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Foreword
Creating a data strategy is a top priority for leading organizations. That's because with any 
major initiative, from creating new experiences to building new revenue streams, leaders 
must be able to quickly gather insights and get to the truth. Data-driven organizations 
seek the truth by treating data like an organizational asset, no longer the property of 
individual departments. They set up processes to collect and store valuable data. Their 
data is democratized, meaning it's available to the right people and systems that need it. 
And their data is used to build new and innovative products that use data and machine 
learning (ML) to deliver new customer experiences.

AWS offers the broadest and deepest set of services for analytics and ML, and Amazon 
Athena is a key pillar of our offerings. Amazon Athena is a serverless analytics service 
that enables customers to use standard SQL to analyze all the data in their Amazon S3 
data lakes, their data warehouses, and their transactional databases, as well as data that 
lives on-premises, in SaaS applications, and in other clouds. In other words, with Athena, 
you can query all your data from a single place using a language familiar to most analysts, 
using any business intelligence or ML tools you'd like. It's really all about having all your 
data at your fingertips.

I am incredibly lucky to have worked on creating and launching virtually all of the 
analytics offerings from AWS over the past decade. I was part of the team that created the 
original vision for Athena and launched the service in 2016. We created Athena because 
customers wanted a way to query all their data, both the structured data from databases 
as well as the semi-structured and unstructured data in their data lakes and other data 
sources, without having to manage infrastructure or give up SQL or the standard tools 
they were already using. We launched Athena at re:Invent 2016 and have been iterating  
on and improving the service ever since.



Mert, Aaron, and Anthony were founding members of the Amazon Athena team and 
have played pivotal roles in defining, building, and evolving the service. They are deeply 
passionate engineers who love helping customers succeed with Athena and with analytics 
overall. At AWS, the vast majority of our roadmap is driven by working closely with 
our customers, understanding their requests and priorities and bringing them into our 
services. Mert, Aaron, and Anthony are customer-obsessed, always looking for ways  
to help customers get more from Athena, and they have an innate ability to teach and 
bring people along. I'm so grateful they chose to write this book to share their expertise 
with all of us.

This book, like Amazon Athena, is designed to get you up and running with queries with 
minimal upfront setup and work. You'll progress from running simple queries to building 
sophisticated, automated pipelines to work with near-real-time event data, queries to 
external data sources, custom functions, and more, all while learning from Mert, Aaron, 
and Anthony's experience working with real-world customer scenarios.

I highly recommend this book to any new or existing customers looking to transform 
their business with data and with Amazon Athena.

Rahul Pathak, VP, AWS Analytics
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Preface
Amazon Athena is an interactive query service that makes it easy to analyze data in 
Amazon S3 using standard SQL, without needing to manage any infrastructure.

This book begins with an overview of the serverless analytics experience offered by Athena 
and teaches you how to build and tune an S3 data lake using Athena, including how to 
structure your tables using open source file formats such as Parquet. You'll learn how to 
build, secure, and connect to a data lake with Athena and Lake Formation. Next, you'll 
cover key tasks such as ad hoc data analysis, working with ETL pipelines, monitoring 
and alerting KPI breaches using CloudWatch Metrics, running customizable connectors 
with AWS Lambda, and more. Moving ahead, you'll work through easy integrations, 
troubleshooting and tuning common Athena issues, and the most common reasons for 
query failure, as well as reviewing tips for diagnosing and correcting failing queries in 
your pursuit of operational excellence. Finally, you'll explore advanced concepts such as 
Athena Query Federation and Athena ML to generate powerful insights without needing 
to touch a single server.

By the end of this book, you'll be able to build and use a data lake with Amazon Athena 
to add data-driven features to your app and perform the kind of ad hoc data analysis that 
often precedes many of today's ML modeling exercises.

Who this book is for
BI analysts, application developers, and system administrators who are looking to generate 
insights from an ever-growing sea of data while controlling costs and limiting operational 
burdens will find this book helpful. Basic SQL knowledge is expected to make the most 
out of this book.



xvi     Preface

What this book covers
Chapter 1, Your First Query, is all about orienting you to the serverless analytics 
experience offered by Amazon Athena. For now, we will simplify things in order to run 
your first queries and demonstrate why so many people choose Amazon Athena for their 
workloads. This will help establish your mental model for the deeper discussions, features, 
and examples of later sections.

Chapter 2, Introduction to Amazon Athena, continues your introduction to Athena by 
discussing the service's capabilities, scalability, and pricing. You'll learn when to use 
Amazon Athena and how to estimate the performance and costs of your workloads before 
building them on Athena. We'll also take a look behind the scenes to see how Athena uses 
PrestoDB, an open source SQL engine from Facebook, to process your queries.

Chapter 3, Key Features, Query Types, and Functions, concludes our introduction to 
Amazon Athena by exploring built-in features you can use to make your reports or 
application more powerful. This includes approximate query techniques to speed up 
analysis of large datasets and Create Table As Select (CTAS) statements for running 
queries that generate significant amounts of result data.

Chapter 4, Metastores, Data Sources, and Data Lakes, teaches you what a metastore is 
and what they contain. We will introduce Apache Hive and AWS Glue Data Catalog 
implementations of a metastore. We'll then learn how to create tables through Athena or 
discover datasets in S3 using AWS Glue crawlers. We then focus on a typical data lake 
architecture, which contains three different stages for data.

Chapter 5, Securing Your Data, covers the various methods that can be employed to secure 
your data and ensure it can only be viewed by those that have permission to do so.

Chapter 6, AWS Glue and AWS Lake Formation, demonstrates step by step how to build 
a secure data lake in Lake Formation and how Athena interacts with Lake Formation to 
keep data safe.

Chapter 7, Ad Hoc Analytics, focuses on how you can use Athena to quickly get to know 
your data, look for patterns, find outliers, and generally surface insights that will help you 
get the most from your data.

Chapter 8, Querying Unstructured and Semi-Structured Data, shows how Amazon Athena 
combines a traditional query engine, and its requirement for an upfront schema, with 
extensions that allow it to handle data that contains varying or no schema.

Chapter 9, Serverless ETL Pipelines, continue with the theme of controlling chaos by 
using automation to normalize newly arrived data through a process known as extract, 
transform, load (ETL).
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Chapter 10, Building Applications with Amazon Athena, tells you what to do when 
integrating Amazon Athena into your applications. How will the application make Athena 
calls? How should credentials be stored? Should you use JDBC, ODBC, or Athena's SDK? 
What are the best practices on setting up connectivity between your application and 
Athena and the security considerations? Lastly, what is the best way for me to store my 
data on S3 to optimize speed and cost? This chapter will answer all these questions and 
give examples – including working code – to get you started integrating with Athena fast, 
easily, and in a secure way.

Chapter 11, Operational Excellence – Maintenance, Optimization, and Troubleshooting, 
focuses on operational excellence by looking at what could go wrong when using Athena 
in a production environment. We'll learn how to monitor and alert KPI breaches – such 
as queue dwell times – using CloudWatch metrics so you can avoid surprises. You'll also 
see how to optimize your data and queries to avoid problems before they happen. We'll 
then look at how the layout of data stored in S3 can have a significant impact on both cost 
and performance. Lastly, we will look at the most common reasons for query failure and 
review tips to help diagnose and correct failing queries.

Chapter 12, Athena Query Federation, is all about getting the most out of Amazon Athena 
by using Athena's Query Federation capabilities to expand beyond queries over data in 
S3. We will illustrate how Query Federation allows you to combine data from multiple 
sources (for example, S3 and Elasticsearch) to provide a single source of truth for your 
queries. Then we will peel back the hood and explain how Amazon Athena uses AWS 
Lambda to run customizable connectors. We will even write our own connector in order 
to show you how easy it is to customize Athena with your own code.

Chapter 13, Athena UDFs and ML, continues the theme of enhancing Amazon Athena 
with our own functionality by adding our own user-defined functions and machine 
learning models. These capabilities allow us to do everything from applying ML inference 
to identify suspicious records in our dataset to converting port numbers in a VPC flow  
log to the common name for that port (for example, HTTP). In all of these examples,  
we add our own logic to Athena's row-level processing without the need to run any 
servers of our own.

Chapter 14, Lake Formation – Advanced Topics, covers some of the advanced features that 
Lake Formation brings to the table, and explores various use cases that are enabled by 
these features.
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To get the most out of this book
To work on the technologies in this book, you will need a computer with a Chrome, Safari, 
or Microsoft Edge browser installed and AWS CLI version 2 installed.

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code from the book's GitHub repository (a link is available in the next 
section). Doing so will help you avoid any potential errors related to the copying and 
pasting of code.

Please ensure that you close any outstanding AWS instances after you are done working on 
them so that you don't incur unnecessary expenses.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Serverless-Analytics-with-Amazon-
Athena. If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used 
in this book. You can download it here: http://www.packtpub.com/sites/
default/files/downloads/9781800562349_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "We simply specify a SYSTEM_TIME that Athena will use to set the 
read point in the transaction log."

A block of code is set as follows:

try:

 sink.writeFrame(new_and_updated_impressions_dataframe)

 glueContext.commit_transaction(txid1)

https://github.com/PacktPublishing/Serverless-Analytics-with-Amazon-Athena
https://github.com/PacktPublishing/Serverless-Analytics-with-Amazon-Athena
https://github.com/PacktPublishing/Serverless-Analytics-with-Amazon-Athena
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781800562349_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781800562349_ColorImages.pdf
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except:

 glueContext.abort_transaction(txid1)

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

"inventory_id","item_name","available_count"

"1","A simple widget","5"

"2","A more advanced widget","10"

"3","The most advanced widget","1"

"4","A premium widget","0"

"5","A gold plated widget","9" 

Bold: Indicates a new term, an important word, or words that you see onscreen. 
For instance, words in menus or dialog boxes appear in bold. Here is an example: 
"Administrators can set a workgroup to encrypt query results. In the workgroup settings, 
set query results to be encrypted using SSE-KMS, CSE-KMS, or SSE-S3 and check the 
Override client-side settings."

Tips or important notes 
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at 
customercare@packtpub.com and mention the book title in the subject of your 
message.

Errata: Although we have taken every care to ensure the accuracy of our content,  
mistakes do happen. If you have found a mistake in this book, we would be grateful  
if you would report this to us. Please visit www.packtpub.com/support/errata 
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

https://customercare@packtpub.com
https://www.packtpub.com/support/errata
https://copyright@packt.com
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If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Serverless Analytics with Amazon Athena, we'd love to hear your 
thoughts! Please click here to go straight to the Amazon review page for this book and 
share your feedback.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.

https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/r/1-800-56234-9


Section 1:  
Fundamentals Of 

Amazon Athena

In this section, you will run your first Athena queries and establish an understanding of 
key Athena concepts that will be put into practice in later sections.

This section consists of the following chapters:

• Chapter 1, Your First Query

• Chapter 2, Introduction to Amazon Athena

• Chapter 3, Key Features, Query Types, and Functions





1
Your First Query

This chapter is all about introducing you to the serverless analytics experience offered 
by Amazon Athena. Data is one of the most valuable assets you and your company 
generate. In recent years, we have seen a revolution in data retention, where companies are 
capturing all manner of data that was once ignored. Everything from logs to clickstream 
data, to support tickets are now routinely kept for years. Interestingly, the data itself is not 
what is valuable. Instead, the insights that are buried in that mountain of data are what 
we are after. Certainly, increased awareness and retention have made the information we 
need to power our businesses, applications, and decisions more available but the explosion 
in data sizes has made the insights we seek less accessible. What could once fit nicely in a 
traditional RDBMS, such as Oracle, now requires a distributed filesystem such as HDFS 
and an accompanying Massively Parallel Processing (MPP) engine such as Spark to run 
even the most basic of queries in a timely fashion. 

Enter Amazon Athena. Unlike traditional analytics engines, Amazon Athena is a fully 
managed offering. You will never have to set up any servers or tune cryptic settings to 
get your queries running. This allows you to focus on what is most important: using data 
to generating insights that drive your business. You can just focus on getting the most 
out of your data. This ease of use is precisely why this first chapter is all about getting 
hands-on and running your first query. Whether you are a seasoned analytics veteran 
or a newcomer to the space, this chapter will give you the knowledge you need to be 
running your first Athena query in less than 30 minutes. For now, we will simplify things 
to demonstrate why so many people choose Amazon Athena for their workloads. This will 
help establish your mental model for the deeper discussions, features, and examples of 
later sections.
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 In this chapter, we will cover the following topics:

• What is Amazon Athena?

• Obtaining and preparing sample data

• Running your first query

Technical requirements
Wherever possible, we will provide samples or instructions to guide you through the 
setup. However, to complete the activities in this chapter, you will need to ensure you have 
the following prerequisites available. Our command-line examples will be executed using 
Ubuntu, but most flavors of Linux should also work without modification.

You will need internet access to GitHub, S3, and the AWS Console.

You will also require a computer with the following installed:

• Chrome, Safari, or Microsoft Edge

• The AWS CLI

In addition, this chapter requires you to have an AWS account and accompanying 
IAM user (or role) with sufficient privileges to complete the activities in this chapter. 
Throughout this book, we will provide detailed IAM policies that attempt to honor the 
age-old best practice of "least privilege." For simplicity, you can always run through these 
exercises with a user that has full access, but we recommend that you use scoped-down 
IAM policies to avoid making costly mistakes and to learn more about how to best use 
IAM to secure your applications and data. You can find the suggested IAM policy for this 
chapter in this book's accompanying GitHub repository, listed as chapter_1/iam_
policy_chapter_1.json:

https://github.com/PacktPublishing/Serverless-Analytics-with-
Amazon-Athena/tree/main/chapter_1

This policy includes the following:

• Read and Write access to one S3 bucket using the following actions:

 � s3:PutObject: Used to upload data and also for Athena to write query results.

 � s3:GetObject: Used by Athena to read data.

 � s3:ListBucketMultipartUploads: Used by Athena to write query results.

https://github.com/PacktPublishing/Serverless-Analytics-with-Amazon-Athena/tree/main/chapter_1
https://github.com/PacktPublishing/Serverless-Analytics-with-Amazon-Athena/tree/main/chapter_1
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 � s3:AbortMultipartUpload: Used by Athena to write query results.

 � s3:ListBucketVersions

 � s3:CreateBucket: Used by you if you don't already have a bucket you can use.

 � s3:ListBucket: Used by Athena to read data.

 � s3:DeleteObject: Used to clean up if you made a mistake or would like to 
reattempt an exercise from scratch.

 � s3:ListMultipartUploadParts: Used by Athena to write a result.

 � s3:ListAllMyBuckets: Used by Athena to ensure you own the results bucket.

 � s3:ListJobs: Used by Athena to write results.

• Read and Write access to one Glue Data Catalog database, using the following 
actions:

 � glue:DeleteDatabase: Used to clean up if you made a mistake or would like 
to reattempt an exercise from scratch.

 � glue:GetPartitions: Used by Athena to query your data in S3.

 � glue:UpdateTable: Used when we import our sample data.

 � glue:DeleteTable: Used to clean up if you made a mistake or would like to 
reattempt an exercise from scratch.

 � glue:CreatePartition: Used when we import our sample data.

 � glue:UpdatePartition: Used when we import our sample data.

 � glue:UpdateDatabase: Used when we import our sample data.

 � glue:CreateTable: Used when we import our sample data.

 � glue:GetTables: Used by Athena to query your data in S3.

 � glue:BatchGetPartition: Used by Athena to query your data in S3.

 � glue:GetDatabases: Used by Athena to query your data in S3.

 � glue:GetTable: Used by Athena to query your data in S3.

 � glue:GetDatabase: Used by Athena to query your data in S3.

 � glue:GetPartition: Used by Athena to query your data in S3.

 � glue:CreateDatabase: Used to create a database if you don't already have 
one you can use.



6     Your First Query

 � glue:DeletePartition: Used to clean up if you made a mistake or would 
like to reattempt an exercise from scratch.

• Access to run Athena queries.

Important Note
We recommend against using Firefox with the Amazon Athena console as we 
have found, and reported, a bug associated with switching between certain 
elements in the UX. 

What is Amazon Athena?
Amazon Athena is a query service that allows you to run standard SQL over data stored in 
a variety of sources and formats. As you will see later in this chapter, Athena is serverless, 
so there is no infrastructure to set up or manage. You simply pay $5 per TB scanned for 
the queries you run without needing to worry about idle resources or scaling. 

Note
AWS has a habit of reducing prices over time. For the latest Athena pricing, 
please consult the Amazon Athena product page at https://aws.
amazon.com/athena/pricing/?nc=sn&loc=3.

Athena is based on Presto (https://prestodb.io/), a distributed SQL engine 
that's open sourced by Facebook. It supports ANSI SQL, as well as Presto SQL features 
ranging from geospatial functions to rough query extensions, which allow you to run 
approximating queries, with statistically bound errors, over large datasets in only a 
fraction of the time. Athena's commitment to open source also provides an interesting 
avenue to avoid lock-in concerns because you always have the option to download and 
manage your own Presto deployment from GitHub. Of course, you will lose many of 
Athena's enhancements and must manage the infrastructure yourself, but you can take 
comfort in knowing you are not beholden to potentially punitive licensing agreements as 
you might be with other vendors. 

While Athena's roots are open source, the team at AWS have added several enterprise 
features to the service, including the following:

• Federated Identity via SAML and Active Directory support

• Table, column, and even row-level access control via Lake Formation

https://aws.amazon.com/athena/pricing/?nc=sn&loc=3
https://aws.amazon.com/athena/pricing/?nc=sn&loc=3
https://prestodb.io/)
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• Workload classification and grouping for cost control via WorkGroups

• Automated regression testing to take the pain out of upgrades

Later chapters will cover these topics in greater detail. If you feel compelled to do so, you 
can use the table of contents to skip directly to those chapters and learn more. 

Let's look at some use cases for Athena.

Use cases
Amazon Athena supports a wide range of use cases and we have personally used it for 
several different patterns. Thanks to Athena's ease of use, it is extremely common to 
leverage Athena for ad hoc analysis and data exploration. 

Later in this book, you will use Athena from within a Jupyter notebook for machine 
learning. Similarly, many analysts enjoy using Athena directly from BI Tools such as 
Looker and Tableau, courtesy of Athena's JDBC driver. Athena's robust SQL dialect and 
asynchronous API model also enables application developers to build analytics right into 
their applications, enabling features that would not previously have been practical due to 
scale or operational burden. In many cases, you can replace RDBMS-driven features with 
Athena at a fraction of the cost and lower operational burden. 

Another emerging use case for Athena is in the ETL space. While Athena advertises itself 
as being an engine that avoids the need for ETL by being able to query the data in place, 
as it is, we have seen the benefits of replacing existing or building new ETL pipelines using 
Athena where cost and capacity management are key factors. Athena will not necessarily 
achieve the same scale or performance as Spark, for example, but if your ETL jobs do not 
require multi-TB joins, you might find Athena to be an interesting option.

Separation of storage and compute
If you are new to serverless analytics, you may be wondering where your data is stored. 
Amazon Athena builds on the concept of Separation of Storage and Compute to decouple 
the computational resources (for example, CPU, memory, network) that do the heavy 
lifting of executing your SQL queries from the responsibility of keeping your data safe and 
available. In short, this means Athena itself does not store your data. Instead, you are free 
to choose from several data stores with customers increasingly pairing with DynamoDB 
to rapidly mutate data with S3 for their bulk data. With Athena, you can easily write a 
query that spans both data stores.



8     Your First Query

Amazon's Simple Storage Service, or S3 for short, is easily the most recommended 
data store to use with Athena. When Athena launched in 2016, S3 was the first data 
store it supported. Unsurprisingly, Athena has been optimized to take advantage of S3's 
unique ability to deliver exabyte scale and throughput while still providing eleven nines 
(99.999999999%) of durability. In addition to effortless scaling from a few gigabytes of 
data up to many petabytes, S3 offers some of the lowest prices for performance that you 
can find. Depending on your replication requirements, storing 1 GB of data for a month 
will cost you between $0.01 and $0.023. Even the most cost-efficient enterprise hard  
drives cost around $0.21 per GB before you add on redundancy, the power to run them, 
or a server and data center to house them. As with most AWS services, you should consult 
S3's pricing page (https://aws.amazon.com/s3/pricing/) for the latest details 
since AWS has cut their prices more than 70 times in the last decade. 

Metastore
In addition to accessing the raw 1s and 0s that represent your data, Athena also requires 
metadata that helps its SQL engine understand how to interpret the data you have stored 
in S3 or elsewhere. This supplemental information helps Athena map collections of files, 
or objects in the case of S3, to SQL constructs such as tables, columns, and rows. The 
repository for this data, about your data, is often called a metastore. Athena works with 
Hive-compliant metastores, including AWS's Glue Data Catalog service. In later chapters, 
we will look at AWS Glue Data Catalog in more detail, as well as how you can attach 
Athena to your own metastore, even a homegrown one. For now, all you need to know is 
that Athena requires the use of a metastore to discover key attributes of the data you wish 
to query. The most common pieces of information that are kept in the Metastore include 
the following:

• A list of tables that exist

• The storage location of each table (for example, the S3 path or DynamoDB table 
name)

• The format of the files or objects that comprise the table (for example, CSV,  
Parquet, JSON)

• The column names and data types in each table (for example, inventory column is 
an integer, while revenue is a decimal (10,2))

Now that we have a good overview of Amazon Athena, let's look at how to use it in 
practice.

https://aws.amazon.com/s3/pricing/
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Obtaining and preparing sample data
Before we can start running our first query, we will need some data that we would  
like to analyze. Throughout this book, we will try to make use of open datasets that you 
can freely access but that also contain interesting information that may mirror your 
real-world datasets. In this chapter, we will be making use of the NYC Taxi & Limousine 
Commission's (TLC's) Trip Record Data for New York City's iconic yellow taxis. Yellow 
taxis have been recording and providing ride data to TLC since 2009. Yellow taxis are 
traditionally hailed by signaling to a driver who is on duty and seeking a passenger  
(also known as a street hail). In recent years, yellow taxis have also started to use their 
own ride-hailing apps such as Curb and Arro to keep pace with emerging ride-hailing 
technologies from Uber and Lyft. However, yellow taxis remain the only vehicles 
permitted to respond to street hails from passengers in NYC. For that reason, the dataset 
often has interesting patterns that can be correlated with other events in the city, such as  
a concert or inclement weather.

Our exercise will focus on just one of the many datasets offered by the TLC. The yellow 
taxis data includes the following fields:

• VendorID: A code indicating the TPEP provider that provided the record.  
1= Creative Mobile Technologies, LLC; 2= VeriFone Inc.

• tpep_pickup_datetime: The date and time when the meter was engaged.

• tpep_dropoff_datetime: The date and time when the meter was disengaged.

• Passenger_count: The number of passengers in the vehicle.

• Trip_distance: The elapsed trip distance in miles reported by the taximeter.

• RateCodeID: The final rate code in effect at the end of the trip. 1= Standard rate, 
2= JFK, 3= Newark, 4= Nassau or Westchester, 5= Negotiated fare, 6= Group ride.

• Store_and_fwd_flag: This flag indicates whether the trip record was held in 
the vehicle's memory before being sent to the vendor, also known as "store and 
forward," because the vehicle did not have a connection to the server. Y= store and 
forward trip, while N= not a store and forward trip.

• pulocationid: Location where the meter was engaged.

• dolocationid: Location where the meter was disengaged.

• Payment_type: A numeric code signifying how the passenger paid for the trip.  
1= Credit card, 2= Cash, 3= No charge, 4= Dispute, 5= Unknown, 6= Voided trip.

• Fare_amount: The time-and-distance fare calculated by the meter.
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• Extra: Miscellaneous extras and surcharges. Currently, this only includes the $0.50 
and $1 rush hour and overnight charges.

• MTA_tax: $0.50 MTA tax that is automatically triggered based on the metered rate 
in use.

• Improvement_surcharge: $0.30 improvement surcharge assessed trips at the 
flag drop. The improvement surcharge began being levied in 2015.

• Tip_amount: This field is automatically populated for credit card tips. Cash tips 
are not included.

• Tolls_amount: Total amount of all tolls paid in a trip.

• Total_amount: The total amount charged to passengers. Does not include  
cash tips.

• congestion_surcharge: Amount surcharges associated with time/traffic fees 
imposed by the city.

This dataset is easy to obtain and is relatively interesting to run analytics against. The 
inconsistency in field naming is difficult to overlook but we will normalize using a mixture 
of camel case and underscore conventions later:

1. Our first step is to download the Trip Record Data for June 2020. You can obtain 
this directly from the NYC TLC's website (https://www1.nyc.gov/site/
tlc/about/tlc-trip-record-data.page) or our GitHub repository using 
the following command: 

wget https://github.com/PacktPublishing/Serverless-
Analytics-with-Amazon-Athena/raw/main/chapter_1/yellow_
tripdata_2020-06.csv.gz

If you choose to download it from the NYC TLC directly, please gzip the file before 
proceeding to the next step.

2. Now that we have some data, we can add it to our data lake by uploading it to 
Amazon S3. To do this, we must create an S3 bucket. If you already have an S3 
bucket that you plan to use, you can skip creating a new bucket. However, we 
do encourage you to avoid completing these exercises in accounts that house 
production workloads. As a best practice, all experimentation and learning should 
be done in isolation. 

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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3. Once you have picked a bucket name and the region that you would like to use for 
these exercises, you can run the following command: 

aws s3api create-bucket \

--bucket packt-serverless-analytics \

--region us-east-1

Important Note
Be sure to substitute your bucket name and region. You can also create buckets 
directly from the AWS Console by logging in and navigating to S3 from the 
service list. Later in this chapter, we will use the AWS Console to edit and run 
our Athena queries. For simple operations, using the AWS CLI can be faster 
and easier to see what is happening since the AWS Console can hide multi-step 
operations behind a single button.

4. Now that our bucket is ready, we can upload the data we would like to query. 
In addition to the bucket, we will want to put our data into a subfolder to keep 
things organized as we proceed through later exercises. We have an entire chapter 
dedicated to organizing and optimizing the layout of your data in S3. For now, let's 
just upload the data to a subfolder called tables/nyc_taxi using the following 
AWS CLI command. Be sure to replace the bucket name, packt-serverless-
analytics, in the following example command with the name of your bucket:

aws s3 cp ./yellow_tripdata_2020-06.csv.gz \

s3://packt-serverless-analytics/tables/nyc_taxi/yellow_
tripdata_2020-06.csv.gz

This command may take a few moments to complete since it needs to upload our 
roughly 10 MB file over the internet to Amazon S3. If you get a permission error or 
message about access being denied, double-check you used the right bucket name. 

5. If the command seems to have finished running without issue, you can use the 
following command to confirm the file is where we expect. Be sure to replace the 
example bucket with your actual bucket name:

aws s3 ls s3://packt-serverless-analytics/tables/nyc_
taxi/
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6. Now that we have confirmed our sample data is where we expect, we need to add 
this data to our Metastore, as described in the What is Amazon Athena? section. To 
do this, we will use AWS Glue Data Catalog as our Metastore by creating a database 
to house our table. Remember that Data Catalog will not store our data, just 
details about where engines such as Athena can find it (for example, S3) and what 
format was used to store the data (for example, CSV). Unlike Amazon S3, multiple 
accounts can have databases and tables with the same name so that you can use the 
following commands as-is, without the need to rename anything. If you already 
have a database that you would like to use, you can skip creating a new database, 
but be sure to substitute your database name into subsequent commands; otherwise, 
they will fail:

aws glue create-database \

--database-input "{\"Name\":\"packt_serverless_
analytics\"}" \

--region us-east-1

Now that both our data and Metastore are ready, we can define our table right from 
Athena itself by running our first query.

Running your first query
Athena supports both Data Definition Language (DDL) and Data Manipulation 
Language (DML) queries. Queries where you SELECT data from a table are a common 
example of DML queries. Our first meaningful Athena query will be a DDL query that 
creates, or defines, our NYC Taxis data table:

1. Let's begin by ensuring our AWS account and IAM user/role are ready to use 
Athena. To do that, navigate to the Athena query editor in the AWS Console: 
https://console.aws.amazon.com/athena/home.

Be sure to use the same region that you uploaded your data and created your 
database in.

2. If this is your first time using Athena, you will likely be met by a screen like the 
following. Luckily, Athena is telling us that "Before you run your first query, you need 
to set up a query result location in Amazon S3…". Since Athena writes the results 
of all queries to S3, even DDL queries, we will need to configure this setting before 
we can proceed. To do so, click on the highlighted text in the AWS Console that's 
shown in the following screenshot:

https://console.aws.amazon.com/athena/home
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Figure 1.1 – The prompt for setting the query result's location upon your first visit to Athena

3. After clicking on the modal's link, you will see the following prompt so that you can 
set your query result's location. You can use the same S3 bucket we used to upload 
our sample data, with results being used as the name of the folder that Athena 
will write query results to within that bucket. Be sure your location ends with a "/" 
to avoid errors:

Figure 1.2 – Athena's settings prompt for the query result's location

Next, let's learn how to create a table.
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Creating your first table
It is now time to run our first Athena query. The following DDL query asks Athena to 
create a new table called nyc_taxi in the packt_serverless_analytics database, 
which is stored in the AWS Glue Data Catalog. The query also specifies the schema 
(columns), file format, and storage location of the table. For now, the other nuances of this 
create query are unimportant. You may find it easier to copy create table from the 
create_nyc_taxi.sql (http://bit.ly/3mXj3K0) file in the chapter_1 folder 
of this book's GitHub repository. Paste it into Athena's query editor, change LOCATION 
so that it matches your bucket name, and click Run query. It should complete in a few 
seconds:

CREATE EXTERNAL TABLE 'packt_serverless_analytics'.'nyc_taxi'(

  'vendorid' bigint, 

  'tpep_pickup_datetime' string, 

  'tpep_dropoff_datetime' string, 

  'passenger_count' bigint, 

  'trip_distance' double, 

  'ratecodeid' bigint, 

  'store_and_fwd_flag' string, 

  'pulocationid' bigint, 

  'dolocationid' bigint, 

  'payment_type' bigint, 

  'fare_amount' double, 

  'extra' double, 

  'mta_tax' double, 

  'tip_amount' double, 

  'tolls_amount' double, 

  'improvement_surcharge' double, 

  'total_amount' double, 

  'congestion_surcharge' double)

ROW FORMAT DELIMITED 

  FIELDS TERMINATED BY ',' 

STORED AS INPUTFORMAT 

  'org.apache.hadoop.mapred.TextInputFormat' 

OUTPUTFORMAT 

  'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

LOCATION

http://bit.ly/3mXj3K0 
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  's3://<YOUR_BUCKET_NAME>/tables/nyc_taxi/'

TBLPROPERTIES (

  'areColumnsQuoted'='false', 

  'columnsOrdered'='true', 

  'compressionType'='gzip', 

  'delimiter'=',',

  'skip.header.line.count'='1', 

  'typeOfData'='file')

Once your table creation DDL query completes, the left navigation pane of the Athena 
console will refresh with the definition of your new table. If you have other databases and 
tables, you may need to choose your database from the dropdown before your new table 
will appear. 

Figure 1.3 – Athena's Database navigator will show the schema of your newly created table
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At this point, the significance of the query we just ran may not be entirely apparent, but 
rest assured we will go deeper into why serverless DDL queries are a powerful thing. Oh, 
and did we mention that Athena does not charge for DDL queries? 

Running your first analytics queries
When working with a new or unfamiliar set of data, it can be helpful to view a sample 
of the rows before exploring the dataset in more meaningful ways. This allows you to 
understand the schema of your dataset, including verifying that the schema (for example, 
column names) match the values and types. There are a few ways to do this, including the 
following limit query:

SELECT * from packt_serverless_analytics.nyc_taxi limit 100

This works fine in most cases, but we can do better. Many query engines, Athena included, 
will end up returning all 100 rows requested in the preceding query from the same S3 
object. If your dataset contains many objects or files, you are getting an extremely narrow 
view of the table. For that reason, I prefer using the following query to view data from a 
broader portion of the dataset:

SELECT *

FROM packt_serverless_analytics.nyc_taxi TABLESAMPLE BERNOULLI 
(1) 

limit 100

This query is like the earlier limit query but uses Athena's TABLESAMPLE feature to 
obtain our 100 requested rows using BERNOULLI sampling. When a table is sampled 
using the Bernoulli method, all the objects of the table may be scanned as opposed to 
likely stopping after the first object. This is because the probability of a row being included 
in the result is independent of any other row reducing the significance of the object scan 
order. In the following screenshot, we can see some of the rows that were returned using 
TABLESAMPLE with the BERNOULLI method:
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Figure 1.4 – Results of executing TAMPLESAMPLE against our nyc_taxi table

While that query allowed us to confirm that Athena can indeed access our data and that 
the schema appears to match the data itself, we have not extracted any real insights from 
the data. For this, we will run our first real analytics query by generating a histogram 
of ride durations and distances. Our goal here is to learn how much time people are 
typically spending in taxis, but we'll also be able to gain insights into the quality of our 
data. The following query uses Athena's numeric_histogram function to approximate 
the distribution with 10 buckets according to the difference between tpep_pickup_
datetime and tpep_dropoff_datetime. Since the dataset stores datetimes 
as strings, we are using the date_parse function to convert the values into actual 
timestamps that we can then use with Athena's date_diff function to generate the 
ride durations as minutes. Lastly, the query uses a CROSS JOIN with UNEST to turn 
the histogram into rows and columns. Normally, the numeric_histogram function 
returns a map containing the histogram, but this can be difficult to read. UNEST helps us 
turn it into a more intuitive tabular format. Do not worry about remembering all these 
functions and SQL techniques right now. Athena frequently adds new capabilities, and 
you can always consult a reference. 

You can copy the following code from GitHub at http://bit.ly/2Jm6o5v:

SELECT ride_minutes, number_rides

    FROM (SELECT numeric_histogram(10,

        date_diff('minute',

         date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s'),

http://bit.ly/2Jm6o5v
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         date_parse(tpep_dropoff_datetime, '%Y-%m-%d %H:%i:%s')

         )

    )

FROM packt_serverless_analytics.nyc_taxi ) AS x (ride_
histogram)

CROSS JOIN 

    UNNEST(ride_histogram) AS t (ride_minutes, number_rides);

Once you run the query, the results will look as follows. You can experiment with the 
number of buckets that are generated by adjusting the parameters of the numeric_
histogram function. Generating 100 or even 1,000 buckets can uncover patterns that 
were hidden with fewer buckets. Even with just 10 buckets, we can already see a strong 
correlation between the distance and the number of rides. I was surprised to see that such 
a large portion of the yellow cab rides lasted less than 7 minutes. From this query, we can 
also see some likely data quality issues in the dataset. Unless one of the June 2020 rides 
happened in a time-traveling DeLorean, we likely have an erroneous record. Less obvious 
is the fact that several hundred rides claim to have lasted longer than 24 hours:

Figure 1.5 – Ride duration histogram results
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Let's try one more histogram query, but this time, we will target the trip distance of the 
rides that took less than 7 minutes. The following code block contains the modified 
histogram query you can run to understand that bucket of rides. You can download it 
from GitHub at http://bit.ly/3hkggJl:

SELECT trip_distance, number_rides

FROM 

    (SELECT numeric_histogram(5,trip_distance)

       FROM packt_serverless_analytics.nyc_taxi 

       WHERE date_diff('minute',

         date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s'),

         date_parse(tpep_dropoff_datetime, '%Y-%m-%d %H:%i:%s')

         ) <= 6.328061

    ) AS x (ride_histogram)

CROSS JOIN UNNEST(ride_histogram) AS t (trip_distance , number_
rides);

Considering that the average person can walk a mile in 15 minutes, New Yorkers must be 
in a serious hurry to opt for taxi rides instead of a 15-minute walk!

Figure 1.6 – Ride distance histogram results

With that, we've been through the basics of AWS Athena. Let's conclude by providing a 
recap of what we've learned.

http://bit.ly/3hkggJl
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Summary
In this chapter, you saw just how easy it is to get started running queries with Athena. 
We obtained sample data from the NYC TLC, used it to create a table in our S3-based 
data lake, and ran some analytics queries to understand the insights contained in that 
data. Since Athena is serverless, we spent absolutely no time setting up any infrastructure 
or software. Incredibly, all the operations we ran in this chapter cost less than $0.00135. 
Without the serverless aspect of Athena, we would have found ourselves purchasing many 
thousands of dollars of hardware or hundreds of dollars in cloud resources to run these 
basic exercises. 

While the main goals of this chapter were to orient you to the uniquely serverless 
experience of using Amazon Athena, there are a few concepts worth remembering as you 
continue reading. The first is the role of the Metastore. We saw that uploading our data to 
S3 was not enough for Athena to query the data. We also needed to register the location, 
schema, and file format as a table in AWS Glue Data Catalog. Once our table was defined, 
it became queryable from Athena. Chapter 3, Key Features, Query Types, and Functions, 
will cover this topic in greater depth. 

The next important thing we saw was the feature-rich SQL dialect we used in our basic 
analytics queries. Since Athena utilizes a customized variant of Presto, you can refer to 
Presto's documentation (https://prestodb.io/docs/current/) as a supplement 
for Athena's documentation. 

Chapter 2, Introduction to Amazon Athena, will go deeper into Athena's capabilities and 
open source roots so that you can understand when to use Athena, as well as how you can 
gain deeper insight into specific behaviors of the service. 

https://prestodb.io/docs/current/
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Introduction to 

Amazon Athena
The previous chapter walked you through your first, hands-on experience with serverless 
analytics using Amazon Athena. This chapter will continue that introduction by 
discussing Athena's capabilities, scalability, and pricing in more detail. In the past, vendors 
such as Oracle and Microsoft produced mostly one-size-fits-all analytics engines and 
RDBMSes. Bucking the historical norms, AWS has championed a fit for purpose database 
and analytics strategy. By optimizing for specific use cases, the analytics engines' very 
architecture could exploit nuances of the workload for which they were intended, thereby 
delivering an all-around better product. For example, Redshift, EMR, Glue, Athena, 
and Timestream all offer related but differentiated capabilities with their own unique 
advantages and trade-offs. The knowledge you will gain in this chapter provides  
a broad-based understanding of what functionality Athena offers as well as a set of criteria 
to help you determine whether Athena is the best service for your project. We will also 
spend some time peeling back the curtain and discussing how Athena builds upon Presto, 
an open source SQL engine initially developed at Facebook. 

Most of the chapters in this book stand on their own and allow you to skip around as you 
follow your curiosity. However, we do not recommend skipping this chapter unless you 
already know Athena well and are using this book to dive deep into specific topics. 
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In the subsequent sections of this chapter, we will cover the following topics:

• Getting to know Amazon Athena 

• What is Presto?

• Understanding scale and latency 

• Metering and billing

• Connecting and securing

• Determining when to use Amazon Athena

Technical requirements
This chapter is one of the few, perhaps even the only chapter in this book, that will not 
have many hands-on activities. As such, there are not any specific technical requirements 
for this chapter beyond those already covered in Chapter 1, Your First Query, namely:

• Basic knowledge of SQL is recommended but not required.

• A computer with internet access to GitHub, S3, and the AWS Console; a Chrome, 
Safari, or Microsoft Edge browser; and the AWS CLI installed.

• An AWS account and IAM user that can run Athena queries.

As always, any code references or samples for this chapter can be found in the 
book's companion GitHub repository located at https://github.com/
PacktPublishing/Serverless-Analytics-with-Amazon-Athena.

Getting to know Amazon Athena
In Chapter 1, Your First Query, we learned that Amazon Athena is a query service that 
allows you to run standard SQL over data stored in various sources and formats.  
We also saw that Athena's pricing model is unique in that we are charged by how much 
data our query reads and not by how many servers or how much time our queries require. 
In this section, we will go beyond that cursory introduction and discuss the broader set 
of capabilities that together make Athena a product worth considering for your next 
analytics project. We do not go into full detail on every item we are preparing to discuss, 
but later chapters will allow you to get hands-on with the most notable features. For now, 
our goal is to increase your awareness of what is possible with Athena, so you can perform 
technical product selection exercises (aka bakeoffs) or steer toward areas of interest. 

https://github.com/PacktPublishing/Serverless-Analytics-with-Amazon-Athena
https://github.com/PacktPublishing/Serverless-Analytics-with-Amazon-Athena
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Understanding the "serverless" trend
The word serverless appears dozens, possibly hundreds of times, in this book. At the end 
of the book, we will run an Athena query over the complete text to find the exact number 
of times we used the word serverless. So, what is the big deal? Why is serverless such  
a seemingly important concept? Or is it just the latest buzzword to catch on? Like most 
things, the truth lies somewhere between the two extremes, and that's why we will spend 
some time understanding what it means to be serverless. 

In the simplest terms, a serverless offering is one where you do not have to manage any 
servers. AWS Lambda is often thought of as the gold standard for serverless technologies 
since it was the first large-scale offering of this type. With AWS Lambda, you have 
virtually no boilerplate to slow you down; you literally jump straight into writing your 
business logic or function as follows:

def lambda_handler(event, context):

     return {

       "response": "Hello World!"

   }

AWS Lambda will handle executing this code in response to several invocation triggers, 
ranging from SQS messages to HTTP calls. As an AWS Lambda customer, you do not 
have to worry about setting up Java, a WebService stack, or anything. Right from the 
beginning, you are writing business logic and not spending time on undifferentiated 
infrastructure work. 

This model has some obvious advantages that customers love. The first of which is 
that, without servers, your capacity planning responsibilities shrink both in size and 
complexity. Instead of determining how many servers you need to run that monthly 
finance report or how much memory your SQL engine will need to handle all the 
advertising campaigns on Black Friday, you only need to worry about your account limits. 
To the uninitiated, this might seem easy. You might even say to yourself, I have great 
metrics about my peak loads and can do my own capacity planning just fine! It is true.  
You will likely have more context about your future needs than a service like Athena 
can infer. But what happens to all that hardware after the peak has passed? I am not just 
referring to that seasonal peak that comes once a year but also the peak of each week 
and each hour. That hardware, which you or your company paid for, will be sitting idle, 
taking up space in your data center, and consuming capital that could have been deployed 
elsewhere. But what about the cloud? I do not need to buy any servers; I can just turn them 
on and off as needed. Yes! That is true.
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So, let's go down the rabbit hole a bit more. Suppose we used EC2 instances instead of 
classic servers in our own data centers. We can undoubtedly scale up and down based 
on demand. We might even be able to use EC2 AutoScaling to add and remove capacity 
based on a metric such as CPU usage. This is a good start, and AWS encourages customers 
to take advantage of these capabilities to drive down costs and improve performance. 
Should you run this infrastructure fully on-demand or use some mix of reserved 
instances? On-demand capacity has no up-front expenses and grants you the flexibility 
to turn it on and off whenever you like. Reserved capacity is more expensive up-front, 
but it is guaranteed to be there, unlike on-demand, which is first-come-first-served. Or 
perhaps you are advanced and can take advantage of EC2 Spot instances, which are often 
available at a 90% discount but can be taken from you at a moment's notice if EC2 needs 
the capacity elsewhere. 

The journey does not end here. Suppose you built an autoscaling infrastructure that reacts 
to changes in demand, like the one we whiteboarded thus far. In that case, you know that 
generating demand forecasts, capacity forecasts, calculating ROI on CapEx, and then 
actually starting and stopping servers on the fly is only the beginning. Your application 
needs to be capable of running on an infrastructure that is continuously changing 
shape. For classic web services, simple request-reply systems, a single instance receives 
and responds to each customer request. There may not be much work to adapt such an 
application to this brave new world. In fact, AWS Fargate is an excellent example of how 
well most containerized workloads can just work in the serverless world. For analytics 
applications, adapting to serverless infrastructure gets trickier. Even a simple query like 
the following one may enlist the combined computational power from dozens of instances 
to help read the raw data, filter relevant records, aggregate the results, perform the sort, 
and finally generate the output: 

SELECT sum(col1) as mysum FROM my_table WHERE col3 > 10 ORDER 
BY mysum

If our elastic infrastructure wants to scale down to reduce waste during idle periods, how 
does it know which instances it can safely turn off? This is not purely an infrastructure 
problem. In the case of distributed analytics applications such as Apache Spark or 
Presto, the application has an inbuilt scheduler that dispatches work to the infrastructure. 
In this context, work might be reading a file from S3, filtering a batch of rows, or any 
number of other operations required to complete your query. When assigning this 
work, the scheduler has multiple choices for choosing which instances the task will run 
on. For example, the scheduler can choose to place as few concurrent units of work on 
each host as possible. This is commonly described as going wide and can offset adverse 
effects associated with contention caused by a noisy neighbor process. Alternatively, 
the scheduler can choose to co-locate units of work to improve utilization or reduce the 
overhead associated with network communication. 
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Simple metrics such as CPU or MEMORY usage will not tell the story of how a distributed 
analytics engine is using (or not using) the underlying compute instances. Solving this 
problem well is extremely difficult. Even a mediocre solution requires integration between 
the analytics engine itself and the infrastructure.

Noisy neighbors
When one workload, process, or application negatively affects a neighboring 
process running on the same shared resource, we refer to the offending process 
as a noisy neighbor. If the people in the apartment above you or the house 
across the street played loud music deep into the night, it would disturb your 
ability to go about your activities. It's the same for workloads in a multi-tenant 
system. If the system doesn't provide strong isolation between workloads, those 
workloads may interact in undesirable ways. 

Beyond "serverless" with 'fully managed' offerings
By now, you hopefully have a much better understanding of why the industry, cloud 
providers, and customers alike are rushing to build and use serverless offerings. While 
the word serverless probably seems a bit self-describing at this point, we've yet to discuss 
what is arguably the more meaningful benefit of many serverless offerings, including 
Athena. We often refer to Athena as a Fully Managed service because it handles far more 
than the vision of automated infrastructure management we mentioned earlier.  
The Athena service is also responsible for the configuration, performance, availability, 
security, and deployments of the underlying analytics engine. When talking about Athena 
with prospective customers, I tend to use three scenarios to convey the benefits of using 
fully managed offerings.

Analytics engines such as Apache Spark, Presto, and traditional RDBMSes frequently 
implement multiple approaches for executing your query. You may even have heard of 
these engines producing logical and physical query plans. These plans result from applying 
a series of rules and statistics to your query before deciding the fastest way to get you  
a result. For example, suppose your query is joining two tables. In that case, the engine 
can choose between a broadcast join, which exploits the relative size of the two tables, or 
a fully distributed join, which can scale to larger sizes but takes longer to complete. The 
critical optimization in the broadcast join is that if one of the two tables is small enough 
to broadcast to every instance participating in the query, then each instance can operate 
independently, with less data shuffling and associated communication overhead. Being 
fully managed, Athena has the responsibility to determine an appropriate memory limit, 
beyond which broadcast joins are not reliable or underperform due to memory constraints.
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Athena could also decide that it should raise the available memory in its fleet by adding 
more hosts or hosts of a different type to increase the broadcast join limit for a particular 
query that will significantly benefit from it. Athena's actual approach to join optimization 
is not publicly documented, but the point we are illustrating is that this is no longer 
your challenge to solve. The hundreds, or in some cases thousands, of tuning parameters 
available in these algorithms are squarely in the hands of Athena. In the next chapter,  
we will touch on Athena's automatic engine upgrades and self-tuning capabilities.

This is an excellent segue into the second differentiator for fully managed offerings. 
With Athena, you do not have to worry about deploying new versions of the analytics 
engine. If you run your own Spark or Presto cluster on servers, and even if you run them 
in AWS Fargate, you'll need to handle deploying updates to get bug fixes, new features, 
and security updates. On the surface, this might seem straightforward. After all, you did 
set it up the first time. Deploying updates on an ongoing basis to a live system is more 
complicated. How do you avoid downtime? How do you handle rollbacks? How do you 
know the new version is backward compatible or what changes your queries need to 
succeed on the latest version? 

In 2020, Athena publicly announced the self-tuning technology used internally to manage 
upgrades of its Presto fleet. To ensure seamless upgrades, Athena is continually running your 
queries on varying versions of its engine with numerous configurations allowing Athena to 
identify the best settings for each query. It also means Athena knows when a new version 
of Presto, its underlying engine, is or isn't safe for your workload. As a fast-moving open 
source project, Presto does not always ensure backward compatibility before cutting a new 
release. Athena allows you to experiment with new versions before you are auto upgraded 
or roll back to a previous version with the click of a button. You can even perform targeted 
upgrades or downgrades of specific queries! You do not need to worry about having a fleet 
of the old and a new fleet while simultaneously updating apps to point at one or the other. 

The third and final scenario centers around availability. If you are running your analytics 
engine on EC2 or Fargate, you've likely encountered scenarios where the infrastructure 
was running, but your queries fail in a seemingly random fashion. After the number of 
initially uncorrelated user complaints mount, you finally register that something strange 
is happening. Some instances of your engine, executors in Spark parlance, and workers in 
Presto nomenclature, seem to have a higher error rate than their peers. You are facing  
a classic gray failure. The root causes can vary from slow resource leaks to noisy 
neighbors, but identifying them can be challenging because they often masquerade as  
a user error. If you use long-lived clusters, this problem becomes even more prevalent.  
You will find yourself rejuvenating instances periodically by restarting or tracking 
per-instance success metrics to find outliers that need to be removed from service.  
As a managed service, Athena owns this in addition to the easier availability problems 
where an instance is entirely unresponsive and requires replacement. 
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As you can see, there is a non-trivial amount of infrastructure work and capital that are 
required to ensure your applications have the compute capacity ready when customers 
click the button. For all the benefits of using a fully managed, serverless offering, there 
are also drawbacks. Suppose your functional, performance, or other needs diverge 
from Athena's roadmap. In that case, you may find yourself needing to build significant 
pieces of infrastructure just to gain enough control to affect the relatively small change 
you wanted. This is generally only a meaningful point of consideration for large or 
sophisticated customers who have both the ability to build their own solution or whose 
use cases are outliers compared to Athena's target audience. The good news is that AWS's 
customer obsession is world-renowned, so Athena is incentivized to continually add 
features and improve performance as part of their strategy to remain a great place to  
run your analytics workloads. These reasons are precisely why so many customers  
love Athena. 

Obsessing over customers
You've probably noticed our tendency to mention AWS as being customer-
obsessed. This notion comes from one of Amazon's leadership principles, 
which states: "Leaders start with the customer and work backward. They work 
vigorously to earn and keep customer trust. Although leaders pay attention to 
competitors, they obsess over customers." This philosophy drives everything 
AWS does. You can learn more about the Amazon leadership principles by 
reviewing the links at the end of this chapter.

Key features
Thus far, we have spent a lot of time discussing the unique advantages that come with 
Athena's promise of serverless analytics. Now we will go through the compelling analytics 
features that Athena offers. While reading this section, keep in mind that our objective 
is to build an awareness of these capabilities. As such, the descriptions will be high-level 
and intentionally simplified so as not to overwhelm you while we build up to the more 
advanced sections of this book. Later chapters will guide us through getting hands-on 
with many of the features we are about to review.

Statement types
Athena supports several different statement types, including DDL and DML. Data 
Definition Language (DDL) statements allow you to interact with your Data Lake's 
metadata by defining tables and updating those tables' schema or properties. You can also 
use these statements to add or modify the partitions in your tables. Customers commonly 
use these statements to ingest new data into their Data Lake. Data Manipulation 
Language (DML) statements allow you to interact with your Data Lake's actual data. 
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SELECT queries are the most used DML statement type in Athena and can be combined 
with Create-Table-As-Select (CTAS) statements to create new tables. Like CTAS, 
INSERT INTO statements can be used along with SELECT to add data to an existing 
table. Both CTAS and INSERT INTO queries can automatically add new partitions to 
your metastore, eliminating the need for you to manage partitions manually. While not 
traditionally a statement type, Athena's TABLESAMPLE feature acts as a modifier in your 
SELECT statements by instructing the query planner to only consider a subset of the data 
your query would normally scan. This can be helpful when scanning the full dataset would 
be too costly or take too long. There are two different sampling techniques available.  
In Chapter 1, Your First Query, we used the BERNOULLI technique, which considers  
each row in the input table individually. The SYSTEM sampling method is a more  
coarse-grained sampling technique that groups rows into batches and then considers 
each batch for inclusion in the query. The batches may be one-to-one with an S3 object 
or, depending on the file format, aligned to a chunk of rows. BERNOULLI can offer less 
observation bias than SYSTEM sampling but is often much slower. 

The SQL dialect
Athena SQL is ANSI SQL-compliant. Notable variances from ANSI SQL include 
extensions to better support complex types such as MAPs, STRUCTs, and LISTs. This 
means you can use all your favorite JOIN types and window functions. You can even 
craft those oh so easy-to-understand, deeply nested queries. In all seriousness, Athena 
SQL does have a mechanism to improve the readability of such statements. The WITH-
CLAUSE syntax allows you to extract and essentially parameterize the nested sub-queries, 
making the original statement far easier to digest. We will see some first-hand examples 
of this later, and you can find more details in the Athena documentation referred to in the 
Further reading section at the end of this chapter.

The specific syntax and available functions vary slightly, depending on which Engine 
Version you are using. Thanks to Athena's auto-upgrade functionality, most customers 
never realize that Athena supports multiple engine versions or dialects. That is because 
changes are typically additive, and the few breaking changes that do occur can be handled 
query by query, so you never see a failure. Athena presently supports two engine versions:

• Athena version 1 is based on Presto 0.172

• Athena engine version 2 was released in December 2020 and is based on  
Presto 0.217 
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Unless you have a specific reason to use the older version, you should use Athena engine 
version 2 or later as it runs up to 30% faster than engine version 1 and includes dozens  
of new functions. 

On the DDL front, Athena uses a subset of HiveQL syntax for managing everything from 
tables to partitions. The complete list of supported DDL operations can be found in the 
official Athena documentation, but rest assured that it includes everyday operations such 
as CREATE TABLE, ALTER TABLE, CREATE VIEW, SHOW, and DROP. 

Support for Hive-compliant metastores
In addition to the out-of-the-box support for the AWS Glue Data Catalog, Athena allows 
you to bring your own Hive-compliant metastore. This can help you already run your 
own Hive metastore for use with other applications, or if you do not intend to use AWS 
Glue Data Catalog. Customers also use this facility for integrating Athena with their 
home-grown metadata systems. To attach Athena to your metastore, you provide Athena 
with a Lambda function to call for all metadata operations. For example, when Athena 
needs to get the columns and types in a given table, it will contact the Lambda function 
you provide. The Lambda function should be capable of interfacing with your actual 
metastore and providing an appropriate response to Athena. Athena expects the Lambda 
function to support Hive's Thrift protocol and the Athena team provides a ready-made 
Lambda function capable of talking to your Hive metastore. You can find more details on 
this feature in Chapter 4, Metastores, Data Sources, and Data Lakes, as well as in the official 
Athena documentation linked from the Further reading section at the end of this chapter.

When used with Lake Formation's new ACID transaction capabilities, these form 
powerful building blocks for any analytics application. 

Supported file formats
Amazon Athena supports common file formats such as CSV, TSV, and AVRO in 
addition to more advanced columnar storage formats, including Apache ORC and 
Apache Parquet. You can also query unstructured or semi-structured files in Textfile 
and JSON format. The preceding formats can be combined with Snappy, Zlib, LZO, or 
GZIP compression to reduce file size and cost while improving scan performance. This is 
notable because Athena charges based on compressed data size. This means that if your 
data is originally 100 GB, but it compresses down to 10 GB, you will only be charged for 
10 GB if you read all the data from an Athena query. 
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ACID transactions
While Amazon S3 is the world's most popular store for building data lakes, the 
immutability that contributes to its scalability also creates challenges for use cases that 
have concurrent readers and writers or need to update existing data. Put another way, this 
means that if you want to modify or delete 1 row that happens to reside in an object that 
contains 1,000,000 rows, you will need to read all 1,000,000 rows and then overwrite that 
original S3 object with a new object containing the original 999,999 rows plus your one 
new row. This write amplification is a significant scaling challenge. You might be thinking, 
thanks for telling me. I can simply avoid updating existing rows. That would have been  
a reasonable strategy, but new regulations are making that approach less practical.  
For example, the European Union's new General Data Protection Regulation (GDPR) 
requires companies to purge data about specific customers upon request. This is worth 
repeating. GDPR likely requires you to delete data pertaining to individual customers 
no matter where it resides in your data lake. That could mean deleting a single row from 
every S3 object in your many petabytes of data. 

Similarly, customers are increasingly moving to near real-time data ingestion using 
technologies such as Kafka and Amazon Kinesis. These applications reduce the time it 
takes for new data to become available in your data lake (and therefore your analytics 
queries) but create many small files. These tiny files can quickly degrade performance 
for analytics systems such as Athena, Spark, and even Redshift Spectrum because of the 
increased overhead associated with each read operation. To balance the need for data 
to become available in a few minutes or a few seconds in extreme cases, customers find 
themselves running periodic compaction jobs that read the small files, merge them 
into larger files, and then delete the original small files. However, if you attempt such 
compaction while also running a query, you will likely see incorrect results or fail. This 
is because your reader might have processed small file #1, and then your compaction job 
writes a new file containing the contexts of file #1 through file #100. Your reader might 
then also read that new file, resulting in duplicate data in your query! It is also possible 
that your reader will decide it needs to read a file, and the compaction job will delete that 
file between the reader deciding the file needs to be read and reading it. This will result in 
a query failure for most engines.
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This is where ACID transactions can help. Athena supports Lake Formation transactions 
for snapshot isolation between any number of concurrent readers and writers.  
This integration also provides automatic background compaction of small files, among 
other accelerations. We will cover these topics in detail as part of Chapter 14, Lake 
Formation – Advanced Features. In addition to Lake Formation transactions, Athena also 
offers partial support for HUDI copy-on-write tables and Delta Lake. Hudi was developed 
by Uber and primarily attempts to address the consistency and performance concerns 
emerging from update operations. 

Delta Lake is produced and maintained by Databricks as part of their Spark offering. 
Support in Athena comes from SymlinkTextInputFormat, as defined in the Delta Lake 
documentation linked in the Further reading section of this chapter. This provides  
read-only access to Delta Lake tables from engines that do not natively support Delta 
Lake's format.

Readers may be happy to learn that this is a rapidly evolving area for Amazon Athena, and 
we have had to update this section of the book three times since we started writing. This is 
notable because, as you choose technology for your project or company, you want to select 
ones growing along the dimensions you care about most. 

Self-tuning and auto-upgrades
When I think about the most frustrating projects in my career, many of them were related 
to upgrading software or finding the right combination of cryptic settings to achieve the 
advertised performance we had been sold on. With Athena, you do not have to concern 
yourself with either of these responsibilities. It is, however, useful to understand Athena's 
approach to these disciplines. Other offerings require you to pick the version of the 
software you want to use. With Athena, you can choose whether or not to use specific 
versions to get early access to new features. At any time, you can also enable auto-upgrade 
to have Athena continuously monitor your queries for the best combination of settings 
and software. It is not uncommon for analytics vendors to publish their TPCH and 
TPCDS performance results in their marketing materials. These industry benchmarks 
are crafted by TCP and use a mix of query patterns common in data science and other 
prototypical workloads. The resulting performance numbers can be used as a decision 
support tool. Unfortunately, many vendors overfit these exact tests, resulting in solutions 
that do not perform well for use cases that don't closely match the industry benchmark. 
Since Athena learns from your specific workloads, you can expect it to do well both 
in cases where your workloads follow well-known industry patterns and when you're 
running that oddball query for a new idea you had. 
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Federation and extensibility
One of my favorite Athena features is Athena Query Federation, with just a small 
fraction of my enthusiasm stemming from my personal involvement in its development. 
Athena Federation allows you to extend Athena with your own custom data sources 
and functionality. The Athena Federation SDK and many of the data source connectors 
are 100% open source and are available on GitHub. We've included a link to the GitHub 
repository in the Further reading section at the end of this chapter. A growing community 
is contributing to its development, with several integration partners joining the Athena 
team in publishing connectors and UDFs to the AWS Serverless Application Repository 
where you can 1-click deploy them. There are more than 30 available data sources, 
including 14 open source connectors provided by the Athena team, including:

• Amazon Timestream: This connector enables Amazon Athena to communicate 
with Timestream, making your time series data accessible from Athena. A great use 
case would be identifying anomalous IoT devices in Timestream and joining those 
with details of the site that houses the sensor from elsewhere.

• Amazon Neptune: This connector enables Amazon Athena to communicate with 
your Amazon Neptune instance(s), making your graph data accessible from SQL. 
This connector has a unique way of translating vertices and relationships to tables. 

• Amazon DynamoDB: This connector enables Amazon Athena to communicate 
with DynamoDB, making your DDB tables accessible from SQL. 

• Amazon DocumentDB: This connector enables Amazon Athena to communicate 
with your DocumentDB instance(s), making your DocumentDB data accessible 
from SQL. The also works with any MongoDB-compatible endpoint. 

• Elasticsearch: This connector enables Amazon Athena to communicate with your 
Elasticsearch instance(s), making your Elasticsearch data accessible from SQL. 

• HBase: This connector enables Amazon Athena to communicate with your HBase 
instance(s), making your HBase data accessible from SQL. 

• JDBC: This connector enables Amazon Athena to access your JDBC-compliant 
database. At launch, this connector supports MySQL, Postgres, and Redshift. For 
the latest list, check the connector's README.md. 

• Redis: This connector enables Amazon Athena to communicate with your Redis 
instance(s), making your Redis data accessible from SQL. 

• CloudWatch Logs: This connector enables Amazon Athena to communicate with 
CloudWatch, making your log data accessible from SQL.

• CloudWatch Metrics: This connector enables Amazon Athena to communicate 
with CloudWatch metrics, making your metrics data accessible from SQL.
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• AWS CMDB: This connector enables Amazon Athena to communicate with various 
AWS services (EC2, RDS, EMR, S3, and so on). Using this connector, you could run 
a query to identify all the EC2 instances in a particular VPC. Yes, you could do this 
using the EC2 API, but with this connector, you can use one API, Athena SQL, to 
query many different resource types. 

• TPC-DS: This connector enables Amazon Athena to communicate with a source of 
randomly generated TPC-DS data for use in benchmarking and functional testing. 

Unstructured and semi-structured data
Athena's support for a wide range of file formats, rich text, and JSON manipulation 
functions, as well as support for custom UDFs, make it an excellent choice for analyzing 
unstructured and semi-structured data. Whether you are trying to count the number of 
Tweets with negative sentiment in the previous hour (spoiler, the answer is all of them) 
or use the Levenshtein distance to correlate log lines, Athena can help you generate that 
result. We will go through a few examples of using unstructured and semi-structured data 
with Athena in Chapter 8, Querying Unstructured and Semi-Structured Data.

The Levenshtein distance
The Levenshtein distance is a handy technique for performing fuzzy matching 
between strings, including spelling errors, variations in spacing or punctuation, 
and other differences that are challenging to classify. It is named after the Soviet 
mathematician Vladimir Levenshtein who first described the algorithm for 
quantifying the difference or similarity between two strings. The approach 
counts the minimum number of single-character edits (insertions, deletions, 
or substitutions) required to change one word into the other. You might be 
surprised to learn that the Levenshtein distance is part of many systems capable 
of fuzzy matching to accomplish that feat, including the search mainstay 
Elasticsearch. You can use this algorithm directly from an Athena query from 
the built-in levenshtein_distance(string, string) function. 

Built-in functions
Since Amazon Athena is based on Presto, it shares many of the same functions. 
These functions range from standard string or timestamp manipulation capabilities 
common in many databases to more advanced geospatial functions. You can find the 
full list of functions, grouped by type, in the Athena documentation (http://amzn.
to/2KoHAKE), and I'm sure you'll find it to be a close match for Presto's documentation 
(http://bit.ly/3nKaHFS).

http://amzn.to/2KoHAKE
http://amzn.to/2KoHAKE
http://bit.ly/3nKaHFS
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This is perhaps a great time to shift gears for our next topic, where we will peel back 
the curtain just a bit and talk about how Athena works under the hood. Much of that 
conversation will focus on Presto and its architecture.

What is Presto?
As we have mentioned a few times already, Athena is based on a fork of the Presto open 
source project. By understanding Presto, what it is, and how it works, we can gain greater 
insight into Athena. 

Presto is a distributed SQL engine designed to provide response times in the order of 
seconds for interactive data analysis. While it may be tempting to do so, it is essential not 
to confuse Presto with a database or data warehouse as Presto has no storage of its own. 
Instead, Presto relies on a suite of connectors to plug in different storage systems such 
as HDFS, Amazon S3, RDBMS, and many other sources you may wish to analyze. This 
simple but inventive approach allows Presto to offer the same consistent SQL interface 
regardless of where your data lives. It's also why Athena claims that "there is no need for 
complex ETL jobs to prepare your data for analysis."

If you have an existing data lake, you may be familiar with Apache Hive or Hadoop tools. 
Presto was, in part, intended as a high-performance alternative to the Hadoop ecosystem 
for queries requiring interactive performance on data ranging in size from gigabytes 
to many terabytes. The evolutionary pressure exerted on Presto by Hive has its roots at 
Facebook, where both analytics tools were created and later open sourced. As of 2012, the 
last time Facebook published these figures, Facebook's Hive data warehouse had reached 
a staggering 250 petabytes in size. Having architecture limitations and lacking the right 
code-level abstractions to meaningfully scale Hive and its shared Hive infrastructure 
beyond the tens of thousands of daily queries it already handled, the engineers at 
Facebook sought a fresh start in creating Presto. The inertia of the existing 250+ petabytes 
of HDFS data and the emergence of other, siloed data stores across Facebook influenced 
the critical architecture decision to separate storage and compute in Presto. Naturally, 
one of the first and most mature Presto connectors was the Hive connector. This allowed 
Presto's new distributed SQL engine to access the wealth of existing data without taking 
on the effort of migrating the data itself. In 2013, roughly a year after the journey started, 
Facebook ran its first production Presto workloads. The first open source version of Presto 
was released later that year. 

In the ensuing 7 years, a rich community grew around Presto, with Netflix, Uber, and 
Teradata making significant private and public investments in the engine. AWS did not 
engage with Presto until 2015 when it added support for Presto in AWS EMR, positioning 
the distributed SQL engine along with side-related technologies such as Spark and Hive.
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It was not until 2016 that Athena sought to make Presto even easier to use and scale 
by making Presto a core part of the newly minted service. Then, in 2018, the Presto 
community started to fracture with the original engineering team leaving Facebook 
over differences in the open source project's stewardship. That original team went on to 
establish the Presto Software Foundation, forking the original Presto repository in the 
process. Not wanting to lose face (pun very much intended) over the split, Facebook 
joined with Uber, Twitter, and Alibaba to form the Presto Foundation under the Linux 
Foundation's governance. If you are following along at home, we now have a Presto 
Foundation and a Presto Software Foundation developing divergent forks of Presto. 
It should then come as no surprise that in late 2020, the Presto Software Foundation, 
comprised of the original developers who left Facebook, was required to rebrand its 
fork as Trino. Only time will tell which fork ultimately wins. In the meantime, many 
sophisticated customers are merging features from both distributions to get the best of 
both worlds. 

Now that we know what Presto is, as well as some of the history that led to its creation, 
you can take advantage of Facebook's experience in trying to scale suboptimal tools for  
a job that needed something new. By understanding the motivations for creating Presto, 
you may even identify similar struggles or requirements in your organization and be 
better equipped to explain why Presto and, by extension, Athena, is a good fit to meet 
those needs. Next, we will look at how Presto works in relation to a service like Athena. 

Presto architecture
As an engineer who has spent the last decade working on and supporting large-scale, 
multi-tenant analytics applications, I have experienced joy, frustration, and honestly, the 
full range of human emotions in those pursuits. Those experiences have shaped how I 
define architecture. Unlike many other books or white papers that you may read, I'll be 
describing Presto's architecture as it relates to executing a query, not how you deploy it. 
After reading this section, you may want to compare and contrast the explanation given in 
the original Presto white paper that we've provided a link to in the Further reading section 
of this chapter. 

Most, perhaps even all, SQL engines start by parsing your query into an Abstract Syntax 
Tree (AST). Presto uses ANTLR to generate parser and lexer code that help Presto's SQL 
planner turn your SQL string into an AST. In Figure 2.1, you can see a simplified AST for 
the following query:

SELECT table_1.col_a, table_2.col_1

FROM table_1 LEFT JOIN table_2 ON col_b = col_2

WHERE col_a > 20 and col_1 = 10
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The SQL engine's planner operates on a tree representation of your SQL because it 
perfectly captures the relationship between the different operations needed to generate  
the result. 

Figure 2.1 – A diagram of a hybrid AST and a logical query plan

As Presto begins planning how to execute your query, it runs several transformations over 
the AST. One such modification is injecting Operators into the tree. Aggregations such as 
max, min, or sum are examples of an operator. Similarly, reading from a table in S3 would 
be akin to a TableScan operator. Referring back to Figure 2.1, we can read the plan for 
our query from the bottom up. Our engine needs to perform independent TableScan 
operations of table_1 and table_2. These can occur in parallel since they are on 
different branches of the tree. Each TableScan leads into a filtering operation that applies 
the relevant portion of the WHERE clause. Data from both TableScan operations 
converge at a Join operation before passing through a project operator that trims down 
the set of columns to only those required by our SELECT clause. 

At this point, you might be asking yourself, what does this have to do with architecture? 
I thought Presto had a coordinator node that handled all the query planning and one or 
more worker nodes that did the heavy lifting. Coordinators and Workers are the units you 
deploy when running Presto yourself. Still, the exciting part of Presto's architecture is how 
it can reshape the relationship between those components on the fly for each query. You'll 
frequently see this called a physical plan. So far, everything we have discussed happens in 
the ether because the AST and logical plan don't connect to the physical world of servers 
and processes. 
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After the coordinator node generates what it believes to be the best logical plan, it needs to 
decide which worker nodes to involve in the actual execution. The result is a physical plan 
influenced by the number of available workers, the parallelism the logical plan offers, and 
even the workers' current workload. 

While the Presto coordinator does play a unique role in orchestrating your queries' 
execution, all nodes in your Presto fleet can run the same software. Upon starting, each 
node attempts to contact the coordinator. This discovery process allows the coordinator to 
build an inventory of resources, including what capabilities each node offers. For example, 
you may have many nodes configured to run the Hive connector because you have lots 
of data in S3, but you only have two nodes with the JDBC connector installed since you 
rarely federate queries to your sole MySQL instance. In my experience, there are more 
advantages to having your fleet be homogenous than taking on the complexity of running 
different configurations on different nodes. The node discovery mechanism and self-
differentiating workers allow multi-tenant services such as Athena to remove the need to 
manage clusters. Instead, Athena custom crafts a serverless resource plan for each of your 
queries. This is a fancy way of saying the servers come into the picture just in time  
to execute their share of the work and then rapidly move to the next job or query that 
needs them. 

A lot of Presto's architecture may seem familiar. The broad strokes are similar to that of 
Hive, Spark, and many other distributed analytics engines. A leader node, homogenous 
workers, and logical and physical plans are all concepts that pre-date Presto. There is, 
however, one area where Presto significantly diverges from its peers. Hive, Spark, and 
Presto all break their query plans down into stages. Stages usually demark a boundary 
between dependent but discretely different operations. Sometimes, these boundaries are 
useful for marking changing resource requirements or creating checkpoints to recover 
from partial failures. Presto's execution engine is deeply pipelined, often executing all 
query stages simultaneously. Hive and Spark currently wait for a stage to complete before 
the next stage can start. Deep pipelining gives Presto a structural advantage for queries 
that don't have blocking operations because later stages can attempt to make partial 
progress even while early stages are still completing. Spark attempts to approximate this by 
collapsing pipeline-able operations into the same stage, but that isn't always possible. 

Similarly, Presto doesn't always benefit from deep pipelining. Queries having a subquery 
with paired ORDER BY and LIMIT clauses are one case where pipelining benefits can 
be limited. In this case, the outer query can't make meaningful progress until the LIMIT 
clause of the inner query gets results from the preceding ORDER BY clause. Unfortunately, 
the ORDER BY clause can't generate results until everything before it completes, thereby 
stalling the pipeline. Exceptions aside, all Presto nodes continuously send intermediate 
results to the next worker in the physical plan. Like a real tree, water, or data, flows from 
the bottom of the tree to the top. 
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The flow of data, or more precisely the location of the data you query, is another notable 
aspect of Presto's architecture. Earlier in this chapter, we mentioned that Athena supports 
querying data in over 14 different sources, including S3, Elasticsearch, and MySQL. 
Querying data across multiple sources is made possible, in part, by Presto separating 
storage and compute. Presto's creators knew that running traditional data warehouse 
systems was expensive both operationally and in terms of licensing. Companies frequently 
hire entire teams to manage the data warehouse and help police use of storage and SLA, 
thereby impacting job contention. Presto takes a different view and is a semantic layer 
over your data – a virtual data warehouse. If the separation of storage and compute makes 
Presto a good choice for querying a data lake, then federation may make it the best option. 
Suppose you are moving your organization to a data lake or have some awkward data 
sources to feed into an existing data lake. In that case, Presto's connector suite lets you 
query across multiple sources as if they were one. There is no need to ETL data from one 
source to another just to run queries over it. You can run the same ANSI SQL over all 
connected sources, regardless of their underlying query languages. 

Beyond architectural choices, Presto also does a lot of small things well. Each worker 
makes use of an in-memory parallel processing model that heavily multi-threads query 
execution to improve CPU utilization. When appropriate, Presto even rewrites its own 
code to execute your query more quickly. This technique is known as code generation,  
and it can help improve CPU branch prediction and exploit machine-specific instruction 
sets. If you've never worked on a code generator, this might seem rather theoretical,  
so let's look at an example. In the following code, our imaginary SQL engine is 
copying only the columns selected by our query from a page of intermediate results to 
targetPage representing the query's final output: 

for(nextColumn in selectedColumn){

    sourcePage.copy(nextColumn, targetPage)

}

What's the big deal? I only selected five columns. How could this possibly matter? Well, 
this code runs for every ROW! So those seemingly meaningless comparisons and small 
copy operations add up and degrade performance when your query processes millions or 
billions of rows. Instead, Presto generates very targeted pieces of code with generalization. 
In our hypothetical example, Presto creates the following code:

sourcePage.copy(column1, targetPage)

sourcePage.copy(column2, targetPage)

sourcePage.copy(column3, targetPage)

sourcePage.copy(column4, targetPage)

sourcePage.copy(column5, targetPage)
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This seemingly contrived example was a real issue Athena patched in Presto. For queries 
exceeding 6,000 projected columns in any stage, Presto's code generator would fail and 
revert to using the original for loop approach, resulting in a 20% increase in query 
runtime. Removing one column or fixing the code generator restored the original 
performance. By making the CPU operations required to complete the query more 
predictable, we were able to make better use of the deep execution pipeline in modern x86 
CPUs. This technique isn't unique to Presto, but it is useful to know how Presto uses it.

In this section, we've tried to highlight the fluidity of Presto's architecture because its 
creators made a conscious choice to go with this model over more prescriptive but more 
straightforward approaches. This is just the tip of the iceberg in terms of how Presto 
works. If you'd like to learn more about this topic, I encourage you to read the Presto 
white paper. Next, we will learn more about the kind of performance and scale Athena 
delivers using Presto. 

Understanding scale and latency
Ever wonder why companies ambiguously describe their products as fast or highly scalable 
without quantifying those superlatives? For a long time, I thought it was because they 
were hiding something. Maybe they didn't provide hard numbers because they weren't 
the fastest or had a terrible gotcha. As it turns out, performance is personal, with dozens 
of variables affecting how long a query will run. Even the differences between a successful 
query and an unsuccessful query can come down to random chance associated with your 
data's natural ordering. These are some of the reasons why companies do not provide 
straightforward performance figures for their analytics engines. However, this doesn't 
mean we can't identify useful dimensions for anticipating a workload's performance. 

When evaluating Athena's performance, the first thing to understand is that Athena is 
not likely to be the fastest option. This may be the most controversial statement in the 
entire book. Earlier in this very chapter, we discussed the trade-offs in ease of use and 
added control when using fully managed services. As a managed service, Athena is in 
charge of deciding most aspects of how your queries execute, including the number of key 
resources such as CPU and memory. So, it comes as no surprise that Athena doesn't have 
any setting you can use to influence those resources. As good as Athena's query planning 
and resource allocation technology can be, it is not likely to guess your SLA needs. This 
is important because Athena, as part of removing the need for customers to tune cryptic 
performance settings, closed a standard mechanism for increasing performance. In the 
future, such settings may get added, but today Athena simply doesn't know that your 
urgent query needs to finish by the start of that 9 a.m. meeting. 
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Many other products in this space, including Google BigQuery, allow you to change 
the price/performance balance by influencing the amount of hardware parallelism the 
underlying engine will give your query. In BigQuery parlance, you can choose to use 
more slots to try making a query run faster. The added control enables these alternatives 
to outperform Athena frequently. It also makes them more expensive than Athena. In 
the case of Google BigQuery, it is relatively easy to create queries that run 50% faster in 
BigQuery than Athena, but cost more than 10x what Athena charges for the same result.

Beyond individual query performance, we also need to consider how the system behaves 
when we have concurrent queries. According to the Amazon Athena Service Quota 
page, customers using the US-EAST-1 region can submit 20 concurrent DDL and 
25 concurrent DML queries. The documentation also notes that these default values 
are soft limits for which you can request an increase from the Athena Service Quotas 
console. These limits consider both running and queued queries. Lack of capacity is 
the overwhelming reason a query might find itself in the queued state. Such a capacity 
shortfall can result from Athena itself being low on capacity and maintaining fairness 
between customers. It can also result from you exceeding your account limits. The specific 
reasons for queuing aren't important as they are most likely related to internal details of 
how Athena schedules queries. Instead, we should focus on things we can control. A quick 
Google search for Athena Queuing turns up many Stack Overflow and AWS Forum posts 
where customers didn't consider their concurrency needs before building on Athena. 
The point you should remember is to include concurrency testing in your evaluation of 
Athena. If your anticipated workload needs twice the advertised default concurrency 
within the next 2 years, engage with the Athena service team early to understand how they 
can accommodate your workload. Soft limits offer a useful data point about how a service 
scales, but it isn't surprising to see a serverless offering sensitive to concurrency. As we 
saw in our Presto architecture overview, all queries get mapped into the physical world of 
servers and processes at some point. 

In the last year, Athena has more than doubled many of its default limits. I expect to 
see Athena continue that trend and perhaps even offer more controls for customers to 
manage performance while maintaining the current ease of use. For now, Athena provides 
a one-size-fits-all balance between price and performance, but that doesn't mean there 
aren't other levers you do have control over that directly influence performance and cost. 
We will talk about some of those next. 
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Price versus performance
We have made this point already, but it is worth reinforcing. When an 
analytics engine builds a query plan, it often has to balance opposing goals. 
For example, a broadcast join can require considerably more memory (RAM) 
than a distributed join. If your system currently has excess memory and limited 
CPU, a query plan that dedicates surplus memory to the join stage to qualify 
for a broadcast join can make sense. Conversely, if the environment had extra 
CPU and network bandwidth, you might opt for the distributed join plan even 
though it will use more expensive hardware. It would be the only choice you 
had if you didn't want to fail the query. In each of these cases, we optimized for 
something different. In the first example, we tried to preserve scarce CPU while 
the second path reserved limited memory for future needs. Knowing when to 
make trade-offs can be challenging. You may not even know what trade-offs 
are available, let alone when to use each. Athena values ease of use and doesn't 
want you to be bothered with these trade-offs. Earlier, we described Athena's 
performance as one size fits all. Not unlike the clothing items from which we 
borrowed that classification, there are outliers at the margins who won't be 
entirely happy with the fit. For the vast majority of people, however, Athena's 
ability to reshape itself to your needs will be indistinguishable from magic. 

TableScan performance
Now, you may recall Presto's query execution pipeline TableScan operations to 
read data from your tables, from Figure 2.1. Lucky for us, Athena was built to take full 
advantage of Amazon S3's scalability as a storage layer for data lakes. By following the best 
practices covered in Chapter 4, Metastores, Data Sources, and Data Lakes, you can expect 
a typical Athena query to scan, filter, and project data at more than 100 Gbps. If your data 
is mostly numeric and stored in a columnar format such as Parquet, you can easily see 
scan performance above 200 Gbps. Things get even more impressive when your queries 
include a predicate that can be pushed down to the scan operation. You will often see 
this abbreviated as a ScanFilterProject operator since it combines three steps into 
a single more efficient operation. In such cases, Athena is smart enough to use metadata 
within your ORC and Parquet files to reduce the actual amount of work it does per row. 
The net effect is that the perceived scan performance can improve by orders of magnitude.
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Your choices of storage and file format play outsized roles in achievable TableScan 
performance. For example, if you store the same data in Amazon S3 and MySQL, and then 
count the rows in each table, Athena will struggle to achieve 64 Mbps against MySQL, 
while throughput from the table in S3 will be well above 100 Gbps. That was not a typo. 
The difference was more than 99.9 Gbps. This isn't a fair comparison since Athena does 
not yet take full advantage of MySQL's ability to run the count operation itself. However,  
it illustrates that few data sources can keep up with S3-based data lakes. 

If you do anticipate using Athena to federate queries to data stores other than Amazon S3, 
you should be aware of the current incarnation of Athena Federated Query functions as 
a TableScan operation. This means that as Athena is producing a query plan for your 
federated source, it is mostly unaware of that source's capabilities. Except for pushing 
down conjunctive predicates, Athena will ask your source to return all the row data 
for any subsequent operations, such as aggregations and joins. It is not always possible 
to push more of the work into the source system, even when that system is as capable 
as MySQL. Still, many federated queries can benefit from the data transfer reductions 
offered by aggregate pushdown. In the previous example, MySQL could have completed 
the count, an aggregation operation, if Athena had pushed that part of the query down 
below the TableScan operation. Such an optimization would effectively hide the fact that 
MySQL cannot transfer row data as fast as Amazon S3. To be crystal clear, MySQL was 
never intended to transfer data externally at high rates. Athena Federated Queries can 
achieve scan rates above 100 Gpbs, but the actual figures are highly dependent on the 
source. Athena Federation is covered in full detail, including how to write a connector for 
a custom data source, in Chapter 12, Athena Query Federation. 

Memory-bound operations
From our walk-through of Presto's architecture, we learned that Presto favors in-memory 
columnar representations of data for their speed. The flip side to that coin is that Presto, 
and thus Athena, can be sensitive to memory-intensive operations such as joins and 
distinct value operations. Until Athena engine version 2, which loosely correlates to 
Presto's 0.217 release, Athena rarely spilled to disk when physical memory was under 
pressure. If you are not yet running your queries against Athena Engine Version 2 or 
tried Athena in the past and had issues with queries failing due to resource exhaustion, 
you should try them again. Athena still lags Spark in large joins and performing distinct 
operations on high - cardinality datasets, but it has made significant improvements in 
this area over the past year. Memory exhaustion remains one of the most common causes 
of query failures in Athena. This was true in our testing in writing this book and also a 
commonly asked question online. 
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Writing results
One of the final performance dimensions to keep in mind when considering Athena 
centers around how quickly you can write results. If all your queries return a limited 
number of rows, this section won't be a concern. If, however, your queries generate 
hundreds of megabytes of results, you should consider which of the three ways Athena can 
write query results may be best for you. Usually, when you run a DML statement like the 
one following, Athena will return the results from a single file in S3:

SELECT sale_date, product_id, sum(sales) 

FROM product_sales 

GROUP BY sale_date, product_id

Athena also provides a convenient API called GetQueryResults to return pages of 
results to you without your client ever needing to interact with Amazon S3. Based on 
the S3 access logs, it would seem Athena is reading from S3 for you when you use this 
API. This is the slowest method of getting results from Athena. It works perfectly well for 
relatively small result sizes, but when your queries start to generate larger result sets, you'll 
find yourself bound by the throughput of writing results. For those cases, we recommend 
you look at Athena's CTAS, INSERT INTO, and UNLOAD queries. These statements tell 
Athena it is OK to parallelize writing results. You'll end up with multiple files in S3, which 
you'll be able to consume in parallel, removing the bottlenecks that come with regular 
SELECT statement results. 

By now, I hope my earlier statement about performance being very personal is starting 
to make sense. There is an incredible number of variables at play. Some factors are 
independent, but many are partially correlated. It would take a degree in advanced 
physics to approach the problem without apprehension. Don't go rushing to buy the 
top-rated differential equations book on Amazon just yet. Our next topic is refreshingly 
straightforward. Athena pricing is as simple as it gets and is one of the dimensions where 
Athena is in a league of its own. 

Metering and billing 
Amazon Athena meters the amount of data Athena must read to satisfy your query. The 
data your query reads is then billed at the rate of $5 per terabyte. This pricing model's 
simplicity makes it easy to quickly estimate how much the query you are about to run 
might cost. If your table is 1 terabyte in size, it's a reasonably safe assumption that 
querying such a table should not cost more than $5. You might think that this is the end 
of the pricing conversation, and for all practical purposes, it is. However, in classic AWS 
fashion, the model's simplicity hides the real value of what that $5 is actually buying you. 
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As of this writing, several alternative offerings are also charging $5/TB scanned for  
a similarly rich SQL interface. Beyond informing you of how Athena is priced, the goal of 
this section is to help you understand what that $5/TB is buying.

Let's double-click on the metering aspect first. Amazon Athena charges you for the bytes 
it reads from S3, or, in the case of federation, the bytes returned by the connector. More 
precisely, Athena charges you for the raw size before any interpretation of the data.  
This is significant because it means the bytes are counted before decompression.  
If you have 10 TB of data in CSV format and compress the CSV files down to 1 TB using 
gzip before you query it with Athena, you just cut your Athena bill by 90%! Many of 
the other offerings in this space charge you for the logical size, known as the size after 
decompression, deserialization, and interpretation. In my time working with Athena,  
this was easily one of the most overlooked benefits of the service. 

Later in this section, we will examine how different file formats and compression 
techniques compare concerning file size and performance.

Athena Query Federation metering
Athena natively supports querying data stored in Amazon S3. This feature 
allows Athena to read data from any source that implements a connector 
using the open source Athena Federation SDK. Data from federated sources 
is metered at the same $5/TB as data originating in S3, but the point at which 
the bytes are counted is subtly different. If your connector reads 10 TB from a 
MySQL database, but manages to filter that data down to 1 TB before passing it 
to Athena, you are charged for 1 TB, not 10 TB. 

You may be wondering whether your Athena costs will vary between long-running or 
short-running queries. Regardless of the runtime of your query, you will be charged the 
same $5/TB. If your queries are longer because they read more data, they cost more than 
shorter queries that read less data. There are no surprise bills associated with executing a 
CPU-intensive sort or memory-hungry join. You should, however, keep in mind that there 
are few free rides in this world. So, while it might be Athena's problem to execute such 
queries within the agreed $5/TB pricing structure, that does not mean your queries have 
access to infinite memory or unlimited query runtimes. By default, Athena DML queries 
are allowed to run for no longer than 30 minutes. You can request an increase to this soft 
limit from the service quota console. 

On top of the charges that will come directly from Amazon Athena, your queries will 
incur additional costs associated with other services that Athena interacts with on your 
behalf in the course of executing your queries. We'll cover those next.
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Additional costs
Firstly, don't be alarmed. Nearly all AWS services can incur additional costs from 
interacting with other AWS services on your behalf. In the case of Amazon Athena, these 
additional costs rarely add more than 0.1% to your queries' total costs. The services that 
Athena interacts with most often are listed in the additional costs section of the Athena 
pricing page. Regardless of the documentation, you can try to self-identify other cost 
sources by removing Athena from the picture and imagining what you would need to do 
if you were Athena. The first thing Athena does when you run a query is to get the details 
of any tables used in the query by talking to AWS Glue Data Catalog. Athena calls Glue's 
GetTable API once per table and the GetPartitions API for each batch of 1,000 partitions 
in your table. AWS Glue's free tier offers one million API calls and just $1 for each one 
million API calls beyond that. An Athena query against one table that follows the best 
practices in this book is unlikely to generate more than 11 API calls to AWS Glue. For 
more information about AWS Glue's pricing, check out the AWS documentation.

Putting ourselves back in Athena's shoes, our next step after gathering metadata from 
AWS Glue is to start reading data from S3. We would need to list the objects in each 
partition to enumerate all the objects we need to read. Then we would need to reach each 
object. If we are using an advanced format such as Parquet or ORC, reading the objects 
might require seeking different offsets within the object. This allows Athena to skip large 
chunks of the file, saving you costs with respect to the bytes read by Athena, but increasing 
the number of S3 calls. Considering 1,000 S3 requests cost just $0.005, it is easy to see 
why seeking within an object in order to skip chunks of data is well worth the effort. More 
concretely, a well-organized table containing one million objects totaling 128 TB of data 
would cost $640 to read in Athena fully. That same query would incur less than $0.50 
(0.0007%) of additional costs from Amazon S3. 

Once Athena has read the data from S3, or in the case of S3 server-side encryption, the 
data may need to be decrypted before Athena can make sense of what it read. In these 
cases, Athena will call AWS Key Management Service (KMS) to get the appropriate 
data key for the file being read. It is a recommended best practice to use a different data 
key with each S3 object. Accordingly, Athena or S3 may need to call KMS one or more 
times per object. AWS KMS charges $0.03 per 10,000 requests. Our query exceeding the 
preceding hypothetical table would generate $3 (0.004%) of additional KMS charges. You 
can find full details of AWS KMS pricing on the KMS pricing page.

If these additional costs are indeed so inconsequential, why are we giving it so much 
attention? The short answer is that you will see these costs, and they won't always look like 
such small percentages even though they are. 
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Since Athena charges by the terabyte scanned, customers are incentivized to reduce their 
data sizes through compression and columnar formats such as Parquet. Let's apply some 
of these techniques to the hypothetical 128 TB table from the previous examples. After 
converting to Parquet and changing our query to use a more targeted filter, our Athena 
charges have been reduced to $6. Parquet allowed Athena to evaluate our query's filter 
using only statistics from each row-group's header without reading the entire S3 object. 
The net effect is that Athena could skip 90% of each object's contents, cutting our Athena 
bill by a proportional 90%! However, skipping 90% of the data required many more calls 
to S3 and KMS. In this example, we'll assume 10 times more calls. At the end of our query, 
our KMS and S3 costs are now a combined $35 compared to Athena's $64 line item. Our 
additional costs have ballooned to more than 50% of our total costs! Yes, that is true, 
but don't forget that we spent that extra $30 to save $576. We aren't highlighting this 
because we feel you should gladly accept these additional costs. Instead, we hope you will 
approach the delicate art of optimization with an informed understanding of the drivers 
that impact each cost dimension. In this particular example, you might be tempted to cut 
the additional $30 that comes from KMS by disabling KMS encryption. This might be 
reasonable, or it might be an unnecessary risk if your data is sensitive. It is likely easier to 
make an additional $30 of revenue than it will be to rebuild customer or regulator trust if 
the lack of encryption exposes sensitive data. 

Details of your query and the file formats involved can affect your costs in subtle ways. 
We've used extreme examples to illustrate that point. Additional costs are expected to 
be an insignificant portion of your overall cost. Knowing what drives them will help you 
understand which scenarios apply to your workloads. Besides total data size, your choice 
of file formats and compression techniques is the most significant factor in your queries' 
cost. We'll cover these in more detail now. 

File formats affect cost and performance
Your file format choice affects the raw data's size that Athena will need to read from S3 to 
answer your query. For example, if your data comprises one field containing the quantity 
of each item you have in stock at your stores, you can represent that data in multiple 
ways. The first and perhaps simplest is as a CSV. While easy to get started with, CSVs are 
a poor choice for storing numeric values. The number 30,000 would occupy 5-10 bytes 
in CSV format, but just 2 bytes in columnar formats such as Parquet. If you have millions 
of rows, this 80% size difference can add up quickly. Beyond literal cost implications, it 
takes more CPU and, by extension, time for Athena to deserialize the text representation 
of numeric values found in a CSV to the type of appropriate representation required for 
most operations, including addition and subtraction. This deserialization penalty can slow 
down your queries. 
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We can use Athena itself to run a quick experiment with different file formats and 
compression algorithms. The following CTAS statement reads from the nyc_taxi 
table we created in Chapter 1, Your First Query, and then rewrites that table's contents  
into a new table using Parquet with SNAPPY compression instead of the original  
GZIP CSV format:

CREATE TABLE nyc_taxi_parquet

WITH (

      format = 'Parquet',

      parquet_compression = 'SNAPPY',

      external_location = 's3://packt-serverless-
analytics-888889908458/tables/nyc_taxi_parquet/')

AS SELECT * FROM nyc_taxi;

By running this query for various formats and then inspecting the resulting S3 objects 
from the S3 console, we constructed the table in Figure 2.2:

Figure 2.2 – Table comparing different file formats for the NYC Taxi data

By studying the table in Figure 2.2, we can see that columnar formats such as Parquet and 
ORC can reduce our costs while also improving performance vis-à-vis simpler formats 
such as CSV. Columnar formats exploit the similarity between rows for a given column 
to provide a more compact representation of the data without requiring computationally 
intensive compression techniques such as GZIP. Here we've compared the most common 
approaches. CSV, while simple and broadly supported, is the least compact. It also has the 
most deserialization overhead due to its textual representation of everything from strings 
to small integers. 
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Even when coupled with an intensive compression algorithm such as GZIP, it still 
underperforms the size reduction capability of Parquet while using considerably more 
CPU. Parquet and ORC performed similarly, and given the relatively narrow testing we 
did here, little can be learned about the two approaches relative to one another.

Interestingly, both Parquet and ORC performed worse when we enabled SNAPPY 
compression. This is likely because of run-length encoding doing such a good job, 
leaving SNAPPY to compress data that contained minimal repetition. Most compression 
algorithms fare poorly against data that is entirely random, though I wouldn't have 
expected ORC to be more vulnerable to this than Parquet. One of Parquet and ORC's 
main differences originates in the frequency and size of the metadata they store for 
the chunks of underlying row data. By default, ORC tends to favor more metadata in 
anticipation of more significant query-time benefits. This has a side effect of higher 
overhead, which may have been magnified by our example's meek 10 MB of data.

Much of the Athena documentation strongly recommends the use of Parquet as your 
format of choice. This book partly takes the same view because of the performance, size 
reduction, and rich engine support for Parquet. ORC is a close runner-up with many of 
the same features. 

Run-length encoding (RLE)
Run-length encoding is an inventive form for compression that uses relatively 
little CPU or memory to compute while still offering substantially smaller 
data sizes. Unlike related techniques used in video processing, RLE is lossless, 
making it ideal for Parquet and ORC formats. When used in conjunction 
with sorted data, RLE can reduce data sizes by upwards of 10x. At its core 
sits an algorithm for exploiting runs of data that have a shared or common 
base. Instead of storing the repeated information in adjustment rows, 
you merely store a delta from the previous value. For example, the string 
ABBBBBBBBBBCAAAAAAAAAAAA could be natively run-length encoded to 
A10BC12A, yielding nearly 10x lossless compression. 

Amazon Web Services has reduced prices on one or more services more than 70 times 
in the last decade. Prices can and do vary between regions, and prices may have changed 
since this book was written. Even though we could not find a single documented case 
of pricing going up, please verify the current pricing details before using any services. 
You can find the latest pricing for Athena in the AWS documentation (http://amzn.
to/3r5pYTD). Now that we understand what drives our costs, we can look at options for 
controlling them. 

http://amzn.to/3r5pYTD
http://amzn.to/3r5pYTD
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Cost controls
Athena offers several tools for helping you control costs. This includes mechanisms for 
capping the data scanned by individual queries or by grouping your applications into 
organizationally relevant buckets with accompanying budgets. On the Workgroup 
settings page shown in Figure 2.3, you can set a per-query limit for each workgroup. 
Once a query reaches that limit, it will be killed. Further down on the same page, you can 
configure a budget for the entire workgroup. Once the queries that run in the workgroup 
have cumulatively exceeded the limit, further queries in that workgroup will be killed 
until enough time has passed that the budget resets.

Figure 2.3 – Athena Workgroup settings page; Data usage controls tab

In addition, you can enable CloudWatch metrics for your queries. Once active, Athena 
will send updated metrics about in-flight and completed queries to CloudWatch, where 
you can monitor them with your own custom rules, reports, or automation. 
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Connecting and securing
Connectivity and authentication features are often overlooked. Like all AWS services, 
Athena offers a set of APIs for interacting with the service from your applications or from 
the command line when using the AWS CLI. These APIs allow you to submit a new query, 
check the status of an already running query, retrieve pages of results, or kill a query. These 
same APIs are used from within Athena's JDBC and ODBC drivers. When connecting to 
Athena, you can use the standard endpoints if you have an internet gateway in your VPC or 
opt to call Athena from a VPC endpoint and avoid the need to have internet connectivity 
from your application VPC. This gives you added control over your security posture by 
pushing the responsibility of securely connecting to your data sources onto Athena. 

In addition to VPC endpoints, Athena also offers SAML federation for managing 
identities outside of AWS. This allows your Active Directory users to seamlessly 
authenticate to Athena when using the JDBC or ODBC drivers. At the cornerstone 
of Athena's access control system lies Lake Formation. Lake Formation allows you to 
permission IAM users or roles for specific tables, columns, and rows without having to 
write complex IAM policies to coordinate access to millions of S3 objects or AWS Glue 
Data Catalog resources.

Now that we've added some basic connectivity options to our performance and cost driver 
knowledge, we can combine these topics to review common Athena use cases. 

Determining when to use Amazon Athena
There is no one answer to this question. There are use cases for which Athena is ideally 
suited and situations where other tools would be a better choice. Most potential 
applications of Athena lie in the gradient between these two extremes. This section will 
describe several common and recommended usages of Athena to help you decide when 
the right time is for you to use Athena.

Ad hoc analytics
We might as well kick off this discussion with one of Athena's greatest hits – ad hoc 
analytics. Many customers first notice Athena for its ease of use and flexibility, two key 
features when you suddenly need to have an unplanned conversation with your data. 
We saw this firsthand in Chapter 1, Your First Query, when it took us just a few minutes 
to load up the NYC Taxi trip dataset and start finding relevant business insights. Ad hoc 
analytics can be used to describe unplanned queries, reports, or research into your data 
for which a pre-made application, tool, or process does not exist. These use cases often 
require flexibility, quick iteration times, and ease of use so that a highly specialized skillset 
is not needed. 
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For this class of usage, there are relatively few things to consider. The first is where your 
data is stored. If your data is already in S3 and perhaps already cataloged in AWS Glue, 
it should be effortless to use Athena as your preferred ad hoc analytics tool. If not, then 
you will need to think about how you will manage metadata. If your users are savvy, they 
can create table metadata on the fly using Athena's DDL query language. If not, you may 
want to consider adding Glue Crawlers to your tool kit. Glue Crawlers automatically scan 
and catalog data in S3. When complete, the crawlers populate AWS Glue, so you never 
need to run table create statements manually. Many organizations that are not yet 
considering or are just starting their data lake journey notice the benefits that come with 
democratizing access when using Athena for ad hoc analytics. Some organizations go a 
step further and create a business data catalog. This allows employees to discover datasets 
and learn their business relevance in addition to the technical details of how and where 
it is stored. In short, a business data catalog often has more documentation than what is 
currently offered by the AWS Glue Data Catalog. 

Related to the cataloging of data, managing access to that data is another facet to consider. 
Athena offers two mechanisms for controlling who can read and write analytics data. 
The first is traditional IAM policies, where you grant individuals or IAM roles access to 
the specific S3 paths that comprise your tables. This can work well if your data is well 
organized in S3 and your permission needs are limited to a handful of non-overlapping S3 
prefixes. If your needs are more complex, necessitating column or even row-level access 
control, you'll want to use Athena's Lake Formation integration to manage permissions. 
In this model, you never have to write IAM policies and instead use an analytics-oriented 
management console (or APIs) to grant and revoke permissions. 

Since ad hoc analytics is a frequent Athena use case, the service has worked with several 
partners to release driver support in popular BI tools. Tableau and Looker, two popular 
BI tools, both natively support Amazon Athena. You can also leverage Athena's ODBC 
and JDBC drivers to query Athena from a slew of other tools, including Microsoft Excel. 

The final criteria for using Athena for ad hoc analytics is purely about the kinds of queries 
you want to run. As we've seen in this chapter, Athena offers limited options for tuning 
your queries' scale or performance. If your analytics queries often require large amounts of 
working memory or another extreme scale, you'll want to test how well Athena runs your 
queries. The good news is that if you eventually encounter a query that Athena struggles 
with, you can run that outlier with AWS Glue ETL, a serverless form of Spark. That's  
why it is essential to consider the surrounding ecosystem in addition to Athena's  
product-specific capabilities. With AWS, the whole is usually greater than the sum of its 
parts. In Chapter 7, Ad Hoc Analytics, we will get hands-on with more examples of using 
Athena for this popular recipe.



52     Introduction to Amazon Athena

Adding analytics features to your application
Another popular pattern is to use Amazon to add decision-support information to your 
application. Imagine we are the authors of a digital advertising campaign system. Our 
customers use the application to set up new campaigns, monitor the budget of existing 
campaigns, and even understand the available impression inventory. All this is fancy 
advertising lingo for understanding different elements of who their campaign is reaching 
and when they'll exhaust their advertising budget. It would be useful to show some 
historical trends alongside the current budget remaining number. We can easily use 
Athena's APIs or JDBC driver to run a query that will return both the hourly impressions, 
conversions, and budget burndown for the last 24 hours, 7 days, or other relevant 
timeframes. Because we don't need this data to update live, we can avoid building an 
OLTP data store. Instead, we need only to feed our existing application logs, or possibly 
simple metrics, to S3 in a location our Athena queries can access. If we want to be clever, 
we can even write the metrics to S3 paths based on campaign identifiers and reduce query 
costs while boosting performance. Thanks to Athena Query Federation, you can go a 
step further and allow embedded dashboards that show the near-real-time campaign 
performance only for live campaigns or those within 10% of exhausting their budget. One 
way to do that is by joining the live status of the campaigns from an OLTP store such as 
AWS DynamoDB with your historical data from Amazon S3. 

We'll go through one more example for good measure. Suppose we are using a machine 
learning algorithm, such as DeepAR in Amazon SageMaker, to predict demand in our 
inventory ordering system. The system then automatically reorders ingredients or parts 
that will be used to replenish our supply of the finished product. For the best results, we've 
found that the prediction accuracy increased substantially when we supply a week of the 
most recent sales data as context for the prediction API calls. Unfortunately, our inventory 
system doesn't keep track of historical inventory burn rates or sales. Well, we could call 
Amazon Athena to query our data lake's historical order table just before calling our 
SageMaker prediction endpoint for the next. With a relatively minor enhancement to our 
application and even less new infrastructure, we've just enabled our inventory system to 
provide the recent inventory data that will improve our forecasting capabilities. 

When considering this usage pattern, you should pay close attention to your anticipated 
concurrency needs and how the new dependency will affect your application's liveliness. 
Athena is built for high availability. You don't need to worry about having it in the 
critical path of your application flow. Still, it's always a good idea to limit critical path 
dependencies to those that are absolutely necessary. In Chapter 10, Building Applications 
with Amazon Athena, you will get a chance to see this pattern up close.
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Serverless ETL pipeline
With the advent of serverless infrastructure has come a wave of new serverless use 
cases. Anywhere you previously had a server or cluster of servers running big data jobs 
has become fair game for Athena's serverless promises. So, it comes as no surprise that 
customers use Athena to build serverless ETL pipelines. As we stroll toward our imaginary 
system design whiteboard, let's pretend we work for a hedge fund. Our team is responsible 
for calculating the company's short risk in response to substantive changes in the stock 
market. The software that runs our various trading desks generates a file every hour, 
containing a summary of our long and short positions. Whenever one of these files comes 
in, we need to recalculate each of the updated stocks' overall positions. Our goal is to 
ensure that our hedge fund doesn't unknowingly take on too much risk, as was the case 
with the great Reddit GameStop uprising of 2021. 

GameStop won't stop
The saga of GameStop, GME, began in August 2020 when an anonymous  
user on Reddit posted an in-depth analysis and justification for why  
GameStop would go to the moon. In addition to a few solid fundamental 
theories, this person highlighted the absurd reality that GameStop shares  
had a short interest greater than 100% of the available shares. This means  
that for every share of GameStop stock, more than one share had been sold. 
This happens when people, or companies, bet against the stock by borrowing 
shares from their broker and sell them to someone else. You are said to be  
short with the stock because you now owe someone else a share you borrowed. 
What began as a way to make money sticking to the shorts morphed into a 
socio-economic movement pitting the underdog retail investor against some  
of the biggest hedge funds in the world. No matter which side you were on,  
it was unprecedented. It also generated many amusing memes. 

Using Athena and AWS Lambda, a serverless technology for responding to events,  
we can configure S3 to send an event to Lambda whenever a new trade summary file 
arrives in our S3 bucket. When the file comes, a Lambda function gets invoked. Within 
that function, we can run custom code to have Athena query the newly added file and join 
it with relevant information from a dimension table before writing the results to our data 
lake in Parquet format. After the initial transform and load, we trigger another Lambda 
function, which reruns our overall risk analysis Athena query to determine whether we 
are overexposed to one or more securities. Without touching a single server, we built an 
entire ETL pipeline, albeit a relatively simple one. Depending on the data sizes involved, 
it's not unreasonable for this ETL pipeline to cost mere pennies a day. 
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While simple ETL pipelines can be appropriate for Athena, you should consider the 
number and size of jobs you expect to run in your ETL system. Like earlier examples, the 
AWS ecosystem has complementary capabilities in AWS EMR and AWS Glue ETL, which 
can help if you outgrow or run into requirements that Athena cannot satisfy. AWS Glue 
ETL is also serverless, though it is based on Apache Spark and charges you for compute 
time instead of Athena's Presto-based engine, which charges by the terabyte scanned.  
In Chapter 9, Serverless ETL Pipelines, we will go step by step and build out a reactive  
ETL pipeline.

We will conclude our review of common Athena use cases by discussing a few 
miscellaneous examples that, while too small to dedicate a full section to, are equally valid. 

Other use cases
While less prominent than the use cases described in previous sections, some customers 
use Athena as an operational tool or a rapid prototyping tool. Athena's filtering 
performance makes it a rather performant choice for rapidly scaling and filtering log data 
without the need to keep a costly infrastructure running all the time. This is ideal for 
operation situations that arise from nowhere. Customers filter and parse everything from 
VPC flow logs to application logs, looking for root causes or quantifying impact. Athena's 
flexibility also makes it a great choice to quickly iterate on complex reports or ETL jobs 
that you'll later implement in a different system. This is not unlike other data preparation 
use cases from machine learning or data quality checking. 

Just because a use case you have in mind wasn't explicitly mentioned in this chapter 
doesn't mean you should consider Athena. We've only listed examples of good use cases so 
that you can extrapolate and apply what you've learned to your projects and environment. 

Summary
In this chapter, we formalized your introduction to Athena by going over the service's 
high-level capabilities, including ACID transactions, federation, ETL operations such 
as CTAS, and open source file formats. We went inside Athena by learning more about 
Presto, the open source distributed SQL engine that sits at its core. As part of that exercise, 
we experimented with supporting our own multi-tenant analytics infrastructure. This 
allowed us to see all the value-added functionality that sets Athena apart from other 
serverless technologies that fall short of being fully managed. As if that wasn't enough of 
a reason to hop on the serverless analytics bandwagon, we unpacked the marketing hype 
to find that Athena's $5/TB price tag is significantly cheaper than many of its competitors 
who also claim to charge $5/TB, but count the uncompressed bytes!
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We also learned that performance is personal and that we'd have to test our access 
patterns and data models to see how Athena would perform for us. Regardless of the 
numerous variables that impact performance, we covered how to control common cost 
and performance drivers by using columnar storage formats such as Apache Parquet.  
Using these techniques dramatically reduces our costs but subtly increases the additional 
costs associated with the other services Athena calls on our behalf, including S3, AWS 
Glue, and AWS KMS. In addition to pre-emptive actions to control costs, Athena also 
gave us mechanisms to limit the total cost of each query or group of queries through 
workgroup-level limits on data scans. 

Lastly, we combined all these points when reviewing several common usage patterns for 
Athena. We walked through a real-world example using a hypothetical system design for 
each of the frequently seen patterns. We'll be revisiting each of these design patterns in 
later chapters, where we will get hands-on and build one of each.

The next chapter will conclude our introduction to Amazon Athena by exploring built-in 
features you can use to make your reports or application more powerful. This includes 
approximate query techniques to speed up analysis of large datasets, CTAS (CREATE 
TABLE AS SELECT) statements for running queries that generate significant amounts of 
result data, and getting hands-on with several of the topics discussed in this chapter. 

Further reading
In this section, we've gathered links to additional materials that you may find useful in 
diving deeper into some of the primary sources regarding the topics mentioned in this 
chapter. Many of these topics will be covered in more detail later in this book, but it can 
often be useful to know where to go for authoritative details: 

• Presto SQL Dialect documentation can be found here: http://bit.
ly/39kMJeW.

• Amazon Athena SQL Dialect documentation can be found here: http://amzn.
to/35tRT7w.

• Amazon leadership principles can be found here: http://bit.ly/3k79PuB.

• Amazon Athena Engine Version 1 specification can be found here: http://bit.
ly/3boEoty. 

• Amazon Athena Datasource and External Hive Metastore documentation can be 
found here: http://amzn.to/3bvU9y.

http://bit.ly/39kMJeW
http://bit.ly/39kMJeW
 http://amzn.to/35tRT7w
 http://amzn.to/35tRT7w
http://bit.ly/3k79PuB
http://bit.ly/3boEoty
http://bit.ly/3boEoty
http://amzn.to/3bvU9y
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• The official GDPR regulation and associated data retention requirements discussed 
in this chapter can be found here: http://bit.ly/38RlolU.

• Details for connecting Athena to Delta Lake from SymlinkTextInputFormat 
can be found in the Delta Lake documentation here: http://bit.ly/3ozT9gG.

• More information about the TPC organization and the industry benchmarks it 
maintains (TPCH/DS) can be found here: http://bit.ly/39HMXgJ.

• You can find the Athena Federation SDK on GitHub here: http://bit.
ly/38NfRg4.

• Trino, formerly PrestoSQL, documentation can be found here: http://bit.
ly/39JLGFE.

• The original Presto white paper from Facebook can be found here: https://bit.
ly/38vQgI8.

http://bit.ly/38RlolU
http://bit.ly/3ozT9gG
http://bit.ly/39HMXgJ
http://bit.ly/38NfRg4
http://bit.ly/38NfRg4
http://bit.ly/39JLGFE
http://bit.ly/39JLGFE
https://bit.ly/38vQgI8
https://bit.ly/38vQgI8
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Key Features, 

Query Types, and 
Functions

In Chapter 1, Your First Query, we got our first taste of serverless analytics by building and 
querying a mini-data lake for New York City (NYC) taxicab data. Chapter 2, Introduction 
to Amazon Athena, continued that introduction by helping us understand and perhaps 
appreciate what goes into enabling Athena's easy-to-use experience. This chapter will 
conclude our introduction to Amazon Athena by exploring built-in features you can use 
to make your reports or applications more powerful. Unlike the previous chapter, we will 
return to a hands-on approach that combines descriptive instruction with step-by-step 
activities that will help you connect with the material. The exercises should also offer  
you a basis to experiment with your own ideas, should you choose to do so.

After completing this chapter, you will have enough knowledge to begin using and 
integrating Athena into proof-of-concept (POC) applications. Chapter 4, Metastores, 
Data Sources, and Data Lakes, begins Part Two of this book, which transitions to broader 
topics associated with building and connecting your data lake as part of delivering 
sophisticated analytics strategies and applications at scale.
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In the subsequent sections of this chapter, you will learn about the following topics:

• Running extract-transform-load (ETL) queries

• Running approximate queries

• Organizing workloads with WorkGroups and saved queries

• Using Athena's application programming interfaces (APIs)

Technical requirements
Wherever possible, we will provide samples or instructions to guide you through the 
setup. However, to complete the activities in this chapter, you will need to ensure you have 
the following prerequisites available. Our command-line examples will be executed using 
Ubuntu, but most Linux flavors should work without modification, including Ubuntu on 
Windows Subsystem for Linux (WSL).

You will need internet access to GitHub, Simple Storage Service (S3), and the Amazon 
Web Services (AWS) console.

You will also require a computer with the following installed:

• The Chrome, Safari, or Microsoft Edge browsers 

• The AWS Command-Line Interface (CLI)

This chapter also requires you to have an AWS account and an accompanying Identity 
and Access Management (IAM) user (or role) with sufficient privileges to complete this 
chapter's activities. Throughout this book, we will provide detailed IAM policies that 
attempt to honor the age-old best practice of least privilege. For simplicity, you can always 
run through these exercises with a user that has full access. Still, we recommend using 
scoped-down IAM policies to avoid making costly mistakes and we advise you to learn 
more about using IAM to secure your applications and data. 

You can find the suggested IAM policy for this chapter in the book's accompanying 
GitHub repository listed as chapter_3/iam_policy_chapter_3.json, here: 
http://bit.ly/37zLh8N. The primary changes from the IAM policy recommended 
for Chapter 1, Your First Query, include the following:

• glue:BatchCreatePartition—Used to create new partitions as part of CTAS 
or INSERT INTO statements.
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• Restricted Athena workgroup actions to WorkGroups beginning with packt-*.

• Added read/write access for AWS CloudShell, a free Linux command line in the 
AWS console. You only pay for the other services you interact with, such as Athena. 

Running ETL queries
While this book's goal is not to teach Structured Query Language (SQL), it is beneficial 
to spend some time reviewing everyday SQL recipes and how they relate to Athena's 
strengths and quirks. Transforming data from one format to another, producing 
intermediate datasets, or simply running a query that outputs many megabytes (MB) or 
gigabytes (GB) of output necessitates some understanding of Athena's best practices to 
achieve peak price/performance. As we did in Chapter 1, Your First Query, let's start by 
preparing a larger dataset for our exercises. 

We will continue using the NYC Yellow Taxi dataset, but we will prepare 2.5 
years of this data this time. Preparing this expanded dataset will entail downloading, 
compressing, and then uploading dozens of files to S3. To expedite that process, you can 
use the following script to automate the steps. To do so, add all the files from yellow_
tripdata_2018-01.csv through yellow_tripdata_2020-06.csv. Each file 
represents 1 month of data. The NYC Taxi and Limousine Commission has not updated 
the data since June 2020 due to the impact the pandemic has had on their day-to-day 
operations. If you have the option, we recommend downloading a copy of the pre-made 
script with added error checking from the book's companion GitHub repository in 
the chapter_3/taxi_data_prep.sh file or by using this link: http://bit.
ly/3k4bMYU. The following script has been edited for brevity, but the one in GitHub is 
ready to go without modification. Regardless of which script you use, you can run it on 
any Linux system with wget and the AWS CLI installed and configured by executing it 
and passing the name of the S3 bucket where you'd like the data uploaded. You can even 
reuse the S3 bucket we created in Chapter 1, Your First Query, to save time.

AWS CLI
The taxi_data_prep.sh script will use your system's AWS CLI to 
upload the compressed taxicab data to the S3 bucket you specify. The script 
expects you to have configured the AWS CLI ahead of time with appropriate 
credentials and a default region that corresponds to where you are running 
the exercises in this book. To review or update your default AWS CLI 
configuration, you can run aws configure at the command line.
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The configuration is shown here:

#!/bin/bash

BUCKET=$1

array=( yellow_tripdata_2018-01.csv 

        yellow_tripdata_2018-02.csv

        # some entries omitted for brevity

        yellow_tripdata_2020-06.csv

       )

for i in "${array[@]}"

do

     FILE=$i

     ZIP_FILE="${FILE}.gz"

     wget https://s3.amazonaws.com/nyc-tlc/trip+data/${FILE}

     gzip ${FILE}

     aws s3 cp ./${ZIP_FILE} s3://$BUCKET/chapter_3/tables/
nyc_taxi_csv/

     rm $ZIP_FILE

done

Code 3.1 – NYC taxi data preparation script

Speeding things up!
Depending on the speed of your internet connection and the type of central 
processing unit (CPU) you have, this script may take over an hour to prepare 
the 4.5 GB of data for the recommended 2.5 years of historical data. We 
recommend using AWS CloudShell (https://aws.amazon.com/
cloudshell/) to run this script natively within the AWS ecosystem. AWS 
CloudShell provides a Linux command line with AWS CLI and other common 
tools preinstalled at no extra charge. You are only charged for the other services 
you interact with, not for your usage of CloudShell itself. In our testing, AWS 
CloudShell took roughly 23 minutes to prepare our test data, thanks in part to 
its high-speed connectivity to Amazon S3. Alternatively, you can reduce the 
amount of historical data you use in the exercise by reducing the number of 
monthly files used in the script.
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Once the script completes execution, you can verify your data is now in the proper 
location by listing S3 from the command line using the following command or navigating 
to /chapter_3/tables/nyc_taxi_csv/ from the S3 console in your browser. If all 
went well, you'd see 30 files in this path:

aws s3 ls s3://YOUR_BUCKET_NAME_HERE/chapter_3/tables/nyc_taxi_
csv/

Our final data preparation step is to use Athena to define a table rooted at the path 
we uploaded the data to. To do this, we'll apply our final Chapter 1, Your First Query, 
refresher in the form of a CREATE TABLE query. If you have the option, we recommend 
downloading a copy of the following CREATE TABLE query from the book's companion 
GitHub repository in the chapter_3/create_taxi_table.sql file or by going to 
https://bit.ly/2TOinOs:

CREATE EXTERNAL TABLE 'packt_serverless_analytics'.'chapter_3_
nyc_taxi_csv'(

  'vendorid' bigint, 

  'tpep_pickup_datetime' string, 

  'tpep_dropoff_datetime' string, 

  'passenger_count' bigint, 

  'trip_distance' double, 

  'ratecodeid' bigint, 

  'store_and_fwd_flag' string, 

  'pulocationid' bigint, 

  'dolocationid' bigint, 

  'payment_type' bigint, 

  'fare_amount' double, 

  'extra' double, 

  'mta_tax' double, 

  'tip_amount' double, 

  'tolls_amount' double, 

  'improvement_surcharge' double, 

  'total_amount' double, 

  'congestion_surcharge' double)

ROW FORMAT DELIMITED 

  FIELDS TERMINATED BY ',' 

STORED AS INPUTFORMAT 

  'org.apache.hadoop.mapred.TextInputFormat' 

https://bit.ly/2TOinOs
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OUTPUTFORMAT 

  'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

LOCATION

  's3://<YOUR_BUCKET_NAME>/chapter_3/tables/nyc_taxi_csv/'

TBLPROPERTIES (

  'areColumnsQuoted'='false', 

  'columnsOrdered'='true', 

  'compressionType'='gzip', 

  'delimiter'=',',

  'skip.header.line.count'='1', 

  'typeOfData'='file')

Code 3.2 – CREATE TABLE SQL query

You can execute this query right from the Athena console, but be sure to update the S3 
bucket in the LOCATION portion of the CREATE TABLE statement. The table creation 
should complete almost instantaneously. The most common errors at this stage are related 
to insufficient permissions, using an incorrect database or table name, or already having  
a table with that name in your catalog. In the event you do encounter an issue, retrace 
your steps, and double-check these items. It's always a good practice to run at least one 
query to ensure our table is properly set up since the CREATE TABLE operation is purely 
a metadata operation. That means it didn't actually list or read any of the data we prepared 
in S3. A simple COUNT(*) query, as illustrated in the following code snippet, will suffice 
to ensure our table is ready to be used in more ambitious queries:

select count(*) from chapter_3_nyc_taxi_csv

After running the preceding query from the Athena console, you should get a result of 
204,051,059. The query should have scanned around 3.4 GB of data and completed 
after roughly 8 seconds. We have just completed one of the most common activities you'll 
encounter in Athena or any data lake analytics tool. The table we just created is commonly 
described as a landing zone. It is a place where newly arrived source data lands before 
being cleaned up and made available to applications in your data lake. Data ingestion 
is always where it begins, but the table we just created is sub-optimal for a number of 
reasons, and we may not want to let applications or analysts use it directly. Instead, we 
will reorganize this table for peak performance as a way to demonstrate some of Athena's 
advanced query types, such as CTAS, INSERT INTO, and TABLESAMPLE.
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Using CREATE-TABLE-AS-SELECT
Athena's CREATE-TABLE-AS-SELECT (CTAS) statement allows us to create new tables 
by applying a SELECT statement to an existing table. As part of doing that, Athena will 
shun the SELECT portion of the statement to generate the data to be stored as part of the 
new table. Both CTAS and VIEW statements can be thought of as a SELECT statement that 
forms a new table as a derivative of one or more existing tables but with one key difference 
in how the underlying data is handled. CTAS is like a materialized view since it runs the 
SELECT portion of the statement one time and stores the resulting data into a new table 
for later use. On the other hand, a VIEW statement requires the underlying SELECT 
statement to be rerun every time the VIEW statement is queried. 

Suppose we want to use our NYC taxi data to run reports for daily and weekly periods 
as well as rate codes such as Standard and JFK (Airport). We could use the current 
chapter_3_nyc_taxi_csv table we just created, but running even basic queries 
against that table requires Athena to read all 204,051,059 rows and all 3.4 GB of data.  
Even for such a small table, this is rather wasteful if we only care about data from a 
specific week. On larger datasets, it is even more important to model our table along 
dimensions to give the best performance and cost. Chapter 4, Metastores, Data Sources, 
and Data Lakes, will go deeper into how your table's structure affects performance. For 
now, we will focus on using CTAS to create a new copy of our table that converts our 
compressed comma-separated values (CSV) files into columnar Parquet and partitions 
for efficient time filtering and rate code aggregation. 

In Code 3.1, we have prepared a CTAS statement that reads all columns and rows from the 
chapter_3_nyc_taxi_csv table created earlier. Once Athena has read all the data, 
we ask that the resulting table be stored in Parquet format using Snappy compression. 
Changing formats from CSV to Parquet should result in more compact and faster data 
to query, especially for simple operations such as COUNT, MAX, and MIN. Using Parquet 
also has the side-effect of making our queries cheaper since there is less physical data 
for Athena to read. Our CTAS statement also reorganizes our data by creating two new 
columns that correspond to the year and month when the taxi ride began. These columns 
are used to physically partition the data so that Athena can use AWS Glue Data Catalog 
for partition pruning and significantly reduce the data scanned when our queries contain 
filters along these dimensions.
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Data bucketing 
We could also have bucketed the rows by the ratecodeid column. 
Bucketing data can help reduce the amount of computation required to 
generate aggregates when grouping by bucket column. Bucketing by GROUP 
BY columns helps ensure rows with the same ratecodeid column are 
processed together, reducing the number of partial aggregations Athena's 
engine will have to calculate. Bucketing has a similar effect to partitioning, 
without adding additional overhead that can arise from increasing metadata 
sizes that accompany high numbers of partitions. We'll discuss this more in 
later chapters, but if you find yourself creating tables with more than 10,000 
partitions, you'll want to understand why you have so many partitions and if 
the benefits outweigh the drawbacks. We excluded bucketing from this example 
because a later part of this chapter will use INSERT INTO for this table, and 
Athena doesn't presently support INSERT INTO for bucketed tables.

Now that we understand our CTAS statement, let's go ahead and execute the query in 
Code 3.3. If you have the option, we recommend downloading a copy of the CTAS query 
from the book's companion GitHub repository in the chapter_3/ctas_nyc_taxi.
sql file or by using this link: http://bit.ly/3s6HCXM. This query shown here 
should take around 14 minutes to complete and will scan all 3.4 GB of our NYC taxi  
ride dataset:

CREATE TABLE packt_serverless_analytics.chapter_3_nyc_taxi_
parquet

WITH ( external_location = 's3://YOUR_BUCKET_HERE/chapter_3/
tables/nyc_taxi_parquet/',

      format = 'Parquet',

      parquet_compression = 'SNAPPY',

      partitioned_by = ARRAY['year', 'month']

)

AS SELECT 

     vendorid, tpep_pickup_datetime, tpep_dropoff_datetime, 

     passenger_count, trip_distance, ratecodeid, store_and_fwd_
flag, 

     pulocationid, dolocationid, payment_type, fare_amount, 
extra, 

     mta_tax, tip_amount, tolls_amount, improvement_surcharge, 

     total_amount, congestion_surcharge,

     year(date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s')) 
as year,
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      month(date_parse(tpep_pickup_datetime,'%Y-%m-%d 
%H:%i:%s')) as month

FROM packt_serverless_analytics.chapter_3_nyc_taxi_csv

Code 3.3 – CREATE TABLE AS SELECT query for partitioned and bucketed NYC taxi data

As you watch Athena crunch away at the CTAS query, you might be wondering why it will 
take 14 minutes to run this query but only took 8 seconds to read all the CSV data in the 
earlier test query. The CTAS statement takes considerably longer for two reasons. Firstly, 
the Parquet format is more computationally intensive to create than CSV. Secondly, we 
asked Athena to arrange the new table by year and month. Organizing the data in this 
way requires Athena's engine to shuffle data much in the same way as a GROUP BY query 
would. Once your query finishes, you should see a new folder in S3 with many subfolders 
that correspond to the year and month of the data. Now that our new table is ready, let's 
rerun our simple COUNT query to test it out, as follows:

select count(*) from chapter_3_nyc_taxi_parquet

After running the preceding query from the Athena console, you should get a result 
of 204,051,059. The query should have scanned around 0 kilobytes (KB) of data 
and completed after roughly 1 second. While the COUNT query matches the result of 
204,051,059 we found in our CSV formatted table from before our CTAS operation,  
this query's results are far different. The COUNT query against our new Parquet table  
was 8 times faster than the CSV table and was 340 times cheaper thanks to having read 
0 KB of data. You might be asking yourself how this query generated a result if it read 
no data. This is another happy side-effect of using the Parquet format. Each Parquet file 
is broken into groups of rows, typically 16-64 MB in size. While generating the Parquet 
file, the Parquet writer library keeps track of statistically significant information about 
each row group, including the number of rows and minimum/maximum values for each 
column. All this metadata is then written as part of the file footer that engines such as 
Athena can later use to how and if they read each row group. COUNT is one example of 
an operation that can be fully answered by reading only the row group metadata, not the 
contents of the files themselves. This leads to the significantly better performance we saw. 
It also happens to be the case that Athena does not presently consider file metadata to be 
part of the bytes scanned by the query. So, this query was charged Athena's minimum of 
10 MB or US Dollars (USD) 0.00005 compared to our earlier COUNT query, which cost 
USD 0.017.
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Reorganizing data for cost or performance reasons is just one of the many reasons you'll 
find yourself running CTAS queries. Sometimes, you'll want to use CTAS to fix erroneous 
records or produce aggregate datasets. A less common use case is to speed up result 
writing. With regular SELECT statements, Athena writes results to a single output object. 
Using a single output file makes consuming the result easier since ordering and other 
semantics are inherently preserved. Still, it also limits how much parallelism Athena can 
apply when generating output. If your query returns many GB of data, you will likely see 
faster performance simply by converting that query from a SELECT query to a CTAS 
query. That's because CTAS queries give Athena more opportunity to parallelize the write 
operations.

For all its benefits, CTAS also has drawbacks, the most prominent of which relates to 
limited control over the number and size of the created files. Even in our NYC taxi ride 
example, you can find plenty of files under the recommended 16 MB minimum for 
Parquet. If our query has to read too many small files, we'll see the overall performance 
suffer as Athena spends more time waiting on responses from S3 than processing the 
actual data. Bucketing is one way to help limit the number of files CTAS operations 
create, but it comes at the expense of making the CTAS operation itself take longer due 
to increased data shuffling. Without bucketing, we could easily have had three times the 
number of small files. The final thing to keep in mind with CTAS is that there is a limit 
to the number of new partitions Athena can create in a single query. This example would 
have been even better with daily partitions instead of the year and month partitions we 
included. However, Athena presently limits the number of new partitions in a CTAS query 
to 100. Since our exercise used 2.5 years of data, we'd have exceeded this limit when using 
daily partitions. This limit is unique to CTAS and INSERT INTO queries, which create 
new partitions. SELECT statements can interact with millions of partitions since they are 
a read-only operation with respect to partitions. 

As we've seen, CTAS makes it easy to create new tables by applying one or more 
transforms to existing tables and storing the result as an independent copy that can be 
queried without the need to repeat the initial transform effort. INSERT INTO is a related 
concept that allows you to add new data to an existing table by applying a transform 
over data from another table. We'll get hands-on with INSERT INTO, sometimes called 
SELECT INTO, in the next section.
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Using INSERT-INTO 
Our new and optimized table was a hit with the team. They are now asking if we can add 
even more history to the dataset and keep it up to date as new data arrives in the landing 
zone. We could rebuild the entire table using CTAS every time new data arrives, but it 
would be great if we could run a more targeted query to process and optimize only the 
newly landed data. That is precisely what INSERT INTO will allow us to do. As we did 
in the earlier example, our first step will be to download the new data from the NYC Taxi 
and Limousine Commission. For this exercise, let's add the 2017 trip data to our landing 
zone by modifying the script from Code 3.1 to include only our new desired dates. In Code 
3.4, we've shown how to get started with changing the script. Be sure to run the following 
script in a directory that has sufficient storage space. If you are using CloudShell, consider 
running the script in /tmp/, which has more space than your home directory:

#!/bin/bash

BUCKET=$1

array=( yellow_tripdata_2017-01.csv 

        yellow_tripdata_2017-02.csv

        # some entries omitted for brevity

        yellow_tripdata_2017-03.csv

       )

for i in "${array[@]}"

do

     FILE=$i

     ZIP_FILE="${FILE}.gz"

     wget https://s3.amazonaws.com/nyc-tlc/trip+data/${FILE}

     gzip ${FILE}

     aws s3 cp ./${ZIP_FILE} s3://$BUCKET/chapter_3/tables/
nyc_taxi_csv/

     rm $ZIP_FILE

done

Code 3.4 – Additional NYC taxi data preparation script
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After you run the script, you'll have added 12 new gzipped CSV files to the landing zone 
table in S3. The way we've created the landing zone means we won't need to run any extra 
commands once we upload the files—they are immediately available to query once the 
upload completes. Now, we can add the data to our Parquet optimized table using an 
INSERT INTO query, as illustrated here: 

INSERT INTO packt_serverless_analytics.chapter_3_nyc_taxi_
parquet 

SELECT 

     vendorid,

     tpep_pickup_datetime,

     tpep_dropoff_datetime,

     passenger_count,

     trip_distance,

     ratecodeid,

     store_and_fwd_flag,

     pulocationid,

     dolocationid,

     payment_type,

     fare_amount,

     extra,

     mta_tax,

     tip_amount,

     tolls_amount,

     improvement_surcharge,

     total_amount,

     congestion_surcharge,

     year(date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s')) 
as year,

      month(date_parse(tpep_pickup_datetime,'%Y-%m-%d 
%H:%i:%s')) as month

FROM packt_serverless_analytics.chapter_3_nyc_taxi_csv

WHERE

    year(date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s')) 
= 2017

Code 3.5 – INSERT INTO query for adding 2017 data to our Parquet optimized table
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The INSERT INTO query should take a bit over 2 minutes to complete, and it will 
automatically add any newly created partitions to our metastore. You may also have 
noticed that our INSERT INTO query read more data than you'd expect. We uploaded 
roughly 1.8 GB of new data, but the INSERT INTO query reports to have read 5.2 GB. 
Let's dig into why that is by running some ad hoc analytics over our tables. We'll run a 
query to count distinct tpep_pickup_datetime values in both our landing zone table 
and our optimized Parquet table for rides that started in 2017. Code 3.6 contains the query 
to run against our landing zone tables, and Code 3.7 has the query you can use against the 
optimized Parquet table. When you run these queries, you'll notice a couple of interesting 
differences in how they perform, the amount of data they read, and also that the queries 
themselves have some differences despite accomplishing the same thing.

You can see the first query here:

SELECT 

     COUNT(DISTINCT(tpep_pickup_datetime))

FROM packt_serverless_analytics.chapter_3_nyc_taxi_csv

WHERE

 year(date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s')) = 
2017

Code 3.6 – Landing zone distinct vendorid value query

The alternate query is shown here:

SELECT 

     COUNT(DISTINCT(tpep_pickup_datetime))

FROM packt_serverless_analytics.chapter_3_nyc_taxi_parquet

WHERE year = 2017

Code 3.7 – Landing zone distinct vendorid value query
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The first difference to understand is that the query in Code 3.6 must first parse and 
transform the tpep_pickup_datetime column before it can be used to filter out 
records that aren't from 2017. This is significant because it indicates that our dataset  
may not be partitioned on the filtering dimension. A closer look at the landing zone  
table's definition from Code 3.2 confirms there are no partition columns defined in  
the table creation query. Applying a function, transform, or arithmetic to a column  
as part of the WHERE clause is not a guarantee that you aren't querying along a partition 
boundary. However, Athena achieves peak filtering performance when partition 
conditionals use literal values. This is because Athena can push the filtering clauses deeper 
within its engine, or possibly down to the metastore itself. In this case, we are using the 
date_parse function because the landing zone table isn't partitioned on year; it's not 
partitioning on anything at all. That's why any query we run against the landing zone table 
may be forced to scan the entire table. 

Contrast this with the query in Code 3.7, which has an explicit year column and can use 
a simple, literal filter of year=2017. The second query runs much faster than the first 
and scans only a subset of the data (396 MB) that is in the 2017 partition. This is much 
closer to what we'd expect because it seems natural that filters reduce the data scanned. 
You might also be wondering why we chose to use COUNT( DISTINCT vendorid) 
instead of something more straightforward such as COUNT(*). The reason is simple. Our 
optimized Parquet table can answer COUNT(*) operations without actually reading the 
data because it stores basic statistics in every row group's header. Using DISTINCT is one 
way to bypass many Parquet optimizations that apply only to special-case queries such as 
COUNT(*), MIN(), and MAX(). Had those optimizations kicked in for our investigation, 
we'd have formed the wrong impression about how much data was in our Parquet table or 
how long it might take to query. In practice, these optimizations are precisely why Parquet 
is increasingly becoming a go-to format.

At this point, it might be obvious why we'd normally want to upload new data into a 
dedicated folder within the landing zone. Partitioning the landing zone allows us to run 
targeted queries against only the latest data. This can be done by treating that folder as a 
new partition or temporary table. For simplicity, we omitted that step from this example. 

In the next section, we will learn about the final type of advanced query covered in this 
chapter. You'll learn how the TABLESAMPLE decorator allows you to reduce the cost and 
runtime of exploratory queries while bounding the impacts of sampling bias. 
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Running approximate queries
In Chapter 1, Your First Query, we used TABLESAMPLE to run a query that allowed  
us to get familiar with our data by viewing an evenly distributed sampling of rows from 
across the entire table. TABLESAMPLE enables you to approximate the results of any 
query by sampling the underlying data. Athena also supports more targeted forms of 
approximation that offer bounded error. For example, the approx_distinct function 
should produce results with a standard error of 2.3% but completes its execution 97% 
faster while also using less peak memory than its completely accurate counterpart, 
COUNT(DISTINCT x). We'll learn more about these and several other approximate 
query tools by exploring our NYC taxi ride tables.

TABLESAMPLE is a somewhat generic technique for running approximate queries.  
Unlike the other methods we discuss in this section, TABLESAMPLE works by sampling 
the input data. This allows you to use it in conjunction with any other SQL features 
supported by Athena. The trade-off is that you'll need to take care to ensure you 
understand the error you may be introducing to your queries. This error most commonly 
manifests as observation bias since your query is now only "observing" a subset of the 
data. If the underlying sampling is not uniform, you may draw conclusions that are only 
relevant to the subset of data your query read but not the overall dataset. 

To demonstrate, let's try running a query to find the most popular hours of the day for 
riding in a taxi. We'll run the query in three different ways, first using the following query, 
which scans the entire table and produces a result with 100% accuracy: 

SELECT

   hour(date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s')) 
as hour,

   count(*)

FROM 

   packt_serverless_analytics.chapter_3_nyc_taxi_parquet

GROUP BY hour(date_parse(tpep_pickup_datetime,'%Y-%m-%d 
%H:%i:%s'))

ORDER BY hour DESC

Code 3.8 – Hourly ride counts query
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Our second query, shown here, adds the TABLESAMPLE modifier. This query uses the 
BERNOULLI sampling technique to read only 10% of the table's underlying data:

SELECT

   hour(date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s')) 
as hour,

   count(*) * 10

FROM 

   packt_serverless_analytics.chapter_3_nyc_taxi_parquet 

   TABLESAMPLE BERNOULLI (10)

GROUP BY hour(date_parse(tpep_pickup_datetime,'%Y-%m-%d 
%H:%i:%s'))

ORDER BY hour DESC

Code 3.9 – Hourly ride counts query with 10% BERNOULLI sampling

The following code block contains our third and final query. It again uses the 
TABLESAMPLE modifier but swaps BERNOULLI sampling for the SYSTEM sample 
technique to read only 10% of the table's underlying data:

SELECT

   hour(date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s')) 
as hour,

   count(*) * 10

FROM 

   packt_serverless_analytics.chapter_3_nyc_taxi_parquet 

   TABLESAMPLE SYSTEM (10)

GROUP BY hour(date_parse(tpep_pickup_datetime,'%Y-%m-%d 
%H:%i:%s'))

ORDER BY hour DESC

Code 3.10 – Hourly ride counts query with 10% SYSTEM sampling
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After you run all three queries, you'll see a pattern form. We've collated the data for 
the most popular hours as a table in Code 3.11. The original query took 6 seconds and 
scanned 1.42 GB of data but produced results that are 100% accurate. The second query 
used the BERNOULLI sampling technique to uniformly select 1 out of every 10 rows for 
inclusion in the result. That query took 3.4 seconds to complete and still scanned 1.42 GB 
of data but incurred an error of just 0.006%. That's a nearly 50% speedup while sacrificing 
minimal accuracy. Our last query used SYSTEM sampling to include 1 out of every 10 files 
in the dataset. This final query scanned 92% less data (116 MB) and ran 30% faster  
(4.3 seconds) than the original query but was 9% less accurate on average.

You can see the results here:

Table 3.1 – Ride count by hour using different sampling techniques

Our NYC taxi ride data is mostly uniformly distributed, so both sampling techniques 
did reasonably well. If our data had not been uniformly distributed with respect to the 
dimensions we queried on, then SYSTEM sampling would be more vulnerable to sampling 
bias. BERNOULLI sampling is more resistant to skew in the data's physical layout but isn't 
completely immune from sampling bias. In general, both sampling techniques speed up 
the query by reducing how much data is considered, but they do it differently. SYSTEM 
sampling discards entire files, which is why it scanned less total data from a billing 
perspective. BERNOULLI sampling applies the same determination at a row level, which 
means reading all the data before discarding it. 
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That wraps up the generic approximation facilities. Next, we'll use more targeted functions 
that can speed up specific analytical operations. A common exercise is to understand  
how a value in your data compares to the rest of the data; for example, is this distance 
traveled in a given taxi ride an outlier or relatively common? One way to answer this 
question is to understand what percentile the given ride presents. Put another way, what 
percentage of rides were less than or equal to the length of the ride we are inspecting? 
Percentiles are a great way to accomplish that. Unfortunately, calculating the percentiles 
for a large dataset can be resource-intensive and require scanning the entire dataset. 
We can do better than the generic sampling techniques offered by TABLESAMPLE. The 
following query calculates five different percentiles for our dataset while scanning only 
462 MB of the total 1.4 GB in our table yet still manages to achieve a standard error of 
2.3%. The approx_percentile function we are leveraging also supports supplying 
your own accuracy parameter: 

SELECT approx_percentile(trip_distance, 0.1) as tp10,

 approx_percentile(trip_distance, 0.5) as tp50,

 approx_percentile(trip_distance, 0.8) as tp80,

 approx_percentile(trip_distance, 0.9) as tp90,

 approx_percentile(trip_distance, 0.95) as tp95 

 FROM  packt_serverless_analytics.chapter_3_nyc_taxi_parquet

Code 3.11 – Approximating ride duration percentiles with approx_percentile(…)

After running the query, you'll see that 90% of rides traveled at least 6.9 miles and 
10% of rides traveled just .6 miles. You can see how basic outlier detection can be 
implemented using approx_percentile to compare any given value to the broader 
population of values. In addition to approx_percentile, Athena also supports 
approx_distinct and numeric_histogram functions of other memory-intensive 
calculations that typically require scanning the entire dataset.

Quantile Digest (Q-Digest): Using trees for order statistics
As with many other engines, Athena uses a special data structure to facilitate 
the time and memory-saving capabilities offered by approx_percentile. 
Q-Digest is a novel usage of binary trees whose leaf nodes represent values 
in the population dataset. By propagating infrequently seen values—and 
their frequency—up to higher layers of the tree, you can bound the memory 
required to generate percentiles. The memory allocated to the construction of 
these trees directly influences the rate of error in the resulting statistics. 
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We've run quite a few queries so far in this chapter. You might be wondering how to find 
that fascinating query we ran at the start of the chapter or where you can see the error 
associated with a particular query once you've closed your browser. In the next section, 
we'll review options for organizing workloads and reviewing our query history. 

Organizing workloads with WorkGroups and 
saved queries
Athena WorkGroups allow you to separate different use cases, applications, or users into 
independent collections. Each workgroup can have its own settings, including results 
location, query engine version, and query history, to name a few. In Figure 3.1, you can 
see the various WorkGroups we have created while authoring this book. This view lets you 
see the status of each workgroup at a glance. More in-depth settings or the creation of new 
WorkGroups are just a click away. Every Athena query runs in a workgroup. So far, we 
haven't set any specific workgroup for our queries, so they've been running the "primary" 
workgroup. The primary workgroup is special and is automatically created for you the first 
time you use Athena. 

You can see an overview of the Athena WorkGroups screen here:

Figure 3.1 – The Athena WorkGroups screen
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Athena customers often choose to use different WorkGroups for different kinds of queries. 
You can start getting into the habit of doing this right now by creating a new workgroup 
that you can use to run the remainder of the exercises in this book. To begin, click the 
Create workgroup button on the Workgroups page shown in Figure 3.1. You can get to 
that page by clicking on the Workgroup: primary tab at the top of the Athena console. 
If you are using the IAM policy recommended for this chapter, clicking the Create 
workgroup button will take you to a new page with the Create workgroup form, as 
shown in the following screenshot, Figure 3.2, and Figure 3.3: 

Figure 3.2 – Creating an Athena workgroup form Part 1

In Figure 3.2, you see the first three fields needed for workgroup creation. The first is 
simply the name of the new workgroup. The IAM policy recommended for this chapter 
will allow you to create new WorkGroups as long as they begin with packt-. You can try 
packt-athena-analytics as an example. The Description field is optional, purely 
used to document the purpose of the workgroup. Lastly, we need to set the default query 
results location for this workgroup. You may recall from previous chapters that Athena 
stores query results in S3 before making them available to your client or the Athena 
console. This allows you to reread the results as many times as you like, without needing 
to pay or wait for the query itself to run again. Naturally, we need to tell Athena where 
we'd like to store the results of queries run in this workgroup. 
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Aside from any organization naming conventions you may need to follow, there are 
two important factors to keep in mind when configuring these settings. The first is that 
Athena won't clean up this data after it's no longer needed. In fact, Athena has no idea 
if you are done using this data. You'll minimally want to set up an S3 Lifecycle policy 
to automatically delete data from this location that is older than a threshold you deem 
appropriate. If you need the results to be available longer than that, you should explicitly 
move them to a different location for long-term retention or consider running such 
queries in their own workgroup. Lastly, you'll want to consider who else has access to  
this S3 location. Imagine you have two personas in your organization: an Administrator 
who can read from any table and an intern who only has access to non-sensitive datasets. 
If the Administrator is running queries in a workgroup with a result location that is 
readable to the intern, you may be inadvertently providing a path for privilege escalation. 
The intern may accidentally stumble across the results of highly sensitive queries run by 
an Administrator. The same is true for a malicious actor. They no longer need to attack 
your permissioning system. You've unintentionally poked a hole in the armor by picking 
an overly permissive or shared query results location. 

In the following screenshot, we are presented with four more settings to create our new 
workgroup: 

Figure 3.3 – Creating an Athena workgroup form Part 2
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Athena's underlying engine, a hybrid of Presto and Trino, is rapidly evolving. As such, 
Athena has built-in facilities to handle upgrades. We'll talk more about Athena's automatic 
testing and upgrade functionality later in this chapter. For now, all you need to know is 
that Athena offers you full control over which engine version you use per workgroup. This 
allows you to isolate sensitive workloads to prevent auto-upgrades and enables you to 
take a sneak peek at upcoming versions so that you can prioritize upgrades that have an 
outsized benefit for you. It is highly recommended to set this to Let Athena choose when 
to upgrade your workgroup unless you've been advised otherwise by the Athena service 
team or are attempting to run a test against a specific version. This book's exercises will 
include new features that are only available in Athena engine version 2 or later, so be sure 
to pick Manually choose an engine version now and pick Athena engine version 2  
or later. Failing to set the appropriate engine version on your workgroup may result  
in failures later, as Athena may or may not have auto-upgraded you when running 
through the exercises in this book. 

The next setting determines if Athena will emit query metrics to AWS CloudWatch for 
all activities in the workgroup. We recommend leaving Metrics enabled as this will make 
troubleshooting, reporting, and auditing much easier. The last two settings are uncommon 
but enable interesting applications and integrations. As the Administrator of a workgroup, 
you can decide if clients can override workgroup-level settings such as results location 
on a per-query basis. The final setting controls whether Athena will allow queries in this 
workgroup to incur S3 charges that are typically paid by the owner of the S3 data itself. 
For example, if your company uses a separate AWS account per team and you query data 
that sits in another team's S3 bucket, that other team would typically be charged for any  
S3 operations or transfers that your query generates. Perhaps that other team doesn't like 
this billing model because it inflates their costs. After all, they didn't really run the query 
that incurred the usage cost. The data-providing team can set the bucket to Requester 
pays S3 buckets, which moves some of the charges to the account that accesses the 
S3 objects. You, as the customer, may not have signed off on these extra charges. This 
workgroup setting gives you control over what to do in these cases. By default, Athena 
will abort queries against S3 data configured to charge the requester. Toggling this setting 
changes that behavior.

The final option we can set on a workgroup is to apply resource tags. Tags allow you 
to organize resources across AWS services. Common uses involve billing, reporting, 
or simply understanding which projects make use of which resources. We won't be 
covering tagging in any depth here. Hence, we recommend leaving these blank as the 
recommended IAM policy for this chapter does not include creating or modifying tags. 
Once you are ready, you can click Create workgroup, as illustrated in the following 
screenshot, and your new workgroup should be ready to use. Don't forget to select that 
new workgroup by clicking Switch workgroup from Athena's workgroup page:
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Figure 3.4 – Creating an Athena workgroup form Part 3

Now that we have our new packt-athena-analytics workgroup, let's see how we 
can save our most frequently used queries as named queries in our workgroup. Named 
Queries, also called saved queries in some parts of the Athena console, allow you to 
quickly load and run a query without re-entering the entire text of the query. To begin 
creating a named query, start typing a new query into the Athena query editor, just as you 
did for the previous queries we've run. For simplicity, you can use a COUNT(*) query by 
year over our taxi ride data, as illustrated in the following code snippet:

SELECT year, COUNT(*) 

FROM packt_serverless_analytics.chapter_3_nyc_taxi_parquet 

GROUP BY year

Go ahead and run the query so that we know it works and we didn't mistype anything. 
Once the query completes, click Save as below the query editor, as shown in the following 
screenshot: 

Figure 3.5 – Creating a named query
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After you click Save as, you'll be prompted to give the query a name and a description. 
The saved query will only be visible to users of the workgroup you saved it to. Athena 
will remember this query and allow you to run or edit the query as many times as you 
like until you delete it. You can access the current set of saved queries by click on the 
saved queries tab at the top of the Athena console. This feature is good for bookmarking 
frequently used queries as part of an operational runbook or ad hoc analysis. 

So far, all our Athena usage has been via the AWS console. As we begin to conclude Part 1 
of this book, Fundamentals Of Amazon Athena, we'll introduce you to Athena's rich APIs. 
Virtually everything we've done with Athena's console can be done via the AWS software 
development kit (SDK) or AWS CLI. If you plan to build applications or automate 
analytics pipelines using Athena, you'll find using these APIs an easier route. If you aren't 
a developer or rarely use the command line, don't be intimidated. We will go step by step 
through each command, its arguments, and common reasons for failure. 

Using Athena's APIs
As an introduction to Athena's APIs, we will demonstrate how to run basic geospatial 
queries with Athena using the AWS CLI. The AWS CLI provides a simple wrapper 
over each of the APIs supported by Athena. This allows us to get familiar with the APIs 
without having to make any choices about programming language. The APIs we use in 
this section are available in all supported languages such as Java, Golang, and Rust. Now 
that we've got a better understanding of the basic Athena concepts, we'll also use a slightly 
more advanced example dataset that will give us a chance to experiment with Athena's 
geospatial capabilities. 

Use Athena engine version 2 or later
In case you skipped the instructions in the previous section pertaining to 
the creation of a new workgroup with Athena engine version 2, please take 
a moment to either switch to that workgroup now or change your current 
workgroup to explicitly use Athena engine version 2 or later to avoid errors in 
this exercise. Athena's geospatial functions have dramatically improved since 
Athena engine version1, so we'll be targeting features from Athena engine 
version 2 or later. 
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First, we will need to download two geospatial datasets from the Environmental Systems 
Research Institute (Esri), an industry leader in geospatial solutions, and upload that 
data to S3. The first dataset contains earthquake data for the state of California. The 
second dataset includes information on borders between all the different counties in 
California. California is an extremely seismically active area of the United States (US). 
Next, we will use Athena's APIs to run two Data Definition Language (DDL) queries to 
create tables for each of the datasets we downloaded. These datasets are less than 5 MB 
each. The book's GitHub repository contains a script that fully automates these steps to 
make this process easier. You can run the following commands in your AWS CloudShell 
environment, right from your browser. Alternatively, you can run these commands in 
most Linux-compatible environments with wget and the AWS CLI installed. After 
you run these commands, we'll quickly walk through what the geospatial_api_
example.sh script does. Remember to supply the script with the S3 bucket you've been 
using to store data related to our experiments and the name of an Athena workgroup in 
which the script's queries will run:

wget -O geospatial_api_example.sh https://bit.ly/3sZZRia

chmod +x geospatial_api_example.sh

./geospatial_api_example.sh <S3_BUCKET> <ATHENA_WORKGROUP_NAME>

If successful, the script will have created two new tables in the packt_serverless_
analytics database and printed the details of the accompanying Athena DDL queries 
to the Terminal. Let's go section by section through the script you downloaded earlier. 
We'll skip the uninteresting bits such as documentation or boilerplate error handling. 
Here we go:

#!/bin/bash

BUCKET=$1

WORKGROUP=$2

Bash scripts always start with a special sequence of characters, #!, called a shebang. This 
tells the system that what follows is a series of commands for a particular shell. In this 
case, we are using the Bash shell located at /bin/bash. This is mostly unrelated to 
Athena and its APIs, so don't worry if it is new or confusing. The only interesting bit in 
this first section is that the script treats the first argument as an S3 bucket and the second 
argument as an Athena workgroup. We'll see how these arguments get used later in the 
Athena APIs that get called.
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The script then downloads the first dataset from the Esri GitHub repository using wget 
and then uploads it to S3 using the S3 bucket provided by the first argument to the script, 
as illustrated in the following code snippet. This process is repeated for the second dataset:

wget https://github.com/Esri/gis-tools-for-hadoop/blob/master/
samples/data/earthquake-data/earthquakes.csv

aws s3 cp ./earthquakes.csv s3://$BUCKET/chapter_3/tables/
earthquakes/

So far, the script hasn't interacted with Athena at all. This section prepares a CREATE 
TABLE query that it will send to Athena via the start-query-execution API. The 
script again uses some Bash magic in the form of read -d" VARIABLE << END_
TOKEN to make the multiline CREATE TABLE query more human-readable. The code  
is illustrated here:

read -d '' create_earthquakes_table << EndOfMessage

CREATE external TABLE IF NOT EXISTS packt_serverless_analytics.
chapter_3_earthquakes

(/* columns omitted for brevity */)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

STORED AS TEXTFILE LOCATION 's3://${BUCKET}/chapter_3/tables/
earthquakes/'

EndOfMessage

The CREATE TABLE query preparation is repeated for the second dataset before 
we finally get to our first Athena API calls. Here, we are using the start-query-
execution API to run a DDL statement to create an earthquakes table. A nearly 
identical API call also gets made for the California counties dataset. The API takes two 
parameters, the query to run and the workgroup in which to run the query, as illustrated 
in the following code snippet:

aws athena start-query-execution \

--query-string "${create_earthquakes_table}" \

    --work-group "${WORKGROUP}"
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The vast majority of Athena's APIs are asynchronous. This means that the API calls 
complete relatively quickly, but the API's work isn't necessarily done when the API call 
completes. The start-query-execution API is a perfect example of this asynchronous 
pattern. When you run the script or this API call directly, you'll see that it returns almost 
immediately, even for queries that may take many minutes or hours to run. That's because 
completion of this API means Athena has accepted the query by doing some basic 
validations, authorization, and limit enforcement before giving us an identifier (ID) 
that we can later use to check the status of the query. This ID is called an Athena query 
execution ID and will also be used to retrieve our query's results programmatically.

Let's use the output of the script's two start-query-execution calls to check the 
status of our CREATE TABLE queries. Replace QueryExecutionId in the following 
command with one of your QueryExecutionId instances:

aws athena get-query-execution --query-execution-id 
<QueryExecutionId>

When you run this API call, you'll get output similar to the following. If your query ran 
into any issues, including permissions-related problems, you'd see root cause details too:

"QueryExecution": {

        "Query": "<QUERY TEXT OMMITED FOR BREVITY>",

        "StatementType": "DDL",

        "ResultConfiguration": { "OutputLocation": "s3://… "},

        "Status": {

            "State": "SUCCEEDED",

            "SubmissionDateTime": "2021-03-
07T18:25:14.736000+00:00",

            "CompletionDateTime": "2021-03-
07T18:25:15.902000+00:00"

        },

        "Statistics": {

            "DataScannedInBytes": 0,

            "TotalExecutionTimeInMillis": 1166

        },

        "workgroup": "packt-athena-analytics"

}
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In addition to giving us information about if the query succeeded or failed, the 
get-query-execution API also returns information about the type of query, how 
much data it scanned, how long it ran, and where its results were written. Using this 
API, you can embed lifecycle tracking and query scheduling functionality in your own 
applications. Now that we have a basic understanding of how to use Athena's APIs via 
the AWS CLI, let's try running queries that leverage Athena's geospatial functions. For 
this final exercise, let's imagine we work for an insurance company trying to build an 
automated claim-handling website. Our customers will go to this website and fill out 
forms to make insurance claims against their homeowners' insurance. We'd like to 
automatically approve or reject obvious claims before they get to a human. This saves time 
by giving customers rapid responses and helps ensure we prioritize essential claims. We've 
been asked to ensure that claims pertaining to natural disasters get escalated quickly. 
All our customers are in California, so we decided to start by automating earthquake 
claims. Whenever a customer selects earthquake as the cause for a claim, we need 
to run a query to determine if there were any recent earthquakes in their area. Luckily, 
Athena's geospatial function suite offers several ways to do this. A straightforward way is 
to understand if the county that the homeowner lives in has had any recent earthquakes. 
Here, we are using the county as a bounding box and then searching for any earthquakes 
in that vicinity. The ST_CONTAINS and ST_POINT functions allow us to treat the county 
as the search area and the earthquake's epicenter as a point; then, we can count how many 
earthquakes originated in each given county. In practice, a better method would also be to 
treat the earthquake as an area of impact and then the homeowner's house as a point, but 
that would be a much more challenging sample dataset to create. 

The following Athena API call will run a query that uses our new earthquake and 
counties tables in conjunction with the ST_CONTAINS and ST_POINT functions to 
count how many earthquakes happened in each county: 

aws athena start-query-execution \

--query-string "SELECT counties.name, COUNT(*) cnt \

FROM packt_serverless_analytics.chapter_3_counties as counties 
\

CROSS JOIN packt_serverless_analytics.chapter_3_earthquakes as 
earthquakes \

WHERE ST_CONTAINS (counties.boundaryshape, ST_
POINT(earthquakes.longitude, earthquakes.latitude)) \

GROUP BY  counties.name \

ORDER BY  cnt DESC" \

--work-group "packt-athena-analytics"
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If you repeat our get-query-execution API call for this query, you may see that it 
is in a RUNNING state since it takes much longer than our CREATE TABLE queries. You 
can keep running the get-query-execution API call shown here until the query 
transitions to a SUCCEEDED or FAILED state:

aws athena get-query-execution --query-execution-id 
<QueryExecutionId>

Assuming your query succeeds, you can then use Athena's get-query-results API to 
fetch pages of rows containing your query results. The command is shown in the following 
code block. Remember to substitute in a quoted version of your query's execution ID:

aws athena get-query-results --query-execution-id 
<QueryExecutionId>

The get-query-results API returns data as rows of JavaScript Object Notation 
(JSON) maps. The first row contains the column headers, while subsequent rows have the 
values associated with each row. The output can be very verbose, so many applications 
choose to access results directly from the S3 location. The code is illustrated in the 
following snippet:

{"ResultSet": {  "Rows": [

  {"Data": [{"VarCharValue": "name"},{"VarCharValue": "cnt"}]},

  {"Data": [{"VarCharValue": "Kern"},{"VarCharValue": "36"}]},

  {"Data": [{"VarCharValue": "San 
Bernardino"},{"VarCharValue":"35"}]}

                ...Remainder Omitted for Brevity...

When integrating with Athena, start-query-execution, get-query-
execution, and get-query-results are the most frequently called APIs. Still, 
there are many others for managing WorkGroups and saving queries and data sources. 
Hopefully, if you've never used APIs before, this exercise has removed some of the mystery 
surrounding them. If you're a seasoned developer, you're likely starting to form a view 
of how you can connect your applications to Athena. Chapter 9, Serverless ETL Pipelines, 
and Chapter 10, Building Applications with Amazon Athena, will use more sophisticated 
examples to demonstrate the power of integrating your application with Athena. 
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Summary
In this chapter, you concluded your introduction to Athena by getting hands-on with 
the key features that will allow you to use Athena for many everyday analytics tasks. 
We practiced queries and techniques that add new data, either in bulk via CTAS or 
incrementally through INSERT INTO, to our data lake. Our exercises also included 
experiments with approximate query techniques that improve our ability to find insights 
in our data. Features such as TABLESAMPLE or approx_percentile allow us to trade 
query accuracy for reduced cost or shorter runtimes. Cheaper and faster exploration 
queries enable us to consult the data more often. This leads to better decision-making and 
less reluctance to run long or expensive queries because you proved their worth with a 
shorter, approximate query. This may be hard to imagine given that all the queries in this 
chapter took less than a minute to run and, in aggregate, cost less than USD 1. In practice, 
many fascinating queries can take hours or days to complete and cost hundreds of dollars. 
These are the cases where approximate query techniques can show their merit. 

Next, we saw how to organize our workloads into WorkGroups so that our queries can use 
different settings such as Athena engine. Then, we closed out with an excursion into using 
Athena's APIs, instead of the AWS console, to run queries. This example was simple but 
demonstrated how a fictional insurance company could use these APIs to enhance their 
application by running geospatial workloads on Athena. 

While your introduction to Athena is now complete, the next part of this book will 
begin an introduction to building data lakes at scale. Understanding how data modeling 
affects your Athena applications' performance and security will enable you to ensure you 
have the right data in place for your application or analytics needs. Tools such as AWS 
Lake Formation will help you automate many of the activities you'll need to have in 
place before Part 3 of this book, Using Amazon Athena, brings us full circle to write our 
applications on top of Athena.



Section 2:  
Building and 

Connecting to Your 
Data Lake

In this section, you will learn how to build, secure, and connect to a data lake with Athena 
and Lake Formation.

This section consists of the following chapters:

• Chapter 4, Metastores, Data Sources, and Data Lakes

• Chapter 5, Securing Your Data

• Chapter 6, AWS Glue and AWS Lake Formation





4
Metastores,  

Data Sources, and 
Data Lakes

One of the best features of Athena is that it allows you to query data where it lives. That 
data can be sitting on S3, in a relational database, your EC2 environment, or any other 
source from which business value can be derived. However, the vast majority of Athena's 
usage is to query data on S3. Before Athena can query this data, it needs to know where 
the data is and how to read it, as data on S3 can be in many different file formats. Athena 
needs to translate the databases and tables referenced in SQL statements into physical S3 
locations, and then choose the right libraries to interpret the data that's been read from 
that location. The place where Athena goes to look up these translations is called the 
metastore. 
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This chapter will dive into the metastore and the information stored there. We will cover 
what information is required to register tables in a metastore. The metastore is just one of 
three key pieces that make up a data source; the other two components are the data that 
we want to query and a connector that lets Athena access the metastore and data. We will 
break down the data source by looking at the two different S3 data sources that Athena 
natively provides in depth. We will then compare the two to help you decide which one is 
appropriate for your use case. 

Metastores need to be populated to be useful. We will go over some common ways to 
register tables. Manually entering datasets into our catalog can be a painful and error-
prone process, so we will look at how AWS Glue Crawlers can help. Crawlers can 
automatically discover and register datasets in the metastore. We will also go through the 
process of creating one and see it in action. 

Lastly, we will look into the data lake architecture and appreciate the value that it 
can bring to an organization. Building data lakes requires a central catalog (that is, a 
metastore) that can be used by an organization to discover datasets and query data that 
was not possible with traditional on-premises storage. 

In this chapter, we will cover the following topics: 

• What is a metastore?

• What is a data source?

• Registering S3 datasets in your metastore

• Discovering your datasets on S3 using AWS Glue Crawlers

• Designing a data lake architecture

Technical requirements
For this chapter, you will require the following:

• Internet access to GitHub, S3, and the AWS console.

• A computer with Chrome, Safari, or Microsoft Edge and the AWS CLI version 2 
installed (https://amzn.to/3sYabba).

https://amzn.to/3sYabba
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• An AWS account and accompanying IAM user (or role) with sufficient privileges 
to complete this chapter's activities. For simplicity, you can always run through 
these exercises with a user that has full access. However, we recommend using 
scoped-down IAM policies to avoid making costly mistakes and learn how to best 
use IAM to secure your applications and data. You can find a minimally scoped 
IAM policy for this chapter in this book's accompanying GitHub repository, which 
is listed as chapter_4/iam_policy_chapter_4.json (https://bit.
ly/3qAcNtU). This policy includes the following:

 � Permissions to create and list IAM roles and policies. We will be creating a service 
role for an AWS Glue Crawler to assume.

 � Permissions to read, list, and write access to an S3 bucket. 

 � Permissions to read and write access to Glue Data Catalog databases, tables, and 
partitions. You will be creating databases, tables, and partitions manually and with 
Glue Crawlers.

 � The ability to create and run permissions for Glue Crawlers.

 � The ability to gain access to run Athena queries.

• An S3 bucket that is readable and writeable. If you have not created an S3 bucket 
yet, you can do so from the CLI by running the following command:

aws s3api create-bucket --bucket <YOUR_BUCKET_NAME> 
--region us-east-1

Ensure that the NYC Taxi dataset has been copied into your bucket. If you have not done 
so, you can run the commands located at https://bit.ly/2XW1LCA. 

What is a metastore?
Metastores are a critical component for Athena. Metastores tell Athena which datasets 
are available for it to query and how to process the underlying data. When a user submits 
a SQL statement to Athena for execution, Athena parses the query's text, identifies the 
tables and columns needed, and looks up a description of them from the metastore. Once 
it knows where the data lives, how it is stored, and the format, Athena requests the data, 
interprets it, and executes the query. 

https://bit.ly/3qAcNtU
https://bit.ly/3qAcNtU
https://bit.ly/2XW1LCA
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The metastore also serves as a directory of available datasets that can be queried. Datasets 
are represented by tables stored in databases, although in this context, the terms tables 
and databases do not refer to physical databases or tables. We refer to tables and databases 
as metadata, data that describes other data, and metastores store metadata. In the big 
data space, analytics engines usually store metadata and data separately. Athena's most 
common metastore is AWS Glue Data Catalog, and its most common data store is S3. The 
following diagram shows the separation of the metastore and data: 

Figure 4.1 – Metastores are stored separately from the underlying data

The data in a metastore is organized into a hierarchy of databases and tables. The 
following diagram shows the relationship between the various objects that are stored in a 
metastore:

Figure 4.2 – The essential components of a typical metastore 
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Adding, updating, and removing metadata from Athena's metastore can be done using 
Apache Hive's Data Definition Language (DDL). Under the hood, Athena executes DDL 
statements using Apache Hive. 

In this section, we will go through the information stored in a metastore so that we can 
learn how to start populating our metastore with databases and tables. But before we do, 
let's look at what a data source and its components are. 

Data sources, connectors, and catalogs
Metastores, connectors, and catalogs can sometimes be seen being used interchangeably, 
although there are subtle differences between the terms. A metastore contains a catalog 
of available datasets and their metadata. A connector allows Athena to read the metastore 
and data. Lastly, a data source includes all three components: the metastore, data, and 
connector. There is almost always a one-to-one relationship between a metastore and data 
source and a connector:

Figure 4.3 – Data source versus metastore versus connector

The preceding diagram shows the relationship between these components. Athena can 
register many different data sources. We will look at this in more detail in the What is a 
data source? section.

Databases and schemas
Athena and Apache Hive use the term database to refer to a collection of tables. In MySQL 
and other relational databases, the term schema is usually used instead. Still, many 
people, including myself, use these terms interchangeably. We will use the term database 
exclusively for the remainder of this book. 

Using databases can help organize tables into categories based on usages, such as keeping 
tables owned by the same group within an organization. You can also group tables based 
on user roles, for example, having a database for finance users and one for analysts. 
Ultimately, it is suggested that you keep the rules that are used to group tables together 
consistent. 
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To create a database in Athena, you can run a DDL query like the following:

CREATE DATABASE packt_serverless_analytics LOCATION 's3://<S3_
BUCKET>/tables/'

This query has two parts: creating the database called packt_serverless_
analytics and the location where that database should point to. 

Important Note
The database's location is not very important to Athena because it doesn't use 
it. However, it will be essential to use the same metastore with Apache Hive 
or PrestoDB on Amazon EMR or elsewhere. The location represents where 
managed tables will be stored and can cause a lot of headaches. It is strongly 
recommended to set the location of the database to a path in S3. We will look 
at this in more detail in the Tables/datasets section when we look at managed 
tables.

When running an Athena query, any references to tables that are not prefixed with a 
database will be assumed to run in a default database that you specify. To refer to tables 
in other databases, you can prefix the table name with the database. For example, the 
following statement refers to the nyc_taxi table from the packt_serverless_
analytics database: 

SELECT * FROM packt_serverless_analytics.nyc_taxi where column1 
> 10

This would be required if the default database was configured as elb_logs.

Tables/datasets
A table represents a dataset that users can query. A table has many properties that need to 
be specified when created, such as the table's location, the table's schema, the file format 
of the data stored, and more. This data is then stored in the metastore. The following is 
a sample CREATE TABLE statement that can be used to register a table. We will look at 
each part to illustrate the information needed for a table to be queried:

CREATE EXTERNAL TABLE 'packt_serverless_analytics'.'nyc_taxi_
partitioned'(

  'vendorid' BIGINT, 

  'tpep_pickup_datetime' STRING, 

  'tpep_dropoff_datetime' STRING, 

  'passenger_count' BIGINT, 
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  'trip_distance' DOUBLE, 

  … see rest of the columns on GitHub https://bit.ly/3odawDa

  'congestion_surcharge' DOUBLE)

PARTITIONED BY ('year' INT, 'month' INT)

ROW FORMAT DELIMITED 

  FIELDS TERMINATED BY ',' 

STORED AS INPUTFORMAT 

  'org.apache.hadoop.mapred.TextInputFormat' 

OUTPUTFORMAT 

  'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

LOCATION

  's3://<S3_BUCKET>/tables/nyc_taxi_partitioned/'

TBLPROPERTIES (

  'areColumnsQuoted'='false', 

  'columnsOrdered'='true', 

  'compressionType'='gzip', 

  'delimiter'=',',

  'skip.header.line.count'='1'

)

You can download and run the preceding statement in its complete form by going to 
https://bit.ly/3odawDa. Let's break this code down into each of its components.

External tables, managed tables, and governed tables
The first part of the statement, CREATE EXTERNAL TABLE, tells Athena to create an 
external table. An external table is a table where the user must manage the underlying 
data, and Athena will not perform any actions when the table is dropped. 

If the external table specification is not provided, then the table is a managed table. A 
managed table differs from an external table in two main ways. First, when creating 
a managed table, a location is not needed. The table's location will be placed under 
the database's location property. For example, if we created a managed table called 
my_table in a database whose location property was s3://packt-serverless-
analytics-1234567890/tables/, then the table's data would be stored at packt-
serverless-analytics-1234567890/tables/my_table. When a managed 
table is dropped, the execution engine should delete the table's data and remove the table 
from the metastore. Managed tables are not supported in Athena.

https://bit.ly/3odawDa
https://bit.ly/3odawDa
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Another type of table, called a governed table, is specific to AWS. It is a table that  
AWS Lake Formation manages. It provides additional features, such as supporting  
atomic, consistent, isolated, and durable (ACID) transactions and automatic 
consolidation of data. Small file sizes can have an enormous impact on query 
performance. We have dedicated an entire chapter to governed tables; that is,  
Chapter 14, Lake Formation – Advanced Features. 

Table schema
The schema for a table is the list of columns that can be queried and the column's data 
type. Athena takes the schema while reading data files and maps the data it finds to the 
columns with their names. In the previous CREATE TABLE statement, the schema is the 
columns that are specified. 

Note that the data types specified in the table schemas must match or be compatible 
with the data type stored in the data files. If they do not match, then Athena may fail the 
query with an error, stating that it cannot convert the data type in the data file into the 
requested data type. Similarly, some data formats require that the column order specified 
in the table's schema matches the ordering of columns in the data files. If the file format 
requires specific ordering, and the order does not match the table schema, then you may 
get columns with data from other columns, null values for a column, or a failed query. 

Partitions
Partitioning a table allows for huge tables to be broken down into smaller slices of data 
based on one or more virtual columns. This has many advantages, including reducing 
data scanning, thus reducing Athena's costs and having faster query times. When there 
is a filter on one or more partition columns, Athena will read only the partitions' data 
files. Each partition in a table has a directory where the data for that slice is stored. The 
following diagram illustrates how the nyc_taxi_partitioned table's data is laid out 
for datasets on S3:

Figure 4.4 – File layout of the nyc_taxi_partitioned partitioned table
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The table's base location is s3://packt-serverless-analytics/tables/nyc_
taxi_partitioned. Each directory and subdirectory beneath it is a partition with the 
partition column name and the column's value. 

There are two ways to add partitions from Athena. The first is to run the following DDL 
statement:

MSCK REPAIR TABLE nyc_taxi_partitioned

This statement instructs Athena to scan the directory under the table's specified location 
for any partitions. If the partition has not been registered yet, it will add it. This can be 
an easy and convenient way to discover new partitions, but there is a drawback. First, 
the directory structure must follow the <partition column name>=<partition 
value> format. Secondly, the statement can take more than 10 minutes to run if the table 
has hundreds of thousands of partitions or more.

The second way to add a partition is to add the partitions manually, one by one, if you 
know ahead of time what the partition values are. The following DDL statement adds the 
2020-06-01 partition to the table:

ALTER TABLE nyc_taxi_partitioned

    ADD PARTITION (year='2020', month='1')

    LOCATION 's3:// <S3_BUCKET>/tables/nyc_taxi_partitioned/
year=2020/month=1/'

This statement tells Athena to add a new partition with a column value of 2020 for the 
year and 1 for the month and a location of s3://packt-serverless-analytics/
tables/nyc_taxi_partitioned/year=2020/month=1/. There are two main 
advantages to adding partitions this way. First, it is usually faster to run this command to 
add a single or small number of partitions to a highly partitioned table than to run MSCK 
REPAIR TABLE. Second, you can specify any location; it does not need to conform to the 
Hive partition format of partition column=value. 

Note
When a partitioned table is created, the table will have 0 partitions registered. 
Any queries against the table will always return 0 rows. After the creation of 
a partitioned table, you should perform a partition-adding operation such as 
using the MSCK REPAIR or ADD PARTITION commands.
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Serialization and deserialization and file formats
In the next part of the CREATE TABLE statement, we can see the ROW FORMAT 
DELIMITED, STORED AS INPUTFORMAT, and OUTPUTFORMAT sections. Athena 
uses this information to select the serialization and deserialization (SerDe) library 
to read the data. Different file formats, such as Comma-Separated Values (CSV), 
Apache Parquet, Apache ORC, and others, have their own libraries that are used 
to read and write the data. In our example, we are telling Athena that the data is 
stored in CSV format and that we're using the org.apache.hadoop.mapred.
TextInputFormat library to read the data and the org.apache.hadoop.hive.
ql.io.HiveIgnoreKeyTextOutputFormat library for any writes.

Athena supports a wide variety of open source data formats. To see the up-to-date list of 
supported data formats, see Athena's documentation link in the Further reading section.

Table properties
The next section is the table properties. These properties are specified as key/value 
pairs and can be used for a variety of uses. In this case, we are setting properties to 
configure SerDe: we are telling the SerDe text input that the fields are not quoted 
(areColumnsQuoted=false), the columns are ordered based on the column order 
in the table's schema (columnsOrdered=true), and that the first row of data is the 
column header and should be ignored (skip.header.line.count). For different 
SerDe instances, these properties can be different.

Another use for table properties is to store information that can be useful for other 
purposes. For example, you can add an owner, contact information if a user has a question 
or found a data quality issue, or keywords about what is contained in the table, helping 
users discover the data they are looking for. 

Table statistics
Although it is not specified in the CREATE TABLE statement, metastores can also  
store table-level and column-level statistics. Statistics help execution engines perform 
Cost-Based Optimizations (CBOs) when they're coming up with an execution plan.  
For example, the join ordering of tables can be optimized if the row counts of each table 
are known. At the time of writing, Athena does some optimizations, but these statistics 
will help you perform complex optimizations in the future. 

Now that we have a good understanding of what a metastore is, we can discuss data 
sources.
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What is a data source?
If Athena has access to data and the associated metadata, it can read that data. This 
is one of Athena's greatest strengths, as it can join data from anywhere to enrich and 
derive business value. For example, suppose an online store has its sales data in a MySQL 
database, has customer website traffic data in S3, and has product pricing information 
in DynamoDB. In that case, these datasets can be joined together to determine which 
pricing changes caused the most traffic to the website's stores and drove the most sales. 
You can look at the available data sources or add new data sources from Athena's console, 
as shown in the following screenshot:

Figure 4.5 – The Data sources tab in the Athena console

For this section, we will mostly focus on querying data on S3. To query data in S3, using 
the AWS Glue Data Catalog or the Apache Hive metastore are the fastest and easiest ways 
to store your databases and tables. We will dive into how they are different and when to 
use one over the other. We will then briefly talk about non-S3 data sources, as an entire 
chapter, Chapter 12, Athena Query Federation, is dedicated to Athena Query Federation, 
which can read from almost any data source. 
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S3 data sources
S3 is the most common data source for Athena. It was the first and only data source 
available when Athena launched. With one DDL statement, Athena can start querying 
data in S3 in seconds. Athena needed a metastore implementation to store database 
and table information. AWS Glue Data Catalog was created to be the central catalog for 
other AWS services while maintaining compatibility with existing execution engines 
such as Apache Hive, Apache Spark, and PrestoDB. For these engines, AWS Glue 
created connectors and implementations that adhered to the Apache Hive metastore 
interface. Where Hive's metastore is used, it can be swapped out for Glue Data Catalog's 
implementation.

For this reason, Athena's default metastore is Glue Data Catalog. However, some 
customers want to use Athena without migrating their metastores to Glue or keeping Glue 
and Hive metastores in sync. Athena introduced support to connect to Hive metastores 
directly. 

When should you use Glue Data Catalog, and when should you use a Hive metastore? 
What are the advantages of one over the other? We will go over both Glue Data Catalog 
and Hive metastores and when it would be appropriate to use one over the other. 

AWS Glue Data Catalog
AWS Glue Data Catalog is a serverless offering by AWS. There is no infrastructure to 
manage, and the cost is very reasonable. At the time of writing, the cost of using Glue 
Data Catalog is free for the first million objects stored and $1.00 for every 100,000 
objects thereafter. Also, the first million object requests are free, with each additional 
million requests costing $1.00. Glue Data Catalog is natively integrated with Redshift, 
Glue ETL, Lake Formation, and EMR, making sharing the catalog very easy. Glue Data 
Catalog integrates with open source engines via connectors available for Apache Spark, 
Apache Hive, PrestoDB, and Trino. Glue Data Catalog also supports versioning of tables. 
As changes are made to tables, they are saved, and older versions of the tables can be 
referred to or rolled back when unintentional or breaking changes are made. Lastly, with 
integration with Lake Formation, data access controls can be applied to Glue tables and 
columns and applied to AWS services that integrate with Lake Formation. More on that in 
the next chapter.
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There are a few disadvantages of using Glue Data Catalog to be aware of. As with all AWS 
services, the first main disadvantage is that API calls are subject to service throttling limits 
and service quotas. If Glue Data Catalog's load is high, requests may be throttled, causing 
queries to slow down or even fail. These throttling limits are soft and can be raised if 
an AWS support ticket is entered to increase the limits. The other limits to consider are 
service quotas, limiting the number of objects stored in Glue. These limits are very high, 
and it should be challenging to reach these limits. 

The second main disadvantage is that it does not support all the features of the Hive 
metastore. For example, Glue Data Catalog does not support Hive ACID transactional 
tables, which are not supported in Athena. 

There are many other limitations of Glue Data Catalog, but if you are not using Apache 
Hive, these limitations will not impact you. If you are planning to use Hive, then the 
documentation (http://amzn.to/3o0REqS) provides an exhaustive list. 

Note
At the time of writing, AWS accounts have a default limit of 10,000 databases 
per account, 200,000 tables per database, and 10,000,000 partitions per table. If 
you breach these limits, it is likely that you may be doing something wrong and 
should revisit your architecture. These limits are mostly soft limits and they can 
be increased by entering a support ticket.

Now, let's take a look at the Hive metastore. 

Apache Hive metastore 
Apache Hive was initially released in 2010 by Facebook to provide SQL-like access  
to data stored on Hadoop clusters. One of the main components was the metastore. As 
time progressed, it was used by other Hadoop projects such as Spark to store dataset 
metadata. Hive metastores are a service that is typically backed by a relational database 
such as MySQL. 

The advantages of using a Hive metastore with Athena over Glue Data Catalog are few but 
significant. The main advantage is that companies that already have a Hive installation 
may not wish to migrate their metadata for various reasons, such as using third-party 
tools that are not compatible with Glue Data Catalog. The other advantage is that it is 
open sourced, which provides two benefits. First, if a bug or enhancement needs to be 
made, it can be done quickly and deployed. Second, it is portable and does not lock you 
into a single cloud infrastructure provider. 

http://amzn.to/3o0REqS
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The disadvantages are plenty. The main disadvantage that I have seen organizations 
struggle with is that upgrading the version of the metastore can cause substantial 
operational problems. Some version upgrades break existing installations because they 
were not designed to be backward and/or forward compatible. A lot of planning and 
coordination needs to happen when upgrading versions, increasing the operational 
burden. I worked with a customer who upgraded their metastore, which was shared 
between beta and production environments, which caused their production environment 
to break, causing a several-hour production outage.

The other disadvantage is its performance. When Athena is using Glue Data Catalog, 
it makes direct API calls. When a Hive metastore is used, Athena invokes a Lambda 
function to call a Hive metastore process. This has a higher cost for all metadata calls. This 
is even more apparent with tables that have a large number of partitions. When querying 
a table with 1 million partitions, we found that Glue Data Catalog-backed queries ran at 
least half the time than when using a Hive metastore. 

The last disadvantage to call out is that Athena does not support writing to external 
metastores at the time of writing this book. Being able to create tables, alter tables, or 
perform other operations is currently not supported and the only way to update the 
metadata is through another application.

Tip
Our recommendation is to use Glue Data Catalog whenever possible. It 
has a lower operational burden due to it being serverless, it doesn't need to 
perform version upgrades, has better auditing capabilities, the ability to update 
metadata, and provides native integration with other AWS services.

Here is the comparison of AWS Glue Data Catalog and Apache Hive metastores with 
Athena:
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Figure 4.6 – Comparison of AWS Glue Data Catalog versus Apache Hive metastore

Of course, Hive and Glue are not the only possible data sources you can use. Let's quickly 
look at some other alternatives.

Other data sources
Athena supports a variety of data sources out of the box. At the time of writing, the 
supported data sources are S3 with AWS Glue Data Catalog or Apache Hive metastores, 
Amazon CloudWatch Logs, Amazon CloudWatch Metrics, Amazon DocumentDB, 
Amazon DynamoDB, Amazon Redshift, Apache HBase, MySQL, PostgreSQL, and 
Redis. 
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You can register a new data source from the Athena console. The following screenshot 
shows the Athena console:

Figure 4.7 – Connecting a new data source to Athena in the Athena console

By following a few steps, you can connect to a new data source within seconds and query 
any of the aforementioned data sources. We will look at adding new data sources and 
creating custom data sources in more depth in Chapter 12, Athena Query Federation.

Next, we'll look at how to register S3 datasets so that they can be used with your 
metastore.

Registering S3 datasets in your metastore
Before you can query your data with Athena, the data must be registered in a data 
catalog. This section will review the different ways an S3 dataset can be registered in your 
metastore. 

Using Athena CREATE TABLE statements
Athena's console allows you to create databases and tables in your metastore through two 
methods. The most often used method is generating and executing DDL statements. We 
have already seen a few examples of CREATE TABLE SQL statements to create tables. If 
you need a refresher, refer to the Tables section earlier in this chapter. Alternatively, you 
can click on the CREATE TABLE template within the Athena console, as shown in the 
following screenshot:
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Figure 4.8 – Using a SQL template in the Athena console for CREATE TABLE

Using Athena's Create Table wizard
This method uses the Create Table wizard from the Athena console. It takes the necessary 
information, generates a CREATE TABLE statement, and submits it to Athena. To run the 
wizard, click on the Create table link in the Athena query editor tab, next to Tables, as 
shown in the following screenshot, and follow the steps:

Figure 4.9 – Creating a table using Athena's console
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This method of creating tables is very rarely used because it takes a lot of manual effort, 
especially if your table has many columns.

Using the AWS Glue console
The AWS Glue console supports the creation of databases and tables using wizards,  
very similar to the Athena console. Creating tables, especially those with many columns,  
is time-consuming and error-prone. To get to the wizard, click on the Tables link on 
the left-hand side, click on Add tables, and select Add table manually, as shown in the 
following screenshot. Follow the steps, and voilà – your table will be created:

Figure 4.10 – Creating a table using AWS Glue's console

Using AWS Glue Crawlers
AWS Glue Crawlers solve the issue of manually crafting CREATE TABLE statements or 
entering schema information through the Athena or Glue console. Point a crawler to your 
S3 location and it will scan, discover, and register tables automatically for you, including 
partitions. It will figure out a schema by sampling the data it sees. For tables that have 
hundreds of columns, point a crawler to the table, and it will attempt to figure out the 
name and data types of each column, saving countless hours of inspecting data, typing in 
data types, trying and having your queries fail, hitting your keyboard, and so on. 

We'll create one in the next section.
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Discovering your datasets on S3 using AWS 
Glue Crawlers
Let's say that you have a lot of data that you are outputting to S3, and you want to query 
it. Before you can, you need to register that data. However, the data sitting in S3 is in 
many different formats and schemas. Going through each dataset, inspecting files, and 
determining the file format, partitions, and columns is a very time-consuming task. If a 
table contains incorrect column names, incorrect ordering of columns, or any other form 
of error, then the table may not be queryable until it is corrected. AWS Glue Crawlers 
solve these issues. Glue Crawlers can scan data on S3, inspect the S3 directory structure 
and data within it, and automatically populate the data catalog. This section will look at 
how they work and set up a Glue crawler to discover a sample dataset. 

How do AWS Glue Crawlers work?
There are three actions that a Glue crawler takes when scanning S3:

1. It scans S3 directories for data files. File formats such as Parquet, ORC, and Avro  
are self-describing, meaning they include the data file's schema. If the data format  
is not self-describing, it will sample the file's data to guess the columns and their 
data types. 

2. As the crawler traverses the directory and sees multiple directories containing data 
files with similar schemas, it may consider it a partitioned table. If the schema is 
sufficiently different, then it will consider each of the directories as separate tables.

3. Finally, once it has traversed all the directories, it will register the tables and table 
partitions to the catalog. If the tables already exist, they will update the schemas and 
add any undiscovered partitions.

Running your first AWS Glue Crawler
In this section, we will create our first Glue Crawler, which will traverse our bucket and 
register the tables that are found. We will create a new database to store the crawled tables, 
and then we will query them in Athena. 

If you have already set up your S3 bucket with the example datasets, you can skip this 
section. If not, please follow the instructions in this book's GitHub repository, which is 
located at https://bit.ly/2XW1LCA. Remember to replace <YOUR_S3_BUCKET> 
with the bucket that you are using.

https://bit.ly/2XW1LCA
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Getting to the Glue Crawler wizard
There are two ways to get to the Glue Crawler wizard. Let's take a look:

4. The first option is through the Athena console, by clicking on the Create Table link 
and then from AWS Glue Crawler. The second option is from the Glue console 
by clicking on Crawlers on the left-hand side menu and then clicking on the Add 
crawler button. Both methods are shown in the following figure:

Figure 4.11 – Getting to the Glue Crawler wizard (left is the Athena console, right is the Glue console)

5. Let's call the crawler packt_serverless_analytics_chapter_4, as shown 
in the following screenshot:

Figure 4.12 – Creating a new crawler info page

6. We will forgo giving the crawler any tags, security configuration, or registering 
custom classifiers. For the subsequent screens, input the following values. 
Descriptions of some of the fields are also included:

 � Crawler name: This is the name to assign to your crawler. Value to set: packt_
serverless_analytics_chapter_4.
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 � Tag key and value: Key/value pair that provides metadata on this crawler. Value to 
set: None.

 � Description: A description of the crawler. Value to set: None.

 � Security configuration: A configuration that specifies the encryption key to use 
for logs. Value to set: None.

 � Crawler source Type: This indicates whether you want to specify an S3 location 
(data stores) or crawl existing table locations. Value to set: Data stores.

 � Repeat Crawls of S3 data sources: When Crawlers run multiple times, should 
they inspect new directories only or all directories? Value to set: Crawl all 
folders.

 � Choose a data store: The source that should be crawled. Value to set: S3.

 � Connection: A connection in Glue is a named elastic network interface (ENI), 
which is created in a VPC with security groups attached. Connections allow Glue 
Crawlers and other functionality to talk to data sources from within your network 
and not over the internet. Value to set: Leave blank.

 � Crawl data in: This is used to specify whether the S3 bucket we are crawling is 
owned by the account running the crawler or in a different account. Value to set: 
Specified path in my account.

 � Include Path: S3 path for the crawler to start in. Value to set: s3://<MY 
BUCKET NAME>/tables/.

 � Add another data store: Crawlers can crawl multiple data sources in a single run. 
This can be useful if you want the same crawler to focus on a subset of directories 
in a single bucket or multiple buckets. Value to set: No.

 � Choose an IAM role: The IAM role that is used by the crawler to access the S3 
bucket and other resources. Value to set: If you have not created an IAM role 
before for a crawler, choose Create an IAM role and add packt-serverless-
analytics as the role name suffix. Otherwise, choose Update a policy in an 
IAM role to ensure that the S3 path is added to an existing IAM role.

 � Frequency: Crawlers can be scheduled to run at regular intervals or set to run on 
demand. Value to set: Run on-demand.

 � Configure the crawler's output: The database to add/update tables in,  
and optionally a prefix for table names. Value to set: For the database, enter 
packt-serverless-analytics-chapter-4 or click on Add database  
if the database doesn't exist.
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 � Grouping behavior for S3 data: This is optional. It tells the crawler to create  
a table for each unique S3 directory rather than group multiple directories into  
a partitioned table. Value to set: Leave unchecked.

 � Configuration Options: For existing tables, these options determine how the 
crawler will update existing tables. Value to set: Check the Update all new and 
existing partitions with metadata from the table setting. See AWS Glue Crawler 
best practices for Athena for more information.

7. On the last page of the wizard, you will see a summary of the crawler. Your 
summary should look like this:

Figure 4.13 – Summary of the crawler
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8. Click on Finish; the crawler will be created. 
9. To run the crawler, select the crawler and hit the Run crawler button. Your crawler 

should run, discover new tables, and add them to your catalog, as shown in the 
following screenshot:

Figure 4.14 – Output of running the crawler

Congratulations! You have registered two new tables in the packt_serverless_
analytics_chapter_4 database. You can browse these tables in the Tables section  
of the Glue console:

Figure 4.15 – Tables created by the crawler

AWS Glue Crawler best practices for Athena
We could easily write half a book dedicated to Glue Crawlers and their best practices, 
which we will not do. Glue Crawlers have extensive public documentation, so anything 
that we don't cover here can be found here: http://amzn.to/3nWcSWZ. However, 
when working with several customers, the issues they tend to have trouble with are the 
HIVE_PARTITION_SCHEMA_MISMATCH error, which is related to issues with 
partition schemas not matching the table's schema, and issues with CSV/TSV files, as 
there are two different SerDes that can process these file types. 

http://amzn.to/3nWcSWZ
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Designing a data lake architecture
Before cloud platforms, organizations had clusters sitting in their data centers with 
massive amounts of storage that applications would push their data to for analytics. When 
storage was running low, the organization would either remove that data on the cluster or 
increase its storage. Ordering new hardware was costly and was often met with long lead 
times. As cloud platforms have exploded in popularity, businesses and organizations have 
leveraged unlimited storage and compute to develop new ways of storing and processing 
data. One of the most common architectures for data analysis was the data lake. The data 
lake architecture leverages the unlimited storage that cloud platforms provide and can 
scale storage and compute independently. It can store an organization's data in a single 
location, where it can be queried by any user using the best application for the particular 
use case. Any data that was too large or expensive to store on an on-premises cluster 
can now be stored much more cheaply. The following diagram shows a simplified data 
lake architecture where data producers (mobile clients, databases, application clients, 
and application servers) push their data into a central data store (S3). That data is then 
consumed and analyzed, and the results are written back to S3: 

Figure 4.16 – Typical simplified data lake architecture
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Because the data is separate from the compute engine, the application that does the 
analysis can be chosen based on the analytics that is being conducted. For example, for 
ETL processing, Amazon Athena, Amazon EMR, or AWS Glue ETL can be used. Amazon 
SageMaker or Amazon EMR can be used for machine learning modeling, or Amazon 
Athena for ad hoc querying, exploration, or delivering data to applications.  

One component that binds all the AWS services together is the central catalog. Without it, 
each service would need to track its metadata on the datasets on S3, making it challenging 
to keep in sync. AWS Glue Data Catalog is the only metastore that's leveraged by the suite 
of AWS analytics services. The catalog can also enforce data access controls and provide 
auditing, which we will cover in Chapter 5, Securing Your Data.

Now that we have an overview of a data lake's basic structure, a few concepts will help you 
get the most out of Athena and other AWS services. We will look at the three stages or 
forms of data that typical data lakes utilize and each stage's characteristics before learning 
how to transform data using Athena. 

Stages of data
When data is ingested from applications, databases, and other sources into a data lake,  
it tends to be in a raw state. They can be in text format, uncompressed, and structured  
in a suboptimal way. The data can be transformed more optimally to improve the 
performance and cost of consuming raw data. Let's break down these stages:

• Raw data: This is the stage where producers of data push the data that they produce. 
This data tends to be in suboptimal data formats and structures. The applications 
generally don't want to spend their resources converting the data. The raw data 
is seen as the source of truth: therefore, it is recommended that this data is never 
deleted but archived in S3 Glacier once the data is no longer needed. If the data is 
required again or there is a data quality issue in any data derived from this data, it 
can be restored and reused. Also, the data can be difficult to reproduce from the 
original producer. Raw data usually exists in a separate S3 bucket from other data. 
The data is highly secure as raw data may contain sensitive data. Querying this data 
using Athena is great for data exploration and testing the data, but it is not ideal for 
repetitive querying as it would be slow and expensive. 
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• Processed/transformed data: This stage is the first level of transformation from 
the raw data. Its purpose is to provide a faster and cheaper way of querying data 
for general use cases. The data is converted into an optimized file format such as 
Apache ORC or Apache Parquet. Transforming your data into ORC or Parquet 
can reduce the data size by 50-90%, which provides a 50-90% reduction in Athena 
querying costs. The data can also be partitioned based on a frequently used filter 
in queries, such as the transaction date or region. The transaction helps reduce 
querying costs as only the selected partitions are queried. This stage also provides 
an opportunity to filter columns or rows for raw data that is not needed, or that may 
contain confidential data. For example, suppose customers' personally identifiable 
information (PII) is in a dataset; it would be too sensitive to provide to general 
users. In that case, it can be removed or encrypted. This stage is great for ad hoc 
querying from users and general use from other applications such as Amazon 
Redshift or Amazon SageMaker. 

• Application-specific format: This stage is most often used for applications that 
serve data to customers and generally need to run as fast as possible to provide the 
best experience for end users.  The data in this stage is transformed into a specific 
structure and not meant for general-purpose querying. Datasets can be partitioned 
based on columns that would not generally be used and other data format 
optimizations to optimize the application's specific queries or access patterns. We 
will look at this in more detail in Chapter 11, Operational Excellence – Maintenance, 
Optimization, and Troubleshooting. 

Now that we've looked at the stages of data, let's learn how to transform it.

Transforming data using Athena
Transforming data has many advantages, and Athena can perform these transformations 
using SQL. Two statements can be used with Athena: CREATE TABLE AS SELECT 
(CTAS) and INSERT INTO. The CTAS statement creates a new table and populates the 
table from the results of a SELECT statement. The structure of the CTAS query is CREATE 
TABLE <TABLE NAME> WITH PROPERTIES (…) AS < SELECT QUERY>. 
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Let's take our NYC Taxi ride dataset in CSV format and convert it into Parquet. We can do 
this by running the following query (https://bit.ly/3xdzXJb):

CREATE TABLE packt_serverless_analytics.nyc_taxi_partitioned_
parquet

WITH (format='PARQUET',

    parquet_compression='SNAPPY',

    partitioned_by=array['year','month'],

    external_location = 's3://<S3_BUCKET>/tables/nyc_taxi_
partitioned_parquet/')

AS

SELECT

    vendorid, 

    tpep_pickup_datetime, 

    tpep_dropoff_datetime, 

    passenger_count, 

    trip_distance, 

    ratecodeid, 

    store_and_fwd_flag, 

    pulocationid, 

    dolocationid, 

    payment_type, 

    fare_amount, 

    extra, 

    mta_tax, 

    tip_amount, 

    tolls_amount, 

    improvement_surcharge, 

    total_amount, 

    congestion_surcharge,

    --Below are partition columns and are always

    --specified at the end of the SELECT statement

    substr(tpep_pickup_datetime, 1, 4) AS year,

    substr(tpep_pickup_datetime, 6, 2) AS month

FROM packt_serverless_analytics.nyc_taxi;

https://bit.ly/3xdzXJb
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Athena will execute the SELECT statement and create a new table based on the provided 
file format, file compression, columns, partition columns, and location. The table's 
schema is defined by the columns specified in the same order using the column's name. 
If an expression is used, like we did with the year and month columns, a column name 
cannot be inferred, so it must be specified. You will also notice that the partition columns 
are defined at the end of the SELECT statement. 

The INSERT INTO statement inserts data into an existing table. The data files that are 
produced will be in the same format and contain the same configuration that was specified 
in the table properties. The structure of the INSERT INTO statement is INSERT INTO 
<TABLE> SELECT <QUERY>. Suppose a new month of data arrives and is placed in the 
nyc_taxi table for July in 2020. The following example query can be used to insert new 
data:

INSERT INTO packt_serverless_analytics.nyc_taxi_partitioned_
parquet

SELECT

    vendorid, 

    tpep_pickup_datetime, 

    tpep_dropoff_datetime, 

    passenger_count, 

    trip_distance, 

    ratecodeid, 

    store_and_fwd_flag, 

    pulocationid, 

    dolocationid, 

    payment_type, 

    fare_amount, 

    extra, 

    mta_tax, 

    tip_amount, 

    tolls_amount, 

    improvement_surcharge, 

    total_amount, 

    congestion_surcharge,

    --Below are partition columns and are always



Summary     117

    --specified at the end of the SELECT statement

    substr(tpep_pickup_datetime, 1, 4) AS year,

    substr(tpep_pickup_datetime, 6, 2) AS month

FROM packt_serverless_analytics.nyc_taxi

WHERE tpep_pickup_datetime = '2020-07';

Go ahead and give it a try.

Important Note
If the CTAS or INSERT INTO queries fail, you will need to clean up any 
data files created by the process before starting again. Otherwise, incomplete, 
or duplicate data will exist in the destination. If a failure does occur with 
these statements, a manifest file is created in the query results directory as 
QueryID-manifest.csv. The file list can be used to perform the 
necessary clean-up.

Summary
In this chapter, we learned about Athena's data sources and their different components: 
the metastore, data, and connector. The metastore contains metadata that Athena uses to 
translate tables and databases into their physical locations and process them. We delved 
into the information stored within a table and its key components: schema, partition 
columns, location, serializer/deserializer and associated properties, and table statistics. 

We compared the AWS Glue Data Catalog and Apache Hive metastores when data is 
stored on S3 and looked at other non-S3 data sources. We went through the different 
ways of registering datasets into a metastore and how AWS Glue Crawlers can make it 
quick and easy to discover data on S3. Lastly, we looked at the data lake architecture, the 
different stages of data that are typical in one, and how to transform data using Athena. 

Now that we have looked at our metastores and how they relate to our data in S3, we'll 
look at how we can secure them in the next chapter.
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Further reading
For more information regarding what was covered in this chapter, take a look at the 
following resources:

• Athena's documentation contains the complete list of supported DDL statements: 
https://docs.aws.amazon.com/athena/latest/ug/language-
reference.html.

• A complete list of supported SerDes can be found at https://docs.aws.
amazon.com/athena/latest/ug/supported-serdes.html.

• AWS Glue Data Catalog service quotas can be found at https://docs.aws.
amazon.com/general/latest/gr/glue.html#limits_glue. 

• Best Practices When Using Athena with AWS Glue: https://docs.aws.
amazon.com/athena/latest/ug/glue-best-practices.html.

• Best Practices When Using Athena with AWS Glue – Using AWS Glue Crawlers: 
https://docs.aws.amazon.com/athena/latest/ug/glue-best-
practices.html#schema-crawlers.

https://docs.aws.amazon.com/athena/latest/ug/language-reference.html
https://docs.aws.amazon.com/athena/latest/ug/language-reference.html
https://docs.aws.amazon.com/athena/latest/ug/supported-serdes.html
https://docs.aws.amazon.com/athena/latest/ug/supported-serdes.html
https://docs.aws.amazon.com/general/latest/gr/glue.html#limits_glue
https://docs.aws.amazon.com/general/latest/gr/glue.html#limits_glue
https://docs.aws.amazon.com/athena/latest/ug/glue-best-practices.html
https://docs.aws.amazon.com/athena/latest/ug/glue-best-practices.html
https://docs.aws.amazon.com/athena/latest/ug/glue-best-practices.html#schema-crawlers
https://docs.aws.amazon.com/athena/latest/ug/glue-best-practices.html#schema-crawlers


5
Securing Your Data

Data within an organization can be one of its most valuable assets. Data can drive 
business decisions for an organization, such as to whom and how to advertise, what the 
behavior of users on a website is, and how they react to sales or help businesses identify 
inefficient processes. An organization can also package and sell that data to customers or 
other organizations, getting direct revenue for the information it collects. Regardless, all 
organizations should protect the data they have from both internal and external entities. 

We have all heard stories where a data breach has occurred in a large institution. It is a 
harrowing and traumatic event for the organization. There could be monetary penalties 
by governments for breaking laws. Still, for most companies, breaking customers' or 
the public's trust can be much more damaging. This is why large companies invest large 
amounts of resources into having dedicated security teams that provide rules of how data 
should be protected and handled.
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Regardless of an organization's size, it is always a good idea to think about security at 
the beginning of any project. I always tell customers that it is much easier and cheaper to 
incorporate basic security early and often than later, and most are thankful that they did. 
By employing security measures later in the process, it becomes much more intrusive to 
add it. More applications may need to be changed to deal with new rules, or more users 
consuming data may need to change their processes. You may need to encrypt data in 
place, which may require system downtime. With some simple guidelines and features,  
we can avoid many of these headaches later on. 

In this chapter, we will cover the following topics: 

• General best practices to protect your data on AWS

• Encrypting your data and metadata in Glue Data Catalog

• Enabling coarse-grained access controls with IAM resource policies for data on S3

• Enabling fine-grained access controls with Lake Formation for data on S3

• Managing access through workgroups and tagging

• Auditing with CloudTrail and S3 access logs

Technical requirements
For this chapter, you will require the following:

• Internet access to GitHub, S3, and the AWS Console.

• A computer with Chrome, Safari, or Microsoft Edge and the AWS CLI version 2 
installed.

• An AWS account and accompanying IAM user (or role) with sufficient privileges 
to complete this chapter's activities. For simplicity, you can always run through 
these exercises with a user that has full access. However, we recommend using 
scoped-down IAM policies to avoid making costly mistakes and learn how to best 
use IAM to secure your applications and data. You can find a minimally scoped 
IAM policy for this chapter in this book's accompanying GitHub repository, which 
is listed as chapter_5/iam_policy_chapter_5.json (https://bit.
ly/3qAcNtU). This policy includes the following:

 � Permissions to create and list IAM roles and policies. We will be creating a service 
role for an AWS Glue Crawler to assume.

https://bit.ly/3qAcNtU
https://bit.ly/3qAcNtU
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 � Permissions to read, list, and write access to an S3 bucket. 

 � Permissions to read and write access to Glue Data Catalog databases, tables, and 
partitions. You will be creating databases, tables, and partitions manually and with 
Glue Crawlers.

 � The ability to create and run permissions for Glue Crawlers.

 � The ability to gain access to run Athena queries.

• An S3 bucket that is readable and writeable. If you have not created an S3 bucket 
yet, you can do so from the CLI by running the following command:

aws s3api create-bucket --bucket <YOUR_BUCKET_NAME> --region 
us-east-1

General best practices to protect your data  
on AWS
In this section, we will go over some general best practices. However, before we do, we 
should understand some security basics. Let's start with what I call the five general pillars 
of security. They are as follows:

• Authentication: Can the user or principal prove who they are? Access to AWS 
resources depends on IAM authentication through AWS credentials, which are 
like logins and passwords. These credentials can be long-lived, such as IAM user 
credentials, or short-lived, such as the AWS credentials that are provided when an 
IAM role is assumed. Throughout this chapter, we will assume that AWS IAM is the 
only authentication mechanism that users can use. However, we will also look at 
other ways to authenticate in Chapter 7, Ad Hoc Analytics.

• Authorization: Is the user or principal provided permission to access a resource? 
When an action is requested against an AWS resource, the IAM credentials that are 
used are checked to see whether those credentials can access the resource. 

• Data protection: Is the data secure while it is in transit or at rest? Data encryption 
is the most common way to protect data while transferring it between two parties 
and storing it. 



122     Securing Your Data

• Auditing: Do you know who is accessing the data, and are they supposed to be 
accessing it? Auditing is usually the aspect of security that is most forgotten, but it 
is critical. Auditing serves two purposes: making sure that current access to data 
is what we expect it to be, and if it is not, then make changes to resource access 
policies, and assessing the severity of a breach and what was leaked. Severity can be 
measured by how long a breach occurred, who the actors were, and the sensitivity 
and amount of data that was accessed.

• Administration: How are the policies that grant permission to resources managed? 
Ideally, there would be a single place where permissions are granted. 

Now that we understand the five pillars of security, there is one last point that I would like 
to make before getting into the best practices: No system can be 100% secure. When there 
is an incident, security policies aim to reduce the attack surface and blast radius. Attack 
surface means the different ways a bad actor can try to infiltrate a system. The larger the 
attack surface, the more ways that a system can be compromised. A blast radius is the 
amount of potential damage an actor can cause when a system is compromised. 

Suppose there were two sets of AWS credentials. One set provides administrative access  
to an entire AWS account. The other gives read-only access to an S3 bucket that contains 
cat pictures. If the first set of credentials was obtained by an attacker, they would have 
access to all the data and be able to perform any action within the account. If the second 
set of credentials was obtained, they would be able to download cat pictures. The first 
event would be much more damaging and have a bigger blast radius. To reduce the 
likeliness of credentials being exposed, or to reduce the attack surface, these AWS 
credentials can be encrypted and access to them can be limited to only authorized users. 

Now that we have a basic understanding of security, let's look at the best practices for 
securing your data. 

Separating permissions based on IAM users, roles,  
or even accounts
I have seen too many companies use the same IAM credentials across several systems that 
access different data or services. This increases the blast radius if those credentials become 
compromised as the credentials likely would have been allowed to access all the resources 
all these systems need. If you need to disable the credentials because of an incident, then 
it would impact many services. A general rule is that an application should have its own 
IAM user or preferably an IAM role, and each user should get their own set of credentials. 
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It may make sense to provision different AWS accounts for each group or application if 
complexity dictates for larger organizations. This provides isolation for each group or 
application from others, without it impacting anything outside the account. Using AWS 
Organizations can help you manage and control accounts. One other frequent use of using 
separate accounts is in different stages of an application. For example, development, beta, 
and production environments run within their own AWS accounts, and then changes to 
policies within the development stage can be propagated to beta and then to production in 
an automated fashion. 

Least privilege for IAM users, roles, and accounts
Within each chapter of this book, we have suggested that you use the IAM policies that we 
provide when completing the exercises. We do this so that you can use IAM credentials 
with the least privilege so that you can get into the habit of doing so. Using IAM principals 
with the least privilege aims to reduce the blast radius if those credentials are ever 
compromised; for example, if an intern accidentally puts them on GitHub; I am speaking 
from experience here.

Rotating IAM user credentials frequently
IAM user credentials are long-lived, which means that they can be used until they are 
rotated or the IAM user is deleted. Rotating credentials means that the old credentials 
are marked as expired, and a new set is created. This process reduces the attack surface 
because if credentials leak, they will only be used for a limited time. By the time someone 
finds them, they may no longer be used, or more importantly, this will limit the amount  
of time a bad actor can perform their actions for. One common scenario where this helps 
is if an employee leaves the company and takes credentials with them or, as in the previous 
section, if an intern accidentally publishes their credentials to GitHub. 

Blocking public access on S3 buckets
Many companies recently made news in an embarrassing way. They had set their S3 
buckets to be publicly accessible, and their data was available to the world. This scenario 
can easily be avoided by setting newly created and existing S3 buckets to block all public 
access. If you are an administrator, you can set this at the account level so that new 
buckets are not allowed to be made public. 
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The following screenshot shows the options that are available when setting this setting:

Figure 5.1 – Block Public Access settings for bucket page

It is very rare for an organization to want to allow data to be publicly available. If there 
is an excellent reason to do so, it is recommended that you put safeguards that prevent 
accidental data from going into the bucket. One approach is to have a separate AWS 
account and allow only a few trusted people to access it. An even better system would be 
to set up a process that copies data to the public bucket that a second person approves.

Enabling data and metadata encryption and  
enforcing it
Enabling data and metadata encryption early on can save a lot of time in the future and be 
considered before any project. If requirements change and encryption becomes required 
after data is stored unencrypted, some effort will need to be made to encrypt that data. In 
addition, any downstream consumers may also need to be changed to decrypt the data. 
This process can be avoided if the data is encrypted early in the process. To learn how to 
encrypt your data on S3, see the Encrypting your data and metadata in Glue Data Catalog 
section, later in this chapter.
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Ensuring that auditing is enabled
Enabling auditing on AWS is relatively easy and cost-effective. However, the headache that 
results from not having auditing capabilities can be more costly and cannot be enabled 
after the fact. For more details on how to enable auditing using CloudTrail logs or S3 
server access logs, please see the Auditing with CloudTrail and S3 access logs section, later 
in this chapter.

Good intentions cannot replace good mechanisms
Jeff Bezos was quoted to have said, "good intentions never work; you need good 
mechanisms." A mechanism is a process that enforces that something is done, regardless  
of if people have the best intentions. For instance, having the intention to wake up at  
6 a.m. is not as effective as setting an alarm. When it comes to security, it is always best  
to have mechanisms by putting in enforcement where possible and auditing to ensure that 
the mechanisms are working. An example of enforcement would be to put an S3 bucket 
policy that rejects uploads unless the objects are encrypted. 

Encrypting your data and metadata in Glue 
Data Catalog
There are many ways a malicious person may be able to get access to your data. They may 
be able to listen on a network for traffic between two applications. They may be able to 
pull a hard drive from a machine, server, or dumpster. They may be able to gain access to 
an account that has access to the data they need. Regardless of how the bad actor obtains 
your data, you do not want them to read the data, and data encryption is how that is 
done. Data encryption takes your data, encodes it using an encryption key, and makes it 
impossible to read without the decryption key. 

Encryption algorithms where the encryption key and decryption keys are the same 
are called symmetric encryption. Algorithms in which the keys are different are called 
asymmetric encryption. 

Let's look at how we can encrypt data on S3. 
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Encrypting your data
When your data is persisted somewhere, it should be encrypted. All the data that Athena 
temporarily stores on any disks on their clusters is encrypted and then wiped after 
each query. However, you will need to choose how to encrypt data that is stored on S3. 
With AWS services, typically, there are four different ways encryption can be done. The 
differences between the four relate to where the encryption key is stored and where the 
encryption/decryption occurs. Encryption can be done server-side or client-side. With 
server-side encryption, S3 performs encryption and decryption. The client will never 
see the encryption keys or encrypted data. With client-side encryption, the requester 
performs encryption and decryption and S3 will never see unencrypted data. With the 
encryption key, S3's encryption key can't be used, nor is an encryption key stored from  
a customer's AWS Key Management Service (KMS), nor is a key provided by the 
customer. Each of these options has performance, cost, and security considerations,  
which we will briefly discuss. 

Enabling server-side encryption using S3 keys (SSE-S3)
This is the easiest and cheapest way to encrypt your data; that is, by leveraging S3's 
encryption keys. S3 will encrypt each object with a unique key and encrypt the key with 
S3's master key. The encrypted key is then stored as metadata for the object, which S3 
can use later when reading. If someone did manage to access the raw, unencrypted data, 
they would still need S3's master key to decrypt the key that was used to encrypt the data. 
Using this encryption method does not have a financial cost, and its performance penalty 
should be negligible. 

You can enable default encryption within S3. You can set SSE-S3 as the default encryption 
by configuring your bucket so that any time an object is written, it will automatically be 
encrypted using S3's encryption keys:
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Figure 5.2 – Enabling default encryption using S3's keys

Next, we'll look at KMS keys.
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Enabling server-side encryption using customers' KMS keys  
(SSE-KMS)
Rather than using S3's master encryption key, you can specify S3 to obtain encryption and 
decryption keys from your AWS account's KMS. The credentials that are used to read the 
data must have permissions to access the KMS key, and S3 will use the keys. Using this 
method is more secure because you can control who can access the keys. If needed, the 
KMS key can be deleted if you don't want the encrypted data to be readable by anyone, 
essentially making it useless. 

Note
The cost of SSE-KMS is higher than SSE-S3 because there is a cost associated 
with making API calls to KMS. When S3 is encrypting or decrypting keys 
using KMS, it will call the service on your behalf. If you are making significant 
calls, this cost can quickly add up. It is recommended that a single bucket key 
allows S3 to cache the key to reduce the number of calls to KMS.

You can also mix and match master keys as the key's Amazon Resource Name (ARN)  
is stored in the object's metadata. However, you can enforce a KMS key to encrypt the  
data if one is not provided: 

Figure 5.3 – Enabling SSE-KMS
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When enabling SSE-KMS, by default, you can specify if the KMS key is managed by S3  
or if you are going to maintain it. If S3 manages the key in your account, then the key 
is free, and it enforces a key rotation that is currently set for every 3 years. If you wish 
to manage the key, then you will have to pay for the cost of the key. You will also be 
responsible for rotating the keys, which is a best practice that limits the blast radius. 

Enabling client-side encryption using customers' KMS keys  
(CSE-KMS)
CSE-KMS differs from SSE-KMS and SSE-S3 in that encryption and decryption are 
done within the client making the request. This method could have a noticeable effect 
on performance as encrypting and decrypting is a CPU-heavy operation and is not done 
on S3's fleet of servers. This method can also be much more expensive than SSE-KMS 
unless KMS key caching is implemented in the caller, which does not exist in Athena 
today. However, this method can be more secure with its increased cost. First, if there is 
a middleman attack, they can read your data while transferring it to you. A middleman 
attack involves a bad actor that has tricked your client into thinking it is talking to S3. At 
the same time, it proxies messages between S3 and your client. If the data is decrypted on 
the client side, the middleman does not have access to the decryption keys and won't be 
able to use the data. This scenario is unlikely to occur because of other mechanisms that 
AWS uses to prevent such attacks. Secondly, if S3 becomes compromised, the data cannot 
be decrypted because S3 cannot access the keys. Again, this is an improbable scenario. 

When uploading to S3 using the AWS SDK, you need to use the 
AmazonS3EncryptionV2 API and provide a KMS ARN. If you're not using AWS 
SDK, then the x-amz-meta-x-amz-key HTTP header must be provided with the 
encrypted data key. To enable this option for reading within Athena, when specifying your 
CREATE TABLE statement in Athena, set the has_encrypted_data = true option in 
TBLPROPERTIES. 

Reading CSE-KMS Files in Athena Using EMRFS with EMR
Athena has difficulty reading CSE-KMS encrypted files when using EMRFS 
with EMR and multipart uploads enabled for Parquet files. If you are writing 
Parquet files using EMR, ensure that multipart uploads are disabled.

Now, let's compare the different encryption methods.
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Comparing encryption methods
The following table compares some important factors regarding the various encryption 
methods we have just discussed:

Figure 5.4 – Differences between different encryption methods on S3

Now, let's learn how we can enforce encryption on data in S3.

Mandating encryption at rest with S3 
We can create a mechanism by mandating that any data stored in an S3 bucket uses 
encryption. This can be done by setting a bucket policy that allows only a specific 
encryption method. See the following example S3 bucket policy, which mandates that 
all the objects put into this bucket must use SSE-KMS. You can view and download this 
policy by going to https://bit.ly/3u4tGiD. 

This policy has two statements. The first statement ensures that the x-amz-server-
side-encryption header is present on any s3:PutObject operation. The second 
statement contains a condition that prevents any object from being put into the S3 bucket 
without x-amz-server-side-encryption being set to aws:kms. 

Athena query results can also be encrypted. When an Athena query completes, it stores 
the results in an S3 bucket that you own. Administrators can set a workgroup to encrypt 
query results. In the workgroup settings, set the query results to be encrypted using 
SSE-KMS, CSE-KMS, or SSE-S3 and check the Override client-side settings box. The 
following screenshot shows how to set this up:

https://bit.ly/3u4tGiD
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Figure 5.5 – Enforcing encryption on query results

Now that we have learned how to encrypt data, let's look at how we can encrypt our Glue 
Data Catalog. 

Encrypting your metadata in Glue Data Catalog
Some users may want to encrypt their metadata in addition to their data. Metadata 
may contain sensitive information that you may not want to leave unprotected, such 
as partition values, table schemas, the location of your sensitive data, and so on. When 
encryption is enabled in Glue Data Catalog, the non-exhaustive list of information that is 
encrypted includes databases, tables, partitions, and table versions. Enabling encryption 
for Glue Data Catalog is relatively simple. The following screenshot shows how to enable 
encryption with a few clicks:

Figure 5.6 – Enabling Glue Data Catalog encryption in the Glue console
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Like S3 data encryption, you can specify a Glue service managed KMS key (aws/glue) or 
provide a customer-managed KMS key. If having full control over the key is essential, 
select your customer-managed KMS key. Otherwise, you can allow Glue to manage the 
key at no cost.

Note
Glue only supports symmetric keys and will not work if an asymmetric key is 
provided.

Now that we know how to encrypt our data at rest, let's touch on data in transit.

Encrypting your data in transit
All the data that's read within Athena and between clients and AWS services such as  
S3 is encrypted using TLS. There is nothing you need to do on your part to enable this.

Now that we know how to encrypt our data, let's look at how we can enable coarse-
grained access controls. 

Enabling coarse-grained access controls with 
IAM resource policies for data on S3
Coarse-grained access control (CGAC) is a term that does not have an industry-standard 
definition. Generally, in this book, when we refer to CGAC in the context of data lakes, we 
are referring to object-level permissions such as individual files on S3. If a user has access 
to an object, they can access all the data within that file. Fine-grained access control 
(FGAC) provides authorization on data within the files, such as columns and rows. We 
will discuss FGAC in more detail in the next section. 

Within AWS, there is one popular way to achieve CGAC with data on S3. That is through 
bucket policies that limit access to IAM principals. We will look at how to enable this in 
this section. 
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CGAC through S3 bucket policies
By default, access to S3 buckets is denied unless there are policies that grant access to it. 
Regarding a new IAM principal, either an IAM user or role, permissions must be provided 
to allow them to access S3 resources. There are several ways to grant permissions, but we 
will focus on two general ways to provide permissions in this section. The first way is to 
manage permissions to IAM principals within the same AWS account. The permissions 
that are granted to the IAM principal will be used by Athena to access the underlying data. 
The second way is to attach S3 bucket policies. Bucket policies allow more flexibility in 
that they can grant cross-AWS account access. They also have additional conditionals that 
can fine-tune access and enforce how users interact with that bucket. 

If any IAM or S3 bucket policies grant access and there are no policies that deny access to 
the request, the principal will be able to perform the action on the S3 resource. Otherwise, 
the request will be rejected. The following diagram illustrates this:

Figure 5.7 – IAM permissions on S3 buckets and objects
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Let's look at how we can attach IAM policies to IAM users or roles to control data access. 
There are two common ways organizations can control access through IAM. First, they 
can create an IAM user for each of the end users and provide them with AWS credentials 
and/or console access. Second, they can interact directly with S3 or indirectly using an 
AWS service such as Athena. An IAM group can be created with specific permissions to 
S3, and IAM users can be placed within that group. An IAM user that belongs to multiple 
groups will get a union of all the groups' policies. Using groups is preferred for managing 
permissions rather than manually setting permissions for individual IAM users because 
it is a lot less manual work. The other method is to provide permissions to IAM roles and 
allow your users to assume those roles. Either way, when the IAM principal submits a 
query to Athena, their permissions will be applied.

For small organizations, providing users with IAM credentials can be a convenient and 
quick way to control access to AWS resources. However, as organizations grow larger, 
managing IAM users can be challenging to manage. Also, organizations may want their 
users to federate into an IAM role using an identity provider to use their existing company 
login and password credentials. We will talk about this in more detail in Chapter 7, Ad 
Hoc Analytics. 

An IAM policy that attaches to an IAM principal must have the following fields: a 
list of actions and resources and whether the rule grants or denies the operation on 
the resource. The following is an example policy that grants the analyst IAM user 
permission to perform actions on the bucket with an ARN of packt-serverless-
analytics-01234567890:

{

      "Version": "2012-10-17",

      "Statement": [

            {

                  "Sid": "ListBucketOnBucket",

                  "Effect": "Allow",

                  "Action": "s3:ListBucket",

                  "Resource": "arn:aws:s3:::packt-serverless-
analytics-01234567890"

            }, {

                  "Sid": "ReadObjectPermissions",

                  "Effect": "Allow",

                  "Action": ["s3:GetObject", "s3:PutObject"],

                  "Resource": "arn:aws:s3:::packt-serverless-
analytics-01234567890/*"
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            }

      ]

}

This policy can be attached to an IAM group, an IAM user, or an IAM role. It 
will allow the principal to list all the objects within the packt-serverless-
analytics-01234567890 bucket and read and write objects within that bucket. 

This is done with two statements. The first statement allows the user to perform the 
s3:ListBucket operation on the bucket. The second statement allows the user to 
perform s3:GetObject and s3:PutObject in the same bucket. You may notice that 
the resource contains /* at the end of the second statement and not the first. The reason 
for this is that the first statement's operation is a bucket-level operation. The operations in 
the second statement are at the object level.   

The previous policy can also be attached to an S3 bucket with one difference. Each of the 
statements must provide a list of principals. These principals can be applied to entire AWS 
accounts, IAM principals in the accounts, AWS services, federated users, and anonymous 
users (public access). There are some benefits to attaching bucket policies rather than 
attaching them to IAM principals. First, bucket policies have more conditional attributes 
it can check for. For example, the x-amz-server-side-encryption header can be 
matched to enforce encryption.

Another example is limiting access to the bucket from a VPC or IP address range, 
although queries that run on a bucket with this condition are not supported with Athena. 
Instead, you can use the aws:CalledVia condition to prevent access to an S3 bucket, 
except when it's called from Athena. Secondly, you can provide IAM principles in other 
AWS accounts access to the bucket. For example, an AWS account for a beta environment 
can be granted access to read-only data in a production account's S3 bucket. The following 
S3 bucket policy is an example of limiting read access to the packt-serverless-
analytics-0123456789 bucket to only a few IAM users that can only be called from 
Athena:

{

      "Version": "2012-10-17",

      "Statement": [

            {

                  "Sid": "ReadObjectPermissions",

                  "Effect": "Allow",

                  "Principal": {

                     "AWS": [
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                        "arn:aws:iam::9876543210:user/luke", 

                        "arn:aws:iam::9876543210:user/leia"

                     ] },

                  "Action": ["s3:ListBucket", "s3:GetObject", 
"s3:PutObject"],

                  "Resource": ["arn:aws:s3:::packt-serverless-
analytics-01234567890",

                                     "arn:aws:s3:::packt-
serverless-analytics-01234567890/*"],

                  "Condition":{ 

                      "ForAnyValue:StringEquals":{ 

                           "aws:CalledVia":[ 

                               "athena.amazonaws.com"

                           ]

                      }

                  }

            }

      ]

}

If you decide to go with attaching policies to IAM principals and/or S3 buckets, be aware 
that there are service quotas. There are limits on how large policies can be or the number 
of policies that can be attached. For S3 bucket policies, you can only have a single policy 
and it can only be up to 20 KB in size. There are limits to the number of policies you can 
attach to an IAM user or role, the number of groups an IAM user can belong to, and so on. 
For a full list, see https://docs.aws.amazon.com/IAM/latest/UserGuide/
reference_iam-quotas.html. 

Although many use cases can be satisfied using IAM to provide CGAC, FGACs may be 
needed for other use cases. Let's look at how we can achieve that. 

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html
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Enabling FGACs with Lake Formation for data 
on S3
FGAC differs from coarse-grained data access control by providing access control  
finer than at a file or directory level. For example, FGAC may provide column filtering 
(setting permissions on individual columns), data masking (running the value of  
a column through some function that disambiguates its value), and row filtering 
(allowing users to see rows in a dataset that only pertain to them). 

There are many open source and third-party applications that provide this access  
control level within the big data world. Examples of open sourced software include 
Apache Ranger and Apache Sentry. An example of a third-party application is  
Privacera. First-party integration is also available through AWS Lake Formation.

One of AWS Lake Formation's major components is providing FGACs to data within  
the data lake. Administrators can determine which users have access to which objects 
within Glue Data Catalog, such as tables, columns, and rows. We will discuss setting up 
and managing Lake Formation access control in depth in Chapter 6, AWS Glue and AWS 
Lake Formation.

Auditing with CloudTrail and S3 access logs
Auditing is an essential part of designing a secure system. Auditing provides validation 
that existing access policies are working and when there is a security incident, the impact 
of the incident and hopefully the bad actors. AWS has two native auditing mechanisms for 
data access that we will look at in detail: AWS CloudTrail and Amazon S3 access logs. 

Auditing with AWS CloudTrail
AWS CloudTrail is a service that provides auditing capabilities for API calls that are 
made to all AWS services that support CloudTrail. When an AWS account is created, 
CloudTrail logging is enabled by default to help manage APIs. These APIs perform actions 
on AWS resources such as creating or describing EC2 instances, creating S3 buckets, or 
submitting Athena queries. The other class of events is data events. These are AWS APIs 
that are called on a resource itself. At the time of writing, S3 calls to list, get, put, or delete 
operations and Lambda invocations are considered data events. 



138     Securing Your Data

Management events are created when an API is called that manage resources, such as 
starting an EC2 instance or configuring an S3 bucket. The first copy of management events 
is free, and any additional copies are charged at $2.00 per 100,000 events. The initial events 
are pushed to CloudTrail's system, which retains the events for up to 90 days, and can be 
downloaded in JSON or CSV format. If there are requirements to keep this data for longer 
than 90 days, you will need to create a new trail that stores events in S3, and you will incur 
a cost for this. You can then use Athena to query the exported audit records. The following 
screenshot shows what CloudTrail's Event history page looks like:

Figure 5.8 – Event history in AWS CloudTrail
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The following screenshot shows the type of information stored in the event:

Figure 5.9 – CloudTrail event details for a GetTables event

Management events can be useful when tracking the usage of AWS services. For Athena, 
the StartQueryExecution and GetQueryExecution calls can be tracked, and 
information about who submitted the query and the query string is logged. 

What management events do not provide is data events. For analytics, this means events 
that retrieve data from S3. To get data events, you will need to enable the data events 
and incur a cost of $0.10 per 100,000 events, plus any S3 storage the log files may take 
up. You can set up which buckets and prefixes you want to enable logging on or provide 
more advanced filters. S3 can generate a massive amount of events, which could lead 
to high costs. Using filters to capture events from only the buckets containing sensitive 
information may balance cost and auditability. 
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If you create new trails that export CloudTrail events to S3, you can use Athena to query 
the audit logs. Click Create Athena table in the top right-hand corner, as shown in the 
following screenshot:

Figure 5.10 – The Create Athena table button in CloudTrail's Event history

This will create a new Athena table.

Auditing with S3 server access logs
S3 access logs differ from CloudTrail logs in a few ways. First, they provide more  
detailed information about a particular event. Second, it is free to enable, and the only  
cost that's incurred is the S3 storage costs of the logs. Lastly, the logs' delivery is done 
with the best effort, meaning that the logs' delivery is not guaranteed. However, from 
experience, this is rare. 

To enable S3 access logs, you will need to enable it on a per-bucket basis and provide  
a bucket and an optional prefix for where logs are written. You can do this through  
the console by going to the bucket's Properties tab and enabling Server access logging,  
as shown in the following screenshot:

Figure 5.11 – Enabling Server access logging
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Now that we have covered the general security aspects of data access on AWS, let's 
summarize what we learned in this chapter. 

Summary
In this chapter, we have gone through some ways that we can protect data from malicious 
users. We know that no system can ever be 100% secure, but we can take some simple 
steps to avoid headaches in the future. 

We looked at how encrypting your data early in projects can help save time and  
resources and how to encrypt data at rest and in transit. We looked at the difference 
between coarse-grained access versus FGACs to implement authorization. Authorization 
on S3 can be done through S3 bucket policies and/or IAM users, and role policies provide 
CGACs. Lastly, we looked at how auditing can be enabled and compared these approaches 
based on their cost and the information they can deliver. 

We will dive into Lake Formation, an AWS service that creates and administrates a data 
lake easier and faster, in the next chapter. 

Further reading
For more information regarding what was covered in this chapter, take a look at the 
following resources:

• Creating tables based on encrypted datasets in S3: https://docs.aws.amazon.
com/athena/latest/ug/creating-tables-based-on-encrypted-
datasets-in-s3.html

• Encrypt Glue Data Catalog: https://docs.aws.amazon.com/glue/
latest/dg/encrypt-glue-data-catalog.html 

• Example walkthroughs managing access to S3: https://docs.aws.amazon.
com/AmazonS3/latest/userguide/example-walkthroughs-
managing-access.html 

• IAM Best Practices: https://docs.aws.amazon.com/IAM/latest/
UserGuide/best-practices.html 

• Example S3 Bucket Policies: https://docs.aws.amazon.com/AmazonS3/
latest/userguide/example-bucket-policies.html 

• Amazon S3 Policy Keys: https://docs.aws.amazon.com/AmazonS3/
latest/userguide/amazon-s3-policy-keys.html

https://docs.aws.amazon.com/athena/latest/ug/creating-tables-based-on-encrypted-datasets-in-s3.html
https://docs.aws.amazon.com/athena/latest/ug/creating-tables-based-on-encrypted-datasets-in-s3.html
https://docs.aws.amazon.com/athena/latest/ug/creating-tables-based-on-encrypted-datasets-in-s3.html
 https://docs.aws.amazon.com/glue/latest/dg/encrypt-glue-data-catalog.html 
 https://docs.aws.amazon.com/glue/latest/dg/encrypt-glue-data-catalog.html 
 https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-walkthroughs-managing-access.html 
 https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-walkthroughs-managing-access.html 
 https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-walkthroughs-managing-access.html 
 https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html 
 https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html 
 https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-bucket-policies.html 
 https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-bucket-policies.html 
https://docs.aws.amazon.com/AmazonS3/latest/userguide/amazon-s3-policy-keys.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/amazon-s3-policy-keys.html




6
AWS Glue and AWS 

Lake Formation
Although this book focuses on Athena and its rich functionality, you should be aware 
of AWS Glue and AWS Lake Formation. These services can be used with Athena to 
implement use cases that Athena cannot alone. AWS Lake Formation was created to help 
customers simplify creating data lakes by providing tools to help ingest data, secure data, 
and reduce the time it takes to get a functional data lake. Lake Formation is a layer that 
exists on top of AWS Glue and uses Glue's components as building blocks. 

One of the main features that Lake Formation brings is fine-grained access controls 
and auditing to several AWS services, including Athena. Lake Formation augments 
AWS IAM to help secure the data lake. IAM provides authentication of the user, while 
Lake Formation provides authorization based on the principle that is requesting data. 
Every authorization request that goes through Lake Formation generates audit events in 
CloudTrail that are reported in the Lake Formation console, providing a single central 
place to administer and monitor the data lake.
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AWS Lake Formation also provides a new table type called the governed table, which 
provides four key benefits. First, it provides atomic, consistent, isolated, and durable 
(ACID) transactions for metadata and data updates. Second, it provides automatic 
compaction of data, combining small data files to produce fewer and larger files to 
optimize query performance. Third, you can run queries on datasets as if they were run 
at a different point of time to see what the data looked like in the past before certain 
transactions have been applied. This feature is usually called time traveling. Fourth, 
governed tables provide row and cell-level filtering to enforce user permissions.

Fine-grained access control and governed tables directly integrate with Athena to 
provide security and enhanced functionality. Lake Formation and Glue can also provide 
functionality that aids in creating and maintaining a data lake. We will look at some of 
the functionality that Lake Formation and Glue provide that could solve some of the 
challenges that Athena cannot solve on its own. 

In this chapter, we will cover the following topics: 

• What AWS Glue and AWS Lake Formation can do for you

• Securing your data lake with Lake Formation

• What AWS Lake Formation governed tables can do for you

Technical requirements
For this chapter, if you wish to follow some of the walkthroughs, you will need the 
following:

• Internet access to GitHub, S3, and the AWS Console.

• A computer with either Chrome, Safari, or Microsoft Edge installed on it.

• An AWS account and accompanying IAM user (or role) with sufficient privileges  
to complete this chapter's activities. For simplicity, you can always run through 
these exercises with a user that has full access. However, we recommend using 
scoped-down IAM policies to avoid making costly mistakes and learn how to best 
use IAM to secure your applications and data. You can find a minimally scoped 
IAM policy for this chapter in this book's accompanying GitHub repository, which 
is listed as chapter_6/iam_policy_chapter_6.json. This policy includes 
the following:

 � Permissions to create and list IAM roles and policies:

 � We will be creating a service role for an AWS Glue Crawler to assume.

 � Permissions to read, list, and write access to an S3 bucket. 
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 � Permissions to read and write access to Glue Data Catalog databases, tables,  
and partitions:

 � You will be creating databases, tables, and partitions manually and with  
Glue Crawlers.

 � Access to run Athena queries.

What AWS Glue and AWS Lake Formation can  
do for you
Lake Formation and Glue provide tools that aid in creating data lakes and extending 
functionality to your new or existing data lakes. There is a wide variety of functionality 
that it provides. In this section, we will go through a non-exhaustive list of features. An 
entire book could be written on Lake Formation and another on Glue, so we will not go 
through all of their features in detail in this chapter.

Except for fine-grained access control and governed tables, all features do not directly 
change how Athena works. If you start by not adopting any of the Lake Formation or  
AWS Glue features, you can adopt them in the future. 

Let's take a look at some of the AWS Glue and Lake Formation features and how they can 
supplement Athena. 

Using AWS Glue to cleanse, normalize, and transform data
Amazon Athena's performance and cost are highly dependent on the data format and 
layout of the data. In many scenarios, it may be cost-effective and improve performance  
to provide faster response times to users and applications to transform the data. We will 
dive into the details of the scenarios and decisions regarding when to perform this in 
Chapter 9, Serverless ETL Pipelines, so it may be a good idea to skip ahead if you are not 
familiar with this process. 

This is where AWS Glue ETL can be really helpful for performing data transformations. 
AWS Glue ETL is a serverless ETL service that allows customers to write Spark code  
and execute it without provisioning resources. Many organizations use Apache Spark  
to perform their transformations and AWS Glue can be more cost-effective than 
managing Spark yourself. The transformed data after using AWS Glue can then be read 
and analyzed using Amazon Athena. AWS Glue ETL charges based on the resources that 
you use. ETL jobs can scale as Glue ETL provides different hardware types and instances 
in the Spark cluster to run on. 
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In this section, we will provide a quick summary of what Glue ETL can do. We will look at 
two ways to author jobs; that is, using Glue ETL and Glue Studio. Let's look at each one.

Glue ETL
AWS Glue ETL uses Apache Spark with Scala and PySpark, a Python-only runtime for 
lightweight jobs, and Apache Spark Streaming for steaming jobs. To execute a job, a user 
would create a script, store it in S3, and register it with an ETL job within Glue. Scripts 
can be executed with a wide variety of properties to give users flexibility and control. The 
following screenshot shows a sample script editing screen for a PySpark job within the 
Glue ETL console:

Figure 6.1 – Sample Glue ETL script editing screen

Once the script is ready to be run, the job can be executed using the run job dialog screen, 
as shown in the following screenshot: 
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Figure 6.2 – Sample Glue ETL run screen

The Glue console can be used to look at the history of invocations of the job and provide 
job run information, logs, and other relevant information, as shown in the following 
screenshot:

Figure 6.3 – Sample Glue ETL run
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Many features make Glue ETL powerful, including Job Bookmarks, which only processes 
new files when reading a data source, Spark UI to monitor and debug Spark jobs, and 
publishing job metrics, to name a few.

Now, let's take a look at AWS Glue Studio, which helps with authoring and monitoring 
Glue ETL jobs.

AWS Glue Studio
AWS Glue Studio is a visual UI that simplifies the process of creating and monitoring 
Glue ETL jobs. Glue Studio provides enhanced visual editing for Glue jobs and 
dashboards, which provides job metrics such as running, completed, and failed jobs. It is 
an ideal tool for non-programmers who are not comfortable with writing code or those 
that want to do simple transformations. 

The visual editor allows users to create complex jobs using mouse clicks instead of writing 
Spark code. You can piece together three building blocks: sources of data such as S3,  
RDS databases, Redshift, Kinesis, and Kafka streams; transformations on the data such  
as joining datasets, renaming, dropping, or filling in empty values in columns; and 
specifying one or more targets to store the results in various formats. The following 
screenshot of Glue Studio shows a sample job. Here, we have taken the NYC Taxi dataset 
and joined it to a location dataset to enrich it by translating the location IDs. We then 
output the resulting dataset to S3 using the Parquet format:

Figure 6.4 – Glue Studio visual editor screen to enrich the NYC Taxi dataset
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Once the job has been authored within the visual editor, the source code that implements 
the execution graph will be auto-generated. The code can then be executed as a regular 
Glue ETL job on a scheduled basis or automatically triggered by an external event. You are 
then taken to a dashboard where you can monitor Glue ETL job executions. When you 
have multiple Glue ETL jobs that run regularly, monitoring and debugging jobs become 
essential to ensure data is getting generated successfully and on time. Glue Studio has 
a Monitoring tab that shows Glue ETL jobs that have run, their run state, their overall 
DPU usage to track costs, and other metrics. The following screenshot shows an example 
dashboard and the available metrics:

Figure 6.5 – Sample of the Glue Studio Monitoring screen

While AWS Glue Studio builds on top of AWS Glue ETL, Glue also has a separate product 
that makes it even easier to transform, cleanse, and explore datasets to get them ready for 
applications and machine learning. Let's take a quick look. 
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AWS Glue DataBrew
AWS Glue DataBrew is a data preparation and exploration tool that is entirely visual  
and doesn't require any coding. Unlike Glue Studio, where the visual job editor generates 
Glue ETL code, Glue DataBrew generates something else call recipes. Recipes are  
a collection of operations or transformations that are applied to a dataset that can be  
saved and applied to other datasets. 

Glue DataBrew's visual editor provides rich functionality designed to make data 
preparation simple for all users. When a dataset is loaded into the editor, it will sample 
the dataset to surface key characteristics about it. This includes data quality-related 
metrics such as distinct values and missing values that may help decide on the type of 
transformations needed. Once a transformation has been selected, it can be previewed 
on the sample data, which makes iterating and testing easier and faster. The following 
is a sample screenshot of Glue DataBrew's visual editor, which shows some sample 
transformations on a column called object_name on the sample dataset:

Figure 6.6 – Glue DataBrew sample screen
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Glue DataBrew, at the time of writing this book, has over 250 operations and 
transformations that can be applied to datasets. The transformations range from simple 
column transformations such as changing data types or renaming columns, data cleaning 
functions such as changing case on strings, data quality operations such as filling in 
missing or empty values, and change column structures such as splitting a single column 
into multiple columns or merging them, to name a few. 

Glue DataBrew's pricing is different than Glue ETL's. Glues DataBrew's visual editor 
charges by the session hour billed per half-hour, which is currently $2.00/hr. When 
DataBrew executes a recipe, it will use DataBrew execution nodes. Each node has  
4 vCPUs and 16 GB of memory and is charged per hour and billed per minute. 

Now that we've learned how individual datasets can be transformed and cleansed, let's 
look at AWS Glues Workflows and how it can piece together multiple transformations that 
generate data pipelines. 

Using AWS Glue Workflows
Glue has many building blocks that can be used together to create what is known as 
data pipelines. Data pipelines consist of multiple extract, transform, and load jobs that 
take a complex operation and break them down into manageable parts. Some parts can 
be reused, run on different execution engines, and executed at other times. The goal is 
to make pipelines easier to optimize, make them easier to debug and monitor, and then 
check data quality in different stages to help identify issues earlier. 

For example, suppose we are a seller on Amazon.com, and we get raw sales data put  
into an S3 bucket. We want to transform the data to feed it into a reporting system to 
generate reports. Before we can generate the reports, we need to cleanse the data, join 
the data to a product table that translates Amazon product IDs, called ASINs, to product 
names, join to an inventory table to show how many items we have in stock, and then 
group all the results by report periods. All these steps can be done within a single job, but 
our job may run for a long time, and diagnosing data quality issues may be complex. We 
may also want to save the output of enriched data before grouping the data to generate 
other reports or share it with another team. It would make sense to break the single job 
into multiple steps to reuse the job's output.
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To manage the order of the job executions and dependencies, we would need an 
orchestrator to run these jobs and monitor them. This is where Glue Workflows can help. 
Glue Workflows allows Glue ETL jobs, Glue Crawlers, and Glue Triggers to execute  
in a particular order or workflow. The following screenshot shows a Glue Workflow that 
can be created to manage the report generation flow we discussed previously. Here, a 
workflow has been defined using Glue Workflows for the process of report generation: 

Figure 6.7 – Glue Workflow of Glue ETL jobs, Glue Triggers, and Glue Crawlers to make a data pipeline

With a workflow defined, you can execute it based on a Glue Trigger. Glue Triggers kick 
off an action based on job flow dependencies that need to be met to execute the next 
action in the flow. Glue Triggers can be triggered on a fixed schedule, on-demand, or wait 
for other tasks to finish, such as Crawlers or Glue ETL jobs. In the preceding example, the 
workflow triggers are based on a schedule that kicks off the workflow at midnight every 
night. Once the workflow begins to execute, you can monitor each component, as shown 
in the following screenshot:
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Figure 6.8 – Glue Workflow execution monitoring

In this way, we can monitor the workflow and look over its details as well.

Using AWS Lake Formation blueprints
A standard process that users perform within their data lakes is ingesting data. With  
a few clicks within the Lake Formation console, you can ingest data from databases,  
AWS CloudTrail, and load balancer logs. Lake Formation provides blueprints, a set  
of predefined code templates orchestrated with a Glue Workflow, to ingest from these  
data sources. 
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Lake Formation provides two types of database blueprints that can extract snapshots of 
data, or pull data incrementally; that is, data that has been inserted over a certain time. 
To create a blueprint, select the type from the Lake Formation console, as shown in the 
following screenshot:

Figure 6.9 – Available blueprint types in Lake Formation

All Lake Formation blueprints require that you provide information about the source,  
the destination path in S3, and the frequency to pull the data. 

Now, let's take a quick look at Glue Crawlers.

Using AWS Glue Crawlers
Glue Crawlers are processes that scan S3 for datasets and register the datasets into Glue 
Data Catalog. The Crawler reads a sample of the data in the dataset to retrieve or infer 
the dataset's schema, making registering datasets much easier and less error-prone. We 
touched on Glue Crawlers in previous chapters, and we take an in-depth look at them in 
Chapter 4, Metastores, Data Sources, and Data Lakes. 

Now, let's look at how Lake Formation can help with securing your data lake.
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Securing your data lake with Lake Formation
As we mentioned previously, Lake Formation leverages AWS Glue features, including  
Glue Data Catalog, to simplify creating, accessing, and securing data lakes. Athena uses 
Glue Data Catalog as its default Metastore and interacts with the service to retrieve 
metadata to execute queries against tables stored in Glue Data Catalog. Lake Formation 
adds a security layer on top of Glue tables by eliminating the need to secure individual 
tables using IAM. When Athena and other AWS analytics services need to access a table, 
they request permission from Lake Formation, which will authorize based on the calling 
principal's access policy. The following diagram illustrates this at a high level:

Figure 6.10 – How services interact with Lake Formation

In the following section, we will discuss the benefits of using Lake Formation for 
authorization and then look at some limitations to consider. 

Benefits of using Lake Formation for authorization
Let's look at some of the benefits of using Lake Formation for authorization with Athena 
and AWS in general.
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Finer grained data access controls
Lake Formation authorization occurs at a finer level than what can be achieved using 
IAM permissions alone. IAM policies can only provide permissions to objects stored in 
S3 and cannot control what the user can access within the files. This is what we refer to as 
coarse-grained access control. Lake Formation provides finer-grained access control by 
allowing us to define policies for subsets of data within an S3 object, namely column- and 
row-level control. This can be useful for various scenarios. If a dataset contains columns 
that contain sensitive data, instead of transforming the data to remove these columns, you 
can leave them in and restrict users to only see those columns containing non-sensitive 
information. Many times, this is required to meet compliance regulations.

Applying policies at the database, table, and column level
Access policies in Lake Formation are applied to databases, tables, and columns but not 
S3 paths. This has some benefits in that an administrator does not need to know about the 
underlying data in S3 when granting and revoking permissions. Tables can be used as an 
abstraction to the underlying data. 

Scalability
Lake Formation permissions do not have a set size limit compared to what is allowed 
by IAM policies alone. There are limits to the number of inline and managed policies 
attached to an IAM role or IAM user with IAM policies. Large organizations could reach 
these limits and would need to develop custom code to generate credentials on the fly or 
split users into different AWS accounts. 

Separating permissions with credentials
One of the leading security benefits of using Lake Formation is that the user running 
Athena queries does not need to configure access to the underlying data. Instead, when 
Athena needs access to the data, it sends a request to Lake Formation on behalf of the 
user to authorize them. If the request is authorized, temporary AWS credentials are 
provided to access the data. This separates the IAM permissions from the Lake Formation 
permissions. These temporary credentials are provided to the calling service – in this case, 
Athena – and not to the user to ensure they can only access data from a trusted service 
and not directly. When a Glue table is registered with Lake Formation, IAM permissions 
to S3 and the Glue table can be safely removed. All requests are logged, which can be 
audited. This flow can be challenging to follow, which is why we have provided the 
following diagram to help illustrate it:
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Figure 6.11 – How Athena interacts with Lake Formation to provide access control

For advanced users who use an identity provider to federate access from a directory 
service such as Microsoft Active Directory, Lake Formation can authorize the federated 
user and the directory groups they belong to. For example, if UserA federates and assumes 
the role of RoleB, then authorization can be done using UserA rather than RoleB. This 
is very useful when multiple users are assuming the same role to gain access to AWS 
services.

Security policies applied consistently across AWS services
Lake Formation provides a central administrative tool to control access to your data 
from AWS Glue, Amazon Athena, Amazon EMR, Amazon Redshift using Spectrum, 
and Amazon SageMaker. Access policies that are set in Lake Formation are applied to 
all Amazon Athena queries, Amazon Redshift queries on tables in S3 using Spectrum, 
AWS Glue and Amazon EMR Spark jobs, and Amazon SageMaker machine learning 
exploration using notebooks, pre-processing, and training.

Consistent security across AWS accounts
Many customers have adopted splitting their lines of business or groups using multiple 
AWS accounts. This allows for use cases where there is a central AWS account that 
contains the data lake, and different AWS accounts are the producers and consumers of 
data. Lake Formation allows you to share datasets with other AWS accounts by enforcing 
permissions on the metadata and data from a central place. Once data has been shared 
with consumer accounts, users can run queries in Athena against these tables.
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Although this can be done using IAM policies, direct data access would need to be 
provided to other accounts. This results in a more complex set of policies that could 
be challenging to manage and would not allow for fine-grained access controls such as 
column-level or row-level access.

Limitations and considerations when using Lake Formation for 
authorization
Although there are many benefits to using Lake Formation for fine-grained access control, 
some limitations and considerations are important to understand when deciding to 
adopt. This list may change as Lake Formation continues to release new features, and we 
will go through a subset of items. A more complete list is located at https://amzn.
to/3nwAvGN. If you have any questions, please contact your AWS representative or  
AWS support.

Athena query results cannot be managed by Lake Formation yet
When Athena runs a query, the query's results are stored in S3 in the customer's account. 
When results are requested through Athena APIs, they are read from S3 by Athena 
and returned to the caller. This ensures that customers have complete control over the 
resulting data. However, Lake Formation does not currently manage access permissions 
on S3 paths, but rather only catalog resources such as databases, tables, and columns. For 
this reason, it is recommended to use another mechanism to limit access to the query 
results. One solution is to use Athena workgroups to force the query result's location  
to a particular S3 location, and then employ IAM policies so that the results cannot be 
read by anyone outside the workgroup. 

Athena does not query tables managed by Lake Formation that are 
encrypted using CSE-KMS encryption
S3 locations that are registered with Lake Formation cannot use CSE-KMS encryption 
with Athena yet. We do not recommend using CSE-KMS if possible, as discussed in 
Chapter 5, Securing Your Data. If this is not possible, then it is not recommended to use 
Lake Formation for data access controls and to rely on IAM policies instead. 

Table partitions data must be located inside the tables directory
In the majority of cases, partition data is stored in a subdirectory inside the table's 
location. For example, if a table's location is s3://my_bucket/my_table/, 
then the partitions would be located at s3://my_bucket/my_table/my_
partition=val1/ and s3://my_bucket/my_table/my_partition=val2/.  
If you have a partitioned table where the partition's location is not under the table's 
location, then Athena with Lake Formation authorization will not work. 

https://amzn.to/3nwAvGN
https://amzn.to/3nwAvGN
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Now that we have gone through a subset of limitations, let's look at enabling Lake 
Formation for data access control with Athena.

Walkthrough to enable Lake Formation for access control
To learn the process of enabling Lake Formation for access control, it is best to go through 
a walkthrough. This section will go through a sample setup for a new database that will 
have its access controlled using Lake Formation. We will test the access controls using 
Athena. If you wish to follow along, you will need to create two IAM users and an S3 
bucket that will contain sample datasets. The first user will be given administrative access 
to Glue and Lake Formation to grant and revoke access to our data lake. A sample IAM 
policy for this user is available at https://bit.ly/3er86iv. The second user will 
be our Athena user, who will be able to run queries. A sample IAM policy for this user is 
available at https://bit.ly/2R87t4B.

The process that we will be going through will contain four steps as follows:

1. First, we will create and register a data lake administrator. 
2. Then, we will register our S3 location with Lake Formation for management. 
3. After that, we will grant permissions to our database and tables. 
4. Finally, we will test the permissions that we have granted with Athena. 

Upgrading Production Accounts to use Lake Formation Access Controls.
If you are looking to upgrade existing AWS accounts and databases, it's 
strongly suggested that you test the process in a non-production account 
first and document the steps taken. The upgrade process may look slightly 
different depending on factors such as data being encrypted, the IAM users/
roles, existing policies, and more. The process of upgrading existing databases 
to use Lake Formation can be a little complicated. However, going through this 
process should give you a solid understanding of the pieces of Lake Formation 
that will make the upgrade process easier to navigate. 

https://bit.ly/3er86iv
https://bit.ly/2R87t4B
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Creating and registering a data lake administrator 
The first step is to register data lake administrators. For this walkthrough, I have created 
an IAM user named athena-lakeformation-admin that will act as our admin. We 
must select the administrative roles and tasks within the Lake Formation console and then 
click on the Choose administrators button to add our administrator user. Once we've 
done that, our console should look like this:

Figure 6.12 – Data lake administrator's screen

Once athena-lakeformation-admin has been added, we can switch to that user  
for the remainder of the interactions with the Lake Formation console. The next step  
is to register an S3 location with Lake Formation. 

Registering an S3 location
The next step is to register our S3 location so that it can be accessed by Lake Formation. 
This process grants permissions to the Lake Formation service to assume an IAM role so 
that the service can interact with the data within the S3 location. When an authorization 
request is made to Lake Formation by an AWS service on behalf of an end user for a 
dataset, Lake Formation will assume this role and create temporary credentials. For this 
walkthrough, we will allow Lake Formation to assume a Service Linked Role, a type  
of IAM role that can only be used by AWS services. The AWS service will grant the role 
with the least amount of privilege to perform actions on your behalf. Once the Service 
Linked Role has been created, you can view the role in your IAM console and review  
the permissions that were granted to it. The only scenario when you would not want  
to use a Service Linked Role is when you want to manually manage permissions or use 
EMR with Lake Formation. 
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The following screenshot shows the Register location screen, which is where you can 
register a bucket named packt-serverless-analytics-888889908458-
lakeformation using the Service Linked Role:

Figure 6.13 – Registering an S3 location with Lake Formation

Registering an S3 Location with Encryption Enabled
If you're registering an S3 location that has encryption enabled, some 
additional steps must be followed. See https://amzn.to/3hf39uW for 
more information on how to enable encrypted S3 paths. 

Before registering a new S3 location, it is good to review the permissions that have  
already been granted to the S3 location to ensure that the registration process doesn't  
give permissions to unintended principals. 

Now that we have registered an S3 location with Lake Formation, let's grant permissions 
for our admins to manage datasets in the storage location.

https://amzn.to/3hf39uW
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Granting permissions to an S3 location
The next step is to grant permissions to S3 locations for users that we wish to create 
databases and tables for. There is no other reason to grant users permissions to specific  
S3 locations. For this walkthrough, we will grant our athena-lakeformation-admin 
user permissions, as shown in the following screenshot: 

Figure 6.14 – Granting permissions to an S3 location for Lake Formation

The Grantable checkbox allows this user to grant other users permissions to this 
location as well. For example, if we wanted athena-lakeformation-UserA to 
grant permissions to athena-lakeformation-UserB, we would set Grantable for 
athena-lake-formation-UserA.



      163

With permissions granted to athena-lakeformation-admin, let's create our 
database.

Creating and configuring a database
This step will create a new database called packt_serverless_analytics_
lakeformation so that we can register tables within it. This database will be configured 
so that Lake Formation only manages its permissions. The following screenshot shows 
how to create the database within the Lake Formation console:

Figure 6.15 – Creating a database in Glue Data Catalog for Lake Formation permissions
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We want to make sure that we uncheck Use only IAM access control for new tables in 
this database. We want Lake Formation to manage all permissions to our tables within 
the packt_serverless_analytics_lakeformation database. 

If you look at the data permissions screen for the database and/or tables within the 
database and see that the IAMAllowedPrincipals principal has permissions, 
revoke its access. The IAMAllowedPrincipals group is a special group within Lake 
Formation that grants permissions to any IAM principal to interact with this location. 
Removing it will make Lake Formation the only source for permissions. The following 
screenshot illustrates this:

Figure 6.16 – Data permissions for database packt_serverless_analytics_lakeformation

Now, register a table that exists within your S3 bucket. For our walkthrough, we will 
register our NYC Taxi dataset as nyc_taxi. Now, we must grant permissions to our 
athena-lakeformation-UserA to access the database and tables of packt_
serverless_analytics_lakeformation.
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Granting permissions to a user
If we log in as athena-lakeformation-UserA and we go to Athena, we will see that 
the packt_serverless_analytics_lakeformation database is not visible, as 
shown in the following screenshot:

Figure 6.17 – The athena-lakeformation-UserA user's list of databases in  
Athena before being granted permission
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Let's add permissions for athena-lakeformation-UserA by permitting them to 
describe the database, as shown in the following screenshot: 

Figure 6.18 – Granting athena-lakeformation-UserA permission to the  
packt_serverless_analytics_lakeformation database
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This has granted the user to see the database within Athena, as shown in the following 
screenshot:

Figure 6.19 – The athena-lakeformation-UserA user's list of databases in Athena after being granted 
permission
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Then, grant the user access to query the nyc_taxi table and exclude the tip_amount 
column as it may be sensitive data for the user to query. The following screenshot shows 
how to grant this permission:

Figure 6.20 – Granting permission to nyc_taxi table to the athena-lakeformation- 
UserA user, excluding the tip_amount column
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Note
If you have a filter on included or excluded columns, you should not select 
Describe permissions as you may receive an error message.

After granting these permissions, the user can query the table within Athena but will not 
get the tip_amount column:

Figure 6.21 – Athena console querying the nyc_taxi dataset with column tip_amount not available

Now that we have enabled Lake Formation for Athena, let's look at governed tables and 
how they differ from regular tables.

What AWS Lake Formation governed tables  
can do for you
Lake Formation introduced a new table format called governed tables. Governed tables 
provide many features that aim to solve many of the pain points users have when storing 
data on S3. We have an entire chapter, Chapter 14, Lake Formation – Advanced Topics, 
dedicated to it, but we will summarize many of the benefits here. Let's take a look.
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Transactions on tables stored in S3
Distributed filesystems such as Hadoop's Distributed File System and Amazon S3 are 
excellent choices for storing vast amounts of data and querying them. They also excel 
at overwriting files and deleting them. However, they were not designed to update and 
delete data within files. To support this functionality, tools have to download the file, 
find and update the rows, and then replace the entire file with the new one. This process 
can be very expensive as you will need to read the whole dataset to find the row. Indexes 
on primary columns can be added for some file formats to help find which files need 
replacing. However, queries that are performed on data being updated may not see 
consistent results and could lead to a bad user experience. Several projects were created 
to solve these challenges and to provide atomic, consistent, isolated, and durable 
(ACID) transactions to datasets, such as Apache Hive Transactional Tables, Apache 
Hudi, Apache Iceberg, and Databricks Delta Lake, to name a few. Governed tables is an 
AWS Lake Formation implementation of similar capabilities backed by a fully managed 
service. It provides ACID transactions to tables so that users can update and delete files 
and individual rows through a set of APIs. These store data in S3 to retain the benefits of 
reliability and scalability that S3 provides.

There are many use cases where having transactional capabilities is useful. Compliance 
with data protection laws such as GPDR is becoming more common today. This is a 
growing trend as other countries are introducing laws that mandate organizations to 
delete customer's data on request. Other use cases are when a dataset is being replicated 
from a different source, and data on S3 must match it. 

Automated compaction of data
One of the main drivers of performance, when any query engine reads from S3 or HDFS, 
is how data is stored and the data format it is stored in. When customers ask why their 
queries may not be running as quickly as they think they should be running, the first 
question I ask is, how big are the file sizes that are being read? Most of the time, the files 
that are being read are tiny, from 10 KB to 10 MB. Having small files can be detrimental  
to query performance because of the number of round trips an engine must make to  
read each file. When a file is being read by a query engine, the engine must perform an 
open file operation to open a stream to the file. Then, the engine performs GetData 
operations to read the stream and closes the stream once it finishes. If the file is tiny, 
the open file operation can take up to 80% of the time it takes to read data. Having file 
sizes of a recommended length of between 128 MB and 1 GB dramatically reduces the 
performance impact of S3 List and Get operations. We'll go through some examples of this 
in Chapter 11, Operational Excellence – Maintenance, Optimization, and Troubleshooting.
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AWS Lake Formation governed tables eliminate the issue of small files by automating data 
compaction by merging small files into larger ones in the background to ensure that data 
is stored optimally. 

Time-traveling queries
Time-traveling queries allow users to execute queries as if those queries were executed 
at a different time and see what a dataset looked like at that time. This can have multiple 
applications and use cases. One application is to debug updates to a dataset to see when 
and how data changed. If an update was done incorrectly, then the transaction that caused 
the data quality issue can be rolled back. For example, if you have inventory data that  
gets updated regularly, and a user or customer suggests that the data is incorrect, using 
time-traveling queries can pinpoint the time when the inaccurate data was updated and 
the transaction that caused the data to be incorrect. 

Row-level filtering
Row-level filtering is a data access feature that allows administrators to grant permissions 
at the row level for a dataset. There are many applications where this capability is useful. 
This is best illustrated with an example. Suppose there is a compliance rule in which a 
user can only access rows of data that match the geographical region from where they are 
accessing the data. An administrator may set a policy that allows company users residing 
in Germany to only access data that maps to records for German customers. Users 
from Germany can perform queries and only get data from their own country. Another 
example would be with lines of business. For example, a clothing company can allow 
salespeople from the footwear line of business to only access data for the brands they 
manage and not see data related to swimwear.

Some customers have implemented this type of behavior by taking a table and breaking 
it up into different tables representing a particular slice of the data they wish to manage 
access. However, this is not a scalable solution. If a user has access to multiple data 
dimensions, they will need to join the tables to get a complete picture. 

Now, let's summarize what we went through in this chapter.
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Summary
In this chapter, you learned what AWS Glue and AWS Lake Formation provide when 
building and maintaining data lakes on AWS. We then focused on Lake Formation's 
ability to provide fine-grained access controls and the benefits and limitations of this. 
We also went through a sample process of enabling Lake Formation access controls for 
a new database and how it works within Athena. Lastly, we touched on Lake Formation 
governed tables, what they are, and how they can solve many issues with storing datasets 
on a distributed filesystem. There are more advanced features of Lake Formation, and we 
will dive deeper into governed tables in Chapter 14, Lake Formation – Advanced Topics. 

In the next part of this book, we will get our hands dirty by using Amazon Athena in 
various settings ranging from ad hoc data analysis, using Athena to build ETL pipelines, 
and building applications that use Athena. We'll also take some time to cover how you can 
troubleshoot and tune common Athena issues in the pursuit of operational excellence.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the 
following resources:

• AWS Lake Formation resources, including blog posts and demo videos: http://
amzn.to/394z9x7

• Registering an encrypted Amazon S3 location – AWS Lake Formation: https://
amzn.to/3hf39uW

• Registering an Amazon S3 location in another AWS account – AWS Lake 
Formation: https://amzn.to/3baTVfI

• Limitations of using Lake Formation security with Athena: https://amzn.
to/3nwAvGN

http://amzn.to/394z9x7
http://amzn.to/394z9x7
https://amzn.to/3hf39uW
https://amzn.to/3hf39uW
https://amzn.to/3baTVfI
https://amzn.to/3nwAvGN
https://amzn.to/3nwAvGN


Section 3:  
Using Amazon 

Athena

This section is all about getting our hands dirty using Amazon Athena in various 
settings, ranging from ad hoc data analysis, ETL pipelines, and embedded in your own 
applications. We'll also take some time to cover how you can troubleshoot and tune 
common Athena issues in your pursuit of operational excellence.

This section consists of the following chapters:

• Chapter 7, Ad Hoc Analytics

• Chapter 8, Querying Unstructured and Semi-Structured Data

• Chapter 9, Serverless ETL Pipelines

• Chapter 10, Building Applications with Amazon Athena

• Chapter 11, Operational Excellence – Maintenance, Optimization, and 
Troubleshooting





7 
Ad Hoc Analytics

Welcome to Part 3 of Serverless Analytics with Amazon Athena! In the preceding chapters, 
you learned how to run basic Athena queries and established an understanding of key 
Athena concepts. You then connected to a data lake that you built and secured. Along the 
way, you've been learning how to organize and model your data for use by Athena. Now 
that you have much of the prerequisite knowledge for using Athena, we once again shift 
our focus. The next few chapters will revisit many of the concepts you've already learned 
as you work through four of the most common use cases that lead customers to choose 
Athena for their business. 

We begin right here, in this chapter, by unraveling both what it means to run ad hoc 
analytics queries as well as why the industry seems to have an insatiable appetite for 
running such queries. We'll also go through building a template for how you can adopt 
Athena and its related tooling within your organization as part of a complete ad hoc 
analytics strategy. 

In the subsequent sections of this chapter, we will cover the following topics:

• Understanding the ad hoc analytics hype

• Building an ad hoc analytics strategy

• Using QuickSight with Athena

• Using Jupyter Notebooks with Athena 
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Technical requirements
Wherever possible, we will provide samples or instructions to guide you through the 
setup. However, to complete the activities in this chapter, you will need to ensure you have 
the following prerequisites available. Our command-line examples will be executed using 
Ubuntu, but most types of Linux should work without modification, including Ubuntu on 
Windows Subsystem for Linux.

You will need an internet connection to access GitHub, S3, and the AWS console.

You will also require a computer with the following:

• A Chrome, Safari, or Microsoft Edge browser installed

• The AWS CLI installed

This chapter also requires you to have an AWS account and an accompanying IAM 
user (or role) with sufficient privileges to complete this chapter's activities. Throughout 
this book, we will provide detailed IAM policies that attempt to honor the age-old best 
practice of "least privilege." For simplicity, you can always run through these exercises 
with a user that has full access. Still, we recommend using scoped-down IAM policies 
to avoid making costly mistakes and learning more about using IAM to secure your 
applications and data. You can find the suggested IAM policy for this chapter in the book's 
accompanying GitHub repository, listed as chapter_7/iam_policy_chapter_7.
json, here: https://bit.ly/2R5GztW. The primary changes from the IAM policy 
recommended for Chapter 1, Your First Query, include the following:

• The addition of QuickSight permissions. Keep in mind that an administrator will 
be required to create your QuickSight account and also enable QuickSight to access 
Athena and S3. These permissions were too broad for us to feel comfortable adding 
them to the chapter's IAM policy. 

• SageMaker notebook permissions.

• IAM role manipulation permissions used to create a SageMaker role for your 
notebook.

Understanding the ad hoc analytics hype
If you are lucky, you may not be aware of the buzzword levels of hype surrounding ad hoc 
analytics. Fortunately, there are strong fundamentals behind the increasing level of interest 
and importance placed on having good tooling for ad hoc analytics. In a moment, we'll 
attempt to form a proper definition of ad hoc analytics, but not before we run a time travel 
query of our own to set the stage for what we now know as ad hoc analytics. 

https://bit.ly/2R5GztW
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As a society, we've been collecting data since the advent of commerce. In the era before 
modern big data technologies, the business intelligence landscape was a very different 
place. Most data capture and entry was a manual affair, frequently driven by government 
accounting and auditing requirements. Particularly savvy companies were tracking their 
own, non-accounting-related Key Performance Indicators (KPIs), but these exercises 
were often short-lived and targeted at achieving specific outcomes. It is essential to 
understand the difference between the past data landscape, where information was scarce, 
and today, where data availability is not the most common limiting factor. 

While preparing to write this chapter, I looked for examples of companies doing the 
modern-day equivalent of ad hoc analytics before the advent of big data. How did 
organizations do this before IoT and cloud computing upended the economics of  
data capture and retention? In the process, I solved a mystery behind a 25-gallon 
container of pencils that had been in my parents' garage for nearly 30 years. While helping 
my father clean out his garage, he asked me how this book was coming along. I told him 
I was stuck looking for an example of how companies answered questions about their 
day-to-day operations. Questions such as which products get returned most often or how 
much productivity is lost in maintenance of old machinery. That's when I finally got the 
entire backstory to the seemingly endless supply of pencils my father kept behind his 
ear as a contractor. My grandfather had worked at a large pencil manufacturer back in 
the 1990s. The story begins with quality control issues that caused poor writing quality 
and led to entire production batches needing to be scrapped. Folks like my grandfather 
were working overtime to make up for the production shortfall. Oddly, the more they 
produced, the lower their yields became. 

My grandfather was one of the folks pulled off the production line to aid in quality 
control. They were already doing periodic quality control. That's how they noticed the 
issue in the first place. It wasn't enough. They started sampling random pencils from 
the production line every 5 minutes and tagging them with the date, time, ambient 
temperature, and ambient humidity. Then they'd sharpen the pencil and write a few 
words with it to gauge its relative quality before recording the results in a notebook. 
Each day, the numbers from the various production lines were collated and submitted 
by USPS to the head office. Eventually, after months of these manual activities and lost 
production, someone noticed a pattern. When humidity rose above a certain threshold, 
the quality started to falter, but only toward the end of the week. It turned out that when 
their production exceeded the on-hand supply of raw materials, they'd get fresh batches 
of glue delivered. The fresh glue was more sensitive to high humidity. Unfortunately, the 
manufacturing line's humidity tended to peak at the end of the week, as they were due to 
receive a new batch of raw materials. This entire investigation was a crude form of ad hoc 
analysis, and that barrel in the garage was full of the pencils my grandfather had tested but 
didn't want to throw away. 



178     Ad Hoc Analytics

Potentially charming anecdotes aside, this is a classic example of a long OODA loop. 
The OODA loop shown in the following Figure 7.1 represents the four stages of sound 
decision making. You start by observing in order to orient yourself to the problem at 
hand before deciding on what to do and finally acting on that decision. The hallmark 
of many successful businesses is a short OODA loop because they can react to changing 
information quickly. The longer it takes you to detect and understand why something bad, 
or good, is happening, the less likely you can navigate the situation successfully. This can 
result in missed business opportunities, lost customer confidence, or regulatory impact. 
The need to shorten the OODA loop has driven the world to capture and retain as much 
potentially relevant data as possible, fueled in part by improvements in embedded systems 
that have fueled the IoT boom. Physical businesses, such as the pencil manufacturer we 
just discussed, can now record hundreds of KPIs in real time for a fraction of what it cost 
them to measure three variables every 5 minutes a few decades ago. The rapid fall in data 
acquisition costs has led to compound annual data growth rates above 50% and shifted the 
OODA loop problem to the right. 

Figure 7.1 – The almightly OODA loop



Understanding the ad hoc analytics hype     179

Fast forward to today, and most organizations can capture more data than they know 
what to do with. As a result, essential business insights are buried among mountains of 
uninteresting information that may become useful in the future. Typically, an organization 
will periodically review KPIs using scheduled reports. These reviews often raise new 
questions. Why is this off trend? How long has this been happening? At what point 
will we need to account for that? Identifying unexplained trends is only the first step to 
generating actionable insights. Once you've observed something interesting, the second 
step in the OODA loop is to orient yourself to the context that is causing it. To do that, we 
need to ask follow-up questions of our data. These questions are ad hoc because they are 
situational and depend on information from previous observations. As a result, only the 
analytical tasks that go into the observe portion of the OODA loop can be standardized 
into scheduled reports. The exploratory and root cause research-related queries that often 
follow are too varied and numerous to be known in advance. There you have the creation 
of the ad hoc analytics craze.

Organizations that are early on the maturity curve will often establish centralized 
reporting teams that field requests for both scheduled and ad hoc reports. Reporting 
teams attempt to bridge a skills gap that has historically existed between the  
subject-matter experts and query experts. For example, a fashion-savvy merchandiser 
running an apparel business may not know how to write a MapReduce job to identify  
the emerging trend in unmatched socks. This leads them to miss out on an opportunity  
to be fully stocked before prices rise as this new style takes off. Or maybe my five-year-old  
is the only one driving such buying patterns. Organizations often try and bridge this skills 
gap by creating entire teams dedicated to fielding reporting requests. This model can 
work for small organizations, but quickly becomes a bottleneck at scale. The unyielding 
inflow of requests, each of which may spawn more follow-up requests, contributes to high 
turnover in such teams.

Aside from the scaling challenges, centralized reporting teams add non-obvious friction 
to the analytics process. Individuals writing the reports may have enough understanding 
of the data's relationships to properly offer or use techniques such as the approximate 
query functions we covered in Chapter 3, Key Features, Query Types, and Functions. Since 
they are kept at a distance from the data and tools to query that data, customers become 
implicitly biased or trained by past reporting experiences. This limits their future asks, 
creating a cycle that approaches zero utility.

Organizations are looking to tools such as Amazon Athena combined with easy-to-use 
tools such as QuickSight to democratize access to data. In the next section, you'll explore 
a possible ad hoc analytics strategy that combines Athena, QuickSight, and Jupyter 
Notebooks to provide flexible options for a broad spectrum of ad hoc analytics use cases.
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Building an ad hoc analytics strategy
As we've seen in our examples, by putting the information in the hands of subject-matter 
experts, you can make better, faster decisions. Thus, it should be a focal point of any ad 
hoc analytics strategy to improve the accessibility of data, putting it in the hands of the 
individuals best suited to interpret the insights it contains. Our first step in forming such 
a strategy is to remember that while this book will present solutions based on the Athena 
ecosystem, it is rarely a good idea to lock yourself into any single product or analytics 
engine. The underlying technologies, pricing models, and supporting tooling will make 
trade-offs that necessarily favor one use case over others. If something sounds too good to 
be true, such as a product claiming to be the only analytics system you need, it's probably 
mediocre at a wide range of things and unlikely to be the best in class for anything. This 
is part of the philosophy behind AWS's fit-for-purpose database strategy and is equally 
applicable to analytics. The important things to consider include the following:

• Choosing your storage

• Sharing data

• Selecting query engines

• Deploying to customers

We'll check these out in more detail in the following sections.

Choosing your storage
Let's start our hypothetical ad hoc analytics strategy with storage. Where will you house 
the data? Will each team store their own data? Suppose for a minute that we avoided being 
prescriptive about this. After all, we painted the notion of a centralized reporting team as 
less than ideal. Maybe the same is true for standardizing storage. Different teams may even 
have different storage needs. Be careful about falling into this trap. The storage system you 
choose may limit your options for discovering and sharing data across your organization. 
This can mean the difference between having a ubiquitous data lake and many siloed data 
ponds. Nearly every Online Analytics Processing (OLAP) use case can be made better 
by separating storage and compute with an S3-like object store. Some esoteric use cases 
may indeed have specialized performance or auditability requirements that make S3 a 
less-than-ideal choice. You should avoid the temptation to shape your strategy based on 
outliers that you may never actually encounter. Instead, leave room in your strategy for 
how you will evaluate, approve, and integrate these exceptions. 
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If you're following the best practices in earlier chapters, you're likely to arrive at a strategy 
that treats S3 and your data lake. All data providers will be expected to master their  
data in S3 using Parquet for structured data and text for unstructured data. The 
accompanying metadata for these datasets will be housed in AWS Glue Data Catalog. 
AWS Data Catalog aids in discoverability and sharing since most metadata can be inferred 
from the S3 data itself. For teams, or systems, that have their own storage, they will be 
required to maintain an authoritative copy in the data lake on a cadence. This can be  
done as periodic, incremental additions to S3 or full snapshots that supersede previous 
versions. In Chapter 6, AWS Glue and AWS Lake Formation, and Chapter 14, Lake 
Formation – Advanced Topics, you learn how Lake Formation helps make it easier to 
integrate with an S3-backed data lake. 

Sharing data
Most of the really interesting use cases for ad hoc analytics will require data from  
multiple sources. For small organizations, you may be able to get by with handling 
access requests using IAM policies and organizational processes. However, once you 
get past a handful of datasets and a couple of consumers, you'll want tooling to support 
your processes. This is especially true if you deal with sensitive Personally Identifiable 
Information (PII) or are subject to GDPR regulations. S3 permissions are limited to 
enforcing object or prefix (directory) level access. S3 is oblivious to the contents of your 
objects and their semantic meaning. This means S3 permissions alone cannot restrict 
sensitive columns or apply row-level filters to prevent someone from reading budget 
records from a yet-to-be-announced project. If you're taking security seriously, you'll 
want to make Lake Formation a core part of your analytics strategy. AWS Lake Formation 
abstracts the details of crafting IAM policies and offers an interface where you can 
permission your data lake customers on the dimensions they are most familiar with. You 
simply manage table-, column-, and even row-level access controls from an interface 
that is designed for analytics use cases. Since Lake Formation is integrated with Amazon 
Athena, Amazon EMR, and Amazon Redshift, you can avoid the classic problem of 
having authorization information spread across multiple systems. Lake Formation can 
even facilitate cross-account data sharing, facilitating the post-acquisition mergers of 
technology and reducing the strain on your AWS account design. 
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Selecting query engines
Luckily, our decision to use Amazon S3 to house our data lake means we are not locked 
into a particular query engine. In fact, we can support multiple query engines with relative 
ease. You shouldn't take that to mean that it's a good idea to have a dozen different query 
technologies, only that our choices thus far have derisked the importance of any one 
product. To begin, you'll want to offer a serverless query engine with a SQL interface, such 
as Amazon Athena. SQL is a broadly taught and widely understood language. Many of 
your employees may already be familiar with SQL, and if they aren't, it's easy to get them 
started. Electing a serverless option always makes it easier to keep costs under control 
since ad hoc workloads tend to make for challenging capacity planning exercises. This 
is even more important when your end customers may not be well versed in starting or 
stopping servers for their queries. Beyond SQL, Athena also offers support for custom 
data connectors and User-Defined Functions (UDFs). This can help provide a single 
query interface even if some of the data may not be in our S3 data lake. While it is beyond 
the scope of this book, you can complement Athena's SQL interface with Glue ETL or 
Amazon EMR to add Apache Spark-based query capabilities that can support more 
sophisticated forms of customization. With Apache Spark, you can introduce your own 
business logic at every stage of the query. This can become a deeply technical exercise, but 
our strategy's goal is to lay out a plan. If we encounter these situations, we want a general 
idea for delivering the required capability.

Deploying to customers
Some customers of your ad hoc analytics offering will be comfortable writing and 
running SQL directly in the Athena console, but we can do better than Athena's console 
experience. Your organization will likely want to create repeatable reports and dashboards 
and even share their ad hoc analysis. They may even want to post-process results using 
standard statistical libraries. Luckily, Amazon Athena supports JDBC and ODBC 
connectivity so that you can use a wide range of client applications, such as Microsoft 
Excel, or BI tools, such as Tableau. For our hypothetical company, we'll support two 
different ad hoc analytics experiences. The first will be a more traditional experience 
built on Amazon QuickSight connecting to Athena. This option should be suitable for 
those experienced with SQL or other BI tooling. It will allow our customers to visualize 
trends and dig into patterns while minimizing the need for specialized technical skills. 
We'll also support a more advanced experience in the form of Jupyter Notebooks. Jupyter 
Notebooks allows authors to mix traditional SQL, statistical analysis tools, visualizations, 
text documentation, and custom business logic in the form of actual code. 
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This may seem daunting at first and perhaps only appropriate for developers, but that isn't 
the case. The collaborative features of notebooks allow you to share and customize analysis 
in a way that enables you to introduce more powerful tooling with a commensurately 
steep learning curve. 

Now that we've established both the definition and importance of ad hoc analytics, let's 
see whether we can make our hypothetical strategy a bit more tangible. In the remainder 
of this chapter, we will walk through implementing this strategy to run ad hoc queries 
over the data lake we built in previous chapters using Athena, Amazon QuickSight, and 
SageMaker Jupyter Notebooks.

Using QuickSight with Athena
AWS QuickSight is a data analysis and visualization tool that offers out-of-the-box 
integrations with popular AWS analytics tools and databases such as Athena, Redshift, 
MySQL, and others. QuickSight has its own analytics engine called Spice. Spice is capable 
of low-latency aggregations, searches, and other common analytics operations. When 
combined with a large-scale analytics engine such as Athena, QuickSight can be used for 
a combination of data exploration, reporting, and dashboarding tasks. This section will 
briefly introduce you to QuickSight and use it to visualize both our earthquake and Yellow 
Taxi ride datasets. Since QuickSight itself is a WYSIWYG (What Ya See Is What Ya Get) 
authoring experience with lots of built-in guidance, we won't spend much time walking 
you through each step in this section. Instead, we will focus on the broad strokes and let 
you explore QuickSight yourself. Regardless of this simplification, our QuickSight exercise 
will have multiple steps and take you 15 to 20 minutes to complete. In that process, you'll 
be tackling the following objectives:

1. Sign up for QuickSight.
2. Add datasets to QuickSight.
3. Create a new analysis.
4. Visualize a geospatial dataset.
5. Visualize a numeric dataset.
6. Explore anomalies in a numeric dataset

Let's dive right in!
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Getting sample data
By this point in the book, you've gathered sample data, imported it to S3, and prepared 
tables for use in Athena half a dozen times. We'll be reusing many of those datasets and 
tables to save time and focus on the new topics presented in this chapter. In case you 
skipped previous chapters or just prefer to start with a clean slate, you can download and 
run our chapter 7 data preparation script using the following commands from AWS Cloud 
Shell or your preferred terminal environment. The script will download several years of 
the NYC Yellow Taxicab dataset into an S3 landing zone before reorganizing that data 
into an optimized table of partitioned Parquet files. It will also download a small dataset 
containing geospatial data about recent earthquake activity in the US state of California. 
This script is likely to take 20 minutes to run from AWS Cloud Shell as it encompasses 
much of the data lake work from the first three chapters. Once the script completes, it 
may take a few more minutes for the final Athena query it launches to complete and the 
resulting table to become usable. You can reuse the S3 bucket and Athena workgroups you 
made in earlier chapters:

wget -O build_my_data_lake.sh https://bit.ly/3suTuU8 

chmod +x build_my_data_lake.sh

./build_my_data_lake.sh <S3_BUCKET> <ATHENA_WORKGROUP_NAME>

Setting up QuickSight
If you aren't already a QuickSight customer, we recommend signing up for the Standard 
package when following these exercises. Unlike the other services we've used in this book, 
QuickSight's pricing model is more akin to traditional software licenses, with the Standard 
plan costing you between $13 and $50 a month per named user. Luckily, if you've never 
used QuickSight before, you may be able to complete this exercise within the free trial 
window. Your first time visiting QuickSight, you'll be prompted to sign up. Signing up 
for and configuring QuickSight requires IAM permissions that are broader than what 
we typically include in our chapter policies. As such, we recommend using a separate 
IAM user with administrative access to set up QuickSight. In Figure 7.2, we show the key 
properties you'll need to set when signing up. The most notable is allowing QuickSight 
to have access to Amazon Athena and Amazon S3. If you attempt to do this without 
privileged access, you'll encounter issues when you attempt to access Athena in later steps. 



Using QuickSight with Athena     185

Figure 7.2 – Signing up for QuickSight

Once you or an administrator has completed the sign-up process, you'll be able to start 
analyzing data. Before we create our first dashboard, we'll need to define one or more 
datasets that can be used in our analysis. A QuickSight dataset can be thought of as a 
table and its associated source connectivity information. For example, we'll be using two 
datasets from Athena in our exercise. The first will be the chapter_7_earthquakes 
table from the packt_serverless_analytics database, with the chapter_7_
nyc_taxi_parquet table being our second dataset. From the main QuickSight page, 
we can select datasets to view existing or create new datasets. Even if you've never used 
QuickSight before, you will have several sample datasets listed as options. When you click 
New Datasets, you'll get to choose from various sources, including Athena. After selecting 
Athena, a popup will appear asking you to select a workgroup. 
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If you are following along with the configurations in this book, you should choose the 
packt-athena-analytics workgroup. In Figure 7.3, we complete the final steps 
in adding a new dataset by selecting an Athena catalog, database, and table. You should 
repeat this process for both the chapter_7_earthquakes and chapter_7_nyc_
taxi_parquet tables.

Figure 7.3 – Adding a dataset

Unable to create dataset errors
If you didn't have sufficient administrative rights when you signed up for 
QuickSight, you might encounter issues adding new datasets. If you see errors 
related to listing Athena workgroups or accessing the results location, you'll 
need an administrator to go into the QuickSight settings and re-enable Athena 
in the Security and permissions section.

Once you've created the datasets, you are ready to start analyzing your data. For now, 
ensure that chapter_7_earthquakes is selected. Then you can click on the New 
analysis button on QuickSight's main screen, as shown in Figure 7.4. In QuickSight 
nomenclature, an analysis is a multi-tab workspace with different visualizations and 
calculated fields. Once you are happy with an analysis, you can publish it as a read-only 
dashboard or share it with other QuickSight users in your organization. Since QuickSight 
is continuously saving your analysis, you can quickly backtrack from a failed exploration 
by undoing hundreds of recent edits. 
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Figure 7.4 – Creating a new analysis

Your new analysis will start with a single blank tab. Let's add a new geospatial 
visualization to that tab by clicking Points Map from the visualization type pallet on 
the left navigation. Next, we'll select the longitude and latitude fields of the 
chapter_7_earthquakes dataset we added earlier as our geospatial fields. Since  
we want to understand the relationship between location, magnitude, and depth, we can 
use the magnitude and depth columns as our size and color fields, respectively. The 
ease of use and rich visualizations are where QuickSight shines. Figure 7.5 shows how, in 
just a few clicks, we've created our first analysis of earthquakes around the world: 

Figure 7.5 – Visualizing earthquake data
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Visualizations can help better understand relationships in our data, but ad hoc analysis is 
all about iterating. Let's see how QuickSight can help us get to the bottom of interesting 
patterns in our data. If you plan to keep your earthquake data example, go ahead and 
create a new tab in our analysis for a deep dive into the NYC Yellow Taxi dataset we added 
earlier. Our first visualization on this new tab will be a combination bar and line graph 
where we will graph the average tip_amount field by year as bars on the chart. For the 
lines, we will add the count of rides by using the total_amount field. The first thing 
you'll notice is that we seem to have erroneous or incomplete data in our table for many 
years in the future, and even some in the past are contributing strange data to our graph. 
Luckily, QuickSight offers a handy tool for filtering data that goes into a visualization. 
Click on the chart and then on the year field's settings in the left navigation pane. From 
there, you can select add filter for this field and use the Filters dialog to include only data 
from 2017, 2018, 2019, and 2020. Once that's done, the graph should automatically refresh 
and resemble Figure 7.6:

Figure 7.6 – Visualizing yellow taxi ride data

With the noisy data removed, we can see that the total number of rides, represented  
by the total_amount series in our legend, has been trading down for the last 3 years. 
We mostly ignore 2020 since our data is incomplete. Interestingly, the average tip amount 
has increased. This would suggest that customer satisfaction is rising. So why could 
ridership be down? Let's confirm that tips aren't simply growing due to increasing fares by 
adding a second graph to this tab. In Figure 7.5, we added a new bar chart with year as 
the y axis and average fare_amount as the value. Just as we did for the previous chart, 
you'll again want to filter out erroneous values by applying a filter to the year column in 
this graph, too. Once the graph renders, you can see that the increase in tips is not tied to 
a commensurate rise in fares. Customers are consciously choosing to tip more. 
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QuickSight customization
In Figure 7.6, we could not rename the total_amount series in the Taxi 
Tips and # Rides chart's legend to something more indicative of the actual 
value, such as "Number of Rides." While this is a pedantic example of the 
drawbacks of using WYSIWYG editors, it is indicative of the control you give 
up when using a tool such as QuickSight. There is an inherent conflict between 
the myriad of parameters in fully customizable systems and ease-of-use tools 
such as QuickSight. Please don't take the limited legend customization we've 
called out here as a reason not to use QuickSight. It's merely an easy-to-
convey example of why you're unlikely to find a single tool to satisfy all your 
customers.

We haven't yet learned why ridership is down. If we really worked for the Taxi and 
Limousine Commission, we might want to dive deeper into the data and possibly run 
some A/B testing. Running additional queries along these dimensions could help us 
understand whether price or other supply and demand factors are playing a role in the 
decline. This might help confirm the impact of things such as ride-sharing services. For 
now, we'll put aside our QuickSight analysis and switch to Jupyter Notebooks for the next 
leg in the ad hoc analysis of our NYC Yellow Taxi dataset. 

Using Jupyter Notebooks with Athena 
Depending on the proficiency level in querying data, some individuals may consider 
QuickSight to be more of a dashboarding tool that populates results based on pre-set 
parameters. Individuals looking for a more fluid and interactive experience may feel  
their needs are better satisfied by a tool designed for authoring and sharing investigations. 
You're already familiar with the Athena console's basic ability to write queries and display 
tabular results. Jupyter Notebooks is a powerful companion to analytics engines such as 
Athena. 

In this section, we'll walk through setting up a Jupyter notebook, connecting it to Amazon 
Athena, and running advanced ad hoc analytics over the NYC Yellow Taxi ride dataset. 
If you are unfamiliar with SageMaker or Jupyter Notebooks, don't worry. We will walk 
you through every step of the process so you can add this new tool to your shelf. For the 
uninitiated, AWS describes SageMaker as the most comprehensive machine learning 
service around. SageMaker is best thought of as a suite of services that accelerate your 
ability to adopt and deploy machine learning in any and every situation where it might 
be useful. That means SageMaker has dedicated tooling for data preparation tasks such as 
labeling and feature engineering work that may require nuanced techniques for statistical 
bias detection. You may be wondering what that has to do with Athena and ad hoc 
analytics. Well, training machine learning models requires good input data. 
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In many cases, your models are only as good as the inputs to your training. As such, 
Jupyter Notebooks provides an excellent interface and workflow for exploring data and 
capturing findings. 

To begin, we'll need to create an IAM role that our SageMaker Jupyter notebook will  
use when interacting with other AWS services such as Athena. You can do this by 
navigating to the IAM console, selecting the Roles section, and clicking the Create role 
button. Once you do that, you'll be presented with the dialog in Figure 7.7. Be sure to 
select AWS service as the type of trusted entity and SageMaker as the entity, just as we 
have in Figure 7.7:

Figure 7.7 – Creating an IAM role dialog

These settings tell IAM that we want to create a role that is explicitly for use with 
SageMaker. This helps scope down both the types of activities the IAM role can perform 
and the contexts from which it can be assumed. In the next step, you'll have the 
opportunity to add the specific policies for the activities we plan to perform using this 
IAM role. 
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We recommend adding the packt_serverless_analytics policy that we have been 
enhancing throughout this book and used earlier in this chapter. As a reminder, you can 
find the suggested IAM policy in the book's accompanying GitHub repository listed as 
chapter_7/iam_policy_chapter_7.json here: https://bit.ly/2R5GztW. 

Once you've added the policy, you can move on to the Add tags step. Adding tags is 
optional, so you can skip that for now and go to the final step of giving your new IAM 
role a name. We've recommended naming your new IAM role packt-serverless-
analytics-sagemaker since this chapter's IAM policy already includes permissions 
that will allow you to create and modify roles matching that name without added access. 
If everything went as expected, your IAM role summary should match Figure 7.8. If you 
forgot to attach the packt_serverless_analytics policy, you can do so now using 
the Attach policies button highlighted here:

Figure 7.8 – IAM role summary dialog 

https://bit.ly/2R5GztW
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With our shiny new IAM role in hand, we are ready to start a SageMaker Jupyter  
notebook and begin exploring the NYC yellow taxi ride dataset with Athena while  
using handy analysis libraries such as pandas, Matplotlib, and Seaborn. Don't worry if 
these sound more like species of tropical fish than ad hoc analytics tools. We'll introduce 
you to these libraries and how they can make your life easier a bit later in this section.  
On the SageMaker console, you can click on Notebook and then the Notebook instances 
section. From there, you can click on Create notebook instance to open the dialog in 
Figures 7.9 and 7.10:

Figure 7.9 – SageMaker Create notebook instance dialog 

In the first portion of the notebook creation dialog, you'll pick a name and instance type 
for your notebook. We recommend naming your notebook packt-serverless-
analytics since your IAM policy is already configured to grant you the ability to 
administer notebooks matching that name. Any instance type that is at least as powerful 
as an ml.t3.medium will be sufficient to complete the exercises in this section. 
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We recommend the ml.t3.medium because it has a generous free tier, which should easily 
allow you to complete all the exercises at no additional charge. You'll only end up paying 
for Athena and S3 usage. We won't be doing any heavy machine learning, so you can 
leave the Elastic Inference option on none. This option allows you to attach specialized 
hardware to your notebook that makes the application of machine learning models, also 
known as inference, significantly faster through the use of AWS's custom inferential 
chips. Our final step is to set the IAM role that our new notebook instances will use when 
interacting with other AWS services such as Athena and S3. In Figure 7.10, you can see 
that we used the packet-serverless-analytics-sagemaker role we created 
earlier. Once you've done that, you can leave the remaining options at their default values 
and create the notebook.

Figure 7.10 – SageMaker Create notebook instance dialog continued
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Your new notebook instance will take a few minutes to start. While we wait, let's outline 
what we're going to do with our notebook and get introduced to the statistical libraries 
that will help us do even more with Athena.

pandas
pandas is a fast, flexible, and open source data analysis library built on top of the Python 
programing language. It aims to make working with tabular data such as that stored 
in spreadsheets or a SQL engine easier. If you're looking for help exploring, cleaning, 
or processing your data, then pandas is the right tool for you. In pandas, tabular data 
is stored in a structure known as a DataFrame. Out of the box, pandas supports many 
different file formats and data sources, including CSV, Excel, SQL, JSON, and Parquet. 
Athena returns data in CSV format, making it easy for us to use pandas with Athena query 
results. pandas also provides convenient hooks for plotting your data using a variety of 
visualization tools, including Matplotlib. In a moment, we'll use pandas to bridge between 
Athena and other data analysis tools.

Matplotlib and Seaborn
Matplotlib is a comprehensive open source Python library for visualizing data in static or 
interactive plots. Its creators like to say that "Matplotlib makes easy things easy and hard 
things possible." Many Matplotlib users turn to this library to create publication-quality 
plots for everything from company financial reports to scientific journal articles. As a 
long-time user of Matplotlib myself, I appreciate how much control it allows you to retain. 
You can fully customize line styles, fonts, and axes properties, and even export to various 
image formats. However, if you are new to the library, the sheer number of options can 
be a bit overwhelming. So, we won't be using Matplotlib directly in this exercise. Instead, 
we'll use a higher-level interface library called Seaborn. Seaborn provides a simplified 
interface for using Matplotlib to create common chart activities such as scatter, bar, or line 
graphs. Both libraries have excellent integration with Jupyter Notebooks so that your plots 
render right on the page. 
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SciPy and NumPy
By now, you can probably guess that both SciPy and NumPy are open source mathematics 
libraries built in Python. NumPy contains abstractions for multidimensional arrays of 
data. Such structures can come in handy when applying mathematical operations over 
an entire column of a table. NumPy also offers highly optimized functions for sorting, 
selection, applying discrete logic, and a host of statistical operations over these arrays. 
SciPy builds on the functionality provided by NumPy to create ready-to-use solutions  
for common scientific and mathematical problems. Later in this section, we will use 
SciPy's outlier detection algorithm to purge errant data from our Athena results.

Using our notebook to explore 
Your notebook instance should just about be ready for use. Let's outline what exploration 
we'll perform once it's running. The beauty of using Athena from a Jupyter notebook is 
that you can simply have a conversation with your data and not have to plan it all out in 
advance. We're itemizing the steps here, so you know what to expect along the way:

1. Connect our notebook instance to Athena.
2. Run a simple Athena query and print the result using pandas.
3. Visualize the result of our simple Athena query using Seaborn.
4. Prune any erroneous data using SciPy for outlier detection.
5. Run a correlation analysis over an aggregate Athena query.

Embedded in these steps is an important cycle. We ask a question by querying Athena.  
We notice something interesting in the result. We run a follow-up query in Athena.  
We dissect the result further. This is the ad hoc analytics cycle that differentiates ad hoc 
analytics from pre-canned reports or dashboards. It has no clear or pre-packaged end. 
Your next query depends on what you find along the way. This may seem a bit abstract,  
so we'll make it more concrete by applying this to our NYC yellow taxi dataset. 

If you'd like to skip ahead or need added guidance in writing the code snippets we'll 
be using to run our ad hoc analytics, you can get a prepopulated notebook file from 
the book's GitHub repository at chapter_7/packt_serverless_analytics_
chatper_7.ipynb here: https://bit.ly/3rQKGGI. GitHub nicely renders 
the notebook file so that you can see it right from the link. Unfortunately, that makes 
downloading it for later upload to your SageMaker notebook instance a bit tricky. To get 
around that, click on the Raw view, and then you can perform a Save as operation from 
your browser.

https://bit.ly/3rQKGGI
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Step 1 – connecting our notebook instance to Athena
From the SageMaker console, go ahead and click the Open Jupyter link as shown in 
Figure 7.11. This will open a new browser tab or window connected to your Jupyter 
notebook instances. Behind the scenes, SageMaker is handling all the connectivity 
between your browser and what is your own personal Jupyter notebook server.

Figure 7.11 – Opening a Jupyter notebook

Just as we've done in Figure 7.12, you'll want to click on New and select conda_python3 
for the notebook type. The value may appear at a different position in the dropdown 
than it does in Figure 7.12, so don't be afraid to scroll to find it. This setting determines 
how our notebook will run the data explorations tasks we are about to write. By 
selecting conda_python3, we are telling Jupyter that it can run our code snippets using 
Python. Sparkmagic is another common choice if you want to use Apache Spark as 
your computing platform. For now, we'll stick with Python, but the flexibility of Jupyter 
Notebooks makes it an excellent choice for any ad hoc analytics strategy. Once you pick 
the notebook type, yet another browser tab will open with your new notebook. The new 
notebook file will be named Untitled.ipynb, so our first step will be to give it a 
helpful name by clicking on File and then Rename. 

Figure 7.12 – Creating a new notebook file
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Now that you have your notebook ready to use, we'll connect it to Amazon Athena by 
installing the Athena Python driver. To do this, we'll write the following code snippet 
in the first cell of the notebook. Cells are represented as a free-form textbox and can be 
executed independently, with subsequent cells having access to variables, data, and other 
states produced by earlier cells. After executing a cell, its output is shown immediately 
below it. You can edit, run, edit, and re-run a cell as often as you'd like. You can also 
add new cells at any time. The entire experience is very fluid, making it perfect for an 
imperfect exercise such as ad hoc data analysis. Let's put this into practice by running  
our first cell. Once you've typed the code into the cell, you can either click Run or press 
Shft + Enter to run the cell and add a new cell directly below it:

import sys

!{sys.executable} -m pip install PyAthena

This particular cell will take a couple of minutes to execute, with the result containing a 
few dozen log lines detailing which software packages and dependencies were installed. 
You are now ready to query Athena from your notebook.

Step 2 – running a simple Athena query and printing the result using 
pandas
Go ahead and add a cell to your notebook. This cell will be used to import our newly 
installed Athena Python driver and the pre-installed pandas library. This is done by  
typing the first two import statements from the following code snippet. In both cases,  
we are aliasing our imports to something more convenient. Then we use the connect() 
function that we imported from pyathena to connect to our Athena workgroup and 
database using the work_group and schema_name arguments, respectively. You'll also 
notice that we set the region_name argument to match the AWS Region we've been 
using for all our exercises: 

from pyathena import connect

import pandas as pd

conn = connect(work_group='packt-athena-analytics', 

         region_name='us-east-1',                 

         schema_name='packt_serverless_analytics')



198     Ad Hoc Analytics

Still working in the same cell, we can now run our Athena query by using pandas' 
read_sql() function to read the result of our query into a DataFrame as shown in the 
following code snippet. In this example, we are running a query to get the count of yellow 
taxi rides by year. On the final line of the cell, we print the first three values from the 
result. Go ahead and run this cell:

athena_results = pd.read_sql("""SELECT year, COUNT(*) as num_
rides 

                                FROM chapter_7_nyc_taxi_parquet 

                                GROUP BY year 

                                ORDER BY num_rides DESC""", 
conn)

athena_results.head(3)

Viewing the first few rows of the result is great, but we could have done that in the 
Athena console. We opted for a notebook experience for the ecosystem that included data 
visualization. That's where Seaborn comes into the picture.

Step 3 – visualizing results using Seaborn
If you didn't already add another cell, go ahead and do that now. In this next cell, we will 
use Seaborn to graph the number of yellow taxi rides each year as a bar graph. Since this 
is the first cell that requires Matplotlib and Seaborn, we begin by importing and aliasing 
these tools. We then conclude this cell by calling Seaborn's barplot function to graph 
the year and num_rides columns of our DataFrame:

from matplotlib import pyplot as plt

import seaborn as sns 

seaborn.barplot(x="year", y="num_rides", data=athena_results)

But the resulting graph shown in Figure 7.13 seems a bit odd. There are so many years that 
we can't even read the y axis.
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Figure 7.13 – Visualizing data using Seaborn

It seems we have a data quality issue with some rides having erroneous years. In the next 
cell, we'll use SciPy to detect and filter out those outliers.

Step 4 – pruning any erroneous data using SciPy
Our visualization in step 3 has shown that we have some rides with erroneous start or end 
values. In our case, our sample dataset only has yellow taxi ride data from 2017, 2018, 
2019, and 2020 so any other values must be bad data. In practice, identifying bad data 
won't always be that easy. It would be useful to have a mechanism for detecting outliers 
that doesn't require foreknowledge of the dataset. Luckily, SciPy has a set of functions 
that can help. In our next cell, we'll use SciPy's stats module to compute the zscore of the 
num_rides column for each row. A zscore, also known as a standard score, measures 
how many standard deviations above or below the population mean a value is. 
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Using the following code snippet as a guide, we start by importing the stats module 
from SciPy. Depending on your version of pandas, you'll want to suppress chained_
assignment warnings, as we have done. Then we use the zscore function from the 
stats module to calculate the zscore for the num_rides column. This function returns 
a DataFrame with as many rows as the input column. pandas DataFrames make it easy 
to add a new column to our Athena result and fill it with the calculated values from our 
new DataFrame. We do that by assigning the result to a new column in our original 
DataFrame. We conclude this cell by printing the results DataFrame to see the zscores 
alongside our original values: 

from scipy import stats

#surpressing warning related to chained assignments 

pd.options.mode.chained_assignment = None 

zscore = stats.zscore(athena_results['num_rides'])

athena_results['zscore']=zscore

print(athena_results)

When you are ready, go ahead and run this cell. Figure 7.14 shows the first few results 
from the output. As expected, the bulk of the rides are in the four years we loaded into 
our data lake, but we've also got data from 2088, 2058, and a few other years that are far in 
the future. Interestingly, SciPy generated negative zscores for all the rows with erroneous 
years. This is because the ride counts for those years are so far from the population mean. 
Let's add another cell and repeat our visualization after filtering by zscore.

Table 7.1 – zscore values
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This cell will be short, thanks to pandas' shorthand for filtering a DataFrame. We select 
the subset of the athena_results DataFrame where the zscore column is greater than 
zero and assign the result to a new athena_filtered DataFrame. We then repeat our 
earlier plot command to produce a new bar chart:

athena_filtered = athena_results [athena_results['zscore'] > 0]

seaborn.barplot(x="year", y="num_rides", data=athena_filtered)

After running this cell, we get a much more reasonable chart, like the one in Figure 7.15. 
Even with all the erroneous data points removed, we can still see a clear downward trend 
in the number of yellow taxi rides beginning in 2018. Some of this may be attributed to 
the rise of ride-sharing services such as Uber, or there may be other factors at play. 

Figure 7.14 – zscore values

Running a correlation analysis
In our final notebook cells, we'll attempt to use the average tip amount as a proxy for 
customer satisfaction. We'll then check whether using the tip amount is a flawed proxy 
for customer sentiment by looking at how the tip amount correlates with other metrics 
such as trip speed and time of day. Add a new cell and run a new Athena query to get the 
average fare amount, average tip amount, and total rides grouped by day, as we've done in 
the following code snippet:

athena_results_2 = pd.read_sql("""

    SELECT date_trunc('day', 

           date_parse(tpep_pickup_datetime,'%Y-%m-%d 
%H:%i:%s')) as day, 
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    COUNT(*) as ride_count,

    AVG(fare_amount) as avg_fare_amount,

    AVG(tip_amount) as avg_tip_amount

    FROM chapter_7_nyc_taxi_parquet 

    GROUP BY date_trunc('day', 

       date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s'))

    ORDER BY day ASC""", conn)

In the same cell, we'll then calculate the zscore of the ride_count column so that we 
can again filter out the outliers. Since this query gathers daily data, we adjust our zscore 
threshold to -1 to allow for a broader range of valid values. Once you've included the 
code from this following snippet, you can run the cell. Executing the cell may take a 
minute or two if you are using the ml.t3.medium instance type for your notebook 
instance. This is because the notebook needs to retrieve all results from Athena using 
Athena's results API. As we discussed in an earlier chapter, Athena's results API is not as 
performant as reading the data directly from the Athena results file in S3:

zscore2 = stats.zscore(athena_results_2["ride_count"])

athena_results_2['zscore']=zscore2

athena_filtered_2= athena_results_2[athena_results_2['zscore'] 
> -1]

Once the cell completes executing, you can add another cell that we'll use to generate 
a scatter plot that varies color and point size based on tip amount and fare amount, 
respectively. We do this by importing the mdates and ticker modules from Matplotlib.  
Then we use the previously mentioned customizability of Matplotlib to manually set  
a wide aspect ratio for our plot and pass this into Seaborn's scatterplot function.  
You can see the full detail of how to configure the plot in the following code snippet.  
We conclude the cell by customizing the frequency and format of our graph's y axis  
using the set_major_locator() and set_major_formatter() functions  
of our plot object:

import matplotlib.dates as mdates

import matplotlib.ticker as ticker

fig, ax = pyplot.subplots(figsize= (16.7, 6.27))

plot = seaborn.scatterplot(ax=ax, x="day", y="ride_count",       
size="avg_fare_amount", sizes=(1, 150), hue="avg_tip_amount", 
data=athena_filtered_2)
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plot.xaxis.set_major_locator(ticker.MultipleLocator(125))

plot.xaxis.set_major_formatter(mdates.DateFormatter('%m/%Y'))

plt.show()

When run, the cell produces the chart in Figure 7.15. At a glance, we can see that while 
the daily number of rides is indeed trending down, the average tip amount is actually 
increasing even though the average cost of a ride is relatively flat. This suggests that 
customer satisfaction is not a likely reason for the reduction in yellow taxi rides. For 
completeness, we'll still carry out a correlation analysis of our key metrics to better 
understand the relationships in our data.

Figure 7.15 – Plotting the ride count versus the average tip amount versus the  
average fare amount over time

Let's add one final cell to our notebook. We'll start this cell by running an Athena query 
to get hourly averages for ride duration, distance, fare, tip, and the number of rides. We 
conclude the cell by calling the pandas corr() function to calculate the correlation 
between all the columns in our results DataFrame: 

athena_results_3=pd.read_sql("""SELECT 

     max(hour(date_parse(tpep_pickup_datetime,

                         '%Y-%m-%d %H:%i:%s'))) as hour_val, 

     avg(date_diff('second', 

              date_parse(tpep_pickup_datetime, '%Y-%m-%d 
%H:%i:%s'), 

              date_parse(tpep_dropoff_datetime, '%Y-%m-%d 
%H:%i:%s'))) 

     as duration, 

     avg(trip_distance) as trip_distance,
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     avg(fare_amount) as fare_amount,

     avg(tip_amount) as tip_amount,

     count(*) as cnt

from chapter_7_nyc_taxi_parquet 

WHERE year=2018

group by date_trunc('hour', date_parse(tpep_pickup_
datetime,'%Y-%m-%d %H:%i:%s')) """, conn)

athena_results_3.corr()

pandas' corr() function implements several techniques for calculating a correlation 
matrix. By default, it uses the Pearson method to determine the covariance between 
two variables and then divide that factor by the product of the two variables' standard 
deviations. Covariance refers to the tendency for two variables to increase or decrease, 
with the relationship between height and age of students being a simple example of highly 
correlated variables. The Pearson method can only capture linear relationships between 
variables and has a range of 1 for highly correlated, 0 for uncorrelated, and -1 for inversely 
correlated. 

Figure 7.16 shows the output of the correlation matrix outputted by our final cell. 
Interestingly, tip_amount is not correlated to duration. This goes against every movie 
you've seen where someone jumps in a taxi and offers a big tip to run every red light. 
In fact, tip_amount is most correlated with trip_distance. The relationship, or 
lack thereof, between the time of day (hour_val) is another surprise. You would think 
that ride duration would spike during peak commute times, but the lack of correlation 
between hour_val and duration suggests otherwise even though ride_count is highly 
correlated to the time of day. If we were continuing our ad hoc analysis of this dataset,  
our next step would be to look at how duration manages to be unaffected by ride count,  
a seemingly obvious traffic volume indicator. 

Figure 7.16 – DataFrame correlation values
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In this section, we managed to run multiple Athena queries, targeting different slices of 
data, and pivot our ad hoc analysis based on findings along the way. We did all that while 
staying in one tool, our notebook. The tools we used are capable of much more than the 
simple explorations we undertook. Hopefully, this exercise has demonstrated why they 
would be a powerful addition to any ad hoc analytics strategy. 

Summary
In this chapter, you got hands-on with the first of Athena's four most common usages – ad 
hoc analytics. We did this by looking at the history of business intelligence and learning 
about the OODA loop. Ad hoc analytics shortens the OODA loop by making it easier 
to use data to observe and orient yourself to the situation. The increased accessibility of 
data ultimately leads to the heightened situational awareness required for making sound 
decisions. With clarity of data behind your decisions, your organization will be less likely 
to waste time before acting on those choices. A short OODA loop also helps you react to 
poor decisions or calculated risks such as A/B tests. 

The OODA loop isn't a new concept, and it's not the catalyst of the rising importance  
of ad hoc analytics. Instead, the proliferation of data has made it necessary for every 
decision maker in your organization to have access to critical business metrics at a 
moment's notice. We saw how some organizations attempt to meet this need through 
centralized reporting teams that bridge the skills gap between subject-matter experts 
that understand the semantic meaning of the data and the technical expertise required to 
access the data itself. 

Athena shrinks the skills gap by hiding much of the complexity behind a SQL façade. 
Basic SQL knowledge is becoming increasingly common even in non-technical roles. 
Complimentary tools such as QuickSight further democratize access to data by providing 
a more guided experience. Jupyter Notebooks rounds out the strategy by providing an 
escape valve for advanced users and data scientists to use popular libraries with their data.

In Chapter 8, Querying Unstructured and Semi-Structured Data, you'll learn about another 
typical Athena use case. Querying loosely structured data is a challenging undertaking 
and partly the result of traditional SQL tables and schemas being too rigid and 
ill-equipped to support the pace of software evolution.
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Querying 

Unstructured and 
Semi-Structured 

Data
Many of the world's most valuable datasets are loosely structured. They come from 
application logs, which don't conform to any standards. They come from event data 
generated by a system that users interact with, such as a web server, which stores how 
users navigate an organization's website. They can also come from an analyst generating 
spreadsheets on a company's financial performance. This data is usually stored and shared 
in a semi-structured format to make it easier for others to consume. Some query engines 
have evolved to fully support this semi-structured data. 
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When talking about structured, semi-structured, and unstructured data, there are many 
different definitions out there. For this book, structured data is stored in a specialized  
data format where the schema and the data it represents are one to one. The data is 
serialized to optimize how the data is read, written, and analyzed. An example is a 
relational database. Semi-structured data is when the data format follows a specific 
format, and a schema can be provided to read that data. For example, the JSON, XML,  
and CSV file formats have rules on how they are parsed and interpreted. Still, the 
relationship to a schema or table definition is loose. Unstructured data is data that does 
not follow a particular data model. Examples of unstructured data include application 
logs, images, text documents, and more. 

In this chapter, we will learn how Amazon Athena combines a traditional query engine 
and its requirement for an up-front schema with extensions that allow it to handle data 
that contains varying schemas or no schema at all.

In this chapter, we will cover the following topics: 

• Why isn't all data structured to begin with?

• Querying JSON data

• Querying arbitrary log data

Technical requirements
For this chapter, if you wish to follow some of the walk-throughs, you will require the 
following:

• Internet access to GitHub, S3, and the AWS Console.

• A computer with Chrome, Safari, or Microsoft Edge installed.

• An AWS account and an accompanying IAM user (or role) with sufficient privileges 
to complete this chapter's activities. For simplicity, you can always run through 
these exercises with a user who has full access. However, we recommend using 
scoped-down IAM policies to avoid making costly mistakes and learn how to best 
use IAM to secure your applications and data. You can find a minimally scoped 
IAM policy for this chapter in the book's accompanying GitHub repository, 
listed as chapter_8/iam_policy_chapter_8.json (https://bit.
ly/3hgOdfG). This policy includes the following:

 � Permissions to create and list IAM roles and policies:

 � You will be creating a service role for an AWS Glue Crawler to assume.

https://bit.ly/3hgOdfG
https://bit.ly/3hgOdfG
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 � Permissions to read, list, and write access to an S3 bucket. 

 � Permissions to read and write access to Glue Data Catalog databases, tables, and 
partitions:

 � You will be creating databases, tables, and partitions manually and with Glue 
Crawlers.

 � Access to run Athena queries.

Why isn't all data structured to begin with?
Data is generated from everywhere at all times within computer systems. They power 
our applications and reports and help us make sense of the world and our decisions that 
impact it. Data that's produced from an application that manages financial portfolios 
tells us how much risk the instruments in the portfolio are at. Websites can generate click 
data to tell a story, such as how customer's behavior changes when an update is made to 
a website. Retail businesses produce sales transactions and marketing data to determine 
how sales are affected by marketing campaigns. Amazon's user traffic information on 
individual products can train machine learning models to make recommendations to 
users who showcase products that they didn't even know they wanted. For this data to be 
helpful, it must be accessible to data engineers and machine scientists to produce even 
greater value from them. 

However, not all data is created equally. If we take a hypothetical online store that sells 
everything from A to Z, sales information can be saved in structured data stores such as 
relational databases. User traffic and click data can be stored as text files in S3 in CSV files. 
Item description data can be retrieved through a RESTful API and saved as JSON data. 
The format and structure of the data are usually chosen based on how best to represent 
the information and how downstream applications consume that information. Usually, 
this data is not stored in a database system because this tends to be expensive. Hence, 
they are pruned of older data to keep costs low and performance high. Having data in 
a semi-structured format makes sharing data very easy. The data usually conforms to 
open standards, such as CSV, JSON, and XML. It is also estimated that 80-90% of current 
applications produce non-structured data. So, it makes sense to not change the existing 
applications but have our query engine read the data directly or ETL the data for Athena 
to read. 
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The remainder of this chapter will show you how to query a variety of semi-structured 
and unstructured data sources using Athena. We will use a fictitious retail business that 
sells widgets. This retail business wants to perform analytics with data that is produced by 
various systems. The following table outlines the system and type of data that is generated: 

Table 8.1 – Data types and descriptions 

The sample data files can be found on GitHub (https://bit.ly/3wlJSwV). Let's 
query these datasets. 

Querying JSON data
JSON is a prevalent data format. It can be described as a lightweight version of XML and 
has many similarities with it. The file format is text-based, contains field names, along with 
their values, and supports advanced data types such as structures and arrays. A structured 
data type is a group of columns that are stored and referred to by their structure names 
and column names. This allows for logically similar columns to be grouped; for example, 
the structure of a customer's address that contains a street name, street number, city, state, 
and more. Arrays allow a single row to have a field containing zero or more values that 
can be referenced by an index number. An example list would be a list of addresses for 
a customer. JSON supports a mixture of arrays and structures. You can have an array of 
structures or a structure with an array field within it. 

When using Athena, JSON files have to be of a particular format. Athena requires that 
JSON files must contain a single JSON object on separate lines within a file. If there are 
multiple objects on the same line, only the first object will be read, and if an object spans 
multiple lines, it will not throw an error. If the file format does not conform to what 
is compatible with Athena, then the data will need to be transformed (see Chapter 9, 
Serverless ETL Pipelines ). 

Now, let's look at some sample queries and read our customer's table. 
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Reading our customer's dataset
The following is a sample JSON record from our customer's table (formatted to be easier 
for a human to read but not Athena!):

{

  "customer_id": 10,

  "first_name": "Mert",

  "last_name": "Hocanin",

  "email": "mert@somedomain.com",

  "addresses": [

    {

      "address": "63 Fairview Alley",

      "city": "Syracuse",

      "state": "NY",

      "country": "United States"

    }

  ]

}

Here, we can see that this record has five fields: customer_id, first_name,  
last_name, email, and addresses. The addresses field is an array that contains  
a structure that contains four fields. 

To register this table in our catalog, we can run a Glue crawler. But if we want to 
create this table using a CREATE TABLE statement (available at https://bit.
ly/3yna5eV), it would look like this:  

CREATE EXTERNAL TABLE customers (

  customer_id INT,

  first_name STRING,

  last_name STRING,

  email STRING,

  addresses ARRAY<STRUCT<address:STRING,city:STRING, 
state:STRING,country:STRING>>,

  extrainfo STRING

)

ROW FORMAT SERDE 

  'org.openx.data.jsonserde.JsonSerDe' 

STORED AS INPUTFORMAT 

https://bit.ly/3yna5eV
https://bit.ly/3yna5eV
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  'org.apache.hadoop.mapred.TextInputFormat' 

OUTPUTFORMAT 

  'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

LOCATION

  's3://<S3_BUCKET>/chapter_8/customers/';

Let's view some sample data from this table by running SELECT * FROM customers 
LIMIT 10:

Figure 8.1 – Sample data from the customers table

The results look as expected. Now, let's query the table and see how many customers have 
primary addresses in each state. We will assume that the first address in the address list is 
their primary address, so we can run the following query:

SELECT 

   addresses[1].state AS State,

   count(*) AS Count

FROM customers

WHERE cardinality(addresses) > 0

GROUP BY 1 ORDER BY 2 DESC LIMIT 5

The results will look as follows:

Figure 8.2 – Query results to show the top five numbers of customers by US state
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With arrays, we can reference the element by using square brackets (addresses[1]).  
Since this returns a structure, we can reference the field by its name (.state). So, putting 
this together, we can specify the first address's state by writing addresses[1].state. 
Now, let's look at how we can parse fields that contain JSON data.

Parsing JSON fields
There are cases where some fields contain a string that contains JSON as a payload.  
This is sometimes done to make the payload completely abstract. Only the readers of  
the payload would understand the data in it. Our customer's table has a field called 
extrainfo containing JSON. In this section, we will describe an unlimited shipping 
program called the Pinnacle program. When we run SELECT customer_id, 
extrainfo FROM customers WHERE extrainfo is not null LIMIT 5,  
we get the following results:

Figure 8.3 – The extrainfo field within the customers table



214     Querying Unstructured and Semi-Structured Data

So, what can we do with this JSON data in the field? Athena (and PrestoDB/TrinoSQL) 
supports a JSON data type and a variety of built-in functions that allow us to interact 
with the JSON data easily without parsing or transforming the data. There are two JSON 
functions that are really useful: json_extract and json_extract_scalar. These 
functions take a string and a JSON path and return the JSON data type or a string. These 
functions extract any field within the JSON object, regardless of how nested the data may 
be. For example, if we run SELECT json_extract_scalar(extrainfo, '$.is_
pinnacle_customer') FROM customers where extrainfo IS NOT NULL , 
we would get the following result:

Figure 8.4 – json_extract_scalar function example

Let's look at some things we should consider when reading JSON data.

Other considerations when reading JSON
Let's take a look at some other things you should consider when reading JSON.

Schema updates with JSON
One of the benefits of using JSON is that fields can be added and removed from the 
records without it impacting Athena's ability to read the table. Since the files contain field 
names and their values, any fields that are not present in the files are ignored. If there is a 
row that doesn't include the field, then a null is returned. This is useful as data evolves and 
new fields are added and removed. Additionally, the ordering of fields does not impact the 
ability to read the data. 
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JSON SerDe comparison
Athena provides two different SerDes to be able to read JSON data. Each SerDe has 
slightly different functionality, so it's important to compare the two. In the preceding 
CREATE TABLE statement, we specified org.openx.data.jsonserde.
JsonSerDe. The other SerDe is the Hive JSON SerDe. Our recommendation is to use the 
OpenX version. It contains some beneficial properties that can help read JSON that the 
Hive SerDe does not have. 

When specifying the following properties, they need to be specified in the SerDe 
properties of the table, like so:

CREATE EXTERNAL TABLE customers (

   ... Table columns

)

ROW FORMAT SERDE 

  'org.openx.data.jsonserde.JsonSerDe' 

WITH SERDEPROPERTIES (

  "property1" = "value1",

  "property2" = "value2"

)

... Rest of the table attributes like INPUTFORMAT, LOCATION, 
etc

Let's look at some of the useful OpenX JSON SerDe properties:

• Mapping: The OpenX JSON SerDe has a property that allows you to map a 
field name within the JSON file to a column name within your table definition. 
This can be useful if a field in your JSON file cannot be used within your table 
definition, such as if a keyword is used. For example, if you have a timestamp field 
name in your JSON file, you won't create a column called timestamp because 
it is a reserved keyword. Instead, you can map the timestamp field to a column 
named ts by specifying the WITH SERDEPROPERTIES ( "mapping.ts" = 
"timestamp" ) SerDe property. 
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• Case Insensitivity: By default, the OpenX JSON SerDe will compare field names 
found in JSON files and column names in your catalog in a case-insensitive way. 
For most cases, this behavior is ideal as it will reduce the likeliness of errors being 
caused because of the case. However, in some rare cases, this may not be wanted  
as two field names may conflict if they only have case differences. For example,  
if your JSON file contains a field called time and Time, then it will seem like there  
is a duplicate field in the file, and it will be rejected as it will be deemed malformed. 
To get around this, we can leverage the mappings feature and turn off case 
insensitivity. For the time fields, we can use the WITH SERDEPROPERTIES 
( "mapping.time1" = "time", "mapping.time2"  = "Time", 
"case.insensitive" = "FALSE" ) SerDe property.

• Periods in Field Names: If your JSON files contain field names with periods in 
them, then Athena won't read their data. To get around this, we must set dots.
in.keys to true. Turning this property on will convert all the periods into 
underscores. For example, if you had a field in your JSON file named customers.
name, then SerDe will translate this into customer_name.

Now that we have learned how to read JSON, let's look at how we can query CSV  
and TSV. 

Querying comma-separated value and tab-separated 
value data
The comma-separated value (CSV) and tab-separated value (TSV) formats are some  
of the oldest data formats. They have lasted the test of time. They are heavily used today  
in many legacy systems and even among heavy Microsoft Excel users. Their main 
advantages versus other formats are their simplicity, their popularity, and that most 
spreadsheet applications can open them. CSV and TSV data also map very closely to 
tables within a database, where you have rows and columns of data. CSV and TSV files 
are text-based. Field values are separated by a delimiter, usually commas or tabs, and 
rows are separated by newlines. You can find examples of CSV files at https://bit.
ly/2TQY8z5 and https://bit.ly/3h1G919. We will use them as example datasets. 
Let's look at an example.

https://bit.ly/2TQY8z5
https://bit.ly/2TQY8z5
https://bit.ly/3h1G919


Querying JSON data     217

Reading a typical CSV dataset
Reading CSV and TSV data within Athena is simple, and in most cases, it is very 
straightforward. For most use cases, we can use the built-in delimited text parser.  
Let's take a look at the CREATE statement for our sales table (this can be found at 
https://bit.ly/2TQG73W):

CREATE EXTERNAL TABLE sales (

    timestamp STRING,

    item_id STRING,

    customr_id INT,

    price DOUBLE,

    shipping_price DOUBLE,

    discount_code STRING

)

ROW FORMAT DELIMITED

      FIELDS TERMINATED BY ','

      ESCAPED BY '\\'

      LINES TERMINATED BY '\n'

LOCATION 's3:// <S3_BUCKET>/chapter_8/sales/'

TBLPROPERTIES ('serialization.null.format'='',

              'skip.header.line.count'='1')

We can set two table properties here: skip.header.line.count and 
serialization.null.format. The skip.header.line.count property tells 
the parser to skip the first line in the CSV file as it contains the column names or the 
header row. The serialization.null.format property tells the parser to treat 
empty columns as nulls. Now that we have defined our sales data, let's take a look at some 
sample data, as shown in the following screenshot:

Figure 8.5 – Sample data from the sales dataset

https://bit.ly/2TQG73W
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If your data contains a string field containing a comma, you can deal with it in two 
ways. First, you can escape the comma by using the specified character provided by the 
ESCAPED BY value. The second would be to surround the field with quotes, but you will 
need to use the OpenCSVSerDe parser for Athena to parse quoted fields correctly. We'll 
look at OpenCSVSerDe in more detail later. Now, let's learn how to read TSV files.

Reading a typical TSV dataset
TSV files are similar to CSV files, except tabs are used as delimiters between field values 
rather than commas. Tabs are less likely to be contained within string fields, so they are 
sometimes convenient to use rather than commas and escape unintentional commas. If 
you have tried to open a CSV file with Microsoft Excel and the columns do not align with 
these unexpected commas, you will understand that they can be challenging to fix. 

In our example, we have a table representing marketing campaigns that contains a starting 
timestamp that represents the start of a marketing campaign, an ending timestamp  
that represents the end of a marketing campaign, and a description of the campaign. 
Suppose the marketing department provides this data as an export from Microsoft Excel 
that delimited the fields by tabs. To register the table, the CREATE TABLE statement 
(available at https://bit.ly/3xZVIwU) will look very similar to the CSV table, as 
shown in the following statement:

CREATE EXTERNAL TABLE marketing (

  start_date STRING,

  end_date STRING,

  marketing_id STRING,

  description STRING

)

ROW FORMAT DELIMITED

      FIELDS TERMINATED BY '\t'

      ESCAPED BY '\\'

      LINES TERMINATED BY '\n'

LOCATION 's3:// <S3_BUCKET>/chapter_8/marketing/';

You'll notice that the delimiter is \t, which represents a tab. The sample data is shown in 
the following screenshot:

https://bit.ly/3xZVIwU
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Figure 8.6 – Sample data from the marketing dataset

You will notice a comma in the second row that we did not need to escape. Now that we 
have a dataset for sales, customers, and marketing information, we can do some simple 
analytics from data that could have come from three different systems or sources. Let's 
look at a quick example.

Example analytics query
Suppose that we wanted to know how effective our marketing campaigns were by looking 
at the number of sales on days with campaigns versus days that do not. Additionally, 
we want to know the states that the sales were coming from. The following is a sample 
analytics function that can achieve that (this can be found at https://bit.
ly/3gXwf1u, which also contains a breakdown of the query):

SELECT

   date_trunc('day', from_iso8601_timestamp(sales.timestamp)) 
as sales_date,

   CASE WHEN marketing.marketing_id is not null then TRUE else 
FALSE END as has_marketing_campaign,

   SUM(1) as number_of_sales,

   histogram(CASE WHEN cardinality(customers.addresses) > 0 
THEN customers.addresses[1].state ELSE NULL END) as states

FROM

   sales

LEFT OUTER JOIN

   marketing

ON

   date_trunc('day', from_iso8601_timestamp(marketing.start_
date)) 

    = date_trunc('day', from_iso8601_timestamp(sales.

https://bit.ly/3gXwf1u
https://bit.ly/3gXwf1u


220     Querying Unstructured and Semi-Structured Data

timestamp))

LEFT OUTER JOIN

   customers

ON

   sales.customer_id = customers.customer_id

GROUP BY 1, 2 ORDER BY 3 DESC

This Athena query would produce the following results:

Figure 8.7 – Results of the analytics query

Here, we can see that for our top three results, days that had marketing campaigns 
produced the most sales and that most of our sales came from California. This 
information can help inform future marketing campaigns as well as inventory when 
marketing campaigns are run. This was just a warmup; we will look at more cases and 
explain how to do this type of analytics in Chapter 7, Ad Hoc Analytics. Now, let's learn 
how to read inventory data.

Reading CSV and TSV using OpenCSVSerDe
So far, we have looked at using the default version of SerDe to parse CSV and TSV files. 
However, another SerDe that we should look at deals with CSV and TSV files called 
OpenCSVSerDe. This SerDe compares to the default SerDe in a few crucial ways. First, it 
supports quoted fields, meaning that values are surrounded by quotes. This is usually done 
when the fields contain the same delimiter values, which are then ignored until the quote 
values are found. However, if there are quote values, those need to be escaped as well. 
The second difference is that all columns are treated as STRING data types, regardless of 
the table definition, and need to be implicitly or explicitly converted into the actual data 
type. The following is a sample CSV file from our inventory dataset that illustrates when 
OpenCSVSerDe should be used:

"inventory_id","item_name","available_count"

"1","A simple widget","5"

"2","A more advanced widget","10"
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"3","The most advanced widget","1"

"4","A premium widget","0"

"5","A gold plated widget","9" 

If we used the default SerDe, the inventory_id and available_count data would 
need to be specified as a string, and all field values would be returned with quotes, as 
shown in the following screenshot:

Figure 8.8 – Reading the inventory dataset using the default SerDe

When the data is returned, as shown in the preceding screenshot, it would be tough to use. 
Using OpenCSVSerDe will solve this issue, as shown in the following CREATE TABLE 
statement (which is available at https://bit.ly/35UsP9k):

CREATE EXTERNAL TABLE inventory (

  inventory_id BIGINT,

  item_name STRING,

  available_count BIGINT

)

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde' 

WITH SERDEPROPERTIES ("separatorChar" = ",", "escapeChar" = 
"\\") 

LOCATION 's3://<S3_BUCKET>/chapter_8/inventory/'

TBLPROPERTIES ('skip.header.line.count'='1')

https://bit.ly/35UsP9k
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Using OpenCSVSerDe will give us the following results:

Figure 8.9 – Inventory data using OpenCSVSerDe

For more information about using OpenCSVSerDe, see Athena's documentation, which is 
located at https://amzn.to/3isnvzr. 

Now that we have learned how to read CSV and TSV data that's been generated from 
Microsoft Excel or another source, let's dive into reading arbitrary log data.

Querying arbitrary log data
One very common use case for system engineers or software developers is to scan log files 
to find a particular logline. This may be to find when bugs have occurred, gather metrics 
about how a specific system performs, how users interact with a system, or to diagnose 
user or customer issues. There is a vast amount of useful and valuable data that comes out 
of log data. It's a great idea to store application log data in data to be mined in the future. 
Many of the AWS services are already pushing log data into S3 or can easily be configured. 
Athena's documentation provides templates for reading many of these services' log files, 
which can be found at https://amzn.to/3dJzt6H. Let's learn how Athena can be 
used to quickly and easily scan through logs stored on S3.

Doing full log scans on S3
Many logs are pushed to S3. Reading through those log files can be difficult and/or time-
consuming when stored on S3. If those logs need to be read to look for problems, issues, 
or some kind of event, you may download the files and then run a grep command. This 
could take a lot of time because the download from S3 is done using a single computer,  
so it is limited by a single computer's network and CPU resources. You could spin up  
a Hadoop cluster and attempt to read the logs in parallel, but that requires expertise in 
using Hadoop and the time it takes to create and configure the cluster. 

https://amzn.to/3isnvzr
https://amzn.to/3dJzt6H
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Athena can scan your log files in a parallel and easy way and return lines in log files 
that match search criteria. Let's go through an example. Anyone who has used Amazon 
EMR before knows that the application logs of Apache Hive, Apache Spark, and other 
applications are pushed to S3. When a particular Spark or Hive job fails, finding the 
specific log file that caused the failure may be difficult. Using Athena, we can search  
for the failure and log out the files that contained those failures. To do this scanning,  
we will rely on the default version of SerDe that Athena provides, which we looked at in  
the Querying comma-separated value and tab-separated value data section. But the trick 
here is to specify a delimiter that is very unlikely to exist in our log files. Let's look at 
CREATE TABLE:

CREATE EXTERNAL TABLE emrlogs (

  log_line string

)

ROW FORMAT DELIMITED 

   FIELDS TERMINATED BY '|'

   LINES TERMINATED BY '\n'

LOCATION

  's3://<S3_BUCKET>/elasticmapreduce/j-2ABCDE34F5GH6'

Since the pipe character is unlikely to be in EMR logs, the log_line field will contain 
the value of a single logline. Then, we can submit queries while looking for a specific text. 
For example, we can use regexp_like to specify a regex to search for:

SELECT log_line FROM emrlogs where regexp_like(log_line, 
'ERROR|Exception')

This query will print the entire line. Although this can be useful, we can also specify  
a hidden column that gives us the path of the file that the row was found in:

SELECT log_line, "$PATH" FROM emrlogs where regexp_like(log_
line, 'ERROR|Exception')
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The $PATH field is very useful as it will give us the path that the logline was found in to 
download the file or files and take a closer look. The $PATH field can also be put in the 
WHERE clause to search for a particular application, EC2 instance ID, or EMR step ID. The 
following screenshot shows the example query output from the previous query:

Figure 8.10 – Running a Grep search on EMR logs using Athena

This way of using Athena can be applied to any text-based log files and can make it  
quick and easy to scan logs stored on S3. But what if we wanted to scan log files that  
are a little more structured to filter based on fields? This is where using Regex and  
Grok SerDes can help. 

Reading application log data
Athena has two built-in SerDes that allow you to parse log data that follows a pattern. 
They then map the pattern to different columns within a table to query many types of 
log files. These two SerDes are the Regex SerDe and the Grok SerDe. With both of these 
SerDes, you provide an expression that Athena will use to parse each line of your text file 
and map the expressions to columns in your table.

Regular expressions, or regexes for short, are commonly used within many programming 
languages and editors to provide a search expression to find or replace a particular 
pattern. We won't go into how to write regular expressions, but if you are familiar with 
how to write regular expressions, then the Regex SerDe can be useful. The good news  
is that for many types of application logs, Athena's documentation provides the 
expressions so that they're ready to use to parse some of the most popular log types,  
such as Apache web server logs (see https://amzn.to/3xqrNhO) and most 
AWS services (see https://amzn.to/3dJzt6H). If you do want to create regular 
expressions for other log types, then we recommend using an online regular expression 
evaluator to test your expressions, which can help. 

https://amzn.to/3xqrNhO


Querying arbitrary log data     225

The Grok SerDe was built based on Logstash's grok filter. This SerDe takes in a Grok 
expression that is used to parse log lines. Grok expressions can be seen as extensions of 
regexes as Grok expressions are built using regexes, but regex expressions can be named 
and referenced. With named expressions, you can put them together to express a full 
logline in a more human-readable format. An added benefit is that Logstash has many 
built-in, ready-made expressions that you can use. The list is available at https://bit.
ly/3hEqq8n. Let's look at an example of how this works. 

Let's take our fictional company. They have a web server that outputs when visits occur, 
which page they visited, and referred them. Some example rows are as follows:

1621880197 59.73.211.164 http://www.acmestore.com/ https://www.
yahoo.com

1597343145 50.13.226.237 http://www.acmestore.com/ https://www.
google.com

1617872146 32.2.141.225 http://www.acmestore.com/product/4 
https://www.duckduckgo.com

1621960907 65.105.235.14 http://www.acmestore.com/product/1 
https://www.google.com

We have the time in epoch format, the visitor's IP address, the page that was visited, 
and the referrer (usually a search engine). Looking at the pre-built grok expressions, the 
preceding code can be expressed as "%{NUMBER:time_epoch} %{IP:source_
addr} %{URI:page_visited} %{URI:referrer}?". Let's create the table 
and query it using the following CREATE TABLE (available at https://bit.
ly/3xjRxMD):

create external table website_clicks (

  time_epoch BIGINT,

  source_addr STRING,

  page_visited STRING,

  referrer STRING

) ROW FORMAT SERDE

   'com.amazonaws.glue.serde.GrokSerDe'

WITH SERDEPROPERTIES (

   'input.format'='%{NUMBER:time_epoch} %{IP:source_addr} 
%{URI:page_visited} %{URI:referrer}?'

   )

STORED AS INPUTFORMAT

   'org.apache.hadoop.mapred.TextInputFormat'

https://bit.ly/3hEqq8n
https://bit.ly/3hEqq8n
https://bit.ly/3xjRxMD
https://bit.ly/3xjRxMD
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OUTPUTFORMAT

   'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

LOCATION

   's3:// <S3_BUCKET>/chapter_8/clickstream/';

The SerDe we specified is com.amazonaws.glue.serde.GrokSerDe, and we put 
it in the Grok expression via the input.format SerDe property. Now, if we query the 
table, we will get the following results:

Figure 8.11 – Running a query against a table using Grok SerDe

Now that we can parse and query application logs, let's summarize what we have learned 
so far. 

Summary
In this chapter, we explored the different ways in which we can query unstructured and 
semi-structured data. This data that comes from applications, databases, or even Microsoft 
Excel can be queried using Athena. We looked at two of the most commonly used file 
formats used by legacy and source systems, JSON and CSV/TSV, and how to determine 
which SerDes to use to parse them. We then looked at the Regex and Grok SerDes to help 
us parse log files that conform to some patterns, such as Log4J logs. Using these SerDes, 
we can query and derive value.

The next chapter will examine how we can take unstructured and semi-structured data 
and transform it into a more performant and cost-effective format, such as Apache 
Parquet or Apache ORC.
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Further reading
To learn more about what was covered in this chapter, take a look at the following 
resources:

• Athena's documentation on the OpenCSVSerDe documentation: https://docs.
aws.amazon.com/athena/latest/ug/csv-serde.html.

• Athena's documentation on the Grok SerDe: https://docs.aws.amazon.
com/athena/latest/ug/grok-serde.html.

• Grok: https://www.elastic.co/guide/en/logstash/7.13/plugins-
filters-grok.html.

• Athena's documentation on the Regex SerDe: https://docs.aws.amazon.
com/athena/latest/ug/regex-serde.html.

• Athena's templates for consuming AWS Service logs: https://docs.aws.
amazon.com/athena/latest/ug/querying-AWS-service-logs.html.

• Athena's supported SerDes: https://docs.aws.amazon.com/athena/
latest/ug/supported-serdes.html. 

https://docs.aws.amazon.com/athena/latest/ug/csv-serde.html
https://docs.aws.amazon.com/athena/latest/ug/csv-serde.html
https://docs.aws.amazon.com/athena/latest/ug/grok-serde.html
https://docs.aws.amazon.com/athena/latest/ug/grok-serde.html
https://www.elastic.co/guide/en/logstash/7.13/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/7.13/plugins-filters-grok.html
https://docs.aws.amazon.com/athena/latest/ug/regex-serde.html
https://docs.aws.amazon.com/athena/latest/ug/regex-serde.html
https://docs.aws.amazon.com/athena/latest/ug/querying-AWS-service-logs.html
https://docs.aws.amazon.com/athena/latest/ug/querying-AWS-service-logs.html
https://docs.aws.amazon.com/athena/latest/ug/supported-serdes.html
https://docs.aws.amazon.com/athena/latest/ug/supported-serdes.html
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Serverless ETL 

Pipelines
In the previous chapter, you learned how to tame unstructured or loosely structured data 
using Athena to manipulate logs, JavaScript Object Notation (JSON), and other types 
of machine-generated data. In this chapter, we'll continue with the theme of controlling 
chaos by using automation to normalize newly arrived data through a process known as 
extract, transform, load (ETL). We start with a brief explanation of ETL, and once we've 
established a basic understanding of ETL processes, we will move on to best practices and 
common pitfalls of using Athena for ETL. 

As with most of the chapters in this book, we'll then get hands-on by designing and 
implementing a serverless ETL pipeline. More precisely, we'll implement the serverless 
ETL pipeline discussed in Chapter 2, Introduction to Amazon Athena. In that chapter, 
we described a fictional hedge fund with a propensity for trading widely shorted meme 
stocks. Their equally fictional yet surprisingly realistic compliance department needed 
a way to automatically process newly arrived trade reports from across the company 
and use the data to update the company's risk management system in near real time. 
By combining Athena with Lambda and using Simple Storage Service (S3) event 
notifications as a trigger, we can build a robust, cost-effective, and completely serverless 
ETL pipeline.
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In the subsequent sections of this chapter, we will learn about the following topics:

• Understanding the uses of ETL

• Deciding whether to ETL or query in place

• Designing ETL queries for Athena

• Using Lambda as an orchestrator

• Triggering ETL queries with S3 notifications

Technical requirements
Wherever possible, we will provide samples or instructions to guide you through the 
setup. However, to complete the activities in this chapter, you will need to ensure you  
have the following prerequisites available. Our command-line examples will be executed 
using Ubuntu, but most Linux flavors should work without modification, including 
Ubuntu on Windows Subsystem for Linux (WSL).

You will need internet access to GitHub, S3, and the Amazon Web Services (AWS) 
console.

You will also require a computer with the following installed:

• Chrome, Safari, or Microsoft Edge browser 

• The AWS Command-Line Interface (CLI) installed

This chapter also requires you to have an AWS account and an accompanying Identity 
and Access Management (IAM) user (or role) with sufficient privileges to complete this 
chapter's activities. Throughout this book, we will provide detailed IAM policies that 
attempt to honor the age-old best practice of "least privilege." For simplicity, you can 
always run through these exercises with a user that has full access. Still, we recommend 
using scoped-down IAM policies to avoid making costly mistakes and learning more 
about using IAM to secure your applications and data. You can find the suggested 
IAM policy for this chapter in the book's accompanying GitHub repository listed as 
chapter_9/iam_policy_chapter_9.json, here: https://bit.ly/2RklBaW. 
The primary additions from the IAM policy recommended for past chapters include the 
following:

• Lambda invoke and execution role changes

• S3 event notifications access

• CloudWatch Logs and Metrics access

https://bit.ly/2RklBaW
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Understanding the uses of ETL
In the most literal terms, ETL refers to a procedure with three conceptual phases that 
begin with reading data from a source system and end with a derivative of the original 
data being stored into a target system. In between these deceptively simple steps sits the 
most important facet of ETL, the transformation from the source system's semantic and 
physical schema to the domain model expected by the target system. In this step, we are 
essentially integrating source and target systems that may represent data differently. 

Much of the academic literature on ETL points to the expansion of data warehousing 
concepts in the 1970s as its origin. It was a time when businesses rapidly adopted 
databases and found themselves with multiple data repositories, often using incompatible 
formats. Sounds familiar? Fast forward to today, and not much has changed aside from 
the date. The ability to integrate data from siloed or incompatible systems continues to be 
a key enabler for many business intelligence (BI) functions. 

Traditional data warehouses were born of this era. They frequently served as the data 
integration point for everything from mainframes to spreadsheets. Data warehouses  
and ETL often play key roles in mergers and acquisitions, with ETL processes forming  
a beachhead for the more challenging technology integration effort to follow. Over time, 
the number of new data formats, databases, and source systems has led to an order-of-
magnitude increase in data sprawl. Naturally, ETL is as popular as ever. Even the recent 
emergence of federated query engines such as Athena and their ability to query data in 
place hasn't done much to change the popularity of ETL processes. Tools such as Athena 
have led to an evolution of ETL from a primarily offline operation to a near-real-time 
integration. 

For many years, businesses depended on ETL pipelines as a mechanism to get a 
consolidated view of critical business data. Today's ETL processes have evolved beyond the 
original charter that spawned the term and now include reactive pipelines, modularization 
of complex data processing, and even elements of performance optimization through 
pre-computed materialized views. Let's take a closer look at common ETL use cases. 

ETL for integration
In our first ETL use case, we focus on scenarios where the goal is to enable two or more 
systems that have no direct mechanism for exchanging data to do so through a translation 
layer—namely, an ETL pipeline. Customers often run into this situation when they have 
a mix of systems from different vendors or that were developed in-house for various 
purposes over several years. Then, suddenly, due to an emerging regulatory requirement, 
an acquisition, or the pursuit of greater efficiency between two previously independent 
divisions, you need these applications to operate with an understanding of the whole. 
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To illustrate our point, we'll again use a fictional company. Suppose we worked for an 
e-commerce company that had purchased systems for managing its product catalog, 
pricing, and inventory tracking. Unfortunately, each piece of software came from a 
different vendor. As our company has grown, we've realized that we can improve the 
customer experience by ensuring these systems can work together. The following diagram 
shows how our product catalog system could avoid disappointing customers when 
searching for out-of-stock items and have extended lead times. Similarly, our pricing 
system could offer lower prices or promotional prices for items with too much inventory 
or that have achieved lower marginal cost due to the sheer volume we'll sell: 

Figure 9.1 – Signing up for QuickSight
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We'll need a way to load availability data into the product catalog, which only accepts 
JSON files. Similarly, we'll need a way to ingest unit costs into our pricing system, which 
only supports MySQL bulk loads. The inventory system was not built to export this kind 
of information. Luckily for us, it is built on a Postgres database, and the information we 
want is available in two easy-to-query tables. With these primitives, it is possible to create 
an ETL pipeline that integrates these systems as follows. Using Athena's Query Federation 
capabilities, we run an extract query against the inventory system's Postgres database 
and insert it into a comma-separated values (CSV)-formatted table backed by S3. The 
second step in our ETL pipeline triggers a bulk load into the pricing system's MySQL 
database using Aurora MySQL's load from the S3 feature. The next step in our pipeline is 
to run another Athena query that converts our temporary CSV table to JSON for use by 
the product catalog system. In our final step, we trigger the product catalog system's load 
from the S3 feature to pull the inventory availability data into the catalog. 

Using ETL for system integrations such as the one we just discussed may not win many 
Design of The Year awards, but it is often a straightforward way to get disparate systems to 
work together. The main downside to such integrations tends to be latency since bulk load 
operations may impact the performance of the live system if done too often. You may be 
able to increase the frequency of the pipeline, and thus the freshness, but extracting and 
loading only the records that have meaningful change since the last run. This can help the 
average case but may not be viable if your dataset is so large that even the changed portion 
is too large to export frequently. 
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ETL for aggregation
One of the most common uses for the ETL pattern is consolidating information from 
across organizations into a single location for ease of reporting. As we saw in Chapter 7, 
Ad Hoc Analytics, a prerequisite for shortening the OODA (observe-orient-decide-act) 
loop is the accessibility of information. If your data is scattered across the organization,  
it can be impossible to answer even basic questions. In the following diagram, we again 
use our fictional e-commerce company to illustrate the utility of ETL by reviewing. This 
color-coded entity-relationship diagram (ERD) conveys where each table is stored with 
cross-table relationships or foreign key references, depicted by lines. Whenever  
a connection crosses storage systems, the line is dotted: 

Figure 9.2 – Siloed e-commerce database diagram
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ERDs
ERDs illustrate how entities within a particular domain are interconnected. 
This approach was initially developed in 1976 by Peter Chen to aid database 
design and development. Since then, their usage has expanded to include any 
context in which it may be helpful to understand both the universe of entities, 
their key properties, and how those properties define relationships between the 
entities. In Figure 9.2, we used a very basic ERD to illustrate the entities in our 
fictional e-commerce company.

As is the case with most businesses and the software systems they run on, our e-commerce 
example has evolved over time. The team separated concerns into five different 
microservices with accompanying datastores, including promotions, inventory, product 
catalog, pricing, order management, and shipping. While this is undoubtedly a reasonable 
level of decomposition that makes it easier to develop and maintain the system, it 
complicates even the most basic BI tasks. 

For example, a campaign manager would be unable to understand which other items were 
purchased when a customer buys a promotional item at the sale price. This information 
is commonly used to determine the lift. A lift is a measure of the sales boost given to 
neighboring, related products when something goes on sale. A deal on cellphones is 
likely to generate additional purchases or lift for chargers and screen protectors. This 
information may be the difference between canceling an underperforming promotion or 
canceling an advertisement that only appears to be underperforming due to a lack of data. 

This is where ETL can help. It is common for AWS customers to create ETL jobs for each 
system they may need to report across. The jobs extract the data from the source system, 
normalize the data types and semantics of the data, and finally load the data into a data 
lake. Once the data is aggregated into the data lake, it can be queried with ease from many 
tools, including Athena.

ETL for modularization
In the previous section, we saw how ETL could aggregate data from a modularized 
system. Here, we'll see how ETL itself can be a tool for modularization. This most 
commonly comes into play when you have a complex (multi-step) or long-running offline 
computation that you'd like to break down into more manageable parts. Allowing the 
calculation to unfold as bitesize steps can even improve reliability because you can avoid 
rerunning the entire process if one stage fails. Instead, you simply rerun the failure step 
and all the yet-to-be-run downstream steps. Let's look at an example.
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Figure 9.3 depicts a four-step ETL pipeline that uses eight jobs to generate a seasonal 
buying plan for our fictional e-commerce company. We run a single job to find all the 
seasonal items in our product catalog in Step 1. Step 2 has two jobs: one calculates the 
current inventory sell-through rate (STR) for the season items, and the other produces 
key weather-related inputs for the demand forecasting exercise that follows in Step 3. 
Step 3 is the most complex and has been broken down into four independent jobs before 
flowing into the final step, which produces a buying plan for the upcoming season. 

You can view the diagram here:

Figure 9.3 – Modular inventory forecast pipeline

Even if we had all this data in a single data store such as an S3-baked data lake, it would 
still be advantageous to break this process up into smaller units. 
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ETL for performance
Using ETL to optimize performance, usually of reporting systems, is yet another old 
pattern emerging with a new twist. In the last decade, we've seen a rapid expansion in 
the computational capabilities of query engines. Dozens or hundreds of nodes working 
together can achieve incredible data scan rates against an S3 data lake; for example,  
a typical Athena query against a well-structured S3 table can easily exceed a 200  
gigabytes per second (Gbps) data scan rate. Increased query scale reduced the need  
for pre-computed aggregations or materialized views. This new class of query engines 
could compensate for increasing data sizes or misaligned data model access patterns with 
raw horsepower. 

Unsurprisingly, the growth in business data has caught up with even the most 
advanced query engines, and the need to balance cost, latency, and performance has 
resurfaced,  although it is also probably fair to say this balancing act never stopped being 
relevant. Many customers use ETL jobs to pre-compute common aggregations or generate 
materialized views that move costly operations such as joins into offline processes. 
Pre-computing enables query engines such as Athena to return results more quickly, use 
fewer resources, or incur lower costs per query. 

Imagine your data lake has a table with customer orders from the last 10 years. Every  
line item in an order corresponds to a row in your table. For a successful company,  
such a table might have millions or billions of rows. If your most common access  
patterns look at weekly, monthly, or quarterly trends for a product or a category 
of products, you may benefit from generating aggregate tables. Using ETL jobs to 
pre-compute aggregate or rollup tables could improve cost and performance by two or 
three orders of magnitude in this example. The same concept can be applied to other 
costly operations such as joins. Building on this example, suppose we want to run 
a sales report by product manufacturer. This requires us to join our sales table with 
attributes from our product catalog and manufacturer tables. Joining these tables as part 
of our report can add tens of minutes to the query. If the person crafting the query is a 
Structured Query Language (SQL) novice or is using a BI tool that abstracts the SQL 
itself, you can easily end up with a long-running query that exhausts the query engine's 
memory and fails. As an alternative, you can use an ETL job to pre-join frequently used 
attributes into the sales table as a one-time effort and avoid the expensive join on the more 
frequent, ad hoc queries. Next, we'll see when it may make sense to avoid ETL by querying 
the data in place.
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Deciding whether to ETL or query in place
The distinction between ETL and querying in place is blurred when using a service such 
as Athena. In the preceding sections, we reviewed common ETL use cases. In this section, 
we'll unpack the details that should go into deciding when the downsides of querying in 
place tilt the scale in favor of ETL. You might be curious why we've deliberately framed 
the choice as defaulting to querying in place. The reason is simple and comes to us 
courtesy of John Gail, who in 1975 theorized, "A complex system that works is invariably 
found to have evolved from a simple system that worked. A complex system designed from 
scratch never works and cannot be patched up to make it work. You have to start over with 
a working simple system." In many ways, querying the data in place can be viewed as the 
most straightforward starting point. Athena's scalability reduces the need to curate your 
data model to your access patterns highly. In Chapter 12, Athena Query Federation, we'll 
see how federated queries lessen the need to extract data into your data lake at all. 

Even though reducing the need to ETL or otherwise prepare your data for querying is  
a central part of Athena's mission to simplify querying your data, Athena doesn't 
completely eliminate the need for ETL. All of the preceding use cases for ETL still 
apply when using Athena, but the point at which they become relevant shifts. For most 
customers, performance becomes the primary factor, with cost a distant second. The 
actual threshold will vary based on your use case and latency needs. In the next section, 
we'll see how the ETL jobs' implementation also changes when using Athena.

Designing ETL queries for Athena
This section highlights workload traits and design considerations that Athena customers 
sometimes overlook creating ETL pipelines. Many of the items we are about to discuss 
are not specific to Athena. We'll be sure to note the ones that do stem from idiosyncrasies 
in the way Athena works. Generally speaking, there are no differences between regular 
Athena queries and those intended for use in an ETL pipeline. All of the performance 
suggestions covered in Chapter 2, Introduction to Amazon Athena, apply, and all the same 
Athena features are applicable across ad hoc analytics, ETL, and other use cases. 



Designing ETL queries for Athena     239

Don't forget about performance
Since ETL is not expected to be an interactive process, it allows us to run more  
time-consuming operations than we might otherwise. Just because ETL is typically  
viewed as an offline or asynchronous process that doesn't have a human sitting at a  
screen waiting for a response doesn't mean you can ignore performance. A good way 
to think about ETL performance is that all the same metrics as latency and cost matter 
but the scale shifts. You might not want to exceed a 30-second response time with an 
interactive query, but you might target 30 minutes with an ETL query. In the case of 
Athena, you'll want to pay special attention to the amount of memory your ETL jobs 
require. Joins, window functions, and high-cardinality distinct operations all have an 
amplifying effect on your query's peak memory demand. You may recall from previous 
chapters that Athena's version of Presto has limited but growing support for spilling 
query memory to disk. This capability reduces but does not eliminate the likelihood 
that your query will encounter Athena's Query exhausted resources at this scale factor 
error message. As you break down your ETL process into stages, keep the memory 
requirements top of mind and consider breaking up a complex query into multiple steps, 
sub-queries, or over independent time periods to reduce peak memory.

End-to-end (E2E) latency, sometimes referred to as data freshness, is the second 
performance dimension to be aware of. Often, customers will focus on the runtime 
of individual queries but lose sight of the total time it takes for their ETL pipeline to 
complete. In Figure 9.4, we have a dependency tree for an ETL pipeline from our fictitious 
e-commerce company. We've highlighted the sales extract job in red because it represents 
a chokepoint in our pipeline. Individually, each job runs quickly and meets or exceeds 
our expectations given the nature of the work being done, yet our customers routinely 
complain that their reports arrive late and can't be used in the weekly sales meeting. 
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You can view the dependency tree here:

Figure 9.4 – ETL pipeline with a chokepoint

When designing this pipeline, we didn't factor in the time of day when the required inputs 
become available. In particular, the sales extract job cannot start running until a critical 
input from our credit card processing vendor arrives. This data tends to arrive on time 
on only 50% of days. Unfortunately, the sales extract job is an input to every other part of 
our pipeline. A common strategy in these cases is to break up the pipeline to separate the 
late-arriving data and the downstream items that actually depend on it. This may seem 
obvious, but it's common to combine simple operations to reduce the total number of  
jobs you must manage. Another option is to find an alternate source or use estimated 
values on occasions when the critical dependency arrives later than expected. This 
decouples you from the late source at the expense of accuracy. Depending on the nature 
of your data, this strategy may not be feasible. However, if the late-arriving dataset was 
updated product color information that rarely changes, it may be preferable to depend  
on a previous day's data.
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Begin with integration points
Identifying how you will extract data from your sources and then load the result into your 
target systems may not seem like the most straightforward part of your ETL design, but 
you should start there anyway. Conceptually, the extract and load usually require little 
design, but it's not because they are trivial parts of ETL. These operations are often the 
most constrained and have the fewest options for you to choose from when designing 
your ETL process. This is precisely why we emphasize that you start by understanding 
your options for extracting and loading data. 

Do your sources support incremental exports or only bulk snapshots? If your source 
supports incremental exports, you may be able to speed up your ETL jobs while also 
reducing costs. You'll also likely be taking on some extra complexity to handle cases where 
you need to backfill missing or incorrect data. Conversely, suppose your sources can only 
provide bulk snapshots that amount to a full export of the dataset. In that case, you can 
build a simpler pipeline with less error handling and reconciliation work. The downside 
is that you need to transfer more data than in the incremental model. This can increase 
costs as well as E2E runtime. You might even find yourself adding a stage in the pipeline 
to produce your own incremental feed of the source to reduce storage and compute costs 
for downstream queries and systems. There is no magic formula to decide when to use 
incremental or snapshot-style extract operations; the performance and feature set of the 
source system will likely dictate your options. Knowing this upfront will save you from 
rewriting or restructuring the transform phase of your ETL process.

An identical but reversed set of constraints applies to the load phase of your ETL pipeline. 
Does the target system support bulk loads? What happens to the performance of the 
system while you are loading new data? You may have limited or no control over the 
behavior of the target system that the results of your ETL pipeline will flow into. For 
example, if the end of your ETL pipeline is a table in an S3 data lake, then you've got a 
pretty broad set of options. The most challenging thing you'll likely need to handle is 
recovering from a partially failed job or having to restate erroneous results. On the other 
hand, if your target system is a MySQL instance (or any relational database management 
system (RDBMS), to be honest), you'll want to think carefully about what happens to 
other queries when you begin to bulk load new data. If performance begins to degrade, 
you might even need to restructure your ETL process to produce smaller results. This 
can have implications for the original business purpose of the jobs, in addition to the 
underlying technologies. 

It's always a good idea to disambiguate the things you don't control. Speaking of control, 
next, we'll look at what is managing or orchestrating each step in your ETL process. 



242     Serverless ETL Pipelines

Use an orchestrator
Athena is an excellent choice for many ETL queries, but until the service adds support for 
running queries on a schedule or in response to an event, you'll need to pair Athena with 
an orchestrator. You may be familiar with the concept of orchestration if you've worked 
with large, multi-step ETL pipelines in the past. For the lucky individuals who haven't had 
to organize 1,000 ETL jobs with tangled dependencies and conflicting column definitions, 
we'll take a moment to better explain what an orchestrator does.  

Suppose you have an ETL query that you'd like to run after the last shipping truck leaves 
your warehouse for the day. You want this query to run after the shipping system has 
exported the day's shipping summary. How do you do that? Well, a naïve approach would 
be to schedule your query to run after midnight. After all, no shipments can go out for 
that day if the day is over. Unfortunately, the shipping system runs periodic maintenance, 
which can delay the availability of the summary data that our query depends on. It would 
be easier if our query could be aware of the completion of its dependency and trigger as 
soon as the data was available. That is where an orchestrator comes in. An orchestration 
system such as AWS Data Pipeline Amazon Managed Workflows for Apache Airflow 
can watch for a condition to be satisfied and trigger an action such as an Athena query. 
That condition can be the arrival of a file in S3, the completion of a previous query that 
subsequent queries depend on, or simple time-based schedules. 

The complex, multi-query scenario we just laid out seems like a reasonable candidate 
for a dedicated orchestration tool. What may be less obvious is that even a single query 
ETL pipeline needs an orchestrator when using Athena. Until Athena adds a mechanism 
to schedule queries or reacts to events, we'll need to have something kick off our ETL 
queries. Later in this chapter, we'll use a simple Lambda function to orchestrate a simple 
serverless ETL pipeline.

Using Lambda as an orchestrator
An AWS Lambda function is an ideal orchestrator for simple ETL processes that run 
for 15 minutes or less and can be triggered by an event stream. If the number of steps, 
dependencies, or runtime grows, you'll want to consider using a more fully-featured 
orchestrator, such as AWS Managed WorkFlows for Apache Airflow. Putting that aside, 
building your own, simpler, serverless ETL pipeline with Lambda as an orchestrator is  
a great way to learn what to look for in a good orchestrator.
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In this section, we'll precisely do that. Imagine we work for a fictitious hedge fund that is 
reeling from the great meme stock uprising of early 2021. Due to recent market volatility, 
the firm's risk management department is requiring trading desks across the company 
to report their recent trades on an hourly basis. Unfortunately, each trading desk uses 
different specialized trading software with no common interface for data extraction. 
Luckily, the trading desks can produce a CSV file with their trades and push the file to 
AWS S3 every hour. Our ETL process will use these files as input and feed them into the 
risk management processes at the end. The information in these files is time-sensitive, but 
the different trading systems will require varying amounts of time to generate and publish 
the hourly file. For that reason, we'll aspire to make this ETL process event-driven instead 
of working on a naïve hourly schedule. Let's look at the steps we'll need to complete as 
part of this ETL process, as follows:

1. Trigger an event when new trade files arrive in our S3 bucket.
2. Import the new trade data into the risk management data lake's trades table.
3. Publish an updated trade summary for each stock symbol with a nonzero net 

position or number of shares owned to our risk management monitoring process.

Depending on the data sizes involved, this is a fairly short ETL process. For simplicity, 
we'll assume that the E2E process takes well below the 15-minute runtime limit of AWS 
Lambda. The remainder of this chapter focuses on building a working version of this ETL 
process using S3 event notifications to trigger an AWS Lambda function that acts as an 
orchestrator. 

Creating an ETL function
In order for our Lambda function to interact with Athena, S3, and the other services 
that our serverless ETL process needs, we'll have to first create a Lambda execution role 
in IAM. Since the creation of such a role requires broad IAM privileges, we omitted it 
from the chapter's IAM policy. You should use a privileged account or have your account 
administrator create the role for you. The following screenshot shows an example of how 
to configure the execution role for our Lambda function. 
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We recommend providing the role with this chapter's IAM policy and using packt-
serverless-analytics-lambda as the name of this new role since the chapter's 
IAM policy already grants you the iam:PassRole permission on that name. If you 
choose a different name for your Lambda execution role, you may be unable to assign 
that role to the Lambda function we make in the next step unless you update the chapter's 
IAM policy:

Figure 9.5 – Creating an execution role for our Lambda function

Now that we have our Lambda execution role set up, we can use the Lambda console to 
create a new Lambda function. If you are unfamiliar with AWS Lambda, it is arguably 
the genesis of the serverless movement. With AWS Lambda, you define functions, literal 
fragments of code, which can be invoked from various contexts, including S3 events. In the 
past, you'd have had to write an entire web service or Remote Procedure Call (RPC) service 
to do this, but AWS Lambda removes the need to manage any infrastructure or write any 
boilerplate service code. In the following screenshot, you can see just how easy it is to create 
a function in AWS Lambda. You simply provide a name for your function, pick a runtime, 
and select an existing role that will be used to provide the function with access to other 
AWS resources. The IAM policy for this chapter is set up to use packt-serverless-
analytics-etl as the name of your function. Our ETL code will be written in Python, 
so you should select Python 3.8 or later as the runtime for your function. AWS Lambda also 
supports Java, Node.js, and other runtimes, which you can try later:
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Figure 9.6 – Creating an AWS Lambda function

Lambda function timeout
By default, AWS Lambda functions use a 3-second timeout. This means that 
after 3 seconds, AWS Lambda will terminate calls to your function, even if the 
code is still running. Our serverless ETL example will typically complete in 30 
seconds or less. To avoid unnecessary errors and troubleshooting, be sure to 
increase the timeout of your newly created Lambda function. We recommend 
using a maximum of 15 minutes for this exercise as you are unlikely to exceed 
the AWS Lambda free tier in this chapter. You can update this setting from the 
Configuration tab of your function in the Lambda console.
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Coding the ETL function
The AWS Lambda console has an integrated development environment (IDE) 
experience, making authoring and testing short Lambda functions a breeze. Our ETL 
function will consist of just over 250 lines of Python code. This section will go line by 
line to explain how the function orchestrates our trade summary ETL process. While 
functional,  the code fragments displayed in this section omit comments and other helpful 
context. We recommend downloading the complete function code from the book's 
accompanying GitHub repository. You can find it in the chapter_9/etl_lambda_
func.py file, linked here for your convenience: https://bit.ly/3wbAZp4. As with 
all sound Python files, we start with imports for key dependencies. In our case, we use 
the boto3 library for interacting with AWS services such as Athena. The time, os, and 
logging libraries are mostly boilerplate imports that give us access to simple operations 
such as getting the current time or formatting our log lines. We'll be using the hashlib 
library to create unique names for the temporary tables created by our ETL process. 

The code is illustrated in the following snippet:

import time

import boto3

import os

import logging

import hashlib

logger = logging.getLogger()

logger.setLevel(logging.INFO)

Next, we declare several global resources that will be available throughout the code that 
follows. When writing production-quality code, you should be judicious about using 
global variables. Since the purpose of this example is to teach you about serverless ETL 
and not ideal Pythonic design, we're using global variables to keep things simple. Our first 
two global variables, ATHENA and CLOUDWATCH, are boto3 clients for the respective 
services. You'll notice that when creating these clients, we didn't provide any credentials or 
region information. When invoking our function code, AWS Lambda injects credentials 
and region details into environment variables that boto3 understands. This magic makes 
it very easy to get started with Lambda but can confuse folks when they run this code 
where these environment variables aren't automatically provided. The remaining variables 
act as configuration for our ETL process, conveying which Athena workgroup to run the 
queries in, which database and table names to import data to, and lastly, where our ETL 
data should be stored. Be sure to update these settings to match your environment if you 
haven't been following the suggested names in this and previous chapters. 

https://bit.ly/3wbAZp4
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The code is illustrated in the following snippet:

ATHENA = boto3.client('athena')

CLOUDWATCH = boto3.client('cloudwatch')

WORKGROUP = "packt-athena-analytics"

DATABASE = 'packt_serverless_analytics'

BASE_TABLE = 'chapter_9_trades'

ETL_LOCATION = 's3://<YOUR_S3_BUCKET>/chapter_9/'

With the dependencies and configuration out of the way, we can get to the body of the 
ETL process. The lambda_handler Python function is the main entry point that AWS 
Lambda calls when it wants to invoke our code. AWS Lambda sets the event and context 
parameters for each call. In our case, the event will contain details of the S3 object that 
was uploaded into our ETL import folder and acts as the trigger for our ETL process. 
We'll see how to set up an S3 event stream in a later section. Each line in the body of the 
lambda_handler Python function represents a step in our ETL process. We've designed 
the function this way both to improve maintainability and make it easier for you to follow 
along. These steps are modeled as helper functions that appear later in the code. We'll go 
over the steps briefly before looking at the code for each step in more detail. 

First, we extract the Uniform Resource Identifier (URI) of the S3 object that was 
uploaded to our ETL import folder using our event_to_s3_uri helper. Before 
calling the make_temp_import_table helper function, we use the ensure_trade_
table_exists helper function to set up our ETL tables. This only needs to be run one 
time, but as you'll see later, we used a CREATE IF NOT EXISTS query to cut down 
on the number of steps to get your serverless ETL process up and running. Once we've 
verified that our ETL tables are ready to go, we use the make_temp_import_table 
helper function to create a temporary table pointed at the newly arrived s3_object 
element. Athena doesn't have the concept of a temporary table, so you'll notice that we 
later use a drop_table helper function to delete the temporary table we created. But 
before doing that, we call the import_data helper function to transform the data in the 
newly arrived S3 object to a form that can be stored in our data lake tables. The details of 
the transformation are hidden in the import_data helper function that we'll look at 
shortly. 

Lastly, we use the update_trade_summary and publish_trade_summary helpers 
to refresh our system's view of the world. By recalculating trade summary data by stock 
symbol and then publishing the summary values to CloudWatch Metrics, our hedge 
fund's risk management team can author alerts on these values. Those alerts can notify 
them of violations or trigger additional Lambda functions to take automated action. 
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The code is illustrated in the following snippet:

def lambda_handler(event, context):

    s3_object = event_to_s3_uri(event)

    ensure_trade_table_exists(DATABASE, BASE_TABLE, ETL_
LOCATION)

    import_table = make_temp_import_table(DATABASE, s3_object)

    import_data(DATABASE, BASE_TABLE, import_table)

    trade_summaries = update_trade_summary(DATABASE, BASE_
TABLE)

    publish_trade_summary(trade_summaries)

    drop_table(DATABASE, import_table)

    return {}

Ignoring the highly reusable helper functions and import statements, our entire ETL 
process is about 20 lines of Python code. It's difficult to get more straightforward than 
that. We can now dig into the helper Python functions we used to abstract reusable bits of 
the ETL process. Starting with event_to_s3_uri, you can see that this helper function 
extracts the S3 bucket and object key from the event that triggered our Lambda function. 
The function also trims off the actual object name from the key. We'll see why this is 
required in a later step. The schema of the event object is rather complex, but we'll show 
you an easy way to test your Lambda function later in this chapter.

The code is illustrated in the following snippet:

def event_to_s3_uri(event): 

    record = event['Records'] [0]

    s3_bucket = record['s3']['bucket']['name']

    s3_key = record['s3']['object']['key'].rsplit('/', 1)[0]

    return "s3://" + s3_bucket + "/" + s3_key
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After the event_to_s3_uri helper function extracted the S3 bucket and object key 
that triggered the event, we used the ensure_trade_table_exists helper function 
shown in the next code snippet to check, and if need be, create a table our ETL process 
will ultimately load into. We used a few anti-patterns here in the interest of time. Firstly, 
we hardcoded the schema of our table in the function. It would be better if we abstract 
this away from the code and provide it as a separate configuration file or, better yet, use 
a CloudFormation template to handle setting up our data lake so that our ETL function 
doesn't need to perform this check. The other important thing to note here is the schema 
of our table. It has six fields, including the stock symbol, the date of the trade, the price, 
and the number of shares traded. The year and month fields are used as partition 
dimensions. We use the replace feature of Python strings to substitute our database  
and table name into the query before using the run_query helper function to execute 
the query in Athena. We'll look at that Python helper function next.

The code is illustrated in the following snippet:

def ensure_trade_table_exists(database, table_name, location):

    base_table_query = """CREATE EXTERNAL TABLE IF NOT EXISTS 

        'DATABASE'.'TABLE_NAME'(

        'symbol' string, 

          'trade_date' string, 

          'price' double, 

          'num_shares' bigint)

        PARTITIONED BY ('year' bigint, 'month' bigint)

        STORED AS PARQUET

        LOCATION 'S3_LOCATION'

        tblproperties ("parquet.compression"="SNAPPY");

    """.replace("TABLE_NAME", table_name)\

    .replace('DATABASE', database)\

    .replace('S3_LOCATION', location + table_name)

    run_query(base_table_query, 120)
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The run_query helper function provides a convenient wrapper over the boto3 
Athena client and simply sets up the request object using some of the global variables 
we defined at the start of our Python code. It also adds helpful logging to make 
troubleshooting issues easier when they inevitably arise. You'll also notice that the helper 
makes use of yet another helper function called wait_for_query. The combination of 
these two helpers simplifies how our ETL process interacts with Athena's asynchronous 
query execution model. Usually, you'd want to avoid synchronously waiting for your 
Athena ETL queries to finish. Listening for the CloudWatch event that Athena generates 
when your query transitions from running to complete is a far more scalable approach. 
Since this may be your first time designing a serverless ETL process with AWS Lambda, 
we've opted to limit the event-driven flow to S3 event notifications and rely on a 
synchronous model for interacting with Athena.

The code is illustrated in the following snippet: 

 def run_query(query, wait_seconds = 0):

    logger.info('run_query: Preparing to run query %s', query)

    query_id = ATHENA.start_query_execution(

        QueryString=query,

        QueryExecutionContext={'Database': DATABASE},

        WorkGroup=WORKGROUP

    )['QueryExecutionId']

    logger.info('run_query: Started query with id: %s', query_
id)

    query_result = wait_for_query(query_id, wait_seconds)

    logger.info('run_query: Query result: %s', query_result)

    return [query_id, query_result]

As we saw in the run_query helper, the wait_for_query Python helper function is 
used as an adapter from the asynchronous programming model provided by the boto3 
Athena client and our desire for a simpler, albeit less scalable, synchronous model. In the 
synchronous model, our code runs an Athena query and then waits for it to complete 
instead of exiting and using a query completion event to wake our code up. The helper 
function accomplishes this by calling Athena, retrieving the status of our query in a 
loop, and sleeping between each check. Once the query moves to a terminal state, either 
succeeded or failed, the loop condition is met, and wait_for_query returns control 
to its caller. The function also takes an optional timeout that represents the maximum 
number of seconds it will wait for the Athena query to reach a terminal state.
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The code is illustrated in the following snippet:

def wait_for_query(query_id, max_wait_seconds = 5):

    state = 'RUNNING'

    while (state in ['RUNNING', 'QUEUED'] and max_wait_seconds 
> 0):

        query_execution = ATHENA.get_query_execution(

                            QueryExecutionId = query_id)

        try:

            qexec = query_execution['QueryExecution']

            exec_status = qexec['Status']

            state = exec_status['State']

            if state == 'FAILED':

                reason = exec_status['StateChangeReason']

                raise RuntimeError(query_id, reason)

            elif state == 'SUCCEEDED':

                return qexec['ResultConfiguration']
['OutputLocation']

        except KeyError:

            pass

        time.sleep(1)

        max_wait_seconds = max_wait_seconds - 1

    return False

The next step in our ETL process is the call from lambda_handler to the make_temp_
import_table helper. This function's purpose is to create a temporary table pointing to 
the newly arrived S3 object that triggered our Lambda function via S3 event notifications. 
You may recall that when we looked at the event_to_s3_uri helper, we noted that 
it trims off the actual object name such that import_location is actually the folder 
containing the new object. This was done because an Athena table cannot point directly to 
an object. Instead, it must point to a prefix or folder. You'll need to keep this in mind when 
you upload test data by ensuring you upload it to a subfolder in our import directory. 
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The helper itself uses a hash of import_location to create a unique name for our 
temporary table and then runs an Athena query to create an AWS Glue Data Catalog 
table. We again took a shortcut by hardcoding the table definition in our Lambda code. 
In practice, you'll want to codify this as a configuration file or possibly a CloudFormation 
template. The essential pieces to remember are that the ETL process expects the import 
files to be CSV files with a header and a four-column schema consisting of the symbol, 
trade date, price, and number of shares. 

The code is illustrated in the following snippet:

def make_temp_import_table(database, import_location):

    hash_import_location = hashlib.md5(import_location.
encode())

    table = 'chapter_9_import_' + hash_import_location.
hexdigest()

    temp_table_query = """

        CREATE EXTERNAL TABLE IF NOT EXISTS 'DATABASE'.'TABLE_
NAME'(

          'symbol' string, 

          'trade_date' string, 

          'price' double, 

          'num_shares' bigint)

        ROW FORMAT DELIMITED 

          FIELDS TERMINATED BY ',' 

        STORED AS INPUTFORMAT 

          'org.apache.hadoop.mapred.TextInputFormat' 

        OUTPUTFORMAT 

          'org.apache.hadoop.hive.ql.io.
HiveIgnoreKeyTextOutputFormat'

        LOCATION

          'S3_LOCATION'

        TBLPROPERTIES (

          'areColumnsQuoted'='false', 

          'columnsOrdered'='true',

          'delimiter'=',',

          'skip.header.line.count'='1', 

          'typeOfData'='file')

    """.replace("TABLE_NAME", table)\

    .replace('DATABASE', database)\
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    .replace('S3_LOCATION', import_location)

    run_query(temp_table_query, 120)

    return table

Once all the preparatory work to validate the extract portion of the ETL process has  
been completed, our Lambda function is ready to transform and load the new data.  
It does this by calling the import_data helper. As the name suggests, this Python  
helper function runs an Athena query to read from the temporary import table and 
transform the data into a format that can be stored in our data lake for use by downstream 
processes. This ETL process may look familiar since we used a similar procedure in 
Chapter 3, Key Features, Query Types, and Functions, to manually transform and load 
incremental data for our NYC Yellow taxi cab rides. Again, we use a hardcoded query,  
this time of the INSERT INTO variety, to transform and load the newly arrived data  
into our data lake's trades table. 

The code is illustrated in the following snippet:

def import_data(database, target_table, source_table):

    import_data_query = """

        INSERT INTO DATABASE.TARGET_TABLE_NAME 

        SELECT 

          symbol,

          trade_date,

          price,

          num_shares,

          year(date_parse(trade_date,'%Y-%m-%d %H:%i:%s')) as 
year,

          month(date_parse(trade_date,'%Y-%m-%d %H:%i:%s')) as 
month

        FROM 

            DATABASE.IMPORT_TABLE_NAME

    """.replace("TARGET_TABLE_NAME", target_table)\

    .replace('DATABASE', database)\

    .replace('IMPORT_TABLE_NAME', source_table)

    run_query(import_data_query, 120)
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With the new trade data added to our data lake, we're nearly at the end of our serverless 
ETL orchestration code. Aside from cleaning up our temporary table and resources, 
we have one final load operation to perform. Using the update_trade_summary 
helper function, we run an Athena query to calculate the net holdings for each symbol 
our traders have bought and sold. We also use a HAVING clause to ensure we only 
return symbols that have a nonzero position. Put another way, the query will only 
return stock symbols where we are holding a positive (long) or negative (short) position. 
The update_trade_summary function concludes by returning an iterator over the 
results of the Athena query. This begins to get at the roots of why our faux hedge fund's 
risk management team asked us to create this serverless ETL process in the first place. 
Next, we'll see how our ETL process helps automate the handling of risky positions by 
downstream systems.

The code is illustrated in the following snippet:

def update_trade_summary(database, table_name):

    summary_query = """SELECT symbol, sum(num_shares) 

                       FROM DATABASE.TABLE_NAME 

                       GROUP BY symbol HAVING sum(num_shares) 
!= 0

    """.replace("TABLE_NAME", table_name)\

    .replace('DATABASE', database)

    query_id = run_query(summary_query, 120)[0]

    paginator = ATHENA.get_paginator('get_query_results')

    return paginator.paginate(QueryExecutionId=query_id,

                              PaginationConfig={'PageSize': 
1000}

    ) 

To demonstrate that our ETL process can integrate with live systems via application 
programming interface (API) calls, not just data lake queries, our Lambda function 
uses the publish_trade_summary helper function to publish trade summaries to 
Cloudwatch Metrics. It does this by walking the provided results iterator and using a 
boto3 client for Cloudwatch Metrics to publish the number of outstanding shares by 
a symbol. Our fictional risk management team can then author alarms with custom 
thresholds to alert them when a risk policy is violated. We could easily call a risk 
management API instead of CloudWatch Metrics.
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The code is illustrated in the following snippet:

def publish_trade_summary(trade_summaries):

    for trade_summary in trade_summaries:

        for row in trade_summary['ResultSet']['Rows'][1:]:

            symbol = row['Data'][0]['VarCharValue']

            num_shares = float(row['Data'][1]['VarCharValue'])

            CLOUDWATCH.put_metric_data(

                MetricData=[{ 'MetricName': 'POSITION',

                 'Dimensions': [ {'Name': 'SYMBOL','Value': 
symbol},],

                 'Unit': 'None',

                 'Value': num_shares

                },],

                Namespace='RISK/SUMMARY'

            )

    return num_summaries

The final step in our Lambda function is to clean up our temporary resources. In this case, 
we drop our temporary import table, as illustrated in the following code snippet:

def drop_table(database, table):

    drop_table_query ="""

        DROP TABLE DATABASE.'TABLE_NAME';

    """.replace("TABLE_NAME", table).replace('DATABASE', 
database)

    

    run_query(drop_table_query, 120)

Now that we've completed coding our ETL function, we are ready to test it and configure 
S3 to trigger our Lambda function whenever a new trade report CSV file is uploaded to 
our import directory. 



256     Serverless ETL Pipelines

Testing your ETL function
At the top of the AWS Lambda function development screen, you'll see buttons for 
deploying and testing your function. The Test button has a dropdown that allows you to 
define one or more test events that Lambda will generate to trigger and test your function. 
The following screenshot shows the test event configuration screen that will guide you 
through defining a test event. Since we'll trigger our ETL process from an S3 event, you 
should pick the s3-put template from the provided examples. Simply change the S3 
bucket and object key to match an actual test CSV file we'll upload to S3 next:

Figure 9.7 – Creating a test event
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You can use the following sample trade data to create a test trade report in S3 
corresponding to the test event you just configured. Be sure to put this test object in  
a subdirectory of the imported prefix you plan to use. For example, S3://<BUCKET_
NAME>/chapter_9/import/trade_desk_1_8am/trades.csv would be a good 
upload location for trade desk 1's 8 a.m. trade file. In the next section, we'll configure S3  
to send event notifications to our Lambda function any time an object is added to the 
import director: 

symbol,trade_date,price,num_shares

GME,2021-01-01 00:41:22,240.00,1000

GME,2021-01-01 01:41:22,260.00,200

GME,2021-01-01 02:41:22,460.00,-200

GME,2021-01-01 03:41:22,560.00,-800

Next, we'll set up an automatic trigger for our ETL queries.

Triggering ETL queries with S3 notifications
Due to its low cost, high reliability, and seemingly infinite scalability, Amazon S3 is often 
at the center of many cloud architectures. In 2014, this led the S3 team to add the ability to 
trigger events for operations on your objects. These events can be filtered by bucket, prefix, 
and operation type with possible destinations, including Simple Queue Service (SQS), 
Simple Notification Service (SNS), and Lambda. You may also be interested to know that 
S3 does not charge for this feature. You'll only pay for the associated SQS, SNS, or Lambda 
usage for processing the events. 
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As we said earlier, we want our ETL process to react to the arrival of new data without the 
need to wait or poll. This reduces latency and increases data freshness for time-sensitive 
workloads such as our trade summary reports. The integration between S3 events and 
AWS Lambda also automatically handles re-driving failed events, simplifying our error 
handling. To begin, navigate your browser to the S3 console and select the bucket you'll 
be using for this exercise. In the Properties tab of your bucket, you'll find an Event 
notifications section. Clicking on Create event notification will pull up the dialog  
shown in the following screenshot: 

Figure 9.8 – S3 event notification: General configuration
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You can pick any name for the event configuration, as it's mostly used for documentation. 
The Prefix and Suffix fields should match the location you plan to use for this exercise. We 
recommend using the location provided in Figure 9.8. Next, we'll specify which S3 actions 
should generate an event. As shown in the following screenshot, we only need Put events:

Figure 9.9 – S3 event notification: Event types
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Lastly, you'll need to configure the destination that S3 should use for matching events. 
After selecting the Lambda function destination type, as shown in the following 
screenshot, a dropdown with available Lambda functions will appear. Find the ETL 
Lambda function you created earlier and save your changes: 

Figure 9.10 – S3 event notification: Destination

Now, you can upload a trade report CSV file to trigger our completed ETL process! You 
can use the same sample trade data from our S3 test event in the Lambda console, or you 
can use the provided trade file in the book's accompanying GitHub repository, found here: 
https://bit.ly/3f5DALJ. Unlike our earlier tests, which used the AWS Lambda 
development console, this E2E test will write its logs to Cloudwatch Logs, and the trade 
summaries will be published to Cloudwatch Metrics. You can navigate your browser to the 
Cloudwatch Logs console to find both. You can also run an Athena query to see if the new 
trades from the report file you uploaded were added to the chapter_9_trades table.

https://bit.ly/3f5DALJ
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Summary
In this chapter, you learned about common usages of the ETL pattern, including 
integration, aggregation, modularization, and performance. The integration patterns 
offer a lowest-common-denominator approach to connecting disparate systems, even if 
they have no native support for integrating with each other. ETL for aggregations helps 
produce a single source of truth (SSOT) for getting a view of data across your estate. 
This is a common pattern for creating data lakes that work with services such as Athena. 
Modularization is an approach for using ETL to break up monolithic processes that are 
difficult to maintain or operationally prone to failure. Lastly, ETL for performance is  
a technique that moves expensive or time-consuming processing out of the live query  
path by either creating materialized views or running other pre-computations of 
anticipated workloads.

Armed with this knowledge of ETL design patterns, you reviewed key criteria for 
designing ETL queries for use with Athena. Deciding if you can skip the extract phase 
and use Athena Query Federation to query the data in place can help avoid unnecessary 
ETLs. When federation isn't a viable option, you saw that scale, integration points, and 
orchestration need to be factored into your ETL design. 

The chapter concluded by putting what we learned into practice to build a serverless 
ETL pipeline with AWS Lambda and S3 event notifications. In Chapter 10, Building 
Applications with Amazon Athena, you'll continue putting what you've learned into 
practice by seeing how to build other types of applications with Athena. 
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Building 
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Up to this point in the book, we've primarily been focusing on getting a feel for Athena 
as a product and what you can do with it. In this chapter, we're going to look at it from a 
slightly different angle and see how we can build our own product that leverages Athena. 
There are many things to consider when doing this, with the simplest being, how are 
we even going to call Athena? Previously, we've either used the AWS Console, the AWS 
CLI, and also occasionally the Athena Python SDK, but what other options are there? 
In terms of connecting to Athena, what should we consider? What security features are 
there for connecting? And finally, how do we make sure we continue to leverage Athena 
in the most performant and cost-effective way? These are all questions that we are going 
to try to answer throughout this chapter. This chapter will also be a nice reminder of how 
subjective writing software really is. A lot of decisions come down to personal preference, 
so I will do my best to present the facts and it will be up to you to decide which ones you 
care about the most.
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In the forthcoming sections, we will cover the following topics:

• Connecting to Athena

• Best practices for connecting to Athena

• Securing your application

• Optimizing for performance and cost

Technical requirements
Wherever possible, we will provide samples or instructions to guide you through the 
setup. However, to complete the activities in this chapter, you will need to ensure you  
have the following prerequisites available. Our command-line examples will be executed 
using Ubuntu, but most Linux flavors should work without modification, including 
Ubuntu on Windows Subsystem for Linux.

You will need internet access to GitHub, S3, and the AWS Console.

You will also require a computer with the following:

• A Chrome, Safari, or Microsoft Edge browser installed

• The AWS CLI installed

This chapter also requires you to have an AWS account and an accompanying IAM 
user (or role) with sufficient privileges to complete this chapter's activities. Throughout 
this book, we will provide detailed IAM policies that attempt to honor the age-old best 
practice of "least privilege." For simplicity, you can always run through these exercises 
with a user who has full access. Still, we recommend using scoped-down IAM policies 
to avoid making costly mistakes and learning more about using IAM to secure your 
applications and data. You can find the suggested IAM policy for Chapter 10 in the book's 
accompanying GitHub repository listed as chapter_10/iam_policy_chapter_10.
json here: https://bit.ly/3zM54wG. The primary additions from the IAM policy 
recommended for past chapters include the following:

• Adding SNS topic permissions for topics beginning with packt-*

• CloudTrail permissions for trails beginning with packt-*

• EventBridge permissions for managing rules

https://bit.ly/3zM54wG
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Connecting to Athena
So, you're ready to get started on your application built on top of Athena. You've got some 
initial data models prepared and registered within Athena and you want to start querying 
the data. Now how do you do that? If you've been following along with all of the exercises 
in this book, we've primarily interacted with Athena either directly through the AWS 
Console or the AWS CLI. If you have read Chapter 7, Ad Hoc Analytics, then you did get 
a small preview of the Athena Python SDK. So, your other options include using a JDBC 
Driver, an ODBC Driver, or, more generally, the AWS SDK, which is available in many 
languages (for a full list, see https://amzn.to/3BgXrQc). 

So, before we figure out which one is right for you, let's go over what some of these options 
are. The SDK should be pretty straightforward; it's a language-native implementation for 
interacting with AWS's many APIs. But what about JDBC and ODBC; what are those?

JDBC and ODBC
JDBC, or Java Database Connectivity, is a Java database abstraction API. It is oriented 
primarily around interacting with relational, SQL-based databases (though there are some 
JDBC drivers out there for NoSQL databases as well). Essentially, it provides a standard 
mechanism for Java developers to connect to different database technologies by using the 
exact same (or very similar) code. 

ODBC, or Open Database Connectivity, provides the same functionality as JDBC but is 
written in C, and so is intended for use in C, C++, C#, and so on. 

The way both of these technologies work is that there is the common API, which is  
what the developers will be using directly in their code, and then there are drivers, which 
are the actual underlying implementation of the API. Both technologies allow for the 
dynamic loading of drivers, so as long as the driver is available to the running process, 
they can be used together. Let's take a look at a couple of examples of what using each 
one would look like. In both examples, we are going to connect to a MySQL database 
containing a table named awesome_packt_table with the data below and run a 
simple query against them.

Table 10.1 – awesome_packt_table data

https://amzn.to/3BgXrQc
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We will run the following query:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

 

public static void main(String args[]) {

  // Notice we are using DriverManager, DriverManager is able 
to 

  // determine that we want to use the mysql driver by way of 
the

  // "jdbc:mysql" in the url

  // Create the connection in a try-with-resources to auto 
close

  // when we are done

  try (conn =

       DriverManager.getConnection("jdbc:mysql://localhost/
test_db?" +

                                
"user=packt&password=supersecure")) {

    // Statement is the object that will accept our query

    stmt = conn.createStatement();

    

    // And here we execute! Again putting results in the try 
with 

    // resources so it closes when we're done

    try (results = stmt.executeQuery("SELECT title, publisher, 
publish_year FROM awesome_packt_table")) {

      while (results.next()) {

        // Returns "Serverless Analytics with Amazon Athena"

        result.getString("title");

        // Returns "Packt"

        result.getString("publisher");

        // Returns 2021

        result.getInt("publish_year");
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      }

    }

  }

}

Code 10.1 – Sample JDBC code

And now let's take a look at what this would look like for ODBC:

using Microsoft.Data.Odbc;

static void Main(string[] args) {

  // Unlike Java, there is no DriverManager, simply instantiate

  // a new connection and indicate the driver in that 
connection.

  string MyConString = "DRIVER={MySQL ODBC 3.51 Driver};" +

            "SERVER=localhost;" +

            "DATABASE=test_db;" +

            "UID=packt;" +

            "PASSWORD=supersecure;" +

            "OPTION=3";

  // Same as in Java, auto close when we are done

  using (OdbcConnection connection = 

                       new OdbcConnection(connectionString)) {

    OdbcCommand MyCommand =

            new OdbcCommand("SELECT title, publisher, publish_
year FROM awesome_packt_table", connection);

    using (OdbcDataReader Reader = command.ExecuteReader()) {

      while (Reader.Read()) {

        // Returns "Serverless Analytics with Amazon Athena"

        Reader.GetString(0);

        // Returns "Packt"

        Reader.GetString("publisher");

        // Returns 2021

        Reader.GetInt32("publish_year");

      }

    }
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  }

}

Code 10.2 – Sample ODBC code

Now let's say we've moved our table out of MySQL and loaded it into Athena. Let's say 
everything else remains the same – the table name (assuming a default catalog) and 
column names are all identical. All we would have to do is change the following:

  try (conn =

     DriverManager.getConnection("jdbc:awsathena://" + 

                                 "AwsRegion=[AWS_REGION];" + 

                                 "User=[AWS_ACCESS_KEY];" + 

                                 "Password=[AWS_SECRET_KEY];" + 

                                 "S3OutputLocation=[OUTPUT]") {

Code 10.3 – Migrating to Athena JDBC

We can do the same for ODBC as follows:

  string MyConString = "DRIVER={Simba Athena ODBC Driver};" +

            "AwsRegion=[AWS_REGION];" +

            "AuthenticationType=IAM Credentials;" +

            "UID=[AWS_ACCESS_KEY];" +

            "PWD=[AWS_SECRET_KEY];" +

            "S3OutputLocation=[OUTPUT]";

Code 10.4 – Migrating to Athena ODBC

And that's it! All we did was change the connection strings for both drivers to match that 
of Athena and the drivers themselves have done the heavy lifting of understanding how to 
interact with MySQL versus Athena. 
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For the sake of completion, let's quickly discuss what you would have to do with the 
Athena SDK to accomplish the same query. You would start by instantiating your 
Athena client. Depending on where this is running (for example, on AWS provided 
compute such as EC2 or Lambda), you'd either use the default credentials provider, 
or you'd supply the credentials as in the two preceding figures. Then you would call 
StartQueryExecution with the query string and also provide a result location,  
which would be the same as Output above. Next, you would call GetQueryExecution 
repeatedly in a loop until the query completes, and finally, when it's done, you would  
call GetQueryResults. 

Which one should I use?
The reality is that there is no perfect answer to this question; it kind of comes down to 
preference. Obviously, some decisions will be made for you depending on your tech stack; 
for instance, you probably won't use the JDBC driver, which is Java-specific, if you are 
writing your application in Python. You'd just go ahead and use the Python SDK. But let's 
say you've chosen Java as your application language, what now? Well, this is really where 
it gets a bit more subjective. There are pros and cons to both, so it's really up to you which 
ones matter most. First, let's get one thing out of the way; the implementation of the JDBC 
driver (and ODBC driver) utilizes the respective SDK implementations, so there's no 
difference in performance. 

In general, the decision between the API abstraction options and the SDK centers  
around convenience versus flexibility. The convenience of JDBC/ODBC comes in  
a few different forms. Firstly, if your organization is one of many that already heavily  
uses those abstractions, then this would certainly fit in nicely with your stack. Also,  
if you think there's a chance that you might be switching data storage options, then this  
makes that painless, as we showed above (or perhaps you are switching to Athena, as  
we did above). And finally, the code can, in some cases, be more succinct when using 
JDBC/ODBC. The general call flow that we described previously ends up being around 
100 lines of code, versus the 25 or so that we wrote for JDBC/ODBC. The abstractions 
provide easy mechanisms for getting the correct data type that you need for a value  
(refer to the preceding examples where we have getString and getInt), whereas  
with the Athena SDK, everything is returned as a string and it's your responsibility to 
convert it into whatever underlying type it is. 
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So then, why bother with the SDK? Well, if you have very long-running queries, you may 
not want to be constantly occupying a thread while waiting for the query to complete. 
Some queries could run for hours and that's a pretty significant waste of resources. That's 
not an option with JDBC/ODBC. There are some libraries that make them operate in 
an "async-like" fashion, but underneath there is always a thread that is fully taken while 
it waits for the query to complete. Below, we're also going to talk about how instead of 
polling for query execution status, we can actually integrate with AWS EventBridge to  
get push notifications for when a query execution status changes. Again, that is not 
something you can accomplish with abstractions. There is also always the possibility, since 
the JDBC and ODBC drivers depend on the SDK, that they may not immediately get any 
new features, or at least not as quickly as the SDK itself will. So, these sorts of things are 
where the SDK really shines in its ability to allow you to interact with Athena exactly how 
you want to.

With this information that we just covered, you now have the means to decide which 
option for interacting with Athena is right for you. For the remainder of this chapter, 
we're going to focus on making sure you are getting the most out of your usage of Athena. 
The metrics by which you track whether you are being as optimal as possible are going 
to depend on your circumstances – whether your goal is to have the lowest possible AWS 
bill, or whether it's to have a blazing fast application, that's up to you. My goal is that you 
leave this chapter with the necessary tools in your toolbox to accomplish your goals.

Best practices for connecting to Athena
In this section, we're going to go over some things to consider when connecting to and 
calling Athena, including idempotency tokens and query tracking.

Idempotency tokens
I know this statement may come as a huge surprise to you, but perfect software does not 
exist. It's going to fail. There's a reason why there are so many different options out there 
for monitoring the operational status of an application. And among the infinitesimal 
category of possible failure scenarios, they can be narrowed down to two large categories 
– safe to retry and not safe to retry. It's that second category we will be focusing on in 
this section. More specifically there is a subcategory of not safe to retry that can quickly 
be summarized as ¯\_(ツ)_/¯ – you have no clue whether it is safe to retry; you know 
something happened, but exactly what happened is a complete mystery.
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Thankfully Athena (and many other services) has a nice mechanism for handling these 
very scenarios. They are called idempotency tokens. To be idempotent, an operation has 
to be able to guarantee that if repeatedly given an identical request, the operation will 
return an identical response. Surprisingly, there is a decent amount to unpack from such  
a simple statement. What defines an identical request? What defines an identical response? 
Those can be sort of subjective things. For example, an absolute value is an idempotent 
operation. It is always true that |x| == |x|. So, the request in that case is "x," and the 
response is always, well, the absolute value of x.

Now let's take a real-world example. Say you are going to buy coffee and you pay with your 
credit card; based on the definition of idempotency, for that single transaction, you could 
be charged the exact same amount twice, and get the exact same behavior twice (having 
a charge on your credit card), and that would qualify as "idempotent," if the request is 
simply defined as the "amount to charge" and the response is "charge successful." But that 
would not make you very happy, would it? That was rhetorical; of course it wouldn't! So 
instead, the request is defined as the combination of "amount to charge" AND a unique 
identifier for that transaction and the response is that that transaction successfully 
charged that amount exactly once. Now, if the coffee shop tries to send two identical 
requests containing that amount and the unique identifier, your credit card company will 
know not to take the second one as it was probably sent in error. Et voilà, we've arrived 
at an idempotency token! That transaction ID, in this case, is acting as the idempotency 
token; it is saying that if you see this ID twice and you've already successfully processed it, 
disregard any further attempts to process it. And that's exactly how they work in Athena. 

In Athena, they are called ClientRequestTokens and they are only supported by 
some APIs (essentially any in which it could be undesirable to retry an identical request). 
StartQueryExecution is the one we are going to focus on, but another that is 
supported is CreateNamedQuery, because named queries are uniquely identified by an 
"ID," but that ID is not supplied at creation; it is generated as part of the creation process, 
so a retry without an idempotency token would result in two identical named queries 
being created with different IDs. 

To better understand why we care about ClientRequestTokens in the context of the 
StartQueryExecution API, let's look at a couple of sample call flows. 
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In the first sequence below, Figure 10.6, you can see that no ClientRequestToken 
was provided. Athena successfully begins the execution of the query on a cluster but fails 
to return the response to the customer. The customer assumes it failed and reruns the 
query. Because there is no ClientRequestToken, Athena assumes it's a new query and 
runs it again. Now the customer has incurred double charges, which, much like the coffee 
scenario, is not desirable!

Figure 10.1 – Retrying a query against Athena without ClientRequestToken

But now, in the next sequence, Figure 10.7, you see that we ran the same query, 
experienced the same failure with Athena, but this time the customer supplied a 
ClientRequestToken. So, when the customer goes to retry, Athena is able to 
determine that it actually did successfully execute the previous request, and simply returns 
to the customer the identical response that it attempted to return in the previous call. Yay, 
we only paid once for our one cup of coffee!
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Figure 10.2 – Retrying a query against Athena with ClientRequestToken

Hopefully, now you have an idea of the importance of idempotency and 
ClientRequestTokens. And now for the best news of all! If you are using the AWS 
SDK (or JDBC/ODBC driver, since, as we discussed previously, those rely on the AWS 
SDK) or the AWS CLI, then you actually don't have to do anything to leverage this feature! 
The AWS SDK/CLI will automatically populate the ClientRequestToken in your 
requests, which means that if that request gets retried, for whatever reason, it will be 
idempotent!
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Query tracking
Pivoting away from failure handling and retries, let's talk a bit about what to do once 
you've successfully started execution of a query. Throughout this book, we have been 
leveraging the GetQueryExecution API to monitor the progress of a query. This is 
fine, but as your usage of Athena scales up, you are going to run into a couple of different 
issues. Firstly, tuning your application to poll at the right frequency can be a challenge. 
You don't want to poll so infrequently that you are adding unnecessary time on top of the 
query execution, particularly if you have queries that execute quickly, but on the flip side, 
you don't want to poll so frequently that you are consuming a ton of resources on your 
end (threads, I/O sockets, and so on) and also Athena API limits. Limits can generally be 
increased, but of course, there's a limit to that limit, and wouldn't it just be better to avoid 
having to deal with that? Well, some more good news! There is a way to do that! 

Athena publishes any changes in the status of a query execution to AWS EventBridge. 
AWS EventBridge is a managed event bus service that allows AWS customers to process 
events produced by other systems (either AWS services or anyone else) in real time 
utilizing a push model. The way it works is that you configure a rule that tells EventBridge, 
for a given scenario and event, to forward that event to a target. There is also a second 
type of rule, which is a scheduled rule, so rather than reacting to an event, it triggers a 
target on some sort of schedule, either a cron job or an arbitrary time rate (for example, 
once an hour). For our purposes, we are going to focus on the first type of rule, which is 
the event-based rule. 

So, let's run through a quick example of how to get set up with an EventBridge rule for 
Athena queries. To keep things simple, we're going to set it up so that we send an email 
based on Athena status changes. In this case, our target will be an SNS topic, which will,  
in turn, forward any messages it receives to an email we configure.

Note
Everything we are doing should fall well within the Free Tier limits, so 
assuming your account still qualifies, this next section should not cost you 
anything!
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Step 1 – Setting up the SNS topic
Navigate to the SNS console, find topics, and then select Create topic. On the Create 
topic page, select the Standard type of topic, and then give it a descriptive name. Then 
you can leave the rest blank, go ahead, and scroll and click on the Create topic button.

Figure 10.3 – Creating an SNS topic
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You should be taken to the newly created topic's Details page. Look for a button now that 
says Create subscription. On that page, find the Protocol dropdown, and select Email. 
Enter the email you wish to receive the notifications where it says Endpoint. Then again, 
go ahead and leave the rest blank and select Create subscription.

Figure 10.4 – Creating an email subscription for your SNS topic

Before you can move on, go and check your email. You should receive an email that  
looks like the following. Assuming everything lines up (this is, in fact, the SNS topic  
you created), go ahead and click the Confirm subscription link.
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Figure 10.5 – Sample subscription confirmation email

Step 2 – Setting up the EventBridge rule
Head on over to the EventBridge console and find Events > Rules in the navigation bar. 
Then, find and click the Create rule button. On the Create page, give a descriptive name; I 
called it packt-athena-emailer. For the pattern, select Event pattern > Pre-defined 
pattern by service. The provider should be AWS > Athena, and the event type should be 
Athena Query State Change. It should look like the following:

Figure 10.6 – EventBridge Athena query state change event pattern
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Skip the event bus section; the defaults there are fine. Under Select targets, where it says 
Lambda function, change that to SNS topic and find the topic you just created in the 
previous section.

Figure 10.7 – EventBridge SNS topic target

Now, click the Create button and you're done!

Step 3 – Running a query
Finally, let's go ahead and navigate to the Athena console and run any query (I just picked 
a table in my catalog and selected the Preview table option). Once you've run that, you can 
go ahead and head back over to your email and you should receive some emails that look 
like the following:
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 Figure 10.8 – Athena query status emails

If you take a look, you will see we received three notifications for the status of our 
query. First, the execution went into the QUEUED state, then RUNNING, and finally 
SUCCEEDED. Pretty neat, huh?!

Emails are great and all, but you will probably want your automated system to be able to 
react to these events. You probably noticed already when you were setting up the rule, but 
if you didn't, EventBridge has a huge selection of possible targets that you can configure 
for a rule, so there's a really good chance that there is a target option that will fit nicely 
into your application. Take a look at the following URL, https://amzn.to/2UXrj4x, 
for the full list of targets.

https://amzn.to/2UXrj4x
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Securing your application
In the previous section, we talked about some best practices when it comes to connecting 
to and calling Athena. In this section, we're going to touch a little bit more on that point, 
but with a focus on security, and then focus on some other mechanisms for using Athena 
in the safest way possible. In Chapter 5, Securing Your Data, we discussed the concepts 
of the attack surface and blast radius, two metrics by which you can measure how safe 
your application is, both in terms of preventing a bad actor from gaining access and then 
minimizing the impact in the event that they do gain access. Some of the stuff we are 
going to cover is not necessarily specific to an Athena-based application, but it is still very 
valuable information to keep in mind.

Credential management
Firstly, we're going to take a look at credentials, the entry point for secure communication 
with AWS. We're going to focus on two specific aspects of it – life cycle management and 
the distribution/persistence of credentials. Also, whether you are running your application 
within some standard AWS offerings versus the alternative makes a big difference here, so 
we'll discuss each separately. 

If you are running your application on AWS compute options, such as EC2, ECS, Lambda, 
and others, then the problem of distributing credentials can be rather simple. In these 
cases, credentials are distributed to the hosts by way of metadata services (or in the case 
of Lambda, it is simply the credentials that are being used to execute the function). What 
this means is that, assuming the credentials distributed to the host are the ones that you 
need, you can simply rely on the default credentials provider within the AWS Client, and 
it will know to look for the metadata service. However, if you require credentials that are 
different from the ones that are distributed directly to the host, then you have a couple 
of options. The first is the case where you need IAM user credentials, and we're going to 
cover that in the next section when we discuss on-premises (out of AWS) applications. 
The second option is that you use IAM roles, which is the recommended approach 
in any case. In these cases, the credentials that are automatically distributed need the 
iam:AssumeRole permission on whatever role you want to actually assume. Then you 
can call the STS service to retrieve temporary credentials for that role and then instantiate 
the desired client with those credentials. In Java, this looks like the following:

AWSSecurityTokenService stsClient = 

                 AWSSecurityTokenServiceClientBuilder.
standard()

                                                     .build();

AssumeRoleRequest roleRequest = new AssumeRoleRequest()

                               .withRoleArn(roleARN)
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.withRoleSessionName(roleSessionName);

AssumeRoleResult roleResponse = stsClient.
assumeRole(roleRequest);

Credentials sessionCredentials = roleResponse.getCredentials();

            

BasicSessionCredentials awsCredentials = new 
BasicSessionCredentials(

                    sessionCredentials.getAccessKeyId(),

                    sessionCredentials.getSecretAccessKey(),

                    sessionCredentials.getSessionToken());

AthenaClient athenaClient = AthenaClient.builder()

   .withCredentials(new 
AWSStaticCredentialsProvider(awsCredentials))

   .build();

Roles make it such that you don't have to concern yourself with credential rotation at all; 
they are temporary credentials that you can just get new ones of whenever you need. The 
benefit of this is that if somehow role credentials get leaked, a bad actor will only be able 
to use them for a short period of time, thereby reducing the blast radius.

If you are in a situation where there is no automatic distribution of credentials handled by 
AWS, such as in an on-premises solution, then it is, of course, your responsibility to solve 
that. Many organizations in these cases end up building their own solutions, often referred 
to as credential stores. Credential stores are far preferable to the other option, where 
you store credentials on disk, such as in the AWS ~/.aws/credentials file, or even 
worse, in your code repository, the reason being, again, because we want to reduce the 
blast radius in the event a bad actor gains access to the host. If the credentials are stored 
elsewhere, then the actor will not necessarily be able to access them, but if they are on the 
disk, then now the actor has access to whatever resources those credentials have access to. 
Since these credential stores are often very custom and involve significant integration with 
whatever enterprise authentication mechanism that is being used, we're going to focus 
more on what to consider when following this approach. You still want to utilize roles as 
much as possible. 

The credentials you are managing should primarily be utilized to access those roles so that 
in the event the credentials are leaked, you can quickly revoke those permissions, and any 
future attempts to use the role will fail. This is called least privilege, the idea being that 
any actor within a system has exactly the permissions it requires to perform its duty and 
no more, which is with the aim, again, of reducing the blast radius.
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The other key consideration is automatic credential rotation. You should ensure that 
credentials get rotated so that in the event any credentials are leaked, they cannot be used 
indefinitely. By default, IAM will not rotate your credentials, which means that they will 
live on forever. IAM has a very helpful pattern for setting an automatic rotation system 
that you can use or at least reference here: https://amzn.to/3gRDHLk. In general, 
the system is a three-step process: 

1. Generate new keys.
2. A short amount of time later, deactivate the old keys.
3. A short amount of time later again, delete the deactivated keys. 

The idea here is that after step 1, the system should pick up the new keys. After step 2, 
any systems still reliant on the old keys will start to fail, but if need be, you can reactivate 
until you switch, and then, in step 3, you completely eliminate the old keys once you've 
confirmed it's OK.

At the end of the day, doing your absolute best to keep credentials secret is, of course, 
the primary goal. But the other tools we've discussed are invaluable in reducing the blast 
radius in the event that credentials are in the hands of someone who shouldn't have them.

Network safety
The next thing we're going to focus on is ensuring that the communication between 
your application and Athena is as protected as possible. By default, all communications 
between the AWS SDK and an AWS service are encrypted via HTTPS and signed using 
AWS's Signature Version 4 signing process (more info on that here: https://amzn.
to/3DvAg6I). These mechanisms do an excellent job of ensuring that any message 
sent to AWS is tamper-proof. So, this does a good job of minimizing your attack 
surface; however, if you haven't properly configured your network, then you are still 
requiring access to the public internet to communicate with AWS since, by default, all 
communication goes to AWS's public endpoint. The public internet, in this case, refers to 
anything accessible to anyone via the internet without requiring any additional network 
configuration (note: accessible means that the IP address will resolve, not that they have 
the necessary credentials). So, the implications of that are that there is a larger potential 
blast radius (for example, the bad actor, having gained access to your hardware, could call 
out to the public internet to retrieve a nasty script that they've already prepared in advance 
for wreaking havoc). I would guess by now you are seeing a pattern; AWS has an answer 
for this problem as well! 

https://amzn.to/3gRDHLk
https://amzn.to/3DvAg6I
https://amzn.to/3DvAg6I
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Figure 10.9 – Calling Athena over the public internet

VPCs, or Virtual Private Clouds, provide you with the ability to create isolated networks 
and are consistently one of the most recommended security features within AWS. VPCs 
enable fine-grain control over network traffic in and out of them and also within the VPC 
itself. There is much, much more to VPCs, but that sufficiently covers what we need to 
worry about here. 

So, great, we can configure rules to allow traffic in and out of our private network. But we 
still have to communicate with AWS, so we still need access to the public internet to talk 
to AWS's public endpoint. This means that our VPC rules must allow for that traffic out of 
our network. Or… do we? (Hint: we don't.)

Figure 10.10 – Calling Athena over the public internet from inside your own VPC
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AWS PrivateLink and VPC endpoints exist to solve this exact use case. A VPC endpoint 
is a resource you can provision inside your VPC, which can be communicated with 
by way of a private IP address, meaning that the IP address exists only in your VPC. A 
private IP address is explicitly separate from the public internet, meaning anyone outside 
of the VPC, if they tried to access that IP address, either it would exist on the public 
internet, pointing to a completely different resource, or it would simply not resolve. The 
VPC endpoint then routes your traffic to AWS PrivateLink. And finally, AWS PrivateLink 
allows for direct communication with an AWS service without leaving the AWS network! 

Figure 10.11 – Calling Athena using a VPC endpoint and PrivateLInk

VPCs and VPC endpoints are very powerful tools that allow you to have much finer-grain 
control over your network. The process of getting set up, while not difficult, requires a 
few more steps than we have time for. So, rather than walking you through all that you 
need to, I'm going to suggest you head on over to Athena's documentation on it here: 
https://amzn.to/3aifWrE. The one thing I'll point to from that documentation 
is just how easy it is once your VPC and endpoint are set up to actually start using the 
endpoint. In fact, if you enable private DNS hostnames for the endpoint you create, the 
endpoint to call will be identical to the public one (as seen in the preceding diagrams), 
meaning no additional configuration will be required. Your SDK will just automatically 
start communicating through PrivateLink to Athena instead of over the public endpoint.

https://amzn.to/3aifWrE
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Optimizing for performance and cost
Switching gears one last time, let's orient ourselves to optimizing our use of Athena. 
Again, remember that what is optimal differs depending on what your greater concerns 
are; either reducing your overall dollar costs or having the fastest possible experience, 
that's going to depend on your priorities. By the end of this section, you'll have a good 
starting point for achieving them.

Workload isolation
In Chapter 3, Key Features, Query Types, and Functions, we covered workgroups and how 
to leverage them to isolate workloads. Just to reiterate, workgroups allow you to splice up 
your Athena usage in such a way that you can specify who gets access to which data and 
how much of that data they can access through the WorkGroup resource and resource 
policies. Another huge benefit of workgroups is that you can visualize aggregated query 
metrics at the workgroup level. The way you can do this is when you create a workgroup, 
you make sure to enable publishing query metrics to AWS CloudWatch (see Figure 10.17). 
Note that this is disabled by default because there are additional charges associated with 
using CloudWatch.

Figure 10.12 – Workgroup CloudWatch query metrics option

Once you've enabled that, you should be able to head over to the workgroup and you 
can view the Metrics tab on your workgroup page, and you'll see some pretty handy 
metrics there! Now, if you are thoughtful in terms of how you break data up into different 
workgroups, you can leverage these metrics to determine which workgroups (and 
therefore which sets of data) are resulting in the worst performance and highest costs 
(in other words, most data reads). We'll take a closer look at how best to think about this 
soon, but for now, just observe and enjoy.

That relates to monitoring WorkGroup usage, but what about optimizing your workloads? 
I know I'm being super repetitive, but this is an important thing to keep in mind; what are 
you trying to optimize? WorkGroups have a nice feature for that where you can specify 
how much data a given WorkGroup can process, either in a given query or in a given time 
period. Remember that data processed is the metric utilized by Athena for billing. So, this 
feature allows you to tune what individual workgroups will cost you over time, so that's 
what we're optimizing for in this case.
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And again, on the other hand, we have performance optimizations. As of the time of 
writing this book, in most regions, Athena allows you to have 20 active DML queries at  
a time. An attempt at running a query beyond that will result in a "too many queries" 
error. So, let's say you have two workloads, one is fast and frequent, while the other is slow 
and infrequent. And let's say that this fast and frequent workload is pretty consistently at 
or near 20 active DML queries at a time. What do we think is going to happen with that 
slow and infrequent query? Well, either it's going to frequently hit the "too many queries" 
error, or it's going to occupy an active query slot for the fast query for a long period of 
time, impacting the amount that can be executed in parallel with the fast one. The issue 
here is that these two workloads have very different scaling vectors, and none of that  
is based on the amount of data processed, and so WorkGroups won't really help in this 
case, since these limits are at the account level. So now it's time to look elsewhere for  
a solution. In these cases, it's a good idea to start considering branching out workloads 
into separate AWS accounts that can scale completely independently of one another.  
AWS Organizations is an excellent offering that makes it really easy to create AWS 
account trees where billing is all aggregated at the root of the tree, but the accounts still 
effectively act as independent entities.

Application monitoring
By now, you've split out your various workloads into separate WorkGroups and maybe 
even separate AWS accounts. But software and its use is a living thing; it's forever growing 
and, just as importantly, changing. So, monitoring the status of your application is 
extremely important. 

By default, Athena logs all API calls plus the associated request parameters to AWS 
CloudTrail. AWS CloudTrail is a service aimed at empowering customers to audit all 
actions that are taken within their accounts. Actions, in this case, are API calls made 
against all services that log to CloudTrail (which should be most, if not all, of them). The 
data logged by Athena within CloudTrail includes the request parameters, such as the 
query string, and other valuable data such as the caller.

To get started with diving into your CloudTrail usage, we're actually going to use Athena 
to gain insights into our Athena usage. To get started, if you haven't done this already, 
you need to go to the CloudTrail console and create a trail. On the first page of the trail 
creation, give the trail a name, something descriptive. For your encryption settings, if you 
plan on using this in a production environment, you will want to turn this on, but keep  
in mind that KMS has costs associated with it. Each customer-managed key (CMK) is  
$1/month and then you pay based on your usage of the key as well (there is a free tier for 
this part). If you are just doing this for testing purposes, it's your decision whether or not 
you want to turn that on. Just don't forget what you decide if you end up continuing to  
use it (or not).
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Figure 10.13 – CloudTrail trail attributes



288     Building Applications with Amazon Athena

Note the bucket name being used for the trail. The rest you can leave unmodified, and 
now move on to the next page. On this page, you don't need to change anything; all of the 
defaults apply. The management event type just refers to general AWS API calls. 

Figure 10.14 – CloudTrail log events selection

Now, click Next again, verify that the summary page looks as you expect it to, and click 
Create trail at the bottom. Navigate over to the CloudTrail Event history page, locate the 
button that says Create Athena table, and then click that. Select the bucket corresponding 
to the trail we just created and then scroll down and click Create table. And now you're 
ready to start gaining insights from your CloudTrail events!
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Figure 10.15 – CloudTrail Athena table creation dialog

Move over to Athena and switch to the default data catalog and you should see your 
newly created table there. Go ahead and preview it and take a quick look at what the data 
looks like. Three columns worthy of highlighting that we are particularly interested in 
right now are eventsource, eventname, and requestparameters. If you look 
at some samples of these, you'll see that eventsource corresponds to the service or 
caller that triggered the particular event, eventname is the API that was called, and 
requestparameters contains the values provided for that API call in the form of  
a JSON object (on many occasions, services will redact sensitive fields). So now let's try  
to derive some more useful information from here. Try running the following query.  
(If you just set up CloudTrail, you'll want to run a few random queries first before you  
run this one, otherwise you will get no results):

SELECT json_extract(requestparameters, '$.queryString') AS 
queryString 

FROM "default"."<CLOUD_TRAIL_TABLE_NAME>" 

WHERE eventsource = 'athena.amazonaws.com' and 

      eventname = 'StartQueryExecution'



290     Building Applications with Amazon Athena

You should get an output that looks something like that of Figure 10.16, where you see the 
various queries that have been executed (since you enabled the trail): 

Figure 10.16 – Query strings from the CloudTrail Athena table

Now, at this point, you might be thinking that this is a difficult dataset to analyze, and 
you'd be right! Especially if you imagine that you've expanded your use of Athena to a 
massive amount. This is why it's so important that you use all of the various things we've 
discussed here together. 

Let's say we've got a data warehouse for our coffee shop from earlier in the chapter. This 
warehouse contains data on transactions that have occurred over the past year and also 
data on what we have in our stockroom. For the stockroom, to begin with, we really only 
care about what is in there at any given time. So, we create a workgroup for checking 
that information. Essentially, our data is a daily snapshot of the items in stock. Our other 
workgroup contains the transaction data that we've got nicely partitioned by month 
and contains information about all the transactions that occurred each day. One day, 
one of our data analysts (yes this is a tech-coffee shop) runs a query to try and correlate 
transactions that are occurring and how they relate to how frequently perishable stock is 
being returned to determine what we need to buy less of. This ad hoc query turns out to 
be super useful, so it gets added as a regular job that gets run. But no one told the data 
engineer! Over time, the data engineer is checking on the metrics of the workgroup and 
notices that the performance for the stockroom workgroup has degraded significantly 
over time. The data engineer decides to query the CloudTrail logs for the table in that 
workgroup and notices a large number of queries that are running over a range of time 
instead of just a single day (the latest day), and because the table is not partitioned, it 
requires the entire table to be scanned. They now determine that this is a valuable dataset 
to have and create a new table that adds month-based partitioning on the stockroom so 
that it aligns with the transactions table. 



Summary     291

I hope that, with the help of my silly little coffee shop example, you can see the power of 
combining all of these monitoring tools to ensure that you are always operating in the 
most optimal manner.

CTAS for large result sets
The last topic we are going to briefly discuss is not so much a best practice but just a 
nice trick to have in your back pocket in case you ever need it. Sometimes, you have 
queries that you run that produce very large numbers of results. As usual, you call 
GetQueryResults to get them and notice that you are spending a really long time on 
this part. The reason for this is that Athena stores all results in a single CSV file. And so 
GetQueryResults is, in turn, slowly reading through that line by line. In Chapter 3, 
Key Features, Query Types, and Functions, we learned about the CTAS (Create Table as 
Select) clause, which allows you to run a select query and rather than return the results 
to you directly, it puts those results into a new table in your catalog. So, one option to 
consider instead of reading through your large numbers of results in a single thread is 
to temporarily store the results in a separate table using CTAS and partition that table in 
such a way whereby you can leverage parallel reads by reading different partitions at the 
same time!

Summary
In this chapter, we covered a really broad array of topics, all focused on giving you the 
right concepts to consider when building an application that leverages Athena (though 
many topics would benefit you no matter what you are building). 

We discussed your different options for connecting to Athena and how to decide which 
one is right for you, whether it is using the AWS SDK, the JDBC driver, or the ODBC 
driver – deciding between the convenience of implementation, especially if you are 
already familiar with the JDBC/ODBC frameworks, versus the flexibility of having direct 
access to the SDK.

Then we continued the discussion of connecting to Athena, but with a focus on best 
practices. Firstly, we covered making sure you are leveraging idempotency tokens  
(in Athena's case, ClientRequestTokens) to make sure you are safely retrying on 
unclear failures, which is a feature you get for free with the SDK! And then we looked at 
how best to track the status of queries, moving away from the standard model of polling 
GetQueryExecution until the query completes, and instead utilizing the push model 
by working with AWS EventBridge.
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Next, we looked at being secure! We discussed how best to manage credentials, 
particularly when your application is not running with an AWS environment, and then, 
when you are in an AWS environment, how best to manage your network traffic to and 
from your application by leveraging VPCs and VPC endpoints.

Finally, we took a look at the various options you have for optimizing your application, 
whether it be for minimizing cost or maximizing performance. In this section, we 
reiterated from Chapter 3, Key Features, Query Types, and Functions, the idea of 
leveraging WorkGroups as a mechanism to isolate workloads both from an access 
and cost perspective. We also looked at how you can leverage WorkGroup-aggregated 
CloudWatch metrics for analyzing the overall performance and cost of workloads. Then, 
we saw where WorkGroups may not be able to help, which is when you have workloads 
with significantly different scaling vectors that you don't want to impact one another, 
and in that case, we recommended that you consider separating those into different AWS 
accounts under a single AWS organization. Continuing with the theme of monitoring, we 
discussed how you can leverage AWS CloudTrail in addition to well-defined workloads 
by WorkGroup to discover common access patterns that need to be optimized. Finally, 
we took a look at a trick you can do to speed up queries with very large result sets by 
leveraging CTAS to take advantage of the multi-file upload capability of CTAS.

Of course, there is so much to consider when building an application and we've only 
scratched the surface, but these topics should take you a long way by creating a solid 
foundation from which to get started. In the next chapter, we will check out operational 
excellence, in other words, how to monitor and optimize Athena for various uses.



11
Operational 
Excellence – 
Monitoring, 

Optimization, and 
Troubleshooting

In this chapter, we will focus on operational excellence. Operational excellence in this 
chapter has three components: monitoring Athena to ensure it is healthy and running 
normally, optimizing our usage of the system for cost and performance, and, lastly, how  
to troubleshoot issues when they occur.
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When monitoring systems, it is essential to know what to monitor and what steps to take 
when something goes wrong. This information is valuable because when the system is 
not operating correctly, the data will give you clues on possible issues, which reduces 
investigation time. You can also act before problems occur, preventing calls from users on 
why things are not working. We will look into processes that can be put in place to ensure 
that Athena and our usage of it are normal and efficient. When there are issues, we will 
know how to fix common problems. 

We also want to get the most out of Athena. To run optimally and cost-effectively, we will 
optimize our use of Athena by going through best practices on how to store our datasets 
and best write queries. Following these best practices can significantly reduce your 
monthly bills and keep your users happy, with low query times. 

Lastly, we will look at how we can troubleshoot failing queries. We will dive deep into the 
most common problems users encounter, what they mean, and how to address them. 

In this chapter, we will learn about the following: 

• How to monitor Athena to ensure queries run smoothly

• How to optimize for cost and performance

• How to troubleshoot failing queries

Technical requirements
For this chapter, if you wish to follow some of the walk-throughs, you will require the 
following:

• Internet access to GitHub, S3, and the AWS Management Console.

• A computer with a Chrome, Safari, or Microsoft Edge browser installed. 

• An AWS account and accompanying IAM user (or role) with sufficient privileges 
to complete this chapter's activities. For simplicity, you can always run through 
these exercises with a user that has full access. However, we recommend using 
scoped-down IAM policies to avoid making costly mistakes and to learn how 
to best use IAM to secure your applications and data. You can find a minimally 
scoped IAM policy for this chapter in the book's accompanying GitHub repository, 
listed as chapter_11/iam_policy_chapter_11.json (https://bit.
ly/3hgOdfG). This policy includes the following:

 � Permissions to read, list, and write access to an S3 bucket

 � Permissions to read and write access to the AWS Glue Data Catalog databases, 
tables, and partitions:

https://bit.ly/3hgOdfG
https://bit.ly/3hgOdfG
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 � You will be creating databases, tables, and partitions manually and with Glue 
crawlers.

 � Access to run Athena queries

Monitoring Athena to ensure queries run smoothly
Monitoring your usage of Athena is essential to ensuring that your users' queries continue 
to run uninterrupted without issues. Many issues can be addressed before they impact 
users and applications. This section will look into the metrics that Athena emits to 
CloudWatch Metrics and the metrics that should be monitored and alarmed on, so that 
actions can be taken before users reach out to their administrators. Before we do, let's take 
a look at which metrics are emitted by Athena.

Query metrics emitted by Athena
Athena emits query-level metrics for customers to be able to monitor and alarm on. 
These metrics exist in CloudWatch Metrics under the namespace "AWS/Athena" and 
three dimensions, QueryType, QueryState, and the Workgroup name. QueryType can be 
DML (INSERT/SELECT queries) or DDL (metadata queries such as CREATE TABLE). 
QueryState can be SUCCEEDED, FAILED, QUEUED, RUNNING, or CANCELED. The 
Workgroup dimension aggregates metrics within the Athena workgroup that the query 
executed in. 

The metrics that are emitted are listed here:

• TotalExecutionTime – in milliseconds. The entire execution time of the query 
from when the query is accepted by Athena to when it reaches its final state 
(SUCCEEDED, FAILED, or CANCELED). 

• QueryQueueTime – in milliseconds. This is the time a query spent waiting for 
resources to run on. This measures the time after Athena has accepted a query for 
execution and before it is sent to the execution engine for execution.

• EngineExecutionTime – in milliseconds. This is the amount of time taken  
when the query is received by the execution engine to when it completes executing 
it. This metric includes the QueryPlanningTime metric. This applies to both DML 
and DDL queries.

• QueryPlanningTime – in milliseconds. This is the amount of time the execution 
engine (that is, PrestoDB) took to parse the query and create its execution plan. This 
includes operations such as retrieving partition information from the metastore, 
optimizing the execution plan, and so on. This applies to DML queries only. 
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• ServiceProcessingTime – in milliseconds. This is the time from when the query 
has finished in the execution engine (that is, PrestoDB) and the time Athena uses to 
read the results and push them to S3. This applies to both DML and DDL queries.

• ProcessedBytes – in megabytes. This is the amount of data that the execution 
engine processed for DML (that is, SELECT) queries. This can be used as an 
approximation for billing. 

With these metrics, we can build dashboards and alarms. The process to create the alarms 
will be included in the following sections.  

Monitoring query queue time
To protect available resources for all customers, Athena allows a certain number of queries 
to be run at any given time from a single AWS account. When a query is submitted for 
execution, Athena will check how many queries the submitting account is executing. If it 
exceeds the account limit, or if there are not enough resources, say at peak times during 
the day, then the query will be queued until both of those conditions are met. When 
clients submit their queries and notice that their queries are not running or taking a 
significant time to run even a small query, it is likely because they are queued. 

Monitoring and actioning when Athena queue time occurs is essential to prevent 
users' queries from being constantly queued. Since queue time metrics are emitted to 
CloudWatch metrics, alarms can be created and actioned against. We have included a 
sample script that can be used as templates to monitor and email when thresholds are 
exceeded, which can be found in this chapter's GitHub location at https://bit.
ly/3j7Nzly. The script can be adjusted for your use case. It will create four alarms, two 
for DML queries and two for DDL queries. Each set will generate a warning threshold and 
one for when production impact occurs. The split between DML and DDL queries is due 
to the query types having their own queues, and one will not impact the other. 

Once the alarms are created, then the CloudWatch alarms dashboard may look like the 
following.  

https://bit.ly/3j7Nzly
https://bit.ly/3j7Nzly
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Figure 11.1 – A sample alarm dashboard in Amazon CloudWatch for alarms

When users' queries start to get significantly queued, three actions can be taken. First, 
reduce the frequency that queries are submitted or spread them out throughout the day. 
This can be done by asking users or by disabling low-priority users. This is not an ideal 
solution but can be a short-term solution to prioritize applications or users that need 
to execute queries. The second action that can be taken is to submit a support case and 
ask for the AWS account to increase concurrent query execution for your AWS account. 
This generally happens automatically but is not done when there is a sudden increase in 
sustained usage. Requests to increase query concurrency need to be considered by AWS 
and may be approved or disapproved. 

The last solution is to split queries among AWS accounts. This approach has the additional 
benefit of isolating applications and users from impacting each other. It is best practice to 
use an AWS account for SLA-sensitive applications and users, and other ad hoc queries 
from users doing data exploration in another account. 

Let's now look at monitoring Athena's costs. 

Monitoring and controlling Athena costs
No one wants to be emailed or especially called because their team's Athena costs are 
significantly higher than initially expected. Unexpected increases in costs can be due  
to a single user running a query without a partition filter that unintentionally scans 
terabytes of data or an application with a bug that makes an unexpectedly high number  
of calls. There are mechanisms that Athena provides to prevent these scenarios when 
using Athena workgroups.
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To prevent the scenario of a single user running every large and expensive query, 
workgroups can be configured to cancel individual queries that exceed a quantity of data 
read. This is configurable for each workgroup, depending on the need. To set this feature, 
go to the Data usage controls tab when editing a workgroup in the Athena console, as 
shown in the following figure: 

Figure 11.2 – Data usage controls within the Athena console for a workgroup

Within this tab, you can set data usage limits at a query level. By selecting this limit, 
Athena will cancel queries that exceed the query limit. It is recommended that this limit 
be configured to a value that prevents legitimate queries from being interrupted but is low 
enough to identify issues.  
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In addition to setting limits at a query level, you can also set ProcessedBytes limits at 
a workgroup level. CloudWatch alarms can be created in CloudWatch or through the 
Athena console in the workgroups tab, as shown in the following figure:

Figure 11.3 – Workgroup data usage controls section below per query limits

The previous figure shows an example in which three alarms notify different Amazon SNS 
topics in which different actions can be taken. This is an example where warning emails 
can be sent out to interested parties if the usage and cost exceed certain thresholds. The 
other two thresholds can disable the workgroup. Going above 3 TB of usage would be 
considered highly unusual for this use case, and an investigation should be done. 
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The above example alarms were created by clicking the Create button in Figure 11.2. As 
seen in Figure 11.3, the window that pops up allows data limits and a time period to be 
entered, and an optional SNS queue to send a notification to. Each alarm created is backed 
by a CloudWatch alarm and can be tweaked through the CloudWatch alarm console.

Figure 11.4 – Creating a workgroup data usage alarm

Now that we have seen how to monitor and put limits on query usage, let's look at how  
we can optimize using Athena to reduce costs and query runtime.

Important Note
If you are using the federated connectors, you will incur costs associated 
with the connectors, such as the cost of launching Lambda functions and the 
resources used when running Lambda. 

Optimizing for cost and performance
When optimizing performance for any execution engine, two goals should always be kept 
in mind: read as little data from your storage as possible, which reduces costs and reduces 
query time, and make sure that your query engine does as little work (processing) as 
possible, which reduces query time. 
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This section will look similar to the AWS Big Data Blog post titled Top 10 Performance 
Tuning Tips for Amazon Athena (https://amzn.to/2VIFv1y) that I wrote. Still, 
we will provide some additional details that the blog post did not offer. Many customers 
bookmark this page and refer to it, and I recommend visiting it often to improve its  
view count. 

Important Note
The recommendations in this section are generalizations and may not apply 
to all circumstances. Everyone's data, data structure, and queries are different, 
so not all of these recommendations may drive an improvement. Testing and 
prototyping are highly recommended when going through the process of 
optimizing usage. 

Let's get started by looking at some optimizations on how to efficiently store data.

Optimizing how your data is stored
It is essential to consider how your data is stored when being read by execution engines 
such as Athena. How your data is stored usually has the most significant impact on how 
queries perform and how much they cost. Also, if you need to regenerate data when 
your system is live, it is much more expensive than doing it upfront. Changing queries is 
much easier and cheaper. With this in mind, some planning and prototyping are highly 
recommended. 

Let's look at how file sizes and count impact performance.

File sizes and count
The size and number of files have a pretty significant impact on the performance of your 
Athena queries. 

Important Note
The general recommendation is that your file sizes are between 128 Mb  
and 1 GB. 

There are many reasons for this:

• S3 list operations are expensive. If you have a high number of files for a table, more 
S3 list operations need to be performed to get the list of files to read for a dataset. 

https://amzn.to/2VIFv1y
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• For each file, the engine needs to perform many S3 operations to consume it. It will 
first need to open the file by running a HeadObject() function to get the file 
size, encryption keys, and any other information necessary to start reading the file. 
This operation is expensive. Next, it will need to call a GetObject() function that 
returns a pointer to the data and the first data block. Ideally, you want to minimize 
the overhead of calling the HeadObject() function.

• The smaller your files, the less effective the compression, increasing the total 
amount of data stored.  

• If your files are encrypted using server-side encryption, S3 will need to call the AWS 
KMS service to get decryption keys. This introduces overhead and increases costs 
because KMS charges for each call. I had a customer where their KMS costs were 
higher than their Athena costs because the cost of getting KMS keys was higher 
than reading the data. Having larger files reduces the number of calls needed for 
encryption keys. 

Having appropriate file sizes reduces the amount of work that the execution engine needs 
to do. 

Compression
Using compression makes the engine read less than uncompressed data, reducing network 
traffic from the data source to the Athena engine. For S3, it reduces storage costs. There is 
a trade-off of CPU usage as compression requires extra work to decompress data. Still, this 
cost is most of the time outweighed by making fewer calls to S3, and most queries do not 
exhaust CPU resources. 

Important Note
Always compress your data when using text-based file formats, such as JSON 
and CSV. If your file sizes are larger than 512 Mb, use a compression algorithm 
that allows for files to be splittable. When using Apache Parquet or Apache 
ORC, compression should be applied within the column blocks (not to be 
confused with compressing the entire file). 

When trying to decide on a compression algorithm, there are two aspects to consider. 
First, there is a trade-off between higher compression ratios and higher CPU usage. 
Second, whether the compression algorithm allows a query engine to read different parts 
of a file without reading the entire file. This is called if the file is splittable. If the algorithm 
produces splittable files, then multiple readers can read the file simultaneously, which 
increases parallelism. If a file is not splittable, a single reader must read the entire file, 
reducing parallelism.  
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For text-based file formats, such as JSON and CSV, it's always recommended to compress 
them because the compression ratios are generally very high. For columnar formats such 
as Apache ORC and Apache Parquet, they support compressing column data blocks. 
Because compression works best when groups of similar values exist, compressing all the 
values for a column in a single block usually leads to better compression ratios. Typically, 
Parquet and ORC are configured to compress column blocks by default. 

File formats
Data formats impact the amount of data that a query engine reads and the amount of 
work the engine needs to do to read the data contained in the files. If your data is not in 
an optimal format, then transforming the data may reduce your overall cost if the cost of 
transformation is less than the cost of querying the data. 

Important Note
For datasets that are read frequently, use Apache Parquet or Apache ORC. For 
data that is not likely to be queried or is queried infrequently, any compressed 
file format should be used. Datasets stored in CSV or JSON that will be queried 
frequently should be transformed into Parquet or ORC.

Let's dive into some common file formats. 

• Row formats: CSV and JSON formats are the most common file formats used today 
but are the most inefficient. They are text-based, which is less efficient than storing 
the data in a binary format. For example, the int data type can be stored in binary 
using 4 bytes of data, but the number 1234567890 uses 10 bytes to store as a 
string. Add the delimiter for CSV and the field names in JSON, and they can take a 
substantial amount of space and memory. Also, when the file parser reads a number, 
it first needs to read the number as a string and then convert it to a number. 

• Columnar formats: Columnar formats store data differently than row-based 
formats. With columnar formats, the data is grouped by the columns and stored 
in column blocks. A columnar file is then created by storing all the column blocks. 
When a reader wants to read the file, it will read each column block and generate a 
row by putting together all the columns by the index in the block. There are many 
reasons why this is cheaper and faster:

 � Field values are stored in binary instead of text. This reduces storage size and 
eliminates conversion from strings to numeric types, reducing the engine's read 
amount and work.

 � If a query only contains a subset of the columns, the execution engine will only 
read those columns, reducing the amount of data read. 
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 � Compression on blocks of data that contain similar values is generally more 
efficient. This reduces the amount of data needed to be read, which reduces the 
cost and work demanded from the engine.

 � Both Parquet and ORC support predicate pushdown, also known as predicate 
filtering. Parquet and ORC store statistics about each column block that can help 
skip reading entire blocks by pushing a filter to the reader and evaluating the filter 
on these statistics. If it is determined that the filter value is not in the data block, it 
is skipped. The statistics include ranges of values in the block and, for string data 
types, a Bloom filter. This reduces the cost and work demanded from the engine.

Parquet and ORC are better formats in almost every way than text-based formats. Let's 
take a look at how partitioning and/or bucketing your data can improve performance  
and costs.

Partitioning and bucketing
Partitioning and bucketing are two different optimizations that can lead to significant 
improvement in cost and performance. These features require an understanding of the 
data's usage patterns or how users or applications will query the datasets. Depending 
on the queries that will mainly be executed, it will inform the best way to leverage 
partitioning and bucketing. 

Let's look at both features in a bit more detail:

• Partitioning: Partitioning your table separates rows into separate directories  
based on a column value. When a query contains a filter on a partition column 
value, only the partitions that meet the filter will be read, reducing the amount of 
data read. We talked about partitioned tables in Chapter 4, Metastores, Data Sources, 
and Data Lakes. 

Important Note
Partitioning can significantly improve the performance and cost of your 
queries. A general recommendation for partitioning is to keep the number 
of partitions for a table under 100,000 while maintaining file sizes within the 
partitions.  

Choosing partition columns can be a challenge, but here are some best practices. 
When looking at the queries executed against the table, the columns in WHERE 
clauses are great candidates to look at. An example would be a dataset containing  
a transaction date. The date is in the WHERE clause very frequently because users 
only need the most recent data.
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The next best practice is to keep in mind the number of partitions your table has. 
The more partitions your table has, the smaller the files may be in each partition, 
which goes against file size best practice. Additionally, there is overhead when  
using partitioning, but if the partition column is chosen wisely, the overhead will  
be insignificant compared to the performance and cost savings. When Athena reads 
a partitioned table, it will need to fetch partition information from the metastore, 
and the greater the number of partitions, the more partitions it will need to fetch. 
A general recommendation is not to exceed 100,000 partitions, but this number 
depends on the upper bound of the query execution time and the amount of data  
in the dataset. 

One unique feature that Athena has that could help read tables with many partitions 
is partition projection. It allows tables to specify the partition columns and the 
expected values that those columns may take within the table properties. When 
Athena queries the partitioned table, it generates the partitions on the fly instead of 
going to the metastore to retrieve the partition information. This works for tables 
that store their partitions on S3 in a consistent directory structure, with partition 
columns whose values can be specified in a list or a range. Partition projection 
supports integer and string data types and supports date formats as well. You  
can see examples of partition projection using various datasets in this book at 
https://amzn.to/38a2FAC. 

Although not yet supported in Athena, one last optimization is indexing your 
Glue Data Catalog tables' partition data. When this feature is supported, it will 
significantly improve partition retrieval performance within Athena and reduce 
query time. Keep an eye out for when this is available.  

• Bucketing: Bucketing is similar to partitioning because it groups rows with the 
same column values in a file within a partition. You specify the number of buckets 
you want at table creation time and the column to bucket on. The engine will then 
hash the bucket column values and put the rows with the same hash value in the 
same file. When a query engine has a filter for specific values for the bucketed 
column, it can then run the hash on filter values and determine which files it needs 
to scan. This could lead to entire files being skipped.

Important Note
Bucketing can significantly improve the performance and cost of your queries. 
However, bucketing adds complexity and should be employed by advanced 
users for the most time-sensitive workloads. 

https://amzn.to/38a2FAC
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The following diagram shows what the NYC taxi dataset may look like if bucketing 
is employed. The sample CREATE TABLE statement is located at https://bit.
ly/3kjd4j9. 

Figure 11.5 – An example of bucketing on the NYC taxi dataset
The dataset is partitioned by the trip_date value but bucketed on the 
ratecodeid column. All rows that contain the value in the ratecodid column 
of 1 and 3 will go into 2020-06-01-file1.csv, 2 and 3 will go into the 2020-
06-01-file2.csv file, and 5 and 6 would go into the last file. If the query 
SELECT * FROM nyc_taxi_partitioned where ratecodeid = 3 is 
executed, Athena will determine that ratecodeid only existed in the 2020-06-
01-file2.csv file and hence can skip the other two files. However, if the query 
SELECT * FROM nyc_taxi_partitioned where ratecodeid > 3 is 
executed, Athena will read all the files because it does not know the complete list  
of possible values.

There are some limitations to discuss. The current version of PrestoDB that Athena 
uses only supports tables that were bucketed using Hive, without the ability to 
insert data after a table or partition has been created. Once Athena offers a newer 
version of PrestoDB, this limitation may be removed and support Apache Spark's 
bucketing algorithm. Also, once the number of buckets is chosen for the dataset, it 
cannot be changed unless the entire dataset is regenerated. For these reasons, it is 
recommended that only advanced users attempt to leverage bucketing.

Now that we have gone through the optimization techniques to lay out our datasets on S3, 
let's look at some optimization techniques when writing queries.

https://bit.ly/3kjd4j9
https://bit.ly/3kjd4j9
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Optimizing queries for performance
Although how data is stored can make the most significant impact on the performance 
of Athena queries, how queries are written is also important. In this section, we will go 
through some best practices when optimizing your queries. 

Explain plans
Athena recently released a new feature that allows you to look at the execution plan of 
your queries. The execution plan is the set of operations that the engine performs to 
execute the query. It is not a requirement to read and understand the execution plans to 
optimize, but if we know how to read them, they can give us a valuable tool to dive deep 
into how queries are being executed. If you are not able to follow the technical details, it is 
okay. The other sections for optimizing your query will provide general recommendations 
that anyone can follow. 

Let's take a quick look at an example of the information that EXPLAIN provides. If 
we take the simple query EXPLAIN SELECT SOURCE_ADDR, COUNT(*) FROM 
website_clicks GROUP BY source_addr, we get the following logical execution 
plan (edited to simplify the output):

Query Plan

- Output[SOURCE_ADDR, _col1] => [[source_addr, count]]

    - RemoteExchange[GATHER] => [[source_addr, count]]

        - Project[] => [[source_addr, count]]

            - Aggregate(FINAL)[source_addr][$hashvalue] => 
[[source_addr, $hashvalue, count]]

                - LocalExchange[HASH][$hashvalue] ("source_
addr") => [[source_addr, count_8, $hashvalue]]

                    - RemoteExchange[REPARTITION][$hashvalue_9] 
=> [[source_addr, count_8, $hashvalue_9]]

                        - Aggregate(PARTIAL)[source_addr]
[$hashvalue_10] => [[source_addr, $hashvalue_10, count_8]]

                            - ScanProject[table 
schemaName=packt_serverless_analystics_chapter_11, 
tableName=website_clicks, analyzePartitionValues=Optional.
empty}] => [[source_addr, $hashvalue_10]]

                                    LAYOUT: packt_serverless_
analystics_chapter_11.website_clicks

                                    source_addr := source_
addr:string:1:REGULAR
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This can look daunting at first, so let's break it down. The plan from the top down goes 
backward from the order of operations. The operation executed is ScanProject, 
which does the reading of our source data, our website_clicks table. The second 
operation is Aggregate, which does a partial GROUP BY function on the local node 
before sending it to the RemoteExchange operation. RemoteExchange shuffles data 
between the nodes of the partially aggregated data based on a hash code so that rows that 
contain the same GROUP BY columns go to the same node. LocalExchange shuffles 
data within a worker node. Then, a final Aggregate operation aggregates all the rows 
with the same GROUP BY values. The Project operator removes the hash code column 
and then performs the last RemoteExchange operation to a single node, to output the 
results using the Output operator. 

To graph a visual representation of the plan, you can specify the format to GRAPHVIZ 
and use an online conversion tool to convert the output to an image. The one that is used 
within this chapter is https://dreampuf.github.io/GraphvizOnline/. The 
converted image for the query EXPLAIN (FORMAT GRAPHVIZ) SELECT SOURCE_
ADDR, COUNT(*) FROM website_clicks GROUP BY source_addr is located 
at https://bit.ly/3yOMFzD. 

If the type of execution plan is not specified, such as the previous example, a logical plan is 
provided. But Athena supports three other types of execution plans. They are VALIDATE, 
IO, and DISTRIBUTED, which can be specified in the query. For example, to validate 
whether a SQL statement is valid before executing it, you can run EXPLAIN (TYPE 
VALIDATE) <SQL STATEMENT>. It will return a true or false value, depending  
on whether Athena can parse and execute the query. The IO execution plan outputs 
the input and outputs of the query. An IO plan for the previous example can be seen at 
https://bit.ly/2VYnzjh. 

The DISTRIBUTED plan provides fragments of the execution plan that is executed 
across different nodes. Each fragment is performed on one or more nodes depending on 
the type of the fragment. There are several fragment types, including SINGLE, HASH, 
ROUND_ROBIN, BROADCAST, and SOURCE. The SINGLE type of fragment executes only 
on a single node. The HASH type executes on a fixed number of nodes where the data is 
distributed among the nodes, based on a HASH code derived from one or more column 
values. For example, the source_addr column would be hashed for the previous query 
because it is in GROUP BY. To perform the GROUP BY function, rows with the same 
source_addr value need to be on the same node to do the aggregation. The ROUND_
ROBIN type means that data is sent in a round robin to multiple nodes for operations 
such as transformations. The BROADCAST type means that the input of the fragment is 
the same across one or more nodes. This type is sometimes used with joins if a table is 
small enough to send to all nodes to do the join, which can significantly improve join 
performance. 

https://dreampuf.github.io/GraphvizOnline/
https://bit.ly/3yOMFzD
https://bit.ly/2VYnzjh
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Lastly, the SOURCE type specifies a fragment that reads from a source data store. In each 
fragment in the plan, the input data is determined by the RemoteSource[FragmentNumber] 
value, where FragmentNumber is the source fragment. To see the distribution plan for the 
previous query example, visit https://bit.ly/3g58Lqw. 

Now that we have a basic understanding of how to read execution plans, let's look at some 
of the optimizations we can make to our queries, starting with optimizing joins.

Optimizing joins
The order in which tables are expressed in a join operation can significantly impact your 
query performance. 

Important Note
When joining tables, order the largest tables on the left to the smallest tables on 
the right. 

You may ask why the ordering of tables matters. Athena does not have access to statistics 
yet to reorder joins optimally as other database systems do. This may change in the future, 
but it is up to the user to perform this ordering for now. 

For those interested in the technical details of why ordering matters, we need to 
understand how Athena performs joins. In summary, both tables get read and shuffled to 
a join operator to perform the join. However, there is an extra operation for the table on 
the right side. If the right-side table is smaller, the extra operation will be cheaper than 
if the operation occurred on the larger table. If we look at the explain plan for a query 
that performs a join, EXPLAIN (Type DISTRIBUTED) SELECT larger_table.
table_data FROM larger_table LEFT OUTER JOIN smaller_table on 
larger_table.table_key = smaller_table.table_key, we see the following 
subsection of the distributed plan (the full explain plan can be found at https://bit.
ly/37MH0hG):

Fragment 1 [HASH]

    Output layout: [table_data]

    Output partitioning: SINGLE []

    Stage Execution Strategy: UNGROUPED_EXECUTION

    - LeftJoin[("table_key" = "table_key_0")][$hashvalue, 
$hashvalue_9] => [[table_data]]

            Distribution: PARTITIONED

        - RemoteSource[2] => larger_table

https://bit.ly/3g58Lqw
https://bit.ly/37MH0hG
https://bit.ly/37MH0hG
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        - LocalExchange[HASH]

            - RemoteSource[3] => smaller_table

The LocalExchange operator reshuffles the data within the worker. If the join order 
was reversed, the reshuffle would occur on the larger table, which would require more 
work and would cause the query to run longer.

Now let's look at optimizing the ORDER BY operator.

Optimizing ORDER BY
You will often need to order your results to get the top N number of results to generate 
reports or look at a subset of data when exploring a dataset. However, doing an ORDER 
BY operation on a large dataset can be a costly operation. 

Important Note
When performing ORDER BY operations, using LIMIT can dramatically 
reduce query time if only the top N results are needed. 

We need to understand why performing a global ordering requires a single worker to 
get the entire result set and perform a global sort, even if the input is sorted from many 
workers. Performing a global sort is very memory- and CPU-intensive. By limiting the 
number of results in the output, workers pushing rows to the global sort of an operator 
can limit the number of rows to it. The global sort can be done on a much smaller set of 
data. Let's look at the execution plan when LIMIT is specified for the query EXPLAIN 
SELECT total_amount FROM nyc_taxi where payment_type = 1 ORDER 
BY trip_distance LIMIT 100 (the full explain plan can be found at https://
bit.ly/2VSMvc4):

Query Plan

- Output[total_amount] => [[total_amount]]

    - Project[] => [[total_amount]]

        - TopN[100 by (trip_distance DESC_NULLS_LAST)]

            - LocalExchange[SINGLE] 

                - RemoteExchange[GATHER]

                    - TopNPartial[100 by (trip_distance DESC)]

                        - ScanFilterProject[table = nyc_taxi]

https://bit.ly/2VSMvc4
https://bit.ly/2VSMvc4
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Without the LIMIT operator, the TopNPartial operator would not be in the plan. 
All results would go to the TopN operator. Performing the local sort before performing 
the RemoteExchange operation limits the amount of data shuffled, saving time and 
bandwidth.

Let's now look at the next best practice.

Selecting only the columns that are needed
This recommendation should be self-evident, but I have seen many customers not do this. 

Important Note
Only select the columns in your query that are required as the output of your 
query. 

There are many reasons why this can save both time and cost. For columnar data types, 
less data is read, which reduces cost. Another reason is that there is less data that needs  
to be shuffled between workers and outputted. 

Let's now look at our last best practice.

Parallelizing the writing of query results
When Athena executes a SELECT query, the query's output is written by a single worker. 
If there is a huge result set, the amount of time to write the results from the single worker 
can be significant.

Important Note
For queries that produce a large number of results, use CTAS, INSERT 
INTO, or UNLOAD to parallelize the writing of the output.

Troubleshooting failing queries
When Athena works, it is excellent. It queries data in S3 without having to worry about 
servers or installing and maintaining software. But when Athena fails to execute a query, 
it can be tricky to know how and where to start looking. Issues can include how you wrote 
your query, problems with your metadata, or your data. In this section, we will go through 
some common failures and how to approach them. However, this list is not exhaustive. 
Athena's documentation publishes many error messages that customers see and how to 
deal with them, so bookmark it and refer to it when needed. 
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When your query starts failing, here is a list of actions that you can take:

• If your queries were working previously but are failing now, determine what has 
changed. Source control for queries that applications submit can help keep track 
of code and queries that have changed. If the queries have not changed, then most 
of the time, the issue is due to the loading of new data that it cannot process or 
metadata that was changed. This question is usually the first one that AWS Support 
would ask.

• Retry your query after a few minutes. Some failures with Athena are transient,  
such as when S3 throttles Athena because the load was too high on a particular  
S3 partition. 

• Go to Athena's troubleshooting documentation, which contains a list of error 
messages and solutions (located at https://amzn.to/3kjBuJt). 

• If all else fails, and you have access to AWS Support, then enter a support ticket. 
When creating a support ticket, the query ID and AWS region should be provided 
to help with the investigation. Providing a small sample of data is super helpful to 
AWS Support and the Athena development team to reproduce the issue. Just ensure 
that it does not contain any sensitive data. 

Let's look at some common issues that customers face with Athena.

My query is running slow!
This is the most common issue that customers have when using Athena. Following 
the recommendations in the optimization section generally solves this issue. Using 
partitioning, converting to Apache Parquet or Apache ORC, and ensuring queries are 
optimally written will solve most of the reasons why queries may be running slow. If these 
do not, the other reason may be that too many concurrent queries are being run, and 
queries are being queued by the Athena service. You can check this by running your query 
and running a CLI command to get the amount of time the query spent in the queue. The 
following shows an example of the CLI command and its results:

aws athena get-query-execution --query-execution-id <EXECUTION 
ID>

{

    "QueryExecution": {

        "QueryExecutionId": "edea5091-6061-44bb-89ce-
96090098c1b1",

        "Query": "select * from customers limit 10",

        "StatementType": "DML",

https://amzn.to/3kjBuJt
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        ... (Section omitted ) ...

        "Statistics": {

            "EngineExecutionTimeInMillis": 511,

            "DataScannedInBytes": 35223,

            "TotalExecutionTimeInMillis": 765,

            "QueryQueueTimeInMillis": 155,

            "QueryPlanningTimeInMillis": 89,

            "ServiceProcessingTimeInMillis": 99

        },

        "WorkGroup": "packt-chapter11"

    }

}

Under the statistics section, you will see the QueryQueueTimeInMillis statistic. 
This value shows you the amount of time the query spent in Athena's queue, waiting for 
resources to execute on. If this value is consistently high, then your query rate is too high. 
Recommendations on how to monitor and the steps to correct this are in Monitoring 
query queue time in this chapter. 

My query is failing due to the scale of data
This is the next most common issue customers face. The amount of data that Athena 
can scan is only limited to the maximum amount of time the query can run for, which 
by default is 30 minutes. When Athena performs simple table scans, it can process 
petabytes of data. However, if you see error messages such as  INTERNAL_ERROR_
QUERY_ENGINE, EXCEEDED_MEMORY_LIMIT: Query exceeded local 
memory limit, Query exhausted resources at this scale factor, 
and encountered too many errors talking to a worker node. The 
node may have crashed or be under too much load, then it's highly likely 
that your query contains complex operations, such as joins, aggregations, or windowing 
functions. These operations are performed by shuffling data around to nodes based on the 
values of the rows and stored in memory until the operation is completed. If a single node 
in the execution engine's cluster exhausts its resources, the query will fail. 



314     Operational Excellence – Monitoring, Optimization, and Troubleshooting

There are a few strategies to overcome this issue. The first is to reduce the amount of data 
processed within the query by filtering data as soon as you read a table before complex 
operations. For example, take the following query: 

SELECT upper(col1), sum(col1 + col2) FROM 

    (SELECT 

        table1.key, table1.col1, table2.col2 

     FROM table1 

     LEFT OUTER JOIN table2 

     ON table1.key = table2.key) innerQuery

WHERE col2 > 10

This can be rewritten as follows:

SELECT upper(col1), sum(col1 + col2) FROM 

    (SELECT 

        table1.key, table1.col1, table2.col2 

     FROM table1 

     LEFT OUTER JOIN 

        (select * from table2 WHERE col2 > 10)

     ON table1.key = table2.key) innerQuery

Filtering data before performing a complex operation can really improve performance  
and reduce memory requirements. Selecting only the columns that are of interest can  
help as well. Lastly, splitting up the query into smaller queries that scan a subset of 
partitions may help.

The other strategy is to find out whether your data has any data skews. Data skews exist 
when your data is not evenly distributed across a cluster when a complex operation is 
performed. For example, suppose there was a dataset that tracked all the different types 
of chairs. You performed a join on the number of legs a chair has to a dimension table, 
that is, SELECT * FROM chairs JOIN dim ON chairs.legcount = dim.
legcount. Since most chairs have four legs, there will be significantly more data going  
to one node to perform the join, exhausting all the available memory. The only way to  
deal with this is to distribute the joins data across several nodes by joining on more than 
the legcount column or to reduce the number of rows by aggregating the data before 
the join occurs. 

Now that we have gone through some troubleshooting techniques, let's summarize what 
we have learned in this chapter.
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Summary
In this chapter, we went through best practices to get the most out of Athena while making 
sure it operates smoothly. We went through how we can create alarms to keep track of 
query queue time and costs, and take action to prevent Athena's unexpectedly high usage 
from leaving us with unexpected bills at the end of the month. We then went through how 
to optimize our usage of Athena by looking at best practices on how to store data and the 
queries we run. To do that, we explored how to look at the explain plans and how to read 
them to identify possible bottlenecks or issues with the written queries. Lastly, we looked 
at what to do when a query fails and the common problems users usually encounter. 

The next chapter will dive into query federation, which allows you to query almost any 
data source with Athena. 

Further reading
• Amazon Athena CloudWatch Metrics – https://docs.aws.amazon.com/

athena/latest/ug/query-metrics-viewing.html

• Top 10 Performance Tuning Tips for Amazon Athena – https://aws.amazon.
com/blogs/big-data/top-10-performance-tuning-tips-for-
amazon-athena/

• Athena Partition Projection – https://docs.aws.amazon.com/athena/
latest/ug/partition-projection.html

• Athena EXPLAIN documentation – https://docs.aws.amazon.com/
athena/latest/ug/athena-explain-statement.html

• PrestoDB 0.217 EXPLAIN documentation – https://prestodb.io/
docs/0.217/sql/explain.html

• Amazon Athena Troubleshooting – https://docs.aws.amazon.com/
athena/latest/ug/troubleshooting-athena.html

https://docs.aws.amazon.com/athena/latest/ug/query-metrics-viewing.html
https://docs.aws.amazon.com/athena/latest/ug/query-metrics-viewing.html
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://docs.aws.amazon.com/athena/latest/ug/partition-projection.html
https://docs.aws.amazon.com/athena/latest/ug/partition-projection.html
https://docs.aws.amazon.com/athena/latest/ug/athena-explain-statement.html
https://docs.aws.amazon.com/athena/latest/ug/athena-explain-statement.html
https://prestodb.io/docs/0.217/sql/explain.html
https://prestodb.io/docs/0.217/sql/explain.html
https://docs.aws.amazon.com/athena/latest/ug/troubleshooting-athena.html
https://docs.aws.amazon.com/athena/latest/ug/troubleshooting-athena.html




Section 4:  
Advanced Topics

In this section, we will delve into advanced topics, including how to extend Athena with 
your own custom data sources and functions.

This section consists of the following chapters:

• Chapter 12, Athena Query Federation

• Chapter 13, Athena UDFs and ML

• Chapter 14, Lake Formation – Advanced Topics





12 
Athena Query 

Federation
Welcome to Chapter 12, Athena Query Federation, and the beginning of Section 4, 
Advanced Topics. In this part, we will cover topics that go deeper into highly customizable, 
experimental, or emerging areas of development for Amazon Athena. Don't be 
intimidated by the "advanced" designation as these topics are not necessarily more  
difficult to understand or use than those we covered earlier. This chapter is all about 
getting the most out of Amazon Athena by using Query Federation to expand beyond 
queries over data in S3. We will learn how Query Federation allows you to combine data 
from multiple sources, such as DynamoDB and Elasticsearch, to provide a single source  
of truth for your queries. 

We'll begin by peeling back the curtain to explain Athena Query Federation's architecture, 
including how Athena uses AWS Lambda to run its customizable Connectors. Since the 
entire Athena Federation SDK and its 14 initially released Connectors are all open source, 
we can quickly run queries across several sources all from one tool. In addition, these 
same open source Connectors offer a great set of examples, upon which we can build  
our custom Connectors for proprietary datastores, formats, or simply integrate them with 
sources that aren't officially supported yet. Before the end of this chapter, you'll deploy  
and query one of Athena's off-the-shelf Connectors, and we'll also build our very own 
custom connector from scratch using Athena's Federation SDK. 
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In this chapter, we will cover the following topics:

• What is Query Federation?

• How Athena Connectors work

• Using pre-built Connectors

• Building a custom connector

Technical requirements
Wherever possible, we will provide samples or instructions to guide you through the 
setup. However, to complete the activities in this chapter, you will need to ensure you  
have the following prerequisites available. Our command-line examples will be executed 
using Ubuntu, but most Linux flavors should work without modification, including 
Ubuntu on Windows Subsystem for Linux.

You will need internet access to GitHub, S3, and the AWS console.

You will also require a computer with the following installed:

• Chrome, Safari, or Microsoft Edge

• The AWS CLI

This chapter also requires that you have an AWS account and an accompanying IAM 
user (or role) with sufficient privileges to complete this chapter's activities. Throughout 
this book, we will provide detailed IAM policies that attempt to honor the age-old best 
practice of "least privilege." For simplicity, you can always run through these exercises 
with a user that has full access. Still, we recommend using scoped-down IAM policies 
to avoid making costly mistakes and learning more about using IAM to secure your 
applications and data. You can find the suggested IAM policy for this chapter in this 
book's accompanying GitHub repository, listed as chapter_12/iam_policy_
chapter_12.json, here: https://bit.ly/3xCi0ow. The primary additions from 
the IAM policy that have been recommended for past chapters include the following:

• Adding CloudFormation access for using Serverless Application Repository

• Adding Lambda access for deploying and executing Athena Connectors.

https://bit.ly/3xCi0ow
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What is Query Federation?
Simply put, Query Federation refers to the concept that a query engine such as Athena 
may enlist the help of multiple datastores, working together, to execute your query.  
These datastores are usually capable of more than file-level CRUD operations. Most  
will support row-level scan, filter, and project operations, with some handling full SQL. 
We've mentioned this concept earlier in this book, typically concerning ETL versus 
querying in place. Let's take a closer look at the practical difference between a federated 
query and what we'll call a classic query. 

The following diagram shows an example of a tried and true S3 data lake. There are 
multiple datastores, namely DynamoDB, RDS Aurora, and a generic database, all feeding 
into S3. Then, Athena, or another query engine, with the aid of Glue Data Catalog, can 
access all our data. This is a classic query. You submitted the query to Athena, and Athena 
directly answered your query by reading the table(s) in the data lake. As you've seen 
throughout this book, S3-backed data lakes offer countless advantages over alternate 
models. One of those advantages encapsulates the difference between a federated query 
and the classic query we just described:

Figure 12.1 – Data lake model
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By exporting, copying, or replicating your data into S3, you've decoupled your operational 
store from your analytics queries. Put another way, if you run a resource-intensive 
query against your data lake, there is no chance you'll overwhelm your website's MySQL 
database, which would result in web page timeouts for customers. By decoupling these 
systems, you've traded consistency for availability. Physics will ensure that the data in your 
S3 data lake always creates lag in the authoritative system that created the data. In the vast 
majority of cases, this lag is not a problem, and you should jump at the opportunity to 
reduce non-critical workloads running on operational stores. 

Like many engineers that have come before you, you may be asking yourself whetherthere 
is a better way. For example, can I avoid the delay or the work of replicating all that data 
into S3? Query Federation is one way you can avoid copying data to S3 while getting the 
most up-to-date view possible. However, the second rule of optimization applies here as 
federating queries across datastores doesn't come without downsides.  

The Rules of Optimization
Many a human has fallen foul of the rules of optimization. Optimization is 
tricky, and our brains are so good at finding patterns that they see patterns that 
aren't real or are so uncommon that they aren't worth handling. Thus, the first 
rule of optimization is "don't optimize." The intention is to help avoid adding 
complexity when a more straightforward approach might be just as good or 
better. The assumption is that you don't usually know what is worth optimizing 
until you have a complete picture of the system and its usage patterns. Wait! 
If we never optimize anything, won't everything be slow?! Yes, and you might 
even need to redo all that work you did without considering performance. 
That's why there is a second rule of optimization that pokes fun at the first. The 
second rule goes as follows: "For experts only, optimize." 

The following diagram demonstrates how Athena Query Federation can enable Athena to 
directly query your operational data stores and avoid the need to copy data to S3. We've 
deployed three Athena Query Federation Connectors in this example, one for each source 
we want to query:
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Figure 12.2 – Query Federation model

In the next section, we'll learn how these Connectors work. But for now, you only need 
to know that they act as translators, turning Athena's representation of rows, columns, 
and queries into that of the target datastore. So, in this example, when you submit your 
query to Athena, S3 and Glue Data Catalog do not act as an integration point between 
Athena at the various systems that house the data you are trying to query. Instead, Athena 
enlists the help of the underlying datastores to execute your query. Athena's engine begins 
by analyzing the query and identifies the tables and columns it must read. This step is 
identical to using a query against data residing in an S3-backed data lake. Then, as Athena 
attempts to resolve the storage location of each table, it classifies them as being natively 
supported or residing in a federated source. Finally, for each federated source, Athena 
determines which of its available Connectors can reach the requested table(s). Together, 
these pieces of information allow Athena to create a physical plan for executing the query. 
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The resulting physical plan is a blueprint for how Athena will build the results of your 
query. Much like the construction of a house, some parts of the work will be done by 
Athena itself, but other details will be sub-contracted to specialists. For example, the 
contractor that frames your home may not be as proficient at installing a bathroom fixture 
as a plumber. Athena Query Federation takes the same approach with data stores. Where 
possible, Athena prefers to delegate portions of the query to the underlying datastore. This 
is true for all federated sources but is especially prevalent in Athena's JDBC connector. 
For example, Athena pushes down full SQL fragments to databases such as RDS Aurora 
so that your query can benefit from any indexes, query caches, or other dark magic that 
allows Aurora to scale. 

Now that we have a better understanding of Query Federation and its differences from 
classic Data Lake queries, let's look at their unique features.

Athena Query Federation features
Since its announcement in 2018, the Athena team has released open source  
Connectors for more than 14 databases, storage formats, and live APIs, with dozens more 
community-built Connectors available in the AWS Serverless Application Repository. 
At the heart of Athena, Query Federation is an SDK that defines a set of interfaces, as 
well as an accompanying wire protocol you can implement to enable Athena to delegate 
portions of its query execution plan to code that you write and deploy. In essence, you 
can customize Athena's core execution engine with your functionality while still taking 
advantage of Athena's ease of use and fully managed nature. 

Some of the notable features of Athena Query Federation include the following:

• Lambda-based deployments: Athena Query Federation allows you to deploy your 
Connectors and UDFs as AWS Lambda functions, preserving Athena's serverless 
experience. This ensures your Connectors are easy to manage and scale and can 
securely access datastores in your VPC, without the need to grant Athena access  
to your network.

• Apache Arrow: Athena has adopted Apache Arrow as a standard format for the 
data interchange format. Apache Arrow is a widely adopted open source format 
capable of zero-copy transfers with support from Spark, Python, and AWS  
Lake Formation.

• Federated metadata: It's not always practical or possible to store your table 
metadata in AWS Glue Data Catalog. As such, Athena Query Federation allows  
you to choose between AWS Glue Data Catalog and implementing a metastore 
interface. Athena will use that interface during query planning to look up table  
and column details. 
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• Federated UDFs: Athena can delegate calls for batchable scalar UDFs to you, 
allowing you to write custom UDFs. 

• AWS Secrets Manager integration: If your Connector needs a username, password, 
or other sensitive information, you can use the SDK's built-in tooling to resolve 
secrets. This is especially helpful when you're federating to non-cloud-enabled 
datastores. 

• Federated identity: When Athena has federated a query to your connector, you 
may want to perform authorization on the identity of the entity that executed the 
original Athena query.

• Parallelized and pipelined reads: Athena will parallelize reading your tables based 
on the partitioning information that's returned by your Connector. This allows  
you to tell Athena how it should divide reads for optimal performance.  

• Predicate pushdown: Where relevant, Athena will supply your Connector with 
the associative portion of the query predicate. This enables your Connector to 
filter results or translate the predicate into the source datastore for maximum 
performance. It also has the nice side effect of lowering the cost of your Athena 
query by dropping data before it reaches Athena. 

• Column projection: Athena supplies your Connector with the columns that need 
to be projected so that you can reduce the amount of data that's scanned. This is 
especially useful when you're federating to columnar stores such as Redshift. 

• Congestion Control: Some datastores may not be as scalable as Athena or run 
operationally sensitive workloads. Athena automatically detects signs of congestion 
and supports explicit throttling exceptions from your Connectors. When congestion 
is suspected, Athena employs an algorithm similar to TCP's flow control to 
organically "share the road" with other workloads. This makes it easier to scale your 
usage of Athena while simultaneously protecting sensitive data stores. 

With our newfound understanding of federation queries, we can take a deeper look at 
Athena's implementation of this new query pattern. In the next section, we will unpack 
the architecture of an Athena connector.
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How Athena Connectors work
Unsurprisingly, Athena Connectors follow a similar structure to both Presto and Trinio 
Connectors, with one notable difference. Athena's Federation SDK is designed to decouple 
your Connector from Athena's core engine, whereas both Presto and Trinio require 
Connectors to run within the engine. If you keep this key difference in mind, much 
of what we are about to describe applies to Athena, Presto, and Trinio. At the heart of 
each Connector is the Athena Federation SDK, which provides an abstraction over the 
boilerplate code required to enable Athena to orchestrate your federated query. Every 
Athena Connector is required to implement the following six functions defined in the 
SDK (https://bit.ly/3vXmm9j):

•  doListSchemaNames(…): This function provides Athena with a list of schemas, 
also known as databases, that the Connector believes are available in the federated 
source.

•  doListTables(…): This function provides Athena with a list of tables in  
a given schema (that is, a database) that the Connector believes are available in the 
federated source.

• doGetTable(…): This function provides Athena with the columns, partition,  
and storage details of a requested table in the federated source.

• doGetTableLayout(…): This function provides Athena with details about 
how a given table is physically stored as a means to quickly prune portions of 
the table's physical storage from the query plan. If your source doesn't support 
such partitioning, you can use Athena's default implementation and mostly skip 
implementing this function.

• doGetSplits(…): This function influences the level of parallelism that Athena 
uses to read the data for your federated query. Each split represents a chunk of  
rows that Athena must read from your Connector to complete the query.

• doReadRecords(…): Athena uses this function to read actual rows of data  
(that is, splits) from your federated source.

Each of these function names begins with the word do. This is a common programming 
convention that hints at the fact that some higher-level abstraction uses these functions 
to delegate doing some specific thing. The first five functions all supply Athena's query 
planner with metadata, with the sixth function, doReadRecords(…), being the 
only one that interacts with the raw data associated with your tables. Later, we'll write 
a connector from scratch and implement many of these functions to give you an even 
deeper understanding of what they do. 
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In true Amazon fashion, the Athena team is always attempting to make life easier  
for customers. Several of these functions have been further simplified for the most 
common use cases. Customers can choose to implement them as is for complete 
control over their connector, or they can opt for default implementations of 
doGetTableLayout(…) and doReadRecords(…), leaving them to implement  
a simplified readRecordsWithConstraint(…) function. But we're getting deeper 
into the code than we need to at the moment. So, for now, the key takeaway is that 
the SDK offers you a balance of control and customization while also seeking to make 
common things easy.

The following diagram shows how Athena calls these functions. 
doListSchemaNames(…) and doListTables(…) are only used when  
you run a show tables or show databases query, so we will omit them for now. 
Athena calls the getTable(…) API on your Connector, which is handled by the 
MetadataHandler class in Athena's Federation SDK for each table in your query:

Figure 12.3 – Athena Federation call flow (ordered top to bottom)
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MetadataHandler's getTable(…) function handles serialization and error checking 
before calling the doGetTable(…) function that your connector implements. Once 
Athena has retrieved the schema information for your table using the getTable(…) 
API, it uses the getTableLayout(…) API to allow your Connector to participate in 
physical query planning. This is a fancy way of saying your Connector can look at the 
table's storage characteristics, such as partitioning, and choose the access pattern that best 
matches the required columns and query predicates that Athena has supplied as part of 
the API call. A typical example of this would be a table that is partitioned by a column that 
also appears in the where clause. Your Connector can only return partitions that satisfy 
the where clause, potentially pruning large amounts of data without ever having to read 
those physical partitions. 

Next, Athena calls the getSplits(…) API for batches of partitions returned by the 
call to getTableLayout(…). Here, we encounter one of the most confusing aspects 
of Athena Query Federation. Athena doesn't understand the partition or split objects 
that your Connector returns. So, why would Athena call our Connector for these values 
if it doesn't know what they represent? The answer is simple: Athena is acting as the 
orchestrator of the federated query. While Athena may not understand or care about the 
partition or split objects your Connector returns, it knows your Connector cares about 
them in later steps, such as the call to readRecords(…). In this way, Athena provides 
you with the plumbing and structure to build a Connector so that you don't have to create 
a full query planner or distributed computing framework. 

The desire to simplify the process of building and deploying Connectors is why Athena 
chose AWS Lambda as the first compute primitive for Athena Query Federation. As  
we mentioned earlier, AWS Lambda allows us to preserve Athena's serverless experience, 
but there are other, less obvious reasons why AWS Lambda compliments the concept 
of federated queries. For example, AWS Lambda strongly isolates functions from their 
callers. This allows Athena to federate to your datastores without the need for you to  
open your VPC network or datastore directly to Athena. For those of you who are 
network-savvy, this also allows everyone to ignore the potentially frustrating task of 
routing across overlapping IP address ranges. 

At a recent re:Invent talk, the Athena team indicated that AWS Lambda would be the 
first but likely not the last compute option for Athena Federation. They were working to 
vertically integrate high-performance UDFs and Connectors directly into Athena's engine, 
without the extra hope of remote calls to Lambda. Still, the choice to use AWS Lambda to 
process large amounts of data often raises questions about performance and cost. In the 
next section, we will tackle this topic directly. 
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Using Lambda for big data
One of the most frequently asked questions the team received after launching Athena 
Query Federation pertained to the use of Lambda for processing large amounts of data. 
Customers wanted to understand the performance, scale, and cost implications. The 
Athena Federation team spent a lot of time designing the APIs, performing serialization, 
and performing stress tests to ensure that the answers to these questions would be 
acceptable. In short, Lambda ends up being an excellent option for offloading the compute 
associated with Athena Connectors in almost every case. 

Firstly, Lambda can scale to many thousands of concurrent invocations, ensuring that 
Lambda concurrency never becomes a bottleneck for running concurrent Athena queries. 
Second, with all that concurrency, it's a good thing that additional costs associated with 
Lambda costs are typically less than 5% of the total of a federated Athena query. Lastly, 
Athena's engine deeply pipelines most operations, such as table scans and aggregations,  
to reduce latency. Any remaining overhead associated with an extra data transfer hop 
from Lambda is overcome through sheer parallelism in the form of concurrent  
Lambda invocations.

So, even though it may seem like an unlikely choice to use Lambda for processing 
large amounts of data, Lambda offers a powerful compute primitive that, when used 
appropriately, can process 100 Gbps of data without breaking a sweat. There are, however, 
a few cases where the use of Lambda makes things a bit tricky. For example, suppose the 
data source you are federating to does not support parallel scans. In that case, the table 
scan portion of your federated query will be limited to that of a single Lambda invocation. 
At the time of writing, a Lambda invocation is limited to a max runtime of 15 minutes. 
Customers most often encounter this limit when federating to an RDBMS such as 
MySQL. The other limit pertains to how results are transmitted from Lambda to Athena. 
A Lambda invocation is limited to a 6 MB response. As we'll see later in this chapter, 
the Athena Federation SDK hides this limit by spilling data above this limit to S3 in 
chunks that allow Athena to pipeline reads. As we mentioned previously, the SDK mostly 
hides this inconvenient truth, so you don't need to do any extra work. It does this by 
automating the creation and transmission of the spilled data, including using a per-query 
encryption key that protects the spilled data that is automatically shredded after the query 
is completed. Your only responsibility is setting up an S3 life cycle policy to periodically 
delete old files from the spill's location.

Next, we'll cover an often overlooked aspect of Query Federation. The sources you'll want 
to query will often sit in different networks or VPCs. Thanks to Lambda, Athena allows 
you and your network engineers to completely sidestep the routing, DNS, and security 
headaches of presenting a flat network to your query engine. 
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Federating queries across VPCs
The intricacies of network design, routing, and connectivity have filled many books twice 
the size of this one. Luckily, you won't need to solve these kinds of problems to configure 
or use Athena Query Federation. Still, it is worth understanding this class of issues and 
how Athena solves them for you. Having this basic knowledge will help you when you're 
evaluating alternatives to Athena. It may also allow you to simplify your network design  
if it was previously dictated by limitations in the analytics suite you were using. 

Suppose our company had three separate VPCs or networks, similar to those shown 
in the following diagram. VPC-A was our first VPC. We were a young company and 
just learning about network design, so we ended up using an entire Class A network 
(10.0.0.0/8) for our VPC. The team figured that this was a good idea to plan for scale 
upfront, and a Class A network can fit more than 16 million hosts in our VPC, so we'd 
never outgrow it. Later, we acquired a competitor and inherited VPC-B. The designers 
of VPC-B had a bit more experience and didn't use an entire Class A network. Instead, 
they carved out a piece of the 10.0.0.0/8 private space for their VPC. This would 
leave room for future growth or acquisitions without address overlaps. We'll describe why 
overlaps can be painful shortly. Until recently, these two VPCs remained independent, but 
now, there is a push to integrate the two companies, beginning with an analytics solution 
that can unify siloed data for reporting. 

It is at this point that the networking teams realized that the resources in VPC-A and 
VPC-B have overlapping addresses. Unfortunately, that means we can't connect these two 
networks because any IP address in VPC-B might also be a valid, in-use IP address in 
VPC-A. Typically, your network engineers would have to deploy and configure a Network 
Address Translation (NAT) capable firewall or edge device to act as a proxy between 
the two networks. Sometimes, they may even need to introduce a third network, as we've 
done in the following diagram, because VPC-A and VPC-B resources should remain 
independent for operational and security reasons. Only the analytics system housed in 
VPC-C should be able to access the data stores. They never need to access each other:
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Figure 12.4 – Athena Federation network topology

These problems happen more often than companies would like to admit. Just ask the 
designers of IPv6. As the successor to the IPv4 address schema used in the preceding 
diagram, it can support 3.4×1038  addresses while IPv4 offers just 4.2×109. The IPv6 
address space is so large that there isn't even an agreed specification or implementation  
for IPv6 address translation in the Linux kernel. 

Luckily for you, Athena doesn't require your federated sources to be on the same network. 
Instead, each Athena Connector can be deployed directly into the network housing your 
datastores via Lambda VPC attach capabilities. When an Athena query attempts to access 
the RDS Aurora instance in VPC-A, Lambda will quickly attach to that VPC and allow 
the Connector code to communicate with your RDS instance. From within the same 
query, you can join against a table housed in a Redshift instance from VPC-B, and Athena 
will invoke the appropriate Lambda function connected to VPC-B. The networks remain 
isolated from each other, but your queries are free to span datastores and networks. 

This feature is not likely to show up on a flashy presentation or marketing promotion 
because its existence means you don't need to trouble yourself with these details. It is not 
until you find yourself in a situation where this capability is missing that you realize  
it was worth adding to your acceptance criteria. With our introduction to Athena Query 
Federation completed, we can start our hands-on experience. First, we will deploy and use 
a pre-built connector before building a connector from the ground up.
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Using pre-built Connectors
As part of our first hands-on experience with Athena Query Federation, we'll deploy 
and query one of Athena's 14+ pre-built Connectors. The Athena team has published 
these Connectors to the Athena Query Federation GitHub repository (https://bit.
ly/3vXmm9j) and the AWS Serverless Application Repository. The AWS Serverless 
Application Repository offers a one-click experience for deploying Lambda-based 
serverless applications. This section will show you how to use the AWS Serverless 
Application Repository to search for and deploy an instance of the Athena CMDB 
Connector. 

The Athena CMDB Connector allows you to query various AWS resources using standard 
Athena SQL. For example, you can SELECT all EC2 instances in a specific VPC or search 
for all S3 objects greater than a particular size and residing in the most expensive storage 
tier. At the time of writing, the Connector exposes the following AWS services and 
resources as databases and tables, respectively:

• ec2: This database contains EC2-related resources, including the following:

 � ebs_volumes: Contains details of your EBS volumes

 � ec2_instances: Contains details of your EC2 instances

 � ec2_images: Contains details of your EC2 instance images

 � routing_tables: Contains details of your VPC routing tables

 � security_groups: Contains details of your security groups

 � subnets: Contains details of your VPC subnets

 � vpcs: Contains details of your VPCs

• emr: This database contains EMR-related resources, including the following:

 � emr_clusters: Contains details of your EMR clusters

• rds: This database contains RDS-related resources, including the following:

 � rds_instances: Contains details of your RDS instances

• s3: This database contains RDS-related resources, including the following:

 � buckets: Contains details of your S3 buckets

 � objects: Contains details of your S3 objects (excluding their contents)

https://bit.ly/3vXmm9j
https://bit.ly/3vXmm9j
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Navigate to Serverless Application Repository in the AWS console. Then, click on 
Available Applications from the left navigation bar. Check the Show apps that create 
custom IAM roles or resource policies box. Search for AthenaAwsCmdbConnector 
and click on the result labeled as having been published by an AWS-verified author. 
Alternatively, you can go directly to the CMDB Connector's detail page via this direct 
link: https://amzn.to/3x909VH. Regardless of how you get there, you'll see a page 
similar to the one shown in Figure 12.5 and Figure 12.6. At the top of the page, you'll see 
a basic description of the Connector, including where you can find the source code for 
it, as well as the "AWS verified author" badging, which guarantees that this Connector is 
officially supported by the Athena team:

Figure 12.5 – Athena CMDB Connector summary

For your convenience, you can also click to expand the CloudFormation template and 
IAM permissions that this Connector will run. The AWS IAM team has released several 
useful utilities to help you get a handle on your IAM policies, including Access Analyzer. 
Regardless, it's nice to have the policy that's used by the Connector available before you 
deploy it. This is the same philosophy that has led us to provide a per-chapter IAM policy 
in this book's accompanying GitHub repository. 

https://amzn.to/3x909VH
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Further down, on the Connector deployment page, you'll see the README file for the 
Connector with more details about its functionality and usage. On the right pane, as 
shown in the following screenshot, you'll see a form that lets you fill in several settings  
that will be used to deploy and configure an instance of your Connector. If you are 
using the IAM policy provided for this chapter, you'll want to ensure that you choose 
an application name that begins with packt-serverless-analytics-. This will 
be used to create the CloudFormation stack that deploys your Connector's Lambda 
function and IAM role. The other setting you'll need to pay close attention to is 
AthenaCatalogName. Your IAM policy is configured to allow any catalog name that 
begins with packt_serverless_analytics. This will not only be the name of your 
Lambda function but also the catalog name that you'll use in your Athena query. Be sure 
to avoid using any special characters other than underscores:

Figure 12.6 – Athena CMDB Connector deployment form
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Once you've filled in the other settings, be sure to check the I acknowledge that this 
app creates custom IAM roles dialog box and click Deploy. Over the next 5 minutes, 
the Connectors CloudFormation script will run, creating a Lambda execution role and 
Lambda function. You can navigate to the CloudFormation console to view the status  
of each step in the deployment. Once it completes, you can go to the Athena console to 
run your first federated query!

Our first query will be a basic test of the Connector to ensure that it was deployed 
correctly. Later, we'll run more interesting queries over our AWS resource inventory.  
For now, let's see whether we can get our Connector to return a list of schemas it supports. 
To do this, we'll be using a convenience syntax that Athena offers for federated queries. 
In the following screenshot, we ran a show databases in 'lambda:packt_
serverless_analytics_cmdb' query. 

There are three notable aspects to this query. First, it uses backticks around the catalog 
name. This is one of the few places in Athena's syntax where backticks are used. Second, 
we can prefix the catalog name with lambda:. This is a convenience syntax that tells 
Athena that this catalog is not registered in Glue Data Catalog or Athena's catalog registry. 
Instead, treat the rest of this catalog name as a Lambda function. In most cases, you'll 
want to register the Lambda function as a catalog to make it easier for your customers  
to discover federated sources. We will use this syntax for now because it lets us get  
up and running with fewer steps. Lastly, we use the name of our Lambda function, 
packt_serverless_analytics_cmdb. If you used a different name for your 
Lambda function, be sure to use that in your query. If successful, the query will return  
a list of schemas, or databases, including rds, s3, ec2, and emr:

Figure 12.7 – Querying your CMDB Connector
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Now that we know our Connector has been deployed successfully and that our IAM user 
has been configured correctly to interact with the Connector, let's explore one of the more 
interesting tables that's exposed by this Connector. Running the following SQL from the 
Athena console will return a description of a virtual table that we can query to get the list 
of S3 objects in a bucket:

DESCRIBE 'lambda:packt_serverless_analytics_cmdb'.s3.objects

Then, we can use the full capability of Athena's SQL engine to filter or join this data 
against other sources. Notice again that we are using the lambda: syntax described 
earlier. This query will return the table schema for the Objects table of the S3 database, 
as shown in the following table. We'll use this schema to craft a query over the Athena 
results location we've been using in S3 across the various chapters in this book. You can 
certainly choose to query something else once you get a handle on the schema:

Table 12.1 – S3 objects table schema

For this next query, our goal will be to find out how many bytes of S3 storage we are 
currently using for all the Athena query results we've generated while following the 
exercises in this book. Accordingly, we will select the sum of the bytes column from the 
s3 database and the objects table, as shown in the following query. This Connector 
uses a bit of trickery to determine which S3 bucket you want to query. It does this by 
looking for an equality condition between the bucket_name column and a string literal. 
The Connector does this to avoid an extremely taxing series of S3 operations that list all 
the objects in all the buckets you own. 



Building a custom connector     337

Hence, omitting a where clause filter for a specific bucket results in the query failing. 
Lastly, we will use a regular expression to filter down to keys that begin with results/. 
If your Athena results location is different from this, be sure to update the expression so 
that it matches the results location you have configured on your Athena workgroup. When 
you are ready, go ahead and run the query:

SELECT sum(bytes)

FROM 

    "lambda:packt_serverless_analytics_cmdb".s3.objects 

WHERE

    bucket_name = '<YOUR_ATHENA_RESULTS_S3_BUCKET>' 

    and regexp_like(key, 'results/.*')

LIMIT 100

You can follow the same steps to deploy any of Athena's pre-built Connectors for sources, 
including Elasticsearch, DynamoDB, Neptune, and more. Now that we've deployed 
our first Connector and run a few federated queries, we're ready to author a custom 
Connector. The next section will walk us through integrating Athena with any data source 
we can imagine, just by writing six Java functions!

Building a custom connector
In addition to the 14 Connectors published by the Athena service team, a growing 
community of third-party and open source Connector authors is continually adding 
Connectors to the ecosystem. In most cases, you'll be able to use a ready-made Connector 
to query your source of interest. However, there may be cases where you'd like to modify 
or extend one of the existing open source Connectors to better fit your needs. Or maybe 
your company has a proprietary datastore or storage format that would benefit from a 
serverless query engine. Whatever the reason, this section will walk you through the key 
steps of authoring a new Connector and using it with Athena. 
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Setting up your development environment
To write a new Connector or modify an existing one, we'll need the ability to build, test, 
and package the code. So, our first task is to ensure we have a development environment 
with the appropriate builder tools. These tools will include Apache Maven, the AWS CLI, 
and the AWS SAM build tool. The Apache Foundation describes Maven as a "software 
project management and comprehension tool." That's a fancy way of saying Maven helps 
automate dependency management, build orchestration, and a host of related activities 
that can be added or augmented via plugins. The AWS SAM build tool is how we'll 
package our Connector so that it can be used with Lambda and Serverless Application 
Repository. Lastly, the AWS CLI will help us publish our Connector to Serverless 
Application Repository for deployment. 

If you've already got an environment that meets these requirements, you're welcome to use 
it. If not, don't worry – we'll guide you through the setup for Debian Linux-based systems 
such as Ubuntu or Ubuntu on Windows Subsystem For Linux. Most of the commands will 
work on other flavors of *nix with minor modifications. We'll assume you will be using  
a basic text editor without any fancy builder tool integrations and that you will need 
a guide to install these other dependencies. Let's get started by cloning this book's 
accompanying GitHub repository by using the following command:

git clone https://github.com/PacktPublishing/Serverless-
Analytics-with-Amazon-Athena.git

Inside the chapter_12 directory, you'll find a prepare_dev_env.sh script that you 
can run to install OpenJDK, Apache Maven, the AWS CLI, and the AWS SAM build tool. 
Depending on your CPU and disk speeds, the script may take 5 minutes or more to set 
up your environment. If the script is successful, it will print the installed version of each 
required tool at the end. The output will look similar to the following, but don't worry if 
your versions differ slightly:

aws-cli/1.19.96 Python/2.7.18 Linux/4.19.128-microsoft-standard 

SAM CLI, version 1.24.1

Apache Maven 3.5.4 

openjdk version "11.0.11" 2021-04-20 

javac 11.0.11

Next, we'll start writing the code for our custom Connector!
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A Note about Java Versions
While the Athena Federation SDK and its Connectors should work fine with 
Java versions up to and including 11, issues have been reported with Apache 
Arrow with JDK versions beyond 8. The open source project has resolved many 
of these issues and provided configuration workarounds for the remaining 
items. If you run into errors that appear to be related to your JDK version, try 
executing the exercise with OpenJDK 8.

Writing your connector code
For this exercise, we've put together a training Connector with all the structural 
boilerplate of an actual Connector taken care of for you. To guide you through the 
authoring experience, we've included the working code for each require function in 
the comments. This allows you to learn by doing while also putting the correct answer 
at arm's length so that you won't get stuck or frustrated. To get started, navigate to the 
athena-example folder in the chapter_12 directory of the GitHub repository 
you cloned in the previous section. You'll want to have a terminal window open in this 
directory, and we'll want to open the directory in our favorite text editor or IDE.

The athena-example Connector we'll be working with was initially provided by the 
Athena team as part of the Athena Federation SDK to teach customers how to write 
Connectors. We'll use a fork of that original Connector that reads data stored in S3 using 
a custom metadata source and custom file format. To make this exercise more realistic, 
the Connector is designed to read fictitious financial transaction data and even provide 
column-level masking capabilities. The Connector itself is intentionally simple, so you 
can focus on learning how to build a custom Connector instead of how to integrate with 
a specific source. In the sections that follow, we'll fill in the missing metadata and record 
reading code. We'll also run the included unit tests and use the Athena Federation SDK's 
ConnectorValidator to simulate Athena calling our Connector during an actual query.  
And of course, we'll end by using our new Connector in an Athena query.
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Editing ExampleMetadataHandler
When you open the athena-example folder, you'll find several configuration files, 
a license file, and some sample data in a CSV file. You'll also see an src directory that 
contains the code for your soon-to-be Connector. The first file we'll need to modify is the 
ExampleMetadataHandler.java file in the src/main/java/com/amazonaws/
connectors/athena/example directory. This class is responsible for providing 
Athena with metadata about the schemas (that is, databases), tables, columns, and the 
general layout of your data source. Lastly, this class tells Athena how to break up reads 
against your data source. This gives you control over the level of performance and 
parallelism Athena achieves when reading your tables. Let's go function by function in 
this class, explaining what your code needs to do to complete the exercise. For brevity, 
we won't include all the code you need in this book. Function signatures, returns, and 
other boilerplate will be omitted. This is an exercise that requires that you use this book's 
GitHub repository to get the full effect. If you aren't coding along with us, you can open 
the appropriate file in this book's GitHub repository in your browser using this link: 
https://bit.ly/3iRrHv8.

Our first function is doListSchemaNames. Since this is the first function you will 
be editing, we've included the entire function here. This function has an elementary 
responsibility. Athena will call it any time you run a show databases in 
'lambda:<function_name>' query to get the list of schemas (that is, databases) 
from your Connector. Looking at the function example here and in the GitHub project, 
you can see a working solution already included in the function, but it's commented 
out. The first time you create a new Connector, we recommend reading the commented 
solution and then uncommenting it to get a working Connector. You can repeat this 
exercise and make changes once you understand how everything works:

public ListSchemasResponse doListSchemaNames(BlockAllocator 
allocator, 

                                           ListSchemasRequest 
request)

    {

        Set<String> schemas = new HashSet<>();

        /**

         * TODO: Add schemas, example below

         schemas.add("schema1");

         */

        return new ListSchemasResponse(request.
getCatalogName(),             
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                                       schemas);

    }

Our next function, doListTables, is just as trivial. This is the final time that we'll show 
the entire function body so that you get the hang of completing the exercise. Similar to 
the previous function, Athena will call this function when your run a show tables 
in 'lambda:<function_name>'.schema1 query to get the list of tables in the 
requested schema. Again, your job, when completing this function, is to uncomment the 
provided solution. In this case, we are returning the same three tables, regardless of which 
schema was specified in the request object:

public ListTablesResponse doListTables(BlockAllocator 
allocator,          

                                       ListTablesRequest 
request)

    {

        List<TableName> tables = new ArrayList<>();

        /**

         * TODO: Add tables for the requested schema, example 
below

         tables.add(new TableName(request.getSchemaName(), 
"table1"));

         tables.add(new TableName(request.getSchemaName(), 
"table2"));

         tables.add(new TableName(request.getSchemaName(), 
"table3"));

         */

        return new ListTablesResponse(request.getCatalogName(),      

                                      tables, 

                                      null);

    }
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We've finished two of the six functions that we need to write! But don't get too  
excited – doListSchemaNames and doListTables were just a warmup. The 
remaining four functions have some meat to them, and each implements a vital aspect  
of executing our queries. The doGetTable function is on deck. When Athena is parsing 
our query, it will call doGetTable to ensure the tables and columns that are referenced 
in our query are valid and get the types of each column. In our example Connector,  
we don't bother validating whether the requested table exists, but normally, this is a key 
part of this function. For now, our example focuses on building and returning the schema 
of the single table our Connector supports. The function begins with the following code 
snippet, which specifies the names of the table's partition columns. You may be wondering 
about the significance of declaring a partition column. From Athena's perspective, this 
designation means little other than to indicate your data source can prune data, along 
these dimensions with elevated efficiency. In our case, we have three partition columns 
called year, month, and day:

        Set<String> partitionColNames = new HashSet<>();

        /**

         * TODO: Add partitions columns, example below.

         partitionColNames.add("year");

         partitionColNames.add("month");

         partitionColNames.add("day");

         */

In addition to the partition columns, we also need to return the complete list of columns 
and their associated data types so that Athena knows what kind of data to expect. You may 
recall from earlier in this chapter that Athena uses Apache Arrow as its data interchange 
format. The Apache Arrow specification also provides a way of defining the schema 
of your data. Accordingly, Athena expects the schema of your federated tables to be 
defined as an Apache Arrow schema. The Athena Federation SDK provides a convenient 
SchemaBuilder to make interacting with Apache Arrow's Schema object easier. 
In the following code snippet, we are using SchemaBuilder to produce an Apache 
Arrow schema object from our hardcoded schema. That hardcoded schema contains the 
three partition columns that we declared earlier (month, year, and day). Here, we are 
defining them as integers. 
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Next, we must add an account_id column defined as a string and a transaction 
column of the Struct type with two child columns. Since the Athena Federation SDK 
is built on Apache Arrow, we can use complex types such as Struct and List. The 
transaction struct contains an id field of the Integer type and a Boolean field  
named completed, indicating whether the system has finished processing this  
particular transaction:

        SchemaBuilder tableSchemaBuilder = SchemaBuilder.
newBuilder();

        /**

         * TODO: Generate a schema for the requested table.

         tableSchemaBuilder.addIntField("year")

         .addIntField("month")

         .addIntField("day")

         .addStringField("account_id")

         .addStringField("encrypted_payload")

         .addStructField("transaction")

         .addChildField("transaction", "id",       

                        Types.MinorType.INT.getType())

         .addChildField("transaction", "completed", 

                        Types.MinorType.BIT.getType())

         */

We momentarily skipped the string-based encrypted_payload field because it's a bit 
special. This field is intended to demonstrate the level of customization that is possible 
with the Athena Federation SDK. In our sample data file, we've stored a piece of sensitive 
information that only certain users should be able to decrypt. We'll use a UDF, covered 
more deeply in Chapter 13, Athena UDFs and ML, to decrypt this secret field right in our 
query. This may seem like a cumbersome way to handle row- or cell-level access control, 
and it is. AWS Lake Formation offers better options for this. We're only doing this to 
illustrate the level of customization you can achieve when writing a Connector. As with 
the previous code snippets, uncomment the working solution before moving on to the 
next function. 
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Later in this chapter, we'll upload sample data that matches this schema to S3 for  
our custom Connector to consume. To ensure the sample data works as expected,  
you should refrain from modifying the example code unless you plan to make appropriate 
changes throughout the example.

The getPartitions function is next, and while technically this function is considered 
optional to allow for unpartitioned tables, we'll implement it so that you know how it 
works. Since our example Connector doesn't connect to an actual data store, we will use 
hardcoded values for our partitions. This can be accomplished in the sample code by using 
a series of nested for loops. The outer loop generates year values from 2000 to 2018. 
The middle loop generates month values ranging from 1 to 12. The final loop naively 
generates day values from 1 to 31 without any regard for how many days are in the 
month. But this isn't the exciting part of the function, which comes next:

public void getPartitions(/* arguments omitted */) throws 
Exception {

    for (int year = 2000; year < 2018; year++) {

        for (int month = 1; month < 12; month++) {

            for (int day = 1; day < 31; day++) {

                final int yearVal = year;

                final int monthVal = month;

                final int dayVal = day;

Based on this getPartitions code, Athena queries that use this Connector would 
always need to process 6,324 partitions. That would be inefficient and slow if the query 
filtered on a specific partition using a WHERE clause such as "year = 2001 and 
month = 1 and day = 1"! Luckily, Athena will include relevant predicate conjuncts 
from your query when it calls your Connector. This allows us to use the built-in features 
of the Athena Federation SDK to implement partition pruning and filter out irrelevant 
partitions much earlier in the query's execution. 

When the Athena Federation SDK calls our getPartitions function, it supplies us 
with an instance of BlockWriter, which we can use to add partitions to the API's 
response. BlockWriter is automatically configured with the query predicates that  
were sent by Athena. Keep in mind that Athena won't send all the query predicates.  
For example, if you use the result of a function in your WHERE clause, Athena won't  
send that part of the predicate to you since your Connector may not support that 
function. In general, Athena only sends associative conjuncts on literal values. 
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In the following snippet, we are calling the supplied BlockWriter's writeRows  
function for each partition and providing a Lambda expression to set the values of the 
partition columns:

              /**

               * TODO: Build partitions

               blockWriter.writeRows((Block block, int row) -> 
{

                   boolean matched = true;

                   matched &= block.setValue("year", row, 
yearVal);

                   matched &= block.setValue("month", row, 
monthVal);

                   matched &= block.setValue("day", row, 
dayVal);

                   return matched ? 1 : 0;});

              */

            }

       }

   }

}

The Athena Federation SDK makes frequent use of this pattern wherever your code needs 
to interact with blocks of Apache Arrow data. By accepting a lambda instead of giving 
your function direct access to the Block objects, the Athena Federation SDK can handle 
most nuances of Arrow memory management. This dramatically reduces the chances 
that the author of a Connector introduces an unintended memory leak or race condition. 
Experts can still get full access to the Apache Arrow objects, but the default experience is 
much more curated.  

Within the Lambda expression, we can use the setValue function of Block to enter the 
values for the year, month, and day columns that uniquely identify our partition. After 
each call to setValue, we record whether the column's value matched the partition 
pruning predicate sent by Athena. Under the hood, the BlockWriter and Block 
constructs are applying the query conjuncts to determine whether the values match the 
query. However, this is just an optimization since Athena applies its partition pruning over 
your result to capitalize on any predicates that it could not send to your Connector. This is 
in addition to the actual data filtering that happens later in the query.
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Finally, we've reached our final metadata operation, doGetSplits. This function 
complements getPartitions. Athena will call doGetSplits for each partition 
supplied by getPartitions. Even if your Connector does not support partitioning,  
the Athena Federation SDK needs to return at least one partition if Athena thinks 
your query was fully partition pruned. The doGetSplits example starts with a bit of 
boilerplate code that extracts key input parameters from the request object. The only 
notable part is how we retrieve the details of which partitions Athena is requesting 
splits from. Each call to doGetSplits receives a batch of partitions in the form of an 
Apache Arrow block. To retrieve the values from the partitions block, we must use the 
getFieldReader method for each column we need to read:

public GetSplitsResponse doGetSplits(BlockAllocator allocator, 

                                     GetSplitsRequest request){

    String catalogName = request.getCatalogName();

    Set<Split> splits = new HashSet<>();

    Block partitions = request.getPartitions();

    FieldReader day = partitions.getFieldReader("day");

    FieldReader month = partitions.getFieldReader("month");

    FieldReader year = partitions.getFieldReader("year");

Now that we have a handle for the values in each partition column, we can loop over 
all the rows in the partition block that Athena sent us. We can do that using a simple 
for loop from zero to partitions.getRowCount(). The getRowCount function 
conveniently returns the number of rows in the Apache Arrow block. Because Apache 
Arrow is designed as an in-memory columnar data format, the FieldReaders we created 
earlier implement random access to each column. Accordingly, the first thing we must do 
inside our loop is set the row number on each of our partition column FieldReaders:

    for (int i = 0; i < partitions.getRowCount(); i++) {

        //Set the readers to the partition row we area on

        year.setPosition(i);

        month.setPosition(i);

        day.setPosition(i);
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This next part may be a bit confusing. For each partition, we need to generate one or more 
splits. What is a split, you ask? It's whatever you want or need it to be. There is only one 
thing Athena understands about a split. A split represents a piece of your table that needs 
to be read to complete the query. In this way, we can say that you split up the read into 
one or more read operations. This is the most critical unit of parallelism for your query. 
More splits means more opportunities to parallelize. Everything else about a split exists to 
support your ability to execute the read operation it represents. As such, Athena will call 
your Connector to read the data associated with a split, and it will supply the split object 
itself as a parameter to that read operation. We'll cover the readWithConstraint 
function and how it can use a split as input in the next section. For now, let's look at how 
we can construct a split.

A split is primarily a map of string keys and string values that serve as a place for the 
developer of a Connector to store arguments that the readWithConstraint function 
will need. When we construct the split, we supply a SpillLocation value and an 
EncryptionKey value using helper methods provided by the Athena Federation SDK. 
When reading a split, if the Lambda function generates more than 6 MB of data, the 
Athena Federation SDK must spill the data to S3 to avoid Lambda's response size limit. 
This spill location and optional encryption key are provided to Athena, as well as the 
eventual call to readWithConstraint via the split. Every split must have a unique 
spill location to avoid duplicate data, throttling, and, in some cases, query failure. The 
makeSpillLocation function ensures no two calls to the method return overlapping 
spill locations. The makeEncryptionKey function supports locally generated 
AES-GCM keys, as well as AWS KMS-generated AES-GCM keys. We recommend using at 
least the local key generation as it's free and doesn't meaningfully impact performance.

Lastly, in our example Connector's doGetSplits function, we must generate one split 
for each partition and store the year, month, and day partition field values on the split:

        /**

         * TODO: For each partition, create one or more splits. 

         Split split = Split.
newBuilder(makeSpillLocation(request), 

                                        makeEncryptionKey())

              .add("year", String.valueOf(year.readInteger()))

              .add("month", String.valueOf(month.
readInteger()))

              .add("day", String.valueOf(day.readInteger()))

              .build();

         splits.add(split);
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         */

    }

    return new GetSplitsResponse(catalogName, splits);

}

The function concludes by accumulating and returning all the splits we generated. 
This example doesn't utilize the doGetSplit function's ability to support paginated 
responses. If you plan to produce more than a few hundred splits per call or need to store 
non-trivially sized parameters on the Split object, you should limit the size of your 
response by returning a pagination token to Athena. You can find examples of how to do 
this by looking at the athena-cloudwatch connector in this book's GitHub repository.

Now that we have covered all the metadata functions and five of the size total functions 
in our Connector, let's move on to the ExampleRecordHandler class and finish the 
Connector's implementation.

Editing ExampleMetadataHandler
In a few minutes, we'll be ready to package and deploy our new Connector. But 
before that, we'll need to implement the final piece of code by modifying the 
ExampleRecordHandler.java file in the src/main/java/com/amazonaws/
connectors/athena/example directory. This class is responsible for providing 
Athena with row data from your data source. If you aren't coding along with us, you  
can follow along with this book's GitHub repository in your browser by going to 
https://bit.ly/3vISV9X.

Again, our function starts with a few lines of boilerplate code where we extract the 
configuration from the request object. In the following code snippet, we've consolidated 
some of the multi-line statements you'll find in the GitHub example. They are functionally 
equivalent, but the shortened form is a bit easier to read in book form. These lines 
are mostly uninteresting as we're extracting the information we stored on the split in 
doGetSplits:

protected void readWithConstraint(/* arguments omitted */){

    Split split = recordsRequest.getSplit();

    int splitYear = split.getPropertyAsInt("year");

    int splitMonth = split.getPropertyAsInt("month");

    int splitDay = split.getPropertyAsInt("day");

https://bit.ly/3vISV9X
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Next, we can see why we took the time to pass the partition column values of year, 
month, and day to the readWithContraint method via the split. The example 
Connector is intended to read financial transaction data from S3. The Connector uses the 
year, month, and day to determine which S3 file to read! This is similar to how Athena, 
Spark, Hive, and other analytics engines resolve which files to query in S3. Our Connector 
uses the Java.lang.String.format function to substitute the year, month, 
and day values into a hardcoded string representing the S3 key we need to read. In the 
preceding line, we retrieved the S3 bucket that our data is stored in by reading the  
data_bucket environment variable via Java's System.getenv(…) facility. 

For this example Connector, we could have hardcoded dataBucket too, but this 
approach lets us demonstrate how to use AWS Lambda's environment variables to 
pass runtime configuration to your Connector. You can modify these settings at any 
time from the AWS Lambda console or API without the need to recompile or redeploy 
your Connector. Once we have the S3 bucket and object key, we must use the provided 
openS3File helper function to obtain a handle we can use to read the data contained 
in the same data file that we'll upload to S3 later. If the file doesn't exist, the helper returns 
null, and our Connector exits without writing any rows:

    String dataBucket = dataBucket = System.getenv("data_
bucket");

    String dataKey = format("%s/%s/%s/sample_data.csv", 

                            splitYear, 

                            splitMonth, 

                            splitDay);

    BufferedReader s3Reader = openS3File(dataBucket, dataKey);

    if (s3Reader == null)

        return; //There is no data to read for this split.

With BufferedReader in hand, our Connector is finally ready to send row data to 
Athena. Doing so requires that we translate the data from its storage format and type 
system into Athena's data interchange format, Apache Arrow. In the getPartitions 
method, we used BlockWriter to simplify writing our partition column values  
into Apache Arrow's type and storage format. This code is only expected to write  
a few thousand values of primitive types, such as integers. readWithConstraint is 
anticipated to write many megabytes of data across hundreds of thousands of cells. Rather 
than writing Apache Arrow data row by row, we can dramatically improve throughput by 
adopting Apache Arrow's column-wise approach to data storage.
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The Athena Federation SDK's GeneratedRowWriter and RowWriterBuilder 
functions provide simplified models for decomposing the steps for translating each 
column in a row. GeneratedRowWriter also automatically applies query constraints 
that are passed by Athena, saving us the effort of writing code to filter results. The SDK 
then uses a primitive form of code generation to reduce the number of if statements  
or branches in the critical execution paths. With fewer branches, a CPU's branch 
prediction logic and Java's code caches can utilize the available resources better, leading  
to faster queries. 

Let's take a closer look at how we can use RowWriterBuilder. Be sure to consult this 
book's GitHub repository for the complete set of column translations as we'll only be 
covering two columns here. You'll find that the rest are nearly identical to these examples. 
In the following code snippet, we can see how to create the Extractor method for the 
year column. An Extractor is what the Athena Federation SDK calls the method 
that is capable of translating a column value from the source data into Apache Arrow. 
Extractors contain a single method that accepts an Apache Arrow value holder that 
corresponds to the data type of the column they are capable of extracting from the source 
data. Since the year column is defined as an Integer column, its Extractor is of 
the IntExtractor type, and it expects NullableIntHolder for storing the value it 
extracts from the source: 

         builder.withExtractor("year", (IntExtractor) (Object 
context, NullableIntHolder value) -> {

             value.isSet = 1;

             value.value = Integer.parseInt(((String[]) 
context)[0]);

         });

These holders are an essential concept in Apache Arrow. Apache Arrow seeks to eliminate, 
or, at the very least, limit, memory copies and churn when going from one analytics 
system to another. A value holder is typically a long-lived object with pre-allocated 
memory that can be reused many times to avoid frequent, small memory allocations and 
collections. You'd be surprised how big a difference this can make when you're reading 
and writing millions of integers. Yes, the code can seem a bit terse, but the throughput 
associated with this programming model can be seven times that of more naïve 
approaches such as that used in the getPartitions example. And that example isn't 
even the most naïve!
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The other argument that every Extractor expects is context. The context is declared 
to be an Object because the framework doesn't know what it is. In this particular case, 
the context is a single line from the CSV sample data file we will store in S3. Later, in 
the readWithContraint function, we'll see how the context gets populated. This is 
ultimately why our Extractor can cast the context to an array of strings before parsing 
the first value into an integer. 

The account_id extractor builds on these concepts and adds a twist. Suppose 
our organization has decided that account IDs are sensitive Personally Identifiable 
Information (PII). To comply with regulatory mandates, our organization must mask the 
account_id field whenever it is queried. We could rewrite our entire dataset or produce 
a sanitized copy, but that can be expensive and difficult to manage. Instead, we can do 
exactly as our example Connector does here and mask the field while translating it into 
Apache Arrow:

    builder.withExtractor("account_id", (VarCharExtractor) 
(Object context, NullableVarCharHolder value) -> {

        value.isSet = 1;

        String id = ((String[]) context)[3]; 

        value.value = (id.length() > 4) ? 

        value.value = id.substring(id.length() - 4) : id; });

The account_id column uses a VarCharExtractor, which performs a substring 
on the account_id value to ensure it never returns more than the last four characters 
of the source data's value. In practice, hardcoded masking like this isn't practical. Most 
customers will be better off leveraging AWS Lake Formation's masking capabilities. 
However, if you have to apply masking to a non-Lake Formation source, this can be  
a great option. It also illustrates that Connectors can apply intelligence to their 
translations. Masking is just one of many possibilities.

The final column translation we'll review belongs to the transaction field. Unlike 
the previous fields, which were primitive types, the transaction column was defined 
as a struct. The Athena Federation SDK does not provide generalized optimizations for 
translating complex types such as Struct or List. Instead, RowWriterBuilder 
expects the Connector author to provide a FieldWriterFactory for such columns. 
If your complex types are not deeply nested, the experience will closely resemble the 
Extractor model we just used with the year and account_id columns. When  
you start deeply nesting, efficient translation can feel like trying to codify Inception but 
with data analytics instead of dreams.
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In the following final column translation snippet, our Connector is building a map 
corresponding to the child fields of the transaction struct. It then uses the 
BlockUtils helper from the Athena Federation SDK to write the map as an Apache 
Arrow struct. This helper is an extremely convenient tool for dealing with Apache 
Arrow data of all types. You'll see it used repeatedly in the unit tests. Unfortunately, 
this convenience comes at a price. Nearly every method on the BlockUtils class is 
an order of magnitude slower than using columnar models for interacting with Apache 
Arrow resources. This is why you'll rarely see this utility used in Connector code, except 
for getPartitions where the number of rows is almost always too low to affect 
performance measurably:

builder.withFieldWriterFactory("transaction", (FieldVector 
vector, Extractor extractor, ConstraintProjector constraint) ->

  (Object ctx, int rowNum) -> {

       Map<String, Object> eMap = new HashMap<>();

       eMap.put("id", Integer.parseInt(((String[])ctx)[4]));           

       eMap.put("completed",Boolean.parseBoolean(((String[])
ctx)[5]));

       BlockUtils.setComplexValue(vector, rowNum,  

                                  FieldResolver.DEFAULT, 
eventMap);

       //predicate pushdown not yet supported on complex types

       return true;    

});

We've nearly completed the readWithConstraint function. All we have left to do 
is read the source data line by line and invoke RowWriter, which we just generated. 
This is how all the extractors we wrote will receive their context objects. In the last 
section of readwithConstraint, our Connector uses BufferedReader, which 
it constructed earlier, to read the S3 object containing the sample data line 
by line. Each line is then split using commas as separators before calling the provided 
BlockSpiller to write rows to the Athena response. We didn't show it here, but 
the example code calls the build method of RowWriterBuilder to produce the 
rowWriter object, which processes each line in our while loop and adds rows 
that meet the queries filtering criteria to the block. We then return one or zero to tell 
BlockSpiller whether the row we translated was skipped because it didn't pass the 
queries filter:

    while ((line = s3Reader.readLine()) != null) {

        String[] lineParts = line.split(",");
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        spiller.writeRows((Block block, int rowNum) ->    

            rowWriter.writeRow(block, rowNum, lineParts) ? 1 : 
0);

    }

}

In a genuine Connector, the functions we completed would most likely have read their 
metadata from a durable store instead of having hardcoded values or relying on naming 
conventions in S3. But remember, our goal was to familiarize ourselves with writing 
a Connector, leaving you free to focus on the nuances of your intended data source 
when the time comes to write a new Connector. Take a moment to enjoy the feeling of 
completing the most intensive coding exercise in this book. In the next section, we'll see 
how good of a job we did by deploying and testing the Connector we just wrote. 

Deploying and testing your custom connector
If you've been using an IDE to complete this exercise, you have already run a syntax check, 
possibly even the unit tests. However, if you've been using a regular text editor, let's begin 
by using the Apache Maven command-line tool to build our Connector code and execute 
the included unit tests. The easiest way to do this is to open a terminal and navigate to 
the athena-example directory. Once you're there, execute mvn clean install 
-Dpublishing=true. If this is your first time building an Athena Connector on 
that machine, Apache Maven will take several minutes to download the necessary 
dependencies. These dependencies include the Athena Federation SDK, Apache Arrow, 
and many other open source libraries. Once all the dependencies have been satisfied, 
Maven will build the Connector run unit tests. This one command will catch the majority 
of common errors long before Athena enters the picture. This ability to iterate quickly and 
locally makes developing new Connectors easier. Once the build completes, please note 
any errors, especially unit test errors, and resolve them before moving on.

Conditional Maven Builds
We pass the "-Dpublishing=true" flag to indicate to the athena-
example Connector's build configuration that we've completed the exercise 
and that the full unit test suite should be applied. This is a bit atypical because 
we'd expect unit tests to be run as part of any build, but this Connector is an 
exception. As a result, the code in our GitHub repository is incomplete until 
you uncomment or implement the missing functionality. Yet, at the same time, 
we want to have real unit tests to help ensure you don't miss any steps. 
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With our Connector code built and passing all unit tests, we're ready to package and 
deploy the Connector. This process involves producing a specially structured ZIP file and 
accompanying configuration file that Serverless Application Repository can use to deploy 
our Lambda function. It is also possible to avoid using Serverless Application Repository 
and instead deploy directly to AWS Lambda. In this exercise, we'll be using the AWS SAM 
Build Tool to upload our packaged Connector to Serverless Application Repository for 
a one-click deployment experience. You can use the provided publish.sh file in the 
root of this chapter's GitHub directory to automate the entire process. The script requires 
an S3 bucket that it can use to upload your Connector code for later use by Lambda, the 
directory name that contains the Connector code to package, the AWS Region you'd like 
to publish to, and the partition type (typically, this is aws):

./publish.sh S3_BUCKET athena-example AWS_REGION aws

When executed, this script will print a confirmation of the steps it is about to perform. 
It begins by looking for a valid set of AWS credentials. So, if you haven't run aws 
configure, you should do so now. This command ensures your AWS CLI and 
supporting tools are ready to use. The publish script runs several AWS CLI and SAM build 
tool commands while orchestrating the Connector's deployment. These commands will 
fail if they can't find your AWS credentials. 

As part of publishing your Connector, the publish script will attempt to add an S3 bucket 
policy to the S3 bucket you supplied to the command. The policy will grant the AWS 
Serverless Application Repository read access to the S3 bucket so that it can read a copy 
of the Connector code on behalf of AWS Lambda when doing deployments. If the script 
sees an existing policy on the S3 bucket, it will skip this step and assume you've manually 
configured an appropriate policy to avoid overwriting your work. Keep this in mind if 
you get failures related to Serverless Application Repository being unable to retrieve your 
Connector code. The script will then package your Connector code by recompiling it and 
rerunning unit tests before producing a Lambda-compliant ZIP file of the Connector 
artifacts. Lastly, the script will upload the Connector code artifact to the S3 bucket and 
call Serverless Application Repository to create a deployable application in your private 
repository. The resulting serverless application can then be shared with other accounts  
if you choose, but it will initially be marked as private.
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In the end, the script will print a URL, much like the one shown here, that can be used to 
view the Connector in Serverless Application Repository:

https://console.aws.amazon.com/serverlessrepo/home?region=us-
east-1#/published-applications/arn:aws:serverlessrepo:us-east-
1:XXXXXXX:applications~ExampleAthenaConnector

Before we deploy our Connector, let's upload the sample financial transaction data that 
the Connector will use to answer queries. From the athena-example directory, you 
can execute the following S3 put command to upload the sample data. Be sure to replace 
BUCKET_NAME with the name of the S3 bucket you'd like to use for this exercise. Later, 
we'll need to enter the name of this S3 bucket in the Connector deployment configuration, 
so keep it handy:

aws s3 cp ./sample_data.csv s3://BUCKET_NAME/2017/11/1/sample_
data.csv

Now, we're ready to go to the AWS console and deploy our custom Connector. We'll 
repeat several of the same steps from earlier in this chapter, where we deployed a pre-built 
Connector from Serverless Application Repository. Unfortunately, the link from the end 
of the publish script can't be used to deploy the Connector. You'll need to open Serverless 
Application Repository in the AWS console and click on Available Applications in the 
left navigation bar. Then, select the Private Applications tab, at which point you should 
see ExampleAthenaConnector. From here, the process is nearly identical to deploying a 
pre-built Connector. 
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Click on it, and you'll be prompted to fill in any missing configuration details before 
deploying, as shown in the following screenshot. If you're using the IAM policy for this 
chapter, be sure to choose an application name that begins with packt-serverless-
analytics and an AthenaCatalogName value that begins with packt_serverless_
analyics to avoid permissions issues. Application name corresponds to the underlying 
CloudFormation stack this process creates, while AthenaCatalogName will become the 
name of the Lambda function:

Figure 12.8 – Example Connector deployment config
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DataBucket should match the S3 bucket where you uploaded the sample data. For 
simplicity, we recommend using the same S3 bucket for the sample data, SpillBucket,  
and publishing your Connector. Once the deployment completes, you should be able to 
run the following query in the Athena console. Be sure to replace the Lambda function 
name with your function name if you didn't follow the suggested naming convention:

USING EXTERNAL FUNCTION decrypt(payload VARCHAR ) 

        RETURNS VARCHAR LAMBDA 'packt_serverless_analytics_
example'

SELECT year,

         month,

         day,

         account_id,

         encrypted_payload,

         decrypt(encrypted_payload) AS decrypted_payload,

         transaction.id AS tx_id

FROM "lambda:packt_serverless_analytics_example".schema1.table1

WHERE year=2017

        AND month=11

        AND day=1;

The query will return a few hundred rows of data from the sample data file we uploaded 
to S3. It's taken us a while, but we've built and deployed a custom Connector! You can use 
what've you've learned in this chapter to integrate with any data source you may need. 
Athena Query Federation holds one more secret, and this query is hinting at it. You may 
have noticed two rather curious columns in the output. The encrypted_payload 
column looks like jibberish, but the decrypted_payload column is a human-readable 
copy of the encrypted_payload column that has been postprocessed by an external 
function called decrypt. 

Along with our Connector code, this example contained the decrypt UDF. In the next 
chapter, we'll learn more about Athena UDFs, including a special case UDF that allows us 
to take advantage of SageMaker's machine learning tools within our Athena queries. 
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Troubleshooting Custom Connectors
Also included in the GitHub repository is the athena-federation-
sdk-tools module, which provides a Connector validator tool that can 
be used to troubleshoot malfunctioning Connectors without the need to run 
Athena queries. You can also use the validator as a form of integration testing. 
If the preceding query didn't work for you, take a look at the README.md 
file in the tools directory for more details on troubleshooting common errors. 
Most errors are reported via the Athena console, but some can easily be root 
causes with the client-side logs that the validator generates.

Summary
In this chapter, we learned the ins and outs of Athena Query Federation, including the 
differences between a federated query and a "classic data lake query." Then, our journey 
took us deeper into performance, availability, and the consistency tradeoffs of querying 
live data via a federated query or a snapshot that's been loaded into S3. We looked at  
the structure of the Athena Federation SDK and how it relies on Apache Arrow as  
a memory-compatible columnar format for exchanging data between analytics systems, 
without the need for multiple performance-robbing serialization steps. 

Next, we stepped out of the academic realm and into the thick of things with a hands-on 
exercise in deploying and querying one of Athena's pre-built Connectors. Our efforts 
concluded with our most ambitious coding exercise yet, where we built a custom Athena 
Connector from the ground up using the Athena Query Federation SDK directly. In the 
next chapter, Chapter 13, Athena UDFs and ML, we'll build on the federation concepts 
we learned here to extend Athena's functionality even further with custom UDFs and 
machine learning.
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In this chapter, we will continue with the theme of enhancing Athena with our 
functionality by adding user-defined functions (UDFs) using AWS Lambda and AWS 
SageMaker. In Chapter 3, Key Features, Query Types, and Functions, we introduced the 
built-in functions that are available to you as a user of Athena. But as you build out your 
data lake and your Athena usage becomes more targeted at specific use cases, you may 
encounter situations where the built-in functions do not provide the exact functionality 
that you require. For such scenarios, Athena supports UDFs. 

In this chapter, we are going to cover the basics of UDFs and how to create them. By the 
end, we will learn how we can apply UDFs to non-standard use cases and also to perform 
machine learning analysis on our data.

In this chapter, we will cover the following topics:

• What are UDFs?

• Writing, deploying, and using UDFs

• Using built-in machine learning UDFs
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Technical requirements
Wherever possible, we will provide samples or instructions to guide you through the 
setup. However, to complete the activities in this chapter, you will need to ensure you  
have the following prerequisites available. Our command-line examples will be executed 
using Ubuntu, but most Linux flavors should work without modification, including 
Ubuntu on Windows Subsystem for Linux.

You will need internet access to GitHub, S3, and the AWS Console.

You will also require a computer with the following installed: 

• Chrome, Safari, or Microsoft Edge

• The AWS CLI

This chapter also requires that you have an AWS account and accompanying IAM user  
(or role) with sufficient privileges to complete this chapter's activities. Throughout this 
book, we will provide detailed IAM policies that attempt to honor the age-old best 
practice of "least privilege." For simplicity, you can always run through these exercises 
with a user that has full access. Still, we recommend using scoped-down IAM policies 
to avoid making costly mistakes and learning more about using IAM to secure your 
applications and data. You can find the suggested IAM policy for this chapter in this 
book's accompanying GitHub repository, listed as chapter_13/iam_policy_
chapter_13.json, here: https://bit.ly/3gnwCSm.  No changes need to be  
made to the policy from Chapter 12, Athena Query Federation, so if you completed the 
exercises in that chapter, you don't need to make any modifications to your role.

What are UDFs?
If it wasn't already obvious before now, it has probably become pretty clear by this point 
that the world of big data analytics is vast and complex. Athena offers a very wide array 
of built-in functionality that enables you to analyze your data, but as your use cases grow, 
you may find that certain situations are not covered. Perhaps your data has a special 
encoding that can't be converted by Athena, or maybe you want to do some natural 
language processing to look for general sentiment in some free text fields. Whatever  
the situation may be, you can turn to user-defined functions (UDFs) to solve them.  
UDFs allow us, as users of Athena, to provide custom query behavior that can be used 
within the queries we are running.
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UDFs are not a new concept created by Athena, so if you've been in the data analytics 
space for a while, you've likely already encountered them. The case of Athena is a bit more 
unique since you are not managing the query execution hardware, nor are you managing 
the software installed on that hardware. In traditional, self-managed data warehouse 
solutions, UDFs are typically registered within or alongside the program itself at startup 
time. For example, prestodb has support for custom functions (https://bit.
ly/36q2Ir5), which are deployed alongside Presto by simply placing the .jar file  
in a pre-configured plugin directory.

If you read the preceding link on prestodb's support for custom functions, you may have 
noticed that there are three different types supported by the engine: scalar and aggregate 
functions. Scalar functions are used to add custom functionality to data existing in a 
single row. An example could be is_null, where it will simply return a boolean 
indicating whether the provided value is null. Aggregate functions, on the other hand, 
are used to create behavior across several rows (think avg). They require you to use 
AccumulatorState, which is where the aggregation is persisted across rows. At the 
time of writing this book, Athena only supports scalar functions.

For Athena, UDFs are referred to as external functions. In this chapter, we're going  
to cover the two different options available to you at the time of writing this book.  
These options are Lambda-based functions and SageMaker endpoint-based functions. 
Lambda-based functions, as the name implies, utilize a Lambda that gets invoked during 
the execution of your query. The following diagram shows the flow for Lambda-based 
UDF execution. If you read Chapter 12, Athena Query Federation, then the process of 
writing and deploying UDFs is going to look very similar to the process of writing and 
deploying a connector. If you skipped that chapter, then don't worry – we will go over 
everything again here:

Figure 13.1 – Athena Lambda UDF workflow

https://bit.ly/36q2Ir5
https://bit.ly/36q2Ir5
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The preceding diagram shows the flow for SageMaker-based UDF executions. If you 
completed the exercises in Chapter 7, Ad Hoc Analytics, some of the SageMaker setup will 
look familiar. However, we will be using SageMaker to train a model, so there will be some 
differences here:

Figure 13.2 – Athena SageMaker UDF workflow

Now that we know what UDFs are, let's create a new one.

Writing a new UDF
So, now that we've gotten a bit of an idea of what UDFs are and when we might want to 
use them, let's go ahead and create one. 

Setting up your development environment
To write a new UDF or modify an existing UDF, we'll need the ability to build, test, and 
package the code. So, our first task is to ensure we have a development environment 
with the appropriate builder tools. These tools will include Apache Maven, the AWS CLI, 
and the AWS Serverless Application Model (SAM) build tool. The Apache Foundation 
describes Maven as a "software project management and comprehension tool." That's a 
fancy way of saying Maven helps automate dependency management, build orchestration, 
and a host of related activities that can be added or augmented via plugins. The AWS SAM 
build tool is one option for packaging and deploying our UDF for use with Lambda and 
Serverless Application Repository. And, of course, the AWS CLI will be there for when 
we'll need to interact with AWS via the command line.
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If you've already got an environment that meets these requirements (for example, if you 
completed the exercises in Chapter 12, Athena Query Federation), you're welcome to use 
it. If not, don't worry. We'll guide you through the setup for Debian Linux-based systems 
such as Ubuntu or Ubuntu on Windows Subsystem for Linux. Most of the commands will 
work on other flavors of *nix with minor modifications. We'll assume you will be using a 
basic text editor without any fancy builder tool integrations and that you need a guide for 
installing these other dependencies. Let's get started by cloning this book's accompanying 
GitHub repository by using the following command.

git clone https://github.com/PacktPublishing/Serverless-
Analytics-with-Amazon-Athena.git

Inside the chapter_13 directory, you'll find a prepare_dev_env.sh script that you 
can run to install OpenJDK, Apache Maven, the AWS CLI, and the AWS SAM build tool. 
Depending on your CPU and disk speeds, the script may take 5 minutes or more to set up 
in your environment. If the script is successful, it will print the installed version of each 
required tool at the end. The output will look similar to the following, but don't worry if 
your versions differ slightly:

aws-cli/1.19.96 Python/2.7.18 Linux/4.19.128-microsoft-standard 

SAM CLI, version 1.24.1

Apache Maven 3.5.4 

openjdk version "11.0.11" 2021-04-20 

javac 11.0.11

Next, we'll start writing the code for our custom UDF!

A Note About Java Versions
While the Athena Federation SDK should work fine with Java versions up to 
and including 11, issues have been reported with Apache Arrow with JDK 
versions beyond 8. The open source project has resolved many of these issues 
and provided configuration workarounds for the remaining items. If you run 
into errors that appear to be related to your JDK version, try executing the 
exercise with Open JDK 8.
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Writing your UDF code
For this exercise, we'll be taking a closer look at the UDF that we used in Chapter 12, 
Athena Query Federation. Again, don't worry if you skipped that chapter as we will cover 
everything that you need to know here. To help you learn about writing UDFs, we've 
included a working example that you can check your work against. However, unlike Query 
Federation, where Athena provides a pretty wide selection of ready-made connectors, 
UDFs can be very customer use case-specific, so there isn't currently a large pre-built 
collection to browse through. So, you must understand the steps to go from nothing to 
a fully functional UDF. Due to this, I'm going to recommend that you try to avoid just 
copying and pasting from the working example and leverage that as a way to check and 
debug your work. To find the working code, navigate to the udf-example folder in  
the chapter_13 directory of the GitHub repository you cloned in the previous section 
(if you skipped that section, go ahead and clone it now!). 

The UDF we'll be working with was initially provided by the Athena team as part of the 
Athena Federation SDK to teach customers how to write UDFs. This UDF is intentionally 
simple so that you can focus on the basics of understanding the components of a UDF 
rather than having to decipher complex function logic. The function will take in a 
parameter, decrypt it (using a hardcoded encryption key, which violates every security 
tenant, so please don't do this in production), and return the result of the decryption. 
We've also included some unit tests to verify the function code. In the end, we will deploy 
the UDF and use it in a query.

Athena provides an SDK that will handle any of the logic that's necessary for 
communicating with the main Athena query engine, as well as aiding in interactions 
with Apache Arrow. The SDK is implemented in Java, so it is recommended that you 
implement your UDF in Java as well (or Kotlin or Scala if you are feeling adventurous). 
Since the SDK is fully open source (https://bit.ly/3vXmm9j), you can technically 
write this in any language, so long as you reproduce the behavior, but that is not 
recommended other than for expert users with language-specific use cases.

Project setup
For this walkthrough, we are going to be using Apache Maven for our dependency 
management. To get started, let's go ahead and initialize a new Maven project:

mvn -B archetype:generate \

 -DarchetypeGroupId=org.apache.maven.archetypes \

 -DgroupId=<YOUR_GROUP_ID>

 -DartifactId=<YOUR_ARTIFACT_ID>

https://bit.ly/3vXmm9j
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If you aren't familiar with Maven, for this command, all you need to know is that you're 
going to get a skeleton application that we'll take a little bit of a closer look at in a second. 
Remember to replace YOUR_GROUP_ID with something that makes sense for you 
(for example, the AWS group ID; that is com.amazonaws) and then replace YOUR_
ARTIFACT_ID with the project name (for example, udf-example).

After running that command, you should see a new directory with the name that you 
used for YOUR_ARTIFACT_ID. Inside that directory, you should see two things: an src/ 
directory and a file named pom.xml. The POM file (https://bit.ly/3xDLd2y) 
is the file where you declare your dependencies for your project. It is also where all of 
your build configurations go. A quick search on Amazon reveals seven pages of books on 
Maven, so we're not going to delve any deeper than we need to, but needless to say, it's a 
very powerful tool. Taking a quick look in the src/ folder, you'll see main/ and test/. 
Within each, there is some sample code that you can go ahead and delete.

The POM file
Next, we are going to update the POM file. We'll only have to do this once. The POM file 
is quite large, so rather than taking up two pages, I am going to recommend that you go 
to this book's GitHub repository and follow along and/or copy-paste (https://bit.
ly/3msAs0x). I will cover some important sections that are worth understanding here:

<parent>

  <artifactId>aws-athena-query-federation</artifactId>

  <groupId>com.amazonaws</groupId>

  <version>1.1</version>

</parent>

The <parent> tag tells Maven that we want to merge our POM file with the POM file 
of the referenced parent artifact. In this case, that is the POM file for the aws-athena-
query-federation artifact, the POM of which you can find in the open source 
repository (https://bit.ly/2U4IErJ). The result of the merged POM is to ensure 
that all the dependencies are together:

<properties>

  <maven.compiler.source>1.8</maven.compiler.source>

  <maven.compiler.target>1.8</maven.compiler.target>

  ...

</properties>

https://bit.ly/3xDLd2y
https://bit.ly/3msAs0x
https://bit.ly/3msAs0x
https://bit.ly/2U4IErJ
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As the note on Java versions states, Apache Arrow has sometimes been reported to have 
issues with JDK versions beyond 8, so we are forcing the compiler to use JDK 8 for our 
build, just to be on the safe side:

<dependency>

  <groupId>com.amazonaws</groupId>

  <artifactId>aws-athena-federation-sdk</artifactId>

  <version>${aws-athena-federation-sdk.version}</version>

</dependency>

We are going to be extending a class from the Athena Federation SDK, so we need a 
dependency on that. Note that we are referencing the ${aws-athena-federation-
sdk.version} variable. We did not declare that in our POM; we are getting that value 
from <parent>:

  <build>

    <pluginManagement><!-- lock down plugins versions to avoid 
using Maven defaults (may be moved to parent pom) -->

      <plugins>

        <plugin>

          <groupId>org.apache.maven.plugins</groupId>

          <artifactId>maven-shade-plugin</artifactId>

          ...

        </plugin>      

      </plugins>

    </pluginManagement>

  </build>

</project>

Finally, we are using maven-shade-plugin. This instructs Maven, when it produces 
the .jar file for our package, to also include all of our dependencies to create an uber-jar  
(it can also help with renaming packages in case there are conflicts). An uber-jar is one 
of two ways to deploy your JVM-based application to AWS Lambda, with the other being 
just a ZIP file containing your code and all dependencies. Both work fine (fun fact, a 
.jar file is pretty much just a ZIP with a little extra Java-y information).
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UserDefinedFunctionHandler
We're just about ready to start writing our UDF code, but before we do that, we're 
going to take a quick detour and peek at the code provided in the Athena Federation 
SDK that will aid us in creating our UDF. The SDK contains an abstract class called 
UserDefinedFunctionHandler that we will be extending. This class handles the 
deserializing messages that are sent from Athena's main engine and then delegates them 
down to the proper function handler. We're not going to delve super deep into what this 
handler is doing, but let's take a look at a few notable code pieces. You can see the full 
implementation here: https://bit.ly/3riRfTQ.

The first thing to notice is that the class implements RequestStreamHandler. 
This class comes from the AWS Lambda Java SDK and has a single method, called 
handleRequest, that you have to implement to have a Java-based Lambda function. 
The contract is very straightforward: you are given an InputStream containing the 
input values to your function, an OutputStream where your function will write its 
results, and a Context that contains mostly Lambda metadata about the function itself.

Next, scroll down until you find extractScalarFunctionMethod. We haven't 
discussed how to use UDFs in Athena queries yet, but this method is important for that. 
Generally speaking, at query time, we will tell Athena the name of the method to execute, 
and then this logic will use Java Reflection to find the implementation of that method in 
your UDF code. If you aren't familiar with Java Reflection or just aren't fully following 
what's happening here, that's okay – it isn't critical that you understand this logic. It can 
just sometimes be helpful to understand how everything pieces together.

The last bit we'll take a look at is the following block of code, which is located inside the 
processRows method:

for (Field field : inputRecords.getFields()) {

  FieldReader fieldReader = inputRecords.getFieldReader(field.
getName());

  ArrowValueProjector arrowValueProjector = ProjectorUtils.
createArrowValueProjector(fieldReader);

  valueProjectors.add(arrowValueProjector);

}

As we mentioned previously, Athena leverages Apache Arrow to represent the data in 
transit between the query's execution and the UDF function. This logic is taking the 
fields (with field being a column in our table) returned in the query, creating an 
ArrowValueProjector for each field. These projectors are put there to make writing 
UDFs easier so that you, as the function writer, do not have to interact with or even 
understand Apache Arrow. Instead, you are given Java objects to operate on. 

https://bit.ly/3riRfTQ
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A Note About ArrowValueProjector's Performance
The convenience of ArrowValueProjector's comes at a cost. Data must be 
copied from the Arrow objects to the Java objects, and any data copying is 
always going to introduce some degree of latency, which, when magnified 
over potentially many thousands (or more) of rows of data, can add up. If 
you are noticing an unacceptable degree of latency introduced from your 
UDF, you can consider overriding the processRows method inside of 
UserDefinedFunctionHandler and operate directly on the Apache 
Arrow objects instead of converting from Arrow into Java.

UDF code
Now, we're ready to write our UDF! As we mentioned previously, the function is going 
to decrypt a parameter from our dataset using an encryption key that we've hardcoded. 
Again, do not do this in production – this is just to keep things simple to illustrate how 
to write a UDF.

To get started, let's go ahead and create a new class in our Java package and 
call it UdfExample. As we covered previously, we are going to be extending 
UserDefinedFunctionHandler, which has a constructor that requires a String 
parameter called sourceType. The value you assign to this isn't super important to 
you as it's primarily used for Athena's internals; just pick something descriptive. I chose 
"Packt_UdfExample". 

Now, we're going to add our function code. Let's go ahead and create a new public 
method and call it decrypt. In this case, the return type of our method will be String, 
but in the general sense, the return type should map to whatever type we want the value 
to be in our query. For our input, we will take in a String as well, but again, we are not 
limited to strings, and we are also not limited to a single input. We can use as many as we 
want and whatever types we want, based on the types that our columns are stored as in 
our dataset. 

At this point, you should have something that looks like the following:

package com.amazonaws;

import com.amazonaws.athena.connector.lambda.handlers.
UserDefinedFunctionHandler;

public class UdfExample extends UserDefinedFunctionHandler {

    private static final String SOURCE_TYPE = "Packt_
UdfExample";
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    public UdfExample() {

        super(SOURCE_TYPE);

    }

    public String decrypt(String encryptedColumnValue)

    {

        return null;

    }

}

This is the minimum you would need to be able to register a UDF called decrypt! Of 
course, your function wouldn't perform any decryption, you would just get nulls back,  
but still, pat yourself on the back – you've created a UDF! 

Now, we'll quickly go over the decryption logic. This isn't super important, since it's been 
created to demonstrate developing UDFs, so if you want, feel free to skip this portion and 
just copy the logic from the repository at https://bit.ly/3AZQUsR.

We are using what's called symmetric encryption. This means that the same key is used to 
encrypt and decrypt. This is in contrast to asymmetric encryption, where one key is used 
to encrypt (generally referred to as the public key) and another one is used to decrypt 
(the private key). We will be using AES as our encryption algorithm and Java's built-in 
cryptography library: 

    @VisibleForTesting

    protected String symmetricDecrypt(String text, String 
secretKey)

            throws NoSuchPaddingException, 
NoSuchAlgorithmException, InvalidKeyException, 
BadPaddingException,

            IllegalBlockSizeException

    {

        cipher cipher;

        String encryptedString;

        byte[] encryptText;

        byte[] raw;

        SecretKeySpec skeySpec;

        raw = Base64.decodeBase64(secretKey);

        skeySpec = new SecretKeySpec(raw, "AES");

        encryptText = Base64.decodeBase64(text);

https://bit.ly/3AZQUsR
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        cipher = cipher.getInstance("AES");

        cipher.init(cipher.DECRYPT_MODE, skeySpec);

        encryptedString = new String(cipher.
doFinal(encryptText));

        return encryptedString;

    }

The preceding code is performing the decryption. Let's look at the code in bold in more 
detail. First, both the key string and the encrypted values are Base64-encoded, which is 
used to turn bytes into ASCII. Finally, at the bottom, we are creating a cipher, which is 
essentially the implementation of the AES algorithm. So, again, we're getting the raw bytes 
for both the key and the encrypted text, passing them both through the AES cipher, and 
getting back our decrypted bytes, which we are converting back into strings (which we 
know is safe to do, because we know the decrypted value is just a string, though it could, 
in theory, be more non-human-readable bytes).

Don't Forget to Test Your Code!
As with any code base, make sure you clearly define the contracts of your code 
and verify them with tests. We've included some test code in our sample as 
well, which I'd recommend you at least read through to understand what it's 
doing and then copy it over. 

Building your UDF code
Before we can deploy our code, we need to build and package it. Thankfully, since we did 
all that nice setup earlier on in our POM, this is very easy to accomplish. Simply run one 
of the two commands:

mvn clean install

# If you want to run the tests as well run the following (this 
is not standard to Maven, it's just how we happened to set this 
package up)

mvn clean install -Dpublishing=true 

Once this completes, you should have a newly generated directory named target. Inside 
of it, there should be a JAR file called udf-example-2021.33.1.jar. 
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Quick Note on Maven Shading
In the same target/directory, you may also see a file that looks like 
original-udf-example-2021.33.1.jar. This is the original 
.jar file that was produced by Maven. However, as we mentioned previously, 
we need to provide a .jar that contains all of our dependencies (the uber 
.jar). Again, the plugin responsible for that is called Maven Shade, and it 
actually moves the original .jar to a file called origin-[JAR_FILE_
NAME], and then creates a new .jar with the same [JAR_FILE_NAME] 
that contains all the dependencies. If you look at the size of each of the files, 
you'll notice that udf-example-2021.33.1.jar is quite a bit larger 
than original-udf-example-2021.33.1.jar. In my case, it's  
23 MB versus 4.6 KB.

Deploying your UDF code
We're ready to deploy our code! The process of deploying your function is no different 
than any other Java-based Lambda function, so if you are already familiar with that 
process, we aren't going to be introducing any new concepts. There are two primary 
mechanisms that we are going to cover to make direct calls to the AWS Lambda APIs  
and AWS SAM.

Direct calls to AWS Lambda APIs
In this section, we are going to directly call a Lambda by using the AWS CLI. This is a 
simpler and quicker way to get started but I wouldn't recommend it when maintaining 
your UDF in the long term.

Before we can register the Lambda, we need an execution role. The AWS Lambda docs 
provide a good overview of creating execution roles (https://amzn.to/3ign39a) 
but to get started quickly, you can just run the following commands:

aws iam create-role --role-name udf-example-role --assume-
role-policy-document '{"Version": "2012-10-17","Statement": [{ 
"Effect": "Allow", "Principal": {"Service": "lambda.amazonaws.
com"}, "Action": "sts:AssumeRole"}]}'

aws iam attach-role-policy --role-name udf-example-
role --policy-arn arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole
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The first command creates a role called udf-example-role with no permissions 
attached to it and a trust policy saying that AWS Lambda is allowed to assume it. The 
second command attaches the AWSLambdaBasicExecutionRole managed IAM 
policy to the newly created role.

Now that we've created our role, let's go ahead and create our function. To accomplish 
this, we are going to call the create-function API within AWS Lambda: 

aws lambda create-function \

 --function-name UdfExample \

 --runtime java8 \

 --role arn:aws:iam::1234567890123:role/udf-example-role \

 --handler com.amazonaws.UdfExample \

 --timeout 900 \

 --zip-file fileb://./target/udf-example-2021.33.1.jar

And that's it! You've deployed a Lambda function. 

Using your UDF
The time has finally come for us to use our shiny new UDF inside an Athena query! 
Registering a UDF is done at query execution time by way of the USING EXTERNAL 
FUNCTION clause, before your SELECT statement. The syntax for that looks like this:

USING EXTERNAL FUNCTION UDF_name(variable1 data_type[, 
variable2 data_type][,...])

RETURNS data_type

LAMBDA 'lambda_function_name'

SELECT  [...] UDF_name(expression) [...]

First, let's get set up with some sample data. For that, we've provided some data 
(https://bit.ly/3gjYfvK) and a CREATE statement (https://bit.
ly/3sGpmWz) that you can use in our repository. Upload the sample data and run the 
CREATE statement in Athena. Make sure that you replace <S3_BUCKET> in the CREATE 
statement with the name of the S3 bucket where you placed the sample data.

Now that we've got that set up, let's go ahead and try running a query using our UDF! 
Your results should match those shown in the following table:

USING EXTERNAL FUNCTION decrypt(encryptedData VARCHAR)

RETURNS VARCHAR

LAMBDA 'UdfExample'

https://bit.ly/3gjYfvK
https://bit.ly/3sGpmWz
https://bit.ly/3sGpmWz


Writing a new UDF     373

SELECT year, month, day, encrypted_payload, decrypt(encrypted_
payload) as decrypted_payload 

FROM "packt_serverless_analytics"."chapter_13_udf_data" 

limit 5.

This results in the following output:

Figure 13.3 – Decryption results

Just in case you think there is some wizardry going on here and I'm trying to trick you, 
I've gone ahead and included a class in the repository that sanity checks the results 
(https://bit.ly/2XCBgFu). You can give it an encrypted payload and it will return 
the expected output, so you can double-check it against the preceding values:

mvn compile exec:java -q -Dexec.mainClass="com.
amazonaws.ResultSanityChecker" -Dexec.
args="0UTIXoWnKqtQe8y+BSHNmdEXmWfQalRQH60pobsgwws=" 

Encrypted payload: 0UTIXoWnKqtQe8y+BSHNmdEXmWfQalRQH60pobsgwws=

Decrypted payload: SecretText-1755604178

A couple of other things to point out are that the signature of decrypt matches that of 
the method signature for decrypt in our function code, including its input types and 
return type. Though again, you'll notice that the types are VARCHAR versus String, 
which we have in Java – that's Apache Arrow and ArrowValueProjectors at work. 
And then, the Lambda function's name is just the name that we gave to the Lambda we 
created in the last step.

And that's it! Congratulations – you've just written your first UDF!

https://bit.ly/2XCBgFu
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Maintaining Your UDF
Now that you've gotten your UDF running, let's talk briefly about how we're 
going to maintain the function. As we mentioned previously, there are two 
ways to deploy it; we chose the simpler way to get started, which was just to 
call the Lambda APIs from our Terminal, but that's not a maintainable way 
of doing that long term. For regular maintenance of your UDF, a very good 
place to turn to is AWS SAM. SAM is an open source framework provided by 
AWS that includes a ton of super handy functionality for building serverless 
applications. As an optional exercise, I recommend that you run through 
the documentation SAM provides on getting set up with SAM and a CI/CD 
tool of your choice: https://amzn.to/3kfQVlW. Alternatively, the 
walkthrough in Chapter 12, Athena Query Federation, also shows you how to 
utilize SAM to deploy an Athena Federation Connector.

Using built-in ML UDFs
In the previous section, we learned how we can create UDFs using Lambda. In this 
section, we're going to learn how to use Athena's built-in functionality to create UDFs  
that delegate down to a ML model. We're not going to delve too deeply into the ML 
aspects of things, though we will cover some basics just so you know what's happening.  
If you read Chapter 7, Ad Hoc Analytics, then some of this should be familiar.

Before you get started, note that you may incur some SageMaker charges during this. 
Particularly for the portion where we are training our models, we don't want to be waiting 
around forever, so we are leveraging the recommended cost/power instance type of 
ml.c5.xlarge. Total charges should be no more than a few dollars.

Pre-setup requirements
Before we are ready to head on over to SageMaker, there's a couple of things we need 
to put in place. First up is our favorite resource, an IAM role. By now, you're probably 
a pro at creating IAM roles, but in case you skipped directly to this chapter, we'll cover 
the creation process again. You can do this by navigating to the IAM Console, selecting 
the Roles section, and clicking the Create role button. Once you've done that, you'll 
be presented with the dialog shown in the following screenshot. Be sure to select AWS 
Service as the type of trusted entity and SageMaker as the entity:

https://amzn.to/3kfQVlW
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Figure 13.4 – Create role dialog

The settings shown in the preceding screenshot indicate that we are creating a role that 
can be assumed by SageMaker, allowing SageMaker to perform the actions associated 
with the role inside your account. This helps scope down both the types of activities the 
IAM role can perform and the contexts from which it can be assumed. In the next step, 
you'll have the opportunity to add the specific policies for the activities we plan to perform 
using this IAM role. We recommend adding the packt_serverless_analytics 
policy that we have been enhancing throughout this book and used earlier in this chapter. 
As a reminder, you can find the suggested IAM policy in this book's accompanying 
GitHub repository, listed as chapter_13/iam_policy_chapter_13.json, here: 
https://bit.ly/3gnwCSm. 

https://bit.ly/3gnwCSm
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Once you've added the policy, you can move on to the Add Tags step. Adding tags is 
optional, so you can skip that for now and go to the final step of giving your new IAM 
role a name. We recommend naming your new IAM role packet-serverless-
analytics-sagemaker since this chapter's IAM policy already includes permissions 
that will allow you to create and modify roles that match that name without added access. 
If everything went as expected, your IAM role summary should match what's shown in 
the following screenshot. If you forgot to attach the packt_serverless_analytics 
policy, you can do so now using the Attach Policies button:

Figure 13.5 – IAM role Summary dialog 
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Next, go ahead and copy the following CSV file into an S3 bucket of your choosing. Make 
sure to note where you put it for later:

wget -O taxi_ridership.csv https://bit.ly/3kblw45  

aws s3 cp taxi_ridership.csv s3://<S3_BUCKET>/packt-serverless-
analytics-chapter-13/ml-example/input/

Setting up your SageMaker notebook
Now, it's time to create our SageMaker Jupyter notebook; we're almost ready to start 
training! Head on over to the SageMaker console, find the Notebook > Notebook 
Instances section and select it. From there, you can click Create notebook instance  
to open the dialog shown in Figure 13.6 and Figure 13.7.

Using our notebook to train a model
Your notebook instance should be ready to use at this point. We're going to cover what 
we're doing in depth, but first, we will provide a quick overview of the steps we're going  
to take:

1. Connect our notebook instance to Athena.
2. Create a table in Athena using the CSV file we copied into our S3 bucket earlier.
3. Read the contents of the table.
4. Run a training job on our table data using the Random Cut Forest algorithm.
5. Deploy our trained model to an endpoint.

If you'd like to skip ahead or need added guidance on writing the code snippets we'll be 
using to train our model, you can find a prepopulated notebook file in this book's GitHub 
repository at chapter_13/packt_serverless_analytics_chatper_13.
ipynb, here: https://bit.ly/3sAErZV. GitHub nicely renders the notebook file so 
that you can see it right from the link. Unfortunately, that makes downloading it so that 
you can upload it to your SageMaker notebook instance later a bit tricky. To get around 
that, click on the Raw view, and then click Save As from your browser.

https://bit.ly/3sAErZV
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Connecting our notebook instance to Athena
From the SageMaker Console, go ahead and click the Open Jupyter link, as shown in 
the following screenshot. This will open a new browser tab or window connected to your 
Jupyter Notebook instances. Behind the scenes, SageMaker is handling all the connectivity 
between your browser and what is your Jupyter Notebook server:

Figure 13.6 – Open Jupyter Notebook

As shown in the preceding screenshot, you'll want to click on New and select  
conda_python3 for the notebook type. The value may appear at a different position  
in the dropdown than it does in the preceding screenshot, so don't be afraid to scroll  
to find it. This setting determines how our notebook will run the data exploration  
tasks we are about to write. By selecting conda_python3, we are telling Jupyter that it 
can run our code snippets using Python. Once you pick the notebook type, yet another 
browser tab will open that contains your new notebook. The new notebook file will be 
named Untitled.ipynb, so our first step will be to give it a helpful name by clicking 
on File and then Rename:

Figure 13.7 – Creating a new Notebook file
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Now that your notebook is ready to use, we'll connect it to Amazon Athena by installing 
the Athena Python driver. To do this, we'll write the following code snippet in the first 
cell of the notebook. Cells are represented as free-form text boxes and can be executed 
independently, with subsequent cells having access to variables, data, and other states 
produced by earlier cells. After executing a cell, its output is shown immediately below it. 
You can edit, run, edit, and rerun a cell as often as you'd like. You can also add new cells 
at any time. Let's put this to practice by running our first cell. Once you've typed the code 
into the cell, you can either click Run or press Shift + Enter to run the cell and add a new 
cell directly below it:

import sys

!{sys.executable} -m pip install PyAthena

This particular cell will take a couple of minutes to execute, with the result containing a 
few dozen log lines detailing which software packages and dependencies were installed. 
Now, add another cell and paste the following code into it, make sure to replace 
<OUTPUT_S3_BUCKET> with the bucket you want the output data to be placed in, as 
well as <OUTPUT_S3_BUCKET_REGION>:

from pyathena import connect 

import pandas as pd

import sagemaker

#TODO: Change the bucket to point to an s3 bucket to use for 
model output and training data

bucket = <OUTPUT_S3_BUCKET>

output_location = 's3://' + bucket + '/chapter_13/ml_output/'

# Connect to Athena

connection = connect(s3_staging_dir=output_location, region_
name=<OUTPUT_S3_BUCKET_REGION>) 

Now, we're connected to Athena!
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Preparing our training data
Next, we are going to take the data that we copied into our <S3_BUCKET> in the 
pre-setup steps and create a table for it in Athena. Go ahead and add another cell and 
insert the following code into it:

create_table = \

"""

CREATE EXTERNAL TABLE 'packt_serverless_analytics'.'chapter_13_
taxi_ridership_data'(

  'time' string  , 

  'number' int)

ROW FORMAT SERDE 

  'org.apache.hadoop.hive.serde2.OpenCSVSerde' 

WITH SERDEPROPERTIES ( 

  'separatorChar'=',') 

STORED AS INPUTFORMAT 

  'org.apache.hadoop.mapred.TextInputFormat' 

OUTPUTFORMAT 

  'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

LOCATION

  's3://<S3_BUCKET>/packt-serverless-analytics-chapter-13/ml_
input/'

"""

Now, add one more cell to execute the CREATE statement:

## Create a new Athena table holding data we will use to 
predict anomalies

pd.read_sql(create_table, connection) 

Finally, let's go ahead and read the contents of the table into an object so that we can use it 
later to train our model. And… you guessed it, add another cell! 

results = pd.read_sql("SELECT * FROM default.taxi_ridership_
data", connection) 
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Time to train!
This is the last step for our SageMaker notebook: training our model. So, we need one 
more of our favorite things, a cell!

from sagemaker import RandomCutForest

prefix = 'athena-ml/anomalydetection'

execution_role = sagemaker.get_execution_role()

session = sagemaker.Session()

# specify general training job information

rcf = RandomCutForest(role=execution_role,

                      instance_count=1,

                      instance_type='ml.c5.xlarge',

                      data_location='s3://{}/{}/'.
format(bucket, prefix),

                      output_path='s3://{}/{}/output'.
format(bucket, prefix),

                      num_samples_per_tree=512,

                      num_trees=50,

                      framework_version="2.54.0",

                      py_version="py3")

# Run the training job using the results we got from the Athena 
query earlier

rcf.fit(rcf.record_set(results.number.values.reshape(-1,1)))

print('Training job name: {}'.format(rcf.latest_training_job.
job_name))

rcf_inference = rcf.deploy(

    initial_instance_count=1,

    instance_type='ml.c5.xlarge',

)

print('\nEndpoint name (used by Athena): {}'.format(rcf_
inference.endpoint_name))
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You should see a whole bunch of output for this last cell, but if you scroll to the bottom, 
you should see the following output. The value we are particularly interested in is the 
endpoint name, so make sure that you save that for later:

Figure 13.8 – Training output

The Random Cut Forest model
In this section, we trained a model in SageMaker using the Random Cut Forest (RCF) 
algorithm. Since it's a neat algorithm, we'll briefly cover how it works. RCF is what's 
known as an unsupervised algorithm. These are often used to detect anomalous data 
points within a dataset. An unsupervised algorithm means that it does not require 
additional assistance (sometimes referred to as data labeling) from a human to train the 
model. If you ever saw the tech talk of the engineer who trained his cat door to be able to 
detect when his cat brought in a "gift" from outside, that is what's known as a supervised 
algorithm. In that case, the engineer would physically indicate to the model whether a 
given image contained a "gift" or not. RCF works by taking in a target value (known as a 
tree) – in our case, that's the number of riders for a given period – and then comparing 
it against all of the other values (known as the forest) using random "cuts" through the 
forest, until it identifies a section containing only the single tree we are looking for. The 
fewer cuts that are required, the more anomalous the value is determined to be. If you 
visualize what it would be like to take a literal forest and create slices until you find a 
specific tree, it's going to take way fewer slices to find the lonesome tree away from all 
other trees, as opposed to one that is in a very tight cluster of trees.

Using our trained model in an Athena UDF
With our fancy taxi ridership model all trained and ready to do some work, let's find some 
unexpected ridership amounts! Just like in the walkthrough regarding custom UDFs, we 
are going to use the USING EXTERNAL FUNCTION clause and then a SELECT statement 
to utilize the new function. The syntax looks very similar for the ML-based UDFs:

USING EXTERNAL FUNCTION ml_function_name (variable1 data_type[, 
variable2 data_type][,...])

RETURNS data_type 

SAGEMAKER 'sagemaker_endpoint'

SELECT ml_function_name()
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There are a few main differences. The biggest difference is that unlike in the Lambda-
based UDFs, where the function name was mapped to something in our UDF code, the 
ml_function_name value is just any random identifier that we want to create – it 
doesn't correspond to anything that we did in our SageMaker Notebook. Then, instead 
of the type being LAMBDA plus a Lambda function name, it's now SAGEMAKER plus the 
endpoint name that was output at the end of our Notebook's execution. So, our final query 
ends up looking something like the following. Notice that we are querying against the 
same data we used to train our model, which makes sense since we are comparing a single 
value within our dataset against the entire dataset as a whole:

USING EXTERNAL FUNCTION detect_anomaly(b INT) RETURNS DOUBLE 
SAGEMAKER 'randomcutforest-2021-08-22-03-10-43-029'

SELECT time, number as number_of_rides, detect_anomaly(number) 
as score

FROM "packt_serverless_analytics"."chapter_13_taxi_ridership_
data" 

ORDER BY score desc

LIMIT 5

You should get the following results:

Figure 13.9 – Top 5 most anomalous half hour periods for NYC taxi ridership 

Thus, we have used SageMaker notebooks to train a ML UDF model.
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Summary
In this chapter, we walked through a couple of different examples of how Athena allows 
you to inject custom functionality, known as user-defined functions, into your queries. 
We started by looking at fully custom UDF behavior through Lambdas. We created and 
deployed our own Lambda, and then took a closer look at how we can keep a healthy, 
well-maintained Lambda-based UDF. After that, we took a look at the built-in UDF 
functionality that Athena provides for integrating your queries with SageMaker ML 
models. We used this to determine if taxi ridership was anomalous during a specific time.

We've only scratched the surface of the power of UDFs, but this should serve as a solid 
reminder for when you encounter a business use case that you can't solve perfectly with 
the functionality provided out of the box. In the next and final chapter, we will summarize 
some advanced functions that Athena provides and conclude our book!



14 
Lake Formation – 
Advanced Topics

You've reached the final chapter in our journey through Serverless Analytics with Amazon 
Athena. Some authors like to start each chapter with a thought-provoking quote. The 
pressure to find good, relevant quotes from well-known people was too much for us, so we 
opted not to employ that pattern until now. I recently came across a quote from Stephen 
King that does a great job distilling this chapter:

"Sooner or later, everything old is new." 

– Stephen King
You see, many of Lake Formation's "new" features are a reimagining of well-known 
database technologies from the 70s and 80s but scaled up for modern data lakes. As a Lake 
Formation launch partner, Athena is often one of the first services to support new Lake 
Formation features. In this chapter, we will learn about Lake Formation's newest features, 
including row-level security and a new Amazon S3 table type that supports ACID 
transactions. AWS Lake Formation transactions provide for atomic, consistent, isolated, 
and durable queries via snapshot isolation, regardless of how many tables your query 
uses or how many concurrent queries you run. To complement this new table type, Lake 
Formation also introduced an automatic storage optimizer that continually monitors your 
tables and reorganizes the underlying storage for optimal performance. 
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Each of these features has been available in most traditional databases systems for 
decades. However, these capabilities frequently reduced performance or scalability. The 
early days of data lakes and their accompanying query engines, such as Athena, shed many 
of these auxiliary features in the name of scaling. As these systems and their usage evolved 
beyond solving scaling problems in traditional databases, the need for advanced features 
such as ACID transactions and row-level security have reemerged.

As many of these features are not generally available yet and should "just work" for your 
existing queries by toggling a setting, this chapter will focus less on exercises and more 
on what use cases these capabilities enable. Depending on your AWS Region of choice, 
these features may not be available to you yet or may still be in preview. Lastly, you may 
be wondering why we have repeatedly discussed Lake Formation in a book about Athena. 
Regardless of the analytics engine you choose, AWS looks to Lake Formation as the tide 
that raises all ships. Put another way, Lake Formation is increasingly where new and 
foundational data lake features are being built so that customers can seamlessly transition 
between any of the AWS analytics offerings that support Lake Formation. 

In this chapter, we will cover the following topics:

• Reinforcing your data perimeter with Lake Formation

• Understanding the benefits of governed tables

Reinforcing your data perimeter with Lake 
Formation
We were first introduced to AWS Lake Formation in Chapter 3, Key Features, Query  
Types, and Functions, where we explored Lake Formation's ability to go beyond S3  
object-level IAM policies to offer fine-grained access control for tables. While security  
is a focal point for the Lake Formation product, you may not realize that its ambitions 
extend far beyond this one essential element of data lakes. As we will see later in this 
chapter, Lake Formation's mandate is to make every aspect of building and managing data 
lakes simpler, faster, and cheaper. This has led the Lake Formation team to focus on the 
most frustrating parts of operating a data lake, such as access control. 

Before discussing the most significant changes to Lake Formation since it went GA in 
2019, let's make sure we genuinely understand how things worked before these new 
features. The following diagram illustrates the high-level interactions between Athena, 
Lake Formation, Glue Data Catalog, and S3 during the execution of a simple query:
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Figure 14.1 – Lake Formation 

As with all Athena queries, the process begins with Athena's engine parsing the query  
and forming a logical plan. This logical plan contains a list of tables and columns that  
need to be read and a sequence of operators to apply to the resulting data. During the 
planning process, Athena calls Lake Formation to obtain policy metadata for each 
referenced table. This metadata, along with column projections from the query, is used 
to affect access control. Assuming the access check passes, Athena moves on to forming 
a physical query plan, where it gathers partitioning information for each table from 
Glue Data Catalog. Before starting the actual query execution, Athena needs to call Lake 
Formation to obtain scoped-down temporary credentials for reading the required S3 
objects. The Lake Formation API calls to get temporary credentials are the second place 
where an access enforcement check occurs. At this point, Athena has everything it needs 
to execute the query. 
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Much of the control flow shown in the preceding diagram is unsurprising, but a couple 
of nuances may have snuck by if you weren't looking closely. Firstly, Lake Formation is 
involved in both temporary credential vending and metadata operations, such as getting 
the list of columns in a table. The initial iteration of Lake Formation's fine-grained 
access control mechanisms enabled fully managed engines such as Athena and Redshift 
Spectrum to improve permission management. While this was a marked improvement 
over the previously available solutions, many customers still found themselves contorting 
their data models to create effective data perimeters. 

Establishing a data perimeter
You've undoubtedly heard many vendors talk about democratizing access to data across 
your organization. We explored this topic by looking at some hands-on exercises as part 
of Chapter 7, Ad Hoc Analytics, but we avoid a pervasive issue by increasing access to your 
data. As we improve the accessibility of data, so too must we elevate our understanding 
of data perimeters. The word perimeter has historically referred to the outer edges of a 
company's physical assets, such as office buildings. When the internet and e-commerce 
revolutionized how business was conducted, companies erected virtual perimeters using 
firewalls. These concepts work well if your assets can be easily compartmentalized from 
those who should and shouldn't have access to them. In practice, the threats to your data 
are not always clear and certainly not always external to your company. There are different 
classes of data and times where you will need to control access at a department level and 
even down to individual employees. For example, has the data left your perimeter if an 
HR employee runs a payroll report and leaves intermediate data on storage, which is later 
accessed by someone outside HR? What if that same HR employee is working from home 
and downloads that payroll report to their laptop? At this point, you don't even have the 
protection of your company's physical security.

In these cases, data lake security is more important than ever. Lake Formation can help 
companies balance security and compliance needs with their growing desire to share data 
across departments, groups, and individuals. In many cases, safely sharing data across 
individuals with different job functions requires making redacted copies of the data. Aside 
from the additional storage and compute costs to ETL these copies, the organization had 
to manage consistency and correctness across a web of dependencies. We routinely help 
customers who have dozens of important datasets but somehow find themselves with 
thousands of derivative datasets, simply for accommodating different levels of access. 
Until recently, this was the state-of-the-art approach to creating a robust data perimeter 
because you get fine-grained control over which use cases and entities need access to 
specific slices of your data. Paradoxically, this approach created so many subtle variations 
of the original data that customers feared making mistakes that could lead to unintended 
information disclosure. 
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It's probably already pretty clear that security is far from easy to define, let alone build. 
It can be even more challenging when basic computational building blocks we all 
depend on seemingly stop playing by the rules. We'll dig deeper into this topic as part of 
understanding how customers often overlook their part in shared responsibility models. 

Shared responsibility security model
Simply put, a shared responsibility security model refers to the basic idea that the 
customer and the service must work together to ensure any given workload is secure. 
We're using the word secure a bit tongue in cheek here because most security-conscious 
individuals will recoil at the thought of distilling all the complex nuances of security into 
one word. Security is rarely binary, meaning it's uncommon for any application to be 
described as secure or not secure. It's more common to think of these things as a gradient 
or, even better, in terms of specific threats and mitigations.  

For example, one use case may require that data be encrypted when stored at rest. The 
reasons vary, but a typical example is that the underlying storage does not encrypt data 
replication traffic that's generated when the storage nodes failover. Another application 
may run workloads from multiple internal teams on shared infrastructure to improve 
costs. Since these workloads are all internal, the business valued utilization above 
protecting internal workloads from one another. If that same application started running 
workloads from external entities on that same, shared infrastructure, the definition of 
secure might change.

We've already called out that fully managed engines such as Athena and Redshift 
Spectrum avoid the disclaimer of a shared security model. Still, the reason has less to do 
with being fully managed and more to do with the level of control or abstraction these 
services offer. Both Athena and Redshift Spectrum essentially operate over SQL, whereas 
EMR and Glue ETL offer far more customer control. An EMR or Glue ETL customer can 
choose to run arbitrary code in their jobs. If you've ever used spark-submit or a Jupyter 
notebook with EMR, then you've executed arbitrary code on your EMR cluster. So, why 
the big fuss over arbitrary code? Well, the ability to run arbitrary code provides fairly 
low-level access to the machines that run your workloads.  
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Suppose you are running your analytics applications in a shared Spark cluster. During a 
Spark job, the state of any given node is represented as shown in the following diagram, 
with your arbitrary Spark code running side by side with the arbitrary code from some 
other workload:

Figure 14.2 – Process-level isolation of Spark workloads

Running each workload in separate processes that run as a different user improves the 
security posture by limiting how neighboring workloads can interact. If your organization 
is mainly concerned with avoiding accidental data leakage from bugs or typos, this level 
of isolation may be sufficient. But how do you know whether you've set it up correctly? 
If you depend on process-level isolation, it becomes increasingly important to ensure 
your customers cannot tamper with the operating system or Spark itself. Ensuring only 
administrators have root access to the host is a good start, but it isn't always easy to know 
whether that is enough.  
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Now, let's suppose that you'd like to go a step further and ensure customers can only 
access data they are authorized for. You might choose a tool such as Apache Ranger 
for access control. With Apache Ranger, policy enforcement takes place within 
Spark, alongside your workload. This pluggability makes it easy to get started with 
Apache Ranger for Spark, but what level of protection does it provide? For example, 
what prevents someone from running a Spark job that hijacks the Java classpath 
and injecting their copy of the RangerHiverAuthorizerFactory class? The 
RangerHiverAuthorizerFactory class plays a central role in data access policy 
enforcement. If an attacker can replace this class with one they control, the workload can 
bypass access control policies. Because their workload includes arbitrary code and has 
access to the Java class loader, such attacks become possible.

An analogy may be helpful here. This mitigation is akin to the lock on the front door of a 
house. It will keep most people from entering your home without permission, but it won't 
stop a determined adversary. There is a steep difference between keeping honest people 
honest and mitigating attacks from sophisticated attackers such as nation states. If you 
aren't using a managed service, your organization must play a more significant role in 
deciding where to draw the line. 

This is one of the big distinctions between a service such as Athena and Glue ETL, which 
offers fully managed runtimes and lets you run highly customizable environments using 
your own Spark cluster or EMR. The attack surface is much different, so the customer 
shares responsibility in the security model.

It may be hard to believe, but we've only discussed the obvious examples that feed into 
the shared security model so far. Next, we will discuss the more insidious examples that 
have contributed, in part, to Lake Formation's release of governed tables. In recent years, 
the computing world as a whole has learned that processor design is not immune from 
security flaws. While we've seen exploits in software for decades, many of us had been 
spoiled by the reliability of hardware security controls. When Spectre and Meltdown 
were announced to the world on January 3, 2018, our ability to depend on previously 
trusted operating system process-level isolations was shaken. Researchers had managed 
to use timing variations in memory cache reads to extract information from mispredicted 
code branches. There is a lot to unpack in that one statement, and while this is not a 
book on security or processor design, this is a topic worth understanding a bit more 
deeply. Recognizing the fundamental issues at play here will also help you understand the 
motivation for several of the new Lake Formation features we'll be discussing shortly. 
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The following diagram shows two possible ways an x86 process could order the 
instructions your query engine may need to perform while enforcing column-level access 
policies. As you read this, please keep in mind that we have greatly simplified what your 
processor and an attacker would do during an exploit. We recommend reading online to 
learn more about side-channel exploits such as Spectre and Meltdown:

Figure 14.3 – Speculative execution example

On the left-hand side of the preceding diagram, we can see the instruction ordering that's 
been requested by our query engine. Naturally, it begins with checking whether the caller 
has access to read the column. Assuming that conditional passes, the query engine then 
attempts to read the data and compute a result. The right-hand side of the diagram shows 
how your CPU likely executed these instructions. Notice that the order changed! Some 
of these pseudo instructions take more time, often measured in clock cycles compared to 
others. Modern x86 CPUs can work on multiple instructions each clock cycle. While one 
instruction is fetching its operands from the cache, another instruction might be using 
a floating-point unit to calculate the result of a division operation. Coordinating which 
instructions are utilizing each part of the CPU is often referred to as pipelining.
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The deeper the pipeline, the more efficient a CPU can be, and the faster customers will 
perceive the CPU. The trick is keeping all the parts of the CPU busy by guessing what 
instructions might be run in the future when earlier instructions take too long and stall 
execution. Your CPU is making a bet. It can remain idle while waiting for the earlier 
instruction to finish, or it can guess at what it will be asked to do next. Naively waiting 
has a 100% probability of wasting CPU cycles. Guessing is highly likely to perform better 
than waiting. Chasing this opportunity is what has driven modern x86 CPUs to reorder 
instructions and, at times, speculatively execute instructions.

In our access check example shown in the preceding diagram, the memory read and 
compute result steps have to wait for the access check branch to decide which path to take. 
While that branch is being evaluated, the memory dispatcher is idle, despite having an 
impending memory read. Your CPU has a surprisingly large surface area of the physical 
chip that's dedicated to branch prediction so that it can guess whether read operations will 
be required. So, your CPU will start reading and maybe even calculating the result while 
waiting to find out whether the branch will need those instructions to be carried out. This 
might seem like a bad idea, especially when instructions have side effects such as writing 
to memory. Luckily, your CPU can unwind mispredicted branches so that they have no 
materialized side effects. 

Unfortunately, Spectre and Meltdown highlighted subtle side effects in the form of 
changing the cache's state. Imagine that I can fool your CPU into speculatively executing 
a conditional read of a memory address I don't own – maybe even the address where you 
are storing an encryption key. Later, I can run a similar operation and use the timing of 
when the instruction was completed to tell me whether the value was already in the CPU 
cache. If the value was in the cache, I can infer the result of the conditional check and 
thus learn about the value that was stored at an address I don't have access to – all because 
the CPU cache state wasn't rolled back. In this example, the cache created a side channel 
between the erased world of the failed branch prediction and the resumed execution path.

With this primitive memory gadget, an attacker can steal a few bits of memory from  
a neighboring process at a time. In practice, this class of vulnerability has been used 
to crack cryptographic keys that are used for SSH, SSL, and credential storage. Many 
organizations lack the deep security expertise to identify or worry about these kinds of 
vulnerabilities. Luckily, Lake Formation can help you stay a step ahead in the race to 
securing your data lake.
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What Is a Gadget?
In the context of malicious code exploits, a gadget is a utility that can be used 
to exploit a known vulnerability. Most gadgets are small, typically comprised 
of a few dozen code lines, and appear pretty innocuous on their own. When a 
malicious actor initially accesses a system that intends to compromise, either 
through legitimate means or via an initial vulnerability, they often begin 
constructing gadgets that allow them to elevate their privilege or extract 
information from the target system. 

How Lake Formation can help
At re:Invent 2020, the AWS Lake Formation team announced a preview release of Lake 
Formation's next-generation security features. Among these new features were a set of 
APIs for reading and writing data to Lake Formation-managed tables, with the ability 
to enforce row-level access. The following screenshot shows how to grant access to US 
customer data in a table containing data from customers around the globe: 

Figure 14.4 – Row-level access control
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These two features can be combined to address many of the challenges we discussed 
earlier as part of the shared responsibility security model and data perimeters. The new 
APIs essentially offload the TableScan operation from your analytics engine into Lake 
Formation's secure filtering fleet. By doing so, Lake Formation can make strong security 
guarantees, regardless of the analytics engine you are using. Since Lake Formation's 
read and write APIs apply policy enforcement remotely to any arbitrary and potentially 
untrusted code within your workload, the attack surface is much smaller. You no longer 
need to worry about side channels or admin access to the underlying host. This model 
also makes it easier to build multi-tenant analytics applications. Its built-in filtering 
capability also allows Lake Formation to enforce previously impossible row-level access 
control policies without the need to ETL redacted copies of your dataset. 

This functionality is slated to become generally available in late 2021, alongside Lake 
Formation's new ACID-compliant governed table type. 

Understanding the benefits of governed tables
The entire AWS analytics suite of services, including Athena, EMR, Glue, Redshift, and 
Lake Formation, continually makes building and managing data lakes on S3 easier. What 
used to take months with traditional data warehouses can be accomplished in days using 
these tools with S3. Despite all the advances in these services, customers still face difficult 
choices when it comes to the following:

• Ingesting streaming data such as Change-Data-Capture (CDC), click data, or 
application logs

• Complying with new regulations such as GDPR and CCPA

• Understanding how your data changes over time

• Adapting table storage to meet evolving usage and access patterns

In addition to the security-oriented features we discussed earlier in this chapter, Lake 
Formation's new governed table type takes several steps toward addressing these common 
sources of data lake frustration. Governed tables are a new Amazon S3 table type that 
supports atomic, consistent, isolated, and durable (ACID) transactions and automatic 
storage optimization. To the uninitiated, this may seem like a home run of marketing 
buzzwords, but governed tables are poised to change how we build everything, from ETL 
pipelines to interactive analytics applications. Next, we'll look at a common problem that 
governed tables and their ACID transactions can help us overcome. 
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ACID transactions on S3-backed tables
Have you ever queried multiples data lake tables in the same query, perhaps via a join 
clause? If different source systems or ETL jobs populated those tables, there is a significant 
probability that any query against them reads inconsistent data. The picture becomes even 
bleaker when you factor in partial failures, which can be just as challenging to identify as 
they are to repair. This might be a good time for an example. 

Suppose we work for an advertising company and routinely track the performance of 
different advertising campaigns by joining three tables. The first table contains details 
about all the campaigns, including their total budget, start date, end date, and sponsor. 
This table is relatively stable, changing only when new campaigns are booked. Next, the 
impressions table contains a row representing every time we served an ad placement from 
this campaign. This table changes rapidly, with new entries appearing in near-real time. 
The final table contains conversion data that identifies which impressions resulted in an 
ad click or, better still, a purchase! This table doesn't change as often as we like, but it is far 
from static and mostly populated with data from third-party systems. 

When you open your Athena console and run your company's conversion rate reporting 
query in preparation for a client meeting, you are rolling the dice that the result you get is 
an accurate representation of the world. Suppose the impression table has fallen behind 
because of a traffic surge leading up to the holiday season. The conversion table has a 
much lower flow and doesn't encounter any issues. Even if your query uses set date ranges, 
you may still find yourself pulling more conversion data than impression data, resulting 
in an overly optimistic view of how well the campaign is doing. The opposite can also be 
true when an unexpected issue causes the third-party source data to be late or incomplete. 
In that case, you may be scrambling to make up for an inexplicably underperforming 
campaign and give unnecessary concessions to an important client.

In our experience, all data lake use cases fall into one of three buckets concerning 
consistency:

• Consistency is irrelevant: The data is typically historical (backward-looking), 
immutable, or consistency is inherent due to the records containing correlation  
IDs that self-identify consistency issues.

• Consistency is unknown: The producers and consumers do not know or 
understand the implications of datasets being used together. The organization 
spends many hours chasing phantom data quality heisenbugs that seem to resolve 
themselves when investigated.  
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• Consistency is required and designed for: Producers and consumers take steps 
to ensure that the data in the lake is consistent. This often includes publishing 
metadata alongside the data that describes its currency. Many organizations also 
produce snapshot datasets that simplify consumers by treating data as immutable  
at the expense of increased ETL compute and storage costs. 

Heisenbug
This is one of our favorite pieces of computer science jargon that plays on 
the famous observer effect of quantum mechanics that Werner Heisenberg 
first described as the Heisenberg Uncertainty Principle. The theory asserts 
that the act of observing a quantum particle changes its behavior and reduces 
the reliability of multi-variable measurements. Naturally, frustrated software 
engineers rallied behind this theory, which accurately describes a class of 
bugs that are usually timing-related. In such cases, a new log line is added or a 
debugger is attached to observe how the bug changes how the system behaves 
and causes the bug to disappear. In practice, the typical mechanisms that are 
used to observe a bug also change the speed or timing of program execution, 
which has a real effect on timing bugs resulting from race conditions. 

Now that we have a better understanding of data lake consistency, we can look at an 
example of how to use transactions against Lake Formation governed tables to simplify 
how we produce and consume data. At the time of writing, Athena can read governed 
tables but has not released its specification for writes to governed tables yet. Since most  
of the interesting consistency work is taken on by the producer or writer, we'll use an 
Apache Spark example from Glue ETL instead. 

In the following code block, we are creating a Glue Spark context and then calling Lake 
Formation's new begin_transaction API. This API returns a transaction identifier 
that represents a specific point in time within our data lake, commonly called an epoch. 
With this single API call, we've established a point of observation that will be applied to 
all reads and writes that are performed within this script. This is important enough that 
it warrants repeating. No matter what any other reader or writer does to any table in our 
data lake, we are guaranteed a view of the world as soon as we start the transaction, thanks 
to the snapshot isolation mechanism offered by governed tables. 
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The script then uses the transaction ID to configure a Spark sink that points to our 
impressions table in the ads database. This is primarily boilerplate and is no different 
from non-governed table use cases, except for passing the transaction ID to the creation 
function:

glueContext = GlueContext(SparkContext.getOrCreate())

txid1 = glueContext.begin_transaction(read_only=False)

sink = glueContext.getSink(connection_type="s3",

                    path="s3://my_bucket/ads/impressions/",

                    enableUpdateCatalog=True,

                    updateBehavior="UPDATE_IN_DATABASE",

                    transactionId=txid1)

sink.setFormat("glueparquet")

sink.setCatalogInfo(catalogDatabase=ads,

               catalogTableName=impressions)

Once the sink has been created, the script uses it to write new and updated impression 
data into the data lake via a DataFrame that we loaded offscreen from a third-party 
source. In the following code block, the script uses a try-except block to ensure that it 
either commits or aborts the transaction, depending on the success of the write operation. 
As the developer of the script, you can choose when to call commit_transaction or 
abort_transaction. For extra protection, you may choose to query the newly written 
data to ensure it's available before declaring the write successful and committing the 
transaction. Since governed tables support read-your-own-write semantics, you can easily 
add this quality check and simplify operations by automatically rolling back the errant or 
partial data without human intervention:

try:

    sink.writeFrame(new_and_updated_impressions_dataframe)

    glueContext.commit_transaction(txid1)

except:

    glueContext.abort_transaction(txid1)

There are many other use cases where having transactional capabilities is helpful. 
Combining Lake Formation's new data read and write APIs with ACID transactions 
enables compliance with data protection laws such as GPDR, which were previously 
hampered by the immutable nature of S3 objects. 
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Despite S3 objects being inherently immutable, organizations have been modifying data in 
their data lakes for years. Most customers are familiar with adding new data as it arrives, 
but some must also apply backfills or restate past values by rewriting entire files or tables. 
With all these modifications flying around, we often find ourselves wondering, "what 
did that table contain when this job ran?". Your compliance officer might even mandate 
that specific tables be versioned, even though few, if any, tools exist to automate reading 
past versions of essentially random S3 objects. The same machinery that Lake Formation 
uses to create ACID transactions enables reading your data lake through any committed 
transaction. This is the basic building block of time-travel capabilities, which we will 
discuss in the next section.

Time-traveling queries
To resolve transaction conflicts and support rollbacks, more ACID-compliant transaction 
managers maintain a transaction log of some kind. The ledger records every change, 
addition, or deletion that occurred as part of each transaction. With this information, 
the system can rebuild the system's state before or after each transaction. Normally, this 
aids in error recovery or transaction rollback when you call the abort_transaction 
API. Lake Formation extends the utility of the transaction log to offer time-traveling 
capabilities.

When activated, time travel allows queries against one or more governed tables to read 
from a consistent snapshot of the data lake, as of the specified time or transaction ID. 
The following code block shows how to run an Athena query against the advertising 
impression table from the previous section. Despite what 80s movies may have taught 
you, you won't need a Delorean or 1.21 Gigawatts of power to calculate the number of 
impressions for our advertising campaign as of 30 days ago. We can simply specify a 
SYSTEM_TIME value that Athena will use to set the read point in the transaction log:

SELECT campaign_id, 

  count(*) as total_impressions, 

  avg(linger_time_ms) as avg_impression_duration

FROM  

  lakeformation.ads.impressions

WHERE

      campaign_id = 87348519457

FOR SYSTEM_TIME AS OF datesub(day, 30, now())

GROUP BY campaign_id
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We can use such queries to debug updates to a dataset, observing when and how data 
changed. If an update was done incorrectly, then the transaction that caused the data 
quality issue can be rolled back. For example, if you have impression data that gets 
updated regularly and a customer suggests that the data is incorrect, using time-travel 
queries can pinpoint the time when the inaccurate data was updated. 

As you might imagine, the underlying storage for transaction tables is more complex than 
a basic list of S3 objects. Luckily, governed tables are supported by Lake Formation's new 
storage optimizer. 

Automated compaction of data
We first covered the role of the physical table layouts as part of Chapter 2, Introduction to 
Amazon Athena, and Built-In Functions. This subject resurfaced in Chapter 11, Operational 
Excellence – Maintenance, Optimization, and Troubleshooting, where partitioning and 
file formats became a focal point of operating Athena workloads at scale. The size and 
arranging S3 objects into partitions and tables dictates both the performance and cost of 
your analytics queries. When customers ask why their queries are not running as quickly 
as expected, file size is one of the first things we must check. Most of the time, the files 
being read are tiny, 10 KB to 10 MB. Small files can be detrimental to query performance 
because there is overhead associated with each object in the form of metadata, connection 
time, and data roundtrips from the underlying storage. This overhead can account for as 
much as 80% of the overall time taken to read the data for small objects. 

When enabled for your governed tables, Lake Formation monitors the file sizes and 
read performance to identify opportunities where reorganizing the data would improve 
performance. The first such optimization comes in the form of small file compaction. If 
you've ever processed a data stream from the likes of Kinesis or Kafka, you'll likely have 
dealt with an accumulation of thousands or millions of small files. Lake Formation will 
automatically rewrite the small files into more appropriately sized ones, according to the 
given format's recommended file size. Since these compaction operations happen as part 
of an ACID transaction, they all occur seamlessly, without your producers or consumers 
needing to be aware of the activity. 

While this is the final Lake Formation feature we'll cover, it is far from the least, given the 
proliferation of self-managed compaction jobs that many customers run.
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Summary
In this chapter, we concluded our exploration of Athena by looking at upcoming Lake 
Formation features. AWS is increasingly positioning Lake Formation as their one-stop 
shop for data lake creation and management. If they succeed in making Lake Formation 
a foundational component of AWS data lakes, customers could expect increased 
interoperability across the various AWS analytics engines. 

It may not be the flashiest feature, but we expect to see many applications mimic Lake 
Formation's new security features. Using dedicated data access APIs to decouple policy 
enforcement from workload execution is like an easy button for reducing your attack 
surface. The addition of ACID transactions with the new governed table type will open 
a host of new possibilities such as time travel. Look for these features to reach general 
availability in late 2021.

If you'd like to learn more, consult the Further reading section and consider signing up  
for the public preview of these features.

Further reading
In this section, we've gathered links to additional materials that you may find helpful in 
diving deeper into some of the primary sources for topics mentioned in this chapter: 

• AWS Big Data Blog: Getting Started with Governed Tables: https://amzn.
to/3AsSjYX 

• AWS Big Data Blog: Creating Governed Tables: https://amzn.to/3s9pJJ1 

• AWS Big Data Blog: Using ACID Transactions on Governed Tables: https://
amzn.to/2VtEV87 

• AWS Big Data Blog: Implementing Cell-Level and Row-Level Security: https://
amzn.to/3CtrkhB 

• AWS Big Data Blog: Securing Data Lakes: https://amzn.to/2X9QGkv 

• Side-channel a-ttacks: Spectre and Meltdown: https://bit.ly/3Cu0pSR 

https://amzn.to/3AsSjYX
https://amzn.to/3AsSjYX
https://amzn.to/3s9pJJ1
https://amzn.to/2VtEV87 
https://amzn.to/2VtEV87 
https://amzn.to/3CtrkhB
https://amzn.to/3CtrkhB
https://amzn.to/2X9QGkv
https://bit.ly/3Cu0pSR
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