesize some. Fortunately, the Data to AI Group at MIT (https://
dai.lids.mit.edu/), has open sourced a project called CTGAN (https://
github.com/sdv-dev/CTGAN) to help us synthesize new Abalone data.

Note
The CTGAN project is available under the MIT License (https://
github.com/sdv-dev/CTGAN/blob/master/LICENSE).

CTGAN uses a deep learning-based Synthetic Data Generator, essentially a conditional 
generative adversarial network model, to learn from data and predict a new dataset. The 
following steps will walk you through how to leverage CTGAN to synthesize new Abalone 
data using the SageMaker Studio UI:

1. Open the SageMaker management console (https://console.aws.amazon.
com/sagemaker/home), and then click on the SageMaker Domain option in the 
left-hand navigation panel.

2. Once the SageMaker Domain dashboard opens, click on the Launch app drop-
down box and select the Studio option to open the Studio IDE.

(https://dai.lids.mit.edu/
(https://dai.lids.mit.edu/
https://console.aws.amazon.com/sagemaker/home
https://console.aws.amazon.com/sagemaker/home
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Note
If you've been following this book, you should already have a configured 
SageMaker Studio environment. If not, please refer to the Getting started with 
SageMaker Studio section of Chapter 2, Automating Machine Learning Model 
Development Using SageMaker Autopilot. 

3. From the File menu, click New and select Notebook to open a new Jupyter 
Notebook. This will create a new notebook called Untitled.ipynb in the root 
folder. Since we are using this notebook to synthesize new Abalone survey data, it 
can be created in any folder within your SageMaker Studio environment.

4. When prompted, select the Python 3 (data Science) kernel and click the  
Select button.

Note
It is recommended that you use an ml.m5.4xlarge (16 vCPUs + 64 
MB) instance type. However, this will incur additional AWS usage costs. 
Additionally, an example Jupyter Notebook is available in this book's 
GitHub repository (https://github.com/PacktPublishing/
Automated-Machine-Learning-on-AWS/blob/main/
Chapter09/Notebook/Simulating%20New%20Abalone%20
Survey%20Data.ipynb).

5. Once the kernel starts, use the following code in a code cell to install the  
CTGAN libraries:

%%capture

!pip install ctgan

6. Next, import the necessary Python libraries and global variables:

import io

import boto3

import warnings

import pandas as pd

from time import gmtime, strftime

warnings.filterwarnings("ignore")

s3 = boto3.client("s3")

model_name = "abalone"

column_names = [

    "sex",

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter09/Notebook/Simulating%20New%20Abalone%20Survey%20Data.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter09/Notebook/Simulating%20New%20Abalone%20Survey%20Data.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter09/Notebook/Simulating%20New%20Abalone%20Survey%20Data.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter09/Notebook/Simulating%20New%20Abalone%20Survey%20Data.ipynb
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    "length",

    "diameter",

    "height",

    "whole_weight",

    "shucked_weight",

    "viscera_weight",

    "shell_weight",

    "rings"

]

7. In the next code cell, add the following code to open the original (or raw) Abalone 
dataset that was uploaded to S3 when we deployed the CDK application, as well 
as define the name of the new Abalone data file. The new data file will contain the 
current date and time appended to the filename, making it a unique survey:

data_bucket = f"""{boto3.client("ssm").get_
parameter(Name="AirflowDataBucket")["Parameter"]
["Value"]}"""

raw_data_key = f"{model_name}_data/raw/abalone.data"

new_data_key = f"{model_name}_data/new/abalone.
{strftime('%Y%m%d%H%M%S', gmtime())}"

s3_object = s3.get_object(Bucket=data_bucket, Key=raw_
data_key)

raw_df = pd.read_csv(io.BytesIO(s3_object["Body"].
read()), encoding="utf8", names=column_names)

8. Now, add the following code to fit a CTGAN model to the raw data, specifying the 
sex feature as a categorical value:

from ctgan import CTGANSynthesizer

ctgan = CTGANSynthesizer()

ctgan.fit(raw_df, ["sex"])

9. To generate the 100 samples of synthesized survey data, add the following code to a 
new code cell:

samples = ctgan.sample(100)



302     Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

10. Now that we have new synthesized the Abalone data as the samples variable, we 
can use the following code to copy it to the S3 data bucket:

samples.to_csv(f"s3://{data_bucket}/{new_data_key}", 
header=False, index=False)

With the new Abalone survey data synthesized and uploaded to S3, we can execute the 
data-centric workflow. We'll learn how to do this in the next section.

Executing the data-centric workflow
In the previous section, we successfully generated new Abalone survey data. So, with 
this dataset now stored on S3, this section will walk you through how to execute and 
release the data-centric workflow to create a production-grade ML model that has been 
optimized on both the new, as well as the original, datasets. 

As with the example in Chapter 7, Building the ML Workflow Using AWS Step Functions, 
we can consider this execution and any scheduled execution of the workflow as a release 
change. The following diagram shows an overview of the workflow execution that we 
defined within the Airflow DAG: 

Figure 9.5 – Overview of the workflow's execution
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As you can see, once we have new data and the schedule kicks off, the Airflow DAG will 
execute the CI phase of updating the Abalone dataset, training a new ML model, and 
evaluating the trained model's performance.

Once the model has been automatically approved as a production-grade model, it  
is deployed to production during the CD phase. The operations teams can then  
take ownership of the hosted model to manage and continuously monitor its  
production performance.

This CI/CD process will execute every night at midnight, based on the DAG schedule, 
to ensure that the production model is continuously optimized as it gets trained on new 
survey data.

To see this in action, perform the following steps to execute the workflow release:

1. Using the Airflow web UI, click the toggle button next to the abalone-data-
workflow DAG to enable it. 

2. Once the DAG has been enabled, the workflow will automatically start. Click on the 
DAG to view its execution.

3. Using either the Tree View or Graph View links, you can view each task of the 
DAG being executed. The following diagram shows what a completed workflow 
execution graph looks like:

Figure 9.6 – Completed workflow execution graph
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4. Clicking on any of the tasks will allow you to view its task configuration and, more 
importantly, the log output from the worker nodes. Click on a task to open the Task 
Instance window, then click the Log button to open the worker logs:

Figure 9.7 – Task Instance window

Note
Since the SageMaker tasks use PythonOperator(), the output from 
the logs shows a redirect of the SageMaker CloudWatch logs. This is another 
reason to make SageMaker execution calls using the SageMaker SDK and 
PythonOperator(), as opposed to the AWS-provided SageMaker 
operators, since these require you to view the log output in CloudWatch instead 
of the Airflow web UI.
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5. To see the evaluation RMSE score, click on the analyze_results task instance and 
click on the Log button. Once the Log screen appears, click on the XCom button. 
As shown in the following screenshot, you can see XCom for the Results key. This 
key is available to the downstream check_threshold task to determine whether the 
model should be approved or rejected for production:

Figure 9.8 – Example RMSE

Using the preceding steps, we have created and executed a data-centric, automated ML 
workflow, which will also execute daily. Should new survey data be uploaded, the model 
will be trained on the original dataset, as well as the new survey data, hopefully making it 
more robust.

However, it is important to recognize that even though the workflow will be executed 
once a day, we have deployed infrastructure resources that will only be used during the 
scheduled execution. This means that the MWAA worker nodes are sitting idle when 
they're not being used, thus consuming AWS billable resources. To offset overspending for 
unused resources, we may want to review the minimum and maximum worker count for 
the MWAA environment and adjust it accordingly.

In the next section, you will learn how to limit the AWS costs for this example by deleting 
these various resources.

Cleanup
Follow these steps to remove the various resources we've deployed:

1. Open the SageMaker console (https://console.aws.amazon.com/
sagemaker/home) and, using the left-hand navigation menu, select Inference, 
and then the Endpoints option.

2. Delete any Endpoints by selecting the radio button next to each Name and clicking 
the Actions dropdown, then the Delete option. 
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3. Repeat this procedure for any Endpoint configurations and any Models.
4. Open the MWAA console (https://console.aws.amazon.com/mwaa/

home) and select your environment. Click the Actions dropdown and select the 
Delete option to delete the MWAA environment.

Note
Wait for the MWAA environment to be deleted before proceeding with the 
next step.

5. Open the CloudFormation console (https://console.aws.amazon.com/
cloudformation/home) and select MWAA-VPC stack by checking the radio 
button next to the stack. Once selected, click the Delete button.

6. Repeat the same procedure for the abalone-data-pipeline stack.

With that, we have successfully deleted the various AWS resources that we deployed  
both in this chapter and Chapter 8, Automating the Machine Learning Process Using 
Apache Airflow.

Summary
In this chapter, we expanded upon the data-centric approach that we introduced in the 
previous chapter to automate the ML workflow using Apache Airflow. To do this, we 
learned how to build the artifact that's responsible for merging the existing dataset with 
new data to optimize the Age Calculator model. We also learned how to use the CTGAN 
data generator to synthesize this new survey data. Once the new survey data was uploaded 
to S3, we learned how to build and then execute the Airflow DAG that's responsible for 
the data-centric workflow.

With this hands-on example, we learned how the platform, data engineering teams, and 
ML practitioners can work together to create a data-centric approach to ML automation. 
We also learned how AWS makes it easier to deploy, manage, and maintain an Apache 
Airflow environment with our implementation of an Amazon MWAA environment and, 
subsequently, use this environment to create a production-grade Age Calculator model.

In the next chapter, we will apply what we've learned in this and the previous chapter to 
learn how the data-centric approach can further augment the CI/CD methodology to 
include continuous training (CT), an additional phase of ML automation. 

https://console.aws.amazon.com/cloudformation/home
https://console.aws.amazon.com/cloudformation/home


This section will introduce you to the Machine Learning Software Development Life 
Cycle (MLSDLC) and how to implant the end-to-end process, with the ACME Fishing 
Logistics example. This section encompasses the various techniques learned in previous 
parts and shows how they fit into the MLSDLC. The various chapters within this part 
will introduce you to what the MLSDLC is and how it works in practice by highlighting 
the various roles of a cross-functional team and how team members implement the CI 
(Continuous Integration), CD (Continuous Delivery), and CT (Continuous Training) 
aspects of the production application.

This section comprises the following chapters:

• Chapter 10, An Introduction to the Machine Learning Software Development  
Life Cycle (MLSDLC)

• Chapter 11, Continuous Integration, Deployment, and Training for the MLSDLC

Section 5:  
Automating the End-

to-End Production 
Application on AWS
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An Introduction 
to the Machine 
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Development  

Life Cycle (MLSDLC)
At this point in the book, we have reviewed multiple Amazon Web Services (AWS) 
technologies that can be used to automate the machine learning (ML) process, from 
automating ML experimentation with Amazon SageMaker Autopilot to automating 
model training and deployments with AWS CodePipeline, AWS Step Functions, and 
Amazon Managed Workflows for Apache Airflow (MWAA). We've also seen how 
various processes can be applied to the task of ML automation by reviewing both a 
source code-centric and a data-centric methodology to further optimize the ML process. 
Throughout the previous chapters, we've also seen how different teams within the 
organization can contribute to the overall success of the ML use case.
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In this chapter, we're going to apply what we've already learned, and expand on the key 
factors that influence a successful execution of an automated, end-to-end (E2E) ML 
strategy or ML software development life cycle (MLSDLC), namely the following:

• Processes

• Technology

• People

We will expound on these factors by focusing on the various roles within a cross-
functional, agile team, and the specific artifacts that each team contributes to creating a 
quality ML-based application, by covering the following topics:

• Introducing the MLSDLC

• Building the application platform

• Examining ML and data engineering roles

• Understanding the security lens

By the end of the chapter, you will have a fair idea of what the MLSDLC process 
encompasses, and how the process can be applied to the Age Calculator use case.

Technical requirements
To follow along with the examples in the chapter, you will need the following:

• A web browser (for the best experience, it is recommended that you use a Chrome 
or Firefox browser).

• Access to the AWS Account that you've been using through the book.

• Access to the Cloud9 development environment we've been using thought  
the book. 

• We will once again be working within the usage limits of the AWS Free Tier to avoid 
incurring unnecessary costs.

• The full source code for the application artifacts is provided in the 
companion GitHub repository for this chapter (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/tree/
main/Chapter10).

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter10
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter10
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter10
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Introducing the MLSDLC
The concept of a systems development life cycle (SDLC), or application development life 
cycle, has been around since the 1960s, whereby six individual processes are put in place 
to effectively plan, design, build, test, deploy, and maintain applications in production. 
While the individual phases of the process, as well as the mechanisms to implement 
these phases, have evolved over the years, the fundamental requirement to quickly and 
effectively deliver a working application into production hasn't. The following diagram 
shows a high-level overview of the six phases of the SDLC:

Figure 10.1 – Six phases of the SDLC

When looking closely at Figure 10.1, you should hopefully deduce a correlation with some 
of the processes we've encountered up until this point in the book. For example, we could 
assume that some of the potential activities performed during the plan and design phases 
of the SDLC might be similar to some of the activities that could be performed during 
the business use case phase of the CRISP-DM process. Recall that we reviewed the Cross-
Industry Standard Process for Data Mining (CRISP-DM) process in Chapter 1, Getting 
Started with Automated Machine Learning on AWS.

Additionally, if we refer to the continuous integration/continuous delivery (CI/CD) 
process that was introduced in Chapter 4, Continuous Integration and Continuous  
Delivery (CI/CD) for Machine Learning, we could also deduce that there is a corresponding 
mapping of tasks between the build, test, deploy, and maintain phases of the SDLC.  
So, as we've worked through the various ways to implement a production-grade model  
for the Age Calculator use case, we have indirectly been creating an ML-focused SDLC—
or MLSDLC. 

The best way to demonstrate this assumption is to build out an example application 
(website) using the SDLC process and incorporate an ML use case (the Age Calculator 
model) to complete an MLSDLC process. So, in this chapter and the next, we are going 
to build an ACME Fishing Logistics website, and in doing so, not only highlight the 
MLSDLC process but also emphasize the critical factors that influence a successful 
MLSDLC implementation—namely, the process (CI/CD), the people (cross-functional 
team), and the technology (AWS services).
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To set the stage, the following diagram shows the high-level architecture for the 
application platform we will be building:

Figure 10.2 – ACME Fishing Logistics application platform

As you can see from Figure 10.2, the application platform uses several AWS services to 
deliver the final solution. We can group the components into six specific categories by 
following these next steps:

1. To build this solution, a cross-functional team creates various codified artifacts, 
encapsulating their contribution to the overall solution. We will be focusing on 
creating these artifacts in this chapter.

2. Once the artifacts are created and committed to the source code repository, the  
next component of the solution orchestrates the build and deployment of these 
artifacts as CodePipeline assets. For example, CodePipeline orchestrates building 
the Docker container image for model training. This process is similar to what we 
learned about in Chapter 4, Continuous Integration and Continuous Delivery (CI/
CD) for Machine Learning.
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3. After the pipeline assets have been built, CodePipeline then orchestrates the 
deployment of the automated ML workflow, in the form of a Step Functions state 
machine. Using the techniques we learned in Chapter 6, Automating the Machine 
Learning Process using AWS Step Functions, the workflow processes the training 
data, and then trains and evaluates a production-grade ML model. The final model 
is stored in the SageMaker model registry.

4. Accordingly, once we have a production-grade ML model, CodePipeline then 
orchestrates the deployment of a testing environment, utilizing the production-
grade ML model stored in the SageMaker model registry. After the testing 
environment has been deployed, we then execute a system test on a pseudo-
production version of the website application.

5. Once the test version of the website application passes the system tests, 
CodePipeline then deploys the production version of the website application. 
It's at this stage that we have implemented E2E automation of a production ML 
application, using a source code-centric approach.

6. To facilitate adding new abalone survey data, the final component that CodePipeline 
deploys is an Amazon MWAA environment, like the one we created in Chapter 8, 
Automating the Machine Learning Process using Apache Airflow. Therefore, by means 
of an Airflow directed acyclic graph (DAG) to update the training data, we will 
have incorporated a data-centric mechanism into the solution.

So, now that we have an idea of what we will be building in this chapter and the next 
chapter, in the next section, we kick the process off by starting with the planning, design, 
and build for the application platform.

Building the application platform
In Chapter 1, Getting Started with Automated Machine Learning on AWS, you were 
introduced to ACME Fishing Logistics, whose primary charter is to educate fishermen 
on how to determine whether abalone is old enough for breeding. To accomplish this 
task, ACME provides a website with the relevant information to guide fishermen in their 
abalone age-determination task. ACME also provides a contact form for the fishermen 
to use should they require more information. This website essentially represents their 
software application. 
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To start the build-out of the application, the first step is to formalize a team. The following 
diagram illustrates what the team looks like:

Figure 10.3 – The application team

As you can see from Figure 10.3, the initial application team is comprised of the following 
key resources:

1. Application owner
2. Site reliability/platform engineering team
3. Frontend application software engineering team

Let's examine these specific roles in more detail, starting with the application owner.

Examining the role of the application owner
The application owner's primary responsibility is to ensure that the website is strategically 
aligned with the goals of the business. Alongside this, the owner must ensure that the 
website is functional, usable, dependable, and operates in a cost-effective manner. 
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While the application owner may not be responsible for directly managing the platform  
or development engineers, they are responsible for directing and coordinating the  
various efforts performed by these teams. The application owner primarily owns the 
planning and design phase within the context of the MLSDLC. Some of their tasks may 
also include the following:

• Documentation: The application owner creates and manages application 
documentation to provide the engineering teams with the correct requirements and 
overall expectations.

• Relationship management and strategic alignment: The application owner 
coordinates feedback from users and other stakeholders to determine the product 
strategy, feature enhancements, and consistent alignment with business goals.

• Analysis and reporting: The application owner generates the necessary reports to 
communicate with the various stakeholders.

These are just a few of the tasks that may be performed by the application owner. The next 
role we will examine is that of the platform engineers.

Examining the role of the platform engineers
In previous chapters, we have often seen how the application development teams or 
development-operations (DevOps) teams have interacted with ML partitions to deliver 
the ML model into production. In the context of an MLSDLC, these teams are also 
referred to as the platform or site reliability team. Here, the platform team is responsible 
for designing the overall platform architecture (in conjunction with the application 
owner), building out the infrastructure, and maintaining the platform. 

To demonstrate this, we are going to start the MLSDLC build-out using the AWS Cloud9 
integrated development environment (IDE) to construct the ACME website as an AWS 
Cloud Development Kit (CDK) project, using the following steps: 

1. Log in to the same AWS account you've been using, and open the AWS Cloud9 
console (https://console.aws.amazon.com/cloud9).

2. In the Your environments section, click the Open IDE button for the MLOps-IDE 
development environment.

3. Run the following command in the Cloud9 terminal window to confirm that we are 
running version 2.3.0 (build beaa5b2) of the AWS CDK. Update the environment by 
running the following command in the workspace terminal:

$ cdk --version
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Note
If you are not running version 2.3.0 (build beaa5b2) of the AWS CDK, refer 
to Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for 
Machine Learning for instructions on how to install this version.

4. Run the following commands to initialize and bootstrap the CDK application:

$ cd ~/environment

$ mkdir acme-web-application && cd acme-web-application

$ cdk init --language python

$ git add -A

$ git commit -m "Started CDK Project"

$ git branch main

$ git checkout main

$ source .venv/bin/activate

5. Next, we will install the necessary development libraries by running the  
following command:

$ python -m pip install -U pip pylint boto3

6. Since we will be making use of some experimental CDK construct libraries, 
using the left-hand navigation panel of the Cloud9 IDE, expand the acme-web-
application folder and double-click on the requirements.txt file for 
editing, and then add the following alpha modules to the file:

aws-cdk.aws-apigatewayv2-alpha==2.3.0a0

aws-cdk.aws-apigatewayv2-integrations-alpha==2.3.0a0

7. Save and close the requirements.txt file.
8. Now, we install the required CDK modules by running the following command in 

the Cloud9 terminal window:

$ pip install -r requirements.txt

9. Now that we have the relevant libraries installed, we can start defining a skeleton 
CDK pipeline. Using the left-hand navigation panel, expand the acme-web-
application folder and delete the acme_web_application_stack.py file. 

10. Now, right-click on the acme_web_application folder and select the New File 
option to create a new file called acme_pipeline_stack.py. Double-click on 
the acme_pipeline_stack.py file for editing.
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Note
You can reference the companion GitHub repository (https://github.
com/PacktPublishing/Automated-Machine-Learning-on-
AWS/blob/main/Chapter10/Files/cdk/acme_pipeline_
stack.py) for a completed version of the acme_pipeline_stack.py 
file.

11. Add the following code to import the necessary libraries:

import aws_cdk as cdk

import aws_cdk.aws_codecommit as codecommit

import aws_cdk.aws_s3 as s3

import aws_cdk.pipelines as pipelines

import aws_cdk.aws_ssm as ssm

from constructs import Construct

12. Now, use the following code to initialize the PipelineStack class as a cdk.
Stack construct:

class PipelineStack(cdk.Stack):

    def __init__(self, scope: Construct, id: str, *, 
model_name: str=None, group_name: str=None, repo_name: 
str=None, feature_group: str=None, threshold: float=None, 
cdk_version: str=None, **kwargs) -> None:

        super().__init__(scope, id, **kwargs)

13. The first resource we create is a CodeCommit source code repository, for all  
the MLSDLC source code. Using the following code, we also create an output  
for the Uniform Resource Locator (URL) so that other teams can easily clone  
this repository:

        self.code_repo = codecommit.Repository(

            self,

            "Source-Repository",

            repository_name=repo_name,

            description="ACME Web Application Source Code 
Repository"

        )

        cdk.CfnOutput(

            self,

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter10/Files/cdk/acme_pipeline_stack.py
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter10/Files/cdk/acme_pipeline_stack.py
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter10/Files/cdk/acme_pipeline_stack.py
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter10/Files/cdk/acme_pipeline_stack.py
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            "Clone-URL",

            description="CodeCommit Clone URL",

            value=self.code_repo.repository_clone_url_
http

        )

14. The next resource we create is a Simple Storage Service (S3) bucket to house all of 
the relevant ML and pipeline data. Here's the code to accomplish this:

        self.data_bucket = s3.Bucket(

            self,

            "Data-Bucket",

            bucket_name=f"data-{cdk.Aws.REGION}-{cdk.Aws.
ACCOUNT_ID}",

            block_public_access=s3.BlockPublicAccess.
BLOCK_ALL,

            auto_delete_objects=True,

            removal_policy=cdk.RemovalPolicy.DESTROY,

            versioned=True

        )

15. Next, we save the S3 bucket name, as well as the SageMaker Feature Store 
FeatureGroup name as Systems Manager parameters. These will be used by other 
teams to reference assets outside of the pipeline. Here's how we do this:

        ssm.StringParameter(

            self,

            "Data-Bucket-Parameter",

            parameter_name="DataBucket",

            description="SSM Parameter for the S3 Data 
Bucket Name",

            string_value=self.data_bucket.bucket_name

        )

        ssm.StringParameter(

            self,

            "Feature-Group-Parameter",

            parameter_name="FeatureGroup",

            description="SSM Parameter for the SageMaker 
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Feature Store group",

            string_value=feature_group

        )

16. Now, we create a source_artifact variable to essentially tell the CI/CD pipeline 
where to find the source code for the various artifacts and resources. The code is 
illustrated in the following snippet:

        source_artifact = pipelines.CodePipelineSource.
code_commit(

            repository=self.code_repo,

            branch="main"

        )

17. Finally, we create a skeleton pipeline, using the following code:

        pipeline = pipelines.CodePipeline(

            self,

            "Application-Pipeline",

            pipeline_name="ACME-WebApp-Pipeline",

            self_mutation=False,

            cli_version=cdk_version,

            synth=pipelines.ShellStep(

                "Synth",

                input=source_artifact,

                commands=[

                    "printenv",

                    f"npm install -g aws-cdk@{cdk_
version}",

                    "python -m pip install --upgrade 
pip",

                    "pip install -r requirements.txt",

                    "cdk synth"

                ]

            )

        )

18. Save and close the acme_pipeline_stack.py file.
19. Using the left-hand navigation panel, open the app.py file for editing.
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20. Once the file is open, delete any existing template code and add the following 
code. In the app.py file, we are initializing the global parameters used by the 
CDK application, such as the name of the model, the name of the CodeCommit 
repository, and a placeholder for the name of the Feature Store. Additionally, 
in this code, we also instantiate the acme_pipeline_stack.py file as the 
PipelineStack() construct, within the CDK application:

#!/usr/bin/env python3

import os

import aws_cdk as cdk

from acme_web_application.acme_pipeline_stack import 
PipelineStack

MODEL = "abalone"

MODEL_GROUP = f"{MODEL.capitalize()}PackageGroup"

FEATURE_GROUP = "PLACEHOLDER"

CODECOMMIT_REPOSITORY = "acme-web-application"

CDK_VERSION = "2.3.0"

QUALITY_THRESHOLD = 3.1

app = cdk.App()

PipelineStack(

    app,

    CODECOMMIT_REPOSITORY,

    env=cdk.Environment(account=os.getenv("CDK_DEFAULT_
ACCOUNT"), region=os.getenv("CDK_DEFAULT_REGION")),

    model_name=MODEL,

    repo_name=CODECOMMIT_REPOSITORY,

    group_name=MODEL_GROUP,

    feature_group=FEATURE_GROUP,

    cdk_version=CDK_VERSION,

    threshold=QUALITY_THRESHOLD,

)

app.synth()
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21. Save and close the app.py file.
22. Now, we deploy the skeleton pipeline. Run the following commands in the IDE 

terminal window, to bootstrap the application:

$ export CDK_NEW_BOOTSTRAP=1

$ npx cdk bootstrap aws://${CDK_DEFAULT_ACCOUNT}/${CDK_
DEFAULT_REGION} \

    --cloudformation-execution-policies 
arn:aws:iam::aws:policy/AdministratorAccess

23. Deploy the CDK application, using the following command:

$ cdk deploy

24. Once the application has been deployed, and therefore the CodeCommit repository 
has been created, we can now check in the code so that other teams can access these 
resources. Run the following commands to initialize and update the repository:

$ CLONE_URL=$(aws cloudformation describe-stacks 
--stack-name acme-web-application --query "Stacks[0].
Outputs[?OutputKey=='CloneURL'].OutputValue" --output 
text)

$ git remote add origin $CLONE_URL

$ git add -A

$ git commit -m "Initial commit"

$ git push --set-upstream origin main

Now that the CDK application has been deployed, you will have noticed that we have 
bootstrapped it differently from the CDK examples in previous chapters. This is because 
we are using CDK Pipelines. CDK Pipelines essentially allows us to create a self-mutating 
CI/CD pipeline that deploys CDK stacks as pipeline stages. The pipeline is self-mutating 
in that it automatically builds the various pipeline assets, and dynamically adjusts its 
workflow when CDK constructs are added, updated, or deleted.

Note
For more information on CDK Pipelines, you can reference the launch 
blog (https://aws.amazon.com/blogs/developer/
cdk-pipelines-continuous-delivery-for-aws-cdk-
applications/).

https://aws.amazon.com/blogs/developer/cdk-pipelines-continuous-delivery-for-aws-cdk-applications/
https://aws.amazon.com/blogs/developer/cdk-pipelines-continuous-delivery-for-aws-cdk-applications/
https://aws.amazon.com/blogs/developer/cdk-pipelines-continuous-delivery-for-aws-cdk-applications/
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As we will see, this concept fits nicely into the MLSDLC process, in that it essentially 
allows each cross-functional team to create, own, and dynamically provision the  
relevant AWS assets that pertain to their contribution to the overall MLSDLC process  
as a CDK construct.

Note
Since multiple cross-functional teams will be adding their contribution to the 
code source in this and the next chapter, in Step 17, we have set the self_
mutation parameter to False. This will prevent the pipeline from self-
mutating until all the relevant code contributions have been made.

This completes the current code contribution from the platform team. As Figure 10.3 
shows, the next role we will examine is that of the frontend development team.

Examining the role of the frontend developers
Since the ACME application involved deploying a website, the MLSDLC process requires 
a team of web developers. Per Figure 10.3, we see that the web developers interact with the 
application owner to determine the required look and feel of the website—essentially, the 
website design specifications.

This team also interacts with the platform team to create the necessary interfaces between 
the frontend and backend services. 

Note
Due to the complexities within some of the MLSDLC assets, and to ensure 
consistency within this example, the majority of the code has already been 
created for you in the GitHub repository (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/
tree/main/Chapter10). Therefore, some of the tasks within this chapter 
involve simply copying the code from the companion repository. You will 
recall that we have already cloned supporting code into the Cloud9 workspace 
in Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for 
Machine Learning. 
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Let's review how this team contributes to the MLSDLC process by creating the 
application's web assets. Follow these next steps:

1. Continuing in the Cloud9 environment, run the following commands within the 
IDE terminal window to move the website artifacts to the repository we created in 
the previous section, by running the following command:

$ cd ~/environment

$ cp -R src/Chapter10/www acme-web-application/

2. Commit these new website files to the MLSDLC source repository by running the 
following commands:

$ cd ~/environment/acme-web-application

$ git add -A

$ git commit -m "Added website files"

$ git push

By committing the various HyperText Markup Language (HTML) files, Cascading Style 
Sheets (CSS) files, and website images, this essentially completes the frontend developer 
team's contribution to the MLSDLC.

Within these various website assets, the most important HTML file to take note 
of is the index.html file. At the end of the code within the index.html file, 
you will see two JavaScript functions—namely, the submitContactForm() and 
submitPredictForm() functions. By developing these functions in conjunction with 
the platform team, the frontend team can ensure that the appropriate backend resources 
are created to support the data submitted within these forms—one for the contact 
processing and one for Age Calculator predictions.

Once the platform team creates these backend resources, it's at that point that we 
effectively have a completed web application. However, we still need to create ML 
components for the application. Let's explore these components further from the 
perspective of the ML practitioner and data engineering teams.
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Examining ML and data engineering roles
In previous chapters, we have used the term ML practitioner as a blanket term for any 
person responsible for automating the ML process. Within the context of the MLSDLC 
process, we typically see this role split into two distinct functions, namely the following:

• Data scientist: The data scientist is primarily responsible for building, training, and 
tuning an ML model that meets the business requirements of the use case.

• ML engineer: Among numerous responsibilities, the ML engineer is primarily 
responsible for designing the overall ML system to support the model, managing 
the appropriate datasets for model training, and ensuring the final ML application 
addresses the business requirements for the use case.

However, for the sake of the ACME application example, we will group these two 
functions under the banner of the ML team, with the following diagram highlighting how 
this team fits into the MLSDLC process:

Figure 10.4 – The ML practitioner team's role within the MLSDLC process

From Figure 10.4, you can see that the application owner works with the ML team to 
assess whether ML can be applied to the business case. You will recall that we reviewed 
this process in more detail when making a case for ML in Chapter 1, Getting Started with 
Automated Machine Learning on AWS. 
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So, once it has been determined that ML is a fit for the business case, the next step is to 
determine whether we have supporting data for the ML model. It's at this point that the 
ML engineers and data engineers coordinate on the data source, access requirements, type 
of data, and how the data needs to be re-engineered for the ML model. Since the ACME 
use case uses data from the University of California Irvine (UCI) Machine Learning 
Repository, we are going to forego this step of interfacing with the data engineers. 

However, within the context of the MLSDLC, we are going to introduce a technique, 
typically performed by ML engineers, to further streamline training data processing and 
feature engineering (FE) tasks—using a Feature Store.

Creating a SageMaker Feature Store
At re:Invent 2020, AWS launched a SageMaker capability called the SageMaker Feature 
Store. This allows teams to create, store and reuse preprocessed and engineered features, 
essentially eliminating the need to constantly execute data preprocessing jobs and FE tasks 
every time a model needs to be trained. 

Note
AWS provides several example notebooks for creating a Feature Store, within 
the Amazon SageMaker example GitHub repository (https://github.
com/aws/amazon-sagemaker-examples/tree/master/
sagemaker-featurestore). We will be reusing code from these 
examples, licensed under the Apache 2.0 license, and adapting them to our use 
case.

The following steps will take us through creating a store for the abalone dataset features:

1. Within your AWS account, open the Amazon SageMaker management console, 
and click the SageMaker Domain link in the left-hand navigation panel.

2. Click the Launch app dropdown, and select the Studio link to launch the Studio 
user interface (UI).

3. Since the companion GitHub repository has already been cloned into the Studio UI, 
using the File Browser panel, double-click on the src folder, and then double-click 
on the Chapter10 folder, then the Notebooks folder.

4. Now, double-click on the SageMaker Feature Store Example.ipynb 
notebook to launch it.

https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-featurestore
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-featurestore
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-featurestore
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5. Once the notebook is open, wait for the notebook kernel to start.
6. Select Kernel from the menu bar, and select the Restart Kernel and Run All 

Cells… option.
7. When prompted on the Restart Kernel? dialog box, click the Restart button.

Note
The notebooks should take around 10 minutes to run. Make sure to take note 
of the name of the feature group, as we will be referencing this in the next 
chapter.

Let's review what we've accomplished from executing this notebook, as follows:

• In the Setup section of the notebook, we import the necessary Python libraries, 
with sagemaker.feature_store.feature_group being the most 
important. We've also declared some helper functions to track the status of the 
feature stores' creation using the check_feature_group_status() function, 
and tracked the ingestion of the feature data into the store, using the check_
data_availabiltiy() function. You will also see that we reference the S3 data 
bucket (data_bucket) that was created by the platform team in the Examining the 
role of the platform engineers section, by pulling the bucket name parameter from 
the Systems Manager Parameter Store (SSM).

• In the Data Preparation section, we download the abalone dataset from the UCI 
repository and, using the pandas get_dummies() method, we engineer the sex 
features as numerical values. We then store these new features as a DataFrame 
called processed_data.

• Finally, in the SageMaker Feature Store section, we create a feature group, which is 
essentially a table within the Feature Store. We also create a time_stamp variable 
to bind an ingestion timestamp to our data as a feature column. This allows us to 
differentiate between individual features, based on the time they were added to 
the group. We then define a schema for the feature group, create it, and ingest the 
processed_data DataFrame into the table.

After running the notebook, we now have a Feature Store with all the relevant abalone 
dataset features, thus eliminating the need to constantly recreate these features every time 
we train our model.

So, now that we have the dataset ready, we can move on to creating ML artifacts.
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Creating ML artifacts
From Figure 10.4, we can see that after coordinating with the data team, the ML team 
works with the platform team to convey its requirements and provide the ML-specific 
code contributions to the web application, the first of which is the model artifact. 

Creating a model artifact
You will recall from Chapter 5, Continuous Deployment of a Production ML Model, that 
we packaged the algorithm code, as well as various routines to process the data and train 
and evaluate the model into a container image. This allowed us to compile an all-inclusive 
model artifact for the various stages of the CI/CD pipeline, using SageMaker's Bring Your 
Own Container (BYOC) capabilities.

Within the context of the MLSDLC example, after the data scientists have framed the 
correct ML solution, they can build, train, tune, and evaluate a production-grade model 
for the solution, essentially reproducing the model artifacts using the same notebook 
example that we used in Chapter 4, Continuous Integration and Continuous Delivery (CI/
CD) for Machine Learning. The data scientists can then package these components into a 
container artifact for the ACME web application. 

Let's emulate this assignment with the following steps:

1. Open the ACME Model Artifacts Example.ipynb file, using the 
SageMaker Studio IDE, in the src/Chapter10/Notebooks folder of the cloned 
companion GitHub repository.

2. Once the Python 3 (Data Science) kernel has started, select Kernel from the menu 
bar, and select the Restart Kernel and Run All Cells… option.

3. When prompted on the Restart Kernel? dialog box, click the Restart button.
4. After the notebook has been run, you should see a model folder in the left-hand 

navigation panel. This folder contains the relevant model artifacts for the  
container image.

5. Now, open a terminal by clicking File from the menu bar, selecting the New option, 
and then clicking on the Terminal option.

6. Run the following commands within the terminal tab to add the model artifacts to 
the web application source code repository:

$ CLONE_URL=$(aws cloudformation describe-stacks 
--stack-name acme-web-application --query "Stacks[0].
Outputs[?OutputKey=='CloneURL'].OutputValue" --output 
text)

$ git clone $CLONE_URL
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$ mv ~/src/Chapter10/Notebooks/model acme-web-
application/

$ cd acme-web-application/

$ git add -A

$ git commit -m "Initial commit of model artifacts"

$ git push

As the ML team, we have now created the relevant model artifacts and contributed these 
to the web application repository. However, before proceeding to the next step, let's review 
what happened when we ran the notebook.

If you examine the notebook, you will see that we've followed a similar procedure to the 
example in Chapter 5, Continuous Deployment of a Production ML Model, whereby we 
use the %%writefile magic to create a model.py file. This file loads the necessary 
TensorFlow libraries, sets global variables for the SageMaker container environment, and 
defines a model training routine in the form of the train() function. This function 
defines training and validation data and a multilayer perceptron (MLP) model, executes 
the training fit() method on the compiled model, and then saves the optimized model.

In the Create the Application section of the notebook, we create an app.py file, which 
serves as the entry point to the container image for either the model training task or the 
model inference task, depending on how SageMaker consumes the image. In this section, 
we also initialize the web serving files, nginx.conf and wsgi.py, so that SageMaker 
can host and serve the model for inferencing.

The last section of the notebook creates a Dockerfile. This file contains the build 
instructions to create a container image. Unlike the previous example, we aren't pulling a 
deep learning (DL) container image. Instead, we are manually building a container image. 

Note
The primary reason for manually building a TensorFlow container image, as 
opposed to pulling the DL container image, is to ensure that the code example 
works across any AWS regions that support CDK Pipelines and SageMaker. 
While the CDK Pipelines module supports the ability to supply docker_
credentials within the aws_cdk.pipelines.CodePipeline() 
class, we would need to hardcode credentials to the DL container Elastic 
Container Registry (ECR) repositories within the example code. So, to 
ensure the example code works uniformly, we will manually build a container 
based on the DL container source (https://github.com/aws/
deep-learning-containers/blob/master/tensorflow/
training/docker/2.6/py3/Dockerfile.cpu), provided under 
the Apache 2.0 license.

https://github.com/aws/deep-learning-containers/blob/master/tensorflow/training/docker/2.6/py3/Dockerfile.cpu
https://github.com/aws/deep-learning-containers/blob/master/tensorflow/training/docker/2.6/py3/Dockerfile.cpu
https://github.com/aws/deep-learning-containers/blob/master/tensorflow/training/docker/2.6/py3/Dockerfile.cpu
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Within the Dockerfile, you will also see that we install an additional Python library 
called awswrangler (https://github.com/awslabs/aws-data-wrangler). 
AWS Data Wrangler is an AWS-developed and open sourced library that allows easy 
integration with various AWS services, such as Amazon Athena, AWS Glue, and Amazon 
Redshift. Since the training data is housed within the SageMaker Feature Store, we will 
use this library to select the feature data and store this as a DataFrame for model training.

Developing the model artifacts doesn't complete the ML team's contribution to the 
MLSDLC example. If you recall from previous chapters, the ML team also needs to 
contribute various additional artifacts to automate the model building and evaluation 
process. Let's explore these additional artifacts in the next section.

Building automated ML workflow artifacts
In previous chapters, we've reviewed multiple techniques to automate the model training 
and evaluation process. For example, in Chapter 6, Automating the Machine Learning 
Process using AWS Step Functions, and Chapter 8, Automating the Machine Learning 
Process using Apache Airflow, you were introduced to some of the AWS capabilities that 
build a workflow to orchestrate getting an ML model into production. We also review the 
importance of having a cross-functional team co-develop these workflow artifacts, and 
not having the platform team own the entirety of these tasks.

So, within the context of the MLSDLC example, the ML team further contributes to the 
ACME web application by providing a codified workflow that gets executed as part of the 
CDK pipeline. To this end, let's walk through the process of building these artifacts, from 
the perspective of the ML engineers. Here are the steps we need to follow:

1. As the ML engineer, we need to update the cloned repository with the latest updates 
to the model artifacts. Using the Cloud9 IDE workspace terminal window, run the 
following commands:

$ cd ~/environment/acme-web-application/

$ git pull

2. In the left-hand navigation panel, create a folder called stacks, to hold the CDK 
constructs. You can do this by right-clicking on the acme_web_application 
folder and selecting New Folder. Then, name the folder stacks.
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3. Copy the pre-built stack construct from the companion GitHub repository to this 
folder, by running the following command:

$ cp ~/environment/src/Chapter10/Files/cdk/ml_workflow_
stack.py acme_web_application/stacks/

4. Using the left-hand navigation panel, double-click on the ml_workflow_stack.
py file for review.

In previous chapters, we've reviewed different ways to automate the ML workflow— 
namely AWS Step Functions and MWAA. At re:Invent 2020, AWS launched a native 
SageMaker module to orchestrate the ML process, called SageMaker Pipelines. As we 
review the ml_workflow_stack.py file, you will notice that we automate the ML 
process using AWS Step Functions instead of using SageMaker Pipelines, for two reasons. 
Firstly, you should already be familiar with using AWS Step Functions, from the Data 
Science SDK example in Chapter 6, Automating the Machine Learning Process using AWS 
Step Functions.

Secondly, while the CDK supports executing a SageMaker pipeline using the 
CfnPipeline construct (https://docs.aws.amazon.com/cdk/api/latest/
python/aws_cdk.aws_sagemaker/CfnPipeline.html), this construct requires 
the pipeline to be separately codified and unit tested as an artifact, outside of the CDK 
project. In the next chapter, we will see that by integrating AWS Step Functions into the 
CDK project, the process of codifying, unit testing, and—eventually—system testing the 
ML workflow can be further automated, as part of the self-mutating CDK pipeline.

Now that the ml_workflow_stack.py file is open, let's review the most important 
AWS resources created by the stack construct. 

Registering the data bucket
Outside of loading the necessary CDK Python libraries and instantiating the 
MLWorkflowStack() class, the first variable we declare is the data_bucket variable. 
Here, we reference the existing S3 bucket as a CDK object, thus allowing us to add the 
various permissions required by the other stack resources to add and access the objects 
within the bucket. For example, we use the BucketDeployment() construct next, to 
upload the Python script artifacts to the data_bucket variable so that these objects can 
be used with the workflow.

Creating placeholder parameters
Next, we declare two SSM parameters (package_parameter and baseline_
parameter) as placeholders, to store the name of the trained model and the S3 bucket 
location of the SageMaker Model Monitor baseline data. 

https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnPipeline.html
https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnPipeline.html
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Creating a modeling container image
Since we now have the model artifacts already created, we can define the model_image 
parameter as an ECR DockerImageAsset() asset, pointing to the model artifacts 
folder. As you will see, by declaring this asset, the self-mutating CDK pipeline will 
dynamically create a CodeBuild job to build a container image, without us having to 
declare a separate CodePipeline build stage.

Creating a model registry
Next, we create an AWS Lambda function variable called registry_creator. This 
Lambda function creates a SageMaker model registry (https://docs.aws.amazon.
com/sagemaker/latest/dg/model-registry.html) to store the various 
model versions that are automatically trained when the workflow gets executed. Once 
the registry_creator Lambda function has been declared, we invoke it as a custom 
resource using the CustomResource() construct.

Note
While the CDK provides a SageMaker construct called 
CfnModelPackageGroup (https://docs.aws.amazon.
com/cdk/api/latest/python/aws_cdk.aws_sagemaker/
CfnModelPackageGroup.html) to register the trained model package, 
we use a Lambda function here to essentially perform the same task. As you 
will see when we define a Lambda artifact later in this chapter, using a Lambda 
function will allow us to delete existing model packages before deleting the 
model registry—something the CfnModelPackageGroup construct 
doesn't do.

Creating an ML experiment
Before we can define a workflow as a Step Functions state machine, we need to define 
artifacts that will be used within the workflow. The first artifact is the experiment_
creator Lambda function. This function initializes the experiment variables, tagged 
with the pipeline executionId for version tracking so that each execution of the 
workflow can be traced. This allows the ML team to track the lineage of a production 
model, from the data used for training to how the model was trained and how the  
model was evaluated, as a SageMaker experiment. This information is useful for  
auditing purposes and model explainability and provides additional context for 
production model monitoring.

https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnModelPackageGroup.html
https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnModelPackageGroup.html
https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnModelPackageGroup.html
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Evaluating the model
The next artifact definition is the evaluate_results Lambda function. This function 
reads the model evaluation results from the current model being trained within the 
workflow with the evaluation results from any previously trained model, to determine 
whether or not the current model's performance is an improvement. This way, we can 
guarantee that the production model is always the best-performing model and doesn't get 
overridden by an inferior model. Should the model's performance improve, we use the 
register_model Lambda function to update the model registry with the latest, best 
model. This is the model that will eventually be deployed into production.

Creating SageMaker jobs
Now that the Lambda artifacts of the workflow have been defined, we can build various 
SageMaker application programming interface (API) calls. There are three specific API 
calls to SageMaker, as follows:

• CreateProcessingJob (https://docs.aws.amazon.com/sagemaker/
latest/APIReference/API_CreateProcessingJob.html) for data 
processing, using the processing_definition state JSON

• CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/
latest/APIReference/API_CreateTrainingJob.html) for model 
training, using the training_definition state JSON

• CreateProcessingJob, for model evaluation, using the evaluation_
definition state JSON 

To define the API specification for each of these jobs, we've created three separate 
definition parameters in the workflow construct—namely, the following:

• processing_definition

• training_definition

• evaluation_definition 

Note
Since we've already created a Feature Store to hold the engineered data features, 
you may be wondering why we've included a data processing definition in the 
workflow. While the Feature Store does contain the training data, we still need 
to split the data into training, validation, and test datasets. Therefore, by using 
the processing_definition, we are offloading the task of retrieving 
the engineered data from the Feature Store, splitting the data into training, 
validation, and test datasets, and storing them in S3. 

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
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Defining a state machine
Now that we have defined the various workflow artifacts and SageMaker job definitions, 
we can declare the different tasks and states of the Step Functions state machine. You  
will recall from the example in Chapter 4, Continuous Integration and Continuous Delivery 
(CI/CD) for Machine Learning that we started the build-out of the flow by looking at 
the final objective state for the workflow, and then working backward to develop the 
steps toward accomplishing that objective. So, if we follow what we've already learned, 
the first state we create is failure_state, using the Fail() class of the aws_
stepfunctions construct.

Next, we define steps that lead us to the final workflow objective, having a production-
grade model, starting with create_experiment_step. As you can see, this variable 
is an aws_stepfunctions_task function called LambdaInvoke(), whereby we 
call the experiment_creator function to initialize the experiment parameters for 
workflow tracking.

The subsequent step is the data processing_step variable, through which we register 
processing_definition as a Step Functions CustomState(). 

Note
You have probably noticed throughout the various examples in this book that 
the CDK is constantly being updated, and while there is a CDK construct for 
the SageMaker training job (https://docs.aws.amazon.com/cdk/
api/latest/python/aws_cdk.aws_stepfunctions_tasks/
SageMakerCreateTrainingJob.html), at the time of writing, there 
is currently no construct for SageMaker processing jobs. Therefore, define these 
workflow steps as a CustomState() function.

After processing_step comes the training_step variable, which uses  
training_definition to execute the SageMaker training job as a CustomState().

Note
Even though the CDK has a SageMakerCreateTrainingJob() 
class, at the time of writing, this class does not support adding a SageMaker 
experiments configuration. Therefore, to add the lineage tracking capability to 
the training job, we've declared training_step as a CustomState().
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Once the model has been trained, we can evaluate its performance, using a SageMaker 
processing job. This step of the workflow is defined by the evaluation_step variable 
and uses the evaluation_definition variable to provide the necessary API 
configuration to SageMaker. The subsequent results_step variable then uses these 
evaluation metrics, by invoking the evaluate_results Lambda to determine whether 
or not the trained model is ready for production deployment.

After applying various workflow logic steps to direct the overall flow, we create a workflow 
as a Step Function state machine, using the workflow_definition variable. The 
following diagram depicts what the final Step Functions state machine will look like:

Figure 10.5 – ML workflow state machine
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Finalizing the workflow artifacts
Once the workflow construct has been defined, the final part of the ML team's 
contribution to the web application is to supply the various artifacts referenced within the 
construct—namely, the artifacts in the lambda and scripts folders. The following steps 
will take you through creating these supporting artifacts:

1. Continuing within the Cloud9 IDE, run the following commands in the terminal 
window, to add the code for the registry_creator, experiment_creator, 
evaluate_results, and register_model Lambda functions:

$ cd ~/environment/acme-web-application

$ mkdir lambda

$ cp -R ~/environment/src/Chapter10/Files/lambda/
{createExperiment,evaluateResults,registerModel, 
registryCreator} lambda/

2. Now, execute the following commands to copy the required scripts for the 
processing_step and evaluation_step variables:

$ cd ~/environment/acme-web-application

$ cp -R ~/environment/src/Chapter10/Files/scripts .

3. Commit these changes to the web application source repository, as follows:

$ git add –A

$ git commit -m "Initial commit of ML Workflow artifacts"

$ git push

You can review each of the index.py files within the individual function's folder, to 
assess exactly what the function does within the ML workflow. However, you should 
pay particular attention to the preprocessing.py file in the scripts folder, to see 
how AWS Data Wrangler reads the feature data from the Feature Store. For example, if 
you refer to the following code snippet, you can see that AWS Data Wrangler performs 
a Structured Query Language (SQL) query against the raw Feature Store data using the 
Amazon Athena (https://aws.amazon.com/athena/) service:

…

if __name__ == "__main__":

    …

    query_string = f'SELECT {",".join(columns)} FROM "{table}" 
WHERE is_deleted=false;'

    featurestore_df = wr.athena.read_sql_query(query_string, 

https://aws.amazon.com/athena/
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database=database, ctas_approach=False)

    …

    X = shuffle(featurestore_df).to_numpy()

    …

    training, validation, testing = np.split(X, 
[int(.8*len(X)), int(.95*len(X))])

    …

Since the Feature Store is essentially a metastore for the raw feature data, which is 
stored in Parquet files in S3, Athena can be used to perform interactive SQL queries 
directly against the data. As you can see from the highlighted code snippet, we use AWS 
Data Wrangler to select the relevant feature columns using the athena.read_sql_
query() method, and store the results as a DataFrame. The code continues to shuffle 
the data, removing any ordered indexing from the query, and splits the data into specific 
training, validation, and test datasets.

So, after running these previous steps as the ML team, we have officially contributed the 
required ML artifacts to the ACME web application, and therefore we can sign off on the 
interactions with the platform team. However, there is still one more group that the ML 
team needs to interact with—the frontend developers.

Adding ML to the frontend application
In Figure 10.4, we can see that the final interaction that the ML team has within the 
context of the MLSDLC is with the frontend team. During this engagement, these two 
teams determine which web UI changes need to be made in order for the web application 
user to make inferences against the production ML model—in essence, how users will 
inevitably use the Age Calculator. 

This requires the web developers to create an HTML form, whereby fishermen can enter 
the physical measurements of the abalone into the web UI and have the production-grade 
ML model predict the age. 

Note
The HTML form code and supporting JavaScript function have already 
been provided for you. You can review this code by referencing the 
predictionModel HTML code, and submitPredictForm() 
JavaScript code, in the index.html file.
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After completing the necessary code updates, verifying that they meet the functional 
requirements outlined by the application owner, and committing these into the 
application source code repository, the ML team can sign off on its contribution to the 
ACME web application.

If our example application were based solely on an SDLC process, we technically have 
all the artifacts necessary to update the skeleton CDK pipeline and deploy the web 
application using the CI/CD process. However, since we are creating an ML-based SDLC, 
there is one final component that we need to incorporate into the overall automation 
process. Let's explore what this is, in the next section.

Creating continuous training artifacts
In Chapter 8, Automating the Machine Learning Process using Apache Airflow, you were 
introduced to a fundamental requirement for any ML automation initiative— that is, 
the ability to automatically re-train an ML model with new data. In the same chapter, we 
also demonstrated this requirement by showing how data engineers can use the MWAA 
service to orchestrate a data-centric workflow to train the Age Calculator model on 
updated survey data. 

Even though we are focusing on the MLSDLC process in this chapter, we still have the 
business requirement to incorporate new survey data into the ACME web application 
example. So, how do we address this business requirement within the context of the current 
CI/CD pipeline?

The answer to this question is relatively simple. Since we are using a CI/CD pipeline to 
automate the delivery of our web application (along with a production-grade ML model), 
we can simply apply what we've already learned, and tack on the requirement to re-train 
the ML model after it has been deployed into production. This is essentially the premise 
behind continuous training (CT), whereby we add the ability to restart the CI/CD 
process (once we have new data) to create an automated CI/CD/CT methodology. 
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Since the data engineering team was responsible for delivering the data-centric workflow 
example in Chapter 8, Automating the Machine Learning Process using Apache Airflow,  
we can further extend their role within the MLSDLC example to provide CT artifacts.  
The following diagram illustrates the overall role that the data team plays within the 
MLSDLC process:

Figure 10.6 – The data team's role with the MLSDLC process

Now that we have started to get a picture of the overall role of the data team, let's dive into 
the artifacts they contribute to the process.

Building data workflow artifacts
Following the same procedures as the ML team, the data team contributes to the ACME 
web application by providing the necessary MWAA infrastructure components that get 
executed as part of the CDK pipeline. Let's walk through the process of building these 
artifacts, from the perspective of the data engineers, as follows:

1. As a data engineer, open the Cloud9 IDE workspace, and using the terminal 
window, copy the pre-built stack construct from the book's GitHub repository, by 
running the following command:

$ cd ~/environment/acme-web-application/

$ cp ~/environment/src/Chapter10/Files/cdk/data_workflow_
stack.py acme_web_application/stacks/
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2. Using the left-hand navigation panel, double-click on data_workflow_stack.
py for review.

Once the data_workflow_stack.py file is open, we can review the important 
infrastructure resources created by the stack constructs.

As you can see, after importing the required CDK libraries, we instantiate the 
DataWorkflowStack() class as a cdk.Stack construct. The first thing we do is 
register the data_bucket, data_bucket_param, and feature group SSM parameter 
(group_name_param) variables. We do this so that we can assign the relevant access 
permissions to airflow_role.

After defining airflow_role and the appropriate airflow_policy_document 
variable (https://docs.aws.amazon.com/mwaa/latest/userguide/mwaa-
create-role.html), we build out the Virtual Private Cloud (VPC) since MWAA 
requires a VPC, plus various networking components to support an environment.

Note
You will recall from Chapter 8, Automating the Machine Learning Process using 
Apache Airflow, that we created an MWAA VPC stack using the provided 
CloudFormation template. In this example, we are codifying the same network 
environment using the CDK.

Next, we instantiate the MWAA environment as the airflow_environment variable 
and create an S3 deployment construct to upload the Airflow DAG artifacts to S3.

Finally, we create a Lambda function called releaseChange to call the CodePipeline 
service and start a pipeline execution.

Now that the CT resources have been defined as a CDK construct, the next task for the 
data team to complete is to build the various artifacts that the construct references—
namely, the releaseChange Lambda code and the Airflow DAG. The following steps 
will show you how to do this:

1. Using the terminal windows of the Cloud9 IDE, run the following command to 
copy the pre-built releaseChange Lambda code artifacts:

$ cd ~/environment/

$ cp -R ~/environment/src/Chapter10/Files/lambda/
releaseChange acme-web-application/lambda/
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Note
You can review the index.py file, in the acme-web-application/
lambda/releaseChange folder, to see how the Lambda function  
uses the start_pipeline_execution() API call to trigger a 
CodePipeline execution.

2. Using the left-hand navigation panel, of the Cloud9 workspace, right-click on the 
acme-web-application folder and select the New Folder option.

3. Create a folder called airflow. 
4. Right-click on the newly created airflow folder and select the New File option.
5. Create a file called requirements.txt and double-click on it for editing.
6. Add the following code to the requirements.txt file:

sagemaker==2.49.1

s3fs<=0.4

boto3>=1.17.4

numpy

pandas

Note
The only reason we specifically reference version 2.49.1 of the SageMaker 
Python SDK is to ensure uniformity across all examples within the book.

7. Save and close the requirements.txt file.
8. Right-click on the airflow folder and select the New Folder option.
9. Create a folder called dags. 
10. Right-click on the newly created dags folder and select the New File option.
11. Create a file called continuous_training_pipeline.py and double-click on 

the file for editing.
12. Add the following code to import the required Python libraries, in order to access 

the Feature Store:

import time

import json

import sagemaker

import boto3

import numpy as np
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import pandas as pd

from time import sleep

from datetime import timedelta

from sagemaker.feature_store.feature_group import 
FeatureGroup

13. Next, add the required Apache Airflow libraries to construct the DAG, as follows:

import airflow

from airflow import DAG

from airflow.operators.python_operator import 
PythonOperator

from airflow.providers.amazon.aws.hooks.lambda_function 
import AwsLambdaHook

from airflow.providers.amazon.aws.sensors.s3_prefix 
import S3PrefixSensor

14. Now, add the following code to create global variables to reference the S3 data_
bucket, the releaseChange Lambda Function, and the feature group name 
(fg_name) parameters from SSM:

sagemaker_session = sagemaker.Session()

region_name = sagemaker_session.boto_region_name

data_bucket = f"""{boto3.client("ssm", region_
name=region_name).get_parameter(Name="DataBucket")
["Parameter"]["Value"]}"""

data_prefix = "abalone_data"

lambda_function = f"""{boto3.
client("ssm", region_name=region_name).get_
parameter(Name="ReleaseChangeLambda")["Parameter"]
["Value"]}"""

fg_name = f"""{boto3.client("ssm", region_name=region_
name).get_parameter(Name="FeatureGroup")["Parameter"]
["Value"]}"""

15. Now, add the following code to initialize the Airflow DAG default configuration:

default_args = {

    "owner": "airflow",

    "depends_on_past": False,

    "start_date": airflow.utils.dates.days_ago(1),
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    "retries": 0,

    "retry_delay": timedelta(minutes=2)

}

16. Next, we define code that gets executed within each step of the Airflow DAG, 
as Python functions. The first function (called start_pipeline) calls the 
releaseChange Lambda function to trigger an execution of the CI/CD/CT 
pipeline. Define this function with the following code:

def start_pipeline():

    hook = AwsLambdaHook(

        function_name=lambda_function,

        aws_conn_id="aws_default",

        invocation_type="RequestResponse",

        log_type="Tail",

        qualifier="$LATEST",

        config=None

    )

    request = hook.invoke_lambda(payload="null")

    response = json.loads(request["Payload"].read().
decode())

    print(f"Response: {response}")

17. The next function (called update_feature_group) takes the newly added 
abalone survey data, encodes the sex feature as numerical data, creates a time_
stamp variable, and ingests this new data into the Feature Store. The code is 
illustrated in the following snippet:

def update_feature_group():

    fg = FeatureGroup(name=fg_name, sagemaker_
session=sagemaker_session)

    column_names = ["sex", "length", "diameter", 
"height", "whole_weight", "shucked_weight", "viscera_
weight", "shell_weight", "rings"]

    abalone_data = pd.read_csv(f"s3://{data_bucket}/
{data_prefix}/abalone.new", names=column_names)

    data = abalone_data[["rings", "sex", "length", 
"diameter", "height", "whole_weight", "shucked_weight", 
"viscera_weight", "shell_weight"]]

    processed_data = pd.get_dummies(data)
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    time_stamp = int(round(time.time()))

    processed_data["TimeStamp"] = pd.Series([time_stamp] 
* len(processed_data), dtype="float64")

    fg.ingest(data_frame=processed_data, max_workers=5, 
wait=True)

    sleep(300)

Note
The update_feature_store function essentially performs the same 
tasks as the code created by the ML engineers in the SageMaker Feature 
Store Example.ipynb notebook, except the previous code updates the 
existing feature group with the newer abalone survey data, as opposed to the 
original data that was downloaded from the UCI Machine Learning Repository.

18. Now that task execution functions have been defined, we can create a DAG 
workflow. The following code initializes a DAG called acme-data-workflow 
with the default arguments:

with DAG(

    dag_id=f"acme-data-workflow",

    default_args=default_args,

    schedule_interval="@daily",

    concurrency=1,

    max_active_runs=1,

) as dag:

19. The first step with the DAG uses the S3PrefixSensor() provider class to watch 
the S3 data bucket for any new data. The code is illustrated in the following snippet:

    s3_trigger = S3PrefixSensor(  

        task_id="s3_trigger",

        bucket_name=data_bucket,

        prefix=data_prefix,

        dag=dag

    )
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20. Once new survey data is uploaded to S3, Airflow executes the second step of the 
DAG by executing the update_feature_group function, using the Airflow 
PythonOperator() provider. The code is illustrated in the following snippet:

    update_fg_task = PythonOperator(

        task_id="update_fg",

        python_callable=update_feature_group,

        dag=dag

    )

21. The final step of the workflow is to trigger a release change of the CI/CD/CT 
pipeline by calling the releaseChange Lambda function to start a CodePipeline 
execution. The Airflow step accomplishes this task by calling the start_
pipeline function, using the PythonOperator() provider. The code is 
illustrated in the following snippet:

    trigger_release_task = PythonOperator(

        task_id="trigger_release_change",

        python_callable=start_pipeline,

        dag=dag

    )

22. Now that the DAG steps have been defined, the last part of the code chains them 
together to finalize the DAG, as follows:

    s3_trigger >> update_fg_task >> trigger_release_task

23. Save and close the continuous_training_pipeline.py file.
24. Run the following commands to commit the data team's contribution to the ACME 

web application repository:

$ cd ~/environment/acme-web-application

$ git add -A

$ git commit -m "Initial commit of CT artifacts"

$ git push

By completing the preceding steps, verifying that they meet the functional requirements as 
outlined by the application owner and committing these into the application source code 
repository, the data team can sign off on its contribution to the ACME web application.
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At this point in the example, all the pertinent contributions from the cross-functional 
team have been developed, and the ACME web application is almost ready for 
deployment. However, there is one more team that needs to weigh in before the solution 
can be deployed. Let's explore this team's role in the next section.

Understanding the security lens
Securing the solution is a critically important task within the MLSDLC. While the 
majority of common MLSDLC implementations typically deal with security issues as and 
when they arise, it is a good practice to proactively assess the overall security posture of 
the final application before it's deployed into production. 

So, instead of performing a full security audit on the ACME web application, this section 
will highlight some of the best practices that the security team should follow, by showing 
how they interact with other members of the cross-functional team. The following 
diagram shows the overall role that the security team plays within the MLSDLC process:

Figure 10.7 – The security team's role within the MLSDLC process

As Figure 10.7 shows, the first thing the security team needs to do is review how data is 
used, by working with the data team.
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Securing the data
The following guidelines should be followed when working with the data team to ensure 
that all data is secure:

• Any data, whether it's stored in a database or on a filesystem (on-premises or in the 
cloud), should be encrypted.

• Any data read from or written to these data stores should be encrypted.

• Any applications or people that access the data should be authorized to do so  
using the appropriate access controls. These access controls should include  
logging capabilities to ensure that authorized and unauthorized access can be  
traced and audited.

• No customer personally identifiable information (PII) with these data stores 
should be accessible by the data team or the ML team.

Note
For more information on these suggestions, and more, review the Data 
Protection section of the AWS Best Practices for Security, Identity, & Compliance 
web page (https://aws.amazon.com/architecture/
security-identity-compliance).

The second thing the security team needs to do is review the code by working with the 
data team. 

Securing the code
The following guidelines should be adhered to when reviewing the code artifacts:

• All private code should be in a secure source code repository, with the appropriate 
access controls in place to govern access to the code. For the ACME web application 
example, we use CodeCommit, which provides granular access controls to the 
repository and branch levels, while also governing access to various tasks that can 
be performed against the repository.

• There should be no application or user credentials, nor any passwords, in any of 
the code. These secrets should be stored in a separate store, such as AWS Secrets 
Manager (https://aws.amazon.com/secrets-manager/), where access 
can be controlled, logged, and audited. 

https://aws.amazon.com/architecture/security-identity-compliance
https://aws.amazon.com/architecture/security-identity-compliance
https://aws.amazon.com/secrets-manager/
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In the case of the ACME web application example, securing the code is further 
compounded by the fact that the code creates AWS resources. Therefore, it is 
recommended that the security team also includes a member of the platform team, to 
create a security-operations (SecOps) team. This way, securing the code can extend  
to securing the provisioned AWS resources. For example, the CT artifacts create an 
MWAA infrastructure using a VPC. The SecOps team should review the VPC to ensure 
the following:

• All network traffic in and out of the VPC, as well as within the VPC, is logged  
and encrypted.

• All network ports are secured, using network access control lists (ACLs) and 
security groups.

• Any IAM roles created should, where possible, grant only the permissions required 
to perform the task required by the role. 

Last, but not least, the security team must work with the website content developers to 
secure their respective artifacts.

Securing the website
As Figure 10.7 highlights, the last group that the security team interacts with is the 
frontend team. Here are some suggestions for securing the website:

• All website content should only be accessible via a secure web server —in other 
words, the static content should be accessible via the appropriate URL and not 
directly accessible, say, from the S3 bucket.

• All traffic to and from the website should be encrypted with the HyperText 
Transfer Protocol Secure (HTTPS) protocol, using the appropriate Secure Sockets 
Layer (SSL) or Transport Layer Security (TLS) certificates.

• It is also recommended that the security team includes compliance  
resources to ensure that all content complies with regional or international 
accessibility standards.

• All public referenceable content or open source content must be documented and 
include the applicable license.
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These preceding suggestions only cover a few of the focus areas for the security team as 
it pertains to the ACME web application, but once the security team concludes its review 
of the application artifacts and signs off, we are almost ready to deploy the ACME web 
application into production. All that's left to do is integrate every team's artifacts into 
the CDK pipeline. Once this task is completed by the platform team, the pipeline will be 
complete, and the application can be deployed into production. This will be the focus of 
the next chapter.

Summary
In this chapter, you were introduced to the concept of the MLSDLC, as a process that can  
be used to automate an E2E ML-based application. We also reviewed the three critical 
factors that influence the success of the MLSDLC process—namely, people, technologies, 
and processes.

By focusing on the people success factor, you also saw how a cross-functional team  
works together during the planning and design phases of the MLSDLC, each providing 
codified technology artifacts that meet the business objectives and shape the overall  
design of the solution.

However, we are not done yet! In the next chapter, we'll continue from where we've left off, 
with the platform team piecing the various artifacts into an E2E CI/CD/CT pipeline, thus 
automating the MLSDLC process.
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If you review some of the Architecture Best Practices for Machine Learning content, namely 
the Build a Secure Enterprise Machine Learning Platform on AWS whitepaper, and even the 
SageMaker documentation on MLOps, you will notice that among the various challenges 
of automating an application, they all call out the need to have a cross-functional team.

So, why is a cross-functional, agile team so important for automated ML on AWS?
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AWS provides numerous ML-related technologies that often overlap in terms of their 
features to provide their customers with choice and flexibility. Furthermore, the 
industry provides many tried and tested process guidelines, such as CI/CD, to automate 
this process. However, neither AWS nor the industry can influence the organizational 
structure or application development culture of a company. Any changes need to happen 
within, and done by, the organization. 

In Chapter 10, An Introduction to the Machine Learning Software Development Life Cycle 
(MLSDLC), we focused on how a cross-functional team, made up of data scientists, 
ML engineers, and platform, application, data, and security experts all contribute to 
successfully implementing an automated MLSDLC process. By using a practical example 
of the ACME web application, you learned how these various personas interacted with 
each other, as well as why their domain expertise and artifact contributions are so 
important to the success of the project.

In this chapter, we are going to focus on automating the MLSDLC process to learn how 
the various artifacts we created in Chapter 10, An Introduction to the Machine Learning 
Software Development Life Cycle (MLSDLC), map to each stage of the process.

To accomplish this, we will cover the following topics:

• Codifying the continuous integration stage

• Managing the continuous deployment stage

• Managing continuous training

By the end of this chapter, you will have completed an automated, end-to-end MLSDLC 
process that deploys the ACME website, along with the Age Calculator model, to 
production. This will provide you with the necessary framework to continually automate 
the process whenever any code changes are made or any new data is added.

Technical requirements
For this chapter, you will need the following:

• A web browser. (For the best experience, it is recommended that you use either 
Chrome or Firefox.)

• Access to the AWS account that you've been using throughout this book.

• Access to the Cloud9 development environment you've been using throughout  
this book. 
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• A reference to the usage limits of the AWS Free Tier to avoid unnecessary costs.

• The source code examples for this chapter, which are provided in this book's GitHub 
repository (https://github.com/PacktPublishing/Automated-
Machine-Learning-on-AWS/tree/main/Chapter11).

Codifying the continuous integration stage
In this section, we are going to pick up where we left off in Chapter 10, An Introduction 
to the Machine Learning Software Development Life Cycle (MLSDLC). We concluded the 
previous chapter with the various teams committing their artifacts to the source code 
repository. So, before a security review can take place, the team that plays the central role 
of integrating these artifacts into the overall solution, known as the Platform Team, takes 
the reins. At a high level, the following diagram shows how central a role the Platform 
Team plays in our scenario:

Figure 11.1 – The Platform Team's role within the MLSDLC process
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As you can see, since the Platform Team sits in the middle of the cross-functional team, 
they are responsible for gluing all the solution components together. Once all the pieces 
have been glued together, the Platform Team is then responsible for verifying that these 
components function well together, as per the business use case. For example, the 
Platform Team would verify that a web application user can enter Abalone attribute data 
into the web UI and have this data sent as inference request data to the ML model, where 
the ML model returns a valid response to the user. 

So, how does the Platform Team integrate the various pieces together? More importantly, 
how does the Platform Team do this in a continuous and automated fashion?

The best way to answer these questions is to practically showcase the typical tasks that are 
performed by the Platform Team as they build their integration artifacts.

Building the integration artifacts
To test whether all the pieces fit together, the Platform Team creates a mock-up of the 
production solution in a test or Quality Assurance (QA) environment. They then 
perform functionality tests, also called system tests, on the solution to ensure that the 
entire system works the way it's supposed to. Furthermore, to automate this process, the 
Platform Team codifies the solution as a CDK construct.

To build out this construct as the Platform Team, we are going to continue using the AWS 
Cloud9 IDE we used in Chapter 10, An Introduction to the Machine Learning Software 
Development Life Cycle (MLSDLC). Follow these steps:

1. Log into the same AWS account you've been using throughout this book and open 
the AWS Cloud9 console (https://console.aws.amazon.com/cloud9).

2. In the Your environments section, click the Open IDE button for the MLOps-IDE 
development environment.

3. Using the Terminal window within the Cloud9 workspace, run the following 
commands to copy the pre-built stack construct from this book's GitHub repository 
into the stack.py folder:

$ cd ~/environment/acme-web-application

$ cp ~/environment/src/Chapter11/Files/cdk/test_
application_stack.py acme_web_application/stacks/

4. Using the left-hand navigation panel, double-click on the test_application_
stack.py file to start reviewing it.
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5. Now that the test_applciation_stack.py file is open, we can review the 
most important AWS resources that have been created by the stack construct. 
Besides loading the necessary CDK Python libraries and instantiating the 
TestApplicationStack() class, the first variable we must declare is 
endpoint_name. This is the name we will give to the SageMaker Hosted 
Endpoint, which is hosting our trained model. 

6. Next, we must define an IAM role called sagemaker_test_role. This role will 
be used by SageMaker to access the Model Registry, where the production-grade 
model is stored. 

7. The next variable we must define is the model itself. Here, we must instantiate the 
SageMaker model using the CfnModel() class of the SageMaker CDK module. 
We must also define an AwsCustomResource() to make an API call to the SSM 
service and retrieve the parameter that points to the location of the trained model 
within the Model Registry. 

8. Now that we have defined the model, we need to allocate the compute resources 
that are required to host the model. This is done by instantiating the endpoint_
config variable using the CfnEndpointConfig() class. Since this is for the test 
environment, we don't need to provide scalable compute resources – we just need to 
provide the bare minimum compute instances that are necessary to test the model. 
This is why we specified an ml.t2.large instance type for the test environment.

9. With both model and endpoint_config in place, we can instantiate endpoint 
using the CfnEndpoint() class, thus completing the model deployment part of 
the test environment.

10. The next component of the test environment is to create the back-service for the 
website's Contact form and the Age Calculator form. The Platform Team provides 
this backend functionality as a RESTful API, using the AWS API gateway service, 
by declaring the api variable as an HttpApi() gateway class. The team also 
distributes the static HTML components as part of a Content Delivery Network 
(CDN) using the CloudFrontWebDistribution() class. 

Note
Since the CloudFront distribution is only used to test the various artifact 
integrations, we specify the distribution price class as PRICE_CLASS_100. 
This means that the static website content will only be distributed to edges in 
North America, South Africa, and the Middle East. By not using the full global 
distribution capabilities of CloudFront, we can minimize costs for testing. 
To learn more about CloudFront distribution classes and edge locations, you 
can view the pricing documentation (https://aws.amazon.com/
cloudfront/pricing/).

https://aws.amazon.com/cloudfront/pricing/
https://aws.amazon.com/cloudfront/pricing/
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11. Once the website's content has been uploaded to S3 and distributed through 
CloudFront, we can create routes for the Contact form and the Age Calculator form 
that will point to a Lambda function to process these requests. The formHandler 
Lambda takes the website API requests and handles them based on the requests 
path. For example, if the formHandler Lambda receives an API POST request 
from the /api/predict path, it will send the request payload to the SageMaker 
hosted model for inference. Then, it will take the inference response from the 
hosted model and send it back to the website.

12. Lastly, we must create two outputs using the CDK's CfnOutput() module. The 
first output is called self.cdn_output and contains cdn.domain_name as its 
value. This will allow us to capture the website URL.

13. The second output is called self.api_output and provides api.url as a value, 
essentially providing the URL for the form API.

We will be using these outputs in the next section to build the test artifacts.

Building the test artifacts
To test the application, we need to put ourselves in the shoes of the application user 
and learn how they may interact with the functionality that's provided within the web 
application. Since our example website only consists of an HTML page, a Contact form, 
and the Age Calculator prediction form, to test the overall functionality of the system, we 
must confirm that these components do what they are supposed to.

Follow these steps to create the necessary tests:

1. Using the Cloud9 workspace's Terminal window, run the following commands to 
copy the pre-built testing scripts into the acme-web-application folder:

$ cd ~/environment/acme-web-application

$ rm –rf tests

$ cp -R ~/environment/src/Chapter11/Files/tests .

2. Using the left-hand navigation panel of the Cloud9 environment, expand the 
tests folder, and then double-click on the system_test.py file to review the 
test code.

If you look at the test code, you will see that we use the Python requests library to 
simulate users making website requests. The first test focuses on the website itself by 
verifying that we get the appropriate status code back from the web server and that the 
delivered content is HTML code. In essence, this test simulates that the website is running 
and that it's accessible.
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The second test focuses on the backend RESTful API. In this test, we send sample Abalone 
attribute data to the backend API, which, in turn, sends this to the hosted production 
model for inference. Then, we verify that we received the appropriate status code in 
return, along with an HTML response for the predicted Abalone age. In essence, this test 
simulates the user experience for the Age Calculator.

The last test simulates an incorrect call to the backend API to ensure that the API 
responds with the correct error messages. This test is not always necessary, but testing that 
the application responds with the correct errors ensures that when errors occur, they can 
be debugged correctly since we know that the application is reporting any errors correctly.

Now that we have scripted some basic functionality tests for the system, we can build out 
the production environment.

Building the production artifacts
Now that we've done the necessary, we have a fair idea that the tested system artifacts 
will work in production. So, to create the production environment, we must copy the 
application constructs we used in the test or QA environment. Follow these steps:

1. Using the Cloud9 workspace's Terminal window, run the following command to 
copy the pre-built production artifacts from this book's GitHub repository:

$ cd ~/environment/acme-web-application

$ cp ~/environment/src/Chapter11/Files/cdk/production_
application_stack.py acme_web_application/stacks/

2. Using the left-hand navigation panel, double-click on the production_
application_stack.py file to review it.

If you compare the production application construct to the test application construct, you 
will notice that there are a few additional components. First, we created a new S3 bucket 
to store all the production application logs. This bucket will store all the logs for website 
access, as well as record the inference logs from the production model. You may recall 
from Chapter 10, An Introduction to the Machine Learning Software Development Life Cycle 
(MLSDLC), when we discussed security, that it's a good practice to log all system activity. 
From the perspective of the production ML model, we log the inference request, as well as 
the inference response data, to gauge how well the model is performing.
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When defining endpoint_config, you will see that, for the production environment, 
we use right-size production compute resources to host the model by using ml.c5.
large instances. We also specify a minimum of 2 instances so that we can leverage the 
high availability (multiple AWS Availability Zones) features of the SageMaker Hosted 
Model. Additionally, we turn on inference via data_capture_config to log all 
inference request data and all response inference responses to the logging bucket.

Another new component we've added to the production construct is the 
createBaseline Lambda function. Since the production construct is deploying the 
production-grade ML model, we want to capture the statistical analysis of its expected 
performance. This way, by referencing the captured inference responses, we can 
monitor the model for quality drift. To this end, we defined the baseline_creator 
variable for the Lambda function, and then triggered the Lambda execution as a 
CustomResource(). 

Finally, we added endpoint auto-scaling. This is the ability for the hosted model to be 
able to scale out and handle any increase in inference requests. We did this by defining the 
scaling_target variable and providing the policy,  which specifies how the endpoint 
scales. For our production environment, we are going to start scaling when each ml.c5.
large instance receives more than 750 requests per second over 15 minutes. 

Within both the test and production constructs, we've instantiated the formHandler 
and createBaseline Lambda function. Both these variables refer to the code artifacts 
that comprise these functions. So, before we can close out the test and production CDK 
constructs, we need to update the source code respiratory with the pre-built Lambda 
artifacts to ensure that the constructs don't fail when we deploy them. Follow these steps 
to do so:

1. Using the Cloud9 workspace's Terminal window, run the following commands to 
copy the formHandler and createBaseline Lambda code into the cloned 
repository:

$ cd ~/environment/acme-web-application

$ cp -R ~/environment/src/Chapter11/Files/lambda/ .

With that, we have created all the necessary artifacts for the integration phase of the 
pipeline. Now, we must create the automation components for continuous integration by 
adding these components to the CDK Pipeline. 
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Automating the continuous integration process
In Chapter 10, An Introduction to the Machine Learning Software Development Life Cycle 
(MLSDLC), we created a skeleton CDK Pipeline. This is referred to as a skeleton pipeline 
as we simply defined the pipeline construct, without providing the body or stages of the 
pipeline. So, now that most of the stack constructs, Lambda function, scripts, tests, and 
static HTML artifacts have been added to the repository, we can put them all together to 
create an automated CI/CD pipeline body. Follow these steps:

1. In your Cloud9 Terminal windows, run the following commands to update the 
acme_pipeline_stack.py construct:

$ cd ~/environment/acme-web-application

$ cp ~/environment/src/Chapter11/Files/cdk/acme_pipeline_
stack.py acme_web_application/

2. From the left-hand navigation panel, double-click the acme_pipeline_stack.
py file for review.

If you compare the new acme_pipeline_stack.py file with the one we created in 
Chapter 10, An Introduction to the Machine Learning Software Development Life Cycle 
(MLSDLC), you will see that there are some significant changes. First, we have imported 
the cdk.Construct classes from all the CDK stacks in the stacks folder. We've also 
defined a cdk.Stage class for each of the import stack constructs. For example, if you 
refer to the following excerpt, you will see that we imported the MLWorkflowStack 
class from the ml_workflow_stack.py file, which can be found in the stacks folder:

…

from .stacks.ml_workflow_stack import MLWorkflowStack

…

Then, we instantiate a class of this stack, called MLWorklowStage(), as a CDK Pipeline 
stage construct. We also supply the various parameters that are required to instantiate the 
stack as a pipeline stage and define the specific stack outputs (in this case, the ARN of the 
state machine):

…

class MLWorkflowStage(cdk.Stage):

    def __init__(self, scope: cdk.Construct, id: str, *, group_
name: str, threshold: float, data_bucket_name: str, feature_
group_name: str, **kwargs):

        super().__init__(scope, id, **kwargs)

        ml_workflow_stack = MLWorkflowStack(



358     Continuous Integration, Deployment, and Training for the MLSDLC

            self,

            "MLWorkflowStack",

            group_name=group_name,

            threshold=threshold,

            data_bucket_name=data_bucket_name,

            feature_group_name=feature_group_name

        )

        self.sfn_arn = ml_workflow_stack.sfn_output

…

By instantiating all the CDK stacks as individual stage constructs, we are essentially 
defining each construct as a sequential part of the pipeline body. For example, if you 
scroll down to where we've defined the PipelineStack() class, you will see that 
the MLWorkflow() stage construct has been defined by the ml_workflow_stage 
variable. The ml_workflow_stage variable is, in turn, added to the pipeline body 
using the add_stage() method of the CDK Pipelines module.

Note
For more details on the Stage() construct and how to incorporate 
it into CDK Pipelines, please refer to the following AWS blog on CDK 
Pipelines: https://aws.amazon.com/blogs/developer/
cdk-pipelines-continuous-delivery-for-aws-cdk-
applications/. Keep in mind that this blog is based on the preview 
version of the CDK Pipelines module. In July 2021, AWS released CDK 
Pipelines as generally available (GA). To review the differences between 
the preview and GA versions, you can refer to the API documentation 
(https://github.com/aws/aws-cdk/blob/master/
packages/%40aws-cdk/pipelines/ORIGINAL_API.md).

Additionally, you will see that when we add the ml_workflow_stage and test_
stage variables to the pipeline, we also define a post parameter. By using this 
parameter, we can define additional stage actions, or stage steps, that are executed after 
the stage construct has been deployed. In the case of the ml_workflow_stage variable, 
we instantiate an instance of the CodeBuildStep() class module to run a Python 
file called invoke.py. This script takes the ARN of the Step Functions state machine 
(deployed in the ml_workflow_stage construct) and starts executing the workflow. 
Alternately, in the case of test_stage, we instantiate the ShellStep() class module 
to run the system_test.py file, which tests the functionality of the application.

https://github.com/aws/aws-cdk/blob/master/packages/%40aws-cdk/pipelines/ORIGINAL_API.md
https://github.com/aws/aws-cdk/blob/master/packages/%40aws-cdk/pipelines/ORIGINAL_API.md
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Note
The reason we use CodeBuildStep() for ml_workflow_stage 
and ShellStep() for test_stage is so that we can use the role_
policy_statements parameter to supply the necessary IAM permissions 
to start and monitor the Step Functions state machine execution.

The last change you will see is that the pipeline's self_mutation parameter is now set 
to True. This means that we are going to enable the pipeline's capability to dynamically 
adapt (self-mutate) to any code changes. For example, if you open the CodePipeline 
management console (https://console.aws.amazon.com/codesuite/
codepipeline/) for your region and click on ACME -WebApp-Pipeline, you will see 
that the current structure of the pipeline only has two stages:

Figure 11.2 – Current structure of the CDK Pipeline
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As we've been committing artifact updates to the source code repository, these changes 
have been triggering a pipeline execution. However, since the self_mutation 
parameter is currently set to False, adding stack and stage code constructs hasn't 
modified the pipeline structure. 

Now, the Platform Team must finalize the CDK project to enable self-mutation. Follow 
these steps:

1. To finalize the CDK project, go to the Terminal windows in your Cloud9 workspace 
and run the following command to get the name of the SageMaker Feature Group:

$ aws sagemaker list-feature-groups --name-contains 
abalone

Note
You will recall that this Feature Group is the Feature Group we created in the 
Creating the SageMaker Feature Store section of Chapter 10, An Introduction to 
the Machine Learning Software Development Life Cycle (MLSDLC). 

2. Copy the value for the FeatureGroupName key from the output.
3. Using the left-hand navigation panel of the Cloud9 workspace, expand the acme-

web-application folder and double-click on the app.py file to start editing it.
4. Replace the PLACEHOLDER variable assignment with the output from the 

command you ran in Step 1, as shown in the following code snippet:

…

MODEL_GROUP = f"{MODEL.capitalize()}PackageGroup"

FEATURE_GROUP = "<Add the name of the SageMaker Feature 
Group>"

CODECOMMIT_REPOSITORY = "acme-web-application"

…

5. Save and close the app.py file.
6. Using the following commands in your Cloud9 Terminal windows, add the final 

pipeline artifact – the invoke.py file – and commit the changes to the repository:

$ cd ~/environment/acme-web-application/

$ cp ~/environment/src/Chapter11/Files/scripts/invoke.py 
scripts/

$ git add -A
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$ git commit -m "Finalized CDK application"

$ git push

7. Since we've updated the CDK application, run the following commands to redeploy 
the application:

$ cdk deploy

Congratulations! You have just codified an automated ML-based application. However, we 
are still not done. The next step is to monitor the automated process to confirm that what 
we've created gets deployed into production and meets the functional requirements of 
the business use case. We'll be focusing on this task in the next section as we manage the 
continuous deployment of the codified solution.

Managing the continuous deployment stage
So far, we have focused primarily on the people that are involved in planning, designing, 
and codifying the solution. However, you will recall from Chapter 10, An Introduction to 
the Machine Learning Software Development Life Cycle (MLSDLC), that outside of these 
people, two other factors influence the success of an MLSDLC implementation – the 
technology and the process. In this section, we are going to focus on the MLSDLC process 
itself. Since we have already codified the process using the self-mutating CDK Pipeline, all 
we need to do is manage the deployment to completion. To recap, let's review where we 
are in this process:

Figure 11.3 – The plan and design phases of the MLSDLC process
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Here, you can see that we have already completed the plan and design phases of the 
MLSDLC process. As a cross-functional team, we have reviewed the business objectives 
and requirements for the ACME web application. Using the CDK, the various teams have 
codified their contributions to the design of the application. Now that the design has been 
deployed, we can move on to the next phase of the automated MLSDLC process – the 
build phase.

Reviewing the build phase
To review the build process, open the CodePipeline (https://console.aws.
amazon.com/codesuite/codepipeline/pipelines/) management console 
for your current AWS region; you will see ACME -WebApp-Pipeline. Upon opening the 
pipeline, you will immediately see that the pipeline has self-mutated to incorporate the 
stages we've defined. Scrolling down the pipeline will reveal the Assets stage, as shown in 
the following screenshot:

Figure 11.4 – The Assets stage

https://console.aws.amazon.com/codesuite/codepipeline/pipelines/
https://console.aws.amazon.com/codesuite/codepipeline/pipelines/
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The Assets stage is the first part of the MLSDLC build phase, where the ML container 
image, the various Lambda function, and the static HTML web content are built. As you 
can see, we don't need to create a dedicated build stage to create these assets; the CDK 
Pipeline does this automatically. However, the Build process isn't completed once these 
pipeline assets have been created.

For the overall MLSDLC process to execute successfully, the build phase also  
requires a production-grade ML model. So, as shown in the following screenshot,  
scroll further down the pipeline to reveal the second part of the build process – the  
Build-MLWorkflow stage:

Figure 11.5 – The Build-MLWorkflow stage
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As you can see, three separate actions make up the Build-MLWorkflow stage. These are 
the Prepare, Deploy, and Execute actions. The Prepare action creates a CloudFormation 
changeset to review the AWS resources that are being deployed by the stack, thus 
guaranteeing that any proposed changes don't impact existing, critical AWS resources. 
This is essentially a built-in integrity or integration test for the proposed resources within 
the context of continuous integration, where existing stacks are being automatically 
updated with pipeline changes. Since this is the first time the ML workflow is being 
created, the Prepare stage proceeds to the Deploy stage, where the stack is deployed using 
AWS CloudFormation.

Once the stack has been created, the Execute-MLWorkflow action is triggered. It's at 
this stage that the invoke.py script is run. Recall that the invoke.py script creates 
an execution of the Step Functions state machine. This state machine, in turn, trains a 
production-grade ML model. 

Note
If you click on the Details link for the Execute-MLWorkflow action, you will 
be automatically redirected to the CodeBuild management console, whereby 
you can see the output from the invoke.py script within Build logs.

If you open the Step Functions console (https://console.aws.amazon.com/
states/home) and click on the state machine name that starts with MLWorkflow…, 
you will see the list of Executions. Clicking on this reveals the current state of  
the workflow. Once the workflow has been completed, the execution graph should  
look as follows:

https://console.aws.amazon.com/states/home
https://console.aws.amazon.com/states/home
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Figure 11.6 – State machine execution graph
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As you can see, this is the first time the workflow has been executed. If the model's 
performance is below the threshold, it is added as a model package to the SageMaker 
Model Registry. The following screenshot shows an example of the model version metrics 
within the registry:

Figure 11.7 – Model version metrics

As you can see, using the SageMaker Studio UI, the ML Team can track the lineage of 
the various models that have been produced by the workflow. Since we also enabled 
experiment tracking, the data processing, model training, and model evaluation trials  
are also available to the ML Team for assessment in the SageMaker Studio UI. The 
following screenshot shows an example of the training experiment that was produced  
by the workflow:
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Figure 11.8 – Training experiment details

Note
For more information on how to compare SageMaker experiments and 
trials using SageMaker Studio, please refer to the following SageMaker 
documentation: https://docs.aws.amazon.com/sagemaker/
latest/dg/experiments-view-compare.html.

https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-view-compare.html
https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-view-compare.html
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Since executing the ML workflow is the final action within the Build-MLWorkflow stage, 
we have completed the build phase of the MLSDLC process. At this stage, the pipeline 
automatically moves on to the test phase.

Reviewing the test phase
Once the various pipeline assets and the production-grade ML model have been built, we 
must move on to the test phase, as shown in the following diagram:

Figure 11.9 – The test phase of the MLSDLC process

During the test phase, our pipeline deploys a pseudo-production version of the solution 
into a test or QA environment. If we review this stage of the pipeline in the CodePipeline 
console, you will see that there are also three stage actions to this Test-Deployment stage. 
The following screenshot shows an example of the Test-Deployment stage: 
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Figure 11.10 – The Test-Deployment stage

As you can see, the Test-Deployment stage also has Prepare and Deploy stage actions. 
Since these actions are pre-built by the CDK Pipeline, they perform the same activities 
as the related stage actions within the Build-MLWorkflow stage, except that instead of 
deploying the ML workflow assets, a pseudo-production solution is deployed for system 
testing. Once the environment has been deployed through CloudFormation, the System-
Tests stage action runs the system_test.py file to perform these three system tests. 
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Tip
Once the System-Test stage action has been completed, you can delete the 
Test-Deployment-TestApplicationStack CloudFormation Stack via the 
CloudFormation console (https://console.aws.amazon.com/
cloudformation/home). We don't have any further requirements for 
these resources and we don't wish to incur any further AWS usage costs from 
them being idle.

As you may recall from the previous section, these three tests simulate the user experience 
with the solution by accessing the website and sending ML inference requests to the Age 
Calculator model. By clicking on the Details link for the System-Tests action, you will see 
the CodeBuild Build logs output from running the system tests.

Note
If the system test script should fail for whatever reason, the System-Test action 
and, consequently, the Test-Deployment stage will fail. Having any of these 
tests fail doesn't necessarily mean that the MLSDLC process will fail. The whole 
point of automating the MLSDLC process, especially automating the system 
tests, is to verify that once the solution is eventually deployed into production, 
we can be confident in its functionality. So, if the tests fail, we can provide 
debugging feedback to the supporting team, who can, in turn, resolve the issue 
and re-execute the pipeline.

Now that the Test-Deployment stage of the pipeline is complete and we have a tested 
solution, we are ready to deploy the solution into production. This is known as the deploy 
phase of the MLSDLC.

Reviewing the deploy and maintain phases
Once all the system tests have been run on the pseudo-production solution, we should be 
confident that the production version is ready for our users. As shown in the following 
diagram, we are ready to finally deploy the solution to production. Once deployed, we can 
manage and maintain it:

https://console.aws.amazon.com/cloudformation/home
https://console.aws.amazon.com/cloudformation/home
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Figure 11.11 – The deploy and maintain phases of the MLSDLC process

From the standpoint of the CDK Pipeline, the stage that's responsible for production 
deployments is the same as the test deployment stage in that this stage also has the 
Prepare and Deploy stage actions, but no system testing stage actions. The following 
screenshot shows an example of only these two actions being performed within the 
Production-Deployment stage:

Figure 11.12 – The Production-Deployment stage 
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While the pipeline stages may be similar, the solution that's being deployed as a 
CloudFormation stack is somewhat different. First, the production stack deploys optimal 
AWS resources that are better suited to a production environment. For example, the 
production stack uses optimized C5 compute resources to host the model and implements 
additional elasticity in that these compute resources can scale out, as well as scale back in, 
depending on user demand.

Moreover, since the Maintain phase of the MLSDLC is an operational activity, this 
means it can't be automated easily unless you apply some type of Artificial Intelligence 
Operations (AIOps) methodology. In this example, however, we do facilitate automated 
maintenance in the production stack. For example, you will recall from the previous 
section that when we codified the production_application_stack.py file, we 
enabled logging_config for the CloudFrontDistribution() class. This enables 
easier maintenance of the solution once it's deployed since we store all the web transaction 
logs in S3. This gives the operations teams the ability to see what's going in within the 
stack and use this information for troubleshooting and debugging purposes.

Apart from this, you will recall that, in the production_application_stack.
py file, we also created the createBaseline Lambda function and invoked it using 
the CustomResource CDK module. In the following code snippet, which has been 
taken from the Lambda function's index.py file, you can see that this function runs a 
SageMaker Processing Job to perform statistical analysis of the testing data. It does this 
using the sagemaker-model-monitor-analyze container, which is provided by 
AWS, to baseline the expected performance of the trained model:

...

image_map = {

    "us-east-1": "156813124566.dkr.ecr.us-east-1.amazonaws.com/
sagemaker-model-monitor-analyzer",

...

        logger.info(f'Creating Basline Suggestion Job: 
{request["ProcessingJobName"]}')

        try:

            response = sm.create_processing_job(**request)

            return {

                "PhysicalResourceId": 
response["ProcessingJobArn"],

                "Data": {

                    "ProcessingJobName": 
request["ProcessingJobName"],

                    "BaselineResultsUri": f"s3://{logs_bucket}/
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baselining/results"

                }

            }

...

By combining this statistical baseline analysis with the captured inference response data 
from the production model, the operations teams can detect if the model is drifting from 
its intended purpose. 

Furthermore, by facilitating both the data capture and baseline data, the operations team 
can automate the drift detection process by implementing SageMaker Model Monitor 
(https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.
html). Model Monitor will use these data sources to detect various kinds of model drift 
automatically, on a predefined schedule.

Note
We have not implemented the automated model monitoring capabilities with 
this example since multiple types of built-in drift detection capabilities are 
provided by the Model Monitor module. You can review the documentation to 
determine whether data quality (https://docs.aws.amazon.com/
sagemaker/latest/dg/model-monitor-data-quality.
html), model quality (https://docs.aws.amazon.com/
sagemaker/latest/dg/model-monitor-model-quality.
html), bias drift (https://docs.aws.amazon.com/sagemaker/
latest/dg/clarify-model-monitor-bias-drift.
html), or feature attribution drift (https://docs.aws.amazon.
com/sagemaker/latest/dg/clarify-model-monitor-
feature-attribution-drift.html) suits your production use case 
requirements. 

Once the Production-Deployment stage of the pipeline is complete, we will see that we 
closed the loop and completed the MLSDLC process, as shown in the following diagram:

Figure 11.13 – Completed MLSDLC process

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-bias-drift.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-bias-drift.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-bias-drift.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-feature-attribution-drift.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-feature-attribution-drift.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-feature-attribution-drift.html
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Let's look at what we've built by reviewing what our users may experience when using the 
ACME web application and the Age Calculator component.

Reviewing the application user experience
To review the production application, open the CloudFormation console (https://
console.aws.amazon.com/cloudformation/home) and click the radio button 
next to Production-Deployment-ProdApplicationStack to open the stack. Click on the 
Outputs tab to view the stack outputs, as shown in the following screenshot:

Figure 11.14 – CloudFormation stack outputs

As you can see, we have two stack outputs. The FormAPIURL output is the API 
gateway address that's used to process the Age Calculator inference requests, while 
the CloudFrontURL output points to the address of the website. Click on Value for 
CloudFrontURL to view the website. The following screenshot shows the ACME Fishing 
Logistics website:

https://console.aws.amazon.com/cloudformation/home
https://console.aws.amazon.com/cloudformation/home
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Figure 11.15 – ACME Fishing Logistics website
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Now, let's try the Age Calculator component to see how a fisherman would be able to see 
the predicted age of his Abalone catch. The following screenshot shows the Age Calculator 
form that appears when a fisherman clicks the TRY OUR AGE CALCULATOR button:

Figure 11.16 – Age Calculator form

As you can see, the Calculate Abalone Age form provides various sample dimensions  
of the Abalone. Enter these sample dimensions and click the Submit button to see what 
the ML model predicts. The following screenshot shows an example response from the 
trained model:
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Figure 11.17 – Age Prediction

As you can see, based on the sample dimensions provided, the model predicts that 
the Abalone has 10 rings. According to the UCI Machine Learning Repository for the 
Abalone dataset (https://archive.ics.uci.edu/ml/datasets/abalone), the 
value for the number of Rings, plus 1.5, gives us the age in years. So, a fisherman can see 
that the Abalone is 11.5 years old and thus determine whether the catch should be thrown 
back or kept.

Congratulations! We now have a working web application and a built-in ML model for 
our fisherman customers. We used an automated MLSDLC process to accomplish this 
business objective.

However, you will recall that an MLSDLC process differs from a typical SDLC process 
in that we are not only continuously automating the release of an ML-based application 
when the business case or source code changes, but also when the training data changes. 
Remember, an ML model is only as good as the data it's trained upon. So, how do we 
continuously automate the MLSDLC process when we have new data?

In the next section, we will answer this question by exploring the concept of continuous 
training (CT). 
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Managing continuous training
In Chapter 9, Building the ML Workflow Using Amazon Managed Workflow for Apache 
Airflow, we learned how Airflow can be used to create a data-centric ML process and train 
the Age Calculator model on new Abalone survey data. In Chapter 10, An Introduction to 
the Machine Learning Software Development Life Cycle (MLSDLC), we learned how the 
Data Team applied this technique to the ACME web application by codifying the acme-
data-workflow Airflow DAG. The following diagram shows a graphical representation of 
the Airflow DAG:

Figure 11.18 – Data Airflow DAG

As you can see, the Airflow DAG starts when new Abalone survey data is added to the S3 
bucket. The survey data is then preprocessed to engineer the relevant training features; 
these features are then ingested into the Feature Store. Once the new data is ingested into 
the Feature Store, a release change of the MLSDLC process is triggered to automate the 
process of releasing a new changeset of the solution. Essentially, this creates a continuous 
training process.

Moreover, at the beginning of this chapter, we saw how the Platform Team incorporated 
this concept of continuous training into the CI/CD methodology by extending the 
CDK Pipeline to provision the necessary AWS recourses that manage and execute the 
acme-data-workflow DAG. For instance, if you open ACME-WebApp-Pipeline in the 
CodePipeline console, you will see the Build-Data-Workflow stage, as shown in the 
following screenshot:
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Figure 11.19 – The Build-DataWorkflow stage

As you can see, the Build-DataWorkflow stage has both a Prepare and a Deploy  
stage action, whereby a CloudFormation changeset is prepared and then deployed.  
The result of this deployment is an MWAA environment inside a VPC, plus the DAG, 
and its supporting assets uploaded to S3. Since this is the last stage of the CDK Pipeline, 
we have finally created a CI/CD/CT pipeline to incorporate continuous training into the 
MLSDLC process.

However, before we see the end-to-end MLSDLC process in its entirety, we need to 
simulate adding new Abalone survey data. We'll do this in the next section.
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Creating new Abalone survey data
In Chapter 9, Building the ML Workflow Using Amazon Managed Workflow for Apache 
Airflow, we leveraged the CTGAN Python library to synthesize new Abalone data within 
a Jupyter Notebook. The following steps will walk you through reproducing the same 
process using SageMaker Studio and running the pre-built notebook in this book's 
GitHub repository (https://github.com/PacktPublishing/Automated-
Machine-Learning-on-AWS/tree/main/Chapter11/Notebook):

1. Open the SageMaker management console (https://console.aws.amazon.
com/sagemaker/home) and, in the left-hand panel, click the Studio link, under 
the SageMaker Domain section.

2. Once the SageMaker Domain dashboard opens, click the Launch app dropdown 
and select Studio from the list to open the Studio IDE.

3. Within the left-hand file panel, expand the Notebooks folder within the 
Chapter11 folder of the cloned src folder.

Note
This book's GitHub repository files should have already been cloned into 
the Studio environment for you to use. If not, please refer to the Creating a 
SageMaker Feature Store section of Chapter 10, An Introduction to the Machine 
Learning Software Development Life Cycle (MLSDLC).

4. Double-click on the Simulating New Abalone Survey Data.ipynb file to 
open the notebook.

5. From the Kernel menu, click the Restart Kernel and Run all Cell… option.
6. Once you've created the notebook, you can close the SageMaker Studio UI.

Now that we have simulated new Abalone survey data and uploaded the dataset to S3, we 
can review the continuous training process in action.

Reviewing the continuous training process
When the Data Team originally defined the Airflow DAG in the continuous_
training_pipeline.py file, they used the S3PrefixSensor() provider to 
constantly check the S3 bucket for new data. So, now that we have simulated new Abalone 
survey data, the Airflow DAG should start running.

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter11/Notebook
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter11/Notebook
https://console.aws.amazon.com/sagemaker/home
https://console.aws.amazon.com/sagemaker/home
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However, the DAG needs to be manually enabled for it to start running. To see the 
continuous training process in action and enable the DAG, follow these steps:

1. Open the MWAA console (https://console.aws.amazon.com/mwaa/
home) and click the Open Airflow UI link for acme-airflow-environment. 

2. Once the Airflow UI opens, toggle the Pause/Unpause DAG button next to the 
acme-data-workflow DAG to enable it. The DAG should automatically start.

3. Click on the DAG link to view the run. Once the DAG dashboard opens, click the 
Graph View button to see it represented as shown in Figure 11.18.

4. You can follow the DAG's progress and see the logs for each task by clicking on a 
specific task and clicking on the Log button.

5. Once each task has been run, the completed graph should look as follows:

Figure 11.20 – Completed data workflow graph

As a result of the DAG run completing, you can reopen the CodePipeline console to 
see the ACME-WebApp-Pipeline restart. With that, you have just created a CI/CD/CT 
pipeline that continuously builds and deploys an ML-based application by automating the 
MLSDLC process on AWS. 

Cleanup
To avoid unnecessary AWS usage costs, you can delete the resources that have been 
created by the CDK Pipeline by opening the CloudFormation console and then deleting 
the various stacks in the reverse order they were created. For example, select Build-
DataWorkflow-DataWorkflowStack and then click the Delete button. Once this stack 
has been deleted, do the same for Production-Deployment-ProdApplicationStack. 

Note
Depending on the stack that's being deleted, you may need to manually empty 
the S3 bucket for a particular stack before the stack can be deleted.

Continue doing this by going down the list of CloudFormation stacks until the acme-web-
application stack has been deleted. That concludes this chapter.
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Summary
In the final chapter of this book, you were introduced to the concept of MLSDLC and how 
this methodology can be used to create ML-based applications. Throughout the last two 
chapters, we have focused on two of the three primary success factors that are required to 
create an ML-based application – the people and the process. 

By focusing on how a cross-functional team and an agile team cooperate, we learned 
how each team contributes their domain expertise to address both the business plan 
requirements and the solution design requirements of the MLSDLC.

The practical outcome of this exercise was a set of codified CDK stack constructs that, 
when glued together by the Platform Team, created a CI/CD/CT pipeline. This CI/CD/
CT pipeline functioned and is the mechanism behind achieving MLSDLC methodology 
automation. For example, with each stage of the pipeline corresponding to a particular 
phase of the MLSDLC methodology, we saw how executing the CI/CD/CT pipeline 
inevitably automated the MLSDLC process to not only deploy the application into 
production but establish a perpetual life cycle of constant automation.

While these chapters did not specifically pay attention to the technology aspect of a 
successful MLSDLC methodology, it was evident how AWS technologies enabled the 
MLSDLC process. 

So, by adding these technologies into the mix, in this chapter, we've successfully 
demonstrated an end-to-end example of automated ML on AWS.

Congratulations! You've made it to the end of this book. Now, you should have enough 
code references to insert some ML models and automate them on AWS.

Further reading
The following are some references to AWS content that highlight the importance of a 
cross-functional team as the key to successful ML automation on AWS:

• Architecture Best Practices for Machine Learning: https://aws.amazon.com/
architecture/machine-learning/

• Build a Secure Enterprise Machine Learning Platform on AWS: https://docs.
aws.amazon.com/whitepapers/latest/build-secure-enterprise-
ml-platform/build-secure-enterprise-ml-platform.html

• SageMaker MLOps Documentation: https://docs.aws.amazon.com/
sagemaker/latest/dg/sagemaker-projects-why.html

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects-why.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects-why.html
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