

Automated Machine
Learning on AWS

Fast-track the development of your production-ready
machine learning applications the AWS way

Trenton Potgieter

BIRMINGHAM—MUMBAI

Automated Machine Learning on AWS
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Publishing Product Manager: Devika Battike
Senior Editor: Nathanya Dias
Content Development Editor: Nazia Shaikh
Technical Editor: Devanshi Ayare
Copy Editor: Safis Editing
Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing
Indexer: Sejal Dsilva
Production Designer: Roshan Kawale
Marketing Coordinator: Abeer Dawe, Shifa Ansari

First published: April 2022
Production reference: 1100322

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-182-8

www.packt.com

http://www.packt.com

Foreword
Virtually everyone struggles with operationalizing machine learning models. Training
your first model can sometimes seem like an insurmountable challenge, until you realize
that you also need an end-to-end pipeline to supply new data for inference and retraining
the model when its performance inevitably degrades. Although AWS offers the broadest
and deepest set of machine learning services, figuring out where to get started and how
to tie all those options together normally requires months of painful experimentation.
This book cuts through the uncertainty based on Trenton's first-hand experiences
working with both the most sophisticated technology companies in the world as well as
organizations new to machine learning.

I've worked with hundreds of companies around the world trying to get value from
artificial intelligence and machine learning. The problem is that machine learning can
mean very different things even within the same company, much less across different
organizations or industries. Some teams are just starting to invest in AI and machine
learning and want to build their first model, while other teams in the same organization
want to scale up sophisticated experimentation and monitoring frameworks to support
thousands of models in production. Most companies hire data scientists or machine
learning engineers with skill mismatches in the hope that they'll figure it out. Trenton
has the rare advantage of seeing how large organizations have successfully scaled up their
modeling pipelines as well as where they've faltered. Even more importantly, he has hard-
won experience helping them solve those challenges.

The machine learning space evolves so quickly that focusing on any single algorithm,
package, or platform can lead to outdated content. Trenton avoids this trap by translating
timeless software engineering concepts like continuous integration and continuous
delivery to the machine learning space. Unlike many approaches, however, he punctuates
each concept with hands-on examples to illustrate how everything works in practice so
that you don't need to struggle to translate theory to real life applications.

For example, data scientists often view automated machine learning with disdain due
to previous exposure to automation that felt more like a straitjacket than an accelerant.
People new to machine learning as well as sophisticated data scientist can overlook
AutoML on AWS due to inexperience or ignorance of its benefits. Understanding when
and why to use AutoML to get an initial benchmark on a new project or avoid manually
selecting and tuning algorithms every time you retrain a model can reduce the time you
spend on model training by an order of magnitude.

Even more importantly, learning how to think about the long-term maintenance of the
machine learning pipelines will help you avoid painful decisions on whether to spend
time refactoring existing models or deliver new projects. Software engineers have been
leveraging CI/CD processes for over a decade at this point, but most machine learning
practitioners aren't aware of best practices from the DevOps space. Most data scientists
discover the need for this process only after they've built a few models and realized that
reusable model assets and pipelines are required if they want to do anything beyond
maintaining brittle modeling workflows by hand.

Finally, Trenton highlights concepts like source-code and data-centric machine learning
that normally require hiring working at a top technology company that's overcome scaling
challenges that most companies don't experience early on in their machine learning
journeys. Most people and organizations hit a wall after implanting a CI/CD pipeline
and building their first. They run up against the challenges of scheduling, tracking, and
monitoring their machine learning pipelines. This book is the only example I'm aware
of that offers prescriptive guidance on how to structure long-term machine learning
pipelines and avoid the common pitfalls that machine learning teams typically encounter.

In short, the concepts in this book will help you move beyond the hopes and dreams
of machine learning, to getting machine learning applications into production and
delivering value.

Jonathan Dahlberg

Head of ML Solution Engineering

Snorkel AI

Contributors

About the author
Trenton Potgieter is a senior AI/ML specialist at AWS and has been working in the field
of ML since 2011. At AWS, he assists multiple AWS customers to create ML solutions
and has contributed to various use cases, broadly spanning computer vision, knowledge
graphs, and ML automation using MLOps methodologies. Trenton plays a key role in
evangelizing the AWS ML services and shares best practices through forums such as
AWS blogs, whitepapers, reference architectures, and public-speaking events. He has
also actively been involved in leading, developing, and supporting an internal AWS
community of MLOps-related subject matter experts.

About the reviewer
Hemanth Boinpally is a Machine Learning Engineer at AWS. He has several years of
experience working in data science and ML. He has worked with enterprise customers
across different industries, such as healthcare, finance, logistics, and manufacturing. He
enjoys providing end-to-end ML solutions for complex business problems. His expertise
across the technology stack helps him collaborate with cross-functional teams to build
successful ML products. This includes engaging with business stakeholders, the research
and development of ML models, and operationalizing these models using MLOps
principles. He has worked in areas such as model bias detection, interpretable models,
NLP, CV, active learning, and deep learning.

Table of Contents
Preface

Section 1: Fundamentals of the Automated
Machine Learning Process and AutoML
on AWS

1
Getting Started with Automated Machine Learning on AWS

Technical requirements 4
Overview of the ML process 5
Complexities in the ML process 7
An example of the end-to-end
ML process 8
Introducing ACME Fishing Logistics 8
The case for ML 8
Getting insights from the data 10
Building the right model 15
Training the model 21
Evaluating the trained model 24

Exploring possible next steps 27
Tuning our model 29
Deploying the optimized model
into production 37
Streamlining the ML process
with AutoML 38

How AWS makes automating
the ML development and
deployment process easier 39
Summary 40

2
Automating Machine Learning Model Development Using
SageMaker Autopilot

Technical requirements 42
Introducing the AWS AI
and ML landscape 42

Overview of
SageMaker Autopilot 45

viii Table of Contents

Overcoming automation
challenges with
SageMaker Autopilot 46
Getting started with SageMaker Studio 47
Preparing the experiment data 51
Starting the Autopilot experiment 54
Running the Autopilot experiment 58
Post-experimentation tasks 64

Using the SageMaker SDK to
automate the ML experiment 66
Codifying the Autopilot experiment 67
Analyzing the Autopilot experiment
with code 70
Deploying the best candidate 74
Cleaning up 76

Summary 77

3
Automating Complicated Model Development
with AutoGluon

Technical requirements 80
Introducing the AutoGluon
library 81
Using AutoGluon for
tabular data 82
Prerequisites 82
Creating the AutoML
experiment with AutoGluon 91

Evaluating the experiment results 96

Using AutoGluon for
image data 101
Prerequisites 101
Creating an image
prediction experiment 105
Evaluating the experiment results 109

Summary 112

Section 2: Automating the Machine
Learning Process with Continuous
Integration and Continuous Delivery (CI/CD)

4
Continuous Integration and Continuous Delivery (CI/CD) for
Machine Learning

Technical requirements 116
Introducing the
CI/CD methodology 117

Introducing the CI part of CI/CD 117
Introducing the CD part of CI/CD 119
Closing the loop 122

Table of Contents ix

Automating ML with CI/CD 123
Taking a deployment-centric approach 124
Creating an MLOps methodology 127

Creating a CI/CD
pipeline on AWS 129
Using the AWS CI/CD toolchain 129
Working with additional AWS
developer tools 130

Creating a cloud-native CI/CD
pipeline for a production ML model 131
Preparing the development
environment 132
Creating the pipeline
artifact repository 138
Developing the application artifacts 138

Summary 148

5
Continuous Deployment of a Production ML Model

Technical requirements 150
Deploying the CI/CD pipeline 151
Codifying the pipeline construct 151
Creating the CDK application 158
Deploying the pipeline application 159

Building the ML model artifacts 161
Reviewing the modeling file 163
Reviewing the application file 164

Reviewing the model serving files 166
Reviewing the container build file 166
Committing the ML artifacts 166

Executing the automated
ML model deployment 167
Cleanup 173

Summary 173

Section 3: Optimizing a Source Code-Centric
Approach to Automated Machine Learning

6
Automating the Machine Learning Process
Using AWS Step Functions

Technical requirements 178
Introducing AWS
Step Functions 179
Creating a state machine 179
Addressing state machine complexity 180

Using the Step Functions Data
Science SDK for CI/CD 181
Building the CI/CD
pipeline resources 183
Updating the development
environment 183

x Table of Contents

Creating the pipeline
artifact repository 184
Building the pipeline
application artifacts 185

Deploying the CI/CD pipeline 206

Summary 207

7
Building the ML Workflow Using AWS Step Functions

Technical requirements 210
Building the state
machine workflow 210
Setting up the service permissions 211
Creating an ML workflow 211

Performing the
integration test 240
Monitoring the
pipeline's progress 242
Summary 246

Section 4: Optimizing a Data-Centric
Approach to Automated Machine Learning

8
Automating the Machine Learning Process
Using Apache Airflow

Technical requirements 250
Introducing Apache Airflow 251
Introducing Amazon MWAA 252
Using Airflow to process the
abalone dataset 253

Configuring the MWAA
prerequisites 254
Configuring the MWAA
environment 268
Summary 273

9
Building the ML Workflow Using Amazon Managed
Workflows for Apache Airflow

Technical requirements 276
Developing the
data-centric workflow 277
Building and unit testing the
data ETL artifacts 278

Building the Airflow DAG 285

Creating synthetic Abalone
survey data 298

Table of Contents xi

Executing the
data-centric workflow 302

Cleanup 305

Summary 306

Section 5: Automating the End-to-End
Production Application on AWS

10
An Introduction to the Machine Learning Software
Development Life Cycle (MLSDLC)

Technical requirements 310
Introducing the MLSDLC 311
Building the
application platform 313
Examining the role of
the application owner 314
Examining the role of the
platform engineers 315
Examining the role of the
frontend developers 322

Examining ML and data
engineering roles 324
Creating a SageMaker Feature Store 325
Creating ML artifacts 327
Creating continuous training artifacts 337

Understanding the
security lens 345
Securing the data 346
Securing the code 346
Securing the website 347

Summary 348

11
Continuous Integration, Deployment, and Training
for the MLSDLC

Technical requirements 350
Codifying the continuous
integration stage 351
Building the integration artifacts 352
Building the test artifacts 354
Building the production artifacts 355
Automating the continuous
integration process 357

Managing the continuous
deployment stage 361
Reviewing the build phase 362
Reviewing the test phase 368
Reviewing the deploy and
maintain phases 370
Reviewing the application
user experience 374

xii Table of Contents

Managing continuous training 378
Creating new Abalone survey data 380
Reviewing the continuous training
process 380

Cleanup 381

Summary 382
Further reading 382

Index
Other Books You May Enjoy

Preface
AWS provides a wide range of solutions to help automate a machine learning (ML)
workflow with just a few lines of code. With this practical book, you'll learn how to
automate an ML pipeline using the various AWS services.

Automated Machine Learning on AWS begins with a quick overview of what the ML
pipeline/process looks like and highlights the typical challenges you may face when
building a pipeline. By reading the book, you'll become well versed in various AWS
solutions, such as Amazon SageMaker Autopilot, AutoGluon, AWS Step Functions,
and more, and will learn how to automate an end-to-end ML process with the help of
hands-on examples. The book will show you how to build, monitor, and execute a CI/
CD pipeline for the ML process and how the various CI/CD services within AWS can
be applied to a use case with the Cloud Development Kit (CDK). You'll understand
what a data-centric ML process is by working with Amazon Managed Services for
Apache Airflow and will build a managed Airflow environment. You'll also cover the key
success criteria for an Machine Learning Software Development Life Cycle (MLSDLC)
implementation and the process of creating a self-mutating CI/CD pipeline using the
CDK from the perspective of the platform engineering team.

By the end of the book, you'll be able to effectively automate a complete ML pipeline and
deploy it to production.

Who this book is for
This book is for novice as well as experienced ML practitioners looking to automate the
process of building, training, and deploying ML-based solutions into production, using
both purpose-built and other AWS services. A basic understanding of the end-to-end ML
process and concepts, Python programming, and AWS is necessary to make the most out
of the book.

xiv Preface

What this book covers
Chapter 1, Getting Started with Automated Machine Learning on AWS, provides an
overview of what the ML pipeline/process looks like and highlights the typical challenges
you will face when building the pipeline. The main challenge to highlight is overcoming
the interactive nature of the process and why automation is crucial to a successful process.
Subsequently, we will introduce the concept of AutoML and highlight how it can alleviate
the aforementioned challenges.

Chapter 2, Automating Machine Learning Model Development Using SageMaker Autopilot,
provides an overview of what SageMaker Autopilot is and how it can be useful in
automating the ML process. By using an example use case (ACME Fishing Logistics), the
chapter will further educate you on how to practically leverage SageMaker Autopilot and
apply it to the use case. The chapter accomplishes this by walking you through each step
of the process, comparing it to the model framing example to highlight the benefits of
process automation.

Chapter 3, Automating Complicated Model Development with AutoGluon, provides you
with an overview of what AutoGluon is, how it differs from SageMaker Autopilot, and the
value it adds for use cases that involve deep learning models that make use of text, image,
and tabular data. It further elaborates on AutoGluon's capabilities for process automation
by walking you through the hands-on, ACME Fishing Logistics example, and a deep
learning-based model for computer vision.

Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for Machine
Learning, introduces you to the concept of continuous integration and continuous
deployment (CI/CD) and how specifically it can be applied to an ML use case. The
chapter accomplishes this by introducing DevOps culture and highlighting how the
DevOps process can evolve into an MLOps process. This chapter also introduces and
focuses on how the various CI/CD services within AWS can be applied to the use case,
by introducing you to the Cloud Development Kit (CDK) and the Cloud9 development
environment. The chapter will also practically show you how to set up the development
workspace, install and configure the CDK, set up the artifact repositories, and start
codifying the primary artifacts that will be leveraged by the CI/CD pipeline.

Chapter 5, Continuous Deployment of a Production ML Model, introduces you to the
typical tasks performed by the ML practitioner, within the context of the deployed CI/
CD pipeline and DevOps culture. The chapter will walk you through creating the model
assets, which trigger the pipeline execution, and show you how to manage and monitor
the progress.

Preface xv

Chapter 6, Automating the Machine Learning Process Using AWS Step Functions, highlights
how the CI/CD process can be further optimized, by including the ML practitioner
in the majority of the pipeline build process. This chapter shows how this can be done
by introducing AWS Step Functions and the Data Science SDK for Step Functions.
It will then walk you through how to integrate the Data Science SDK into the CI/CD
pipeline process.

Chapter 7, Building the ML Workflow Using AWS Step Functions, elaborates on the role and
tasks of the ML practitioner, within the context of further optimizing the CI/CD pipeline,
by walking you through how to build the codified ML workflow, perform integration
testing on the workflow, and deploy the ML model into production, using the workflow.

Chapter 8, Automating the Machine Learning Process Using Apache Airflow, introduces you
to a data-centric workflow, why its application to the ML process is important, and the
team members normally responsible for executing this part of the process. The chapter
elaborates on the common tools used to perform this function, namely Apache Airflow,
and the Amazon managed service for Apache Airflow. The chapter will then walk you
through how to build a managed Airflow environment.

Chapter 9, Building the ML Workflow Using Amazon Managed Workflows for Apache
Airflow, leverages the environment created in the previous chapter and focuses on the role
and tasks that the ML practitioner performs, within the context of further optimizing the
CI/CD pipeline. The chapter accomplishes this by walking you through how to build the
codified ML workflow, perform integration testing on the workflow, and deploy the ML
model into production, using the workflow running on the MWAA environment.

Chapter 10, An Introduction to the Machine Learning Software Development Life Cycle
(MLSDLC), introduces you to the MLSDLC methodology and explains why adopting
this methodology encompasses a holistic solution for automating the entirety of the
ML-based application. The chapter highlights the key success criteria for an MLSDLC
implementation – the cross-functional and agile team. It showcases this success criteria
by walking through each of the team member roles, how they interact with the other team
members, and building the codified artifacts that each role is responsible for.

xvi Preface

Chapter 11, Continuous Integration, Deployment, and Training for the MLSDLC, walks
through the process of creating a self-mutating CI/CD pipeline using the CDK, from
the perspective of the platform engineering team. The chapter will show you how to
take the various cross-functional teams' artifacts and combine them into an automated
process for CI of both the ACME Fishing Logistics application and the ML model in
a development and QA environment. The chapter will also highlight how to include
automated integration and QA test procedures for the web application, plus ML model
inferences, in the overall MLSDLC workflow. The chapter will then show you how to take
the application from the test environment into the production environment, to produce
the production version of the overall ML application. The last part of the chapter will
focus on the various tasks and procedures from the perspective of the data engineering
team, to essentially close the loop on the MLSDLC process, by walking you through how to
apply continuous training of the pipeline, based on new data and the lessons learned from
chapter 8, Automating the Machine Learning Process Using Apache Airflow.

To get the most out of this book
You will need a functional AWS account to run the examples.

It is recommended that you use an AWS Cloud9 integrated development environment as
it meets the software/hardware and operating system requirements.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Where possible, applicable AWS services have been used to automate the example ML
workflow. We encourage you to review how the provided examples could be further
adapted to use additional AWS services, such as Amazon SageMaker Pipelines, or even
open source alternatives, such as Kubeflow Pipelines.

Preface xvii

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Automated-Machine-Learning-on-AWS. If
there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801811828_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "We define a train() function to capture the input parameters and
fit an ImagePredictor() to training_data."

A block of code is set as follows:

import boto3

import sagemaker

aws_region = sagemaker.Session().boto_session.region_name

!sm-docker build --build-arg REGION={aws_region} .

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

import sagemaker

import datetime

image_uri = "<Enter the Image URI from the sm-docker output>"

role = sagemaker.get_execution_role()

session = sagemaker.session.Session()

bucket = session.default_bucket()

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS
https://github.com/PacktPublishing/

xviii Preface

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Using the
Amazon SageMaker management console, click the Open SageMaker Studio button."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us
at customercare@packtpub.com and mention the book title in the subject
of your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com

Preface xix

Share Your Thoughts
Once you've read Automated Machine Learning on AWS, we'd love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book and share your
feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1801811822

This section will educate you on the complexities of the machine learning process, what
AutoML is, and how it can be used to streamline the process.

This section comprises the following chapters:

• Chapter 1, Getting Started with Automated Machine Learning on AWS

• Chapter 2, Automating Machine Learning Model Development Using
SageMaker Autopilot

• Chapter 3, Automating Complicated Model Development with AutoGluon

Section 1:
Fundamentals of the
Automated Machine

Learning Process
and AutoML on AWS

1
Getting Started

with Automated
Machine Learning

on AWS
If you have ever had the pleasure of successfully driving a production-ready Machine
Learning (ML) application to completion or you are currently in the process of
developing your first ML project, I am sure that you will agree with me when I say, "This is
not an easy task!"

Why do I say that? Well, if we ignore the intricacies involved in gathering the right
training data, analyzing and understanding that data, and then building and training the
best possible model, I am sure you will agree that the ML process in itself is a complicated
task process, time-consuming, and entirely manual, making it extremely difficult to
automate. And it is these factors, plus many more, that contribute to ML tasks being
difficult to automate.

4 Getting Started with Automated Machine Learning on AWS

The primary goal of this chapter is to emphasize these challenges by reviewing a practical
example that sets the stage for why automating the ML process is difficult. This chapter
will highlight what governing factors should be considered when performing this
automation and how leveraging various Amazon Web Services (AWS) capabilities can
make the task of driving ML projects into production less daunting and fully automated.
By the end of this chapter, we will have established a common foundation for overcoming
these challenges through automation.

Therefore, in this chapter, we will cover the following topics:

• Overview of the ML process

• Complexities in the ML process

• An example of the end-to-end ML process

• How AWS can make automating ML development and the deployment
process easier

Technical requirements
You will need access to the Jupyter Notebook environment to follow along with the
example in this chapter. Although sample code has been provided for the various steps
of the ML process, a Jupyter Notebook example has been provided in this book's GitHub
repository (https://github.com/PacktPublishing/Automated-Machine-
Learning-on-AWS/blob/main/Chapter01/ML%20Process%20Example.
ipynb) for you to work through the entire example at your own pace.

For further instructions on how to set up a Jupyter Notebook environment, you can refer
to the installation guide (https://jupyterlab.readthedocs.io/en/stable/
getting_started/installation.html) to either set up JupyterLab or classic
Jupyter Notebook. Alternatively, for local notebook development using a development IDE,
such as Visual Studio Code, you can refer to the VS Code documentation (https://
code.visualstudio.com/docs/datascience/jupyter-notebooks).

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter01/ML%20Process%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter01/ML%20Process%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter01/ML%20Process%20Example.ipynb
https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html
https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html
https://code.visualstudio.com/docs/datascience/jupyter-notebooks
https://code.visualstudio.com/docs/datascience/jupyter-notebooks

Overview of the ML process 5

Overview of the ML process
Unfortunately, there is no established how-to guide when performing ML. This is because
every ML use case is unique and specific to the application that leverages the resultant ML
model. Instead, there is a general process pattern that most data scientists, ML engineers,
and ML practitioners follow. This process model is called the Cross-Industry Standard
Process for Data Mining (CRISP-DM) and while not everyone follows the specific steps
of the process verbatim, most production ML models have probably, in some shape or
form, been built by using the guardrails that the CRISP-DM methodology provides.

So, when we refer to the ML process, we are invariably referring to the overall
methodology of building production-ready ML models using the guardrails from
CRSIP-DM.

The following diagram shows an overview of the CRISP-DM guidelines for creating a
typical process that an ML practitioner might follow:

Figure 1.1 – Overview of a typical ML process

In a nutshell, the process starts with the ML practitioner being tasked with providing an
ML model that addresses a specific business use case. The ML practitioner then finds,
ingests, and analyzes an appropriate dataset that can be effectively leveraged to accomplish
the goals of the ML project.

6 Getting Started with Automated Machine Learning on AWS

Once the data has been analyzed, the ML practitioner determines the most applicable
modeling techniques that extract the most relevant information from the data to address
the use case. These techniques include the following:

1. Determining the most applicable ML algorithm
2. Creating new aspects (engineering new features) of the data that can further

improve the chosen model's overall effectiveness
3. Separating the data into training and testing sets for model training and evaluation

The ML practitioner then codifies the algorithm's architecture and training/testing/
evaluation routines. These routines are then executed to determine the best possible model
parameters – ones that optimize the model to fit both the data and the business use case.

Finally, the best model is deployed into production to serve predictions that match the
initial objective of the business use case.

As you can see, the overall process seems relatively straightforward and easy to follow. So,
you may be wondering what all the fuss is about. For example, you may be asking yourself,
Where is the complexity in this process? or Why do you say that this is so hard to automate?

While the process may look simplistic, the reality when executing it is vastly different. The
following diagram provides a more realistic representation of what an ML practitioner
may observe when developing an ML use case:

Figure 1.2 – Overview of a realistic ML process

Complexities in the ML process 7

As you can see, the overall process is far more convoluted than the typical representation
shown in Figure 1.1. There are potentially multiple different paths that can be taken
through the process. Each course of action is based on the results captured from the
previous step in the process. Additionally, taking a particular course of action may not
always yield the desired results, thus forcing the ML practitioner to have to reset or go
back and choose a different set of criteria that will hopefully produce a better result.

So, now that we have provided a high-level overview of what the typical ML process
should entail, let's examine some of the complexities and challenges that make the ML
process difficult.

Complexities in the ML process
Each iteration through the process is an experiment to see whether the changes that
were made in a previous part of the process will yield a better result or a more optimized
ML model. It is this process of iteration that makes the ML workflow hard and difficult
to automate. The goal of each iteration or experiment is to improve the model's overall
predictive capabilities. During each iteration, we fine-tune the parameters, discover
new variables, and verify that these changes improve the overall accuracy of the model's
prediction. Each experiment also provides further insight into where we are in the overall
process and what the next steps might be. In essence, having to potentially go back and
tweak a previous step or even go back to the very beginning of the process and start with
a different set of data, parameters, or even a different ML model altogether is a manual
process. But even unsuccessful experiments have value since they allow us to learn from
our mistakes and hopefully steer us toward a successful outcome.

Note
Tolerating failures and not letting them derail the overall ML process is a key
factor in any successful ML strategy.

So, if the overall process is complicated and executing the methodology yields failures, this
will hopefully lead to a more successful outcome that will impact the overall ML strategy. It
becomes noticeably clear why automating the entire process is challenging but necessary, as
it now becomes a crucial part of the overall success criteria of any ML project.

Now that we have a good idea of what makes the ML process difficult, let's explore these
challenges further by covering a practical example.

8 Getting Started with Automated Machine Learning on AWS

An example of the end-to-end ML process
To better illustrate that the overall ML process is hard and that automation is challenging
but crucial, we will set the stage with a hands-on example use case.

Introducing ACME Fishing Logistics
ACME Fishing Logistics is a fictitious organization that's concerned with the overfishing
of the Sea Snail or Abalone population. Their primary goal is to educate fishermen on
how to determine whether an abalone is old enough for breeding. What makes the
age determination process challenging is that to verify the abalone's age, it needs to be
shucked so that the inside of the shell can be stained and then the number of rings can be
counted through a microscope. This involves destroying the abalone to determine whether
it is old enough to be kept or returned to the ocean. So, ACME's charter and the goal
behind their website is to help fishermen evaluate the various physical characteristics of an
abalone so that they can determine its age without killing it.

The case for ML
As you can probably imagine, ACME has not been incredibly successful in its endeavor to
prevent abalone overfishing through a simple education process. The CTO has determined
that a more proactive strategy must be implemented. Due to this, they have tasked the
website manager to make use of ML to make a more accurate prediction of an abalone's
age when fishermen enter the physical characteristics of their catch into the new Age
Calculator module of the website. This is where you come in, as ACME's resident ML
practitioner – it is your job to create the ML model that serves abalone age predictions to
the new Age Calculator.

We can start by using the CRISP-DM guidelines and frame the business use case. The
business use case is an all-encompassing step that establishes the overall framework and
incorporates the individual steps of the CRISP-DM process.

An example of the end-to-end ML process 9

The purpose of this stage of the process is to establish what the business goals are and to
create a project plan that achieves these goals. This stage also includes determining the
relevant criteria that define whether, from a business perspective, the project is deemed a
success; for example:

• Business Goal: The goal of this initiative is to create an Age Calculator web
application that enables fishermen to determine the age of their abalone catch to
determine whether it is below the breeding age threshold. To establish how this
business goal can be achieved, several questions arise. For example, how accurate
does the age prediction need to be? What evaluation metrics will be used to
determine the prediction's accuracy? What is the acceptable accuracy threshold? Is
there valid data for the use case? How long will the project take? Having questions
like these helps set realistic goals for planning.

• Project Plan: A project plan can be formulated by investigating what the answers
to some of these questions might be. For example, by investigating what data to use
and where to find it, we can start to formulate the difficulties in acquiring the data,
which impacts how long the project might take. Additionally, understanding about
the model's complexity, which also impacts project timelines, as more complicated
models require more time to build, evaluate, and tweak.

• Success Criteria: As the project plan starts to formulate, we start to get a picture of
what success looks like and how to measure it. For example, if we know that creating
a complicated model will negatively impact the delivery timeline, we can relax the
acceptable prediction accuracy criteria for the model and reduce the time it takes
to develop a production-grade model. Additionally, if the business goal is simply
to help the fishermen determine the abalone age but we have no way of tracking
whether they abide by the recommendation, then our success criteria can be
measured – not in terms of the model's accuracy but how often the Age Calculator is
accessed and used. For instance, if we get 10 application hits a day, then the project
can be deemed successful.

While these are only examples of what this stage of the process might look like, it illustrates
that careful forethought and planning, along with a very specific set of objectives, must be
outlined before any ML processes can start. It also illustrates that this stage of the process
cannot be automated, though having a set plan with predefined objectives creates the
foundation on which an automation framework could potentially be incorporated.

10 Getting Started with Automated Machine Learning on AWS

Getting insights from the data
Now that the overall business case is in place, we can dive into the meat of the actual ML
process, starting with the data stage. As shown in the following diagram, the data stage is
the first individual step within the framework of the business case:

Figure 1.3 – The data stage

It is at this point that we determine what data is available, how to ingest the data, what the
data looks like, what characteristics of the data are most relevant to predicting the age, and
which features need to be re-engineered to create the most optimal production-ready model.

Important Note
It is a well-known fact that the data acquisition and exploratory analysis part of
the process can account for 70%–80% of the overall effort.

A model worthy of being considered production-ready is only as good as the data it has
been trained on. The data needs to be fully analyzed and completely understood to extract
the most relevant features for model building and training. We can accomplish this using
a technique commonly referred to as Exploratory Data Analysis (EDA), where we assess
the statistical components of the data, potentially visualizing and creating charts to fully
grasp feature relevance. Once we have grasped the feature's importance, we might choose
to get more important data, remove unimportant data, and potentially engineer new facets
of the data, all to have the trained model learn from these optimal features.

Let's walk through an example of what this stage of the process might look like for the Age
Calculator use case.

An example of the end-to-end ML process 11

Sourcing, ingesting, and understanding the data
For our example, we will be using the Abalone Dataset.

Note
The Abalone Dataset is sourced from the University of California, Irvine's ML
repository: Dua, D. and Graff, C. (2019). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of
California, School of Information and Computer Science.

This dataset contains the various physical characteristics of the abalone that can be used
to determine its age. The following steps will walk you through how to access and explore
the dataset:

1. We can load the dataset with the following sample Python code, which uses the
pandas library (https://pandas.pydata.org) to ingest the data in a comma-
separated value (csv) format using the read_csv() method. Since the source data
doesn't have any column names, we can review the Attribute Information section of
the dataset website and manually create our column_names:

import pandas as pd

column_names = ["sex", "length", "diameter", "height",
"whole_weight", "shucked_weight", "viscera_weight",
"shell_weight", "rings"]

abalone_data = pd.read_csv("http://archive.ics.uci.edu/
ml/machine-learning-databases/abalone/abalone.data",
names=column_names)

2. Now that the data has been downloaded, we can start analyzing it as a DataFrame.
First, we will take a sample of the first five rows of the data to ensure we have
successfully downloaded it and verify that it matches the attribute information
highlighted on the website. The following sample Python code calls the head()
method on the abalone_data DataFrame:

abalone_data.head()

http://archive.ics.uci.edu/ml
https://pandas.pydata.org

12 Getting Started with Automated Machine Learning on AWS

The following screenshot shows the output of executing this call:

Figure 1.4 – The first five rows of the Abalone Dataset
Although we are only viewing the first five rows of the data, it matches the attribute
information provided by the repository website. For example, we can see that the
sex column has nominal values showing if the abalone is male (M), female (F), or
an infant (I). We also have the rings column, which is used to determine the age
of the abalone. The additional columns, such as weight, diameter, and height,
detail additional characteristics of the abalone. These characteristics all contribute
to determining its age (in years). The age is calculated using the number of rings,
plus 1.5.

3. Next, we can use the following sample code to call the describe() method on the
abalone_data DataFrame:

abalone_data.describe()

The following screenshot shows the summary statistics of the dataset, as well as various
statistical details, such as the percentile, mean, and standard deviation:

Figure 1.5 – The summary statistics of the Abalone Dataset

An example of the end-to-end ML process 13

Note
At this point, we can gain an understanding of the data by visualizing and
plotting any correlations between the key features to further understand how
the data is distributed, as well as to determine the most important features in
the dataset. We should also determine whether we have missing data and if we
have enough data.

Only using summary statistics to understand the data can often be misleading.
Although we will not be performing these visualization tasks on this
example, you can review why using graphical techniques is so important to
understanding data by looking at the Anscombe's Quartet example on Kaggle
(https://www.kaggle.com/carlmcbrideellis/anscombe-
s-quartet-and-the-importance-of-eda).

The previous tasks highlight a few important observations we derived from the summary
statistics of the dataset. For example, after reviewing the descriptive statistics from the
dataset (Figure 1.5), we made the following important observations:

• The count value for each column is 4177. We can deduce that we have the same
number of observations for each feature and therefore, no missing values. This
means that we won't have to somehow infer what these missing values might be
or remove the row containing them from the data. Most ML algorithms fail if data
is missing.

• If you look at the 75% value for the rings column, there is a significant variance
between the 11 rings and that of the max amount of rings, which is 29. This means
that the data potentially contains outliers that could add unnecessary noise and
influence the overall model effectiveness of the trained model.

• While the sex column is visible in Figure 1.4, the summary statistics displayed in
Figure 1.5 do not include it. This is because of the type of data in this column. If
you refer to the Attribute Information section of the dataset's website (https://
archive.ics.uci.edu/ml/datasets/abalone), you will see that this sex
column is comprised of nominal data. This type of data is used to provide a label or
category for data that doesn't have a quantitative value. Since there is no quantitative
value, the summary statistics for this column cannot be displayed. Depending on
the type of ML algorithm that's selected to address the business objective, we may
need to convert this data into a quantitative format as not all ML algorithms will
work with nominal data.

https://www.kaggle.com/carlmcbrideellis/anscombe-s-quartet-and-the-importance-of-eda
https://www.kaggle.com/carlmcbrideellis/anscombe-s-quartet-and-the-importance-of-eda
https://archive.ics.uci.edu/ml/datasets/abalone
https://archive.ics.uci.edu/ml/datasets/abalone

14 Getting Started with Automated Machine Learning on AWS

The next set of steps will help us apply what we have learned from the dataset to make it
more compatible with the model training part of the process:

1. In this step, we focus on converting the sex column into quantitative data. The
sample code highlights using the get_dummies() method on the abalone_data
DataFrame, which will convert the categories of Male (M), Female (F), and Infant (I)
into separate feature columns. Here, the data in these new columns will either reflect
one of the categories, represented by a one (1) if true or a zero (0) if false:

abalone_data = pd.get_dummies(abalone_data)

2. Running the head() method again now shows the first five rows of the newly
converted data:

Abalone_data.head()

The following screenshot shows the first five rows of the converted dataset. Here,
you can see that the sex column has been removed and that, in its place, there are
three new columns (one for each new category) with the data now represented as
discrete values of 1 or 0:

Figure 1.6 – The first five rows of the converted Abalone Dataset

3. The next step in preparing the data for model building and training is to separate
the rings column from the data to establish it as the target, or variable, we are trying
to predict. The following sample code shows this:

y = abalone_data.rings.values

del abalone_data["rings"]

An example of the end-to-end ML process 15

4. Now that the target variable has been isolated, we can normalize the features. Not
all datasets require normalization, however. By looking at Figure 1.5, we can see that
the summary statistics show that the features have different ranges. These different
ranges, especially if the values are large, can influence the overall effectiveness of the
model during training. Thus, by normalizing the features, the model can converge to
a global minimum much faster. The following code sample shows how the existing
features can be normalized by first converting it into a NumPy array (https://
numpy.org) and then using the normalize() method from the scikit-learn or
sklearn Python library (https://scikit-learn.org/stable/):

import numpy as np

from sklearn import preprocessing

X = abalone_data.values.astype(np.float)

X = preprocessing.normalize(X)

Based on the initial observations from the dataset, we have applied the necessary
transformations to prepare the features for model training. For example, we converted the
sex column from a nominal data type into a quantitative data type since this data will play
an important part in determining the age of an abalone.

From this example, you can see that goal of the Data step is to focus on exploring and
understanding the dataset. We also use this step to apply what we've learned and change
the data or preprocess it into a representation that suits the downstream model building
and training process.

Building the right model
Now that the data has been ingested, analyzed, and processed, we are ready to move onto
the next stage of the ML process, where we will look at building the right ML model to
suit both the business use case as well as to match it to our newly acquired understanding
of the data:

Figure 1.7 – The model building stage

https://numpy.org
https://numpy.org
https://scikit-learn.org/stable/

16 Getting Started with Automated Machine Learning on AWS

Unfortunately, there is no one size fits all algorithm that can be applied to every use case.
However, by taking the knowledge we have gleaned from both the business objective and
dataset, we can define a list of potential algorithms to use.

For example, we know from our business case that we want to predict the age of the
abalone by using the number of rings to get its age. We also know from analyzing and
understanding the dataset that we have a target or labeled variable from the rings column.
This target variable is a discrete, numerical value between 1 and 29, so we can refine our
list of possible algorithms to a supervised learning algorithm that predicts a numerical
value among a discrete set of possible values.

The following are just a few of the possible algorithms that could be applied to the
example business case:

• Linear regression

• Support vector machines

• Decision trees

• Naïve Bayes

• Neural networks

Once again, there is no one algorithm in this list that perfectly matches the use case and
the data. Therefore, the ML process is an experiment to work through multiple possible
permutations, get insight from each permutation, and apply what has been learned to
further refine the optimal model.

Some of the additional factors that influence which algorithm to start with are based on
the ML practitioner's experience, plus how the chosen algorithm addresses the required
business goals and success measurements. For example, if a required success criterion is to
have the model completed within 2 weeks, then that might eliminate the option to use a
more complicated algorithm.

Building a neural network model
Continuing with the Age Calculator experiment, we will implement a neural network
algorithm, also referred to as Artificial Neural Network (ANN), Deep Neural Network
(DNN), or Multilayer Perceptron (MLP).

An example of the end-to-end ML process 17

At a high level, a neural network is an artificial construct modeled on the brain, whereby
small, non-linear calculations are made on the data by what is commonly referred to
as a neuron or perceptron. By grouping these neurons into individual layers and then
compounding these layers together, we can assemble the building blocks of a mechanism
that takes the data as input and finds the dependencies (or correlations) for the output
(or target). Through an optimization process, these dependencies are further refined to get
the predicted output as close as possible to the actual target value.

Note
The primary reason a neural network model is being used in this example is
to introduce a deep learning framework. Deep learning frameworks, such as
PyTorch (https://pytorch.org/), TensorFlow (https://www.
tensorflow.org/), and MXNet (https://mxnet.apache.
org/), can be used to create more complicated neural networks. However,
from the perspective of ML process automation, they can also introduce several
complexities. So, by making use of a deep learning framework, we can lay the
foundation to address some of these complexities later in this book.

The following is a graphical representation of the neural network architecture that we will
be building for our example:

Figure 1.8 – Neural network architecture

https://pytorch.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://mxnet.apache.org/
https://mxnet.apache.org/

18 Getting Started with Automated Machine Learning on AWS

The individual components that make up this architecture will be explained in the
following steps:

1. To start building the model architecture, we need to load the necessary libraries
from the TensorFlow deep learning framework. Along with the tensorflow
libraries, we will also import the Keras API. The Keras (https://keras.io/)
library allows us to create higher-level abstractions of the neural network
architecture that are easier to understand and work with. For example, from Keras,
we also load the Sequential and Dense classes. These classes allow us to define
a model architecture that uses sequential neural network layers and define the type
and quantity of neurons in each of these layers:

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

2. Next, we can use the Dense class to define the list of layers that make up the
neural network:

network_layers = [

 Dense(256, activation='relu', kernel_
initializer="normal", input_dim=10),

 Dense(128, activation='relu'),

 Dense(64, activation='relu'),

 Dense(32, activation='relu'),

 Dense(1, activation='linear')

]

3. Next, we must define the model as being a Sequential() model or simply a list
of layers:

model = Sequential(network_layers)

4. Once the model structure has been defined, we must compile it for training using
the compile() method:

model.compile(optimizer="adam", loss="mse",
metrics=["mae", "accuracy"])

https://keras.io/

An example of the end-to-end ML process 19

5. Once the model has been compiled, the summary() method can be called to view
its architecture:

model.summary()

The following screenshot shows the results of calling this method. Even though it's
showing text output, the network architecture matches the one shown in Figure 1.8:

Figure 1.9 – Summary of the compiled neural network architecture

As you can see, the first layer of the model matches Layer 1 in Figure 1.8, where the
Dense() class is used to express that this layer has 256 neurons, or units, that connect
to every neuron in the next layer. Layer 1 also initializes the parameters (model weights
and bias) so that each neuron behaves differently and captures the different patterns we
wish to optimize through training. Layer 1 is also configured to expect input data that
has 10 dimensions. These dimensions correspond to the following features of the
Abalone Dataset:

• Length

• Diameter

• Height

• Whole Weight

• Shucked Weight

20 Getting Started with Automated Machine Learning on AWS

• Viscera Weight

• Shell Weight

• Sex_F

• Sex_I

• Sex_M

Layer 1 is also configured to use the nonlinear Rectified Linear Unit (ReLU) activation
function, which allows the neural network to learn complex relationships from the
dataset. We then repeat the process, adding Layer 2 through Layer 4, specifying that each
of these layers has 128, 64, 32, and 1 neuron(s) or unit(s), respectively. The final Layer only
has a single output – the predicted number of rings. Since the objective of the model is
to determine how this output relates to the actual number of rings in the dataset, a linear
activation function is used.

Once we have constructed the model architecture, we use the following important
parameters to compile the model using the compile() method:

• Loss: This parameter specifies the type of objective function (also referred to as the
cost function) that will be used. At a high level, the objective function calculates
how far away or how close the predicted result is to the actual value. It calculates
the amount of error between the number of rings that the model predicts, based on
the input data, versus what the actual number of rings is. In this example, the Mean
Squared Error (MSE) is used as the objective function, where the average amount
of error is measured across all the data points.

• Optimizer: The objective during training is to minimize the amount of error
between the predicted number of rings and the actual number of rings. The Adam
optimizer is used to iteratively update the neural network weights that contribute to
reducing the loss (or error).

• Metrics: The evaluation metrics, Mean Absolute Error (MAE), and prediction
accuracy are captured during model training and used to provide insight into how
effectively the model is learning from the input data.

An example of the end-to-end ML process 21

Note
If you are unfamiliar with any of these terms, there are a significant amount
of references available when you search for them. Additionally, you may find
it helpful to take the Deep Learning Specialization course offered by Coursera
(https://www.coursera.org/specializations/deep-
learning). Further details on these parameters can be found in the Keras
API documentation (https://keras.io/api/models/model_
training_apis/#compile-method).

Now that we have built the architecture for the neural network algorithm, we need to see
how it fits on top of the preprocessed dataset. This task is commonly referred to as training
the model.

Training the model
The next step of the ML process, as illustrated in the following diagram, is to train the
dataset on the preprocessed abalone data:

Figure 1.10 – The model training stage

https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://keras.io/api/models/model_training_apis/#compile-method
https://keras.io/api/models/model_training_apis/#compile-method

22 Getting Started with Automated Machine Learning on AWS

Training the compiled model is relatively straightforward. The following steps outline how
to kick off the model training part of the process:

1. This first step is not necessary to train the model, but sometimes, the output from
the training process can be unwieldy and difficult to interpret. Therefore, a custom
class called cleanPrint() can be created to ensure that the training output is
neat. This class uses the Keras Callback() method to print a dash ("-") as the
training output:

class cleanPrint(keras.callbacks.Callback):

 def on_epoch_end(self, epoch, logs):

 if epoch+1 % 100 == 0:

 print("!")

 else:

 print("-", end="")

Note
It is a good practice to display the model's performance at each epoch as this
provides insight into the improvements after each epoch. However, since we are
training for 2000 epochs, we are using the cleanPrint() class to make
the output neater. We will remove this callback later.

2. Next, we must separate the preprocessed abalone data into two main groups – one
for the training data and one for testing data. The splitting process is performed by
using the train_test_split() method from the model_selection() class
of the sklearn library:

from sklearn.model_selection import train_test_split

training_features, testing_features, training_labels,
testing_labels = train_test_split(X, y, test_size=0.2,
random_state=42)

3. The final part of the training process is to launch the model training process.
This is done by calling the fit() method on the compiled model and supplying
the training_features and training_labels datasets, as shown in the
following example code:

training_results = model.fit(training_features, training_
labels, validation_data=(testing_features, testing_
labels), batch_size=32, epochs=2000, shuffle=True,
verbose=0, callbacks=[cleanPrint()])

An example of the end-to-end ML process 23

Now that the model training process has started, we can review a few key aspects of our
code. First, splitting the data into training and testing datasets is typically performed
as part of the data preprocessing step. However, we are performing this task during the
model training step to provide additional context to the loss and optimization functions.
For example, creating these two separate datasets is an important part of evaluating
how well the model is being trained. The model is trained using the training dataset and
then its effectiveness is evaluated against the testing dataset. This evaluation procedure
guides the model (using the loss function and the optimization function) to reduce the
amount of error between the predicted number of rings and the actual number of rings.
In essence, this makes the model better or optimizes the model. To create a good split of
training and testing data, we must provide four additional variables, as follows:

• training_features: The 10 columns of the Abalone Dataset that correspond to
the abalone attributes, comprising 80% of these observations.

• testing_features: The same 10 columns of the Abalone Dataset, comprising
the other 20% of the observations.

• training_labels: The number of rings (target label) for each observation in the
training_features dataset.

• testing_labels: The number of rings (target label) for each observation in the
testing_features dataset.

Tip
Further details about each of these parameters, as well as more parameters
that you can use to tweak the training process, can be found in the Keras
API documentation (https://keras.io/api/models/model_
training_apis/#fit-method).

Secondly, once the data has been successfully split, we can use the fit() method and add
the following parameters to further govern the training process:

• validation_data: The testing_features and testing_labels datasets,
which the model uses to evaluate how well the trained neural network weights
reduce the amount of error between the predicted number of rings and the actual
number of rings in the testing data.

• batch_size: This parameter defines the number of samples from the training
data that are propagated through the neural network. This parameter can be used
to influence the overall speed of the training process. The higher batch_size is,
the higher the number of samples that are used from the training data, which means
the higher the number of samples that are combined to estimate the loss before
updating the neural network's weights.

https://keras.io/api/models/model_training_apis/#fit-method
https://keras.io/api/models/model_training_apis/#fit-method

24 Getting Started with Automated Machine Learning on AWS

• epochs: This parameter defines how many times the training process will iterate
through the training data. The higher epochs is, the more iterations must be made
through the training data to optimize the neural network's weights.

• shuffle: This parameter specifies whether to shuffle the data before starting a
training iteration. Shuffling the data each time the model iterates through the data
forces the model to generalize better and prevent it from learning ordered patterns
in the training data.

• verbose and callbacks: These parameters are related to displaying the training
progress and output for each epoch. Setting the output to zero and using the
cleanPrint() class will simply display a dash (-) as the output for each epoch.

The training process should take 12 minutes to complete, providing us with a trained
model object. In the next section, we will use the trained model to evaluate how well it
makes predictions on new data.

Evaluating the trained model
Once the model has been trained, we can move on to the next stage of the ML process: the
model evaluation stage. It is at this stage that the trained model is evaluated against the
objectives and success criterion that have been established within the business use case,
with the goal being to determine if the trained model is ready for production or not:

Figure 1.11 – The model evaluation step

An example of the end-to-end ML process 25

When evaluating a trained model, most ML practitioners simply score the quality of the
model predictions using an evaluation metric that is suited to the type of model. Other
ML practitioners go one step further to visualize and further understand the predictions.
The following steps will walk you through using the latter of these two approaches:

1. Using the following sample code, we can load the necessary Python libraries.
The first library is matplotlib. The pyplot() class is a collection of different
functions that allow for interactive and programmatic plot generation. The second
library, mean_squarred_error(), comes from the sklearn package and
provides the ML practitioner with an easy way to evaluate the quality of the model
using the Root Mean Squared Error (RMSE) metric. Since the neural network
model is a supervised learning-based regression model, RMSE is a popular method
that's used to measure the error rate of the model predictions:

import matplotlib.pyplot as plt

from sklearn.metrics import mean_squared_error

2. The imported libraries are then used to visualize the predictions to provide a better
understanding of the model's quality. The following code generates a plot that
incorporates the information that's required to quantify the prediction's quality:

fig, ax = plt.subplots(figsize=(15, 10))

ax.plot(testing_labels, model.predict(testing_features),
"ob")

ax.plot([0, 25], [0, 25], "-r")

ax.text(8, 1, f"RMSE = {mean_squared_error(testing_
labels, model.predict(testing_features),
squared=False)}", color="r", fontweight=1000)

plt.grid()

plt.title("Abalone Model Evaluation", fontweight="bold",
fontsize=12)

plt.xlabel("Actual 'Rings'", fontweight="bold",
fontsize=12)

plt.ylabel("Predicted 'Rings'", fontweight="bold",
fontsize=12)

plt.legend(["Predictions", "Regression Line"], loc="upper
left", prop={"weight": "bold"})

plt.show()

26 Getting Started with Automated Machine Learning on AWS

Executing this code will create two sub-plots. The first sub-plot is a scatterplot displaying
the model predictions from the test dataset, as well as the ground truth labels. The second
sub-plot superimposes a regression line over these predictions to highlight the linear
relationship between the predicted number of rings versus the actual number of rings. The
rest of the code labels the various properties of the plot and displays the RMSE score of
the predictions. The following is an example of this plot:

Figure 1.12 – An example Abalone Model Evaluation scatterplot

Three things should immediately stand out here:

• The RMSE evaluation metric scores the trained model at 2.54.

• The regression line depicting the correlation between the actual number of rings and
the predicted number of rings does not pass through the majority of the predictions.

• There are a significant number of predictions that are far away from the regression
line on both the positive and negative scales. This shows a high error rate between the
number of rings that are predicted versus the actual number of rings for a data point.

An example of the end-to-end ML process 27

These observations and others should be compared to the objectives and success criteria
that are outlined in the business use case. Both the ML practitioner and business owner
can then judge whether the trained model is ready for production.

For example, if the primary objective of the Age Calculator application is to use the model
predictions as a rough guide for the fishermen to get a simple idea of the abalone age, then
the model does this and can therefore be considered ready for production. If, on the other
hand, the primary goal of the Age Calculator application is to provide an accurate age
prediction, then the example model probably cannot be considered production-ready.

So, if we determine that the model is not ready for production, what are the subsequent
steps of the ML process? The next section will review some options.

Exploring possible next steps
Since the model has been deemed unfit for production, several approaches can be taken
after the model evaluation stage. The following diagram highlights three possible options
that can be considered as possible next steps:

Figure 1.13 – Next step options

Let's explore these three possible next steps in more depth to determine which option best
suits the objectives of the Age Calculator use case.

28 Getting Started with Automated Machine Learning on AWS

Option 1 – get mode data
The first option requires the ML practitioner to go back to the beginning of the process
and acquire more data. Since the UCI abalone repository is the only publicly available
dataset, this task might involve physically gathering more observations by manually
fishing for abalone or conducting a survey with fishermen on their catch. Either way, this
takes time!

However, simply adding more observations to the dataset does not necessarily translate
to a better-quality model. So, getting more data could also mean getting better-quality
features. This means that the ML practitioner would need to reevaluate the existing data,
dive further into the analysis to better understand which of the features are of the most
importance, and then re-engineer those features or create new features from them. This
too is time-consuming!

Option 2 – choose another model
The second option to consider involves building an entirely new model using a completely
different algorithm that still matches the use case. For example, the ML practitioner might
investigate using another supervised learning, regression-based algorithm.

Different algorithms might also require the data to be restructured so that it's more suited
to the algorithm's required type of input. For example, choosing a Gradient Boosting
Regression algorithm, such as XGBoost, requires the target label to be the first column in
the dataset. Choosing another algorithm and reengineering the data requires additional time!

Option 3 – tuning the existing model
Recall that when the existing neural network model was built, there were a few tunable
parameters that were configured during its compilation. For example, the model was
compiled using particular optimizer and loss functions.

Additionally, when the existing neural network model was trained, other tunable
parameters were supplied, such as the number of epochs and the batch size.

Note
There is no best practice for choosing the right option. Remember that each
iteration through the process is an experiment whereby the goal is to glean
more information from the experiment to determine the next course of action
or next option.

An example of the end-to-end ML process 29

While Option 3 may seem straightforward, in the next section, you will see that this
option also involves multiple potential iterations and is therefore also time-consuming.

Tuning our model
As we've already highlighted, multiple parameters or hyperparameters can be tuned
to better tune or optimize an existing model. Hence, this stage of the process is also
referred to as hyperparameter optimization. The following diagram shows what the
hyperparameter optimization process entails:

Figure 1.14 – The hyperparameter optimization process

After evaluating the model to determine which hyperparameters can be tweaked, the
model is trained using these parameters. The trained model is, once again, compared to
the business objectives and success criterion to determine if it is ready for production.
This process is then repeated, constantly tweaking, training, and evaluating until a
production-ready model is produced.

30 Getting Started with Automated Machine Learning on AWS

Determining the best hyperparameters to tune
Once again, there is no exact approach to getting the optimal hyperparameters. Each
iteration through the process helps narrow down which combination of hyperparameters
contributes to a more optimized model.

However, a good place to start the process is to dive deeper into what is happening during
model training and derive further insights into how the model is learning from the data.

You will recall that, when executing the fit() method to train the model and by binding
the results to the training_results parameter, we are able to get additional metrics
that were needed for model tuning. The following steps will walk you through an example
of how to extract and visualize these metrics:

1. By using the history() method on the training_results parameter, we can
use the following sample code to plot the prediction error for both the training and
testing processes.

plt.rcParams["figure.figsize"] = (15, 10)

plt.plot(training_results.history["loss"])

plt.plot(training_results.history["val_loss"])

plt.title("Training vs. Testing Loss", fontweight="bold",
fontsize=14)

plt.ylabel("Loss", fontweight="bold", fontsize=14)

plt.xlabel("Epochs", fontweight="bold", fontsize=14)

plt.legend(["Training Loss", "Testing Loss"], loc="upper
right", prop={"weight": "bold"})

plt.grid()

plt.show()

The following is an example of what the plot might look like after executing the
preceding code:

An example of the end-to-end ML process 31

Figure 1.15 – Training vs. Testing Loss

2. Similarly, by replacing the loss and val_loss parameters in the sample code
with mae and val_mae, respectively, we can see a consistent trend:

plt.rcParams["figure.figsize"] = (15, 10)

plt.plot(training_results.history["mae"])

plt.plot(training_results.history["val_mae"])

plt.title("Training vs. Testing Mean Absolute Error",
fontweight="bold", fontsize=14)

plt.ylabel("mae", fontweight="bold", fontsize=14)

plt.xlabel("Epochs", fontweight="bold", fontsize=14)

plt.legend(["Training MAE", "Testing MAE"], loc="upper
right", prop={"weight": "bold"})

plt.grid()

plt.show()

32 Getting Started with Automated Machine Learning on AWS

After executing the preceding code, we will get the following output:

Figure 1.16 – Training vs. Testing Mean Absolute Error

Both Figure 1.16 and Figure 1.15 clearly show a few especially important trends:

• There is a clear divergence between what the model is learning from the training data
and its predictions on the testing data. This indicates that the model is not learning
anything new as it trains and is essentially overfitting the data. The model relates to
the training data and is unable to relate to new, unseen data in the testing dataset.

• This divergence seems to happen around 250 epochs/training iterations. Since the
training process was set to 2,000 epochs, this indicates that the model is being over-
trained, which could be the reason it is overfitting the training data.

• Both the testing MAE and the testing loss have an erratic gradient. This means
that as the model parameters are being updated through the training process, the
magnitude of the updates is too large, resulting in an unstable neural network, and
therefore unstable predictions on the testing data. So, the fluctuations depicted by
the plot essentially highlight an exploding gradient problem, indicating that the
model is overfitting the data.

An example of the end-to-end ML process 33

Based on these observations, several hyperparameters can be tuned. For example, an
obvious parameter to change is the number of epochs or training iterations to prevent
overfitting. Similarly, we could change the optimization function from Adam to
Stochastic Gradient Descent (SGD). SGD allows a specific learning rate to be set as one
of its parameters, as opposed to the adaptive learning rate used by the Adam optimizer. By
specifying a small learning rate parameter, we are essentially rescaling the model updates
to ensure that they are small and controlled.

Another solution might be to use a regularization technique, such as L1 or L2 regularization,
to penalize some of the neurons on the model, thus creating a simpler neural network.
Likewise, simplifying the neural network architecture by reducing the number of layers and
neurons within each layer would have the same effect as regularization.

Lastly, reducing the number of samples or batch size can control the stability of the
gradient during training.

Now that we have a fair idea of which hyperparameters to tweak, the next section will
show you how to further optimize the model.

Tuning, training, and reevaluating the existing model
We can start model tuning by walking through the following steps:

1. The first change we must make is to the neural network architecture itself. The
following example code depicts the new structure, where only two network layers
are used instead of four. Each layer only has 64 neurons:

network_layers = [

 Dense(64, activation='relu', kernel_
initializer="normal", input_dim=10),

 Dense(64, activation='relu'),

 Dense(1, activation='linear')

]

2. Once again, the model is recompiled using the same parameters as those from the
previous example:

model = Sequential(network_layers)

model.compile(optimizer="adam", loss="mse",
metrics=["mae", "accuracy"])

model.summary()

34 Getting Started with Automated Machine Learning on AWS

The following screenshot shows the text summary of the tuned neural
network architecture:

Figure 1.17 – Summary of the tuned neural network architecture
The following diagram shows a visual representation of the turned neural
network architecture:

Figure 1.18 – Tuned neural network architecture

An example of the end-to-end ML process 35

3. Lastly, the fit() method is called on the new model. However, this time, the
number of epochs has been reduced to 200 and batch_size has also been
reduced to 8:

training_results = model.fit(training_features,
training_labels, validation_data=(testing_features,
testing_labels), batch_size=8, epochs=200, shuffle=True,
verbose=1)

Note
In the previous code example, the cleanPrint() callback has been
removed to show the evaluation metrics on both the training and validation
data at 200 epochs.

4. Once the new model training has been completed, the previously used evaluation
code can be re-executed to display the evaluation scatterplot. The following is an
example of this scatterplot:

Figure 1.19 –Abalone Evaluation scatterplot

36 Getting Started with Automated Machine Learning on AWS

The new model does not capture all the predictions as there are still several outliers on the
positive and negative scales. However, there is a drastic improvement to the overall fit on
most data points. This is further quantified by the RMSE score dropping from 2.54 to 2.08.

Once again, these observations should be compared to the objectives and the success
criteria that are outlined in the business use case to gauge whether the model is ready
for production.

As the following diagram illustrates, if a production-ready model cannot be found, then
the options to further tune the model, get and engineer more data, or build a completely
different model are still available:

Figure 1.20 – Additional process options

Should the model be deemed as production-ready, the ML practitioner can move onto
the final stage of the ML process, As shown in the following diagram this is the model
deployment stage:

An example of the end-to-end ML process 37

Figure 1.21 – The model deployment stage

In the next section, we will review the processes involved in deploying the model
into production.

Deploying the optimized model into production
Model deployment is somewhat of a gray area in that some ML practitioners do not
apply this stage to their ML process. For example, some ML practitioners may feel that
the scope of their task is to simply provide a production-ready ML model that addresses
the business use case. Once this model has been trained, they simply hand it over to the
application development teams or application owners for them to test and integrate the
model into the application.

Alternatively, some ML practitioners will work with the application teams to deploy the
model into a test or Quality Assurance (QA) environment to ensure that the trained
model successfully integrates with the application.

Whatever the scope of the ML practitioner role, model deployment is part of the
CRISP-DM methodology and should always be factored into the overall ML process,
especially if the ML process is to be automated.

38 Getting Started with Automated Machine Learning on AWS

While the CRISP-DM methodology ends with the model deployment stage, as shown in
the preceding diagram, the process is, in fact, a continuous process. Once the model has
been deployed into a production application, it needs to be constantly monitored to ensure
that it does not drift from its intended purpose, to consistently provide accurate predictions
on unseen data or new data. Should this situation arise, the ML practitioner will be called
upon to start the ML process again to reoptimize the model and make it generalize to this
new data. The following diagram shows what the ML process looks like in reality:

Figure 1.22 – Closing the loop

So, once again, why is the ML process hard?

Using this simple example use case, you can hopefully see that not only are there inherent
complexities to the process of exploring the data, as well as building, training, evaluating,
tuning, deploying, and monitoring the model – the entire process is also complex, manual,
iterative, and continuous.

How can we streamline the process to ensure that the outcome is always an optimized model
that matches the business use case? This is where AutoML comes into play.

Streamlining the ML process with AutoML
AutoML is a broad term that has different a meaning depending on who you ask.
When referring to AutoML, some ML practitioners may point to a dedicated software
application, a set of tools/libraries, or even a dedicated cloud service. In a nutshell,
AutoML is a methodology that allows you to create a repeatable, reliable, streamlined,
and, of course, automated ML process.

How AWS makes automating the ML development and deployment process easier 39

The process is repeatable in that it follows the same pattern every time it is executed. The
process is reliable in that it guarantees that an optimized model that matches the use case
is always produced. The process is streamlined and any unnecessary steps are removed,
making it as efficient as possible. Finally, and most importantly, the process can be started
and executed automatically and triggered by an event, such as retraining the model after
model concept drift has been detected.

AWS provides multiple capabilities that can be used to build a streamlined AutoML
process. In the next section, I will highlight some of the dedicated cloud services, as well
as other services, that can be leveraged to make the ML process easier and automated.

How AWS makes automating the ML
development and deployment process easier
The focus of the remaining chapters in this book will be to practically showcase, using
hands-on examples, how the ML process can be automated on AWS. By expanding on the
Age Calculator example, you will see how various AWS capabilities and services can be
used to do this. For example, the next two chapters of this book will focus on how to use
some of the native capabilities of the AWS AI/ML stack, such as the following:

• Using SageMaker Autopilot to automatically create, manage, and deploy an
optimized abalone prediction model using both codeless as well as coded methods.

• Using the AutoGluon libraries to determine the best deep learning algorithm to use
for the abalone model, as well as an example for more complicated ML use cases,
such as computer vision.

Parts two, three, and four of this book will focus on leveraging other AWS services that are
not necessarily part of the AI/ML stack, such as the following:

• AWS CodeCommit and CodePipeline, which will deliver the abalone use case using
a Continuous Integration and Continuous Delivery (CI/CD) pipeline.

• AWS Step Functions and the Data Science Python SDK, to create a codified pipeline
to produce the abalone model.

• Amazon Managed Workflows for Apache Airflow (MWAA), to automate and
manage the ML process.

Finally, part five of this book will expand on some of the central topics that were covered
in parts two and three to provide you with a hands-on example of how a cross-functional,
agile team can implement the end-to-end Abalone Calculator example as part of a
Machine Learning Software Development Life Cycle (MLSDLC).

40 Getting Started with Automated Machine Learning on AWS

Summary
As I stated from the outset, the primary goal of this chapter was to emphasize the many
challenges an ML practitioner may face when building an ML solution for a business
use case. In this chapter, I introduced you to an example ML use case – the Abalone
Calculator – and I used it to show you just how hard the ML process is in reality.

By walking through each step of the process, I explained the complexities involved
therein, as well as the challenges you could potentially encounter. I also highlighted why
the ML process is complicated, manual, iterative, and continuous, which set the stage for
an automated process that is repeatable, streamlined, and reliable using AutoML.

In the next chapter, we will explore how to start implementing an AutoML methodology
by introducing you to a native AWS service called SageMaker Autopilot.

2
Automating

Machine Learning
Model Development

Using SageMaker
Autopilot

AWS offers a number of approaches for automating ML model development. In this
chapter, I will present one such method, SageMaker Autopilot. Autopilot is a framework
that automatically executes the key steps of a typical ML process. This allows both the
novice, as well as the experienced ML practitioner to delegate the manual tasks of data
exploration, algorithm selection, model training, and model optimization to a dedicated
AWS service, basically, automating the end-to-end ML process.

Before we can start diving and getting hands-on exposure to the native capabilities that
AWS offers for ML process automation, it is important to first understand the landscape of
where they fit, what these capabilities are, and how we will use them.

42 Automating Machine Learning Model Development Using SageMaker Autopilot

In this chapter, we will introduce you to some of the AWS capabilities that focus on ML
solutions, as well as ML automation. By the end of the chapter, you will have a hands-on
overview of how to automate the ACME Fishing Logistics use case using AWS services to
implement an AutoML methodology. We will be covering the following topics:

• Introducing the AWS AI and ML landscape

• Overview of SageMaker Autopilot

• Overcoming automation challenges with SageMaker Autopilot

• Using the SageMaker SDK to automate the ML experiment

Technical requirements
You should have the following prerequisites before getting started with this chapter:

• Familiarity with AWS and its basic usage.

• A web browser (for the best experience, it is recommended that you use the Chrome
or Firefox browser).

• An AWS account (if you are unfamiliar with how to get started with an AWS account,
you can go to this link: https://aws.amazon.com/getting-started/).

• Familiarity with the AWS Free Tier (the Free tier will allow you to access some of
the AWS services for free, depending on resource limits; you can familiarize yourself
with these limits at this link: https://aws.amazon.com/free/).

• Example Jupyter notebooks for this chapter are provided in the companion GitHub
repository (https://github.com/PacktPublishing/Automated-
Machine-Learning-on-AWS/blob/main/Chapter02/Autopilot%20
Example.ipynb).

Introducing the AWS AI and ML landscape
AWS provides its customers with an extensive assortment of Artificial Intelligence (AI)
and ML capabilities. To further help its customers to better understand these capabilities,
AWS has grouped and organized them together into what is typically referred to as the
AI/ML Stack. The primary goal behind the AI/ML stack is to provide the necessary
resources that a developer or ML practitioner might use, depending on their level of
expertise. Basically, it puts AI and ML capabilities into the hands of every developer, no
matter whether they are considered a novice or an expert. Figure 2.1 shows the layers that
comprise the AWS AI/ML stack.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter02/Autopilot%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter02/Autopilot%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter02/Autopilot%20Example.ipynb

Introducing the AWS AI and ML landscape 43

Figure 2.1 – Layers of the AWS AI/ML stack

As you can see from Figure 2.1, the AI/ML stack delivers on the goal of putting AI and ML
capabilities into the hands of every developer, by grouping the AWS capabilities into three
specific layers, where each layer comprises the typical AWS AI/ML resources that meet
both the use case requirements and the practitioner's level of comfort and expertise.

For example, should an expert ML practitioner desire to build their own model training
and hosting architecture using Kubernetes, then the bottom layer of the AI/ML stack
will provide them with all the AWS resources they will need to build this infrastructure.
Resources such as dedicated Elastic Compute Cloud (EC2) instances with all the ML
libraries pre-packaged as Amazon Machine Images (AMIs) for both CPU-based and
GPU-based model training and hosting. Hence the bottom-most layer of the AI/ML stack
requires a high degree of expertise, as the ML practitioner has the most flexibility, but also
the most difficult task of creating their own ML infrastructure to address the ML use case.

44 Automating Machine Learning Model Development Using SageMaker Autopilot

Alternatively, should a novice ML practitioner need to deliver an ML model that addresses
a specific use case, such as Object Detection in images and video, and they don't have the
necessary expertise, then the top layer of the AI/ML stack will provide them with the AWS
resources to accomplish this. For instance, one of the dedicated AI services within the top
layer, Amazon Rekognition, provides a pre-built capability to identify objects in both
images and video. This means that the ML practitioner can simply integrate the Rekognition
service into their production application without having to build, train, optimize, or even
host their own ML model. So, by using these applied AI services in the top layer of the stack,
details about the model, the training data used, or which hyperparameters were tuned are
abstracted away from the user. Consequently, these applied AI services are easier to use and
provide a faster mean time to delivery for the business use case.

As we go down the stack, we see that the ML practitioner is responsible for configuring
specific details about the model, the tuned hyperparameters, and the training datasets.
So, to help their customers with these tasks, AWS provides a dedicated service at the
middle layer of the AI/ML stack, called Amazon SageMaker. SageMaker fits comfortably
into the middle in that it caters to experienced ML practitioners by providing them with
the flexibility and functionality to handle complex ML use cases without having to build
and maintain any infrastructure. From the perspective of the novice ML practitioner,
SageMaker allows them to use its built-in capabilities to easily build, train, and deploy
simple and advanced ML use cases.

Even though SageMaker is a single AWS service, it has several capabilities or modules
that take care of all the heavy lifting for each step of the ML process. Both novice and
experienced ML practitioners can leverage the integrated ML development environment
(SageMaker Studio) or the Python SDK (SageMaker SDK) to explore and wrangle large
quantities of data and then build, train, tune, deploy, and monitor their ML models at
scale. Figure 2.2 shows how some of these SageMaker modules map to and scale each step
of the ML process:

Overview of SageMaker Autopilot 45

Figure 2.2 – Overview of SageMaker's capabilities

We will not be diving deeper into the capabilities highlighted in Figure 2.2, as we will be
leveraging some of the features in later chapters and, as such, we will be explaining how
they work then. For now, let's dive deeper into the native SageMaker module responsible
for automating the ML process, called SageMaker Autopilot.

Overview of SageMaker Autopilot
SageMaker Autopilot is the AWS service that provides AutoML functionality to its
customers. Autopilot addresses the various requirements for AutoML by piecing together
the following SageMaker modules into an automated framework:

• SageMaker Processing: Processing jobs take care of the heavy lifting and scaling
requirements of organizing, validating, and feature engineering the data, all using a
simplified and managed experience.

• SageMaker Built-in Algorithms: SageMaker helps ML practitioners to get started
with model-building tasks by providing several pre-built algorithms that cater to
multiple use case types.

• SageMaker Training: Training jobs take care of the heavy lifting and scaling tasks
associated with provisioning the required compute resources to train the model.

46 Automating Machine Learning Model Development Using SageMaker Autopilot

• Automatic Model Tuning: Model tuning or hyperparameter tuning scales the
model tuning task by allowing the ML practitioner to execute multiple training
jobs, each with a subset of the required parameters, in parallel. This removes the
iterative task of having to sequentially tune, evaluate, and re-train the model. By
default, SageMaker model tuning uses Bayesian Search (Random Search can
also be configured) to essentially create a probabilistic model of the performance
of previously used hyperparameters to select future hyperparameters that better
optimize the model.

• SageMaker Managed Deployment: Once an optimized model has been trained,
SageMaker Hosting can be used to deploy either a single model or multiple models
as a fully functioning API for production applications to consume in an elastic and
scalable fashion.

Tip
For more information on these SageMaker modules, you can refer to the AWS
documentation (https://docs.aws.amazon.com/sagemaker/
latest/dg/whatis.html).

Autopilot links these capabilities together, to create an automated workflow. The only
piece that the ML practitioner must supply is the raw data. Autopilot, therefore, makes
it easy for even the novice ML practitioner to automatically create a production-ready
model, just by simply supplying the data.

Let's get started with Autopilot so you can see for yourself just how easy this process
really is.

Overcoming automation challenges with
SageMaker Autopilot
In Chapter 1, Getting Started with Automated Machine Learning on AWS, we practically
highlighted the challenges that ML practitioners face when creating production-ready ML
models. By way of a recap, these challenges are grouped into two main categories:

• The challenges imposed by building the best ML model, such as sourcing and
understanding the data and then building the best model for the use case

• The challenges imposed by the ML process itself, the fact that it is complicated,
manual, iterative, and continuous

https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html

Overcoming automation challenges with SageMaker Autopilot 47

So, in order to better understand just how Autopilot overcomes these challenges, we must
understand the anatomy of the Autopilot workflow and how it compares to the example
ML process we discussed in Chapter 1, Getting Started with Automated Machine Learning
on AWS.

Before we begin to use Autopilot, we need to understand that there are multiple ways to
interface with the service. For example, we can use the AWS Command-Line Interface
(CLI), call the service Application Programing Interface (API) programmatically using
the Software Development Kits (SDKs), or simply use the SageMaker Python SDK.
However, Autopilot offers an additional, easy-to-use interface that is incorporated into
SageMaker Studio. We will use the SageMaker Studio IDE for this example.

The following section will walk you through applying an AutoML methodology to the
Abalone Calculator use case, with SageMaker Autopilot.

Getting started with SageMaker Studio
Depending on your personal or organizational usage requirements, SageMaker Studio
offers multiple ways to get started. For example, should an ML practitioner be working
as part of a team, AWS Single Sign-On (SSO) or AWS Identity & Access users can be
configured for the team. However, for this example use case, we will onboard to Studio
using the QuickStart procedure as it is the most convenient for individual user access.
The following steps will walk you through setting up the Studio interface:

1. Log into your AWS account and select an AWS region where SageMaker
is supported.

Note
If you are unsure which AWS regions support SageMaker, refer to the following
link: SageMaker Supported Regions and Quotas (https://docs.aws.
amazon.com/sagemaker/latest/dg/regions-quotas.html).

2. Navigate to the SageMaker service console by entering SageMaker in the search
bar, or by clicking on Amazon SageMaker from the Services dropdown.

3. Using the left-hand navigation panel, click Studio, under the SageMaker
Domain option.

https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html
https://docs.aws.amazon.com/sagemaker/latest/dg/regions-quotas.html

48 Automating Machine Learning Model Development Using SageMaker Autopilot

4. Since this is the first time a SageMaker Studio domain is being configured, the
Setup SageMaker Domain console will offer two setup options, namely Quick
setup and Standard setup. Figure 2.3 shows what the screen should look like:

Figure 2.3 – Getting started with SageMaker Studio

5. Select the Quick setup option, leaving Name, under User profile, as the default.
6. Click on the Default execution role dropdown and select Create a new role.
7. Once the Create an IAM role dialog opens, select the Any S3 Bucket option, as

shown in Figure 2.4:

Overcoming automation challenges with SageMaker Autopilot 49

Figure 2.4 – Create an IAM role dialog

8. Click on the Create role button to close the dialog box and return to the Setup
SageMaker Domain screen.

9. Click on the newly created IAM role to open the IAM console summary
page dashboard.

10. Now click on the Add inline policy link, in the Permissions policies section,
to open the Create policy screen.

11. Click the Import managed policy option, at the top right of the Create
policy screen.

12. Once the Import managed policies dialog opens, check the radio button next to
AdministratorAccess, and then click on the Import button.

13. On the Create policy screen, click on the Review policy button.

50 Automating Machine Learning Model Development Using SageMaker Autopilot

14. Once the Review policy screen opens, provide a name for the policy, such as
AdminAccess-InlinePolicy, and then click the Create policy button.

Note
Providing administrator access to the SageMaker execution role is not a
recommended practice in a production scenario. Since we will access various
other AWS services throughout the hands-on examples within this book, we
will use the administrator access policy to streamline service permissions.

15. Close the IAM console tab and go back to the SageMaker console.
16. Leave the rest of the Setup SageMaker Domain options as their defaults and click

the Submit button.
17. If you are prompted to select a VPC and subnet, select any subnet in the default

VPC and click the Save and continue button.

Note
If you are unfamiliar with what a VPC is, you can refer to the following AWS
documentation (https://docs.aws.amazon.com/vpc/latest/
userguide/what-is-amazon-vpc.html).

18. After a few minutes, the SageMaker Studio domain and user will be configured and,
as shown in Figure 2.5, you should see the SageMaker domain:

Figure 2.5 – Studio control panel

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

Overcoming automation challenges with SageMaker Autopilot 51

19. Click on the Launch app drop-down box next to the default name you created in
step 5 and click Studio to launch the Studio IDE web interface.

20. Studio will take a few minutes to launch since this is the first time the Jupyter server
is being initialized.

Now that we have the Studio UI online, we can start using Autopilot. But first, we need
our raw data.

Preparing the experiment data
Autopilot treats every invocation of the ML process as an experiment and, as you will see,
creating an experiment using Studio is simple and straightforward. However, before the
experiment can be initiated, we need to provide the experiment with raw data.

Recall from Chapter 1, Getting Started with Automated Machine Learning on AWS, that
the raw data was downloaded from the UCI repository. We have provided a copy of this
data, along with the column names already added in the accompanying GitHub repository
(https://github.com/PacktPublishing/Automated-Machine-Learning-
on-AWS/blob/main/Chapter02/abalone_with_headers.csv). In order for
any of the SageMaker modules to interact with data, the data needs to be uploaded to the
AWS cloud and stored as an object, using the Amazon Simple Storage Service (S3).

Note
You can review the product website (https://aws.amazon.com/s3) if
you are unfamiliar with what S3 is and how it works.

Use the following procedure to upload the raw data, for the Autopilot experiment, to S3:

1. Download the preceding file from the accompanying repository to your
local machine.

2. To upload the file to Amazon S3, open the S3 console (https://s3.console.
aws.amazon.com/s3) in a new web browser tab and then click the bucket name
that starts with sagemaker-studio. This S3 bucket was automatically created for you
when you used the QuickStart process to onboard to Studio.

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter02/abalone_with_headers.csv
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter02/abalone_with_headers.csv
https://aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3

52 Automating Machine Learning Model Development Using SageMaker Autopilot

3. As Figure 2.6 shows, the sagemaker-studio-… bucket is empty. To upload the
raw data file to the bucket, click the Upload button to open the dialog shown in
Figure 2.6:

Figure 2.6 – SageMaker Studio bucket

4. On the Upload dialog screen, simply drag and drop the abalone_with_
headers.csv file from its download location to the Upload dialog screen. Then
click the Upload button, as shown in Figure 2.7:

Overcoming automation challenges with SageMaker Autopilot 53

Figure 2.7 – File upload

5. Once the file has been uploaded, click the Close button.

Now we have our data residing in AWS, we can use it to initiate the Autopilot experiment.

54 Automating Machine Learning Model Development Using SageMaker Autopilot

Starting the Autopilot experiment
Now that the data has been uploaded, we can use it to kick off the Autopilot experiment:

1. Using the Studio UI, click the SageMaker Components and registries icon on the
left sidebar:

Figure 2.8 – SageMaker Component and registries icon
This will open the SageMaker resources navigation pane.

Tip
If you are unfamiliar with navigating the Studio UI, refer to the Amazon
SageMaker Studio UI Overview in the AWS documentation (https://
docs.aws.amazon.com/sagemaker/latest/dg/studio-ui.
html).

2. From the drop-down menu, select Experiments and trials and then click the
Create Autopilot Experiment button, as shown in Figure 2.9, to launch the Create
experiment tab:

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-ui.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-ui.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-ui.html

Overcoming automation challenges with SageMaker Autopilot 55

Figure 2.9 – Create Autopilot Experiment

3. The Create experiment tab enables you to set the key configuration parameters for
the Autopilot experiment.

4. In the AUTOPILOT EXPERIMENT SETTINGS dialog, enter the following
important settings for the experiment (all other settings can be left at their defaults):

 � Experiment name: This is the name of the experiment and it must be unique,
in order to track lineage and the various assets created by Autopilot. For this
example, enter abalone-v0 as the experiment name:

Figure 2.10 – Experiment name

Tip
In practice, it is a good idea to include the date and time the experiment
was initiated or some other form of versioning information, as part of
the experiment name. This way, the ML practitioner can easily track the
experiment lineage as well as the various experiment assets and ensure these
are distinguishable between multiple experiments. For example, if we were
creating an experiment for the abalone dataset on July 1, 2021, we could name
the experiment abalone-712021-v0.

56 Automating Machine Learning Model Development Using SageMaker Autopilot

 � Input Data Location: This is the S3 bucket location that contains the raw dataset
you uploaded in the previous section. Using the S3 bucket name dropdown, select
the bucket that starts with sagemaker-studio. Under Dataset file name, select the
abalone_with_headers.csv file that you previously uploaded:

Figure 2.11 – Input data location

 � Target Attribute Name: This is the name of the feature column, within the raw
dataset, on which Autopilot will learn to make accurate predictions. In the Target
drop-down box, select rings as the target attribute:

Figure 2.12 – Target attribute name

Note
The fact that the ML practitioner must supply a target label highlights
a critical factor that must be taken into consideration when using Autopilot.
Autopilot only supports supervised learning use cases. Basically, Autopilot
will only try to fit supported models for regression and classification
(binary and multi-class) problems.

Overcoming automation challenges with SageMaker Autopilot 57

 � Output data location: The S3 bucket location for any artifacts that are produced
by the experiment. From the S3 bucket name dropdown, select the bucket that
starts with sagemaker-studio. Then, enter output for Dataset directory name to
store the experiment output data:

Figure 2.13 – Output data location

 � Problem Type: This field specifies the type of ML problem to solve. As already
noted, this can be a regression, binary classification, or multiclass classification
problem. For this example, we will let Autopilot determine which of these
problems we are trying to solve by selecting Auto from the drop-down box:

Figure 2.14 – Problem type

Tip
Some of the more experienced ML practitioners might be able to immediately
determine the type of problem, based on the use case, and can therefore specify
the Autopilot problem type. Should a novice ML practitioner not be able to
deduce the type of ML problem, they should set this parameter to Auto, since
Autopilot has the capability to determine the type of ML problem.

58 Automating Machine Learning Model Development Using SageMaker Autopilot

 � Auto deploy: This option specifies whether to automatically deploy the best model
as a production-ready, SageMaker-hosted endpoint. For this example, set the Auto
deploy option to Off so as not to incur unnecessary AWS costs:

Figure 2.15 – Auto deploy

5. To start the automated experiment, click the Create Experiment button.

The experiment is now running and, as you can see, the process of creating a production-
grade model using Autopilot is straightforward. However, you are probably wondering
what's actually happening in the background, to produce this production-grade model.
Let's take a behind-the-scenes look at what's actually going on in the experiment.

Running the Autopilot experiment
Once the experiment has been created, Autopilot will create the best possible candidate
for production. The overall process will take approximately 2 hours to complete and the
progress can be tracked in a Studio UI tab dedicated to the experiment. Figure 2.16 shows
an example experiment tab:

Figure 2.16 – Experiment tab

Overcoming automation challenges with SageMaker Autopilot 59

As the experiment progresses, the various trails that make up the experiment will be
displayed in the experiment tab, along with the trial that produces the best model and its
overall evaluation score. Figure 2.17 shows an example of a completed experiment:

Figure 2.17 – Completed experiment

Once the experiment has been completed, you can right-click on the best model (or any
of the other trials) and view the specific details. The following important details on the
model are provided:

• The type of ML problem that Autopilot evaluated, based on the raw data

• The algorithm it used to address the assessed ML problem

• The metrics obtained from training the model and used to assess its performance

• The optimization parameters used to tune the model

• The S3 location for the various artifacts that were produced throughout the process

• An explainability report detailing the contribution of each feature, within the raw
dataset, to the prediction

• The capability to deploy the model as a SageMaker hosted endpoint

So, by means of a simple process, all the heavy lifting tasks for data analysis, model
building, training, evaluation, and tuning have been automated and managed by
Autopilot, making it easy for the novice ML practitioner to overcome the two main
challenges imposed by the ML process.

60 Automating Machine Learning Model Development Using SageMaker Autopilot

While this may suffice for an inexperienced application developer or novice ML
practitioner to simply get a model into production, a more experienced ML practitioner
may require more proof of why the particular model is the best and how it was produced.
Figure 2.18 shows an overview of how Autopilot produces the best models:

Figure 2.18 – Overview of the AutoML process used by Autopilot

As you can see from Figure 2.18, there are six key tasks that Autopilot is automatically
executing in the background:

1. Data Analysis
2. Candidate Generation
3. Feature Engineering
4. Candidate Tuning
5. Best Candidate
6. Candidate Deployment

Let's follow each step of the process in detail.

Overcoming automation challenges with SageMaker Autopilot 61

Data preprocessing
The first step of the ML process is to access the raw dataset and understand it, in order
to clean it up and prepare it for model training. Autopilot does this automatically for
us executing the data analysis and preprocessing step. Here, Autopilot leverages the
SageMaker Processing module to statistically analyze the raw dataset and determine
whether there are any missing values. Autopilot then shuffles and splits the data for model
training and stores the output data in S3. Once the raw data has been preprocessed, it's
ready for the model candidate generation step.

Should Autopilot encounter any missing values within the dataset, it will attempt to fill
in the missing data using a number of different techniques. For example, for any missing
categorical values, Autopilot will create a distinct unknown category feature. Alternatively,
for any missing numeric values, Autopilot will try to impute the value using the mean or
median of the feature column.

Generating AutoML candidates
The next step that Autopilot performs is to generate model candidates. In essence, each
candidate is an AutoML pipeline definition that details the individual parts of a workflow
that produces an optimized model candidate, or best model. Based on Autopilot's
statistical understanding of the data, each candidate definition details the type of model to
be trained and then, based on that model candidate, the data transformations necessary to
engineer features that best suit the algorithm.

Depending on which problem type setting was specified when creating the experiment,
Autopilot will select the appropriate algorithm from SageMaker's built-in estimators. In
the case of the Abalone Calculator example, Auto was selected, and therefore, Autopilot
deduces from analyzing the dataset that this is a regression problem, so it creates
candidate definitions that each implement a variation of the Linear Learner Algorithm,
XGBoost Algorithm, and a Multi-layer Perceptron deep learning algorithm. Each of these
candidates has its own set of training and testing data, as well as the specific ranges of
hyperparameters to tune on. Autopilot creates up to 10 candidate definitions.

Tip
For more information on Autopilot's supported algorithms, you can review
the Model Support and Validation section of the AWS documentation
(https://docs.aws.amazon.com/sagemaker/latest/dg/
autopilot-model-support-validation.html).

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html

62 Automating Machine Learning Model Development Using SageMaker Autopilot

Figure 2.18 highlights the outputs from the Candidate Generation step, two
Jupyter notebooks:

• Data Exploration Notebooks: This notebook provides an overview of the data that
was analyzed during the Data Analysis step and provides guidance for the ML
practitioner to investigate further.

• Candidate Definition Notebooks: This notebook provides a detailed overview
of the model candidates, recommended data processing for the candidate, and
what hyperparameters should be tuned to optimize the candidate. The notebook
even generates Python code cells, with the appropriate SageMaker SDK calls, to
reproduce the candidate pipeline, thus giving the novice ML practitioner a how-to
guide on reproducing a production-ready model.

If you recall from Chapter 1, Getting Started with Automated Machine Learning on AWS,
one of the earmarks of an efficient AutoML process is the fact that the process must be
repeatable. By providing candidate definition notebooks, not only does Autopilot provide
a how-to guide for the ML practitioner but also allows them to build upon the process and
create their own candidate pipelines.

Tip
Since AutoML technically only needs to be executed once, to get the best
candidate for production deployment, these notebooks can be used as a
foundation to further customize and develop the model.

Before these model candidates can be trained, the raw data must be formatted to suit the
specific algorithm that the candidate pipeline will use. This process happens next.

Automated feature engineering
The next step of the AutoML process is the feature engineering stage. Here, Autopilot
once again leverages the SageMaker Processing module to engineer these new features,
specific to each model candidate. Autopilot then creates training and validation dataset
variations that include these features and stores these on S3. Each candidate now has its
own formatted training and testing dataset. Now the training process can begin.

Automated model tuning
At this stage of the process, Autopilot has the necessary components to train each of
the candidate models. Unlike the typical ML process, where each candidate is trained,
tuned, and evaluated, Autopilot leverages SageMaker's automatic model tuning module to
execute the process in parallel.

Overcoming automation challenges with SageMaker Autopilot 63

As explained at the outset of this chapter, the hyperparameter optimization module uses
Bayesian Search to find the best parameters for the model. However, Autopilot takes
this one step further and leverages SageMaker's native capability to extend the tuning
capability across multiple algorithms as well. In essence, Autopilot not only finds the best
hyperparameters for an individual model candidate but the best hyperparameters when
compared to all the other model candidates.

As already mentioned, Autopilot performs this process in parallel, training, tuning, and
evaluating each model candidate with a subset of hyperparameters in order to get the best
model candidate and associated hyperparameters for that subset, as a trial. The process
is then repeated, constantly refining the hyperparameters, up to the default of 250 trials.
This capability greatly reduces the overall time taken to produce an optimized model to a
matter of hours as opposed to days or weeks when using a manual ML process.

The tuning process produces up to 250 candidate models. Let's review these candidate
models next.

Candidate model selection
As Figure 2.17 highlights, the model that produces the best evaluation metric result is
labeled Best.

The outputs from this step are the models and the associated artifacts for each trial and
an explainability report. Autopilot uses another SageMaker module, called SageMaker
Clarify, to produce this report.

Clarify helps ML practitioners understand how and why trained models make certain
predictions, by quantifying the contribution that each feature of the dataset makes
towards the model's overall prediction. This helps not only the ML practitioner but also
the use case stakeholders, to understand how the model determines its predictions.
Understanding why a model makes certain predictions promotes further trust in the
model's capability to address the goals and requirements of the business use case.

Tip
For more information on the process that SageMaker Clarify uses to
quantify feature attributions, you can refer to the Model Explainability
page in the SageMaker documentation (https://docs.aws.
amazon.com/sagemaker/latest/dg/clarify-model-
explainability.html).

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-explainability.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-explainability.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-explainability.html

64 Automating Machine Learning Model Development Using SageMaker Autopilot

The experiment is now complete, so all that's left for the ML practitioner to do is deploy
the best candidate into production.

Candidate model deployment
The best model can now be automatically, or manually, deployed as a SageMaker Hosted
Endpoint. This means that the best candidate is now an API that can be programmatically
called upon to provide predictions for the production application. However, simply
deploying the model into production doesn't stop the ML process. The process is
continuous and there are a number of tasks still to be performed after experimentation.

Post-experimentation tasks
In the previous chapter, we emphasized that the CRISP-DM methodology ends
with the model being deployed into production, and we also highlighted that
producing a production-ready model is not necessarily the conclusion of an
ML practitioner's responsibilities.

The same concepts apply to the AutoML process. While Autopilot takes care of the
various steps to generate a production-ready model, this is typically a one-time process
for the specific use case and Autopilot concludes the experiment after the model has been
deployed. On the other hand, the ML practitioner's obligations are ongoing since the
production model needs to be continuously monitored to ensure that it does not drift
from its intended purpose.

However, by providing all the output artifacts for each model candidate as well as the
candidate notebooks, Autopilot lays a firm foundation for the novice ML practitioner to
close the loop on the ML process and continuously optimize future production models,
should the deployed model drift from its intended purpose.

Additionally, SageMaker hosted endpoints provide added functionality to assist with the
process of continuously monitoring the production model for concept drift. For example,
should the ML practitioner decide to manually deploy the best candidate model in the
Studio UI, they can enable data capture when selecting the best candidate and clicking on
the Deploy Model button. Figure 2.19 shows the options available before deploying the
model using the Studio UI:

Overcoming automation challenges with SageMaker Autopilot 65

Figure 2.19 – Deployment options

Enabling the Data capture settings configures the endpoint to capture all incoming
requests for prediction as well as the prediction responses from the deployed model.
The captured data can be used by SageMaker's Model Monitor feature to monitor the
production model in real time, continuously assessing its performance on unseen requests
and looking for concept deviations.

66 Automating Machine Learning Model Development Using SageMaker Autopilot

Tip
For more information on the types of monitoring that SageMaker Model
Monitor performs, you can refer to the SageMaker documentation
(https://docs.aws.amazon.com/sagemaker/latest/dg/
model-monitor.html).

From this example, you can see that by utilizing the Studio UI to create and manage an
AutoML experiment (with Autopilot), a software developer or novice ML practitioner
can easily produce a production-grade ML model with little to no experience and without
writing any code.

However, some experienced ML practitioners may prefer documents and codify the
experiment using a Jupyter notebook so that it is reproducible. In the next section, we will
look at how to codify the AutoML experiment.

Using the SageMaker SDK to automate
the ML experiment
In Chapter 1, Getting Started with Automated Machine Learning on AWS, you were
provided with sample code to walk through the manual and iterative ML process. Since
SageMaker is an AWS web service, we can also use code to interact with its various
modules using the Python SDK for AWS, or boto3. More importantly, AWS also provides
a dedicated Python SDK for SageMaker, called the SageMaker SDK.

In essence, the SageMaker SDK is a higher-level SDK that uses the underlying boto3 SDK
with a focus on ML experimentation. For example, to deploy a model as a SageMaker
hosted endpoint, an ML practitioner would have to use three different boto3 calls:

1. The ML practitioner must instantiate a trained model using the output artifact from a
SageMaker training job. This is accomplished using the create_model() method
from boto3's low-level SageMaker client, boto3.client("sagemaker").

2. Next, the ML practitioner must create a SageMaker hosted endpoint configuration,
specifying the underlying computer resources and additional configuration settings
for the endpoint. This is done using the create_endpoint_config() method
from the SageMaker client.

3. Finally, the create_endpoint() method is used to deploy the trained model
with the endpoint configuration settings.

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html

Using the SageMaker SDK to automate the ML experiment 67

Alternatively, the ML practitioner could accomplish the same objective by simply using
the deploy() method on an already trained model, using the SageMaker SDK. The
SageMaker SDK creates the underlying model, endpoint configuration, and automatically
deploys the endpoint.

Using the SageMaker SDK makes ML experimentation much easier for the more
experienced ML practitioner. In this next section, you will start familiarizing yourself with
the SageMaker SDK by working through an example to codify the AutoML experiment.

Codifying the Autopilot experiment
In the same way that an ML practitioner uses a Jupyter notebook to execute a manual and
interactive ML experiment, the Studio UI can also be used to accomplish these same tasks.
The Studio IDE provides basic Jupyter Notebook functionality and comes pre-installed
with all the Python libraries and deep learning frameworks an ML practitioner might use,
in the form of AWS engineered Jupyter kernels.

Tip
If you are unfamiliar with the concept of a Jupyter Kernel and how they
are used, you can refer to the Jupyter documentation website (https://
jupyter-notebook-beginner-guide.readthedocs.io/en/
latest/what_is_jupyter.html#kernel).

Let's see how this works by using a Jupyter notebook to execute the following sample code:

1. Using the Studio UI menu bar, select File | New | Notebook to open a blank
Jupyter notebook.

2. As Figure 2.20 shows, you will be prompted to select an appropriate kernel from
the selection of pre-installed kernels. From the drop-down list, select Python 3
(Data Science):

Figure 2.20 – Jupyter kernel selection

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel

68 Automating Machine Learning Model Development Using SageMaker Autopilot

3. In the background, Studio will initialize a dedicated compute environment, called a
KernelGateway. This compute environment, with 2 x vCPUs and 4 GB of RAM, is in
essence the engine that executes the various code cells within the Jupyter notebook.
It may take 2–3 minutes to initialize this compute environment.

4. Once the Kernel has started, we can create the first code cell, where we import
the SageMaker SDK and configure the SageMaker session by initializing the
Session() class. The Session() class is a wrapper for the underlying boto3
client, which governs all interactions with the SageMaker API, as well as other
necessary AWS services:

import sagemaker

import pandas as pd

role = sagemaker.get_execution_role()

session = sagemaker.session.Session()

Tip
If you are new to navigating through a Jupyter notebook, to execute a code
cell, you can either click on the run icon or press the Shift + Enter keys on the
highlighted cell.

5. Next, we can use the same code we used in Chapter 1, Getting Started with
Automated Machine Learning on AWS, to download the raw abalone dataset from
the UCI repository, add the necessary column headings, and then save the file as a
CSV file called abalone_with_headers.csv:

column_names = ["sex", "length", "diameter", "height",
"whole_weight", "shucked_weight", "viscera_weight",
"shell_weight", "rings"]

abalone_data = pd.read_csv("http://archive.ics.uci.edu/
ml/machine-learning-databases/abalone/abalone.data",
names=column_names)

abalone_data.to_csv("abalone_with_headers.csv",
index=False)

6. Now, we can configure the Autopilot experiment, using the AutoML() class and
using the following example code to create a variable called automl_job:

from sagemaker.automl.automl import AutoML

automl_job = AutoML(

 role=role,

 target_attribute_name="rings",

Using the SageMaker SDK to automate the ML experiment 69

 output_path=f"s3://{session.default_bucket()}/
abalone-v1/output",

 base_job_name="abalone",

 sagemaker_session=session,

 max_candidates=250

)

This variable will interact with the Autopilot experiment. As we did in the previous
section, we also supply the important parameters for the experiment:

 � target_attribute_name: The name of the feature column within the raw
dataset on which Autopilot will learn to make accurate predictions. Recall that this
is the rings attribute.

 � output_path: Where any artifacts that are produced by the experiment are
stored in S3. In the previous example, we used the default S3 bucket that was
created during the Studio onboarding process. However, in this example, we will
use the default bucket provided by the SageMaker Session() class.

 � base_job_name or the name of the Autopilot experiment. Since we already have
a version zero, we will name this experiment abalone-v1.

Note
No versioning information has been supplied to the base_job_name
parameter. This is because the SDK automatically binds the current date and
time for versioning.

7. To initiate the Autopilot experiment, we call the fit() method on the automl_
job variable, supplying it with the S3 location of the raw training data. We also call
the SageMaker session upload() method, as a parameter to the fit() method
since the data has not yet been uploaded to the default S3 bucket. The upload()
method takes the bucket name (the SageMaker default bucket) and the prefix (the
folder structure) as parameters to automatically upload the raw data to S3. The
following code shows an example of how to correctly call the fit() method:

automl_job.fit(inputs=session.upload_data("abalone_with_
headers.csv", bucket=session.default_bucket(), key_
prefix="abalone-v1/input"), wait=False)

At this point, the Autopilot experiment has been started and, as was shown in the previous
section, the experiment can be monitored using the Experiments and trials dropdown in
the SageMaker Components and registries section of the Studio UI. Right-click on the
current Autopilot experiment and select Describe AutoML Job.

70 Automating Machine Learning Model Development Using SageMaker Autopilot

Alternatively, we can use the describe_auto_ml_job() method on the
automl_job variable to programmatically get the current overview of the Autopilot job.

Note
Make a note of the automatically generated versioning information that the
SDK appends to the job name. As you will see later, this job name is used to
programmatically explore the experiment as well as to clean it up.

To make the experiment reproducible, some ML practitioners might want to include a
visual comparison of the resultant models. Now that the AutoML experiment is underway,
we can wait for it to complete to see how the models compare and explore how the
SageMaker SDK enables experiment analysis.

Analyzing the Autopilot experiment with code
Once the Autopilot experiment has been completed, we can use the analytics() class
from the SageMaker SDK to programmatically explore the various model candidates (or
trials) to compare candidate evaluation results, in the same way we used the Studio UI in
the previous section.

Let's analyze the experiment by using the same Jupyter notebook to execute the following
sample code:

1. The first thing we need to do is load the ExperimentAnalytics() class from
the SageMaker SDK to get the trial component data and make them available for
analysis. By providing the name of the Autopilot experiment, the following sample
code instantiates the automl_experiment variable, whereby we can interact
with the experiment results. Additionally, since the SageMaker SDK automatically
generates the versioning information for the experiment name, we can once again
use the describe_auto_ml_job() method to find the AutoMLJobName:

from sagemaker.analytics import ExperimentAnalytics

automl_experiment = ExperimentAnalytics(

 sagemaker_session=session,

 experiment_name="{}-aws-auto-ml-job".format(automl_
job.describe_auto_ml_job()["AutoMLJobName"])

)

2. Next, the following sample code converts the returned experiment analytics
object into a pandas DataFrame for easier analysis:

df = automl_experiment.dataframe()

Using the SageMaker SDK to automate the ML experiment 71

3. An example of such analysis might be to visually compare the evaluation results
of the top five trials. The following sample code filters the DataFrame by the
latest evaluation accuracy metrics, validation:accuracy – Last and
train:accuracy - Last, on both the training dataset and validation dataset
respectively, and then sorts these values in ascending order:

df = df.filter(["TrialComponentName","validation:accuracy
- Last", "train:accuracy - Last"])

df = df.sort_values(by="validation:accuracy - Last",
ascending=False)[:5]

df

Figure 2.21 shows what an example of this DataFrame would look like:

Figure 2.21 – Sample top 5 trials

4. We can further visualize the comparison using a plot by means of the
matplotlib library:

import matplotlib.pyplot as plt

%matplotlib inline

legend_colors = ["r", "b", "g", "c", "m"]

ig, ax = plt.subplots(figsize=(15, 10))

legend = []

i = 0

for column, value in df.iterrows():

 ax.plot(value["train:accuracy - Last"],
value["validation:accuracy - Last"], "o", c=legend_
colors[i], label=value.TrialComponentName)

 i +=1

plt.title("Training vs.Testing Accuracy",
fontweight="bold", fontsize=14)

72 Automating Machine Learning Model Development Using SageMaker Autopilot

plt.ylabel("validation:accuracy - Last",
fontweight="bold", fontsize=14)

plt.xlabel("train:accuracy - Last", fontweight="bold",
fontsize=14)

plt.grid()

plt.legend()

plt.show()

Figure 2.22 shows an example of the resultant plot:

Figure 2.22 – Plot of the top 5 trials

Using the ExperimentAnalytics() class is a great way to interact with the various
trials of the experiment, however, you want to simply see which trial produces the best
candidate. By calling the best_candidate() method on the Autopilot job, we can
not only see which trial produced the best candidate, but also the value of the candidate's
final evaluation metric. For example, the following sample code produces the name of the
best candidate:

automl_job.best_candidate()["CandidateName"]

Using the SageMaker SDK to automate the ML experiment 73

When executing the preceding code in the Jupyter notebook, you will see an output
similar to the following:

'abalone-2021-07-05-17-07-15-99Qg-240-9bfa065e'

Likewise, the following sample code can be executed in an additional notebook cell to see
the best candidate's evaluation metrics:

automl_job.best_candidate()["FinalAutoMLJobObjectiveMetric"]

The results of this code will be similar to the following:

{'MetricName': 'validation:accuracy', 'Value':
0.292638897895813}

Additionally, just as with the example in the previous section, you can also
programmatically view the S3 location of the Data Exploration notebook, Candidate
Definition notebook, and the Explainability Report.

The following code samples can be used to get this information:

• Data Exploration Notebook:

automl_job.describe_auto_ml_job()["AutoMLJobArtifacts"]
["DataExplorationNotebookLocation"]

• Candidate Definition Notebook:

automl_job.describe_auto_ml_job()["AutoMLJobArtifacts"]
["CandidateDefinitionNotebookLocation"]

• Explainability Report:

automl_job.describe_auto_ml_job()["BestCandidate"]
["CandidateProperties"]["CandidateArtifactLocations"]
["Explainability"]

Using the analytics() class of the SageMaker SDK and, the various Autopilot output
artifacts has allowed us to gain further insight into the experiment. All that's left is to
deploy the production model.

74 Automating Machine Learning Model Development Using SageMaker Autopilot

Deploying the best candidate
The last part of the AutoML process is to deploy the best model as a production API, as a
SageMaker hosted endpoint. To provide for this functionality, the SageMaker SDK once
again provides a simple method, called deploy().

Note
Hosting the best model on SageMaker will incur AWS usage costs that exceed
what is provided by the free tier.

Let's run the following code to deploy the best model:

automl_job.deploy(

 initial_instance_count=1,

 instance_type="ml.m5.xlarge",

 candidate=automl_job.best_candidate(),

 sagemaker_session=session,

 endpoint_name="-".join(automl_job.best_candidate()
["CandidateName"].split("-")[0:7])

)

As was the case with the fit() method, simply calling the deploy() method and
providing some important parameters will create a hosted endpoint:

• We need to supply the type of computer resources to process inference requests
by supplying the instance_type parameter. In this case, we selected the
ml.m5.xlarge instance.

• We then need to specify the number of instances. In this case, we are specifying
one instance.

• We can either deploy a specific candidate, by providing the Python dictionary for
the specific candidate or, if no candidate is provided, the deploy() method will
automatically use the best candidate.

• Lastly, we need to provide the unique name for the endpoint. This name will be used
to provide model predictions to the business application.

Using the SageMaker SDK to automate the ML experiment 75

Tip
When naming the endpoint, it is a good practice to use the versioning
information supplied to the experiment in order to tie specific endpoints
to the experiment that produced them. From the preceding sample Python
code, you can see that we derived endpoint_name by using the best_
candidate() method and filtering the response by "CandidateName".

Once the code cell is executed, SageMaker will automatically deploy the best model on the
specific compute resources and make the endpoint API available for inference requests,
thus completing the experiment.

Note
Unlike the preceding example, where the Studio UI is used to deploy the
model, using the AutoML() class from the SageMaker SDK does not include
the ability to enable data capture when deploying a model. Recall that the
ability to capture both inference requests and inference responses enables
the ML practitioner to use this data to continuously monitor a production
model. It is recommended that you use the SageMaker SDK's Model() class
to deploy the model. This class allows you to specify the data_capture_
config parameter, should you wish to close the loop on continuous model
monitoring. You can learn more about the Model() class in the SageMaker
SDK documentation (https://sagemaker.readthedocs.io/en/
stable/api/inference/model.html#sagemaker.model.
Model.deploy).

As was the case with the typical ML process, highlighted in Chapter 1, Getting Started
with Automated Machine Learning on AWS, the deployed model can now be handed over
to the application development owners for them to test and integrate the model into
the production application. However, since the intended purpose of this example was
to simply demonstrate how to make the required SageMaker SDK calls to execute the
AutoML experiment, we are not going to use the model to test inferences. Instead, the
next section demonstrates how to delete the endpoint.

76 Automating Machine Learning Model Development Using SageMaker Autopilot

Cleaning up
To avoid unnecessary AWS usage costs, you should delete the SageMaker hosted endpoint.
This can be accomplished by using the AWS SageMaker console (https://console.
aws.amazon.com/sagemaker) or by using the AWS CLI. Run the following
commands in the Jupyter notebook to clean up the deployment:

1. Using the AWS CLI, delete the SageMaker hosted endpoint:

!aws sagemaker delete-endpoint --endpoint-name {"-".
join(automl_job.best_candidate()["CandidateName"].
split("-")[0:7])}

2. Then use the AWS CLI to also delete the endpoint configuration:

!aws sagemaker delete-endpoint-config --endpoint-
config-name {"-".join(automl_job.best_candidate()
["CandidateName"].split("-")[0:7])}

Tip
If you wish to further clean up the various trials from the experiment,
you can refer to the Clean Up section of the SageMaker documentation
(https://docs.aws.amazon.com/sagemaker/latest/dg/
experiments-cleanup.html).

From the perspective of automating the ML process, you should now be acquainted with
how the Autopilot module can be used to realize an AutoML methodology, and how the
SageMaker SDK can be used to create a codified and documented AutoML experiment.

https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker
https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-cleanup.html
https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-cleanup.html

Summary 77

Summary
This chapter introduced you to some of AWS's AI and ML capabilities, specifically Amazon
SageMaker's. You saw how to interact with the service via the SageMaker Studio UI and the
SageMaker SDK. Using hands-on examples, you learned how Autopilot's implementation
of the AutoML methodology addresses not only the two challenges imposed by the typical
ML process but also the overall criteria for automation. Particularly, how using Autopilot
ensures that the ML process is reliable and streamlined. The only task required to be done
by the ML practitioner is to upload the raw data to Amazon S3.

This chapter also highlights an important aspect of the AutoML methodology. While the
AutoML process is repeatable in the sense that it will always produce an optimized model,
once you have the model in production, there is no real need to recreate it, unless, of
course, the business use case changes. Nevertheless, Autopilot creates a solid foundation
to help an ML practitioner continuously optimize the production model, by providing
Candidate Notebooks, model Explainability Reports, and enabling Data Capture to
monitor the model for concept drift. So, using the AutoML methodology is a great way for
ML practitioners to automate their initial ML experiments.

Worth noting is a drawback of Autopilot's implementation of the AutoML methodology.
Autopilot only supports Supervised Learning use cases – ones that use Regression or
Classification models.

In the next chapter, you will learn how to apply the AutoML methodology to more
complicated ML use cases that require advanced deep learning models, using the
AutoGluon package.

3
Automating

Complicated Model
Development with

AutoGluon
In Chapter 1, Getting Started with Automated Machine Learning on AWS, you were
introduced to the ACME Fishing Logistics use case, where you created a production-
grade MLP model using a typical ML process. While the example only highlights a basic
artificial neural network architecture, it also provides a suitable introduction to the
concept of deep learning.

Deep learning is an advanced ML technique that can be used to solve complex and
challenging use cases such as customer sentiment analysis, language translation, and
object detection images and videos. These complex use cases often require the ML
practitioner to create very intricate, as well as exceptionally large, neural network
architectures. Some of these architectures can have hundreds of thousands, even billions,
of trainable parameters. The more complicated the network, the more challenging it
becomes to train and therefore, the more challenging it becomes to automate.

80 Automating Complicated Model Development with AutoGluon

As we highlighted in the previous chapter, SageMaker Autopilot only supports tabular
data. Thus, more complicated deep learning use cases that would require image data are
not supported. So how can we apply an AutoML methodology to automate the ML process
for these complex use cases, ones that require deep learning models?

In this chapter, we will investigate how this can be accomplished by using the AutoGluon
Python library and illustrate how Amazon SageMaker can still be used to effectively apply
an AutoML methodology to some of these more complex deep learning use cases. We will
also use this opportunity to show you some of the cutting-edge capabilities of SageMaker
by introducing you to SageMaker's Bring Your Own Container (BYOC) functionality, as
well as AWS Deep Learning Containers. We will be making use of this capability quite
extensively throughout the book. Specifically, we will focus on the following topics:

• Introducing the AutoGluon library

• Using AutoGluon for tabular data

• Using AutoGluon for image data

By the end of the chapter, you will have a practical understanding of what the AutoGluon
library is and how to use it.

Technical requirements
Since we will once again be using the SageMaker Studio UI, the technical requirements for
this chapter are the same as Chapter 2, Automating Machine Learning Model Development
Using SageMaker Autopilot:

• A web browser (for the best experience, it is recommended that you use a Chrome
or Firefox browser).

• Access to the AWS account that you used in Chapter 2, Automating Machine
Learning Model Development Using SageMaker Autopilot.

• We will once again be working within the usage limits of the AWS Free Tier to avoid
exceeding unnecessary costs.

Introducing the AutoGluon library 81

Introducing the AutoGluon library
AutoGluon is a Python library developed by AWS and open sourced at their annual
re:Invent conference, in 2019. The primary design goal behind AutoGluon is similar
to SageMaker's Autopilot module – to resolve all the complexities and challenges an
ML practitioner faces in a typical ML process and resolve these with a single Python
library. In essence, AutoGluon empowers the ML practitioner to organize their training
data and apply several ML approaches to generate an optimized model, all with just a
few lines of code.

AutoGluon overcomes some of the limitations that AutoPilot has in that it can address
the more complex ML use cases that involve compound types of data, such as cluttered
text data and images. Of course, AutoGluon also works with tabular data. AutoGluon
accomplishes this by creating separate predictors for each data type and, hence, each
type of ML use case that the data type supports. For example, AutoGluon includes the
following predictors:

• Tabular Predictor: This predictor is like Autopilot's functionality as it is used to
create an optimized model to predict column values from tabular data and, just like
Autopilot, this applies to both the classification and regression use cases.

• Image Predictor: This predictor focuses on generating models that predict the
named category for entire images. For example, if we had a dataset containing
labeled images of cats and dogs, the image predictor would create an optimized
model to predict whether a new image falls under the cat or dog category.

• Object Detector: Using this predictor builds an optimized model with the ability
to distinctly recognize different objects in a single image. For example, if we supply
a model trained using the object detector with an image of a boy and his dog, the
model would be able to differentiate between the two individual objects.

• Text Predictor: This predictor provides functionality similar to the Tabular
Predictor in that it creates an optimized model to perform regression and
classification prediction tasks on text data. For example, if a model were optimized
using the Text Predictor, given a string of text, it would be able to classify the
sentiment of the sentence.

Note
The Text Predictor uses tabular training data for classification and regression in
a similar way to how the Tabular Predictor uses tabular data. The key difference
is that the Tabular Predictor will feature the text while the Text Predictor will fit
directly to the raw text. In other words, the Tabular Predictor will convert the
text columns of the tabular data into a vector (or numerical) representation. On
the other hand, the Text Predictor will work directly with the raw text.

82 Automating Complicated Model Development with AutoGluon

While this is just a high-level introduction to AutoGluon, the best way to see its
capabilities in action is to work through a hands-on example. Let's experiment with
AutoGluon on the ACME Fishing Logistics use case.

Tip
For more information on these built-in predictors and how to make a single
Python call to fit these onto the raw data, you can review the AutoGluon
documentation (https://auto.gluon.ai/stable/api/
autogluon.predictor.html).

Using AutoGluon for tabular data
In the previous chapter, we used Autopilot to see an example AutoML experiment
that applies to the ACME Fishing Logistics use case. In this example, we are going to
reproduce this experiment with AutoGluon. So, let's see how we can use AutoGluon to
automate this task.

Note
The AutoGluon Tabular library benefits from compute instances with as
much memory as possible. It is, therefore, recommended that AWS M5
instances (https://aws.amazon.com/ec2/instance-types/
m5/) are used for tabular experiments. We will be using an m5.xlarge
instance in this example and, therefore, running the example will incur AWS
resource costs.

Prerequisites
Before we begin, there are a few fundamental topics that need to be accounted for, namely:

• At the time of writing, the AutoGluon library is not natively included as one of
SageMaker's built-in estimators. This means that we will have to create our own
Docker container for AutoGluon, using the SageMaker BYOC methodology and
AWS Deep Learning Containers.

• Unless we use SageMaker managed notebook instances (https://docs.aws.
amazon.com/sagemaker/latest/dg/nbi.html), which have native
support for the Docker daemon, there is no inherent functionality for building
Docker containers when using SageMaker Studio.

https://auto.gluon.ai/stable/api/autogluon.predictor.html
https://auto.gluon.ai/stable/api/autogluon.predictor.html
https://aws.amazon.com/ec2/instance-types/m5/
https://aws.amazon.com/ec2/instance-types/m5/

Using AutoGluon for tabular data 83

To address these constraints while still using the Studio UI for this example, AWS has
provided an open source CLI utility called sagemaker-studio-image-build
(https://github.com/aws-samples/sagemaker-studio-image-build-
cli). This utility allows us to build a SageMaker-compatible container within the Studio
UI and, that way, we can now build and run the AutoGluon example from within the
Studio environment. In the background, the sagemaker-studio-image-build
library uses the fully managed build service, AWS CodeBuild, to build the Docker image.
To access the service, the Studio execution role requires the appropriate access.

Note
If you are unfamiliar with AWS CodeBuild and how it works, you can refer to
the product web page (https://aws.amazon.com/codebuild).

Configuring service permissions
The following steps will walk you through how to configure the appropriate permissions
for the SageMaker execution role:

1. Log in to your AWS account, navigate to the Amazon SageMaker management
console, and click the SageMaker Domain link in the left-hand navigation panel.

Note
You should already have onboarded to SageMaker Studio. If not, refer to
the Getting started with SageMaker Studio section in Chapter 2, Automating
Machine Learning Model Development Using SageMaker Autopilot.

2. Once the SageMaker Domain screen is open, make a note of the name of the
Execution role in the Domain section. We will use the Amazon Resource Name
(ARN) of the execution role to assign it the necessary permissions.

3. Now, open the Identity and Access Management (IAM) console (https://
console.aws.amazon.com/iam/home) in a new browser tab.

4. On the left-hand navigation panel, click on Roles, under the Access management
section, to open the Roles dashboard.

5. Find the execute role that you made a note of in step 2 and click on it. The role name
should start with AmazonSageMaker-ExecutionRole-XXX.

6. In the role's Summary dashboard, click on the Trust relationships tab and then the
Edit trust relationship button.

https://aws.amazon.com/codebuild
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home

84 Automating Complicated Model Development with AutoGluon

7. Delete the existing Policy Document name and paste the following policy into
the window. This will provide the execution role with trust access to both the
SageMaker service and the CodeBuild service:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "Service": [

 "codebuild.amazonaws.com",

 "sagemaker.amazonaws.com"

]

 },

 "Action": "sts:AssumeRole"

 }

]

}

8. Click on the Update Trust Policy button.

Now that we have the necessary permissions to access the CodeBuild service, we can now
use the Studio UI to prepare the custom SageMaker container.

Building a deep learning container
In order to build a custom container for AutoGluon, we need to provide detailed
build instructions. For containers, these build instructions are included in a file called
a Dockerfile.

Note
If you are unfamiliar with how to build Docker containers or how to construct
a Dockerfile, you can refer to the Dockerfile reference documentation
(https://docs.docker.com/engine/reference/builder/).

https://docs.docker.com/engine/reference/builder

Using AutoGluon for tabular data 85

However, instead of building a Dockerfile from scratch, AWS provides pre-built
container images and Dockerfile references for SageMaker, called Deep Learning
Containers, or DL Containers (https://aws.amazon.com/machine-learning/
containers/). These DL container images are engineered by AWS to support multiple
deep learning frameworks (TensorFlow, PyTorch, and Apache MXNet) and are optimized
for running ML use cases on the AWS cloud. Using these container images means you
don't have to worry about configuring all the necessary Python dependencies and versions
that these frameworks normally require. Alongside these deep learning frameworks,
AWS also provides a pre-packaged DL container for AutoGluon (https://github.
com/aws/deep-learning-containers/blob/master/available_images.
md#autogluon-inference-containers).

The following steps will walk you through how to use the pre-built AutoGluon container
and customize it for our requirements:

1. Using the Amazon SageMaker management console, click the Open SageMaker
Studio button.

2. Click the Open Studio link to launch the Studio UI.
3. Within the Studio UI, click on the folder icon in the left sidebar.
4. Right-click in the folder navigation panel and click New Folder.
5. Name the new folder Tabular and double-click to open the folder.
6. In the menu bar, click File | New |Notebook and, when prompted, select the

Python 3 (Data Science) kernel from the dropdown. Click the Select button to
launch the KernelGateway. After a couple of minutes, the kernel will be ready.

Tip
You can create a new Jupyter notebook or use the example notebook
from the companion GitHub repository (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/
blob/main/Chapter03/Tabular/AutoGluon%20Tabular%20
Example.ipynb).

7. In the first code cell, we will install the sagemaker-studio-image-build
utility. Using the following code, we call the Python executable to run the Python
package manager and install the utility:

%%capture

import sys

import warnings

https://aws.amazon.com/machine-learning/containers/
https://aws.amazon.com/machine-learning/containers/
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-inference-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-inference-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-inference-containers
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter03/Tabular/AutoGluon%20Tabular%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter03/Tabular/AutoGluon%20Tabular%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter03/Tabular/AutoGluon%20Tabular%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter03/Tabular/AutoGluon%20Tabular%20Example.ipynb

86 Automating Complicated Model Development with AutoGluon

warnings.filterwarnings('ignore')

%matplotlib inline

!{sys.executable} -m pip install -U pip sagemaker-studio-
image-build

8. Next, we open a new code cell to build the AutoGluon training and test script. This
script is, in essence, the runtime that will be executed with the custom SageMaker
container to generate and test the various AutoGluon tabular models to determine
the best-fitting model. Using the following code, we won't execute this script inside
the Jupyter notebook code cell, but rather use the %%writefile Jupyter magic
command to create a script file called train.py:

%%writefile train.py

import os

import json

import boto3

import json

import warnings

import numpy as np

import pandas as pd

from autogluon.tabular import TabularDataset,
TabularPredictor

warnings.filterwarnings("ignore",
category=DeprecationWarning)

prefix = "/opt/ml"

input_path = os.path.join(prefix, "input/data")

output_path = os.path.join(prefix, "output")

model_path = os.path.join(prefix, "model")

param_path = os.path.join(prefix, 'input/config/
hyperparameters.json')

Tip
If you are unfamiliar with the Jupyter built-in magic commands, such as
%%writefile, you can refer to the Jupyter documentation website
(https://ipython.readthedocs.io/en/stable/
interactive/magics.html#built-in-magic-commands) to
learn more about these commands and how they can be used.

https://ipython.readthedocs.io/en/stable/interactive/magics.html#built-in-magic-commands
https://ipython.readthedocs.io/en/stable/interactive/magics.html#built-in-magic-commands

Using AutoGluon for tabular data 87

9. Using the following code, while still in the current code cell, we now define the
train() function. This function takes in the various parameters, such as the
prediction target label, and fits TabularPredictor() for this target, against
training_dataset. Once the predictor has automatically determined the best
models, we save the results as a Fit_Summary.txt file:

def train(params):

 label = params["label"]

 channel_name = "training"

 training_path = os.path.join(input_path, channel_
name)

 training_dataset = TabularDataset(os.path.
join(training_path, "training.csv"))

 predictor = TabularPredictor(label=label, path=model_
path).fit(training_dataset)

 with open(os.path.join(model_path, "Fit_Summary.
txt"), "w") as f:

 print(predictor.fit_summary(), file=f)

 return predictor

10. In the following code, while still in the current code cell, we define the test()
function. This function once again takes the target label, as well as the trained
predictor, and evaluates the generated values on testing_data. The evaluation
results are saved as a Model_evaluation.txt file. The test() function also
generates a leaderboard of the best model and saves this list as a Leaderboard.
csv file:

def test(params, predictor):

 label = params["label"]

 channel_name = "testing"

 testing_path = os.path.join(input_path, channel_name)

 testing_dataset = TabularDataset(os.path.
join(testing_path, "testing.csv"))

 ground_truth = testing_dataset[label]

 testing_data = testing_dataset.drop(columns=label)

 predictions = predictor.predict(testing_data)

 with open(os.path.join(model_path, "Model_Evaluation.
txt"), "w") as f:

 print(

 json.dumps(

88 Automating Complicated Model Development with AutoGluon

 predictor.evaluate_predictions(

 y_true=ground_truth,

 y_pred=predictions,

 auxiliary_metrics=True

),

 indent=4

),

 file=f

)

 leaderboard = predictor.leaderboard(testing_dataset,
silent=True)

 leaderboard.to_csv(os.path.join(model_path,
"Leaderboard.csv"))

11. In the following code, and still within the current code cell, we define the main
program routine that loads the execution parameters, calls the train() function
to train the various predictors on the training data, and then calls the test()
function to evaluate the predictor performance on the test dataset:

if __name__ == "__main__":

 print("Loading Parameters\n")

 with open(param_path) as f:

 params = json.load(f)

 print("Training Models\n")

 predictor = train(params)

 print("Testing Models\n")

 test(params, predictor)

 print("AutoGluon Job Complete")

12. Next, we create a new code cell and apply the same technique, using the
%%writefile magic command, to create the custom container build instructions
or a Dockerfile. The following code contains the instructions that the Docker
daemon will use to build the container:

%%writefile Dockerfile

ARG REGION

FROM 763104351884.dkr.ecr.${REGION}.amazonaws.com/
autogluon-training:0.3.1-cpu-py37-ubuntu18.04

RUN pip install -U pip

Using AutoGluon for tabular data 89

RUN pip install bokeh==2.0.1

RUN mkdir -p /opt/program

RUN mkdir -p /opt/ml

COPY train.py /opt/program

WORKDIR /opt/program

ENTRYPOINT ["python", "train.py"]

13. Now, we can use the build CLI to create the customer container:

import boto3

import sagemaker

aws_region = sagemaker.Session().boto_session.region_name

!sm-docker build --build-arg REGION={aws_region} .

The container should take about 10 minutes to build, with the logs from the CodeBuild
execution redirected to, and displayed in, the Jupyter notebook.

Note
Make sure to capture the Image Uniform Resource Identifier (URI) container
from the code cell output, as we will be using this later. The code cell output
should resemble this: Image URI: 123456789012.dkr.ecr.us-
west-2.amazonaws.com/sagemaker-studio-d-abcdefghij
kl:default-1234567890123.

You may be wondering exactly what the previous code cells accomplished. Firstly, let's
walk through the train.py file. In this file, we've created two main Python functions,
train() and test():

• The train() function takes a training dataset called training.csv and creates
a default AutoGluon Tabular predictor called predictor. The default predictor
produces several different types of ML models that predict the target label by
training on the other columns of the dataset. This process is similar to Autopilot's
Auto setting, which was used in the example from Chapter 2, Automating Machine
Learning Model Development Using SageMaker Autopilot. We will see later, when we
execute the AutoGluon experiment, just exactly what these default models are and
how well they perform on this training data.

• After the training process has been completed, the train() function returns these
models as an AutoGluon TabularPredictor object.

90 Automating Complicated Model Development with AutoGluon

The test() function takes the trained models as an input and then evaluates the various
AutoGluon Tabular models, produced by the train() function, and evaluates them on a
test dataset, called testing.csv. As a result of this process, the test() function stores
the overall evaluation results for each model as well as a summary of the best model's
score. As we will see later, these assets are eventually stored in S3 for review.

Now, let's review the Dockerfile. As already mentioned, the Dockerfile
contains the instructions to build the Docker container that will execute the train.
py script. The first build command to be executed is a command to download the
AutoGluon DL container. The Docker daemon pulls this container from a public AWS
ECR repository, called

763104351884.dkr.ecr.${REGION}.amazonaws.com/autogluon-
training:0.3.1-cpu-py37-ubuntu18.04, where ${REGION} is a build
argument specifying the AWS region you are currently using.

Tip
For a list of the public ECR repositories containing the latest DLC images,
refer to the project's GitHub repository (https://github.com/aws/
deep-learning-containers/blob/master/available_
images.md).

The Docker daemon then installs the necessary Python packages for AutoGluon, sets up
the code path required by SageMaker, and copies the training script into the container.

Note
To install AutoGluon in the container, we have used the default installation
requirements from the AutoGluon documentation (https://auto.
gluon.ai/stable/index.html#installation).

In the last part of the Dockerfile, we specify the container's ENTRYPOINT, thus
instructing the container to execute the training script when it starts.

Lastly, we executed the sm-docker build command, specifying the current AWS
region as the build argument and the location of the Dockerfile in the current directory.
Since we do not supply any further parameters, sm-docker assumes the default settings.

Tip
To see some of the additional settings that can be used instead of the defaults,
refer to the utility documentation website (https://github.com/aws-
samples/sagemaker-studio-image-build-cli).

https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://github.com/aws/deep-learning-containers/blob/master/available_images.md
https://auto.gluon.ai/stable/index.html#installation
https://auto.gluon.ai/stable/index.html#installation
https://github.com/aws-samples/sagemaker-studio-image-build-cli
https://github.com/aws-samples/sagemaker-studio-image-build-cli

Using AutoGluon for tabular data 91

Using the default settings, the CLI automatically calls AWS CodeBuild in the background.
CodeBuild, in turn, executes the following tasks:

• It creates an ECR repository, named after the Studio Domain ID, for example,
sagemaker-studio-d-abcdefghijkl.

• It builds the container image, with a unique image tag, for example, default-
1234567890123.

• It uploads the image to the newly created repository.

Tip
To view the build process and configuration settings that the CodeBuild
service executes, you can view and manage the process in the CodeBuild
console (https://console.aws.amazon.com/codesuite/
codebuild/home).

Now that the build process has been completed, we have, in essence, brought out our
own AutoGluon container to SageMaker. In the next section, we will use this container to
conduct an AutoML experiment for the ACME Fishing Logistics use case.

Creating the AutoML experiment with AutoGluon
In the same way that we created an AutoML experiment in Chapter 2, Automating
Machine Learning Model Development Using SageMaker Autopilot, using the SageMaker
SDK, we will reproduce a similar experiment by working with AutoGluon. The following
steps will walk you through creating the experiment within the existing Jupyter notebook:

1. Firstly, we need to download the Abalone dataset once again. Using the following
Python code, download the dataset from the UCI repository, add the relevant
column names, and split the data into two separate CSV files, training.csv and
testing.csv. The training file comprises 90% of the data, while the testing file
covers the remaining 10%. As already highlighted, these two datasets will be used
by the train() and test() functions within our container. In a new code cell,
execute the following example code:

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

column_names = ["sex", "length", "diameter", "height",
"whole_weight", "shucked_weight", "viscera_weight",
"shell_weight", "rings"]

92 Automating Complicated Model Development with AutoGluon

abalone_data = pd.read_csv("http://archive.ics.uci.edu/
ml/machine-learning-databases/abalone/abalone.data",
names=column_names)

training_data, testing_data = train_test_split(abalone_
data, test_size=0.1)

training_data.to_csv("training.csv")

testing_data.to_csv("testing.csv")

2. Now that we have our datasets, we can configure the various parameters for the
experiment. Using the following code, we can define important parameters, such
as the name of the experiment (job_name), the specific version to trace the
experiment (job_version), the SageMaker default S3 bucket to store the datasets,
the output artifacts (bucket), and the container URI (image_uri):

import sagemaker

import datetime

image_uri = "<Enter the Image URI from the sm-docker
output>"

role = sagemaker.get_execution_role()

session = sagemaker.session.Session()

bucket = session.default_bucket()

job_version = datetime.datetime.now().strftime("%Y-%m-%d-
%H-%M-%S-%f")[:-3]

job_name = f"abalone-autogluon-{job_version}"

Note
For the image_uri parameter, enter the URI from the output of the sm-
docker code cell we executed earlier in step 10 of the previous section.

3. Using a new code cell, we use these parameters and the SageMaker SDK to create
a SageMaker estimator. An estimator is a high-level interface for a SageMaker
training job. The following code uses the generic sagemaker.estimator.
Estimator() class, allowing us to create a training job using our custom
AutoGluon container. As you can see, we also supply additional hyperparameters
where we specify the type of compute instance (ml.m5.xlarge) to use to execute
the training job as well as the parameters to be supplied to the train.py script,
such as the target label in our dataset (rings):

from sagemaker.estimator import Estimator

autogluon = Estimator(

Using AutoGluon for tabular data 93

 image_uri=image_uri,

 role=role,

 output_path=f"s3://{bucket}/{job_name}",

 base_job_name=job_name,

 instance_count=1,

 instance_type="ml.m5.xlarge",

 hyperparameters={

 "label": "rings",

 "bucket": bucket,

 "training_job": job_name

 },

 volume_size=20

)

Tip
For more information on the generic Estimator() class, refer to
the SageMaker SDK documentation (https://sagemaker.
readthedocs.io/en/stable/api/training/estimators.
html#sagemaker.estimator.Estimator).

4. Now that the estimator has been defined, we can use the fit() method to call
SageMaker and have it execute the training job, using our custom AutoGluon
container. As you can see in the following code, we tell SageMaker where to get
the training and test data by uploading these datasets to S3, using the upload_
data() method:

autogluon.fit(

 inputs={

 "training": session.upload_data(

 "training.csv",

 bucket=bucket,

 key_prefix=f"{job_name}/input"

),

 "testing": session.upload_data(

 "testing.csv",

 bucket=bucket,

 key_prefix=f"{job_name}/input"

)

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.Estimator

94 Automating Complicated Model Development with AutoGluon

 }

)

After calling the fit() method, SageMaker will instantiate an ml.m5.xlarge instance
with 4vCPUs and 16 GB of RAM to execute our custom AutoGluon container. The output
from the inside of the container's runtime environment is redirected to, and displayed
in, the Jupyter notebook. You can review each line of the output to see what is going on.
Alternatively, Figure 3.1 provides a high-level overview of the output from the SageMaker
training job:

Figure 3.1 – AutoGluon process overview

As you can see from Figure 3.1, five specific steps are executed by the train() function
and a single step is performed by the test() function. Let's examine each step and
correlate it with the output:

1. The first step that AutoGluon does is to preprocess the data. Here, AutoGluon
analyzes the data to try and determine the type of ML problem. For example,
AutoGluon may determine that the ML problem is multiclass because the target
label's data type is an integer and there are very few unique values observed. Once
AutoGluon has determined the ML problem type, it further performs preprocessing
of the input data for the specific model.

Using AutoGluon for tabular data 95

Tip
If you already know the type of ML you are trying to solve, you can specifically
add it as an argument, called problem_type, to AutoGluon's fit()
method.

2. The second step involves AutoGluon using several pre-built data generators
to clean up data and engineer new features. For example, AutoGluon
uses FillNaFeatureGenerator to automatically determine the
type of values to replace any missing values present in the dataset, plus
CategoryFeatureGenerator to encode categorical features. The final part
of this step involves splitting the processed dataset into separate training and
testing sets.

3. In the third step, AutoGluon trains its pre-built ML models for tabular data
against the training dataset. For a list of the 10 specific models and the 3 ensemble
models that AutoGluon Tabular fits on the training set, refer to the AutoGluon
documentation (https://auto.gluon.ai/stable/api/autogluon.
tabular.models.html#module-autogluon.tabular.models).

4. The final step of the train() process evaluates the trained models against the
validation dataset to determine the model's overall validation score and see how
each model generalizes to accurately predict the target label. The default metric for
evaluation is accuracy. Each model is serialized and stored as a Python object using
the pickle library.

Tip
To change the default evaluation metric, you can specify it as an argument,
called eval_metric, to AutoGluon's fit() method.

5. To complete the process, the test() function is then executed to provide a
final evaluation on unseen data, using the testing.csv dataset. This final step
provides us with the overall performance of each of the trained models to generate
the best model. The final results of the evaluation are captured as an output artifact
along with the pickled models.

https://auto.gluon.ai/stable/api/autogluon.tabular.models.html#module-autogluon.tabular.models
https://auto.gluon.ai/stable/api/autogluon.tabular.models.html#module-autogluon.tabular.models

96 Automating Complicated Model Development with AutoGluon

Once SageMaker has executed the train.py script, the models and evaluation summary
artifacts are compressed and uploaded to S3. SageMaker displays how long the training
job took to execute and, hence, the total amount of Billable seconds.

Now that we have created and implemented the AutoGluon Tabular experiment on the
Abalone dataset, we can evaluate the models generated to determine which can be used in
production. The next section will show how this is done.

Evaluating the experiment results
As was highlighted in the previous section, the model evaluation results and pickled
models are captured as an output artifact, called model.tar.gz, and uploaded to S3.
Using the existing Jupyter notebook, let's take a look at these artifacts to assess the results
of the AutoML experiment and determine which model best suits the production use case:

1. The following example code uses the SageMaker SDK's S3Downloader class to
download and extract the AutoGluon estimator's output artifact to a folder called
extract, using the model_data property:

!mkdir extract sagemaker.s3.S3Downloader.
download(autogluon.model_data, "./")

!tar xfz ./model.tar.gz -C extract

2. You can look through the extracted contents, in the extract folder, to see the
various evaluation reports, and double-click on the models folder to see the pickled
model artifacts. Figure 3.2 shows the extracted artifact files:

Using AutoGluon for tabular data 97

Figure 3.2 – Extracted artifact folder structure

98 Automating Complicated Model Development with AutoGluon

3. The first file we will look at is the Leaderboard.csv file and see the overall
performance evaluation of each of the trained models. The following code
opens the model leaderboard as a pandas DataFrame and sorts the models
in descending order:

df = pd.read_csv("./extract/Leaderboard.csv")

df = df.filter(["model", "score_test", "score_val"]).
sort_values(by="score_val", ascending=False).reset_
index().drop(columns="index")

df

4. You can now review the models that the AutoGluon Tabular predictor trained.
The best model, based on the accuracy of its predictions on the test dataset, is
displayed first. Figure 3.3 shows an example of the leaderboard table and, as you can
see, WeightedEnsemble_L2 (https://auto.gluon.ai/stable/api/
autogluon.tabular.models.html#weightedensemblemodel) provided
the best validation accuracy score (score_val).

Figure 3.3 – Example model leaderboard

https://auto.gluon.ai/stable/api/autogluon.tabular.models.html#weightedensemblemodel
https://auto.gluon.ai/stable/api/autogluon.tabular.models.html#weightedensemblemodel

Using AutoGluon for tabular data 99

Note
AutoGluon generates evaluation metric scores in a higher is better form.
Therefore, the higher the evaluation score, the better the model.

5. Just like the Autopilot example in Chapter 2, Automating Machine Learning Model
Development Using SageMaker Autopilot, we can visually compare the models in
the leaderboard with code. However, AutoGluon Tabular automatically constructs
a model comparison plot, as an output artifact, called SummaryOfModels.html.
The following example code will display the plot in the Jupyter notebook:

import IPython

IPython.display.HTML(filename="./extract/SummaryOfModels.
html")

Note
If the SummaryofModels.html file does not display immediately when
running the code in step 5, rerun the code cell again.

100 Automating Complicated Model Development with AutoGluon

6. Figure 3.4 shows an example of the displayed SummaryOfModels.html file.
Interact with the plot by mousing over the generated scatterplot and viewing the
metadata for each of the models.

Figure 3.4 – Example summary of the models' scatterplot

Once again, we have used an AutoML methodology, this time using the AutoGluon
Tabular predictor, to create a feasible production-grade ML model for our use case.
As with the typical ML process, an ML practitioner can provide the best model to the
application teams for testing and integration into the Age Calculator application.

One thing you may be wondering is why we didn't simply execute the AutoGluon training
and evaluation process inside the existing Jupyter notebook. Why did we create a custom
container and run the entire process as a SageMaker training job?

Using AutoGluon for image data 101

The answer to this question is basically cost. To elaborate, in the next example,
we will review a use case that requires Graphical Processing Units (GPUs) to train
and evaluate intricate computer vision models. This use case will highlight the benefits
of offloading resource-intensive model training jobs to SageMaker, using the AutoGluon
ImagePredictor.

Using AutoGluon for image data
Up to this point, we have been exploring AutoML methodologies on an Artificial
Neural Network (ANN) algorithm. However, many use cases might require more
complicated algorithms, such as Convolutional Neural Networks (CNNs) for image
classification and image recognition, or Long-Short-Term Memory (LSTM) networks,
for speech recognition and text data. Due to the complexity of these algorithms, many
ML practitioners may have to leverage multiple machines for distributed training and
potentially multiple GPUs to handle the multi-dimensional matrix calculations. In this
section, we are going to segue from the Age Calculator use case to explore how AutoGluon
can be used to apply an AutoML methodology to an image classification use case.

Note
Since we will be utilizing GPU-based AWS instances, running this example
will exceed the usage limits of the AWS Free Tier and, therefore, incur
additional costs.

Prerequisites
As was the case with the previous example, to leverage GPUs for the image classification
task, we will need to build a custom container. Once again, AWS provides a DL container
for Apache MXNet with GPU support. So, all we need to do is build the appropriate
AutoGluon runtime into the pre-built container.

Tip
You can create a new Jupyter notebook or use the example notebook
from the companion GitHub repository (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/
blob/main/Chapter03/Image/AutoGluon%20Image%20
Example.ipynb).

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter03/Image/AutoGluon%20Image%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter03/Image/AutoGluon%20Image%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter03/Image/AutoGluon%20Image%20Example.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter03/Image/AutoGluon%20Image%20Example.ipynb

102 Automating Complicated Model Development with AutoGluon

The following steps will walk you through how to do this:

1. Within the same Studio environment from the previous example, click the folder
icon in the left sidebar.

2. Right-click in the folder navigation panel and click New Folder.
3. Name the new folder Image and double-click to open the folder.
4. In the menu bar, click File | New | Notebook and, when prompted, select the

Python 3 (Data Science) kernel from the dropdown. Click the Select button to
launch the KernelGateway. After a couple of minutes, the kernel will be ready.

5. In the first code cell, we will once again install the sagemaker-studio-image-
build utility by executing the following code:

%%capture

import sys

import warnings

warnings.filterwarnings('ignore')

%matplotlib inline

!{sys.executable} -m pip install -U pip sagemaker-studio-
image-build

6. Next, we will build the AutoGluon training and test script. This script is, in
essence, the runtime that will be executed with the custom SageMaker container
to generate and test the various AutoGluon ImagePredictor models to
determine the best- fitting model. Since we are capturing the contents of the code
cell to a file, we use the %%writefile Jupyter magic command to create a script
file called train.py:

%%writefile train.py

import os

import json

import boto3

import json

import warnings

import numpy as np

import pandas as pd

from autogluon.vision import ImagePredictor

warnings.filterwarnings("ignore",
category=DeprecationWarning)

Using AutoGluon for image data 103

prefix = "/opt/ml"

input_path = os.path.join(prefix, "input/data")

output_path = os.path.join(prefix, "output")

model_path = os.path.join(prefix, "model")

param_path = os.path.join(prefix, "input/config/
hyperparameters.json")

7. Within the same code cell, we define a train() function to capture the input
parameters and fit an ImagePredictor() to training_data. We also capture
a summary of the training results in a file called FitSummary.csv and save the
trained model:

def train(params):

 time_limit = int(params["time_limit"])

 presets = "".join([str(i) for i in
list(params["presets"])])

 channel_name = "training"

 training_path = os.path.join(input_path, channel_
name)

 training_dataset = ImagePredictor.Dataset.from_
folder(training_path)

 predictor = ImagePredictor().fit(training_dataset,
time_limit=time_limit, presets=presets)

 with open(os.path.join(model_path, "FitSummary.
json"), "w") as f:

 json.dump(predictor.fit_summary(), f)

 predictor.save(os.path.join(model_path,
"ImagePredictor.Autogluon"))

 return "AutoGluon Job Complete"

104 Automating Complicated Model Development with AutoGluon

8. Lastly, within the same code cell, we define the main program to load the input
parameters and execute the model's training by calling the train() function and
capturing the results:

if __name__ == "__main__":

 print("Loading Parameters\n")

 with open(param_path) as f:

 params = json.load(f)

 print("Training Models\n")

 result = train(params)

 print(result)

9. As with the tabular example, we provide the build instructions for the custom
container by creating a Dockerfile:

%%writefile Dockerfile

ARG REGION

FROM 763104351884.dkr.ecr.${REGION}.amazonaws.com/
autogluon-training:0.3.1-gpu-py37-cu102-ubuntu18.04

RUN mkdir -p /opt/program

RUN mkdir -p /opt/ml

COPY train.py /opt/program

WORKDIR /opt/program

ENTRYPOINT ["python", "train.py"]

Note
Once again, we are using the autogluon-training container,
provided by AWS (https://github.com/aws/deep-learning-
containers/blob/master/available_images.md), but
this time, we will be using the GPU version of the image, denoted by the
0.3.1-gpu-py37-cu102-ubuntu18.04 image tag. Using the DL
containers means that we don't have to manually build and configure the
GPU environment, CUDA libraries(https://blogs.nvidia.com/
blog/2012/09/10/what-is-cuda-2/), and runtime since AWS has
done this for us.

10. Now, we can use the build CLI to create the customer container:

import boto3

import sagemaker

https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/
https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/

Using AutoGluon for image data 105

aws_region = sagemaker.Session().boto_session.region_name

!sm-docker build --build-arg REGION={aws_region} .

The container should take about 10 minutes to build, with the logs from the CodeBuild
execution redirected to, and displayed in, the Jupyter notebook.

Note
As was the case with the previous example, make sure to capture the
Image Uniform Resource Identifier (URI) container from the code cell
output as we will be using this later. The code cell output should resemble
this: Image URI: 123456789012.dkr.ecr.us-west-2.
amazonaws.com/sagemaker-studio-d-abcdefghijkl:defa
ult-1234567890123.

As you can see, the procedures executed in the example code closely resemble the
procedures we ran for the Tabular example, except for the train.py script. Here, we
make use of AutoGluon's ImagePredictor class, instead of the TabularPredictor
class, whereby the train() function in this example takes a list of presets and fits
multiple pre-trained and highly accurate CNN models on the image dataset provided.
The fit() method automatically tries to improve the classification accuracy of the
pre-trained models by employing additional hyperparameter optimization techniques,
with the result being an optimized model and a set of model optimization parameters for
reproducibility.

Unlike the Tabular example, we haven't made use of a test() function, since the image
predictor automatically splits the image dataset into training and validation datasets, using
a 90%/10% split ratio.

Let's see this in action by creating an experiment in the next section.

Creating an image prediction experiment
For this experiment, we will be using the Rock Paper Scissors dataset that has kindly
been provided by Laurence Moroney (https://laurencemoroney.com/
datasets.html).

Note
This dataset is licensed under a Creative Commons 2.0 Attribution 2.0
Unported License (https://creativecommons.org/licenses/
by/2.0/).

https://laurencemoroney.com/datasets.html
https://laurencemoroney.com/datasets.html

106 Automating Complicated Model Development with AutoGluon

This dataset includes Computer-Generated Imagery (CGI) of different hand gestures,
indicating either a Rock, Paper, or Scissors pose. Figure 3.5 shows an example of each of
these poses:

Figure 3.5 – Examples of the Rock Paper Scissors dataset

In the same way that we created a tabular experiment using the SageMaker SDK, we will
reproduce a similar experiment by working through the following steps in the existing
Jupyter notebook:

1. The first step is to download the training image data from Laurence Moroney's
website (https://storage.googleapis.com/laurencemoroney-blog.
appspot.com/rps.zip). Since the dataset is provided in a compressed ZIP
file, we will also need to extract it locally. The following sample code shows how
this is accomplished:

import io

import urllib

import zipfile

dataset_url = "https://storage.googleapis.com/
laurencemoroney-blog.appspot.com/rps.zip"

with urllib.request.urlopen(dataset_url) as rps_zipfile:

 with zipfile.ZipFile(io.BytesIO(rps_zipfile.read()))
as z:

 z.extractall("data")

https://storage.googleapis.com/laurencemoroney-blog.appspot.com/rps.zip
https://storage.googleapis.com/laurencemoroney-blog.appspot.com/rps.zip

Using AutoGluon for image data 107

2. Once the dataset has been downloaded, you should see a data folder containing
the various sub-directories for each type or classification of image. For example,
you will see a sub-directory called rock, which contains the training images
depicting the pose for rock. AutoGluon will automatically use these sub-directories
as the target label with which to classify the images. Next, we configure the
various parameters for the experiment. Using the following code, we can define
important parameters, such as the name of the experiment (job_name), the
specific version to trace the experiment (job_version), the SageMaker default
S3 bucket to store the datasets and the output artifacts (bucket), and the container
URI (image_uri):

import sagemaker

import datetime

image_uri = "<Enter the Image URI from the sm-docker
output>"

role = sagemaker.get_execution_role()

session = sagemaker.session.Session()

bucket = session.default_bucket()

job_version = datetime.datetime.now().strftime('%Y-%m-%d-
%H-%M-%S-%f')[:-3]

job_name = f"autogluon-image-{job_version}"

Note
Make sure to enter the URI from the output of the sm-docker code cell we
executed in step 8 of the previous section.

3. Now that we have the various experiment parameters configured, we can create the
AutoGluon estimator. The following example code applies a process similar to the
tabular example, except for some of the hyperparameters:

from sagemaker.estimator import Estimator

autogluon = Estimator(

 image_uri=image_uri,

 role=role,

 output_path=f"s3://{bucket}/{job_name}",

 base_job_name=job_name,

 instance_count=1,

108 Automating Complicated Model Development with AutoGluon

 instance_type="ml.p2.xlarge",

 hyperparameters={

 "presets": "medium_quality_faster_train",

 "time_limit": "600",

 "bucket": bucket,

 "training_job": job_name

 },

 volume_size=50

)

4. The final step in executing the experiment is to call SageMaker and have it execute
the training job. Just as with the Tabular example, the following code executes the
fit() method on the estimator and tells SageMaker where to get the image data by
uploading the dataset to S3:

autogluon.fit(

 inputs={

 "training": session.upload_data(

 "data/rps",

 bucket=bucket,

 key_prefix=f"{job_name}/input"

)

 }

)

Once the fit() method has been called, SageMaker will provision a GPU-based instance
(ml.p2.xlarge), initialize the GPU-based container image, and execute the train()
function. As part of this process, the AutoGluon ImagePredictor will determine the
number of separate image classes, based on the sub-directories in the dataset, and start
downloading various pre-trained CNN models to execute hyperparameter optimization
tasks. The specific pre-trained models and hyperparameters are governed by the presets
we've defined. For example, when creating the estimator, we specified medium_
quality_faster_train as one of the presets. This preset will only use the resnet50
pre-trained model to provide medium predictive accuracy as well as very fast inference
and training times.

Using AutoGluon for image data 109

Note
We chose to use the medium_quality_faster_train preset
and set a time limit of 10 minutes (600 seconds) to reduce the amount
of AWS usage costs associated with running the experiment. AutoGluon
provides a number of alternative presets that will provide a better-quality
model but incur additional AWS usage costs. You can learn more about
the additional preset configurations that are available by referencing the
ImagePredictor documentation (https://auto.gluon.ai/
dev/api/autogluon.task.html#autogluon.vision.
ImagePredictor.fit).

When the training job is complete, the next step is to evaluate the result.

Evaluating the experiment results
As we saw in the tabular example, SageMaker will store the resulting model artifact in S3.
Continuing in the Jupyter notebook, the following steps will walk you through how to
evaluate the AutoML experiment:

1. Download and extract the model.tar.gz artifact to a folder called extract
within the Studio environment by running the following code:

!mkdir extract

sagemaker.s3.S3Downloader.download(autogluon.model_data,
"./")

!tar xfz ./model.tar.gz -C extract

2. The model artifact contains two files, ImagePredictor.Autogluon and
FitSummary.json. We can explore the model training summary by running the
following code and viewing the FitSummary.json file:

import json

with open("extract/FitSummary.json", "r") as f:

 fit_summary = json.load(f)

print(json.dumps(fit_summary, indent=4))

print(f"""Best Model Training Accuracy: {fit_
summary["train_acc"]} \nBest Model Validation Accuracy:
{fit_summary["valid_acc"]}""")

110 Automating Complicated Model Development with AutoGluon

After executing the previous code cell, you should see an output similar to the following
JSON snippet:

...

 "best_config": {

 "model": "resnet50d",

 "lr": 0.01,

 "num_trials": 1,

 "epochs": 50,

 "batch_size": 64,

 "nthreads_per_trial": 128,

 "ngpus_per_trial": 8,

 "time_limits": 600,

 "search_strategy": "random",

 "dist_ip_addrs": null,

 "log_dir": "/opt/program/85cde890",

 "searcher": "random",

 "scheduler": "local",

 "early_stop_patience": 5,

 "early_stop_baseline": -Infinity,

 "early_stop_max_value": Infinity,

 "num_workers": 4,

 "gpus": [0],

 "seed": 206,

 "final_fit": false,

 "wall_clock_tick": 1640286670.9024706,

 "problem_type": "multiclass"

 },

...

Using AutoGluon for image data 111

As you can see from this JSON snippet, the resnet50d model provided the best
configuration. Included in the JSON snippet is the best hyperparameter configuration
for us to reproduce the model again without having to run another AutoML experiment.
Additionally, if you review the last few lines of the JSON output, you will see the
evaluation results of the best model. The following snippet shows an example of the
model's accuracy metrics:

...

Best Model Training Accuracy: 0.8929924242424242

Best Model Validation Accuracy: 0.996031746031746

...

From this final snippet, you can see that the resnet50d model achieved an 89%
accuracy on the training dataset, and a 99% accuracy on the validation dataset. So,
depending on this use case, these metrics might qualify the model to be put into
production, and therefore the ImagePredictor.Autogluon artifact, stored in the
extract folder, can be provided to the application development teams.

So, by means of this example, we have accomplished two main goals:

• We have created an AutoML experiment to address a complex use case (Computer
Vision), requiring a more complicated ML algorithm, such as a CNN model. Just as
with the tabular example, we used the AutoGluon library to generate the best-fitting
model for the image data.

• While the Studio UI provides the capability to run a GPU-based KernelGateway
(https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-
available-instance-types.html), we further alleviated unnecessary
AWS costs to run the Jupyter notebook while exploring how to run the AutoGluon
model and configure the various CUDA libraries for GPU management. Instead,
we created a training runtime artifact, as a custom image from the pre-built DL
container, and offloaded the AutoML processing to a SageMaker training job.

In later chapters, we will leverage the technique of building a runtime artifact to further
streamline the ML automation process.

https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-available-instance-types.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-available-instance-types.html

112 Automating Complicated Model Development with AutoGluon

Summary
This chapter introduced you to an open source alternative for creating an AutoML process
using the AutoGluon Python library. We also used AutoGluon's Tabular predictor to
advance the Age Calculator use case and demonstrated how to find the best-suited model
for the tabular dataset.

We further expanded on the AutoML methodology to address a complicated computer
vision use case by finding the best-suited CNN model for the Rock Paper Scissors dataset.
This was accomplished using AutoGluon's Image predictor and further optimized using
SageMaker's GPU-based ML instances. This chapter also introduced the concept of a
runtime process artifact, in the form of a container image.

In the next chapter, we will continue to expound on this concept and introduce how an
ML runtime artifact can further streamline the ML process, especially when the artifact is
used in conjunction with other AWS services.

This section will introduce you to the concepts of CI/CD, and how they can be applied
to the ML process, by combining both DevOps and MLOps methodologies. We will
showcase the various AWS services that can be used to build and execute a CI/CD
pipeline for the ML process. This section will walk you through how to construct the CI/
CD pipeline as a cloud-native application using the Cloud Development Kit (CDK).

Section 2:
Automating

the Machine
Learning Process
with Continuous
Integration and

Continuous
Delivery (CI/CD)

This section comprises the following chapters:

• Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for
Machine Learning

• Chapter 5, Continuous Deployment of a Production ML Model

4
Continuous
Integration

and Continuous
Delivery (CI/CD) for

Machine Learning
While working through the code examples, in both Chapter 2, Automating Machine
Learning Model Development Using SageMaker Autopilot, and Chapter 3, Automating
Complicated Model Development with AutoGluon, for the age calculator use case, you
would've noticed a common trend that highlighted a drawback in using either the
Autopilot or AutoGluon methodologies – specifically, that there is a disconnect in both
processes between creating a production-grade ML (machine learning) model and then
actually deploying the model into production.

116 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

Whether an ML practitioner leverages the CRISP-DM methodology or an AutoML
methodology, the scope of their responsibilities ends once they have produced an optimal
ML model. After their task is complete, the ML practitioner simply hands the model over
to the various teams responsible for deploying and managing the model in production.
This handover creates a disconnect in the overall process and leads to further challenges
when trying to automate the overall process. More importantly, this disconnect can often
impact the overall delivery timeline and cause a delay in the successful completion of the
overall project.

The primary goal of this chapter is to highlight one of the ways to bridge this apparent gap
in model deployment and further automate the process, using a Continuous Integration
and Continuous Delivery (CI/CD) methodology. I'm also going to introduce you to the
concept of an agile, cross-functional team by showing you how an ML practitioner can
better interface with the application development and operations teams, and by the end of
the chapter, you will see how this methodology can consistently create production-grade
ML models and deploy them. To accomplish this, we will focus on the following topics:

• Introducing the CI/CD methodology

• Automating ML with CI/CD

• Creating a CI/CD pipeline on AWS

Technical requirements
This chapter will use the following resources:

• A web browser (for the best experience, it is recommended that you use the Chrome
or Firefox browser).

• Access to the AWS account that you used in Chapter 3, Automating Complicated
Model Development with AutoGluon.

• Access to an Integrated Development Environment (IDE) if you choose not to use
the AWS Cloud9 service.

• We will once again be working within the usage limits of the AWS Free Tier to avoid
exceeding unnecessary costs.

• Source code example, access policy documents, and Jupyter notebooks are provided
in the companion GitHub repository for this chapter (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/tree/
main/Chapter04).

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter04
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter04
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter04

Introducing the CI/CD methodology 117

Introducing the CI/CD methodology
The CI/CD pattern has become a very popular methodology to automate the development
and release of software into production. The main idea behind this practice is to make
incremental, reliable, and frequent software code changes, and then deploy these changes
automatically and seamlessly into production.

While this practice has been around for several years and employed by many DevOps
engineers, the practice is starting to gain traction within the ML practitioner community,
in the form of MLOps or Machine Learning Operations. However, before diving into
how this methodology can be applied to ML, let's familiarize ourselves with the specific
steps of the process, starting with CI.

Introducing the CI part of CI/CD
At a high level, the CI part of CI/CD comprises four key stages; Figure 4.1 shows a
high-level overview of what these stages are:

Figure 4.1 – An overview of the stages in CI

118 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

As you can see from Figure 4.1, the CI phase comprises the following key stages:

1. Source Artifacts
2. Asset Build
3. Integration Testing
4. Release

Let's review exactly what the steps of this process (or pipeline) entail.

Creating or updating source artifacts
The source artifacts stage doesn't really perform a specific task within the CI process,
other than to start the entire process. In essence, this stage serves as a repository
where developers store the source code or the pieces of software that comprise the
production application. Adding new software artifacts (such as new features) or
updating existing software artifacts (such as bug fixes) into this repository triggers
the start of the entire pipeline.

For example, when application developers make code changes, add new features, or fix
application bugs, they add these updates to the shared version control system (such as
GitHub, Bitbucket, or AWS CodeCommit). These saved changes are called commits, with
each commit having an associated description or message that explains why a particular
change was made. These commits sum up the history of all the changes so that other
contributors can understand what's been done to the code and why. Once a commit is
created, the developer can open a Pull Request (PR). PRs are the nucleus of developer
collaboration in that they start a discussion between team members over proposed
changes and request that other developers review and pull the updates into their branch
of the code repository. Once these additions are approved, they are then merged into the
main branch of the repository to initiate or trigger a build of an updated application.

Note
Software developers don't simply add random features or updates to a
repository; they must first test the new code in their local or cloud-based
development environment to validate that the new code is functional. This
process is commonly referred to as unit testing.

Introducing the CI/CD methodology 119

Building the pipeline assets
The next stage of the pipeline is where the various software artifacts (and their
dependencies) are compiled or built. Essentially, these assets are, at a high level, the result
of building the source code artifacts into an asset that is specific to the current release,
or, in other words, assets that are specific to the current execution of the pipeline. For
example, the build stage compiles C++ code into a release binary or the build stage can be
used to build a Docker container image.

Testing the pipeline assets
Once the pipeline assets have been built, the next stage of the pipeline is to not only test
that these assets are functional but also test that they fit into the overall architecture or
application. It's at this stage that developers leverage testing scripts, automated testing, or
even a testing architecture (called a test or QA environment) to perform system testing.
The primary goal of this step is to verify that built assets will function correctly once they
have been deployed into production. By testing the overall system, application developers
can be assured that the overall integrity of the solution, in its entirety, is maintained once
it's deployed into production.

Approving the release
Once the overall system or application integrity has been tested, the final part of the CI
phase is to approve it for production. This stage of the process can either consist of a
person (or team) approving the results of the test or, in the case of frequent code changes,
be automated.

Once the release is approved, the CI phase of the pipeline is complete, and the release
can then move onto the CD phase for production deployment. Let's review what the CD
phase entails.

Introducing the CD part of CI/CD
The CD phase of the pipeline is just a continuation of the CI phase and is comprised of
four individual stages that focus on the operational tasks of the production application.
The four stages that constitute the CD phase of the CI/CD pipeline are as follows:

1. Asset Deployment
2. Operations
3. Monitoring
4. Operational Feedback

120 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

Figure 4.2 shows an overview of these four stages:

Figure 4.2 – An overview of the stages in CD

Let's look at what these stages entail.

Deploying the release into production
When deploying the built and tested software into production, there are two primary
components of the process. The first component is a deployment process, while the second
component is a deployment strategy.

For example, a deployment strategy may involve deploying a duplicate application
into production and, over a period of time, redirecting new usage requests to the new
release, while eventually phasing out the older release. This strategy is often called a blue/
green deployment.

Introducing the CI/CD methodology 121

On the other hand, a deployment process is an underlying mechanism of putting a
new release into production. This process varies depending on the type of software or
compiled asset being deployed. For example, if the deployed asset is a container image,
the deployment process might involve downloading and running the container image by
means of a container orchestration solution, such as Kubernetes.

Managing and monitoring the solution
To ensure that the solution functions the way it is supposed to, there are multiple
tasks that are typically performed at the operations stage, which can also overlap with
application monitoring tasks. So, typically, the operations and monitoring tasks are
performed by the infrastructure or IT team at the same time. For example, these
tasks might include updating underlying operating system patches, or ensuring that
the architecture automatically scales to address an increase in usage by monitoring
application performance.

Production feedback reporting
The feedback stage is also an extension of the management and monitoring tasks;
however, it also involves parsing the various logs and reporting dashboards to isolate
any failures, bugs or, issues from the production application. For example, this stage
can involve looking for application errors from the applicable logs and generating a bug
report. However, simply cataloging the bugs accomplishes nothing if the information is
not communicated back to the application developers.

Therefore, the CI/CD process does not end at this stage. So, in the next section, we will
look at how this feedback report is used to close the loop and ensure that the CI/CD
process lives up to its namesake.

122 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

Closing the loop
Figure 4.3 shows why the CI/CD methodology is effective for deploying incremental,
reliable, and frequent software code changes into production:

Figure 4.3 – Creating a continuous process

As Figure 4.3 highlights, providing production feedback to developers, in essence, closes
the loop, creating a continuous process whereby the developers can address the errors
from the report, fix the source code, and update the artifact repository. Upon updating the
artifact repository, a new release change of the CI/CD pipeline is triggered, resulting in the
fixes being deployed into production.

So, as you can see, the CI/CD methodology inherently provides a continuous mechanism
to deploy new software, software updates, or software fixes into production. Additionally,
it should be evident that a successful implementation of the CI/CD pipeline requires
multiple different teams, from software developers to infrastructure and IT teams.

This then begs the question, would implementing a CI/CD methodology for ML address the
deployment limitations highlighted at the outset?

In the next section, we will answer this question, by exploring how the CI/CD
methodology can be adapted to address an ML use case.

Automating ML with CI/CD 123

Automating ML with CI/CD
If you recall from Chapter 1, Getting Started with Automated Machine Learning on AWS,
I highlighted that the typical ML process is manual and iterative. If you compare
Figure 1.2, showing a realistic overview of the ML process, with Figure 4.3, showing
the CI/CD process, I'm sure you will note that there are significant dissimilarities between
the two processes:

Figure 4.4 – A realistic overview of the ML process

However, since the focus of this chapter is to address the limitations of both the typical
ML process and the AutoML methodology, specifically when it comes to bridging the gap
for model deployment, there are several similarities between these processes. So, if you
take a deployment-centric approach (Figure 4.3), as opposed to an experiment-centric
approach (Figure 1.2), the procedure for deploying an optimized model into production is
exactly the same as the procedure for deploying software code changes into production.

124 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

Taking a deployment-centric approach
Figure 4.5 shows what the resultant pipeline would look like if we were to take
a deployment-centric approach to the ML process, using a software release
CI/CD methodology:

Figure 4.5 – Model deployment using CI/CD

As Figure 4.5 shows, by treating a model deployment as a change release, we can automate
the process using the CI/CD methodology. To further elaborate on exactly how this works,
let's review each step of the process.

Building model artifacts
There are several components that can be considered model artifacts. For example, there
is the algorithm code itself, as well as the various routines that leverage the algorithm code
for training and evaluation. So, unlike the CI/CD pipeline that handles software code
releases, there is no code compilation in the ML version of the CI/CD pipeline.

Automating ML with CI/CD 125

However, we can apply a similar methodology to the ones we used in Chapter 3,
Automating Complicated Model Development with AutoGluon. By creating a container
image with the relevant model artifacts, we can compile the image as a holistic model
artifact. For example, if you refer to the Building a deep learning container section in
Chapter 3, Automating Complicated Model Development with AutoGluon, you will recall
that we created a train.py file to capture the model training and testing runtimes. We
then built a Dockerfile deep learning container to capture the image build instructions
so that we could use the sm-docker-build CLI (command-line interface) utility to
compile the image as a holistic model artifact.

So, by storing the model artifacts in the pipeline repository, we can start the pipeline
release cycle and compile or build a container image from the model artifacts.

Building data artifacts
Preparing training data is not an actual stage within the software release pipeline.
However, if we view the task as building or compiling appropriate model training data and
supplying a suitable runtime artifact to pre-process the data, then the data build task can
then be thought of as a pipeline build task.

Note
You may recall from the previous section that a CI/CD release pipeline is
triggered when code is added to or updated within a source code repository.
This fact highlights a potential limitation in using the CI/CD methodology to
deploy ML models. Since training data is not typically classified as source code,
updating raw or training data won't trigger the release pipeline.

Building models
Training a model with the correct preprocessed data, as well as the correct parameters,
can once again be viewed as building or compiling an optimized model. So, by changing
our perspective on model training and optimization, and just like the data processing step,
by supplying a suitable runtime artifact to execute the training process, we can treat the
model training task as a pipeline build task.

126 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

Approving the model release
Just as with the software release pipeline, it follows that whether we are approving
a software release for production or evaluating a trained model's performance, both
of these tasks are in essence the same. In the case of a trained model, its performance
is evaluated against the business criteria to determine whether or not it can be
considered production-grade. If the model meets the business criteria, it can be
released into production.

Deploying the model as a SageMaker endpoint
Once the model has been evaluated and approved for production, it can easily be
deployed as a SageMaker hosted endpoint. SageMaker endpoints are essentially an
endpoint address that can represent multiple models or, alternatively, multiple model
versions (called variants). This translates to the fact that a SageMaker endpoint can
inherently support a blue/green deployment strategy.

Releasing a new version of a trained model into an existing production endpoint means
that SageMaker will automatically start redirecting new requests to the new model version
while systematically phasing out the older model.

Therefore, incorporating SageMaker endpoints into the CI/CD pipeline provides the ML
practitioner with the same deployment strategies as the software engineer.

Managing the SageMaker endpoint
Another compelling reason to deploy the released model as a SageMaker hosted endpoint
is the fact that the SageMaker endpoint is an AWS managed service; therefore, there is no
real need to manage any underlying operating system patches.

Additionally, hosted endpoints can be configured to automatically scale out as well as scale
in, based on the number of usage requests.

Therefore, offloading the model deployment task to SageMaker significantly minimizes
the operational overhead of managing the deployed model in production.

Automating ML with CI/CD 127

Monitoring the model's performance using Amazon SageMaker
Model Monitor
Unlike the software release pipeline where logs, dashboards, and reports are used
to provide feedback to developers, SageMaker endpoints can be incorporated into
Amazon SageMaker Model Monitor to automatically verify that the production model is
performing its intended purpose.

Amazon SageMaker Model Monitor statistically compares the responses from the
production model against a baseline to automatically determine whether or not it is
drifting from its intended purpose. If any of these constraint violations are detected,
the ML practitioner can be alerted in order to address them as part of the next release
of the pipeline, thus closing the feedback loop and making the entire deployment
process continuous.

Note
Amazon SageMaker Model Monitor is capable of automating the monitoring
tasks of the pipeline, provided endpoint data capture is enabled (https://
docs.aws.amazon.com/sagemaker/latest/dg/model-
monitor-data-capture.html) and a baseline is created (https://
docs.aws.amazon.com/sagemaker/latest/dg/model-
monitor-create-baseline.html).

As you can see, it is possible to use the CI/CD methodology to address the model
deployment limitations highlighted at the outset, using a deployment-centric approach.
But where do ML experiments fit into this methodology?

In the next section, we will explore how the process of finding the best model and its
parameters can be incorporated into a CI/CD pipeline.

Creating an MLOps methodology
In the first section, Introducing the CI/CD methodology, I noted that software developers
don't simply add new features or random updates to a code repository. They must perform
a unit test to ensure that updates are functional before deploying changes into production.

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-create-baseline.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-create-baseline.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-create-baseline.html

128 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

This outcome corresponds to the overall objective behind performing an ML experiment.
The goal behind the ML experiment is to get the best candidate model, with its associated
parameters, before deploying it into production. Integrating the ML experiment into
the development and operate methodology of DevOps is the basis of an MLOps
methodology; Figure 4.6 provides an overview of the process:

Figure 4.6 – An MLOps process overview

Figure 4.6 clearly shows how an ML practitioner can take a two-phased approach to
automating the ML process using the MLOps methodology. By using an AutoML
methodology to automate the ML experiment, and generate the best candidate
artifacts, the resultant artifacts can be submitted into the source repository to trigger
a production-grade deployment using the CI/CD pipeline.

So, now we have the necessary background on how the CI/CD methodology functions
and how to integrate ML into the process, we can now apply these techniques to the
age calculator use case. However, before diving into a hands-on example, in the next
section, we are going to review the various capabilities that AWS provides to create a
CI/CD pipeline.

Creating a CI/CD pipeline on AWS 129

Creating a CI/CD pipeline on AWS
AWS provides an entire suite of developer tools that address the many requirements for
hosting code, and building and deploying pipeline assets. To create a CI/CD pipeline
on AWS, we will be making use of three primary services within the AWS developer
toolchain. To further simplify the construction and automation of the pipeline, we will
make use of two additional services within the AWS development suite.

Note
To learn more about the development tools available from AWS, you can
reference the product page (https://aws.amazon.com/products/
developer-tools/).

Let's review the important services that make up the CI/CD pipeline.

Using the AWS CI/CD toolchain
The three core components that make up a CI/CD pipeline are as follows:

• A component to store the various pipeline artifacts

• A component process to build the various pipeline assets

• A component to automate the pipeline execution

To facilitate creating these three core components, AWS provides dedicated services to
match the required capabilities of each component, namely the following:

• AWS CodeCommit

• AWS CodeBuild

• AWS CodePipeline

While there are other CI/CD pipeline components and associated AWS services, we will
be focusing on these three to provide the necessary capabilities for ML release automation.

https://aws.amazon.com/products/developer-tools/
https://aws.amazon.com/products/developer-tools/

130 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

AWS CodeCommit
CodeCommit (https://aws.amazon.com/codecommit/) is a cloud-based source
code and version control service. In essence, it is the AWS-managed alternative to GitHub.
We will be using CodeCommit to store all the various pipeline and ML model artifacts.

Note
If you are unfamiliar with the concept of source code and version control, AWS
provides an overview on their website (https://aws.amazon.com/
devops/source-control/).

AWS CodeBuild
CodeBuild (https://aws.amazon.com/codebuild/) is the heart of the continuous
integration phase of the CI/CD pipeline. This service is responsible for compiling or
building the various artifacts into usable pipeline assets. In the case of ML release
automation, CodeBuild builds the required model training and serves runtimes, as well as
executing the data processing, model training, and model evaluation processes.

AWS CodePipeline
CodePipeline (https://aws.amazon.com/codepipeline/) handles the
continuous deployment phase of the CI/CD pipeline. This service contains the structure of
the pipeline and is responsible for automating the task of releasing the trained model into
production as a SageMaker hosted endpoint.

Now that we have a brief overview of the core AWS services and their purposes, in
the next section, I'll highlight some additional AWS capabilities to build the service
infrastructure.

Working with additional AWS developer tools
We will be making use of two additional AWS developer tools, and while these services
are not critical to the success of a CI/CD implementation, they make it easier to develop
an entire solution. For example, we will use the AWS Cloud Development Kit (CDK) to
codify the entire solution. Thus, not only are the pipeline artifacts sourced and managed
as code but also the pipeline itself and the associated AWS infrastructure. This makes the
entire solution a cloud-native application.

https://aws.amazon.com/codecommit/
https://aws.amazon.com/devops/source-control/
https://aws.amazon.com/devops/source-control/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codepipeline/

Creating a CI/CD pipeline on AWS 131

Note
You will see in later chapters how creating the entire solution as a cloud-native
application can further streamline the end-to-end process for ML automation.
As you will see, the CDK framework (https://aws.amazon.com/
cdk/) will play a fundamental part in enhancing the process. If you are new
to the notion of using the CDK to codify a cloud-native solution, it is highly
recommended that you review the CDK documentation (https://docs.
aws.amazon.com/cdk/api/latest/), refer to the samples in the
CDK GitHub repository (https://github.com/aws-samples/
aws-cdk-examples), and look at the official AWS CDK workshop
(https://cdkworkshop.com/).

To ensure consistency and ease of use for the hands-on example, we will make use
of AWS's cloud-based IDE service called Cloud9 (https://aws.amazon.com/
cloud9/). While it is possible to run through the hands-on example with a local IDE,
Cloud9 has all the associated tools, programming libraries, and utilities pre-installed.

We now have an overview of the CI/CD process, how it can be applied to automatically
release ML models into production, and the AWS services we can use to build the solution
as a cloud-native application. So, let's apply what we've learned to the age calculator use
case by means of a hands-on example.

Creating a cloud-native CI/CD pipeline for a production
ML model
As a guide to successfully implementing a CI/CD pipeline for the age calculator use case,
we will be performing the following tasks:

1. Preparing the development environment
2. Creating the pipeline artifact repository
3. Developing the application artifacts
4. Deploying the pipeline application
5. Creating the ML model artifacts
6. Executing the automated ML model deployment

https://aws.amazon.com/cdk/
https://aws.amazon.com/cdk/
https://docs.aws.amazon.com/cdk/api/latest/
https://docs.aws.amazon.com/cdk/api/latest/
https://github.com/aws-samples/aws-cdk-examples
https://github.com/aws-samples/aws-cdk-examples
https://cdkworkshop.com/

132 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

Furthermore, as we build out the solution, using the previous steps, I will break the
various tasks down into two separate categories. One category will center around the
various tasks performed by the application development team, and the other category
will encompass the tasks that are typically performed by the ML practitioner. My primary
objective in doing this is to highlight the roles of a cross-functional team.

Effective coordination between the ML practitioners and the DevOps engineering team
establishes the fundamental foundation for successful model deployment. This process
of working together at a foundational level, thus establishing a cross-functional team,
is the primary success criteria for successful model deployment.

By the end of this section, you will see that it's not only the toolchain used or even
the execution of the pipeline itself that determines the successful implementation of a
production-grade ML model; rather, the key element is a cross-functional team.

Now, let's get started by creating the Cloud9 development environment.

Tip
Reference files for the following code examples can be found in the companion
GitHub repository (https://github.com/PacktPublishing/
Automated-Machine-Learning-on-AWS/tree/main/
Chapter04/) for this chapter.

Preparing the development environment
To begin, we will start by looking at this undertaking from the perspective of the DevOps
engineer, by preparing the Cloud9 environment for application development. The
following steps will walk you through this process:

1. Log into the AWS account you've been using and open the Cloud9 management
console (https://console.aws.amazon.com/cloud9) for your supported
AWS Region.

2. Create a Cloud9 environment by clicking the Create environment button.
3. When prompted, provide a name and an optional description. Then, click the

Next step button. Figure 4.7 shows an example of naming the environment:

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter04/
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter04/
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter04/
https://console.aws.amazon.com/cloud9

Creating a CI/CD pipeline on AWS 133

Figure 4.7 – Naming the Cloud9 environment

4. On the Configure settings page, accept the default Environment settings by
clicking the Next step button.

Note
Accepting the default settings will ensure that the Cloud9 environment is
eligible for the AWS Free Tier. However, it is recommended that you use a
t3.small instance, which is not eligible for the Free Tier.

5. On the Review page, confirm the settings and click Create environment. After
a few minutes, you will be redirected to the IDE web interface.

Tip
To familiarize yourself with the IDE and how to use the various panels, review
the basic tour documentation on the AWS website (https://docs.aws.
amazon.com/cloud9/latest/user-guide/tutorial-tour-
ide.html).

https://docs.aws.amazon.com/cloud9/latest/user-guide/tutorial-tour-ide.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/tutorial-tour-ide.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/tutorial-tour-ide.html

134 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

6. Now that the Cloud9 workspace is ready, we will need to provide the appropriate
access to the various AWS services we will be using. To configure the permissions,
click on the A icon in the top right-hand corner of the IDE and select Manage EC2
Instance. Figure 4.8 shows an example of what the process looks like:

Figure 4.8 – Manage EC2 Instance

7. A new web browser tab will open, taking you to the EC2 management
console, displaying the Cloud9 EC2 instance. Select your Cloud9 instance
by clicking the checkbox next to the instance name. Then, click the Actions
button, and from the drop-down menus, select the Security option. After the
security menu expands, select Modify IAM role. Figure 4.9 shows an example
of the expanded menu settings:

Figure 4.9 – The EC2 instance security menus

8. When the Modify IAM role page opens, click the Create new IAM role link to
open the IAM management console in a new browser tab. Figure 4.10 shows an
example of the Modify IAM role page:

Creating a CI/CD pipeline on AWS 135

Figure 4.10 – Modify IAM role

9. Within the IAM management console, click the Create role button to create a new
instance administrator role.

10. On the Create role page, select EC2, under the Common use cases section, and
then click the Next: Permissions button. Figure 4.11 shows an example of selecting
the EC2 use case:

Figure 4.11 – The EC2 common use case

136 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

11. Using the provided search bar in the Attach permissions policies section, enter
administrator as the search term. You will see the various policies containing
administrator listed. Select the checkbox next to AdministratorAccess and
then click the Next: Tags button. Figure 4.12 shows an example of selecting the
AdministratorAccess policy:

Figure 4.12 – Selecting the AdministratorAccess policy

12. Skip the Add tags (optional) section by clicking on the Next: Review button.
13. On the Review page, enter an appropriate role name and click the Create role

button. Figure 4.13 shows an example of providing a role name:

Figure 4.13 – Providing a role name

Creating a CI/CD pipeline on AWS 137

14. Once the role has been created, you can close the IAM console and return to the
Modify IAM role tab from step 8.

15. Click the refresh icon and, using the dropdown, select the role you created in
step 13. Figure 4.14 shows an example of what the page looks like:

Figure 4.14 – Selecting the IAM role

16. Click the Save button.
17. Go back to the browser tab displaying the Cloud9 workspace and attach the newly

created role by clicking on the gear icon in the top right-hand corner.
18. In the workspace Preferences tab, select the AWS SETTINGS option and disable

the AWS managed temporary credentials switch. Figure 4.15 shows an example of
what the final AWS Settings page will look like:

Figure 4.15 – Disabling AWS managed temporary credentials

138 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

Now that the development environment has been set up, we can proceed to the next task
of creating the pipeline artifact repository.

Creating the pipeline artifact repository
Using the development environment, we will now create a CodeCommit repository to
store the various pipelines and, eventually, the ML model artifacts. Although there are
multiple ways to create a CodeCommit repository, we will be using the AWS CLI, which
is already installed and configured in the Cloud9 workspace. The following steps will walk
us through this process:

1. Using the terminal pane (the bottom section of the Cloud9 workspace), run the
following CLI command to ensure that the CLI region settings are correct. Make
sure to replace <REGION> with the AWS Region you are currently using:

$ aws configure set region <REGION>

2. Create a CodeCommit repository called abalone-cicd-pipeline, using the
following command:

$ aws codecommit create-repository --repository-name
abalone-cicd-pipeline --repository-description "Automated
ML on AWS using CI/CD"

3. Next, we capture the URL for the newly created repository in order to clone it. Run
the following command to create the CLONE_URL parameter:

$ CLONE_URL=$(aws codecommit get-repository --repository-
name abalone-cicd-pipeline --query "repositoryMetadata.
cloneUrlHttp" --output text)

4. Run the following command to clone the empty repository, locally, in the Cloud9
workspace:

$ git clone $CLONE_URL

You should now see the abalone-cicd-pipeline folder in the left-hand navigation
pane of the Cloud9 workspace. Now that we have our project repository, we can proceed
to the next task of building out the application artifacts.

Developing the application artifacts
Before we can start codifying the entire solution, we need to configure the application
environment. The next set of steps will configure the environment to use the AWS CDK.

Creating a CI/CD pipeline on AWS 139

Creating and configuring the CDK project
If you refer to the CDK documentation (https://docs.aws.amazon.com/cdk/
latest/guide/getting_started.html), there are certain prerequisites that need
to be configured before using the CDK. Fortunately, AWS assists with these prerequisites
by pre-configuring them within the Cloud9 IDE. So, all we need to do before building out
the application is to update to the latest version of the CDK and set up the environmental
variables, following these steps:

Note
At the time of writing, the latest version of the AWS CDK is 2.3.0 (build
beaa5b2). In order to maintain the functionality of the code within this
example, we will use version 2.3.0 of the CDK:

1. Before building the codified CDK application, run the following command to
ensure that we have a consistent version of the CDK installed:

$ npm install -g aws-cdk@2.3.0 --force

2. Run the following command to confirm that version 2.3.0 is the current version of
the CDK:

$ cdk --version

Note
Make sure to remember the version of the CDK, as this information will be
required in a later step.

3. Next, we run the following set of commands to configure some of the CDK
environment variables, such as our AWS account and the AWS Region we are
currently using:

$ export CDK_DEFAULT_ACCOUNT=$(aws sts get-caller-
identity --query "Account" --output text)

$ echo "export CDK_DEFAULT_ACCOUNT=$(aws sts get-caller-
identity --query "Account" --output text)" >> ~/.bashrc

$ export CDK_DEFAULT_REGION=$(aws configure get region)

$ echo "export CDK_DEFAULT_REGION=$(aws configure get
region)" >> ~/.bashrc

140 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

4. Create an empty CDK project and specify Python as the project's programming
language by running the following command:

$ cd abalone-cicd-pipeline && cdk init --language python

5. Since the CDK Python project will interface with the artifact repository, we can
create the primary branch for the project using the following commands:

$ git add –A

$ git commit -m "Started CDK Project"

$ git branch main

$ git checkout main

6. Next, we can configure the Python environment by running the following
commands:

$ source .venv/bin/activate

$ python -m pip install --upgrade pip pylint boto3

$ pip install -r requirements.txt

With the CDK project created and configured, we can now move on to building the
application artifacts.

Creating the application
Now that we have prepared the CDK project environment, it's at this stage of the process
that cross-team collaboration becomes crucial to the continued success of the project. We,
as the application developers, now need to work with the ML practitioner team to assess
the following key elements of the application:

• We need to understand what the final applications will look like. In this case, the
final application will be a production-grade ML model, deployed as a SageMaker
hosted endpoint.

• We also need to understand what the ML practitioner team will be contributing as
their pipeline artifacts. In this case, the ML practitioner team will deliver a customer
SageMaker container image, such as the container images we worked with in
Chapter 3, Automating Complicated Model Development with AutoGluon.

• We will need to understand how to build or compile these artifacts. In essence, we
need to understand what the build runtime logic will entail. In this case, the ML
practitioners will want to use SageMaker to process the training data, train the ML
model, and evaluate its performance against the business criteria for the use case.

Creating a CI/CD pipeline on AWS 141

• We will need to understand what dependencies are required by the ML practitioner
artifacts. For instance, the model data processing and training components will
require access to the raw source data.

• Just as important, we need to assess what security and access requirements are
needed by the relevant AWS services, as well as the various teams creating and
updating the application artifacts.

Once we have captured, reviewed, and all team members have signed off on these
requirements, we can go ahead and build out the application. The first part of the overall
application we are going to develop is the final piece, the SageMaker hosted endpoint.

Note
It may seem counterintuitive to start the application development process by
focusing on the final piece of the pipeline – in this case, the production-grade
model. In most situations, it is a good practice to start the development of
an automated workflow by focusing on the outcome. This way, you can work
backward, from the end result, to understand and develop the necessary code
that eventually produces the final outcome.

Codifying the SageMaker endpoint
Since this may be your first time working with the CDK, code for the different
constructs has already been provided for you in the companion GitHub repository
for this chapter. Use the following steps to add the SageMaker endpoint construct into
the CDK environment:

1. Using the terminal windows within the Cloud9 workspace, run the following
command to clone the companion GitHub repository:

$ cd ~/environment/ && git clone https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS src

2. Copy the pre-built abalone_endpoint_stack.py file into the abalone_
cicd_pipeline folder with the following commands:

$ cd ~/environment/abalone-cicd-pipeline

$ cp ~/environment/src/Chapter04/cdk/abalone_endpoint_
stack.py abalone_cicd_pipeline/

142 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

3. Using the left-hand navigation panel of the Cloud9 workspace, expand the
abalone-cicd-pipeline folder, and then expand the abalone_cicd_
pipeline folder to reveal the abalone_endpoint_stack.py file.

4. Double-click on the abalone_endpoint_stack.py file so that we can review
the code.

Now that the abalone_endpoint_stack.py file is open in the Cloud9 editor, we can
walk through the code to review how we build the hosted endpoint. The first thing you
will see once opening the file is that we need to import the necessary CDK modules for
our construct and the aws_sagemaker modules. We then initialize a Python class for
EndpointStack() as a cdk.Stack construct; thus, we are essentially instantiating a
new CloudFormation stack with the relevant SageMaker endpoint resources.

Note
If you are unfamiliar with what a CloudFormation stack is, or how the CDK
initializes the AWS resources as components of the stack construct, you
can refer to the AWS documentation for stacks (https://docs.aws.
amazon.com/AWSCloudFormation/latest/UserGuide/
stacks.html) and constructs (https://docs.aws.amazon.com/
cdk/latest/guide/constructs.html).

Next, we define parameters for the CloudFormation stack, such as the name of the S3 bucket
housing our data or the bucket_name parameter. As you will see later in this chapter, these
parameters will be supplied to the stack as outputs from a pipeline execution.

After declaring the various CloudFormation stack parameters, we instantiate a
representation of the trained model, using the CfnModel() module from the aws_
sagemaker library. Here, we define the necessary parameters to create to tell SageMaker
about the trained model so that it can be hosted as a SageMaker endpoint.

Note
For more information on the different parameters required to represent a
trained model, you can refer to the CfnModel documentation (https://
docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.
aws_sagemaker/CfnModel.html).

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/cdk/latest/guide/constructs.html
https://docs.aws.amazon.com/cdk/latest/guide/constructs.html
https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnModel.html
https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnModel.html
https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnModel.html

Creating a CI/CD pipeline on AWS 143

After defining the model, we specify the necessary configuration parameters required to
actually host the trained model. This is done using the CfnEndpointConfig() module
from the aws_sagemaker library. Here, we define the type and amount of compute
resources to host the model. You can see that we also specify the data_capture_
config parameter to tell SageMaker where to store the inference request payload coming
into the hosted model, as well as the inference response output coming from the hosted
model. This way, we are essentially logging the endpoint usage so that we can monitor the
model in production.

Lastly, we define the endpoint itself, using the CfnEndpoint() module. Here, we define
a name for the endpoint and specify the endpoint configuration to use.

Next, we will build the runtime logic to retrieve the specific CfnParamater() values
from the pipeline execution.

Configuring the deployment parameters
In order to provide the required CfnParamater() parameters to the
EndpointStack() construct, as shown in the previous steps, we need to capture and
store the pipeline execution parameters in a JSON file called params.json. You will see
that once we define the actual pipeline construct, this file then serves as the input to the
endpoint CloudFormation stack. The following steps show you how to copy the runtime
script for review:

1. Using the terminal within the Cloud9 workspace, create a folder to store the
pre-built scripts by running the following command:

$ cd ~/environment/abalone-cicd-pipeline/

$ mkdir –p artifacts/scripts/

$ cp ~/environment/src/Chapter04/scripts/deploy.py
artifacts/scripts/

2. Using the left-hand navigation panel of the Cloud9 workspace, expand the newly
created artifacts folder.

3. Now, expand the scripts folder and double-click on deploy.py for review.

With the deploy.py file open in the Cloud9 editor panel, we can review just how to get
the execution parameters from a running pipeline and create the params.json file.

144 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

After importing the necessary Python libraries for the script, you will see from the
following code snippet that we configure the AWS SDK for Python to access both the
SageMaker and CodePipeline SDK clients after we've set up logging and configured our
global environment parameters:

...

logger = logging.getLogger()

logging_format = "%(levelname)s: [%(filename)s:%(lineno)s]
%(message)s"

logging.basicConfig(format=logging_format, level=os.environ.
get("LOGLEVEL", "INFO").upper())

codepipeline_client = boto3.client("codepipeline")

sagemaker_client = boto3.client("sagemaker")

pipeline_name = os.environ["PIPELINE_NAME"]

model_name = os.environ["MODEL_NAME"]

role_arn = os.environ["ROLE_ARN"]

...

Setting up logging is important for us to verify how the script is being executed and
ensure that it's functioning correctly, and if not, logging errors will allow us to
troubleshoot and debug.

Next, we've created two Python functions, namely the get_execution_id() and
get_model_artifact() functions. These functions are used in the __main__
program to get the unique pipeline execution ID from CodePipeline, as well as the name
of the trained ML model from the SageMaker model registry.

The __main__ program then takes the parameters returned by both the get_
execution_id() and get_model_artifact() functions to populate the params.
json file. We will use the pipeline execution ID for asset versioning. As you will see later,
we will append this ID to the various assets, specific to the release, in order to track the
model's lineage from source to the release.

Now that we have the necessary Python code to query the pipeline, and have retrieved
the necessary execution parameters to supply them to the deployment construct, we have
essentially created the necessary artifacts we need to run the continuous deployment
phase of the pipeline. Next, we can work on the artifacts required by the continuous
integration phase of the pipeline.

Creating a CI/CD pipeline on AWS 145

Configuring the build artifacts
As we continue with the backward-working methodology, in this next step, we are going
to create the artifacts needed to build, train, and evaluate the ML model. The following
steps will walk you through how to do this:

1. Using the terminal within the Cloud9 workspace, run the following command to
copy the pre-built build.py script into the scripts folder:

$ cd ~/environment/abalone-cicd-pipeline/

$ cp ~/environment/src/Chapter04/scripts/build.py
artifacts/scripts/

2. Using the left-hand navigation panel of the Cloud9 workspace, double-click on
build.py for review.

As you saw with the build.py file, the deploy.py script imports the necessary
Python libraries, sets up logging, and also defines the same get_execution_id()
and get_model_artifact() Python functions. We also create specific Python
functions to initiate the appropriate stage of the ML process. For example, to train
the ML model, we call the handle_training() function. This function makes the
necessary API call to SageMaker to start the training job. As you can see, we apply the
same approach to both the handle_data() function to preprocess the training and
validation datasets, as well as the handle_evluation() function to evaluate the
trained ML model's performance.

We also create a new function called handle_status(), which acts as a wrapper for
each step of the ML process. The following code snippet shows the handle_status()
Python function:

...

def handle_status(task=None, job_name=None):

 if task == "preprocess" or task == "evaluate":

 status = sagemaker_client.describe_processing_
job(ProcessingJobName=job_name)["ProcessingJobStatus"]

 while status == "InProgress":

 time.sleep(60)

 logger.info(f"Task: {task}, Status: {status}")

 status = sagemaker_client.describe_processing_
job(ProcessingJobName=job_name)["ProcessingJobStatus"]

 return status

 elif task == "train":

146 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

 status = sagemaker_client.describe_training_
job(TrainingJobName=job_name)["TrainingJobStatus"]

 while status == "InProgress":

 time.sleep(60)

 logger.info(f"Task: {task}, Status: {status}")

 status = sagemaker_client.describe_training_
job(TrainingJobName=job_name)["TrainingJobStatus"]

 return status

...

As you can see from the code snippet, depending on the current stage of the pipeline's
execution, denoted by the task parameter, the handle_status() function will call
the appropriate handle function to get the status of the SageMaker job associated with
the particular task or stage of the ML process. For example, to train the ML model, the
handle_status() function determines from the task parameter that it needs to
get the status of the SageMaker training job and log whether the task it has is currently
running or in progress.

Finally, we have the __main__ function, shown in the following snippet, as the primary
execution point for the script:

...

if __name__ == "__main__":

 task = sys.argv[1]

 execution_id = get_execution_id(name=pipeline_name,
task=task)

 logger.info(f"Executing {task.upper()} task")

 if task == "preprocess":

 job_name = handle_data(model_name=model_name,
execution_id=execution_id)

 status = handle_status(task=task, job_name=job_name)

 elif task == "train":

 job_name = handle_training(model_name=model_name,
execution_id=execution_id)

 status = handle_status(task=task, job_name=job_name)

 elif task == "evaluate":

 job_name = handle_evaluation(model_name=model_name,
execution_id=execution_id)

 status = handle_status(task=task, job_name=job_name)

 else:

Creating a CI/CD pipeline on AWS 147

 error = "Invalid argument: Specify 'preprocess',
'train' or 'evaluate'"

 logger.error(error)

 sys.exit(255)

 if status == "Completed":

 logger.info(f"Task: {task}, Final Status: {status}")

 sys.exit(0)

 else:

 error = f"Task: {task}, Failed! See CloudWatch Logs for
further information"

 logger.error(error)

 sys.exit(255)

...

As you can see from the preceding code snippet, the __main__ function takes the
current pipeline stage as input and calls the appropriate handler function for that stage.
For example, if the pipeline is currently executing the training stage, the __main__
function determines from the task input that it needs to call the handle_training()
function to initiate the SageMaker training job, and then the handle_status()
function to track and manage the execution of that training job.

Note
Refer to the AWS SDK for Python documentation for more information on
the various parameters to create a SageMaker processing job (https://
boto3.amazonaws.com/v1/documentation/api/latest/
reference/services/sagemaker.html#SageMaker.
Client.create_processing_job) and SageMaker training job
(https://boto3.amazonaws.com/v1/documentation/
api/latest/reference/services/sagemaker.
html#SageMaker.Client.create_training_job).

While it may not seem inherently intuitive at this point, by creating both the build.
py, and deploy.py scripts, we have just produced the fundamental mechanisms by
which the pipeline will execute the continuous integration and continuous deployment
process. For example, by executing the build.py script, the pipeline can build, train,
and evaluate a production-grade ML model. And, by executing the deploy.py script,
the pipeline can process the relevant parameters from the integration to deploy the model
into production by means of the endpoint CDK construct.

148 Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning

However, before moving on to the next chapter, it is a good practice to commit the current
work in progress to the source code repository. The following steps will walk you through
how to checkpoint your progress:

1. Using the terminal within the Cloud9 workspace, run the following commands to
add the changes we've made to the working directory:

$ cd ~/environment/abalone-cicd-pipeline/

$ git add -A

2. Now, run the command to commit these changes to the repository history:

$ git commit -m "Checkpoint"

3. Finally, we can push the changes to the source code repository by running the
following command:

$ git push --set-upstream origin main

So, now that these intrinsic artifacts have been created and committed to the repository,
we can continue to develop the pipeline itself in the next chapter.

Summary
In this chapter, you were introduced to the concept of a CI/CD process as a way to close
the gap between building a production-grade ML and getting the model into production.
Making use of this methodology, an ML practitioner doesn't simply hand over the trained
model to the platform teams but rather integrates the model artifacts into the overall
process.

While we haven't as yet shown how the ML practitioner contributes these model artifacts
into a process, we have established a pattern of codifying the process by introducing
and setting up an AWS CDK project. By using the CDK, we practically demonstrated a
backward-working approach for how the engineering team can deploy a trained model as
a SageMaker-hosted endpoint CDK construct. We also demonstrated how the engineering
teams built the fundamental mechanisms that will eventually automate the integration of
the model training and evaluation procedures into the process.

In the next chapter, we will continue building out the CI/CD pipeline, adding the model
artifacts and automatically deploying the trained model into production.

5
Continuous

Deployment of
a Production

ML Model
In Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for Machine
Learning, we were introduced to the concept of continuous integration, and continuous
deployment, as a means of bridging the gap between ML model development and ML
model deployment. We were also introduced to the AWS CDK, as a way to further close
this gap, by bringing the different artifacts that software engineers and ML practitioners
develop into a single cloud-native application. Thus, allowing us to codify a CI/CD
pipeline that automates the entirety of the ML process. Closing this gap, and helping to
facilitate this inter-team synergy, is one of the core design philosophies behind why AWS
originally created the CDK.

150 Continuous Deployment of a Production ML Model

Note
For more information on the AWS CDK philosophy, you can read the
best practices for developing cloud applications in the AWS CDK blog
post (https://aws.amazon.com/blogs/devops/best-
practices-for-developing-cloud-applications-with-
aws-cdk/).

Although we started creating the core mechanisms for training and deploying the ML
model, we have yet to create the overall pipeline, responsible for orchestrating the process.
In this chapter, we will pick up from where we left off, by continuing to codify the CI/CD
pipeline construct, as well as the ML model artifacts. The following topics will emphasize
how we will accomplish these tasks:

• Deploying the CI/CD pipeline

• Building the ML model artifacts

• Executing the CI/CD pipeline

Technical requirements
This chapter will use the following resources:

• A web browser (for the best experience, it is recommended that you use the Chrome
or Firefox browser).

• Access to the AWS account that you've been using in the previous chapters.

• Access to the Cloud9 IDE that you used to start building the CDK application
in Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for
Machine Learning.

• Access to the same SageMaker Studio UI we used in Chapter 3, Automating
Complicated Model Development with AutoGluon.

• We will once again be working within the usage limits of the AWS Free Tier to avoid
exceeding unnecessary costs.

• Source code samples for the CDK constructs, and ML model artifacts, are provided
in the companion GitHub repository for this chapter (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/tree/
main/Chapter05).

https://aws.amazon.com/blogs/devops/best-practices-for-developing-cloud-applications-with-aws-cdk/
https://aws.amazon.com/blogs/devops/best-practices-for-developing-cloud-applications-with-aws-cdk/
https://aws.amazon.com/blogs/devops/best-practices-for-developing-cloud-applications-with-aws-cdk/
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter05
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter05
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter05

Deploying the CI/CD pipeline 151

Deploying the CI/CD pipeline
You will recall from Chapter 4, Continuous Integration and Continuous Delivery (CI/
CD) for Machine Learning, that we concluded the chapter by checkpointing the intrinsic
artifacts, namely the buld.py and deploy.py scripts, and committing them into the
CodeCommit repository. Whereas these artifacts fundamentally create and deploy a
trained ML model, we still need to wrap them in a continuous integration and continuous
deployment process. To accomplish this, we will continue using the AWS CDK to create a
codified CI/CD pipeline construct.

Codifying the pipeline construct
The penultimate component of the application is the pipeline construct itself. Using the
following steps, we will once again leverage the AWS CDK to create the pipeline:

1. If you don't already have the Cloud9 environment open in your web browser, log
into the AWS account you've been using, and open the Cloud9 management console
(https://console.aws.amazon.com/cloud9) for your AWS region. Click
on the Open IDE button to launch the Cloud9 instance. Once the Cloud9 instance
is online, use the Terminal panel to activate the Python virtual environment, by
running the following commands:

$ cd ~/environment/abalone-cicd-pipeline/

$ source .venv/bin/activate

2. Now, run the following command to add the pre-built pipeline
construct, abalone_cicd_pipeline_stack.py, into the abalone_cicd_
pipeline folder:

$ cp ~/environment/src/Chapter05/cdk/abalone_cicd_
pipeline_stack.py ~/environment/abalone-cicd-pipeline/
abalone_cicd_pipeline/

152 Continuous Deployment of a Production ML Model

Note
When we initialized the CDK application in the previous chapter, a templatized
abalone_cicd_pipeline_stack.py construct was created for
you. We will be replacing this file with an updated version, pre-built for our
example. If you have not already cloned the companion GitHub repository,
you can refer to the Codifying the SageMaker Endpoint section in Chapter 4,
Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning.

3. Using the left-hand navigation panel of the Cloud9 workspace, double-click on the
updated version of the abalone_cicd_pipeline_stack.py file for review.

The first thing you will note as we walk through the code is that we import the necessary
CDK modules we will be using to create the construct resources. The primary modules we
will be using within this contract are the aws_codepipeline, aws_codpipeline_
actions, aws_codebuild, and aws_iam modules.

Next, as you can see from the following code snippet, we define the PipelineStack()
class, as cdk.Stack, and initialize it:

...

class PipelineStack(cdk.Stack):

 def __init__(self, scope: Construct, id: str, *, model_
name: str=None, repo_name: str=None, cdk_version: str=None,
**kwargs) -> None:

 super().__init__(scope, id, **kwargs)

...

As you see from the previous code snippet, we also supply some key parameters, namely
model_name, repo_name, and cdk_version to initialize the class. These parameters
are specific to our CDK application and will be defined later in this chapter when we
instantiate the CDK application itself.

Once we've initialized the construct, the first resource we need to create is sagemaker_
role. This is an IAM role that the runtime logic scripts, namely build.py and
deploy.py, will assume to execute the various SageMaker tasks. For example,
sagemaker_role has FullAccess to the SageMaker service, in order to process the
training data, train, evaluate and deploy the model.

Next, we define variables for the repositories that will contain the artifact source code.
For example, we define a variable called container_repo to declare the CodeCommit
repository, as well as the variable called s3_bucket where the raw training data and
pipeline execution artifacts will be stored.

Deploying the CI/CD pipeline 153

Next, we define the first of four CodeBuild projects. These CodeBuild projects execute
the runtime logic to essentially build the required pipeline assets that preprocess the data,
train the ML model, evaluate the ML model, and construct the deployment parameters
needed to deploy the model. For example, and as shown in the following code snippet, the
container_build project takes the ML model artifact and executes the runtime logic
to build and store the artifact as a Docker image:

...

 build=dict(

 commands=[

 "echo Build started on `date`",

 "echo Building the Docker
image...",

 "docker build -t $IMAGE_REPO_
NAME:$IMAGE_TAG --build-arg REGION=$AWS_DEFAULT_REGION ."

]

),

 post_build=dict(

 commands=[

 "echo Build completed on
`date`",

 "echo Pushing the Docker
image...",

 "docker push $IMAGE_REPO_
NAME:$IMAGE_TAG"

]

)

...

Since we will be basing our Docker container image on the AWS Deep Learning
Containers, using the same methodology from Chapter 3, Automating Complicated Model
Development with AutoGluon, we also need to provide the CodeBuild project with the
necessary permissions to access the container repositories. You can see from the following
code snippet that we add an IAM PolicyStatement() to the CodeBuild project,
giving the IAM role access to the DLC container repositories:

...

 container_build.role.add_to_policy(

 iam.PolicyStatement(

 resources=[

154 Continuous Deployment of a Production ML Model

 "arn:aws:ecr:*:763104351884:repository/*",

 "arn:aws:ecr:*:217643126080:repository/*",

 "arn:aws:ecr:*:727897471807:repository/*",

 "arn:aws:ecr:*:626614931356:repository/*",

 "arn:aws:ecr:*:683313688378:repository/*",

 "arn:aws:ecr:*:520713654638:repository/*",

 "arn:aws:ecr:*:462105765813:repository/*"

],

 actions=[

 "ecr:BatchGetImage",

 "ecr:GetDownloadUrlForLayer"

],

 effect=iam.Effect.ALLOW

)

)

...

The next CodeBuild project we define, called data_build, executes the runtime logic
for the data processing task. As you can see from the following code snippet, we run the
previously created build.py script, and supply the preprocess argument, telling the
Python script to make an API call for SageMaker to run the processing Job:

...

 "build": {

 "commands": [

 "echo Build started on `date`",

 "python ./artifacts/scripts/
build.py preprocess"

]

 },

...

Deploying the CI/CD pipeline 155

The next two CodeBuild projects, namely model_build and evaluation_build,
execute the same runtime logic as the data_build project. Except that model_build
supplies the train parameter to the build.py script to make an API call for SageMaker
to run the ML model training job. For example, you can see the following code snippet,
where the train parameter is supplied to the CodeBuild project:

...

 "build": {

 "commands": [

 "echo Build started on `date`",

 "python ./artifacts/scripts/
build.py train"

]

 },

...

Alternatively, the evaluation_build project supplies the evaluate parameter to the
build.py script to make an API call to SageMaker to run a processing Job that evaluates
the trained ML model.

The final CodeBuild project we create is called deployment_build. Here, we define
the runtime logic for the deploy.py file. You will recall from Chapter 4, Continuous
Integration and Continuous Delivery (CI/CD) for Machine Learning, that the deploy.
py script captures the execution parameters from the pipeline to deploy the SageMaker
Endpoint Stack.

As you can see from the following code snippet, the deployment_build project
synthesizes, or generates, the CloudFormation template for the Endpoint Stack, called
EndpointStack.template.json.

After the template file has been created, the deployment_build project then executes
the deploy.py script to generate the necessary CloudFormation parameters, required to
deploy the stack template, and stores these parameters in the params.json file:

...

 "build": {

 "commands": [

 "echo Synthesizing cdk
template",

 "npx cdk synth -o output"

]

156 Continuous Deployment of a Production ML Model

 },

 "post_build": {

 "commands": [

 "python ./artifacts/scripts/
deploy.py"

]

 }

 },

 artifacts={

 "base-directory": "output",

 "files": [

 "EndpointStack.template.json",

 "params.json"

]

 }

...

Now that we have the relevant runtime logic to build the model artifact container image,
preprocess the training data, train the ML model, and then evaluate the ML model's
performance, we put can put these components together to construct the CI/CD pipeline
to automate the process. Using the pipeline variable, we define the overall structure
of the pipeline and, as you can see, the pipeline is comprised of four consecutive steps or
Pipeline Stages:

1. Source
2. Build
3. Approval
4. Deploy

The Source stage refers to our CodeCommit repository, which is comprised of two
branches. Updating any of these sources will trigger a release execution of the pipeline:

• The main branch contains the codified pipeline.

• The model branch contains the ML model artifacts.

Deploying the CI/CD pipeline 157

The Build stage executes the four CodeBuild projects, as pipeline actions, to create the
continuous integration phase of the process, and compiles or builds the ML model assets.
The four pipeline actions are as follows:

1. The ContainerBuild action creates the container image, from the model source,
and uploads it to the ECR repository.

2. The Preprocess action executes the build.py script to create a SageMaker
processing job, whereby the raw training data is preprocessed to make it ready for
model training.

3. The Train action also executes the build.py script, passing in the train
parameter to create a SageMaker training job to build the optimized model.

4. Finally, the Evaluate action also calls the build.py script, passing in the
evaluate parameter to create a SageMaker processing job that evaluates the
performance of the trained model to assess its readiness for production.

The Approval stage will pause the pipeline by creating a manual decision gate, whereby
the application owners will assess the model's performance results, and manually Approve
or Deny the model for production. If the evaluation is denied, the pipeline execution halts
and the cross-functional team assesses what source changes need to be made to improve
the model. If the evaluation is approved, the pipeline automatically transitions to the
Deploy stage.

The Deploy stage is essentially the continuous deployment phase of the process and, is
comprised of pipeline actions:

1. The DeploymentBuild action is a CodeBuild project that synthesizes the
endpoint CDK construct and executes the deploy.py script to gather the
deployment parameters from the running pipeline.

2. The DeployEndpoint action deploys the synthesized CloudFormation template
to create the endpoint stack and deploy the approved model into production.

Now that the various application components have been created, the final task is to
configure the CDK application.

158 Continuous Deployment of a Production ML Model

Creating the CDK application
The following steps will walk you through the process of adding the final code to complete
the CDK application:

1. Using the navigation panel of the Cloud9 workspace, run the following commands
to copy the app.py file from the companion GitHub repository to replace the
template file created during the CDK initialization:

$ cd ~/environment/abalone-cicd-pipeline/

$ cp ~/environment/src/Chapter05/cdk/app.py .

2. Now, double-click on the app.py file so we can review it.

As we review the app.py file, you can see that we import the necessary
libraries, as well as the EndpointStack() and PipelineStack() classes,
that we created earlier. Next, as you can see from the following code snippet, we
define the parameters specific to our application, namely the name of the ML
model, the name of the CodeCommit repository, and the current version of the
AWS CDK we have installed:...

MODEL = "abalone"

CODECOMMIT_REPOSITORY = "abalone-cicd-pipeline"

CDK_VERSION = "2.3.0"

...

Next, we define the CDK application itself, using cdk.App(), and as the following code
snippet shows, we declare an instance of the EndpointStack() class, while supplying
the necessary CDK application parameters, including the current AWS region as well as
the AWS account we are using:

...

EndpointStack(

 app,

 "EndpointStack",

 env=cdk.Environment(account=os.getenv("CDK_DEFAULT_
ACCOUNT"), region=os.getenv("CDK_DEFAULT_REGION")),

 model_name=MODEL

)

...

Deploying the CI/CD pipeline 159

Lastly, as the next code snippet shows, we declare an instance of PipelineStack(),
and also supply the required CDK application parameters required by the construct:

...

PipelineStack(

 app,

 CODECOMMIT_REPOSITORY,

 env=cdk.Environment(account=os.getenv("CDK_DEFAULT_
ACCOUNT"), region=os.getenv("CDK_DEFAULT_REGION")),

 model_name=MODEL,

 repo_name=CODECOMMIT_REPOSITORY,

 cdk_version=CDK_VERSION

)

...

We've now created our CDK application and it's ready to be deployed. The next section
will show you how to deploy the application.

Deploying the pipeline application
Deploying the application on AWS is relatively straightforward. The following steps will
walk you through this process, using the Cloud9 workspace terminal:

1. Before deploying the application, we need to finalize the application dependencies.
Since the ML model will require raw training data, we need to download the data
from the UCI repository. Run the following commands to get the training data:

$ cd ~/environment/abalone-cicd-pipeline/ && mkdir -p
artifacts/data

$ wget -c -P artifacts/data https://archive.ics.uci.edu/
ml/machine-learning-databases/abalone/abalone.data

2. Next, we need to configure the CDK environment by specifying the AWS region we
are using, as well as our AWS account. Run the following command to bootstrap the
CDK environment:

$ cdk bootstrap aws://${CDK_DEFAULT_ACCOUNT}/${CDK_
DEFAULT_REGION}

160 Continuous Deployment of a Production ML Model

3. Now we can deploy the pipeline application, by running the following command:

$ cdk deploy abalone-cicd-pipeline

Note
When prompted Do you wish to deploy these changes (y/n)?, enter y, and
hit Enter.

The application should take around 2 minutes to deploy and you can view the progress
within the Cloud9 terminal or the CloudFormation console (https://console.aws.
amazon.com/cloudformation/).

After the CloudFormation stack has been completed, we can trigger a pipeline release
by committing the application code into the CodeCommit repository. Run the following
commands to create an initial commit of the CDK application:

$ git add –A

$ git commit -m "Initial commit of Pipeline Artifacts"

$ git push

Now you can view the pipeline in the CodePipeline console (https://console.aws.
amazon.com/codesuite/codepipeline/) and click on Pipeline in the console's
navigation pane. Figure 5.1 shows an example of what you might see:

Figure 5.1 – CodePipeline console

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/

Building the ML model artifacts 161

As you can see from Figure 5.1, abalone-cicd-pipeline has Failed. If you click on the
pipeline to open the details, you will see that the Source stage of it has failed, as shown
in Figure 5.2.

Figure 5.2 – Failed Source stage

Figure 5.2 shows the Source stage of the pipeline, and as you can see from the example,
the ModelSource action has failed. This is because the ML practitioner team hasn't
created any model source artifacts yet. In the next section, we will work through creating
these artifacts.

Building the ML model artifacts
Up to this point, we have focused on the various tasks that are typically performed by the
application development teams, creating a CDK application for the overall structure of
the automated process. In this section, we will continue this undertaking, but from the
perspective of the ML practitioners, whereby we will create the ML model itself, as well
as the artifacts responsible for executing the data processing, ML model training, and ML
model evaluation processes. The following steps will show you how an ML practitioner
might do this:

1. Using your AWS account, open the SageMaker console (https://console.
aws.amazon.com/sagemaker/home).

2. Using the left-hand menu panel, click on the Studio option to open the SageMaker
Domain dashboard.

3. In the SageMaker Domain dashboard, click on the Launch app drop-down menu
and select Studio to launch the Studio UI in the browser.

https://console.aws.amazon.com/sagemaker/home
https://console.aws.amazon.com/sagemaker/home

162 Continuous Deployment of a Production ML Model

Note
You should have a SageMaker Domain already configured in the SageMaker
console. If not, please refer to the Getting started with SageMaker Studio
section in Chapter 2, Automating Machine Learning Development Using
SageMaker Autopilot.

4. Once the Studio UI has been launched, click the File menu, then click New, and
select Terminal, to launch a new terminal.

5. Next, we will clone the companion GitHub repository to access the pre-built
artifacts. In the terminal, run the following commands:

$ cd ~

$ git clone https://github.com/PacktPublishing/Automated-
Machine-Learning-on-AWS src

6. Now, we will clone the pipeline repository. Run the following commands in the
terminal, get the address of the CodeCommit repository, and clone it:

$ CLONE_URL=$(aws codecommit get-repository --repository-
name abalone-cicd-pipeline --query "repositoryMetadata.
cloneUrlHttp" --output text)

$ git clone $CLONE_URL

7. Run the following commands to create the model artifact branch:

$ cd ~/abalone-cicd-pipeline/

$ git checkout -b model

8. Before we can create the model artifacts, we need to clear out the existing code from
the new branch. Run the following command to create a fresh branch:

$ git rm -rf .

9. Copy the pre-built Jupyter notebook from the cloned companion GitHub repository
to the model branch by running the following command:

$ cp ~/src/Chapter05/Notebook/Abalone\ CICD\ Example.
ipynb .

10. In the navigation panel of the Studio UI, double-click on Abalone CICD Example.
ipynb to open the notebook for review.

Building the ML model artifacts 163

Note
The Jupyter Notebook requires the Python 3 (Data Science) kernel, which may
take up to 2 minutes to launch.

11. Once the Jupyter kernel has started, from the Kernel menu, click the Restart Kernel
and Run all Cells … option to execute all the notebook code cells.

Once all the code cells have been executed, you should see that we have followed a
similar methodology to the one we used in Chapter 3, Automating Complicated Model
Development with AutoGluon, where the ML practitioner built a deep learning container
image for AutoGluon. In the same way, we have created the necessary component files to
construct the container image that represents our model artifact. Hence, you should now
see five new files in the left-hand navigation panel of the Studio UI:

• model.py

• app.py

• nginx.conf

• wsgi.py

• Dockerfile

Let's review what each of these component files does, within the context of our
container image.

Reviewing the modeling file
The model.py file is primarily responsible for all tasks pertaining to the ML model itself.
As you will see, there are three central Python functions to handle the tasks of preparing
the training data, training the ML model, and evaluating the ML model. For example,
the preprocess() function will take the raw data, preprocess the dataset by encoding
the categorical values, and then split the data into a training (80% of the data) dataset,
validation (15% of the data) dataset, and testing (5% of the data) dataset.

Once the data has been processed, we use the train() function to compile and
fit the TensorFlow model to the data. The trained model is then saved for evaluation
and inference.

The last function we will create as part of the model runtime is the evaluate()
function. This function will load the model, using the load_model() function, evaluate
the quality of the trained model, and then save the report by means of the save_
report() function.

164 Continuous Deployment of a Production ML Model

So, by creating these core functions in the modeling file, we have a single runtime
script that handles the primary function of producing a production model candidate
for approval.

Let's further review just how the modeling file is used, as well diving into app.py next.

Reviewing the application file
Within the context of continuous integration and continuous deployment, the model
artifact will perform two functions, model training and model hosting. To wrap the
runtime logic for determining which of these two tasks the model artifact performs,
the second file generated by the notebook is the app.py file. This file serves as the main
entry point to the container image and depending on the arguments passed to this entry
point, the runtime logic within the app.py file will determine whether to train or host
the model.

As an example, if you refer to the build.py file that we created in the previous section,
and as shown in the following code snippet, to preprocess the data as a SageMaker
processing job, the handle_data() function calls the create_processing_job()
SageMaker API. As part of the AppSpecification parameter for the API call, we
provide the container image URI, along with the preprocess argument for the app.py
entry point:

...

def handle_data(model_name=None, execution_id=None):

 try:

 response = sagemaker_client.create_processing_job(

 ProcessingJobName=f"{model_name}-ProcessingJob-
{execution_id}",

 ProcessingResources={

 'ClusterConfig': {

 'InstanceCount': 1,

 'InstanceType': 'ml.m5.xlarge',

 'VolumeSizeInGB': 30

 }

 },

 StoppingCondition={

 'MaxRuntimeInSeconds': 3600

 },

 AppSpecification={

Building the ML model artifacts 165

 'ImageUri': f"{image_uri}:latest",

 'ContainerEntrypoint': ["python", "app.py",
"preprocess"]

 },

...

So, when SageMaker initializes the container image to run the processing job, it will run
app.py as the entry point, and supply the preprocess argument. Now if we refer to
the __main__ routine within the app.py file, as highlighted in the next code snippet,
we can see that when the preprocess argument is provided, the main program will in
turn execute the preprocess() function within the model.py file:

...

if __name__ == "__main__":

 print(f"Tensorflow Version: {tf.__version__}")

 if len(sys.argv) < 2 or (not sys.argv[1] in ["serve",
"train", "preprocess", "evaluate"]):

 raise Exception("Invalid argument: you must specify
'train' for training mode, 'serve' for predicting mode,
'preprocess' for preprocessing mode or 'evaluate' for
evaluation mode.")

 preprocess = sys.argv[1] == "preprocess"

 train = sys.argv[1] == "train"

 evaluate = sys.argv[1] == "evaluate"

 if preprocess:

 model.preprocess()

 elif train:

 model.train()

 elif evaluate:

 model.evaluate()

 else:

 cpu_count = multiprocessing.cpu_count()

 model_server_timeout = os.environ.get('MODEL_SERVER_
TIMEOUT', 60)

 model_server_workers = int(os.environ.get('MODEL_
SERVER_WORKERS', cpu_count))

 start_server(model_server_timeout, model_server_
workers)

...

166 Continuous Deployment of a Production ML Model

Now, if you continue to examine the previous code snippet, you can further see that
the same overall concept applies for the model training, as well as the model evaluation
processes, if the train or evaluate arguments are supplied to the entry point.

Alternatively, if none of these arguments are supplied, the application wrapper will
perform the hosting task, consequently providing the trained model as a hosted endpoint.
Next, we'll examine the additional artifact files necessary for hosting the model.

Reviewing the model serving files
Since the model will be served using Python's Flask framework (https://flask.
palletsprojects.com), we need to add web serving components, such as NGINX
(https://www.nginx.com/) and WSGI (https://www.palletsprojects.
com/p/werkzeug/). The configurations for these web serving components are stored in
the nginx.conf and wsgi.py files.

Reviewing the container build file
The final file we created within the notebook is the Dockerfile. This file will
execute the container build instructions to download a TensorFlow 2.5 deep learning
container from AWS, configure the web serving packages, and copy the model artifacts
into the container.

So now that we've reviewed the files that make up the container image artifact, we can go
ahead and update the source code repository.

Committing the ML artifacts
The final task that the ML practitioner performs is to commit the model artifacts into the
CodeCommit repository and thus trigger a release of the CI/CD pipeline. To do this, run
the following commands using the Terminal tab of the Studio UI:

$ cd ~/ abalone-cicd-pipeline/

$ git add –A

$ git config --global user.email "<ENTER YOUR EMAIL ADDRESS>"

$ git config --global user.name "<ENTER YOUR NAME>"

$ git commit -m "Initial commit of model artifacts"

$ git push --set-upstream origin model

Executing the automated ML model deployment 167

Note
Make sure to substitute your unique email address and username when
committing the new artifacts. This way, any code changes that trigger a new
release can be tracked.

If we assume that the ML practitioner has executed the appropriate unit tests, to ensure
that the data processing, model training, and evaluation functions work, and since we
have committed these artifacts into the CodeCommit repository, we can finally automate
the deployment of the ML model into production. The next section will review the model
release process.

Executing the automated ML
model deployment
Reviewing the pipeline execution is done through the CodePipeline console
(https://console.aws.amazon.com/codesuite/codepipeline/home),
and then by clicking on the abalone-cicd-pipeline name. Once the pipeline dashboard
opens, the first thing you will immediately see (as shown in Figure 5.3) is that the Source
stage has succeeded.

Figure 5.3 – Succeeded Source stage

168 Continuous Deployment of a Production ML Model

Once the Source stage succeeds, the pipeline automatically moves onto the Build stage
to essentially execute the continuous integration phase of the CI/CD process. Figure 5.4
shows the four stage actions that cover continuous integration.

Figure 5.4 – Continuous integration phase of the pipeline

Executing the automated ML model deployment 169

From Figure 5.4, there are a few items to take note of. Firstly, note the Pipeline execution
ID. This ID is used to track the lineage of the ML model's release, as it is embedded
into each the name of the various SageMaker jobs. The ID is also used as an S3 folder
containing all the relevant assets used by the pipeline. For example, by opening the ID
folder in the S3 console (https://s3.console.aws.amazon.com), you can
see the model assets, training, validation, and testing datasets, as well as the model
evaluation report.

Secondly, by clicking on the Details link for every stage action, you can review the
output from each CodeBuild project. Recall that a CodeBuild project was created to
execute the container image build, data processing, model training, and model
evaluation steps of the pipeline.

So, if you click on the Details link for the Train stage action, you are redirected to the
Build status dashboard for the ModelTrainingBuild project. If you scroll down, you'll
see the output from the Build logs. Figure 5.5 shows an example of the CodeBuild log
output for the ML model training.

Figure 5.5 – CodeBuild log output for model training

As you can see from Figure 5.5, the CodeBuild project executes the build.py script
and supplies the train argument. You will recall that the train argument instructs
the build.py file to execute the handle_train() function, whereby SageMaker is
instructed to run a training Job, and use the model artifact container image to train the
ML model.

Note
Since the various CodeBuild projects execute API calls to trigger SageMaker
jobs for data processing, model training, and model evaluation, you can
review the SageMaker specific logs using the SageMaker console (https://
console.aws.amazon.com/sagemaker/home).

https://console.aws.amazon.com/sagemaker/home
https://console.aws.amazon.com/sagemaker/home

170 Continuous Deployment of a Production ML Model

Lastly, by clicking on the source code commit IDs of both the MainSource and
ModelSource branches of the pipeline, you can track what code changes were made for
the release as well as who made those code changes.

So, once the continuous integration phase of the pipeline has been completed and the
trained model evaluated, the pipeline pauses to wait for manual approval. Figure 5.6 shows
an example of the Approval stage:

Figure 5.6 – Manual Approval stage

As you see from Figure 5.6, the pipeline is in a Pending state, waiting for the use case's
acceptance criteria to be met, in order to proceed with the model's deployment. It is at
this stage that the various application owners review the quality of the trained model
candidate and determine whether or not the model is considered to be production-grade.

Since the evaluation report is a pipeline asset, it can be viewed using the S3 console. By
opening the pipeline's S3 bucket, expanding the folder for the pipeline's execution ID,
and then opening the evaluation sub-folder, the application owners can then open the
evaluation.json file to review the evaluation report. The following is an example of
what evaluation.json might look like:

{

 "regression_metrics": {

 "rmse": {

 "value": 1.4838999769750487

Executing the automated ML model deployment 171

 },

 "mse": {

 "value": 2.20195914166655

 }

 }

}

Within the report, the application owners can see the rmse and mse evaluation
metric results to decide if they approve or reject the model. This determination is then
applied to the pipeline, by clicking the Review button, within the CodePipeline console,
and adding any optional comments. The application owners can then click either the
Reject or Approve buttons. Figure 5.7 shows an example of what the pipeline Review
process might resemble:

Figure 5.7 – Pipeline Review

172 Continuous Deployment of a Production ML Model

Once the pipeline review has been approved, the pipeline execution proceeds onto the
continuous deployment phase. It is at this point that the appropriate CloudFormation
parameters are captured from the current pipeline execution, by the DeploymentBuild
action, and the SageMaker endpoint is deployed using the DeployEndpoint action. Figure
5.8 shows an example of the continuous deployment phase of the pipeline:

Figure 5.8 – Continuous deployment phase of the pipeline

As shown in Figure 5.8, once the DeployEndpoint action is complete, we now have an
approved production model that can be integrated into the Age Calculator application, to
serve abalone age predictions.

Since the CDK application artifacts and the ML artifacts exist in their own dedicated
branch of the code repository, any further development on the pipeline or ML artifacts is
owned and managed by the respective application team or ML practitioners. Any fixes or
updates made to these branches from the feedback loop will cause a release change to the
CI/CD pipeline and deploy a new version of the ML model into production.

So, now that we have shown how to continuously integrate, and continuously deploy the
Age Calculator example, we can clean up the various resources.

Summary 173

Cleanup
To save on AWS resource costs, it is recommended that the deployment and pipeline
assets are deleted. The following steps will guide you through this process:

1. Open the CloudFormation console (https://console.aws.amazon.com/
cloudformation/home) and click on EndpointStack to open the stack details.

2. Now click on the Delete button to delete the SageMaker endpoint, endpoint
configuration, and the trained model artifact.

3. Once the stack has been deleted, repeat the same process for the abalone-cicd-
pipeline stack.

Note
Since the pipeline's S3 bucket and the abalone ECR repository are not empty,
the stack deletion should fail. You will have to manually empty these resources
and then try to delete the stack. You may also delete the abalone-cicd-pipeline
CodeCommit repository. However, do not delete the Cloud9 environment as
we will be using this in the next chapter.

Summary
In this chapter, we continued to build on the CDK application we started in Chapter 4,
Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning. In doing
so, you were further presented with how to deploy the CDK application and automate the
deployment of an optimized ML model.

You were also introduced to the importance of an agile, cross-function team as being
integral to the success of an automated ML solution. We saw how these various teams
bridged the gap between the ML modeling process (from the perspective of ML
practitioners), all the way to automated model deployment (from the perspective of
application development and operations teams).

Additionally, in this chapter, you saw how the AWS development tools, namely
CodeCommit, CodeBuild, and CodePipeline, can be used to orchestrate the CI/CD
process. Though the hands-on example, you saw for yourself how the typical ML process
introduced in Chapter 1, Getting Started with Automated Machine Learning on AWS,
can be integrated into the DevOps methodology, using the CI/CD process to create a
foundation for MLOps.

In the next few chapters, we will continue to expand on the concepts of Processes, Tools,
and People to build up to an automated machine learning software development lifecyle
for the Age Calculator use case.

This section will introduce you to the limitations of the overall CI/CD process and
how to further integrate the role of the ML practitioner into the pipeline build process.
The section will also introduce how this role integration streamlines the automation
process and present you with an optimized methodology by introducing you to AWS
Step Functions.

This section comprises the following chapters:

• Chapter 6, Automating the Machine Learning Process Using AWS Step Functions

• Chapter 7, Building the ML Workflow Using AWS Step Functions

Section 3:
Optimizing a Source

Code-Centric
Approach

to Automated
Machine Learning

6
Automating the

Machine Learning
Process Using AWS

Step Functions
In the first three chapters of the book, we saw a fundamental process flaw that can impact
the automation of an ML use case, namely the handover of a production-grade model,
produced by the ML practitioner, to the application development and operations teams. In
Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning,
we examined how this issue could be addressed by combining the ML processing into the
DevOps process using the CI/CD process methodology.

While that solution inherently addresses the issue, you can also conclude that in terms
of overall ownership, the development or platform teams were primarily responsible
for building the majority of the final solution. For instance, you will recall from the CI/
CD example we used in the previous chapter, the application development teams built
the pipeline foundation, as well as the integrations for offloading the data processing,
model training, and model evaluation tasks to SageMaker. These integrations require
the development teams to have a fundamental understanding of ML in general, and the
overall ML process.

178 Automating the Machine Learning Process Using AWS Step Functions

While the example did show the ML practitioner providing more than just an optimized
model to this cross-functional team in the form of a packaged container image, the
fact remains that most of the solution's development was still the responsibility of
the application and platform developers, thus requiring them to, in essence, be ML
practitioners themselves.

Granted, the disproportion of assigned responsibilities may be because not all ML
practitioners are themselves DevOps engineers and, organizationally speaking, not all ML
practitioners are part of the same team as the developers and infrastructure staff.

Either way, how do we further streamline the ML automation process without having to
further skill up the development and ML teams, or change the organizational structure?

Answering this question will be the primary focus of this chapter, where we will continue
to build upon the foundation we established in the previous chapter and continue to
streamline the Age Calculator example. To this end, we will cover the following topics:

• Introducing AWS Step Functions

• Using the AWS Step Functions Data Science SDK for CI/CD

• Building the CI/CD pipeline resources

Technical requirements
Here is a list of the technical requirements for this chapter:

• A web browser (for the best experience, it is recommended that you use Chrome
or Firefox).

• Access to the AWS account that you used in Chapter 4, Continuous Integration and
Continuous Delivery (CI/CD) for Machine Learning.

• Access to the Cloud9 development environment we used in Chapter 4, Continuous
Integration and Continuous Delivery (CI/CD) for Machine Learning.

• We will once again be working within the usage limits of the AWS Free Tier to avoid
exceeding unnecessary costs.

• Source code examples and Jupyter Notebooks are provided in the
companion GitHub repository for this chapter (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/tree/
main/Chapter06). The code examples should already be available in the Cloud9
development environment. If not, refer to the section entitled Developing the
Application Artifacts in Chapter 4, Continuous Integration and Continuous Delivery
(CI/CD) for Machine Learning.

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06

Introducing AWS Step Functions 179

Introducing AWS Step Functions
At re:Invent 2016, AWS announced the Step Functions service as a way to orchestrate
common business processes by creating a workflow. A workflow, also referred to as a
state machine, is essentially a series of event-driven steps, or States, that denote a single
process unit. By chaining these units of work together we are effectively creating an
automated process to accomplish an overall goal.

In the case of automating the ML process, we can create a state machine that chains
together individual steps to process the training data, train an ML model, evaluate the
trained model's performance, and even deploy the model into production.

The advantage of using Step Functions for the ML process, or automating any workflow
for that matter, is that we can re-direct the flow based on conditions our outcomes of each
step. For example, if a specific step within the workflow fails, we can retry it or redirect the
overall flow to follow some alternate process logic.

Creating a state machine
To create the overall workflow, we start by creating the individual states within the state
machine. This is achieved by defining these states using the Amazon States Language
(https://states-language.net/spec.html). The States Language is a JSON-
based schema whereby you manually define each state as a JSON object. The following
code shows an example of what a state machine might look like when using the States
Language to define it:

{

 "Comment": "A simple minimal example of the States
language",

 "StartAt": "Hello World",

 "States": {

 "Hello World": {

 "Type": "Task",

 "Resource": "arn:aws:lambda:us-east-1:123456789012:functi
on:HelloWorld",

 "End": true

 }

 }

}

180 Automating the Machine Learning Process Using AWS Step Functions

Note
This example is provided under the Apache License, Version 2.0, and is derived
directly from the online copy of the Amazon States Language specification
(https://states-language.net/spec.html).

Figure 6.1 shows the graphical representation of the workflow, or state machine definition,
derived from the States Language JSON schema:

Figure 6.1 – State machine definition

As you can see from Figure 6.1, as well as the JSON schema example, we've defined a state
called Hello World. We've further specified that this type of state is a Task state, whereby
its unit of work is to execute an AWS Lambda function. Additionally, we've defined the
workflow to start with this task and end after the task has been executed.

So, while this may seem very straightforward, as we will see in Chapter 7, Building the ML
Workflow Using AWS Step Functions, when we start defining states that include retries and
failures and incorporate different choice paths, the resultant JSON schema definition can
be extremely intricate.

Addressing state machine complexity
Since creating the Step Function service, AWS has provided a couple of mechanisms to
overcome the complexities associated with manually defining a state machine using the
States Language.

For example, in July of 2019, AWS introduced the AWS Toolkit for Visual Studio Code
(https://aws.amazon.com/visualstudiocode/). As part of this toolkit,
AWS provided developers with the ability to define, visualize, execute, and update state
machines from within the VS Code IDE. Along with code completion and state machine
validation, developers can overcome some of the complexities associated with defining
state machines with the States Language when using VS Code.

https://states-language.net/spec.html
https://aws.amazon.com/visualstudiocode/

Using the Step Functions Data Science SDK for CI/CD 181

Additionally, in March of 2021, AWS introduced the ability to define state machines using
the YAML Ain't Markup Language (YAML) serialization language instead of JSON, thus
making it easier for the developer to build state machines if YAML is their serialization
language of choice.

Furthermore, in July 2021, AWS announced Workflow Studio. This is a visual workflow
design tool that allows developers to use a graphical design tool, within the AWS console,
to build state machines by simply dragging and dropping workflow and task states onto
a canvas, and integrate them using a minimal amount of code, consequently making it
easier for developers to build complicated workflows.

However, even though these added capabilities make it easier to define ML-based
workflows, the question remains: who is ultimately is responsible for defining the state
machine schema? Is it the application development teams or the ML practitioner?

In the next section, we will evaluate using Step Functions capabilities to help the data
scientist and ML practitioner to further streamline and automate the ML workflow.

Using the Step Functions Data Science
SDK for CI/CD
In November 2019, AWS introduced the AWS Step Functions Data Science SDK
for Amazon SageMaker. This SDK allows data science and ML practitioners to
programmatically construct Step Function workflows to deliver production-grade ML
models. The SDK is designed to be used within a Jupyter Notebook to construct a process
that delivers a reproducible ML experiment in the form of a Step Functions workflow, as
opposed to reproducing the experiment itself.

Basically, what this means is instead of the ML practitioner exploring data, building
algorithms, training models, and evaluating the trained model's performance, they instead
construct a state machine to accomplish these tasks automatically. On top of this, the
resulting state machine is constructed programmatically, instead of manually defining it
with the States Language specification. Therefore, to answer the questions raised in the
previous section, the ML practitioner can now own the task of defining the automation
process to produce a production-grade ML model.

182 Automating the Machine Learning Process Using AWS Step Functions

How so?

Previously we saw how the ML practitioner delivered pre-packaged container images as
an artifact to the CI/CD process. This artifact contained the various runtime processes to
handle the data, train the model, and evaluate the model's performance. We also saw how
the development and operations teams had to re-factor the CI/CD pipeline to incorporate
the typical ML process.

Now, in the spirit of a cross-functional team, the ML practitioner can rather deliver a state
machine that automates the entire process as a CI/CD pipeline artifact. Plus, by using the
Data Science SDK, the state machine can be programmatically defined without having to
up-skill the ML practitioner team. On the other hand, the development teams don't have
to up-skill their ML knowledge to incorporate the ML process into the CI/CD pipeline.

To demonstrate exactly how an agile and cross-functional team would create this solution,
let's re-factor the previously used CI/CD process from scratch. Figure 6.2 provides an
overview of the resulting re-factored process.

Figure 6.2 – Re-factored CI/CD process

Building the CI/CD pipeline resources 183

As you can see in Figure 6.2, the process is slightly different when you compare it to
the process outlined in Figure 4.5 in Chapter 4, Continuous Integration and Continuous
Delivery (CI/CD) for Machine Learning. In the re-factored process, the ML practitioner
takes on more of a significant role. While the CI and CD phases remain mostly the same,
the ML practitioner is now responsible for developing the workflow assets that will
orchestrate these processes.

For example, in the re-factored process, the ML practitioner is not only responsible for
providing the optimal model artifacts from the ML experiment, but now they are also
responsible for building and testing the automated ML process using the Step Functions
Data Science SDK. This automated ML workflow artifact is responsible for preprocessing
the training data, training the ML model, and evaluating whether or not the model is
ready for production.

However, before the workflow assets can be integrated, the development engineers must
also build the CI/CD pipeline. The next section will walk you through how to do that.

Building the CI/CD pipeline resources
To begin re-factoring the Age Calculator use case, we are going to work through the
initial setup steps from the perspective of the development and operations teams. We
will be using the same Cloud9 development environment that we created in Chapter
4, Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning, to
perform the following tasks:

• Updating the development environment

• Creating the pipeline artifact repository

• Building the pipeline application artifacts

• Deploying the CI/CD pipeline

Let's get started.

Updating the development environment
Start by logging into the same AWS account you've been using up to this point and
open the AWS Cloud9 console (https://console.aws.amazon.com/cloud9).
Under Your environments, click the Open IDE button to launch the MLOps-IDE
development environment.

184 Automating the Machine Learning Process Using AWS Step Functions

Note
If you have not provisioned the MLOps-IDE environment, please refer to
the Preparing the development environment section of Chapter 4, Continuous
Integration and Continuous Delivery (CI/CD) for Machine Learning.

To update the environment, execute the following steps:

1. Run the following command to ensure that we have version 2.3.0 of the
CDK installed:

$ cdk --version

Note
At the time of writing, the latest version of the CDK is 2.3.0 (build beaa5b2).
If you are not running this version within the Cloud9 environment, refer
to Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for
Machine Learning, for instructions on how to install it.

Now that we have updated the environment to the latest version of the CDK, we can create
the source code repository.

Creating the pipeline artifact repository
Execute the following steps to create a new abalone-cicd-pipeline
CodeCommit repository:

1. Using the workspace terminal, run the following CLI command to ensure that the
CLI region settings are correct. Make sure to replace <REGION> with the AWS
Region you are currently using:

$ aws configure set region <REGION>

Note
Since we are re-factoring the previous solution, we will be using the same
repository name as in Chapter 4, Continuous Integration and Continuous
Delivery (CI/CD) for Machine Learning. Therefore, make sure that you have
cleaned up any existing resources. If not, make sure to manually delete the
abalone-cicd-pipeline CodeCommit repository in the CodeCommit
management console (https://console.aws.amazon.com/
codesuite/codecommit/repositories).

https://console.aws.amazon.com/codesuite/codecommit/repositories
https://console.aws.amazon.com/codesuite/codecommit/repositories

Building the CI/CD pipeline resources 185

2. Create the new CodeCommit repository called abalone-cicd-pipeline, using
the following command:

$ aws codecommit create-repository --repository-name
abalone-cicd-pipeline --repository-description "Automated
ML on AWS using the Step Functions Data Science SDK"

3. Next, capture the URL for the newly created repository in order to clone it. Run the
following command to create the CLONE_URL parameter:

$ CLONE_URL=$(aws codecommit get-repository --repository-
name abalone-cicd-pipeline --query "repositoryMetadata.
cloneUrlHttp" --output text)

4. Run the following command to clone the empty repository, locally:

$ git clone $CLONE_URL

Now that we have our new project repository, we can proceed to the next task of building
out the application artifacts.

Building the pipeline application artifacts
Use the following steps to build out the pipeline application:

1. Initialize a new CDK project by running the following command:

$ cd ~/environment/abalone-cicd-pipeline && cdk init
--language python

2. Set the primary branch of the source repository by running the
following commands:

$ git add -A

$ git commit -m "Started Pipeline Project"

$ git branch main

$ git checkout main

3. Configure the Python environment by running the following commands:

$ source .venv/bin/activate

$ python -m pip install -U pip pylint boto3

$ pip install -r requirements.txt

186 Automating the Machine Learning Process Using AWS Step Functions

You will recall from the original example in Chapter 4, Continuous Integration and
Continuous Delivery (CI/CD) for Machine Learning, that we started building out the CDK
application by looking at the final goal for the application and working backward to
develop the artifacts that accomplish the objective. Since the final goal of the pipeline is
to have a production-grade ML model, hosted as a SageMaker endpoint, we need to build
out what the endpoint stack looks like. By working with the ML practitioner team, we (as
the development team) can gather the functional requirements to build out the endpoint
using the following steps:

1. Using the navigation panel of the Cloud9 workspace, expand the abalone-ci-
cd-pipeline folder, then right-click on the abalone_cicd_pipeline folder
and select the New File option.

2. Name the newly created file abalone_endpoint_stack.py and double-click
on it for editing.

Note
A complete copy of the abalone_endpoint_stack.py is available for
review in the companion GitHub repository (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/
tree/main/Chapter06/cdk). The file should also available be available
for review in the ~/environment/src/Chapter06/cdk/ folder
within the Cloud9 environment.

3. Inside the Python file, add the following code to import the CDK modules for
the endpoint:

...

import aws_cdk as cdk

import aws_cdk.aws_sagemaker as sagemaker

...

4. Next, create a Python class called EndpointStack() as a CDK stack construct by
adding the following code:

...

class EndpointStack(cdk.Stack):

 def __init__(self, app: cdk.App, id: str, *, model_
name: str=None, repo_name: str=None, **kwargs) -> None:

 super().__init__(app, id, **kwargs)

...

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/cdk
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/cdk
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/cdk

Building the CI/CD pipeline resources 187

5. Now, we use the following code to create the required pipeline parameters for the S3
bucket and the pipeline execution ID. These parameters will be derived during the
pipeline execution:

...

 bucket_name = cdk.CfnParameter(

 self,

 "BucketName",

 type="String"

)

 execution_id = cdk.CfnParameter(

 self,

 "ExecutionId",

 type="String"

)

...

6. Since we have instantiated the parameters for the endpoint construct, we can now
define the endpoint configuration in the following code snippet. This configuration
details what compute resources to run the endpoint on, as well as the trained model
to host for the endpoint, plus where to store the inference and response data for
model monitoring. The following code shows how to instantiate the endpoint_
config variable as a CfnEndpointConfig():

...

 endpoint_config = sagemaker.CfnEndpointConfig(

 self,

 "EndpointConfig",

 endpoint_config_name="{}-config-{}".
format(model_name.capitalize(), execution_id.value_as_
string),

 production_variants=[

 sagemaker.CfnEndpointConfig.
ProductionVariantProperty(

 initial_instance_count=2,

 initial_variant_weight=1.0,

 instance_type="ml.m5.large",

 model_name="{}-{}".format(model_name,

188 Automating the Machine Learning Process Using AWS Step Functions

execution_id.value_as_string),

 variant_name="AllTraffic"

)

],

...

7. Continuing from the previous code snippet, we continue defining
the CfnEndpointConfig() and specify the data_capture_
config parameter. As the following code snippet shows, we specify a
DataCaptureConfigProperty() that configures the endpoint to
capture 100% of the input data to the endpoint, as well as the output data
from the endpoint, to S3:

...

 data_capture_config=sagemaker.
CfnEndpointConfig.DataCaptureConfigProperty(

 capture_content_type_header=sagemaker.
CfnEndpointConfig.CaptureContentTypeHeaderProperty(

 csv_content_types=[

 "text/csv"

]

),

 capture_options=[

 sagemaker.CfnEndpointConfig.
CaptureOptionProperty(capture_mode="Input"),

 sagemaker.CfnEndpointConfig.
CaptureOptionProperty(capture_mode="Output")

],

 destination_s3_uri="s3://{}/endpoint-
data-capture".format(bucket_name.value_as_string),

 enable_capture=True,

 initial_sampling_percentage=100.0

)

)

...

Building the CI/CD pipeline resources 189

8. The final part of the construct is the endpoint itself. We use the following code to
declare the endpoint, and then save the file:

...

 endpoint = sagemaker.CfnEndpoint(

 self,

 "AbaloneEndpoint",

 endpoint_config_name=endpoint_config.attr_
endpoint_config_name,

 endpoint_name="{}-Endpoint".format(model_
name.capitalize())

)

 endpoint.add_depends_on(endpoint_config)

...

Since the endpoint deployment construct has been created, we now need to create the
build script that captures execution parameters from a running CI/CD pipeline. The
following steps will walk you through the process:

1. Using the Cloud9 terminal, run the following commands to create the necessary
artifacts folder:

$ mkdir -p ~/environment/abalone-cicd-pipeline/artifacts/
scripts

2. Using the navigation panel, right-click on newly created scripts folder and select
the New File option.

3. Name the file deploy.py and double-click on it for editing.

Note
A complete copy of the deploy.py is available for review in the companion
GitHub repository (https://github.com/PacktPublishing/
Automated-Machine-Learning-on-AWS/tree/main/
Chapter06/scripts). The file should also available be available for
review in the ~/environment/src/Chapter06/scripts/ folder
within the Cloud9 environment.

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/scripts
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/scripts
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/scripts

190 Automating the Machine Learning Process Using AWS Step Functions

4. In the deploy.py file, the first thing we do is add the following code snippet to
import the Python libraries we'll be using:

...

import boto3

import logging

import os

import json

import sys

from botocore.exceptions import ClientError

...

5. Next, we add the following snippet of code to specify the global parameters,
such as logging and the AWS Python SDK (boto3) clients for CodePipeline
and SageMaker:

...

logger = logging.getLogger()

logging_format = "%(levelname)s: [%(filename)s:%(lineno)
s] %(message)s"

logging.basicConfig(format=logging_format, level=os.
environ.get("LOGLEVEL", "INFO").upper())

codepipeline_client = boto3.client("codepipeline")

sagemaker_client = boto3.client("sagemaker")

pipeline_name = os.environ["PIPELINE_NAME"]

model_name = os.environ["MODEL_NAME"]

...

6. The following code snippet shows a function called get_execution_id().
This function makes a call to the running CI/CD pipeline and returns the current
execution ID. This ID is used to version the model that will be hosted as a
SageMaker endpoint:

...

def get_execution_id(name=None, task=None):

 try:

 response = codepipeline_client.get_pipeline_
state(name=name)

 for stage in response["stageStates"]:

 if stage["stageName"] == "Deploy":

Building the CI/CD pipeline resources 191

 for action in stage["actionStates"]:

 if action["actionName"] == task:

 return stage["latestExecution"]
["pipelineExecutionId"]

 except ClientError as e:

 error = e.response["Error"]["Message"]

 logger.error(error)

 raise Exception(error)

...

7. Lastly, the following code snippet instantiates the main program. This program
creates and stores the execution ID and S3 bucket name in a params.json file.
This JSON file will be used as input parameters to the endpoint deployment stack:

...

if __name__ == "__main__":

 task = "DeploymentBuild"

 execution_id = get_execution_id(name=pipeline_name,
task=task)

 logger.info("Creating Stack Parameters")

 params = {

 "ExecutionId": execution_id,

 "BucketName": os.environ["BUCKET_NAME"]

 }

 try:

 with open(os.path.join(os.environ["CODEBUILD_SRC_
DIR"], "output/params.json"), "w") as f:

 json.dump(params, f)

 logger.info(json.dumps(params, indent=4)),

 sys.exit(0)

 except Exception as error:

 logger.error(error)

 sys.exit(255)

...

8. After entering the previous code in the deploy.py file, make sure to save it.

192 Automating the Machine Learning Process Using AWS Step Functions

At this point, we have created the necessary CDK constructs and supporting deployment
code for hosting the model as a SageMaker endpoint. Now we can move on to creating the
CI/CD pipeline construct by using the following steps:

1. Within the Cloud9 navigation panel, expand the abalone_cicd_pipeline
folder and double-click on the abalone_cicd_pipeline_stack.py file
for editing.

Note
A complete copy of the abalone_cicd_pipeline_stack.py file
is available for review in the companion GitHub repository (https://
github.com/PacktPublishing/Automated-Machine-
Learning-on-AWS/tree/main/Chapter06/scripts). The file
should also available be available for copying into the abalone_cicd_
pipeline folder, from the ~/environment/src/Chapter06/
cdk/ folder within the Cloud9 environment.

2. If you choose to create the file from scratch, delete any existing template code within
the file so we can start with a blank file, and add the following code to import the
necessary CDK modules for the pipeline construct:

...

import os

import aws_cdk.core as cdk

import aws_cdk.aws_codecommit as codecommit

import aws_cdk.aws_codepipeline as codepipeline

import aws_cdk.aws_codepipeline_actions as pipeline_
actions

import aws_cdk.aws_codebuild as codebuild

import aws_cdk.aws_iam as iam

import aws_cdk.aws_ecr as ecr

import aws_cdk.aws_s3 as s3

import aws_cdk.aws_s3_deployment as s3_deployment

import aws_cdk.aws_ssm as ssm

from constructs import Construct

...

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/scripts
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/scripts
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter06/scripts

Building the CI/CD pipeline resources 193

3. Next, we add the following code snippet to create a new Python class called
PipelineStack() as a CDK stack construct:

...

class PipelineStack(cdk.Stack):

 def __init__(self, scope: Construct, id: str, *,
model_name: str=None, repo_name: str=None, cdk_version:
str=None, **kwargs) -> None:

 super().__init__(scope, id, **kwargs)

...

4. The first component we define for the CDK construct is a placeholder for the
CodeCommit repository. As you can see in the following code snippet, we reference
the previously created abalone-cicd-pipeline CodeCommit repository using
the from_repository_name method, and reference our repository variable as
repo_name:

...

 code_repo = codecommit.Repository.from_
repository_name(

 self,

 "PipelineSourceRepo",

 repository_name=repo_name

)

...

5. The next component to create is an IAM policy document. This policy will be used
by the IAM role to not only execute the state machine but also access the various
AWS resources used within the workflow. We define a variable called workflow_
policy_document and create a Python dictionary to store the various IAM
policy statements. The following code snippet shows an excerpt from the Action
statement of the IAM policy. Here, you can see that we give the IAM role access
to get the current CI/CD pipeline execution and invoke any Lambda functions
contained within the state machine itself. We also give the role the ability to manage
the state machine by providing it with the ability to create, delete, describe, and start
any state machines:

...

 "Statement": [

 {

 "Effect": "Allow",

194 Automating the Machine Learning Process Using AWS Step Functions

 "Action": [

 "codepipeline:GetPipelineState",

 "lambda:InvokeFunction",

 "lambda:UpdateFunctionCode",

 "lambda:CreateFunction",

 "states:CreateStateMachine",

 "states:UpdateStateMachine",

 "states:DeleteStateMachine",

 "states:DescribeStateMachine",

 "states:StartExecution"

],

 "Resource": "*"

 },

...

Note
As you can see from the previous code snippet, the IAM policy is fairly open to
the type of AWS resources used, since we specify "*" for all AWS resources.
This is not recommended for a production use case. For more information
on granting least privilege access to AWS resources, see the IAM security best
practices documentation (https://docs.aws.amazon.com/IAM/
latest/UserGuide/best-practices.html#grant-least-
privilege).

6. Now that we've defined the policy statement, we can create the workflow execution
role that uses the policy by declaring the workflow_role variable:

...

 workflow_role = iam.Role(

 self,

 "WorkflowExecutionRole",

 assumed_by=iam.CompositePrincipal(

 iam.ServicePrincipal("codebuild.
amazonaws.com")

)

)

...

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

Building the CI/CD pipeline resources 195

7. The following code snippet shows how we apply the policy document
to the workflow_role as an inline policy using the attach_inline_
policy() method:

...

 workflow_role.attach_inline_policy(

 iam.Policy(

 self,

 "WorkflowRoleInlinePolicy",

 document=iam.PolicyDocument.from_
json(workflow_policy_document)

)

)

...

8. Since any Lambda function within the state machine, as well as the state machine
itself, requires an AWS service role, we add these two service principals to the
workflow_role, giving the role access to assume the service roles. The following
code snippet shows how we use the add_statements() method to provide the
AssumeRole capability:

...

 workflow_role.assume_role_policy.add_statements(

 iam.PolicyStatement(

 actions=[

 "sts:AssumeRole"

],

 effect=iam.Effect.ALLOW,

 principals=[

 iam.ServicePrincipal("lambda.
amazonaws.com"),

 iam.ServicePrincipal("sagemaker.
amazonaws.com"),

 iam.ServicePrincipal("states.
amazonaws.com")

]

)

)

...

196 Automating the Machine Learning Process Using AWS Step Functions

9. Since the workflow will be executing various SageMaker functions to train, evaluate,
and host the ML model, the following code snippet shows how we supply the
AmazonSageMakerFullAccess managed IAM policy to the workflow_role
by using the add_managed_policy() method:

...

 workflow_role.add_managed_policy(

 iam.ManagedPolicy.from_aws_managed_policy_
name("AmazonSageMakerFullAccess")

)

...

10. Now we add this Amazon Resource Name (ARN) as a parameter. This parameter
will be used by the ML practitioner when defining the workflow, and it will be
stored in the AWS Systems Manager Parameter Store (SSM). This way, when the
ML practitioner teams need to reference the role, they can do so by using an API
call to the parameter store:

...

 workflow_role_param = ssm.StringParameter(

 self,

 "WorkflowRoleParameter",

 description="Step Functions Workflow
Execution Role ARN",

 parameter_name="WorkflowRoleParameter",

 string_value=workflow_role.role_arn

)

 workflow_role_param.grant_read(workflow_role)

...

11. Next, we define a SageMaker execution role. SageMaker will use this role to access
the various services it needs to process training data, train the model, and evaluate
the model:

...

 sagemaker_role = iam.Role(

 self,

 "SageMakerBuildRole",

 assumed_by=iam.CompositePrincipal(

 iam.ServicePrincipal("sagemaker.

Building the CI/CD pipeline resources 197

amazonaws.com")

),

 managed_policies=[

 iam.ManagedPolicy.from_aws_managed_
policy_name("AmazonSageMakerFullAccess")

]

)

…

12. The following code snippet shows how to create an S3 bucket to store the various
assets created during the CI/CD pipeline execution:

…

 s3_bucket = s3.Bucket(

 self,

 "PipelineBucket",

 bucket_name=f"{repo_name}-{cdk.Aws.REGION}-
{cdk.Aws.ACCOUNT_ID}",

 removal_policy=cdk.RemovalPolicy.DESTROY,

 versioned=True

)

 s3_bucket.grant_read_write(sagemaker_role)

 s3_bucket.grant_read_write(workflow_role)

…

13. As was the case with the SageMaker role, we also need to provide access to the
name of the S3 bucket to the ML practitioners for usage outside of the pipeline. The
following code snippet shows how we store the name of the S3 bucket in the SSM
parameter store:

…

 s3_bucket_param = ssm.StringParameter(

 self,

 "PipelineBucketParameter",

 description="Pipeline Bucket Name",

 parameter_name="PipelineBucketName",

 string_value=s3_bucket.bucket_name

)

…

198 Automating the Machine Learning Process Using AWS Step Functions

14. Now that the S3 bucket has been created, we can copy the raw training dataset using
the BucketDeployment() method:

…

 s3_deployment.BucketDeployment(

 self,

 "DeployData",

 sources=[

 s3_deployment.Source.asset(os.path.
join(os.path.dirname(__file__), '../artifacts/data'))

],

 destination_bucket=s3_bucket,

 destination_key_prefix="abalone_data/raw",

 retain_on_delete=False

)

…

15. You will recall from Chapter 4, Continuous Integration and Continuous Delivery
(CI/CD) for Machine Learning, that we created multiple CodeBuild projects.
Each project correlated to a specific task within the ML process. Since the ML
practitioners will be automating the entirety of the ML process as a Step Functions
state machine, we now only need to define a single CodeBuild project to build the
state machine artifact as a pipeline asset. The following code snippet shows how we
define this single project and instantiate it as the workflow_build variable:

...

 workflow_build = codebuild.Project(

 self,

 "WorkflowBuildProject",

 project_name="WorkflowBuildProject",

 description="CodeBuild Project for Building
and Executing the ML Workflow",

 role=workflow_role,

 source=codebuild.Source.code_commit(

 repository=code_repo

),

 environment=codebuild.BuildEnvironment(

 build_image=codebuild.LinuxBuildImage.
STANDARD_5_0

Building the CI/CD pipeline resources 199

),

 environment_variables={

 "PIPELINE_NAME": codebuild.
BuildEnvironmentVariable(

 value=repo_name

),

 "MODEL_NAME": codebuild.
BuildEnvironmentVariable(

 value=model_name

),

 "BUCKET_NAME": codebuild.
BuildEnvironmentVariable(

 value=s3_bucket.bucket_name

)

 }

)

...

16. We also need to create an additional CodeBuild project to build out the model
deployment parameters by executing the deploy.py script that we previously
created. The following code snippet shows how to create the additional CodeBuild
project and instantiate it by declaring the deployment_build parameter:

...

 deployment_build = codebuild.PipelineProject(

 self,

 "DeploymentBuild",

 project_name="DeploymentBuild",

 description="CodeBuild Project to Synthesize
a SageMaker Endpoint CloudFormation Template",

 environment=codebuild.BuildEnvironment(

 build_image=codebuild.LinuxBuildImage.
STANDARD_5_0

),

 environment_variables={

 "BUCKET_NAME": codebuild.
BuildEnvironmentVariable(

 value=s3_bucket.bucket_name

),

200 Automating the Machine Learning Process Using AWS Step Functions

 "PIPELINE_NAME": codebuild.
BuildEnvironmentVariable(

 value=repo_name

),

 "MODEL_NAME": codebuild.
BuildEnvironmentVariable(

 value=model_name

)

 },

...

17. The build specification, or build instructions, for deployment_build has
three phases, namely install, build, and post_build. The following code
snippet shows the install phase, where we provide commands to install the
AWS CDK and the relevant Python libraries required to create the endpoint
deployment construct:

...

 "install": {

 "runtime-versions": {

 "python": 3.8,

 "nodejs": 12

 },

 "commands": [

 "echo Updating build
environment",

 "npm install aws-cdk@{}".
format(cdk_version),

 "python -m pip install
--upgrade pip",

 "python -m pip install -r
requirements.txt"

]

 },

...

Building the CI/CD pipeline resources 201

18. After the relevant libraries have been installed, in the install phase, we
synthesize the endpoint deployment construct and create an output of the
resultant CloudFormation template, in JSON format, called EndpointStack.
template.json. The following code snippet shows the build commands used
in the build phase:

...

 "build": {

 "commands": [

 "echo Synthesizing cdk
template",

 "npx cdk synth -o output"

]

 },

...

19. Once the CloudFormation template has been synthesized, the final phase of the
build specification is to execute deploy.py. You will recall from the previous
steps, the deploy.py file creates the params.json file to store the current CI/
CD pipeline execution parameters. The following code snippet shows an example of
the post_build phase:

...

 "post_build": {

 "commands": [

 "python ./artifacts/
scripts/deploy.py"

]

 }

 },

...

202 Automating the Machine Learning Process Using AWS Step Functions

20. Now that all the required components and artifacts for the CI/CD pipeline have
been defined, we can finally define the CI/CD pipeline itself. However, before we
define the pipeline, we need to define output artifact variables. These variables
correspond to the initial source code, as well as the various output files created by
deployment_build. The following code snippet shows the main_source_
output, model_source_output, and deployment_build_output
variables being declared:

...

 main_source_output = codepipeline.Artifact()

 model_source_output = codepipeline.Artifact()

 deployment_build_output = codepipeline.
Artifact("DeploymentBuildOutput")

...

21. Now that we've declared the various source artifact, we can move onto defining
the CI/CD pipeline using the Pipeline() method from the codepipeline
CDK nodule. The pipeline has four stages, namely the Source stage, the Build stage,
the Approval stage, and the Deploy stage. The following code snippet defines the
Source stage. As you can see, within this stage, we declare the two branches of our
CodeCommit repository, once for the pipeline CDK code (the main branch) and
one for the model workflow artifacts (the model branch):

...

 stage_name="Source",

 actions=[

 pipeline_actions.
CodeCommitSourceAction(

 action_name="MainSource",

 branch="main",

 repository=code_repo,

 output=main_source_output

),

 pipeline_actions.
CodeCommitSourceAction(

 action_name="ModelSource",

 branch="model",

 repository=code_repo,

 output=model_source_output

)

Building the CI/CD pipeline resources 203

]

),

...

22. Within the Build stage, we define an action that calls the workflow_build
CodeBuild project. You will recall that this is the CodeBuild project to create and
execute the Step Functions state machine. The following code snippet declares the
BuildModel stage action that references the workflow_build project:

...

 codepipeline.StageProps(

 stage_name="Build",

 actions=[

 pipeline_actions.CodeBuildAction(

 action_name="BuildModel",

 project=workflow_build,

 input=model_source_output,

 run_order=1

)

]

),

...

23. The penultimate stage of the CI/CD pipeline is the Approval stage. As you
can see in the following code snippet, here we create a stage action called
EvaluationApproval whereby we use the ManualApprovalAction()
method from the pipeline_actions CDK module to add a manual approval
step to the pipeline. It's at this point in the pipeline's execution that the process
owners will verify that the model is ready to be deployed into production:

 codepipeline.StageProps(

 stage_name="Approval",

 actions=[

 pipeline_actions.
ManualApprovalAction(

 action_
name="EvaluationApproval",

 additional_information="Is
the Model Ready for Production?"

)

204 Automating the Machine Learning Process Using AWS Step Functions

]

),

...

24. The final stage of the pipeline is where the trained model is deployed as a SageMaker
hosted endpoint. It's at this stage that the previously defined EndpointStack()
construct is deployed using the DeployEndpoint stage action. However, as
you can see in the following code snippet, before the CDK construct can be
used, we define a stage action called DeploymentBuild whereby we run the
deployment_build CodeBuild project to synthesize the CloudFormation
template, as well as the CloudFormation parameters file, needed to execute
CloudFormationCreateUpdateStackAction():

...

 codepipeline.StageProps(

 stage_name="Deploy",

 actions=[

 pipeline_actions.CodeBuildAction(

 action_
name="DeploymentBuild",

 project=deployment_build,

 input=main_source_output,

 outputs=[deployment_build_
output],

 run_order=1

),

 pipeline_actions.
CloudFormationCreateUpdateStackAction(

 action_name="DeployEndpoint",

 stack_name="EndpointStack",

 template_path=deployment_
build_output.at_path(

 "EndpointStack.template.
json"

),

 admin_permissions=True,

 parameter_overrides={

 "ExecutionId":
deployment_build_output.get_param("params.json",

Building the CI/CD pipeline resources 205

"ExecutionId"),

 "BucketName": deployment_
build_output.get_param("params.json", "BucketName"),

 },

 extra_inputs=[deployment_
build_output],

 run_order=2

)

]

)

]

)

...

Now that all the CDK constructs have been defined, we can put them all together and
define the CDK application. The following steps will show you how to do this:

1. In the abalone-cicd-pipeline folder, open the app.py file for editing.
2. Delete the existing template code and add the following code to define the

CDK application:

#!/usr/bin/env python3

import os

from aws_cdk import core as cdk

from abalone_cicd_pipeline.abalone_endpoint_stack import
EndpointStack

from abalone_cicd_pipeline.abalone_cicd_pipeline_stack
import PipelineStack

MODEL = "abalone"

CODECOMMIT_REPOSITORY = "abalone-cicd-pipeline"

CDK_VERSION = "2.3.0"

app = cdk.App()

EndpointStack(

 app,

 "EndpointStack",

 env=cdk.Environment(account=os.getenv("CDK_DEFAULT_
ACCOUNT"), region=os.getenv("CDK_DEFAULT_REGION")),

 model_name=MODEL,

 repo_name=CODECOMMIT_REPOSITORY

206 Automating the Machine Learning Process Using AWS Step Functions

)

PipelineStack(

 app,

 CODECOMMIT_REPOSITORY,

 env=cdk.Environment(account=os.getenv("CDK_DEFAULT_
ACCOUNT"), region=os.getenv("CDK_DEFAULT_REGION")),

 model_name=MODEL,

 repo_name=CODECOMMIT_REPOSITORY,

 cdk_version=CDK_VERSION

)

app.synth()

3. Save and close the app.py file.

Since the CI/CD pipeline has been codified, we can go ahead and deploy it.

Deploying the CI/CD pipeline
Execute the following commands to deploy the CDK application and create the
CI/CD pipeline:

1. Using the Terminal windows of the Cloud9 workspace, run the following
commands to download the abalone training data from the UCI repository:

$ cd ~/environment/abalone-cicd-pipeline/ && mkdir -p
artifacts/data

$ wget -c -P artifacts/data https://archive.ics.uci.edu/
ml/machine-learning-databases/abalone/abalone.data

2. To ensure that all the code we've just created is committed to the CodeCommit
repository, run the following commands to update these changes:

$ git add -A

$ git commit -m "Initial commit of Pipeline Artifacts"

$ git push --set-upstream origin main

3. Now, run the following command to deploy the CDK application:

$ cdk deploy abalone-cicd-pipeline

Summary 207

As we saw in the previous chapter, you can view the pipeline in the CodePipeline console
(https://console.aws.amazon.com/codesuite/codepipeline/) by
clicking on Pipeline in the console's navigation pane. Figure 6.3 shows an example of what
you might see:

Figure 6.3 – CodePipeline console

As you can see in Figure 6.3, abalone-cicd-pipeline has failed. If you click on the pipeline
to open the details, you will see that the pipeline failed because there is no ModelSource.
This is because the ML practitioner team hasn't created any model source artifacts yet. In
the next chapter, we will work through creating the state machine artifacts using the Data
Science SDK.

Summary
In this chapter, we re-factored the Age Calculator example from Chapter 4, Continuous
Integration and Continuous Delivery (CI/CD) for Machine Learning, to further streamline
the overall ML process by integrating the development teams and ML practitioner teams
based on their areas of expertise.

For example, with this re-factored process, the development teams can now focus their
expertise on building and developing the CI/CD components, while the ML practitioner
teams can focus on codifying the ML process by using the Data Science SDK.

In the next chapter, we will switch personas to the ML practitioner team and review how
they can codify the ML workflow as a Step Functions state machine.

7
Building the ML

Workflow Using AWS
Step Functions

In this chapter, we will continue from where we left off in Chapter 6, Automating the
Machine Learning Process Using AWS Step Functions. You will recall from that chapter that
the primary goal we are working toward achieving is to streamline the process gap that was
originally highlighted in Chapter 4, Continuous Integration and Continuous Delivery (CI/
CD) for Machine Learning—namely, to automate the handover of trained machine learning
(ML) models from the ML practitioner teams to the development teams. Since we've
already created continuous integration/continuous delivery (CI/CD) pipeline artifacts, as
the application development engineers, the next step to achieving our goal is to provide the
ML practitioner's contribution to further automate the end-to-end (E2E) process.

So, in this chapter, we are going to create a processing process that creates training and
testing datasets, trains an ML model, and then evaluates the model's predictive quality,
assessing whether it can be deployed into production. As you will see, the automated
process will be codified as a CI/CD pipeline artifact using the Amazon Web Services
(AWS) Step Functions Data Science Software Development Kit (SDK) for Python and
developed from the perspective of the ML practitioner, without the need to upskill the
development team members with capabilities outside their domain of expertise.

210 Building the ML Workflow Using AWS Step Functions

Once we've codified the E2E ML process as an AWS Step Functions state machine, we
will continue to automate the Age Calculator use case by integrating the ML practitioner's
modeling and workflow assets into the previously built CI/CD pipeline. To this end, we
will be covering the following topics in this chapter:

• Building the state machine workflow

• Performing the integration test

• Monitoring the pipeline's progress

Technical requirements
To follow along with the code examples in this chapter, you will need the following:

• Web browser (for the best experience, it is recommended that you use Chrome or
Firefox browsers).

• Access to the AWS account that we used in Chapter 6, Automating the Machine
Learning Process Using AWS Step Functions.

• Access to the Cloud9 development environment we used in Chapter 6, Automating
the Machine Learning Process Using AWS Step Functions.

• We will once again be working within the usage limits of the AWS Free Tier to avoid
incurring unnecessary costs.

• Access to the SageMaker Studio environment we created in Chapter 2, Automating
Machine Learning Model Development Using SageMaker Autopilot.

• Source code examples and Jupyter Notebooks are provided in the
companion GitHub repository for this chapter (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/tree/
main/Chapter07). The code examples should already be available in the Cloud9
development environment; if not, refer to the Developing the application artifacts
section of Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for
Machine Learning.

Building the state machine workflow
From the Deploying the CI/CD pipeline section of Chapter 6, Automating the Machine
Learning Process Using AWS Step Functions, you will recall that we deployed a CI/
CD pipeline to orchestrate the E2E ML process as a Cloud Development Kit (CDK)
application. However, as you saw in Figure 6.3, the abalone-cicd-pipeline
execution failed as there were no ModelSource artifacts.

Building the state machine workflow 211

Consequently, it's at this stage of the overall process that the ML practitioner must
create these source artifacts to build the ML workflow, using the AWS Step Functions
Data Science SDK for Python. We will therefore switch our perspective to that of the
ML practitioner and build these source artifacts, using the SageMaker Studio user
interface (UI).

Setting up the service permissions
Before we can begin defining the state machine workflow within a Jupyter Notebook,
we need to assign additional access permissions for the SageMaker execution role to
accommodate the Data Science SDK. According to the SDK documentation (https://
aws-step-functions-data-science-sdk.readthedocs.io/en/stable/
readmelink.html#aws-permissions), using the SDK in SageMaker Studio doesn't
require any additional Identity and Access Management (IAM) permissions outside of
those required by the Step Functions service. For example, if we were to use AWS Lambda
functions within the workflow, we would need to add AWS Lambda permissions to the
SageMaker execution role.

However, you may recall from Chapter 2, Automating Machine Learning Model
Development Using SageMaker Autopilot that we added an extra inline IAM policy
called AdminAccess-InlinePolicy to the SageMaker execution role. So, since
the SageMaker execution role already has the necessary permissions to create and test
the workflow, we can go ahead and actually build out the workflow using the Data
Science SDK.

Creating an ML workflow
Since the Data Science SDK was primarily created to be executed within a Jupyter
Notebook, we will use the following steps to codify the ML process as a notebook:

1. Using the Amazon SageMaker Management Console (https://console.aws.
amazon.com/sagemaker/home), click the SageMaker Domain option in the
left-hand navigation panel to open the SageMaker Domain dashboard.

2. Within the SageMaker Domain dashboard, click the Launch app dropdown and
select the Studio option to launch the Studio UI.

https://console.aws.amazon.com/sagemaker/home
https://console.aws.amazon.com/sagemaker/home

212 Building the ML Workflow Using AWS Step Functions

Note
After opening the Studio UI, if you already see an abalone-cicd-
pipeline folder in the left-hand Studio navigation panel, this means
that the repository we cloned in Chapter 5, Continuous Deployment of a
Production ML Model has not been deleted. Since we are using the same
repository name for this chapter, simply right-click on the abalone-cicd-
pipeline folder and then click Delete so that we can add the new repository
we created in Chapter 6, Automating the Machine Learning Process Using AWS
Step Functions.

3. Once the Studio UI has been launched, click on the Git icon in the left sidebar, and
then click the Clone a Repository button, as illustrated in the following screenshot:

Figure 7.1 – Clone a Repository

4. In the Clone a Repository dialog window, enter the HyperText Transfer
Protocol Secure (HTTPS) Uniform Resource Locator (URL) for the pipeline
repository created by the development teams. The URL should be https://
git-codecommit.<AWS Region>.amazonaws.com/v1/repos/
abalone-cicd-pipeline, where <AWS Region> is the current region you
are using. For example, if you are using us-west-2 as the current region, then the
URL would be https://git-codecommit.us-west-2.amazonaws.com/
v1/repos/abalone-cicd-pipeline.

Building the state machine workflow 213

5. Click on the CLONE button to clone the pipeline repository.
6. Once the repository has been cloned, open the abalone-cicd-pipeline folder

in the Studio navigation panel by double-clicking on the folder.
7. Now, click on the Git icon again to open the folder as the current repository.
8. Click on the drop-down arrow next to Current Branch and click the New Branch

button, as illustrated in the following screenshot:

Figure 7.2 – New Branch

214 Building the ML Workflow Using AWS Step Functions

9. In the Create a Branch dialog, enter model as the new branch name and click
Create Branch, as illustrated in the following screenshot:

Figure 7.3 – Create a Branch dialog

Note
For more information on cloning a Git repository in the Studio UI, see the
SageMaker documentation (https://docs.aws.amazon.com/
sagemaker/latest/dg/studio-tasks-git.html).

10. Now, go back to the abalone-cicd-pipeline folder and delete the
existing contents.

11. Right-click inside the folder and select the New Folder menu option. Name the
folder notebook and double-click to open it.

12. Create a new Jupyter Notebook by clicking the File menu, then clicking the New
menu option, and then clicking on Notebook.

13. When prompted, make sure to select the Python 3 (Data Science) kernel and click
the Select button.

https://docs.aws.amazon.com/sagemaker/latest/dg/studio-tasks-git.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-tasks-git.html

Building the state machine workflow 215

14. Once the new notebook has been launched and the kernel has been started, we can
go ahead and create our workflow, using the subsequent code.

Note
An example of the notebook is provided in the companion GitHub repository
(https://github.com/PacktPublishing/Automated-
Machine-Learning-on-AWS/blob/main/Chapter07/
Notebook/Abalone%20Step%20Functions%20Workflow%20
Example.ipynb). Since the following code examples show full Jupyter
Notebook cells, as well as partial code snippets, it is recommended that you use
this example notebook as a reference.

15. In the first code cell, enter the following code to install the necessary Data Science
SDK and SageMaker SDK:

%%capture

!pip install stepfunctions==2.2.0 sagemaker==2.49.1

Note
We are hardcoding the versions of the stepfunctions and sagemaker
libraries as these have been tested to work within the context of the example.

16. You will recall from the Building the pipeline application artifacts section of
Chapter 6, Automating the Machine Learning Process Using AWS Step Functions,
that we constructed the ML workflow orchestration as a CodeBuild project called
workflow_build. Now, we will create a runtime process that will be executed
within the CodeBuild environment by using the following code to instantiate the
CodeBuild environment variables. These environment variables will make sense
when we start using them later in the notebook; however, as you can see from the
following code snippet, we are calling the Systems Manager Parameter Store
(SSM) to fetch the Simple Storage Service (S3) bucket variable that was defined in
the CDK application:

import os

import boto3

os.environ["MODEL_NAME"] = "abalone"

os.environ["PIPELINE_NAME"] = "abalone-cicd-pipeline"

os.environ["BUCKET_NAME"] = f"""{boto3.client("ssm").
get_parameter(Name="PipelineBucketName")["Parameter"]
["Value"]}"""

216 Building the ML Workflow Using AWS Step Functions

os.environ["DATA_PREFIX"] = "abalone_data"

os.environ["EPOCHS"] = "200"

os.environ["BATCH_SIZE"] = "8"

os.environ["THRESHOLD"] = "2.1"

17. In the next cell, we are going to build a custom cell magic. In previous examples,
we've used a %%writefile magic to capture the cell contents to a file. However,
the %%writefile magic does not execute the cell contents. Since we are building
and testing a workflow creation script, the following code will create a custom
magic called %%custom_writefile, whereby we capture the cell contents to a
file, as well as run the contents:

from IPython.core.magic import register_cell_magic

@register_cell_magic

def custom_writefile(line, cell):

 print("Writing {}".format(line.split()[0]))

 with open(line.split()[0], "a") as f:

 f.write(cell)

 print("Running Cell")

 get_ipython().run_cell(cell)

Note
The %%custom_writefile magic is based on the examples
provided in the official IPython documentation (https://ipython.
readthedocs.io/en/stable/config/custommagics.
html#defining-custom-magics). The only downside to using this
methodology is that if we make a coding mistake in a particular cell, we have to
delete any files that %%custom_writefile creates and start afresh from
the beginning of the notebook.

18. Next, we create a folder called workflow, wherein we define a build script to create
the workflow. Enter and execute the following code into a new cell:

!mkdir ../workflow

19. Now, we can start building our primary script, called main.py. In a new code cell,
add the following code to start importing and capturing the various Python libraries
to build the workflow:

%%custom_writefile ../workflow/main.py

import io

https://ipython.readthedocs.io/en/stable/config/custommagics.html#defining-custom-magics
https://ipython.readthedocs.io/en/stable/config/custommagics.html#defining-custom-magics
https://ipython.readthedocs.io/en/stable/config/custommagics.html#defining-custom-magics

Building the state machine workflow 217

import os

import random

import time

import uuid

import boto3

import botocore

import zipfile

import json

from time import gmtime, strftime, sleep

from botocore.exceptions import ClientError

20. Next, we load the libraries required by the Data Science SDK, as follows:

%%custom_writefile ../workflow/main.py

import stepfunctions

from stepfunctions import steps

from stepfunctions.inputs import ExecutionInput

from stepfunctions.steps import (

 Chain,

 ChoiceRule,

 ModelStep,

 ProcessingStep,

 TrainingStep,

 TuningStep,

 TransformStep,

 Task,

 EndpointConfigStep,

 EndpointStep,

 LambdaStep

)

from stepfunctions.template import TrainingPipeline

from stepfunctions.template.utils import replace_
parameters_with_jsonpath

from stepfunctions.workflow import Workflow

218 Building the ML Workflow Using AWS Step Functions

21. And lastly, we load the libraries from the SageMaker SDK, as follows:

%%custom_writefile ../workflow/main.py

import sagemaker

from sagemaker.tensorflow import TensorFlow

from sagemaker.tuner import IntegerParameter,
ContinuousParameter, HyperparameterTuner

from sagemaker import get_execution_role

from sagemaker.amazon.amazon_estimator import get_image_
uri

from sagemaker.processing import ProcessingInput,
ProcessingOutput, Processor

from sagemaker.s3 import S3Uploader

from sagemaker.sklearn.processing import SKLearnProcessor

22. After importing the relevant Python libraries, we use the following code to define
connections to the various AWS services used through the workflow:

%%custom_writefile ../workflow/main.py

sagemaker_session = sagemaker.Session()

region = sagemaker_session.boto_region_name

role = get_execution_role()

sfn_client = boto3.client("stepfunctions")

lambda_client = boto3.client("lambda")

codepipeline_client = boto3.client("codepipeline")

ssm_client = boto3.client("ssm")

23. Now that we have loaded the required libraries, we are going to define some helper
functions. The first helper function we will need is the get_execution_role()
function. The following code defines this function to get the SSM parameter for the
workflow execution role that was created as part of the CDK application:

%%custom_writefile ../workflow/main.py

def get_workflow_role():

 try:

 response = ssm_client.get_parameter(

 Name="WorkflowRoleParameter",

)

 return response["Parameter"]["Value"]

 except ClientError as e:

Building the state machine workflow 219

 error_message = e.response["Error"]["Message"]

 print(error_message)

 raise Exception(error_message)

24. The following code defines a second function, called update_lambda(). This
function will update any AWS Lambda function's code if the function already exists:

%%custom_writefile ../workflow/main.py

def update_lambda(name, zip_name):

 lambda_client.update_function_code(

 FunctionName=name,

 ZipFile=open(zip_name, mode="rb").read(),

 Publish=True

)

25. The next helper function is called get_lambda(). This function takes any defined
AWS Lambda code, zips it, and creates a new Lambda function. If the Lambda
function already exists, get_lambda() will call update_lambda() to update
the existing Lambda function with the updated code. The code is illustrated in the
following snippet:

%%custom_writefile ../workflow/main.py

def get_lambda(name, bucket, description):

 print("Creating Lambda Package ")

 zip_name = f"../artifacts/{name}.zip"

 lambda_src = f"../artifacts/{name}.py"

 z = zipfile.ZipFile(zip_name, mode="w")

 z.write(lambda_src, arcname=lambda_src.split("/")
[-1])

 z.close()

 print("Uploading Lambda Package to S3 ")

 S3Uploader.upload(

 local_path=zip_name,

 desired_s3_uri=f"s3://{bucket}/lambda",

)

 try:

 print(f"Creating Lambda Function '{name}' …")

 lambda_client.create_function(

 FunctionName=name,

220 Building the ML Workflow Using AWS Step Functions

 Runtime="python3.8",

 Role=get_workflow_role(),

 Handler=f"{name}.lambda_handler",

 Code={

 "S3Bucket": bucket,

 "S3Key": f"lambda/{name}.zip"

 },

 Description=description,

 Timeout=120,

 MemorySize=128

)

 except ClientError as e:

 print(f"Lambda Function '{name}' already exists,
re-creating ...")

 update_lambda(name, zip_name)

 return name

26. The final helper function we will define is called get_execution_id(). This
function calls CodePipeline to get the identifier (ID) of the current execution.
You will recall that for this, we will be versioning the workflow execution, and
thus pipeline assets, based on the current execution ID. If there is no execution ID,
then we will use the current time as a versioning ID. The code is illustrated in the
following snippet:

%%custom_writefile ../workflow/main.py

def get_execution_id(name=None):

 try:

 response = codepipeline_client.get_pipeline_
state(name=name)

 for stage in response["stageStates"]:

 if stage["stageName"] == "Build":

 for action in stage["actionStates"]:

 if action["actionName"] ==
"BuildModel":

 return stage["latestExecution"]
["pipelineExecutionId"]

 except KeyError:

 return strftime('%Y%m%d%H%M%S', gmtime())

Building the state machine workflow 221

Note
SageMaker expects unique names for each job, trained model, and endpoint. If
these names are not unique then execution will fail. So, if we are unit testing the
workflow code and not running it as part of the CI/CD pipeline, then we need to
supply a unique version to the SageMaker job.

27. Now that we have created helper functions, we can proceed to declaring additional
parameters that are specific to the workflow itself, as well as unique to a workflow
execution. The following code defines unique workflow parameters:

%%custom_writefile ../workflow/main.py

execution_id = get_execution_id(name=os.
environ["PIPELINE_NAME"])

model = os.environ["MODEL_NAME"]

data_prefix = os.environ["DATA_PREFIX"]

model_prefix = execution_id

bucket_name = os.environ["BUCKET_NAME"]

model_name = f"{model}-{execution_id}"

training_job_name = f"{model}-TrainingJob-{execution_id}"

preprocessing_job_name = f"{model}-ProcessingJob-
{execution_id}"

evaluation_job_name = f"{model}-EvaluationJob-{execution_
id}"

deeplearning_container_image = f"763104351884.dkr.ecr.
{region}.amazonaws.com/tensorflow-training:2.5.0-cpu-
py37-ubuntu18.04-v1.0"

28. Next, we define execution parameters as an ExecutionInput() schema. The
schema defines the type of parameters that will be provided to start a workflow
execution. The code is illustrated in the following snippet:

%%custom_writefile ../workflow/main.py

execution_input = ExecutionInput(

 schema={

 "ModelName": str,

 "PreprocessingJobName": str,

 "TrainingJobName": str,

 "EvaluationProcessingJobName": str

 }

)

222 Building the ML Workflow Using AWS Step Functions

29. The final set of parameters we define specifies the data configuration. Here, we
define an S3 location to get the raw abalone data, as well as an S3 location for the
data once it has been processed:

%%custom_writefile ../workflow/main.py

s3_bucket_base_uri = f"s3://{bucket_name}"

input_data = os.path.join(s3_bucket_base_uri, data_
prefix, "raw/abalone.data")

output_data = os.path.join(s3_bucket_base_uri, data_
prefix)

preprocessed_training_data = os.path.join(output_data,
"input", "training")

preprocessed_testing_data = f"{output_data}/testing"

model_data_s3_uri = f"{s3_bucket_base_uri}/{model_
prefix}/{training_job_name}/output/model.tar.gz"

output_model_evaluation_s3_uri = f"{s3_bucket_base_uri}/
{model_prefix}/{training_job_name}/evaluation"

Now that we've defined the required global variables, helper functions, and overall
workflow parameters, the next stage is to codify the workflow itself. The following steps
will walk you through how to create the steps that make up the workflow:

1. The first step in the workflow is to process the raw abalone data as a SageMaker
processing job. However, before defining the processing step, we need to provide
SageMaker with a processing script. The following code cell creates an artifacts
folder to store the various script artifacts:

!mkdir ../artifacts

2. Now, we use the following code to capture the preprocessing.py processing
artifact script:

%%writefile ../artifacts/preprocessing.py

import os

import pandas as pd

import numpy as np

prefix = "/opt/ml"

processing_path = os.path.join(prefix, "processing")

preprocessing_input_path = os.path.join(processing_path,
"input")

preprocessing_output_path = os.path.join(processing_path,

Building the state machine workflow 223

"output")

if __name__ == "__main__":

 print("Preprocessing Data")

 column_names = ["sex", "length", "diameter",
"height", "whole_weight", "shucked_weight", "viscera_
weight", "shell_weight", "rings"]

 data = pd.read_csv(os.path.join(preprocessing_input_
path, "abalone.data"), names=column_names)

 y = data.rings.values.reshape(len(data), 1)

 del data["rings"]

 print("Creating Catagorical Features")

 data = pd.get_dummies(data).to_numpy()

 X = np.concatenate((y, data), axis=1)

 print("Splitting Data into Training, Validation and,
Test Datasets")

 training, validation, testing = np.split(X,
[int(.8*len(X)), int(.95*len(X))])

 pd.DataFrame(training).to_csv(os.path.
join(preprocessing_output_path, "training/training.csv"),
header=False, index=False)

 pd.DataFrame(validation).to_csv(os.path.
join(preprocessing_output_path, "training/validation.
csv"), header=False, index=False)

 pd.DataFrame(testing).to_csv(os.path.
join(preprocessing_output_path, "testing/testing.csv"),
header=False, index=False)

 print("Done!")

Note
As you can see, this script contains the same data processing methodology
we've been using throughout the book for the abalone dataset.

224 Building the ML Workflow Using AWS Step Functions

3. Now that we have the script for the processing job, we can define a workflow step
definition to call SageMaker and execute the processing job as a task within the
workflow. In the following code snippet, we start defining processing_step as a
ProcessingStep() state machine:

...

%%custom_writefile ../workflow/main.py

processing_step = ProcessingStep(

 "Pre-process Data",

...

4. Next, we specify the type of processing job as SKLearnProcessor() and the
type of compute resources to use for the processing job, as follows:

...

 processor=SKLearnProcessor(

 framework_version="0.23-1",

 role=role,

 instance_type="ml.m5.xlarge",

 instance_count=1,

 max_runtime_in_seconds=1200,

),

 job_name=execution_input["PreprocessingJobName"],

...

5. As the following code snippet shows, we now specify the location of the input data
for the processing job, as well as the location of the processing.py script we
created in Step 2:

...

 inputs=[

 ProcessingInput(

 source=input_data,

 destination="/opt/ml/processing/input",

 input_name="input"

),

 ProcessingInput(

 source=sagemaker_session.upload_data(

 path="../artifacts/preprocessing.py",

Building the state machine workflow 225

 bucket=bucket_name,

 key_prefix=os.path.join(data_prefix,
"code")

),

 destination="/opt/ml/processing/input/code",

 input_name="code"

)

],

...

6. Once inputs have been defined, we can define outputs. In the following code
snippet, we define output locations for both the training and testing data.
These datasets will be stored in the S3 bucket we defined in Step 7 earlier:

...

 outputs=[

 ProcessingOutput(

 source="/opt/ml/processing/output/training",

 destination=os.path.join(output_data, "input",
"training"),

 output_name="training"

),

 ProcessingOutput(

 source="/opt/ml/processing/output/testing",

 destination=os.path.join(output_data,
"testing"),

 output_name="testing"

)

],

...

7. The final part of the processing_step state machine, as shown in the following
code snippet, is to specify the preprocessing.py script as the execution entry
point to processing_step:

...

 container_entrypoint=["python3", "/opt/ml/processing/
input/code/preprocessing.py"],

)

...

226 Building the ML Workflow Using AWS Step Functions

8. Once the data has been processed, we can move on to the next step of the workflow,
where we train the model. In this step, we will call SageMaker to run a training
job. Before we can define the workflow step, we need to provide SageMaker with
the model training code as an artifact. The following code snippet shows how a
model_training.py artifact is created. As you can see, we define a process to
train a TensorFlow model using the same methodology as the previous examples:

...

if __name__ == "__main__":

 print(f"Tensorflow Version: {tf.__version__}")

 column_names = ["rings", "length", "diameter",
"height", "whole weight", "shucked weight", "viscera
weight", "shell weight", "sex_F", "sex_I", "sex_M"]

 parser = argparse.ArgumentParser()

 parser.add_argument('--epochs', type=int, default=2)

 parser.add_argument('--batch-size', type=int,
default=8)

 parser.add_argument('--model-dir', type=str,
default=os.environ['SM_MODEL_DIR'])

 parser.add_argument('--training', type=str,
default=os.environ['SM_CHANNEL_TRAINING'])

 args, _ = parser.parse_known_args()

 epochs = args.epochs

 batch_size = args.batch_size

 training_path = args.training

 model_path = args.model_dir

 train_data = pd.read_csv(os.path.join(training_path,
'training.csv'), sep=',', names=column_names)

 val_data = pd.read_csv(os.path.join(training_path,
'validation.csv'), sep=',', names=column_names)

 train_y = train_data['rings'].to_numpy()

 train_X = train_data.drop(['rings'], axis=1).to_
numpy()

 val_y = val_data['rings'].to_numpy()

 val_X = val_data.drop(['rings'], axis=1).to_numpy()

 train_X = preprocessing.normalize(train_X)

 val_X = preprocessing.normalize(val_X)

 network_layers = [Dense(64, activation="relu",
kernel_initializer="normal", input_dim=10), Dense(64,

Building the state machine workflow 227

activation="relu"), Dense(1, activation="linear")]

 model = Sequential(network_layers)

 model.compile(optimizer='adam', loss='mse',
metrics=['mae', 'accuracy'])

 model.summary()

 model.fit(train_X, train_y, validation_data=(val_X,
val_y), batch_size=batch_size, epochs=epochs,
shuffle=True, verbose=1)

 model.save(os.path.join(model_path, 'model.h5'))

 model_version = 1

 export_path = os.path.join(model_path, str(model_
version))

 tf.keras.models.save_model(model, export_path,
overwrite=True, include_optimizer=True, save_format=None,
signatures=None, options=None)

...

9. Now that the training artifact is created, we define a training_step workflow
step to define an instance of the TrainingStep() workflow task. As part of the
task, we specify the location of the training script, the hyperparamaters, the job
name, the type of compute resources to use, and the S3 location of the processed
training data. The code is illustrated in the following snippet:

%%custom_writefile ../workflow/main.py

training_step = TrainingStep(

 "Model Training",

 estimator=TensorFlow(

 entry_point='../artifacts/model_training.py',

 role=role,

 hyperparameters={

 'epochs': int(os.environ['EPOCHS']),

 'batch-size': int(os.environ['BATCH_SIZE']),

 },

 train_instance_count=1,

 train_instance_type='ml.m5.xlarge',

 framework_version='2.4',

 py_version="py37",

 script_mode=True,

 output_path=os.path.join(s3_bucket_base_uri,

228 Building the ML Workflow Using AWS Step Functions

model_prefix)

),

 data={"training": sagemaker.inputs.
TrainingInput(preprocessed_training_data, content_
type="csv")},

 job_name=execution_input["TrainingJobName"],

 wait_for_completion=True,

)

10. After the model has been trained, we need to evaluate whether or not it qualifies as
a production-grade model. We will define a SageMaker processing job to execute
the evaluation, and as we did with the data processing task, we define a script
artifact called evaluate.py. This artifact will load the trained model, plus the
testing dataset, and capture the model inference output to an evaluation.json
file in S3. The following code creates an artifact and loads the necessary Python
libraries for the evaluation:

%%writefile ../artifacts/evaluate.py

import json

import os

import tarfile

import pandas as pd

import numpy as np

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.optimizers import Adam

from sklearn import preprocessing

11. Next, we define a Python function to load and compile the trained TensorFlow
model, as follows:

%%writefile -a ../artifacts/evaluate.py

def load_model(model_path):

 model = tf.keras.models.load_model(os.path.
join(model_path, 'model.h5'))

 model.compile(optimizer='adam', loss='mse')

 return model

Building the state machine workflow 229

12. Now, we append another function to the artifact to capture the inferences from the
loaded model and store the results in S3, as follows:

%%writefile -a ../artifacts/evaluate.py

def evaluate_model(prefix, model):

 column_names = ["rings", "length", "diameter",
"height", "whole weight", "shucked weight",

 "viscera weight", "shell weight",
"sex_F", "sex_I", "sex_M"]

 input_path = os.path.join(prefix, "processing/
testing")

 output_path = os.path.join(prefix, "processing/
evaluation")

 predictions = []

 truths = []

 test_df = pd.read_csv(os.path.join(input_path,
"testing.csv"), names=column_names)

 y = test_df['rings'].to_numpy()

 X = test_df.drop(['rings'], axis=1).to_numpy()

 X = preprocessing.normalize(X)

 for row in range(len(X)):

 payload = [X[row].tolist()]

 result = model.predict(payload)

 print(result[0][0])

 predictions.append(float(result[0][0]))

 truths.append(float(y[row]))

 report = {

 "GroundTruth": truths,

 "Predictions": predictions

 }

 with open(os.path.join(output_path, "evaluation.
json"), "w") as f:

 f.write(json.dumps(report))

13. Finally, we append the main program to execute the evaluation, as follows:

%%writefile -a ../artifacts/evaluate.py

if __name__ == "__main__":

 print("Extracting model archive ...")

230 Building the ML Workflow Using AWS Step Functions

 prefix = "/opt/ml"

 model_path = os.path.join(prefix, "model")

 tarfile_path = os.path.join(prefix, "processing/
model/model.tar.gz")

 with tarfile.open(tarfile_path) as tar:

 tar.extractall(path=model_path)

 print("Loading Trained Model ...")

 model = load_model(model_path)

 print("Evaluating Trained Model ...")

 evaluate_model(prefix, model)

 print("Done!")

14. As with the data processing step, we use the following code to define another
ProcessingStep() workflow to execute the evaluation.py artifact, as follows:

%%custom_writefile ../workflow/main.py

evaluation_step = ProcessingStep(

 "Model Evaluation",

 processor=Processor(

 image_uri=deeplearning_container_image,

 instance_count=1,

 instance_type="ml.m5.xlarge",

 role=role,

 max_runtime_in_seconds=1200

),

 job_name=execution_
input["EvaluationProcessingJobName"],

 inputs=[

 ProcessingInput(

 source=preprocessed_testing_data,

 destination="/opt/ml/processing/testing",

 input_name="input"

),

 ProcessingInput(

 source=model_data_s3_uri,

 destination="/opt/ml/processing/model",

 input_name="model"

),

Building the state machine workflow 231

 ProcessingInput(

 source=sagemaker_session.upload_data(

 path="../artifacts/evaluate.py",

 bucket=bucket_name,

 key_prefix=os.path.join(data_prefix,
"code")

),

 destination="/opt/ml/processing/input/code",

 input_name="code"

)

],

 outputs=[

 ProcessingOutput(

 source="/opt/ml/processing/evaluation",

 destination=output_model_evaluation_s3_uri,

 output_name="evaluation"

)

],

 container_entrypoint=["python3", "/opt/ml/processing/
input/code/evaluate.py"]

)

Note
SageMaker processing jobs natively support processing data using Apache
Spark or the scikit-learn Python libraries. Since we are evaluating a
TensorFlow model, which isn't natively supported, we leverage the TensorFlow
training deep learning (DL) container image (https://github.
com/aws/deep-learning-containers/blob/master/
available_images.md#general-framework-containers),
using the image_uri parameter to perform the model evaluation within the
ProcessingStep() state machine.

15. Since we've captured the inference result in the evaluation.json file, we need
to assess the results against an evaluation metric. To do this, we will use an AWS
Lambda function. The following code snippet shows the lambda_handler()
definition, as an artifact called analyze_results.py:

...

def lambda_handler(event, context):

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#general-framework-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#general-framework-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#general-framework-containers

232 Building the ML Workflow Using AWS Step Functions

 logger.debug("## Environment Variables ##")

 logger.debug(os.environ)

 logger.debug("## Event ##")

 logger.debug(event)

 s3 = boto3.client("s3")

 if ("Bucket" in event):

 bucket = event["Bucket"]

 else:

 raise KeyError("S3 'Bucket' not found in Lambda
event!")

 if ("Key" in event):

 key = event["Key"]

 else:

 raise KeyError("S3 'Key' not found in Lambda
event!")

 logger.info("Downloading evlauation results file
...")

 json_file = json.loads(s3.get_object(Bucket = bucket,
Key = key)['Body'].read())

 logger.info("Analyzing Model Evaluation Results ...")

 y = json_file["GroundTruth"]

 y_hat = json_file["Predictions"]

 summation = 0

 for i in range (0, len(y)):

 squared_diff = (y[i] - y_hat[i])**2

 summation += squared_diff

 rmse = math.sqrt(summation/len(y))

 logger.info("Root Mean Square Error: {}".
format(rmse))

 logger.info("Done!")

 return {

 "statusCode": 200,

 "Result": rmse,

 }

...

Building the state machine workflow 233

16. To run the Lambda function as a step within the workflow, we define a
LambdaStep() function and use the helper functions to create a Lambda,
as follows:

%%custom_writefile ../workflow/main.py

analyze_results_step = LambdaStep(

 "Analyze Evaluation Results",

 parameters={

 "FunctionName": get_lambda(

 "analyze_results",

 bucket_name,

 "Analyze the results from the Model
Evaluation"

),

 "Payload": {

 "Bucket": bucket_name,

 "Key": f"""{model_prefix}/{training_job_
name}/evaluation/evaluation.json"""

 }

 }

)

17. The final task within the workflow is to register the trained model as a SageMaker
model. This is the model that will be deployed as a hosted endpoint during the CD
phase of the CI/CD pipeline. The following code creates a ModelStep() function
and points to the trained model from the TrainingStep() workflow task:

%%custom_writefile ../workflow/main.py

register_model_step = ModelStep(

 "Register Trained Model",

 model=training_step.get_expected_model(),

 model_name=execution_input["ModelName"],

 instance_type="ml.m5.large"

)

234 Building the ML Workflow Using AWS Step Functions

18. Now that we have all the steps of the workflow, we need to put them together and
define the flow of the state machine. To do this, we will work backward from the
various end results of workflow execution to build up the workflow. In the following
code snippet, we define the resultant state of a failed workflow and connect each
step to the failed state, if they should fail:

%%custom_writefile ../workflow/main.py

workflow_failed_state = stepfunctions.steps.states.Fail(

 "ML Workflow Failed",
cause="SageMakerProcessingJobFailed"

)

catch_state = stepfunctions.steps.states.Catch(error_
equals=["States.TaskFailed"], next_step=workflow_failed_
state)

processing_step.add_catch(catch_state)

training_step.add_catch(catch_state)

evaluation_step.add_catch(catch_state)

analyze_results_step.add_catch(catch_state)

register_model_step.add_catch(catch_state)

If the trained model fails the evaluation—or, in other
words, is above the
threshold we establish for a production-grade model—the
workflow should
also fail. In the next code snippet, we define a failure
state for the model exceeding the evaluation criteria:

%%custom_writefile ../workflow/main.py

threshold_fail_state = stepfunctions.steps.states.Fail(

 "Model Evaluation Exceeds Threshold"

)

Along with declaring the final failure states of the
workflow, we also need to create a final state whereby
the model's evaluation determines it to be below the
evaluation threshold, and therefore a production-grade
model. The following code snippet defines this Pass()
state:

%%custom_writefile ../workflow/main.py

threshold_pass_state = stepfunctions.steps.states.Pass(

 "Model Evaluation Below Threshold"

)

Building the state machine workflow 235

19. To determine whether or not the model evaluation is above or below the evaluation
criteria, we define a Choice() state and configure a ChoiceRule() function to
determine whether the output of the analyze_results_step task is less than
the THRESHOLD variable, as follows:

%%custom_writefile ../workflow/main.py

check_threshold_step = steps.states.Choice(

 "Threshold Evaluation Check"

)

threshold_rule = steps.choice_rule.ChoiceRule.
NumericLessThan(

 variable=analyze_results_step.output()['Payload']
['Result'],

 value=float(os.environ["THRESHOLD"])

)

check_threshold_step.add_choice(rule=threshold_rule,
next_step=threshold_pass_state)

check_threshold_step.default_choice(next_step=threshold_
fail_state)

20. We've just created all of our steps and states of the ML workflow, as well as the
supporting artifacts the various steps will use. The final part of creating our
workflow is to put them all together. The following code chains the various steps
together and creates a workflow graph:

%%custom_writefile ../workflow/main.py

_graph = Chain(

 [

 processing_step,

 training_step,

 register_model_step,

 evaluation_step,

 analyze_results_step,

 check_threshold_step

]

)

236 Building the ML Workflow Using AWS Step Functions

21. We now have our workflow defined, using the Data Science SDK. If we refer to
Figure 6.2 of Chapter 6, Automating the Machine Learning Process Using AWS Step
Functions, we can see that the next part of the process for the ML practitioner to
perform is to unit test, and validate the code works. The following code creates a
workflow called abalaone-workflow-unit-test, and then executes it:

ml_workflow = Workflow(ml_workflow

 name="abalone-workflow-unit-test",

 definition=ml_workflow_graph,

 role=get_workflow_role(),

)

ml_workflow.create()

execution = ml_workflow.execute(

 inputs={

 "ModelName": model_name,

 "PreprocessingJobName": preprocessing_job_name,

 "TrainingJobName": training_job_name,

 "EvaluationProcessingJobName": evaluation_job_
name,

 }

)

execution_output = execution.get_output(wait=True)

Note
Executing a unit test on the workflow will incur additional AWS resource
costs outside of the Free Tier. You can forego the previous step to avoid
additional charges.

Building the state machine workflow 237

22. Based on the success of the unit-test procedure, the final addition to the main.py
script is to capture the process to execute a production state machine. The following
code will create an abalone-workflow production workflow and provide the
execution-specific parameters for a production execution:

%%writefile -a ../workflow/main.py

print("Creating ML Workflow")

ml_workflow = Workflow(

 name="abalone-workflow",

 definition=ml_workflow_graph,

 role=get_workflow_role(),

)

try:

 print("Creating Step Functions State Machine")

 ml_workflow.create()

except sfn_client.exceptions.StateMachineAlreadyExists:

 print("Found Existing State Machine, Updating the
State Machine definition")

else:

 ml_workflow.update(ml_workflow_graph)

 time.sleep(120)

print("Executing ML Workflow State Machine")

ml_workflow.execute(

 inputs={

 "ModelName": model_name,

 "PreprocessingJobName": preprocessing_job_name,

 "TrainingJobName": training_job_name,

 "EvaluationProcessingJobName": evaluation_job_
name

 }

)

23. This completes the ML practitioner's contribution to the refactored solution. All
that's left to do is to commit these changes to the repository. To do this, click on the
Git icon.

24. Click the plus (+) icon for both the Changed and Untracked sections, to move the
changes into the Staged section.

238 Building the ML Workflow Using AWS Step Functions

25. In the Summary (required) field, provide a summary of these changes, by
entering Initial commit of Workflow Artifacts, as illustrated in
the following screenshot:

Figure 7.4 – Staged changes

Building the state machine workflow 239

26. Click the Commit button to commit the changes to the model branch.
27. Once the changes have been committed, click Git from the menu bar, and select

Push to Remote.

Note
If prompted, provide your email address and name.

By checking in this code, we, as the ML practitioner, have completed our contribution to
the refactored solution. We have used the Data Science SDK to codify an ML workflow
and create a state machine, without having to use the Amazon States Language. The
following screenshot shows a graphical representation of our ML workflow:

Figure 7.5 – ML workflow state machine

240 Building the ML Workflow Using AWS Step Functions

However, even though the state machine code has been checked in, the overall CI/
CD pipeline still won't execute as we have not yet defined the integration between the
pipeline and the state machine. In the next section, we will once again perform the final
integration, from the perspective of the development engineer.

Performing the integration test
To finalize the CI/CD pipeline for release, we need to integrate the code that the
ML practitioner submitted into the build process. We do this by providing the build
instructions to the CodeBuild stage by creating a buildspec.yml file.

Note
You can find a complete copy of the buildspec.yml file, for your
reference, in the companion GitHub repository (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/
blob/main/Chapter07/Files/buildspec.yml).

The following steps will walk you through the integration process, performed from the
perspective of the development engineer:

1. Using the Cloud9 environment, run the following command within the Terminal
window to pull the latest changes that the ML practitioner made:

$ cd ~/environment/abalone-cicd-pipeline/ && git pull

2. Change to the model branch by running the following command:

$ git checkout model

3. Right-click on the abalone-cicd-pipeline folder in the navigation panel and
select New File.

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter07/Files/buildspec.yml
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter07/Files/buildspec.yml
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter07/Files/buildspec.yml

Performing the integration test 241

4. Name the file buildspec.yml and double-click on it for editing.
5. Add the following code to declare instructions for loading the necessary Python

libraries and executing the main.py script:

version: 0.2

env:

 variables:

 DATA_PREFIX: abalone_data

 EPOCHS: 200

 BATCH_SIZE: 8

 THRESHOLD: 2.1

phases:

 install:

 runtime-versions:

 python: 3.8

 commands:

 - printenv

 - echo "Updating Build Environment"

 - apt-get update

 - python -m pip install --upgrade pip

 - python -m pip install --upgrade boto3 awscli
sagemaker==2.49.1 stepfunctions==2.2.0

 build:

 commands:

 - echo Build started on 'date'

 - echo "Creating ML Workflow "

 - |

 sh -c """

 cd workflow/

 python main.py

 """

 post_build:

 commands:

 - echo "Build Completed"

242 Building the ML Workflow Using AWS Step Functions

6. Save the file.
7. Within the Terminal window, run the following command to add the buildspec.

yml file to the file repository file index:

$ git add -A

8. Commit the integration to the CodeCommit repository by running the
following command:

$ git commit -m "Add Integration Artifacts"

9. Now, push the changes to the repository with the following command:

$ git push

We have now integrated the workflow into the CI/CD pipeline, and by committing
these changes, we have also created a pipeline release. In the next section, we will
monitor the pipeline.

Monitoring the pipeline's progress
Monitoring the pipeline execution is done through the CodePipeline console. In the
web browser, open the AWS CodePipeline Management Console (https://console.
aws.amazon.com/codesuite/codepipeline/home), and then click on the name
of the pipeline—abalone-cicd-pipeline. The following screenshot depicts the
pipeline execution:

https://console.aws.amazon.com/codesuite/codepipeline/home
https://console.aws.amazon.com/codesuite/codepipeline/home

Monitoring the pipeline's progress 243

Figure 7.6 – CodePipeline console

244 Building the ML Workflow Using AWS Step Functions

If you compare Figure 7.6 with the pipeline in Figure 5.4 of Chapter 5, Continuous
Deployment of a Production ML Model, the first thing you will notice is that the Build
stage has been significantly compressed to a action called BuildModel. This is because we
are offloading the ML modeling process to the Step Functions state machine, instead of
capturing the modeling process into the pipeline itself.

To review the progress of the state machine in a new web browser tab, open the AWS Step
Functions Management Console (https://console.aws.amazon.com/states)
and select the abalone-workflow state machine. You will see a list of executions.
Click on the latest execution to review its progress. The following screenshot shows the
succeeded execution:

Figure 7.7 – Succeeded state machine execution

https://console.aws.amazon.com/states

Monitoring the pipeline's progress 245

As you can see from Figure 7.7, the workflow has successfully completed, producing
a trained ML model that is below the pre-established evaluation criteria. To verify the
evaluation criteria, click on the Analyze Evaluation Results step of the Graph inspector,
and then click on the Step output tab. The following screenshot shows an example result
of the model evaluation:

Figure 7.8 – Analyze Evaluation Results: Step output

This completes the CI phase of the pipeline, and we can once again approve the model
for deployment.

Note
See the Executing the automated ML model deployment and Cleanup sections
of Chapter 5, Continuous Deployment of a Production ML Model, to see how to
approve a model and continue with the CD phase of a pipeline.

Once the DeployEndpoint action of CodePipeline is complete, we have a production
model that can be integrated into the Age Calculator application and serve abalone
age predictions.

246 Building the ML Workflow Using AWS Step Functions

Summary
In this chapter, we continued refactoring the Age Calculator example that we started in
Chapter 6, Automating the Machine Learning Process Using AWS Step Functions, to further
streamline the overall ML automation process, using AWS Step Functions.

Not only have we seen how ML practitioner teams can tighten their integration with
the development (or platform) teams by providing the entire ML workflow as a CI/CD
pipeline artifact, but we also saw how—when combined with the codified artifacts created
in Chapter 6, Automating the Machine Learning Process Using AWS Step Functions—each
team can focus on their specific area of expertise. Now, the development teams don't have
to upskill their understanding of how the ML process works to adapt the CI/CD pipeline
to accommodate the ML process. Alternatively, the ML practitioner team can contribute
their expertise to the pipeline development, instead of simply providing a trained ML
model and expecting the other teams to figure out how to deploy it into production.

However, in both this and the previous chapters, we have focused our attention on
releasing production-grade models based on source code changes. Conversely, how does
the CI/CD process adapt to changes (or updates) to the training data?

In the next chapter, we will review how to automate the ML process when there are source
data changes.

This section introduces you to what a data-centric ML process is, how it differs from
a code-centric approach, and the services typically used for this methodology, namely,
Apache Airflow and Amazon Managed Workflows for Apache Airflow.

This section comprises the following chapters:

• Chapter 8, Automating the Machine Learning Process Using Apache Airflow

• Chapter 9, Building the ML Workflow Using Amazon Managed Workflows
for Apache Airflow

Section 4:
Optimizing a Data-

Centric Approach
to Automated

Machine Learning

8
Automating the

Machine Learning
Process Using

Apache Airflow
When building an ML model, there is a fundamental principle that all ML practitioners
are aware of; namely, an ML model is only as robust as the data on which it was trained.
In the previous four chapters, we have primarily focused on automating the ML
process using a source code-centric mechanism. In other words, we applied a DevOps
methodology of Continuous Integration and Continuous Deployment to automate the
ML process by supplying the model source code, tuning parameters, and the ML workflow
source code. Any changes to these artifacts would trigger a release change process of the
CI/CD pipeline.

However, we also supplied static abalone data, downloaded from the UCI Machine
Learning Repository, as a source artifact, but we never made any changes to this data. So,
using a typical DevOps methodology, the data artifact is static and therefore won't trigger
a change release of the CI/CD process.

250 Automating the Machine Learning Process Using Apache Airflow

Accordingly, data becomes the key differentiator between applying a DevOps
methodology to automate the ML process, versus an MLOps strategy. For a successful
MLOps strategy, we basically need to provide the ability to automate the ML process when
the data changes. In essence, just as the ML automation process is triggered when source
code is added or updated, we also need to trigger the automation process when existing
data is updated, or new data is added.

This then begs the question; how can we automate the ML process when we have
new data?

To answer this question, in this chapter, we will focus on automating the ML process
on AWS, using a data-centric approach. The overall objective of this chapter is to
duplicate the foundation that we've established in both Chapter 4, Continuous
Integration and Continuous Delivery (CI/CD) for Machine Learning, as well as Chapter 6,
Automating the Machine Learning Process Using AWS Step Functions, to automate the Age
Calculator example, with new training data. We will be accomplishing this by means of the
following topics:

• Introducing Apache Airflow

• Introducing Amazon MWAA

• Using Airflow to process the abalone dataset

• Configuring the MWAA prerequisites

• Configuring the MWAA environment

Technical requirements
We will use the following resources in this chapter:

• A web browser (for the best experience, it is recommended that you use Chrome
or Firefox).

• Access to the AWS account that you used in Chapter 7, Building the ML Workflow
Using AWS Step Functions.

• Access to the Cloud9 development environment we used in Chapter 7, Building the
ML Workflow Using AWS Step Functions.

• We will once again be working within the usage limits of the AWS Free Tier to avoid
incurring unnecessary costs.

Introducing Apache Airflow 251

• Source code examples are provided in the companion GitHub repository for
this chapter (https://github.com/PacktPublishing/Automated-
Machine-Learning-on-AWS/tree/main/Chapter07). The code examples
should already be available in the Cloud9 development environment; if not, refer to
the Developing the application artifacts section in Chapter 4, Continuous Integration
and Continuous Delivery (CI/CD) for Machine Learning.

Introducing Apache Airflow
Data for ML model training can come from various sources, such as databases, data
warehouses, or even data lakes. These data repositories store data in a wide variety of
different data formats. For example, data may be stored as unstructured objects, as in the
case of image, video, or sound files. Objects may be stored as semi-structured data, such as
JSON data that doesn't conform to a standardized tabular schema. In the case of relational
databases, or data warehouses, the data is stored in an organized and structured format,
but it may have multiple different types of schemas.

To make matters worse, some datasets can be very large, often terabytes, or even petabytes
in size, where joining, merging, and transforming the data, often referred to as Extract,
Transform and Load (ETL) processes, requires large compute clusters, such as Hadoop
and Apache Spark clusters. AWS provides infrastructure resources and dedicated services
to scale these big data workloads in the form of AWS Glue (a managed ETL service) and
Amazon Elastic Map Reduce, or EMR (big data platform).

However, performing ETL tasks on these different types of big data, and their varying
sources, often requires daisy-chaining multiple separate ETL tasks together as part of
an orchestrated workflow, where the data output from one ETL task becomes the input
to another ETL task, and so on. As you can imagine, creating such a workflow can be a
daunting task.

So, to simplify the process, many data engineers rely on Apache Airflow (https://
airflow.apache.org/), a platform that allows them to programmatically construct,
execute, and manage these potentially complex data workflows. The Airflow platform
comprises three key components, namely:

• A web-based management interface

• A scheduler, responsible for scheduling and coordinating the resources to execute
the various steps, or tasks, within the workflow

• Multiple workers to execute the code for each specific task within the workflow

252 Automating the Machine Learning Process Using Apache Airflow

To use the Airflow platform, a data engineer creates a codified representation of a
workflow in the form of a Directed Acyclic Graph (DAG). Figure 8.1 shows an example of
what an Airflow DAG looks like:

Figure 8.1 – Airflow DAG example

Note
Figure 8.1 is made available under the Apache 2.0 license and can be referenced
in the Airflow GitHub repository (https://github.com/apache/
airflow/blob/main/docs/apache-airflow/img/edge_
label_example.png).

As you can see from Figure 8.1, the DAG is made up of various sequential, or directed,
tasks that are programmatically defined as a Python construct. Once the DAG is
submitted to the scheduler, the scheduler coordinates its execution by assigning each task
to a worker. Each worker, in turn, processes the code for the individual task to which it
was assigned.

So, using Airflow significantly simplifies the data engineer's task or orchestrates these
complex data transformation tasks. However, having yet another platform to manage
now adds additional complexity for the infrastructure and operations teams, as now these
teams must manage the big data processing platforms (such as Hadoop and Spark), as well
as the Airflow platform.

How can the platform management tasks also be simplified?

To answer this question, we will explore Amazon Managed Workflows for Apache
Airflows (MWAA) next.

Introducing Amazon MWAA
Managing big data platforms isn't typically part of the ML practitioner's portfolio of tasks.
Oftentimes, the ML practitioner and data engineering teams rely on the infrastructure and
operations teams to manage these platforms.

https://github.com/apache/airflow/blob/main/docs/apache-airflow/img/edge_label_example.png
https://github.com/apache/airflow/blob/main/docs/apache-airflow/img/edge_label_example.png
https://github.com/apache/airflow/blob/main/docs/apache-airflow/img/edge_label_example.png

Using Airflow to process the abalone dataset 253

Including Airflow as part of the big data infrastructure means that these platform teams
must now manage additional compute resources, orchestrate their deployment, update
software and operating system patches, and monitor these resources to ensure that
they are constantly addressing workload scaling requirements and other Service-Level
Agreements (SLAs).

AWS offers multiple big data managed services, such as EMR and Glue, to help offload
these management tasks from the platform teams and, in November 2020, AWS launched
Amazon MWAA to help offload the management of the Airflow platform. With MWAA,
the platform teams can run a highly available and scalable Airflow cluster without having
to individually provision, update, and monitor the Web UI server, scheduler, or even the
worker nodes. This means that the ML practitioner and data engineering teams can focus
on developing the data workflow without relying on the platform teams.

To illustrate just how MWAA can work in practice, we are going to leverage the service for
the Age Calculator use case.

Using Airflow to process the abalone dataset
To set the scene, you will recall from Chapter 1, Getting Started with Automated Machine
Learning on AWS, that the ACME Fishing Logistics company uses an outdated dataset,
found in the UCI Machine Learning Repository, to train the ML model. The ML
practitioners have found that since an ML model is only as good as the data it's trained
on, they can tweak and tune the model as much as they want, but without newer data, the
production model can't be improved upon.

To resolve this problem, ACME has hired an external company to survey abalone catches
and supply daily updates of the surveyed dataset. This means that the already tuned ML
model can be retrained on fresh data, and thus be further optimized. This also means that
the data engineering teams need to orchestrate a process, or data pipeline, to merge the
original dataset with the new survey data and supply the new training, validation, and
testing dataset to a new model training pipeline, all using the MWAA service.

Let's see how the various ACME teams would approach this task.

254 Automating the Machine Learning Process Using Apache Airflow

Configuring the MWAA prerequisites
Before we can launch the MWAA service, there are a few prerequisites that need to be
addressed, namely:

• MWAA requires access to an S3 bucket where the DAGs are stored.

• MWAA needs to access a requirements.txt file, also stored on S3, to load any
unique Python libraries that the workers would need to execute their assigned tasks.

• Although not required by MWAA, we need to also configure various IAM roles to
access backend services such as Glue and SageMaker.

• We also need to provide the artifacts that the various backend services would
require. For example, we need to provide ETL scripts in order for the Glue service
to execute.

In the following steps, we will provide these prerequisites as a CDK application:

1. Log in to the same AWS account you've been using in the previous
chapter and open the AWS Cloud9 console (https://console.aws.amazon.
com/cloud9).

2. In the Your environments section, click the Open IDE button for the MLOps-IDE
development environment.

Note
If you've been following along up to this point, you should already have the
MLOps-IDE environment configured, along with version 2.3.0 of the AWS
CDK. If not, please refer to the Preparing the development environment section
in Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for
Machine Learning.

3. Next, we will create a CodeCommit repository to store the various codified artifacts
for the entire solution:

$ cd ~/environment

$ aws codecommit create-repository --repository-name
abalone-data-pipeline --repository-description "Automated
ML on AWS using Managed Workflows for Apache Airflow"

Configuring the MWAA prerequisites 255

4. Now we can capture the repository's URI for cloning:

$ CLONE_URL=$(aws codecommit get-repository --repository-
name abalone-data-pipeline --query "repositoryMetadata.
cloneUrlHttp" --output text)

5. Run the following command to clone the repository:

$ git clone $CLONE_URL

6. Run the following commands to initialize the CDK application within the
new repository:

$ cd abalone-data-pipeline && cdk init --language python

$ git add -A

$ git commit -m "Started CDK Project"

$ git branch main

$ git checkout main

$ source .venv/bin/activate

7. Next, we will install the necessary development libraries by running the
following commands:

$ python -m pip install -U pip pylint boto3
sagemaker==2.49.1 apache-airflow

$ pip install –r requirements.txt

8. Now that we have the relevant libraries installed, we can start defining the various
data pipeline resources. Using the Cloud9 navigation panel, on the left-hand
side, expand the abalone_data_pipeline folder and double-click on the
abalone_data_pipeline_stack.py file for editing.

Note
Examples of the CDK code can be found in the companion GitHub repository
for this chapter (https://github.com/PacktPublishing/
Automated-Machine-Learning-on-AWS/tree/main/
Chapter08/cdk).

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter08/cdk
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter08/cdk
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter08/cdk

256 Automating the Machine Learning Process Using Apache Airflow

9. Delete the template code and add the following to import the necessary
CDK libraries:

import os

import aws_cdk.aws_codecommit as codecommit

import aws_cdk.aws_codebuild as codebuild

import aws_cdk as cdk

import aws_cdk.aws_s3 as s3

import aws_cdk.aws_ssm as ssm

import aws_cdk.aws_s3_deployment as s3_deployment

import aws_cdk.aws_iam as iam

import aws_cdk.aws_glue as glue

import aws_cdk.aws_lambda as lambda_

import aws_cdk.aws_events_targets as targets

from constructs import Construct

10. Next, we initialize the DataPipelineStack class by adding the following code:

class DataPipelineStack(cdk.Stack):

 def __init__(self, scope: Construct, id: str, *,
airflow_environment_name: str=None, model_name: str=None,
repo_name: str=None, **kwargs) -> None:

 super().__init__(scope, id, **kwargs)

11. The first construct we will build is a reference to the CodeCommit
repository. Adding the following code registers the CodeCommit
repository as a CDK construct:

 code_repo = codecommit.Repository.from_
repository_name(

 self,

 "SourceRepository",

 repository_name=repo_name

)

12. Now, we create the S3 bucket to store the relevant data and store the bucket name as
an SSM parameter so that it can be referenced in the Airflow DAG:

Configuring the MWAA prerequisites 257

Note
Since this is a data-centric solution, we will store all relevant assets for the
workflow in a dedicated data bucket, as opposed to the pipeline bucket that
we've used in previous examples.

 Data_bucket = s3.Bucket(

 self,

 "AirflowDataBucket",

 bucket_name=f"{model_name}-data-{cdk.Aws.
REGION}-{cdk.Aws.ACCOUNT_ID}",

 block_public_access=s3.BlockPublicAccess.
BLOCK_ALL,

 auto_delete_objects=True,

 removal_policy=cdk.RemovalPolicy.DESTROY,

 versioned=True

)

 ssm.StringParameter(

 self,

 "DataBucketParameter",

 description="Airflow Data Bucket Name",

 parameter_name="AirflowDataBucket",

 string_value=data_bucket.bucket_name

)

13. Next, we create a SageMaker role, which allows the Airflow workflow to
initiate SageMaker API calls. We need to ensure that this role has access to
the data bucket and is referenceable in the Airflow DAG. So, we also store
the role ARN as an SSM parameter:

 sagemaker_role = iam.Role(

 self,

 "SageMakerBuildRole",

 assumed_by=iam.CompositePrincipal(

 iam.ServicePrincipal("sagemaker.
amazonaws.com")

),

 managed_policies=[

 iam.ManagedPolicy.from_aws_managed_
policy_name("AmazonSageMakerFullAccess")

258 Automating the Machine Learning Process Using Apache Airflow

]

)

 data_bucket.grant_read_write(sagemaker_role)

 ssm.StringParameter(

 self,

 "SageMakerRoleParameter",

 description="SageMaker Role ARN",

 parameter_name="SageMakerRoleARN",

 string_value=sagemaker_role.role_arn

)

14. In the previous chapter, we created an AWS Lambda function to analyze the
results from the ML model evaluation. This was done during the ML workflow
build process. Since we are building out the various resources for the Airflow
workflow, we are going to codify the Lambda function here. The function is also
granted access to read the evaluation results file in the data bucket and is stored as
an SSM parameter:

 analyze_results_lambda = lambda_.Function(

 self,

 "AnalyzeResults",

 handler="index.lambda_handler",

 runtime=lambda_.Runtime.PYTHON_3_8,

 code=lambda_.Code.from_asset(os.path.join(os.
path.dirname(__file__), "../artifacts/lambda/analyze_
results")),

 memory_size=128,

 timeout=cdk.Duration.seconds(60)

)

 data_bucket.grant_read(analyze_results_lambda)

 ssm.StringParameter(

 self,

 "AnalyzeResultsParameter",

 description="Analyze Results Lambda Function
Name",

 parameter_name="AnalyzeResultsLambda",

Configuring the MWAA prerequisites 259

 string_value=analyze_results_lambda.function_
name

)

15. Next, we will use the following code to create the necessary resources to process the
training, validation, and testing datasets. As already mentioned, we need to scale the
data processing to handle potentially large datasets. So, to streamline this process,
we will leverage the AWS Glue ETL service. The first resource that Glue requires is
an IAM role with the necessary permissions to the data bucket:

 glue_role = iam.Role(

 self,

 "GlueRole",

 assumed_by=iam.CompositePrincipal(

 iam.ServicePrincipal("glue.amazonaws.
com")

),

 managed_policies=[

 iam.ManagedPolicy.from_aws_managed_
policy_name("service-role/AWSGlueServiceRole")

]

)

 data_bucket.grant_read_write(glue_role)

16. We can now create a Glue Catalog to store references to the new abalone data:

 glue_catalog = glue.CfnDatabase(

 self,

 "GlueDatabase",

 catalog_id=cdk.Aws.ACCOUNT_ID,

 database_input=glue.CfnDatabase.
DatabaseInputProperty(

 name=f"{model_name}_new"

)

)

260 Automating the Machine Learning Process Using Apache Airflow

17. To populate the Glue Catalog with the new abalone data, use the following code to
create a Glue Crawler. The crawler will crawl the new data in our data bucket and
append it to the Glue Catalog:

 glue_crawler = glue.CfnCrawler(

 self,

 "GlueCrawler",

 name=f"{model_name}-crawler",

 role=glue_role.role_arn,

 database_name=glue_catalog.ref,

 targets={

 "s3Targets": [

 {

 "path": f"s3://{data_bucket.
bucket_name}/{model_name}_data/new/"

 }

]

 }

)

18. We also need to store the crawler's name as an SSM parameter so that it can be
referenced in the Airflow workflow:

 ssm.StringParameter(

 self,

 "GlueCrawlerParameter",

 description="Glue Crawler Name",

 parameter_name="GlueCrawler",

 string_value=glue_crawler.name

)

Configuring the MWAA prerequisites 261

19. Once the new data has been added to the Glue Catalog, we can create the
Glue Job that reads this data, merges it with the original abalone dataset,
and performs the necessary data preprocessing tasks to make the entire dataset
ready for model training:

 glue_job = glue.CfnJob(

 self,

 "GlueETLJob",

 name=f"{model_name}-etl-job",

 description="AWS Glue ETL Job to merge new +
raw data, and process training data",

 role=glue_role.role_arn,

 glue_version="2.0",

 execution_property=glue.CfnJob.
ExecutionPropertyProperty(

 max_concurrent_runs=1

),

 command=glue.CfnJob.JobCommandProperty(

 name="glueetl",

 python_version="3",

 script_location=f"s3://{data_bucket.
bucket_name}/airflow/scripts/preprocess.py"

),

 default_arguments={

 "--job-language": "python",

 "--GLUE_CATALOG": glue_catalog.ref,

 "--S3_BUCKET": data_bucket.bucket_name,

 "--S3_INPUT_KEY_PREFIX": f"{model_name}_
data/raw/abalone.data",

 "--S3_OUTPUT_KEY_PREFIX": f"{model_name}_
data",

 "--TempDir": f"s3://{data_bucket.bucket_
name}/glue-temp"

 },

 allocated_capacity=5,

 timeout=10

)

262 Automating the Machine Learning Process Using Apache Airflow

20. Since the Airflow workflow will be calling the Glue Job, we also store the job name
as an SSM parameter:

 ssm.StringParameter(

 self,

 "GlueJobParameter",

 description="Glue Job Name",

 parameter_name="GlueJob",

 string_value=glue_job.name

)

21. To ensure that the original abalone dataset is also available to the Glue ETL Job,
we use the following code to create an S3 bucket deployment that uploads the raw
dataset to S3:

 s3_deployment.BucketDeployment(

 self,

 "DeployData",

 sources=[

 s3_deployment.Source.asset(os.path.
join(os.path.dirname(__file__), "../artifacts/data"))

],

 destination_bucket=data_bucket,

 destination_key_prefix=f"{model_name}_data/
raw",

 retain_on_delete=False

)

22. Finally, we create a CodeBuild project that allows the Airflow DAG to be
continuously updated. Although we are building a data-centric workflow, we
also need to ensure that any updates, or changes, to the codified workflow itself
can automatically be applied. The following code snippet instantiates the code_
deployment variable as a codebuild.Project():

...

 code_deployment = codebuild.Project(

 self,

 "CodeDeploymentProject",

 project_name="CodeDeploymentProject",

 description="CodeBuild Project to Copy

Configuring the MWAA prerequisites 263

Airflow Artifacts to S3",

 source=codebuild.Source.code_commit(

 repository=code_repo

),

 environment=codebuild.BuildEnvironment(

 build_image=codebuild.LinuxBuildImage.
STANDARD_5_0

),

 environment_variables={

 "DATA_BUCKET": codebuild.
BuildEnvironmentVariable(

 value=data_bucket.bucket_name

)

 },

...

23. The CodeBuild project has three phases that make up the BuildSpec, or build
instructions, namely, the install, build, and post_build phases. The
following code snippet shows the install phase, where the latest version of the
AWS CLI is installed:

...

 "install": {

 "runtime-versions": {

 "python": 3.8

 },

 "commands": [

 "printenv",

 "echo 'Updating Build
Environment'",

 "python -m pip install
--upgrade pip",

 "python -m pip install
--upgrade boto3 awscli"

]

 },

...

264 Automating the Machine Learning Process Using Apache Airflow

24. The following code snippet shows the AWS CLI commands that update the Airflow
assets. During the build phase of the CodeBuild project, we sync the Airflow
workflow assets to S3 so that once these have been copied to the data bucket, the
MWAA scheduler will automatically import the new DAG code:

...

 "build": {

 "commands": [

 "echo 'Deploying Airflow
Artifacts to S3'",

 "cd artifacts",

 "aws s3 sync airflow
s3://${DATA_BUCKET}/airflow"

]

 },

...

25. To ensure that the CodeBuild project has the appropriate access to synchronize the
Airflow assets to S3, the following code snippet grants the code_deploy role read
and write access to data_bucket:

...

 data_bucket.grant_read_write(code_deployment.
role)

...

26. To ensure that the workflow changes are applied, we create an event trigger
that starts the CodeBuild project every time any changes are committed to the
source repository:

 code_repo.on_commit(

 "StartDeploymentProject",

 target=targets.CodeBuildProject(code_
deployment)

)

27. Save and close the abalone_data_pipeline_stack.py file.
28. Now that we have defined the necessary resources as a CDK construct, we can

define the CDK application to deploy these resources. Using the workspace
navigation panel, open the app.py file in the abalone-data-pipeline folder
and delete the existing template code.

Configuring the MWAA prerequisites 265

Note
A full example of the app.py code can be found in the companion
GitHub repository for this chapter (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/
tree/main/Chapter08/cdk).

29. Delete the existing template code and add the following code to define the
CDK application:

#!/usr/bin/env python3

import os

import aws_cdk as cdk

from abalone_data_pipeline.abalone_data_pipeline_stack
import DataPipelineStack

MODEL = "abalone"

CODECOMMIT_REPOSITORY = "abalone-data-pipeline"

app = cdk.App()

DataPipelineStack(

 app,

 CODECOMMIT_REPOSITORY,

 env=cdk.Environment(account=os.getenv("CDK_DEFAULT_
ACCOUNT"), region=os.getenv("CDK_DEFAULT_REGION")),

 model_name=MODEL,

 repo_name=CODECOMMIT_REPOSITORY,

 airflow_environment_name=f"{MODEL}-airflow-
environment"

)

app.synth()

30. Save and close the app.py file.
31. Before we can deploy the CDK application for our workflow resources, we need to

download the original abalone dataset from the UHCI repository. Run the following
commands in the Cloud9 terminal:

$ cd ~/environment/abalone-data-pipeline/

$ mkdir -p artifacts/data

$ wget -c -P artifacts/data https://archive.ics.uci.edu/
ml/machine-learning-databases/abalone/abalone.data

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter08/cdk
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter08/cdk
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter08/cdk

266 Automating the Machine Learning Process Using Apache Airflow

32. The next artifact is the source code for the analyze_results Lambda function.
Run the following command to create the necessary folders:

$ cd ~/environment/abalone-data-pipeline/

$ mkdir -p artifacts/lambda/analyze_results

33. To define the Lambda function handler, we can reuse the code we created
in Chapter 7, Building the ML Workflow Using AWS Step Functions. Run the
following command to copy the index.py file from the already cloned
companion GitHub repository:

$ cp ~/environment/src/Chapter08/lambda/analyze_results/
index.py ~/environment/abalone-data-pipeline/artifacts/
lambda/analyze_results/

Note
If you are unfamiliar with how the analyze_results Lambda
function assesses the model evaluation results against the Root Mean
Squared Error (RMSE) evaluation metric, you can review the code in
the Creating the ML workflow section of Chapter 7, Building the ML Workflow
Using AWS Step Functions.

34. The last artifact we need to configure is the evaluate.py file. You will
recall from Chapter 7, Building the ML Workflow Using AWS Step Functions,
that this script is executed as a SageMaker processing job to evaluate the trained
model's performance on the testing dataset. Run the following commands to create
the artifact folder and reuse the evaluate.py file provided in the companion
GitHub repository:

$ cd ~/environment/abalone-data-pipeline/

$ mkdir -p artifacts/airflow/scripts

$ cp ~/environment/src/Chapter08/airflow/scripts/
evaluate.py ~/environment/abalone-data-pipeline/
artifacts/airflow/scripts/

Note
Should you need to re-familiarize yourself with the evaluate.py code, you
can refer to the Creating the ML workflow section of Chapter 7, Building the ML
Workflow Using AWS Step Functions.

Configuring the MWAA prerequisites 267

35. Since we have all the necessary artifacts for the CDK application, we can go ahead
and deploy it by running the following command in the terminal window:

cdk deploy

Note
The CDK should take approximately 5 minutes to deploy, and you can track
the progress in the CloudFormation console (https://console.aws.
amazon.com/cloudformation/home).

36. Once the resource stack has been deployed, we can add the initial Airflow artifacts.
These artifacts are needed before we can deploy the MWAA environment. To do
this, run the following commands to set up the artifact source folders:

$ cd ~/environment/abalone-data-pipeline/

$ mkdir -p artifacts/airflow/dags

37. The first Airflow artifact we will define is the .airflowignore file. This is a
useful file for adding any DAG files that we want the Airflow scheduler to ignore.
Run the following command to create this file:

$ touch artifacts/airflow/dags/.airflowignore

38. Next, we define the requirements.txt file. This file specifies the various Python
dependencies that the Airflow DAG will need to install on the workers. Using the
Cloud9 navigation panel, right-click on the airflow folder and select New File.
Name the file requirements.txt and open it for editing.

Note
For more information on the best practices for managing Python dependencies
in MWAA, see the MWAA documentation (https://docs.aws.
amazon.com/mwaa/latest/userguide/best-practices-
dependencies.html).

39. In the requirements.txt file, add the following dependencies:

sagemaker==2.49.1

s3fs==0.5.1

boto3>=1.17.4

https://console.aws.amazon.com/cloudformation/home
https://console.aws.amazon.com/cloudformation/home
https://docs.aws.amazon.com/mwaa/latest/userguide/best-practices-dependencies.html
https://docs.aws.amazon.com/mwaa/latest/userguide/best-practices-dependencies.html
https://docs.aws.amazon.com/mwaa/latest/userguide/best-practices-dependencies.html

268 Automating the Machine Learning Process Using Apache Airflow

Note
The only reason we are using version 2.49.1 of the SageMaker SDK is
to ensure conformity with the ML experiment that the ML practitioner
conducted in the previous chapter. It is good practice to keep the Python
dependency versions constant with any source code provided by the data
engineer or ML practitioner.

40. Save and close the requirements.txt file.
41. Since we have the necessary artifacts required for deploying the MWAA

environment, we can run the following commands to commit these changes to the
CodeCommit repository and have the CodeBuild project automatically update
them in the data bucket:

$ git add -A

$ git commit -m "Initial commit of workflow artifacts"

$ git push --set-upstream origin main

The update should take about a minute to complete. We can view the output from
the CodeBuild project in the console (https://console.aws.amazon.com/
codesuite/codebuild/projects), selecting CodeDeploymentProject in the
Build projects dashboard. As you can see, we now have a mechanism for deploying new
and updated DAGs to MWAA.

Thus, we can move on to the next part of the process; deploying and configuring the
MWAA environment.

Configuring the MWAA environment
Now that the necessary resources and prerequisites have been deployed, we can go
ahead and provision the MWAA environment. The following steps will walk you
through this procedure:

1. Open the MWAA console (https://console.aws.amazon.com/mwaa/
home) in a new browser tab and click the Create environment button.

2. On the Specify details page, scroll down to the DAG code in Amazon S3 section,
and click the Browse S3 button to our data bucket.

3. In the Choose S3 bucket window, check the radio button next to the bucket called
abalone-data-<REGION>-<ACCOUNT ID> and then click Choose.

https://console.aws.amazon.com/codesuite/codebuild/projects
https://console.aws.amazon.com/codesuite/codebuild/projects
https://console.aws.amazon.com/mwaa/home
https://console.aws.amazon.com/mwaa/home

Configuring the MWAA environment 269

Note
Make sure that <REGION> and <ACCOUNT ID> in the bucket name match
your environment.

4. Clicking Choose will return you to the Specify details page. On this page, click the
Browse S3 button under the DAGs folder section to open the Choose DAG path in
S3 window. Figure 8.2 shows an example of this window:

Figure 8.2 – Choose DAG path in S3 window

5. As you can see from Figure 8.2, click the airflow folder to open it.
6. Once the airflow folder is open, select the radio button next to the dags folder,

as shown in Figure 8.3:

Figure 8.3 – Selecting the dags folder

270 Automating the Machine Learning Process Using Apache Airflow

7. As you can see from Figure 8.3, once you have selected the dags folder, click the
Choose button to return to the previous screen.

8. Now, click the Browser S3 button under the Requirements file – optional section
to choose the location of the requirements.txt file.

9. Repeat steps 5 and 6, but this time, click the radio button next to the
requirements.txt file, as shown in Figure 8.4:

Figure 8.4 – Selecting the requirements.txt file

10. As you can see from Figure 8.4, once the requirements.txt file has been
selected, click on the Choose button to return to the previous screen.

11. On the Specify details screen, click on the Next button, which will take you to the
Configure advanced settings screen.

12. Under the Networking section of the Configure advanced settings screen, click on
the Create MWAA VPC button to create a dedicated Virtual Private Cloud (VPC)
for MWAA. This will launch the Quick create stack CloudFormation console in a
new browser tab.

13. Leave all the fields as their defaults and click the Create stack button. The stack
should take around 2 minutes to build, and once the status registers as CREATE_
COMPLETED, go back to the browser tab hosting the MWAA console.

14. Under the Networking section, click the refresh button and then, using the Choose
VPC dropdown, select the VPC called MWAA-VPC, as shown in Figure 8.5:

Configuring the MWAA environment 271

Figure 8.5 – MWAA VPC

15. As you can see from Figure 8.5, selecting the MWAA-VPC automatically populates
the Subnet 1 and Subnet 2 fields with the correct private subnets.

16. Scroll down to the Web server access section and click on the radio button next to
the Public network (no additional setup) option.

17. Leave the rest of the fields at their defaults and then click the Next button.

Note
Take note of the role name that is automatically created in the Permissions
section. We will be assigning additional permissions for AWS services to
this role.

18. Review the MWAA environment configuration and click the Create
environment button.

Note
Deploying the MWAA environment will incur additional AWS usage costs that
exceed the Free Tier usage. For more information on MWAA pricing, refer
to the product pricing documentation (https://aws.amazon.com/
managed-workflows-for-apache-airflow/pricing/).

https://aws.amazon.com/managed-workflows-for-apache-airflow/pricing/
https://aws.amazon.com/managed-workflows-for-apache-airflow/pricing/

272 Automating the Machine Learning Process Using Apache Airflow

19. While the environment is being provisioned, open the IAM console (https://
console.aws.amazon.com/iamv2/home?#/home) in a new browser tab.

20. In the left-hand navigation panel of the IAM console, click on Roles.
21. In the Roles dashboard, scroll down until you see the IAM role that was created

during the MWAA setup and then click on it.
22. In the Role Summary dashboard, click on the Attach policies button.
23. Using the search bar in the Attach permissions screen, search for and select the

AmazonS3FullAccess, AWSLambda_FullAccess, AmazonSSMFullAccess,
AWSGlueConsoleFullAccess, and AmazonSageMakerFullAccess policies.

24. Click the Attach policies button.
25. The Summary screen should resemble Figure 8.6:

Figure 8.6 – MWAA Role Permissions

https://console.aws.amazon.com/iamv2/home?#/home
https://console.aws.amazon.com/iamv2/home?#/home

Summary 273

26. As you can see from Figure 8.6, we have added the necessary access to the various
AWS services that the Airflow DAG will be leveraging.

Note
Providing full access to the necessary AWS services is not recommended in a
production environment. We leverage these policies here for simplicity, within
the context of our example.

27. After approximately 20 to 30 minutes, the MWAA environment should be
Available. Figure 8.7 shows what the Airflow environments screen should
look like:

Figure 8.7 – Airflow environments

As you can see from Figure 8.7, the MWAA environment has been deployed and is
available for us. Now we have all the prerequisites as well as an Airflow platform. In the
next chapter, we will use this MWAA environment to create an automated, data-centric
ML process.

Summary
In this chapter, we introduced a new approach to automating the ML workflow on
AWS, namely, the data-centric approach. To orchestrate this data-centric workflow, we
introduced a platform, typically used by data engineering teams, called Apache Airflow,
and showed how to build such an environment using Amazon MWAA.

In the next chapter, we will see how to continue using the environment we've just created
and create a DAG to automate the ML process for creating the Age Calculator model.

9
Building the ML
Workflow Using

Amazon Managed
Workflows for

Apache Airflow
In previous iterations of the Age Calculator example, we learned how applying a source
code-centric methodology for ML workflow automation has been accomplished through
cross-functional collaboration between the ML practitioner and developer teams. In
Chapter 8, Automating the Machine Learning Process Using Apache Airflow, we explained
how data engineering teams can use Amazon's MWAA to create the platform where the
ML practitioner can automate the ML workflow as an Airflow DAG.

276 Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

So, to build a successful data-centric ML workflow, we need to apply the same
methodology to create an agile, cross-functional collaboration between the ML
practitioner and data engineering teams. Therefore, in this chapter, we are going to
continue where we left off in Chapter 8, Automating the Machine Learning Process
Using Apache Airflow. In the previous chapter, we used the AWS CDK to construct the
MWAA prerequisites, namely a Lambda Function to analyze the results from an ML
model evaluation, a Glue Catalog to store our training data, a Glue Job to merge the new
training data with the data already stored in the catalog, and a Codebuild project to sync
an Airflow DAG with the MWAA environment. Along with these CDK artifacts, we also
created an MWAA environment that will execute the data-centric workflow.

Thus, the primary motivation for this chapter is to highlight just how both the data
engineering and ML practitioner teams can construct, execute, and manage the automated
ML process on Apache Airflow by building and executing the Airflow DAG that's
responsible for this data-centric workflow. By the end of the chapter, you will know how
adding new training data will trigger the automated, end-to-end ML process and be able
to generate a production-grade Age Calculator model.

To accomplish this, we will cover the following topics:

• Developing the data-centric workflow

• Creating synthetic Abalone survey data

• Executing the data-centric workflow

Technical requirements
For this chapter, you will need the following:

• A web browser (for the best experience, it is recommended that you use either
Chrome or Firefox.)

• Access to the AWS account that you used in Chapter 8, Automating the Machine
Learning Process Using Apache Airflow.

• Access to the Cloud9 development environment we used in Chapter 8, Automating
the Machine Learning Process Using Apache Airflow.

Developing the data-centric workflow 277

• A reference to the usage limits of the AWS Free Tier to avoid exceeding
unnecessary costs.

• The source code examples for this chapter, which are provided in this book's
GitHub repository: https://github.com/PacktPublishing/
Automated-Machine-Learning-on-AWS/tree/main/Chapter09). The
code examples should already be available in the Cloud9 development environment.
If not, please refer to the Developing the application artifacts section of Chapter 4,
Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning.

Developing the data-centric workflow
In Chapter 8, Automating the Machine Learning Process Using Apache Airflow, we created
the environment components that are required to execute the data-centric ML workflow.
Now, we can start developing it. The following diagram shows what this workflow
development process looks like:

Figure 9.1 – Workflow development process

278 Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

As you can see, the data engineering teams must develop two primary artifacts that make
up the overall process, as follows:

• The unit tested data ETL artifacts

• The unit tested Airflow DAG

Once the data engineering team has created and tested the ETL artifacts that are
responsible for merging and preparing the training data, they can combine them
with the ML model artifacts to create the Airflow DAG, which represents the data-
centric workflow. Upon unit testing this Airflow DAG, to ensure that both the data
transformation code and the ML model code successfully integrate, the resultant workflow
can be released to production.

Let's start building the ETL artifacts from the perspective of the data engineering team.

Building and unit testing the data ETL artifacts
Within the context of the overall data-centric workflow, the primary goal behind the ETL
task is to merge any new data with the existing data so that the resulting dataset can be
further split into separate training, validation, and testing datasets. However, as the data
engineering team builds the code behind this task, they need to bear in mind that it's not
always possible to pre-determine the exact amount of new data that needs to be merged.
So, in this section, we will create the code artifacts for the ETL task and ensure the task
is scalable by using an AWS Glue Job to execute the task as a Spark script. The AWS Glue
Job that will be used to execute the ETL task was created as a CDK construct in Chapter 8,
Automating the Machine Learning Process Using Apache Airflow.

Tip
To help the data engineering team create and unit test this Spark script, AWS
has provided a Docker container that's bundled with the necessary libraries
to construct and test Glue ETL Jobs. AWS has published this information in
a blog post entitled Developing AWS Glue ETL jobs locally using a container
(https://aws.amazon.com/blogs/big-data/developing-
aws-glue-etl-jobs-locally-using-a-container/). Should
you use the solution referenced within the blog post, it is recommended that
you install version 0.24.1 of the pandas library. This version of pandas is
required to copy a CSV file directly to S3.

https://aws.amazon.com/blogs/big-data/developing-aws-glue-etl-jobs-locally-using-a-container/
https://aws.amazon.com/blogs/big-data/developing-aws-glue-etl-jobs-locally-using-a-container/

Developing the data-centric workflow 279

So, to start building the ETL Job, we will create a Python script called preprocess.
py. This script will read from the Glue Catalog, which contains the updated Abalone
data and merge this with the original Abalone dataset and provide the overall feature
transformations that are needed by the ML model.

Note
Since the core focus of this book is not on how to construct a Spark script, the
basis for the preprocess.py file comes from the AWS SageMaker GitHub
repository (https://github.com/aws/amazon-sagemaker-
examples/tree/master/advanced_functionality/
inference_pipeline_sparkml_xgboost_abalone). This
example is licensed under the Apache 2.0 License. We will build upon this
example and customize it for our use case.

To create the ETL script, we will continue using the Cloud9 environment. Follow
these steps:

1. Using the navigation panel of the Cloud9 environment, navigate to the abalone-
data-pipeline folder.

Note
We created the abalone-data-pipeline folder in Chapter 8,
Automating the Machine Learning Process Using Apache Airflow.

2. Within the abalone-data-pipeline folder, expand the artifacts folder,
and then expand the airflow folder. Right-click on the scripts folder and select
the New File option. Create a file called preprocess.py and open it for editing.

3. Within the preprocess.py file, add the following code to import the necessary
PySpark and AWS Glue libraries:

import sys

import os

import boto3

import pyspark

import pandas as pd

from functools import reduce

from pyspark.sql import SparkSession, DataFrame

from pyspark.ml import Pipeline

from pyspark.sql.types import StructField, StructType,

https://github.com/aws/amazon-sagemaker-examples/tree/master/advanced_functionality/inference_pipeline_sparkml_xgboost_abalone
https://github.com/aws/amazon-sagemaker-examples/tree/master/advanced_functionality/inference_pipeline_sparkml_xgboost_abalone
https://github.com/aws/amazon-sagemaker-examples/tree/master/advanced_functionality/inference_pipeline_sparkml_xgboost_abalone

280 Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

StringType, DoubleType

from pyspark.ml.feature import StringIndexer,
VectorIndexer, OneHotEncoder, VectorAssembler

from pyspark.sql.functions import *

from awsglue.job import Job

from awsglue.transforms import *

from awsglue.context import GlueContext

from pyspark.context import SparkContext

from awsglue.utils import getResolvedOptions

from awsglue.dynamicframe import DynamicFrame

from awsglue.utils import getResolvedOptions

4. Next, we will build some utility functions to help process the data. The first utility
function is called csv_line(), whereby we supply a line of text data from a Spark
Resilient Distributed Dataset (RDD) and create a comma-delimited string. This
string will eventually be written to a CSV file on S3:

def csv_line(data):

 r = ','.join(str(d) for d in data[1])

 return str(data[0]) + "," + r

5. The next function that we will create is called toS3(). This function extracts
the relevant features from the dataset, including the target feature, calls the csv_
line() function to create a comma-delimited string for each line, converts the
dataset into a pandas DataFrame, and writes the DataFrame to S3:

def toS3(df, path):

 rdd = df.rdd.map(lambda x: (x.rings, x.features))

 rdd_lines = rdd.map(csv_line)

 spark_df = rdd_lines.map(lambda x: str(x)).map(lambda
s: s.split(",")).toDF()

 pd_df = spark_df.toPandas()

 pd_df = pd_df.drop(columns=["_3"])

 pd_df.to_csv(f"s3://{path}", header=False,
index=False)

Developing the data-centric workflow 281

Note
Working with Spark DataFrames allows us to overcome the memory
limitations of pandas DataFrames by distributing the dataset across multiple
Spark nodes. However, when a Spark DataFrame is written to disk, it creates
multiple part files, depending on the number of RDD partitions. To create a
single CSV file, we must convert the Spark DataFrame into a single pandas
DataFrame, thus writing the dataset to a single file. Using this technique may
not scale if the single pandas DataFrame exceeds certain memory limitations.
However, since the example dataset is not large, we can use pandas to create a
single file.

6. Finally, we must create the main() function. Using the following code
snippet, we can initialize the spark and glueContext() classes to wrap the
SparkContext object:

...

def main():

 glueContext = GlueContext(SparkContext.getOrCreate())

 spark = SparkSession.builder.
appName("PySparkAbalone").getOrCreate()

 spark.sparkContext._jsc.hadoopConfiguration().
set("mapred.output.committer.class", "org.apache.hadoop.
mapred.FileOutputCommitter")

...

Note
Since AWS Glue is essentially a serverless Spark Processing Job,
SparkContext represents the connection to the serverless Spark
cluster, which is created and managed in the background by AWS. For
more information on the SparkContext class, please refer to the Spark
documentation (https://spark.apache.org/docs/latest/
api/java/org/apache/spark/SparkContext.html).

7. Since we will be passing the preprocess.py file as a script, along with the
command argument to AWS Glue, the following code snippet shows how we can
declare the args variable using the getResolvedOptions() function. This is a
utility function that's provided by AWS Glue to access the command arguments that
are passed with the preprocess.py script:

...

 args = getResolvedOptions(sys.argv, ["GLUE_CATALOG",

https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html

282 Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

"S3_BUCKET", "S3_INPUT_KEY_PREFIX", "S3_OUTPUT_KEY_
PREFIX"])

...

8. To read in the Abalone data as a Spark DataFrame, we must supply the appropriate
schema for each of the column data types. In the following code snippet, we're
declaring the schema variable, which contains the type or structure of the data
that's found in each column of the dataset:

...

 schema = StructType(

 [

 StructField("sex", StringType(), True),

 StructField("length", DoubleType(), True),

 StructField("diameter", DoubleType(), True),

 StructField("height", DoubleType(), True),

 StructField("whole_weight", DoubleType(),
True),

 StructField("shucked_weight", DoubleType(),
True),

 StructField("viscera_weight", DoubleType(),
True),

 StructField("shell_weight", DoubleType(),
True),

 StructField("rings", DoubleType(), True)

]

)

...

9. Next, we must write the following code to merge the new data from the Glue
Catalog, along with the original Abalone dataset, to create a DataFrame called
distinct_df. This DataFrame is strict in the sense that any duplicate rows are
removed after the merge process:

...

 columns = ["sex", "length", "diameter", "height",
"whole_weight", "shucked_weight", "viscera_weight",
"shell_weight", "rings"]

 new = glueContext.create_dynamic_frame_from_
catalog(database=args["GLUE_CATALOG"], table_name="new",
transformation_ctx="new")

Developing the data-centric workflow 283

 new_df = new.toDF()

 new_df = new_df.toDF(*columns)

 raw_df = spark.read.csv(("s3://{}".format(os.path.
join(args["S3_BUCKET"], args["S3_INPUT_KEY_PREFIX"]))),
header=False, schema=schema)

 merged_df = reduce(DataFrame.unionAll, [raw_df, new_
df])

 distinct_df = merged_df.distinct()

...

10. Now that we have a unique DataFrame, we can set up the ETL pipeline and start
transforming the dataset to prepare it for ML training. As shown in the following
code snippet, the first part of the ETL process is to index the sex column as a
training feature using the StringIndexer() class. Once the sex feature has
been indexed, we can categorically encode the feature, thus creating vectors for each
gender, by using the OneHotEncoder() class:

...

 sex_indexer = StringIndexer(inputCol="sex",
outputCol="indexed_sex")

 sex_encoder = OneHotEncoder(inputCol="indexed_sex",
outputCol="sex_vec")

...

11. The output of OneHotEncoder is a new set of columns, called sex_vec, that
represent each gender. The next step is to use the VectorAssembler() class to
merge the sex_vec columns with the original columns of the dataset. As shown
in the following code snippet, here, we must instantiate VectorAssembler and
define the assembler variable:

...

 assembler = VectorAssembler(

 inputCols=[

 "sex_vec",

 "length",

 "diameter",

 "height",

 "whole_weight",

 "shucked_weight",

 "viscera_weight",

284 Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

 "shell_weight"

],

 outputCol="features"

)

...

12. As shown in the following code snippet, by combining sex_indexer,
sex_encoder, and assembler into a Pipeline, and then fitting it onto
the distinct_df DataFrame, we have a preprocessed transformed_df
DataFrame, ready for model training:

...

 pipeline = Pipeline(stages=[sex_indexer, sex_encoder,
assembler])

 model = pipeline.fit(distinct_df)

 transformed_df = model.transform(merged_df)

...

13. The final step is to split the data into the relative training, validation, and testing
datasets. As shown in the following code snippet, we must call the toS3() function
to write these datasets to the data bucket as CSV files:

 (train_df, validation_df, test_df) = transformed_
df.randomSplit([0.8, 0.15, 0.05])

 toS3(train_df, os.path.join(args["S3_BUCKET"],
args["S3_OUTPUT_KEY_PREFIX"], "training/training.csv"))

 toS3(validation_df, os.path.join(args["S3_BUCKET"],
args["S3_OUTPUT_KEY_PREFIX"], "training/validation.csv"))

 toS3(test_df, os.path.join(args["S3_BUCKET"],
args["S3_OUTPUT_KEY_PREFIX"], "testing/testing.csv"))

...

14. With that, the main program is created to execute the data preprocessing task:

...

if __name__ == "__main__":

 main()

...

This completes the ETL script for the Glue Job. After unit testing the script, the data
engineer can start creating the data processing workflow itself, in the form of an Airflow
DAG. Let's go ahead and start building this DAG.

Developing the data-centric workflow 285

Building the Airflow DAG
Now, the data engineer must create the overall workflow for Airflow to execute, in the
form of a DAG. You will recall that an Airflow DAG is a set of consecutive tasks, or
operations, that are performed by the Airflow workers. To streamline the process of
creating these consecutive operations, Airflow provides several prepackaged operators.
These operators essentially encompass the logic for each task within the workflow. Since
we are offloading the actual execution of these operations to AWS services, such as
Glue and SageMaker, AWS provides several pre-built operators (https://airflow.
apache.org/docs/apache-airflow-providers-amazon/stable/
operators/index.html) for these and many other services.

However, using these AWS provider operators requires the data engineer or the ML
practitioner to fully understand the relevant task operator, and thus how the AWS
service executes the task. To simplify the DAG creation process, we will mostly use
the standard PythonOperator() class (https://airflow.apache.org/
docs/apache-airflow/stable/_api/airflow/operators/python/
index.html?highlight=pythonoperator#airflow.operators.python.
PythonOperator) to call the SageMaker service. This means that the data engineer
can copy and paste the SageMaker SDK code from the ML experiment notebook into
the workflow DAG. Doing this makes it easier for both the ML practitioner and data
engineer to integrate the ML process into the data workflow. As you will see, using the
PythonOperator() class within the DAG allows for further customizations to be made
that the AWS provider operators don't provide.

Note
The AWS team provides numerous examples that showcase how to leverage
the AWS provider operators for SageMaker (https://sagemaker.
readthedocs.io/en/stable/workflows/airflow/index.
html). However, since we will be using PythonOperator() to construct
the SageMaker service calls, we will be basing our solution on another AWS
example (https://github.com/aws/amazon-sagemaker-
examples/blob/master/sagemaker-experiments/track-
an-airflow-workflow/track-an-airflow-workflow.
ipynb). This example is provided under the Apache 2.0 License. We will be
building on this example to make our DAG resemble the ML workflow we
configured in Chapter 7, Building the ML Workflow Using AWS Step Functions.
You can review the ML workflow by referencing Figure 7.1 in the Creating the
ML workflow section.

https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/operators/index.html
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/operators/index.html
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/operators/index.html
https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/operators/python/index.html?highlight=pythonoperator#airflow.operators.python.PythonOperator
https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/operators/python/index.html?highlight=pythonoperator#airflow.operators.python.PythonOperator
https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/operators/python/index.html?highlight=pythonoperator#airflow.operators.python.PythonOperator
https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/operators/python/index.html?highlight=pythonoperator#airflow.operators.python.PythonOperator
https://sagemaker.readthedocs.io/en/stable/workflows/airflow/index.html
https://sagemaker.readthedocs.io/en/stable/workflows/airflow/index.html
https://sagemaker.readthedocs.io/en/stable/workflows/airflow/index.html
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-experiments/track-an-airflow-workflow/track-an-airflow-workflow.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-experiments/track-an-airflow-workflow/track-an-airflow-workflow.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-experiments/track-an-airflow-workflow/track-an-airflow-workflow.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-experiments/track-an-airflow-workflow/track-an-airflow-workflow.ipynb

286 Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

To start building the Airflow DAG, follow these steps:

1. Within your Cloud9 workspace, right-click on the dags folder and select the New
Folder option to create a folder called model.

2. To define the Lambda Function handler, we can reuse the code we created in
Chapter 7, Building the ML Workflow Using AWS Step Functions. Run the following
command to copy the model_training.py file from the already cloned
companion GitHub repository:

$ cp ~/environment/src/Chapter09/Files/airflow/dags/
model/model_training.py ~/environment/abalone-data-
pipeline/artifacts/airflow/dags/model/

Note
If you need to refamiliarize yourself with the model_training.py file,
you can review the code in the Creating the ML workflow section of Chapter 7,
Building the ML Workflow Using AWS Step Functions.

3. Next, right-click on the dags folder and select the New File option, creating a file
called abalone_data_pipeline.py.

4. Double-click on the file for editing and add the following code to import the base
Python libraries:

import boto3

import json

from datetime import timedelta

5. Next, we must add the following SageMaker SDK libraries:

import sagemaker

from sagemaker.tensorflow import TensorFlow

from sagemaker.tensorflow.serving import Model

from sagemaker.processing import ProcessingInput,
ProcessingOutput, Processor

from sagemaker.model_monitor import DataCaptureConfig

Note
These are the same SageMaker SDK libraries that the ML practitioner uses for
the ML experiment notebook.

Developing the data-centric workflow 287

6. Now, using the following code, we can import the AWS provider operators, as well
as the Airflow provider operators:

import airflow

from airflow import DAG

from airflow.operators.python_operator import
PythonOperator

from airflow.providers.amazon.aws.operators.glue import
AwsGlueJobOperator

from airflow.providers.amazon.aws.operators.glue_crawler
import AwsGlueCrawlerOperator

from airflow.providers.amazon.aws.hooks.lambda_function
import AwsLambdaHook

from airflow.operators.python_operator import
BranchPythonOperator

from airflow.operators.dummy import DummyOperator

7. Next, we must use the following code to define our global variables, as well as get
the stored parameters that we defined in the CDK application:

sagemaker_seesion = sagemaker.Session()

region_name = sagemaker_seesion.boto_region_name

model_name = "abalone"

data_prefix = "abalone_data"

data_bucket = f"""{boto3.client("ssm", region_
name=region_name).get_parameter(Name="AirflowDataBucket")
["Parameter"]["Value"]}"""

glue_job_name = f"""{boto3.client("ssm", region_
name=region_name).get_parameter(Name="GlueJob")
["Parameter"]["Value"]}"""

crawler_name = f"""{boto3.client("ssm", region_
name=region_name).get_parameter(Name="GlueCrawler")
["Parameter"]["Value"]}"""

sagemaker_role = f"""{boto3.client("ssm", region_
name=region_name).get_parameter(Name="SageMakerRoleARN")
["Parameter"]["Value"]}"""

lambda_function = f"""{boto3.
client("ssm", region_name=region_name).get_
parameter(Name="AnalyzeResultsLambda")["Parameter"]
["Value"]}"""

container_image = f"763104351884.dkr.ecr.{region_name}.

288 Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

amazonaws.com/tensorflow-training:2.5.0-cpu-py37-
ubuntu18.04-v1.0"

training_input = f"s3://{data_bucket}/{data_prefix}/
training"

testing_input = f"s3://{data_bucket}/{data_prefix}/
testing"

data_capture = f"s3://{data_bucket}/endpoint-data-
capture"

Note
As we saw in Chapter 7, Building the ML Workflow Using AWS Step Functions,
SageMaker Processing Jobs don't provide TensorFlow containers. Therefore, we
must leverage the Deep Learning TensorFlow container and reference it using
the container_image variable.

8. The final variable we must define is default_args for the Airflow DAG. In the
following code, we have specified some of the defaults that the Airflow scheduler
requires to execute the DAG:

default_args = {

 "owner": "airflow",

 "depends_on_past": False,

 "start_date": airflow.utils.dates.days_ago(1),

 "retries": 0,

 "retry_delay": timedelta(minutes=2)

}

9. Since we are using the PythonOperator() class to interface with the
SageMaker service, we must define multiple functions that encapsulate the logic
of the service call. As we mentioned previously, these functions can be cut and
pasted from the ML experiment notebook. For example, the following code
creates the training() function, which utilizes the SageMaker SDK to create a
TensorFlow() estimator, and calls the fit() method to train the model as a
SageMaker Training Job:

def training(data, **kwargs):

 estimator = TensorFlow(

 base_job_name=model_name,

 entry_point="/usr/local/airflow/dags/model/model_
training.py",

Developing the data-centric workflow 289

 role=sagemaker_role,

 framework_version="2.4",

 py_version="py37",

 hyperparameters={"epochs": 200, "batch-size": 8},

 script_mode=True,

 instance_count=1,

 instance_type="ml.m5.xlarge",

)

 estimator.fit(data)

 kwargs["ti"].xcom_push(

 key="TrainingJobName",

 value=str(estimator.latest_training_job.name)

)

10. The next Python function, called evaluation(), executes a SageMaker
Processing Job to execute the evaluate.py file that we created in Chapter 8,
Automating the Machine Learning Process Using Apache Airflow, and evaluate the
trained model's inference on the test dataset. The following code snippet shows how
the evaluation() function is instantiated – that is, by specifying the name of the
SageMaker Training Job that was defined in Step 9 to instantiate it as a TensorFlow
estimator so that we can get the location of the trained model:

...

def evaluation(ds, **kwargs):

 training_job_name = kwargs["ti"].xcom_
pull(key="TrainingJobName")

 estimator = TensorFlow.attach(training_job_name)

 model_data = estimator.model_data,

...

11. As part of the evaluation() function, we must also define the processor variable
to initialize an instance of the SageMaker Processor class. The following code
snippet shows how we must provide the necessary parameters to execute the
Processing Job, namely the Processing Job name, the location of the processing
container image, the processing script to execute, the SageMaker IAM role, and the
type of compute resources to use for the Processing Job:

...

 processor = Processor(

 base_job_name=f"{model_name}-evaluation",

290 Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

 image_uri=container_image,

 entrypoint=[

 "python3",

 "/opt/ml/processing/input/code/evaluate.py"

],

 instance_count=1,

 instance_type="ml.m5.xlarge",

 role=sagemaker_role,

 max_runtime_in_seconds=1200

)

...

12. The following code snippet shows how the processor.run() method is called to
execute the Processing Job we defined in Step 11. To run the Processing Job, we must
supply the S3 location of the test dataset (testing_input), the S3 location of the
trained ML model (model_data), and the S3 location of the evaluate.py script:

...

 processor.run(

 inputs=[

 ProcessingInput(

 source=testing_input,

 destination="/opt/ml/processing/testing",

 input_name="input"

),

 ProcessingInput(

 source=model_data[0],

 destination="/opt/ml/processing/model",

 input_name="model"

),

 ProcessingInput(

 source="s3://{}/airflow/scripts/evaluate.
py".format(data_bucket),

 destination="/opt/ml/processing/input/
code",

 input_name="code"

Developing the data-centric workflow 291

)

],

...

13. Along with the defining inputs in Step 12, the following code snippet shows how
to define the S3 location for the Processing Job results as an output parameter:

...

 outputs=[

 ProcessingOutput(

 source="/opt/ml/processing/evaluation",

 destination="s3://{}/{}/evaluation".
format(data_bucket, data_prefix),

 output_name="evaluation"

)

]

)

14. Now that we have functions to train and evaluate the ML model, we must define a
function to deploy the trained model as a SageMaker Hosted Endpoint by using the
deploy() method on the trained TensorFlow estimator:

def deploy_model(ds, **kwargs):

 training_job_name = kwargs["ti"].xcom_
pull(key="TrainingJobName")

 estimator = TensorFlow.attach(training_job_name)

 model = Model(

 model_data=estimator.model_data,

 role=sagemaker_role,

 framework_version="2.4",

 sagemaker_session=sagemaker.Session()

)

 model.deploy(

 initial_instance_count=2,

 instance_type="ml.m5.large",

 data_capture_config=DataCaptureConfig(

 enable_capture=True,

 sampling_percentage=100,

 destination_s3_uri=data_capture

292 Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

)

)

15. Previously, as part of the CDK application, we defined a Lambda function to
calculate the RMSE evaluation metric for the trained model. In the following code,
we are leveraging the AWS provider operator to invoke this Lambda function:

def get_results(ds, **kwargs):

 hook = AwsLambdaHook(

 function_name=lambda_function,

 aws_conn_id="aws_default",

 invocation_type="RequestResponse",

 log_type="None",

 qualifier="$LATEST",

 config=None

)

 request = hook.invoke_lambda(

 payload=json.dumps(

 {

 "Bucket": data_bucket,

 "Key": f"{data_prefix}/evaluation/
evaluation.json"

 }

)

)

 response = json.loads(request["Payload"].read().
decode())

 kwargs["ti"].xcom_push(

 key="Results",

 value=response["Result"]

)

16. The last function we must create will take the RMSE score and compare it to
the evaluation threshold to determine whether the trained model is considered
production-grade. If the evaluation is approved, the model will be deployed as
a SageMaker Hosted Endpoint. Alternatively, if the model is above the predefined
threshold, the workflow will be categorized as rejected:

def branch(ds, **kwargs):

Developing the data-centric workflow 293

 result = kwargs["ti"].xcom_pull(key="Results")

 if result > 3.1:

 return "rejected"

 else:

 return "approved"

Note
To ensure that this workflow example completes successfully and deploys the
trained model, we must set the evaluation threshold higher than the threshold
we used in Chapter 7, Building the ML Workflow Using AWS Step Functions.
After successfully testing the Airflow DAG, you can set the threshold lower to
mimic a more realistic ML model evaluation.

17. Now that we have created the processing logic for each step of the workflow, we can
use the following code to define the DAG itself. Here, we are using the DAG() class
to initialize the DAG, provide the name of the workflow and the default arguments,
and schedule the DAG to automatically execute every night at midnight:

with DAG(

 dag_id=f"{model_name}-data-workflow",

 default_args=default_args,

 schedule_interval="@daily",

 concurrency=1,

 max_active_runs=1,

) as dag:

18. The first step that the DAG executes is crawler_task. Here, the Airflow
Scheduler calls the AWS Glue Crawler to read the new data, infer the data schema,
and append the data to the Glue Catalog. In the following code, we are defining the
task using the AWS-provided AwsGlueCrawlerOperator():

 crawler_task = AwsGlueCrawlerOperator(

 task_id="crawl_data",

 config={"Name": crawler_name}

)

294 Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

19. The second step of the workflow is called etl_task. In this task, we call the
AWS-provided AwsGlueJobOperator() to run the Glue Job we defined in the
CDK application. You will recall that this Job merges the initial Abalone dataset
with the new data from the Glue Catalog, and then preprocesses it to create the
training, validation, and test datasets:

 etl_task = AwsGlueJobOperator(

 task_id="preprocess_data",

 job_name=glue_job_name

)

20. Now that the dataset has been prepared and stored in the data bucket, we can
use the PythonOperator() class to call our training() function. This task
supplies the location of the preprocessed training data and calls SageMaker to run a
Training Job using the TensorFlow estimator:

 training_task = PythonOperator(

 task_id="training",

 python_callable=training,

 op_args=[training_input],

 provide_context=True,

 dag=dag

)

21. The next task in the workflow is evaluation_task. Here, we're using
PythonOperator() to call the evaluation() function, whereby we
instruct SageMaker to execute a Processing Job and test the trained model
against the testing dataset:

 evaluation_task = PythonOperator(

 task_id="evaluate_model",

 python_callable=evaluation,

 provide_context=True,

 dag=dag

)

Developing the data-centric workflow 295

Note
Note that in the evaluation() function, we use Airflow cross-
communications, or Xcoms (https://airflow.apache.org/
docs/apache-airflow/stable/concepts/xcoms.html), to
pass the name of the SageMaker Training Job between tasks. This is one of the
primary reasons we leverage the PythonOperator() class instead of the
AWS-provided operators for SageMaker.

22. The next task is the Lambda function that determines the model evaluation results
from the test dataset. analyze_results_task uses PythonOperator()
to call the get_results() Python function. You will recall that this
Python function causes the AnalyzeResults Lambda function to return
the RMSE score:

 analyze_results_task = PythonOperator(

 task_id="analyze_results",

 python_callable=get_results,

 provide_context=True,

 dag=dag

)

23. Based on the returned RMSE results, the next task within the workflow is to
determine whether the model is ready for production. Here, we're using the
BranchPythonOperator() class to call the branch() Python function and
evaluate the returned results against the pre-determined threshold:

 check_threshold_task = BranchPythonOperator(

 task_id="check_threshold",

 python_callable=branch,

 provide_context=True,

 dag=dag

)

24. Should the model evaluation result be lower than the threshold value, the workflow
will move on to deployment_task. This task calls the deploy_model()
Python function to create a SageMaker Hosted Endpoint:

 deployment_task = PythonOperator(

 task_id="deploy_model",

 python_callable=deploy_model,

 provide_context=True,

https://airflow.apache.org/docs/apache-airflow/stable/concepts/xcoms.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts/xcoms.html

296 Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

 dag=dag

)

25. Finally, we must create the placeholder tasks by using DummyOperator() to
create placeholders for the start, end, rejected, and approved states within
the workflow:

 start_task = DummyOperator(

 task_id="start",

 dag=dag

)

 end_task = DummyOperator(

 task_id="end",

 dag=dag

)

 rejected_task = DummyOperator(

 task_id="rejected",

 dag=dag

)

 approved_task = DummyOperator(

 task_id="approved",

 dag=dag

)

26. Now that the various tasks of the workflow have been defined, we must create the
overall flow of the DAG. In the following code, we're defining the dependencies
between each of the specific tasks:

 start_task >> crawler_task >> etl_task >> training_
task >> evaluation_task >> analyze_results_task >> check_
threshold_task >> [rejected_task, approved_task]

 approved_task >> deployment_task >> end_task

 rejected_task >> end_task

Developing the data-centric workflow 297

27. The workflow DAG is now complete. Now, we must save the file and run the
following commands in the Cloud9 Terminal window to check the code into
the repository:

$ git add -A

$ git commit -m "Initial commit of workflow DAG"

$ git push

Note
Before pushing the DAG to the CodeCommit repository, the data engineer
may want to perform local unit tests to ensure that the DAG is fully functional
before it is imported by MWAA. AWS provides a command-line interface
utility called aws-mwaa-local-runner (https://github.com/aws/
aws-mwaa-local-runner) that reproduces an MWAA environment
locally using a Docker container. By using this utility, the data engineer can not
only unit test the DAG, but also verify that the Python dependencies will work
on MWAA (https://docs.aws.amazon.com/mwaa/latest/
userguide/working-dags-dependencies.html).

Now that we've created the workflow DAG and its associated artifacts we must commit the
changes to the CodeCommit repository. This will cause the build to deploy these files to
the data bucket. Once there, and after about 5 minutes, the MWAA scheduler will import
the DAG. You can now view the DAG in the MWAA web UI. The following steps will walk
you through how to access the MWAA web UI:

1. Open the MWAA console (https://console.aws.amazon.com/mwaa/
home) and select your MWAA environment, called MyAirflowEnvironment.

2. Click the Open Airflow UI link to open the MWAA web UI.
3. Once the UI has opened in a new browser tab, you should eventually see the

abalone-data-pipeline DAG. The following screenshot shows an example of the
newly imported abalone-data-workflow DAG in the web UI:

Figure 9.2 – abalone-data-workflow DAG

https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner
https://docs.aws.amazon.com/mwaa/latest/userguide/working-dags-dependencies.html
https://docs.aws.amazon.com/mwaa/latest/userguide/working-dags-dependencies.html
https://console.aws.amazon.com/mwaa/home
https://console.aws.amazon.com/mwaa/home

298 Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

4. Click on the DAG to open it.

Note
Do not enable the DAG just yet since we haven't supplied any new data for the
workflow to successfully execute.

5. Click on the Graph View link to view the DAG as a graph. The following diagram
shows the overall workflow as a graph:

Figure 9.3 – Workflow graph

Note that this data-centric workflow is similar to the ML workflow we created in Chapter
7, Building the ML Workflow Using AWS Step Functions, except for the Glue Crawler and
scalable Glue ETL Job. However, before we can see the workflow in action, we need to
simulate the process of adding new Abalone survey data. Let's get started.

Creating synthetic Abalone survey data
In the previous section, we created the two primary artifacts – from the perspective of
the data engineering team – that are required to successfully implement the data-centric
workflow, with the first being the ETL artifacts that merge the raw Abalone data with
new data to create the training, validation, and test datasets. We also integrated these ETL
artifacts into a data-centric workflow, in the form of an Airflow DAG artifact, to automate
the ML process whereby we can train, evaluate, and deploy a production-grade Age
Calculator model.

As you may recall from the Using Airflow to process the Abalone dataset section of Chapter
8, Automating the Machine Learning Process Using Apache Airflow, we established the
context for the data-centric workflow by expanding the ACME Fishing Logistics use case
to address the need to add updated Abalone survey data.

So, before we can execute the data-centric workflow, we must address the next step. The
following diagram illustrates the next step we will be addressing in this section – that is,
simulating new Abalone survey data to further optimize the ML model:

Creating synthetic Abalone survey data 299

Figure 9.4 – Simulating new Abalone survey data

Since the Abalone Survey Company is a fictional entity in our example, we are going to
have to somehow get new Abalone data; since there are no new sources for the data, we
will have to synthesize some. Fortunately, the Data to AI Group at MIT (https://
dai.lids.mit.edu/), has open sourced a project called CTGAN (https://
github.com/sdv-dev/CTGAN) to help us synthesize new Abalone data.

Note
The CTGAN project is available under the MIT License (https://
github.com/sdv-dev/CTGAN/blob/master/LICENSE).

CTGAN uses a deep learning-based Synthetic Data Generator, essentially a conditional
generative adversarial network model, to learn from data and predict a new dataset. The
following steps will walk you through how to leverage CTGAN to synthesize new Abalone
data using the SageMaker Studio UI:

1. Open the SageMaker management console (https://console.aws.amazon.
com/sagemaker/home), and then click on the SageMaker Domain option in the
left-hand navigation panel.

2. Once the SageMaker Domain dashboard opens, click on the Launch app drop-
down box and select the Studio option to open the Studio IDE.

(https://dai.lids.mit.edu/
(https://dai.lids.mit.edu/
https://console.aws.amazon.com/sagemaker/home
https://console.aws.amazon.com/sagemaker/home

300 Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

Note
If you've been following this book, you should already have a configured
SageMaker Studio environment. If not, please refer to the Getting started with
SageMaker Studio section of Chapter 2, Automating Machine Learning Model
Development Using SageMaker Autopilot.

3. From the File menu, click New and select Notebook to open a new Jupyter
Notebook. This will create a new notebook called Untitled.ipynb in the root
folder. Since we are using this notebook to synthesize new Abalone survey data, it
can be created in any folder within your SageMaker Studio environment.

4. When prompted, select the Python 3 (data Science) kernel and click the
Select button.

Note
It is recommended that you use an ml.m5.4xlarge (16 vCPUs + 64
MB) instance type. However, this will incur additional AWS usage costs.
Additionally, an example Jupyter Notebook is available in this book's
GitHub repository (https://github.com/PacktPublishing/
Automated-Machine-Learning-on-AWS/blob/main/
Chapter09/Notebook/Simulating%20New%20Abalone%20
Survey%20Data.ipynb).

5. Once the kernel starts, use the following code in a code cell to install the
CTGAN libraries:

%%capture

!pip install ctgan

6. Next, import the necessary Python libraries and global variables:

import io

import boto3

import warnings

import pandas as pd

from time import gmtime, strftime

warnings.filterwarnings("ignore")

s3 = boto3.client("s3")

model_name = "abalone"

column_names = [

 "sex",

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter09/Notebook/Simulating%20New%20Abalone%20Survey%20Data.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter09/Notebook/Simulating%20New%20Abalone%20Survey%20Data.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter09/Notebook/Simulating%20New%20Abalone%20Survey%20Data.ipynb
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter09/Notebook/Simulating%20New%20Abalone%20Survey%20Data.ipynb

Creating synthetic Abalone survey data 301

 "length",

 "diameter",

 "height",

 "whole_weight",

 "shucked_weight",

 "viscera_weight",

 "shell_weight",

 "rings"

]

7. In the next code cell, add the following code to open the original (or raw) Abalone
dataset that was uploaded to S3 when we deployed the CDK application, as well
as define the name of the new Abalone data file. The new data file will contain the
current date and time appended to the filename, making it a unique survey:

data_bucket = f"""{boto3.client("ssm").get_
parameter(Name="AirflowDataBucket")["Parameter"]
["Value"]}"""

raw_data_key = f"{model_name}_data/raw/abalone.data"

new_data_key = f"{model_name}_data/new/abalone.
{strftime('%Y%m%d%H%M%S', gmtime())}"

s3_object = s3.get_object(Bucket=data_bucket, Key=raw_
data_key)

raw_df = pd.read_csv(io.BytesIO(s3_object["Body"].
read()), encoding="utf8", names=column_names)

8. Now, add the following code to fit a CTGAN model to the raw data, specifying the
sex feature as a categorical value:

from ctgan import CTGANSynthesizer

ctgan = CTGANSynthesizer()

ctgan.fit(raw_df, ["sex"])

9. To generate the 100 samples of synthesized survey data, add the following code to a
new code cell:

samples = ctgan.sample(100)

302 Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

10. Now that we have new synthesized the Abalone data as the samples variable, we
can use the following code to copy it to the S3 data bucket:

samples.to_csv(f"s3://{data_bucket}/{new_data_key}",
header=False, index=False)

With the new Abalone survey data synthesized and uploaded to S3, we can execute the
data-centric workflow. We'll learn how to do this in the next section.

Executing the data-centric workflow
In the previous section, we successfully generated new Abalone survey data. So, with
this dataset now stored on S3, this section will walk you through how to execute and
release the data-centric workflow to create a production-grade ML model that has been
optimized on both the new, as well as the original, datasets.

As with the example in Chapter 7, Building the ML Workflow Using AWS Step Functions,
we can consider this execution and any scheduled execution of the workflow as a release
change. The following diagram shows an overview of the workflow execution that we
defined within the Airflow DAG:

Figure 9.5 – Overview of the workflow's execution

Executing the data-centric workflow 303

As you can see, once we have new data and the schedule kicks off, the Airflow DAG will
execute the CI phase of updating the Abalone dataset, training a new ML model, and
evaluating the trained model's performance.

Once the model has been automatically approved as a production-grade model, it
is deployed to production during the CD phase. The operations teams can then
take ownership of the hosted model to manage and continuously monitor its
production performance.

This CI/CD process will execute every night at midnight, based on the DAG schedule,
to ensure that the production model is continuously optimized as it gets trained on new
survey data.

To see this in action, perform the following steps to execute the workflow release:

1. Using the Airflow web UI, click the toggle button next to the abalone-data-
workflow DAG to enable it.

2. Once the DAG has been enabled, the workflow will automatically start. Click on the
DAG to view its execution.

3. Using either the Tree View or Graph View links, you can view each task of the
DAG being executed. The following diagram shows what a completed workflow
execution graph looks like:

Figure 9.6 – Completed workflow execution graph

304 Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

4. Clicking on any of the tasks will allow you to view its task configuration and, more
importantly, the log output from the worker nodes. Click on a task to open the Task
Instance window, then click the Log button to open the worker logs:

Figure 9.7 – Task Instance window

Note
Since the SageMaker tasks use PythonOperator(), the output from
the logs shows a redirect of the SageMaker CloudWatch logs. This is another
reason to make SageMaker execution calls using the SageMaker SDK and
PythonOperator(), as opposed to the AWS-provided SageMaker
operators, since these require you to view the log output in CloudWatch instead
of the Airflow web UI.

Executing the data-centric workflow 305

5. To see the evaluation RMSE score, click on the analyze_results task instance and
click on the Log button. Once the Log screen appears, click on the XCom button.
As shown in the following screenshot, you can see XCom for the Results key. This
key is available to the downstream check_threshold task to determine whether the
model should be approved or rejected for production:

Figure 9.8 – Example RMSE

Using the preceding steps, we have created and executed a data-centric, automated ML
workflow, which will also execute daily. Should new survey data be uploaded, the model
will be trained on the original dataset, as well as the new survey data, hopefully making it
more robust.

However, it is important to recognize that even though the workflow will be executed
once a day, we have deployed infrastructure resources that will only be used during the
scheduled execution. This means that the MWAA worker nodes are sitting idle when
they're not being used, thus consuming AWS billable resources. To offset overspending for
unused resources, we may want to review the minimum and maximum worker count for
the MWAA environment and adjust it accordingly.

In the next section, you will learn how to limit the AWS costs for this example by deleting
these various resources.

Cleanup
Follow these steps to remove the various resources we've deployed:

1. Open the SageMaker console (https://console.aws.amazon.com/
sagemaker/home) and, using the left-hand navigation menu, select Inference,
and then the Endpoints option.

2. Delete any Endpoints by selecting the radio button next to each Name and clicking
the Actions dropdown, then the Delete option.

306 Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow

3. Repeat this procedure for any Endpoint configurations and any Models.
4. Open the MWAA console (https://console.aws.amazon.com/mwaa/

home) and select your environment. Click the Actions dropdown and select the
Delete option to delete the MWAA environment.

Note
Wait for the MWAA environment to be deleted before proceeding with the
next step.

5. Open the CloudFormation console (https://console.aws.amazon.com/
cloudformation/home) and select MWAA-VPC stack by checking the radio
button next to the stack. Once selected, click the Delete button.

6. Repeat the same procedure for the abalone-data-pipeline stack.

With that, we have successfully deleted the various AWS resources that we deployed
both in this chapter and Chapter 8, Automating the Machine Learning Process Using
Apache Airflow.

Summary
In this chapter, we expanded upon the data-centric approach that we introduced in the
previous chapter to automate the ML workflow using Apache Airflow. To do this, we
learned how to build the artifact that's responsible for merging the existing dataset with
new data to optimize the Age Calculator model. We also learned how to use the CTGAN
data generator to synthesize this new survey data. Once the new survey data was uploaded
to S3, we learned how to build and then execute the Airflow DAG that's responsible for
the data-centric workflow.

With this hands-on example, we learned how the platform, data engineering teams, and
ML practitioners can work together to create a data-centric approach to ML automation.
We also learned how AWS makes it easier to deploy, manage, and maintain an Apache
Airflow environment with our implementation of an Amazon MWAA environment and,
subsequently, use this environment to create a production-grade Age Calculator model.

In the next chapter, we will apply what we've learned in this and the previous chapter to
learn how the data-centric approach can further augment the CI/CD methodology to
include continuous training (CT), an additional phase of ML automation.

https://console.aws.amazon.com/cloudformation/home
https://console.aws.amazon.com/cloudformation/home

This section will introduce you to the Machine Learning Software Development Life
Cycle (MLSDLC) and how to implant the end-to-end process, with the ACME Fishing
Logistics example. This section encompasses the various techniques learned in previous
parts and shows how they fit into the MLSDLC. The various chapters within this part
will introduce you to what the MLSDLC is and how it works in practice by highlighting
the various roles of a cross-functional team and how team members implement the CI
(Continuous Integration), CD (Continuous Delivery), and CT (Continuous Training)
aspects of the production application.

This section comprises the following chapters:

• Chapter 10, An Introduction to the Machine Learning Software Development
Life Cycle (MLSDLC)

• Chapter 11, Continuous Integration, Deployment, and Training for the MLSDLC

Section 5:
Automating the End-

to-End Production
Application on AWS

10
An Introduction
to the Machine

Learning Software
Development

Life Cycle (MLSDLC)
At this point in the book, we have reviewed multiple Amazon Web Services (AWS)
technologies that can be used to automate the machine learning (ML) process, from
automating ML experimentation with Amazon SageMaker Autopilot to automating
model training and deployments with AWS CodePipeline, AWS Step Functions, and
Amazon Managed Workflows for Apache Airflow (MWAA). We've also seen how
various processes can be applied to the task of ML automation by reviewing both a
source code-centric and a data-centric methodology to further optimize the ML process.
Throughout the previous chapters, we've also seen how different teams within the
organization can contribute to the overall success of the ML use case.

310 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

In this chapter, we're going to apply what we've already learned, and expand on the key
factors that influence a successful execution of an automated, end-to-end (E2E) ML
strategy or ML software development life cycle (MLSDLC), namely the following:

• Processes

• Technology

• People

We will expound on these factors by focusing on the various roles within a cross-
functional, agile team, and the specific artifacts that each team contributes to creating a
quality ML-based application, by covering the following topics:

• Introducing the MLSDLC

• Building the application platform

• Examining ML and data engineering roles

• Understanding the security lens

By the end of the chapter, you will have a fair idea of what the MLSDLC process
encompasses, and how the process can be applied to the Age Calculator use case.

Technical requirements
To follow along with the examples in the chapter, you will need the following:

• A web browser (for the best experience, it is recommended that you use a Chrome
or Firefox browser).

• Access to the AWS Account that you've been using through the book.

• Access to the Cloud9 development environment we've been using thought
the book.

• We will once again be working within the usage limits of the AWS Free Tier to avoid
incurring unnecessary costs.

• The full source code for the application artifacts is provided in the
companion GitHub repository for this chapter (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/tree/
main/Chapter10).

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter10
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter10
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter10

Introducing the MLSDLC 311

Introducing the MLSDLC
The concept of a systems development life cycle (SDLC), or application development life
cycle, has been around since the 1960s, whereby six individual processes are put in place
to effectively plan, design, build, test, deploy, and maintain applications in production.
While the individual phases of the process, as well as the mechanisms to implement
these phases, have evolved over the years, the fundamental requirement to quickly and
effectively deliver a working application into production hasn't. The following diagram
shows a high-level overview of the six phases of the SDLC:

Figure 10.1 – Six phases of the SDLC

When looking closely at Figure 10.1, you should hopefully deduce a correlation with some
of the processes we've encountered up until this point in the book. For example, we could
assume that some of the potential activities performed during the plan and design phases
of the SDLC might be similar to some of the activities that could be performed during
the business use case phase of the CRISP-DM process. Recall that we reviewed the Cross-
Industry Standard Process for Data Mining (CRISP-DM) process in Chapter 1, Getting
Started with Automated Machine Learning on AWS.

Additionally, if we refer to the continuous integration/continuous delivery (CI/CD)
process that was introduced in Chapter 4, Continuous Integration and Continuous
Delivery (CI/CD) for Machine Learning, we could also deduce that there is a corresponding
mapping of tasks between the build, test, deploy, and maintain phases of the SDLC.
So, as we've worked through the various ways to implement a production-grade model
for the Age Calculator use case, we have indirectly been creating an ML-focused SDLC—
or MLSDLC.

The best way to demonstrate this assumption is to build out an example application
(website) using the SDLC process and incorporate an ML use case (the Age Calculator
model) to complete an MLSDLC process. So, in this chapter and the next, we are going
to build an ACME Fishing Logistics website, and in doing so, not only highlight the
MLSDLC process but also emphasize the critical factors that influence a successful
MLSDLC implementation—namely, the process (CI/CD), the people (cross-functional
team), and the technology (AWS services).

312 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

To set the stage, the following diagram shows the high-level architecture for the
application platform we will be building:

Figure 10.2 – ACME Fishing Logistics application platform

As you can see from Figure 10.2, the application platform uses several AWS services to
deliver the final solution. We can group the components into six specific categories by
following these next steps:

1. To build this solution, a cross-functional team creates various codified artifacts,
encapsulating their contribution to the overall solution. We will be focusing on
creating these artifacts in this chapter.

2. Once the artifacts are created and committed to the source code repository, the
next component of the solution orchestrates the build and deployment of these
artifacts as CodePipeline assets. For example, CodePipeline orchestrates building
the Docker container image for model training. This process is similar to what we
learned about in Chapter 4, Continuous Integration and Continuous Delivery (CI/
CD) for Machine Learning.

Building the application platform 313

3. After the pipeline assets have been built, CodePipeline then orchestrates the
deployment of the automated ML workflow, in the form of a Step Functions state
machine. Using the techniques we learned in Chapter 6, Automating the Machine
Learning Process using AWS Step Functions, the workflow processes the training
data, and then trains and evaluates a production-grade ML model. The final model
is stored in the SageMaker model registry.

4. Accordingly, once we have a production-grade ML model, CodePipeline then
orchestrates the deployment of a testing environment, utilizing the production-
grade ML model stored in the SageMaker model registry. After the testing
environment has been deployed, we then execute a system test on a pseudo-
production version of the website application.

5. Once the test version of the website application passes the system tests,
CodePipeline then deploys the production version of the website application.
It's at this stage that we have implemented E2E automation of a production ML
application, using a source code-centric approach.

6. To facilitate adding new abalone survey data, the final component that CodePipeline
deploys is an Amazon MWAA environment, like the one we created in Chapter 8,
Automating the Machine Learning Process using Apache Airflow. Therefore, by means
of an Airflow directed acyclic graph (DAG) to update the training data, we will
have incorporated a data-centric mechanism into the solution.

So, now that we have an idea of what we will be building in this chapter and the next
chapter, in the next section, we kick the process off by starting with the planning, design,
and build for the application platform.

Building the application platform
In Chapter 1, Getting Started with Automated Machine Learning on AWS, you were
introduced to ACME Fishing Logistics, whose primary charter is to educate fishermen
on how to determine whether abalone is old enough for breeding. To accomplish this
task, ACME provides a website with the relevant information to guide fishermen in their
abalone age-determination task. ACME also provides a contact form for the fishermen
to use should they require more information. This website essentially represents their
software application.

314 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

To start the build-out of the application, the first step is to formalize a team. The following
diagram illustrates what the team looks like:

Figure 10.3 – The application team

As you can see from Figure 10.3, the initial application team is comprised of the following
key resources:

1. Application owner
2. Site reliability/platform engineering team
3. Frontend application software engineering team

Let's examine these specific roles in more detail, starting with the application owner.

Examining the role of the application owner
The application owner's primary responsibility is to ensure that the website is strategically
aligned with the goals of the business. Alongside this, the owner must ensure that the
website is functional, usable, dependable, and operates in a cost-effective manner.

Building the application platform 315

While the application owner may not be responsible for directly managing the platform
or development engineers, they are responsible for directing and coordinating the
various efforts performed by these teams. The application owner primarily owns the
planning and design phase within the context of the MLSDLC. Some of their tasks may
also include the following:

• Documentation: The application owner creates and manages application
documentation to provide the engineering teams with the correct requirements and
overall expectations.

• Relationship management and strategic alignment: The application owner
coordinates feedback from users and other stakeholders to determine the product
strategy, feature enhancements, and consistent alignment with business goals.

• Analysis and reporting: The application owner generates the necessary reports to
communicate with the various stakeholders.

These are just a few of the tasks that may be performed by the application owner. The next
role we will examine is that of the platform engineers.

Examining the role of the platform engineers
In previous chapters, we have often seen how the application development teams or
development-operations (DevOps) teams have interacted with ML partitions to deliver
the ML model into production. In the context of an MLSDLC, these teams are also
referred to as the platform or site reliability team. Here, the platform team is responsible
for designing the overall platform architecture (in conjunction with the application
owner), building out the infrastructure, and maintaining the platform.

To demonstrate this, we are going to start the MLSDLC build-out using the AWS Cloud9
integrated development environment (IDE) to construct the ACME website as an AWS
Cloud Development Kit (CDK) project, using the following steps:

1. Log in to the same AWS account you've been using, and open the AWS Cloud9
console (https://console.aws.amazon.com/cloud9).

2. In the Your environments section, click the Open IDE button for the MLOps-IDE
development environment.

3. Run the following command in the Cloud9 terminal window to confirm that we are
running version 2.3.0 (build beaa5b2) of the AWS CDK. Update the environment by
running the following command in the workspace terminal:

$ cdk --version

316 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

Note
If you are not running version 2.3.0 (build beaa5b2) of the AWS CDK, refer
to Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for
Machine Learning for instructions on how to install this version.

4. Run the following commands to initialize and bootstrap the CDK application:

$ cd ~/environment

$ mkdir acme-web-application && cd acme-web-application

$ cdk init --language python

$ git add -A

$ git commit -m "Started CDK Project"

$ git branch main

$ git checkout main

$ source .venv/bin/activate

5. Next, we will install the necessary development libraries by running the
following command:

$ python -m pip install -U pip pylint boto3

6. Since we will be making use of some experimental CDK construct libraries,
using the left-hand navigation panel of the Cloud9 IDE, expand the acme-web-
application folder and double-click on the requirements.txt file for
editing, and then add the following alpha modules to the file:

aws-cdk.aws-apigatewayv2-alpha==2.3.0a0

aws-cdk.aws-apigatewayv2-integrations-alpha==2.3.0a0

7. Save and close the requirements.txt file.
8. Now, we install the required CDK modules by running the following command in

the Cloud9 terminal window:

$ pip install -r requirements.txt

9. Now that we have the relevant libraries installed, we can start defining a skeleton
CDK pipeline. Using the left-hand navigation panel, expand the acme-web-
application folder and delete the acme_web_application_stack.py file.

10. Now, right-click on the acme_web_application folder and select the New File
option to create a new file called acme_pipeline_stack.py. Double-click on
the acme_pipeline_stack.py file for editing.

Building the application platform 317

Note
You can reference the companion GitHub repository (https://github.
com/PacktPublishing/Automated-Machine-Learning-on-
AWS/blob/main/Chapter10/Files/cdk/acme_pipeline_
stack.py) for a completed version of the acme_pipeline_stack.py
file.

11. Add the following code to import the necessary libraries:

import aws_cdk as cdk

import aws_cdk.aws_codecommit as codecommit

import aws_cdk.aws_s3 as s3

import aws_cdk.pipelines as pipelines

import aws_cdk.aws_ssm as ssm

from constructs import Construct

12. Now, use the following code to initialize the PipelineStack class as a cdk.
Stack construct:

class PipelineStack(cdk.Stack):

 def __init__(self, scope: Construct, id: str, *,
model_name: str=None, group_name: str=None, repo_name:
str=None, feature_group: str=None, threshold: float=None,
cdk_version: str=None, **kwargs) -> None:

 super().__init__(scope, id, **kwargs)

13. The first resource we create is a CodeCommit source code repository, for all
the MLSDLC source code. Using the following code, we also create an output
for the Uniform Resource Locator (URL) so that other teams can easily clone
this repository:

 self.code_repo = codecommit.Repository(

 self,

 "Source-Repository",

 repository_name=repo_name,

 description="ACME Web Application Source Code
Repository"

)

 cdk.CfnOutput(

 self,

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter10/Files/cdk/acme_pipeline_stack.py
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter10/Files/cdk/acme_pipeline_stack.py
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter10/Files/cdk/acme_pipeline_stack.py
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/blob/main/Chapter10/Files/cdk/acme_pipeline_stack.py

318 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

 "Clone-URL",

 description="CodeCommit Clone URL",

 value=self.code_repo.repository_clone_url_
http

)

14. The next resource we create is a Simple Storage Service (S3) bucket to house all of
the relevant ML and pipeline data. Here's the code to accomplish this:

 self.data_bucket = s3.Bucket(

 self,

 "Data-Bucket",

 bucket_name=f"data-{cdk.Aws.REGION}-{cdk.Aws.
ACCOUNT_ID}",

 block_public_access=s3.BlockPublicAccess.
BLOCK_ALL,

 auto_delete_objects=True,

 removal_policy=cdk.RemovalPolicy.DESTROY,

 versioned=True

)

15. Next, we save the S3 bucket name, as well as the SageMaker Feature Store
FeatureGroup name as Systems Manager parameters. These will be used by other
teams to reference assets outside of the pipeline. Here's how we do this:

 ssm.StringParameter(

 self,

 "Data-Bucket-Parameter",

 parameter_name="DataBucket",

 description="SSM Parameter for the S3 Data
Bucket Name",

 string_value=self.data_bucket.bucket_name

)

 ssm.StringParameter(

 self,

 "Feature-Group-Parameter",

 parameter_name="FeatureGroup",

 description="SSM Parameter for the SageMaker

Building the application platform 319

Feature Store group",

 string_value=feature_group

)

16. Now, we create a source_artifact variable to essentially tell the CI/CD pipeline
where to find the source code for the various artifacts and resources. The code is
illustrated in the following snippet:

 source_artifact = pipelines.CodePipelineSource.
code_commit(

 repository=self.code_repo,

 branch="main"

)

17. Finally, we create a skeleton pipeline, using the following code:

 pipeline = pipelines.CodePipeline(

 self,

 "Application-Pipeline",

 pipeline_name="ACME-WebApp-Pipeline",

 self_mutation=False,

 cli_version=cdk_version,

 synth=pipelines.ShellStep(

 "Synth",

 input=source_artifact,

 commands=[

 "printenv",

 f"npm install -g aws-cdk@{cdk_
version}",

 "python -m pip install --upgrade
pip",

 "pip install -r requirements.txt",

 "cdk synth"

]

)

)

18. Save and close the acme_pipeline_stack.py file.
19. Using the left-hand navigation panel, open the app.py file for editing.

320 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

20. Once the file is open, delete any existing template code and add the following
code. In the app.py file, we are initializing the global parameters used by the
CDK application, such as the name of the model, the name of the CodeCommit
repository, and a placeholder for the name of the Feature Store. Additionally,
in this code, we also instantiate the acme_pipeline_stack.py file as the
PipelineStack() construct, within the CDK application:

#!/usr/bin/env python3

import os

import aws_cdk as cdk

from acme_web_application.acme_pipeline_stack import
PipelineStack

MODEL = "abalone"

MODEL_GROUP = f"{MODEL.capitalize()}PackageGroup"

FEATURE_GROUP = "PLACEHOLDER"

CODECOMMIT_REPOSITORY = "acme-web-application"

CDK_VERSION = "2.3.0"

QUALITY_THRESHOLD = 3.1

app = cdk.App()

PipelineStack(

 app,

 CODECOMMIT_REPOSITORY,

 env=cdk.Environment(account=os.getenv("CDK_DEFAULT_
ACCOUNT"), region=os.getenv("CDK_DEFAULT_REGION")),

 model_name=MODEL,

 repo_name=CODECOMMIT_REPOSITORY,

 group_name=MODEL_GROUP,

 feature_group=FEATURE_GROUP,

 cdk_version=CDK_VERSION,

 threshold=QUALITY_THRESHOLD,

)

app.synth()

Building the application platform 321

21. Save and close the app.py file.
22. Now, we deploy the skeleton pipeline. Run the following commands in the IDE

terminal window, to bootstrap the application:

$ export CDK_NEW_BOOTSTRAP=1

$ npx cdk bootstrap aws://${CDK_DEFAULT_ACCOUNT}/${CDK_
DEFAULT_REGION} \

 --cloudformation-execution-policies
arn:aws:iam::aws:policy/AdministratorAccess

23. Deploy the CDK application, using the following command:

$ cdk deploy

24. Once the application has been deployed, and therefore the CodeCommit repository
has been created, we can now check in the code so that other teams can access these
resources. Run the following commands to initialize and update the repository:

$ CLONE_URL=$(aws cloudformation describe-stacks
--stack-name acme-web-application --query "Stacks[0].
Outputs[?OutputKey=='CloneURL'].OutputValue" --output
text)

$ git remote add origin $CLONE_URL

$ git add -A

$ git commit -m "Initial commit"

$ git push --set-upstream origin main

Now that the CDK application has been deployed, you will have noticed that we have
bootstrapped it differently from the CDK examples in previous chapters. This is because
we are using CDK Pipelines. CDK Pipelines essentially allows us to create a self-mutating
CI/CD pipeline that deploys CDK stacks as pipeline stages. The pipeline is self-mutating
in that it automatically builds the various pipeline assets, and dynamically adjusts its
workflow when CDK constructs are added, updated, or deleted.

Note
For more information on CDK Pipelines, you can reference the launch
blog (https://aws.amazon.com/blogs/developer/
cdk-pipelines-continuous-delivery-for-aws-cdk-
applications/).

https://aws.amazon.com/blogs/developer/cdk-pipelines-continuous-delivery-for-aws-cdk-applications/
https://aws.amazon.com/blogs/developer/cdk-pipelines-continuous-delivery-for-aws-cdk-applications/
https://aws.amazon.com/blogs/developer/cdk-pipelines-continuous-delivery-for-aws-cdk-applications/

322 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

As we will see, this concept fits nicely into the MLSDLC process, in that it essentially
allows each cross-functional team to create, own, and dynamically provision the
relevant AWS assets that pertain to their contribution to the overall MLSDLC process
as a CDK construct.

Note
Since multiple cross-functional teams will be adding their contribution to the
code source in this and the next chapter, in Step 17, we have set the self_
mutation parameter to False. This will prevent the pipeline from self-
mutating until all the relevant code contributions have been made.

This completes the current code contribution from the platform team. As Figure 10.3
shows, the next role we will examine is that of the frontend development team.

Examining the role of the frontend developers
Since the ACME application involved deploying a website, the MLSDLC process requires
a team of web developers. Per Figure 10.3, we see that the web developers interact with the
application owner to determine the required look and feel of the website—essentially, the
website design specifications.

This team also interacts with the platform team to create the necessary interfaces between
the frontend and backend services.

Note
Due to the complexities within some of the MLSDLC assets, and to ensure
consistency within this example, the majority of the code has already been
created for you in the GitHub repository (https://github.com/
PacktPublishing/Automated-Machine-Learning-on-AWS/
tree/main/Chapter10). Therefore, some of the tasks within this chapter
involve simply copying the code from the companion repository. You will
recall that we have already cloned supporting code into the Cloud9 workspace
in Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for
Machine Learning.

Building the application platform 323

Let's review how this team contributes to the MLSDLC process by creating the
application's web assets. Follow these next steps:

1. Continuing in the Cloud9 environment, run the following commands within the
IDE terminal window to move the website artifacts to the repository we created in
the previous section, by running the following command:

$ cd ~/environment

$ cp -R src/Chapter10/www acme-web-application/

2. Commit these new website files to the MLSDLC source repository by running the
following commands:

$ cd ~/environment/acme-web-application

$ git add -A

$ git commit -m "Added website files"

$ git push

By committing the various HyperText Markup Language (HTML) files, Cascading Style
Sheets (CSS) files, and website images, this essentially completes the frontend developer
team's contribution to the MLSDLC.

Within these various website assets, the most important HTML file to take note
of is the index.html file. At the end of the code within the index.html file,
you will see two JavaScript functions—namely, the submitContactForm() and
submitPredictForm() functions. By developing these functions in conjunction with
the platform team, the frontend team can ensure that the appropriate backend resources
are created to support the data submitted within these forms—one for the contact
processing and one for Age Calculator predictions.

Once the platform team creates these backend resources, it's at that point that we
effectively have a completed web application. However, we still need to create ML
components for the application. Let's explore these components further from the
perspective of the ML practitioner and data engineering teams.

324 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

Examining ML and data engineering roles
In previous chapters, we have used the term ML practitioner as a blanket term for any
person responsible for automating the ML process. Within the context of the MLSDLC
process, we typically see this role split into two distinct functions, namely the following:

• Data scientist: The data scientist is primarily responsible for building, training, and
tuning an ML model that meets the business requirements of the use case.

• ML engineer: Among numerous responsibilities, the ML engineer is primarily
responsible for designing the overall ML system to support the model, managing
the appropriate datasets for model training, and ensuring the final ML application
addresses the business requirements for the use case.

However, for the sake of the ACME application example, we will group these two
functions under the banner of the ML team, with the following diagram highlighting how
this team fits into the MLSDLC process:

Figure 10.4 – The ML practitioner team's role within the MLSDLC process

From Figure 10.4, you can see that the application owner works with the ML team to
assess whether ML can be applied to the business case. You will recall that we reviewed
this process in more detail when making a case for ML in Chapter 1, Getting Started with
Automated Machine Learning on AWS.

Examining ML and data engineering roles 325

So, once it has been determined that ML is a fit for the business case, the next step is to
determine whether we have supporting data for the ML model. It's at this point that the
ML engineers and data engineers coordinate on the data source, access requirements, type
of data, and how the data needs to be re-engineered for the ML model. Since the ACME
use case uses data from the University of California Irvine (UCI) Machine Learning
Repository, we are going to forego this step of interfacing with the data engineers.

However, within the context of the MLSDLC, we are going to introduce a technique,
typically performed by ML engineers, to further streamline training data processing and
feature engineering (FE) tasks—using a Feature Store.

Creating a SageMaker Feature Store
At re:Invent 2020, AWS launched a SageMaker capability called the SageMaker Feature
Store. This allows teams to create, store and reuse preprocessed and engineered features,
essentially eliminating the need to constantly execute data preprocessing jobs and FE tasks
every time a model needs to be trained.

Note
AWS provides several example notebooks for creating a Feature Store, within
the Amazon SageMaker example GitHub repository (https://github.
com/aws/amazon-sagemaker-examples/tree/master/
sagemaker-featurestore). We will be reusing code from these
examples, licensed under the Apache 2.0 license, and adapting them to our use
case.

The following steps will take us through creating a store for the abalone dataset features:

1. Within your AWS account, open the Amazon SageMaker management console,
and click the SageMaker Domain link in the left-hand navigation panel.

2. Click the Launch app dropdown, and select the Studio link to launch the Studio
user interface (UI).

3. Since the companion GitHub repository has already been cloned into the Studio UI,
using the File Browser panel, double-click on the src folder, and then double-click
on the Chapter10 folder, then the Notebooks folder.

4. Now, double-click on the SageMaker Feature Store Example.ipynb
notebook to launch it.

https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-featurestore
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-featurestore
https://github.com/aws/amazon-sagemaker-examples/tree/master/sagemaker-featurestore

326 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

5. Once the notebook is open, wait for the notebook kernel to start.
6. Select Kernel from the menu bar, and select the Restart Kernel and Run All

Cells… option.
7. When prompted on the Restart Kernel? dialog box, click the Restart button.

Note
The notebooks should take around 10 minutes to run. Make sure to take note
of the name of the feature group, as we will be referencing this in the next
chapter.

Let's review what we've accomplished from executing this notebook, as follows:

• In the Setup section of the notebook, we import the necessary Python libraries,
with sagemaker.feature_store.feature_group being the most
important. We've also declared some helper functions to track the status of the
feature stores' creation using the check_feature_group_status() function,
and tracked the ingestion of the feature data into the store, using the check_
data_availabiltiy() function. You will also see that we reference the S3 data
bucket (data_bucket) that was created by the platform team in the Examining the
role of the platform engineers section, by pulling the bucket name parameter from
the Systems Manager Parameter Store (SSM).

• In the Data Preparation section, we download the abalone dataset from the UCI
repository and, using the pandas get_dummies() method, we engineer the sex
features as numerical values. We then store these new features as a DataFrame
called processed_data.

• Finally, in the SageMaker Feature Store section, we create a feature group, which is
essentially a table within the Feature Store. We also create a time_stamp variable
to bind an ingestion timestamp to our data as a feature column. This allows us to
differentiate between individual features, based on the time they were added to
the group. We then define a schema for the feature group, create it, and ingest the
processed_data DataFrame into the table.

After running the notebook, we now have a Feature Store with all the relevant abalone
dataset features, thus eliminating the need to constantly recreate these features every time
we train our model.

So, now that we have the dataset ready, we can move on to creating ML artifacts.

Examining ML and data engineering roles 327

Creating ML artifacts
From Figure 10.4, we can see that after coordinating with the data team, the ML team
works with the platform team to convey its requirements and provide the ML-specific
code contributions to the web application, the first of which is the model artifact.

Creating a model artifact
You will recall from Chapter 5, Continuous Deployment of a Production ML Model, that
we packaged the algorithm code, as well as various routines to process the data and train
and evaluate the model into a container image. This allowed us to compile an all-inclusive
model artifact for the various stages of the CI/CD pipeline, using SageMaker's Bring Your
Own Container (BYOC) capabilities.

Within the context of the MLSDLC example, after the data scientists have framed the
correct ML solution, they can build, train, tune, and evaluate a production-grade model
for the solution, essentially reproducing the model artifacts using the same notebook
example that we used in Chapter 4, Continuous Integration and Continuous Delivery (CI/
CD) for Machine Learning. The data scientists can then package these components into a
container artifact for the ACME web application.

Let's emulate this assignment with the following steps:

1. Open the ACME Model Artifacts Example.ipynb file, using the
SageMaker Studio IDE, in the src/Chapter10/Notebooks folder of the cloned
companion GitHub repository.

2. Once the Python 3 (Data Science) kernel has started, select Kernel from the menu
bar, and select the Restart Kernel and Run All Cells… option.

3. When prompted on the Restart Kernel? dialog box, click the Restart button.
4. After the notebook has been run, you should see a model folder in the left-hand

navigation panel. This folder contains the relevant model artifacts for the
container image.

5. Now, open a terminal by clicking File from the menu bar, selecting the New option,
and then clicking on the Terminal option.

6. Run the following commands within the terminal tab to add the model artifacts to
the web application source code repository:

$ CLONE_URL=$(aws cloudformation describe-stacks
--stack-name acme-web-application --query "Stacks[0].
Outputs[?OutputKey=='CloneURL'].OutputValue" --output
text)

$ git clone $CLONE_URL

328 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

$ mv ~/src/Chapter10/Notebooks/model acme-web-
application/

$ cd acme-web-application/

$ git add -A

$ git commit -m "Initial commit of model artifacts"

$ git push

As the ML team, we have now created the relevant model artifacts and contributed these
to the web application repository. However, before proceeding to the next step, let's review
what happened when we ran the notebook.

If you examine the notebook, you will see that we've followed a similar procedure to the
example in Chapter 5, Continuous Deployment of a Production ML Model, whereby we
use the %%writefile magic to create a model.py file. This file loads the necessary
TensorFlow libraries, sets global variables for the SageMaker container environment, and
defines a model training routine in the form of the train() function. This function
defines training and validation data and a multilayer perceptron (MLP) model, executes
the training fit() method on the compiled model, and then saves the optimized model.

In the Create the Application section of the notebook, we create an app.py file, which
serves as the entry point to the container image for either the model training task or the
model inference task, depending on how SageMaker consumes the image. In this section,
we also initialize the web serving files, nginx.conf and wsgi.py, so that SageMaker
can host and serve the model for inferencing.

The last section of the notebook creates a Dockerfile. This file contains the build
instructions to create a container image. Unlike the previous example, we aren't pulling a
deep learning (DL) container image. Instead, we are manually building a container image.

Note
The primary reason for manually building a TensorFlow container image, as
opposed to pulling the DL container image, is to ensure that the code example
works across any AWS regions that support CDK Pipelines and SageMaker.
While the CDK Pipelines module supports the ability to supply docker_
credentials within the aws_cdk.pipelines.CodePipeline()
class, we would need to hardcode credentials to the DL container Elastic
Container Registry (ECR) repositories within the example code. So, to
ensure the example code works uniformly, we will manually build a container
based on the DL container source (https://github.com/aws/
deep-learning-containers/blob/master/tensorflow/
training/docker/2.6/py3/Dockerfile.cpu), provided under
the Apache 2.0 license.

https://github.com/aws/deep-learning-containers/blob/master/tensorflow/training/docker/2.6/py3/Dockerfile.cpu
https://github.com/aws/deep-learning-containers/blob/master/tensorflow/training/docker/2.6/py3/Dockerfile.cpu
https://github.com/aws/deep-learning-containers/blob/master/tensorflow/training/docker/2.6/py3/Dockerfile.cpu

Examining ML and data engineering roles 329

Within the Dockerfile, you will also see that we install an additional Python library
called awswrangler (https://github.com/awslabs/aws-data-wrangler).
AWS Data Wrangler is an AWS-developed and open sourced library that allows easy
integration with various AWS services, such as Amazon Athena, AWS Glue, and Amazon
Redshift. Since the training data is housed within the SageMaker Feature Store, we will
use this library to select the feature data and store this as a DataFrame for model training.

Developing the model artifacts doesn't complete the ML team's contribution to the
MLSDLC example. If you recall from previous chapters, the ML team also needs to
contribute various additional artifacts to automate the model building and evaluation
process. Let's explore these additional artifacts in the next section.

Building automated ML workflow artifacts
In previous chapters, we've reviewed multiple techniques to automate the model training
and evaluation process. For example, in Chapter 6, Automating the Machine Learning
Process using AWS Step Functions, and Chapter 8, Automating the Machine Learning
Process using Apache Airflow, you were introduced to some of the AWS capabilities that
build a workflow to orchestrate getting an ML model into production. We also review the
importance of having a cross-functional team co-develop these workflow artifacts, and
not having the platform team own the entirety of these tasks.

So, within the context of the MLSDLC example, the ML team further contributes to the
ACME web application by providing a codified workflow that gets executed as part of the
CDK pipeline. To this end, let's walk through the process of building these artifacts, from
the perspective of the ML engineers. Here are the steps we need to follow:

1. As the ML engineer, we need to update the cloned repository with the latest updates
to the model artifacts. Using the Cloud9 IDE workspace terminal window, run the
following commands:

$ cd ~/environment/acme-web-application/

$ git pull

2. In the left-hand navigation panel, create a folder called stacks, to hold the CDK
constructs. You can do this by right-clicking on the acme_web_application
folder and selecting New Folder. Then, name the folder stacks.

330 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

3. Copy the pre-built stack construct from the companion GitHub repository to this
folder, by running the following command:

$ cp ~/environment/src/Chapter10/Files/cdk/ml_workflow_
stack.py acme_web_application/stacks/

4. Using the left-hand navigation panel, double-click on the ml_workflow_stack.
py file for review.

In previous chapters, we've reviewed different ways to automate the ML workflow—
namely AWS Step Functions and MWAA. At re:Invent 2020, AWS launched a native
SageMaker module to orchestrate the ML process, called SageMaker Pipelines. As we
review the ml_workflow_stack.py file, you will notice that we automate the ML
process using AWS Step Functions instead of using SageMaker Pipelines, for two reasons.
Firstly, you should already be familiar with using AWS Step Functions, from the Data
Science SDK example in Chapter 6, Automating the Machine Learning Process using AWS
Step Functions.

Secondly, while the CDK supports executing a SageMaker pipeline using the
CfnPipeline construct (https://docs.aws.amazon.com/cdk/api/latest/
python/aws_cdk.aws_sagemaker/CfnPipeline.html), this construct requires
the pipeline to be separately codified and unit tested as an artifact, outside of the CDK
project. In the next chapter, we will see that by integrating AWS Step Functions into the
CDK project, the process of codifying, unit testing, and—eventually—system testing the
ML workflow can be further automated, as part of the self-mutating CDK pipeline.

Now that the ml_workflow_stack.py file is open, let's review the most important
AWS resources created by the stack construct.

Registering the data bucket
Outside of loading the necessary CDK Python libraries and instantiating the
MLWorkflowStack() class, the first variable we declare is the data_bucket variable.
Here, we reference the existing S3 bucket as a CDK object, thus allowing us to add the
various permissions required by the other stack resources to add and access the objects
within the bucket. For example, we use the BucketDeployment() construct next, to
upload the Python script artifacts to the data_bucket variable so that these objects can
be used with the workflow.

Creating placeholder parameters
Next, we declare two SSM parameters (package_parameter and baseline_
parameter) as placeholders, to store the name of the trained model and the S3 bucket
location of the SageMaker Model Monitor baseline data.

https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnPipeline.html
https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnPipeline.html

Examining ML and data engineering roles 331

Creating a modeling container image
Since we now have the model artifacts already created, we can define the model_image
parameter as an ECR DockerImageAsset() asset, pointing to the model artifacts
folder. As you will see, by declaring this asset, the self-mutating CDK pipeline will
dynamically create a CodeBuild job to build a container image, without us having to
declare a separate CodePipeline build stage.

Creating a model registry
Next, we create an AWS Lambda function variable called registry_creator. This
Lambda function creates a SageMaker model registry (https://docs.aws.amazon.
com/sagemaker/latest/dg/model-registry.html) to store the various
model versions that are automatically trained when the workflow gets executed. Once
the registry_creator Lambda function has been declared, we invoke it as a custom
resource using the CustomResource() construct.

Note
While the CDK provides a SageMaker construct called
CfnModelPackageGroup (https://docs.aws.amazon.
com/cdk/api/latest/python/aws_cdk.aws_sagemaker/
CfnModelPackageGroup.html) to register the trained model package,
we use a Lambda function here to essentially perform the same task. As you
will see when we define a Lambda artifact later in this chapter, using a Lambda
function will allow us to delete existing model packages before deleting the
model registry—something the CfnModelPackageGroup construct
doesn't do.

Creating an ML experiment
Before we can define a workflow as a Step Functions state machine, we need to define
artifacts that will be used within the workflow. The first artifact is the experiment_
creator Lambda function. This function initializes the experiment variables, tagged
with the pipeline executionId for version tracking so that each execution of the
workflow can be traced. This allows the ML team to track the lineage of a production
model, from the data used for training to how the model was trained and how the
model was evaluated, as a SageMaker experiment. This information is useful for
auditing purposes and model explainability and provides additional context for
production model monitoring.

https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnModelPackageGroup.html
https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnModelPackageGroup.html
https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnModelPackageGroup.html

332 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

Evaluating the model
The next artifact definition is the evaluate_results Lambda function. This function
reads the model evaluation results from the current model being trained within the
workflow with the evaluation results from any previously trained model, to determine
whether or not the current model's performance is an improvement. This way, we can
guarantee that the production model is always the best-performing model and doesn't get
overridden by an inferior model. Should the model's performance improve, we use the
register_model Lambda function to update the model registry with the latest, best
model. This is the model that will eventually be deployed into production.

Creating SageMaker jobs
Now that the Lambda artifacts of the workflow have been defined, we can build various
SageMaker application programming interface (API) calls. There are three specific API
calls to SageMaker, as follows:

• CreateProcessingJob (https://docs.aws.amazon.com/sagemaker/
latest/APIReference/API_CreateProcessingJob.html) for data
processing, using the processing_definition state JSON

• CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/
latest/APIReference/API_CreateTrainingJob.html) for model
training, using the training_definition state JSON

• CreateProcessingJob, for model evaluation, using the evaluation_
definition state JSON

To define the API specification for each of these jobs, we've created three separate
definition parameters in the workflow construct—namely, the following:

• processing_definition

• training_definition

• evaluation_definition

Note
Since we've already created a Feature Store to hold the engineered data features,
you may be wondering why we've included a data processing definition in the
workflow. While the Feature Store does contain the training data, we still need
to split the data into training, validation, and test datasets. Therefore, by using
the processing_definition, we are offloading the task of retrieving
the engineered data from the Feature Store, splitting the data into training,
validation, and test datasets, and storing them in S3.

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html

Examining ML and data engineering roles 333

Defining a state machine
Now that we have defined the various workflow artifacts and SageMaker job definitions,
we can declare the different tasks and states of the Step Functions state machine. You
will recall from the example in Chapter 4, Continuous Integration and Continuous Delivery
(CI/CD) for Machine Learning that we started the build-out of the flow by looking at
the final objective state for the workflow, and then working backward to develop the
steps toward accomplishing that objective. So, if we follow what we've already learned,
the first state we create is failure_state, using the Fail() class of the aws_
stepfunctions construct.

Next, we define steps that lead us to the final workflow objective, having a production-
grade model, starting with create_experiment_step. As you can see, this variable
is an aws_stepfunctions_task function called LambdaInvoke(), whereby we
call the experiment_creator function to initialize the experiment parameters for
workflow tracking.

The subsequent step is the data processing_step variable, through which we register
processing_definition as a Step Functions CustomState().

Note
You have probably noticed throughout the various examples in this book that
the CDK is constantly being updated, and while there is a CDK construct for
the SageMaker training job (https://docs.aws.amazon.com/cdk/
api/latest/python/aws_cdk.aws_stepfunctions_tasks/
SageMakerCreateTrainingJob.html), at the time of writing, there
is currently no construct for SageMaker processing jobs. Therefore, define these
workflow steps as a CustomState() function.

After processing_step comes the training_step variable, which uses
training_definition to execute the SageMaker training job as a CustomState().

Note
Even though the CDK has a SageMakerCreateTrainingJob()
class, at the time of writing, this class does not support adding a SageMaker
experiments configuration. Therefore, to add the lineage tracking capability to
the training job, we've declared training_step as a CustomState().

334 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

Once the model has been trained, we can evaluate its performance, using a SageMaker
processing job. This step of the workflow is defined by the evaluation_step variable
and uses the evaluation_definition variable to provide the necessary API
configuration to SageMaker. The subsequent results_step variable then uses these
evaluation metrics, by invoking the evaluate_results Lambda to determine whether
or not the trained model is ready for production deployment.

After applying various workflow logic steps to direct the overall flow, we create a workflow
as a Step Function state machine, using the workflow_definition variable. The
following diagram depicts what the final Step Functions state machine will look like:

Figure 10.5 – ML workflow state machine

Examining ML and data engineering roles 335

Finalizing the workflow artifacts
Once the workflow construct has been defined, the final part of the ML team's
contribution to the web application is to supply the various artifacts referenced within the
construct—namely, the artifacts in the lambda and scripts folders. The following steps
will take you through creating these supporting artifacts:

1. Continuing within the Cloud9 IDE, run the following commands in the terminal
window, to add the code for the registry_creator, experiment_creator,
evaluate_results, and register_model Lambda functions:

$ cd ~/environment/acme-web-application

$ mkdir lambda

$ cp -R ~/environment/src/Chapter10/Files/lambda/
{createExperiment,evaluateResults,registerModel,
registryCreator} lambda/

2. Now, execute the following commands to copy the required scripts for the
processing_step and evaluation_step variables:

$ cd ~/environment/acme-web-application

$ cp -R ~/environment/src/Chapter10/Files/scripts .

3. Commit these changes to the web application source repository, as follows:

$ git add –A

$ git commit -m "Initial commit of ML Workflow artifacts"

$ git push

You can review each of the index.py files within the individual function's folder, to
assess exactly what the function does within the ML workflow. However, you should
pay particular attention to the preprocessing.py file in the scripts folder, to see
how AWS Data Wrangler reads the feature data from the Feature Store. For example, if
you refer to the following code snippet, you can see that AWS Data Wrangler performs
a Structured Query Language (SQL) query against the raw Feature Store data using the
Amazon Athena (https://aws.amazon.com/athena/) service:

…

if __name__ == "__main__":

 …

 query_string = f'SELECT {",".join(columns)} FROM "{table}"
WHERE is_deleted=false;'

 featurestore_df = wr.athena.read_sql_query(query_string,

https://aws.amazon.com/athena/

336 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

database=database, ctas_approach=False)

 …

 X = shuffle(featurestore_df).to_numpy()

 …

 training, validation, testing = np.split(X,
[int(.8*len(X)), int(.95*len(X))])

 …

Since the Feature Store is essentially a metastore for the raw feature data, which is
stored in Parquet files in S3, Athena can be used to perform interactive SQL queries
directly against the data. As you can see from the highlighted code snippet, we use AWS
Data Wrangler to select the relevant feature columns using the athena.read_sql_
query() method, and store the results as a DataFrame. The code continues to shuffle
the data, removing any ordered indexing from the query, and splits the data into specific
training, validation, and test datasets.

So, after running these previous steps as the ML team, we have officially contributed the
required ML artifacts to the ACME web application, and therefore we can sign off on the
interactions with the platform team. However, there is still one more group that the ML
team needs to interact with—the frontend developers.

Adding ML to the frontend application
In Figure 10.4, we can see that the final interaction that the ML team has within the
context of the MLSDLC is with the frontend team. During this engagement, these two
teams determine which web UI changes need to be made in order for the web application
user to make inferences against the production ML model—in essence, how users will
inevitably use the Age Calculator.

This requires the web developers to create an HTML form, whereby fishermen can enter
the physical measurements of the abalone into the web UI and have the production-grade
ML model predict the age.

Note
The HTML form code and supporting JavaScript function have already
been provided for you. You can review this code by referencing the
predictionModel HTML code, and submitPredictForm()
JavaScript code, in the index.html file.

Examining ML and data engineering roles 337

After completing the necessary code updates, verifying that they meet the functional
requirements outlined by the application owner, and committing these into the
application source code repository, the ML team can sign off on its contribution to the
ACME web application.

If our example application were based solely on an SDLC process, we technically have
all the artifacts necessary to update the skeleton CDK pipeline and deploy the web
application using the CI/CD process. However, since we are creating an ML-based SDLC,
there is one final component that we need to incorporate into the overall automation
process. Let's explore what this is, in the next section.

Creating continuous training artifacts
In Chapter 8, Automating the Machine Learning Process using Apache Airflow, you were
introduced to a fundamental requirement for any ML automation initiative— that is,
the ability to automatically re-train an ML model with new data. In the same chapter, we
also demonstrated this requirement by showing how data engineers can use the MWAA
service to orchestrate a data-centric workflow to train the Age Calculator model on
updated survey data.

Even though we are focusing on the MLSDLC process in this chapter, we still have the
business requirement to incorporate new survey data into the ACME web application
example. So, how do we address this business requirement within the context of the current
CI/CD pipeline?

The answer to this question is relatively simple. Since we are using a CI/CD pipeline to
automate the delivery of our web application (along with a production-grade ML model),
we can simply apply what we've already learned, and tack on the requirement to re-train
the ML model after it has been deployed into production. This is essentially the premise
behind continuous training (CT), whereby we add the ability to restart the CI/CD
process (once we have new data) to create an automated CI/CD/CT methodology.

338 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

Since the data engineering team was responsible for delivering the data-centric workflow
example in Chapter 8, Automating the Machine Learning Process using Apache Airflow,
we can further extend their role within the MLSDLC example to provide CT artifacts.
The following diagram illustrates the overall role that the data team plays within the
MLSDLC process:

Figure 10.6 – The data team's role with the MLSDLC process

Now that we have started to get a picture of the overall role of the data team, let's dive into
the artifacts they contribute to the process.

Building data workflow artifacts
Following the same procedures as the ML team, the data team contributes to the ACME
web application by providing the necessary MWAA infrastructure components that get
executed as part of the CDK pipeline. Let's walk through the process of building these
artifacts, from the perspective of the data engineers, as follows:

1. As a data engineer, open the Cloud9 IDE workspace, and using the terminal
window, copy the pre-built stack construct from the book's GitHub repository, by
running the following command:

$ cd ~/environment/acme-web-application/

$ cp ~/environment/src/Chapter10/Files/cdk/data_workflow_
stack.py acme_web_application/stacks/

Examining ML and data engineering roles 339

2. Using the left-hand navigation panel, double-click on data_workflow_stack.
py for review.

Once the data_workflow_stack.py file is open, we can review the important
infrastructure resources created by the stack constructs.

As you can see, after importing the required CDK libraries, we instantiate the
DataWorkflowStack() class as a cdk.Stack construct. The first thing we do is
register the data_bucket, data_bucket_param, and feature group SSM parameter
(group_name_param) variables. We do this so that we can assign the relevant access
permissions to airflow_role.

After defining airflow_role and the appropriate airflow_policy_document
variable (https://docs.aws.amazon.com/mwaa/latest/userguide/mwaa-
create-role.html), we build out the Virtual Private Cloud (VPC) since MWAA
requires a VPC, plus various networking components to support an environment.

Note
You will recall from Chapter 8, Automating the Machine Learning Process using
Apache Airflow, that we created an MWAA VPC stack using the provided
CloudFormation template. In this example, we are codifying the same network
environment using the CDK.

Next, we instantiate the MWAA environment as the airflow_environment variable
and create an S3 deployment construct to upload the Airflow DAG artifacts to S3.

Finally, we create a Lambda function called releaseChange to call the CodePipeline
service and start a pipeline execution.

Now that the CT resources have been defined as a CDK construct, the next task for the
data team to complete is to build the various artifacts that the construct references—
namely, the releaseChange Lambda code and the Airflow DAG. The following steps
will show you how to do this:

1. Using the terminal windows of the Cloud9 IDE, run the following command to
copy the pre-built releaseChange Lambda code artifacts:

$ cd ~/environment/

$ cp -R ~/environment/src/Chapter10/Files/lambda/
releaseChange acme-web-application/lambda/

340 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

Note
You can review the index.py file, in the acme-web-application/
lambda/releaseChange folder, to see how the Lambda function
uses the start_pipeline_execution() API call to trigger a
CodePipeline execution.

2. Using the left-hand navigation panel, of the Cloud9 workspace, right-click on the
acme-web-application folder and select the New Folder option.

3. Create a folder called airflow.
4. Right-click on the newly created airflow folder and select the New File option.
5. Create a file called requirements.txt and double-click on it for editing.
6. Add the following code to the requirements.txt file:

sagemaker==2.49.1

s3fs<=0.4

boto3>=1.17.4

numpy

pandas

Note
The only reason we specifically reference version 2.49.1 of the SageMaker
Python SDK is to ensure uniformity across all examples within the book.

7. Save and close the requirements.txt file.
8. Right-click on the airflow folder and select the New Folder option.
9. Create a folder called dags.
10. Right-click on the newly created dags folder and select the New File option.
11. Create a file called continuous_training_pipeline.py and double-click on

the file for editing.
12. Add the following code to import the required Python libraries, in order to access

the Feature Store:

import time

import json

import sagemaker

import boto3

import numpy as np

Examining ML and data engineering roles 341

import pandas as pd

from time import sleep

from datetime import timedelta

from sagemaker.feature_store.feature_group import
FeatureGroup

13. Next, add the required Apache Airflow libraries to construct the DAG, as follows:

import airflow

from airflow import DAG

from airflow.operators.python_operator import
PythonOperator

from airflow.providers.amazon.aws.hooks.lambda_function
import AwsLambdaHook

from airflow.providers.amazon.aws.sensors.s3_prefix
import S3PrefixSensor

14. Now, add the following code to create global variables to reference the S3 data_
bucket, the releaseChange Lambda Function, and the feature group name
(fg_name) parameters from SSM:

sagemaker_session = sagemaker.Session()

region_name = sagemaker_session.boto_region_name

data_bucket = f"""{boto3.client("ssm", region_
name=region_name).get_parameter(Name="DataBucket")
["Parameter"]["Value"]}"""

data_prefix = "abalone_data"

lambda_function = f"""{boto3.
client("ssm", region_name=region_name).get_
parameter(Name="ReleaseChangeLambda")["Parameter"]
["Value"]}"""

fg_name = f"""{boto3.client("ssm", region_name=region_
name).get_parameter(Name="FeatureGroup")["Parameter"]
["Value"]}"""

15. Now, add the following code to initialize the Airflow DAG default configuration:

default_args = {

 "owner": "airflow",

 "depends_on_past": False,

 "start_date": airflow.utils.dates.days_ago(1),

342 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

 "retries": 0,

 "retry_delay": timedelta(minutes=2)

}

16. Next, we define code that gets executed within each step of the Airflow DAG,
as Python functions. The first function (called start_pipeline) calls the
releaseChange Lambda function to trigger an execution of the CI/CD/CT
pipeline. Define this function with the following code:

def start_pipeline():

 hook = AwsLambdaHook(

 function_name=lambda_function,

 aws_conn_id="aws_default",

 invocation_type="RequestResponse",

 log_type="Tail",

 qualifier="$LATEST",

 config=None

)

 request = hook.invoke_lambda(payload="null")

 response = json.loads(request["Payload"].read().
decode())

 print(f"Response: {response}")

17. The next function (called update_feature_group) takes the newly added
abalone survey data, encodes the sex feature as numerical data, creates a time_
stamp variable, and ingests this new data into the Feature Store. The code is
illustrated in the following snippet:

def update_feature_group():

 fg = FeatureGroup(name=fg_name, sagemaker_
session=sagemaker_session)

 column_names = ["sex", "length", "diameter",
"height", "whole_weight", "shucked_weight", "viscera_
weight", "shell_weight", "rings"]

 abalone_data = pd.read_csv(f"s3://{data_bucket}/
{data_prefix}/abalone.new", names=column_names)

 data = abalone_data[["rings", "sex", "length",
"diameter", "height", "whole_weight", "shucked_weight",
"viscera_weight", "shell_weight"]]

 processed_data = pd.get_dummies(data)

Examining ML and data engineering roles 343

 time_stamp = int(round(time.time()))

 processed_data["TimeStamp"] = pd.Series([time_stamp]
* len(processed_data), dtype="float64")

 fg.ingest(data_frame=processed_data, max_workers=5,
wait=True)

 sleep(300)

Note
The update_feature_store function essentially performs the same
tasks as the code created by the ML engineers in the SageMaker Feature
Store Example.ipynb notebook, except the previous code updates the
existing feature group with the newer abalone survey data, as opposed to the
original data that was downloaded from the UCI Machine Learning Repository.

18. Now that task execution functions have been defined, we can create a DAG
workflow. The following code initializes a DAG called acme-data-workflow
with the default arguments:

with DAG(

 dag_id=f"acme-data-workflow",

 default_args=default_args,

 schedule_interval="@daily",

 concurrency=1,

 max_active_runs=1,

) as dag:

19. The first step with the DAG uses the S3PrefixSensor() provider class to watch
the S3 data bucket for any new data. The code is illustrated in the following snippet:

 s3_trigger = S3PrefixSensor(

 task_id="s3_trigger",

 bucket_name=data_bucket,

 prefix=data_prefix,

 dag=dag

)

344 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

20. Once new survey data is uploaded to S3, Airflow executes the second step of the
DAG by executing the update_feature_group function, using the Airflow
PythonOperator() provider. The code is illustrated in the following snippet:

 update_fg_task = PythonOperator(

 task_id="update_fg",

 python_callable=update_feature_group,

 dag=dag

)

21. The final step of the workflow is to trigger a release change of the CI/CD/CT
pipeline by calling the releaseChange Lambda function to start a CodePipeline
execution. The Airflow step accomplishes this task by calling the start_
pipeline function, using the PythonOperator() provider. The code is
illustrated in the following snippet:

 trigger_release_task = PythonOperator(

 task_id="trigger_release_change",

 python_callable=start_pipeline,

 dag=dag

)

22. Now that the DAG steps have been defined, the last part of the code chains them
together to finalize the DAG, as follows:

 s3_trigger >> update_fg_task >> trigger_release_task

23. Save and close the continuous_training_pipeline.py file.
24. Run the following commands to commit the data team's contribution to the ACME

web application repository:

$ cd ~/environment/acme-web-application

$ git add -A

$ git commit -m "Initial commit of CT artifacts"

$ git push

By completing the preceding steps, verifying that they meet the functional requirements as
outlined by the application owner and committing these into the application source code
repository, the data team can sign off on its contribution to the ACME web application.

Understanding the security lens 345

At this point in the example, all the pertinent contributions from the cross-functional
team have been developed, and the ACME web application is almost ready for
deployment. However, there is one more team that needs to weigh in before the solution
can be deployed. Let's explore this team's role in the next section.

Understanding the security lens
Securing the solution is a critically important task within the MLSDLC. While the
majority of common MLSDLC implementations typically deal with security issues as and
when they arise, it is a good practice to proactively assess the overall security posture of
the final application before it's deployed into production.

So, instead of performing a full security audit on the ACME web application, this section
will highlight some of the best practices that the security team should follow, by showing
how they interact with other members of the cross-functional team. The following
diagram shows the overall role that the security team plays within the MLSDLC process:

Figure 10.7 – The security team's role within the MLSDLC process

As Figure 10.7 shows, the first thing the security team needs to do is review how data is
used, by working with the data team.

346 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

Securing the data
The following guidelines should be followed when working with the data team to ensure
that all data is secure:

• Any data, whether it's stored in a database or on a filesystem (on-premises or in the
cloud), should be encrypted.

• Any data read from or written to these data stores should be encrypted.

• Any applications or people that access the data should be authorized to do so
using the appropriate access controls. These access controls should include
logging capabilities to ensure that authorized and unauthorized access can be
traced and audited.

• No customer personally identifiable information (PII) with these data stores
should be accessible by the data team or the ML team.

Note
For more information on these suggestions, and more, review the Data
Protection section of the AWS Best Practices for Security, Identity, & Compliance
web page (https://aws.amazon.com/architecture/
security-identity-compliance).

The second thing the security team needs to do is review the code by working with the
data team.

Securing the code
The following guidelines should be adhered to when reviewing the code artifacts:

• All private code should be in a secure source code repository, with the appropriate
access controls in place to govern access to the code. For the ACME web application
example, we use CodeCommit, which provides granular access controls to the
repository and branch levels, while also governing access to various tasks that can
be performed against the repository.

• There should be no application or user credentials, nor any passwords, in any of
the code. These secrets should be stored in a separate store, such as AWS Secrets
Manager (https://aws.amazon.com/secrets-manager/), where access
can be controlled, logged, and audited.

https://aws.amazon.com/architecture/security-identity-compliance
https://aws.amazon.com/architecture/security-identity-compliance
https://aws.amazon.com/secrets-manager/

Understanding the security lens 347

In the case of the ACME web application example, securing the code is further
compounded by the fact that the code creates AWS resources. Therefore, it is
recommended that the security team also includes a member of the platform team, to
create a security-operations (SecOps) team. This way, securing the code can extend
to securing the provisioned AWS resources. For example, the CT artifacts create an
MWAA infrastructure using a VPC. The SecOps team should review the VPC to ensure
the following:

• All network traffic in and out of the VPC, as well as within the VPC, is logged
and encrypted.

• All network ports are secured, using network access control lists (ACLs) and
security groups.

• Any IAM roles created should, where possible, grant only the permissions required
to perform the task required by the role.

Last, but not least, the security team must work with the website content developers to
secure their respective artifacts.

Securing the website
As Figure 10.7 highlights, the last group that the security team interacts with is the
frontend team. Here are some suggestions for securing the website:

• All website content should only be accessible via a secure web server —in other
words, the static content should be accessible via the appropriate URL and not
directly accessible, say, from the S3 bucket.

• All traffic to and from the website should be encrypted with the HyperText
Transfer Protocol Secure (HTTPS) protocol, using the appropriate Secure Sockets
Layer (SSL) or Transport Layer Security (TLS) certificates.

• It is also recommended that the security team includes compliance
resources to ensure that all content complies with regional or international
accessibility standards.

• All public referenceable content or open source content must be documented and
include the applicable license.

348 An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC)

These preceding suggestions only cover a few of the focus areas for the security team as
it pertains to the ACME web application, but once the security team concludes its review
of the application artifacts and signs off, we are almost ready to deploy the ACME web
application into production. All that's left to do is integrate every team's artifacts into
the CDK pipeline. Once this task is completed by the platform team, the pipeline will be
complete, and the application can be deployed into production. This will be the focus of
the next chapter.

Summary
In this chapter, you were introduced to the concept of the MLSDLC, as a process that can
be used to automate an E2E ML-based application. We also reviewed the three critical
factors that influence the success of the MLSDLC process—namely, people, technologies,
and processes.

By focusing on the people success factor, you also saw how a cross-functional team
works together during the planning and design phases of the MLSDLC, each providing
codified technology artifacts that meet the business objectives and shape the overall
design of the solution.

However, we are not done yet! In the next chapter, we'll continue from where we've left off,
with the platform team piecing the various artifacts into an E2E CI/CD/CT pipeline, thus
automating the MLSDLC process.

11
Continuous
Integration,

Deployment, and
Training for the

MLSDLC
If you review some of the Architecture Best Practices for Machine Learning content, namely
the Build a Secure Enterprise Machine Learning Platform on AWS whitepaper, and even the
SageMaker documentation on MLOps, you will notice that among the various challenges
of automating an application, they all call out the need to have a cross-functional team.

So, why is a cross-functional, agile team so important for automated ML on AWS?

350 Continuous Integration, Deployment, and Training for the MLSDLC

AWS provides numerous ML-related technologies that often overlap in terms of their
features to provide their customers with choice and flexibility. Furthermore, the
industry provides many tried and tested process guidelines, such as CI/CD, to automate
this process. However, neither AWS nor the industry can influence the organizational
structure or application development culture of a company. Any changes need to happen
within, and done by, the organization.

In Chapter 10, An Introduction to the Machine Learning Software Development Life Cycle
(MLSDLC), we focused on how a cross-functional team, made up of data scientists,
ML engineers, and platform, application, data, and security experts all contribute to
successfully implementing an automated MLSDLC process. By using a practical example
of the ACME web application, you learned how these various personas interacted with
each other, as well as why their domain expertise and artifact contributions are so
important to the success of the project.

In this chapter, we are going to focus on automating the MLSDLC process to learn how
the various artifacts we created in Chapter 10, An Introduction to the Machine Learning
Software Development Life Cycle (MLSDLC), map to each stage of the process.

To accomplish this, we will cover the following topics:

• Codifying the continuous integration stage

• Managing the continuous deployment stage

• Managing continuous training

By the end of this chapter, you will have completed an automated, end-to-end MLSDLC
process that deploys the ACME website, along with the Age Calculator model, to
production. This will provide you with the necessary framework to continually automate
the process whenever any code changes are made or any new data is added.

Technical requirements
For this chapter, you will need the following:

• A web browser. (For the best experience, it is recommended that you use either
Chrome or Firefox.)

• Access to the AWS account that you've been using throughout this book.

• Access to the Cloud9 development environment you've been using throughout
this book.

Codifying the continuous integration stage 351

• A reference to the usage limits of the AWS Free Tier to avoid unnecessary costs.

• The source code examples for this chapter, which are provided in this book's GitHub
repository (https://github.com/PacktPublishing/Automated-
Machine-Learning-on-AWS/tree/main/Chapter11).

Codifying the continuous integration stage
In this section, we are going to pick up where we left off in Chapter 10, An Introduction
to the Machine Learning Software Development Life Cycle (MLSDLC). We concluded the
previous chapter with the various teams committing their artifacts to the source code
repository. So, before a security review can take place, the team that plays the central role
of integrating these artifacts into the overall solution, known as the Platform Team, takes
the reins. At a high level, the following diagram shows how central a role the Platform
Team plays in our scenario:

Figure 11.1 – The Platform Team's role within the MLSDLC process

352 Continuous Integration, Deployment, and Training for the MLSDLC

As you can see, since the Platform Team sits in the middle of the cross-functional team,
they are responsible for gluing all the solution components together. Once all the pieces
have been glued together, the Platform Team is then responsible for verifying that these
components function well together, as per the business use case. For example, the
Platform Team would verify that a web application user can enter Abalone attribute data
into the web UI and have this data sent as inference request data to the ML model, where
the ML model returns a valid response to the user.

So, how does the Platform Team integrate the various pieces together? More importantly,
how does the Platform Team do this in a continuous and automated fashion?

The best way to answer these questions is to practically showcase the typical tasks that are
performed by the Platform Team as they build their integration artifacts.

Building the integration artifacts
To test whether all the pieces fit together, the Platform Team creates a mock-up of the
production solution in a test or Quality Assurance (QA) environment. They then
perform functionality tests, also called system tests, on the solution to ensure that the
entire system works the way it's supposed to. Furthermore, to automate this process, the
Platform Team codifies the solution as a CDK construct.

To build out this construct as the Platform Team, we are going to continue using the AWS
Cloud9 IDE we used in Chapter 10, An Introduction to the Machine Learning Software
Development Life Cycle (MLSDLC). Follow these steps:

1. Log into the same AWS account you've been using throughout this book and open
the AWS Cloud9 console (https://console.aws.amazon.com/cloud9).

2. In the Your environments section, click the Open IDE button for the MLOps-IDE
development environment.

3. Using the Terminal window within the Cloud9 workspace, run the following
commands to copy the pre-built stack construct from this book's GitHub repository
into the stack.py folder:

$ cd ~/environment/acme-web-application

$ cp ~/environment/src/Chapter11/Files/cdk/test_
application_stack.py acme_web_application/stacks/

4. Using the left-hand navigation panel, double-click on the test_application_
stack.py file to start reviewing it.

Codifying the continuous integration stage 353

5. Now that the test_applciation_stack.py file is open, we can review the
most important AWS resources that have been created by the stack construct.
Besides loading the necessary CDK Python libraries and instantiating the
TestApplicationStack() class, the first variable we must declare is
endpoint_name. This is the name we will give to the SageMaker Hosted
Endpoint, which is hosting our trained model.

6. Next, we must define an IAM role called sagemaker_test_role. This role will
be used by SageMaker to access the Model Registry, where the production-grade
model is stored.

7. The next variable we must define is the model itself. Here, we must instantiate the
SageMaker model using the CfnModel() class of the SageMaker CDK module.
We must also define an AwsCustomResource() to make an API call to the SSM
service and retrieve the parameter that points to the location of the trained model
within the Model Registry.

8. Now that we have defined the model, we need to allocate the compute resources
that are required to host the model. This is done by instantiating the endpoint_
config variable using the CfnEndpointConfig() class. Since this is for the test
environment, we don't need to provide scalable compute resources – we just need to
provide the bare minimum compute instances that are necessary to test the model.
This is why we specified an ml.t2.large instance type for the test environment.

9. With both model and endpoint_config in place, we can instantiate endpoint
using the CfnEndpoint() class, thus completing the model deployment part of
the test environment.

10. The next component of the test environment is to create the back-service for the
website's Contact form and the Age Calculator form. The Platform Team provides
this backend functionality as a RESTful API, using the AWS API gateway service,
by declaring the api variable as an HttpApi() gateway class. The team also
distributes the static HTML components as part of a Content Delivery Network
(CDN) using the CloudFrontWebDistribution() class.

Note
Since the CloudFront distribution is only used to test the various artifact
integrations, we specify the distribution price class as PRICE_CLASS_100.
This means that the static website content will only be distributed to edges in
North America, South Africa, and the Middle East. By not using the full global
distribution capabilities of CloudFront, we can minimize costs for testing.
To learn more about CloudFront distribution classes and edge locations, you
can view the pricing documentation (https://aws.amazon.com/
cloudfront/pricing/).

https://aws.amazon.com/cloudfront/pricing/
https://aws.amazon.com/cloudfront/pricing/

354 Continuous Integration, Deployment, and Training for the MLSDLC

11. Once the website's content has been uploaded to S3 and distributed through
CloudFront, we can create routes for the Contact form and the Age Calculator form
that will point to a Lambda function to process these requests. The formHandler
Lambda takes the website API requests and handles them based on the requests
path. For example, if the formHandler Lambda receives an API POST request
from the /api/predict path, it will send the request payload to the SageMaker
hosted model for inference. Then, it will take the inference response from the
hosted model and send it back to the website.

12. Lastly, we must create two outputs using the CDK's CfnOutput() module. The
first output is called self.cdn_output and contains cdn.domain_name as its
value. This will allow us to capture the website URL.

13. The second output is called self.api_output and provides api.url as a value,
essentially providing the URL for the form API.

We will be using these outputs in the next section to build the test artifacts.

Building the test artifacts
To test the application, we need to put ourselves in the shoes of the application user
and learn how they may interact with the functionality that's provided within the web
application. Since our example website only consists of an HTML page, a Contact form,
and the Age Calculator prediction form, to test the overall functionality of the system, we
must confirm that these components do what they are supposed to.

Follow these steps to create the necessary tests:

1. Using the Cloud9 workspace's Terminal window, run the following commands to
copy the pre-built testing scripts into the acme-web-application folder:

$ cd ~/environment/acme-web-application

$ rm –rf tests

$ cp -R ~/environment/src/Chapter11/Files/tests .

2. Using the left-hand navigation panel of the Cloud9 environment, expand the
tests folder, and then double-click on the system_test.py file to review the
test code.

If you look at the test code, you will see that we use the Python requests library to
simulate users making website requests. The first test focuses on the website itself by
verifying that we get the appropriate status code back from the web server and that the
delivered content is HTML code. In essence, this test simulates that the website is running
and that it's accessible.

Codifying the continuous integration stage 355

The second test focuses on the backend RESTful API. In this test, we send sample Abalone
attribute data to the backend API, which, in turn, sends this to the hosted production
model for inference. Then, we verify that we received the appropriate status code in
return, along with an HTML response for the predicted Abalone age. In essence, this test
simulates the user experience for the Age Calculator.

The last test simulates an incorrect call to the backend API to ensure that the API
responds with the correct error messages. This test is not always necessary, but testing that
the application responds with the correct errors ensures that when errors occur, they can
be debugged correctly since we know that the application is reporting any errors correctly.

Now that we have scripted some basic functionality tests for the system, we can build out
the production environment.

Building the production artifacts
Now that we've done the necessary, we have a fair idea that the tested system artifacts
will work in production. So, to create the production environment, we must copy the
application constructs we used in the test or QA environment. Follow these steps:

1. Using the Cloud9 workspace's Terminal window, run the following command to
copy the pre-built production artifacts from this book's GitHub repository:

$ cd ~/environment/acme-web-application

$ cp ~/environment/src/Chapter11/Files/cdk/production_
application_stack.py acme_web_application/stacks/

2. Using the left-hand navigation panel, double-click on the production_
application_stack.py file to review it.

If you compare the production application construct to the test application construct, you
will notice that there are a few additional components. First, we created a new S3 bucket
to store all the production application logs. This bucket will store all the logs for website
access, as well as record the inference logs from the production model. You may recall
from Chapter 10, An Introduction to the Machine Learning Software Development Life Cycle
(MLSDLC), when we discussed security, that it's a good practice to log all system activity.
From the perspective of the production ML model, we log the inference request, as well as
the inference response data, to gauge how well the model is performing.

356 Continuous Integration, Deployment, and Training for the MLSDLC

When defining endpoint_config, you will see that, for the production environment,
we use right-size production compute resources to host the model by using ml.c5.
large instances. We also specify a minimum of 2 instances so that we can leverage the
high availability (multiple AWS Availability Zones) features of the SageMaker Hosted
Model. Additionally, we turn on inference via data_capture_config to log all
inference request data and all response inference responses to the logging bucket.

Another new component we've added to the production construct is the
createBaseline Lambda function. Since the production construct is deploying the
production-grade ML model, we want to capture the statistical analysis of its expected
performance. This way, by referencing the captured inference responses, we can
monitor the model for quality drift. To this end, we defined the baseline_creator
variable for the Lambda function, and then triggered the Lambda execution as a
CustomResource().

Finally, we added endpoint auto-scaling. This is the ability for the hosted model to be
able to scale out and handle any increase in inference requests. We did this by defining the
scaling_target variable and providing the policy, which specifies how the endpoint
scales. For our production environment, we are going to start scaling when each ml.c5.
large instance receives more than 750 requests per second over 15 minutes.

Within both the test and production constructs, we've instantiated the formHandler
and createBaseline Lambda function. Both these variables refer to the code artifacts
that comprise these functions. So, before we can close out the test and production CDK
constructs, we need to update the source code respiratory with the pre-built Lambda
artifacts to ensure that the constructs don't fail when we deploy them. Follow these steps
to do so:

1. Using the Cloud9 workspace's Terminal window, run the following commands to
copy the formHandler and createBaseline Lambda code into the cloned
repository:

$ cd ~/environment/acme-web-application

$ cp -R ~/environment/src/Chapter11/Files/lambda/ .

With that, we have created all the necessary artifacts for the integration phase of the
pipeline. Now, we must create the automation components for continuous integration by
adding these components to the CDK Pipeline.

Codifying the continuous integration stage 357

Automating the continuous integration process
In Chapter 10, An Introduction to the Machine Learning Software Development Life Cycle
(MLSDLC), we created a skeleton CDK Pipeline. This is referred to as a skeleton pipeline
as we simply defined the pipeline construct, without providing the body or stages of the
pipeline. So, now that most of the stack constructs, Lambda function, scripts, tests, and
static HTML artifacts have been added to the repository, we can put them all together to
create an automated CI/CD pipeline body. Follow these steps:

1. In your Cloud9 Terminal windows, run the following commands to update the
acme_pipeline_stack.py construct:

$ cd ~/environment/acme-web-application

$ cp ~/environment/src/Chapter11/Files/cdk/acme_pipeline_
stack.py acme_web_application/

2. From the left-hand navigation panel, double-click the acme_pipeline_stack.
py file for review.

If you compare the new acme_pipeline_stack.py file with the one we created in
Chapter 10, An Introduction to the Machine Learning Software Development Life Cycle
(MLSDLC), you will see that there are some significant changes. First, we have imported
the cdk.Construct classes from all the CDK stacks in the stacks folder. We've also
defined a cdk.Stage class for each of the import stack constructs. For example, if you
refer to the following excerpt, you will see that we imported the MLWorkflowStack
class from the ml_workflow_stack.py file, which can be found in the stacks folder:

…

from .stacks.ml_workflow_stack import MLWorkflowStack

…

Then, we instantiate a class of this stack, called MLWorklowStage(), as a CDK Pipeline
stage construct. We also supply the various parameters that are required to instantiate the
stack as a pipeline stage and define the specific stack outputs (in this case, the ARN of the
state machine):

…

class MLWorkflowStage(cdk.Stage):

 def __init__(self, scope: cdk.Construct, id: str, *, group_
name: str, threshold: float, data_bucket_name: str, feature_
group_name: str, **kwargs):

 super().__init__(scope, id, **kwargs)

 ml_workflow_stack = MLWorkflowStack(

358 Continuous Integration, Deployment, and Training for the MLSDLC

 self,

 "MLWorkflowStack",

 group_name=group_name,

 threshold=threshold,

 data_bucket_name=data_bucket_name,

 feature_group_name=feature_group_name

)

 self.sfn_arn = ml_workflow_stack.sfn_output

…

By instantiating all the CDK stacks as individual stage constructs, we are essentially
defining each construct as a sequential part of the pipeline body. For example, if you
scroll down to where we've defined the PipelineStack() class, you will see that
the MLWorkflow() stage construct has been defined by the ml_workflow_stage
variable. The ml_workflow_stage variable is, in turn, added to the pipeline body
using the add_stage() method of the CDK Pipelines module.

Note
For more details on the Stage() construct and how to incorporate
it into CDK Pipelines, please refer to the following AWS blog on CDK
Pipelines: https://aws.amazon.com/blogs/developer/
cdk-pipelines-continuous-delivery-for-aws-cdk-
applications/. Keep in mind that this blog is based on the preview
version of the CDK Pipelines module. In July 2021, AWS released CDK
Pipelines as generally available (GA). To review the differences between
the preview and GA versions, you can refer to the API documentation
(https://github.com/aws/aws-cdk/blob/master/
packages/%40aws-cdk/pipelines/ORIGINAL_API.md).

Additionally, you will see that when we add the ml_workflow_stage and test_
stage variables to the pipeline, we also define a post parameter. By using this
parameter, we can define additional stage actions, or stage steps, that are executed after
the stage construct has been deployed. In the case of the ml_workflow_stage variable,
we instantiate an instance of the CodeBuildStep() class module to run a Python
file called invoke.py. This script takes the ARN of the Step Functions state machine
(deployed in the ml_workflow_stage construct) and starts executing the workflow.
Alternately, in the case of test_stage, we instantiate the ShellStep() class module
to run the system_test.py file, which tests the functionality of the application.

https://github.com/aws/aws-cdk/blob/master/packages/%40aws-cdk/pipelines/ORIGINAL_API.md
https://github.com/aws/aws-cdk/blob/master/packages/%40aws-cdk/pipelines/ORIGINAL_API.md

Codifying the continuous integration stage 359

Note
The reason we use CodeBuildStep() for ml_workflow_stage
and ShellStep() for test_stage is so that we can use the role_
policy_statements parameter to supply the necessary IAM permissions
to start and monitor the Step Functions state machine execution.

The last change you will see is that the pipeline's self_mutation parameter is now set
to True. This means that we are going to enable the pipeline's capability to dynamically
adapt (self-mutate) to any code changes. For example, if you open the CodePipeline
management console (https://console.aws.amazon.com/codesuite/
codepipeline/) for your region and click on ACME -WebApp-Pipeline, you will see
that the current structure of the pipeline only has two stages:

Figure 11.2 – Current structure of the CDK Pipeline

360 Continuous Integration, Deployment, and Training for the MLSDLC

As we've been committing artifact updates to the source code repository, these changes
have been triggering a pipeline execution. However, since the self_mutation
parameter is currently set to False, adding stack and stage code constructs hasn't
modified the pipeline structure.

Now, the Platform Team must finalize the CDK project to enable self-mutation. Follow
these steps:

1. To finalize the CDK project, go to the Terminal windows in your Cloud9 workspace
and run the following command to get the name of the SageMaker Feature Group:

$ aws sagemaker list-feature-groups --name-contains
abalone

Note
You will recall that this Feature Group is the Feature Group we created in the
Creating the SageMaker Feature Store section of Chapter 10, An Introduction to
the Machine Learning Software Development Life Cycle (MLSDLC).

2. Copy the value for the FeatureGroupName key from the output.
3. Using the left-hand navigation panel of the Cloud9 workspace, expand the acme-

web-application folder and double-click on the app.py file to start editing it.
4. Replace the PLACEHOLDER variable assignment with the output from the

command you ran in Step 1, as shown in the following code snippet:

…

MODEL_GROUP = f"{MODEL.capitalize()}PackageGroup"

FEATURE_GROUP = "<Add the name of the SageMaker Feature
Group>"

CODECOMMIT_REPOSITORY = "acme-web-application"

…

5. Save and close the app.py file.
6. Using the following commands in your Cloud9 Terminal windows, add the final

pipeline artifact – the invoke.py file – and commit the changes to the repository:

$ cd ~/environment/acme-web-application/

$ cp ~/environment/src/Chapter11/Files/scripts/invoke.py
scripts/

$ git add -A

Managing the continuous deployment stage 361

$ git commit -m "Finalized CDK application"

$ git push

7. Since we've updated the CDK application, run the following commands to redeploy
the application:

$ cdk deploy

Congratulations! You have just codified an automated ML-based application. However, we
are still not done. The next step is to monitor the automated process to confirm that what
we've created gets deployed into production and meets the functional requirements of
the business use case. We'll be focusing on this task in the next section as we manage the
continuous deployment of the codified solution.

Managing the continuous deployment stage
So far, we have focused primarily on the people that are involved in planning, designing,
and codifying the solution. However, you will recall from Chapter 10, An Introduction to
the Machine Learning Software Development Life Cycle (MLSDLC), that outside of these
people, two other factors influence the success of an MLSDLC implementation – the
technology and the process. In this section, we are going to focus on the MLSDLC process
itself. Since we have already codified the process using the self-mutating CDK Pipeline, all
we need to do is manage the deployment to completion. To recap, let's review where we
are in this process:

Figure 11.3 – The plan and design phases of the MLSDLC process

362 Continuous Integration, Deployment, and Training for the MLSDLC

Here, you can see that we have already completed the plan and design phases of the
MLSDLC process. As a cross-functional team, we have reviewed the business objectives
and requirements for the ACME web application. Using the CDK, the various teams have
codified their contributions to the design of the application. Now that the design has been
deployed, we can move on to the next phase of the automated MLSDLC process – the
build phase.

Reviewing the build phase
To review the build process, open the CodePipeline (https://console.aws.
amazon.com/codesuite/codepipeline/pipelines/) management console
for your current AWS region; you will see ACME -WebApp-Pipeline. Upon opening the
pipeline, you will immediately see that the pipeline has self-mutated to incorporate the
stages we've defined. Scrolling down the pipeline will reveal the Assets stage, as shown in
the following screenshot:

Figure 11.4 – The Assets stage

https://console.aws.amazon.com/codesuite/codepipeline/pipelines/
https://console.aws.amazon.com/codesuite/codepipeline/pipelines/

Managing the continuous deployment stage 363

The Assets stage is the first part of the MLSDLC build phase, where the ML container
image, the various Lambda function, and the static HTML web content are built. As you
can see, we don't need to create a dedicated build stage to create these assets; the CDK
Pipeline does this automatically. However, the Build process isn't completed once these
pipeline assets have been created.

For the overall MLSDLC process to execute successfully, the build phase also
requires a production-grade ML model. So, as shown in the following screenshot,
scroll further down the pipeline to reveal the second part of the build process – the
Build-MLWorkflow stage:

Figure 11.5 – The Build-MLWorkflow stage

364 Continuous Integration, Deployment, and Training for the MLSDLC

As you can see, three separate actions make up the Build-MLWorkflow stage. These are
the Prepare, Deploy, and Execute actions. The Prepare action creates a CloudFormation
changeset to review the AWS resources that are being deployed by the stack, thus
guaranteeing that any proposed changes don't impact existing, critical AWS resources.
This is essentially a built-in integrity or integration test for the proposed resources within
the context of continuous integration, where existing stacks are being automatically
updated with pipeline changes. Since this is the first time the ML workflow is being
created, the Prepare stage proceeds to the Deploy stage, where the stack is deployed using
AWS CloudFormation.

Once the stack has been created, the Execute-MLWorkflow action is triggered. It's at
this stage that the invoke.py script is run. Recall that the invoke.py script creates
an execution of the Step Functions state machine. This state machine, in turn, trains a
production-grade ML model.

Note
If you click on the Details link for the Execute-MLWorkflow action, you will
be automatically redirected to the CodeBuild management console, whereby
you can see the output from the invoke.py script within Build logs.

If you open the Step Functions console (https://console.aws.amazon.com/
states/home) and click on the state machine name that starts with MLWorkflow…,
you will see the list of Executions. Clicking on this reveals the current state of
the workflow. Once the workflow has been completed, the execution graph should
look as follows:

https://console.aws.amazon.com/states/home
https://console.aws.amazon.com/states/home

Managing the continuous deployment stage 365

Figure 11.6 – State machine execution graph

366 Continuous Integration, Deployment, and Training for the MLSDLC

As you can see, this is the first time the workflow has been executed. If the model's
performance is below the threshold, it is added as a model package to the SageMaker
Model Registry. The following screenshot shows an example of the model version metrics
within the registry:

Figure 11.7 – Model version metrics

As you can see, using the SageMaker Studio UI, the ML Team can track the lineage of
the various models that have been produced by the workflow. Since we also enabled
experiment tracking, the data processing, model training, and model evaluation trials
are also available to the ML Team for assessment in the SageMaker Studio UI. The
following screenshot shows an example of the training experiment that was produced
by the workflow:

Managing the continuous deployment stage 367

Figure 11.8 – Training experiment details

Note
For more information on how to compare SageMaker experiments and
trials using SageMaker Studio, please refer to the following SageMaker
documentation: https://docs.aws.amazon.com/sagemaker/
latest/dg/experiments-view-compare.html.

https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-view-compare.html
https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-view-compare.html

368 Continuous Integration, Deployment, and Training for the MLSDLC

Since executing the ML workflow is the final action within the Build-MLWorkflow stage,
we have completed the build phase of the MLSDLC process. At this stage, the pipeline
automatically moves on to the test phase.

Reviewing the test phase
Once the various pipeline assets and the production-grade ML model have been built, we
must move on to the test phase, as shown in the following diagram:

Figure 11.9 – The test phase of the MLSDLC process

During the test phase, our pipeline deploys a pseudo-production version of the solution
into a test or QA environment. If we review this stage of the pipeline in the CodePipeline
console, you will see that there are also three stage actions to this Test-Deployment stage.
The following screenshot shows an example of the Test-Deployment stage:

Managing the continuous deployment stage 369

Figure 11.10 – The Test-Deployment stage

As you can see, the Test-Deployment stage also has Prepare and Deploy stage actions.
Since these actions are pre-built by the CDK Pipeline, they perform the same activities
as the related stage actions within the Build-MLWorkflow stage, except that instead of
deploying the ML workflow assets, a pseudo-production solution is deployed for system
testing. Once the environment has been deployed through CloudFormation, the System-
Tests stage action runs the system_test.py file to perform these three system tests.

370 Continuous Integration, Deployment, and Training for the MLSDLC

Tip
Once the System-Test stage action has been completed, you can delete the
Test-Deployment-TestApplicationStack CloudFormation Stack via the
CloudFormation console (https://console.aws.amazon.com/
cloudformation/home). We don't have any further requirements for
these resources and we don't wish to incur any further AWS usage costs from
them being idle.

As you may recall from the previous section, these three tests simulate the user experience
with the solution by accessing the website and sending ML inference requests to the Age
Calculator model. By clicking on the Details link for the System-Tests action, you will see
the CodeBuild Build logs output from running the system tests.

Note
If the system test script should fail for whatever reason, the System-Test action
and, consequently, the Test-Deployment stage will fail. Having any of these
tests fail doesn't necessarily mean that the MLSDLC process will fail. The whole
point of automating the MLSDLC process, especially automating the system
tests, is to verify that once the solution is eventually deployed into production,
we can be confident in its functionality. So, if the tests fail, we can provide
debugging feedback to the supporting team, who can, in turn, resolve the issue
and re-execute the pipeline.

Now that the Test-Deployment stage of the pipeline is complete and we have a tested
solution, we are ready to deploy the solution into production. This is known as the deploy
phase of the MLSDLC.

Reviewing the deploy and maintain phases
Once all the system tests have been run on the pseudo-production solution, we should be
confident that the production version is ready for our users. As shown in the following
diagram, we are ready to finally deploy the solution to production. Once deployed, we can
manage and maintain it:

https://console.aws.amazon.com/cloudformation/home
https://console.aws.amazon.com/cloudformation/home

Managing the continuous deployment stage 371

Figure 11.11 – The deploy and maintain phases of the MLSDLC process

From the standpoint of the CDK Pipeline, the stage that's responsible for production
deployments is the same as the test deployment stage in that this stage also has the
Prepare and Deploy stage actions, but no system testing stage actions. The following
screenshot shows an example of only these two actions being performed within the
Production-Deployment stage:

Figure 11.12 – The Production-Deployment stage

372 Continuous Integration, Deployment, and Training for the MLSDLC

While the pipeline stages may be similar, the solution that's being deployed as a
CloudFormation stack is somewhat different. First, the production stack deploys optimal
AWS resources that are better suited to a production environment. For example, the
production stack uses optimized C5 compute resources to host the model and implements
additional elasticity in that these compute resources can scale out, as well as scale back in,
depending on user demand.

Moreover, since the Maintain phase of the MLSDLC is an operational activity, this
means it can't be automated easily unless you apply some type of Artificial Intelligence
Operations (AIOps) methodology. In this example, however, we do facilitate automated
maintenance in the production stack. For example, you will recall from the previous
section that when we codified the production_application_stack.py file, we
enabled logging_config for the CloudFrontDistribution() class. This enables
easier maintenance of the solution once it's deployed since we store all the web transaction
logs in S3. This gives the operations teams the ability to see what's going in within the
stack and use this information for troubleshooting and debugging purposes.

Apart from this, you will recall that, in the production_application_stack.
py file, we also created the createBaseline Lambda function and invoked it using
the CustomResource CDK module. In the following code snippet, which has been
taken from the Lambda function's index.py file, you can see that this function runs a
SageMaker Processing Job to perform statistical analysis of the testing data. It does this
using the sagemaker-model-monitor-analyze container, which is provided by
AWS, to baseline the expected performance of the trained model:

...

image_map = {

 "us-east-1": "156813124566.dkr.ecr.us-east-1.amazonaws.com/
sagemaker-model-monitor-analyzer",

...

 logger.info(f'Creating Basline Suggestion Job:
{request["ProcessingJobName"]}')

 try:

 response = sm.create_processing_job(**request)

 return {

 "PhysicalResourceId":
response["ProcessingJobArn"],

 "Data": {

 "ProcessingJobName":
request["ProcessingJobName"],

 "BaselineResultsUri": f"s3://{logs_bucket}/

Managing the continuous deployment stage 373

baselining/results"

 }

 }

...

By combining this statistical baseline analysis with the captured inference response data
from the production model, the operations teams can detect if the model is drifting from
its intended purpose.

Furthermore, by facilitating both the data capture and baseline data, the operations team
can automate the drift detection process by implementing SageMaker Model Monitor
(https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.
html). Model Monitor will use these data sources to detect various kinds of model drift
automatically, on a predefined schedule.

Note
We have not implemented the automated model monitoring capabilities with
this example since multiple types of built-in drift detection capabilities are
provided by the Model Monitor module. You can review the documentation to
determine whether data quality (https://docs.aws.amazon.com/
sagemaker/latest/dg/model-monitor-data-quality.
html), model quality (https://docs.aws.amazon.com/
sagemaker/latest/dg/model-monitor-model-quality.
html), bias drift (https://docs.aws.amazon.com/sagemaker/
latest/dg/clarify-model-monitor-bias-drift.
html), or feature attribution drift (https://docs.aws.amazon.
com/sagemaker/latest/dg/clarify-model-monitor-
feature-attribution-drift.html) suits your production use case
requirements.

Once the Production-Deployment stage of the pipeline is complete, we will see that we
closed the loop and completed the MLSDLC process, as shown in the following diagram:

Figure 11.13 – Completed MLSDLC process

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-bias-drift.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-bias-drift.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-bias-drift.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-feature-attribution-drift.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-feature-attribution-drift.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-model-monitor-feature-attribution-drift.html

374 Continuous Integration, Deployment, and Training for the MLSDLC

Let's look at what we've built by reviewing what our users may experience when using the
ACME web application and the Age Calculator component.

Reviewing the application user experience
To review the production application, open the CloudFormation console (https://
console.aws.amazon.com/cloudformation/home) and click the radio button
next to Production-Deployment-ProdApplicationStack to open the stack. Click on the
Outputs tab to view the stack outputs, as shown in the following screenshot:

Figure 11.14 – CloudFormation stack outputs

As you can see, we have two stack outputs. The FormAPIURL output is the API
gateway address that's used to process the Age Calculator inference requests, while
the CloudFrontURL output points to the address of the website. Click on Value for
CloudFrontURL to view the website. The following screenshot shows the ACME Fishing
Logistics website:

https://console.aws.amazon.com/cloudformation/home
https://console.aws.amazon.com/cloudformation/home

Managing the continuous deployment stage 375

Figure 11.15 – ACME Fishing Logistics website

376 Continuous Integration, Deployment, and Training for the MLSDLC

Now, let's try the Age Calculator component to see how a fisherman would be able to see
the predicted age of his Abalone catch. The following screenshot shows the Age Calculator
form that appears when a fisherman clicks the TRY OUR AGE CALCULATOR button:

Figure 11.16 – Age Calculator form

As you can see, the Calculate Abalone Age form provides various sample dimensions
of the Abalone. Enter these sample dimensions and click the Submit button to see what
the ML model predicts. The following screenshot shows an example response from the
trained model:

Managing the continuous deployment stage 377

Figure 11.17 – Age Prediction

As you can see, based on the sample dimensions provided, the model predicts that
the Abalone has 10 rings. According to the UCI Machine Learning Repository for the
Abalone dataset (https://archive.ics.uci.edu/ml/datasets/abalone), the
value for the number of Rings, plus 1.5, gives us the age in years. So, a fisherman can see
that the Abalone is 11.5 years old and thus determine whether the catch should be thrown
back or kept.

Congratulations! We now have a working web application and a built-in ML model for
our fisherman customers. We used an automated MLSDLC process to accomplish this
business objective.

However, you will recall that an MLSDLC process differs from a typical SDLC process
in that we are not only continuously automating the release of an ML-based application
when the business case or source code changes, but also when the training data changes.
Remember, an ML model is only as good as the data it's trained upon. So, how do we
continuously automate the MLSDLC process when we have new data?

In the next section, we will answer this question by exploring the concept of continuous
training (CT).

378 Continuous Integration, Deployment, and Training for the MLSDLC

Managing continuous training
In Chapter 9, Building the ML Workflow Using Amazon Managed Workflow for Apache
Airflow, we learned how Airflow can be used to create a data-centric ML process and train
the Age Calculator model on new Abalone survey data. In Chapter 10, An Introduction to
the Machine Learning Software Development Life Cycle (MLSDLC), we learned how the
Data Team applied this technique to the ACME web application by codifying the acme-
data-workflow Airflow DAG. The following diagram shows a graphical representation of
the Airflow DAG:

Figure 11.18 – Data Airflow DAG

As you can see, the Airflow DAG starts when new Abalone survey data is added to the S3
bucket. The survey data is then preprocessed to engineer the relevant training features;
these features are then ingested into the Feature Store. Once the new data is ingested into
the Feature Store, a release change of the MLSDLC process is triggered to automate the
process of releasing a new changeset of the solution. Essentially, this creates a continuous
training process.

Moreover, at the beginning of this chapter, we saw how the Platform Team incorporated
this concept of continuous training into the CI/CD methodology by extending the
CDK Pipeline to provision the necessary AWS recourses that manage and execute the
acme-data-workflow DAG. For instance, if you open ACME-WebApp-Pipeline in the
CodePipeline console, you will see the Build-Data-Workflow stage, as shown in the
following screenshot:

Managing continuous training 379

Figure 11.19 – The Build-DataWorkflow stage

As you can see, the Build-DataWorkflow stage has both a Prepare and a Deploy
stage action, whereby a CloudFormation changeset is prepared and then deployed.
The result of this deployment is an MWAA environment inside a VPC, plus the DAG,
and its supporting assets uploaded to S3. Since this is the last stage of the CDK Pipeline,
we have finally created a CI/CD/CT pipeline to incorporate continuous training into the
MLSDLC process.

However, before we see the end-to-end MLSDLC process in its entirety, we need to
simulate adding new Abalone survey data. We'll do this in the next section.

380 Continuous Integration, Deployment, and Training for the MLSDLC

Creating new Abalone survey data
In Chapter 9, Building the ML Workflow Using Amazon Managed Workflow for Apache
Airflow, we leveraged the CTGAN Python library to synthesize new Abalone data within
a Jupyter Notebook. The following steps will walk you through reproducing the same
process using SageMaker Studio and running the pre-built notebook in this book's
GitHub repository (https://github.com/PacktPublishing/Automated-
Machine-Learning-on-AWS/tree/main/Chapter11/Notebook):

1. Open the SageMaker management console (https://console.aws.amazon.
com/sagemaker/home) and, in the left-hand panel, click the Studio link, under
the SageMaker Domain section.

2. Once the SageMaker Domain dashboard opens, click the Launch app dropdown
and select Studio from the list to open the Studio IDE.

3. Within the left-hand file panel, expand the Notebooks folder within the
Chapter11 folder of the cloned src folder.

Note
This book's GitHub repository files should have already been cloned into
the Studio environment for you to use. If not, please refer to the Creating a
SageMaker Feature Store section of Chapter 10, An Introduction to the Machine
Learning Software Development Life Cycle (MLSDLC).

4. Double-click on the Simulating New Abalone Survey Data.ipynb file to
open the notebook.

5. From the Kernel menu, click the Restart Kernel and Run all Cell… option.
6. Once you've created the notebook, you can close the SageMaker Studio UI.

Now that we have simulated new Abalone survey data and uploaded the dataset to S3, we
can review the continuous training process in action.

Reviewing the continuous training process
When the Data Team originally defined the Airflow DAG in the continuous_
training_pipeline.py file, they used the S3PrefixSensor() provider to
constantly check the S3 bucket for new data. So, now that we have simulated new Abalone
survey data, the Airflow DAG should start running.

https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter11/Notebook
https://github.com/PacktPublishing/Automated-Machine-Learning-on-AWS/tree/main/Chapter11/Notebook
https://console.aws.amazon.com/sagemaker/home
https://console.aws.amazon.com/sagemaker/home

Managing continuous training 381

However, the DAG needs to be manually enabled for it to start running. To see the
continuous training process in action and enable the DAG, follow these steps:

1. Open the MWAA console (https://console.aws.amazon.com/mwaa/
home) and click the Open Airflow UI link for acme-airflow-environment.

2. Once the Airflow UI opens, toggle the Pause/Unpause DAG button next to the
acme-data-workflow DAG to enable it. The DAG should automatically start.

3. Click on the DAG link to view the run. Once the DAG dashboard opens, click the
Graph View button to see it represented as shown in Figure 11.18.

4. You can follow the DAG's progress and see the logs for each task by clicking on a
specific task and clicking on the Log button.

5. Once each task has been run, the completed graph should look as follows:

Figure 11.20 – Completed data workflow graph

As a result of the DAG run completing, you can reopen the CodePipeline console to
see the ACME-WebApp-Pipeline restart. With that, you have just created a CI/CD/CT
pipeline that continuously builds and deploys an ML-based application by automating the
MLSDLC process on AWS.

Cleanup
To avoid unnecessary AWS usage costs, you can delete the resources that have been
created by the CDK Pipeline by opening the CloudFormation console and then deleting
the various stacks in the reverse order they were created. For example, select Build-
DataWorkflow-DataWorkflowStack and then click the Delete button. Once this stack
has been deleted, do the same for Production-Deployment-ProdApplicationStack.

Note
Depending on the stack that's being deleted, you may need to manually empty
the S3 bucket for a particular stack before the stack can be deleted.

Continue doing this by going down the list of CloudFormation stacks until the acme-web-
application stack has been deleted. That concludes this chapter.

382 Continuous Integration, Deployment, and Training for the MLSDLC

Summary
In the final chapter of this book, you were introduced to the concept of MLSDLC and how
this methodology can be used to create ML-based applications. Throughout the last two
chapters, we have focused on two of the three primary success factors that are required to
create an ML-based application – the people and the process.

By focusing on how a cross-functional team and an agile team cooperate, we learned
how each team contributes their domain expertise to address both the business plan
requirements and the solution design requirements of the MLSDLC.

The practical outcome of this exercise was a set of codified CDK stack constructs that,
when glued together by the Platform Team, created a CI/CD/CT pipeline. This CI/CD/
CT pipeline functioned and is the mechanism behind achieving MLSDLC methodology
automation. For example, with each stage of the pipeline corresponding to a particular
phase of the MLSDLC methodology, we saw how executing the CI/CD/CT pipeline
inevitably automated the MLSDLC process to not only deploy the application into
production but establish a perpetual life cycle of constant automation.

While these chapters did not specifically pay attention to the technology aspect of a
successful MLSDLC methodology, it was evident how AWS technologies enabled the
MLSDLC process.

So, by adding these technologies into the mix, in this chapter, we've successfully
demonstrated an end-to-end example of automated ML on AWS.

Congratulations! You've made it to the end of this book. Now, you should have enough
code references to insert some ML models and automate them on AWS.

Further reading
The following are some references to AWS content that highlight the importance of a
cross-functional team as the key to successful ML automation on AWS:

• Architecture Best Practices for Machine Learning: https://aws.amazon.com/
architecture/machine-learning/

• Build a Secure Enterprise Machine Learning Platform on AWS: https://docs.
aws.amazon.com/whitepapers/latest/build-secure-enterprise-
ml-platform/build-secure-enterprise-ml-platform.html

• SageMaker MLOps Documentation: https://docs.aws.amazon.com/
sagemaker/latest/dg/sagemaker-projects-why.html

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects-why.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects-why.html

Index
A
abalone Dataset

about 11
exploring 11-15

abalone survey data
creating 380
simulating 298, 299

access control lists (ACLs) 347
ACME Fishing Logistics

about 311
component categories 312, 313

Adam optimizer 20
AI/ML Stack 42
Airflow DAG 285
Airflow DAG, data-centric workflow

building 285-297
Amazon Athena

about 329
reference link 335

Amazon EMR 251
Amazon Machine Images (AMIs) 43
Amazon MWAA

about 252
environment, configuring 268-273
prerequisites, configuring 254-268

Amazon Redshift 329
Amazon Rekognition 44
Amazon Resource Name (ARN) 83, 196
Amazon SageMaker Clarify

Model Explainability
reference link 63

Amazon SageMaker, data capture
reference link 127

Amazon SageMaker, Model Monitor
reference link 66
used, for monitoring model's

performance 127
Amazon SageMaker, Studio UI overview

reference link 54
Amazon Simple Storage Service (S3)

about 51
reference link 51

Amazon States Language
reference link 179

Amazon VPC
reference link 50

Anscombe's Quartet example, on Kaggle
reference link 13

Apache 2.0 License 279, 325

384 Index

Apache Airflow
abalone dataset, processing with 253
about 251
DAG example 252
key components 251
URL 251
using 252

Apache Spark 251
application artifacts

build artifacts, configuring 145-148
creating 140, 141
deployment parameters,

configuring 143, 144
developing 138
SageMaker endpoint, codifying 141, 142

application owner role
examining 314

application owner role, tasks
analysis and reporting 315
documentation 315
relationship management and

strategic alignment 315
application platform

application owner role,
examining 314, 315

building 313, 314
frontend developers role,

examining 322, 323
platform engineers role,

examining 315-322
Application Programing

Interface (API) 47, 332
Artificial Intelligence Operations

(AIOps) 372
Artificial Neural Network (ANN) 16, 101
Attribute Information section 11

AutoGluon, for tabular data
deep learning container, building 84-91
prerequisites 82, 83
service permissions, configuring 83, 84

AutoGluon
download link 90
using, for image data 101
using, for tabular data 82

AutoGluon, for image data
prerequisites 101-105

AutoGluon library 81
AutoGluon, predictors

Image Predictor 81
Object Predictor 81
Tabular Predictor 81
Text Predictor 81
reference link 82

automated ML model deployment
executing 167-172

automated ML workflow artifacts
building 329, 330
data bucket, registering 330
model evaluation 332
modeling container image, creating 331
model registry, creating 331
placeholder parameters, creating 330
SageMaker jobs, creating 332
state machine, defining 333, 334
workflow artifacts, finalizing 335, 336

AutoML
ML process, streamlining with 38

AutoML experiment
creating, with AutoGluon 91-96

Autopilot experiment
analyzing, with code 70-73
automated feature engineering 62
automated model, tuning 62, 63
AutoML candidates, generating 61, 62

Index 385

candidate model, deployment 64
candidate model, selection 63
codifying 67-70
data, preprocessing 61
initiating 54-58
running 58, 59

AWS
capabilities, using 39
CI/CD pipeline, creating on 129

AWS AI 42
AWS AI/ML stack

layers 43, 44
AWS CDK

references 131
AWS CI/CD toolchain

using 129
AWS Cloud9 console

reference link 315
AWS Cloud Development Kit

about 130
reference link 131

AWS CodeBuild
about 130
reference link 83, 130

AWS CodeCommit
about 130
reference link 130

AWS CodePipeline
about 130
reference link 130

AWS Data Wrangler 329
AWS Deep Learning Containers

reference link 85
AWS developer tools

working with 130
AWS development tools

reference link 129
AWS Glue 251, 329

AWS Glue ETL Jobs
reference link 278

AWS Identity & Access 47
AWS M5 instances

reference link 82
aws-mwaa-local-runner

reference link 297
AWS resource

cleanup 173
AWS Secrets Manager

reference link 346
AWS Single Sign-On (SSO) 47
AWS Step Functions 179
AWS Step Functions, Data Science SDK

reference link 211
AWS Systems Manager Parameter

Store (SSM) 196
AWS Toolkit for Visual Studio Code

reference link 180
awswrangler

reference link 329

B
Bayesian Search 46
blue/green deployment 120
boto3 66
Bring Your Own Container (BYOC) 327
build artifacts

configuring 145-148
Build stage 157
business use case, ML

business goals 9
project plan 9
success criteria 9

386 Index

C
Cascading Style Sheets (CSS) 323
CDK application

creating 158, 159
CDK construct 352
CDK Pipelines

about 321
reference link 321

CDK project
configuring 139, 140
creating 139, 140

CDK stacks 321
CD phase

about 119, 120
production feedback, reporting 121
release, deploying into production 121
solution, managing 121
solution, monitoring 121

CfnModel
reference link 142

CfnModelPackageGroup
reference link 331

CfnPipeline
reference link 330

CI/CD methodology 117
CI/CD pipeline

creating, on AWS 129
deploying 151, 206, 207

CI/CD pipeline, resources
building 183
development environment,

updating 183, 184
pipeline application artifacts,

building 185-206
pipeline artifact repository,

creating 184, 185

CI phase
about 117, 118
pipeline assets, building 119
pipeline assets, testing 119
release, approving 119
source artifacts, creating 118
source artifacts, updating 118

Cloud9
about 131
reference link 131

Cloud Development Kit (CDK) 315
Cloud Development Kit (CDK)

application 210
CloudFormation console

reference link 267
cloud-native CI/CD pipeline

creating, for production ML model 131
code

used, for analyzing Autopilot
experiment 70-73

CodeBuild project
reference link 268

Command-Line Interface (CLI) 47, 125
Computer-Generated Imagery (CGI) 106
Content Delivery Network (CDN) 353
continuous deployment stage

application user experience,
reviewing 374-377

build phase, reviewing 362-366
deploy and maintain phase,

reviewing 370-373
managing 361, 362
test phase, reviewing 368-370

Continuous Integration and
Continuous Delivery (CI/CD)

about 39, 311

Index 387

Step Functions Data Science
SDK, using for 181-183

used, for automating ML 123
continuous integration process

automating 357-361
continuous integration stage

codifying 351, 352
integration artifacts 352-354
production artifacts 355, 356
test artifacts 354

continuous training
managing 378, 379

continuous training artifacts
creating 337, 338

continuous training (CT) 337
continuous training process

reviewing 380, 381
Convolutional Neural Networks

(CNNs) 101
CreateProcessingJob

reference link 332
CreateTrainingJob

reference link 332
Cross-Industry Standard Process for

Data Mining (CRISP-DM) 5, 311
CTGAN project

reference link 299
CUDA libraries

reference link 104

D
data-centric workflow

Airflow DAG, building 285-297
cleanup 305
developing 277, 278
ETL artifacts, building 278-284

ETL artifacts, testing 284
executing 302-305

data engineering role 324, 325
data scientists 5
Data to AI Group at MIT

reference link 299
data workflow artifacts

building 338-344
deep learning (DL) 328
deep learning (DL), container image

reference link 231
Deep Learning Specialization course

reference link 21
Deep Neural Network (DNN) 17
deployment-centric approach 123

about 124
data artifacts, building 125
model artifacts, building 124
model, deploying as SageMaker

endpoint 126
model release, approving 126
models, building 125
model's performance, monitoring

with Amazon SageMaker
Model Monitor 127

SageMaker endpoint, managing 126
deployment parameters

configuring 143, 144
Deploy stage 157
development environment

preparing 132-138
development-operations

(DevOps) 128, 315
Directed Acyclic Graph (DAG) 252, 313
Dockerfile

reference link 84

388 Index

E
Elastic Compute Cloud (EC2) 43
Elastic Container Registry (ECR) 328
endpoint auto-scaling 356
end-to-end ML process, example

about 8
ACME Fishing Logistics 8
data, exploring 11-15
data, ingesting 11
data, sourcing 11
insights, obtaining from data 10
ML use case 8
model, building 15, 16
model, training 21-23
model, tuning 29
neural network model, building 16-20
next step options, exploring 27
optimized model, deploying

into production 37, 38
trained model, evaluating 24-27

epochs 28
ETL artifacts, data-centric workflow

building 278-284
testing 284

experiment-centric approach 123
experiment data

preparing 51-53
experiment results

evaluating 96-111
Exploratory Data Analysis (EDA) 10

F
feature engineering (FE) 325
frontend developers role

examining 322, 323
functionality tests 352

G
Git repository, SageMaker Studio

reference link 214
Gradient Boosting Regression

algorithm 28
Graphical Processing Units (GPUs) 101

H
Hadoop 251
hyperparameter optimization

about 29
hyperparameters, determining 30-32

HyperText Markup Language
(HTML) 323

HyperText Transfer Protocol
Secure (HTTPS) 212, 347

I
IAM security, best practices

reference link 194
Identity and Access Management

(IAM) 83, 211
image data

AutoGluon, using for 101
image prediction experiment

creating 105-109
Image Predictor 81
ImagePredictor documentation

reference link 109
Image Uniform Resource

Identifier (URI) 89, 105
integrated development

environment (IDE) 315

Index 389

integration artifacts
building 352-354

integration test
performing 240-242

IPython documentation
reference link 216

J
Jupyter built-in magic commands

reference link 86
Jupyter documentation

reference link 67

K
Keras

URL 18
KernelGateway 68

L
Lambda function 331
LambdaInvoke() function 333
Long-Short-Term Memory (LSTM) 101
loop

closing 122
loss parameter 20

M
Machine Learning (ML)

about 3, 42
automating, with AWS 39
automating, with CI/CD 123

Machine Learning Operations
(MLOps) 117

Machine Learning Software Development
Life Cycle (MLSDLC) 39

Managed Workflows for Apache
Airflow (MWAA) 39

Mean Absolute Error (MAE) 20
metrics 20
ML artifacts

adding, to frontend application 336, 337
creating 327

ML engineers 5
ML experiment

automating, with SageMaker SDK 66, 67
creating 331

ML model artifacts
application file, reviewing 164-166
building 161-163
container build file, reviewing 166
ML artifacts, committing 166, 167
modeling file, reviewing 163

MLOps methodology
creating 127, 128

ML practitioner
about 5, 6, 324
examining 324

ML process
complexities 7
end-to-end ML process, example 8
modeling techniques 6
overview 5, 7
streamlining, with AutoML 39

MLSDLC functions
data scientist 324
ML engineer 324

ML software development life
cycle (MLSDLC) 311

ML workflow
creating 211-240

390 Index

model
training 35, 36
tuning 33

model artifact
creating 327, 328

Model Support and Validation
reference link 61

model training process
batch_size 23
callbacks 24
epochs 24
shuffle 24
testing_features 23
testing_labels 23
training_features 23
training_labels 23
validation_data 23
verbose 24

Multilayer Perceptron (MLP) 17, 328
multiple cross-functional teams 322
MWAA console

reference link 297
MWAA pricing

reference link 271
MWAA Virtual Private Cloud (VPC) 270
MWAA web UI

accessing 297
MXNet

URL 17

N
neural network architecture 17, 18
neuron 17
next step options

existing model, tuning 28
exploring 27

mode data, obtaining 28
model, selecting 28

NGINX
URL 166

NumPy
URL 15

O
Object Detection 44
Object Detector 81
operators 285
operators, for SageMaker

reference link 285
optimizer 20

P
pandas library

URL 11
perceptron 17
personally identifiable

information (PII) 346
pipeline application

deploying 159-161
pipeline artifact repository

creating 138
pipeline construct

codifying 151-156
pipeline's progress

monitoring 242-245
Pipeline Stages 156
platform engineers role

examining 315-322
post-experimentation

tasks 64-66
pre-built operators

reference link 285

Index 391

preprocess.py script 279
pricing documentation, CloudFront

reference link 353
production artifacts

building 355, 356
production model

deploying 74, 75
Pull Request (PR) 118
Python dependencies in MWAA

reference link 267, 297
PythonOperator() class

reference link 285
PyTorch

URL 17

Q
Quality Assurance (QA)

environment 37, 352

R
Random Search 46
Rectified Linear Unit (ReLU) 20
registry_creator 331
resources

deleting 381
RESTful API 353
RMSE evaluation metric 292
Root Mean Squared Error

(RMSE) metric 25

S
SageMaker Autopilot

automation challenges, overcoming 46
overview 45

SageMaker Clarify 63

SageMaker endpoint
codifying 141, 142

SageMaker feature store
about 325
creating 325, 326

SageMaker hosted endpoint
about 64
deleting 76

SageMaker management console
reference link 299

SageMaker Model Monitor
references 373

SageMaker model registry creation
reference link 331

SageMaker modules
about 45, 46
reference link 46

SageMaker Python SDK 47
SageMaker SDK

using, to automate ML
experiment 66, 67

SageMaker Studio 47-51
SageMaker Studio IDE 47
SageMaker, Supported Regions

and Quotas
reference link 47

SageMaker training job
reference link 333

scikit-learn
URL 15

Secure Sockets Layer (SSL) 347
Security, Identity, & Compliance

reference link 346
security lens

about 345
code, securing 346, 347
data, securing 346
website, securing 347, 348

392 Index

security-operations (SecOps) team 347
Service-Level Agreements (SLAs) 253
service permissions

setting up 211
Simple Storage Service (S3) 215, 318
Software Development Kits (SDKs) 47
Source Control

reference link 130
Source stage 156
SparkContext class

reference link 281
Spark Resilient Distributed

Dataset (RDD) 280
state machine

about 179
creating 179, 180

state machine complexity
addressing 180, 181

state machine workflow
building 210, 211
ML workflow, creating 211-240
service permissions, setting up 211

Step Functions Data Science SDK
using, for CI/CD 181-183

Stochastic Gradient Descent (SGD) 33
Structured Query Language (SQL) 335
synthetic abalone survey data

creating 298-301
Synthetic Data Generator 299
systems development life

cycle (SDLC) 311
Systems Manager Parameter

Store (SSM) 215, 326
system testing 119
system tests 352

T
tabular data

AutoGluon, using for 82
Tabular Predictor 81
TensorFlow

URL 17
test artifacts

building 354
Text Predictor 81
Transport Layer Security (TLS) 347

U
Uniform Resource Locator

(URL) 212, 317
unit testing 118
University of California Irvine (UCI) 325
user interface (UI) 211

V
virtual private cloud (VPC) 339

W
werkzeug

reference link 166
workflow 179
workflow construct

parameters, defining 332
Workflow Studio 181

Index 393

X
Xcoms (cross-communications)

reference link 295
XGBoost 28

Y
YAML Ain't Markup Language

(YAML) 181

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

396 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Automated Machine Learning with Microsoft Azure

Dennis Michael Sawyers

ISBN: 978-1-80056-531-9

• Understand how to train classification, regression, and forecasting ML algorithms
with Azure AutoML

• Prepare data for Azure AutoML to ensure smooth model training and deployment

• Adjust AutoML configuration settings to make your models as accurate as possible

• Determine when to use a batch-scoring solution versus a real-time scoring solution

• Productionalize your AutoML solution with Azure Machine Learning pipelines

• Create real-time scoring solutions with AutoML and Azure Kubernetes Service

• Discover how to quickly deliver value and earn business trust using AutoML

• Train a large number of AutoML models at once using the AzureML Python SDK

https://www.packtpub.com/product/automated-machine-learning-with-microsoft-azure/9781800565319

Other Books You May Enjoy 397

Learn Amazon SageMaker - Second Edition

Julien Simon

ISBN: 978-1-80181-795-0

• Become well-versed with data annotation and preparation techniques

• Use AutoML features to build and train machine learning models with AutoPilot

• Create models using built-in algorithms and frameworks and your own code

• Train computer vision and natural language processing (NLP) models using real-
world examples

• Cover training techniques for scaling, model optimization, model debugging, and
cost optimization

• Automate deployment tasks in a variety of configurations using SDK and several
automation tools

https://www.packtpub.com/product/learn-amazon-sagemaker-second-edition/9781801817950

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Automated Machine Learning on AWS, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1801811822
https://packt.link/r/1801811822

	Cover
	Title Page
	Copyright and Credits
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1: Fundamentals of the Automated Machine Learning Process and AutoML on AWS
	Chapter 1: Getting Started with Automated Machine Learning on AWS
	Technical requirements
	Overview of the ML process
	Complexities in the ML process
	An example of the end-to-end ML process
	Introducing ACME Fishing Logistics
	The case for ML
	Getting insights from the data
	Building the right model
	Training the model
	Evaluating the trained model
	Exploring possible next steps
	Tuning our model
	Deploying the optimized model into production
	Streamlining the ML process with AutoML

	How AWS makes automating the ML development and deployment process easier
	Summary

	Chapter 2: Automating Machine Learning Model Development Using SageMaker Autopilot
	Technical requirements
	Introducing the AWS AI and ML landscape
	Overview of SageMaker Autopilot
	Overcoming automation challenges with SageMaker Autopilot
	Getting started with SageMaker Studio
	Preparing the experiment data
	Starting the Autopilot experiment
	Running the Autopilot experiment
	Post-experimentation tasks

	Using the SageMaker SDK to automate
the ML experiment
	Codifying the Autopilot experiment
	Analyzing the Autopilot experiment with code
	Deploying the best candidate
	Cleaning up

	Summary

	Chapter 3: Automating Complicated Model Development with AutoGluon
	Technical requirements
	Introducing the AutoGluon library
	Using AutoGluon for tabular data
	Prerequisites
	Creating the AutoML experiment with AutoGluon
	Evaluating the experiment results

	Using AutoGluon for image data
	Prerequisites
	Creating an image prediction experiment
	Evaluating the experiment results

	Summary

	Section 2:
Automating the Machine Learning Process with Continuous Integration and Continuous
Delivery (CI/CD)
	Chapter 4: Continuous Integration
and Continuous Delivery (CI/CD) for Machine Learning
	Technical requirements
	Introducing the CI/CD methodology
	Introducing the CI part of CI/CD
	Introducing the CD part of CI/CD
	Closing the loop

	Automating ML with CI/CD
	Taking a deployment-centric approach
	Creating an MLOps methodology

	Creating a CI/CD pipeline on AWS
	Using the AWS CI/CD toolchain
	Working with additional AWS developer tools
	Creating a cloud-native CI/CD pipeline for a production ML model
	Preparing the development environment
	Creating the pipeline artifact repository
	Developing the application artifacts

	Summary

	Chapter 5: Continuous Deployment of
a Production
ML Model
	Technical requirements
	Deploying the CI/CD pipeline
	Codifying the pipeline construct
	Creating the CDK application
	Deploying the pipeline application

	Building the ML model artifacts
	Reviewing the modeling file
	Reviewing the application file
	Reviewing the model serving files
	Reviewing the container build file
	Committing the ML artifacts

	Executing the automated ML
model deployment
	Cleanup

	Summary

	Section 3: Optimizing a Source Code-Centric Approach
to Automated Machine Learning
	Chapter 6: Automating the Machine Learning Process Using AWS Step Functions
	Technical requirements
	Introducing AWS Step Functions
	Creating a state machine
	Addressing state machine complexity

	Using the Step Functions Data Science
SDK for CI/CD
	Building the CI/CD pipeline resources
	Updating the development environment
	Creating the pipeline artifact repository
	Building the pipeline application artifacts
	Deploying the CI/CD pipeline

	Summary

	Chapter 7: Building the ML Workflow Using AWS Step Functions
	Technical requirements
	Building the state machine workflow
	Setting up the service permissions
	Creating an ML workflow

	Performing the integration test
	Monitoring the pipeline's progress
	Summary

	Section 4: Optimizing a Data-Centric Approach
to Automated Machine Learning
	Chapter 8: Automating the Machine Learning Process Using Apache Airflow
	Technical requirements
	Introducing Apache Airflow
	Introducing Amazon MWAA
	Using Airflow to process the abalone dataset
	Configuring the MWAA prerequisites
	Configuring the MWAA environment
	Summary

	Chapter 9: Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow
	Technical requirements
	Developing the data-centric workflow
	Building and unit testing the data ETL artifacts
	Building the Airflow DAG

	Creating synthetic Abalone survey data
	Executing the data-centric workflow
	Cleanup

	Summary

	Section 5:
Automating the End-to-End Production Application on AWS
	Chapter 10: An Introduction to the Machine Learning Software Development
Life Cycle (MLSDLC)
	Technical requirements
	Introducing the MLSDLC
	Building the application platform
	Examining the role of the application owner
	Examining the role of the platform engineers
	Examining the role of the frontend developers

	Examining ML and data engineering roles
	Creating a SageMaker Feature Store
	Creating ML artifacts
	Creating continuous training artifacts

	Understanding the security lens
	Securing the data
	Securing the code
	Securing the website

	Summary

	Chapter 11: Continuous Integration, Deployment, and Training for the MLSDLC
	Technical requirements
	Codifying the continuous integration stage
	Building the integration artifacts
	Building the test artifacts
	Building the production artifacts
	Automating the continuous integration process

	Managing the continuous deployment stage
	Reviewing the build phase
	Reviewing the test phase
	Reviewing the deploy and maintain phases
	Reviewing the application user experience

	Managing continuous training
	Creating new Abalone survey data
	Reviewing the continuous training process
	Cleanup

	Summary
	Further reading

	Index
	Other Books You May Enjoy

