

Serverless Analytics
with Amazon Athena

Query structured, unstructured, or semi-structured
data in seconds without setting up any infrastructure

Anthony Virtuoso

Mert Turkay Hocanin

Aaron Wishnick

BIRMINGHAM—MUMBAI

Serverless Analytics with Amazon Athena
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have been
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Kunal Parikh
Publishing Product Manager: Devika Battike
Senior Editor: David Sugarman
Content Development Editor: Joseph Sunil
Technical Editor: Rahul Limbachiya
Copy Editor: Safis Editing
Project Coordinator: Aparna Nair
Proofreader: Safis Editing
Indexer: Tejal Soni
Production Designer: Shankar Kalbhor

First published: November 2021

Production reference: 1131021

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-234-9

www.packt.com

http://www.packt.com

To my wife, Cristina, thank you for the support and understanding
as I spent late nights and early mornings working on this book. I also

appreciate all the laughs we had over my terrible spelling. For my sons,
Luca and Massimo, who worked on their own pop-up books alongside me;

I'll be first in line for an advanced copy of your books.

– Anthony Virtuoso

I dedicate this book to my wife, Subrina, who has been incredibly
supportive, and our son, Tristan, who was born while writing this book.
Without the both of you and the encouragement and love you gave me,

this book would not have been possible. I also want to thank my parents,
siblings, and everyone else who helped make this possible.

– Mert Turkay Hocanin

Foreword
Creating a data strategy is a top priority for leading organizations. That's because with any
major initiative, from creating new experiences to building new revenue streams, leaders
must be able to quickly gather insights and get to the truth. Data-driven organizations
seek the truth by treating data like an organizational asset, no longer the property of
individual departments. They set up processes to collect and store valuable data. Their
data is democratized, meaning it's available to the right people and systems that need it.
And their data is used to build new and innovative products that use data and machine
learning (ML) to deliver new customer experiences.

AWS offers the broadest and deepest set of services for analytics and ML, and Amazon
Athena is a key pillar of our offerings. Amazon Athena is a serverless analytics service
that enables customers to use standard SQL to analyze all the data in their Amazon S3
data lakes, their data warehouses, and their transactional databases, as well as data that
lives on-premises, in SaaS applications, and in other clouds. In other words, with Athena,
you can query all your data from a single place using a language familiar to most analysts,
using any business intelligence or ML tools you'd like. It's really all about having all your
data at your fingertips.

I am incredibly lucky to have worked on creating and launching virtually all of the
analytics offerings from AWS over the past decade. I was part of the team that created the
original vision for Athena and launched the service in 2016. We created Athena because
customers wanted a way to query all their data, both the structured data from databases
as well as the semi-structured and unstructured data in their data lakes and other data
sources, without having to manage infrastructure or give up SQL or the standard tools
they were already using. We launched Athena at re:Invent 2016 and have been iterating
on and improving the service ever since.

Mert, Aaron, and Anthony were founding members of the Amazon Athena team and
have played pivotal roles in defining, building, and evolving the service. They are deeply
passionate engineers who love helping customers succeed with Athena and with analytics
overall. At AWS, the vast majority of our roadmap is driven by working closely with
our customers, understanding their requests and priorities and bringing them into our
services. Mert, Aaron, and Anthony are customer-obsessed, always looking for ways
to help customers get more from Athena, and they have an innate ability to teach and
bring people along. I'm so grateful they chose to write this book to share their expertise
with all of us.

This book, like Amazon Athena, is designed to get you up and running with queries with
minimal upfront setup and work. You'll progress from running simple queries to building
sophisticated, automated pipelines to work with near-real-time event data, queries to
external data sources, custom functions, and more, all while learning from Mert, Aaron,
and Anthony's experience working with real-world customer scenarios.

I highly recommend this book to any new or existing customers looking to transform
their business with data and with Amazon Athena.

Rahul Pathak, VP, AWS Analytics

Contributors

About the authors
Anthony Virtuoso works as a principal engineer at Amazon and holds multiple patents
in distributed systems, software-defined networks, and security. In his 8 years at Amazon,
he has helped launch several Amazon web services, the most recent of which was Amazon
Managed Blockchain. As one of the original authors of Athena Query Federation, you'll
often find him lurking on the Athena Federation GitHub repository answering questions
and shipping bug fixes. When not at work, Anthony obsesses over a different set of
customers, namely his wife and two little boys, aged 2 and 5. His kids enjoy doing science
experiments with their dad, such as 3D printing toys, building with LEGO, or searching
the local pond for tardigrades.

Mert Turkay Hocanin is a principal big data architect at Amazon Web Services within the
AWS Glue and AWS Lake Formation services and has previously worked for several other
services, including Amazon Athena, Amazon EMR, and Amazon Managed Blockchain.
During his time at AWS, he has worked with several Fortune 500 companies on some of
the largest data lakes in the world and was involved with the launching of three Amazon
web services. Prior to being a big data architect, he was a senior software developer
within Amazon's retail systems organization, building one of the earliest data lakes in the
company in 2013. When he is not helping customers build data lakes, he enjoys spending
time with his wife, Subrina, and son, Tristan, and exploring New York City.

Aaron Wishnick works as a senior software engineer at Amazon, where he has been for
7 years. During that time, he has worked on Amazon's payment systems and financial
intelligence systems, as well as working for AWS on Athena and AWS Proton. When not
at work, Aaron and his fiance, Alyssa, are on a quest to determine just how much dog fur
is too much, with their husky and malamute, Mina and Wally.

About the reviewers
Seth Denney is a software engineer who has spent most of his career in big data analytics,
building infrastructure and query engines to support a wide variety of use cases at
companies including Amazon and Google. While on the AWS Athena team, he was
intimately involved with the Lake Formation and Query Federation projects, to name
a few.

Janak Agarwal has been the product manager for Amazon Athena since he joined AWS in
December 2018. Prior to joining AWS, Janak was at Microsoft for 9+ years, where he led a
team of engineers for Microsoft Office 365. He also co-founded CourseKart, an e-learning
platform in India, and TaskUnite, a medical technology company in the US. Janak holds a
master's in electrical engineering from USC and an MBA from the Wharton School.

Table of Contents
Preface

Section 1: Fundamentals Of Amazon Athena

1
Your First Query

Technical requirements 4
What is Amazon Athena? 6
Use cases 7
Separation of storage and compute 7

Obtaining and preparing
sample data 9

Running your first query 12
Creating your first table 14
Running your first analytics queries 16

Summary 20

2
Introduction to Amazon Athena

Technical requirements 22
Getting to know Amazon
Athena 22
Understanding the "serverless" trend 23
Beyond "serverless" with 'fully
managed' offerings 25
Key features 27

What is Presto? 34
Understanding scale and
latency 39
TableScan performance 41

Memory-bound operations 42
Writing results 43

Metering and billing 43
Additional costs 45
File formats affect cost and
performance 46
Cost controls 49

Connecting and securing 50
Determining when to use
Amazon Athena 50
Ad hoc analytics 50

x Table of Contents

Adding analytics features to your
application 52
Serverless ETL pipeline 53

Other use cases 54

Summary 54
Further reading 55

3
Key Features, Query Types, and Functions

Technical requirements 58
Running ETL queries 59
Using CREATE-TABLE-AS-SELECT 63
Using INSERT-INTO 67

Running approximate queries 71

Organizing workloads with
WorkGroups and saved queries 75
Using Athena's APIs 80
Summary 86

Section 2: Building and Connecting to Your
Data Lake

4
Metastores, Data Sources, and Data Lakes

Technical requirements 90
What is a metastore? 91
Data sources, connectors, and catalogs 93
Databases and schemas 93
Tables/datasets 94

What is a data source? 99
S3 data sources 100
Other data sources 103

Registering S3 datasets in your
metastore 104
Using Athena CREATE TABLE
statements 104
Using Athena's Create Table wizard 105

Using the AWS Glue console 106
Using AWS Glue Crawlers 106

Discovering your datasets on S3
using AWS Glue Crawlers 107
How do AWS Glue Crawlers work? 107
AWS Glue Crawler best practices for
Athena 111

Designing a data lake
architecture 112
Stages of data 113
Transforming data using Athena 114

Summary 117
Further reading 118

Table of Contents xi

5
Securing Your Data

Technical requirements 120
General best practices to
protect your data on AWS 121
Separating permissions based on IAM
users, roles,
or even accounts 122
Least privilege for IAM users, roles,
and accounts 123
Rotating IAM user credentials
frequently 123
Blocking public access on S3 buckets 123
Enabling data and metadata
encryption and
enforcing it 124
Ensuring that auditing is enabled 125
Good intentions cannot replace good
mechanisms 125

Encrypting your data
and metadata in Glue Data
Catalog 125
Encrypting your data 126
Encrypting your metadata in
Glue Data Catalog 131

Enabling coarse-grained access
controls with IAM resource
policies for data on S3 132
Enabling FGACs with Lake
Formation for data on S3 137
Auditing with CloudTrail
and S3 access logs 137
Auditing with AWS CloudTrail 137
Auditing with S3 server access logs 140

Summary 141
Further reading 141

6
AWS Glue and AWS Lake Formation
Technical requirements 144
What AWS Glue and AWS Lake
Formation can
do for you 145
Securing your data lake with Lake
Formation 155

What AWS Lake Formation governed
tables
can do for you 169

Summary 172
Further reading 172

xii Table of Contents

Section 3: Using Amazon Athena

7
Ad Hoc Analytics

Technical requirements 176
Understanding the ad hoc
analytics hype 176
Building an ad hoc analytics
strategy 180
Choosing your storage 180
Sharing data 181
Selecting query engines 182
Deploying to customers 182

Using QuickSight with Athena 183

Getting sample data 184
Setting up QuickSight 184

Using Jupyter Notebooks with
Athena 189
pandas 194
Matplotlib and Seaborn 194
SciPy and NumPy 195
Using our notebook to explore 195

Summary 205

8
Querying Unstructured and Semi-Structured Data

Technical requirements 208
Why isn't all data structured to
begin with? 209
Querying JSON data 210
Reading our customer's dataset 211
Parsing JSON fields 213
Other considerations when
reading JSON 214

Querying comma-separated value and
tab-separated value data 216

Querying arbitrary log data 222
Doing full log scans on S3 222
Reading application log data 224

Summary 226
Further reading 227

9
Serverless ETL Pipelines

Technical requirements 230
Understanding the uses of ETL 231
ETL for integration 231
ETL for aggregation 234

ETL for modularization 235
ETL for performance 237

Deciding whether to ETL or
query in place 238

Table of Contents xiii

Designing ETL queries for
Athena 238
Don't forget about performance 239
Begin with integration points 241
Use an orchestrator 242

Using Lambda as an
orchestrator 242

Creating an ETL function 243
Coding the ETL function 246
Testing your ETL function 256

Triggering ETL queries with S3
notifications 257
Summary 261

10
Building Applications with Amazon Athena

Technical requirements 264
Connecting to Athena 265
JDBC and ODBC 265
Which one should I use? 269

Best practices for connecting to
Athena 270
Idempotency tokens 270
Query tracking 274

Securing your application 280

Credential management 280
Network safety 282

Optimizing for performance
and cost 285
Workload isolation 285
Application monitoring 286
CTAS for large result sets 291

Summary 291

11
Operational Excellence – Monitoring, Optimization, and
Troubleshooting
Technical requirements 294
Monitoring Athena to ensure queries
run smoothly 295
Optimizing for cost and performance 300

Troubleshooting failing queries 311
Summary 315
Further reading 315

xiv Table of Contents

Section 4: Advanced Topics

12
Athena Query Federation

Technical requirements 320
What is Query Federation? 321
Athena Query Federation features 324

How Athena Connectors work 326
Using Lambda for big data 329
Federating queries across VPCs 330

Using pre-built Connectors 332
Building a custom connector 337
Setting up your development
environment 338
Writing your connector code 339

Summary 358

13
Athena UDFs and ML

Technical requirements 360
What are UDFs? 360
Writing a new UDF 362
Setting up your development
environment 362
Writing your UDF code 364
Building your UDF code 370
Deploying your UDF code 371

Using your UDF 372

Using built-in ML UDFs 374
Pre-setup requirements 374
Setting up your SageMaker notebook 377
Using our notebook to train a model 377
Using our trained model in an Athena
UDF 382

Summary 384

14
Lake Formation – Advanced Topics

Reinforcing your data
perimeter with Lake
Formation 386
Establishing a data perimeter 388
Shared responsibility security model 389
How Lake Formation can help 394

Understanding the benefits of
governed tables 395
ACID transactions on S3-backed tables 396

Summary 401
Further reading 401

Other Books You May Enjoy
Index

Preface
Amazon Athena is an interactive query service that makes it easy to analyze data in
Amazon S3 using standard SQL, without needing to manage any infrastructure.

This book begins with an overview of the serverless analytics experience offered by Athena
and teaches you how to build and tune an S3 data lake using Athena, including how to
structure your tables using open source file formats such as Parquet. You'll learn how to
build, secure, and connect to a data lake with Athena and Lake Formation. Next, you'll
cover key tasks such as ad hoc data analysis, working with ETL pipelines, monitoring
and alerting KPI breaches using CloudWatch Metrics, running customizable connectors
with AWS Lambda, and more. Moving ahead, you'll work through easy integrations,
troubleshooting and tuning common Athena issues, and the most common reasons for
query failure, as well as reviewing tips for diagnosing and correcting failing queries in
your pursuit of operational excellence. Finally, you'll explore advanced concepts such as
Athena Query Federation and Athena ML to generate powerful insights without needing
to touch a single server.

By the end of this book, you'll be able to build and use a data lake with Amazon Athena
to add data-driven features to your app and perform the kind of ad hoc data analysis that
often precedes many of today's ML modeling exercises.

Who this book is for
BI analysts, application developers, and system administrators who are looking to generate
insights from an ever-growing sea of data while controlling costs and limiting operational
burdens will find this book helpful. Basic SQL knowledge is expected to make the most
out of this book.

xvi Preface

What this book covers
Chapter 1, Your First Query, is all about orienting you to the serverless analytics
experience offered by Amazon Athena. For now, we will simplify things in order to run
your first queries and demonstrate why so many people choose Amazon Athena for their
workloads. This will help establish your mental model for the deeper discussions, features,
and examples of later sections.

Chapter 2, Introduction to Amazon Athena, continues your introduction to Athena by
discussing the service's capabilities, scalability, and pricing. You'll learn when to use
Amazon Athena and how to estimate the performance and costs of your workloads before
building them on Athena. We'll also take a look behind the scenes to see how Athena uses
PrestoDB, an open source SQL engine from Facebook, to process your queries.

Chapter 3, Key Features, Query Types, and Functions, concludes our introduction to
Amazon Athena by exploring built-in features you can use to make your reports or
application more powerful. This includes approximate query techniques to speed up
analysis of large datasets and Create Table As Select (CTAS) statements for running
queries that generate significant amounts of result data.

Chapter 4, Metastores, Data Sources, and Data Lakes, teaches you what a metastore is
and what they contain. We will introduce Apache Hive and AWS Glue Data Catalog
implementations of a metastore. We'll then learn how to create tables through Athena or
discover datasets in S3 using AWS Glue crawlers. We then focus on a typical data lake
architecture, which contains three different stages for data.

Chapter 5, Securing Your Data, covers the various methods that can be employed to secure
your data and ensure it can only be viewed by those that have permission to do so.

Chapter 6, AWS Glue and AWS Lake Formation, demonstrates step by step how to build
a secure data lake in Lake Formation and how Athena interacts with Lake Formation to
keep data safe.

Chapter 7, Ad Hoc Analytics, focuses on how you can use Athena to quickly get to know
your data, look for patterns, find outliers, and generally surface insights that will help you
get the most from your data.

Chapter 8, Querying Unstructured and Semi-Structured Data, shows how Amazon Athena
combines a traditional query engine, and its requirement for an upfront schema, with
extensions that allow it to handle data that contains varying or no schema.

Chapter 9, Serverless ETL Pipelines, continue with the theme of controlling chaos by
using automation to normalize newly arrived data through a process known as extract,
transform, load (ETL).

Preface xvii

Chapter 10, Building Applications with Amazon Athena, tells you what to do when
integrating Amazon Athena into your applications. How will the application make Athena
calls? How should credentials be stored? Should you use JDBC, ODBC, or Athena's SDK?
What are the best practices on setting up connectivity between your application and
Athena and the security considerations? Lastly, what is the best way for me to store my
data on S3 to optimize speed and cost? This chapter will answer all these questions and
give examples – including working code – to get you started integrating with Athena fast,
easily, and in a secure way.

Chapter 11, Operational Excellence – Maintenance, Optimization, and Troubleshooting,
focuses on operational excellence by looking at what could go wrong when using Athena
in a production environment. We'll learn how to monitor and alert KPI breaches – such
as queue dwell times – using CloudWatch metrics so you can avoid surprises. You'll also
see how to optimize your data and queries to avoid problems before they happen. We'll
then look at how the layout of data stored in S3 can have a significant impact on both cost
and performance. Lastly, we will look at the most common reasons for query failure and
review tips to help diagnose and correct failing queries.

Chapter 12, Athena Query Federation, is all about getting the most out of Amazon Athena
by using Athena's Query Federation capabilities to expand beyond queries over data in
S3. We will illustrate how Query Federation allows you to combine data from multiple
sources (for example, S3 and Elasticsearch) to provide a single source of truth for your
queries. Then we will peel back the hood and explain how Amazon Athena uses AWS
Lambda to run customizable connectors. We will even write our own connector in order
to show you how easy it is to customize Athena with your own code.

Chapter 13, Athena UDFs and ML, continues the theme of enhancing Amazon Athena
with our own functionality by adding our own user-defined functions and machine
learning models. These capabilities allow us to do everything from applying ML inference
to identify suspicious records in our dataset to converting port numbers in a VPC flow
log to the common name for that port (for example, HTTP). In all of these examples,
we add our own logic to Athena's row-level processing without the need to run any
servers of our own.

Chapter 14, Lake Formation – Advanced Topics, covers some of the advanced features that
Lake Formation brings to the table, and explores various use cases that are enabled by
these features.

xviii Preface

To get the most out of this book
To work on the technologies in this book, you will need a computer with a Chrome, Safari,
or Microsoft Edge browser installed and AWS CLI version 2 installed.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Please ensure that you close any outstanding AWS instances after you are done working on
them so that you don't incur unnecessary expenses.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Serverless-Analytics-with-Amazon-
Athena. If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: http://www.packtpub.com/sites/
default/files/downloads/9781800562349_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "We simply specify a SYSTEM_TIME that Athena will use to set the
read point in the transaction log."

A block of code is set as follows:

try:

 sink.writeFrame(new_and_updated_impressions_dataframe)

 glueContext.commit_transaction(txid1)

https://github.com/PacktPublishing/Serverless-Analytics-with-Amazon-Athena
https://github.com/PacktPublishing/Serverless-Analytics-with-Amazon-Athena
https://github.com/PacktPublishing/Serverless-Analytics-with-Amazon-Athena
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781800562349_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781800562349_ColorImages.pdf

Preface xix

except:

 glueContext.abort_transaction(txid1)

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

"inventory_id","item_name","available_count"

"1","A simple widget","5"

"2","A more advanced widget","10"

"3","The most advanced widget","1"

"4","A premium widget","0"

"5","A gold plated widget","9"

Bold: Indicates a new term, an important word, or words that you see onscreen.
For instance, words in menus or dialog boxes appear in bold. Here is an example:
"Administrators can set a workgroup to encrypt query results. In the workgroup settings,
set query results to be encrypted using SSE-KMS, CSE-KMS, or SSE-S3 and check the
Override client-side settings."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

https://customercare@packtpub.com
https://www.packtpub.com/support/errata
https://copyright@packt.com

xx Preface

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Serverless Analytics with Amazon Athena, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/r/1-800-56234-9

Section 1:
Fundamentals Of

Amazon Athena

In this section, you will run your first Athena queries and establish an understanding of
key Athena concepts that will be put into practice in later sections.

This section consists of the following chapters:

• Chapter 1, Your First Query

• Chapter 2, Introduction to Amazon Athena

• Chapter 3, Key Features, Query Types, and Functions

1
Your First Query

This chapter is all about introducing you to the serverless analytics experience offered
by Amazon Athena. Data is one of the most valuable assets you and your company
generate. In recent years, we have seen a revolution in data retention, where companies are
capturing all manner of data that was once ignored. Everything from logs to clickstream
data, to support tickets are now routinely kept for years. Interestingly, the data itself is not
what is valuable. Instead, the insights that are buried in that mountain of data are what
we are after. Certainly, increased awareness and retention have made the information we
need to power our businesses, applications, and decisions more available but the explosion
in data sizes has made the insights we seek less accessible. What could once fit nicely in a
traditional RDBMS, such as Oracle, now requires a distributed filesystem such as HDFS
and an accompanying Massively Parallel Processing (MPP) engine such as Spark to run
even the most basic of queries in a timely fashion.

Enter Amazon Athena. Unlike traditional analytics engines, Amazon Athena is a fully
managed offering. You will never have to set up any servers or tune cryptic settings to
get your queries running. This allows you to focus on what is most important: using data
to generating insights that drive your business. You can just focus on getting the most
out of your data. This ease of use is precisely why this first chapter is all about getting
hands-on and running your first query. Whether you are a seasoned analytics veteran
or a newcomer to the space, this chapter will give you the knowledge you need to be
running your first Athena query in less than 30 minutes. For now, we will simplify things
to demonstrate why so many people choose Amazon Athena for their workloads. This will
help establish your mental model for the deeper discussions, features, and examples of
later sections.

4 Your First Query

 In this chapter, we will cover the following topics:

• What is Amazon Athena?

• Obtaining and preparing sample data

• Running your first query

Technical requirements
Wherever possible, we will provide samples or instructions to guide you through the
setup. However, to complete the activities in this chapter, you will need to ensure you have
the following prerequisites available. Our command-line examples will be executed using
Ubuntu, but most flavors of Linux should also work without modification.

You will need internet access to GitHub, S3, and the AWS Console.

You will also require a computer with the following installed:

• Chrome, Safari, or Microsoft Edge

• The AWS CLI

In addition, this chapter requires you to have an AWS account and accompanying
IAM user (or role) with sufficient privileges to complete the activities in this chapter.
Throughout this book, we will provide detailed IAM policies that attempt to honor the
age-old best practice of "least privilege." For simplicity, you can always run through these
exercises with a user that has full access, but we recommend that you use scoped-down
IAM policies to avoid making costly mistakes and to learn more about how to best use
IAM to secure your applications and data. You can find the suggested IAM policy for this
chapter in this book's accompanying GitHub repository, listed as chapter_1/iam_
policy_chapter_1.json:

https://github.com/PacktPublishing/Serverless-Analytics-with-
Amazon-Athena/tree/main/chapter_1

This policy includes the following:

• Read and Write access to one S3 bucket using the following actions:

 � s3:PutObject: Used to upload data and also for Athena to write query results.

 � s3:GetObject: Used by Athena to read data.

 � s3:ListBucketMultipartUploads: Used by Athena to write query results.

https://github.com/PacktPublishing/Serverless-Analytics-with-Amazon-Athena/tree/main/chapter_1
https://github.com/PacktPublishing/Serverless-Analytics-with-Amazon-Athena/tree/main/chapter_1

Technical requirements 5

 � s3:AbortMultipartUpload: Used by Athena to write query results.

 � s3:ListBucketVersions

 � s3:CreateBucket: Used by you if you don't already have a bucket you can use.

 � s3:ListBucket: Used by Athena to read data.

 � s3:DeleteObject: Used to clean up if you made a mistake or would like to
reattempt an exercise from scratch.

 � s3:ListMultipartUploadParts: Used by Athena to write a result.

 � s3:ListAllMyBuckets: Used by Athena to ensure you own the results bucket.

 � s3:ListJobs: Used by Athena to write results.

• Read and Write access to one Glue Data Catalog database, using the following
actions:

 � glue:DeleteDatabase: Used to clean up if you made a mistake or would like
to reattempt an exercise from scratch.

 � glue:GetPartitions: Used by Athena to query your data in S3.

 � glue:UpdateTable: Used when we import our sample data.

 � glue:DeleteTable: Used to clean up if you made a mistake or would like to
reattempt an exercise from scratch.

 � glue:CreatePartition: Used when we import our sample data.

 � glue:UpdatePartition: Used when we import our sample data.

 � glue:UpdateDatabase: Used when we import our sample data.

 � glue:CreateTable: Used when we import our sample data.

 � glue:GetTables: Used by Athena to query your data in S3.

 � glue:BatchGetPartition: Used by Athena to query your data in S3.

 � glue:GetDatabases: Used by Athena to query your data in S3.

 � glue:GetTable: Used by Athena to query your data in S3.

 � glue:GetDatabase: Used by Athena to query your data in S3.

 � glue:GetPartition: Used by Athena to query your data in S3.

 � glue:CreateDatabase: Used to create a database if you don't already have
one you can use.

6 Your First Query

 � glue:DeletePartition: Used to clean up if you made a mistake or would
like to reattempt an exercise from scratch.

• Access to run Athena queries.

Important Note
We recommend against using Firefox with the Amazon Athena console as we
have found, and reported, a bug associated with switching between certain
elements in the UX.

What is Amazon Athena?
Amazon Athena is a query service that allows you to run standard SQL over data stored in
a variety of sources and formats. As you will see later in this chapter, Athena is serverless,
so there is no infrastructure to set up or manage. You simply pay $5 per TB scanned for
the queries you run without needing to worry about idle resources or scaling.

Note
AWS has a habit of reducing prices over time. For the latest Athena pricing,
please consult the Amazon Athena product page at https://aws.
amazon.com/athena/pricing/?nc=sn&loc=3.

Athena is based on Presto (https://prestodb.io/), a distributed SQL engine
that's open sourced by Facebook. It supports ANSI SQL, as well as Presto SQL features
ranging from geospatial functions to rough query extensions, which allow you to run
approximating queries, with statistically bound errors, over large datasets in only a
fraction of the time. Athena's commitment to open source also provides an interesting
avenue to avoid lock-in concerns because you always have the option to download and
manage your own Presto deployment from GitHub. Of course, you will lose many of
Athena's enhancements and must manage the infrastructure yourself, but you can take
comfort in knowing you are not beholden to potentially punitive licensing agreements as
you might be with other vendors.

While Athena's roots are open source, the team at AWS have added several enterprise
features to the service, including the following:

• Federated Identity via SAML and Active Directory support

• Table, column, and even row-level access control via Lake Formation

https://aws.amazon.com/athena/pricing/?nc=sn&loc=3
https://aws.amazon.com/athena/pricing/?nc=sn&loc=3
https://prestodb.io/)

What is Amazon Athena? 7

• Workload classification and grouping for cost control via WorkGroups

• Automated regression testing to take the pain out of upgrades

Later chapters will cover these topics in greater detail. If you feel compelled to do so, you
can use the table of contents to skip directly to those chapters and learn more.

Let's look at some use cases for Athena.

Use cases
Amazon Athena supports a wide range of use cases and we have personally used it for
several different patterns. Thanks to Athena's ease of use, it is extremely common to
leverage Athena for ad hoc analysis and data exploration.

Later in this book, you will use Athena from within a Jupyter notebook for machine
learning. Similarly, many analysts enjoy using Athena directly from BI Tools such as
Looker and Tableau, courtesy of Athena's JDBC driver. Athena's robust SQL dialect and
asynchronous API model also enables application developers to build analytics right into
their applications, enabling features that would not previously have been practical due to
scale or operational burden. In many cases, you can replace RDBMS-driven features with
Athena at a fraction of the cost and lower operational burden.

Another emerging use case for Athena is in the ETL space. While Athena advertises itself
as being an engine that avoids the need for ETL by being able to query the data in place,
as it is, we have seen the benefits of replacing existing or building new ETL pipelines using
Athena where cost and capacity management are key factors. Athena will not necessarily
achieve the same scale or performance as Spark, for example, but if your ETL jobs do not
require multi-TB joins, you might find Athena to be an interesting option.

Separation of storage and compute
If you are new to serverless analytics, you may be wondering where your data is stored.
Amazon Athena builds on the concept of Separation of Storage and Compute to decouple
the computational resources (for example, CPU, memory, network) that do the heavy
lifting of executing your SQL queries from the responsibility of keeping your data safe and
available. In short, this means Athena itself does not store your data. Instead, you are free
to choose from several data stores with customers increasingly pairing with DynamoDB
to rapidly mutate data with S3 for their bulk data. With Athena, you can easily write a
query that spans both data stores.

8 Your First Query

Amazon's Simple Storage Service, or S3 for short, is easily the most recommended
data store to use with Athena. When Athena launched in 2016, S3 was the first data
store it supported. Unsurprisingly, Athena has been optimized to take advantage of S3's
unique ability to deliver exabyte scale and throughput while still providing eleven nines
(99.999999999%) of durability. In addition to effortless scaling from a few gigabytes of
data up to many petabytes, S3 offers some of the lowest prices for performance that you
can find. Depending on your replication requirements, storing 1 GB of data for a month
will cost you between $0.01 and $0.023. Even the most cost-efficient enterprise hard
drives cost around $0.21 per GB before you add on redundancy, the power to run them,
or a server and data center to house them. As with most AWS services, you should consult
S3's pricing page (https://aws.amazon.com/s3/pricing/) for the latest details
since AWS has cut their prices more than 70 times in the last decade.

Metastore
In addition to accessing the raw 1s and 0s that represent your data, Athena also requires
metadata that helps its SQL engine understand how to interpret the data you have stored
in S3 or elsewhere. This supplemental information helps Athena map collections of files,
or objects in the case of S3, to SQL constructs such as tables, columns, and rows. The
repository for this data, about your data, is often called a metastore. Athena works with
Hive-compliant metastores, including AWS's Glue Data Catalog service. In later chapters,
we will look at AWS Glue Data Catalog in more detail, as well as how you can attach
Athena to your own metastore, even a homegrown one. For now, all you need to know is
that Athena requires the use of a metastore to discover key attributes of the data you wish
to query. The most common pieces of information that are kept in the Metastore include
the following:

• A list of tables that exist

• The storage location of each table (for example, the S3 path or DynamoDB table
name)

• The format of the files or objects that comprise the table (for example, CSV,
Parquet, JSON)

• The column names and data types in each table (for example, inventory column is
an integer, while revenue is a decimal (10,2))

Now that we have a good overview of Amazon Athena, let's look at how to use it in
practice.

https://aws.amazon.com/s3/pricing/

Obtaining and preparing sample data 9

Obtaining and preparing sample data
Before we can start running our first query, we will need some data that we would
like to analyze. Throughout this book, we will try to make use of open datasets that you
can freely access but that also contain interesting information that may mirror your
real-world datasets. In this chapter, we will be making use of the NYC Taxi & Limousine
Commission's (TLC's) Trip Record Data for New York City's iconic yellow taxis. Yellow
taxis have been recording and providing ride data to TLC since 2009. Yellow taxis are
traditionally hailed by signaling to a driver who is on duty and seeking a passenger
(also known as a street hail). In recent years, yellow taxis have also started to use their
own ride-hailing apps such as Curb and Arro to keep pace with emerging ride-hailing
technologies from Uber and Lyft. However, yellow taxis remain the only vehicles
permitted to respond to street hails from passengers in NYC. For that reason, the dataset
often has interesting patterns that can be correlated with other events in the city, such as
a concert or inclement weather.

Our exercise will focus on just one of the many datasets offered by the TLC. The yellow
taxis data includes the following fields:

• VendorID: A code indicating the TPEP provider that provided the record.
1= Creative Mobile Technologies, LLC; 2= VeriFone Inc.

• tpep_pickup_datetime: The date and time when the meter was engaged.

• tpep_dropoff_datetime: The date and time when the meter was disengaged.

• Passenger_count: The number of passengers in the vehicle.

• Trip_distance: The elapsed trip distance in miles reported by the taximeter.

• RateCodeID: The final rate code in effect at the end of the trip. 1= Standard rate,
2= JFK, 3= Newark, 4= Nassau or Westchester, 5= Negotiated fare, 6= Group ride.

• Store_and_fwd_flag: This flag indicates whether the trip record was held in
the vehicle's memory before being sent to the vendor, also known as "store and
forward," because the vehicle did not have a connection to the server. Y= store and
forward trip, while N= not a store and forward trip.

• pulocationid: Location where the meter was engaged.

• dolocationid: Location where the meter was disengaged.

• Payment_type: A numeric code signifying how the passenger paid for the trip.
1= Credit card, 2= Cash, 3= No charge, 4= Dispute, 5= Unknown, 6= Voided trip.

• Fare_amount: The time-and-distance fare calculated by the meter.

10 Your First Query

• Extra: Miscellaneous extras and surcharges. Currently, this only includes the $0.50
and $1 rush hour and overnight charges.

• MTA_tax: $0.50 MTA tax that is automatically triggered based on the metered rate
in use.

• Improvement_surcharge: $0.30 improvement surcharge assessed trips at the
flag drop. The improvement surcharge began being levied in 2015.

• Tip_amount: This field is automatically populated for credit card tips. Cash tips
are not included.

• Tolls_amount: Total amount of all tolls paid in a trip.

• Total_amount: The total amount charged to passengers. Does not include
cash tips.

• congestion_surcharge: Amount surcharges associated with time/traffic fees
imposed by the city.

This dataset is easy to obtain and is relatively interesting to run analytics against. The
inconsistency in field naming is difficult to overlook but we will normalize using a mixture
of camel case and underscore conventions later:

1. Our first step is to download the Trip Record Data for June 2020. You can obtain
this directly from the NYC TLC's website (https://www1.nyc.gov/site/
tlc/about/tlc-trip-record-data.page) or our GitHub repository using
the following command:

wget https://github.com/PacktPublishing/Serverless-
Analytics-with-Amazon-Athena/raw/main/chapter_1/yellow_
tripdata_2020-06.csv.gz

If you choose to download it from the NYC TLC directly, please gzip the file before
proceeding to the next step.

2. Now that we have some data, we can add it to our data lake by uploading it to
Amazon S3. To do this, we must create an S3 bucket. If you already have an S3
bucket that you plan to use, you can skip creating a new bucket. However, we
do encourage you to avoid completing these exercises in accounts that house
production workloads. As a best practice, all experimentation and learning should
be done in isolation.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Obtaining and preparing sample data 11

3. Once you have picked a bucket name and the region that you would like to use for
these exercises, you can run the following command:

aws s3api create-bucket \

--bucket packt-serverless-analytics \

--region us-east-1

Important Note
Be sure to substitute your bucket name and region. You can also create buckets
directly from the AWS Console by logging in and navigating to S3 from the
service list. Later in this chapter, we will use the AWS Console to edit and run
our Athena queries. For simple operations, using the AWS CLI can be faster
and easier to see what is happening since the AWS Console can hide multi-step
operations behind a single button.

4. Now that our bucket is ready, we can upload the data we would like to query.
In addition to the bucket, we will want to put our data into a subfolder to keep
things organized as we proceed through later exercises. We have an entire chapter
dedicated to organizing and optimizing the layout of your data in S3. For now, let's
just upload the data to a subfolder called tables/nyc_taxi using the following
AWS CLI command. Be sure to replace the bucket name, packt-serverless-
analytics, in the following example command with the name of your bucket:

aws s3 cp ./yellow_tripdata_2020-06.csv.gz \

s3://packt-serverless-analytics/tables/nyc_taxi/yellow_
tripdata_2020-06.csv.gz

This command may take a few moments to complete since it needs to upload our
roughly 10 MB file over the internet to Amazon S3. If you get a permission error or
message about access being denied, double-check you used the right bucket name.

5. If the command seems to have finished running without issue, you can use the
following command to confirm the file is where we expect. Be sure to replace the
example bucket with your actual bucket name:

aws s3 ls s3://packt-serverless-analytics/tables/nyc_
taxi/

12 Your First Query

6. Now that we have confirmed our sample data is where we expect, we need to add
this data to our Metastore, as described in the What is Amazon Athena? section. To
do this, we will use AWS Glue Data Catalog as our Metastore by creating a database
to house our table. Remember that Data Catalog will not store our data, just
details about where engines such as Athena can find it (for example, S3) and what
format was used to store the data (for example, CSV). Unlike Amazon S3, multiple
accounts can have databases and tables with the same name so that you can use the
following commands as-is, without the need to rename anything. If you already
have a database that you would like to use, you can skip creating a new database,
but be sure to substitute your database name into subsequent commands; otherwise,
they will fail:

aws glue create-database \

--database-input "{\"Name\":\"packt_serverless_
analytics\"}" \

--region us-east-1

Now that both our data and Metastore are ready, we can define our table right from
Athena itself by running our first query.

Running your first query
Athena supports both Data Definition Language (DDL) and Data Manipulation
Language (DML) queries. Queries where you SELECT data from a table are a common
example of DML queries. Our first meaningful Athena query will be a DDL query that
creates, or defines, our NYC Taxis data table:

1. Let's begin by ensuring our AWS account and IAM user/role are ready to use
Athena. To do that, navigate to the Athena query editor in the AWS Console:
https://console.aws.amazon.com/athena/home.

Be sure to use the same region that you uploaded your data and created your
database in.

2. If this is your first time using Athena, you will likely be met by a screen like the
following. Luckily, Athena is telling us that "Before you run your first query, you need
to set up a query result location in Amazon S3…". Since Athena writes the results
of all queries to S3, even DDL queries, we will need to configure this setting before
we can proceed. To do so, click on the highlighted text in the AWS Console that's
shown in the following screenshot:

https://console.aws.amazon.com/athena/home

Running your first query 13

Figure 1.1 – The prompt for setting the query result's location upon your first visit to Athena

3. After clicking on the modal's link, you will see the following prompt so that you can
set your query result's location. You can use the same S3 bucket we used to upload
our sample data, with results being used as the name of the folder that Athena
will write query results to within that bucket. Be sure your location ends with a "/"
to avoid errors:

Figure 1.2 – Athena's settings prompt for the query result's location

Next, let's learn how to create a table.

14 Your First Query

Creating your first table
It is now time to run our first Athena query. The following DDL query asks Athena to
create a new table called nyc_taxi in the packt_serverless_analytics database,
which is stored in the AWS Glue Data Catalog. The query also specifies the schema
(columns), file format, and storage location of the table. For now, the other nuances of this
create query are unimportant. You may find it easier to copy create table from the
create_nyc_taxi.sql (http://bit.ly/3mXj3K0) file in the chapter_1 folder
of this book's GitHub repository. Paste it into Athena's query editor, change LOCATION
so that it matches your bucket name, and click Run query. It should complete in a few
seconds:

CREATE EXTERNAL TABLE 'packt_serverless_analytics'.'nyc_taxi'(

 'vendorid' bigint,

 'tpep_pickup_datetime' string,

 'tpep_dropoff_datetime' string,

 'passenger_count' bigint,

 'trip_distance' double,

 'ratecodeid' bigint,

 'store_and_fwd_flag' string,

 'pulocationid' bigint,

 'dolocationid' bigint,

 'payment_type' bigint,

 'fare_amount' double,

 'extra' double,

 'mta_tax' double,

 'tip_amount' double,

 'tolls_amount' double,

 'improvement_surcharge' double,

 'total_amount' double,

 'congestion_surcharge' double)

ROW FORMAT DELIMITED

 FIELDS TERMINATED BY ','

STORED AS INPUTFORMAT

 'org.apache.hadoop.mapred.TextInputFormat'

OUTPUTFORMAT

 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

LOCATION

http://bit.ly/3mXj3K0

Running your first query 15

 's3://<YOUR_BUCKET_NAME>/tables/nyc_taxi/'

TBLPROPERTIES (

 'areColumnsQuoted'='false',

 'columnsOrdered'='true',

 'compressionType'='gzip',

 'delimiter'=',',

 'skip.header.line.count'='1',

 'typeOfData'='file')

Once your table creation DDL query completes, the left navigation pane of the Athena
console will refresh with the definition of your new table. If you have other databases and
tables, you may need to choose your database from the dropdown before your new table
will appear.

Figure 1.3 – Athena's Database navigator will show the schema of your newly created table

16 Your First Query

At this point, the significance of the query we just ran may not be entirely apparent, but
rest assured we will go deeper into why serverless DDL queries are a powerful thing. Oh,
and did we mention that Athena does not charge for DDL queries?

Running your first analytics queries
When working with a new or unfamiliar set of data, it can be helpful to view a sample
of the rows before exploring the dataset in more meaningful ways. This allows you to
understand the schema of your dataset, including verifying that the schema (for example,
column names) match the values and types. There are a few ways to do this, including the
following limit query:

SELECT * from packt_serverless_analytics.nyc_taxi limit 100

This works fine in most cases, but we can do better. Many query engines, Athena included,
will end up returning all 100 rows requested in the preceding query from the same S3
object. If your dataset contains many objects or files, you are getting an extremely narrow
view of the table. For that reason, I prefer using the following query to view data from a
broader portion of the dataset:

SELECT *

FROM packt_serverless_analytics.nyc_taxi TABLESAMPLE BERNOULLI
(1)

limit 100

This query is like the earlier limit query but uses Athena's TABLESAMPLE feature to
obtain our 100 requested rows using BERNOULLI sampling. When a table is sampled
using the Bernoulli method, all the objects of the table may be scanned as opposed to
likely stopping after the first object. This is because the probability of a row being included
in the result is independent of any other row reducing the significance of the object scan
order. In the following screenshot, we can see some of the rows that were returned using
TABLESAMPLE with the BERNOULLI method:

Running your first query 17

Figure 1.4 – Results of executing TAMPLESAMPLE against our nyc_taxi table

While that query allowed us to confirm that Athena can indeed access our data and that
the schema appears to match the data itself, we have not extracted any real insights from
the data. For this, we will run our first real analytics query by generating a histogram
of ride durations and distances. Our goal here is to learn how much time people are
typically spending in taxis, but we'll also be able to gain insights into the quality of our
data. The following query uses Athena's numeric_histogram function to approximate
the distribution with 10 buckets according to the difference between tpep_pickup_
datetime and tpep_dropoff_datetime. Since the dataset stores datetimes
as strings, we are using the date_parse function to convert the values into actual
timestamps that we can then use with Athena's date_diff function to generate the
ride durations as minutes. Lastly, the query uses a CROSS JOIN with UNEST to turn
the histogram into rows and columns. Normally, the numeric_histogram function
returns a map containing the histogram, but this can be difficult to read. UNEST helps us
turn it into a more intuitive tabular format. Do not worry about remembering all these
functions and SQL techniques right now. Athena frequently adds new capabilities, and
you can always consult a reference.

You can copy the following code from GitHub at http://bit.ly/2Jm6o5v:

SELECT ride_minutes, number_rides

 FROM (SELECT numeric_histogram(10,

 date_diff('minute',

 date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s'),

http://bit.ly/2Jm6o5v

18 Your First Query

 date_parse(tpep_dropoff_datetime, '%Y-%m-%d %H:%i:%s')

)

)

FROM packt_serverless_analytics.nyc_taxi) AS x (ride_
histogram)

CROSS JOIN

 UNNEST(ride_histogram) AS t (ride_minutes, number_rides);

Once you run the query, the results will look as follows. You can experiment with the
number of buckets that are generated by adjusting the parameters of the numeric_
histogram function. Generating 100 or even 1,000 buckets can uncover patterns that
were hidden with fewer buckets. Even with just 10 buckets, we can already see a strong
correlation between the distance and the number of rides. I was surprised to see that such
a large portion of the yellow cab rides lasted less than 7 minutes. From this query, we can
also see some likely data quality issues in the dataset. Unless one of the June 2020 rides
happened in a time-traveling DeLorean, we likely have an erroneous record. Less obvious
is the fact that several hundred rides claim to have lasted longer than 24 hours:

Figure 1.5 – Ride duration histogram results

Running your first query 19

Let's try one more histogram query, but this time, we will target the trip distance of the
rides that took less than 7 minutes. The following code block contains the modified
histogram query you can run to understand that bucket of rides. You can download it
from GitHub at http://bit.ly/3hkggJl:

SELECT trip_distance, number_rides

FROM

 (SELECT numeric_histogram(5,trip_distance)

 FROM packt_serverless_analytics.nyc_taxi

 WHERE date_diff('minute',

 date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s'),

 date_parse(tpep_dropoff_datetime, '%Y-%m-%d %H:%i:%s')

) <= 6.328061

) AS x (ride_histogram)

CROSS JOIN UNNEST(ride_histogram) AS t (trip_distance , number_
rides);

Considering that the average person can walk a mile in 15 minutes, New Yorkers must be
in a serious hurry to opt for taxi rides instead of a 15-minute walk!

Figure 1.6 – Ride distance histogram results

With that, we've been through the basics of AWS Athena. Let's conclude by providing a
recap of what we've learned.

http://bit.ly/3hkggJl

20 Your First Query

Summary
In this chapter, you saw just how easy it is to get started running queries with Athena.
We obtained sample data from the NYC TLC, used it to create a table in our S3-based
data lake, and ran some analytics queries to understand the insights contained in that
data. Since Athena is serverless, we spent absolutely no time setting up any infrastructure
or software. Incredibly, all the operations we ran in this chapter cost less than $0.00135.
Without the serverless aspect of Athena, we would have found ourselves purchasing many
thousands of dollars of hardware or hundreds of dollars in cloud resources to run these
basic exercises.

While the main goals of this chapter were to orient you to the uniquely serverless
experience of using Amazon Athena, there are a few concepts worth remembering as you
continue reading. The first is the role of the Metastore. We saw that uploading our data to
S3 was not enough for Athena to query the data. We also needed to register the location,
schema, and file format as a table in AWS Glue Data Catalog. Once our table was defined,
it became queryable from Athena. Chapter 3, Key Features, Query Types, and Functions,
will cover this topic in greater depth.

The next important thing we saw was the feature-rich SQL dialect we used in our basic
analytics queries. Since Athena utilizes a customized variant of Presto, you can refer to
Presto's documentation (https://prestodb.io/docs/current/) as a supplement
for Athena's documentation.

Chapter 2, Introduction to Amazon Athena, will go deeper into Athena's capabilities and
open source roots so that you can understand when to use Athena, as well as how you can
gain deeper insight into specific behaviors of the service.

https://prestodb.io/docs/current/

2
Introduction to

Amazon Athena
The previous chapter walked you through your first, hands-on experience with serverless
analytics using Amazon Athena. This chapter will continue that introduction by
discussing Athena's capabilities, scalability, and pricing in more detail. In the past, vendors
such as Oracle and Microsoft produced mostly one-size-fits-all analytics engines and
RDBMSes. Bucking the historical norms, AWS has championed a fit for purpose database
and analytics strategy. By optimizing for specific use cases, the analytics engines' very
architecture could exploit nuances of the workload for which they were intended, thereby
delivering an all-around better product. For example, Redshift, EMR, Glue, Athena,
and Timestream all offer related but differentiated capabilities with their own unique
advantages and trade-offs. The knowledge you will gain in this chapter provides
a broad-based understanding of what functionality Athena offers as well as a set of criteria
to help you determine whether Athena is the best service for your project. We will also
spend some time peeling back the curtain and discussing how Athena builds upon Presto,
an open source SQL engine initially developed at Facebook.

Most of the chapters in this book stand on their own and allow you to skip around as you
follow your curiosity. However, we do not recommend skipping this chapter unless you
already know Athena well and are using this book to dive deep into specific topics.

22 Introduction to Amazon Athena

In the subsequent sections of this chapter, we will cover the following topics:

• Getting to know Amazon Athena

• What is Presto?

• Understanding scale and latency

• Metering and billing

• Connecting and securing

• Determining when to use Amazon Athena

Technical requirements
This chapter is one of the few, perhaps even the only chapter in this book, that will not
have many hands-on activities. As such, there are not any specific technical requirements
for this chapter beyond those already covered in Chapter 1, Your First Query, namely:

• Basic knowledge of SQL is recommended but not required.

• A computer with internet access to GitHub, S3, and the AWS Console; a Chrome,
Safari, or Microsoft Edge browser; and the AWS CLI installed.

• An AWS account and IAM user that can run Athena queries.

As always, any code references or samples for this chapter can be found in the
book's companion GitHub repository located at https://github.com/
PacktPublishing/Serverless-Analytics-with-Amazon-Athena.

Getting to know Amazon Athena
In Chapter 1, Your First Query, we learned that Amazon Athena is a query service that
allows you to run standard SQL over data stored in various sources and formats.
We also saw that Athena's pricing model is unique in that we are charged by how much
data our query reads and not by how many servers or how much time our queries require.
In this section, we will go beyond that cursory introduction and discuss the broader set
of capabilities that together make Athena a product worth considering for your next
analytics project. We do not go into full detail on every item we are preparing to discuss,
but later chapters will allow you to get hands-on with the most notable features. For now,
our goal is to increase your awareness of what is possible with Athena, so you can perform
technical product selection exercises (aka bakeoffs) or steer toward areas of interest.

https://github.com/PacktPublishing/Serverless-Analytics-with-Amazon-Athena
https://github.com/PacktPublishing/Serverless-Analytics-with-Amazon-Athena

Getting to know Amazon Athena 23

Understanding the "serverless" trend
The word serverless appears dozens, possibly hundreds of times, in this book. At the end
of the book, we will run an Athena query over the complete text to find the exact number
of times we used the word serverless. So, what is the big deal? Why is serverless such
a seemingly important concept? Or is it just the latest buzzword to catch on? Like most
things, the truth lies somewhere between the two extremes, and that's why we will spend
some time understanding what it means to be serverless.

In the simplest terms, a serverless offering is one where you do not have to manage any
servers. AWS Lambda is often thought of as the gold standard for serverless technologies
since it was the first large-scale offering of this type. With AWS Lambda, you have
virtually no boilerplate to slow you down; you literally jump straight into writing your
business logic or function as follows:

def lambda_handler(event, context):

 return {

 "response": "Hello World!"

 }

AWS Lambda will handle executing this code in response to several invocation triggers,
ranging from SQS messages to HTTP calls. As an AWS Lambda customer, you do not
have to worry about setting up Java, a WebService stack, or anything. Right from the
beginning, you are writing business logic and not spending time on undifferentiated
infrastructure work.

This model has some obvious advantages that customers love. The first of which is
that, without servers, your capacity planning responsibilities shrink both in size and
complexity. Instead of determining how many servers you need to run that monthly
finance report or how much memory your SQL engine will need to handle all the
advertising campaigns on Black Friday, you only need to worry about your account limits.
To the uninitiated, this might seem easy. You might even say to yourself, I have great
metrics about my peak loads and can do my own capacity planning just fine! It is true.
You will likely have more context about your future needs than a service like Athena
can infer. But what happens to all that hardware after the peak has passed? I am not just
referring to that seasonal peak that comes once a year but also the peak of each week
and each hour. That hardware, which you or your company paid for, will be sitting idle,
taking up space in your data center, and consuming capital that could have been deployed
elsewhere. But what about the cloud? I do not need to buy any servers; I can just turn them
on and off as needed. Yes! That is true.

24 Introduction to Amazon Athena

So, let's go down the rabbit hole a bit more. Suppose we used EC2 instances instead of
classic servers in our own data centers. We can undoubtedly scale up and down based
on demand. We might even be able to use EC2 AutoScaling to add and remove capacity
based on a metric such as CPU usage. This is a good start, and AWS encourages customers
to take advantage of these capabilities to drive down costs and improve performance.
Should you run this infrastructure fully on-demand or use some mix of reserved
instances? On-demand capacity has no up-front expenses and grants you the flexibility
to turn it on and off whenever you like. Reserved capacity is more expensive up-front,
but it is guaranteed to be there, unlike on-demand, which is first-come-first-served. Or
perhaps you are advanced and can take advantage of EC2 Spot instances, which are often
available at a 90% discount but can be taken from you at a moment's notice if EC2 needs
the capacity elsewhere.

The journey does not end here. Suppose you built an autoscaling infrastructure that reacts
to changes in demand, like the one we whiteboarded thus far. In that case, you know that
generating demand forecasts, capacity forecasts, calculating ROI on CapEx, and then
actually starting and stopping servers on the fly is only the beginning. Your application
needs to be capable of running on an infrastructure that is continuously changing
shape. For classic web services, simple request-reply systems, a single instance receives
and responds to each customer request. There may not be much work to adapt such an
application to this brave new world. In fact, AWS Fargate is an excellent example of how
well most containerized workloads can just work in the serverless world. For analytics
applications, adapting to serverless infrastructure gets trickier. Even a simple query like
the following one may enlist the combined computational power from dozens of instances
to help read the raw data, filter relevant records, aggregate the results, perform the sort,
and finally generate the output:

SELECT sum(col1) as mysum FROM my_table WHERE col3 > 10 ORDER
BY mysum

If our elastic infrastructure wants to scale down to reduce waste during idle periods, how
does it know which instances it can safely turn off? This is not purely an infrastructure
problem. In the case of distributed analytics applications such as Apache Spark or
Presto, the application has an inbuilt scheduler that dispatches work to the infrastructure.
In this context, work might be reading a file from S3, filtering a batch of rows, or any
number of other operations required to complete your query. When assigning this
work, the scheduler has multiple choices for choosing which instances the task will run
on. For example, the scheduler can choose to place as few concurrent units of work on
each host as possible. This is commonly described as going wide and can offset adverse
effects associated with contention caused by a noisy neighbor process. Alternatively,
the scheduler can choose to co-locate units of work to improve utilization or reduce the
overhead associated with network communication.

Getting to know Amazon Athena 25

Simple metrics such as CPU or MEMORY usage will not tell the story of how a distributed
analytics engine is using (or not using) the underlying compute instances. Solving this
problem well is extremely difficult. Even a mediocre solution requires integration between
the analytics engine itself and the infrastructure.

Noisy neighbors
When one workload, process, or application negatively affects a neighboring
process running on the same shared resource, we refer to the offending process
as a noisy neighbor. If the people in the apartment above you or the house
across the street played loud music deep into the night, it would disturb your
ability to go about your activities. It's the same for workloads in a multi-tenant
system. If the system doesn't provide strong isolation between workloads, those
workloads may interact in undesirable ways.

Beyond "serverless" with 'fully managed' offerings
By now, you hopefully have a much better understanding of why the industry, cloud
providers, and customers alike are rushing to build and use serverless offerings. While
the word serverless probably seems a bit self-describing at this point, we've yet to discuss
what is arguably the more meaningful benefit of many serverless offerings, including
Athena. We often refer to Athena as a Fully Managed service because it handles far more
than the vision of automated infrastructure management we mentioned earlier.
The Athena service is also responsible for the configuration, performance, availability,
security, and deployments of the underlying analytics engine. When talking about Athena
with prospective customers, I tend to use three scenarios to convey the benefits of using
fully managed offerings.

Analytics engines such as Apache Spark, Presto, and traditional RDBMSes frequently
implement multiple approaches for executing your query. You may even have heard of
these engines producing logical and physical query plans. These plans result from applying
a series of rules and statistics to your query before deciding the fastest way to get you
a result. For example, suppose your query is joining two tables. In that case, the engine
can choose between a broadcast join, which exploits the relative size of the two tables, or
a fully distributed join, which can scale to larger sizes but takes longer to complete. The
critical optimization in the broadcast join is that if one of the two tables is small enough
to broadcast to every instance participating in the query, then each instance can operate
independently, with less data shuffling and associated communication overhead. Being
fully managed, Athena has the responsibility to determine an appropriate memory limit,
beyond which broadcast joins are not reliable or underperform due to memory constraints.

26 Introduction to Amazon Athena

Athena could also decide that it should raise the available memory in its fleet by adding
more hosts or hosts of a different type to increase the broadcast join limit for a particular
query that will significantly benefit from it. Athena's actual approach to join optimization
is not publicly documented, but the point we are illustrating is that this is no longer
your challenge to solve. The hundreds, or in some cases thousands, of tuning parameters
available in these algorithms are squarely in the hands of Athena. In the next chapter,
we will touch on Athena's automatic engine upgrades and self-tuning capabilities.

This is an excellent segue into the second differentiator for fully managed offerings.
With Athena, you do not have to worry about deploying new versions of the analytics
engine. If you run your own Spark or Presto cluster on servers, and even if you run them
in AWS Fargate, you'll need to handle deploying updates to get bug fixes, new features,
and security updates. On the surface, this might seem straightforward. After all, you did
set it up the first time. Deploying updates on an ongoing basis to a live system is more
complicated. How do you avoid downtime? How do you handle rollbacks? How do you
know the new version is backward compatible or what changes your queries need to
succeed on the latest version?

In 2020, Athena publicly announced the self-tuning technology used internally to manage
upgrades of its Presto fleet. To ensure seamless upgrades, Athena is continually running your
queries on varying versions of its engine with numerous configurations allowing Athena to
identify the best settings for each query. It also means Athena knows when a new version
of Presto, its underlying engine, is or isn't safe for your workload. As a fast-moving open
source project, Presto does not always ensure backward compatibility before cutting a new
release. Athena allows you to experiment with new versions before you are auto upgraded
or roll back to a previous version with the click of a button. You can even perform targeted
upgrades or downgrades of specific queries! You do not need to worry about having a fleet
of the old and a new fleet while simultaneously updating apps to point at one or the other.

The third and final scenario centers around availability. If you are running your analytics
engine on EC2 or Fargate, you've likely encountered scenarios where the infrastructure
was running, but your queries fail in a seemingly random fashion. After the number of
initially uncorrelated user complaints mount, you finally register that something strange
is happening. Some instances of your engine, executors in Spark parlance, and workers in
Presto nomenclature, seem to have a higher error rate than their peers. You are facing
a classic gray failure. The root causes can vary from slow resource leaks to noisy
neighbors, but identifying them can be challenging because they often masquerade as
a user error. If you use long-lived clusters, this problem becomes even more prevalent.
You will find yourself rejuvenating instances periodically by restarting or tracking
per-instance success metrics to find outliers that need to be removed from service.
As a managed service, Athena owns this in addition to the easier availability problems
where an instance is entirely unresponsive and requires replacement.

Getting to know Amazon Athena 27

As you can see, there is a non-trivial amount of infrastructure work and capital that are
required to ensure your applications have the compute capacity ready when customers
click the button. For all the benefits of using a fully managed, serverless offering, there
are also drawbacks. Suppose your functional, performance, or other needs diverge
from Athena's roadmap. In that case, you may find yourself needing to build significant
pieces of infrastructure just to gain enough control to affect the relatively small change
you wanted. This is generally only a meaningful point of consideration for large or
sophisticated customers who have both the ability to build their own solution or whose
use cases are outliers compared to Athena's target audience. The good news is that AWS's
customer obsession is world-renowned, so Athena is incentivized to continually add
features and improve performance as part of their strategy to remain a great place to
run your analytics workloads. These reasons are precisely why so many customers
love Athena.

Obsessing over customers
You've probably noticed our tendency to mention AWS as being customer-
obsessed. This notion comes from one of Amazon's leadership principles,
which states: "Leaders start with the customer and work backward. They work
vigorously to earn and keep customer trust. Although leaders pay attention to
competitors, they obsess over customers." This philosophy drives everything
AWS does. You can learn more about the Amazon leadership principles by
reviewing the links at the end of this chapter.

Key features
Thus far, we have spent a lot of time discussing the unique advantages that come with
Athena's promise of serverless analytics. Now we will go through the compelling analytics
features that Athena offers. While reading this section, keep in mind that our objective
is to build an awareness of these capabilities. As such, the descriptions will be high-level
and intentionally simplified so as not to overwhelm you while we build up to the more
advanced sections of this book. Later chapters will guide us through getting hands-on
with many of the features we are about to review.

Statement types
Athena supports several different statement types, including DDL and DML. Data
Definition Language (DDL) statements allow you to interact with your Data Lake's
metadata by defining tables and updating those tables' schema or properties. You can also
use these statements to add or modify the partitions in your tables. Customers commonly
use these statements to ingest new data into their Data Lake. Data Manipulation
Language (DML) statements allow you to interact with your Data Lake's actual data.

28 Introduction to Amazon Athena

SELECT queries are the most used DML statement type in Athena and can be combined
with Create-Table-As-Select (CTAS) statements to create new tables. Like CTAS,
INSERT INTO statements can be used along with SELECT to add data to an existing
table. Both CTAS and INSERT INTO queries can automatically add new partitions to
your metastore, eliminating the need for you to manage partitions manually. While not
traditionally a statement type, Athena's TABLESAMPLE feature acts as a modifier in your
SELECT statements by instructing the query planner to only consider a subset of the data
your query would normally scan. This can be helpful when scanning the full dataset would
be too costly or take too long. There are two different sampling techniques available.
In Chapter 1, Your First Query, we used the BERNOULLI technique, which considers
each row in the input table individually. The SYSTEM sampling method is a more
coarse-grained sampling technique that groups rows into batches and then considers
each batch for inclusion in the query. The batches may be one-to-one with an S3 object
or, depending on the file format, aligned to a chunk of rows. BERNOULLI can offer less
observation bias than SYSTEM sampling but is often much slower.

The SQL dialect
Athena SQL is ANSI SQL-compliant. Notable variances from ANSI SQL include
extensions to better support complex types such as MAPs, STRUCTs, and LISTs. This
means you can use all your favorite JOIN types and window functions. You can even
craft those oh so easy-to-understand, deeply nested queries. In all seriousness, Athena
SQL does have a mechanism to improve the readability of such statements. The WITH-
CLAUSE syntax allows you to extract and essentially parameterize the nested sub-queries,
making the original statement far easier to digest. We will see some first-hand examples
of this later, and you can find more details in the Athena documentation referred to in the
Further reading section at the end of this chapter.

The specific syntax and available functions vary slightly, depending on which Engine
Version you are using. Thanks to Athena's auto-upgrade functionality, most customers
never realize that Athena supports multiple engine versions or dialects. That is because
changes are typically additive, and the few breaking changes that do occur can be handled
query by query, so you never see a failure. Athena presently supports two engine versions:

• Athena version 1 is based on Presto 0.172

• Athena engine version 2 was released in December 2020 and is based on
Presto 0.217

Getting to know Amazon Athena 29

Unless you have a specific reason to use the older version, you should use Athena engine
version 2 or later as it runs up to 30% faster than engine version 1 and includes dozens
of new functions.

On the DDL front, Athena uses a subset of HiveQL syntax for managing everything from
tables to partitions. The complete list of supported DDL operations can be found in the
official Athena documentation, but rest assured that it includes everyday operations such
as CREATE TABLE, ALTER TABLE, CREATE VIEW, SHOW, and DROP.

Support for Hive-compliant metastores
In addition to the out-of-the-box support for the AWS Glue Data Catalog, Athena allows
you to bring your own Hive-compliant metastore. This can help you already run your
own Hive metastore for use with other applications, or if you do not intend to use AWS
Glue Data Catalog. Customers also use this facility for integrating Athena with their
home-grown metadata systems. To attach Athena to your metastore, you provide Athena
with a Lambda function to call for all metadata operations. For example, when Athena
needs to get the columns and types in a given table, it will contact the Lambda function
you provide. The Lambda function should be capable of interfacing with your actual
metastore and providing an appropriate response to Athena. Athena expects the Lambda
function to support Hive's Thrift protocol and the Athena team provides a ready-made
Lambda function capable of talking to your Hive metastore. You can find more details on
this feature in Chapter 4, Metastores, Data Sources, and Data Lakes, as well as in the official
Athena documentation linked from the Further reading section at the end of this chapter.

When used with Lake Formation's new ACID transaction capabilities, these form
powerful building blocks for any analytics application.

Supported file formats
Amazon Athena supports common file formats such as CSV, TSV, and AVRO in
addition to more advanced columnar storage formats, including Apache ORC and
Apache Parquet. You can also query unstructured or semi-structured files in Textfile
and JSON format. The preceding formats can be combined with Snappy, Zlib, LZO, or
GZIP compression to reduce file size and cost while improving scan performance. This is
notable because Athena charges based on compressed data size. This means that if your
data is originally 100 GB, but it compresses down to 10 GB, you will only be charged for
10 GB if you read all the data from an Athena query.

30 Introduction to Amazon Athena

ACID transactions
While Amazon S3 is the world's most popular store for building data lakes, the
immutability that contributes to its scalability also creates challenges for use cases that
have concurrent readers and writers or need to update existing data. Put another way, this
means that if you want to modify or delete 1 row that happens to reside in an object that
contains 1,000,000 rows, you will need to read all 1,000,000 rows and then overwrite that
original S3 object with a new object containing the original 999,999 rows plus your one
new row. This write amplification is a significant scaling challenge. You might be thinking,
thanks for telling me. I can simply avoid updating existing rows. That would have been
a reasonable strategy, but new regulations are making that approach less practical.
For example, the European Union's new General Data Protection Regulation (GDPR)
requires companies to purge data about specific customers upon request. This is worth
repeating. GDPR likely requires you to delete data pertaining to individual customers
no matter where it resides in your data lake. That could mean deleting a single row from
every S3 object in your many petabytes of data.

Similarly, customers are increasingly moving to near real-time data ingestion using
technologies such as Kafka and Amazon Kinesis. These applications reduce the time it
takes for new data to become available in your data lake (and therefore your analytics
queries) but create many small files. These tiny files can quickly degrade performance
for analytics systems such as Athena, Spark, and even Redshift Spectrum because of the
increased overhead associated with each read operation. To balance the need for data
to become available in a few minutes or a few seconds in extreme cases, customers find
themselves running periodic compaction jobs that read the small files, merge them
into larger files, and then delete the original small files. However, if you attempt such
compaction while also running a query, you will likely see incorrect results or fail. This
is because your reader might have processed small file #1, and then your compaction job
writes a new file containing the contexts of file #1 through file #100. Your reader might
then also read that new file, resulting in duplicate data in your query! It is also possible
that your reader will decide it needs to read a file, and the compaction job will delete that
file between the reader deciding the file needs to be read and reading it. This will result in
a query failure for most engines.

Getting to know Amazon Athena 31

This is where ACID transactions can help. Athena supports Lake Formation transactions
for snapshot isolation between any number of concurrent readers and writers.
This integration also provides automatic background compaction of small files, among
other accelerations. We will cover these topics in detail as part of Chapter 14, Lake
Formation – Advanced Features. In addition to Lake Formation transactions, Athena also
offers partial support for HUDI copy-on-write tables and Delta Lake. Hudi was developed
by Uber and primarily attempts to address the consistency and performance concerns
emerging from update operations.

Delta Lake is produced and maintained by Databricks as part of their Spark offering.
Support in Athena comes from SymlinkTextInputFormat, as defined in the Delta Lake
documentation linked in the Further reading section of this chapter. This provides
read-only access to Delta Lake tables from engines that do not natively support Delta
Lake's format.

Readers may be happy to learn that this is a rapidly evolving area for Amazon Athena, and
we have had to update this section of the book three times since we started writing. This is
notable because, as you choose technology for your project or company, you want to select
ones growing along the dimensions you care about most.

Self-tuning and auto-upgrades
When I think about the most frustrating projects in my career, many of them were related
to upgrading software or finding the right combination of cryptic settings to achieve the
advertised performance we had been sold on. With Athena, you do not have to concern
yourself with either of these responsibilities. It is, however, useful to understand Athena's
approach to these disciplines. Other offerings require you to pick the version of the
software you want to use. With Athena, you can choose whether or not to use specific
versions to get early access to new features. At any time, you can also enable auto-upgrade
to have Athena continuously monitor your queries for the best combination of settings
and software. It is not uncommon for analytics vendors to publish their TPCH and
TPCDS performance results in their marketing materials. These industry benchmarks
are crafted by TCP and use a mix of query patterns common in data science and other
prototypical workloads. The resulting performance numbers can be used as a decision
support tool. Unfortunately, many vendors overfit these exact tests, resulting in solutions
that do not perform well for use cases that don't closely match the industry benchmark.
Since Athena learns from your specific workloads, you can expect it to do well both
in cases where your workloads follow well-known industry patterns and when you're
running that oddball query for a new idea you had.

32 Introduction to Amazon Athena

Federation and extensibility
One of my favorite Athena features is Athena Query Federation, with just a small
fraction of my enthusiasm stemming from my personal involvement in its development.
Athena Federation allows you to extend Athena with your own custom data sources
and functionality. The Athena Federation SDK and many of the data source connectors
are 100% open source and are available on GitHub. We've included a link to the GitHub
repository in the Further reading section at the end of this chapter. A growing community
is contributing to its development, with several integration partners joining the Athena
team in publishing connectors and UDFs to the AWS Serverless Application Repository
where you can 1-click deploy them. There are more than 30 available data sources,
including 14 open source connectors provided by the Athena team, including:

• Amazon Timestream: This connector enables Amazon Athena to communicate
with Timestream, making your time series data accessible from Athena. A great use
case would be identifying anomalous IoT devices in Timestream and joining those
with details of the site that houses the sensor from elsewhere.

• Amazon Neptune: This connector enables Amazon Athena to communicate with
your Amazon Neptune instance(s), making your graph data accessible from SQL.
This connector has a unique way of translating vertices and relationships to tables.

• Amazon DynamoDB: This connector enables Amazon Athena to communicate
with DynamoDB, making your DDB tables accessible from SQL.

• Amazon DocumentDB: This connector enables Amazon Athena to communicate
with your DocumentDB instance(s), making your DocumentDB data accessible
from SQL. The also works with any MongoDB-compatible endpoint.

• Elasticsearch: This connector enables Amazon Athena to communicate with your
Elasticsearch instance(s), making your Elasticsearch data accessible from SQL.

• HBase: This connector enables Amazon Athena to communicate with your HBase
instance(s), making your HBase data accessible from SQL.

• JDBC: This connector enables Amazon Athena to access your JDBC-compliant
database. At launch, this connector supports MySQL, Postgres, and Redshift. For
the latest list, check the connector's README.md.

• Redis: This connector enables Amazon Athena to communicate with your Redis
instance(s), making your Redis data accessible from SQL.

• CloudWatch Logs: This connector enables Amazon Athena to communicate with
CloudWatch, making your log data accessible from SQL.

• CloudWatch Metrics: This connector enables Amazon Athena to communicate
with CloudWatch metrics, making your metrics data accessible from SQL.

Getting to know Amazon Athena 33

• AWS CMDB: This connector enables Amazon Athena to communicate with various
AWS services (EC2, RDS, EMR, S3, and so on). Using this connector, you could run
a query to identify all the EC2 instances in a particular VPC. Yes, you could do this
using the EC2 API, but with this connector, you can use one API, Athena SQL, to
query many different resource types.

• TPC-DS: This connector enables Amazon Athena to communicate with a source of
randomly generated TPC-DS data for use in benchmarking and functional testing.

Unstructured and semi-structured data
Athena's support for a wide range of file formats, rich text, and JSON manipulation
functions, as well as support for custom UDFs, make it an excellent choice for analyzing
unstructured and semi-structured data. Whether you are trying to count the number of
Tweets with negative sentiment in the previous hour (spoiler, the answer is all of them)
or use the Levenshtein distance to correlate log lines, Athena can help you generate that
result. We will go through a few examples of using unstructured and semi-structured data
with Athena in Chapter 8, Querying Unstructured and Semi-Structured Data.

The Levenshtein distance
The Levenshtein distance is a handy technique for performing fuzzy matching
between strings, including spelling errors, variations in spacing or punctuation,
and other differences that are challenging to classify. It is named after the Soviet
mathematician Vladimir Levenshtein who first described the algorithm for
quantifying the difference or similarity between two strings. The approach
counts the minimum number of single-character edits (insertions, deletions,
or substitutions) required to change one word into the other. You might be
surprised to learn that the Levenshtein distance is part of many systems capable
of fuzzy matching to accomplish that feat, including the search mainstay
Elasticsearch. You can use this algorithm directly from an Athena query from
the built-in levenshtein_distance(string, string) function.

Built-in functions
Since Amazon Athena is based on Presto, it shares many of the same functions.
These functions range from standard string or timestamp manipulation capabilities
common in many databases to more advanced geospatial functions. You can find the
full list of functions, grouped by type, in the Athena documentation (http://amzn.
to/2KoHAKE), and I'm sure you'll find it to be a close match for Presto's documentation
(http://bit.ly/3nKaHFS).

http://amzn.to/2KoHAKE
http://amzn.to/2KoHAKE
http://bit.ly/3nKaHFS

34 Introduction to Amazon Athena

This is perhaps a great time to shift gears for our next topic, where we will peel back
the curtain just a bit and talk about how Athena works under the hood. Much of that
conversation will focus on Presto and its architecture.

What is Presto?
As we have mentioned a few times already, Athena is based on a fork of the Presto open
source project. By understanding Presto, what it is, and how it works, we can gain greater
insight into Athena.

Presto is a distributed SQL engine designed to provide response times in the order of
seconds for interactive data analysis. While it may be tempting to do so, it is essential not
to confuse Presto with a database or data warehouse as Presto has no storage of its own.
Instead, Presto relies on a suite of connectors to plug in different storage systems such
as HDFS, Amazon S3, RDBMS, and many other sources you may wish to analyze. This
simple but inventive approach allows Presto to offer the same consistent SQL interface
regardless of where your data lives. It's also why Athena claims that "there is no need for
complex ETL jobs to prepare your data for analysis."

If you have an existing data lake, you may be familiar with Apache Hive or Hadoop tools.
Presto was, in part, intended as a high-performance alternative to the Hadoop ecosystem
for queries requiring interactive performance on data ranging in size from gigabytes
to many terabytes. The evolutionary pressure exerted on Presto by Hive has its roots at
Facebook, where both analytics tools were created and later open sourced. As of 2012, the
last time Facebook published these figures, Facebook's Hive data warehouse had reached
a staggering 250 petabytes in size. Having architecture limitations and lacking the right
code-level abstractions to meaningfully scale Hive and its shared Hive infrastructure
beyond the tens of thousands of daily queries it already handled, the engineers at
Facebook sought a fresh start in creating Presto. The inertia of the existing 250+ petabytes
of HDFS data and the emergence of other, siloed data stores across Facebook influenced
the critical architecture decision to separate storage and compute in Presto. Naturally,
one of the first and most mature Presto connectors was the Hive connector. This allowed
Presto's new distributed SQL engine to access the wealth of existing data without taking
on the effort of migrating the data itself. In 2013, roughly a year after the journey started,
Facebook ran its first production Presto workloads. The first open source version of Presto
was released later that year.

In the ensuing 7 years, a rich community grew around Presto, with Netflix, Uber, and
Teradata making significant private and public investments in the engine. AWS did not
engage with Presto until 2015 when it added support for Presto in AWS EMR, positioning
the distributed SQL engine along with side-related technologies such as Spark and Hive.

What is Presto? 35

It was not until 2016 that Athena sought to make Presto even easier to use and scale
by making Presto a core part of the newly minted service. Then, in 2018, the Presto
community started to fracture with the original engineering team leaving Facebook
over differences in the open source project's stewardship. That original team went on to
establish the Presto Software Foundation, forking the original Presto repository in the
process. Not wanting to lose face (pun very much intended) over the split, Facebook
joined with Uber, Twitter, and Alibaba to form the Presto Foundation under the Linux
Foundation's governance. If you are following along at home, we now have a Presto
Foundation and a Presto Software Foundation developing divergent forks of Presto.
It should then come as no surprise that in late 2020, the Presto Software Foundation,
comprised of the original developers who left Facebook, was required to rebrand its
fork as Trino. Only time will tell which fork ultimately wins. In the meantime, many
sophisticated customers are merging features from both distributions to get the best of
both worlds.

Now that we know what Presto is, as well as some of the history that led to its creation,
you can take advantage of Facebook's experience in trying to scale suboptimal tools for
a job that needed something new. By understanding the motivations for creating Presto,
you may even identify similar struggles or requirements in your organization and be
better equipped to explain why Presto and, by extension, Athena, is a good fit to meet
those needs. Next, we will look at how Presto works in relation to a service like Athena.

Presto architecture
As an engineer who has spent the last decade working on and supporting large-scale,
multi-tenant analytics applications, I have experienced joy, frustration, and honestly, the
full range of human emotions in those pursuits. Those experiences have shaped how I
define architecture. Unlike many other books or white papers that you may read, I'll be
describing Presto's architecture as it relates to executing a query, not how you deploy it.
After reading this section, you may want to compare and contrast the explanation given in
the original Presto white paper that we've provided a link to in the Further reading section
of this chapter.

Most, perhaps even all, SQL engines start by parsing your query into an Abstract Syntax
Tree (AST). Presto uses ANTLR to generate parser and lexer code that help Presto's SQL
planner turn your SQL string into an AST. In Figure 2.1, you can see a simplified AST for
the following query:

SELECT table_1.col_a, table_2.col_1

FROM table_1 LEFT JOIN table_2 ON col_b = col_2

WHERE col_a > 20 and col_1 = 10

36 Introduction to Amazon Athena

The SQL engine's planner operates on a tree representation of your SQL because it
perfectly captures the relationship between the different operations needed to generate
the result.

Figure 2.1 – A diagram of a hybrid AST and a logical query plan

As Presto begins planning how to execute your query, it runs several transformations over
the AST. One such modification is injecting Operators into the tree. Aggregations such as
max, min, or sum are examples of an operator. Similarly, reading from a table in S3 would
be akin to a TableScan operator. Referring back to Figure 2.1, we can read the plan for
our query from the bottom up. Our engine needs to perform independent TableScan
operations of table_1 and table_2. These can occur in parallel since they are on
different branches of the tree. Each TableScan leads into a filtering operation that applies
the relevant portion of the WHERE clause. Data from both TableScan operations
converge at a Join operation before passing through a project operator that trims down
the set of columns to only those required by our SELECT clause.

At this point, you might be asking yourself, what does this have to do with architecture?
I thought Presto had a coordinator node that handled all the query planning and one or
more worker nodes that did the heavy lifting. Coordinators and Workers are the units you
deploy when running Presto yourself. Still, the exciting part of Presto's architecture is how
it can reshape the relationship between those components on the fly for each query. You'll
frequently see this called a physical plan. So far, everything we have discussed happens in
the ether because the AST and logical plan don't connect to the physical world of servers
and processes.

What is Presto? 37

After the coordinator node generates what it believes to be the best logical plan, it needs to
decide which worker nodes to involve in the actual execution. The result is a physical plan
influenced by the number of available workers, the parallelism the logical plan offers, and
even the workers' current workload.

While the Presto coordinator does play a unique role in orchestrating your queries'
execution, all nodes in your Presto fleet can run the same software. Upon starting, each
node attempts to contact the coordinator. This discovery process allows the coordinator to
build an inventory of resources, including what capabilities each node offers. For example,
you may have many nodes configured to run the Hive connector because you have lots
of data in S3, but you only have two nodes with the JDBC connector installed since you
rarely federate queries to your sole MySQL instance. In my experience, there are more
advantages to having your fleet be homogenous than taking on the complexity of running
different configurations on different nodes. The node discovery mechanism and self-
differentiating workers allow multi-tenant services such as Athena to remove the need to
manage clusters. Instead, Athena custom crafts a serverless resource plan for each of your
queries. This is a fancy way of saying the servers come into the picture just in time
to execute their share of the work and then rapidly move to the next job or query that
needs them.

A lot of Presto's architecture may seem familiar. The broad strokes are similar to that of
Hive, Spark, and many other distributed analytics engines. A leader node, homogenous
workers, and logical and physical plans are all concepts that pre-date Presto. There is,
however, one area where Presto significantly diverges from its peers. Hive, Spark, and
Presto all break their query plans down into stages. Stages usually demark a boundary
between dependent but discretely different operations. Sometimes, these boundaries are
useful for marking changing resource requirements or creating checkpoints to recover
from partial failures. Presto's execution engine is deeply pipelined, often executing all
query stages simultaneously. Hive and Spark currently wait for a stage to complete before
the next stage can start. Deep pipelining gives Presto a structural advantage for queries
that don't have blocking operations because later stages can attempt to make partial
progress even while early stages are still completing. Spark attempts to approximate this by
collapsing pipeline-able operations into the same stage, but that isn't always possible.

Similarly, Presto doesn't always benefit from deep pipelining. Queries having a subquery
with paired ORDER BY and LIMIT clauses are one case where pipelining benefits can
be limited. In this case, the outer query can't make meaningful progress until the LIMIT
clause of the inner query gets results from the preceding ORDER BY clause. Unfortunately,
the ORDER BY clause can't generate results until everything before it completes, thereby
stalling the pipeline. Exceptions aside, all Presto nodes continuously send intermediate
results to the next worker in the physical plan. Like a real tree, water, or data, flows from
the bottom of the tree to the top.

38 Introduction to Amazon Athena

The flow of data, or more precisely the location of the data you query, is another notable
aspect of Presto's architecture. Earlier in this chapter, we mentioned that Athena supports
querying data in over 14 different sources, including S3, Elasticsearch, and MySQL.
Querying data across multiple sources is made possible, in part, by Presto separating
storage and compute. Presto's creators knew that running traditional data warehouse
systems was expensive both operationally and in terms of licensing. Companies frequently
hire entire teams to manage the data warehouse and help police use of storage and SLA,
thereby impacting job contention. Presto takes a different view and is a semantic layer
over your data – a virtual data warehouse. If the separation of storage and compute makes
Presto a good choice for querying a data lake, then federation may make it the best option.
Suppose you are moving your organization to a data lake or have some awkward data
sources to feed into an existing data lake. In that case, Presto's connector suite lets you
query across multiple sources as if they were one. There is no need to ETL data from one
source to another just to run queries over it. You can run the same ANSI SQL over all
connected sources, regardless of their underlying query languages.

Beyond architectural choices, Presto also does a lot of small things well. Each worker
makes use of an in-memory parallel processing model that heavily multi-threads query
execution to improve CPU utilization. When appropriate, Presto even rewrites its own
code to execute your query more quickly. This technique is known as code generation,
and it can help improve CPU branch prediction and exploit machine-specific instruction
sets. If you've never worked on a code generator, this might seem rather theoretical,
so let's look at an example. In the following code, our imaginary SQL engine is
copying only the columns selected by our query from a page of intermediate results to
targetPage representing the query's final output:

for(nextColumn in selectedColumn){

 sourcePage.copy(nextColumn, targetPage)

}

What's the big deal? I only selected five columns. How could this possibly matter? Well,
this code runs for every ROW! So those seemingly meaningless comparisons and small
copy operations add up and degrade performance when your query processes millions or
billions of rows. Instead, Presto generates very targeted pieces of code with generalization.
In our hypothetical example, Presto creates the following code:

sourcePage.copy(column1, targetPage)

sourcePage.copy(column2, targetPage)

sourcePage.copy(column3, targetPage)

sourcePage.copy(column4, targetPage)

sourcePage.copy(column5, targetPage)

Understanding scale and latency 39

This seemingly contrived example was a real issue Athena patched in Presto. For queries
exceeding 6,000 projected columns in any stage, Presto's code generator would fail and
revert to using the original for loop approach, resulting in a 20% increase in query
runtime. Removing one column or fixing the code generator restored the original
performance. By making the CPU operations required to complete the query more
predictable, we were able to make better use of the deep execution pipeline in modern x86
CPUs. This technique isn't unique to Presto, but it is useful to know how Presto uses it.

In this section, we've tried to highlight the fluidity of Presto's architecture because its
creators made a conscious choice to go with this model over more prescriptive but more
straightforward approaches. This is just the tip of the iceberg in terms of how Presto
works. If you'd like to learn more about this topic, I encourage you to read the Presto
white paper. Next, we will learn more about the kind of performance and scale Athena
delivers using Presto.

Understanding scale and latency
Ever wonder why companies ambiguously describe their products as fast or highly scalable
without quantifying those superlatives? For a long time, I thought it was because they
were hiding something. Maybe they didn't provide hard numbers because they weren't
the fastest or had a terrible gotcha. As it turns out, performance is personal, with dozens
of variables affecting how long a query will run. Even the differences between a successful
query and an unsuccessful query can come down to random chance associated with your
data's natural ordering. These are some of the reasons why companies do not provide
straightforward performance figures for their analytics engines. However, this doesn't
mean we can't identify useful dimensions for anticipating a workload's performance.

When evaluating Athena's performance, the first thing to understand is that Athena is
not likely to be the fastest option. This may be the most controversial statement in the
entire book. Earlier in this very chapter, we discussed the trade-offs in ease of use and
added control when using fully managed services. As a managed service, Athena is in
charge of deciding most aspects of how your queries execute, including the number of key
resources such as CPU and memory. So, it comes as no surprise that Athena doesn't have
any setting you can use to influence those resources. As good as Athena's query planning
and resource allocation technology can be, it is not likely to guess your SLA needs. This
is important because Athena, as part of removing the need for customers to tune cryptic
performance settings, closed a standard mechanism for increasing performance. In the
future, such settings may get added, but today Athena simply doesn't know that your
urgent query needs to finish by the start of that 9 a.m. meeting.

40 Introduction to Amazon Athena

Many other products in this space, including Google BigQuery, allow you to change
the price/performance balance by influencing the amount of hardware parallelism the
underlying engine will give your query. In BigQuery parlance, you can choose to use
more slots to try making a query run faster. The added control enables these alternatives
to outperform Athena frequently. It also makes them more expensive than Athena. In
the case of Google BigQuery, it is relatively easy to create queries that run 50% faster in
BigQuery than Athena, but cost more than 10x what Athena charges for the same result.

Beyond individual query performance, we also need to consider how the system behaves
when we have concurrent queries. According to the Amazon Athena Service Quota
page, customers using the US-EAST-1 region can submit 20 concurrent DDL and
25 concurrent DML queries. The documentation also notes that these default values
are soft limits for which you can request an increase from the Athena Service Quotas
console. These limits consider both running and queued queries. Lack of capacity is
the overwhelming reason a query might find itself in the queued state. Such a capacity
shortfall can result from Athena itself being low on capacity and maintaining fairness
between customers. It can also result from you exceeding your account limits. The specific
reasons for queuing aren't important as they are most likely related to internal details of
how Athena schedules queries. Instead, we should focus on things we can control. A quick
Google search for Athena Queuing turns up many Stack Overflow and AWS Forum posts
where customers didn't consider their concurrency needs before building on Athena.
The point you should remember is to include concurrency testing in your evaluation of
Athena. If your anticipated workload needs twice the advertised default concurrency
within the next 2 years, engage with the Athena service team early to understand how they
can accommodate your workload. Soft limits offer a useful data point about how a service
scales, but it isn't surprising to see a serverless offering sensitive to concurrency. As we
saw in our Presto architecture overview, all queries get mapped into the physical world of
servers and processes at some point.

In the last year, Athena has more than doubled many of its default limits. I expect to
see Athena continue that trend and perhaps even offer more controls for customers to
manage performance while maintaining the current ease of use. For now, Athena provides
a one-size-fits-all balance between price and performance, but that doesn't mean there
aren't other levers you do have control over that directly influence performance and cost.
We will talk about some of those next.

Understanding scale and latency 41

Price versus performance
We have made this point already, but it is worth reinforcing. When an
analytics engine builds a query plan, it often has to balance opposing goals.
For example, a broadcast join can require considerably more memory (RAM)
than a distributed join. If your system currently has excess memory and limited
CPU, a query plan that dedicates surplus memory to the join stage to qualify
for a broadcast join can make sense. Conversely, if the environment had extra
CPU and network bandwidth, you might opt for the distributed join plan even
though it will use more expensive hardware. It would be the only choice you
had if you didn't want to fail the query. In each of these cases, we optimized for
something different. In the first example, we tried to preserve scarce CPU while
the second path reserved limited memory for future needs. Knowing when to
make trade-offs can be challenging. You may not even know what trade-offs
are available, let alone when to use each. Athena values ease of use and doesn't
want you to be bothered with these trade-offs. Earlier, we described Athena's
performance as one size fits all. Not unlike the clothing items from which we
borrowed that classification, there are outliers at the margins who won't be
entirely happy with the fit. For the vast majority of people, however, Athena's
ability to reshape itself to your needs will be indistinguishable from magic.

TableScan performance
Now, you may recall Presto's query execution pipeline TableScan operations to
read data from your tables, from Figure 2.1. Lucky for us, Athena was built to take full
advantage of Amazon S3's scalability as a storage layer for data lakes. By following the best
practices covered in Chapter 4, Metastores, Data Sources, and Data Lakes, you can expect
a typical Athena query to scan, filter, and project data at more than 100 Gbps. If your data
is mostly numeric and stored in a columnar format such as Parquet, you can easily see
scan performance above 200 Gbps. Things get even more impressive when your queries
include a predicate that can be pushed down to the scan operation. You will often see
this abbreviated as a ScanFilterProject operator since it combines three steps into
a single more efficient operation. In such cases, Athena is smart enough to use metadata
within your ORC and Parquet files to reduce the actual amount of work it does per row.
The net effect is that the perceived scan performance can improve by orders of magnitude.

42 Introduction to Amazon Athena

Your choices of storage and file format play outsized roles in achievable TableScan
performance. For example, if you store the same data in Amazon S3 and MySQL, and then
count the rows in each table, Athena will struggle to achieve 64 Mbps against MySQL,
while throughput from the table in S3 will be well above 100 Gbps. That was not a typo.
The difference was more than 99.9 Gbps. This isn't a fair comparison since Athena does
not yet take full advantage of MySQL's ability to run the count operation itself. However,
it illustrates that few data sources can keep up with S3-based data lakes.

If you do anticipate using Athena to federate queries to data stores other than Amazon S3,
you should be aware of the current incarnation of Athena Federated Query functions as
a TableScan operation. This means that as Athena is producing a query plan for your
federated source, it is mostly unaware of that source's capabilities. Except for pushing
down conjunctive predicates, Athena will ask your source to return all the row data
for any subsequent operations, such as aggregations and joins. It is not always possible
to push more of the work into the source system, even when that system is as capable
as MySQL. Still, many federated queries can benefit from the data transfer reductions
offered by aggregate pushdown. In the previous example, MySQL could have completed
the count, an aggregation operation, if Athena had pushed that part of the query down
below the TableScan operation. Such an optimization would effectively hide the fact that
MySQL cannot transfer row data as fast as Amazon S3. To be crystal clear, MySQL was
never intended to transfer data externally at high rates. Athena Federated Queries can
achieve scan rates above 100 Gpbs, but the actual figures are highly dependent on the
source. Athena Federation is covered in full detail, including how to write a connector for
a custom data source, in Chapter 12, Athena Query Federation.

Memory-bound operations
From our walk-through of Presto's architecture, we learned that Presto favors in-memory
columnar representations of data for their speed. The flip side to that coin is that Presto,
and thus Athena, can be sensitive to memory-intensive operations such as joins and
distinct value operations. Until Athena engine version 2, which loosely correlates to
Presto's 0.217 release, Athena rarely spilled to disk when physical memory was under
pressure. If you are not yet running your queries against Athena Engine Version 2 or
tried Athena in the past and had issues with queries failing due to resource exhaustion,
you should try them again. Athena still lags Spark in large joins and performing distinct
operations on high - cardinality datasets, but it has made significant improvements in
this area over the past year. Memory exhaustion remains one of the most common causes
of query failures in Athena. This was true in our testing in writing this book and also a
commonly asked question online.

Metering and billing 43

Writing results
One of the final performance dimensions to keep in mind when considering Athena
centers around how quickly you can write results. If all your queries return a limited
number of rows, this section won't be a concern. If, however, your queries generate
hundreds of megabytes of results, you should consider which of the three ways Athena can
write query results may be best for you. Usually, when you run a DML statement like the
one following, Athena will return the results from a single file in S3:

SELECT sale_date, product_id, sum(sales)

FROM product_sales

GROUP BY sale_date, product_id

Athena also provides a convenient API called GetQueryResults to return pages of
results to you without your client ever needing to interact with Amazon S3. Based on
the S3 access logs, it would seem Athena is reading from S3 for you when you use this
API. This is the slowest method of getting results from Athena. It works perfectly well for
relatively small result sizes, but when your queries start to generate larger result sets, you'll
find yourself bound by the throughput of writing results. For those cases, we recommend
you look at Athena's CTAS, INSERT INTO, and UNLOAD queries. These statements tell
Athena it is OK to parallelize writing results. You'll end up with multiple files in S3, which
you'll be able to consume in parallel, removing the bottlenecks that come with regular
SELECT statement results.

By now, I hope my earlier statement about performance being very personal is starting
to make sense. There is an incredible number of variables at play. Some factors are
independent, but many are partially correlated. It would take a degree in advanced
physics to approach the problem without apprehension. Don't go rushing to buy the
top-rated differential equations book on Amazon just yet. Our next topic is refreshingly
straightforward. Athena pricing is as simple as it gets and is one of the dimensions where
Athena is in a league of its own.

Metering and billing
Amazon Athena meters the amount of data Athena must read to satisfy your query. The
data your query reads is then billed at the rate of $5 per terabyte. This pricing model's
simplicity makes it easy to quickly estimate how much the query you are about to run
might cost. If your table is 1 terabyte in size, it's a reasonably safe assumption that
querying such a table should not cost more than $5. You might think that this is the end
of the pricing conversation, and for all practical purposes, it is. However, in classic AWS
fashion, the model's simplicity hides the real value of what that $5 is actually buying you.

44 Introduction to Amazon Athena

As of this writing, several alternative offerings are also charging $5/TB scanned for
a similarly rich SQL interface. Beyond informing you of how Athena is priced, the goal of
this section is to help you understand what that $5/TB is buying.

Let's double-click on the metering aspect first. Amazon Athena charges you for the bytes
it reads from S3, or, in the case of federation, the bytes returned by the connector. More
precisely, Athena charges you for the raw size before any interpretation of the data.
This is significant because it means the bytes are counted before decompression.
If you have 10 TB of data in CSV format and compress the CSV files down to 1 TB using
gzip before you query it with Athena, you just cut your Athena bill by 90%! Many of
the other offerings in this space charge you for the logical size, known as the size after
decompression, deserialization, and interpretation. In my time working with Athena,
this was easily one of the most overlooked benefits of the service.

Later in this section, we will examine how different file formats and compression
techniques compare concerning file size and performance.

Athena Query Federation metering
Athena natively supports querying data stored in Amazon S3. This feature
allows Athena to read data from any source that implements a connector
using the open source Athena Federation SDK. Data from federated sources
is metered at the same $5/TB as data originating in S3, but the point at which
the bytes are counted is subtly different. If your connector reads 10 TB from a
MySQL database, but manages to filter that data down to 1 TB before passing it
to Athena, you are charged for 1 TB, not 10 TB.

You may be wondering whether your Athena costs will vary between long-running or
short-running queries. Regardless of the runtime of your query, you will be charged the
same $5/TB. If your queries are longer because they read more data, they cost more than
shorter queries that read less data. There are no surprise bills associated with executing a
CPU-intensive sort or memory-hungry join. You should, however, keep in mind that there
are few free rides in this world. So, while it might be Athena's problem to execute such
queries within the agreed $5/TB pricing structure, that does not mean your queries have
access to infinite memory or unlimited query runtimes. By default, Athena DML queries
are allowed to run for no longer than 30 minutes. You can request an increase to this soft
limit from the service quota console.

On top of the charges that will come directly from Amazon Athena, your queries will
incur additional costs associated with other services that Athena interacts with on your
behalf in the course of executing your queries. We'll cover those next.

Metering and billing 45

Additional costs
Firstly, don't be alarmed. Nearly all AWS services can incur additional costs from
interacting with other AWS services on your behalf. In the case of Amazon Athena, these
additional costs rarely add more than 0.1% to your queries' total costs. The services that
Athena interacts with most often are listed in the additional costs section of the Athena
pricing page. Regardless of the documentation, you can try to self-identify other cost
sources by removing Athena from the picture and imagining what you would need to do
if you were Athena. The first thing Athena does when you run a query is to get the details
of any tables used in the query by talking to AWS Glue Data Catalog. Athena calls Glue's
GetTable API once per table and the GetPartitions API for each batch of 1,000 partitions
in your table. AWS Glue's free tier offers one million API calls and just $1 for each one
million API calls beyond that. An Athena query against one table that follows the best
practices in this book is unlikely to generate more than 11 API calls to AWS Glue. For
more information about AWS Glue's pricing, check out the AWS documentation.

Putting ourselves back in Athena's shoes, our next step after gathering metadata from
AWS Glue is to start reading data from S3. We would need to list the objects in each
partition to enumerate all the objects we need to read. Then we would need to reach each
object. If we are using an advanced format such as Parquet or ORC, reading the objects
might require seeking different offsets within the object. This allows Athena to skip large
chunks of the file, saving you costs with respect to the bytes read by Athena, but increasing
the number of S3 calls. Considering 1,000 S3 requests cost just $0.005, it is easy to see
why seeking within an object in order to skip chunks of data is well worth the effort. More
concretely, a well-organized table containing one million objects totaling 128 TB of data
would cost $640 to read in Athena fully. That same query would incur less than $0.50
(0.0007%) of additional costs from Amazon S3.

Once Athena has read the data from S3, or in the case of S3 server-side encryption, the
data may need to be decrypted before Athena can make sense of what it read. In these
cases, Athena will call AWS Key Management Service (KMS) to get the appropriate
data key for the file being read. It is a recommended best practice to use a different data
key with each S3 object. Accordingly, Athena or S3 may need to call KMS one or more
times per object. AWS KMS charges $0.03 per 10,000 requests. Our query exceeding the
preceding hypothetical table would generate $3 (0.004%) of additional KMS charges. You
can find full details of AWS KMS pricing on the KMS pricing page.

If these additional costs are indeed so inconsequential, why are we giving it so much
attention? The short answer is that you will see these costs, and they won't always look like
such small percentages even though they are.

46 Introduction to Amazon Athena

Since Athena charges by the terabyte scanned, customers are incentivized to reduce their
data sizes through compression and columnar formats such as Parquet. Let's apply some
of these techniques to the hypothetical 128 TB table from the previous examples. After
converting to Parquet and changing our query to use a more targeted filter, our Athena
charges have been reduced to $6. Parquet allowed Athena to evaluate our query's filter
using only statistics from each row-group's header without reading the entire S3 object.
The net effect is that Athena could skip 90% of each object's contents, cutting our Athena
bill by a proportional 90%! However, skipping 90% of the data required many more calls
to S3 and KMS. In this example, we'll assume 10 times more calls. At the end of our query,
our KMS and S3 costs are now a combined $35 compared to Athena's $64 line item. Our
additional costs have ballooned to more than 50% of our total costs! Yes, that is true,
but don't forget that we spent that extra $30 to save $576. We aren't highlighting this
because we feel you should gladly accept these additional costs. Instead, we hope you will
approach the delicate art of optimization with an informed understanding of the drivers
that impact each cost dimension. In this particular example, you might be tempted to cut
the additional $30 that comes from KMS by disabling KMS encryption. This might be
reasonable, or it might be an unnecessary risk if your data is sensitive. It is likely easier to
make an additional $30 of revenue than it will be to rebuild customer or regulator trust if
the lack of encryption exposes sensitive data.

Details of your query and the file formats involved can affect your costs in subtle ways.
We've used extreme examples to illustrate that point. Additional costs are expected to
be an insignificant portion of your overall cost. Knowing what drives them will help you
understand which scenarios apply to your workloads. Besides total data size, your choice
of file formats and compression techniques is the most significant factor in your queries'
cost. We'll cover these in more detail now.

File formats affect cost and performance
Your file format choice affects the raw data's size that Athena will need to read from S3 to
answer your query. For example, if your data comprises one field containing the quantity
of each item you have in stock at your stores, you can represent that data in multiple
ways. The first and perhaps simplest is as a CSV. While easy to get started with, CSVs are
a poor choice for storing numeric values. The number 30,000 would occupy 5-10 bytes
in CSV format, but just 2 bytes in columnar formats such as Parquet. If you have millions
of rows, this 80% size difference can add up quickly. Beyond literal cost implications, it
takes more CPU and, by extension, time for Athena to deserialize the text representation
of numeric values found in a CSV to the type of appropriate representation required for
most operations, including addition and subtraction. This deserialization penalty can slow
down your queries.

Metering and billing 47

We can use Athena itself to run a quick experiment with different file formats and
compression algorithms. The following CTAS statement reads from the nyc_taxi
table we created in Chapter 1, Your First Query, and then rewrites that table's contents
into a new table using Parquet with SNAPPY compression instead of the original
GZIP CSV format:

CREATE TABLE nyc_taxi_parquet

WITH (

 format = 'Parquet',

 parquet_compression = 'SNAPPY',

 external_location = 's3://packt-serverless-
analytics-888889908458/tables/nyc_taxi_parquet/')

AS SELECT * FROM nyc_taxi;

By running this query for various formats and then inspecting the resulting S3 objects
from the S3 console, we constructed the table in Figure 2.2:

Figure 2.2 – Table comparing different file formats for the NYC Taxi data

By studying the table in Figure 2.2, we can see that columnar formats such as Parquet and
ORC can reduce our costs while also improving performance vis-à-vis simpler formats
such as CSV. Columnar formats exploit the similarity between rows for a given column
to provide a more compact representation of the data without requiring computationally
intensive compression techniques such as GZIP. Here we've compared the most common
approaches. CSV, while simple and broadly supported, is the least compact. It also has the
most deserialization overhead due to its textual representation of everything from strings
to small integers.

48 Introduction to Amazon Athena

Even when coupled with an intensive compression algorithm such as GZIP, it still
underperforms the size reduction capability of Parquet while using considerably more
CPU. Parquet and ORC performed similarly, and given the relatively narrow testing we
did here, little can be learned about the two approaches relative to one another.

Interestingly, both Parquet and ORC performed worse when we enabled SNAPPY
compression. This is likely because of run-length encoding doing such a good job,
leaving SNAPPY to compress data that contained minimal repetition. Most compression
algorithms fare poorly against data that is entirely random, though I wouldn't have
expected ORC to be more vulnerable to this than Parquet. One of Parquet and ORC's
main differences originates in the frequency and size of the metadata they store for
the chunks of underlying row data. By default, ORC tends to favor more metadata in
anticipation of more significant query-time benefits. This has a side effect of higher
overhead, which may have been magnified by our example's meek 10 MB of data.

Much of the Athena documentation strongly recommends the use of Parquet as your
format of choice. This book partly takes the same view because of the performance, size
reduction, and rich engine support for Parquet. ORC is a close runner-up with many of
the same features.

Run-length encoding (RLE)
Run-length encoding is an inventive form for compression that uses relatively
little CPU or memory to compute while still offering substantially smaller
data sizes. Unlike related techniques used in video processing, RLE is lossless,
making it ideal for Parquet and ORC formats. When used in conjunction
with sorted data, RLE can reduce data sizes by upwards of 10x. At its core
sits an algorithm for exploiting runs of data that have a shared or common
base. Instead of storing the repeated information in adjustment rows,
you merely store a delta from the previous value. For example, the string
ABBBBBBBBBBCAAAAAAAAAAAA could be natively run-length encoded to
A10BC12A, yielding nearly 10x lossless compression.

Amazon Web Services has reduced prices on one or more services more than 70 times
in the last decade. Prices can and do vary between regions, and prices may have changed
since this book was written. Even though we could not find a single documented case
of pricing going up, please verify the current pricing details before using any services.
You can find the latest pricing for Athena in the AWS documentation (http://amzn.
to/3r5pYTD). Now that we understand what drives our costs, we can look at options for
controlling them.

http://amzn.to/3r5pYTD
http://amzn.to/3r5pYTD

Metering and billing 49

Cost controls
Athena offers several tools for helping you control costs. This includes mechanisms for
capping the data scanned by individual queries or by grouping your applications into
organizationally relevant buckets with accompanying budgets. On the Workgroup
settings page shown in Figure 2.3, you can set a per-query limit for each workgroup.
Once a query reaches that limit, it will be killed. Further down on the same page, you can
configure a budget for the entire workgroup. Once the queries that run in the workgroup
have cumulatively exceeded the limit, further queries in that workgroup will be killed
until enough time has passed that the budget resets.

Figure 2.3 – Athena Workgroup settings page; Data usage controls tab

In addition, you can enable CloudWatch metrics for your queries. Once active, Athena
will send updated metrics about in-flight and completed queries to CloudWatch, where
you can monitor them with your own custom rules, reports, or automation.

50 Introduction to Amazon Athena

Connecting and securing
Connectivity and authentication features are often overlooked. Like all AWS services,
Athena offers a set of APIs for interacting with the service from your applications or from
the command line when using the AWS CLI. These APIs allow you to submit a new query,
check the status of an already running query, retrieve pages of results, or kill a query. These
same APIs are used from within Athena's JDBC and ODBC drivers. When connecting to
Athena, you can use the standard endpoints if you have an internet gateway in your VPC or
opt to call Athena from a VPC endpoint and avoid the need to have internet connectivity
from your application VPC. This gives you added control over your security posture by
pushing the responsibility of securely connecting to your data sources onto Athena.

In addition to VPC endpoints, Athena also offers SAML federation for managing
identities outside of AWS. This allows your Active Directory users to seamlessly
authenticate to Athena when using the JDBC or ODBC drivers. At the cornerstone
of Athena's access control system lies Lake Formation. Lake Formation allows you to
permission IAM users or roles for specific tables, columns, and rows without having to
write complex IAM policies to coordinate access to millions of S3 objects or AWS Glue
Data Catalog resources.

Now that we've added some basic connectivity options to our performance and cost driver
knowledge, we can combine these topics to review common Athena use cases.

Determining when to use Amazon Athena
There is no one answer to this question. There are use cases for which Athena is ideally
suited and situations where other tools would be a better choice. Most potential
applications of Athena lie in the gradient between these two extremes. This section will
describe several common and recommended usages of Athena to help you decide when
the right time is for you to use Athena.

Ad hoc analytics
We might as well kick off this discussion with one of Athena's greatest hits – ad hoc
analytics. Many customers first notice Athena for its ease of use and flexibility, two key
features when you suddenly need to have an unplanned conversation with your data.
We saw this firsthand in Chapter 1, Your First Query, when it took us just a few minutes
to load up the NYC Taxi trip dataset and start finding relevant business insights. Ad hoc
analytics can be used to describe unplanned queries, reports, or research into your data
for which a pre-made application, tool, or process does not exist. These use cases often
require flexibility, quick iteration times, and ease of use so that a highly specialized skillset
is not needed.

Determining when to use Amazon Athena 51

For this class of usage, there are relatively few things to consider. The first is where your
data is stored. If your data is already in S3 and perhaps already cataloged in AWS Glue,
it should be effortless to use Athena as your preferred ad hoc analytics tool. If not, then
you will need to think about how you will manage metadata. If your users are savvy, they
can create table metadata on the fly using Athena's DDL query language. If not, you may
want to consider adding Glue Crawlers to your tool kit. Glue Crawlers automatically scan
and catalog data in S3. When complete, the crawlers populate AWS Glue, so you never
need to run table create statements manually. Many organizations that are not yet
considering or are just starting their data lake journey notice the benefits that come with
democratizing access when using Athena for ad hoc analytics. Some organizations go a
step further and create a business data catalog. This allows employees to discover datasets
and learn their business relevance in addition to the technical details of how and where
it is stored. In short, a business data catalog often has more documentation than what is
currently offered by the AWS Glue Data Catalog.

Related to the cataloging of data, managing access to that data is another facet to consider.
Athena offers two mechanisms for controlling who can read and write analytics data.
The first is traditional IAM policies, where you grant individuals or IAM roles access to
the specific S3 paths that comprise your tables. This can work well if your data is well
organized in S3 and your permission needs are limited to a handful of non-overlapping S3
prefixes. If your needs are more complex, necessitating column or even row-level access
control, you'll want to use Athena's Lake Formation integration to manage permissions.
In this model, you never have to write IAM policies and instead use an analytics-oriented
management console (or APIs) to grant and revoke permissions.

Since ad hoc analytics is a frequent Athena use case, the service has worked with several
partners to release driver support in popular BI tools. Tableau and Looker, two popular
BI tools, both natively support Amazon Athena. You can also leverage Athena's ODBC
and JDBC drivers to query Athena from a slew of other tools, including Microsoft Excel.

The final criteria for using Athena for ad hoc analytics is purely about the kinds of queries
you want to run. As we've seen in this chapter, Athena offers limited options for tuning
your queries' scale or performance. If your analytics queries often require large amounts of
working memory or another extreme scale, you'll want to test how well Athena runs your
queries. The good news is that if you eventually encounter a query that Athena struggles
with, you can run that outlier with AWS Glue ETL, a serverless form of Spark. That's
why it is essential to consider the surrounding ecosystem in addition to Athena's
product-specific capabilities. With AWS, the whole is usually greater than the sum of its
parts. In Chapter 7, Ad Hoc Analytics, we will get hands-on with more examples of using
Athena for this popular recipe.

52 Introduction to Amazon Athena

Adding analytics features to your application
Another popular pattern is to use Amazon to add decision-support information to your
application. Imagine we are the authors of a digital advertising campaign system. Our
customers use the application to set up new campaigns, monitor the budget of existing
campaigns, and even understand the available impression inventory. All this is fancy
advertising lingo for understanding different elements of who their campaign is reaching
and when they'll exhaust their advertising budget. It would be useful to show some
historical trends alongside the current budget remaining number. We can easily use
Athena's APIs or JDBC driver to run a query that will return both the hourly impressions,
conversions, and budget burndown for the last 24 hours, 7 days, or other relevant
timeframes. Because we don't need this data to update live, we can avoid building an
OLTP data store. Instead, we need only to feed our existing application logs, or possibly
simple metrics, to S3 in a location our Athena queries can access. If we want to be clever,
we can even write the metrics to S3 paths based on campaign identifiers and reduce query
costs while boosting performance. Thanks to Athena Query Federation, you can go a
step further and allow embedded dashboards that show the near-real-time campaign
performance only for live campaigns or those within 10% of exhausting their budget. One
way to do that is by joining the live status of the campaigns from an OLTP store such as
AWS DynamoDB with your historical data from Amazon S3.

We'll go through one more example for good measure. Suppose we are using a machine
learning algorithm, such as DeepAR in Amazon SageMaker, to predict demand in our
inventory ordering system. The system then automatically reorders ingredients or parts
that will be used to replenish our supply of the finished product. For the best results, we've
found that the prediction accuracy increased substantially when we supply a week of the
most recent sales data as context for the prediction API calls. Unfortunately, our inventory
system doesn't keep track of historical inventory burn rates or sales. Well, we could call
Amazon Athena to query our data lake's historical order table just before calling our
SageMaker prediction endpoint for the next. With a relatively minor enhancement to our
application and even less new infrastructure, we've just enabled our inventory system to
provide the recent inventory data that will improve our forecasting capabilities.

When considering this usage pattern, you should pay close attention to your anticipated
concurrency needs and how the new dependency will affect your application's liveliness.
Athena is built for high availability. You don't need to worry about having it in the
critical path of your application flow. Still, it's always a good idea to limit critical path
dependencies to those that are absolutely necessary. In Chapter 10, Building Applications
with Amazon Athena, you will get a chance to see this pattern up close.

Determining when to use Amazon Athena 53

Serverless ETL pipeline
With the advent of serverless infrastructure has come a wave of new serverless use
cases. Anywhere you previously had a server or cluster of servers running big data jobs
has become fair game for Athena's serverless promises. So, it comes as no surprise that
customers use Athena to build serverless ETL pipelines. As we stroll toward our imaginary
system design whiteboard, let's pretend we work for a hedge fund. Our team is responsible
for calculating the company's short risk in response to substantive changes in the stock
market. The software that runs our various trading desks generates a file every hour,
containing a summary of our long and short positions. Whenever one of these files comes
in, we need to recalculate each of the updated stocks' overall positions. Our goal is to
ensure that our hedge fund doesn't unknowingly take on too much risk, as was the case
with the great Reddit GameStop uprising of 2021.

GameStop won't stop
The saga of GameStop, GME, began in August 2020 when an anonymous
user on Reddit posted an in-depth analysis and justification for why
GameStop would go to the moon. In addition to a few solid fundamental
theories, this person highlighted the absurd reality that GameStop shares
had a short interest greater than 100% of the available shares. This means
that for every share of GameStop stock, more than one share had been sold.
This happens when people, or companies, bet against the stock by borrowing
shares from their broker and sell them to someone else. You are said to be
short with the stock because you now owe someone else a share you borrowed.
What began as a way to make money sticking to the shorts morphed into a
socio-economic movement pitting the underdog retail investor against some
of the biggest hedge funds in the world. No matter which side you were on,
it was unprecedented. It also generated many amusing memes.

Using Athena and AWS Lambda, a serverless technology for responding to events,
we can configure S3 to send an event to Lambda whenever a new trade summary file
arrives in our S3 bucket. When the file comes, a Lambda function gets invoked. Within
that function, we can run custom code to have Athena query the newly added file and join
it with relevant information from a dimension table before writing the results to our data
lake in Parquet format. After the initial transform and load, we trigger another Lambda
function, which reruns our overall risk analysis Athena query to determine whether we
are overexposed to one or more securities. Without touching a single server, we built an
entire ETL pipeline, albeit a relatively simple one. Depending on the data sizes involved,
it's not unreasonable for this ETL pipeline to cost mere pennies a day.

54 Introduction to Amazon Athena

While simple ETL pipelines can be appropriate for Athena, you should consider the
number and size of jobs you expect to run in your ETL system. Like earlier examples, the
AWS ecosystem has complementary capabilities in AWS EMR and AWS Glue ETL, which
can help if you outgrow or run into requirements that Athena cannot satisfy. AWS Glue
ETL is also serverless, though it is based on Apache Spark and charges you for compute
time instead of Athena's Presto-based engine, which charges by the terabyte scanned.
In Chapter 9, Serverless ETL Pipelines, we will go step by step and build out a reactive
ETL pipeline.

We will conclude our review of common Athena use cases by discussing a few
miscellaneous examples that, while too small to dedicate a full section to, are equally valid.

Other use cases
While less prominent than the use cases described in previous sections, some customers
use Athena as an operational tool or a rapid prototyping tool. Athena's filtering
performance makes it a rather performant choice for rapidly scaling and filtering log data
without the need to keep a costly infrastructure running all the time. This is ideal for
operation situations that arise from nowhere. Customers filter and parse everything from
VPC flow logs to application logs, looking for root causes or quantifying impact. Athena's
flexibility also makes it a great choice to quickly iterate on complex reports or ETL jobs
that you'll later implement in a different system. This is not unlike other data preparation
use cases from machine learning or data quality checking.

Just because a use case you have in mind wasn't explicitly mentioned in this chapter
doesn't mean you should consider Athena. We've only listed examples of good use cases so
that you can extrapolate and apply what you've learned to your projects and environment.

Summary
In this chapter, we formalized your introduction to Athena by going over the service's
high-level capabilities, including ACID transactions, federation, ETL operations such
as CTAS, and open source file formats. We went inside Athena by learning more about
Presto, the open source distributed SQL engine that sits at its core. As part of that exercise,
we experimented with supporting our own multi-tenant analytics infrastructure. This
allowed us to see all the value-added functionality that sets Athena apart from other
serverless technologies that fall short of being fully managed. As if that wasn't enough of
a reason to hop on the serverless analytics bandwagon, we unpacked the marketing hype
to find that Athena's $5/TB price tag is significantly cheaper than many of its competitors
who also claim to charge $5/TB, but count the uncompressed bytes!

Further reading 55

We also learned that performance is personal and that we'd have to test our access
patterns and data models to see how Athena would perform for us. Regardless of the
numerous variables that impact performance, we covered how to control common cost
and performance drivers by using columnar storage formats such as Apache Parquet.
Using these techniques dramatically reduces our costs but subtly increases the additional
costs associated with the other services Athena calls on our behalf, including S3, AWS
Glue, and AWS KMS. In addition to pre-emptive actions to control costs, Athena also
gave us mechanisms to limit the total cost of each query or group of queries through
workgroup-level limits on data scans.

Lastly, we combined all these points when reviewing several common usage patterns for
Athena. We walked through a real-world example using a hypothetical system design for
each of the frequently seen patterns. We'll be revisiting each of these design patterns in
later chapters, where we will get hands-on and build one of each.

The next chapter will conclude our introduction to Amazon Athena by exploring built-in
features you can use to make your reports or application more powerful. This includes
approximate query techniques to speed up analysis of large datasets, CTAS (CREATE
TABLE AS SELECT) statements for running queries that generate significant amounts of
result data, and getting hands-on with several of the topics discussed in this chapter.

Further reading
In this section, we've gathered links to additional materials that you may find useful in
diving deeper into some of the primary sources regarding the topics mentioned in this
chapter. Many of these topics will be covered in more detail later in this book, but it can
often be useful to know where to go for authoritative details:

• Presto SQL Dialect documentation can be found here: http://bit.
ly/39kMJeW.

• Amazon Athena SQL Dialect documentation can be found here: http://amzn.
to/35tRT7w.

• Amazon leadership principles can be found here: http://bit.ly/3k79PuB.

• Amazon Athena Engine Version 1 specification can be found here: http://bit.
ly/3boEoty.

• Amazon Athena Datasource and External Hive Metastore documentation can be
found here: http://amzn.to/3bvU9y.

http://bit.ly/39kMJeW
http://bit.ly/39kMJeW
 http://amzn.to/35tRT7w
 http://amzn.to/35tRT7w
http://bit.ly/3k79PuB
http://bit.ly/3boEoty
http://bit.ly/3boEoty
http://amzn.to/3bvU9y

56 Introduction to Amazon Athena

• The official GDPR regulation and associated data retention requirements discussed
in this chapter can be found here: http://bit.ly/38RlolU.

• Details for connecting Athena to Delta Lake from SymlinkTextInputFormat
can be found in the Delta Lake documentation here: http://bit.ly/3ozT9gG.

• More information about the TPC organization and the industry benchmarks it
maintains (TPCH/DS) can be found here: http://bit.ly/39HMXgJ.

• You can find the Athena Federation SDK on GitHub here: http://bit.
ly/38NfRg4.

• Trino, formerly PrestoSQL, documentation can be found here: http://bit.
ly/39JLGFE.

• The original Presto white paper from Facebook can be found here: https://bit.
ly/38vQgI8.

http://bit.ly/38RlolU
http://bit.ly/3ozT9gG
http://bit.ly/39HMXgJ
http://bit.ly/38NfRg4
http://bit.ly/38NfRg4
http://bit.ly/39JLGFE
http://bit.ly/39JLGFE
https://bit.ly/38vQgI8
https://bit.ly/38vQgI8

3
Key Features,

Query Types, and
Functions

In Chapter 1, Your First Query, we got our first taste of serverless analytics by building and
querying a mini-data lake for New York City (NYC) taxicab data. Chapter 2, Introduction
to Amazon Athena, continued that introduction by helping us understand and perhaps
appreciate what goes into enabling Athena's easy-to-use experience. This chapter will
conclude our introduction to Amazon Athena by exploring built-in features you can use
to make your reports or applications more powerful. Unlike the previous chapter, we will
return to a hands-on approach that combines descriptive instruction with step-by-step
activities that will help you connect with the material. The exercises should also offer
you a basis to experiment with your own ideas, should you choose to do so.

After completing this chapter, you will have enough knowledge to begin using and
integrating Athena into proof-of-concept (POC) applications. Chapter 4, Metastores,
Data Sources, and Data Lakes, begins Part Two of this book, which transitions to broader
topics associated with building and connecting your data lake as part of delivering
sophisticated analytics strategies and applications at scale.

58 Key Features, Query Types, and Functions

In the subsequent sections of this chapter, you will learn about the following topics:

• Running extract-transform-load (ETL) queries

• Running approximate queries

• Organizing workloads with WorkGroups and saved queries

• Using Athena's application programming interfaces (APIs)

Technical requirements
Wherever possible, we will provide samples or instructions to guide you through the
setup. However, to complete the activities in this chapter, you will need to ensure you have
the following prerequisites available. Our command-line examples will be executed using
Ubuntu, but most Linux flavors should work without modification, including Ubuntu on
Windows Subsystem for Linux (WSL).

You will need internet access to GitHub, Simple Storage Service (S3), and the Amazon
Web Services (AWS) console.

You will also require a computer with the following installed:

• The Chrome, Safari, or Microsoft Edge browsers

• The AWS Command-Line Interface (CLI)

This chapter also requires you to have an AWS account and an accompanying Identity
and Access Management (IAM) user (or role) with sufficient privileges to complete this
chapter's activities. Throughout this book, we will provide detailed IAM policies that
attempt to honor the age-old best practice of least privilege. For simplicity, you can always
run through these exercises with a user that has full access. Still, we recommend using
scoped-down IAM policies to avoid making costly mistakes and we advise you to learn
more about using IAM to secure your applications and data.

You can find the suggested IAM policy for this chapter in the book's accompanying
GitHub repository listed as chapter_3/iam_policy_chapter_3.json, here:
http://bit.ly/37zLh8N. The primary changes from the IAM policy recommended
for Chapter 1, Your First Query, include the following:

• glue:BatchCreatePartition—Used to create new partitions as part of CTAS
or INSERT INTO statements.

Running ETL queries 59

• Restricted Athena workgroup actions to WorkGroups beginning with packt-*.

• Added read/write access for AWS CloudShell, a free Linux command line in the
AWS console. You only pay for the other services you interact with, such as Athena.

Running ETL queries
While this book's goal is not to teach Structured Query Language (SQL), it is beneficial
to spend some time reviewing everyday SQL recipes and how they relate to Athena's
strengths and quirks. Transforming data from one format to another, producing
intermediate datasets, or simply running a query that outputs many megabytes (MB) or
gigabytes (GB) of output necessitates some understanding of Athena's best practices to
achieve peak price/performance. As we did in Chapter 1, Your First Query, let's start by
preparing a larger dataset for our exercises.

We will continue using the NYC Yellow Taxi dataset, but we will prepare 2.5
years of this data this time. Preparing this expanded dataset will entail downloading,
compressing, and then uploading dozens of files to S3. To expedite that process, you can
use the following script to automate the steps. To do so, add all the files from yellow_
tripdata_2018-01.csv through yellow_tripdata_2020-06.csv. Each file
represents 1 month of data. The NYC Taxi and Limousine Commission has not updated
the data since June 2020 due to the impact the pandemic has had on their day-to-day
operations. If you have the option, we recommend downloading a copy of the pre-made
script with added error checking from the book's companion GitHub repository in
the chapter_3/taxi_data_prep.sh file or by using this link: http://bit.
ly/3k4bMYU. The following script has been edited for brevity, but the one in GitHub is
ready to go without modification. Regardless of which script you use, you can run it on
any Linux system with wget and the AWS CLI installed and configured by executing it
and passing the name of the S3 bucket where you'd like the data uploaded. You can even
reuse the S3 bucket we created in Chapter 1, Your First Query, to save time.

AWS CLI
The taxi_data_prep.sh script will use your system's AWS CLI to
upload the compressed taxicab data to the S3 bucket you specify. The script
expects you to have configured the AWS CLI ahead of time with appropriate
credentials and a default region that corresponds to where you are running
the exercises in this book. To review or update your default AWS CLI
configuration, you can run aws configure at the command line.

60 Key Features, Query Types, and Functions

The configuration is shown here:

#!/bin/bash

BUCKET=$1

array=(yellow_tripdata_2018-01.csv

 yellow_tripdata_2018-02.csv

 # some entries omitted for brevity

 yellow_tripdata_2020-06.csv

)

for i in "${array[@]}"

do

 FILE=$i

 ZIP_FILE="${FILE}.gz"

 wget https://s3.amazonaws.com/nyc-tlc/trip+data/${FILE}

 gzip ${FILE}

 aws s3 cp ./${ZIP_FILE} s3://$BUCKET/chapter_3/tables/
nyc_taxi_csv/

 rm $ZIP_FILE

done

Code 3.1 – NYC taxi data preparation script

Speeding things up!
Depending on the speed of your internet connection and the type of central
processing unit (CPU) you have, this script may take over an hour to prepare
the 4.5 GB of data for the recommended 2.5 years of historical data. We
recommend using AWS CloudShell (https://aws.amazon.com/
cloudshell/) to run this script natively within the AWS ecosystem. AWS
CloudShell provides a Linux command line with AWS CLI and other common
tools preinstalled at no extra charge. You are only charged for the other services
you interact with, not for your usage of CloudShell itself. In our testing, AWS
CloudShell took roughly 23 minutes to prepare our test data, thanks in part to
its high-speed connectivity to Amazon S3. Alternatively, you can reduce the
amount of historical data you use in the exercise by reducing the number of
monthly files used in the script.

Running ETL queries 61

Once the script completes execution, you can verify your data is now in the proper
location by listing S3 from the command line using the following command or navigating
to /chapter_3/tables/nyc_taxi_csv/ from the S3 console in your browser. If all
went well, you'd see 30 files in this path:

aws s3 ls s3://YOUR_BUCKET_NAME_HERE/chapter_3/tables/nyc_taxi_
csv/

Our final data preparation step is to use Athena to define a table rooted at the path
we uploaded the data to. To do this, we'll apply our final Chapter 1, Your First Query,
refresher in the form of a CREATE TABLE query. If you have the option, we recommend
downloading a copy of the following CREATE TABLE query from the book's companion
GitHub repository in the chapter_3/create_taxi_table.sql file or by going to
https://bit.ly/2TOinOs:

CREATE EXTERNAL TABLE 'packt_serverless_analytics'.'chapter_3_
nyc_taxi_csv'(

 'vendorid' bigint,

 'tpep_pickup_datetime' string,

 'tpep_dropoff_datetime' string,

 'passenger_count' bigint,

 'trip_distance' double,

 'ratecodeid' bigint,

 'store_and_fwd_flag' string,

 'pulocationid' bigint,

 'dolocationid' bigint,

 'payment_type' bigint,

 'fare_amount' double,

 'extra' double,

 'mta_tax' double,

 'tip_amount' double,

 'tolls_amount' double,

 'improvement_surcharge' double,

 'total_amount' double,

 'congestion_surcharge' double)

ROW FORMAT DELIMITED

 FIELDS TERMINATED BY ','

STORED AS INPUTFORMAT

 'org.apache.hadoop.mapred.TextInputFormat'

https://bit.ly/2TOinOs

62 Key Features, Query Types, and Functions

OUTPUTFORMAT

 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

LOCATION

 's3://<YOUR_BUCKET_NAME>/chapter_3/tables/nyc_taxi_csv/'

TBLPROPERTIES (

 'areColumnsQuoted'='false',

 'columnsOrdered'='true',

 'compressionType'='gzip',

 'delimiter'=',',

 'skip.header.line.count'='1',

 'typeOfData'='file')

Code 3.2 – CREATE TABLE SQL query

You can execute this query right from the Athena console, but be sure to update the S3
bucket in the LOCATION portion of the CREATE TABLE statement. The table creation
should complete almost instantaneously. The most common errors at this stage are related
to insufficient permissions, using an incorrect database or table name, or already having
a table with that name in your catalog. In the event you do encounter an issue, retrace
your steps, and double-check these items. It's always a good practice to run at least one
query to ensure our table is properly set up since the CREATE TABLE operation is purely
a metadata operation. That means it didn't actually list or read any of the data we prepared
in S3. A simple COUNT(*) query, as illustrated in the following code snippet, will suffice
to ensure our table is ready to be used in more ambitious queries:

select count(*) from chapter_3_nyc_taxi_csv

After running the preceding query from the Athena console, you should get a result of
204,051,059. The query should have scanned around 3.4 GB of data and completed
after roughly 8 seconds. We have just completed one of the most common activities you'll
encounter in Athena or any data lake analytics tool. The table we just created is commonly
described as a landing zone. It is a place where newly arrived source data lands before
being cleaned up and made available to applications in your data lake. Data ingestion
is always where it begins, but the table we just created is sub-optimal for a number of
reasons, and we may not want to let applications or analysts use it directly. Instead, we
will reorganize this table for peak performance as a way to demonstrate some of Athena's
advanced query types, such as CTAS, INSERT INTO, and TABLESAMPLE.

Running ETL queries 63

Using CREATE-TABLE-AS-SELECT
Athena's CREATE-TABLE-AS-SELECT (CTAS) statement allows us to create new tables
by applying a SELECT statement to an existing table. As part of doing that, Athena will
shun the SELECT portion of the statement to generate the data to be stored as part of the
new table. Both CTAS and VIEW statements can be thought of as a SELECT statement that
forms a new table as a derivative of one or more existing tables but with one key difference
in how the underlying data is handled. CTAS is like a materialized view since it runs the
SELECT portion of the statement one time and stores the resulting data into a new table
for later use. On the other hand, a VIEW statement requires the underlying SELECT
statement to be rerun every time the VIEW statement is queried.

Suppose we want to use our NYC taxi data to run reports for daily and weekly periods
as well as rate codes such as Standard and JFK (Airport). We could use the current
chapter_3_nyc_taxi_csv table we just created, but running even basic queries
against that table requires Athena to read all 204,051,059 rows and all 3.4 GB of data.
Even for such a small table, this is rather wasteful if we only care about data from a
specific week. On larger datasets, it is even more important to model our table along
dimensions to give the best performance and cost. Chapter 4, Metastores, Data Sources,
and Data Lakes, will go deeper into how your table's structure affects performance. For
now, we will focus on using CTAS to create a new copy of our table that converts our
compressed comma-separated values (CSV) files into columnar Parquet and partitions
for efficient time filtering and rate code aggregation.

In Code 3.1, we have prepared a CTAS statement that reads all columns and rows from the
chapter_3_nyc_taxi_csv table created earlier. Once Athena has read all the data,
we ask that the resulting table be stored in Parquet format using Snappy compression.
Changing formats from CSV to Parquet should result in more compact and faster data
to query, especially for simple operations such as COUNT, MAX, and MIN. Using Parquet
also has the side-effect of making our queries cheaper since there is less physical data
for Athena to read. Our CTAS statement also reorganizes our data by creating two new
columns that correspond to the year and month when the taxi ride began. These columns
are used to physically partition the data so that Athena can use AWS Glue Data Catalog
for partition pruning and significantly reduce the data scanned when our queries contain
filters along these dimensions.

64 Key Features, Query Types, and Functions

Data bucketing
We could also have bucketed the rows by the ratecodeid column.
Bucketing data can help reduce the amount of computation required to
generate aggregates when grouping by bucket column. Bucketing by GROUP
BY columns helps ensure rows with the same ratecodeid column are
processed together, reducing the number of partial aggregations Athena's
engine will have to calculate. Bucketing has a similar effect to partitioning,
without adding additional overhead that can arise from increasing metadata
sizes that accompany high numbers of partitions. We'll discuss this more in
later chapters, but if you find yourself creating tables with more than 10,000
partitions, you'll want to understand why you have so many partitions and if
the benefits outweigh the drawbacks. We excluded bucketing from this example
because a later part of this chapter will use INSERT INTO for this table, and
Athena doesn't presently support INSERT INTO for bucketed tables.

Now that we understand our CTAS statement, let's go ahead and execute the query in
Code 3.3. If you have the option, we recommend downloading a copy of the CTAS query
from the book's companion GitHub repository in the chapter_3/ctas_nyc_taxi.
sql file or by using this link: http://bit.ly/3s6HCXM. This query shown here
should take around 14 minutes to complete and will scan all 3.4 GB of our NYC taxi
ride dataset:

CREATE TABLE packt_serverless_analytics.chapter_3_nyc_taxi_
parquet

WITH (external_location = 's3://YOUR_BUCKET_HERE/chapter_3/
tables/nyc_taxi_parquet/',

 format = 'Parquet',

 parquet_compression = 'SNAPPY',

 partitioned_by = ARRAY['year', 'month']

)

AS SELECT

 vendorid, tpep_pickup_datetime, tpep_dropoff_datetime,

 passenger_count, trip_distance, ratecodeid, store_and_fwd_
flag,

 pulocationid, dolocationid, payment_type, fare_amount,
extra,

 mta_tax, tip_amount, tolls_amount, improvement_surcharge,

 total_amount, congestion_surcharge,

 year(date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s'))
as year,

Running ETL queries 65

 month(date_parse(tpep_pickup_datetime,'%Y-%m-%d
%H:%i:%s')) as month

FROM packt_serverless_analytics.chapter_3_nyc_taxi_csv

Code 3.3 – CREATE TABLE AS SELECT query for partitioned and bucketed NYC taxi data

As you watch Athena crunch away at the CTAS query, you might be wondering why it will
take 14 minutes to run this query but only took 8 seconds to read all the CSV data in the
earlier test query. The CTAS statement takes considerably longer for two reasons. Firstly,
the Parquet format is more computationally intensive to create than CSV. Secondly, we
asked Athena to arrange the new table by year and month. Organizing the data in this
way requires Athena's engine to shuffle data much in the same way as a GROUP BY query
would. Once your query finishes, you should see a new folder in S3 with many subfolders
that correspond to the year and month of the data. Now that our new table is ready, let's
rerun our simple COUNT query to test it out, as follows:

select count(*) from chapter_3_nyc_taxi_parquet

After running the preceding query from the Athena console, you should get a result
of 204,051,059. The query should have scanned around 0 kilobytes (KB) of data
and completed after roughly 1 second. While the COUNT query matches the result of
204,051,059 we found in our CSV formatted table from before our CTAS operation,
this query's results are far different. The COUNT query against our new Parquet table
was 8 times faster than the CSV table and was 340 times cheaper thanks to having read
0 KB of data. You might be asking yourself how this query generated a result if it read
no data. This is another happy side-effect of using the Parquet format. Each Parquet file
is broken into groups of rows, typically 16-64 MB in size. While generating the Parquet
file, the Parquet writer library keeps track of statistically significant information about
each row group, including the number of rows and minimum/maximum values for each
column. All this metadata is then written as part of the file footer that engines such as
Athena can later use to how and if they read each row group. COUNT is one example of
an operation that can be fully answered by reading only the row group metadata, not the
contents of the files themselves. This leads to the significantly better performance we saw.
It also happens to be the case that Athena does not presently consider file metadata to be
part of the bytes scanned by the query. So, this query was charged Athena's minimum of
10 MB or US Dollars (USD) 0.00005 compared to our earlier COUNT query, which cost
USD 0.017.

66 Key Features, Query Types, and Functions

Reorganizing data for cost or performance reasons is just one of the many reasons you'll
find yourself running CTAS queries. Sometimes, you'll want to use CTAS to fix erroneous
records or produce aggregate datasets. A less common use case is to speed up result
writing. With regular SELECT statements, Athena writes results to a single output object.
Using a single output file makes consuming the result easier since ordering and other
semantics are inherently preserved. Still, it also limits how much parallelism Athena can
apply when generating output. If your query returns many GB of data, you will likely see
faster performance simply by converting that query from a SELECT query to a CTAS
query. That's because CTAS queries give Athena more opportunity to parallelize the write
operations.

For all its benefits, CTAS also has drawbacks, the most prominent of which relates to
limited control over the number and size of the created files. Even in our NYC taxi ride
example, you can find plenty of files under the recommended 16 MB minimum for
Parquet. If our query has to read too many small files, we'll see the overall performance
suffer as Athena spends more time waiting on responses from S3 than processing the
actual data. Bucketing is one way to help limit the number of files CTAS operations
create, but it comes at the expense of making the CTAS operation itself take longer due
to increased data shuffling. Without bucketing, we could easily have had three times the
number of small files. The final thing to keep in mind with CTAS is that there is a limit
to the number of new partitions Athena can create in a single query. This example would
have been even better with daily partitions instead of the year and month partitions we
included. However, Athena presently limits the number of new partitions in a CTAS query
to 100. Since our exercise used 2.5 years of data, we'd have exceeded this limit when using
daily partitions. This limit is unique to CTAS and INSERT INTO queries, which create
new partitions. SELECT statements can interact with millions of partitions since they are
a read-only operation with respect to partitions.

As we've seen, CTAS makes it easy to create new tables by applying one or more
transforms to existing tables and storing the result as an independent copy that can be
queried without the need to repeat the initial transform effort. INSERT INTO is a related
concept that allows you to add new data to an existing table by applying a transform
over data from another table. We'll get hands-on with INSERT INTO, sometimes called
SELECT INTO, in the next section.

Running ETL queries 67

Using INSERT-INTO
Our new and optimized table was a hit with the team. They are now asking if we can add
even more history to the dataset and keep it up to date as new data arrives in the landing
zone. We could rebuild the entire table using CTAS every time new data arrives, but it
would be great if we could run a more targeted query to process and optimize only the
newly landed data. That is precisely what INSERT INTO will allow us to do. As we did
in the earlier example, our first step will be to download the new data from the NYC Taxi
and Limousine Commission. For this exercise, let's add the 2017 trip data to our landing
zone by modifying the script from Code 3.1 to include only our new desired dates. In Code
3.4, we've shown how to get started with changing the script. Be sure to run the following
script in a directory that has sufficient storage space. If you are using CloudShell, consider
running the script in /tmp/, which has more space than your home directory:

#!/bin/bash

BUCKET=$1

array=(yellow_tripdata_2017-01.csv

 yellow_tripdata_2017-02.csv

 # some entries omitted for brevity

 yellow_tripdata_2017-03.csv

)

for i in "${array[@]}"

do

 FILE=$i

 ZIP_FILE="${FILE}.gz"

 wget https://s3.amazonaws.com/nyc-tlc/trip+data/${FILE}

 gzip ${FILE}

 aws s3 cp ./${ZIP_FILE} s3://$BUCKET/chapter_3/tables/
nyc_taxi_csv/

 rm $ZIP_FILE

done

Code 3.4 – Additional NYC taxi data preparation script

68 Key Features, Query Types, and Functions

After you run the script, you'll have added 12 new gzipped CSV files to the landing zone
table in S3. The way we've created the landing zone means we won't need to run any extra
commands once we upload the files—they are immediately available to query once the
upload completes. Now, we can add the data to our Parquet optimized table using an
INSERT INTO query, as illustrated here:

INSERT INTO packt_serverless_analytics.chapter_3_nyc_taxi_
parquet

SELECT

 vendorid,

 tpep_pickup_datetime,

 tpep_dropoff_datetime,

 passenger_count,

 trip_distance,

 ratecodeid,

 store_and_fwd_flag,

 pulocationid,

 dolocationid,

 payment_type,

 fare_amount,

 extra,

 mta_tax,

 tip_amount,

 tolls_amount,

 improvement_surcharge,

 total_amount,

 congestion_surcharge,

 year(date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s'))
as year,

 month(date_parse(tpep_pickup_datetime,'%Y-%m-%d
%H:%i:%s')) as month

FROM packt_serverless_analytics.chapter_3_nyc_taxi_csv

WHERE

 year(date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s'))
= 2017

Code 3.5 – INSERT INTO query for adding 2017 data to our Parquet optimized table

Running ETL queries 69

The INSERT INTO query should take a bit over 2 minutes to complete, and it will
automatically add any newly created partitions to our metastore. You may also have
noticed that our INSERT INTO query read more data than you'd expect. We uploaded
roughly 1.8 GB of new data, but the INSERT INTO query reports to have read 5.2 GB.
Let's dig into why that is by running some ad hoc analytics over our tables. We'll run a
query to count distinct tpep_pickup_datetime values in both our landing zone table
and our optimized Parquet table for rides that started in 2017. Code 3.6 contains the query
to run against our landing zone tables, and Code 3.7 has the query you can use against the
optimized Parquet table. When you run these queries, you'll notice a couple of interesting
differences in how they perform, the amount of data they read, and also that the queries
themselves have some differences despite accomplishing the same thing.

You can see the first query here:

SELECT

 COUNT(DISTINCT(tpep_pickup_datetime))

FROM packt_serverless_analytics.chapter_3_nyc_taxi_csv

WHERE

 year(date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s')) =
2017

Code 3.6 – Landing zone distinct vendorid value query

The alternate query is shown here:

SELECT

 COUNT(DISTINCT(tpep_pickup_datetime))

FROM packt_serverless_analytics.chapter_3_nyc_taxi_parquet

WHERE year = 2017

Code 3.7 – Landing zone distinct vendorid value query

70 Key Features, Query Types, and Functions

The first difference to understand is that the query in Code 3.6 must first parse and
transform the tpep_pickup_datetime column before it can be used to filter out
records that aren't from 2017. This is significant because it indicates that our dataset
may not be partitioned on the filtering dimension. A closer look at the landing zone
table's definition from Code 3.2 confirms there are no partition columns defined in
the table creation query. Applying a function, transform, or arithmetic to a column
as part of the WHERE clause is not a guarantee that you aren't querying along a partition
boundary. However, Athena achieves peak filtering performance when partition
conditionals use literal values. This is because Athena can push the filtering clauses deeper
within its engine, or possibly down to the metastore itself. In this case, we are using the
date_parse function because the landing zone table isn't partitioned on year; it's not
partitioning on anything at all. That's why any query we run against the landing zone table
may be forced to scan the entire table.

Contrast this with the query in Code 3.7, which has an explicit year column and can use
a simple, literal filter of year=2017. The second query runs much faster than the first
and scans only a subset of the data (396 MB) that is in the 2017 partition. This is much
closer to what we'd expect because it seems natural that filters reduce the data scanned.
You might also be wondering why we chose to use COUNT(DISTINCT vendorid)
instead of something more straightforward such as COUNT(*). The reason is simple. Our
optimized Parquet table can answer COUNT(*) operations without actually reading the
data because it stores basic statistics in every row group's header. Using DISTINCT is one
way to bypass many Parquet optimizations that apply only to special-case queries such as
COUNT(*), MIN(), and MAX(). Had those optimizations kicked in for our investigation,
we'd have formed the wrong impression about how much data was in our Parquet table or
how long it might take to query. In practice, these optimizations are precisely why Parquet
is increasingly becoming a go-to format.

At this point, it might be obvious why we'd normally want to upload new data into a
dedicated folder within the landing zone. Partitioning the landing zone allows us to run
targeted queries against only the latest data. This can be done by treating that folder as a
new partition or temporary table. For simplicity, we omitted that step from this example.

In the next section, we will learn about the final type of advanced query covered in this
chapter. You'll learn how the TABLESAMPLE decorator allows you to reduce the cost and
runtime of exploratory queries while bounding the impacts of sampling bias.

Running approximate queries 71

Running approximate queries
In Chapter 1, Your First Query, we used TABLESAMPLE to run a query that allowed
us to get familiar with our data by viewing an evenly distributed sampling of rows from
across the entire table. TABLESAMPLE enables you to approximate the results of any
query by sampling the underlying data. Athena also supports more targeted forms of
approximation that offer bounded error. For example, the approx_distinct function
should produce results with a standard error of 2.3% but completes its execution 97%
faster while also using less peak memory than its completely accurate counterpart,
COUNT(DISTINCT x). We'll learn more about these and several other approximate
query tools by exploring our NYC taxi ride tables.

TABLESAMPLE is a somewhat generic technique for running approximate queries.
Unlike the other methods we discuss in this section, TABLESAMPLE works by sampling
the input data. This allows you to use it in conjunction with any other SQL features
supported by Athena. The trade-off is that you'll need to take care to ensure you
understand the error you may be introducing to your queries. This error most commonly
manifests as observation bias since your query is now only "observing" a subset of the
data. If the underlying sampling is not uniform, you may draw conclusions that are only
relevant to the subset of data your query read but not the overall dataset.

To demonstrate, let's try running a query to find the most popular hours of the day for
riding in a taxi. We'll run the query in three different ways, first using the following query,
which scans the entire table and produces a result with 100% accuracy:

SELECT

 hour(date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s'))
as hour,

 count(*)

FROM

 packt_serverless_analytics.chapter_3_nyc_taxi_parquet

GROUP BY hour(date_parse(tpep_pickup_datetime,'%Y-%m-%d
%H:%i:%s'))

ORDER BY hour DESC

Code 3.8 – Hourly ride counts query

72 Key Features, Query Types, and Functions

Our second query, shown here, adds the TABLESAMPLE modifier. This query uses the
BERNOULLI sampling technique to read only 10% of the table's underlying data:

SELECT

 hour(date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s'))
as hour,

 count(*) * 10

FROM

 packt_serverless_analytics.chapter_3_nyc_taxi_parquet

 TABLESAMPLE BERNOULLI (10)

GROUP BY hour(date_parse(tpep_pickup_datetime,'%Y-%m-%d
%H:%i:%s'))

ORDER BY hour DESC

Code 3.9 – Hourly ride counts query with 10% BERNOULLI sampling

The following code block contains our third and final query. It again uses the
TABLESAMPLE modifier but swaps BERNOULLI sampling for the SYSTEM sample
technique to read only 10% of the table's underlying data:

SELECT

 hour(date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s'))
as hour,

 count(*) * 10

FROM

 packt_serverless_analytics.chapter_3_nyc_taxi_parquet

 TABLESAMPLE SYSTEM (10)

GROUP BY hour(date_parse(tpep_pickup_datetime,'%Y-%m-%d
%H:%i:%s'))

ORDER BY hour DESC

Code 3.10 – Hourly ride counts query with 10% SYSTEM sampling

Running approximate queries 73

After you run all three queries, you'll see a pattern form. We've collated the data for
the most popular hours as a table in Code 3.11. The original query took 6 seconds and
scanned 1.42 GB of data but produced results that are 100% accurate. The second query
used the BERNOULLI sampling technique to uniformly select 1 out of every 10 rows for
inclusion in the result. That query took 3.4 seconds to complete and still scanned 1.42 GB
of data but incurred an error of just 0.006%. That's a nearly 50% speedup while sacrificing
minimal accuracy. Our last query used SYSTEM sampling to include 1 out of every 10 files
in the dataset. This final query scanned 92% less data (116 MB) and ran 30% faster
(4.3 seconds) than the original query but was 9% less accurate on average.

You can see the results here:

Table 3.1 – Ride count by hour using different sampling techniques

Our NYC taxi ride data is mostly uniformly distributed, so both sampling techniques
did reasonably well. If our data had not been uniformly distributed with respect to the
dimensions we queried on, then SYSTEM sampling would be more vulnerable to sampling
bias. BERNOULLI sampling is more resistant to skew in the data's physical layout but isn't
completely immune from sampling bias. In general, both sampling techniques speed up
the query by reducing how much data is considered, but they do it differently. SYSTEM
sampling discards entire files, which is why it scanned less total data from a billing
perspective. BERNOULLI sampling applies the same determination at a row level, which
means reading all the data before discarding it.

74 Key Features, Query Types, and Functions

That wraps up the generic approximation facilities. Next, we'll use more targeted functions
that can speed up specific analytical operations. A common exercise is to understand
how a value in your data compares to the rest of the data; for example, is this distance
traveled in a given taxi ride an outlier or relatively common? One way to answer this
question is to understand what percentile the given ride presents. Put another way, what
percentage of rides were less than or equal to the length of the ride we are inspecting?
Percentiles are a great way to accomplish that. Unfortunately, calculating the percentiles
for a large dataset can be resource-intensive and require scanning the entire dataset.
We can do better than the generic sampling techniques offered by TABLESAMPLE. The
following query calculates five different percentiles for our dataset while scanning only
462 MB of the total 1.4 GB in our table yet still manages to achieve a standard error of
2.3%. The approx_percentile function we are leveraging also supports supplying
your own accuracy parameter:

SELECT approx_percentile(trip_distance, 0.1) as tp10,

 approx_percentile(trip_distance, 0.5) as tp50,

 approx_percentile(trip_distance, 0.8) as tp80,

 approx_percentile(trip_distance, 0.9) as tp90,

 approx_percentile(trip_distance, 0.95) as tp95

 FROM packt_serverless_analytics.chapter_3_nyc_taxi_parquet

Code 3.11 – Approximating ride duration percentiles with approx_percentile(…)

After running the query, you'll see that 90% of rides traveled at least 6.9 miles and
10% of rides traveled just .6 miles. You can see how basic outlier detection can be
implemented using approx_percentile to compare any given value to the broader
population of values. In addition to approx_percentile, Athena also supports
approx_distinct and numeric_histogram functions of other memory-intensive
calculations that typically require scanning the entire dataset.

Quantile Digest (Q-Digest): Using trees for order statistics
As with many other engines, Athena uses a special data structure to facilitate
the time and memory-saving capabilities offered by approx_percentile.
Q-Digest is a novel usage of binary trees whose leaf nodes represent values
in the population dataset. By propagating infrequently seen values—and
their frequency—up to higher layers of the tree, you can bound the memory
required to generate percentiles. The memory allocated to the construction of
these trees directly influences the rate of error in the resulting statistics.

Organizing workloads with WorkGroups and saved queries 75

We've run quite a few queries so far in this chapter. You might be wondering how to find
that fascinating query we ran at the start of the chapter or where you can see the error
associated with a particular query once you've closed your browser. In the next section,
we'll review options for organizing workloads and reviewing our query history.

Organizing workloads with WorkGroups and
saved queries
Athena WorkGroups allow you to separate different use cases, applications, or users into
independent collections. Each workgroup can have its own settings, including results
location, query engine version, and query history, to name a few. In Figure 3.1, you can
see the various WorkGroups we have created while authoring this book. This view lets you
see the status of each workgroup at a glance. More in-depth settings or the creation of new
WorkGroups are just a click away. Every Athena query runs in a workgroup. So far, we
haven't set any specific workgroup for our queries, so they've been running the "primary"
workgroup. The primary workgroup is special and is automatically created for you the first
time you use Athena.

You can see an overview of the Athena WorkGroups screen here:

Figure 3.1 – The Athena WorkGroups screen

76 Key Features, Query Types, and Functions

Athena customers often choose to use different WorkGroups for different kinds of queries.
You can start getting into the habit of doing this right now by creating a new workgroup
that you can use to run the remainder of the exercises in this book. To begin, click the
Create workgroup button on the Workgroups page shown in Figure 3.1. You can get to
that page by clicking on the Workgroup: primary tab at the top of the Athena console.
If you are using the IAM policy recommended for this chapter, clicking the Create
workgroup button will take you to a new page with the Create workgroup form, as
shown in the following screenshot, Figure 3.2, and Figure 3.3:

Figure 3.2 – Creating an Athena workgroup form Part 1

In Figure 3.2, you see the first three fields needed for workgroup creation. The first is
simply the name of the new workgroup. The IAM policy recommended for this chapter
will allow you to create new WorkGroups as long as they begin with packt-. You can try
packt-athena-analytics as an example. The Description field is optional, purely
used to document the purpose of the workgroup. Lastly, we need to set the default query
results location for this workgroup. You may recall from previous chapters that Athena
stores query results in S3 before making them available to your client or the Athena
console. This allows you to reread the results as many times as you like, without needing
to pay or wait for the query itself to run again. Naturally, we need to tell Athena where
we'd like to store the results of queries run in this workgroup.

Organizing workloads with WorkGroups and saved queries 77

Aside from any organization naming conventions you may need to follow, there are
two important factors to keep in mind when configuring these settings. The first is that
Athena won't clean up this data after it's no longer needed. In fact, Athena has no idea
if you are done using this data. You'll minimally want to set up an S3 Lifecycle policy
to automatically delete data from this location that is older than a threshold you deem
appropriate. If you need the results to be available longer than that, you should explicitly
move them to a different location for long-term retention or consider running such
queries in their own workgroup. Lastly, you'll want to consider who else has access to
this S3 location. Imagine you have two personas in your organization: an Administrator
who can read from any table and an intern who only has access to non-sensitive datasets.
If the Administrator is running queries in a workgroup with a result location that is
readable to the intern, you may be inadvertently providing a path for privilege escalation.
The intern may accidentally stumble across the results of highly sensitive queries run by
an Administrator. The same is true for a malicious actor. They no longer need to attack
your permissioning system. You've unintentionally poked a hole in the armor by picking
an overly permissive or shared query results location.

In the following screenshot, we are presented with four more settings to create our new
workgroup:

Figure 3.3 – Creating an Athena workgroup form Part 2

78 Key Features, Query Types, and Functions

Athena's underlying engine, a hybrid of Presto and Trino, is rapidly evolving. As such,
Athena has built-in facilities to handle upgrades. We'll talk more about Athena's automatic
testing and upgrade functionality later in this chapter. For now, all you need to know is
that Athena offers you full control over which engine version you use per workgroup. This
allows you to isolate sensitive workloads to prevent auto-upgrades and enables you to
take a sneak peek at upcoming versions so that you can prioritize upgrades that have an
outsized benefit for you. It is highly recommended to set this to Let Athena choose when
to upgrade your workgroup unless you've been advised otherwise by the Athena service
team or are attempting to run a test against a specific version. This book's exercises will
include new features that are only available in Athena engine version 2 or later, so be sure
to pick Manually choose an engine version now and pick Athena engine version 2
or later. Failing to set the appropriate engine version on your workgroup may result
in failures later, as Athena may or may not have auto-upgraded you when running
through the exercises in this book.

The next setting determines if Athena will emit query metrics to AWS CloudWatch for
all activities in the workgroup. We recommend leaving Metrics enabled as this will make
troubleshooting, reporting, and auditing much easier. The last two settings are uncommon
but enable interesting applications and integrations. As the Administrator of a workgroup,
you can decide if clients can override workgroup-level settings such as results location
on a per-query basis. The final setting controls whether Athena will allow queries in this
workgroup to incur S3 charges that are typically paid by the owner of the S3 data itself.
For example, if your company uses a separate AWS account per team and you query data
that sits in another team's S3 bucket, that other team would typically be charged for any
S3 operations or transfers that your query generates. Perhaps that other team doesn't like
this billing model because it inflates their costs. After all, they didn't really run the query
that incurred the usage cost. The data-providing team can set the bucket to Requester
pays S3 buckets, which moves some of the charges to the account that accesses the
S3 objects. You, as the customer, may not have signed off on these extra charges. This
workgroup setting gives you control over what to do in these cases. By default, Athena
will abort queries against S3 data configured to charge the requester. Toggling this setting
changes that behavior.

The final option we can set on a workgroup is to apply resource tags. Tags allow you
to organize resources across AWS services. Common uses involve billing, reporting,
or simply understanding which projects make use of which resources. We won't be
covering tagging in any depth here. Hence, we recommend leaving these blank as the
recommended IAM policy for this chapter does not include creating or modifying tags.
Once you are ready, you can click Create workgroup, as illustrated in the following
screenshot, and your new workgroup should be ready to use. Don't forget to select that
new workgroup by clicking Switch workgroup from Athena's workgroup page:

Organizing workloads with WorkGroups and saved queries 79

Figure 3.4 – Creating an Athena workgroup form Part 3

Now that we have our new packt-athena-analytics workgroup, let's see how we
can save our most frequently used queries as named queries in our workgroup. Named
Queries, also called saved queries in some parts of the Athena console, allow you to
quickly load and run a query without re-entering the entire text of the query. To begin
creating a named query, start typing a new query into the Athena query editor, just as you
did for the previous queries we've run. For simplicity, you can use a COUNT(*) query by
year over our taxi ride data, as illustrated in the following code snippet:

SELECT year, COUNT(*)

FROM packt_serverless_analytics.chapter_3_nyc_taxi_parquet

GROUP BY year

Go ahead and run the query so that we know it works and we didn't mistype anything.
Once the query completes, click Save as below the query editor, as shown in the following
screenshot:

Figure 3.5 – Creating a named query

80 Key Features, Query Types, and Functions

After you click Save as, you'll be prompted to give the query a name and a description.
The saved query will only be visible to users of the workgroup you saved it to. Athena
will remember this query and allow you to run or edit the query as many times as you
like until you delete it. You can access the current set of saved queries by click on the
saved queries tab at the top of the Athena console. This feature is good for bookmarking
frequently used queries as part of an operational runbook or ad hoc analysis.

So far, all our Athena usage has been via the AWS console. As we begin to conclude Part 1
of this book, Fundamentals Of Amazon Athena, we'll introduce you to Athena's rich APIs.
Virtually everything we've done with Athena's console can be done via the AWS software
development kit (SDK) or AWS CLI. If you plan to build applications or automate
analytics pipelines using Athena, you'll find using these APIs an easier route. If you aren't
a developer or rarely use the command line, don't be intimidated. We will go step by step
through each command, its arguments, and common reasons for failure.

Using Athena's APIs
As an introduction to Athena's APIs, we will demonstrate how to run basic geospatial
queries with Athena using the AWS CLI. The AWS CLI provides a simple wrapper
over each of the APIs supported by Athena. This allows us to get familiar with the APIs
without having to make any choices about programming language. The APIs we use in
this section are available in all supported languages such as Java, Golang, and Rust. Now
that we've got a better understanding of the basic Athena concepts, we'll also use a slightly
more advanced example dataset that will give us a chance to experiment with Athena's
geospatial capabilities.

Use Athena engine version 2 or later
In case you skipped the instructions in the previous section pertaining to
the creation of a new workgroup with Athena engine version 2, please take
a moment to either switch to that workgroup now or change your current
workgroup to explicitly use Athena engine version 2 or later to avoid errors in
this exercise. Athena's geospatial functions have dramatically improved since
Athena engine version1, so we'll be targeting features from Athena engine
version 2 or later.

Using Athena's APIs 81

First, we will need to download two geospatial datasets from the Environmental Systems
Research Institute (Esri), an industry leader in geospatial solutions, and upload that
data to S3. The first dataset contains earthquake data for the state of California. The
second dataset includes information on borders between all the different counties in
California. California is an extremely seismically active area of the United States (US).
Next, we will use Athena's APIs to run two Data Definition Language (DDL) queries to
create tables for each of the datasets we downloaded. These datasets are less than 5 MB
each. The book's GitHub repository contains a script that fully automates these steps to
make this process easier. You can run the following commands in your AWS CloudShell
environment, right from your browser. Alternatively, you can run these commands in
most Linux-compatible environments with wget and the AWS CLI installed. After
you run these commands, we'll quickly walk through what the geospatial_api_
example.sh script does. Remember to supply the script with the S3 bucket you've been
using to store data related to our experiments and the name of an Athena workgroup in
which the script's queries will run:

wget -O geospatial_api_example.sh https://bit.ly/3sZZRia

chmod +x geospatial_api_example.sh

./geospatial_api_example.sh <S3_BUCKET> <ATHENA_WORKGROUP_NAME>

If successful, the script will have created two new tables in the packt_serverless_
analytics database and printed the details of the accompanying Athena DDL queries
to the Terminal. Let's go section by section through the script you downloaded earlier.
We'll skip the uninteresting bits such as documentation or boilerplate error handling.
Here we go:

#!/bin/bash

BUCKET=$1

WORKGROUP=$2

Bash scripts always start with a special sequence of characters, #!, called a shebang. This
tells the system that what follows is a series of commands for a particular shell. In this
case, we are using the Bash shell located at /bin/bash. This is mostly unrelated to
Athena and its APIs, so don't worry if it is new or confusing. The only interesting bit in
this first section is that the script treats the first argument as an S3 bucket and the second
argument as an Athena workgroup. We'll see how these arguments get used later in the
Athena APIs that get called.

82 Key Features, Query Types, and Functions

The script then downloads the first dataset from the Esri GitHub repository using wget
and then uploads it to S3 using the S3 bucket provided by the first argument to the script,
as illustrated in the following code snippet. This process is repeated for the second dataset:

wget https://github.com/Esri/gis-tools-for-hadoop/blob/master/
samples/data/earthquake-data/earthquakes.csv

aws s3 cp ./earthquakes.csv s3://$BUCKET/chapter_3/tables/
earthquakes/

So far, the script hasn't interacted with Athena at all. This section prepares a CREATE
TABLE query that it will send to Athena via the start-query-execution API. The
script again uses some Bash magic in the form of read -d" VARIABLE << END_
TOKEN to make the multiline CREATE TABLE query more human-readable. The code
is illustrated here:

read -d '' create_earthquakes_table << EndOfMessage

CREATE external TABLE IF NOT EXISTS packt_serverless_analytics.
chapter_3_earthquakes

(/* columns omitted for brevity */)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

STORED AS TEXTFILE LOCATION 's3://${BUCKET}/chapter_3/tables/
earthquakes/'

EndOfMessage

The CREATE TABLE query preparation is repeated for the second dataset before
we finally get to our first Athena API calls. Here, we are using the start-query-
execution API to run a DDL statement to create an earthquakes table. A nearly
identical API call also gets made for the California counties dataset. The API takes two
parameters, the query to run and the workgroup in which to run the query, as illustrated
in the following code snippet:

aws athena start-query-execution \

--query-string "${create_earthquakes_table}" \

 --work-group "${WORKGROUP}"

Using Athena's APIs 83

The vast majority of Athena's APIs are asynchronous. This means that the API calls
complete relatively quickly, but the API's work isn't necessarily done when the API call
completes. The start-query-execution API is a perfect example of this asynchronous
pattern. When you run the script or this API call directly, you'll see that it returns almost
immediately, even for queries that may take many minutes or hours to run. That's because
completion of this API means Athena has accepted the query by doing some basic
validations, authorization, and limit enforcement before giving us an identifier (ID)
that we can later use to check the status of the query. This ID is called an Athena query
execution ID and will also be used to retrieve our query's results programmatically.

Let's use the output of the script's two start-query-execution calls to check the
status of our CREATE TABLE queries. Replace QueryExecutionId in the following
command with one of your QueryExecutionId instances:

aws athena get-query-execution --query-execution-id
<QueryExecutionId>

When you run this API call, you'll get output similar to the following. If your query ran
into any issues, including permissions-related problems, you'd see root cause details too:

"QueryExecution": {

 "Query": "<QUERY TEXT OMMITED FOR BREVITY>",

 "StatementType": "DDL",

 "ResultConfiguration": { "OutputLocation": "s3://… "},

 "Status": {

 "State": "SUCCEEDED",

 "SubmissionDateTime": "2021-03-
07T18:25:14.736000+00:00",

 "CompletionDateTime": "2021-03-
07T18:25:15.902000+00:00"

 },

 "Statistics": {

 "DataScannedInBytes": 0,

 "TotalExecutionTimeInMillis": 1166

 },

 "workgroup": "packt-athena-analytics"

}

84 Key Features, Query Types, and Functions

In addition to giving us information about if the query succeeded or failed, the
get-query-execution API also returns information about the type of query, how
much data it scanned, how long it ran, and where its results were written. Using this
API, you can embed lifecycle tracking and query scheduling functionality in your own
applications. Now that we have a basic understanding of how to use Athena's APIs via
the AWS CLI, let's try running queries that leverage Athena's geospatial functions. For
this final exercise, let's imagine we work for an insurance company trying to build an
automated claim-handling website. Our customers will go to this website and fill out
forms to make insurance claims against their homeowners' insurance. We'd like to
automatically approve or reject obvious claims before they get to a human. This saves time
by giving customers rapid responses and helps ensure we prioritize essential claims. We've
been asked to ensure that claims pertaining to natural disasters get escalated quickly.
All our customers are in California, so we decided to start by automating earthquake
claims. Whenever a customer selects earthquake as the cause for a claim, we need
to run a query to determine if there were any recent earthquakes in their area. Luckily,
Athena's geospatial function suite offers several ways to do this. A straightforward way is
to understand if the county that the homeowner lives in has had any recent earthquakes.
Here, we are using the county as a bounding box and then searching for any earthquakes
in that vicinity. The ST_CONTAINS and ST_POINT functions allow us to treat the county
as the search area and the earthquake's epicenter as a point; then, we can count how many
earthquakes originated in each given county. In practice, a better method would also be to
treat the earthquake as an area of impact and then the homeowner's house as a point, but
that would be a much more challenging sample dataset to create.

The following Athena API call will run a query that uses our new earthquake and
counties tables in conjunction with the ST_CONTAINS and ST_POINT functions to
count how many earthquakes happened in each county:

aws athena start-query-execution \

--query-string "SELECT counties.name, COUNT(*) cnt \

FROM packt_serverless_analytics.chapter_3_counties as counties
\

CROSS JOIN packt_serverless_analytics.chapter_3_earthquakes as
earthquakes \

WHERE ST_CONTAINS (counties.boundaryshape, ST_
POINT(earthquakes.longitude, earthquakes.latitude)) \

GROUP BY counties.name \

ORDER BY cnt DESC" \

--work-group "packt-athena-analytics"

Using Athena's APIs 85

If you repeat our get-query-execution API call for this query, you may see that it
is in a RUNNING state since it takes much longer than our CREATE TABLE queries. You
can keep running the get-query-execution API call shown here until the query
transitions to a SUCCEEDED or FAILED state:

aws athena get-query-execution --query-execution-id
<QueryExecutionId>

Assuming your query succeeds, you can then use Athena's get-query-results API to
fetch pages of rows containing your query results. The command is shown in the following
code block. Remember to substitute in a quoted version of your query's execution ID:

aws athena get-query-results --query-execution-id
<QueryExecutionId>

The get-query-results API returns data as rows of JavaScript Object Notation
(JSON) maps. The first row contains the column headers, while subsequent rows have the
values associated with each row. The output can be very verbose, so many applications
choose to access results directly from the S3 location. The code is illustrated in the
following snippet:

{"ResultSet": { "Rows": [

 {"Data": [{"VarCharValue": "name"},{"VarCharValue": "cnt"}]},

 {"Data": [{"VarCharValue": "Kern"},{"VarCharValue": "36"}]},

 {"Data": [{"VarCharValue": "San
Bernardino"},{"VarCharValue":"35"}]}

 ...Remainder Omitted for Brevity...

When integrating with Athena, start-query-execution, get-query-
execution, and get-query-results are the most frequently called APIs. Still,
there are many others for managing WorkGroups and saving queries and data sources.
Hopefully, if you've never used APIs before, this exercise has removed some of the mystery
surrounding them. If you're a seasoned developer, you're likely starting to form a view
of how you can connect your applications to Athena. Chapter 9, Serverless ETL Pipelines,
and Chapter 10, Building Applications with Amazon Athena, will use more sophisticated
examples to demonstrate the power of integrating your application with Athena.

86 Key Features, Query Types, and Functions

Summary
In this chapter, you concluded your introduction to Athena by getting hands-on with
the key features that will allow you to use Athena for many everyday analytics tasks.
We practiced queries and techniques that add new data, either in bulk via CTAS or
incrementally through INSERT INTO, to our data lake. Our exercises also included
experiments with approximate query techniques that improve our ability to find insights
in our data. Features such as TABLESAMPLE or approx_percentile allow us to trade
query accuracy for reduced cost or shorter runtimes. Cheaper and faster exploration
queries enable us to consult the data more often. This leads to better decision-making and
less reluctance to run long or expensive queries because you proved their worth with a
shorter, approximate query. This may be hard to imagine given that all the queries in this
chapter took less than a minute to run and, in aggregate, cost less than USD 1. In practice,
many fascinating queries can take hours or days to complete and cost hundreds of dollars.
These are the cases where approximate query techniques can show their merit.

Next, we saw how to organize our workloads into WorkGroups so that our queries can use
different settings such as Athena engine. Then, we closed out with an excursion into using
Athena's APIs, instead of the AWS console, to run queries. This example was simple but
demonstrated how a fictional insurance company could use these APIs to enhance their
application by running geospatial workloads on Athena.

While your introduction to Athena is now complete, the next part of this book will
begin an introduction to building data lakes at scale. Understanding how data modeling
affects your Athena applications' performance and security will enable you to ensure you
have the right data in place for your application or analytics needs. Tools such as AWS
Lake Formation will help you automate many of the activities you'll need to have in
place before Part 3 of this book, Using Amazon Athena, brings us full circle to write our
applications on top of Athena.

Section 2:
Building and

Connecting to Your
Data Lake

In this section, you will learn how to build, secure, and connect to a data lake with Athena
and Lake Formation.

This section consists of the following chapters:

• Chapter 4, Metastores, Data Sources, and Data Lakes

• Chapter 5, Securing Your Data

• Chapter 6, AWS Glue and AWS Lake Formation

4
Metastores,

Data Sources, and
Data Lakes

One of the best features of Athena is that it allows you to query data where it lives. That
data can be sitting on S3, in a relational database, your EC2 environment, or any other
source from which business value can be derived. However, the vast majority of Athena's
usage is to query data on S3. Before Athena can query this data, it needs to know where
the data is and how to read it, as data on S3 can be in many different file formats. Athena
needs to translate the databases and tables referenced in SQL statements into physical S3
locations, and then choose the right libraries to interpret the data that's been read from
that location. The place where Athena goes to look up these translations is called the
metastore.

90 Metastores, Data Sources, and Data Lakes

This chapter will dive into the metastore and the information stored there. We will cover
what information is required to register tables in a metastore. The metastore is just one of
three key pieces that make up a data source; the other two components are the data that
we want to query and a connector that lets Athena access the metastore and data. We will
break down the data source by looking at the two different S3 data sources that Athena
natively provides in depth. We will then compare the two to help you decide which one is
appropriate for your use case.

Metastores need to be populated to be useful. We will go over some common ways to
register tables. Manually entering datasets into our catalog can be a painful and error-
prone process, so we will look at how AWS Glue Crawlers can help. Crawlers can
automatically discover and register datasets in the metastore. We will also go through the
process of creating one and see it in action.

Lastly, we will look into the data lake architecture and appreciate the value that it
can bring to an organization. Building data lakes requires a central catalog (that is, a
metastore) that can be used by an organization to discover datasets and query data that
was not possible with traditional on-premises storage.

In this chapter, we will cover the following topics:

• What is a metastore?

• What is a data source?

• Registering S3 datasets in your metastore

• Discovering your datasets on S3 using AWS Glue Crawlers

• Designing a data lake architecture

Technical requirements
For this chapter, you will require the following:

• Internet access to GitHub, S3, and the AWS console.

• A computer with Chrome, Safari, or Microsoft Edge and the AWS CLI version 2
installed (https://amzn.to/3sYabba).

https://amzn.to/3sYabba

What is a metastore? 91

• An AWS account and accompanying IAM user (or role) with sufficient privileges
to complete this chapter's activities. For simplicity, you can always run through
these exercises with a user that has full access. However, we recommend using
scoped-down IAM policies to avoid making costly mistakes and learn how to best
use IAM to secure your applications and data. You can find a minimally scoped
IAM policy for this chapter in this book's accompanying GitHub repository, which
is listed as chapter_4/iam_policy_chapter_4.json (https://bit.
ly/3qAcNtU). This policy includes the following:

 � Permissions to create and list IAM roles and policies. We will be creating a service
role for an AWS Glue Crawler to assume.

 � Permissions to read, list, and write access to an S3 bucket.

 � Permissions to read and write access to Glue Data Catalog databases, tables, and
partitions. You will be creating databases, tables, and partitions manually and with
Glue Crawlers.

 � The ability to create and run permissions for Glue Crawlers.

 � The ability to gain access to run Athena queries.

• An S3 bucket that is readable and writeable. If you have not created an S3 bucket
yet, you can do so from the CLI by running the following command:

aws s3api create-bucket --bucket <YOUR_BUCKET_NAME>
--region us-east-1

Ensure that the NYC Taxi dataset has been copied into your bucket. If you have not done
so, you can run the commands located at https://bit.ly/2XW1LCA.

What is a metastore?
Metastores are a critical component for Athena. Metastores tell Athena which datasets
are available for it to query and how to process the underlying data. When a user submits
a SQL statement to Athena for execution, Athena parses the query's text, identifies the
tables and columns needed, and looks up a description of them from the metastore. Once
it knows where the data lives, how it is stored, and the format, Athena requests the data,
interprets it, and executes the query.

https://bit.ly/3qAcNtU
https://bit.ly/3qAcNtU
https://bit.ly/2XW1LCA

92 Metastores, Data Sources, and Data Lakes

The metastore also serves as a directory of available datasets that can be queried. Datasets
are represented by tables stored in databases, although in this context, the terms tables
and databases do not refer to physical databases or tables. We refer to tables and databases
as metadata, data that describes other data, and metastores store metadata. In the big
data space, analytics engines usually store metadata and data separately. Athena's most
common metastore is AWS Glue Data Catalog, and its most common data store is S3. The
following diagram shows the separation of the metastore and data:

Figure 4.1 – Metastores are stored separately from the underlying data

The data in a metastore is organized into a hierarchy of databases and tables. The
following diagram shows the relationship between the various objects that are stored in a
metastore:

Figure 4.2 – The essential components of a typical metastore

What is a metastore? 93

Adding, updating, and removing metadata from Athena's metastore can be done using
Apache Hive's Data Definition Language (DDL). Under the hood, Athena executes DDL
statements using Apache Hive.

In this section, we will go through the information stored in a metastore so that we can
learn how to start populating our metastore with databases and tables. But before we do,
let's look at what a data source and its components are.

Data sources, connectors, and catalogs
Metastores, connectors, and catalogs can sometimes be seen being used interchangeably,
although there are subtle differences between the terms. A metastore contains a catalog
of available datasets and their metadata. A connector allows Athena to read the metastore
and data. Lastly, a data source includes all three components: the metastore, data, and
connector. There is almost always a one-to-one relationship between a metastore and data
source and a connector:

Figure 4.3 – Data source versus metastore versus connector

The preceding diagram shows the relationship between these components. Athena can
register many different data sources. We will look at this in more detail in the What is a
data source? section.

Databases and schemas
Athena and Apache Hive use the term database to refer to a collection of tables. In MySQL
and other relational databases, the term schema is usually used instead. Still, many
people, including myself, use these terms interchangeably. We will use the term database
exclusively for the remainder of this book.

Using databases can help organize tables into categories based on usages, such as keeping
tables owned by the same group within an organization. You can also group tables based
on user roles, for example, having a database for finance users and one for analysts.
Ultimately, it is suggested that you keep the rules that are used to group tables together
consistent.

94 Metastores, Data Sources, and Data Lakes

To create a database in Athena, you can run a DDL query like the following:

CREATE DATABASE packt_serverless_analytics LOCATION 's3://<S3_
BUCKET>/tables/'

This query has two parts: creating the database called packt_serverless_
analytics and the location where that database should point to.

Important Note
The database's location is not very important to Athena because it doesn't use
it. However, it will be essential to use the same metastore with Apache Hive
or PrestoDB on Amazon EMR or elsewhere. The location represents where
managed tables will be stored and can cause a lot of headaches. It is strongly
recommended to set the location of the database to a path in S3. We will look
at this in more detail in the Tables/datasets section when we look at managed
tables.

When running an Athena query, any references to tables that are not prefixed with a
database will be assumed to run in a default database that you specify. To refer to tables
in other databases, you can prefix the table name with the database. For example, the
following statement refers to the nyc_taxi table from the packt_serverless_
analytics database:

SELECT * FROM packt_serverless_analytics.nyc_taxi where column1
> 10

This would be required if the default database was configured as elb_logs.

Tables/datasets
A table represents a dataset that users can query. A table has many properties that need to
be specified when created, such as the table's location, the table's schema, the file format
of the data stored, and more. This data is then stored in the metastore. The following is
a sample CREATE TABLE statement that can be used to register a table. We will look at
each part to illustrate the information needed for a table to be queried:

CREATE EXTERNAL TABLE 'packt_serverless_analytics'.'nyc_taxi_
partitioned'(

 'vendorid' BIGINT,

 'tpep_pickup_datetime' STRING,

 'tpep_dropoff_datetime' STRING,

 'passenger_count' BIGINT,

What is a metastore? 95

 'trip_distance' DOUBLE,

 … see rest of the columns on GitHub https://bit.ly/3odawDa

 'congestion_surcharge' DOUBLE)

PARTITIONED BY ('year' INT, 'month' INT)

ROW FORMAT DELIMITED

 FIELDS TERMINATED BY ','

STORED AS INPUTFORMAT

 'org.apache.hadoop.mapred.TextInputFormat'

OUTPUTFORMAT

 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

LOCATION

 's3://<S3_BUCKET>/tables/nyc_taxi_partitioned/'

TBLPROPERTIES (

 'areColumnsQuoted'='false',

 'columnsOrdered'='true',

 'compressionType'='gzip',

 'delimiter'=',',

 'skip.header.line.count'='1'

)

You can download and run the preceding statement in its complete form by going to
https://bit.ly/3odawDa. Let's break this code down into each of its components.

External tables, managed tables, and governed tables
The first part of the statement, CREATE EXTERNAL TABLE, tells Athena to create an
external table. An external table is a table where the user must manage the underlying
data, and Athena will not perform any actions when the table is dropped.

If the external table specification is not provided, then the table is a managed table. A
managed table differs from an external table in two main ways. First, when creating
a managed table, a location is not needed. The table's location will be placed under
the database's location property. For example, if we created a managed table called
my_table in a database whose location property was s3://packt-serverless-
analytics-1234567890/tables/, then the table's data would be stored at packt-
serverless-analytics-1234567890/tables/my_table. When a managed
table is dropped, the execution engine should delete the table's data and remove the table
from the metastore. Managed tables are not supported in Athena.

https://bit.ly/3odawDa

https://bit.ly/3odawDa

96 Metastores, Data Sources, and Data Lakes

Another type of table, called a governed table, is specific to AWS. It is a table that
AWS Lake Formation manages. It provides additional features, such as supporting
atomic, consistent, isolated, and durable (ACID) transactions and automatic
consolidation of data. Small file sizes can have an enormous impact on query
performance. We have dedicated an entire chapter to governed tables; that is,
Chapter 14, Lake Formation – Advanced Features.

Table schema
The schema for a table is the list of columns that can be queried and the column's data
type. Athena takes the schema while reading data files and maps the data it finds to the
columns with their names. In the previous CREATE TABLE statement, the schema is the
columns that are specified.

Note that the data types specified in the table schemas must match or be compatible
with the data type stored in the data files. If they do not match, then Athena may fail the
query with an error, stating that it cannot convert the data type in the data file into the
requested data type. Similarly, some data formats require that the column order specified
in the table's schema matches the ordering of columns in the data files. If the file format
requires specific ordering, and the order does not match the table schema, then you may
get columns with data from other columns, null values for a column, or a failed query.

Partitions
Partitioning a table allows for huge tables to be broken down into smaller slices of data
based on one or more virtual columns. This has many advantages, including reducing
data scanning, thus reducing Athena's costs and having faster query times. When there
is a filter on one or more partition columns, Athena will read only the partitions' data
files. Each partition in a table has a directory where the data for that slice is stored. The
following diagram illustrates how the nyc_taxi_partitioned table's data is laid out
for datasets on S3:

Figure 4.4 – File layout of the nyc_taxi_partitioned partitioned table

What is a metastore? 97

The table's base location is s3://packt-serverless-analytics/tables/nyc_
taxi_partitioned. Each directory and subdirectory beneath it is a partition with the
partition column name and the column's value.

There are two ways to add partitions from Athena. The first is to run the following DDL
statement:

MSCK REPAIR TABLE nyc_taxi_partitioned

This statement instructs Athena to scan the directory under the table's specified location
for any partitions. If the partition has not been registered yet, it will add it. This can be
an easy and convenient way to discover new partitions, but there is a drawback. First,
the directory structure must follow the <partition column name>=<partition
value> format. Secondly, the statement can take more than 10 minutes to run if the table
has hundreds of thousands of partitions or more.

The second way to add a partition is to add the partitions manually, one by one, if you
know ahead of time what the partition values are. The following DDL statement adds the
2020-06-01 partition to the table:

ALTER TABLE nyc_taxi_partitioned

 ADD PARTITION (year='2020', month='1')

 LOCATION 's3:// <S3_BUCKET>/tables/nyc_taxi_partitioned/
year=2020/month=1/'

This statement tells Athena to add a new partition with a column value of 2020 for the
year and 1 for the month and a location of s3://packt-serverless-analytics/
tables/nyc_taxi_partitioned/year=2020/month=1/. There are two main
advantages to adding partitions this way. First, it is usually faster to run this command to
add a single or small number of partitions to a highly partitioned table than to run MSCK
REPAIR TABLE. Second, you can specify any location; it does not need to conform to the
Hive partition format of partition column=value.

Note
When a partitioned table is created, the table will have 0 partitions registered.
Any queries against the table will always return 0 rows. After the creation of
a partitioned table, you should perform a partition-adding operation such as
using the MSCK REPAIR or ADD PARTITION commands.

98 Metastores, Data Sources, and Data Lakes

Serialization and deserialization and file formats
In the next part of the CREATE TABLE statement, we can see the ROW FORMAT
DELIMITED, STORED AS INPUTFORMAT, and OUTPUTFORMAT sections. Athena
uses this information to select the serialization and deserialization (SerDe) library
to read the data. Different file formats, such as Comma-Separated Values (CSV),
Apache Parquet, Apache ORC, and others, have their own libraries that are used
to read and write the data. In our example, we are telling Athena that the data is
stored in CSV format and that we're using the org.apache.hadoop.mapred.
TextInputFormat library to read the data and the org.apache.hadoop.hive.
ql.io.HiveIgnoreKeyTextOutputFormat library for any writes.

Athena supports a wide variety of open source data formats. To see the up-to-date list of
supported data formats, see Athena's documentation link in the Further reading section.

Table properties
The next section is the table properties. These properties are specified as key/value
pairs and can be used for a variety of uses. In this case, we are setting properties to
configure SerDe: we are telling the SerDe text input that the fields are not quoted
(areColumnsQuoted=false), the columns are ordered based on the column order
in the table's schema (columnsOrdered=true), and that the first row of data is the
column header and should be ignored (skip.header.line.count). For different
SerDe instances, these properties can be different.

Another use for table properties is to store information that can be useful for other
purposes. For example, you can add an owner, contact information if a user has a question
or found a data quality issue, or keywords about what is contained in the table, helping
users discover the data they are looking for.

Table statistics
Although it is not specified in the CREATE TABLE statement, metastores can also
store table-level and column-level statistics. Statistics help execution engines perform
Cost-Based Optimizations (CBOs) when they're coming up with an execution plan.
For example, the join ordering of tables can be optimized if the row counts of each table
are known. At the time of writing, Athena does some optimizations, but these statistics
will help you perform complex optimizations in the future.

Now that we have a good understanding of what a metastore is, we can discuss data
sources.

What is a data source? 99

What is a data source?
If Athena has access to data and the associated metadata, it can read that data. This
is one of Athena's greatest strengths, as it can join data from anywhere to enrich and
derive business value. For example, suppose an online store has its sales data in a MySQL
database, has customer website traffic data in S3, and has product pricing information
in DynamoDB. In that case, these datasets can be joined together to determine which
pricing changes caused the most traffic to the website's stores and drove the most sales.
You can look at the available data sources or add new data sources from Athena's console,
as shown in the following screenshot:

Figure 4.5 – The Data sources tab in the Athena console

For this section, we will mostly focus on querying data on S3. To query data in S3, using
the AWS Glue Data Catalog or the Apache Hive metastore are the fastest and easiest ways
to store your databases and tables. We will dive into how they are different and when to
use one over the other. We will then briefly talk about non-S3 data sources, as an entire
chapter, Chapter 12, Athena Query Federation, is dedicated to Athena Query Federation,
which can read from almost any data source.

100 Metastores, Data Sources, and Data Lakes

S3 data sources
S3 is the most common data source for Athena. It was the first and only data source
available when Athena launched. With one DDL statement, Athena can start querying
data in S3 in seconds. Athena needed a metastore implementation to store database
and table information. AWS Glue Data Catalog was created to be the central catalog for
other AWS services while maintaining compatibility with existing execution engines
such as Apache Hive, Apache Spark, and PrestoDB. For these engines, AWS Glue
created connectors and implementations that adhered to the Apache Hive metastore
interface. Where Hive's metastore is used, it can be swapped out for Glue Data Catalog's
implementation.

For this reason, Athena's default metastore is Glue Data Catalog. However, some
customers want to use Athena without migrating their metastores to Glue or keeping Glue
and Hive metastores in sync. Athena introduced support to connect to Hive metastores
directly.

When should you use Glue Data Catalog, and when should you use a Hive metastore?
What are the advantages of one over the other? We will go over both Glue Data Catalog
and Hive metastores and when it would be appropriate to use one over the other.

AWS Glue Data Catalog
AWS Glue Data Catalog is a serverless offering by AWS. There is no infrastructure to
manage, and the cost is very reasonable. At the time of writing, the cost of using Glue
Data Catalog is free for the first million objects stored and $1.00 for every 100,000
objects thereafter. Also, the first million object requests are free, with each additional
million requests costing $1.00. Glue Data Catalog is natively integrated with Redshift,
Glue ETL, Lake Formation, and EMR, making sharing the catalog very easy. Glue Data
Catalog integrates with open source engines via connectors available for Apache Spark,
Apache Hive, PrestoDB, and Trino. Glue Data Catalog also supports versioning of tables.
As changes are made to tables, they are saved, and older versions of the tables can be
referred to or rolled back when unintentional or breaking changes are made. Lastly, with
integration with Lake Formation, data access controls can be applied to Glue tables and
columns and applied to AWS services that integrate with Lake Formation. More on that in
the next chapter.

What is a data source? 101

There are a few disadvantages of using Glue Data Catalog to be aware of. As with all AWS
services, the first main disadvantage is that API calls are subject to service throttling limits
and service quotas. If Glue Data Catalog's load is high, requests may be throttled, causing
queries to slow down or even fail. These throttling limits are soft and can be raised if
an AWS support ticket is entered to increase the limits. The other limits to consider are
service quotas, limiting the number of objects stored in Glue. These limits are very high,
and it should be challenging to reach these limits.

The second main disadvantage is that it does not support all the features of the Hive
metastore. For example, Glue Data Catalog does not support Hive ACID transactional
tables, which are not supported in Athena.

There are many other limitations of Glue Data Catalog, but if you are not using Apache
Hive, these limitations will not impact you. If you are planning to use Hive, then the
documentation (http://amzn.to/3o0REqS) provides an exhaustive list.

Note
At the time of writing, AWS accounts have a default limit of 10,000 databases
per account, 200,000 tables per database, and 10,000,000 partitions per table. If
you breach these limits, it is likely that you may be doing something wrong and
should revisit your architecture. These limits are mostly soft limits and they can
be increased by entering a support ticket.

Now, let's take a look at the Hive metastore.

Apache Hive metastore
Apache Hive was initially released in 2010 by Facebook to provide SQL-like access
to data stored on Hadoop clusters. One of the main components was the metastore. As
time progressed, it was used by other Hadoop projects such as Spark to store dataset
metadata. Hive metastores are a service that is typically backed by a relational database
such as MySQL.

The advantages of using a Hive metastore with Athena over Glue Data Catalog are few but
significant. The main advantage is that companies that already have a Hive installation
may not wish to migrate their metadata for various reasons, such as using third-party
tools that are not compatible with Glue Data Catalog. The other advantage is that it is
open sourced, which provides two benefits. First, if a bug or enhancement needs to be
made, it can be done quickly and deployed. Second, it is portable and does not lock you
into a single cloud infrastructure provider.

http://amzn.to/3o0REqS

102 Metastores, Data Sources, and Data Lakes

The disadvantages are plenty. The main disadvantage that I have seen organizations
struggle with is that upgrading the version of the metastore can cause substantial
operational problems. Some version upgrades break existing installations because they
were not designed to be backward and/or forward compatible. A lot of planning and
coordination needs to happen when upgrading versions, increasing the operational
burden. I worked with a customer who upgraded their metastore, which was shared
between beta and production environments, which caused their production environment
to break, causing a several-hour production outage.

The other disadvantage is its performance. When Athena is using Glue Data Catalog,
it makes direct API calls. When a Hive metastore is used, Athena invokes a Lambda
function to call a Hive metastore process. This has a higher cost for all metadata calls. This
is even more apparent with tables that have a large number of partitions. When querying
a table with 1 million partitions, we found that Glue Data Catalog-backed queries ran at
least half the time than when using a Hive metastore.

The last disadvantage to call out is that Athena does not support writing to external
metastores at the time of writing this book. Being able to create tables, alter tables, or
perform other operations is currently not supported and the only way to update the
metadata is through another application.

Tip
Our recommendation is to use Glue Data Catalog whenever possible. It
has a lower operational burden due to it being serverless, it doesn't need to
perform version upgrades, has better auditing capabilities, the ability to update
metadata, and provides native integration with other AWS services.

Here is the comparison of AWS Glue Data Catalog and Apache Hive metastores with
Athena:

What is a data source? 103

Figure 4.6 – Comparison of AWS Glue Data Catalog versus Apache Hive metastore

Of course, Hive and Glue are not the only possible data sources you can use. Let's quickly
look at some other alternatives.

Other data sources
Athena supports a variety of data sources out of the box. At the time of writing, the
supported data sources are S3 with AWS Glue Data Catalog or Apache Hive metastores,
Amazon CloudWatch Logs, Amazon CloudWatch Metrics, Amazon DocumentDB,
Amazon DynamoDB, Amazon Redshift, Apache HBase, MySQL, PostgreSQL, and
Redis.

104 Metastores, Data Sources, and Data Lakes

You can register a new data source from the Athena console. The following screenshot
shows the Athena console:

Figure 4.7 – Connecting a new data source to Athena in the Athena console

By following a few steps, you can connect to a new data source within seconds and query
any of the aforementioned data sources. We will look at adding new data sources and
creating custom data sources in more depth in Chapter 12, Athena Query Federation.

Next, we'll look at how to register S3 datasets so that they can be used with your
metastore.

Registering S3 datasets in your metastore
Before you can query your data with Athena, the data must be registered in a data
catalog. This section will review the different ways an S3 dataset can be registered in your
metastore.

Using Athena CREATE TABLE statements
Athena's console allows you to create databases and tables in your metastore through two
methods. The most often used method is generating and executing DDL statements. We
have already seen a few examples of CREATE TABLE SQL statements to create tables. If
you need a refresher, refer to the Tables section earlier in this chapter. Alternatively, you
can click on the CREATE TABLE template within the Athena console, as shown in the
following screenshot:

Registering S3 datasets in your metastore 105

Figure 4.8 – Using a SQL template in the Athena console for CREATE TABLE

Using Athena's Create Table wizard
This method uses the Create Table wizard from the Athena console. It takes the necessary
information, generates a CREATE TABLE statement, and submits it to Athena. To run the
wizard, click on the Create table link in the Athena query editor tab, next to Tables, as
shown in the following screenshot, and follow the steps:

Figure 4.9 – Creating a table using Athena's console

106 Metastores, Data Sources, and Data Lakes

This method of creating tables is very rarely used because it takes a lot of manual effort,
especially if your table has many columns.

Using the AWS Glue console
The AWS Glue console supports the creation of databases and tables using wizards,
very similar to the Athena console. Creating tables, especially those with many columns,
is time-consuming and error-prone. To get to the wizard, click on the Tables link on
the left-hand side, click on Add tables, and select Add table manually, as shown in the
following screenshot. Follow the steps, and voilà – your table will be created:

Figure 4.10 – Creating a table using AWS Glue's console

Using AWS Glue Crawlers
AWS Glue Crawlers solve the issue of manually crafting CREATE TABLE statements or
entering schema information through the Athena or Glue console. Point a crawler to your
S3 location and it will scan, discover, and register tables automatically for you, including
partitions. It will figure out a schema by sampling the data it sees. For tables that have
hundreds of columns, point a crawler to the table, and it will attempt to figure out the
name and data types of each column, saving countless hours of inspecting data, typing in
data types, trying and having your queries fail, hitting your keyboard, and so on.

We'll create one in the next section.

Discovering your datasets on S3 using AWS Glue Crawlers 107

Discovering your datasets on S3 using AWS
Glue Crawlers
Let's say that you have a lot of data that you are outputting to S3, and you want to query
it. Before you can, you need to register that data. However, the data sitting in S3 is in
many different formats and schemas. Going through each dataset, inspecting files, and
determining the file format, partitions, and columns is a very time-consuming task. If a
table contains incorrect column names, incorrect ordering of columns, or any other form
of error, then the table may not be queryable until it is corrected. AWS Glue Crawlers
solve these issues. Glue Crawlers can scan data on S3, inspect the S3 directory structure
and data within it, and automatically populate the data catalog. This section will look at
how they work and set up a Glue crawler to discover a sample dataset.

How do AWS Glue Crawlers work?
There are three actions that a Glue crawler takes when scanning S3:

1. It scans S3 directories for data files. File formats such as Parquet, ORC, and Avro
are self-describing, meaning they include the data file's schema. If the data format
is not self-describing, it will sample the file's data to guess the columns and their
data types.

2. As the crawler traverses the directory and sees multiple directories containing data
files with similar schemas, it may consider it a partitioned table. If the schema is
sufficiently different, then it will consider each of the directories as separate tables.

3. Finally, once it has traversed all the directories, it will register the tables and table
partitions to the catalog. If the tables already exist, they will update the schemas and
add any undiscovered partitions.

Running your first AWS Glue Crawler
In this section, we will create our first Glue Crawler, which will traverse our bucket and
register the tables that are found. We will create a new database to store the crawled tables,
and then we will query them in Athena.

If you have already set up your S3 bucket with the example datasets, you can skip this
section. If not, please follow the instructions in this book's GitHub repository, which is
located at https://bit.ly/2XW1LCA. Remember to replace <YOUR_S3_BUCKET>
with the bucket that you are using.

https://bit.ly/2XW1LCA

108 Metastores, Data Sources, and Data Lakes

Getting to the Glue Crawler wizard
There are two ways to get to the Glue Crawler wizard. Let's take a look:

4. The first option is through the Athena console, by clicking on the Create Table link
and then from AWS Glue Crawler. The second option is from the Glue console
by clicking on Crawlers on the left-hand side menu and then clicking on the Add
crawler button. Both methods are shown in the following figure:

Figure 4.11 – Getting to the Glue Crawler wizard (left is the Athena console, right is the Glue console)

5. Let's call the crawler packt_serverless_analytics_chapter_4, as shown
in the following screenshot:

Figure 4.12 – Creating a new crawler info page

6. We will forgo giving the crawler any tags, security configuration, or registering
custom classifiers. For the subsequent screens, input the following values.
Descriptions of some of the fields are also included:

 � Crawler name: This is the name to assign to your crawler. Value to set: packt_
serverless_analytics_chapter_4.

Discovering your datasets on S3 using AWS Glue Crawlers 109

 � Tag key and value: Key/value pair that provides metadata on this crawler. Value to
set: None.

 � Description: A description of the crawler. Value to set: None.

 � Security configuration: A configuration that specifies the encryption key to use
for logs. Value to set: None.

 � Crawler source Type: This indicates whether you want to specify an S3 location
(data stores) or crawl existing table locations. Value to set: Data stores.

 � Repeat Crawls of S3 data sources: When Crawlers run multiple times, should
they inspect new directories only or all directories? Value to set: Crawl all
folders.

 � Choose a data store: The source that should be crawled. Value to set: S3.

 � Connection: A connection in Glue is a named elastic network interface (ENI),
which is created in a VPC with security groups attached. Connections allow Glue
Crawlers and other functionality to talk to data sources from within your network
and not over the internet. Value to set: Leave blank.

 � Crawl data in: This is used to specify whether the S3 bucket we are crawling is
owned by the account running the crawler or in a different account. Value to set:
Specified path in my account.

 � Include Path: S3 path for the crawler to start in. Value to set: s3://<MY
BUCKET NAME>/tables/.

 � Add another data store: Crawlers can crawl multiple data sources in a single run.
This can be useful if you want the same crawler to focus on a subset of directories
in a single bucket or multiple buckets. Value to set: No.

 � Choose an IAM role: The IAM role that is used by the crawler to access the S3
bucket and other resources. Value to set: If you have not created an IAM role
before for a crawler, choose Create an IAM role and add packt-serverless-
analytics as the role name suffix. Otherwise, choose Update a policy in an
IAM role to ensure that the S3 path is added to an existing IAM role.

 � Frequency: Crawlers can be scheduled to run at regular intervals or set to run on
demand. Value to set: Run on-demand.

 � Configure the crawler's output: The database to add/update tables in,
and optionally a prefix for table names. Value to set: For the database, enter
packt-serverless-analytics-chapter-4 or click on Add database
if the database doesn't exist.

110 Metastores, Data Sources, and Data Lakes

 � Grouping behavior for S3 data: This is optional. It tells the crawler to create
a table for each unique S3 directory rather than group multiple directories into
a partitioned table. Value to set: Leave unchecked.

 � Configuration Options: For existing tables, these options determine how the
crawler will update existing tables. Value to set: Check the Update all new and
existing partitions with metadata from the table setting. See AWS Glue Crawler
best practices for Athena for more information.

7. On the last page of the wizard, you will see a summary of the crawler. Your
summary should look like this:

Figure 4.13 – Summary of the crawler

Discovering your datasets on S3 using AWS Glue Crawlers 111

8. Click on Finish; the crawler will be created.
9. To run the crawler, select the crawler and hit the Run crawler button. Your crawler

should run, discover new tables, and add them to your catalog, as shown in the
following screenshot:

Figure 4.14 – Output of running the crawler

Congratulations! You have registered two new tables in the packt_serverless_
analytics_chapter_4 database. You can browse these tables in the Tables section
of the Glue console:

Figure 4.15 – Tables created by the crawler

AWS Glue Crawler best practices for Athena
We could easily write half a book dedicated to Glue Crawlers and their best practices,
which we will not do. Glue Crawlers have extensive public documentation, so anything
that we don't cover here can be found here: http://amzn.to/3nWcSWZ. However,
when working with several customers, the issues they tend to have trouble with are the
HIVE_PARTITION_SCHEMA_MISMATCH error, which is related to issues with
partition schemas not matching the table's schema, and issues with CSV/TSV files, as
there are two different SerDes that can process these file types.

http://amzn.to/3nWcSWZ

112 Metastores, Data Sources, and Data Lakes

Designing a data lake architecture
Before cloud platforms, organizations had clusters sitting in their data centers with
massive amounts of storage that applications would push their data to for analytics. When
storage was running low, the organization would either remove that data on the cluster or
increase its storage. Ordering new hardware was costly and was often met with long lead
times. As cloud platforms have exploded in popularity, businesses and organizations have
leveraged unlimited storage and compute to develop new ways of storing and processing
data. One of the most common architectures for data analysis was the data lake. The data
lake architecture leverages the unlimited storage that cloud platforms provide and can
scale storage and compute independently. It can store an organization's data in a single
location, where it can be queried by any user using the best application for the particular
use case. Any data that was too large or expensive to store on an on-premises cluster
can now be stored much more cheaply. The following diagram shows a simplified data
lake architecture where data producers (mobile clients, databases, application clients,
and application servers) push their data into a central data store (S3). That data is then
consumed and analyzed, and the results are written back to S3:

Figure 4.16 – Typical simplified data lake architecture

Designing a data lake architecture 113

Because the data is separate from the compute engine, the application that does the
analysis can be chosen based on the analytics that is being conducted. For example, for
ETL processing, Amazon Athena, Amazon EMR, or AWS Glue ETL can be used. Amazon
SageMaker or Amazon EMR can be used for machine learning modeling, or Amazon
Athena for ad hoc querying, exploration, or delivering data to applications.

One component that binds all the AWS services together is the central catalog. Without it,
each service would need to track its metadata on the datasets on S3, making it challenging
to keep in sync. AWS Glue Data Catalog is the only metastore that's leveraged by the suite
of AWS analytics services. The catalog can also enforce data access controls and provide
auditing, which we will cover in Chapter 5, Securing Your Data.

Now that we have an overview of a data lake's basic structure, a few concepts will help you
get the most out of Athena and other AWS services. We will look at the three stages or
forms of data that typical data lakes utilize and each stage's characteristics before learning
how to transform data using Athena.

Stages of data
When data is ingested from applications, databases, and other sources into a data lake,
it tends to be in a raw state. They can be in text format, uncompressed, and structured
in a suboptimal way. The data can be transformed more optimally to improve the
performance and cost of consuming raw data. Let's break down these stages:

• Raw data: This is the stage where producers of data push the data that they produce.
This data tends to be in suboptimal data formats and structures. The applications
generally don't want to spend their resources converting the data. The raw data
is seen as the source of truth: therefore, it is recommended that this data is never
deleted but archived in S3 Glacier once the data is no longer needed. If the data is
required again or there is a data quality issue in any data derived from this data, it
can be restored and reused. Also, the data can be difficult to reproduce from the
original producer. Raw data usually exists in a separate S3 bucket from other data.
The data is highly secure as raw data may contain sensitive data. Querying this data
using Athena is great for data exploration and testing the data, but it is not ideal for
repetitive querying as it would be slow and expensive.

114 Metastores, Data Sources, and Data Lakes

• Processed/transformed data: This stage is the first level of transformation from
the raw data. Its purpose is to provide a faster and cheaper way of querying data
for general use cases. The data is converted into an optimized file format such as
Apache ORC or Apache Parquet. Transforming your data into ORC or Parquet
can reduce the data size by 50-90%, which provides a 50-90% reduction in Athena
querying costs. The data can also be partitioned based on a frequently used filter
in queries, such as the transaction date or region. The transaction helps reduce
querying costs as only the selected partitions are queried. This stage also provides
an opportunity to filter columns or rows for raw data that is not needed, or that may
contain confidential data. For example, suppose customers' personally identifiable
information (PII) is in a dataset; it would be too sensitive to provide to general
users. In that case, it can be removed or encrypted. This stage is great for ad hoc
querying from users and general use from other applications such as Amazon
Redshift or Amazon SageMaker.

• Application-specific format: This stage is most often used for applications that
serve data to customers and generally need to run as fast as possible to provide the
best experience for end users. The data in this stage is transformed into a specific
structure and not meant for general-purpose querying. Datasets can be partitioned
based on columns that would not generally be used and other data format
optimizations to optimize the application's specific queries or access patterns. We
will look at this in more detail in Chapter 11, Operational Excellence – Maintenance,
Optimization, and Troubleshooting.

Now that we've looked at the stages of data, let's learn how to transform it.

Transforming data using Athena
Transforming data has many advantages, and Athena can perform these transformations
using SQL. Two statements can be used with Athena: CREATE TABLE AS SELECT
(CTAS) and INSERT INTO. The CTAS statement creates a new table and populates the
table from the results of a SELECT statement. The structure of the CTAS query is CREATE
TABLE <TABLE NAME> WITH PROPERTIES (…) AS < SELECT QUERY>.

Designing a data lake architecture 115

Let's take our NYC Taxi ride dataset in CSV format and convert it into Parquet. We can do
this by running the following query (https://bit.ly/3xdzXJb):

CREATE TABLE packt_serverless_analytics.nyc_taxi_partitioned_
parquet

WITH (format='PARQUET',

 parquet_compression='SNAPPY',

 partitioned_by=array['year','month'],

 external_location = 's3://<S3_BUCKET>/tables/nyc_taxi_
partitioned_parquet/')

AS

SELECT

 vendorid,

 tpep_pickup_datetime,

 tpep_dropoff_datetime,

 passenger_count,

 trip_distance,

 ratecodeid,

 store_and_fwd_flag,

 pulocationid,

 dolocationid,

 payment_type,

 fare_amount,

 extra,

 mta_tax,

 tip_amount,

 tolls_amount,

 improvement_surcharge,

 total_amount,

 congestion_surcharge,

 --Below are partition columns and are always

 --specified at the end of the SELECT statement

 substr(tpep_pickup_datetime, 1, 4) AS year,

 substr(tpep_pickup_datetime, 6, 2) AS month

FROM packt_serverless_analytics.nyc_taxi;

https://bit.ly/3xdzXJb

116 Metastores, Data Sources, and Data Lakes

Athena will execute the SELECT statement and create a new table based on the provided
file format, file compression, columns, partition columns, and location. The table's
schema is defined by the columns specified in the same order using the column's name.
If an expression is used, like we did with the year and month columns, a column name
cannot be inferred, so it must be specified. You will also notice that the partition columns
are defined at the end of the SELECT statement.

The INSERT INTO statement inserts data into an existing table. The data files that are
produced will be in the same format and contain the same configuration that was specified
in the table properties. The structure of the INSERT INTO statement is INSERT INTO
<TABLE> SELECT <QUERY>. Suppose a new month of data arrives and is placed in the
nyc_taxi table for July in 2020. The following example query can be used to insert new
data:

INSERT INTO packt_serverless_analytics.nyc_taxi_partitioned_
parquet

SELECT

 vendorid,

 tpep_pickup_datetime,

 tpep_dropoff_datetime,

 passenger_count,

 trip_distance,

 ratecodeid,

 store_and_fwd_flag,

 pulocationid,

 dolocationid,

 payment_type,

 fare_amount,

 extra,

 mta_tax,

 tip_amount,

 tolls_amount,

 improvement_surcharge,

 total_amount,

 congestion_surcharge,

 --Below are partition columns and are always

Summary 117

 --specified at the end of the SELECT statement

 substr(tpep_pickup_datetime, 1, 4) AS year,

 substr(tpep_pickup_datetime, 6, 2) AS month

FROM packt_serverless_analytics.nyc_taxi

WHERE tpep_pickup_datetime = '2020-07';

Go ahead and give it a try.

Important Note
If the CTAS or INSERT INTO queries fail, you will need to clean up any
data files created by the process before starting again. Otherwise, incomplete,
or duplicate data will exist in the destination. If a failure does occur with
these statements, a manifest file is created in the query results directory as
QueryID-manifest.csv. The file list can be used to perform the
necessary clean-up.

Summary
In this chapter, we learned about Athena's data sources and their different components:
the metastore, data, and connector. The metastore contains metadata that Athena uses to
translate tables and databases into their physical locations and process them. We delved
into the information stored within a table and its key components: schema, partition
columns, location, serializer/deserializer and associated properties, and table statistics.

We compared the AWS Glue Data Catalog and Apache Hive metastores when data is
stored on S3 and looked at other non-S3 data sources. We went through the different
ways of registering datasets into a metastore and how AWS Glue Crawlers can make it
quick and easy to discover data on S3. Lastly, we looked at the data lake architecture, the
different stages of data that are typical in one, and how to transform data using Athena.

Now that we have looked at our metastores and how they relate to our data in S3, we'll
look at how we can secure them in the next chapter.

118 Metastores, Data Sources, and Data Lakes

Further reading
For more information regarding what was covered in this chapter, take a look at the
following resources:

• Athena's documentation contains the complete list of supported DDL statements:
https://docs.aws.amazon.com/athena/latest/ug/language-
reference.html.

• A complete list of supported SerDes can be found at https://docs.aws.
amazon.com/athena/latest/ug/supported-serdes.html.

• AWS Glue Data Catalog service quotas can be found at https://docs.aws.
amazon.com/general/latest/gr/glue.html#limits_glue.

• Best Practices When Using Athena with AWS Glue: https://docs.aws.
amazon.com/athena/latest/ug/glue-best-practices.html.

• Best Practices When Using Athena with AWS Glue – Using AWS Glue Crawlers:
https://docs.aws.amazon.com/athena/latest/ug/glue-best-
practices.html#schema-crawlers.

https://docs.aws.amazon.com/athena/latest/ug/language-reference.html
https://docs.aws.amazon.com/athena/latest/ug/language-reference.html
https://docs.aws.amazon.com/athena/latest/ug/supported-serdes.html
https://docs.aws.amazon.com/athena/latest/ug/supported-serdes.html
https://docs.aws.amazon.com/general/latest/gr/glue.html#limits_glue
https://docs.aws.amazon.com/general/latest/gr/glue.html#limits_glue
https://docs.aws.amazon.com/athena/latest/ug/glue-best-practices.html
https://docs.aws.amazon.com/athena/latest/ug/glue-best-practices.html
https://docs.aws.amazon.com/athena/latest/ug/glue-best-practices.html#schema-crawlers
https://docs.aws.amazon.com/athena/latest/ug/glue-best-practices.html#schema-crawlers

5
Securing Your Data

Data within an organization can be one of its most valuable assets. Data can drive
business decisions for an organization, such as to whom and how to advertise, what the
behavior of users on a website is, and how they react to sales or help businesses identify
inefficient processes. An organization can also package and sell that data to customers or
other organizations, getting direct revenue for the information it collects. Regardless, all
organizations should protect the data they have from both internal and external entities.

We have all heard stories where a data breach has occurred in a large institution. It is a
harrowing and traumatic event for the organization. There could be monetary penalties
by governments for breaking laws. Still, for most companies, breaking customers' or
the public's trust can be much more damaging. This is why large companies invest large
amounts of resources into having dedicated security teams that provide rules of how data
should be protected and handled.

120 Securing Your Data

Regardless of an organization's size, it is always a good idea to think about security at
the beginning of any project. I always tell customers that it is much easier and cheaper to
incorporate basic security early and often than later, and most are thankful that they did.
By employing security measures later in the process, it becomes much more intrusive to
add it. More applications may need to be changed to deal with new rules, or more users
consuming data may need to change their processes. You may need to encrypt data in
place, which may require system downtime. With some simple guidelines and features,
we can avoid many of these headaches later on.

In this chapter, we will cover the following topics:

• General best practices to protect your data on AWS

• Encrypting your data and metadata in Glue Data Catalog

• Enabling coarse-grained access controls with IAM resource policies for data on S3

• Enabling fine-grained access controls with Lake Formation for data on S3

• Managing access through workgroups and tagging

• Auditing with CloudTrail and S3 access logs

Technical requirements
For this chapter, you will require the following:

• Internet access to GitHub, S3, and the AWS Console.

• A computer with Chrome, Safari, or Microsoft Edge and the AWS CLI version 2
installed.

• An AWS account and accompanying IAM user (or role) with sufficient privileges
to complete this chapter's activities. For simplicity, you can always run through
these exercises with a user that has full access. However, we recommend using
scoped-down IAM policies to avoid making costly mistakes and learn how to best
use IAM to secure your applications and data. You can find a minimally scoped
IAM policy for this chapter in this book's accompanying GitHub repository, which
is listed as chapter_5/iam_policy_chapter_5.json (https://bit.
ly/3qAcNtU). This policy includes the following:

 � Permissions to create and list IAM roles and policies. We will be creating a service
role for an AWS Glue Crawler to assume.

https://bit.ly/3qAcNtU
https://bit.ly/3qAcNtU

General best practices to protect your data on AWS 121

 � Permissions to read, list, and write access to an S3 bucket.

 � Permissions to read and write access to Glue Data Catalog databases, tables, and
partitions. You will be creating databases, tables, and partitions manually and with
Glue Crawlers.

 � The ability to create and run permissions for Glue Crawlers.

 � The ability to gain access to run Athena queries.

• An S3 bucket that is readable and writeable. If you have not created an S3 bucket
yet, you can do so from the CLI by running the following command:

aws s3api create-bucket --bucket <YOUR_BUCKET_NAME> --region
us-east-1

General best practices to protect your data
on AWS
In this section, we will go over some general best practices. However, before we do, we
should understand some security basics. Let's start with what I call the five general pillars
of security. They are as follows:

• Authentication: Can the user or principal prove who they are? Access to AWS
resources depends on IAM authentication through AWS credentials, which are
like logins and passwords. These credentials can be long-lived, such as IAM user
credentials, or short-lived, such as the AWS credentials that are provided when an
IAM role is assumed. Throughout this chapter, we will assume that AWS IAM is the
only authentication mechanism that users can use. However, we will also look at
other ways to authenticate in Chapter 7, Ad Hoc Analytics.

• Authorization: Is the user or principal provided permission to access a resource?
When an action is requested against an AWS resource, the IAM credentials that are
used are checked to see whether those credentials can access the resource.

• Data protection: Is the data secure while it is in transit or at rest? Data encryption
is the most common way to protect data while transferring it between two parties
and storing it.

122 Securing Your Data

• Auditing: Do you know who is accessing the data, and are they supposed to be
accessing it? Auditing is usually the aspect of security that is most forgotten, but it
is critical. Auditing serves two purposes: making sure that current access to data
is what we expect it to be, and if it is not, then make changes to resource access
policies, and assessing the severity of a breach and what was leaked. Severity can be
measured by how long a breach occurred, who the actors were, and the sensitivity
and amount of data that was accessed.

• Administration: How are the policies that grant permission to resources managed?
Ideally, there would be a single place where permissions are granted.

Now that we understand the five pillars of security, there is one last point that I would like
to make before getting into the best practices: No system can be 100% secure. When there
is an incident, security policies aim to reduce the attack surface and blast radius. Attack
surface means the different ways a bad actor can try to infiltrate a system. The larger the
attack surface, the more ways that a system can be compromised. A blast radius is the
amount of potential damage an actor can cause when a system is compromised.

Suppose there were two sets of AWS credentials. One set provides administrative access
to an entire AWS account. The other gives read-only access to an S3 bucket that contains
cat pictures. If the first set of credentials was obtained by an attacker, they would have
access to all the data and be able to perform any action within the account. If the second
set of credentials was obtained, they would be able to download cat pictures. The first
event would be much more damaging and have a bigger blast radius. To reduce the
likeliness of credentials being exposed, or to reduce the attack surface, these AWS
credentials can be encrypted and access to them can be limited to only authorized users.

Now that we have a basic understanding of security, let's look at the best practices for
securing your data.

Separating permissions based on IAM users, roles,
or even accounts
I have seen too many companies use the same IAM credentials across several systems that
access different data or services. This increases the blast radius if those credentials become
compromised as the credentials likely would have been allowed to access all the resources
all these systems need. If you need to disable the credentials because of an incident, then
it would impact many services. A general rule is that an application should have its own
IAM user or preferably an IAM role, and each user should get their own set of credentials.

General best practices to protect your data on AWS 123

It may make sense to provision different AWS accounts for each group or application if
complexity dictates for larger organizations. This provides isolation for each group or
application from others, without it impacting anything outside the account. Using AWS
Organizations can help you manage and control accounts. One other frequent use of using
separate accounts is in different stages of an application. For example, development, beta,
and production environments run within their own AWS accounts, and then changes to
policies within the development stage can be propagated to beta and then to production in
an automated fashion.

Least privilege for IAM users, roles, and accounts
Within each chapter of this book, we have suggested that you use the IAM policies that we
provide when completing the exercises. We do this so that you can use IAM credentials
with the least privilege so that you can get into the habit of doing so. Using IAM principals
with the least privilege aims to reduce the blast radius if those credentials are ever
compromised; for example, if an intern accidentally puts them on GitHub; I am speaking
from experience here.

Rotating IAM user credentials frequently
IAM user credentials are long-lived, which means that they can be used until they are
rotated or the IAM user is deleted. Rotating credentials means that the old credentials
are marked as expired, and a new set is created. This process reduces the attack surface
because if credentials leak, they will only be used for a limited time. By the time someone
finds them, they may no longer be used, or more importantly, this will limit the amount
of time a bad actor can perform their actions for. One common scenario where this helps
is if an employee leaves the company and takes credentials with them or, as in the previous
section, if an intern accidentally publishes their credentials to GitHub.

Blocking public access on S3 buckets
Many companies recently made news in an embarrassing way. They had set their S3
buckets to be publicly accessible, and their data was available to the world. This scenario
can easily be avoided by setting newly created and existing S3 buckets to block all public
access. If you are an administrator, you can set this at the account level so that new
buckets are not allowed to be made public.

124 Securing Your Data

The following screenshot shows the options that are available when setting this setting:

Figure 5.1 – Block Public Access settings for bucket page

It is very rare for an organization to want to allow data to be publicly available. If there
is an excellent reason to do so, it is recommended that you put safeguards that prevent
accidental data from going into the bucket. One approach is to have a separate AWS
account and allow only a few trusted people to access it. An even better system would be
to set up a process that copies data to the public bucket that a second person approves.

Enabling data and metadata encryption and
enforcing it
Enabling data and metadata encryption early on can save a lot of time in the future and be
considered before any project. If requirements change and encryption becomes required
after data is stored unencrypted, some effort will need to be made to encrypt that data. In
addition, any downstream consumers may also need to be changed to decrypt the data.
This process can be avoided if the data is encrypted early in the process. To learn how to
encrypt your data on S3, see the Encrypting your data and metadata in Glue Data Catalog
section, later in this chapter.

Encrypting your data and metadata in Glue Data Catalog 125

Ensuring that auditing is enabled
Enabling auditing on AWS is relatively easy and cost-effective. However, the headache that
results from not having auditing capabilities can be more costly and cannot be enabled
after the fact. For more details on how to enable auditing using CloudTrail logs or S3
server access logs, please see the Auditing with CloudTrail and S3 access logs section, later
in this chapter.

Good intentions cannot replace good mechanisms
Jeff Bezos was quoted to have said, "good intentions never work; you need good
mechanisms." A mechanism is a process that enforces that something is done, regardless
of if people have the best intentions. For instance, having the intention to wake up at
6 a.m. is not as effective as setting an alarm. When it comes to security, it is always best
to have mechanisms by putting in enforcement where possible and auditing to ensure that
the mechanisms are working. An example of enforcement would be to put an S3 bucket
policy that rejects uploads unless the objects are encrypted.

Encrypting your data and metadata in Glue
Data Catalog
There are many ways a malicious person may be able to get access to your data. They may
be able to listen on a network for traffic between two applications. They may be able to
pull a hard drive from a machine, server, or dumpster. They may be able to gain access to
an account that has access to the data they need. Regardless of how the bad actor obtains
your data, you do not want them to read the data, and data encryption is how that is
done. Data encryption takes your data, encodes it using an encryption key, and makes it
impossible to read without the decryption key.

Encryption algorithms where the encryption key and decryption keys are the same
are called symmetric encryption. Algorithms in which the keys are different are called
asymmetric encryption.

Let's look at how we can encrypt data on S3.

126 Securing Your Data

Encrypting your data
When your data is persisted somewhere, it should be encrypted. All the data that Athena
temporarily stores on any disks on their clusters is encrypted and then wiped after
each query. However, you will need to choose how to encrypt data that is stored on S3.
With AWS services, typically, there are four different ways encryption can be done. The
differences between the four relate to where the encryption key is stored and where the
encryption/decryption occurs. Encryption can be done server-side or client-side. With
server-side encryption, S3 performs encryption and decryption. The client will never
see the encryption keys or encrypted data. With client-side encryption, the requester
performs encryption and decryption and S3 will never see unencrypted data. With the
encryption key, S3's encryption key can't be used, nor is an encryption key stored from
a customer's AWS Key Management Service (KMS), nor is a key provided by the
customer. Each of these options has performance, cost, and security considerations,
which we will briefly discuss.

Enabling server-side encryption using S3 keys (SSE-S3)
This is the easiest and cheapest way to encrypt your data; that is, by leveraging S3's
encryption keys. S3 will encrypt each object with a unique key and encrypt the key with
S3's master key. The encrypted key is then stored as metadata for the object, which S3
can use later when reading. If someone did manage to access the raw, unencrypted data,
they would still need S3's master key to decrypt the key that was used to encrypt the data.
Using this encryption method does not have a financial cost, and its performance penalty
should be negligible.

You can enable default encryption within S3. You can set SSE-S3 as the default encryption
by configuring your bucket so that any time an object is written, it will automatically be
encrypted using S3's encryption keys:

Encrypting your data and metadata in Glue Data Catalog 127

Figure 5.2 – Enabling default encryption using S3's keys

Next, we'll look at KMS keys.

128 Securing Your Data

Enabling server-side encryption using customers' KMS keys
(SSE-KMS)
Rather than using S3's master encryption key, you can specify S3 to obtain encryption and
decryption keys from your AWS account's KMS. The credentials that are used to read the
data must have permissions to access the KMS key, and S3 will use the keys. Using this
method is more secure because you can control who can access the keys. If needed, the
KMS key can be deleted if you don't want the encrypted data to be readable by anyone,
essentially making it useless.

Note
The cost of SSE-KMS is higher than SSE-S3 because there is a cost associated
with making API calls to KMS. When S3 is encrypting or decrypting keys
using KMS, it will call the service on your behalf. If you are making significant
calls, this cost can quickly add up. It is recommended that a single bucket key
allows S3 to cache the key to reduce the number of calls to KMS.

You can also mix and match master keys as the key's Amazon Resource Name (ARN)
is stored in the object's metadata. However, you can enforce a KMS key to encrypt the
data if one is not provided:

Figure 5.3 – Enabling SSE-KMS

Encrypting your data and metadata in Glue Data Catalog 129

When enabling SSE-KMS, by default, you can specify if the KMS key is managed by S3
or if you are going to maintain it. If S3 manages the key in your account, then the key
is free, and it enforces a key rotation that is currently set for every 3 years. If you wish
to manage the key, then you will have to pay for the cost of the key. You will also be
responsible for rotating the keys, which is a best practice that limits the blast radius.

Enabling client-side encryption using customers' KMS keys
(CSE-KMS)
CSE-KMS differs from SSE-KMS and SSE-S3 in that encryption and decryption are
done within the client making the request. This method could have a noticeable effect
on performance as encrypting and decrypting is a CPU-heavy operation and is not done
on S3's fleet of servers. This method can also be much more expensive than SSE-KMS
unless KMS key caching is implemented in the caller, which does not exist in Athena
today. However, this method can be more secure with its increased cost. First, if there is
a middleman attack, they can read your data while transferring it to you. A middleman
attack involves a bad actor that has tricked your client into thinking it is talking to S3. At
the same time, it proxies messages between S3 and your client. If the data is decrypted on
the client side, the middleman does not have access to the decryption keys and won't be
able to use the data. This scenario is unlikely to occur because of other mechanisms that
AWS uses to prevent such attacks. Secondly, if S3 becomes compromised, the data cannot
be decrypted because S3 cannot access the keys. Again, this is an improbable scenario.

When uploading to S3 using the AWS SDK, you need to use the
AmazonS3EncryptionV2 API and provide a KMS ARN. If you're not using AWS
SDK, then the x-amz-meta-x-amz-key HTTP header must be provided with the
encrypted data key. To enable this option for reading within Athena, when specifying your
CREATE TABLE statement in Athena, set the has_encrypted_data = true option in
TBLPROPERTIES.

Reading CSE-KMS Files in Athena Using EMRFS with EMR
Athena has difficulty reading CSE-KMS encrypted files when using EMRFS
with EMR and multipart uploads enabled for Parquet files. If you are writing
Parquet files using EMR, ensure that multipart uploads are disabled.

Now, let's compare the different encryption methods.

130 Securing Your Data

Comparing encryption methods
The following table compares some important factors regarding the various encryption
methods we have just discussed:

Figure 5.4 – Differences between different encryption methods on S3

Now, let's learn how we can enforce encryption on data in S3.

Mandating encryption at rest with S3
We can create a mechanism by mandating that any data stored in an S3 bucket uses
encryption. This can be done by setting a bucket policy that allows only a specific
encryption method. See the following example S3 bucket policy, which mandates that
all the objects put into this bucket must use SSE-KMS. You can view and download this
policy by going to https://bit.ly/3u4tGiD.

This policy has two statements. The first statement ensures that the x-amz-server-
side-encryption header is present on any s3:PutObject operation. The second
statement contains a condition that prevents any object from being put into the S3 bucket
without x-amz-server-side-encryption being set to aws:kms.

Athena query results can also be encrypted. When an Athena query completes, it stores
the results in an S3 bucket that you own. Administrators can set a workgroup to encrypt
query results. In the workgroup settings, set the query results to be encrypted using
SSE-KMS, CSE-KMS, or SSE-S3 and check the Override client-side settings box. The
following screenshot shows how to set this up:

https://bit.ly/3u4tGiD

Encrypting your data and metadata in Glue Data Catalog 131

Figure 5.5 – Enforcing encryption on query results

Now that we have learned how to encrypt data, let's look at how we can encrypt our Glue
Data Catalog.

Encrypting your metadata in Glue Data Catalog
Some users may want to encrypt their metadata in addition to their data. Metadata
may contain sensitive information that you may not want to leave unprotected, such
as partition values, table schemas, the location of your sensitive data, and so on. When
encryption is enabled in Glue Data Catalog, the non-exhaustive list of information that is
encrypted includes databases, tables, partitions, and table versions. Enabling encryption
for Glue Data Catalog is relatively simple. The following screenshot shows how to enable
encryption with a few clicks:

Figure 5.6 – Enabling Glue Data Catalog encryption in the Glue console

132 Securing Your Data

Like S3 data encryption, you can specify a Glue service managed KMS key (aws/glue) or
provide a customer-managed KMS key. If having full control over the key is essential,
select your customer-managed KMS key. Otherwise, you can allow Glue to manage the
key at no cost.

Note
Glue only supports symmetric keys and will not work if an asymmetric key is
provided.

Now that we know how to encrypt our data at rest, let's touch on data in transit.

Encrypting your data in transit
All the data that's read within Athena and between clients and AWS services such as
S3 is encrypted using TLS. There is nothing you need to do on your part to enable this.

Now that we know how to encrypt our data, let's look at how we can enable coarse-
grained access controls.

Enabling coarse-grained access controls with
IAM resource policies for data on S3
Coarse-grained access control (CGAC) is a term that does not have an industry-standard
definition. Generally, in this book, when we refer to CGAC in the context of data lakes, we
are referring to object-level permissions such as individual files on S3. If a user has access
to an object, they can access all the data within that file. Fine-grained access control
(FGAC) provides authorization on data within the files, such as columns and rows. We
will discuss FGAC in more detail in the next section.

Within AWS, there is one popular way to achieve CGAC with data on S3. That is through
bucket policies that limit access to IAM principals. We will look at how to enable this in
this section.

Enabling coarse-grained access controls with IAM resource policies for data on S3 133

CGAC through S3 bucket policies
By default, access to S3 buckets is denied unless there are policies that grant access to it.
Regarding a new IAM principal, either an IAM user or role, permissions must be provided
to allow them to access S3 resources. There are several ways to grant permissions, but we
will focus on two general ways to provide permissions in this section. The first way is to
manage permissions to IAM principals within the same AWS account. The permissions
that are granted to the IAM principal will be used by Athena to access the underlying data.
The second way is to attach S3 bucket policies. Bucket policies allow more flexibility in
that they can grant cross-AWS account access. They also have additional conditionals that
can fine-tune access and enforce how users interact with that bucket.

If any IAM or S3 bucket policies grant access and there are no policies that deny access to
the request, the principal will be able to perform the action on the S3 resource. Otherwise,
the request will be rejected. The following diagram illustrates this:

Figure 5.7 – IAM permissions on S3 buckets and objects

134 Securing Your Data

Let's look at how we can attach IAM policies to IAM users or roles to control data access.
There are two common ways organizations can control access through IAM. First, they
can create an IAM user for each of the end users and provide them with AWS credentials
and/or console access. Second, they can interact directly with S3 or indirectly using an
AWS service such as Athena. An IAM group can be created with specific permissions to
S3, and IAM users can be placed within that group. An IAM user that belongs to multiple
groups will get a union of all the groups' policies. Using groups is preferred for managing
permissions rather than manually setting permissions for individual IAM users because
it is a lot less manual work. The other method is to provide permissions to IAM roles and
allow your users to assume those roles. Either way, when the IAM principal submits a
query to Athena, their permissions will be applied.

For small organizations, providing users with IAM credentials can be a convenient and
quick way to control access to AWS resources. However, as organizations grow larger,
managing IAM users can be challenging to manage. Also, organizations may want their
users to federate into an IAM role using an identity provider to use their existing company
login and password credentials. We will talk about this in more detail in Chapter 7, Ad
Hoc Analytics.

An IAM policy that attaches to an IAM principal must have the following fields: a
list of actions and resources and whether the rule grants or denies the operation on
the resource. The following is an example policy that grants the analyst IAM user
permission to perform actions on the bucket with an ARN of packt-serverless-
analytics-01234567890:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "ListBucketOnBucket",

 "Effect": "Allow",

 "Action": "s3:ListBucket",

 "Resource": "arn:aws:s3:::packt-serverless-
analytics-01234567890"

 }, {

 "Sid": "ReadObjectPermissions",

 "Effect": "Allow",

 "Action": ["s3:GetObject", "s3:PutObject"],

 "Resource": "arn:aws:s3:::packt-serverless-
analytics-01234567890/*"

Enabling coarse-grained access controls with IAM resource policies for data on S3 135

 }

]

}

This policy can be attached to an IAM group, an IAM user, or an IAM role. It
will allow the principal to list all the objects within the packt-serverless-
analytics-01234567890 bucket and read and write objects within that bucket.

This is done with two statements. The first statement allows the user to perform the
s3:ListBucket operation on the bucket. The second statement allows the user to
perform s3:GetObject and s3:PutObject in the same bucket. You may notice that
the resource contains /* at the end of the second statement and not the first. The reason
for this is that the first statement's operation is a bucket-level operation. The operations in
the second statement are at the object level.

The previous policy can also be attached to an S3 bucket with one difference. Each of the
statements must provide a list of principals. These principals can be applied to entire AWS
accounts, IAM principals in the accounts, AWS services, federated users, and anonymous
users (public access). There are some benefits to attaching bucket policies rather than
attaching them to IAM principals. First, bucket policies have more conditional attributes
it can check for. For example, the x-amz-server-side-encryption header can be
matched to enforce encryption.

Another example is limiting access to the bucket from a VPC or IP address range,
although queries that run on a bucket with this condition are not supported with Athena.
Instead, you can use the aws:CalledVia condition to prevent access to an S3 bucket,
except when it's called from Athena. Secondly, you can provide IAM principles in other
AWS accounts access to the bucket. For example, an AWS account for a beta environment
can be granted access to read-only data in a production account's S3 bucket. The following
S3 bucket policy is an example of limiting read access to the packt-serverless-
analytics-0123456789 bucket to only a few IAM users that can only be called from
Athena:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "ReadObjectPermissions",

 "Effect": "Allow",

 "Principal": {

 "AWS": [

136 Securing Your Data

 "arn:aws:iam::9876543210:user/luke",

 "arn:aws:iam::9876543210:user/leia"

] },

 "Action": ["s3:ListBucket", "s3:GetObject",
"s3:PutObject"],

 "Resource": ["arn:aws:s3:::packt-serverless-
analytics-01234567890",

 "arn:aws:s3:::packt-
serverless-analytics-01234567890/*"],

 "Condition":{

 "ForAnyValue:StringEquals":{

 "aws:CalledVia":[

 "athena.amazonaws.com"

]

 }

 }

 }

]

}

If you decide to go with attaching policies to IAM principals and/or S3 buckets, be aware
that there are service quotas. There are limits on how large policies can be or the number
of policies that can be attached. For S3 bucket policies, you can only have a single policy
and it can only be up to 20 KB in size. There are limits to the number of policies you can
attach to an IAM user or role, the number of groups an IAM user can belong to, and so on.
For a full list, see https://docs.aws.amazon.com/IAM/latest/UserGuide/
reference_iam-quotas.html.

Although many use cases can be satisfied using IAM to provide CGAC, FGACs may be
needed for other use cases. Let's look at how we can achieve that.

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html

Enabling FGACs with Lake Formation for data on S3 137

Enabling FGACs with Lake Formation for data
on S3
FGAC differs from coarse-grained data access control by providing access control
finer than at a file or directory level. For example, FGAC may provide column filtering
(setting permissions on individual columns), data masking (running the value of
a column through some function that disambiguates its value), and row filtering
(allowing users to see rows in a dataset that only pertain to them).

There are many open source and third-party applications that provide this access
control level within the big data world. Examples of open sourced software include
Apache Ranger and Apache Sentry. An example of a third-party application is
Privacera. First-party integration is also available through AWS Lake Formation.

One of AWS Lake Formation's major components is providing FGACs to data within
the data lake. Administrators can determine which users have access to which objects
within Glue Data Catalog, such as tables, columns, and rows. We will discuss setting up
and managing Lake Formation access control in depth in Chapter 6, AWS Glue and AWS
Lake Formation.

Auditing with CloudTrail and S3 access logs
Auditing is an essential part of designing a secure system. Auditing provides validation
that existing access policies are working and when there is a security incident, the impact
of the incident and hopefully the bad actors. AWS has two native auditing mechanisms for
data access that we will look at in detail: AWS CloudTrail and Amazon S3 access logs.

Auditing with AWS CloudTrail
AWS CloudTrail is a service that provides auditing capabilities for API calls that are
made to all AWS services that support CloudTrail. When an AWS account is created,
CloudTrail logging is enabled by default to help manage APIs. These APIs perform actions
on AWS resources such as creating or describing EC2 instances, creating S3 buckets, or
submitting Athena queries. The other class of events is data events. These are AWS APIs
that are called on a resource itself. At the time of writing, S3 calls to list, get, put, or delete
operations and Lambda invocations are considered data events.

138 Securing Your Data

Management events are created when an API is called that manage resources, such as
starting an EC2 instance or configuring an S3 bucket. The first copy of management events
is free, and any additional copies are charged at $2.00 per 100,000 events. The initial events
are pushed to CloudTrail's system, which retains the events for up to 90 days, and can be
downloaded in JSON or CSV format. If there are requirements to keep this data for longer
than 90 days, you will need to create a new trail that stores events in S3, and you will incur
a cost for this. You can then use Athena to query the exported audit records. The following
screenshot shows what CloudTrail's Event history page looks like:

Figure 5.8 – Event history in AWS CloudTrail

Auditing with CloudTrail and S3 access logs 139

The following screenshot shows the type of information stored in the event:

Figure 5.9 – CloudTrail event details for a GetTables event

Management events can be useful when tracking the usage of AWS services. For Athena,
the StartQueryExecution and GetQueryExecution calls can be tracked, and
information about who submitted the query and the query string is logged.

What management events do not provide is data events. For analytics, this means events
that retrieve data from S3. To get data events, you will need to enable the data events
and incur a cost of $0.10 per 100,000 events, plus any S3 storage the log files may take
up. You can set up which buckets and prefixes you want to enable logging on or provide
more advanced filters. S3 can generate a massive amount of events, which could lead
to high costs. Using filters to capture events from only the buckets containing sensitive
information may balance cost and auditability.

140 Securing Your Data

If you create new trails that export CloudTrail events to S3, you can use Athena to query
the audit logs. Click Create Athena table in the top right-hand corner, as shown in the
following screenshot:

Figure 5.10 – The Create Athena table button in CloudTrail's Event history

This will create a new Athena table.

Auditing with S3 server access logs
S3 access logs differ from CloudTrail logs in a few ways. First, they provide more
detailed information about a particular event. Second, it is free to enable, and the only
cost that's incurred is the S3 storage costs of the logs. Lastly, the logs' delivery is done
with the best effort, meaning that the logs' delivery is not guaranteed. However, from
experience, this is rare.

To enable S3 access logs, you will need to enable it on a per-bucket basis and provide
a bucket and an optional prefix for where logs are written. You can do this through
the console by going to the bucket's Properties tab and enabling Server access logging,
as shown in the following screenshot:

Figure 5.11 – Enabling Server access logging

Summary 141

Now that we have covered the general security aspects of data access on AWS, let's
summarize what we learned in this chapter.

Summary
In this chapter, we have gone through some ways that we can protect data from malicious
users. We know that no system can ever be 100% secure, but we can take some simple
steps to avoid headaches in the future.

We looked at how encrypting your data early in projects can help save time and
resources and how to encrypt data at rest and in transit. We looked at the difference
between coarse-grained access versus FGACs to implement authorization. Authorization
on S3 can be done through S3 bucket policies and/or IAM users, and role policies provide
CGACs. Lastly, we looked at how auditing can be enabled and compared these approaches
based on their cost and the information they can deliver.

We will dive into Lake Formation, an AWS service that creates and administrates a data
lake easier and faster, in the next chapter.

Further reading
For more information regarding what was covered in this chapter, take a look at the
following resources:

• Creating tables based on encrypted datasets in S3: https://docs.aws.amazon.
com/athena/latest/ug/creating-tables-based-on-encrypted-
datasets-in-s3.html

• Encrypt Glue Data Catalog: https://docs.aws.amazon.com/glue/
latest/dg/encrypt-glue-data-catalog.html

• Example walkthroughs managing access to S3: https://docs.aws.amazon.
com/AmazonS3/latest/userguide/example-walkthroughs-
managing-access.html

• IAM Best Practices: https://docs.aws.amazon.com/IAM/latest/
UserGuide/best-practices.html

• Example S3 Bucket Policies: https://docs.aws.amazon.com/AmazonS3/
latest/userguide/example-bucket-policies.html

• Amazon S3 Policy Keys: https://docs.aws.amazon.com/AmazonS3/
latest/userguide/amazon-s3-policy-keys.html

https://docs.aws.amazon.com/athena/latest/ug/creating-tables-based-on-encrypted-datasets-in-s3.html

https://docs.aws.amazon.com/athena/latest/ug/creating-tables-based-on-encrypted-datasets-in-s3.html

https://docs.aws.amazon.com/athena/latest/ug/creating-tables-based-on-encrypted-datasets-in-s3.html

 https://docs.aws.amazon.com/glue/latest/dg/encrypt-glue-data-catalog.html

 https://docs.aws.amazon.com/glue/latest/dg/encrypt-glue-data-catalog.html

 https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-walkthroughs-managing-access.html

 https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-walkthroughs-managing-access.html

 https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-walkthroughs-managing-access.html

 https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

 https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

 https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-bucket-policies.html

 https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-bucket-policies.html

https://docs.aws.amazon.com/AmazonS3/latest/userguide/amazon-s3-policy-keys.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/amazon-s3-policy-keys.html

6
AWS Glue and AWS

Lake Formation
Although this book focuses on Athena and its rich functionality, you should be aware
of AWS Glue and AWS Lake Formation. These services can be used with Athena to
implement use cases that Athena cannot alone. AWS Lake Formation was created to help
customers simplify creating data lakes by providing tools to help ingest data, secure data,
and reduce the time it takes to get a functional data lake. Lake Formation is a layer that
exists on top of AWS Glue and uses Glue's components as building blocks.

One of the main features that Lake Formation brings is fine-grained access controls
and auditing to several AWS services, including Athena. Lake Formation augments
AWS IAM to help secure the data lake. IAM provides authentication of the user, while
Lake Formation provides authorization based on the principle that is requesting data.
Every authorization request that goes through Lake Formation generates audit events in
CloudTrail that are reported in the Lake Formation console, providing a single central
place to administer and monitor the data lake.

144 AWS Glue and AWS Lake Formation

AWS Lake Formation also provides a new table type called the governed table, which
provides four key benefits. First, it provides atomic, consistent, isolated, and durable
(ACID) transactions for metadata and data updates. Second, it provides automatic
compaction of data, combining small data files to produce fewer and larger files to
optimize query performance. Third, you can run queries on datasets as if they were run
at a different point of time to see what the data looked like in the past before certain
transactions have been applied. This feature is usually called time traveling. Fourth,
governed tables provide row and cell-level filtering to enforce user permissions.

Fine-grained access control and governed tables directly integrate with Athena to
provide security and enhanced functionality. Lake Formation and Glue can also provide
functionality that aids in creating and maintaining a data lake. We will look at some of
the functionality that Lake Formation and Glue provide that could solve some of the
challenges that Athena cannot solve on its own.

In this chapter, we will cover the following topics:

• What AWS Glue and AWS Lake Formation can do for you

• Securing your data lake with Lake Formation

• What AWS Lake Formation governed tables can do for you

Technical requirements
For this chapter, if you wish to follow some of the walkthroughs, you will need the
following:

• Internet access to GitHub, S3, and the AWS Console.

• A computer with either Chrome, Safari, or Microsoft Edge installed on it.

• An AWS account and accompanying IAM user (or role) with sufficient privileges
to complete this chapter's activities. For simplicity, you can always run through
these exercises with a user that has full access. However, we recommend using
scoped-down IAM policies to avoid making costly mistakes and learn how to best
use IAM to secure your applications and data. You can find a minimally scoped
IAM policy for this chapter in this book's accompanying GitHub repository, which
is listed as chapter_6/iam_policy_chapter_6.json. This policy includes
the following:

 � Permissions to create and list IAM roles and policies:

 � We will be creating a service role for an AWS Glue Crawler to assume.

 � Permissions to read, list, and write access to an S3 bucket.

 145

 � Permissions to read and write access to Glue Data Catalog databases, tables,
and partitions:

 � You will be creating databases, tables, and partitions manually and with
Glue Crawlers.

 � Access to run Athena queries.

What AWS Glue and AWS Lake Formation can
do for you
Lake Formation and Glue provide tools that aid in creating data lakes and extending
functionality to your new or existing data lakes. There is a wide variety of functionality
that it provides. In this section, we will go through a non-exhaustive list of features. An
entire book could be written on Lake Formation and another on Glue, so we will not go
through all of their features in detail in this chapter.

Except for fine-grained access control and governed tables, all features do not directly
change how Athena works. If you start by not adopting any of the Lake Formation or
AWS Glue features, you can adopt them in the future.

Let's take a look at some of the AWS Glue and Lake Formation features and how they can
supplement Athena.

Using AWS Glue to cleanse, normalize, and transform data
Amazon Athena's performance and cost are highly dependent on the data format and
layout of the data. In many scenarios, it may be cost-effective and improve performance
to provide faster response times to users and applications to transform the data. We will
dive into the details of the scenarios and decisions regarding when to perform this in
Chapter 9, Serverless ETL Pipelines, so it may be a good idea to skip ahead if you are not
familiar with this process.

This is where AWS Glue ETL can be really helpful for performing data transformations.
AWS Glue ETL is a serverless ETL service that allows customers to write Spark code
and execute it without provisioning resources. Many organizations use Apache Spark
to perform their transformations and AWS Glue can be more cost-effective than
managing Spark yourself. The transformed data after using AWS Glue can then be read
and analyzed using Amazon Athena. AWS Glue ETL charges based on the resources that
you use. ETL jobs can scale as Glue ETL provides different hardware types and instances
in the Spark cluster to run on.

146 AWS Glue and AWS Lake Formation

In this section, we will provide a quick summary of what Glue ETL can do. We will look at
two ways to author jobs; that is, using Glue ETL and Glue Studio. Let's look at each one.

Glue ETL
AWS Glue ETL uses Apache Spark with Scala and PySpark, a Python-only runtime for
lightweight jobs, and Apache Spark Streaming for steaming jobs. To execute a job, a user
would create a script, store it in S3, and register it with an ETL job within Glue. Scripts
can be executed with a wide variety of properties to give users flexibility and control. The
following screenshot shows a sample script editing screen for a PySpark job within the
Glue ETL console:

Figure 6.1 – Sample Glue ETL script editing screen

Once the script is ready to be run, the job can be executed using the run job dialog screen,
as shown in the following screenshot:

 147

Figure 6.2 – Sample Glue ETL run screen

The Glue console can be used to look at the history of invocations of the job and provide
job run information, logs, and other relevant information, as shown in the following
screenshot:

Figure 6.3 – Sample Glue ETL run

148 AWS Glue and AWS Lake Formation

Many features make Glue ETL powerful, including Job Bookmarks, which only processes
new files when reading a data source, Spark UI to monitor and debug Spark jobs, and
publishing job metrics, to name a few.

Now, let's take a look at AWS Glue Studio, which helps with authoring and monitoring
Glue ETL jobs.

AWS Glue Studio
AWS Glue Studio is a visual UI that simplifies the process of creating and monitoring
Glue ETL jobs. Glue Studio provides enhanced visual editing for Glue jobs and
dashboards, which provides job metrics such as running, completed, and failed jobs. It is
an ideal tool for non-programmers who are not comfortable with writing code or those
that want to do simple transformations.

The visual editor allows users to create complex jobs using mouse clicks instead of writing
Spark code. You can piece together three building blocks: sources of data such as S3,
RDS databases, Redshift, Kinesis, and Kafka streams; transformations on the data such
as joining datasets, renaming, dropping, or filling in empty values in columns; and
specifying one or more targets to store the results in various formats. The following
screenshot of Glue Studio shows a sample job. Here, we have taken the NYC Taxi dataset
and joined it to a location dataset to enrich it by translating the location IDs. We then
output the resulting dataset to S3 using the Parquet format:

Figure 6.4 – Glue Studio visual editor screen to enrich the NYC Taxi dataset

 149

Once the job has been authored within the visual editor, the source code that implements
the execution graph will be auto-generated. The code can then be executed as a regular
Glue ETL job on a scheduled basis or automatically triggered by an external event. You are
then taken to a dashboard where you can monitor Glue ETL job executions. When you
have multiple Glue ETL jobs that run regularly, monitoring and debugging jobs become
essential to ensure data is getting generated successfully and on time. Glue Studio has
a Monitoring tab that shows Glue ETL jobs that have run, their run state, their overall
DPU usage to track costs, and other metrics. The following screenshot shows an example
dashboard and the available metrics:

Figure 6.5 – Sample of the Glue Studio Monitoring screen

While AWS Glue Studio builds on top of AWS Glue ETL, Glue also has a separate product
that makes it even easier to transform, cleanse, and explore datasets to get them ready for
applications and machine learning. Let's take a quick look.

150 AWS Glue and AWS Lake Formation

AWS Glue DataBrew
AWS Glue DataBrew is a data preparation and exploration tool that is entirely visual
and doesn't require any coding. Unlike Glue Studio, where the visual job editor generates
Glue ETL code, Glue DataBrew generates something else call recipes. Recipes are
a collection of operations or transformations that are applied to a dataset that can be
saved and applied to other datasets.

Glue DataBrew's visual editor provides rich functionality designed to make data
preparation simple for all users. When a dataset is loaded into the editor, it will sample
the dataset to surface key characteristics about it. This includes data quality-related
metrics such as distinct values and missing values that may help decide on the type of
transformations needed. Once a transformation has been selected, it can be previewed
on the sample data, which makes iterating and testing easier and faster. The following
is a sample screenshot of Glue DataBrew's visual editor, which shows some sample
transformations on a column called object_name on the sample dataset:

Figure 6.6 – Glue DataBrew sample screen

 151

Glue DataBrew, at the time of writing this book, has over 250 operations and
transformations that can be applied to datasets. The transformations range from simple
column transformations such as changing data types or renaming columns, data cleaning
functions such as changing case on strings, data quality operations such as filling in
missing or empty values, and change column structures such as splitting a single column
into multiple columns or merging them, to name a few.

Glue DataBrew's pricing is different than Glue ETL's. Glues DataBrew's visual editor
charges by the session hour billed per half-hour, which is currently $2.00/hr. When
DataBrew executes a recipe, it will use DataBrew execution nodes. Each node has
4 vCPUs and 16 GB of memory and is charged per hour and billed per minute.

Now that we've learned how individual datasets can be transformed and cleansed, let's
look at AWS Glues Workflows and how it can piece together multiple transformations that
generate data pipelines.

Using AWS Glue Workflows
Glue has many building blocks that can be used together to create what is known as
data pipelines. Data pipelines consist of multiple extract, transform, and load jobs that
take a complex operation and break them down into manageable parts. Some parts can
be reused, run on different execution engines, and executed at other times. The goal is
to make pipelines easier to optimize, make them easier to debug and monitor, and then
check data quality in different stages to help identify issues earlier.

For example, suppose we are a seller on Amazon.com, and we get raw sales data put
into an S3 bucket. We want to transform the data to feed it into a reporting system to
generate reports. Before we can generate the reports, we need to cleanse the data, join
the data to a product table that translates Amazon product IDs, called ASINs, to product
names, join to an inventory table to show how many items we have in stock, and then
group all the results by report periods. All these steps can be done within a single job, but
our job may run for a long time, and diagnosing data quality issues may be complex. We
may also want to save the output of enriched data before grouping the data to generate
other reports or share it with another team. It would make sense to break the single job
into multiple steps to reuse the job's output.

152 AWS Glue and AWS Lake Formation

To manage the order of the job executions and dependencies, we would need an
orchestrator to run these jobs and monitor them. This is where Glue Workflows can help.
Glue Workflows allows Glue ETL jobs, Glue Crawlers, and Glue Triggers to execute
in a particular order or workflow. The following screenshot shows a Glue Workflow that
can be created to manage the report generation flow we discussed previously. Here, a
workflow has been defined using Glue Workflows for the process of report generation:

Figure 6.7 – Glue Workflow of Glue ETL jobs, Glue Triggers, and Glue Crawlers to make a data pipeline

With a workflow defined, you can execute it based on a Glue Trigger. Glue Triggers kick
off an action based on job flow dependencies that need to be met to execute the next
action in the flow. Glue Triggers can be triggered on a fixed schedule, on-demand, or wait
for other tasks to finish, such as Crawlers or Glue ETL jobs. In the preceding example, the
workflow triggers are based on a schedule that kicks off the workflow at midnight every
night. Once the workflow begins to execute, you can monitor each component, as shown
in the following screenshot:

 153

Figure 6.8 – Glue Workflow execution monitoring

In this way, we can monitor the workflow and look over its details as well.

Using AWS Lake Formation blueprints
A standard process that users perform within their data lakes is ingesting data. With
a few clicks within the Lake Formation console, you can ingest data from databases,
AWS CloudTrail, and load balancer logs. Lake Formation provides blueprints, a set
of predefined code templates orchestrated with a Glue Workflow, to ingest from these
data sources.

154 AWS Glue and AWS Lake Formation

Lake Formation provides two types of database blueprints that can extract snapshots of
data, or pull data incrementally; that is, data that has been inserted over a certain time.
To create a blueprint, select the type from the Lake Formation console, as shown in the
following screenshot:

Figure 6.9 – Available blueprint types in Lake Formation

All Lake Formation blueprints require that you provide information about the source,
the destination path in S3, and the frequency to pull the data.

Now, let's take a quick look at Glue Crawlers.

Using AWS Glue Crawlers
Glue Crawlers are processes that scan S3 for datasets and register the datasets into Glue
Data Catalog. The Crawler reads a sample of the data in the dataset to retrieve or infer
the dataset's schema, making registering datasets much easier and less error-prone. We
touched on Glue Crawlers in previous chapters, and we take an in-depth look at them in
Chapter 4, Metastores, Data Sources, and Data Lakes.

Now, let's look at how Lake Formation can help with securing your data lake.

 155

Securing your data lake with Lake Formation
As we mentioned previously, Lake Formation leverages AWS Glue features, including
Glue Data Catalog, to simplify creating, accessing, and securing data lakes. Athena uses
Glue Data Catalog as its default Metastore and interacts with the service to retrieve
metadata to execute queries against tables stored in Glue Data Catalog. Lake Formation
adds a security layer on top of Glue tables by eliminating the need to secure individual
tables using IAM. When Athena and other AWS analytics services need to access a table,
they request permission from Lake Formation, which will authorize based on the calling
principal's access policy. The following diagram illustrates this at a high level:

Figure 6.10 – How services interact with Lake Formation

In the following section, we will discuss the benefits of using Lake Formation for
authorization and then look at some limitations to consider.

Benefits of using Lake Formation for authorization
Let's look at some of the benefits of using Lake Formation for authorization with Athena
and AWS in general.

156 AWS Glue and AWS Lake Formation

Finer grained data access controls
Lake Formation authorization occurs at a finer level than what can be achieved using
IAM permissions alone. IAM policies can only provide permissions to objects stored in
S3 and cannot control what the user can access within the files. This is what we refer to as
coarse-grained access control. Lake Formation provides finer-grained access control by
allowing us to define policies for subsets of data within an S3 object, namely column- and
row-level control. This can be useful for various scenarios. If a dataset contains columns
that contain sensitive data, instead of transforming the data to remove these columns, you
can leave them in and restrict users to only see those columns containing non-sensitive
information. Many times, this is required to meet compliance regulations.

Applying policies at the database, table, and column level
Access policies in Lake Formation are applied to databases, tables, and columns but not
S3 paths. This has some benefits in that an administrator does not need to know about the
underlying data in S3 when granting and revoking permissions. Tables can be used as an
abstraction to the underlying data.

Scalability
Lake Formation permissions do not have a set size limit compared to what is allowed
by IAM policies alone. There are limits to the number of inline and managed policies
attached to an IAM role or IAM user with IAM policies. Large organizations could reach
these limits and would need to develop custom code to generate credentials on the fly or
split users into different AWS accounts.

Separating permissions with credentials
One of the leading security benefits of using Lake Formation is that the user running
Athena queries does not need to configure access to the underlying data. Instead, when
Athena needs access to the data, it sends a request to Lake Formation on behalf of the
user to authorize them. If the request is authorized, temporary AWS credentials are
provided to access the data. This separates the IAM permissions from the Lake Formation
permissions. These temporary credentials are provided to the calling service – in this case,
Athena – and not to the user to ensure they can only access data from a trusted service
and not directly. When a Glue table is registered with Lake Formation, IAM permissions
to S3 and the Glue table can be safely removed. All requests are logged, which can be
audited. This flow can be challenging to follow, which is why we have provided the
following diagram to help illustrate it:

 157

Figure 6.11 – How Athena interacts with Lake Formation to provide access control

For advanced users who use an identity provider to federate access from a directory
service such as Microsoft Active Directory, Lake Formation can authorize the federated
user and the directory groups they belong to. For example, if UserA federates and assumes
the role of RoleB, then authorization can be done using UserA rather than RoleB. This
is very useful when multiple users are assuming the same role to gain access to AWS
services.

Security policies applied consistently across AWS services
Lake Formation provides a central administrative tool to control access to your data
from AWS Glue, Amazon Athena, Amazon EMR, Amazon Redshift using Spectrum,
and Amazon SageMaker. Access policies that are set in Lake Formation are applied to
all Amazon Athena queries, Amazon Redshift queries on tables in S3 using Spectrum,
AWS Glue and Amazon EMR Spark jobs, and Amazon SageMaker machine learning
exploration using notebooks, pre-processing, and training.

Consistent security across AWS accounts
Many customers have adopted splitting their lines of business or groups using multiple
AWS accounts. This allows for use cases where there is a central AWS account that
contains the data lake, and different AWS accounts are the producers and consumers of
data. Lake Formation allows you to share datasets with other AWS accounts by enforcing
permissions on the metadata and data from a central place. Once data has been shared
with consumer accounts, users can run queries in Athena against these tables.

158 AWS Glue and AWS Lake Formation

Although this can be done using IAM policies, direct data access would need to be
provided to other accounts. This results in a more complex set of policies that could
be challenging to manage and would not allow for fine-grained access controls such as
column-level or row-level access.

Limitations and considerations when using Lake Formation for
authorization
Although there are many benefits to using Lake Formation for fine-grained access control,
some limitations and considerations are important to understand when deciding to
adopt. This list may change as Lake Formation continues to release new features, and we
will go through a subset of items. A more complete list is located at https://amzn.
to/3nwAvGN. If you have any questions, please contact your AWS representative or
AWS support.

Athena query results cannot be managed by Lake Formation yet
When Athena runs a query, the query's results are stored in S3 in the customer's account.
When results are requested through Athena APIs, they are read from S3 by Athena
and returned to the caller. This ensures that customers have complete control over the
resulting data. However, Lake Formation does not currently manage access permissions
on S3 paths, but rather only catalog resources such as databases, tables, and columns. For
this reason, it is recommended to use another mechanism to limit access to the query
results. One solution is to use Athena workgroups to force the query result's location
to a particular S3 location, and then employ IAM policies so that the results cannot be
read by anyone outside the workgroup.

Athena does not query tables managed by Lake Formation that are
encrypted using CSE-KMS encryption
S3 locations that are registered with Lake Formation cannot use CSE-KMS encryption
with Athena yet. We do not recommend using CSE-KMS if possible, as discussed in
Chapter 5, Securing Your Data. If this is not possible, then it is not recommended to use
Lake Formation for data access controls and to rely on IAM policies instead.

Table partitions data must be located inside the tables directory
In the majority of cases, partition data is stored in a subdirectory inside the table's
location. For example, if a table's location is s3://my_bucket/my_table/,
then the partitions would be located at s3://my_bucket/my_table/my_
partition=val1/ and s3://my_bucket/my_table/my_partition=val2/.
If you have a partitioned table where the partition's location is not under the table's
location, then Athena with Lake Formation authorization will not work.

https://amzn.to/3nwAvGN
https://amzn.to/3nwAvGN

 159

Now that we have gone through a subset of limitations, let's look at enabling Lake
Formation for data access control with Athena.

Walkthrough to enable Lake Formation for access control
To learn the process of enabling Lake Formation for access control, it is best to go through
a walkthrough. This section will go through a sample setup for a new database that will
have its access controlled using Lake Formation. We will test the access controls using
Athena. If you wish to follow along, you will need to create two IAM users and an S3
bucket that will contain sample datasets. The first user will be given administrative access
to Glue and Lake Formation to grant and revoke access to our data lake. A sample IAM
policy for this user is available at https://bit.ly/3er86iv. The second user will
be our Athena user, who will be able to run queries. A sample IAM policy for this user is
available at https://bit.ly/2R87t4B.

The process that we will be going through will contain four steps as follows:

1. First, we will create and register a data lake administrator.
2. Then, we will register our S3 location with Lake Formation for management.
3. After that, we will grant permissions to our database and tables.
4. Finally, we will test the permissions that we have granted with Athena.

Upgrading Production Accounts to use Lake Formation Access Controls.
If you are looking to upgrade existing AWS accounts and databases, it's
strongly suggested that you test the process in a non-production account
first and document the steps taken. The upgrade process may look slightly
different depending on factors such as data being encrypted, the IAM users/
roles, existing policies, and more. The process of upgrading existing databases
to use Lake Formation can be a little complicated. However, going through this
process should give you a solid understanding of the pieces of Lake Formation
that will make the upgrade process easier to navigate.

https://bit.ly/3er86iv
https://bit.ly/2R87t4B

160 AWS Glue and AWS Lake Formation

Creating and registering a data lake administrator
The first step is to register data lake administrators. For this walkthrough, I have created
an IAM user named athena-lakeformation-admin that will act as our admin. We
must select the administrative roles and tasks within the Lake Formation console and then
click on the Choose administrators button to add our administrator user. Once we've
done that, our console should look like this:

Figure 6.12 – Data lake administrator's screen

Once athena-lakeformation-admin has been added, we can switch to that user
for the remainder of the interactions with the Lake Formation console. The next step
is to register an S3 location with Lake Formation.

Registering an S3 location
The next step is to register our S3 location so that it can be accessed by Lake Formation.
This process grants permissions to the Lake Formation service to assume an IAM role so
that the service can interact with the data within the S3 location. When an authorization
request is made to Lake Formation by an AWS service on behalf of an end user for a
dataset, Lake Formation will assume this role and create temporary credentials. For this
walkthrough, we will allow Lake Formation to assume a Service Linked Role, a type
of IAM role that can only be used by AWS services. The AWS service will grant the role
with the least amount of privilege to perform actions on your behalf. Once the Service
Linked Role has been created, you can view the role in your IAM console and review
the permissions that were granted to it. The only scenario when you would not want
to use a Service Linked Role is when you want to manually manage permissions or use
EMR with Lake Formation.

 161

The following screenshot shows the Register location screen, which is where you can
register a bucket named packt-serverless-analytics-888889908458-
lakeformation using the Service Linked Role:

Figure 6.13 – Registering an S3 location with Lake Formation

Registering an S3 Location with Encryption Enabled
If you're registering an S3 location that has encryption enabled, some
additional steps must be followed. See https://amzn.to/3hf39uW for
more information on how to enable encrypted S3 paths.

Before registering a new S3 location, it is good to review the permissions that have
already been granted to the S3 location to ensure that the registration process doesn't
give permissions to unintended principals.

Now that we have registered an S3 location with Lake Formation, let's grant permissions
for our admins to manage datasets in the storage location.

https://amzn.to/3hf39uW

162 AWS Glue and AWS Lake Formation

Granting permissions to an S3 location
The next step is to grant permissions to S3 locations for users that we wish to create
databases and tables for. There is no other reason to grant users permissions to specific
S3 locations. For this walkthrough, we will grant our athena-lakeformation-admin
user permissions, as shown in the following screenshot:

Figure 6.14 – Granting permissions to an S3 location for Lake Formation

The Grantable checkbox allows this user to grant other users permissions to this
location as well. For example, if we wanted athena-lakeformation-UserA to
grant permissions to athena-lakeformation-UserB, we would set Grantable for
athena-lake-formation-UserA.

 163

With permissions granted to athena-lakeformation-admin, let's create our
database.

Creating and configuring a database
This step will create a new database called packt_serverless_analytics_
lakeformation so that we can register tables within it. This database will be configured
so that Lake Formation only manages its permissions. The following screenshot shows
how to create the database within the Lake Formation console:

Figure 6.15 – Creating a database in Glue Data Catalog for Lake Formation permissions

164 AWS Glue and AWS Lake Formation

We want to make sure that we uncheck Use only IAM access control for new tables in
this database. We want Lake Formation to manage all permissions to our tables within
the packt_serverless_analytics_lakeformation database.

If you look at the data permissions screen for the database and/or tables within the
database and see that the IAMAllowedPrincipals principal has permissions,
revoke its access. The IAMAllowedPrincipals group is a special group within Lake
Formation that grants permissions to any IAM principal to interact with this location.
Removing it will make Lake Formation the only source for permissions. The following
screenshot illustrates this:

Figure 6.16 – Data permissions for database packt_serverless_analytics_lakeformation

Now, register a table that exists within your S3 bucket. For our walkthrough, we will
register our NYC Taxi dataset as nyc_taxi. Now, we must grant permissions to our
athena-lakeformation-UserA to access the database and tables of packt_
serverless_analytics_lakeformation.

 165

Granting permissions to a user
If we log in as athena-lakeformation-UserA and we go to Athena, we will see that
the packt_serverless_analytics_lakeformation database is not visible, as
shown in the following screenshot:

Figure 6.17 – The athena-lakeformation-UserA user's list of databases in
Athena before being granted permission

166 AWS Glue and AWS Lake Formation

Let's add permissions for athena-lakeformation-UserA by permitting them to
describe the database, as shown in the following screenshot:

Figure 6.18 – Granting athena-lakeformation-UserA permission to the
packt_serverless_analytics_lakeformation database

 167

This has granted the user to see the database within Athena, as shown in the following
screenshot:

Figure 6.19 – The athena-lakeformation-UserA user's list of databases in Athena after being granted
permission

168 AWS Glue and AWS Lake Formation

Then, grant the user access to query the nyc_taxi table and exclude the tip_amount
column as it may be sensitive data for the user to query. The following screenshot shows
how to grant this permission:

Figure 6.20 – Granting permission to nyc_taxi table to the athena-lakeformation-
UserA user, excluding the tip_amount column

 169

Note
If you have a filter on included or excluded columns, you should not select
Describe permissions as you may receive an error message.

After granting these permissions, the user can query the table within Athena but will not
get the tip_amount column:

Figure 6.21 – Athena console querying the nyc_taxi dataset with column tip_amount not available

Now that we have enabled Lake Formation for Athena, let's look at governed tables and
how they differ from regular tables.

What AWS Lake Formation governed tables
can do for you
Lake Formation introduced a new table format called governed tables. Governed tables
provide many features that aim to solve many of the pain points users have when storing
data on S3. We have an entire chapter, Chapter 14, Lake Formation – Advanced Topics,
dedicated to it, but we will summarize many of the benefits here. Let's take a look.

170 AWS Glue and AWS Lake Formation

Transactions on tables stored in S3
Distributed filesystems such as Hadoop's Distributed File System and Amazon S3 are
excellent choices for storing vast amounts of data and querying them. They also excel
at overwriting files and deleting them. However, they were not designed to update and
delete data within files. To support this functionality, tools have to download the file,
find and update the rows, and then replace the entire file with the new one. This process
can be very expensive as you will need to read the whole dataset to find the row. Indexes
on primary columns can be added for some file formats to help find which files need
replacing. However, queries that are performed on data being updated may not see
consistent results and could lead to a bad user experience. Several projects were created
to solve these challenges and to provide atomic, consistent, isolated, and durable
(ACID) transactions to datasets, such as Apache Hive Transactional Tables, Apache
Hudi, Apache Iceberg, and Databricks Delta Lake, to name a few. Governed tables is an
AWS Lake Formation implementation of similar capabilities backed by a fully managed
service. It provides ACID transactions to tables so that users can update and delete files
and individual rows through a set of APIs. These store data in S3 to retain the benefits of
reliability and scalability that S3 provides.

There are many use cases where having transactional capabilities is useful. Compliance
with data protection laws such as GPDR is becoming more common today. This is a
growing trend as other countries are introducing laws that mandate organizations to
delete customer's data on request. Other use cases are when a dataset is being replicated
from a different source, and data on S3 must match it.

Automated compaction of data
One of the main drivers of performance, when any query engine reads from S3 or HDFS,
is how data is stored and the data format it is stored in. When customers ask why their
queries may not be running as quickly as they think they should be running, the first
question I ask is, how big are the file sizes that are being read? Most of the time, the files
that are being read are tiny, from 10 KB to 10 MB. Having small files can be detrimental
to query performance because of the number of round trips an engine must make to
read each file. When a file is being read by a query engine, the engine must perform an
open file operation to open a stream to the file. Then, the engine performs GetData
operations to read the stream and closes the stream once it finishes. If the file is tiny,
the open file operation can take up to 80% of the time it takes to read data. Having file
sizes of a recommended length of between 128 MB and 1 GB dramatically reduces the
performance impact of S3 List and Get operations. We'll go through some examples of this
in Chapter 11, Operational Excellence – Maintenance, Optimization, and Troubleshooting.

 171

AWS Lake Formation governed tables eliminate the issue of small files by automating data
compaction by merging small files into larger ones in the background to ensure that data
is stored optimally.

Time-traveling queries
Time-traveling queries allow users to execute queries as if those queries were executed
at a different time and see what a dataset looked like at that time. This can have multiple
applications and use cases. One application is to debug updates to a dataset to see when
and how data changed. If an update was done incorrectly, then the transaction that caused
the data quality issue can be rolled back. For example, if you have inventory data that
gets updated regularly, and a user or customer suggests that the data is incorrect, using
time-traveling queries can pinpoint the time when the inaccurate data was updated and
the transaction that caused the data to be incorrect.

Row-level filtering
Row-level filtering is a data access feature that allows administrators to grant permissions
at the row level for a dataset. There are many applications where this capability is useful.
This is best illustrated with an example. Suppose there is a compliance rule in which a
user can only access rows of data that match the geographical region from where they are
accessing the data. An administrator may set a policy that allows company users residing
in Germany to only access data that maps to records for German customers. Users
from Germany can perform queries and only get data from their own country. Another
example would be with lines of business. For example, a clothing company can allow
salespeople from the footwear line of business to only access data for the brands they
manage and not see data related to swimwear.

Some customers have implemented this type of behavior by taking a table and breaking
it up into different tables representing a particular slice of the data they wish to manage
access. However, this is not a scalable solution. If a user has access to multiple data
dimensions, they will need to join the tables to get a complete picture.

Now, let's summarize what we went through in this chapter.

172 AWS Glue and AWS Lake Formation

Summary
In this chapter, you learned what AWS Glue and AWS Lake Formation provide when
building and maintaining data lakes on AWS. We then focused on Lake Formation's
ability to provide fine-grained access controls and the benefits and limitations of this.
We also went through a sample process of enabling Lake Formation access controls for
a new database and how it works within Athena. Lastly, we touched on Lake Formation
governed tables, what they are, and how they can solve many issues with storing datasets
on a distributed filesystem. There are more advanced features of Lake Formation, and we
will dive deeper into governed tables in Chapter 14, Lake Formation – Advanced Topics.

In the next part of this book, we will get our hands dirty by using Amazon Athena in
various settings ranging from ad hoc data analysis, using Athena to build ETL pipelines,
and building applications that use Athena. We'll also take some time to cover how you can
troubleshoot and tune common Athena issues in the pursuit of operational excellence.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the
following resources:

• AWS Lake Formation resources, including blog posts and demo videos: http://
amzn.to/394z9x7

• Registering an encrypted Amazon S3 location – AWS Lake Formation: https://
amzn.to/3hf39uW

• Registering an Amazon S3 location in another AWS account – AWS Lake
Formation: https://amzn.to/3baTVfI

• Limitations of using Lake Formation security with Athena: https://amzn.
to/3nwAvGN

http://amzn.to/394z9x7

http://amzn.to/394z9x7

https://amzn.to/3hf39uW

https://amzn.to/3hf39uW

https://amzn.to/3baTVfI

https://amzn.to/3nwAvGN
https://amzn.to/3nwAvGN

Section 3:
Using Amazon

Athena

This section is all about getting our hands dirty using Amazon Athena in various
settings, ranging from ad hoc data analysis, ETL pipelines, and embedded in your own
applications. We'll also take some time to cover how you can troubleshoot and tune
common Athena issues in your pursuit of operational excellence.

This section consists of the following chapters:

• Chapter 7, Ad Hoc Analytics

• Chapter 8, Querying Unstructured and Semi-Structured Data

• Chapter 9, Serverless ETL Pipelines

• Chapter 10, Building Applications with Amazon Athena

• Chapter 11, Operational Excellence – Maintenance, Optimization, and
Troubleshooting

7
Ad Hoc Analytics

Welcome to Part 3 of Serverless Analytics with Amazon Athena! In the preceding chapters,
you learned how to run basic Athena queries and established an understanding of key
Athena concepts. You then connected to a data lake that you built and secured. Along the
way, you've been learning how to organize and model your data for use by Athena. Now
that you have much of the prerequisite knowledge for using Athena, we once again shift
our focus. The next few chapters will revisit many of the concepts you've already learned
as you work through four of the most common use cases that lead customers to choose
Athena for their business.

We begin right here, in this chapter, by unraveling both what it means to run ad hoc
analytics queries as well as why the industry seems to have an insatiable appetite for
running such queries. We'll also go through building a template for how you can adopt
Athena and its related tooling within your organization as part of a complete ad hoc
analytics strategy.

In the subsequent sections of this chapter, we will cover the following topics:

• Understanding the ad hoc analytics hype

• Building an ad hoc analytics strategy

• Using QuickSight with Athena

• Using Jupyter Notebooks with Athena

176 Ad Hoc Analytics

Technical requirements
Wherever possible, we will provide samples or instructions to guide you through the
setup. However, to complete the activities in this chapter, you will need to ensure you have
the following prerequisites available. Our command-line examples will be executed using
Ubuntu, but most types of Linux should work without modification, including Ubuntu on
Windows Subsystem for Linux.

You will need an internet connection to access GitHub, S3, and the AWS console.

You will also require a computer with the following:

• A Chrome, Safari, or Microsoft Edge browser installed

• The AWS CLI installed

This chapter also requires you to have an AWS account and an accompanying IAM
user (or role) with sufficient privileges to complete this chapter's activities. Throughout
this book, we will provide detailed IAM policies that attempt to honor the age-old best
practice of "least privilege." For simplicity, you can always run through these exercises
with a user that has full access. Still, we recommend using scoped-down IAM policies
to avoid making costly mistakes and learning more about using IAM to secure your
applications and data. You can find the suggested IAM policy for this chapter in the book's
accompanying GitHub repository, listed as chapter_7/iam_policy_chapter_7.
json, here: https://bit.ly/2R5GztW. The primary changes from the IAM policy
recommended for Chapter 1, Your First Query, include the following:

• The addition of QuickSight permissions. Keep in mind that an administrator will
be required to create your QuickSight account and also enable QuickSight to access
Athena and S3. These permissions were too broad for us to feel comfortable adding
them to the chapter's IAM policy.

• SageMaker notebook permissions.

• IAM role manipulation permissions used to create a SageMaker role for your
notebook.

Understanding the ad hoc analytics hype
If you are lucky, you may not be aware of the buzzword levels of hype surrounding ad hoc
analytics. Fortunately, there are strong fundamentals behind the increasing level of interest
and importance placed on having good tooling for ad hoc analytics. In a moment, we'll
attempt to form a proper definition of ad hoc analytics, but not before we run a time travel
query of our own to set the stage for what we now know as ad hoc analytics.

https://bit.ly/2R5GztW

Understanding the ad hoc analytics hype 177

As a society, we've been collecting data since the advent of commerce. In the era before
modern big data technologies, the business intelligence landscape was a very different
place. Most data capture and entry was a manual affair, frequently driven by government
accounting and auditing requirements. Particularly savvy companies were tracking their
own, non-accounting-related Key Performance Indicators (KPIs), but these exercises
were often short-lived and targeted at achieving specific outcomes. It is essential to
understand the difference between the past data landscape, where information was scarce,
and today, where data availability is not the most common limiting factor.

While preparing to write this chapter, I looked for examples of companies doing the
modern-day equivalent of ad hoc analytics before the advent of big data. How did
organizations do this before IoT and cloud computing upended the economics of
data capture and retention? In the process, I solved a mystery behind a 25-gallon
container of pencils that had been in my parents' garage for nearly 30 years. While helping
my father clean out his garage, he asked me how this book was coming along. I told him
I was stuck looking for an example of how companies answered questions about their
day-to-day operations. Questions such as which products get returned most often or how
much productivity is lost in maintenance of old machinery. That's when I finally got the
entire backstory to the seemingly endless supply of pencils my father kept behind his
ear as a contractor. My grandfather had worked at a large pencil manufacturer back in
the 1990s. The story begins with quality control issues that caused poor writing quality
and led to entire production batches needing to be scrapped. Folks like my grandfather
were working overtime to make up for the production shortfall. Oddly, the more they
produced, the lower their yields became.

My grandfather was one of the folks pulled off the production line to aid in quality
control. They were already doing periodic quality control. That's how they noticed the
issue in the first place. It wasn't enough. They started sampling random pencils from
the production line every 5 minutes and tagging them with the date, time, ambient
temperature, and ambient humidity. Then they'd sharpen the pencil and write a few
words with it to gauge its relative quality before recording the results in a notebook.
Each day, the numbers from the various production lines were collated and submitted
by USPS to the head office. Eventually, after months of these manual activities and lost
production, someone noticed a pattern. When humidity rose above a certain threshold,
the quality started to falter, but only toward the end of the week. It turned out that when
their production exceeded the on-hand supply of raw materials, they'd get fresh batches
of glue delivered. The fresh glue was more sensitive to high humidity. Unfortunately, the
manufacturing line's humidity tended to peak at the end of the week, as they were due to
receive a new batch of raw materials. This entire investigation was a crude form of ad hoc
analysis, and that barrel in the garage was full of the pencils my grandfather had tested but
didn't want to throw away.

178 Ad Hoc Analytics

Potentially charming anecdotes aside, this is a classic example of a long OODA loop.
The OODA loop shown in the following Figure 7.1 represents the four stages of sound
decision making. You start by observing in order to orient yourself to the problem at
hand before deciding on what to do and finally acting on that decision. The hallmark
of many successful businesses is a short OODA loop because they can react to changing
information quickly. The longer it takes you to detect and understand why something bad,
or good, is happening, the less likely you can navigate the situation successfully. This can
result in missed business opportunities, lost customer confidence, or regulatory impact.
The need to shorten the OODA loop has driven the world to capture and retain as much
potentially relevant data as possible, fueled in part by improvements in embedded systems
that have fueled the IoT boom. Physical businesses, such as the pencil manufacturer we
just discussed, can now record hundreds of KPIs in real time for a fraction of what it cost
them to measure three variables every 5 minutes a few decades ago. The rapid fall in data
acquisition costs has led to compound annual data growth rates above 50% and shifted the
OODA loop problem to the right.

Figure 7.1 – The almightly OODA loop

Understanding the ad hoc analytics hype 179

Fast forward to today, and most organizations can capture more data than they know
what to do with. As a result, essential business insights are buried among mountains of
uninteresting information that may become useful in the future. Typically, an organization
will periodically review KPIs using scheduled reports. These reviews often raise new
questions. Why is this off trend? How long has this been happening? At what point
will we need to account for that? Identifying unexplained trends is only the first step to
generating actionable insights. Once you've observed something interesting, the second
step in the OODA loop is to orient yourself to the context that is causing it. To do that, we
need to ask follow-up questions of our data. These questions are ad hoc because they are
situational and depend on information from previous observations. As a result, only the
analytical tasks that go into the observe portion of the OODA loop can be standardized
into scheduled reports. The exploratory and root cause research-related queries that often
follow are too varied and numerous to be known in advance. There you have the creation
of the ad hoc analytics craze.

Organizations that are early on the maturity curve will often establish centralized
reporting teams that field requests for both scheduled and ad hoc reports. Reporting
teams attempt to bridge a skills gap that has historically existed between the
subject-matter experts and query experts. For example, a fashion-savvy merchandiser
running an apparel business may not know how to write a MapReduce job to identify
the emerging trend in unmatched socks. This leads them to miss out on an opportunity
to be fully stocked before prices rise as this new style takes off. Or maybe my five-year-old
is the only one driving such buying patterns. Organizations often try and bridge this skills
gap by creating entire teams dedicated to fielding reporting requests. This model can
work for small organizations, but quickly becomes a bottleneck at scale. The unyielding
inflow of requests, each of which may spawn more follow-up requests, contributes to high
turnover in such teams.

Aside from the scaling challenges, centralized reporting teams add non-obvious friction
to the analytics process. Individuals writing the reports may have enough understanding
of the data's relationships to properly offer or use techniques such as the approximate
query functions we covered in Chapter 3, Key Features, Query Types, and Functions. Since
they are kept at a distance from the data and tools to query that data, customers become
implicitly biased or trained by past reporting experiences. This limits their future asks,
creating a cycle that approaches zero utility.

Organizations are looking to tools such as Amazon Athena combined with easy-to-use
tools such as QuickSight to democratize access to data. In the next section, you'll explore
a possible ad hoc analytics strategy that combines Athena, QuickSight, and Jupyter
Notebooks to provide flexible options for a broad spectrum of ad hoc analytics use cases.

180 Ad Hoc Analytics

Building an ad hoc analytics strategy
As we've seen in our examples, by putting the information in the hands of subject-matter
experts, you can make better, faster decisions. Thus, it should be a focal point of any ad
hoc analytics strategy to improve the accessibility of data, putting it in the hands of the
individuals best suited to interpret the insights it contains. Our first step in forming such
a strategy is to remember that while this book will present solutions based on the Athena
ecosystem, it is rarely a good idea to lock yourself into any single product or analytics
engine. The underlying technologies, pricing models, and supporting tooling will make
trade-offs that necessarily favor one use case over others. If something sounds too good to
be true, such as a product claiming to be the only analytics system you need, it's probably
mediocre at a wide range of things and unlikely to be the best in class for anything. This
is part of the philosophy behind AWS's fit-for-purpose database strategy and is equally
applicable to analytics. The important things to consider include the following:

• Choosing your storage

• Sharing data

• Selecting query engines

• Deploying to customers

We'll check these out in more detail in the following sections.

Choosing your storage
Let's start our hypothetical ad hoc analytics strategy with storage. Where will you house
the data? Will each team store their own data? Suppose for a minute that we avoided being
prescriptive about this. After all, we painted the notion of a centralized reporting team as
less than ideal. Maybe the same is true for standardizing storage. Different teams may even
have different storage needs. Be careful about falling into this trap. The storage system you
choose may limit your options for discovering and sharing data across your organization.
This can mean the difference between having a ubiquitous data lake and many siloed data
ponds. Nearly every Online Analytics Processing (OLAP) use case can be made better
by separating storage and compute with an S3-like object store. Some esoteric use cases
may indeed have specialized performance or auditability requirements that make S3 a
less-than-ideal choice. You should avoid the temptation to shape your strategy based on
outliers that you may never actually encounter. Instead, leave room in your strategy for
how you will evaluate, approve, and integrate these exceptions.

Building an ad hoc analytics strategy 181

If you're following the best practices in earlier chapters, you're likely to arrive at a strategy
that treats S3 and your data lake. All data providers will be expected to master their
data in S3 using Parquet for structured data and text for unstructured data. The
accompanying metadata for these datasets will be housed in AWS Glue Data Catalog.
AWS Data Catalog aids in discoverability and sharing since most metadata can be inferred
from the S3 data itself. For teams, or systems, that have their own storage, they will be
required to maintain an authoritative copy in the data lake on a cadence. This can be
done as periodic, incremental additions to S3 or full snapshots that supersede previous
versions. In Chapter 6, AWS Glue and AWS Lake Formation, and Chapter 14, Lake
Formation – Advanced Topics, you learn how Lake Formation helps make it easier to
integrate with an S3-backed data lake.

Sharing data
Most of the really interesting use cases for ad hoc analytics will require data from
multiple sources. For small organizations, you may be able to get by with handling
access requests using IAM policies and organizational processes. However, once you
get past a handful of datasets and a couple of consumers, you'll want tooling to support
your processes. This is especially true if you deal with sensitive Personally Identifiable
Information (PII) or are subject to GDPR regulations. S3 permissions are limited to
enforcing object or prefix (directory) level access. S3 is oblivious to the contents of your
objects and their semantic meaning. This means S3 permissions alone cannot restrict
sensitive columns or apply row-level filters to prevent someone from reading budget
records from a yet-to-be-announced project. If you're taking security seriously, you'll
want to make Lake Formation a core part of your analytics strategy. AWS Lake Formation
abstracts the details of crafting IAM policies and offers an interface where you can
permission your data lake customers on the dimensions they are most familiar with. You
simply manage table-, column-, and even row-level access controls from an interface
that is designed for analytics use cases. Since Lake Formation is integrated with Amazon
Athena, Amazon EMR, and Amazon Redshift, you can avoid the classic problem of
having authorization information spread across multiple systems. Lake Formation can
even facilitate cross-account data sharing, facilitating the post-acquisition mergers of
technology and reducing the strain on your AWS account design.

182 Ad Hoc Analytics

Selecting query engines
Luckily, our decision to use Amazon S3 to house our data lake means we are not locked
into a particular query engine. In fact, we can support multiple query engines with relative
ease. You shouldn't take that to mean that it's a good idea to have a dozen different query
technologies, only that our choices thus far have derisked the importance of any one
product. To begin, you'll want to offer a serverless query engine with a SQL interface, such
as Amazon Athena. SQL is a broadly taught and widely understood language. Many of
your employees may already be familiar with SQL, and if they aren't, it's easy to get them
started. Electing a serverless option always makes it easier to keep costs under control
since ad hoc workloads tend to make for challenging capacity planning exercises. This
is even more important when your end customers may not be well versed in starting or
stopping servers for their queries. Beyond SQL, Athena also offers support for custom
data connectors and User-Defined Functions (UDFs). This can help provide a single
query interface even if some of the data may not be in our S3 data lake. While it is beyond
the scope of this book, you can complement Athena's SQL interface with Glue ETL or
Amazon EMR to add Apache Spark-based query capabilities that can support more
sophisticated forms of customization. With Apache Spark, you can introduce your own
business logic at every stage of the query. This can become a deeply technical exercise, but
our strategy's goal is to lay out a plan. If we encounter these situations, we want a general
idea for delivering the required capability.

Deploying to customers
Some customers of your ad hoc analytics offering will be comfortable writing and
running SQL directly in the Athena console, but we can do better than Athena's console
experience. Your organization will likely want to create repeatable reports and dashboards
and even share their ad hoc analysis. They may even want to post-process results using
standard statistical libraries. Luckily, Amazon Athena supports JDBC and ODBC
connectivity so that you can use a wide range of client applications, such as Microsoft
Excel, or BI tools, such as Tableau. For our hypothetical company, we'll support two
different ad hoc analytics experiences. The first will be a more traditional experience
built on Amazon QuickSight connecting to Athena. This option should be suitable for
those experienced with SQL or other BI tooling. It will allow our customers to visualize
trends and dig into patterns while minimizing the need for specialized technical skills.
We'll also support a more advanced experience in the form of Jupyter Notebooks. Jupyter
Notebooks allows authors to mix traditional SQL, statistical analysis tools, visualizations,
text documentation, and custom business logic in the form of actual code.

Using QuickSight with Athena 183

This may seem daunting at first and perhaps only appropriate for developers, but that isn't
the case. The collaborative features of notebooks allow you to share and customize analysis
in a way that enables you to introduce more powerful tooling with a commensurately
steep learning curve.

Now that we've established both the definition and importance of ad hoc analytics, let's
see whether we can make our hypothetical strategy a bit more tangible. In the remainder
of this chapter, we will walk through implementing this strategy to run ad hoc queries
over the data lake we built in previous chapters using Athena, Amazon QuickSight, and
SageMaker Jupyter Notebooks.

Using QuickSight with Athena
AWS QuickSight is a data analysis and visualization tool that offers out-of-the-box
integrations with popular AWS analytics tools and databases such as Athena, Redshift,
MySQL, and others. QuickSight has its own analytics engine called Spice. Spice is capable
of low-latency aggregations, searches, and other common analytics operations. When
combined with a large-scale analytics engine such as Athena, QuickSight can be used for
a combination of data exploration, reporting, and dashboarding tasks. This section will
briefly introduce you to QuickSight and use it to visualize both our earthquake and Yellow
Taxi ride datasets. Since QuickSight itself is a WYSIWYG (What Ya See Is What Ya Get)
authoring experience with lots of built-in guidance, we won't spend much time walking
you through each step in this section. Instead, we will focus on the broad strokes and let
you explore QuickSight yourself. Regardless of this simplification, our QuickSight exercise
will have multiple steps and take you 15 to 20 minutes to complete. In that process, you'll
be tackling the following objectives:

1. Sign up for QuickSight.
2. Add datasets to QuickSight.
3. Create a new analysis.
4. Visualize a geospatial dataset.
5. Visualize a numeric dataset.
6. Explore anomalies in a numeric dataset

Let's dive right in!

184 Ad Hoc Analytics

Getting sample data
By this point in the book, you've gathered sample data, imported it to S3, and prepared
tables for use in Athena half a dozen times. We'll be reusing many of those datasets and
tables to save time and focus on the new topics presented in this chapter. In case you
skipped previous chapters or just prefer to start with a clean slate, you can download and
run our chapter 7 data preparation script using the following commands from AWS Cloud
Shell or your preferred terminal environment. The script will download several years of
the NYC Yellow Taxicab dataset into an S3 landing zone before reorganizing that data
into an optimized table of partitioned Parquet files. It will also download a small dataset
containing geospatial data about recent earthquake activity in the US state of California.
This script is likely to take 20 minutes to run from AWS Cloud Shell as it encompasses
much of the data lake work from the first three chapters. Once the script completes, it
may take a few more minutes for the final Athena query it launches to complete and the
resulting table to become usable. You can reuse the S3 bucket and Athena workgroups you
made in earlier chapters:

wget -O build_my_data_lake.sh https://bit.ly/3suTuU8

chmod +x build_my_data_lake.sh

./build_my_data_lake.sh <S3_BUCKET> <ATHENA_WORKGROUP_NAME>

Setting up QuickSight
If you aren't already a QuickSight customer, we recommend signing up for the Standard
package when following these exercises. Unlike the other services we've used in this book,
QuickSight's pricing model is more akin to traditional software licenses, with the Standard
plan costing you between $13 and $50 a month per named user. Luckily, if you've never
used QuickSight before, you may be able to complete this exercise within the free trial
window. Your first time visiting QuickSight, you'll be prompted to sign up. Signing up
for and configuring QuickSight requires IAM permissions that are broader than what
we typically include in our chapter policies. As such, we recommend using a separate
IAM user with administrative access to set up QuickSight. In Figure 7.2, we show the key
properties you'll need to set when signing up. The most notable is allowing QuickSight
to have access to Amazon Athena and Amazon S3. If you attempt to do this without
privileged access, you'll encounter issues when you attempt to access Athena in later steps.

Using QuickSight with Athena 185

Figure 7.2 – Signing up for QuickSight

Once you or an administrator has completed the sign-up process, you'll be able to start
analyzing data. Before we create our first dashboard, we'll need to define one or more
datasets that can be used in our analysis. A QuickSight dataset can be thought of as a
table and its associated source connectivity information. For example, we'll be using two
datasets from Athena in our exercise. The first will be the chapter_7_earthquakes
table from the packt_serverless_analytics database, with the chapter_7_
nyc_taxi_parquet table being our second dataset. From the main QuickSight page,
we can select datasets to view existing or create new datasets. Even if you've never used
QuickSight before, you will have several sample datasets listed as options. When you click
New Datasets, you'll get to choose from various sources, including Athena. After selecting
Athena, a popup will appear asking you to select a workgroup.

186 Ad Hoc Analytics

If you are following along with the configurations in this book, you should choose the
packt-athena-analytics workgroup. In Figure 7.3, we complete the final steps
in adding a new dataset by selecting an Athena catalog, database, and table. You should
repeat this process for both the chapter_7_earthquakes and chapter_7_nyc_
taxi_parquet tables.

Figure 7.3 – Adding a dataset

Unable to create dataset errors
If you didn't have sufficient administrative rights when you signed up for
QuickSight, you might encounter issues adding new datasets. If you see errors
related to listing Athena workgroups or accessing the results location, you'll
need an administrator to go into the QuickSight settings and re-enable Athena
in the Security and permissions section.

Once you've created the datasets, you are ready to start analyzing your data. For now,
ensure that chapter_7_earthquakes is selected. Then you can click on the New
analysis button on QuickSight's main screen, as shown in Figure 7.4. In QuickSight
nomenclature, an analysis is a multi-tab workspace with different visualizations and
calculated fields. Once you are happy with an analysis, you can publish it as a read-only
dashboard or share it with other QuickSight users in your organization. Since QuickSight
is continuously saving your analysis, you can quickly backtrack from a failed exploration
by undoing hundreds of recent edits.

Using QuickSight with Athena 187

Figure 7.4 – Creating a new analysis

Your new analysis will start with a single blank tab. Let's add a new geospatial
visualization to that tab by clicking Points Map from the visualization type pallet on
the left navigation. Next, we'll select the longitude and latitude fields of the
chapter_7_earthquakes dataset we added earlier as our geospatial fields. Since
we want to understand the relationship between location, magnitude, and depth, we can
use the magnitude and depth columns as our size and color fields, respectively. The
ease of use and rich visualizations are where QuickSight shines. Figure 7.5 shows how, in
just a few clicks, we've created our first analysis of earthquakes around the world:

Figure 7.5 – Visualizing earthquake data

188 Ad Hoc Analytics

Visualizations can help better understand relationships in our data, but ad hoc analysis is
all about iterating. Let's see how QuickSight can help us get to the bottom of interesting
patterns in our data. If you plan to keep your earthquake data example, go ahead and
create a new tab in our analysis for a deep dive into the NYC Yellow Taxi dataset we added
earlier. Our first visualization on this new tab will be a combination bar and line graph
where we will graph the average tip_amount field by year as bars on the chart. For the
lines, we will add the count of rides by using the total_amount field. The first thing
you'll notice is that we seem to have erroneous or incomplete data in our table for many
years in the future, and even some in the past are contributing strange data to our graph.
Luckily, QuickSight offers a handy tool for filtering data that goes into a visualization.
Click on the chart and then on the year field's settings in the left navigation pane. From
there, you can select add filter for this field and use the Filters dialog to include only data
from 2017, 2018, 2019, and 2020. Once that's done, the graph should automatically refresh
and resemble Figure 7.6:

Figure 7.6 – Visualizing yellow taxi ride data

With the noisy data removed, we can see that the total number of rides, represented
by the total_amount series in our legend, has been trading down for the last 3 years.
We mostly ignore 2020 since our data is incomplete. Interestingly, the average tip amount
has increased. This would suggest that customer satisfaction is rising. So why could
ridership be down? Let's confirm that tips aren't simply growing due to increasing fares by
adding a second graph to this tab. In Figure 7.5, we added a new bar chart with year as
the y axis and average fare_amount as the value. Just as we did for the previous chart,
you'll again want to filter out erroneous values by applying a filter to the year column in
this graph, too. Once the graph renders, you can see that the increase in tips is not tied to
a commensurate rise in fares. Customers are consciously choosing to tip more.

Using Jupyter Notebooks with Athena 189

QuickSight customization
In Figure 7.6, we could not rename the total_amount series in the Taxi
Tips and # Rides chart's legend to something more indicative of the actual
value, such as "Number of Rides." While this is a pedantic example of the
drawbacks of using WYSIWYG editors, it is indicative of the control you give
up when using a tool such as QuickSight. There is an inherent conflict between
the myriad of parameters in fully customizable systems and ease-of-use tools
such as QuickSight. Please don't take the limited legend customization we've
called out here as a reason not to use QuickSight. It's merely an easy-to-
convey example of why you're unlikely to find a single tool to satisfy all your
customers.

We haven't yet learned why ridership is down. If we really worked for the Taxi and
Limousine Commission, we might want to dive deeper into the data and possibly run
some A/B testing. Running additional queries along these dimensions could help us
understand whether price or other supply and demand factors are playing a role in the
decline. This might help confirm the impact of things such as ride-sharing services. For
now, we'll put aside our QuickSight analysis and switch to Jupyter Notebooks for the next
leg in the ad hoc analysis of our NYC Yellow Taxi dataset.

Using Jupyter Notebooks with Athena
Depending on the proficiency level in querying data, some individuals may consider
QuickSight to be more of a dashboarding tool that populates results based on pre-set
parameters. Individuals looking for a more fluid and interactive experience may feel
their needs are better satisfied by a tool designed for authoring and sharing investigations.
You're already familiar with the Athena console's basic ability to write queries and display
tabular results. Jupyter Notebooks is a powerful companion to analytics engines such as
Athena.

In this section, we'll walk through setting up a Jupyter notebook, connecting it to Amazon
Athena, and running advanced ad hoc analytics over the NYC Yellow Taxi ride dataset.
If you are unfamiliar with SageMaker or Jupyter Notebooks, don't worry. We will walk
you through every step of the process so you can add this new tool to your shelf. For the
uninitiated, AWS describes SageMaker as the most comprehensive machine learning
service around. SageMaker is best thought of as a suite of services that accelerate your
ability to adopt and deploy machine learning in any and every situation where it might
be useful. That means SageMaker has dedicated tooling for data preparation tasks such as
labeling and feature engineering work that may require nuanced techniques for statistical
bias detection. You may be wondering what that has to do with Athena and ad hoc
analytics. Well, training machine learning models requires good input data.

190 Ad Hoc Analytics

In many cases, your models are only as good as the inputs to your training. As such,
Jupyter Notebooks provides an excellent interface and workflow for exploring data and
capturing findings.

To begin, we'll need to create an IAM role that our SageMaker Jupyter notebook will
use when interacting with other AWS services such as Athena. You can do this by
navigating to the IAM console, selecting the Roles section, and clicking the Create role
button. Once you do that, you'll be presented with the dialog in Figure 7.7. Be sure to
select AWS service as the type of trusted entity and SageMaker as the entity, just as we
have in Figure 7.7:

Figure 7.7 – Creating an IAM role dialog

These settings tell IAM that we want to create a role that is explicitly for use with
SageMaker. This helps scope down both the types of activities the IAM role can perform
and the contexts from which it can be assumed. In the next step, you'll have the
opportunity to add the specific policies for the activities we plan to perform using this
IAM role.

Using Jupyter Notebooks with Athena 191

We recommend adding the packt_serverless_analytics policy that we have been
enhancing throughout this book and used earlier in this chapter. As a reminder, you can
find the suggested IAM policy in the book's accompanying GitHub repository listed as
chapter_7/iam_policy_chapter_7.json here: https://bit.ly/2R5GztW.

Once you've added the policy, you can move on to the Add tags step. Adding tags is
optional, so you can skip that for now and go to the final step of giving your new IAM
role a name. We've recommended naming your new IAM role packt-serverless-
analytics-sagemaker since this chapter's IAM policy already includes permissions
that will allow you to create and modify roles matching that name without added access.
If everything went as expected, your IAM role summary should match Figure 7.8. If you
forgot to attach the packt_serverless_analytics policy, you can do so now using
the Attach policies button highlighted here:

Figure 7.8 – IAM role summary dialog

https://bit.ly/2R5GztW

192 Ad Hoc Analytics

With our shiny new IAM role in hand, we are ready to start a SageMaker Jupyter
notebook and begin exploring the NYC yellow taxi ride dataset with Athena while
using handy analysis libraries such as pandas, Matplotlib, and Seaborn. Don't worry if
these sound more like species of tropical fish than ad hoc analytics tools. We'll introduce
you to these libraries and how they can make your life easier a bit later in this section.
On the SageMaker console, you can click on Notebook and then the Notebook instances
section. From there, you can click on Create notebook instance to open the dialog in
Figures 7.9 and 7.10:

Figure 7.9 – SageMaker Create notebook instance dialog

In the first portion of the notebook creation dialog, you'll pick a name and instance type
for your notebook. We recommend naming your notebook packt-serverless-
analytics since your IAM policy is already configured to grant you the ability to
administer notebooks matching that name. Any instance type that is at least as powerful
as an ml.t3.medium will be sufficient to complete the exercises in this section.

Using Jupyter Notebooks with Athena 193

We recommend the ml.t3.medium because it has a generous free tier, which should easily
allow you to complete all the exercises at no additional charge. You'll only end up paying
for Athena and S3 usage. We won't be doing any heavy machine learning, so you can
leave the Elastic Inference option on none. This option allows you to attach specialized
hardware to your notebook that makes the application of machine learning models, also
known as inference, significantly faster through the use of AWS's custom inferential
chips. Our final step is to set the IAM role that our new notebook instances will use when
interacting with other AWS services such as Athena and S3. In Figure 7.10, you can see
that we used the packet-serverless-analytics-sagemaker role we created
earlier. Once you've done that, you can leave the remaining options at their default values
and create the notebook.

Figure 7.10 – SageMaker Create notebook instance dialog continued

194 Ad Hoc Analytics

Your new notebook instance will take a few minutes to start. While we wait, let's outline
what we're going to do with our notebook and get introduced to the statistical libraries
that will help us do even more with Athena.

pandas
pandas is a fast, flexible, and open source data analysis library built on top of the Python
programing language. It aims to make working with tabular data such as that stored
in spreadsheets or a SQL engine easier. If you're looking for help exploring, cleaning,
or processing your data, then pandas is the right tool for you. In pandas, tabular data
is stored in a structure known as a DataFrame. Out of the box, pandas supports many
different file formats and data sources, including CSV, Excel, SQL, JSON, and Parquet.
Athena returns data in CSV format, making it easy for us to use pandas with Athena query
results. pandas also provides convenient hooks for plotting your data using a variety of
visualization tools, including Matplotlib. In a moment, we'll use pandas to bridge between
Athena and other data analysis tools.

Matplotlib and Seaborn
Matplotlib is a comprehensive open source Python library for visualizing data in static or
interactive plots. Its creators like to say that "Matplotlib makes easy things easy and hard
things possible." Many Matplotlib users turn to this library to create publication-quality
plots for everything from company financial reports to scientific journal articles. As a
long-time user of Matplotlib myself, I appreciate how much control it allows you to retain.
You can fully customize line styles, fonts, and axes properties, and even export to various
image formats. However, if you are new to the library, the sheer number of options can
be a bit overwhelming. So, we won't be using Matplotlib directly in this exercise. Instead,
we'll use a higher-level interface library called Seaborn. Seaborn provides a simplified
interface for using Matplotlib to create common chart activities such as scatter, bar, or line
graphs. Both libraries have excellent integration with Jupyter Notebooks so that your plots
render right on the page.

Using Jupyter Notebooks with Athena 195

SciPy and NumPy
By now, you can probably guess that both SciPy and NumPy are open source mathematics
libraries built in Python. NumPy contains abstractions for multidimensional arrays of
data. Such structures can come in handy when applying mathematical operations over
an entire column of a table. NumPy also offers highly optimized functions for sorting,
selection, applying discrete logic, and a host of statistical operations over these arrays.
SciPy builds on the functionality provided by NumPy to create ready-to-use solutions
for common scientific and mathematical problems. Later in this section, we will use
SciPy's outlier detection algorithm to purge errant data from our Athena results.

Using our notebook to explore
Your notebook instance should just about be ready for use. Let's outline what exploration
we'll perform once it's running. The beauty of using Athena from a Jupyter notebook is
that you can simply have a conversation with your data and not have to plan it all out in
advance. We're itemizing the steps here, so you know what to expect along the way:

1. Connect our notebook instance to Athena.
2. Run a simple Athena query and print the result using pandas.
3. Visualize the result of our simple Athena query using Seaborn.
4. Prune any erroneous data using SciPy for outlier detection.
5. Run a correlation analysis over an aggregate Athena query.

Embedded in these steps is an important cycle. We ask a question by querying Athena.
We notice something interesting in the result. We run a follow-up query in Athena.
We dissect the result further. This is the ad hoc analytics cycle that differentiates ad hoc
analytics from pre-canned reports or dashboards. It has no clear or pre-packaged end.
Your next query depends on what you find along the way. This may seem a bit abstract,
so we'll make it more concrete by applying this to our NYC yellow taxi dataset.

If you'd like to skip ahead or need added guidance in writing the code snippets we'll
be using to run our ad hoc analytics, you can get a prepopulated notebook file from
the book's GitHub repository at chapter_7/packt_serverless_analytics_
chatper_7.ipynb here: https://bit.ly/3rQKGGI. GitHub nicely renders
the notebook file so that you can see it right from the link. Unfortunately, that makes
downloading it for later upload to your SageMaker notebook instance a bit tricky. To get
around that, click on the Raw view, and then you can perform a Save as operation from
your browser.

https://bit.ly/3rQKGGI

196 Ad Hoc Analytics

Step 1 – connecting our notebook instance to Athena
From the SageMaker console, go ahead and click the Open Jupyter link as shown in
Figure 7.11. This will open a new browser tab or window connected to your Jupyter
notebook instances. Behind the scenes, SageMaker is handling all the connectivity
between your browser and what is your own personal Jupyter notebook server.

Figure 7.11 – Opening a Jupyter notebook

Just as we've done in Figure 7.12, you'll want to click on New and select conda_python3
for the notebook type. The value may appear at a different position in the dropdown
than it does in Figure 7.12, so don't be afraid to scroll to find it. This setting determines
how our notebook will run the data explorations tasks we are about to write. By
selecting conda_python3, we are telling Jupyter that it can run our code snippets using
Python. Sparkmagic is another common choice if you want to use Apache Spark as
your computing platform. For now, we'll stick with Python, but the flexibility of Jupyter
Notebooks makes it an excellent choice for any ad hoc analytics strategy. Once you pick
the notebook type, yet another browser tab will open with your new notebook. The new
notebook file will be named Untitled.ipynb, so our first step will be to give it a
helpful name by clicking on File and then Rename.

Figure 7.12 – Creating a new notebook file

Using Jupyter Notebooks with Athena 197

Now that you have your notebook ready to use, we'll connect it to Amazon Athena by
installing the Athena Python driver. To do this, we'll write the following code snippet
in the first cell of the notebook. Cells are represented as a free-form textbox and can be
executed independently, with subsequent cells having access to variables, data, and other
states produced by earlier cells. After executing a cell, its output is shown immediately
below it. You can edit, run, edit, and re-run a cell as often as you'd like. You can also
add new cells at any time. The entire experience is very fluid, making it perfect for an
imperfect exercise such as ad hoc data analysis. Let's put this into practice by running
our first cell. Once you've typed the code into the cell, you can either click Run or press
Shft + Enter to run the cell and add a new cell directly below it:

import sys

!{sys.executable} -m pip install PyAthena

This particular cell will take a couple of minutes to execute, with the result containing a
few dozen log lines detailing which software packages and dependencies were installed.
You are now ready to query Athena from your notebook.

Step 2 – running a simple Athena query and printing the result using
pandas
Go ahead and add a cell to your notebook. This cell will be used to import our newly
installed Athena Python driver and the pre-installed pandas library. This is done by
typing the first two import statements from the following code snippet. In both cases,
we are aliasing our imports to something more convenient. Then we use the connect()
function that we imported from pyathena to connect to our Athena workgroup and
database using the work_group and schema_name arguments, respectively. You'll also
notice that we set the region_name argument to match the AWS Region we've been
using for all our exercises:

from pyathena import connect

import pandas as pd

conn = connect(work_group='packt-athena-analytics',

 region_name='us-east-1',

 schema_name='packt_serverless_analytics')

198 Ad Hoc Analytics

Still working in the same cell, we can now run our Athena query by using pandas'
read_sql() function to read the result of our query into a DataFrame as shown in the
following code snippet. In this example, we are running a query to get the count of yellow
taxi rides by year. On the final line of the cell, we print the first three values from the
result. Go ahead and run this cell:

athena_results = pd.read_sql("""SELECT year, COUNT(*) as num_
rides

 FROM chapter_7_nyc_taxi_parquet

 GROUP BY year

 ORDER BY num_rides DESC""",
conn)

athena_results.head(3)

Viewing the first few rows of the result is great, but we could have done that in the
Athena console. We opted for a notebook experience for the ecosystem that included data
visualization. That's where Seaborn comes into the picture.

Step 3 – visualizing results using Seaborn
If you didn't already add another cell, go ahead and do that now. In this next cell, we will
use Seaborn to graph the number of yellow taxi rides each year as a bar graph. Since this
is the first cell that requires Matplotlib and Seaborn, we begin by importing and aliasing
these tools. We then conclude this cell by calling Seaborn's barplot function to graph
the year and num_rides columns of our DataFrame:

from matplotlib import pyplot as plt

import seaborn as sns

seaborn.barplot(x="year", y="num_rides", data=athena_results)

But the resulting graph shown in Figure 7.13 seems a bit odd. There are so many years that
we can't even read the y axis.

Using Jupyter Notebooks with Athena 199

Figure 7.13 – Visualizing data using Seaborn

It seems we have a data quality issue with some rides having erroneous years. In the next
cell, we'll use SciPy to detect and filter out those outliers.

Step 4 – pruning any erroneous data using SciPy
Our visualization in step 3 has shown that we have some rides with erroneous start or end
values. In our case, our sample dataset only has yellow taxi ride data from 2017, 2018,
2019, and 2020 so any other values must be bad data. In practice, identifying bad data
won't always be that easy. It would be useful to have a mechanism for detecting outliers
that doesn't require foreknowledge of the dataset. Luckily, SciPy has a set of functions
that can help. In our next cell, we'll use SciPy's stats module to compute the zscore of the
num_rides column for each row. A zscore, also known as a standard score, measures
how many standard deviations above or below the population mean a value is.

200 Ad Hoc Analytics

Using the following code snippet as a guide, we start by importing the stats module
from SciPy. Depending on your version of pandas, you'll want to suppress chained_
assignment warnings, as we have done. Then we use the zscore function from the
stats module to calculate the zscore for the num_rides column. This function returns
a DataFrame with as many rows as the input column. pandas DataFrames make it easy
to add a new column to our Athena result and fill it with the calculated values from our
new DataFrame. We do that by assigning the result to a new column in our original
DataFrame. We conclude this cell by printing the results DataFrame to see the zscores
alongside our original values:

from scipy import stats

#surpressing warning related to chained assignments

pd.options.mode.chained_assignment = None

zscore = stats.zscore(athena_results['num_rides'])

athena_results['zscore']=zscore

print(athena_results)

When you are ready, go ahead and run this cell. Figure 7.14 shows the first few results
from the output. As expected, the bulk of the rides are in the four years we loaded into
our data lake, but we've also got data from 2088, 2058, and a few other years that are far in
the future. Interestingly, SciPy generated negative zscores for all the rows with erroneous
years. This is because the ride counts for those years are so far from the population mean.
Let's add another cell and repeat our visualization after filtering by zscore.

Table 7.1 – zscore values

Using Jupyter Notebooks with Athena 201

This cell will be short, thanks to pandas' shorthand for filtering a DataFrame. We select
the subset of the athena_results DataFrame where the zscore column is greater than
zero and assign the result to a new athena_filtered DataFrame. We then repeat our
earlier plot command to produce a new bar chart:

athena_filtered = athena_results [athena_results['zscore'] > 0]

seaborn.barplot(x="year", y="num_rides", data=athena_filtered)

After running this cell, we get a much more reasonable chart, like the one in Figure 7.15.
Even with all the erroneous data points removed, we can still see a clear downward trend
in the number of yellow taxi rides beginning in 2018. Some of this may be attributed to
the rise of ride-sharing services such as Uber, or there may be other factors at play.

Figure 7.14 – zscore values

Running a correlation analysis
In our final notebook cells, we'll attempt to use the average tip amount as a proxy for
customer satisfaction. We'll then check whether using the tip amount is a flawed proxy
for customer sentiment by looking at how the tip amount correlates with other metrics
such as trip speed and time of day. Add a new cell and run a new Athena query to get the
average fare amount, average tip amount, and total rides grouped by day, as we've done in
the following code snippet:

athena_results_2 = pd.read_sql("""

 SELECT date_trunc('day',

 date_parse(tpep_pickup_datetime,'%Y-%m-%d
%H:%i:%s')) as day,

202 Ad Hoc Analytics

 COUNT(*) as ride_count,

 AVG(fare_amount) as avg_fare_amount,

 AVG(tip_amount) as avg_tip_amount

 FROM chapter_7_nyc_taxi_parquet

 GROUP BY date_trunc('day',

 date_parse(tpep_pickup_datetime,'%Y-%m-%d %H:%i:%s'))

 ORDER BY day ASC""", conn)

In the same cell, we'll then calculate the zscore of the ride_count column so that we
can again filter out the outliers. Since this query gathers daily data, we adjust our zscore
threshold to -1 to allow for a broader range of valid values. Once you've included the
code from this following snippet, you can run the cell. Executing the cell may take a
minute or two if you are using the ml.t3.medium instance type for your notebook
instance. This is because the notebook needs to retrieve all results from Athena using
Athena's results API. As we discussed in an earlier chapter, Athena's results API is not as
performant as reading the data directly from the Athena results file in S3:

zscore2 = stats.zscore(athena_results_2["ride_count"])

athena_results_2['zscore']=zscore2

athena_filtered_2= athena_results_2[athena_results_2['zscore']
> -1]

Once the cell completes executing, you can add another cell that we'll use to generate
a scatter plot that varies color and point size based on tip amount and fare amount,
respectively. We do this by importing the mdates and ticker modules from Matplotlib.
Then we use the previously mentioned customizability of Matplotlib to manually set
a wide aspect ratio for our plot and pass this into Seaborn's scatterplot function.
You can see the full detail of how to configure the plot in the following code snippet.
We conclude the cell by customizing the frequency and format of our graph's y axis
using the set_major_locator() and set_major_formatter() functions
of our plot object:

import matplotlib.dates as mdates

import matplotlib.ticker as ticker

fig, ax = pyplot.subplots(figsize= (16.7, 6.27))

plot = seaborn.scatterplot(ax=ax, x="day", y="ride_count",
size="avg_fare_amount", sizes=(1, 150), hue="avg_tip_amount",
data=athena_filtered_2)

Using Jupyter Notebooks with Athena 203

plot.xaxis.set_major_locator(ticker.MultipleLocator(125))

plot.xaxis.set_major_formatter(mdates.DateFormatter('%m/%Y'))

plt.show()

When run, the cell produces the chart in Figure 7.15. At a glance, we can see that while
the daily number of rides is indeed trending down, the average tip amount is actually
increasing even though the average cost of a ride is relatively flat. This suggests that
customer satisfaction is not a likely reason for the reduction in yellow taxi rides. For
completeness, we'll still carry out a correlation analysis of our key metrics to better
understand the relationships in our data.

Figure 7.15 – Plotting the ride count versus the average tip amount versus the
average fare amount over time

Let's add one final cell to our notebook. We'll start this cell by running an Athena query
to get hourly averages for ride duration, distance, fare, tip, and the number of rides. We
conclude the cell by calling the pandas corr() function to calculate the correlation
between all the columns in our results DataFrame:

athena_results_3=pd.read_sql("""SELECT

 max(hour(date_parse(tpep_pickup_datetime,

 '%Y-%m-%d %H:%i:%s'))) as hour_val,

 avg(date_diff('second',

 date_parse(tpep_pickup_datetime, '%Y-%m-%d
%H:%i:%s'),

 date_parse(tpep_dropoff_datetime, '%Y-%m-%d
%H:%i:%s')))

 as duration,

 avg(trip_distance) as trip_distance,

204 Ad Hoc Analytics

 avg(fare_amount) as fare_amount,

 avg(tip_amount) as tip_amount,

 count(*) as cnt

from chapter_7_nyc_taxi_parquet

WHERE year=2018

group by date_trunc('hour', date_parse(tpep_pickup_
datetime,'%Y-%m-%d %H:%i:%s')) """, conn)

athena_results_3.corr()

pandas' corr() function implements several techniques for calculating a correlation
matrix. By default, it uses the Pearson method to determine the covariance between
two variables and then divide that factor by the product of the two variables' standard
deviations. Covariance refers to the tendency for two variables to increase or decrease,
with the relationship between height and age of students being a simple example of highly
correlated variables. The Pearson method can only capture linear relationships between
variables and has a range of 1 for highly correlated, 0 for uncorrelated, and -1 for inversely
correlated.

Figure 7.16 shows the output of the correlation matrix outputted by our final cell.
Interestingly, tip_amount is not correlated to duration. This goes against every movie
you've seen where someone jumps in a taxi and offers a big tip to run every red light.
In fact, tip_amount is most correlated with trip_distance. The relationship, or
lack thereof, between the time of day (hour_val) is another surprise. You would think
that ride duration would spike during peak commute times, but the lack of correlation
between hour_val and duration suggests otherwise even though ride_count is highly
correlated to the time of day. If we were continuing our ad hoc analysis of this dataset,
our next step would be to look at how duration manages to be unaffected by ride count,
a seemingly obvious traffic volume indicator.

Figure 7.16 – DataFrame correlation values

Summary 205

In this section, we managed to run multiple Athena queries, targeting different slices of
data, and pivot our ad hoc analysis based on findings along the way. We did all that while
staying in one tool, our notebook. The tools we used are capable of much more than the
simple explorations we undertook. Hopefully, this exercise has demonstrated why they
would be a powerful addition to any ad hoc analytics strategy.

Summary
In this chapter, you got hands-on with the first of Athena's four most common usages – ad
hoc analytics. We did this by looking at the history of business intelligence and learning
about the OODA loop. Ad hoc analytics shortens the OODA loop by making it easier
to use data to observe and orient yourself to the situation. The increased accessibility of
data ultimately leads to the heightened situational awareness required for making sound
decisions. With clarity of data behind your decisions, your organization will be less likely
to waste time before acting on those choices. A short OODA loop also helps you react to
poor decisions or calculated risks such as A/B tests.

The OODA loop isn't a new concept, and it's not the catalyst of the rising importance
of ad hoc analytics. Instead, the proliferation of data has made it necessary for every
decision maker in your organization to have access to critical business metrics at a
moment's notice. We saw how some organizations attempt to meet this need through
centralized reporting teams that bridge the skills gap between subject-matter experts
that understand the semantic meaning of the data and the technical expertise required to
access the data itself.

Athena shrinks the skills gap by hiding much of the complexity behind a SQL façade.
Basic SQL knowledge is becoming increasingly common even in non-technical roles.
Complimentary tools such as QuickSight further democratize access to data by providing
a more guided experience. Jupyter Notebooks rounds out the strategy by providing an
escape valve for advanced users and data scientists to use popular libraries with their data.

In Chapter 8, Querying Unstructured and Semi-Structured Data, you'll learn about another
typical Athena use case. Querying loosely structured data is a challenging undertaking
and partly the result of traditional SQL tables and schemas being too rigid and
ill-equipped to support the pace of software evolution.

8
Querying

Unstructured and
Semi-Structured

Data
Many of the world's most valuable datasets are loosely structured. They come from
application logs, which don't conform to any standards. They come from event data
generated by a system that users interact with, such as a web server, which stores how
users navigate an organization's website. They can also come from an analyst generating
spreadsheets on a company's financial performance. This data is usually stored and shared
in a semi-structured format to make it easier for others to consume. Some query engines
have evolved to fully support this semi-structured data.

208 Querying Unstructured and Semi-Structured Data

When talking about structured, semi-structured, and unstructured data, there are many
different definitions out there. For this book, structured data is stored in a specialized
data format where the schema and the data it represents are one to one. The data is
serialized to optimize how the data is read, written, and analyzed. An example is a
relational database. Semi-structured data is when the data format follows a specific
format, and a schema can be provided to read that data. For example, the JSON, XML,
and CSV file formats have rules on how they are parsed and interpreted. Still, the
relationship to a schema or table definition is loose. Unstructured data is data that does
not follow a particular data model. Examples of unstructured data include application
logs, images, text documents, and more.

In this chapter, we will learn how Amazon Athena combines a traditional query engine
and its requirement for an up-front schema with extensions that allow it to handle data
that contains varying schemas or no schema at all.

In this chapter, we will cover the following topics:

• Why isn't all data structured to begin with?

• Querying JSON data

• Querying arbitrary log data

Technical requirements
For this chapter, if you wish to follow some of the walk-throughs, you will require the
following:

• Internet access to GitHub, S3, and the AWS Console.

• A computer with Chrome, Safari, or Microsoft Edge installed.

• An AWS account and an accompanying IAM user (or role) with sufficient privileges
to complete this chapter's activities. For simplicity, you can always run through
these exercises with a user who has full access. However, we recommend using
scoped-down IAM policies to avoid making costly mistakes and learn how to best
use IAM to secure your applications and data. You can find a minimally scoped
IAM policy for this chapter in the book's accompanying GitHub repository,
listed as chapter_8/iam_policy_chapter_8.json (https://bit.
ly/3hgOdfG). This policy includes the following:

 � Permissions to create and list IAM roles and policies:

 � You will be creating a service role for an AWS Glue Crawler to assume.

https://bit.ly/3hgOdfG
https://bit.ly/3hgOdfG

Why isn't all data structured to begin with? 209

 � Permissions to read, list, and write access to an S3 bucket.

 � Permissions to read and write access to Glue Data Catalog databases, tables, and
partitions:

 � You will be creating databases, tables, and partitions manually and with Glue
Crawlers.

 � Access to run Athena queries.

Why isn't all data structured to begin with?
Data is generated from everywhere at all times within computer systems. They power
our applications and reports and help us make sense of the world and our decisions that
impact it. Data that's produced from an application that manages financial portfolios
tells us how much risk the instruments in the portfolio are at. Websites can generate click
data to tell a story, such as how customer's behavior changes when an update is made to
a website. Retail businesses produce sales transactions and marketing data to determine
how sales are affected by marketing campaigns. Amazon's user traffic information on
individual products can train machine learning models to make recommendations to
users who showcase products that they didn't even know they wanted. For this data to be
helpful, it must be accessible to data engineers and machine scientists to produce even
greater value from them.

However, not all data is created equally. If we take a hypothetical online store that sells
everything from A to Z, sales information can be saved in structured data stores such as
relational databases. User traffic and click data can be stored as text files in S3 in CSV files.
Item description data can be retrieved through a RESTful API and saved as JSON data.
The format and structure of the data are usually chosen based on how best to represent
the information and how downstream applications consume that information. Usually,
this data is not stored in a database system because this tends to be expensive. Hence,
they are pruned of older data to keep costs low and performance high. Having data in
a semi-structured format makes sharing data very easy. The data usually conforms to
open standards, such as CSV, JSON, and XML. It is also estimated that 80-90% of current
applications produce non-structured data. So, it makes sense to not change the existing
applications but have our query engine read the data directly or ETL the data for Athena
to read.

210 Querying Unstructured and Semi-Structured Data

The remainder of this chapter will show you how to query a variety of semi-structured
and unstructured data sources using Athena. We will use a fictitious retail business that
sells widgets. This retail business wants to perform analytics with data that is produced by
various systems. The following table outlines the system and type of data that is generated:

Table 8.1 – Data types and descriptions

The sample data files can be found on GitHub (https://bit.ly/3wlJSwV). Let's
query these datasets.

Querying JSON data
JSON is a prevalent data format. It can be described as a lightweight version of XML and
has many similarities with it. The file format is text-based, contains field names, along with
their values, and supports advanced data types such as structures and arrays. A structured
data type is a group of columns that are stored and referred to by their structure names
and column names. This allows for logically similar columns to be grouped; for example,
the structure of a customer's address that contains a street name, street number, city, state,
and more. Arrays allow a single row to have a field containing zero or more values that
can be referenced by an index number. An example list would be a list of addresses for
a customer. JSON supports a mixture of arrays and structures. You can have an array of
structures or a structure with an array field within it.

When using Athena, JSON files have to be of a particular format. Athena requires that
JSON files must contain a single JSON object on separate lines within a file. If there are
multiple objects on the same line, only the first object will be read, and if an object spans
multiple lines, it will not throw an error. If the file format does not conform to what
is compatible with Athena, then the data will need to be transformed (see Chapter 9,
Serverless ETL Pipelines).

Now, let's look at some sample queries and read our customer's table.

Querying JSON data 211

Reading our customer's dataset
The following is a sample JSON record from our customer's table (formatted to be easier
for a human to read but not Athena!):

{

 "customer_id": 10,

 "first_name": "Mert",

 "last_name": "Hocanin",

 "email": "mert@somedomain.com",

 "addresses": [

 {

 "address": "63 Fairview Alley",

 "city": "Syracuse",

 "state": "NY",

 "country": "United States"

 }

]

}

Here, we can see that this record has five fields: customer_id, first_name,
last_name, email, and addresses. The addresses field is an array that contains
a structure that contains four fields.

To register this table in our catalog, we can run a Glue crawler. But if we want to
create this table using a CREATE TABLE statement (available at https://bit.
ly/3yna5eV), it would look like this:

CREATE EXTERNAL TABLE customers (

 customer_id INT,

 first_name STRING,

 last_name STRING,

 email STRING,

 addresses ARRAY<STRUCT<address:STRING,city:STRING,
state:STRING,country:STRING>>,

 extrainfo STRING

)

ROW FORMAT SERDE

 'org.openx.data.jsonserde.JsonSerDe'

STORED AS INPUTFORMAT

https://bit.ly/3yna5eV
https://bit.ly/3yna5eV

212 Querying Unstructured and Semi-Structured Data

 'org.apache.hadoop.mapred.TextInputFormat'

OUTPUTFORMAT

 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

LOCATION

 's3://<S3_BUCKET>/chapter_8/customers/';

Let's view some sample data from this table by running SELECT * FROM customers
LIMIT 10:

Figure 8.1 – Sample data from the customers table

The results look as expected. Now, let's query the table and see how many customers have
primary addresses in each state. We will assume that the first address in the address list is
their primary address, so we can run the following query:

SELECT

 addresses[1].state AS State,

 count(*) AS Count

FROM customers

WHERE cardinality(addresses) > 0

GROUP BY 1 ORDER BY 2 DESC LIMIT 5

The results will look as follows:

Figure 8.2 – Query results to show the top five numbers of customers by US state

Querying JSON data 213

With arrays, we can reference the element by using square brackets (addresses[1]).
Since this returns a structure, we can reference the field by its name (.state). So, putting
this together, we can specify the first address's state by writing addresses[1].state.
Now, let's look at how we can parse fields that contain JSON data.

Parsing JSON fields
There are cases where some fields contain a string that contains JSON as a payload.
This is sometimes done to make the payload completely abstract. Only the readers of
the payload would understand the data in it. Our customer's table has a field called
extrainfo containing JSON. In this section, we will describe an unlimited shipping
program called the Pinnacle program. When we run SELECT customer_id,
extrainfo FROM customers WHERE extrainfo is not null LIMIT 5,
we get the following results:

Figure 8.3 – The extrainfo field within the customers table

214 Querying Unstructured and Semi-Structured Data

So, what can we do with this JSON data in the field? Athena (and PrestoDB/TrinoSQL)
supports a JSON data type and a variety of built-in functions that allow us to interact
with the JSON data easily without parsing or transforming the data. There are two JSON
functions that are really useful: json_extract and json_extract_scalar. These
functions take a string and a JSON path and return the JSON data type or a string. These
functions extract any field within the JSON object, regardless of how nested the data may
be. For example, if we run SELECT json_extract_scalar(extrainfo, '$.is_
pinnacle_customer') FROM customers where extrainfo IS NOT NULL ,
we would get the following result:

Figure 8.4 – json_extract_scalar function example

Let's look at some things we should consider when reading JSON data.

Other considerations when reading JSON
Let's take a look at some other things you should consider when reading JSON.

Schema updates with JSON
One of the benefits of using JSON is that fields can be added and removed from the
records without it impacting Athena's ability to read the table. Since the files contain field
names and their values, any fields that are not present in the files are ignored. If there is a
row that doesn't include the field, then a null is returned. This is useful as data evolves and
new fields are added and removed. Additionally, the ordering of fields does not impact the
ability to read the data.

Querying JSON data 215

JSON SerDe comparison
Athena provides two different SerDes to be able to read JSON data. Each SerDe has
slightly different functionality, so it's important to compare the two. In the preceding
CREATE TABLE statement, we specified org.openx.data.jsonserde.
JsonSerDe. The other SerDe is the Hive JSON SerDe. Our recommendation is to use the
OpenX version. It contains some beneficial properties that can help read JSON that the
Hive SerDe does not have.

When specifying the following properties, they need to be specified in the SerDe
properties of the table, like so:

CREATE EXTERNAL TABLE customers (

 ... Table columns

)

ROW FORMAT SERDE

 'org.openx.data.jsonserde.JsonSerDe'

WITH SERDEPROPERTIES (

 "property1" = "value1",

 "property2" = "value2"

)

... Rest of the table attributes like INPUTFORMAT, LOCATION,
etc

Let's look at some of the useful OpenX JSON SerDe properties:

• Mapping: The OpenX JSON SerDe has a property that allows you to map a
field name within the JSON file to a column name within your table definition.
This can be useful if a field in your JSON file cannot be used within your table
definition, such as if a keyword is used. For example, if you have a timestamp field
name in your JSON file, you won't create a column called timestamp because
it is a reserved keyword. Instead, you can map the timestamp field to a column
named ts by specifying the WITH SERDEPROPERTIES ("mapping.ts" =
"timestamp") SerDe property.

216 Querying Unstructured and Semi-Structured Data

• Case Insensitivity: By default, the OpenX JSON SerDe will compare field names
found in JSON files and column names in your catalog in a case-insensitive way.
For most cases, this behavior is ideal as it will reduce the likeliness of errors being
caused because of the case. However, in some rare cases, this may not be wanted
as two field names may conflict if they only have case differences. For example,
if your JSON file contains a field called time and Time, then it will seem like there
is a duplicate field in the file, and it will be rejected as it will be deemed malformed.
To get around this, we can leverage the mappings feature and turn off case
insensitivity. For the time fields, we can use the WITH SERDEPROPERTIES
("mapping.time1" = "time", "mapping.time2" = "Time",
"case.insensitive" = "FALSE") SerDe property.

• Periods in Field Names: If your JSON files contain field names with periods in
them, then Athena won't read their data. To get around this, we must set dots.
in.keys to true. Turning this property on will convert all the periods into
underscores. For example, if you had a field in your JSON file named customers.
name, then SerDe will translate this into customer_name.

Now that we have learned how to read JSON, let's look at how we can query CSV
and TSV.

Querying comma-separated value and tab-separated
value data
The comma-separated value (CSV) and tab-separated value (TSV) formats are some
of the oldest data formats. They have lasted the test of time. They are heavily used today
in many legacy systems and even among heavy Microsoft Excel users. Their main
advantages versus other formats are their simplicity, their popularity, and that most
spreadsheet applications can open them. CSV and TSV data also map very closely to
tables within a database, where you have rows and columns of data. CSV and TSV files
are text-based. Field values are separated by a delimiter, usually commas or tabs, and
rows are separated by newlines. You can find examples of CSV files at https://bit.
ly/2TQY8z5 and https://bit.ly/3h1G919. We will use them as example datasets.
Let's look at an example.

https://bit.ly/2TQY8z5
https://bit.ly/2TQY8z5
https://bit.ly/3h1G919

Querying JSON data 217

Reading a typical CSV dataset
Reading CSV and TSV data within Athena is simple, and in most cases, it is very
straightforward. For most use cases, we can use the built-in delimited text parser.
Let's take a look at the CREATE statement for our sales table (this can be found at
https://bit.ly/2TQG73W):

CREATE EXTERNAL TABLE sales (

 timestamp STRING,

 item_id STRING,

 customr_id INT,

 price DOUBLE,

 shipping_price DOUBLE,

 discount_code STRING

)

ROW FORMAT DELIMITED

 FIELDS TERMINATED BY ','

 ESCAPED BY '\\'

 LINES TERMINATED BY '\n'

LOCATION 's3:// <S3_BUCKET>/chapter_8/sales/'

TBLPROPERTIES ('serialization.null.format'='',

 'skip.header.line.count'='1')

We can set two table properties here: skip.header.line.count and
serialization.null.format. The skip.header.line.count property tells
the parser to skip the first line in the CSV file as it contains the column names or the
header row. The serialization.null.format property tells the parser to treat
empty columns as nulls. Now that we have defined our sales data, let's take a look at some
sample data, as shown in the following screenshot:

Figure 8.5 – Sample data from the sales dataset

https://bit.ly/2TQG73W

218 Querying Unstructured and Semi-Structured Data

If your data contains a string field containing a comma, you can deal with it in two
ways. First, you can escape the comma by using the specified character provided by the
ESCAPED BY value. The second would be to surround the field with quotes, but you will
need to use the OpenCSVSerDe parser for Athena to parse quoted fields correctly. We'll
look at OpenCSVSerDe in more detail later. Now, let's learn how to read TSV files.

Reading a typical TSV dataset
TSV files are similar to CSV files, except tabs are used as delimiters between field values
rather than commas. Tabs are less likely to be contained within string fields, so they are
sometimes convenient to use rather than commas and escape unintentional commas. If
you have tried to open a CSV file with Microsoft Excel and the columns do not align with
these unexpected commas, you will understand that they can be challenging to fix.

In our example, we have a table representing marketing campaigns that contains a starting
timestamp that represents the start of a marketing campaign, an ending timestamp
that represents the end of a marketing campaign, and a description of the campaign.
Suppose the marketing department provides this data as an export from Microsoft Excel
that delimited the fields by tabs. To register the table, the CREATE TABLE statement
(available at https://bit.ly/3xZVIwU) will look very similar to the CSV table, as
shown in the following statement:

CREATE EXTERNAL TABLE marketing (

 start_date STRING,

 end_date STRING,

 marketing_id STRING,

 description STRING

)

ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t'

 ESCAPED BY '\\'

 LINES TERMINATED BY '\n'

LOCATION 's3:// <S3_BUCKET>/chapter_8/marketing/';

You'll notice that the delimiter is \t, which represents a tab. The sample data is shown in
the following screenshot:

https://bit.ly/3xZVIwU

Querying JSON data 219

Figure 8.6 – Sample data from the marketing dataset

You will notice a comma in the second row that we did not need to escape. Now that we
have a dataset for sales, customers, and marketing information, we can do some simple
analytics from data that could have come from three different systems or sources. Let's
look at a quick example.

Example analytics query
Suppose that we wanted to know how effective our marketing campaigns were by looking
at the number of sales on days with campaigns versus days that do not. Additionally,
we want to know the states that the sales were coming from. The following is a sample
analytics function that can achieve that (this can be found at https://bit.
ly/3gXwf1u, which also contains a breakdown of the query):

SELECT

 date_trunc('day', from_iso8601_timestamp(sales.timestamp))
as sales_date,

 CASE WHEN marketing.marketing_id is not null then TRUE else
FALSE END as has_marketing_campaign,

 SUM(1) as number_of_sales,

 histogram(CASE WHEN cardinality(customers.addresses) > 0
THEN customers.addresses[1].state ELSE NULL END) as states

FROM

 sales

LEFT OUTER JOIN

 marketing

ON

 date_trunc('day', from_iso8601_timestamp(marketing.start_
date))

 = date_trunc('day', from_iso8601_timestamp(sales.

https://bit.ly/3gXwf1u
https://bit.ly/3gXwf1u

220 Querying Unstructured and Semi-Structured Data

timestamp))

LEFT OUTER JOIN

 customers

ON

 sales.customer_id = customers.customer_id

GROUP BY 1, 2 ORDER BY 3 DESC

This Athena query would produce the following results:

Figure 8.7 – Results of the analytics query

Here, we can see that for our top three results, days that had marketing campaigns
produced the most sales and that most of our sales came from California. This
information can help inform future marketing campaigns as well as inventory when
marketing campaigns are run. This was just a warmup; we will look at more cases and
explain how to do this type of analytics in Chapter 7, Ad Hoc Analytics. Now, let's learn
how to read inventory data.

Reading CSV and TSV using OpenCSVSerDe
So far, we have looked at using the default version of SerDe to parse CSV and TSV files.
However, another SerDe that we should look at deals with CSV and TSV files called
OpenCSVSerDe. This SerDe compares to the default SerDe in a few crucial ways. First, it
supports quoted fields, meaning that values are surrounded by quotes. This is usually done
when the fields contain the same delimiter values, which are then ignored until the quote
values are found. However, if there are quote values, those need to be escaped as well.
The second difference is that all columns are treated as STRING data types, regardless of
the table definition, and need to be implicitly or explicitly converted into the actual data
type. The following is a sample CSV file from our inventory dataset that illustrates when
OpenCSVSerDe should be used:

"inventory_id","item_name","available_count"

"1","A simple widget","5"

"2","A more advanced widget","10"

Querying JSON data 221

"3","The most advanced widget","1"

"4","A premium widget","0"

"5","A gold plated widget","9"

If we used the default SerDe, the inventory_id and available_count data would
need to be specified as a string, and all field values would be returned with quotes, as
shown in the following screenshot:

Figure 8.8 – Reading the inventory dataset using the default SerDe

When the data is returned, as shown in the preceding screenshot, it would be tough to use.
Using OpenCSVSerDe will solve this issue, as shown in the following CREATE TABLE
statement (which is available at https://bit.ly/35UsP9k):

CREATE EXTERNAL TABLE inventory (

 inventory_id BIGINT,

 item_name STRING,

 available_count BIGINT

)

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde'

WITH SERDEPROPERTIES ("separatorChar" = ",", "escapeChar" =
"\\")

LOCATION 's3://<S3_BUCKET>/chapter_8/inventory/'

TBLPROPERTIES ('skip.header.line.count'='1')

https://bit.ly/35UsP9k

222 Querying Unstructured and Semi-Structured Data

Using OpenCSVSerDe will give us the following results:

Figure 8.9 – Inventory data using OpenCSVSerDe

For more information about using OpenCSVSerDe, see Athena's documentation, which is
located at https://amzn.to/3isnvzr.

Now that we have learned how to read CSV and TSV data that's been generated from
Microsoft Excel or another source, let's dive into reading arbitrary log data.

Querying arbitrary log data
One very common use case for system engineers or software developers is to scan log files
to find a particular logline. This may be to find when bugs have occurred, gather metrics
about how a specific system performs, how users interact with a system, or to diagnose
user or customer issues. There is a vast amount of useful and valuable data that comes out
of log data. It's a great idea to store application log data in data to be mined in the future.
Many of the AWS services are already pushing log data into S3 or can easily be configured.
Athena's documentation provides templates for reading many of these services' log files,
which can be found at https://amzn.to/3dJzt6H. Let's learn how Athena can be
used to quickly and easily scan through logs stored on S3.

Doing full log scans on S3
Many logs are pushed to S3. Reading through those log files can be difficult and/or time-
consuming when stored on S3. If those logs need to be read to look for problems, issues,
or some kind of event, you may download the files and then run a grep command. This
could take a lot of time because the download from S3 is done using a single computer,
so it is limited by a single computer's network and CPU resources. You could spin up
a Hadoop cluster and attempt to read the logs in parallel, but that requires expertise in
using Hadoop and the time it takes to create and configure the cluster.

https://amzn.to/3isnvzr
https://amzn.to/3dJzt6H

Querying arbitrary log data 223

Athena can scan your log files in a parallel and easy way and return lines in log files
that match search criteria. Let's go through an example. Anyone who has used Amazon
EMR before knows that the application logs of Apache Hive, Apache Spark, and other
applications are pushed to S3. When a particular Spark or Hive job fails, finding the
specific log file that caused the failure may be difficult. Using Athena, we can search
for the failure and log out the files that contained those failures. To do this scanning,
we will rely on the default version of SerDe that Athena provides, which we looked at in
the Querying comma-separated value and tab-separated value data section. But the trick
here is to specify a delimiter that is very unlikely to exist in our log files. Let's look at
CREATE TABLE:

CREATE EXTERNAL TABLE emrlogs (

 log_line string

)

ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '|'

 LINES TERMINATED BY '\n'

LOCATION

 's3://<S3_BUCKET>/elasticmapreduce/j-2ABCDE34F5GH6'

Since the pipe character is unlikely to be in EMR logs, the log_line field will contain
the value of a single logline. Then, we can submit queries while looking for a specific text.
For example, we can use regexp_like to specify a regex to search for:

SELECT log_line FROM emrlogs where regexp_like(log_line,
'ERROR|Exception')

This query will print the entire line. Although this can be useful, we can also specify
a hidden column that gives us the path of the file that the row was found in:

SELECT log_line, "$PATH" FROM emrlogs where regexp_like(log_
line, 'ERROR|Exception')

224 Querying Unstructured and Semi-Structured Data

The $PATH field is very useful as it will give us the path that the logline was found in to
download the file or files and take a closer look. The $PATH field can also be put in the
WHERE clause to search for a particular application, EC2 instance ID, or EMR step ID. The
following screenshot shows the example query output from the previous query:

Figure 8.10 – Running a Grep search on EMR logs using Athena

This way of using Athena can be applied to any text-based log files and can make it
quick and easy to scan logs stored on S3. But what if we wanted to scan log files that
are a little more structured to filter based on fields? This is where using Regex and
Grok SerDes can help.

Reading application log data
Athena has two built-in SerDes that allow you to parse log data that follows a pattern.
They then map the pattern to different columns within a table to query many types of
log files. These two SerDes are the Regex SerDe and the Grok SerDe. With both of these
SerDes, you provide an expression that Athena will use to parse each line of your text file
and map the expressions to columns in your table.

Regular expressions, or regexes for short, are commonly used within many programming
languages and editors to provide a search expression to find or replace a particular
pattern. We won't go into how to write regular expressions, but if you are familiar with
how to write regular expressions, then the Regex SerDe can be useful. The good news
is that for many types of application logs, Athena's documentation provides the
expressions so that they're ready to use to parse some of the most popular log types,
such as Apache web server logs (see https://amzn.to/3xqrNhO) and most
AWS services (see https://amzn.to/3dJzt6H). If you do want to create regular
expressions for other log types, then we recommend using an online regular expression
evaluator to test your expressions, which can help.

https://amzn.to/3xqrNhO

Querying arbitrary log data 225

The Grok SerDe was built based on Logstash's grok filter. This SerDe takes in a Grok
expression that is used to parse log lines. Grok expressions can be seen as extensions of
regexes as Grok expressions are built using regexes, but regex expressions can be named
and referenced. With named expressions, you can put them together to express a full
logline in a more human-readable format. An added benefit is that Logstash has many
built-in, ready-made expressions that you can use. The list is available at https://bit.
ly/3hEqq8n. Let's look at an example of how this works.

Let's take our fictional company. They have a web server that outputs when visits occur,
which page they visited, and referred them. Some example rows are as follows:

1621880197 59.73.211.164 http://www.acmestore.com/ https://www.
yahoo.com

1597343145 50.13.226.237 http://www.acmestore.com/ https://www.
google.com

1617872146 32.2.141.225 http://www.acmestore.com/product/4
https://www.duckduckgo.com

1621960907 65.105.235.14 http://www.acmestore.com/product/1
https://www.google.com

We have the time in epoch format, the visitor's IP address, the page that was visited,
and the referrer (usually a search engine). Looking at the pre-built grok expressions, the
preceding code can be expressed as "%{NUMBER:time_epoch} %{IP:source_
addr} %{URI:page_visited} %{URI:referrer}?". Let's create the table
and query it using the following CREATE TABLE (available at https://bit.
ly/3xjRxMD):

create external table website_clicks (

 time_epoch BIGINT,

 source_addr STRING,

 page_visited STRING,

 referrer STRING

) ROW FORMAT SERDE

 'com.amazonaws.glue.serde.GrokSerDe'

WITH SERDEPROPERTIES (

 'input.format'='%{NUMBER:time_epoch} %{IP:source_addr}
%{URI:page_visited} %{URI:referrer}?'

)

STORED AS INPUTFORMAT

 'org.apache.hadoop.mapred.TextInputFormat'

https://bit.ly/3hEqq8n
https://bit.ly/3hEqq8n
https://bit.ly/3xjRxMD
https://bit.ly/3xjRxMD

226 Querying Unstructured and Semi-Structured Data

OUTPUTFORMAT

 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

LOCATION

 's3:// <S3_BUCKET>/chapter_8/clickstream/';

The SerDe we specified is com.amazonaws.glue.serde.GrokSerDe, and we put
it in the Grok expression via the input.format SerDe property. Now, if we query the
table, we will get the following results:

Figure 8.11 – Running a query against a table using Grok SerDe

Now that we can parse and query application logs, let's summarize what we have learned
so far.

Summary
In this chapter, we explored the different ways in which we can query unstructured and
semi-structured data. This data that comes from applications, databases, or even Microsoft
Excel can be queried using Athena. We looked at two of the most commonly used file
formats used by legacy and source systems, JSON and CSV/TSV, and how to determine
which SerDes to use to parse them. We then looked at the Regex and Grok SerDes to help
us parse log files that conform to some patterns, such as Log4J logs. Using these SerDes,
we can query and derive value.

The next chapter will examine how we can take unstructured and semi-structured data
and transform it into a more performant and cost-effective format, such as Apache
Parquet or Apache ORC.

Further reading 227

Further reading
To learn more about what was covered in this chapter, take a look at the following
resources:

• Athena's documentation on the OpenCSVSerDe documentation: https://docs.
aws.amazon.com/athena/latest/ug/csv-serde.html.

• Athena's documentation on the Grok SerDe: https://docs.aws.amazon.
com/athena/latest/ug/grok-serde.html.

• Grok: https://www.elastic.co/guide/en/logstash/7.13/plugins-
filters-grok.html.

• Athena's documentation on the Regex SerDe: https://docs.aws.amazon.
com/athena/latest/ug/regex-serde.html.

• Athena's templates for consuming AWS Service logs: https://docs.aws.
amazon.com/athena/latest/ug/querying-AWS-service-logs.html.

• Athena's supported SerDes: https://docs.aws.amazon.com/athena/
latest/ug/supported-serdes.html.

https://docs.aws.amazon.com/athena/latest/ug/csv-serde.html
https://docs.aws.amazon.com/athena/latest/ug/csv-serde.html
https://docs.aws.amazon.com/athena/latest/ug/grok-serde.html
https://docs.aws.amazon.com/athena/latest/ug/grok-serde.html
https://www.elastic.co/guide/en/logstash/7.13/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/7.13/plugins-filters-grok.html
https://docs.aws.amazon.com/athena/latest/ug/regex-serde.html
https://docs.aws.amazon.com/athena/latest/ug/regex-serde.html
https://docs.aws.amazon.com/athena/latest/ug/querying-AWS-service-logs.html
https://docs.aws.amazon.com/athena/latest/ug/querying-AWS-service-logs.html
https://docs.aws.amazon.com/athena/latest/ug/supported-serdes.html
https://docs.aws.amazon.com/athena/latest/ug/supported-serdes.html

9
Serverless ETL

Pipelines
In the previous chapter, you learned how to tame unstructured or loosely structured data
using Athena to manipulate logs, JavaScript Object Notation (JSON), and other types
of machine-generated data. In this chapter, we'll continue with the theme of controlling
chaos by using automation to normalize newly arrived data through a process known as
extract, transform, load (ETL). We start with a brief explanation of ETL, and once we've
established a basic understanding of ETL processes, we will move on to best practices and
common pitfalls of using Athena for ETL.

As with most of the chapters in this book, we'll then get hands-on by designing and
implementing a serverless ETL pipeline. More precisely, we'll implement the serverless
ETL pipeline discussed in Chapter 2, Introduction to Amazon Athena. In that chapter,
we described a fictional hedge fund with a propensity for trading widely shorted meme
stocks. Their equally fictional yet surprisingly realistic compliance department needed
a way to automatically process newly arrived trade reports from across the company
and use the data to update the company's risk management system in near real time.
By combining Athena with Lambda and using Simple Storage Service (S3) event
notifications as a trigger, we can build a robust, cost-effective, and completely serverless
ETL pipeline.

230 Serverless ETL Pipelines

In the subsequent sections of this chapter, we will learn about the following topics:

• Understanding the uses of ETL

• Deciding whether to ETL or query in place

• Designing ETL queries for Athena

• Using Lambda as an orchestrator

• Triggering ETL queries with S3 notifications

Technical requirements
Wherever possible, we will provide samples or instructions to guide you through the
setup. However, to complete the activities in this chapter, you will need to ensure you
have the following prerequisites available. Our command-line examples will be executed
using Ubuntu, but most Linux flavors should work without modification, including
Ubuntu on Windows Subsystem for Linux (WSL).

You will need internet access to GitHub, S3, and the Amazon Web Services (AWS)
console.

You will also require a computer with the following installed:

• Chrome, Safari, or Microsoft Edge browser

• The AWS Command-Line Interface (CLI) installed

This chapter also requires you to have an AWS account and an accompanying Identity
and Access Management (IAM) user (or role) with sufficient privileges to complete this
chapter's activities. Throughout this book, we will provide detailed IAM policies that
attempt to honor the age-old best practice of "least privilege." For simplicity, you can
always run through these exercises with a user that has full access. Still, we recommend
using scoped-down IAM policies to avoid making costly mistakes and learning more
about using IAM to secure your applications and data. You can find the suggested
IAM policy for this chapter in the book's accompanying GitHub repository listed as
chapter_9/iam_policy_chapter_9.json, here: https://bit.ly/2RklBaW.
The primary additions from the IAM policy recommended for past chapters include the
following:

• Lambda invoke and execution role changes

• S3 event notifications access

• CloudWatch Logs and Metrics access

https://bit.ly/2RklBaW

Understanding the uses of ETL 231

Understanding the uses of ETL
In the most literal terms, ETL refers to a procedure with three conceptual phases that
begin with reading data from a source system and end with a derivative of the original
data being stored into a target system. In between these deceptively simple steps sits the
most important facet of ETL, the transformation from the source system's semantic and
physical schema to the domain model expected by the target system. In this step, we are
essentially integrating source and target systems that may represent data differently.

Much of the academic literature on ETL points to the expansion of data warehousing
concepts in the 1970s as its origin. It was a time when businesses rapidly adopted
databases and found themselves with multiple data repositories, often using incompatible
formats. Sounds familiar? Fast forward to today, and not much has changed aside from
the date. The ability to integrate data from siloed or incompatible systems continues to be
a key enabler for many business intelligence (BI) functions.

Traditional data warehouses were born of this era. They frequently served as the data
integration point for everything from mainframes to spreadsheets. Data warehouses
and ETL often play key roles in mergers and acquisitions, with ETL processes forming
a beachhead for the more challenging technology integration effort to follow. Over time,
the number of new data formats, databases, and source systems has led to an order-of-
magnitude increase in data sprawl. Naturally, ETL is as popular as ever. Even the recent
emergence of federated query engines such as Athena and their ability to query data in
place hasn't done much to change the popularity of ETL processes. Tools such as Athena
have led to an evolution of ETL from a primarily offline operation to a near-real-time
integration.

For many years, businesses depended on ETL pipelines as a mechanism to get a
consolidated view of critical business data. Today's ETL processes have evolved beyond the
original charter that spawned the term and now include reactive pipelines, modularization
of complex data processing, and even elements of performance optimization through
pre-computed materialized views. Let's take a closer look at common ETL use cases.

ETL for integration
In our first ETL use case, we focus on scenarios where the goal is to enable two or more
systems that have no direct mechanism for exchanging data to do so through a translation
layer—namely, an ETL pipeline. Customers often run into this situation when they have
a mix of systems from different vendors or that were developed in-house for various
purposes over several years. Then, suddenly, due to an emerging regulatory requirement,
an acquisition, or the pursuit of greater efficiency between two previously independent
divisions, you need these applications to operate with an understanding of the whole.

232 Serverless ETL Pipelines

To illustrate our point, we'll again use a fictional company. Suppose we worked for an
e-commerce company that had purchased systems for managing its product catalog,
pricing, and inventory tracking. Unfortunately, each piece of software came from a
different vendor. As our company has grown, we've realized that we can improve the
customer experience by ensuring these systems can work together. The following diagram
shows how our product catalog system could avoid disappointing customers when
searching for out-of-stock items and have extended lead times. Similarly, our pricing
system could offer lower prices or promotional prices for items with too much inventory
or that have achieved lower marginal cost due to the sheer volume we'll sell:

Figure 9.1 – Signing up for QuickSight

Understanding the uses of ETL 233

We'll need a way to load availability data into the product catalog, which only accepts
JSON files. Similarly, we'll need a way to ingest unit costs into our pricing system, which
only supports MySQL bulk loads. The inventory system was not built to export this kind
of information. Luckily for us, it is built on a Postgres database, and the information we
want is available in two easy-to-query tables. With these primitives, it is possible to create
an ETL pipeline that integrates these systems as follows. Using Athena's Query Federation
capabilities, we run an extract query against the inventory system's Postgres database
and insert it into a comma-separated values (CSV)-formatted table backed by S3. The
second step in our ETL pipeline triggers a bulk load into the pricing system's MySQL
database using Aurora MySQL's load from the S3 feature. The next step in our pipeline is
to run another Athena query that converts our temporary CSV table to JSON for use by
the product catalog system. In our final step, we trigger the product catalog system's load
from the S3 feature to pull the inventory availability data into the catalog.

Using ETL for system integrations such as the one we just discussed may not win many
Design of The Year awards, but it is often a straightforward way to get disparate systems to
work together. The main downside to such integrations tends to be latency since bulk load
operations may impact the performance of the live system if done too often. You may be
able to increase the frequency of the pipeline, and thus the freshness, but extracting and
loading only the records that have meaningful change since the last run. This can help the
average case but may not be viable if your dataset is so large that even the changed portion
is too large to export frequently.

234 Serverless ETL Pipelines

ETL for aggregation
One of the most common uses for the ETL pattern is consolidating information from
across organizations into a single location for ease of reporting. As we saw in Chapter 7,
Ad Hoc Analytics, a prerequisite for shortening the OODA (observe-orient-decide-act)
loop is the accessibility of information. If your data is scattered across the organization,
it can be impossible to answer even basic questions. In the following diagram, we again
use our fictional e-commerce company to illustrate the utility of ETL by reviewing. This
color-coded entity-relationship diagram (ERD) conveys where each table is stored with
cross-table relationships or foreign key references, depicted by lines. Whenever
a connection crosses storage systems, the line is dotted:

Figure 9.2 – Siloed e-commerce database diagram

Understanding the uses of ETL 235

ERDs
ERDs illustrate how entities within a particular domain are interconnected.
This approach was initially developed in 1976 by Peter Chen to aid database
design and development. Since then, their usage has expanded to include any
context in which it may be helpful to understand both the universe of entities,
their key properties, and how those properties define relationships between the
entities. In Figure 9.2, we used a very basic ERD to illustrate the entities in our
fictional e-commerce company.

As is the case with most businesses and the software systems they run on, our e-commerce
example has evolved over time. The team separated concerns into five different
microservices with accompanying datastores, including promotions, inventory, product
catalog, pricing, order management, and shipping. While this is undoubtedly a reasonable
level of decomposition that makes it easier to develop and maintain the system, it
complicates even the most basic BI tasks.

For example, a campaign manager would be unable to understand which other items were
purchased when a customer buys a promotional item at the sale price. This information
is commonly used to determine the lift. A lift is a measure of the sales boost given to
neighboring, related products when something goes on sale. A deal on cellphones is
likely to generate additional purchases or lift for chargers and screen protectors. This
information may be the difference between canceling an underperforming promotion or
canceling an advertisement that only appears to be underperforming due to a lack of data.

This is where ETL can help. It is common for AWS customers to create ETL jobs for each
system they may need to report across. The jobs extract the data from the source system,
normalize the data types and semantics of the data, and finally load the data into a data
lake. Once the data is aggregated into the data lake, it can be queried with ease from many
tools, including Athena.

ETL for modularization
In the previous section, we saw how ETL could aggregate data from a modularized
system. Here, we'll see how ETL itself can be a tool for modularization. This most
commonly comes into play when you have a complex (multi-step) or long-running offline
computation that you'd like to break down into more manageable parts. Allowing the
calculation to unfold as bitesize steps can even improve reliability because you can avoid
rerunning the entire process if one stage fails. Instead, you simply rerun the failure step
and all the yet-to-be-run downstream steps. Let's look at an example.

236 Serverless ETL Pipelines

Figure 9.3 depicts a four-step ETL pipeline that uses eight jobs to generate a seasonal
buying plan for our fictional e-commerce company. We run a single job to find all the
seasonal items in our product catalog in Step 1. Step 2 has two jobs: one calculates the
current inventory sell-through rate (STR) for the season items, and the other produces
key weather-related inputs for the demand forecasting exercise that follows in Step 3.
Step 3 is the most complex and has been broken down into four independent jobs before
flowing into the final step, which produces a buying plan for the upcoming season.

You can view the diagram here:

Figure 9.3 – Modular inventory forecast pipeline

Even if we had all this data in a single data store such as an S3-baked data lake, it would
still be advantageous to break this process up into smaller units.

Understanding the uses of ETL 237

ETL for performance
Using ETL to optimize performance, usually of reporting systems, is yet another old
pattern emerging with a new twist. In the last decade, we've seen a rapid expansion in
the computational capabilities of query engines. Dozens or hundreds of nodes working
together can achieve incredible data scan rates against an S3 data lake; for example,
a typical Athena query against a well-structured S3 table can easily exceed a 200
gigabytes per second (Gbps) data scan rate. Increased query scale reduced the need
for pre-computed aggregations or materialized views. This new class of query engines
could compensate for increasing data sizes or misaligned data model access patterns with
raw horsepower.

Unsurprisingly, the growth in business data has caught up with even the most
advanced query engines, and the need to balance cost, latency, and performance has
resurfaced, although it is also probably fair to say this balancing act never stopped being
relevant. Many customers use ETL jobs to pre-compute common aggregations or generate
materialized views that move costly operations such as joins into offline processes.
Pre-computing enables query engines such as Athena to return results more quickly, use
fewer resources, or incur lower costs per query.

Imagine your data lake has a table with customer orders from the last 10 years. Every
line item in an order corresponds to a row in your table. For a successful company,
such a table might have millions or billions of rows. If your most common access
patterns look at weekly, monthly, or quarterly trends for a product or a category
of products, you may benefit from generating aggregate tables. Using ETL jobs to
pre-compute aggregate or rollup tables could improve cost and performance by two or
three orders of magnitude in this example. The same concept can be applied to other
costly operations such as joins. Building on this example, suppose we want to run
a sales report by product manufacturer. This requires us to join our sales table with
attributes from our product catalog and manufacturer tables. Joining these tables as part
of our report can add tens of minutes to the query. If the person crafting the query is a
Structured Query Language (SQL) novice or is using a BI tool that abstracts the SQL
itself, you can easily end up with a long-running query that exhausts the query engine's
memory and fails. As an alternative, you can use an ETL job to pre-join frequently used
attributes into the sales table as a one-time effort and avoid the expensive join on the more
frequent, ad hoc queries. Next, we'll see when it may make sense to avoid ETL by querying
the data in place.

238 Serverless ETL Pipelines

Deciding whether to ETL or query in place
The distinction between ETL and querying in place is blurred when using a service such
as Athena. In the preceding sections, we reviewed common ETL use cases. In this section,
we'll unpack the details that should go into deciding when the downsides of querying in
place tilt the scale in favor of ETL. You might be curious why we've deliberately framed
the choice as defaulting to querying in place. The reason is simple and comes to us
courtesy of John Gail, who in 1975 theorized, "A complex system that works is invariably
found to have evolved from a simple system that worked. A complex system designed from
scratch never works and cannot be patched up to make it work. You have to start over with
a working simple system." In many ways, querying the data in place can be viewed as the
most straightforward starting point. Athena's scalability reduces the need to curate your
data model to your access patterns highly. In Chapter 12, Athena Query Federation, we'll
see how federated queries lessen the need to extract data into your data lake at all.

Even though reducing the need to ETL or otherwise prepare your data for querying is
a central part of Athena's mission to simplify querying your data, Athena doesn't
completely eliminate the need for ETL. All of the preceding use cases for ETL still
apply when using Athena, but the point at which they become relevant shifts. For most
customers, performance becomes the primary factor, with cost a distant second. The
actual threshold will vary based on your use case and latency needs. In the next section,
we'll see how the ETL jobs' implementation also changes when using Athena.

Designing ETL queries for Athena
This section highlights workload traits and design considerations that Athena customers
sometimes overlook creating ETL pipelines. Many of the items we are about to discuss
are not specific to Athena. We'll be sure to note the ones that do stem from idiosyncrasies
in the way Athena works. Generally speaking, there are no differences between regular
Athena queries and those intended for use in an ETL pipeline. All of the performance
suggestions covered in Chapter 2, Introduction to Amazon Athena, apply, and all the same
Athena features are applicable across ad hoc analytics, ETL, and other use cases.

Designing ETL queries for Athena 239

Don't forget about performance
Since ETL is not expected to be an interactive process, it allows us to run more
time-consuming operations than we might otherwise. Just because ETL is typically
viewed as an offline or asynchronous process that doesn't have a human sitting at a
screen waiting for a response doesn't mean you can ignore performance. A good way
to think about ETL performance is that all the same metrics as latency and cost matter
but the scale shifts. You might not want to exceed a 30-second response time with an
interactive query, but you might target 30 minutes with an ETL query. In the case of
Athena, you'll want to pay special attention to the amount of memory your ETL jobs
require. Joins, window functions, and high-cardinality distinct operations all have an
amplifying effect on your query's peak memory demand. You may recall from previous
chapters that Athena's version of Presto has limited but growing support for spilling
query memory to disk. This capability reduces but does not eliminate the likelihood
that your query will encounter Athena's Query exhausted resources at this scale factor
error message. As you break down your ETL process into stages, keep the memory
requirements top of mind and consider breaking up a complex query into multiple steps,
sub-queries, or over independent time periods to reduce peak memory.

End-to-end (E2E) latency, sometimes referred to as data freshness, is the second
performance dimension to be aware of. Often, customers will focus on the runtime
of individual queries but lose sight of the total time it takes for their ETL pipeline to
complete. In Figure 9.4, we have a dependency tree for an ETL pipeline from our fictitious
e-commerce company. We've highlighted the sales extract job in red because it represents
a chokepoint in our pipeline. Individually, each job runs quickly and meets or exceeds
our expectations given the nature of the work being done, yet our customers routinely
complain that their reports arrive late and can't be used in the weekly sales meeting.

240 Serverless ETL Pipelines

You can view the dependency tree here:

Figure 9.4 – ETL pipeline with a chokepoint

When designing this pipeline, we didn't factor in the time of day when the required inputs
become available. In particular, the sales extract job cannot start running until a critical
input from our credit card processing vendor arrives. This data tends to arrive on time
on only 50% of days. Unfortunately, the sales extract job is an input to every other part of
our pipeline. A common strategy in these cases is to break up the pipeline to separate the
late-arriving data and the downstream items that actually depend on it. This may seem
obvious, but it's common to combine simple operations to reduce the total number of
jobs you must manage. Another option is to find an alternate source or use estimated
values on occasions when the critical dependency arrives later than expected. This
decouples you from the late source at the expense of accuracy. Depending on the nature
of your data, this strategy may not be feasible. However, if the late-arriving dataset was
updated product color information that rarely changes, it may be preferable to depend
on a previous day's data.

Designing ETL queries for Athena 241

Begin with integration points
Identifying how you will extract data from your sources and then load the result into your
target systems may not seem like the most straightforward part of your ETL design, but
you should start there anyway. Conceptually, the extract and load usually require little
design, but it's not because they are trivial parts of ETL. These operations are often the
most constrained and have the fewest options for you to choose from when designing
your ETL process. This is precisely why we emphasize that you start by understanding
your options for extracting and loading data.

Do your sources support incremental exports or only bulk snapshots? If your source
supports incremental exports, you may be able to speed up your ETL jobs while also
reducing costs. You'll also likely be taking on some extra complexity to handle cases where
you need to backfill missing or incorrect data. Conversely, suppose your sources can only
provide bulk snapshots that amount to a full export of the dataset. In that case, you can
build a simpler pipeline with less error handling and reconciliation work. The downside
is that you need to transfer more data than in the incremental model. This can increase
costs as well as E2E runtime. You might even find yourself adding a stage in the pipeline
to produce your own incremental feed of the source to reduce storage and compute costs
for downstream queries and systems. There is no magic formula to decide when to use
incremental or snapshot-style extract operations; the performance and feature set of the
source system will likely dictate your options. Knowing this upfront will save you from
rewriting or restructuring the transform phase of your ETL process.

An identical but reversed set of constraints applies to the load phase of your ETL pipeline.
Does the target system support bulk loads? What happens to the performance of the
system while you are loading new data? You may have limited or no control over the
behavior of the target system that the results of your ETL pipeline will flow into. For
example, if the end of your ETL pipeline is a table in an S3 data lake, then you've got a
pretty broad set of options. The most challenging thing you'll likely need to handle is
recovering from a partially failed job or having to restate erroneous results. On the other
hand, if your target system is a MySQL instance (or any relational database management
system (RDBMS), to be honest), you'll want to think carefully about what happens to
other queries when you begin to bulk load new data. If performance begins to degrade,
you might even need to restructure your ETL process to produce smaller results. This
can have implications for the original business purpose of the jobs, in addition to the
underlying technologies.

It's always a good idea to disambiguate the things you don't control. Speaking of control,
next, we'll look at what is managing or orchestrating each step in your ETL process.

242 Serverless ETL Pipelines

Use an orchestrator
Athena is an excellent choice for many ETL queries, but until the service adds support for
running queries on a schedule or in response to an event, you'll need to pair Athena with
an orchestrator. You may be familiar with the concept of orchestration if you've worked
with large, multi-step ETL pipelines in the past. For the lucky individuals who haven't had
to organize 1,000 ETL jobs with tangled dependencies and conflicting column definitions,
we'll take a moment to better explain what an orchestrator does.

Suppose you have an ETL query that you'd like to run after the last shipping truck leaves
your warehouse for the day. You want this query to run after the shipping system has
exported the day's shipping summary. How do you do that? Well, a naïve approach would
be to schedule your query to run after midnight. After all, no shipments can go out for
that day if the day is over. Unfortunately, the shipping system runs periodic maintenance,
which can delay the availability of the summary data that our query depends on. It would
be easier if our query could be aware of the completion of its dependency and trigger as
soon as the data was available. That is where an orchestrator comes in. An orchestration
system such as AWS Data Pipeline Amazon Managed Workflows for Apache Airflow
can watch for a condition to be satisfied and trigger an action such as an Athena query.
That condition can be the arrival of a file in S3, the completion of a previous query that
subsequent queries depend on, or simple time-based schedules.

The complex, multi-query scenario we just laid out seems like a reasonable candidate
for a dedicated orchestration tool. What may be less obvious is that even a single query
ETL pipeline needs an orchestrator when using Athena. Until Athena adds a mechanism
to schedule queries or reacts to events, we'll need to have something kick off our ETL
queries. Later in this chapter, we'll use a simple Lambda function to orchestrate a simple
serverless ETL pipeline.

Using Lambda as an orchestrator
An AWS Lambda function is an ideal orchestrator for simple ETL processes that run
for 15 minutes or less and can be triggered by an event stream. If the number of steps,
dependencies, or runtime grows, you'll want to consider using a more fully-featured
orchestrator, such as AWS Managed WorkFlows for Apache Airflow. Putting that aside,
building your own, simpler, serverless ETL pipeline with Lambda as an orchestrator is
a great way to learn what to look for in a good orchestrator.

Using Lambda as an orchestrator 243

In this section, we'll precisely do that. Imagine we work for a fictitious hedge fund that is
reeling from the great meme stock uprising of early 2021. Due to recent market volatility,
the firm's risk management department is requiring trading desks across the company
to report their recent trades on an hourly basis. Unfortunately, each trading desk uses
different specialized trading software with no common interface for data extraction.
Luckily, the trading desks can produce a CSV file with their trades and push the file to
AWS S3 every hour. Our ETL process will use these files as input and feed them into the
risk management processes at the end. The information in these files is time-sensitive, but
the different trading systems will require varying amounts of time to generate and publish
the hourly file. For that reason, we'll aspire to make this ETL process event-driven instead
of working on a naïve hourly schedule. Let's look at the steps we'll need to complete as
part of this ETL process, as follows:

1. Trigger an event when new trade files arrive in our S3 bucket.
2. Import the new trade data into the risk management data lake's trades table.
3. Publish an updated trade summary for each stock symbol with a nonzero net

position or number of shares owned to our risk management monitoring process.

Depending on the data sizes involved, this is a fairly short ETL process. For simplicity,
we'll assume that the E2E process takes well below the 15-minute runtime limit of AWS
Lambda. The remainder of this chapter focuses on building a working version of this ETL
process using S3 event notifications to trigger an AWS Lambda function that acts as an
orchestrator.

Creating an ETL function
In order for our Lambda function to interact with Athena, S3, and the other services
that our serverless ETL process needs, we'll have to first create a Lambda execution role
in IAM. Since the creation of such a role requires broad IAM privileges, we omitted it
from the chapter's IAM policy. You should use a privileged account or have your account
administrator create the role for you. The following screenshot shows an example of how
to configure the execution role for our Lambda function.

244 Serverless ETL Pipelines

We recommend providing the role with this chapter's IAM policy and using packt-
serverless-analytics-lambda as the name of this new role since the chapter's
IAM policy already grants you the iam:PassRole permission on that name. If you
choose a different name for your Lambda execution role, you may be unable to assign
that role to the Lambda function we make in the next step unless you update the chapter's
IAM policy:

Figure 9.5 – Creating an execution role for our Lambda function

Now that we have our Lambda execution role set up, we can use the Lambda console to
create a new Lambda function. If you are unfamiliar with AWS Lambda, it is arguably
the genesis of the serverless movement. With AWS Lambda, you define functions, literal
fragments of code, which can be invoked from various contexts, including S3 events. In the
past, you'd have had to write an entire web service or Remote Procedure Call (RPC) service
to do this, but AWS Lambda removes the need to manage any infrastructure or write any
boilerplate service code. In the following screenshot, you can see just how easy it is to create
a function in AWS Lambda. You simply provide a name for your function, pick a runtime,
and select an existing role that will be used to provide the function with access to other
AWS resources. The IAM policy for this chapter is set up to use packt-serverless-
analytics-etl as the name of your function. Our ETL code will be written in Python,
so you should select Python 3.8 or later as the runtime for your function. AWS Lambda also
supports Java, Node.js, and other runtimes, which you can try later:

Using Lambda as an orchestrator 245

Figure 9.6 – Creating an AWS Lambda function

Lambda function timeout
By default, AWS Lambda functions use a 3-second timeout. This means that
after 3 seconds, AWS Lambda will terminate calls to your function, even if the
code is still running. Our serverless ETL example will typically complete in 30
seconds or less. To avoid unnecessary errors and troubleshooting, be sure to
increase the timeout of your newly created Lambda function. We recommend
using a maximum of 15 minutes for this exercise as you are unlikely to exceed
the AWS Lambda free tier in this chapter. You can update this setting from the
Configuration tab of your function in the Lambda console.

246 Serverless ETL Pipelines

Coding the ETL function
The AWS Lambda console has an integrated development environment (IDE)
experience, making authoring and testing short Lambda functions a breeze. Our ETL
function will consist of just over 250 lines of Python code. This section will go line by
line to explain how the function orchestrates our trade summary ETL process. While
functional, the code fragments displayed in this section omit comments and other helpful
context. We recommend downloading the complete function code from the book's
accompanying GitHub repository. You can find it in the chapter_9/etl_lambda_
func.py file, linked here for your convenience: https://bit.ly/3wbAZp4. As with
all sound Python files, we start with imports for key dependencies. In our case, we use
the boto3 library for interacting with AWS services such as Athena. The time, os, and
logging libraries are mostly boilerplate imports that give us access to simple operations
such as getting the current time or formatting our log lines. We'll be using the hashlib
library to create unique names for the temporary tables created by our ETL process.

The code is illustrated in the following snippet:

import time

import boto3

import os

import logging

import hashlib

logger = logging.getLogger()

logger.setLevel(logging.INFO)

Next, we declare several global resources that will be available throughout the code that
follows. When writing production-quality code, you should be judicious about using
global variables. Since the purpose of this example is to teach you about serverless ETL
and not ideal Pythonic design, we're using global variables to keep things simple. Our first
two global variables, ATHENA and CLOUDWATCH, are boto3 clients for the respective
services. You'll notice that when creating these clients, we didn't provide any credentials or
region information. When invoking our function code, AWS Lambda injects credentials
and region details into environment variables that boto3 understands. This magic makes
it very easy to get started with Lambda but can confuse folks when they run this code
where these environment variables aren't automatically provided. The remaining variables
act as configuration for our ETL process, conveying which Athena workgroup to run the
queries in, which database and table names to import data to, and lastly, where our ETL
data should be stored. Be sure to update these settings to match your environment if you
haven't been following the suggested names in this and previous chapters.

https://bit.ly/3wbAZp4

Using Lambda as an orchestrator 247

The code is illustrated in the following snippet:

ATHENA = boto3.client('athena')

CLOUDWATCH = boto3.client('cloudwatch')

WORKGROUP = "packt-athena-analytics"

DATABASE = 'packt_serverless_analytics'

BASE_TABLE = 'chapter_9_trades'

ETL_LOCATION = 's3://<YOUR_S3_BUCKET>/chapter_9/'

With the dependencies and configuration out of the way, we can get to the body of the
ETL process. The lambda_handler Python function is the main entry point that AWS
Lambda calls when it wants to invoke our code. AWS Lambda sets the event and context
parameters for each call. In our case, the event will contain details of the S3 object that
was uploaded into our ETL import folder and acts as the trigger for our ETL process.
We'll see how to set up an S3 event stream in a later section. Each line in the body of the
lambda_handler Python function represents a step in our ETL process. We've designed
the function this way both to improve maintainability and make it easier for you to follow
along. These steps are modeled as helper functions that appear later in the code. We'll go
over the steps briefly before looking at the code for each step in more detail.

First, we extract the Uniform Resource Identifier (URI) of the S3 object that was
uploaded to our ETL import folder using our event_to_s3_uri helper. Before
calling the make_temp_import_table helper function, we use the ensure_trade_
table_exists helper function to set up our ETL tables. This only needs to be run one
time, but as you'll see later, we used a CREATE IF NOT EXISTS query to cut down
on the number of steps to get your serverless ETL process up and running. Once we've
verified that our ETL tables are ready to go, we use the make_temp_import_table
helper function to create a temporary table pointed at the newly arrived s3_object
element. Athena doesn't have the concept of a temporary table, so you'll notice that we
later use a drop_table helper function to delete the temporary table we created. But
before doing that, we call the import_data helper function to transform the data in the
newly arrived S3 object to a form that can be stored in our data lake tables. The details of
the transformation are hidden in the import_data helper function that we'll look at
shortly.

Lastly, we use the update_trade_summary and publish_trade_summary helpers
to refresh our system's view of the world. By recalculating trade summary data by stock
symbol and then publishing the summary values to CloudWatch Metrics, our hedge
fund's risk management team can author alerts on these values. Those alerts can notify
them of violations or trigger additional Lambda functions to take automated action.

248 Serverless ETL Pipelines

The code is illustrated in the following snippet:

def lambda_handler(event, context):

 s3_object = event_to_s3_uri(event)

 ensure_trade_table_exists(DATABASE, BASE_TABLE, ETL_
LOCATION)

 import_table = make_temp_import_table(DATABASE, s3_object)

 import_data(DATABASE, BASE_TABLE, import_table)

 trade_summaries = update_trade_summary(DATABASE, BASE_
TABLE)

 publish_trade_summary(trade_summaries)

 drop_table(DATABASE, import_table)

 return {}

Ignoring the highly reusable helper functions and import statements, our entire ETL
process is about 20 lines of Python code. It's difficult to get more straightforward than
that. We can now dig into the helper Python functions we used to abstract reusable bits of
the ETL process. Starting with event_to_s3_uri, you can see that this helper function
extracts the S3 bucket and object key from the event that triggered our Lambda function.
The function also trims off the actual object name from the key. We'll see why this is
required in a later step. The schema of the event object is rather complex, but we'll show
you an easy way to test your Lambda function later in this chapter.

The code is illustrated in the following snippet:

def event_to_s3_uri(event):

 record = event['Records'] [0]

 s3_bucket = record['s3']['bucket']['name']

 s3_key = record['s3']['object']['key'].rsplit('/', 1)[0]

 return "s3://" + s3_bucket + "/" + s3_key

Using Lambda as an orchestrator 249

After the event_to_s3_uri helper function extracted the S3 bucket and object key
that triggered the event, we used the ensure_trade_table_exists helper function
shown in the next code snippet to check, and if need be, create a table our ETL process
will ultimately load into. We used a few anti-patterns here in the interest of time. Firstly,
we hardcoded the schema of our table in the function. It would be better if we abstract
this away from the code and provide it as a separate configuration file or, better yet, use
a CloudFormation template to handle setting up our data lake so that our ETL function
doesn't need to perform this check. The other important thing to note here is the schema
of our table. It has six fields, including the stock symbol, the date of the trade, the price,
and the number of shares traded. The year and month fields are used as partition
dimensions. We use the replace feature of Python strings to substitute our database
and table name into the query before using the run_query helper function to execute
the query in Athena. We'll look at that Python helper function next.

The code is illustrated in the following snippet:

def ensure_trade_table_exists(database, table_name, location):

 base_table_query = """CREATE EXTERNAL TABLE IF NOT EXISTS

 'DATABASE'.'TABLE_NAME'(

 'symbol' string,

 'trade_date' string,

 'price' double,

 'num_shares' bigint)

 PARTITIONED BY ('year' bigint, 'month' bigint)

 STORED AS PARQUET

 LOCATION 'S3_LOCATION'

 tblproperties ("parquet.compression"="SNAPPY");

 """.replace("TABLE_NAME", table_name)\

 .replace('DATABASE', database)\

 .replace('S3_LOCATION', location + table_name)

 run_query(base_table_query, 120)

250 Serverless ETL Pipelines

The run_query helper function provides a convenient wrapper over the boto3
Athena client and simply sets up the request object using some of the global variables
we defined at the start of our Python code. It also adds helpful logging to make
troubleshooting issues easier when they inevitably arise. You'll also notice that the helper
makes use of yet another helper function called wait_for_query. The combination of
these two helpers simplifies how our ETL process interacts with Athena's asynchronous
query execution model. Usually, you'd want to avoid synchronously waiting for your
Athena ETL queries to finish. Listening for the CloudWatch event that Athena generates
when your query transitions from running to complete is a far more scalable approach.
Since this may be your first time designing a serverless ETL process with AWS Lambda,
we've opted to limit the event-driven flow to S3 event notifications and rely on a
synchronous model for interacting with Athena.

The code is illustrated in the following snippet:

 def run_query(query, wait_seconds = 0):

 logger.info('run_query: Preparing to run query %s', query)

 query_id = ATHENA.start_query_execution(

 QueryString=query,

 QueryExecutionContext={'Database': DATABASE},

 WorkGroup=WORKGROUP

)['QueryExecutionId']

 logger.info('run_query: Started query with id: %s', query_
id)

 query_result = wait_for_query(query_id, wait_seconds)

 logger.info('run_query: Query result: %s', query_result)

 return [query_id, query_result]

As we saw in the run_query helper, the wait_for_query Python helper function is
used as an adapter from the asynchronous programming model provided by the boto3
Athena client and our desire for a simpler, albeit less scalable, synchronous model. In the
synchronous model, our code runs an Athena query and then waits for it to complete
instead of exiting and using a query completion event to wake our code up. The helper
function accomplishes this by calling Athena, retrieving the status of our query in a
loop, and sleeping between each check. Once the query moves to a terminal state, either
succeeded or failed, the loop condition is met, and wait_for_query returns control
to its caller. The function also takes an optional timeout that represents the maximum
number of seconds it will wait for the Athena query to reach a terminal state.

Using Lambda as an orchestrator 251

The code is illustrated in the following snippet:

def wait_for_query(query_id, max_wait_seconds = 5):

 state = 'RUNNING'

 while (state in ['RUNNING', 'QUEUED'] and max_wait_seconds
> 0):

 query_execution = ATHENA.get_query_execution(

 QueryExecutionId = query_id)

 try:

 qexec = query_execution['QueryExecution']

 exec_status = qexec['Status']

 state = exec_status['State']

 if state == 'FAILED':

 reason = exec_status['StateChangeReason']

 raise RuntimeError(query_id, reason)

 elif state == 'SUCCEEDED':

 return qexec['ResultConfiguration']
['OutputLocation']

 except KeyError:

 pass

 time.sleep(1)

 max_wait_seconds = max_wait_seconds - 1

 return False

The next step in our ETL process is the call from lambda_handler to the make_temp_
import_table helper. This function's purpose is to create a temporary table pointing to
the newly arrived S3 object that triggered our Lambda function via S3 event notifications.
You may recall that when we looked at the event_to_s3_uri helper, we noted that
it trims off the actual object name such that import_location is actually the folder
containing the new object. This was done because an Athena table cannot point directly to
an object. Instead, it must point to a prefix or folder. You'll need to keep this in mind when
you upload test data by ensuring you upload it to a subfolder in our import directory.

252 Serverless ETL Pipelines

The helper itself uses a hash of import_location to create a unique name for our
temporary table and then runs an Athena query to create an AWS Glue Data Catalog
table. We again took a shortcut by hardcoding the table definition in our Lambda code.
In practice, you'll want to codify this as a configuration file or possibly a CloudFormation
template. The essential pieces to remember are that the ETL process expects the import
files to be CSV files with a header and a four-column schema consisting of the symbol,
trade date, price, and number of shares.

The code is illustrated in the following snippet:

def make_temp_import_table(database, import_location):

 hash_import_location = hashlib.md5(import_location.
encode())

 table = 'chapter_9_import_' + hash_import_location.
hexdigest()

 temp_table_query = """

 CREATE EXTERNAL TABLE IF NOT EXISTS 'DATABASE'.'TABLE_
NAME'(

 'symbol' string,

 'trade_date' string,

 'price' double,

 'num_shares' bigint)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY ','

 STORED AS INPUTFORMAT

 'org.apache.hadoop.mapred.TextInputFormat'

 OUTPUTFORMAT

 'org.apache.hadoop.hive.ql.io.
HiveIgnoreKeyTextOutputFormat'

 LOCATION

 'S3_LOCATION'

 TBLPROPERTIES (

 'areColumnsQuoted'='false',

 'columnsOrdered'='true',

 'delimiter'=',',

 'skip.header.line.count'='1',

 'typeOfData'='file')

 """.replace("TABLE_NAME", table)\

 .replace('DATABASE', database)\

Using Lambda as an orchestrator 253

 .replace('S3_LOCATION', import_location)

 run_query(temp_table_query, 120)

 return table

Once all the preparatory work to validate the extract portion of the ETL process has
been completed, our Lambda function is ready to transform and load the new data.
It does this by calling the import_data helper. As the name suggests, this Python
helper function runs an Athena query to read from the temporary import table and
transform the data into a format that can be stored in our data lake for use by downstream
processes. This ETL process may look familiar since we used a similar procedure in
Chapter 3, Key Features, Query Types, and Functions, to manually transform and load
incremental data for our NYC Yellow taxi cab rides. Again, we use a hardcoded query,
this time of the INSERT INTO variety, to transform and load the newly arrived data
into our data lake's trades table.

The code is illustrated in the following snippet:

def import_data(database, target_table, source_table):

 import_data_query = """

 INSERT INTO DATABASE.TARGET_TABLE_NAME

 SELECT

 symbol,

 trade_date,

 price,

 num_shares,

 year(date_parse(trade_date,'%Y-%m-%d %H:%i:%s')) as
year,

 month(date_parse(trade_date,'%Y-%m-%d %H:%i:%s')) as
month

 FROM

 DATABASE.IMPORT_TABLE_NAME

 """.replace("TARGET_TABLE_NAME", target_table)\

 .replace('DATABASE', database)\

 .replace('IMPORT_TABLE_NAME', source_table)

 run_query(import_data_query, 120)

254 Serverless ETL Pipelines

With the new trade data added to our data lake, we're nearly at the end of our serverless
ETL orchestration code. Aside from cleaning up our temporary table and resources,
we have one final load operation to perform. Using the update_trade_summary
helper function, we run an Athena query to calculate the net holdings for each symbol
our traders have bought and sold. We also use a HAVING clause to ensure we only
return symbols that have a nonzero position. Put another way, the query will only
return stock symbols where we are holding a positive (long) or negative (short) position.
The update_trade_summary function concludes by returning an iterator over the
results of the Athena query. This begins to get at the roots of why our faux hedge fund's
risk management team asked us to create this serverless ETL process in the first place.
Next, we'll see how our ETL process helps automate the handling of risky positions by
downstream systems.

The code is illustrated in the following snippet:

def update_trade_summary(database, table_name):

 summary_query = """SELECT symbol, sum(num_shares)

 FROM DATABASE.TABLE_NAME

 GROUP BY symbol HAVING sum(num_shares)
!= 0

 """.replace("TABLE_NAME", table_name)\

 .replace('DATABASE', database)

 query_id = run_query(summary_query, 120)[0]

 paginator = ATHENA.get_paginator('get_query_results')

 return paginator.paginate(QueryExecutionId=query_id,

 PaginationConfig={'PageSize':
1000}

)

To demonstrate that our ETL process can integrate with live systems via application
programming interface (API) calls, not just data lake queries, our Lambda function
uses the publish_trade_summary helper function to publish trade summaries to
Cloudwatch Metrics. It does this by walking the provided results iterator and using a
boto3 client for Cloudwatch Metrics to publish the number of outstanding shares by
a symbol. Our fictional risk management team can then author alarms with custom
thresholds to alert them when a risk policy is violated. We could easily call a risk
management API instead of CloudWatch Metrics.

Using Lambda as an orchestrator 255

The code is illustrated in the following snippet:

def publish_trade_summary(trade_summaries):

 for trade_summary in trade_summaries:

 for row in trade_summary['ResultSet']['Rows'][1:]:

 symbol = row['Data'][0]['VarCharValue']

 num_shares = float(row['Data'][1]['VarCharValue'])

 CLOUDWATCH.put_metric_data(

 MetricData=[{ 'MetricName': 'POSITION',

 'Dimensions': [{'Name': 'SYMBOL','Value':
symbol},],

 'Unit': 'None',

 'Value': num_shares

 },],

 Namespace='RISK/SUMMARY'

)

 return num_summaries

The final step in our Lambda function is to clean up our temporary resources. In this case,
we drop our temporary import table, as illustrated in the following code snippet:

def drop_table(database, table):

 drop_table_query ="""

 DROP TABLE DATABASE.'TABLE_NAME';

 """.replace("TABLE_NAME", table).replace('DATABASE',
database)

 run_query(drop_table_query, 120)

Now that we've completed coding our ETL function, we are ready to test it and configure
S3 to trigger our Lambda function whenever a new trade report CSV file is uploaded to
our import directory.

256 Serverless ETL Pipelines

Testing your ETL function
At the top of the AWS Lambda function development screen, you'll see buttons for
deploying and testing your function. The Test button has a dropdown that allows you to
define one or more test events that Lambda will generate to trigger and test your function.
The following screenshot shows the test event configuration screen that will guide you
through defining a test event. Since we'll trigger our ETL process from an S3 event, you
should pick the s3-put template from the provided examples. Simply change the S3
bucket and object key to match an actual test CSV file we'll upload to S3 next:

Figure 9.7 – Creating a test event

Triggering ETL queries with S3 notifications 257

You can use the following sample trade data to create a test trade report in S3
corresponding to the test event you just configured. Be sure to put this test object in
a subdirectory of the imported prefix you plan to use. For example, S3://<BUCKET_
NAME>/chapter_9/import/trade_desk_1_8am/trades.csv would be a good
upload location for trade desk 1's 8 a.m. trade file. In the next section, we'll configure S3
to send event notifications to our Lambda function any time an object is added to the
import director:

symbol,trade_date,price,num_shares

GME,2021-01-01 00:41:22,240.00,1000

GME,2021-01-01 01:41:22,260.00,200

GME,2021-01-01 02:41:22,460.00,-200

GME,2021-01-01 03:41:22,560.00,-800

Next, we'll set up an automatic trigger for our ETL queries.

Triggering ETL queries with S3 notifications
Due to its low cost, high reliability, and seemingly infinite scalability, Amazon S3 is often
at the center of many cloud architectures. In 2014, this led the S3 team to add the ability to
trigger events for operations on your objects. These events can be filtered by bucket, prefix,
and operation type with possible destinations, including Simple Queue Service (SQS),
Simple Notification Service (SNS), and Lambda. You may also be interested to know that
S3 does not charge for this feature. You'll only pay for the associated SQS, SNS, or Lambda
usage for processing the events.

258 Serverless ETL Pipelines

As we said earlier, we want our ETL process to react to the arrival of new data without the
need to wait or poll. This reduces latency and increases data freshness for time-sensitive
workloads such as our trade summary reports. The integration between S3 events and
AWS Lambda also automatically handles re-driving failed events, simplifying our error
handling. To begin, navigate your browser to the S3 console and select the bucket you'll
be using for this exercise. In the Properties tab of your bucket, you'll find an Event
notifications section. Clicking on Create event notification will pull up the dialog
shown in the following screenshot:

Figure 9.8 – S3 event notification: General configuration

Triggering ETL queries with S3 notifications 259

You can pick any name for the event configuration, as it's mostly used for documentation.
The Prefix and Suffix fields should match the location you plan to use for this exercise. We
recommend using the location provided in Figure 9.8. Next, we'll specify which S3 actions
should generate an event. As shown in the following screenshot, we only need Put events:

Figure 9.9 – S3 event notification: Event types

260 Serverless ETL Pipelines

Lastly, you'll need to configure the destination that S3 should use for matching events.
After selecting the Lambda function destination type, as shown in the following
screenshot, a dropdown with available Lambda functions will appear. Find the ETL
Lambda function you created earlier and save your changes:

Figure 9.10 – S3 event notification: Destination

Now, you can upload a trade report CSV file to trigger our completed ETL process! You
can use the same sample trade data from our S3 test event in the Lambda console, or you
can use the provided trade file in the book's accompanying GitHub repository, found here:
https://bit.ly/3f5DALJ. Unlike our earlier tests, which used the AWS Lambda
development console, this E2E test will write its logs to Cloudwatch Logs, and the trade
summaries will be published to Cloudwatch Metrics. You can navigate your browser to the
Cloudwatch Logs console to find both. You can also run an Athena query to see if the new
trades from the report file you uploaded were added to the chapter_9_trades table.

https://bit.ly/3f5DALJ

Summary 261

Summary
In this chapter, you learned about common usages of the ETL pattern, including
integration, aggregation, modularization, and performance. The integration patterns
offer a lowest-common-denominator approach to connecting disparate systems, even if
they have no native support for integrating with each other. ETL for aggregations helps
produce a single source of truth (SSOT) for getting a view of data across your estate.
This is a common pattern for creating data lakes that work with services such as Athena.
Modularization is an approach for using ETL to break up monolithic processes that are
difficult to maintain or operationally prone to failure. Lastly, ETL for performance is
a technique that moves expensive or time-consuming processing out of the live query
path by either creating materialized views or running other pre-computations of
anticipated workloads.

Armed with this knowledge of ETL design patterns, you reviewed key criteria for
designing ETL queries for use with Athena. Deciding if you can skip the extract phase
and use Athena Query Federation to query the data in place can help avoid unnecessary
ETLs. When federation isn't a viable option, you saw that scale, integration points, and
orchestration need to be factored into your ETL design.

The chapter concluded by putting what we learned into practice to build a serverless
ETL pipeline with AWS Lambda and S3 event notifications. In Chapter 10, Building
Applications with Amazon Athena, you'll continue putting what you've learned into
practice by seeing how to build other types of applications with Athena.

10
Building

Applications with
Amazon Athena

Up to this point in the book, we've primarily been focusing on getting a feel for Athena
as a product and what you can do with it. In this chapter, we're going to look at it from a
slightly different angle and see how we can build our own product that leverages Athena.
There are many things to consider when doing this, with the simplest being, how are
we even going to call Athena? Previously, we've either used the AWS Console, the AWS
CLI, and also occasionally the Athena Python SDK, but what other options are there?
In terms of connecting to Athena, what should we consider? What security features are
there for connecting? And finally, how do we make sure we continue to leverage Athena
in the most performant and cost-effective way? These are all questions that we are going
to try to answer throughout this chapter. This chapter will also be a nice reminder of how
subjective writing software really is. A lot of decisions come down to personal preference,
so I will do my best to present the facts and it will be up to you to decide which ones you
care about the most.

264 Building Applications with Amazon Athena

In the forthcoming sections, we will cover the following topics:

• Connecting to Athena

• Best practices for connecting to Athena

• Securing your application

• Optimizing for performance and cost

Technical requirements
Wherever possible, we will provide samples or instructions to guide you through the
setup. However, to complete the activities in this chapter, you will need to ensure you
have the following prerequisites available. Our command-line examples will be executed
using Ubuntu, but most Linux flavors should work without modification, including
Ubuntu on Windows Subsystem for Linux.

You will need internet access to GitHub, S3, and the AWS Console.

You will also require a computer with the following:

• A Chrome, Safari, or Microsoft Edge browser installed

• The AWS CLI installed

This chapter also requires you to have an AWS account and an accompanying IAM
user (or role) with sufficient privileges to complete this chapter's activities. Throughout
this book, we will provide detailed IAM policies that attempt to honor the age-old best
practice of "least privilege." For simplicity, you can always run through these exercises
with a user who has full access. Still, we recommend using scoped-down IAM policies
to avoid making costly mistakes and learning more about using IAM to secure your
applications and data. You can find the suggested IAM policy for Chapter 10 in the book's
accompanying GitHub repository listed as chapter_10/iam_policy_chapter_10.
json here: https://bit.ly/3zM54wG. The primary additions from the IAM policy
recommended for past chapters include the following:

• Adding SNS topic permissions for topics beginning with packt-*

• CloudTrail permissions for trails beginning with packt-*

• EventBridge permissions for managing rules

https://bit.ly/3zM54wG

Connecting to Athena 265

Connecting to Athena
So, you're ready to get started on your application built on top of Athena. You've got some
initial data models prepared and registered within Athena and you want to start querying
the data. Now how do you do that? If you've been following along with all of the exercises
in this book, we've primarily interacted with Athena either directly through the AWS
Console or the AWS CLI. If you have read Chapter 7, Ad Hoc Analytics, then you did get
a small preview of the Athena Python SDK. So, your other options include using a JDBC
Driver, an ODBC Driver, or, more generally, the AWS SDK, which is available in many
languages (for a full list, see https://amzn.to/3BgXrQc).

So, before we figure out which one is right for you, let's go over what some of these options
are. The SDK should be pretty straightforward; it's a language-native implementation for
interacting with AWS's many APIs. But what about JDBC and ODBC; what are those?

JDBC and ODBC
JDBC, or Java Database Connectivity, is a Java database abstraction API. It is oriented
primarily around interacting with relational, SQL-based databases (though there are some
JDBC drivers out there for NoSQL databases as well). Essentially, it provides a standard
mechanism for Java developers to connect to different database technologies by using the
exact same (or very similar) code.

ODBC, or Open Database Connectivity, provides the same functionality as JDBC but is
written in C, and so is intended for use in C, C++, C#, and so on.

The way both of these technologies work is that there is the common API, which is
what the developers will be using directly in their code, and then there are drivers, which
are the actual underlying implementation of the API. Both technologies allow for the
dynamic loading of drivers, so as long as the driver is available to the running process,
they can be used together. Let's take a look at a couple of examples of what using each
one would look like. In both examples, we are going to connect to a MySQL database
containing a table named awesome_packt_table with the data below and run a
simple query against them.

Table 10.1 – awesome_packt_table data

https://amzn.to/3BgXrQc

266 Building Applications with Amazon Athena

We will run the following query:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

public static void main(String args[]) {

 // Notice we are using DriverManager, DriverManager is able
to

 // determine that we want to use the mysql driver by way of
the

 // "jdbc:mysql" in the url

 // Create the connection in a try-with-resources to auto
close

 // when we are done

 try (conn =

 DriverManager.getConnection("jdbc:mysql://localhost/
test_db?" +

"user=packt&password=supersecure")) {

 // Statement is the object that will accept our query

 stmt = conn.createStatement();

 // And here we execute! Again putting results in the try
with

 // resources so it closes when we're done

 try (results = stmt.executeQuery("SELECT title, publisher,
publish_year FROM awesome_packt_table")) {

 while (results.next()) {

 // Returns "Serverless Analytics with Amazon Athena"

 result.getString("title");

 // Returns "Packt"

 result.getString("publisher");

 // Returns 2021

 result.getInt("publish_year");

Connecting to Athena 267

 }

 }

 }

}

Code 10.1 – Sample JDBC code

And now let's take a look at what this would look like for ODBC:

using Microsoft.Data.Odbc;

static void Main(string[] args) {

 // Unlike Java, there is no DriverManager, simply instantiate

 // a new connection and indicate the driver in that
connection.

 string MyConString = "DRIVER={MySQL ODBC 3.51 Driver};" +

 "SERVER=localhost;" +

 "DATABASE=test_db;" +

 "UID=packt;" +

 "PASSWORD=supersecure;" +

 "OPTION=3";

 // Same as in Java, auto close when we are done

 using (OdbcConnection connection =

 new OdbcConnection(connectionString)) {

 OdbcCommand MyCommand =

 new OdbcCommand("SELECT title, publisher, publish_
year FROM awesome_packt_table", connection);

 using (OdbcDataReader Reader = command.ExecuteReader()) {

 while (Reader.Read()) {

 // Returns "Serverless Analytics with Amazon Athena"

 Reader.GetString(0);

 // Returns "Packt"

 Reader.GetString("publisher");

 // Returns 2021

 Reader.GetInt32("publish_year");

 }

 }

268 Building Applications with Amazon Athena

 }

}

Code 10.2 – Sample ODBC code

Now let's say we've moved our table out of MySQL and loaded it into Athena. Let's say
everything else remains the same – the table name (assuming a default catalog) and
column names are all identical. All we would have to do is change the following:

 try (conn =

 DriverManager.getConnection("jdbc:awsathena://" +

 "AwsRegion=[AWS_REGION];" +

 "User=[AWS_ACCESS_KEY];" +

 "Password=[AWS_SECRET_KEY];" +

 "S3OutputLocation=[OUTPUT]") {

Code 10.3 – Migrating to Athena JDBC

We can do the same for ODBC as follows:

 string MyConString = "DRIVER={Simba Athena ODBC Driver};" +

 "AwsRegion=[AWS_REGION];" +

 "AuthenticationType=IAM Credentials;" +

 "UID=[AWS_ACCESS_KEY];" +

 "PWD=[AWS_SECRET_KEY];" +

 "S3OutputLocation=[OUTPUT]";

Code 10.4 – Migrating to Athena ODBC

And that's it! All we did was change the connection strings for both drivers to match that
of Athena and the drivers themselves have done the heavy lifting of understanding how to
interact with MySQL versus Athena.

Connecting to Athena 269

For the sake of completion, let's quickly discuss what you would have to do with the
Athena SDK to accomplish the same query. You would start by instantiating your
Athena client. Depending on where this is running (for example, on AWS provided
compute such as EC2 or Lambda), you'd either use the default credentials provider,
or you'd supply the credentials as in the two preceding figures. Then you would call
StartQueryExecution with the query string and also provide a result location,
which would be the same as Output above. Next, you would call GetQueryExecution
repeatedly in a loop until the query completes, and finally, when it's done, you would
call GetQueryResults.

Which one should I use?
The reality is that there is no perfect answer to this question; it kind of comes down to
preference. Obviously, some decisions will be made for you depending on your tech stack;
for instance, you probably won't use the JDBC driver, which is Java-specific, if you are
writing your application in Python. You'd just go ahead and use the Python SDK. But let's
say you've chosen Java as your application language, what now? Well, this is really where
it gets a bit more subjective. There are pros and cons to both, so it's really up to you which
ones matter most. First, let's get one thing out of the way; the implementation of the JDBC
driver (and ODBC driver) utilizes the respective SDK implementations, so there's no
difference in performance.

In general, the decision between the API abstraction options and the SDK centers
around convenience versus flexibility. The convenience of JDBC/ODBC comes in
a few different forms. Firstly, if your organization is one of many that already heavily
uses those abstractions, then this would certainly fit in nicely with your stack. Also,
if you think there's a chance that you might be switching data storage options, then this
makes that painless, as we showed above (or perhaps you are switching to Athena, as
we did above). And finally, the code can, in some cases, be more succinct when using
JDBC/ODBC. The general call flow that we described previously ends up being around
100 lines of code, versus the 25 or so that we wrote for JDBC/ODBC. The abstractions
provide easy mechanisms for getting the correct data type that you need for a value
(refer to the preceding examples where we have getString and getInt), whereas
with the Athena SDK, everything is returned as a string and it's your responsibility to
convert it into whatever underlying type it is.

270 Building Applications with Amazon Athena

So then, why bother with the SDK? Well, if you have very long-running queries, you may
not want to be constantly occupying a thread while waiting for the query to complete.
Some queries could run for hours and that's a pretty significant waste of resources. That's
not an option with JDBC/ODBC. There are some libraries that make them operate in
an "async-like" fashion, but underneath there is always a thread that is fully taken while
it waits for the query to complete. Below, we're also going to talk about how instead of
polling for query execution status, we can actually integrate with AWS EventBridge to
get push notifications for when a query execution status changes. Again, that is not
something you can accomplish with abstractions. There is also always the possibility, since
the JDBC and ODBC drivers depend on the SDK, that they may not immediately get any
new features, or at least not as quickly as the SDK itself will. So, these sorts of things are
where the SDK really shines in its ability to allow you to interact with Athena exactly how
you want to.

With this information that we just covered, you now have the means to decide which
option for interacting with Athena is right for you. For the remainder of this chapter,
we're going to focus on making sure you are getting the most out of your usage of Athena.
The metrics by which you track whether you are being as optimal as possible are going
to depend on your circumstances – whether your goal is to have the lowest possible AWS
bill, or whether it's to have a blazing fast application, that's up to you. My goal is that you
leave this chapter with the necessary tools in your toolbox to accomplish your goals.

Best practices for connecting to Athena
In this section, we're going to go over some things to consider when connecting to and
calling Athena, including idempotency tokens and query tracking.

Idempotency tokens
I know this statement may come as a huge surprise to you, but perfect software does not
exist. It's going to fail. There's a reason why there are so many different options out there
for monitoring the operational status of an application. And among the infinitesimal
category of possible failure scenarios, they can be narrowed down to two large categories
– safe to retry and not safe to retry. It's that second category we will be focusing on in
this section. More specifically there is a subcategory of not safe to retry that can quickly
be summarized as ¯_(ツ)_/¯ – you have no clue whether it is safe to retry; you know
something happened, but exactly what happened is a complete mystery.

Best practices for connecting to Athena 271

Thankfully Athena (and many other services) has a nice mechanism for handling these
very scenarios. They are called idempotency tokens. To be idempotent, an operation has
to be able to guarantee that if repeatedly given an identical request, the operation will
return an identical response. Surprisingly, there is a decent amount to unpack from such
a simple statement. What defines an identical request? What defines an identical response?
Those can be sort of subjective things. For example, an absolute value is an idempotent
operation. It is always true that |x| == |x|. So, the request in that case is "x," and the
response is always, well, the absolute value of x.

Now let's take a real-world example. Say you are going to buy coffee and you pay with your
credit card; based on the definition of idempotency, for that single transaction, you could
be charged the exact same amount twice, and get the exact same behavior twice (having
a charge on your credit card), and that would qualify as "idempotent," if the request is
simply defined as the "amount to charge" and the response is "charge successful." But that
would not make you very happy, would it? That was rhetorical; of course it wouldn't! So
instead, the request is defined as the combination of "amount to charge" AND a unique
identifier for that transaction and the response is that that transaction successfully
charged that amount exactly once. Now, if the coffee shop tries to send two identical
requests containing that amount and the unique identifier, your credit card company will
know not to take the second one as it was probably sent in error. Et voilà, we've arrived
at an idempotency token! That transaction ID, in this case, is acting as the idempotency
token; it is saying that if you see this ID twice and you've already successfully processed it,
disregard any further attempts to process it. And that's exactly how they work in Athena.

In Athena, they are called ClientRequestTokens and they are only supported by
some APIs (essentially any in which it could be undesirable to retry an identical request).
StartQueryExecution is the one we are going to focus on, but another that is
supported is CreateNamedQuery, because named queries are uniquely identified by an
"ID," but that ID is not supplied at creation; it is generated as part of the creation process,
so a retry without an idempotency token would result in two identical named queries
being created with different IDs.

To better understand why we care about ClientRequestTokens in the context of the
StartQueryExecution API, let's look at a couple of sample call flows.

272 Building Applications with Amazon Athena

In the first sequence below, Figure 10.6, you can see that no ClientRequestToken
was provided. Athena successfully begins the execution of the query on a cluster but fails
to return the response to the customer. The customer assumes it failed and reruns the
query. Because there is no ClientRequestToken, Athena assumes it's a new query and
runs it again. Now the customer has incurred double charges, which, much like the coffee
scenario, is not desirable!

Figure 10.1 – Retrying a query against Athena without ClientRequestToken

But now, in the next sequence, Figure 10.7, you see that we ran the same query,
experienced the same failure with Athena, but this time the customer supplied a
ClientRequestToken. So, when the customer goes to retry, Athena is able to
determine that it actually did successfully execute the previous request, and simply returns
to the customer the identical response that it attempted to return in the previous call. Yay,
we only paid once for our one cup of coffee!

Best practices for connecting to Athena 273

Figure 10.2 – Retrying a query against Athena with ClientRequestToken

Hopefully, now you have an idea of the importance of idempotency and
ClientRequestTokens. And now for the best news of all! If you are using the AWS
SDK (or JDBC/ODBC driver, since, as we discussed previously, those rely on the AWS
SDK) or the AWS CLI, then you actually don't have to do anything to leverage this feature!
The AWS SDK/CLI will automatically populate the ClientRequestToken in your
requests, which means that if that request gets retried, for whatever reason, it will be
idempotent!

274 Building Applications with Amazon Athena

Query tracking
Pivoting away from failure handling and retries, let's talk a bit about what to do once
you've successfully started execution of a query. Throughout this book, we have been
leveraging the GetQueryExecution API to monitor the progress of a query. This is
fine, but as your usage of Athena scales up, you are going to run into a couple of different
issues. Firstly, tuning your application to poll at the right frequency can be a challenge.
You don't want to poll so infrequently that you are adding unnecessary time on top of the
query execution, particularly if you have queries that execute quickly, but on the flip side,
you don't want to poll so frequently that you are consuming a ton of resources on your
end (threads, I/O sockets, and so on) and also Athena API limits. Limits can generally be
increased, but of course, there's a limit to that limit, and wouldn't it just be better to avoid
having to deal with that? Well, some more good news! There is a way to do that!

Athena publishes any changes in the status of a query execution to AWS EventBridge.
AWS EventBridge is a managed event bus service that allows AWS customers to process
events produced by other systems (either AWS services or anyone else) in real time
utilizing a push model. The way it works is that you configure a rule that tells EventBridge,
for a given scenario and event, to forward that event to a target. There is also a second
type of rule, which is a scheduled rule, so rather than reacting to an event, it triggers a
target on some sort of schedule, either a cron job or an arbitrary time rate (for example,
once an hour). For our purposes, we are going to focus on the first type of rule, which is
the event-based rule.

So, let's run through a quick example of how to get set up with an EventBridge rule for
Athena queries. To keep things simple, we're going to set it up so that we send an email
based on Athena status changes. In this case, our target will be an SNS topic, which will,
in turn, forward any messages it receives to an email we configure.

Note
Everything we are doing should fall well within the Free Tier limits, so
assuming your account still qualifies, this next section should not cost you
anything!

Best practices for connecting to Athena 275

Step 1 – Setting up the SNS topic
Navigate to the SNS console, find topics, and then select Create topic. On the Create
topic page, select the Standard type of topic, and then give it a descriptive name. Then
you can leave the rest blank, go ahead, and scroll and click on the Create topic button.

Figure 10.3 – Creating an SNS topic

276 Building Applications with Amazon Athena

You should be taken to the newly created topic's Details page. Look for a button now that
says Create subscription. On that page, find the Protocol dropdown, and select Email.
Enter the email you wish to receive the notifications where it says Endpoint. Then again,
go ahead and leave the rest blank and select Create subscription.

Figure 10.4 – Creating an email subscription for your SNS topic

Before you can move on, go and check your email. You should receive an email that
looks like the following. Assuming everything lines up (this is, in fact, the SNS topic
you created), go ahead and click the Confirm subscription link.

Best practices for connecting to Athena 277

Figure 10.5 – Sample subscription confirmation email

Step 2 – Setting up the EventBridge rule
Head on over to the EventBridge console and find Events > Rules in the navigation bar.
Then, find and click the Create rule button. On the Create page, give a descriptive name; I
called it packt-athena-emailer. For the pattern, select Event pattern > Pre-defined
pattern by service. The provider should be AWS > Athena, and the event type should be
Athena Query State Change. It should look like the following:

Figure 10.6 – EventBridge Athena query state change event pattern

278 Building Applications with Amazon Athena

Skip the event bus section; the defaults there are fine. Under Select targets, where it says
Lambda function, change that to SNS topic and find the topic you just created in the
previous section.

Figure 10.7 – EventBridge SNS topic target

Now, click the Create button and you're done!

Step 3 – Running a query
Finally, let's go ahead and navigate to the Athena console and run any query (I just picked
a table in my catalog and selected the Preview table option). Once you've run that, you can
go ahead and head back over to your email and you should receive some emails that look
like the following:

Best practices for connecting to Athena 279

 Figure 10.8 – Athena query status emails

If you take a look, you will see we received three notifications for the status of our
query. First, the execution went into the QUEUED state, then RUNNING, and finally
SUCCEEDED. Pretty neat, huh?!

Emails are great and all, but you will probably want your automated system to be able to
react to these events. You probably noticed already when you were setting up the rule, but
if you didn't, EventBridge has a huge selection of possible targets that you can configure
for a rule, so there's a really good chance that there is a target option that will fit nicely
into your application. Take a look at the following URL, https://amzn.to/2UXrj4x,
for the full list of targets.

https://amzn.to/2UXrj4x

280 Building Applications with Amazon Athena

Securing your application
In the previous section, we talked about some best practices when it comes to connecting
to and calling Athena. In this section, we're going to touch a little bit more on that point,
but with a focus on security, and then focus on some other mechanisms for using Athena
in the safest way possible. In Chapter 5, Securing Your Data, we discussed the concepts
of the attack surface and blast radius, two metrics by which you can measure how safe
your application is, both in terms of preventing a bad actor from gaining access and then
minimizing the impact in the event that they do gain access. Some of the stuff we are
going to cover is not necessarily specific to an Athena-based application, but it is still very
valuable information to keep in mind.

Credential management
Firstly, we're going to take a look at credentials, the entry point for secure communication
with AWS. We're going to focus on two specific aspects of it – life cycle management and
the distribution/persistence of credentials. Also, whether you are running your application
within some standard AWS offerings versus the alternative makes a big difference here, so
we'll discuss each separately.

If you are running your application on AWS compute options, such as EC2, ECS, Lambda,
and others, then the problem of distributing credentials can be rather simple. In these
cases, credentials are distributed to the hosts by way of metadata services (or in the case
of Lambda, it is simply the credentials that are being used to execute the function). What
this means is that, assuming the credentials distributed to the host are the ones that you
need, you can simply rely on the default credentials provider within the AWS Client, and
it will know to look for the metadata service. However, if you require credentials that are
different from the ones that are distributed directly to the host, then you have a couple
of options. The first is the case where you need IAM user credentials, and we're going to
cover that in the next section when we discuss on-premises (out of AWS) applications.
The second option is that you use IAM roles, which is the recommended approach
in any case. In these cases, the credentials that are automatically distributed need the
iam:AssumeRole permission on whatever role you want to actually assume. Then you
can call the STS service to retrieve temporary credentials for that role and then instantiate
the desired client with those credentials. In Java, this looks like the following:

AWSSecurityTokenService stsClient =

 AWSSecurityTokenServiceClientBuilder.
standard()

 .build();

AssumeRoleRequest roleRequest = new AssumeRoleRequest()

 .withRoleArn(roleARN)

Securing your application 281

.withRoleSessionName(roleSessionName);

AssumeRoleResult roleResponse = stsClient.
assumeRole(roleRequest);

Credentials sessionCredentials = roleResponse.getCredentials();

BasicSessionCredentials awsCredentials = new
BasicSessionCredentials(

 sessionCredentials.getAccessKeyId(),

 sessionCredentials.getSecretAccessKey(),

 sessionCredentials.getSessionToken());

AthenaClient athenaClient = AthenaClient.builder()

 .withCredentials(new
AWSStaticCredentialsProvider(awsCredentials))

 .build();

Roles make it such that you don't have to concern yourself with credential rotation at all;
they are temporary credentials that you can just get new ones of whenever you need. The
benefit of this is that if somehow role credentials get leaked, a bad actor will only be able
to use them for a short period of time, thereby reducing the blast radius.

If you are in a situation where there is no automatic distribution of credentials handled by
AWS, such as in an on-premises solution, then it is, of course, your responsibility to solve
that. Many organizations in these cases end up building their own solutions, often referred
to as credential stores. Credential stores are far preferable to the other option, where
you store credentials on disk, such as in the AWS ~/.aws/credentials file, or even
worse, in your code repository, the reason being, again, because we want to reduce the
blast radius in the event a bad actor gains access to the host. If the credentials are stored
elsewhere, then the actor will not necessarily be able to access them, but if they are on the
disk, then now the actor has access to whatever resources those credentials have access to.
Since these credential stores are often very custom and involve significant integration with
whatever enterprise authentication mechanism that is being used, we're going to focus
more on what to consider when following this approach. You still want to utilize roles as
much as possible.

The credentials you are managing should primarily be utilized to access those roles so that
in the event the credentials are leaked, you can quickly revoke those permissions, and any
future attempts to use the role will fail. This is called least privilege, the idea being that
any actor within a system has exactly the permissions it requires to perform its duty and
no more, which is with the aim, again, of reducing the blast radius.

282 Building Applications with Amazon Athena

The other key consideration is automatic credential rotation. You should ensure that
credentials get rotated so that in the event any credentials are leaked, they cannot be used
indefinitely. By default, IAM will not rotate your credentials, which means that they will
live on forever. IAM has a very helpful pattern for setting an automatic rotation system
that you can use or at least reference here: https://amzn.to/3gRDHLk. In general,
the system is a three-step process:

1. Generate new keys.
2. A short amount of time later, deactivate the old keys.
3. A short amount of time later again, delete the deactivated keys.

The idea here is that after step 1, the system should pick up the new keys. After step 2,
any systems still reliant on the old keys will start to fail, but if need be, you can reactivate
until you switch, and then, in step 3, you completely eliminate the old keys once you've
confirmed it's OK.

At the end of the day, doing your absolute best to keep credentials secret is, of course,
the primary goal. But the other tools we've discussed are invaluable in reducing the blast
radius in the event that credentials are in the hands of someone who shouldn't have them.

Network safety
The next thing we're going to focus on is ensuring that the communication between
your application and Athena is as protected as possible. By default, all communications
between the AWS SDK and an AWS service are encrypted via HTTPS and signed using
AWS's Signature Version 4 signing process (more info on that here: https://amzn.
to/3DvAg6I). These mechanisms do an excellent job of ensuring that any message
sent to AWS is tamper-proof. So, this does a good job of minimizing your attack
surface; however, if you haven't properly configured your network, then you are still
requiring access to the public internet to communicate with AWS since, by default, all
communication goes to AWS's public endpoint. The public internet, in this case, refers to
anything accessible to anyone via the internet without requiring any additional network
configuration (note: accessible means that the IP address will resolve, not that they have
the necessary credentials). So, the implications of that are that there is a larger potential
blast radius (for example, the bad actor, having gained access to your hardware, could call
out to the public internet to retrieve a nasty script that they've already prepared in advance
for wreaking havoc). I would guess by now you are seeing a pattern; AWS has an answer
for this problem as well!

https://amzn.to/3gRDHLk
https://amzn.to/3DvAg6I
https://amzn.to/3DvAg6I

Securing your application 283

Figure 10.9 – Calling Athena over the public internet

VPCs, or Virtual Private Clouds, provide you with the ability to create isolated networks
and are consistently one of the most recommended security features within AWS. VPCs
enable fine-grain control over network traffic in and out of them and also within the VPC
itself. There is much, much more to VPCs, but that sufficiently covers what we need to
worry about here.

So, great, we can configure rules to allow traffic in and out of our private network. But we
still have to communicate with AWS, so we still need access to the public internet to talk
to AWS's public endpoint. This means that our VPC rules must allow for that traffic out of
our network. Or… do we? (Hint: we don't.)

Figure 10.10 – Calling Athena over the public internet from inside your own VPC

284 Building Applications with Amazon Athena

AWS PrivateLink and VPC endpoints exist to solve this exact use case. A VPC endpoint
is a resource you can provision inside your VPC, which can be communicated with
by way of a private IP address, meaning that the IP address exists only in your VPC. A
private IP address is explicitly separate from the public internet, meaning anyone outside
of the VPC, if they tried to access that IP address, either it would exist on the public
internet, pointing to a completely different resource, or it would simply not resolve. The
VPC endpoint then routes your traffic to AWS PrivateLink. And finally, AWS PrivateLink
allows for direct communication with an AWS service without leaving the AWS network!

Figure 10.11 – Calling Athena using a VPC endpoint and PrivateLInk

VPCs and VPC endpoints are very powerful tools that allow you to have much finer-grain
control over your network. The process of getting set up, while not difficult, requires a
few more steps than we have time for. So, rather than walking you through all that you
need to, I'm going to suggest you head on over to Athena's documentation on it here:
https://amzn.to/3aifWrE. The one thing I'll point to from that documentation
is just how easy it is once your VPC and endpoint are set up to actually start using the
endpoint. In fact, if you enable private DNS hostnames for the endpoint you create, the
endpoint to call will be identical to the public one (as seen in the preceding diagrams),
meaning no additional configuration will be required. Your SDK will just automatically
start communicating through PrivateLink to Athena instead of over the public endpoint.

https://amzn.to/3aifWrE

Optimizing for performance and cost 285

Optimizing for performance and cost
Switching gears one last time, let's orient ourselves to optimizing our use of Athena.
Again, remember that what is optimal differs depending on what your greater concerns
are; either reducing your overall dollar costs or having the fastest possible experience,
that's going to depend on your priorities. By the end of this section, you'll have a good
starting point for achieving them.

Workload isolation
In Chapter 3, Key Features, Query Types, and Functions, we covered workgroups and how
to leverage them to isolate workloads. Just to reiterate, workgroups allow you to splice up
your Athena usage in such a way that you can specify who gets access to which data and
how much of that data they can access through the WorkGroup resource and resource
policies. Another huge benefit of workgroups is that you can visualize aggregated query
metrics at the workgroup level. The way you can do this is when you create a workgroup,
you make sure to enable publishing query metrics to AWS CloudWatch (see Figure 10.17).
Note that this is disabled by default because there are additional charges associated with
using CloudWatch.

Figure 10.12 – Workgroup CloudWatch query metrics option

Once you've enabled that, you should be able to head over to the workgroup and you
can view the Metrics tab on your workgroup page, and you'll see some pretty handy
metrics there! Now, if you are thoughtful in terms of how you break data up into different
workgroups, you can leverage these metrics to determine which workgroups (and
therefore which sets of data) are resulting in the worst performance and highest costs
(in other words, most data reads). We'll take a closer look at how best to think about this
soon, but for now, just observe and enjoy.

That relates to monitoring WorkGroup usage, but what about optimizing your workloads?
I know I'm being super repetitive, but this is an important thing to keep in mind; what are
you trying to optimize? WorkGroups have a nice feature for that where you can specify
how much data a given WorkGroup can process, either in a given query or in a given time
period. Remember that data processed is the metric utilized by Athena for billing. So, this
feature allows you to tune what individual workgroups will cost you over time, so that's
what we're optimizing for in this case.

286 Building Applications with Amazon Athena

And again, on the other hand, we have performance optimizations. As of the time of
writing this book, in most regions, Athena allows you to have 20 active DML queries at
a time. An attempt at running a query beyond that will result in a "too many queries"
error. So, let's say you have two workloads, one is fast and frequent, while the other is slow
and infrequent. And let's say that this fast and frequent workload is pretty consistently at
or near 20 active DML queries at a time. What do we think is going to happen with that
slow and infrequent query? Well, either it's going to frequently hit the "too many queries"
error, or it's going to occupy an active query slot for the fast query for a long period of
time, impacting the amount that can be executed in parallel with the fast one. The issue
here is that these two workloads have very different scaling vectors, and none of that
is based on the amount of data processed, and so WorkGroups won't really help in this
case, since these limits are at the account level. So now it's time to look elsewhere for
a solution. In these cases, it's a good idea to start considering branching out workloads
into separate AWS accounts that can scale completely independently of one another.
AWS Organizations is an excellent offering that makes it really easy to create AWS
account trees where billing is all aggregated at the root of the tree, but the accounts still
effectively act as independent entities.

Application monitoring
By now, you've split out your various workloads into separate WorkGroups and maybe
even separate AWS accounts. But software and its use is a living thing; it's forever growing
and, just as importantly, changing. So, monitoring the status of your application is
extremely important.

By default, Athena logs all API calls plus the associated request parameters to AWS
CloudTrail. AWS CloudTrail is a service aimed at empowering customers to audit all
actions that are taken within their accounts. Actions, in this case, are API calls made
against all services that log to CloudTrail (which should be most, if not all, of them). The
data logged by Athena within CloudTrail includes the request parameters, such as the
query string, and other valuable data such as the caller.

To get started with diving into your CloudTrail usage, we're actually going to use Athena
to gain insights into our Athena usage. To get started, if you haven't done this already,
you need to go to the CloudTrail console and create a trail. On the first page of the trail
creation, give the trail a name, something descriptive. For your encryption settings, if you
plan on using this in a production environment, you will want to turn this on, but keep
in mind that KMS has costs associated with it. Each customer-managed key (CMK) is
$1/month and then you pay based on your usage of the key as well (there is a free tier for
this part). If you are just doing this for testing purposes, it's your decision whether or not
you want to turn that on. Just don't forget what you decide if you end up continuing to
use it (or not).

Optimizing for performance and cost 287

Figure 10.13 – CloudTrail trail attributes

288 Building Applications with Amazon Athena

Note the bucket name being used for the trail. The rest you can leave unmodified, and
now move on to the next page. On this page, you don't need to change anything; all of the
defaults apply. The management event type just refers to general AWS API calls.

Figure 10.14 – CloudTrail log events selection

Now, click Next again, verify that the summary page looks as you expect it to, and click
Create trail at the bottom. Navigate over to the CloudTrail Event history page, locate the
button that says Create Athena table, and then click that. Select the bucket corresponding
to the trail we just created and then scroll down and click Create table. And now you're
ready to start gaining insights from your CloudTrail events!

Optimizing for performance and cost 289

Figure 10.15 – CloudTrail Athena table creation dialog

Move over to Athena and switch to the default data catalog and you should see your
newly created table there. Go ahead and preview it and take a quick look at what the data
looks like. Three columns worthy of highlighting that we are particularly interested in
right now are eventsource, eventname, and requestparameters. If you look
at some samples of these, you'll see that eventsource corresponds to the service or
caller that triggered the particular event, eventname is the API that was called, and
requestparameters contains the values provided for that API call in the form of
a JSON object (on many occasions, services will redact sensitive fields). So now let's try
to derive some more useful information from here. Try running the following query.
(If you just set up CloudTrail, you'll want to run a few random queries first before you
run this one, otherwise you will get no results):

SELECT json_extract(requestparameters, '$.queryString') AS
queryString

FROM "default"."<CLOUD_TRAIL_TABLE_NAME>"

WHERE eventsource = 'athena.amazonaws.com' and

 eventname = 'StartQueryExecution'

290 Building Applications with Amazon Athena

You should get an output that looks something like that of Figure 10.16, where you see the
various queries that have been executed (since you enabled the trail):

Figure 10.16 – Query strings from the CloudTrail Athena table

Now, at this point, you might be thinking that this is a difficult dataset to analyze, and
you'd be right! Especially if you imagine that you've expanded your use of Athena to a
massive amount. This is why it's so important that you use all of the various things we've
discussed here together.

Let's say we've got a data warehouse for our coffee shop from earlier in the chapter. This
warehouse contains data on transactions that have occurred over the past year and also
data on what we have in our stockroom. For the stockroom, to begin with, we really only
care about what is in there at any given time. So, we create a workgroup for checking
that information. Essentially, our data is a daily snapshot of the items in stock. Our other
workgroup contains the transaction data that we've got nicely partitioned by month
and contains information about all the transactions that occurred each day. One day,
one of our data analysts (yes this is a tech-coffee shop) runs a query to try and correlate
transactions that are occurring and how they relate to how frequently perishable stock is
being returned to determine what we need to buy less of. This ad hoc query turns out to
be super useful, so it gets added as a regular job that gets run. But no one told the data
engineer! Over time, the data engineer is checking on the metrics of the workgroup and
notices that the performance for the stockroom workgroup has degraded significantly
over time. The data engineer decides to query the CloudTrail logs for the table in that
workgroup and notices a large number of queries that are running over a range of time
instead of just a single day (the latest day), and because the table is not partitioned, it
requires the entire table to be scanned. They now determine that this is a valuable dataset
to have and create a new table that adds month-based partitioning on the stockroom so
that it aligns with the transactions table.

Summary 291

I hope that, with the help of my silly little coffee shop example, you can see the power of
combining all of these monitoring tools to ensure that you are always operating in the
most optimal manner.

CTAS for large result sets
The last topic we are going to briefly discuss is not so much a best practice but just a
nice trick to have in your back pocket in case you ever need it. Sometimes, you have
queries that you run that produce very large numbers of results. As usual, you call
GetQueryResults to get them and notice that you are spending a really long time on
this part. The reason for this is that Athena stores all results in a single CSV file. And so
GetQueryResults is, in turn, slowly reading through that line by line. In Chapter 3,
Key Features, Query Types, and Functions, we learned about the CTAS (Create Table as
Select) clause, which allows you to run a select query and rather than return the results
to you directly, it puts those results into a new table in your catalog. So, one option to
consider instead of reading through your large numbers of results in a single thread is
to temporarily store the results in a separate table using CTAS and partition that table in
such a way whereby you can leverage parallel reads by reading different partitions at the
same time!

Summary
In this chapter, we covered a really broad array of topics, all focused on giving you the
right concepts to consider when building an application that leverages Athena (though
many topics would benefit you no matter what you are building).

We discussed your different options for connecting to Athena and how to decide which
one is right for you, whether it is using the AWS SDK, the JDBC driver, or the ODBC
driver – deciding between the convenience of implementation, especially if you are
already familiar with the JDBC/ODBC frameworks, versus the flexibility of having direct
access to the SDK.

Then we continued the discussion of connecting to Athena, but with a focus on best
practices. Firstly, we covered making sure you are leveraging idempotency tokens
(in Athena's case, ClientRequestTokens) to make sure you are safely retrying on
unclear failures, which is a feature you get for free with the SDK! And then we looked at
how best to track the status of queries, moving away from the standard model of polling
GetQueryExecution until the query completes, and instead utilizing the push model
by working with AWS EventBridge.

292 Building Applications with Amazon Athena

Next, we looked at being secure! We discussed how best to manage credentials,
particularly when your application is not running with an AWS environment, and then,
when you are in an AWS environment, how best to manage your network traffic to and
from your application by leveraging VPCs and VPC endpoints.

Finally, we took a look at the various options you have for optimizing your application,
whether it be for minimizing cost or maximizing performance. In this section, we
reiterated from Chapter 3, Key Features, Query Types, and Functions, the idea of
leveraging WorkGroups as a mechanism to isolate workloads both from an access
and cost perspective. We also looked at how you can leverage WorkGroup-aggregated
CloudWatch metrics for analyzing the overall performance and cost of workloads. Then,
we saw where WorkGroups may not be able to help, which is when you have workloads
with significantly different scaling vectors that you don't want to impact one another,
and in that case, we recommended that you consider separating those into different AWS
accounts under a single AWS organization. Continuing with the theme of monitoring, we
discussed how you can leverage AWS CloudTrail in addition to well-defined workloads
by WorkGroup to discover common access patterns that need to be optimized. Finally,
we took a look at a trick you can do to speed up queries with very large result sets by
leveraging CTAS to take advantage of the multi-file upload capability of CTAS.

Of course, there is so much to consider when building an application and we've only
scratched the surface, but these topics should take you a long way by creating a solid
foundation from which to get started. In the next chapter, we will check out operational
excellence, in other words, how to monitor and optimize Athena for various uses.

11
Operational
Excellence –
Monitoring,

Optimization, and
Troubleshooting

In this chapter, we will focus on operational excellence. Operational excellence in this
chapter has three components: monitoring Athena to ensure it is healthy and running
normally, optimizing our usage of the system for cost and performance, and, lastly, how
to troubleshoot issues when they occur.

294 Operational Excellence – Monitoring, Optimization, and Troubleshooting

When monitoring systems, it is essential to know what to monitor and what steps to take
when something goes wrong. This information is valuable because when the system is
not operating correctly, the data will give you clues on possible issues, which reduces
investigation time. You can also act before problems occur, preventing calls from users on
why things are not working. We will look into processes that can be put in place to ensure
that Athena and our usage of it are normal and efficient. When there are issues, we will
know how to fix common problems.

We also want to get the most out of Athena. To run optimally and cost-effectively, we will
optimize our use of Athena by going through best practices on how to store our datasets
and best write queries. Following these best practices can significantly reduce your
monthly bills and keep your users happy, with low query times.

Lastly, we will look at how we can troubleshoot failing queries. We will dive deep into the
most common problems users encounter, what they mean, and how to address them.

In this chapter, we will learn about the following:

• How to monitor Athena to ensure queries run smoothly

• How to optimize for cost and performance

• How to troubleshoot failing queries

Technical requirements
For this chapter, if you wish to follow some of the walk-throughs, you will require the
following:

• Internet access to GitHub, S3, and the AWS Management Console.

• A computer with a Chrome, Safari, or Microsoft Edge browser installed.

• An AWS account and accompanying IAM user (or role) with sufficient privileges
to complete this chapter's activities. For simplicity, you can always run through
these exercises with a user that has full access. However, we recommend using
scoped-down IAM policies to avoid making costly mistakes and to learn how
to best use IAM to secure your applications and data. You can find a minimally
scoped IAM policy for this chapter in the book's accompanying GitHub repository,
listed as chapter_11/iam_policy_chapter_11.json (https://bit.
ly/3hgOdfG). This policy includes the following:

 � Permissions to read, list, and write access to an S3 bucket

 � Permissions to read and write access to the AWS Glue Data Catalog databases,
tables, and partitions:

https://bit.ly/3hgOdfG
https://bit.ly/3hgOdfG

 295

 � You will be creating databases, tables, and partitions manually and with Glue
crawlers.

 � Access to run Athena queries

Monitoring Athena to ensure queries run smoothly
Monitoring your usage of Athena is essential to ensuring that your users' queries continue
to run uninterrupted without issues. Many issues can be addressed before they impact
users and applications. This section will look into the metrics that Athena emits to
CloudWatch Metrics and the metrics that should be monitored and alarmed on, so that
actions can be taken before users reach out to their administrators. Before we do, let's take
a look at which metrics are emitted by Athena.

Query metrics emitted by Athena
Athena emits query-level metrics for customers to be able to monitor and alarm on.
These metrics exist in CloudWatch Metrics under the namespace "AWS/Athena" and
three dimensions, QueryType, QueryState, and the Workgroup name. QueryType can be
DML (INSERT/SELECT queries) or DDL (metadata queries such as CREATE TABLE).
QueryState can be SUCCEEDED, FAILED, QUEUED, RUNNING, or CANCELED. The
Workgroup dimension aggregates metrics within the Athena workgroup that the query
executed in.

The metrics that are emitted are listed here:

• TotalExecutionTime – in milliseconds. The entire execution time of the query
from when the query is accepted by Athena to when it reaches its final state
(SUCCEEDED, FAILED, or CANCELED).

• QueryQueueTime – in milliseconds. This is the time a query spent waiting for
resources to run on. This measures the time after Athena has accepted a query for
execution and before it is sent to the execution engine for execution.

• EngineExecutionTime – in milliseconds. This is the amount of time taken
when the query is received by the execution engine to when it completes executing
it. This metric includes the QueryPlanningTime metric. This applies to both DML
and DDL queries.

• QueryPlanningTime – in milliseconds. This is the amount of time the execution
engine (that is, PrestoDB) took to parse the query and create its execution plan. This
includes operations such as retrieving partition information from the metastore,
optimizing the execution plan, and so on. This applies to DML queries only.

296 Operational Excellence – Monitoring, Optimization, and Troubleshooting

• ServiceProcessingTime – in milliseconds. This is the time from when the query
has finished in the execution engine (that is, PrestoDB) and the time Athena uses to
read the results and push them to S3. This applies to both DML and DDL queries.

• ProcessedBytes – in megabytes. This is the amount of data that the execution
engine processed for DML (that is, SELECT) queries. This can be used as an
approximation for billing.

With these metrics, we can build dashboards and alarms. The process to create the alarms
will be included in the following sections.

Monitoring query queue time
To protect available resources for all customers, Athena allows a certain number of queries
to be run at any given time from a single AWS account. When a query is submitted for
execution, Athena will check how many queries the submitting account is executing. If it
exceeds the account limit, or if there are not enough resources, say at peak times during
the day, then the query will be queued until both of those conditions are met. When
clients submit their queries and notice that their queries are not running or taking a
significant time to run even a small query, it is likely because they are queued.

Monitoring and actioning when Athena queue time occurs is essential to prevent
users' queries from being constantly queued. Since queue time metrics are emitted to
CloudWatch metrics, alarms can be created and actioned against. We have included a
sample script that can be used as templates to monitor and email when thresholds are
exceeded, which can be found in this chapter's GitHub location at https://bit.
ly/3j7Nzly. The script can be adjusted for your use case. It will create four alarms, two
for DML queries and two for DDL queries. Each set will generate a warning threshold and
one for when production impact occurs. The split between DML and DDL queries is due
to the query types having their own queues, and one will not impact the other.

Once the alarms are created, then the CloudWatch alarms dashboard may look like the
following.

https://bit.ly/3j7Nzly
https://bit.ly/3j7Nzly

 297

Figure 11.1 – A sample alarm dashboard in Amazon CloudWatch for alarms

When users' queries start to get significantly queued, three actions can be taken. First,
reduce the frequency that queries are submitted or spread them out throughout the day.
This can be done by asking users or by disabling low-priority users. This is not an ideal
solution but can be a short-term solution to prioritize applications or users that need
to execute queries. The second action that can be taken is to submit a support case and
ask for the AWS account to increase concurrent query execution for your AWS account.
This generally happens automatically but is not done when there is a sudden increase in
sustained usage. Requests to increase query concurrency need to be considered by AWS
and may be approved or disapproved.

The last solution is to split queries among AWS accounts. This approach has the additional
benefit of isolating applications and users from impacting each other. It is best practice to
use an AWS account for SLA-sensitive applications and users, and other ad hoc queries
from users doing data exploration in another account.

Let's now look at monitoring Athena's costs.

Monitoring and controlling Athena costs
No one wants to be emailed or especially called because their team's Athena costs are
significantly higher than initially expected. Unexpected increases in costs can be due
to a single user running a query without a partition filter that unintentionally scans
terabytes of data or an application with a bug that makes an unexpectedly high number
of calls. There are mechanisms that Athena provides to prevent these scenarios when
using Athena workgroups.

298 Operational Excellence – Monitoring, Optimization, and Troubleshooting

To prevent the scenario of a single user running every large and expensive query,
workgroups can be configured to cancel individual queries that exceed a quantity of data
read. This is configurable for each workgroup, depending on the need. To set this feature,
go to the Data usage controls tab when editing a workgroup in the Athena console, as
shown in the following figure:

Figure 11.2 – Data usage controls within the Athena console for a workgroup

Within this tab, you can set data usage limits at a query level. By selecting this limit,
Athena will cancel queries that exceed the query limit. It is recommended that this limit
be configured to a value that prevents legitimate queries from being interrupted but is low
enough to identify issues.

 299

In addition to setting limits at a query level, you can also set ProcessedBytes limits at
a workgroup level. CloudWatch alarms can be created in CloudWatch or through the
Athena console in the workgroups tab, as shown in the following figure:

Figure 11.3 – Workgroup data usage controls section below per query limits

The previous figure shows an example in which three alarms notify different Amazon SNS
topics in which different actions can be taken. This is an example where warning emails
can be sent out to interested parties if the usage and cost exceed certain thresholds. The
other two thresholds can disable the workgroup. Going above 3 TB of usage would be
considered highly unusual for this use case, and an investigation should be done.

300 Operational Excellence – Monitoring, Optimization, and Troubleshooting

The above example alarms were created by clicking the Create button in Figure 11.2. As
seen in Figure 11.3, the window that pops up allows data limits and a time period to be
entered, and an optional SNS queue to send a notification to. Each alarm created is backed
by a CloudWatch alarm and can be tweaked through the CloudWatch alarm console.

Figure 11.4 – Creating a workgroup data usage alarm

Now that we have seen how to monitor and put limits on query usage, let's look at how
we can optimize using Athena to reduce costs and query runtime.

Important Note
If you are using the federated connectors, you will incur costs associated
with the connectors, such as the cost of launching Lambda functions and the
resources used when running Lambda.

Optimizing for cost and performance
When optimizing performance for any execution engine, two goals should always be kept
in mind: read as little data from your storage as possible, which reduces costs and reduces
query time, and make sure that your query engine does as little work (processing) as
possible, which reduces query time.

 301

This section will look similar to the AWS Big Data Blog post titled Top 10 Performance
Tuning Tips for Amazon Athena (https://amzn.to/2VIFv1y) that I wrote. Still,
we will provide some additional details that the blog post did not offer. Many customers
bookmark this page and refer to it, and I recommend visiting it often to improve its
view count.

Important Note
The recommendations in this section are generalizations and may not apply
to all circumstances. Everyone's data, data structure, and queries are different,
so not all of these recommendations may drive an improvement. Testing and
prototyping are highly recommended when going through the process of
optimizing usage.

Let's get started by looking at some optimizations on how to efficiently store data.

Optimizing how your data is stored
It is essential to consider how your data is stored when being read by execution engines
such as Athena. How your data is stored usually has the most significant impact on how
queries perform and how much they cost. Also, if you need to regenerate data when
your system is live, it is much more expensive than doing it upfront. Changing queries is
much easier and cheaper. With this in mind, some planning and prototyping are highly
recommended.

Let's look at how file sizes and count impact performance.

File sizes and count
The size and number of files have a pretty significant impact on the performance of your
Athena queries.

Important Note
The general recommendation is that your file sizes are between 128 Mb
and 1 GB.

There are many reasons for this:

• S3 list operations are expensive. If you have a high number of files for a table, more
S3 list operations need to be performed to get the list of files to read for a dataset.

https://amzn.to/2VIFv1y

302 Operational Excellence – Monitoring, Optimization, and Troubleshooting

• For each file, the engine needs to perform many S3 operations to consume it. It will
first need to open the file by running a HeadObject() function to get the file
size, encryption keys, and any other information necessary to start reading the file.
This operation is expensive. Next, it will need to call a GetObject() function that
returns a pointer to the data and the first data block. Ideally, you want to minimize
the overhead of calling the HeadObject() function.

• The smaller your files, the less effective the compression, increasing the total
amount of data stored.

• If your files are encrypted using server-side encryption, S3 will need to call the AWS
KMS service to get decryption keys. This introduces overhead and increases costs
because KMS charges for each call. I had a customer where their KMS costs were
higher than their Athena costs because the cost of getting KMS keys was higher
than reading the data. Having larger files reduces the number of calls needed for
encryption keys.

Having appropriate file sizes reduces the amount of work that the execution engine needs
to do.

Compression
Using compression makes the engine read less than uncompressed data, reducing network
traffic from the data source to the Athena engine. For S3, it reduces storage costs. There is
a trade-off of CPU usage as compression requires extra work to decompress data. Still, this
cost is most of the time outweighed by making fewer calls to S3, and most queries do not
exhaust CPU resources.

Important Note
Always compress your data when using text-based file formats, such as JSON
and CSV. If your file sizes are larger than 512 Mb, use a compression algorithm
that allows for files to be splittable. When using Apache Parquet or Apache
ORC, compression should be applied within the column blocks (not to be
confused with compressing the entire file).

When trying to decide on a compression algorithm, there are two aspects to consider.
First, there is a trade-off between higher compression ratios and higher CPU usage.
Second, whether the compression algorithm allows a query engine to read different parts
of a file without reading the entire file. This is called if the file is splittable. If the algorithm
produces splittable files, then multiple readers can read the file simultaneously, which
increases parallelism. If a file is not splittable, a single reader must read the entire file,
reducing parallelism.

 303

For text-based file formats, such as JSON and CSV, it's always recommended to compress
them because the compression ratios are generally very high. For columnar formats such
as Apache ORC and Apache Parquet, they support compressing column data blocks.
Because compression works best when groups of similar values exist, compressing all the
values for a column in a single block usually leads to better compression ratios. Typically,
Parquet and ORC are configured to compress column blocks by default.

File formats
Data formats impact the amount of data that a query engine reads and the amount of
work the engine needs to do to read the data contained in the files. If your data is not in
an optimal format, then transforming the data may reduce your overall cost if the cost of
transformation is less than the cost of querying the data.

Important Note
For datasets that are read frequently, use Apache Parquet or Apache ORC. For
data that is not likely to be queried or is queried infrequently, any compressed
file format should be used. Datasets stored in CSV or JSON that will be queried
frequently should be transformed into Parquet or ORC.

Let's dive into some common file formats.

• Row formats: CSV and JSON formats are the most common file formats used today
but are the most inefficient. They are text-based, which is less efficient than storing
the data in a binary format. For example, the int data type can be stored in binary
using 4 bytes of data, but the number 1234567890 uses 10 bytes to store as a
string. Add the delimiter for CSV and the field names in JSON, and they can take a
substantial amount of space and memory. Also, when the file parser reads a number,
it first needs to read the number as a string and then convert it to a number.

• Columnar formats: Columnar formats store data differently than row-based
formats. With columnar formats, the data is grouped by the columns and stored
in column blocks. A columnar file is then created by storing all the column blocks.
When a reader wants to read the file, it will read each column block and generate a
row by putting together all the columns by the index in the block. There are many
reasons why this is cheaper and faster:

 � Field values are stored in binary instead of text. This reduces storage size and
eliminates conversion from strings to numeric types, reducing the engine's read
amount and work.

 � If a query only contains a subset of the columns, the execution engine will only
read those columns, reducing the amount of data read.

304 Operational Excellence – Monitoring, Optimization, and Troubleshooting

 � Compression on blocks of data that contain similar values is generally more
efficient. This reduces the amount of data needed to be read, which reduces the
cost and work demanded from the engine.

 � Both Parquet and ORC support predicate pushdown, also known as predicate
filtering. Parquet and ORC store statistics about each column block that can help
skip reading entire blocks by pushing a filter to the reader and evaluating the filter
on these statistics. If it is determined that the filter value is not in the data block, it
is skipped. The statistics include ranges of values in the block and, for string data
types, a Bloom filter. This reduces the cost and work demanded from the engine.

Parquet and ORC are better formats in almost every way than text-based formats. Let's
take a look at how partitioning and/or bucketing your data can improve performance
and costs.

Partitioning and bucketing
Partitioning and bucketing are two different optimizations that can lead to significant
improvement in cost and performance. These features require an understanding of the
data's usage patterns or how users or applications will query the datasets. Depending
on the queries that will mainly be executed, it will inform the best way to leverage
partitioning and bucketing.

Let's look at both features in a bit more detail:

• Partitioning: Partitioning your table separates rows into separate directories
based on a column value. When a query contains a filter on a partition column
value, only the partitions that meet the filter will be read, reducing the amount of
data read. We talked about partitioned tables in Chapter 4, Metastores, Data Sources,
and Data Lakes.

Important Note
Partitioning can significantly improve the performance and cost of your
queries. A general recommendation for partitioning is to keep the number
of partitions for a table under 100,000 while maintaining file sizes within the
partitions.

Choosing partition columns can be a challenge, but here are some best practices.
When looking at the queries executed against the table, the columns in WHERE
clauses are great candidates to look at. An example would be a dataset containing
a transaction date. The date is in the WHERE clause very frequently because users
only need the most recent data.

 305

The next best practice is to keep in mind the number of partitions your table has.
The more partitions your table has, the smaller the files may be in each partition,
which goes against file size best practice. Additionally, there is overhead when
using partitioning, but if the partition column is chosen wisely, the overhead will
be insignificant compared to the performance and cost savings. When Athena reads
a partitioned table, it will need to fetch partition information from the metastore,
and the greater the number of partitions, the more partitions it will need to fetch.
A general recommendation is not to exceed 100,000 partitions, but this number
depends on the upper bound of the query execution time and the amount of data
in the dataset.

One unique feature that Athena has that could help read tables with many partitions
is partition projection. It allows tables to specify the partition columns and the
expected values that those columns may take within the table properties. When
Athena queries the partitioned table, it generates the partitions on the fly instead of
going to the metastore to retrieve the partition information. This works for tables
that store their partitions on S3 in a consistent directory structure, with partition
columns whose values can be specified in a list or a range. Partition projection
supports integer and string data types and supports date formats as well. You
can see examples of partition projection using various datasets in this book at
https://amzn.to/38a2FAC.

Although not yet supported in Athena, one last optimization is indexing your
Glue Data Catalog tables' partition data. When this feature is supported, it will
significantly improve partition retrieval performance within Athena and reduce
query time. Keep an eye out for when this is available.

• Bucketing: Bucketing is similar to partitioning because it groups rows with the
same column values in a file within a partition. You specify the number of buckets
you want at table creation time and the column to bucket on. The engine will then
hash the bucket column values and put the rows with the same hash value in the
same file. When a query engine has a filter for specific values for the bucketed
column, it can then run the hash on filter values and determine which files it needs
to scan. This could lead to entire files being skipped.

Important Note
Bucketing can significantly improve the performance and cost of your queries.
However, bucketing adds complexity and should be employed by advanced
users for the most time-sensitive workloads.

https://amzn.to/38a2FAC

306 Operational Excellence – Monitoring, Optimization, and Troubleshooting

The following diagram shows what the NYC taxi dataset may look like if bucketing
is employed. The sample CREATE TABLE statement is located at https://bit.
ly/3kjd4j9.

Figure 11.5 – An example of bucketing on the NYC taxi dataset
The dataset is partitioned by the trip_date value but bucketed on the
ratecodeid column. All rows that contain the value in the ratecodid column
of 1 and 3 will go into 2020-06-01-file1.csv, 2 and 3 will go into the 2020-
06-01-file2.csv file, and 5 and 6 would go into the last file. If the query
SELECT * FROM nyc_taxi_partitioned where ratecodeid = 3 is
executed, Athena will determine that ratecodeid only existed in the 2020-06-
01-file2.csv file and hence can skip the other two files. However, if the query
SELECT * FROM nyc_taxi_partitioned where ratecodeid > 3 is
executed, Athena will read all the files because it does not know the complete list
of possible values.

There are some limitations to discuss. The current version of PrestoDB that Athena
uses only supports tables that were bucketed using Hive, without the ability to
insert data after a table or partition has been created. Once Athena offers a newer
version of PrestoDB, this limitation may be removed and support Apache Spark's
bucketing algorithm. Also, once the number of buckets is chosen for the dataset, it
cannot be changed unless the entire dataset is regenerated. For these reasons, it is
recommended that only advanced users attempt to leverage bucketing.

Now that we have gone through the optimization techniques to lay out our datasets on S3,
let's look at some optimization techniques when writing queries.

https://bit.ly/3kjd4j9
https://bit.ly/3kjd4j9

 307

Optimizing queries for performance
Although how data is stored can make the most significant impact on the performance
of Athena queries, how queries are written is also important. In this section, we will go
through some best practices when optimizing your queries.

Explain plans
Athena recently released a new feature that allows you to look at the execution plan of
your queries. The execution plan is the set of operations that the engine performs to
execute the query. It is not a requirement to read and understand the execution plans to
optimize, but if we know how to read them, they can give us a valuable tool to dive deep
into how queries are being executed. If you are not able to follow the technical details, it is
okay. The other sections for optimizing your query will provide general recommendations
that anyone can follow.

Let's take a quick look at an example of the information that EXPLAIN provides. If
we take the simple query EXPLAIN SELECT SOURCE_ADDR, COUNT(*) FROM
website_clicks GROUP BY source_addr, we get the following logical execution
plan (edited to simplify the output):

Query Plan

- Output[SOURCE_ADDR, _col1] => [[source_addr, count]]

 - RemoteExchange[GATHER] => [[source_addr, count]]

 - Project[] => [[source_addr, count]]

 - Aggregate(FINAL)[source_addr][$hashvalue] =>
[[source_addr, $hashvalue, count]]

 - LocalExchange[HASH][$hashvalue] ("source_
addr") => [[source_addr, count_8, $hashvalue]]

 - RemoteExchange[REPARTITION][$hashvalue_9]
=> [[source_addr, count_8, $hashvalue_9]]

 - Aggregate(PARTIAL)[source_addr]
[$hashvalue_10] => [[source_addr, $hashvalue_10, count_8]]

 - ScanProject[table
schemaName=packt_serverless_analystics_chapter_11,
tableName=website_clicks, analyzePartitionValues=Optional.
empty}] => [[source_addr, $hashvalue_10]]

 LAYOUT: packt_serverless_
analystics_chapter_11.website_clicks

 source_addr := source_
addr:string:1:REGULAR

308 Operational Excellence – Monitoring, Optimization, and Troubleshooting

This can look daunting at first, so let's break it down. The plan from the top down goes
backward from the order of operations. The operation executed is ScanProject,
which does the reading of our source data, our website_clicks table. The second
operation is Aggregate, which does a partial GROUP BY function on the local node
before sending it to the RemoteExchange operation. RemoteExchange shuffles data
between the nodes of the partially aggregated data based on a hash code so that rows that
contain the same GROUP BY columns go to the same node. LocalExchange shuffles
data within a worker node. Then, a final Aggregate operation aggregates all the rows
with the same GROUP BY values. The Project operator removes the hash code column
and then performs the last RemoteExchange operation to a single node, to output the
results using the Output operator.

To graph a visual representation of the plan, you can specify the format to GRAPHVIZ
and use an online conversion tool to convert the output to an image. The one that is used
within this chapter is https://dreampuf.github.io/GraphvizOnline/. The
converted image for the query EXPLAIN (FORMAT GRAPHVIZ) SELECT SOURCE_
ADDR, COUNT(*) FROM website_clicks GROUP BY source_addr is located
at https://bit.ly/3yOMFzD.

If the type of execution plan is not specified, such as the previous example, a logical plan is
provided. But Athena supports three other types of execution plans. They are VALIDATE,
IO, and DISTRIBUTED, which can be specified in the query. For example, to validate
whether a SQL statement is valid before executing it, you can run EXPLAIN (TYPE
VALIDATE) <SQL STATEMENT>. It will return a true or false value, depending
on whether Athena can parse and execute the query. The IO execution plan outputs
the input and outputs of the query. An IO plan for the previous example can be seen at
https://bit.ly/2VYnzjh.

The DISTRIBUTED plan provides fragments of the execution plan that is executed
across different nodes. Each fragment is performed on one or more nodes depending on
the type of the fragment. There are several fragment types, including SINGLE, HASH,
ROUND_ROBIN, BROADCAST, and SOURCE. The SINGLE type of fragment executes only
on a single node. The HASH type executes on a fixed number of nodes where the data is
distributed among the nodes, based on a HASH code derived from one or more column
values. For example, the source_addr column would be hashed for the previous query
because it is in GROUP BY. To perform the GROUP BY function, rows with the same
source_addr value need to be on the same node to do the aggregation. The ROUND_
ROBIN type means that data is sent in a round robin to multiple nodes for operations
such as transformations. The BROADCAST type means that the input of the fragment is
the same across one or more nodes. This type is sometimes used with joins if a table is
small enough to send to all nodes to do the join, which can significantly improve join
performance.

https://dreampuf.github.io/GraphvizOnline/
https://bit.ly/3yOMFzD
https://bit.ly/2VYnzjh

 309

Lastly, the SOURCE type specifies a fragment that reads from a source data store. In each
fragment in the plan, the input data is determined by the RemoteSource[FragmentNumber]
value, where FragmentNumber is the source fragment. To see the distribution plan for the
previous query example, visit https://bit.ly/3g58Lqw.

Now that we have a basic understanding of how to read execution plans, let's look at some
of the optimizations we can make to our queries, starting with optimizing joins.

Optimizing joins
The order in which tables are expressed in a join operation can significantly impact your
query performance.

Important Note
When joining tables, order the largest tables on the left to the smallest tables on
the right.

You may ask why the ordering of tables matters. Athena does not have access to statistics
yet to reorder joins optimally as other database systems do. This may change in the future,
but it is up to the user to perform this ordering for now.

For those interested in the technical details of why ordering matters, we need to
understand how Athena performs joins. In summary, both tables get read and shuffled to
a join operator to perform the join. However, there is an extra operation for the table on
the right side. If the right-side table is smaller, the extra operation will be cheaper than
if the operation occurred on the larger table. If we look at the explain plan for a query
that performs a join, EXPLAIN (Type DISTRIBUTED) SELECT larger_table.
table_data FROM larger_table LEFT OUTER JOIN smaller_table on
larger_table.table_key = smaller_table.table_key, we see the following
subsection of the distributed plan (the full explain plan can be found at https://bit.
ly/37MH0hG):

Fragment 1 [HASH]

 Output layout: [table_data]

 Output partitioning: SINGLE []

 Stage Execution Strategy: UNGROUPED_EXECUTION

 - LeftJoin[("table_key" = "table_key_0")][$hashvalue,
$hashvalue_9] => [[table_data]]

 Distribution: PARTITIONED

 - RemoteSource[2] => larger_table

https://bit.ly/3g58Lqw
https://bit.ly/37MH0hG
https://bit.ly/37MH0hG

310 Operational Excellence – Monitoring, Optimization, and Troubleshooting

 - LocalExchange[HASH]

 - RemoteSource[3] => smaller_table

The LocalExchange operator reshuffles the data within the worker. If the join order
was reversed, the reshuffle would occur on the larger table, which would require more
work and would cause the query to run longer.

Now let's look at optimizing the ORDER BY operator.

Optimizing ORDER BY
You will often need to order your results to get the top N number of results to generate
reports or look at a subset of data when exploring a dataset. However, doing an ORDER
BY operation on a large dataset can be a costly operation.

Important Note
When performing ORDER BY operations, using LIMIT can dramatically
reduce query time if only the top N results are needed.

We need to understand why performing a global ordering requires a single worker to
get the entire result set and perform a global sort, even if the input is sorted from many
workers. Performing a global sort is very memory- and CPU-intensive. By limiting the
number of results in the output, workers pushing rows to the global sort of an operator
can limit the number of rows to it. The global sort can be done on a much smaller set of
data. Let's look at the execution plan when LIMIT is specified for the query EXPLAIN
SELECT total_amount FROM nyc_taxi where payment_type = 1 ORDER
BY trip_distance LIMIT 100 (the full explain plan can be found at https://
bit.ly/2VSMvc4):

Query Plan

- Output[total_amount] => [[total_amount]]

 - Project[] => [[total_amount]]

 - TopN[100 by (trip_distance DESC_NULLS_LAST)]

 - LocalExchange[SINGLE]

 - RemoteExchange[GATHER]

 - TopNPartial[100 by (trip_distance DESC)]

 - ScanFilterProject[table = nyc_taxi]

https://bit.ly/2VSMvc4
https://bit.ly/2VSMvc4

 311

Without the LIMIT operator, the TopNPartial operator would not be in the plan.
All results would go to the TopN operator. Performing the local sort before performing
the RemoteExchange operation limits the amount of data shuffled, saving time and
bandwidth.

Let's now look at the next best practice.

Selecting only the columns that are needed
This recommendation should be self-evident, but I have seen many customers not do this.

Important Note
Only select the columns in your query that are required as the output of your
query.

There are many reasons why this can save both time and cost. For columnar data types,
less data is read, which reduces cost. Another reason is that there is less data that needs
to be shuffled between workers and outputted.

Let's now look at our last best practice.

Parallelizing the writing of query results
When Athena executes a SELECT query, the query's output is written by a single worker.
If there is a huge result set, the amount of time to write the results from the single worker
can be significant.

Important Note
For queries that produce a large number of results, use CTAS, INSERT
INTO, or UNLOAD to parallelize the writing of the output.

Troubleshooting failing queries
When Athena works, it is excellent. It queries data in S3 without having to worry about
servers or installing and maintaining software. But when Athena fails to execute a query,
it can be tricky to know how and where to start looking. Issues can include how you wrote
your query, problems with your metadata, or your data. In this section, we will go through
some common failures and how to approach them. However, this list is not exhaustive.
Athena's documentation publishes many error messages that customers see and how to
deal with them, so bookmark it and refer to it when needed.

312 Operational Excellence – Monitoring, Optimization, and Troubleshooting

When your query starts failing, here is a list of actions that you can take:

• If your queries were working previously but are failing now, determine what has
changed. Source control for queries that applications submit can help keep track
of code and queries that have changed. If the queries have not changed, then most
of the time, the issue is due to the loading of new data that it cannot process or
metadata that was changed. This question is usually the first one that AWS Support
would ask.

• Retry your query after a few minutes. Some failures with Athena are transient,
such as when S3 throttles Athena because the load was too high on a particular
S3 partition.

• Go to Athena's troubleshooting documentation, which contains a list of error
messages and solutions (located at https://amzn.to/3kjBuJt).

• If all else fails, and you have access to AWS Support, then enter a support ticket.
When creating a support ticket, the query ID and AWS region should be provided
to help with the investigation. Providing a small sample of data is super helpful to
AWS Support and the Athena development team to reproduce the issue. Just ensure
that it does not contain any sensitive data.

Let's look at some common issues that customers face with Athena.

My query is running slow!
This is the most common issue that customers have when using Athena. Following
the recommendations in the optimization section generally solves this issue. Using
partitioning, converting to Apache Parquet or Apache ORC, and ensuring queries are
optimally written will solve most of the reasons why queries may be running slow. If these
do not, the other reason may be that too many concurrent queries are being run, and
queries are being queued by the Athena service. You can check this by running your query
and running a CLI command to get the amount of time the query spent in the queue. The
following shows an example of the CLI command and its results:

aws athena get-query-execution --query-execution-id <EXECUTION
ID>

{

 "QueryExecution": {

 "QueryExecutionId": "edea5091-6061-44bb-89ce-
96090098c1b1",

 "Query": "select * from customers limit 10",

 "StatementType": "DML",

https://amzn.to/3kjBuJt

 313

 ... (Section omitted) ...

 "Statistics": {

 "EngineExecutionTimeInMillis": 511,

 "DataScannedInBytes": 35223,

 "TotalExecutionTimeInMillis": 765,

 "QueryQueueTimeInMillis": 155,

 "QueryPlanningTimeInMillis": 89,

 "ServiceProcessingTimeInMillis": 99

 },

 "WorkGroup": "packt-chapter11"

 }

}

Under the statistics section, you will see the QueryQueueTimeInMillis statistic.
This value shows you the amount of time the query spent in Athena's queue, waiting for
resources to execute on. If this value is consistently high, then your query rate is too high.
Recommendations on how to monitor and the steps to correct this are in Monitoring
query queue time in this chapter.

My query is failing due to the scale of data
This is the next most common issue customers face. The amount of data that Athena
can scan is only limited to the maximum amount of time the query can run for, which
by default is 30 minutes. When Athena performs simple table scans, it can process
petabytes of data. However, if you see error messages such as INTERNAL_ERROR_
QUERY_ENGINE, EXCEEDED_MEMORY_LIMIT: Query exceeded local
memory limit, Query exhausted resources at this scale factor,
and encountered too many errors talking to a worker node. The
node may have crashed or be under too much load, then it's highly likely
that your query contains complex operations, such as joins, aggregations, or windowing
functions. These operations are performed by shuffling data around to nodes based on the
values of the rows and stored in memory until the operation is completed. If a single node
in the execution engine's cluster exhausts its resources, the query will fail.

314 Operational Excellence – Monitoring, Optimization, and Troubleshooting

There are a few strategies to overcome this issue. The first is to reduce the amount of data
processed within the query by filtering data as soon as you read a table before complex
operations. For example, take the following query:

SELECT upper(col1), sum(col1 + col2) FROM

 (SELECT

 table1.key, table1.col1, table2.col2

 FROM table1

 LEFT OUTER JOIN table2

 ON table1.key = table2.key) innerQuery

WHERE col2 > 10

This can be rewritten as follows:

SELECT upper(col1), sum(col1 + col2) FROM

 (SELECT

 table1.key, table1.col1, table2.col2

 FROM table1

 LEFT OUTER JOIN

 (select * from table2 WHERE col2 > 10)

 ON table1.key = table2.key) innerQuery

Filtering data before performing a complex operation can really improve performance
and reduce memory requirements. Selecting only the columns that are of interest can
help as well. Lastly, splitting up the query into smaller queries that scan a subset of
partitions may help.

The other strategy is to find out whether your data has any data skews. Data skews exist
when your data is not evenly distributed across a cluster when a complex operation is
performed. For example, suppose there was a dataset that tracked all the different types
of chairs. You performed a join on the number of legs a chair has to a dimension table,
that is, SELECT * FROM chairs JOIN dim ON chairs.legcount = dim.
legcount. Since most chairs have four legs, there will be significantly more data going
to one node to perform the join, exhausting all the available memory. The only way to
deal with this is to distribute the joins data across several nodes by joining on more than
the legcount column or to reduce the number of rows by aggregating the data before
the join occurs.

Now that we have gone through some troubleshooting techniques, let's summarize what
we have learned in this chapter.

 315

Summary
In this chapter, we went through best practices to get the most out of Athena while making
sure it operates smoothly. We went through how we can create alarms to keep track of
query queue time and costs, and take action to prevent Athena's unexpectedly high usage
from leaving us with unexpected bills at the end of the month. We then went through how
to optimize our usage of Athena by looking at best practices on how to store data and the
queries we run. To do that, we explored how to look at the explain plans and how to read
them to identify possible bottlenecks or issues with the written queries. Lastly, we looked
at what to do when a query fails and the common problems users usually encounter.

The next chapter will dive into query federation, which allows you to query almost any
data source with Athena.

Further reading
• Amazon Athena CloudWatch Metrics – https://docs.aws.amazon.com/

athena/latest/ug/query-metrics-viewing.html

• Top 10 Performance Tuning Tips for Amazon Athena – https://aws.amazon.
com/blogs/big-data/top-10-performance-tuning-tips-for-
amazon-athena/

• Athena Partition Projection – https://docs.aws.amazon.com/athena/
latest/ug/partition-projection.html

• Athena EXPLAIN documentation – https://docs.aws.amazon.com/
athena/latest/ug/athena-explain-statement.html

• PrestoDB 0.217 EXPLAIN documentation – https://prestodb.io/
docs/0.217/sql/explain.html

• Amazon Athena Troubleshooting – https://docs.aws.amazon.com/
athena/latest/ug/troubleshooting-athena.html

https://docs.aws.amazon.com/athena/latest/ug/query-metrics-viewing.html

https://docs.aws.amazon.com/athena/latest/ug/query-metrics-viewing.html

https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://docs.aws.amazon.com/athena/latest/ug/partition-projection.html

https://docs.aws.amazon.com/athena/latest/ug/partition-projection.html

https://docs.aws.amazon.com/athena/latest/ug/athena-explain-statement.html

https://docs.aws.amazon.com/athena/latest/ug/athena-explain-statement.html

https://prestodb.io/docs/0.217/sql/explain.html

https://prestodb.io/docs/0.217/sql/explain.html

https://docs.aws.amazon.com/athena/latest/ug/troubleshooting-athena.html
https://docs.aws.amazon.com/athena/latest/ug/troubleshooting-athena.html

Section 4:
Advanced Topics

In this section, we will delve into advanced topics, including how to extend Athena with
your own custom data sources and functions.

This section consists of the following chapters:

• Chapter 12, Athena Query Federation

• Chapter 13, Athena UDFs and ML

• Chapter 14, Lake Formation – Advanced Topics

12
Athena Query

Federation
Welcome to Chapter 12, Athena Query Federation, and the beginning of Section 4,
Advanced Topics. In this part, we will cover topics that go deeper into highly customizable,
experimental, or emerging areas of development for Amazon Athena. Don't be
intimidated by the "advanced" designation as these topics are not necessarily more
difficult to understand or use than those we covered earlier. This chapter is all about
getting the most out of Amazon Athena by using Query Federation to expand beyond
queries over data in S3. We will learn how Query Federation allows you to combine data
from multiple sources, such as DynamoDB and Elasticsearch, to provide a single source
of truth for your queries.

We'll begin by peeling back the curtain to explain Athena Query Federation's architecture,
including how Athena uses AWS Lambda to run its customizable Connectors. Since the
entire Athena Federation SDK and its 14 initially released Connectors are all open source,
we can quickly run queries across several sources all from one tool. In addition, these
same open source Connectors offer a great set of examples, upon which we can build
our custom Connectors for proprietary datastores, formats, or simply integrate them with
sources that aren't officially supported yet. Before the end of this chapter, you'll deploy
and query one of Athena's off-the-shelf Connectors, and we'll also build our very own
custom connector from scratch using Athena's Federation SDK.

320 Athena Query Federation

In this chapter, we will cover the following topics:

• What is Query Federation?

• How Athena Connectors work

• Using pre-built Connectors

• Building a custom connector

Technical requirements
Wherever possible, we will provide samples or instructions to guide you through the
setup. However, to complete the activities in this chapter, you will need to ensure you
have the following prerequisites available. Our command-line examples will be executed
using Ubuntu, but most Linux flavors should work without modification, including
Ubuntu on Windows Subsystem for Linux.

You will need internet access to GitHub, S3, and the AWS console.

You will also require a computer with the following installed:

• Chrome, Safari, or Microsoft Edge

• The AWS CLI

This chapter also requires that you have an AWS account and an accompanying IAM
user (or role) with sufficient privileges to complete this chapter's activities. Throughout
this book, we will provide detailed IAM policies that attempt to honor the age-old best
practice of "least privilege." For simplicity, you can always run through these exercises
with a user that has full access. Still, we recommend using scoped-down IAM policies
to avoid making costly mistakes and learning more about using IAM to secure your
applications and data. You can find the suggested IAM policy for this chapter in this
book's accompanying GitHub repository, listed as chapter_12/iam_policy_
chapter_12.json, here: https://bit.ly/3xCi0ow. The primary additions from
the IAM policy that have been recommended for past chapters include the following:

• Adding CloudFormation access for using Serverless Application Repository

• Adding Lambda access for deploying and executing Athena Connectors.

https://bit.ly/3xCi0ow

What is Query Federation? 321

What is Query Federation?
Simply put, Query Federation refers to the concept that a query engine such as Athena
may enlist the help of multiple datastores, working together, to execute your query.
These datastores are usually capable of more than file-level CRUD operations. Most
will support row-level scan, filter, and project operations, with some handling full SQL.
We've mentioned this concept earlier in this book, typically concerning ETL versus
querying in place. Let's take a closer look at the practical difference between a federated
query and what we'll call a classic query.

The following diagram shows an example of a tried and true S3 data lake. There are
multiple datastores, namely DynamoDB, RDS Aurora, and a generic database, all feeding
into S3. Then, Athena, or another query engine, with the aid of Glue Data Catalog, can
access all our data. This is a classic query. You submitted the query to Athena, and Athena
directly answered your query by reading the table(s) in the data lake. As you've seen
throughout this book, S3-backed data lakes offer countless advantages over alternate
models. One of those advantages encapsulates the difference between a federated query
and the classic query we just described:

Figure 12.1 – Data lake model

322 Athena Query Federation

By exporting, copying, or replicating your data into S3, you've decoupled your operational
store from your analytics queries. Put another way, if you run a resource-intensive
query against your data lake, there is no chance you'll overwhelm your website's MySQL
database, which would result in web page timeouts for customers. By decoupling these
systems, you've traded consistency for availability. Physics will ensure that the data in your
S3 data lake always creates lag in the authoritative system that created the data. In the vast
majority of cases, this lag is not a problem, and you should jump at the opportunity to
reduce non-critical workloads running on operational stores.

Like many engineers that have come before you, you may be asking yourself whetherthere
is a better way. For example, can I avoid the delay or the work of replicating all that data
into S3? Query Federation is one way you can avoid copying data to S3 while getting the
most up-to-date view possible. However, the second rule of optimization applies here as
federating queries across datastores doesn't come without downsides.

The Rules of Optimization
Many a human has fallen foul of the rules of optimization. Optimization is
tricky, and our brains are so good at finding patterns that they see patterns that
aren't real or are so uncommon that they aren't worth handling. Thus, the first
rule of optimization is "don't optimize." The intention is to help avoid adding
complexity when a more straightforward approach might be just as good or
better. The assumption is that you don't usually know what is worth optimizing
until you have a complete picture of the system and its usage patterns. Wait!
If we never optimize anything, won't everything be slow?! Yes, and you might
even need to redo all that work you did without considering performance.
That's why there is a second rule of optimization that pokes fun at the first. The
second rule goes as follows: "For experts only, optimize."

The following diagram demonstrates how Athena Query Federation can enable Athena to
directly query your operational data stores and avoid the need to copy data to S3. We've
deployed three Athena Query Federation Connectors in this example, one for each source
we want to query:

What is Query Federation? 323

Figure 12.2 – Query Federation model

In the next section, we'll learn how these Connectors work. But for now, you only need
to know that they act as translators, turning Athena's representation of rows, columns,
and queries into that of the target datastore. So, in this example, when you submit your
query to Athena, S3 and Glue Data Catalog do not act as an integration point between
Athena at the various systems that house the data you are trying to query. Instead, Athena
enlists the help of the underlying datastores to execute your query. Athena's engine begins
by analyzing the query and identifies the tables and columns it must read. This step is
identical to using a query against data residing in an S3-backed data lake. Then, as Athena
attempts to resolve the storage location of each table, it classifies them as being natively
supported or residing in a federated source. Finally, for each federated source, Athena
determines which of its available Connectors can reach the requested table(s). Together,
these pieces of information allow Athena to create a physical plan for executing the query.

324 Athena Query Federation

The resulting physical plan is a blueprint for how Athena will build the results of your
query. Much like the construction of a house, some parts of the work will be done by
Athena itself, but other details will be sub-contracted to specialists. For example, the
contractor that frames your home may not be as proficient at installing a bathroom fixture
as a plumber. Athena Query Federation takes the same approach with data stores. Where
possible, Athena prefers to delegate portions of the query to the underlying datastore. This
is true for all federated sources but is especially prevalent in Athena's JDBC connector.
For example, Athena pushes down full SQL fragments to databases such as RDS Aurora
so that your query can benefit from any indexes, query caches, or other dark magic that
allows Aurora to scale.

Now that we have a better understanding of Query Federation and its differences from
classic Data Lake queries, let's look at their unique features.

Athena Query Federation features
Since its announcement in 2018, the Athena team has released open source
Connectors for more than 14 databases, storage formats, and live APIs, with dozens more
community-built Connectors available in the AWS Serverless Application Repository.
At the heart of Athena, Query Federation is an SDK that defines a set of interfaces, as
well as an accompanying wire protocol you can implement to enable Athena to delegate
portions of its query execution plan to code that you write and deploy. In essence, you
can customize Athena's core execution engine with your functionality while still taking
advantage of Athena's ease of use and fully managed nature.

Some of the notable features of Athena Query Federation include the following:

• Lambda-based deployments: Athena Query Federation allows you to deploy your
Connectors and UDFs as AWS Lambda functions, preserving Athena's serverless
experience. This ensures your Connectors are easy to manage and scale and can
securely access datastores in your VPC, without the need to grant Athena access
to your network.

• Apache Arrow: Athena has adopted Apache Arrow as a standard format for the
data interchange format. Apache Arrow is a widely adopted open source format
capable of zero-copy transfers with support from Spark, Python, and AWS
Lake Formation.

• Federated metadata: It's not always practical or possible to store your table
metadata in AWS Glue Data Catalog. As such, Athena Query Federation allows
you to choose between AWS Glue Data Catalog and implementing a metastore
interface. Athena will use that interface during query planning to look up table
and column details.

What is Query Federation? 325

• Federated UDFs: Athena can delegate calls for batchable scalar UDFs to you,
allowing you to write custom UDFs.

• AWS Secrets Manager integration: If your Connector needs a username, password,
or other sensitive information, you can use the SDK's built-in tooling to resolve
secrets. This is especially helpful when you're federating to non-cloud-enabled
datastores.

• Federated identity: When Athena has federated a query to your connector, you
may want to perform authorization on the identity of the entity that executed the
original Athena query.

• Parallelized and pipelined reads: Athena will parallelize reading your tables based
on the partitioning information that's returned by your Connector. This allows
you to tell Athena how it should divide reads for optimal performance.

• Predicate pushdown: Where relevant, Athena will supply your Connector with
the associative portion of the query predicate. This enables your Connector to
filter results or translate the predicate into the source datastore for maximum
performance. It also has the nice side effect of lowering the cost of your Athena
query by dropping data before it reaches Athena.

• Column projection: Athena supplies your Connector with the columns that need
to be projected so that you can reduce the amount of data that's scanned. This is
especially useful when you're federating to columnar stores such as Redshift.

• Congestion Control: Some datastores may not be as scalable as Athena or run
operationally sensitive workloads. Athena automatically detects signs of congestion
and supports explicit throttling exceptions from your Connectors. When congestion
is suspected, Athena employs an algorithm similar to TCP's flow control to
organically "share the road" with other workloads. This makes it easier to scale your
usage of Athena while simultaneously protecting sensitive data stores.

With our newfound understanding of federation queries, we can take a deeper look at
Athena's implementation of this new query pattern. In the next section, we will unpack
the architecture of an Athena connector.

326 Athena Query Federation

How Athena Connectors work
Unsurprisingly, Athena Connectors follow a similar structure to both Presto and Trinio
Connectors, with one notable difference. Athena's Federation SDK is designed to decouple
your Connector from Athena's core engine, whereas both Presto and Trinio require
Connectors to run within the engine. If you keep this key difference in mind, much
of what we are about to describe applies to Athena, Presto, and Trinio. At the heart of
each Connector is the Athena Federation SDK, which provides an abstraction over the
boilerplate code required to enable Athena to orchestrate your federated query. Every
Athena Connector is required to implement the following six functions defined in the
SDK (https://bit.ly/3vXmm9j):

• doListSchemaNames(…): This function provides Athena with a list of schemas,
also known as databases, that the Connector believes are available in the federated
source.

• doListTables(…): This function provides Athena with a list of tables in
a given schema (that is, a database) that the Connector believes are available in the
federated source.

• doGetTable(…): This function provides Athena with the columns, partition,
and storage details of a requested table in the federated source.

• doGetTableLayout(…): This function provides Athena with details about
how a given table is physically stored as a means to quickly prune portions of
the table's physical storage from the query plan. If your source doesn't support
such partitioning, you can use Athena's default implementation and mostly skip
implementing this function.

• doGetSplits(…): This function influences the level of parallelism that Athena
uses to read the data for your federated query. Each split represents a chunk of
rows that Athena must read from your Connector to complete the query.

• doReadRecords(…): Athena uses this function to read actual rows of data
(that is, splits) from your federated source.

Each of these function names begins with the word do. This is a common programming
convention that hints at the fact that some higher-level abstraction uses these functions
to delegate doing some specific thing. The first five functions all supply Athena's query
planner with metadata, with the sixth function, doReadRecords(…), being the
only one that interacts with the raw data associated with your tables. Later, we'll write
a connector from scratch and implement many of these functions to give you an even
deeper understanding of what they do.

How Athena Connectors work 327

In true Amazon fashion, the Athena team is always attempting to make life easier
for customers. Several of these functions have been further simplified for the most
common use cases. Customers can choose to implement them as is for complete
control over their connector, or they can opt for default implementations of
doGetTableLayout(…) and doReadRecords(…), leaving them to implement
a simplified readRecordsWithConstraint(…) function. But we're getting deeper
into the code than we need to at the moment. So, for now, the key takeaway is that
the SDK offers you a balance of control and customization while also seeking to make
common things easy.

The following diagram shows how Athena calls these functions.
doListSchemaNames(…) and doListTables(…) are only used when
you run a show tables or show databases query, so we will omit them for now.
Athena calls the getTable(…) API on your Connector, which is handled by the
MetadataHandler class in Athena's Federation SDK for each table in your query:

Figure 12.3 – Athena Federation call flow (ordered top to bottom)

328 Athena Query Federation

MetadataHandler's getTable(…) function handles serialization and error checking
before calling the doGetTable(…) function that your connector implements. Once
Athena has retrieved the schema information for your table using the getTable(…)
API, it uses the getTableLayout(…) API to allow your Connector to participate in
physical query planning. This is a fancy way of saying your Connector can look at the
table's storage characteristics, such as partitioning, and choose the access pattern that best
matches the required columns and query predicates that Athena has supplied as part of
the API call. A typical example of this would be a table that is partitioned by a column that
also appears in the where clause. Your Connector can only return partitions that satisfy
the where clause, potentially pruning large amounts of data without ever having to read
those physical partitions.

Next, Athena calls the getSplits(…) API for batches of partitions returned by the
call to getTableLayout(…). Here, we encounter one of the most confusing aspects
of Athena Query Federation. Athena doesn't understand the partition or split objects
that your Connector returns. So, why would Athena call our Connector for these values
if it doesn't know what they represent? The answer is simple: Athena is acting as the
orchestrator of the federated query. While Athena may not understand or care about the
partition or split objects your Connector returns, it knows your Connector cares about
them in later steps, such as the call to readRecords(…). In this way, Athena provides
you with the plumbing and structure to build a Connector so that you don't have to create
a full query planner or distributed computing framework.

The desire to simplify the process of building and deploying Connectors is why Athena
chose AWS Lambda as the first compute primitive for Athena Query Federation. As
we mentioned earlier, AWS Lambda allows us to preserve Athena's serverless experience,
but there are other, less obvious reasons why AWS Lambda compliments the concept
of federated queries. For example, AWS Lambda strongly isolates functions from their
callers. This allows Athena to federate to your datastores without the need for you to
open your VPC network or datastore directly to Athena. For those of you who are
network-savvy, this also allows everyone to ignore the potentially frustrating task of
routing across overlapping IP address ranges.

At a recent re:Invent talk, the Athena team indicated that AWS Lambda would be the
first but likely not the last compute option for Athena Federation. They were working to
vertically integrate high-performance UDFs and Connectors directly into Athena's engine,
without the extra hope of remote calls to Lambda. Still, the choice to use AWS Lambda to
process large amounts of data often raises questions about performance and cost. In the
next section, we will tackle this topic directly.

How Athena Connectors work 329

Using Lambda for big data
One of the most frequently asked questions the team received after launching Athena
Query Federation pertained to the use of Lambda for processing large amounts of data.
Customers wanted to understand the performance, scale, and cost implications. The
Athena Federation team spent a lot of time designing the APIs, performing serialization,
and performing stress tests to ensure that the answers to these questions would be
acceptable. In short, Lambda ends up being an excellent option for offloading the compute
associated with Athena Connectors in almost every case.

Firstly, Lambda can scale to many thousands of concurrent invocations, ensuring that
Lambda concurrency never becomes a bottleneck for running concurrent Athena queries.
Second, with all that concurrency, it's a good thing that additional costs associated with
Lambda costs are typically less than 5% of the total of a federated Athena query. Lastly,
Athena's engine deeply pipelines most operations, such as table scans and aggregations,
to reduce latency. Any remaining overhead associated with an extra data transfer hop
from Lambda is overcome through sheer parallelism in the form of concurrent
Lambda invocations.

So, even though it may seem like an unlikely choice to use Lambda for processing
large amounts of data, Lambda offers a powerful compute primitive that, when used
appropriately, can process 100 Gbps of data without breaking a sweat. There are, however,
a few cases where the use of Lambda makes things a bit tricky. For example, suppose the
data source you are federating to does not support parallel scans. In that case, the table
scan portion of your federated query will be limited to that of a single Lambda invocation.
At the time of writing, a Lambda invocation is limited to a max runtime of 15 minutes.
Customers most often encounter this limit when federating to an RDBMS such as
MySQL. The other limit pertains to how results are transmitted from Lambda to Athena.
A Lambda invocation is limited to a 6 MB response. As we'll see later in this chapter,
the Athena Federation SDK hides this limit by spilling data above this limit to S3 in
chunks that allow Athena to pipeline reads. As we mentioned previously, the SDK mostly
hides this inconvenient truth, so you don't need to do any extra work. It does this by
automating the creation and transmission of the spilled data, including using a per-query
encryption key that protects the spilled data that is automatically shredded after the query
is completed. Your only responsibility is setting up an S3 life cycle policy to periodically
delete old files from the spill's location.

Next, we'll cover an often overlooked aspect of Query Federation. The sources you'll want
to query will often sit in different networks or VPCs. Thanks to Lambda, Athena allows
you and your network engineers to completely sidestep the routing, DNS, and security
headaches of presenting a flat network to your query engine.

330 Athena Query Federation

Federating queries across VPCs
The intricacies of network design, routing, and connectivity have filled many books twice
the size of this one. Luckily, you won't need to solve these kinds of problems to configure
or use Athena Query Federation. Still, it is worth understanding this class of issues and
how Athena solves them for you. Having this basic knowledge will help you when you're
evaluating alternatives to Athena. It may also allow you to simplify your network design
if it was previously dictated by limitations in the analytics suite you were using.

Suppose our company had three separate VPCs or networks, similar to those shown
in the following diagram. VPC-A was our first VPC. We were a young company and
just learning about network design, so we ended up using an entire Class A network
(10.0.0.0/8) for our VPC. The team figured that this was a good idea to plan for scale
upfront, and a Class A network can fit more than 16 million hosts in our VPC, so we'd
never outgrow it. Later, we acquired a competitor and inherited VPC-B. The designers
of VPC-B had a bit more experience and didn't use an entire Class A network. Instead,
they carved out a piece of the 10.0.0.0/8 private space for their VPC. This would
leave room for future growth or acquisitions without address overlaps. We'll describe why
overlaps can be painful shortly. Until recently, these two VPCs remained independent, but
now, there is a push to integrate the two companies, beginning with an analytics solution
that can unify siloed data for reporting.

It is at this point that the networking teams realized that the resources in VPC-A and
VPC-B have overlapping addresses. Unfortunately, that means we can't connect these two
networks because any IP address in VPC-B might also be a valid, in-use IP address in
VPC-A. Typically, your network engineers would have to deploy and configure a Network
Address Translation (NAT) capable firewall or edge device to act as a proxy between
the two networks. Sometimes, they may even need to introduce a third network, as we've
done in the following diagram, because VPC-A and VPC-B resources should remain
independent for operational and security reasons. Only the analytics system housed in
VPC-C should be able to access the data stores. They never need to access each other:

How Athena Connectors work 331

Figure 12.4 – Athena Federation network topology

These problems happen more often than companies would like to admit. Just ask the
designers of IPv6. As the successor to the IPv4 address schema used in the preceding
diagram, it can support 3.4×1038 addresses while IPv4 offers just 4.2×109. The IPv6
address space is so large that there isn't even an agreed specification or implementation
for IPv6 address translation in the Linux kernel.

Luckily for you, Athena doesn't require your federated sources to be on the same network.
Instead, each Athena Connector can be deployed directly into the network housing your
datastores via Lambda VPC attach capabilities. When an Athena query attempts to access
the RDS Aurora instance in VPC-A, Lambda will quickly attach to that VPC and allow
the Connector code to communicate with your RDS instance. From within the same
query, you can join against a table housed in a Redshift instance from VPC-B, and Athena
will invoke the appropriate Lambda function connected to VPC-B. The networks remain
isolated from each other, but your queries are free to span datastores and networks.

This feature is not likely to show up on a flashy presentation or marketing promotion
because its existence means you don't need to trouble yourself with these details. It is not
until you find yourself in a situation where this capability is missing that you realize
it was worth adding to your acceptance criteria. With our introduction to Athena Query
Federation completed, we can start our hands-on experience. First, we will deploy and use
a pre-built connector before building a connector from the ground up.

332 Athena Query Federation

Using pre-built Connectors
As part of our first hands-on experience with Athena Query Federation, we'll deploy
and query one of Athena's 14+ pre-built Connectors. The Athena team has published
these Connectors to the Athena Query Federation GitHub repository (https://bit.
ly/3vXmm9j) and the AWS Serverless Application Repository. The AWS Serverless
Application Repository offers a one-click experience for deploying Lambda-based
serverless applications. This section will show you how to use the AWS Serverless
Application Repository to search for and deploy an instance of the Athena CMDB
Connector.

The Athena CMDB Connector allows you to query various AWS resources using standard
Athena SQL. For example, you can SELECT all EC2 instances in a specific VPC or search
for all S3 objects greater than a particular size and residing in the most expensive storage
tier. At the time of writing, the Connector exposes the following AWS services and
resources as databases and tables, respectively:

• ec2: This database contains EC2-related resources, including the following:

 � ebs_volumes: Contains details of your EBS volumes

 � ec2_instances: Contains details of your EC2 instances

 � ec2_images: Contains details of your EC2 instance images

 � routing_tables: Contains details of your VPC routing tables

 � security_groups: Contains details of your security groups

 � subnets: Contains details of your VPC subnets

 � vpcs: Contains details of your VPCs

• emr: This database contains EMR-related resources, including the following:

 � emr_clusters: Contains details of your EMR clusters

• rds: This database contains RDS-related resources, including the following:

 � rds_instances: Contains details of your RDS instances

• s3: This database contains RDS-related resources, including the following:

 � buckets: Contains details of your S3 buckets

 � objects: Contains details of your S3 objects (excluding their contents)

https://bit.ly/3vXmm9j
https://bit.ly/3vXmm9j

Using pre-built Connectors 333

Navigate to Serverless Application Repository in the AWS console. Then, click on
Available Applications from the left navigation bar. Check the Show apps that create
custom IAM roles or resource policies box. Search for AthenaAwsCmdbConnector
and click on the result labeled as having been published by an AWS-verified author.
Alternatively, you can go directly to the CMDB Connector's detail page via this direct
link: https://amzn.to/3x909VH. Regardless of how you get there, you'll see a page
similar to the one shown in Figure 12.5 and Figure 12.6. At the top of the page, you'll see
a basic description of the Connector, including where you can find the source code for
it, as well as the "AWS verified author" badging, which guarantees that this Connector is
officially supported by the Athena team:

Figure 12.5 – Athena CMDB Connector summary

For your convenience, you can also click to expand the CloudFormation template and
IAM permissions that this Connector will run. The AWS IAM team has released several
useful utilities to help you get a handle on your IAM policies, including Access Analyzer.
Regardless, it's nice to have the policy that's used by the Connector available before you
deploy it. This is the same philosophy that has led us to provide a per-chapter IAM policy
in this book's accompanying GitHub repository.

https://amzn.to/3x909VH

334 Athena Query Federation

Further down, on the Connector deployment page, you'll see the README file for the
Connector with more details about its functionality and usage. On the right pane, as
shown in the following screenshot, you'll see a form that lets you fill in several settings
that will be used to deploy and configure an instance of your Connector. If you are
using the IAM policy provided for this chapter, you'll want to ensure that you choose
an application name that begins with packt-serverless-analytics-. This will
be used to create the CloudFormation stack that deploys your Connector's Lambda
function and IAM role. The other setting you'll need to pay close attention to is
AthenaCatalogName. Your IAM policy is configured to allow any catalog name that
begins with packt_serverless_analytics. This will not only be the name of your
Lambda function but also the catalog name that you'll use in your Athena query. Be sure
to avoid using any special characters other than underscores:

Figure 12.6 – Athena CMDB Connector deployment form

Using pre-built Connectors 335

Once you've filled in the other settings, be sure to check the I acknowledge that this
app creates custom IAM roles dialog box and click Deploy. Over the next 5 minutes,
the Connectors CloudFormation script will run, creating a Lambda execution role and
Lambda function. You can navigate to the CloudFormation console to view the status
of each step in the deployment. Once it completes, you can go to the Athena console to
run your first federated query!

Our first query will be a basic test of the Connector to ensure that it was deployed
correctly. Later, we'll run more interesting queries over our AWS resource inventory.
For now, let's see whether we can get our Connector to return a list of schemas it supports.
To do this, we'll be using a convenience syntax that Athena offers for federated queries.
In the following screenshot, we ran a show databases in 'lambda:packt_
serverless_analytics_cmdb' query.

There are three notable aspects to this query. First, it uses backticks around the catalog
name. This is one of the few places in Athena's syntax where backticks are used. Second,
we can prefix the catalog name with lambda:. This is a convenience syntax that tells
Athena that this catalog is not registered in Glue Data Catalog or Athena's catalog registry.
Instead, treat the rest of this catalog name as a Lambda function. In most cases, you'll
want to register the Lambda function as a catalog to make it easier for your customers
to discover federated sources. We will use this syntax for now because it lets us get
up and running with fewer steps. Lastly, we use the name of our Lambda function,
packt_serverless_analytics_cmdb. If you used a different name for your
Lambda function, be sure to use that in your query. If successful, the query will return
a list of schemas, or databases, including rds, s3, ec2, and emr:

Figure 12.7 – Querying your CMDB Connector

336 Athena Query Federation

Now that we know our Connector has been deployed successfully and that our IAM user
has been configured correctly to interact with the Connector, let's explore one of the more
interesting tables that's exposed by this Connector. Running the following SQL from the
Athena console will return a description of a virtual table that we can query to get the list
of S3 objects in a bucket:

DESCRIBE 'lambda:packt_serverless_analytics_cmdb'.s3.objects

Then, we can use the full capability of Athena's SQL engine to filter or join this data
against other sources. Notice again that we are using the lambda: syntax described
earlier. This query will return the table schema for the Objects table of the S3 database,
as shown in the following table. We'll use this schema to craft a query over the Athena
results location we've been using in S3 across the various chapters in this book. You can
certainly choose to query something else once you get a handle on the schema:

Table 12.1 – S3 objects table schema

For this next query, our goal will be to find out how many bytes of S3 storage we are
currently using for all the Athena query results we've generated while following the
exercises in this book. Accordingly, we will select the sum of the bytes column from the
s3 database and the objects table, as shown in the following query. This Connector
uses a bit of trickery to determine which S3 bucket you want to query. It does this by
looking for an equality condition between the bucket_name column and a string literal.
The Connector does this to avoid an extremely taxing series of S3 operations that list all
the objects in all the buckets you own.

Building a custom connector 337

Hence, omitting a where clause filter for a specific bucket results in the query failing.
Lastly, we will use a regular expression to filter down to keys that begin with results/.
If your Athena results location is different from this, be sure to update the expression so
that it matches the results location you have configured on your Athena workgroup. When
you are ready, go ahead and run the query:

SELECT sum(bytes)

FROM

 "lambda:packt_serverless_analytics_cmdb".s3.objects

WHERE

 bucket_name = '<YOUR_ATHENA_RESULTS_S3_BUCKET>'

 and regexp_like(key, 'results/.*')

LIMIT 100

You can follow the same steps to deploy any of Athena's pre-built Connectors for sources,
including Elasticsearch, DynamoDB, Neptune, and more. Now that we've deployed
our first Connector and run a few federated queries, we're ready to author a custom
Connector. The next section will walk us through integrating Athena with any data source
we can imagine, just by writing six Java functions!

Building a custom connector
In addition to the 14 Connectors published by the Athena service team, a growing
community of third-party and open source Connector authors is continually adding
Connectors to the ecosystem. In most cases, you'll be able to use a ready-made Connector
to query your source of interest. However, there may be cases where you'd like to modify
or extend one of the existing open source Connectors to better fit your needs. Or maybe
your company has a proprietary datastore or storage format that would benefit from a
serverless query engine. Whatever the reason, this section will walk you through the key
steps of authoring a new Connector and using it with Athena.

338 Athena Query Federation

Setting up your development environment
To write a new Connector or modify an existing one, we'll need the ability to build, test,
and package the code. So, our first task is to ensure we have a development environment
with the appropriate builder tools. These tools will include Apache Maven, the AWS CLI,
and the AWS SAM build tool. The Apache Foundation describes Maven as a "software
project management and comprehension tool." That's a fancy way of saying Maven helps
automate dependency management, build orchestration, and a host of related activities
that can be added or augmented via plugins. The AWS SAM build tool is how we'll
package our Connector so that it can be used with Lambda and Serverless Application
Repository. Lastly, the AWS CLI will help us publish our Connector to Serverless
Application Repository for deployment.

If you've already got an environment that meets these requirements, you're welcome to use
it. If not, don't worry – we'll guide you through the setup for Debian Linux-based systems
such as Ubuntu or Ubuntu on Windows Subsystem For Linux. Most of the commands will
work on other flavors of *nix with minor modifications. We'll assume you will be using
a basic text editor without any fancy builder tool integrations and that you will need
a guide to install these other dependencies. Let's get started by cloning this book's
accompanying GitHub repository by using the following command:

git clone https://github.com/PacktPublishing/Serverless-
Analytics-with-Amazon-Athena.git

Inside the chapter_12 directory, you'll find a prepare_dev_env.sh script that you
can run to install OpenJDK, Apache Maven, the AWS CLI, and the AWS SAM build tool.
Depending on your CPU and disk speeds, the script may take 5 minutes or more to set
up your environment. If the script is successful, it will print the installed version of each
required tool at the end. The output will look similar to the following, but don't worry if
your versions differ slightly:

aws-cli/1.19.96 Python/2.7.18 Linux/4.19.128-microsoft-standard

SAM CLI, version 1.24.1

Apache Maven 3.5.4

openjdk version "11.0.11" 2021-04-20

javac 11.0.11

Next, we'll start writing the code for our custom Connector!

Building a custom connector 339

A Note about Java Versions
While the Athena Federation SDK and its Connectors should work fine with
Java versions up to and including 11, issues have been reported with Apache
Arrow with JDK versions beyond 8. The open source project has resolved many
of these issues and provided configuration workarounds for the remaining
items. If you run into errors that appear to be related to your JDK version, try
executing the exercise with OpenJDK 8.

Writing your connector code
For this exercise, we've put together a training Connector with all the structural
boilerplate of an actual Connector taken care of for you. To guide you through the
authoring experience, we've included the working code for each require function in
the comments. This allows you to learn by doing while also putting the correct answer
at arm's length so that you won't get stuck or frustrated. To get started, navigate to the
athena-example folder in the chapter_12 directory of the GitHub repository
you cloned in the previous section. You'll want to have a terminal window open in this
directory, and we'll want to open the directory in our favorite text editor or IDE.

The athena-example Connector we'll be working with was initially provided by the
Athena team as part of the Athena Federation SDK to teach customers how to write
Connectors. We'll use a fork of that original Connector that reads data stored in S3 using
a custom metadata source and custom file format. To make this exercise more realistic,
the Connector is designed to read fictitious financial transaction data and even provide
column-level masking capabilities. The Connector itself is intentionally simple, so you
can focus on learning how to build a custom Connector instead of how to integrate with
a specific source. In the sections that follow, we'll fill in the missing metadata and record
reading code. We'll also run the included unit tests and use the Athena Federation SDK's
ConnectorValidator to simulate Athena calling our Connector during an actual query.
And of course, we'll end by using our new Connector in an Athena query.

340 Athena Query Federation

Editing ExampleMetadataHandler
When you open the athena-example folder, you'll find several configuration files,
a license file, and some sample data in a CSV file. You'll also see an src directory that
contains the code for your soon-to-be Connector. The first file we'll need to modify is the
ExampleMetadataHandler.java file in the src/main/java/com/amazonaws/
connectors/athena/example directory. This class is responsible for providing
Athena with metadata about the schemas (that is, databases), tables, columns, and the
general layout of your data source. Lastly, this class tells Athena how to break up reads
against your data source. This gives you control over the level of performance and
parallelism Athena achieves when reading your tables. Let's go function by function in
this class, explaining what your code needs to do to complete the exercise. For brevity,
we won't include all the code you need in this book. Function signatures, returns, and
other boilerplate will be omitted. This is an exercise that requires that you use this book's
GitHub repository to get the full effect. If you aren't coding along with us, you can open
the appropriate file in this book's GitHub repository in your browser using this link:
https://bit.ly/3iRrHv8.

Our first function is doListSchemaNames. Since this is the first function you will
be editing, we've included the entire function here. This function has an elementary
responsibility. Athena will call it any time you run a show databases in
'lambda:<function_name>' query to get the list of schemas (that is, databases)
from your Connector. Looking at the function example here and in the GitHub project,
you can see a working solution already included in the function, but it's commented
out. The first time you create a new Connector, we recommend reading the commented
solution and then uncommenting it to get a working Connector. You can repeat this
exercise and make changes once you understand how everything works:

public ListSchemasResponse doListSchemaNames(BlockAllocator
allocator,

 ListSchemasRequest
request)

 {

 Set<String> schemas = new HashSet<>();

 /**

 * TODO: Add schemas, example below

 schemas.add("schema1");

 */

 return new ListSchemasResponse(request.
getCatalogName(),

Building a custom connector 341

 schemas);

 }

Our next function, doListTables, is just as trivial. This is the final time that we'll show
the entire function body so that you get the hang of completing the exercise. Similar to
the previous function, Athena will call this function when your run a show tables
in 'lambda:<function_name>'.schema1 query to get the list of tables in the
requested schema. Again, your job, when completing this function, is to uncomment the
provided solution. In this case, we are returning the same three tables, regardless of which
schema was specified in the request object:

public ListTablesResponse doListTables(BlockAllocator
allocator,

 ListTablesRequest
request)

 {

 List<TableName> tables = new ArrayList<>();

 /**

 * TODO: Add tables for the requested schema, example
below

 tables.add(new TableName(request.getSchemaName(),
"table1"));

 tables.add(new TableName(request.getSchemaName(),
"table2"));

 tables.add(new TableName(request.getSchemaName(),
"table3"));

 */

 return new ListTablesResponse(request.getCatalogName(),

 tables,

 null);

 }

342 Athena Query Federation

We've finished two of the six functions that we need to write! But don't get too
excited – doListSchemaNames and doListTables were just a warmup. The
remaining four functions have some meat to them, and each implements a vital aspect
of executing our queries. The doGetTable function is on deck. When Athena is parsing
our query, it will call doGetTable to ensure the tables and columns that are referenced
in our query are valid and get the types of each column. In our example Connector,
we don't bother validating whether the requested table exists, but normally, this is a key
part of this function. For now, our example focuses on building and returning the schema
of the single table our Connector supports. The function begins with the following code
snippet, which specifies the names of the table's partition columns. You may be wondering
about the significance of declaring a partition column. From Athena's perspective, this
designation means little other than to indicate your data source can prune data, along
these dimensions with elevated efficiency. In our case, we have three partition columns
called year, month, and day:

 Set<String> partitionColNames = new HashSet<>();

 /**

 * TODO: Add partitions columns, example below.

 partitionColNames.add("year");

 partitionColNames.add("month");

 partitionColNames.add("day");

 */

In addition to the partition columns, we also need to return the complete list of columns
and their associated data types so that Athena knows what kind of data to expect. You may
recall from earlier in this chapter that Athena uses Apache Arrow as its data interchange
format. The Apache Arrow specification also provides a way of defining the schema
of your data. Accordingly, Athena expects the schema of your federated tables to be
defined as an Apache Arrow schema. The Athena Federation SDK provides a convenient
SchemaBuilder to make interacting with Apache Arrow's Schema object easier.
In the following code snippet, we are using SchemaBuilder to produce an Apache
Arrow schema object from our hardcoded schema. That hardcoded schema contains the
three partition columns that we declared earlier (month, year, and day). Here, we are
defining them as integers.

Building a custom connector 343

Next, we must add an account_id column defined as a string and a transaction
column of the Struct type with two child columns. Since the Athena Federation SDK
is built on Apache Arrow, we can use complex types such as Struct and List. The
transaction struct contains an id field of the Integer type and a Boolean field
named completed, indicating whether the system has finished processing this
particular transaction:

 SchemaBuilder tableSchemaBuilder = SchemaBuilder.
newBuilder();

 /**

 * TODO: Generate a schema for the requested table.

 tableSchemaBuilder.addIntField("year")

 .addIntField("month")

 .addIntField("day")

 .addStringField("account_id")

 .addStringField("encrypted_payload")

 .addStructField("transaction")

 .addChildField("transaction", "id",

 Types.MinorType.INT.getType())

 .addChildField("transaction", "completed",

 Types.MinorType.BIT.getType())

 */

We momentarily skipped the string-based encrypted_payload field because it's a bit
special. This field is intended to demonstrate the level of customization that is possible
with the Athena Federation SDK. In our sample data file, we've stored a piece of sensitive
information that only certain users should be able to decrypt. We'll use a UDF, covered
more deeply in Chapter 13, Athena UDFs and ML, to decrypt this secret field right in our
query. This may seem like a cumbersome way to handle row- or cell-level access control,
and it is. AWS Lake Formation offers better options for this. We're only doing this to
illustrate the level of customization you can achieve when writing a Connector. As with
the previous code snippets, uncomment the working solution before moving on to the
next function.

344 Athena Query Federation

Later in this chapter, we'll upload sample data that matches this schema to S3 for
our custom Connector to consume. To ensure the sample data works as expected,
you should refrain from modifying the example code unless you plan to make appropriate
changes throughout the example.

The getPartitions function is next, and while technically this function is considered
optional to allow for unpartitioned tables, we'll implement it so that you know how it
works. Since our example Connector doesn't connect to an actual data store, we will use
hardcoded values for our partitions. This can be accomplished in the sample code by using
a series of nested for loops. The outer loop generates year values from 2000 to 2018.
The middle loop generates month values ranging from 1 to 12. The final loop naively
generates day values from 1 to 31 without any regard for how many days are in the
month. But this isn't the exciting part of the function, which comes next:

public void getPartitions(/* arguments omitted */) throws
Exception {

 for (int year = 2000; year < 2018; year++) {

 for (int month = 1; month < 12; month++) {

 for (int day = 1; day < 31; day++) {

 final int yearVal = year;

 final int monthVal = month;

 final int dayVal = day;

Based on this getPartitions code, Athena queries that use this Connector would
always need to process 6,324 partitions. That would be inefficient and slow if the query
filtered on a specific partition using a WHERE clause such as "year = 2001 and
month = 1 and day = 1"! Luckily, Athena will include relevant predicate conjuncts
from your query when it calls your Connector. This allows us to use the built-in features
of the Athena Federation SDK to implement partition pruning and filter out irrelevant
partitions much earlier in the query's execution.

When the Athena Federation SDK calls our getPartitions function, it supplies us
with an instance of BlockWriter, which we can use to add partitions to the API's
response. BlockWriter is automatically configured with the query predicates that
were sent by Athena. Keep in mind that Athena won't send all the query predicates.
For example, if you use the result of a function in your WHERE clause, Athena won't
send that part of the predicate to you since your Connector may not support that
function. In general, Athena only sends associative conjuncts on literal values.

Building a custom connector 345

In the following snippet, we are calling the supplied BlockWriter's writeRows
function for each partition and providing a Lambda expression to set the values of the
partition columns:

 /**

 * TODO: Build partitions

 blockWriter.writeRows((Block block, int row) ->
{

 boolean matched = true;

 matched &= block.setValue("year", row,
yearVal);

 matched &= block.setValue("month", row,
monthVal);

 matched &= block.setValue("day", row,
dayVal);

 return matched ? 1 : 0;});

 */

 }

 }

 }

}

The Athena Federation SDK makes frequent use of this pattern wherever your code needs
to interact with blocks of Apache Arrow data. By accepting a lambda instead of giving
your function direct access to the Block objects, the Athena Federation SDK can handle
most nuances of Arrow memory management. This dramatically reduces the chances
that the author of a Connector introduces an unintended memory leak or race condition.
Experts can still get full access to the Apache Arrow objects, but the default experience is
much more curated.

Within the Lambda expression, we can use the setValue function of Block to enter the
values for the year, month, and day columns that uniquely identify our partition. After
each call to setValue, we record whether the column's value matched the partition
pruning predicate sent by Athena. Under the hood, the BlockWriter and Block
constructs are applying the query conjuncts to determine whether the values match the
query. However, this is just an optimization since Athena applies its partition pruning over
your result to capitalize on any predicates that it could not send to your Connector. This is
in addition to the actual data filtering that happens later in the query.

346 Athena Query Federation

Finally, we've reached our final metadata operation, doGetSplits. This function
complements getPartitions. Athena will call doGetSplits for each partition
supplied by getPartitions. Even if your Connector does not support partitioning,
the Athena Federation SDK needs to return at least one partition if Athena thinks
your query was fully partition pruned. The doGetSplits example starts with a bit of
boilerplate code that extracts key input parameters from the request object. The only
notable part is how we retrieve the details of which partitions Athena is requesting
splits from. Each call to doGetSplits receives a batch of partitions in the form of an
Apache Arrow block. To retrieve the values from the partitions block, we must use the
getFieldReader method for each column we need to read:

public GetSplitsResponse doGetSplits(BlockAllocator allocator,

 GetSplitsRequest request){

 String catalogName = request.getCatalogName();

 Set<Split> splits = new HashSet<>();

 Block partitions = request.getPartitions();

 FieldReader day = partitions.getFieldReader("day");

 FieldReader month = partitions.getFieldReader("month");

 FieldReader year = partitions.getFieldReader("year");

Now that we have a handle for the values in each partition column, we can loop over
all the rows in the partition block that Athena sent us. We can do that using a simple
for loop from zero to partitions.getRowCount(). The getRowCount function
conveniently returns the number of rows in the Apache Arrow block. Because Apache
Arrow is designed as an in-memory columnar data format, the FieldReaders we created
earlier implement random access to each column. Accordingly, the first thing we must do
inside our loop is set the row number on each of our partition column FieldReaders:

 for (int i = 0; i < partitions.getRowCount(); i++) {

 //Set the readers to the partition row we area on

 year.setPosition(i);

 month.setPosition(i);

 day.setPosition(i);

Building a custom connector 347

This next part may be a bit confusing. For each partition, we need to generate one or more
splits. What is a split, you ask? It's whatever you want or need it to be. There is only one
thing Athena understands about a split. A split represents a piece of your table that needs
to be read to complete the query. In this way, we can say that you split up the read into
one or more read operations. This is the most critical unit of parallelism for your query.
More splits means more opportunities to parallelize. Everything else about a split exists to
support your ability to execute the read operation it represents. As such, Athena will call
your Connector to read the data associated with a split, and it will supply the split object
itself as a parameter to that read operation. We'll cover the readWithConstraint
function and how it can use a split as input in the next section. For now, let's look at how
we can construct a split.

A split is primarily a map of string keys and string values that serve as a place for the
developer of a Connector to store arguments that the readWithConstraint function
will need. When we construct the split, we supply a SpillLocation value and an
EncryptionKey value using helper methods provided by the Athena Federation SDK.
When reading a split, if the Lambda function generates more than 6 MB of data, the
Athena Federation SDK must spill the data to S3 to avoid Lambda's response size limit.
This spill location and optional encryption key are provided to Athena, as well as the
eventual call to readWithConstraint via the split. Every split must have a unique
spill location to avoid duplicate data, throttling, and, in some cases, query failure. The
makeSpillLocation function ensures no two calls to the method return overlapping
spill locations. The makeEncryptionKey function supports locally generated
AES-GCM keys, as well as AWS KMS-generated AES-GCM keys. We recommend using at
least the local key generation as it's free and doesn't meaningfully impact performance.

Lastly, in our example Connector's doGetSplits function, we must generate one split
for each partition and store the year, month, and day partition field values on the split:

 /**

 * TODO: For each partition, create one or more splits.

 Split split = Split.
newBuilder(makeSpillLocation(request),

 makeEncryptionKey())

 .add("year", String.valueOf(year.readInteger()))

 .add("month", String.valueOf(month.
readInteger()))

 .add("day", String.valueOf(day.readInteger()))

 .build();

 splits.add(split);

348 Athena Query Federation

 */

 }

 return new GetSplitsResponse(catalogName, splits);

}

The function concludes by accumulating and returning all the splits we generated.
This example doesn't utilize the doGetSplit function's ability to support paginated
responses. If you plan to produce more than a few hundred splits per call or need to store
non-trivially sized parameters on the Split object, you should limit the size of your
response by returning a pagination token to Athena. You can find examples of how to do
this by looking at the athena-cloudwatch connector in this book's GitHub repository.

Now that we have covered all the metadata functions and five of the size total functions
in our Connector, let's move on to the ExampleRecordHandler class and finish the
Connector's implementation.

Editing ExampleMetadataHandler
In a few minutes, we'll be ready to package and deploy our new Connector. But
before that, we'll need to implement the final piece of code by modifying the
ExampleRecordHandler.java file in the src/main/java/com/amazonaws/
connectors/athena/example directory. This class is responsible for providing
Athena with row data from your data source. If you aren't coding along with us, you
can follow along with this book's GitHub repository in your browser by going to
https://bit.ly/3vISV9X.

Again, our function starts with a few lines of boilerplate code where we extract the
configuration from the request object. In the following code snippet, we've consolidated
some of the multi-line statements you'll find in the GitHub example. They are functionally
equivalent, but the shortened form is a bit easier to read in book form. These lines
are mostly uninteresting as we're extracting the information we stored on the split in
doGetSplits:

protected void readWithConstraint(/* arguments omitted */){

 Split split = recordsRequest.getSplit();

 int splitYear = split.getPropertyAsInt("year");

 int splitMonth = split.getPropertyAsInt("month");

 int splitDay = split.getPropertyAsInt("day");

https://bit.ly/3vISV9X

Building a custom connector 349

Next, we can see why we took the time to pass the partition column values of year,
month, and day to the readWithContraint method via the split. The example
Connector is intended to read financial transaction data from S3. The Connector uses the
year, month, and day to determine which S3 file to read! This is similar to how Athena,
Spark, Hive, and other analytics engines resolve which files to query in S3. Our Connector
uses the Java.lang.String.format function to substitute the year, month,
and day values into a hardcoded string representing the S3 key we need to read. In the
preceding line, we retrieved the S3 bucket that our data is stored in by reading the
data_bucket environment variable via Java's System.getenv(…) facility.

For this example Connector, we could have hardcoded dataBucket too, but this
approach lets us demonstrate how to use AWS Lambda's environment variables to
pass runtime configuration to your Connector. You can modify these settings at any
time from the AWS Lambda console or API without the need to recompile or redeploy
your Connector. Once we have the S3 bucket and object key, we must use the provided
openS3File helper function to obtain a handle we can use to read the data contained
in the same data file that we'll upload to S3 later. If the file doesn't exist, the helper returns
null, and our Connector exits without writing any rows:

 String dataBucket = dataBucket = System.getenv("data_
bucket");

 String dataKey = format("%s/%s/%s/sample_data.csv",

 splitYear,

 splitMonth,

 splitDay);

 BufferedReader s3Reader = openS3File(dataBucket, dataKey);

 if (s3Reader == null)

 return; //There is no data to read for this split.

With BufferedReader in hand, our Connector is finally ready to send row data to
Athena. Doing so requires that we translate the data from its storage format and type
system into Athena's data interchange format, Apache Arrow. In the getPartitions
method, we used BlockWriter to simplify writing our partition column values
into Apache Arrow's type and storage format. This code is only expected to write
a few thousand values of primitive types, such as integers. readWithConstraint is
anticipated to write many megabytes of data across hundreds of thousands of cells. Rather
than writing Apache Arrow data row by row, we can dramatically improve throughput by
adopting Apache Arrow's column-wise approach to data storage.

350 Athena Query Federation

The Athena Federation SDK's GeneratedRowWriter and RowWriterBuilder
functions provide simplified models for decomposing the steps for translating each
column in a row. GeneratedRowWriter also automatically applies query constraints
that are passed by Athena, saving us the effort of writing code to filter results. The SDK
then uses a primitive form of code generation to reduce the number of if statements
or branches in the critical execution paths. With fewer branches, a CPU's branch
prediction logic and Java's code caches can utilize the available resources better, leading
to faster queries.

Let's take a closer look at how we can use RowWriterBuilder. Be sure to consult this
book's GitHub repository for the complete set of column translations as we'll only be
covering two columns here. You'll find that the rest are nearly identical to these examples.
In the following code snippet, we can see how to create the Extractor method for the
year column. An Extractor is what the Athena Federation SDK calls the method
that is capable of translating a column value from the source data into Apache Arrow.
Extractors contain a single method that accepts an Apache Arrow value holder that
corresponds to the data type of the column they are capable of extracting from the source
data. Since the year column is defined as an Integer column, its Extractor is of
the IntExtractor type, and it expects NullableIntHolder for storing the value it
extracts from the source:

 builder.withExtractor("year", (IntExtractor) (Object
context, NullableIntHolder value) -> {

 value.isSet = 1;

 value.value = Integer.parseInt(((String[])
context)[0]);

 });

These holders are an essential concept in Apache Arrow. Apache Arrow seeks to eliminate,
or, at the very least, limit, memory copies and churn when going from one analytics
system to another. A value holder is typically a long-lived object with pre-allocated
memory that can be reused many times to avoid frequent, small memory allocations and
collections. You'd be surprised how big a difference this can make when you're reading
and writing millions of integers. Yes, the code can seem a bit terse, but the throughput
associated with this programming model can be seven times that of more naïve
approaches such as that used in the getPartitions example. And that example isn't
even the most naïve!

Building a custom connector 351

The other argument that every Extractor expects is context. The context is declared
to be an Object because the framework doesn't know what it is. In this particular case,
the context is a single line from the CSV sample data file we will store in S3. Later, in
the readWithContraint function, we'll see how the context gets populated. This is
ultimately why our Extractor can cast the context to an array of strings before parsing
the first value into an integer.

The account_id extractor builds on these concepts and adds a twist. Suppose
our organization has decided that account IDs are sensitive Personally Identifiable
Information (PII). To comply with regulatory mandates, our organization must mask the
account_id field whenever it is queried. We could rewrite our entire dataset or produce
a sanitized copy, but that can be expensive and difficult to manage. Instead, we can do
exactly as our example Connector does here and mask the field while translating it into
Apache Arrow:

 builder.withExtractor("account_id", (VarCharExtractor)
(Object context, NullableVarCharHolder value) -> {

 value.isSet = 1;

 String id = ((String[]) context)[3];

 value.value = (id.length() > 4) ?

 value.value = id.substring(id.length() - 4) : id; });

The account_id column uses a VarCharExtractor, which performs a substring
on the account_id value to ensure it never returns more than the last four characters
of the source data's value. In practice, hardcoded masking like this isn't practical. Most
customers will be better off leveraging AWS Lake Formation's masking capabilities.
However, if you have to apply masking to a non-Lake Formation source, this can be
a great option. It also illustrates that Connectors can apply intelligence to their
translations. Masking is just one of many possibilities.

The final column translation we'll review belongs to the transaction field. Unlike
the previous fields, which were primitive types, the transaction column was defined
as a struct. The Athena Federation SDK does not provide generalized optimizations for
translating complex types such as Struct or List. Instead, RowWriterBuilder
expects the Connector author to provide a FieldWriterFactory for such columns.
If your complex types are not deeply nested, the experience will closely resemble the
Extractor model we just used with the year and account_id columns. When
you start deeply nesting, efficient translation can feel like trying to codify Inception but
with data analytics instead of dreams.

352 Athena Query Federation

In the following final column translation snippet, our Connector is building a map
corresponding to the child fields of the transaction struct. It then uses the
BlockUtils helper from the Athena Federation SDK to write the map as an Apache
Arrow struct. This helper is an extremely convenient tool for dealing with Apache
Arrow data of all types. You'll see it used repeatedly in the unit tests. Unfortunately,
this convenience comes at a price. Nearly every method on the BlockUtils class is
an order of magnitude slower than using columnar models for interacting with Apache
Arrow resources. This is why you'll rarely see this utility used in Connector code, except
for getPartitions where the number of rows is almost always too low to affect
performance measurably:

builder.withFieldWriterFactory("transaction", (FieldVector
vector, Extractor extractor, ConstraintProjector constraint) ->

 (Object ctx, int rowNum) -> {

 Map<String, Object> eMap = new HashMap<>();

 eMap.put("id", Integer.parseInt(((String[])ctx)[4]));

 eMap.put("completed",Boolean.parseBoolean(((String[])
ctx)[5]));

 BlockUtils.setComplexValue(vector, rowNum,

 FieldResolver.DEFAULT,
eventMap);

 //predicate pushdown not yet supported on complex types

 return true;

});

We've nearly completed the readWithConstraint function. All we have left to do
is read the source data line by line and invoke RowWriter, which we just generated.
This is how all the extractors we wrote will receive their context objects. In the last
section of readwithConstraint, our Connector uses BufferedReader, which
it constructed earlier, to read the S3 object containing the sample data line
by line. Each line is then split using commas as separators before calling the provided
BlockSpiller to write rows to the Athena response. We didn't show it here, but
the example code calls the build method of RowWriterBuilder to produce the
rowWriter object, which processes each line in our while loop and adds rows
that meet the queries filtering criteria to the block. We then return one or zero to tell
BlockSpiller whether the row we translated was skipped because it didn't pass the
queries filter:

 while ((line = s3Reader.readLine()) != null) {

 String[] lineParts = line.split(",");

Building a custom connector 353

 spiller.writeRows((Block block, int rowNum) ->

 rowWriter.writeRow(block, rowNum, lineParts) ? 1 :
0);

 }

}

In a genuine Connector, the functions we completed would most likely have read their
metadata from a durable store instead of having hardcoded values or relying on naming
conventions in S3. But remember, our goal was to familiarize ourselves with writing
a Connector, leaving you free to focus on the nuances of your intended data source
when the time comes to write a new Connector. Take a moment to enjoy the feeling of
completing the most intensive coding exercise in this book. In the next section, we'll see
how good of a job we did by deploying and testing the Connector we just wrote.

Deploying and testing your custom connector
If you've been using an IDE to complete this exercise, you have already run a syntax check,
possibly even the unit tests. However, if you've been using a regular text editor, let's begin
by using the Apache Maven command-line tool to build our Connector code and execute
the included unit tests. The easiest way to do this is to open a terminal and navigate to
the athena-example directory. Once you're there, execute mvn clean install
-Dpublishing=true. If this is your first time building an Athena Connector on
that machine, Apache Maven will take several minutes to download the necessary
dependencies. These dependencies include the Athena Federation SDK, Apache Arrow,
and many other open source libraries. Once all the dependencies have been satisfied,
Maven will build the Connector run unit tests. This one command will catch the majority
of common errors long before Athena enters the picture. This ability to iterate quickly and
locally makes developing new Connectors easier. Once the build completes, please note
any errors, especially unit test errors, and resolve them before moving on.

Conditional Maven Builds
We pass the "-Dpublishing=true" flag to indicate to the athena-
example Connector's build configuration that we've completed the exercise
and that the full unit test suite should be applied. This is a bit atypical because
we'd expect unit tests to be run as part of any build, but this Connector is an
exception. As a result, the code in our GitHub repository is incomplete until
you uncomment or implement the missing functionality. Yet, at the same time,
we want to have real unit tests to help ensure you don't miss any steps.

354 Athena Query Federation

With our Connector code built and passing all unit tests, we're ready to package and
deploy the Connector. This process involves producing a specially structured ZIP file and
accompanying configuration file that Serverless Application Repository can use to deploy
our Lambda function. It is also possible to avoid using Serverless Application Repository
and instead deploy directly to AWS Lambda. In this exercise, we'll be using the AWS SAM
Build Tool to upload our packaged Connector to Serverless Application Repository for
a one-click deployment experience. You can use the provided publish.sh file in the
root of this chapter's GitHub directory to automate the entire process. The script requires
an S3 bucket that it can use to upload your Connector code for later use by Lambda, the
directory name that contains the Connector code to package, the AWS Region you'd like
to publish to, and the partition type (typically, this is aws):

./publish.sh S3_BUCKET athena-example AWS_REGION aws

When executed, this script will print a confirmation of the steps it is about to perform.
It begins by looking for a valid set of AWS credentials. So, if you haven't run aws
configure, you should do so now. This command ensures your AWS CLI and
supporting tools are ready to use. The publish script runs several AWS CLI and SAM build
tool commands while orchestrating the Connector's deployment. These commands will
fail if they can't find your AWS credentials.

As part of publishing your Connector, the publish script will attempt to add an S3 bucket
policy to the S3 bucket you supplied to the command. The policy will grant the AWS
Serverless Application Repository read access to the S3 bucket so that it can read a copy
of the Connector code on behalf of AWS Lambda when doing deployments. If the script
sees an existing policy on the S3 bucket, it will skip this step and assume you've manually
configured an appropriate policy to avoid overwriting your work. Keep this in mind if
you get failures related to Serverless Application Repository being unable to retrieve your
Connector code. The script will then package your Connector code by recompiling it and
rerunning unit tests before producing a Lambda-compliant ZIP file of the Connector
artifacts. Lastly, the script will upload the Connector code artifact to the S3 bucket and
call Serverless Application Repository to create a deployable application in your private
repository. The resulting serverless application can then be shared with other accounts
if you choose, but it will initially be marked as private.

Building a custom connector 355

In the end, the script will print a URL, much like the one shown here, that can be used to
view the Connector in Serverless Application Repository:

https://console.aws.amazon.com/serverlessrepo/home?region=us-
east-1#/published-applications/arn:aws:serverlessrepo:us-east-
1:XXXXXXX:applications~ExampleAthenaConnector

Before we deploy our Connector, let's upload the sample financial transaction data that
the Connector will use to answer queries. From the athena-example directory, you
can execute the following S3 put command to upload the sample data. Be sure to replace
BUCKET_NAME with the name of the S3 bucket you'd like to use for this exercise. Later,
we'll need to enter the name of this S3 bucket in the Connector deployment configuration,
so keep it handy:

aws s3 cp ./sample_data.csv s3://BUCKET_NAME/2017/11/1/sample_
data.csv

Now, we're ready to go to the AWS console and deploy our custom Connector. We'll
repeat several of the same steps from earlier in this chapter, where we deployed a pre-built
Connector from Serverless Application Repository. Unfortunately, the link from the end
of the publish script can't be used to deploy the Connector. You'll need to open Serverless
Application Repository in the AWS console and click on Available Applications in the
left navigation bar. Then, select the Private Applications tab, at which point you should
see ExampleAthenaConnector. From here, the process is nearly identical to deploying a
pre-built Connector.

356 Athena Query Federation

Click on it, and you'll be prompted to fill in any missing configuration details before
deploying, as shown in the following screenshot. If you're using the IAM policy for this
chapter, be sure to choose an application name that begins with packt-serverless-
analytics and an AthenaCatalogName value that begins with packt_serverless_
analyics to avoid permissions issues. Application name corresponds to the underlying
CloudFormation stack this process creates, while AthenaCatalogName will become the
name of the Lambda function:

Figure 12.8 – Example Connector deployment config

Building a custom connector 357

DataBucket should match the S3 bucket where you uploaded the sample data. For
simplicity, we recommend using the same S3 bucket for the sample data, SpillBucket,
and publishing your Connector. Once the deployment completes, you should be able to
run the following query in the Athena console. Be sure to replace the Lambda function
name with your function name if you didn't follow the suggested naming convention:

USING EXTERNAL FUNCTION decrypt(payload VARCHAR)

 RETURNS VARCHAR LAMBDA 'packt_serverless_analytics_
example'

SELECT year,

 month,

 day,

 account_id,

 encrypted_payload,

 decrypt(encrypted_payload) AS decrypted_payload,

 transaction.id AS tx_id

FROM "lambda:packt_serverless_analytics_example".schema1.table1

WHERE year=2017

 AND month=11

 AND day=1;

The query will return a few hundred rows of data from the sample data file we uploaded
to S3. It's taken us a while, but we've built and deployed a custom Connector! You can use
what've you've learned in this chapter to integrate with any data source you may need.
Athena Query Federation holds one more secret, and this query is hinting at it. You may
have noticed two rather curious columns in the output. The encrypted_payload
column looks like jibberish, but the decrypted_payload column is a human-readable
copy of the encrypted_payload column that has been postprocessed by an external
function called decrypt.

Along with our Connector code, this example contained the decrypt UDF. In the next
chapter, we'll learn more about Athena UDFs, including a special case UDF that allows us
to take advantage of SageMaker's machine learning tools within our Athena queries.

358 Athena Query Federation

Troubleshooting Custom Connectors
Also included in the GitHub repository is the athena-federation-
sdk-tools module, which provides a Connector validator tool that can
be used to troubleshoot malfunctioning Connectors without the need to run
Athena queries. You can also use the validator as a form of integration testing.
If the preceding query didn't work for you, take a look at the README.md
file in the tools directory for more details on troubleshooting common errors.
Most errors are reported via the Athena console, but some can easily be root
causes with the client-side logs that the validator generates.

Summary
In this chapter, we learned the ins and outs of Athena Query Federation, including the
differences between a federated query and a "classic data lake query." Then, our journey
took us deeper into performance, availability, and the consistency tradeoffs of querying
live data via a federated query or a snapshot that's been loaded into S3. We looked at
the structure of the Athena Federation SDK and how it relies on Apache Arrow as
a memory-compatible columnar format for exchanging data between analytics systems,
without the need for multiple performance-robbing serialization steps.

Next, we stepped out of the academic realm and into the thick of things with a hands-on
exercise in deploying and querying one of Athena's pre-built Connectors. Our efforts
concluded with our most ambitious coding exercise yet, where we built a custom Athena
Connector from the ground up using the Athena Query Federation SDK directly. In the
next chapter, Chapter 13, Athena UDFs and ML, we'll build on the federation concepts
we learned here to extend Athena's functionality even further with custom UDFs and
machine learning.

13
Athena UDFs and ML
In this chapter, we will continue with the theme of enhancing Athena with our
functionality by adding user-defined functions (UDFs) using AWS Lambda and AWS
SageMaker. In Chapter 3, Key Features, Query Types, and Functions, we introduced the
built-in functions that are available to you as a user of Athena. But as you build out your
data lake and your Athena usage becomes more targeted at specific use cases, you may
encounter situations where the built-in functions do not provide the exact functionality
that you require. For such scenarios, Athena supports UDFs.

In this chapter, we are going to cover the basics of UDFs and how to create them. By the
end, we will learn how we can apply UDFs to non-standard use cases and also to perform
machine learning analysis on our data.

In this chapter, we will cover the following topics:

• What are UDFs?

• Writing, deploying, and using UDFs

• Using built-in machine learning UDFs

360 Athena UDFs and ML

Technical requirements
Wherever possible, we will provide samples or instructions to guide you through the
setup. However, to complete the activities in this chapter, you will need to ensure you
have the following prerequisites available. Our command-line examples will be executed
using Ubuntu, but most Linux flavors should work without modification, including
Ubuntu on Windows Subsystem for Linux.

You will need internet access to GitHub, S3, and the AWS Console.

You will also require a computer with the following installed:

• Chrome, Safari, or Microsoft Edge

• The AWS CLI

This chapter also requires that you have an AWS account and accompanying IAM user
(or role) with sufficient privileges to complete this chapter's activities. Throughout this
book, we will provide detailed IAM policies that attempt to honor the age-old best
practice of "least privilege." For simplicity, you can always run through these exercises
with a user that has full access. Still, we recommend using scoped-down IAM policies
to avoid making costly mistakes and learning more about using IAM to secure your
applications and data. You can find the suggested IAM policy for this chapter in this
book's accompanying GitHub repository, listed as chapter_13/iam_policy_
chapter_13.json, here: https://bit.ly/3gnwCSm. No changes need to be
made to the policy from Chapter 12, Athena Query Federation, so if you completed the
exercises in that chapter, you don't need to make any modifications to your role.

What are UDFs?
If it wasn't already obvious before now, it has probably become pretty clear by this point
that the world of big data analytics is vast and complex. Athena offers a very wide array
of built-in functionality that enables you to analyze your data, but as your use cases grow,
you may find that certain situations are not covered. Perhaps your data has a special
encoding that can't be converted by Athena, or maybe you want to do some natural
language processing to look for general sentiment in some free text fields. Whatever
the situation may be, you can turn to user-defined functions (UDFs) to solve them.
UDFs allow us, as users of Athena, to provide custom query behavior that can be used
within the queries we are running.

What are UDFs? 361

UDFs are not a new concept created by Athena, so if you've been in the data analytics
space for a while, you've likely already encountered them. The case of Athena is a bit more
unique since you are not managing the query execution hardware, nor are you managing
the software installed on that hardware. In traditional, self-managed data warehouse
solutions, UDFs are typically registered within or alongside the program itself at startup
time. For example, prestodb has support for custom functions (https://bit.
ly/36q2Ir5), which are deployed alongside Presto by simply placing the .jar file
in a pre-configured plugin directory.

If you read the preceding link on prestodb's support for custom functions, you may have
noticed that there are three different types supported by the engine: scalar and aggregate
functions. Scalar functions are used to add custom functionality to data existing in a
single row. An example could be is_null, where it will simply return a boolean
indicating whether the provided value is null. Aggregate functions, on the other hand,
are used to create behavior across several rows (think avg). They require you to use
AccumulatorState, which is where the aggregation is persisted across rows. At the
time of writing this book, Athena only supports scalar functions.

For Athena, UDFs are referred to as external functions. In this chapter, we're going
to cover the two different options available to you at the time of writing this book.
These options are Lambda-based functions and SageMaker endpoint-based functions.
Lambda-based functions, as the name implies, utilize a Lambda that gets invoked during
the execution of your query. The following diagram shows the flow for Lambda-based
UDF execution. If you read Chapter 12, Athena Query Federation, then the process of
writing and deploying UDFs is going to look very similar to the process of writing and
deploying a connector. If you skipped that chapter, then don't worry – we will go over
everything again here:

Figure 13.1 – Athena Lambda UDF workflow

https://bit.ly/36q2Ir5
https://bit.ly/36q2Ir5

362 Athena UDFs and ML

The preceding diagram shows the flow for SageMaker-based UDF executions. If you
completed the exercises in Chapter 7, Ad Hoc Analytics, some of the SageMaker setup will
look familiar. However, we will be using SageMaker to train a model, so there will be some
differences here:

Figure 13.2 – Athena SageMaker UDF workflow

Now that we know what UDFs are, let's create a new one.

Writing a new UDF
So, now that we've gotten a bit of an idea of what UDFs are and when we might want to
use them, let's go ahead and create one.

Setting up your development environment
To write a new UDF or modify an existing UDF, we'll need the ability to build, test, and
package the code. So, our first task is to ensure we have a development environment
with the appropriate builder tools. These tools will include Apache Maven, the AWS CLI,
and the AWS Serverless Application Model (SAM) build tool. The Apache Foundation
describes Maven as a "software project management and comprehension tool." That's a
fancy way of saying Maven helps automate dependency management, build orchestration,
and a host of related activities that can be added or augmented via plugins. The AWS SAM
build tool is one option for packaging and deploying our UDF for use with Lambda and
Serverless Application Repository. And, of course, the AWS CLI will be there for when
we'll need to interact with AWS via the command line.

Writing a new UDF 363

If you've already got an environment that meets these requirements (for example, if you
completed the exercises in Chapter 12, Athena Query Federation), you're welcome to use
it. If not, don't worry. We'll guide you through the setup for Debian Linux-based systems
such as Ubuntu or Ubuntu on Windows Subsystem for Linux. Most of the commands will
work on other flavors of *nix with minor modifications. We'll assume you will be using a
basic text editor without any fancy builder tool integrations and that you need a guide for
installing these other dependencies. Let's get started by cloning this book's accompanying
GitHub repository by using the following command.

git clone https://github.com/PacktPublishing/Serverless-
Analytics-with-Amazon-Athena.git

Inside the chapter_13 directory, you'll find a prepare_dev_env.sh script that you
can run to install OpenJDK, Apache Maven, the AWS CLI, and the AWS SAM build tool.
Depending on your CPU and disk speeds, the script may take 5 minutes or more to set up
in your environment. If the script is successful, it will print the installed version of each
required tool at the end. The output will look similar to the following, but don't worry if
your versions differ slightly:

aws-cli/1.19.96 Python/2.7.18 Linux/4.19.128-microsoft-standard

SAM CLI, version 1.24.1

Apache Maven 3.5.4

openjdk version "11.0.11" 2021-04-20

javac 11.0.11

Next, we'll start writing the code for our custom UDF!

A Note About Java Versions
While the Athena Federation SDK should work fine with Java versions up to
and including 11, issues have been reported with Apache Arrow with JDK
versions beyond 8. The open source project has resolved many of these issues
and provided configuration workarounds for the remaining items. If you run
into errors that appear to be related to your JDK version, try executing the
exercise with Open JDK 8.

364 Athena UDFs and ML

Writing your UDF code
For this exercise, we'll be taking a closer look at the UDF that we used in Chapter 12,
Athena Query Federation. Again, don't worry if you skipped that chapter as we will cover
everything that you need to know here. To help you learn about writing UDFs, we've
included a working example that you can check your work against. However, unlike Query
Federation, where Athena provides a pretty wide selection of ready-made connectors,
UDFs can be very customer use case-specific, so there isn't currently a large pre-built
collection to browse through. So, you must understand the steps to go from nothing to
a fully functional UDF. Due to this, I'm going to recommend that you try to avoid just
copying and pasting from the working example and leverage that as a way to check and
debug your work. To find the working code, navigate to the udf-example folder in
the chapter_13 directory of the GitHub repository you cloned in the previous section
(if you skipped that section, go ahead and clone it now!).

The UDF we'll be working with was initially provided by the Athena team as part of the
Athena Federation SDK to teach customers how to write UDFs. This UDF is intentionally
simple so that you can focus on the basics of understanding the components of a UDF
rather than having to decipher complex function logic. The function will take in a
parameter, decrypt it (using a hardcoded encryption key, which violates every security
tenant, so please don't do this in production), and return the result of the decryption.
We've also included some unit tests to verify the function code. In the end, we will deploy
the UDF and use it in a query.

Athena provides an SDK that will handle any of the logic that's necessary for
communicating with the main Athena query engine, as well as aiding in interactions
with Apache Arrow. The SDK is implemented in Java, so it is recommended that you
implement your UDF in Java as well (or Kotlin or Scala if you are feeling adventurous).
Since the SDK is fully open source (https://bit.ly/3vXmm9j), you can technically
write this in any language, so long as you reproduce the behavior, but that is not
recommended other than for expert users with language-specific use cases.

Project setup
For this walkthrough, we are going to be using Apache Maven for our dependency
management. To get started, let's go ahead and initialize a new Maven project:

mvn -B archetype:generate \

 -DarchetypeGroupId=org.apache.maven.archetypes \

 -DgroupId=<YOUR_GROUP_ID>

 -DartifactId=<YOUR_ARTIFACT_ID>

https://bit.ly/3vXmm9j

Writing a new UDF 365

If you aren't familiar with Maven, for this command, all you need to know is that you're
going to get a skeleton application that we'll take a little bit of a closer look at in a second.
Remember to replace YOUR_GROUP_ID with something that makes sense for you
(for example, the AWS group ID; that is com.amazonaws) and then replace YOUR_
ARTIFACT_ID with the project name (for example, udf-example).

After running that command, you should see a new directory with the name that you
used for YOUR_ARTIFACT_ID. Inside that directory, you should see two things: an src/
directory and a file named pom.xml. The POM file (https://bit.ly/3xDLd2y)
is the file where you declare your dependencies for your project. It is also where all of
your build configurations go. A quick search on Amazon reveals seven pages of books on
Maven, so we're not going to delve any deeper than we need to, but needless to say, it's a
very powerful tool. Taking a quick look in the src/ folder, you'll see main/ and test/.
Within each, there is some sample code that you can go ahead and delete.

The POM file
Next, we are going to update the POM file. We'll only have to do this once. The POM file
is quite large, so rather than taking up two pages, I am going to recommend that you go
to this book's GitHub repository and follow along and/or copy-paste (https://bit.
ly/3msAs0x). I will cover some important sections that are worth understanding here:

<parent>

 <artifactId>aws-athena-query-federation</artifactId>

 <groupId>com.amazonaws</groupId>

 <version>1.1</version>

</parent>

The <parent> tag tells Maven that we want to merge our POM file with the POM file
of the referenced parent artifact. In this case, that is the POM file for the aws-athena-
query-federation artifact, the POM of which you can find in the open source
repository (https://bit.ly/2U4IErJ). The result of the merged POM is to ensure
that all the dependencies are together:

<properties>

 <maven.compiler.source>1.8</maven.compiler.source>

 <maven.compiler.target>1.8</maven.compiler.target>

 ...

</properties>

https://bit.ly/3xDLd2y
https://bit.ly/3msAs0x
https://bit.ly/3msAs0x
https://bit.ly/2U4IErJ

366 Athena UDFs and ML

As the note on Java versions states, Apache Arrow has sometimes been reported to have
issues with JDK versions beyond 8, so we are forcing the compiler to use JDK 8 for our
build, just to be on the safe side:

<dependency>

 <groupId>com.amazonaws</groupId>

 <artifactId>aws-athena-federation-sdk</artifactId>

 <version>${aws-athena-federation-sdk.version}</version>

</dependency>

We are going to be extending a class from the Athena Federation SDK, so we need a
dependency on that. Note that we are referencing the ${aws-athena-federation-
sdk.version} variable. We did not declare that in our POM; we are getting that value
from <parent>:

 <build>

 <pluginManagement><!-- lock down plugins versions to avoid
using Maven defaults (may be moved to parent pom) -->

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-shade-plugin</artifactId>

 ...

 </plugin>

 </plugins>

 </pluginManagement>

 </build>

</project>

Finally, we are using maven-shade-plugin. This instructs Maven, when it produces
the .jar file for our package, to also include all of our dependencies to create an uber-jar
(it can also help with renaming packages in case there are conflicts). An uber-jar is one
of two ways to deploy your JVM-based application to AWS Lambda, with the other being
just a ZIP file containing your code and all dependencies. Both work fine (fun fact, a
.jar file is pretty much just a ZIP with a little extra Java-y information).

Writing a new UDF 367

UserDefinedFunctionHandler
We're just about ready to start writing our UDF code, but before we do that, we're
going to take a quick detour and peek at the code provided in the Athena Federation
SDK that will aid us in creating our UDF. The SDK contains an abstract class called
UserDefinedFunctionHandler that we will be extending. This class handles the
deserializing messages that are sent from Athena's main engine and then delegates them
down to the proper function handler. We're not going to delve super deep into what this
handler is doing, but let's take a look at a few notable code pieces. You can see the full
implementation here: https://bit.ly/3riRfTQ.

The first thing to notice is that the class implements RequestStreamHandler.
This class comes from the AWS Lambda Java SDK and has a single method, called
handleRequest, that you have to implement to have a Java-based Lambda function.
The contract is very straightforward: you are given an InputStream containing the
input values to your function, an OutputStream where your function will write its
results, and a Context that contains mostly Lambda metadata about the function itself.

Next, scroll down until you find extractScalarFunctionMethod. We haven't
discussed how to use UDFs in Athena queries yet, but this method is important for that.
Generally speaking, at query time, we will tell Athena the name of the method to execute,
and then this logic will use Java Reflection to find the implementation of that method in
your UDF code. If you aren't familiar with Java Reflection or just aren't fully following
what's happening here, that's okay – it isn't critical that you understand this logic. It can
just sometimes be helpful to understand how everything pieces together.

The last bit we'll take a look at is the following block of code, which is located inside the
processRows method:

for (Field field : inputRecords.getFields()) {

 FieldReader fieldReader = inputRecords.getFieldReader(field.
getName());

 ArrowValueProjector arrowValueProjector = ProjectorUtils.
createArrowValueProjector(fieldReader);

 valueProjectors.add(arrowValueProjector);

}

As we mentioned previously, Athena leverages Apache Arrow to represent the data in
transit between the query's execution and the UDF function. This logic is taking the
fields (with field being a column in our table) returned in the query, creating an
ArrowValueProjector for each field. These projectors are put there to make writing
UDFs easier so that you, as the function writer, do not have to interact with or even
understand Apache Arrow. Instead, you are given Java objects to operate on.

https://bit.ly/3riRfTQ

368 Athena UDFs and ML

A Note About ArrowValueProjector's Performance
The convenience of ArrowValueProjector's comes at a cost. Data must be
copied from the Arrow objects to the Java objects, and any data copying is
always going to introduce some degree of latency, which, when magnified
over potentially many thousands (or more) of rows of data, can add up. If
you are noticing an unacceptable degree of latency introduced from your
UDF, you can consider overriding the processRows method inside of
UserDefinedFunctionHandler and operate directly on the Apache
Arrow objects instead of converting from Arrow into Java.

UDF code
Now, we're ready to write our UDF! As we mentioned previously, the function is going
to decrypt a parameter from our dataset using an encryption key that we've hardcoded.
Again, do not do this in production – this is just to keep things simple to illustrate how
to write a UDF.

To get started, let's go ahead and create a new class in our Java package and
call it UdfExample. As we covered previously, we are going to be extending
UserDefinedFunctionHandler, which has a constructor that requires a String
parameter called sourceType. The value you assign to this isn't super important to
you as it's primarily used for Athena's internals; just pick something descriptive. I chose
"Packt_UdfExample".

Now, we're going to add our function code. Let's go ahead and create a new public
method and call it decrypt. In this case, the return type of our method will be String,
but in the general sense, the return type should map to whatever type we want the value
to be in our query. For our input, we will take in a String as well, but again, we are not
limited to strings, and we are also not limited to a single input. We can use as many as we
want and whatever types we want, based on the types that our columns are stored as in
our dataset.

At this point, you should have something that looks like the following:

package com.amazonaws;

import com.amazonaws.athena.connector.lambda.handlers.
UserDefinedFunctionHandler;

public class UdfExample extends UserDefinedFunctionHandler {

 private static final String SOURCE_TYPE = "Packt_
UdfExample";

Writing a new UDF 369

 public UdfExample() {

 super(SOURCE_TYPE);

 }

 public String decrypt(String encryptedColumnValue)

 {

 return null;

 }

}

This is the minimum you would need to be able to register a UDF called decrypt! Of
course, your function wouldn't perform any decryption, you would just get nulls back,
but still, pat yourself on the back – you've created a UDF!

Now, we'll quickly go over the decryption logic. This isn't super important, since it's been
created to demonstrate developing UDFs, so if you want, feel free to skip this portion and
just copy the logic from the repository at https://bit.ly/3AZQUsR.

We are using what's called symmetric encryption. This means that the same key is used to
encrypt and decrypt. This is in contrast to asymmetric encryption, where one key is used
to encrypt (generally referred to as the public key) and another one is used to decrypt
(the private key). We will be using AES as our encryption algorithm and Java's built-in
cryptography library:

 @VisibleForTesting

 protected String symmetricDecrypt(String text, String
secretKey)

 throws NoSuchPaddingException,
NoSuchAlgorithmException, InvalidKeyException,
BadPaddingException,

 IllegalBlockSizeException

 {

 cipher cipher;

 String encryptedString;

 byte[] encryptText;

 byte[] raw;

 SecretKeySpec skeySpec;

 raw = Base64.decodeBase64(secretKey);

 skeySpec = new SecretKeySpec(raw, "AES");

 encryptText = Base64.decodeBase64(text);

https://bit.ly/3AZQUsR

370 Athena UDFs and ML

 cipher = cipher.getInstance("AES");

 cipher.init(cipher.DECRYPT_MODE, skeySpec);

 encryptedString = new String(cipher.
doFinal(encryptText));

 return encryptedString;

 }

The preceding code is performing the decryption. Let's look at the code in bold in more
detail. First, both the key string and the encrypted values are Base64-encoded, which is
used to turn bytes into ASCII. Finally, at the bottom, we are creating a cipher, which is
essentially the implementation of the AES algorithm. So, again, we're getting the raw bytes
for both the key and the encrypted text, passing them both through the AES cipher, and
getting back our decrypted bytes, which we are converting back into strings (which we
know is safe to do, because we know the decrypted value is just a string, though it could,
in theory, be more non-human-readable bytes).

Don't Forget to Test Your Code!
As with any code base, make sure you clearly define the contracts of your code
and verify them with tests. We've included some test code in our sample as
well, which I'd recommend you at least read through to understand what it's
doing and then copy it over.

Building your UDF code
Before we can deploy our code, we need to build and package it. Thankfully, since we did
all that nice setup earlier on in our POM, this is very easy to accomplish. Simply run one
of the two commands:

mvn clean install

If you want to run the tests as well run the following (this
is not standard to Maven, it's just how we happened to set this
package up)

mvn clean install -Dpublishing=true

Once this completes, you should have a newly generated directory named target. Inside
of it, there should be a JAR file called udf-example-2021.33.1.jar.

Writing a new UDF 371

Quick Note on Maven Shading
In the same target/directory, you may also see a file that looks like
original-udf-example-2021.33.1.jar. This is the original
.jar file that was produced by Maven. However, as we mentioned previously,
we need to provide a .jar that contains all of our dependencies (the uber
.jar). Again, the plugin responsible for that is called Maven Shade, and it
actually moves the original .jar to a file called origin-[JAR_FILE_
NAME], and then creates a new .jar with the same [JAR_FILE_NAME]
that contains all the dependencies. If you look at the size of each of the files,
you'll notice that udf-example-2021.33.1.jar is quite a bit larger
than original-udf-example-2021.33.1.jar. In my case, it's
23 MB versus 4.6 KB.

Deploying your UDF code
We're ready to deploy our code! The process of deploying your function is no different
than any other Java-based Lambda function, so if you are already familiar with that
process, we aren't going to be introducing any new concepts. There are two primary
mechanisms that we are going to cover to make direct calls to the AWS Lambda APIs
and AWS SAM.

Direct calls to AWS Lambda APIs
In this section, we are going to directly call a Lambda by using the AWS CLI. This is a
simpler and quicker way to get started but I wouldn't recommend it when maintaining
your UDF in the long term.

Before we can register the Lambda, we need an execution role. The AWS Lambda docs
provide a good overview of creating execution roles (https://amzn.to/3ign39a)
but to get started quickly, you can just run the following commands:

aws iam create-role --role-name udf-example-role --assume-
role-policy-document '{"Version": "2012-10-17","Statement": [{
"Effect": "Allow", "Principal": {"Service": "lambda.amazonaws.
com"}, "Action": "sts:AssumeRole"}]}'

aws iam attach-role-policy --role-name udf-example-
role --policy-arn arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole

372 Athena UDFs and ML

The first command creates a role called udf-example-role with no permissions
attached to it and a trust policy saying that AWS Lambda is allowed to assume it. The
second command attaches the AWSLambdaBasicExecutionRole managed IAM
policy to the newly created role.

Now that we've created our role, let's go ahead and create our function. To accomplish
this, we are going to call the create-function API within AWS Lambda:

aws lambda create-function \

 --function-name UdfExample \

 --runtime java8 \

 --role arn:aws:iam::1234567890123:role/udf-example-role \

 --handler com.amazonaws.UdfExample \

 --timeout 900 \

 --zip-file fileb://./target/udf-example-2021.33.1.jar

And that's it! You've deployed a Lambda function.

Using your UDF
The time has finally come for us to use our shiny new UDF inside an Athena query!
Registering a UDF is done at query execution time by way of the USING EXTERNAL
FUNCTION clause, before your SELECT statement. The syntax for that looks like this:

USING EXTERNAL FUNCTION UDF_name(variable1 data_type[,
variable2 data_type][,...])

RETURNS data_type

LAMBDA 'lambda_function_name'

SELECT [...] UDF_name(expression) [...]

First, let's get set up with some sample data. For that, we've provided some data
(https://bit.ly/3gjYfvK) and a CREATE statement (https://bit.
ly/3sGpmWz) that you can use in our repository. Upload the sample data and run the
CREATE statement in Athena. Make sure that you replace <S3_BUCKET> in the CREATE
statement with the name of the S3 bucket where you placed the sample data.

Now that we've got that set up, let's go ahead and try running a query using our UDF!
Your results should match those shown in the following table:

USING EXTERNAL FUNCTION decrypt(encryptedData VARCHAR)

RETURNS VARCHAR

LAMBDA 'UdfExample'

https://bit.ly/3gjYfvK
https://bit.ly/3sGpmWz
https://bit.ly/3sGpmWz

Writing a new UDF 373

SELECT year, month, day, encrypted_payload, decrypt(encrypted_
payload) as decrypted_payload

FROM "packt_serverless_analytics"."chapter_13_udf_data"

limit 5.

This results in the following output:

Figure 13.3 – Decryption results

Just in case you think there is some wizardry going on here and I'm trying to trick you,
I've gone ahead and included a class in the repository that sanity checks the results
(https://bit.ly/2XCBgFu). You can give it an encrypted payload and it will return
the expected output, so you can double-check it against the preceding values:

mvn compile exec:java -q -Dexec.mainClass="com.
amazonaws.ResultSanityChecker" -Dexec.
args="0UTIXoWnKqtQe8y+BSHNmdEXmWfQalRQH60pobsgwws="

Encrypted payload: 0UTIXoWnKqtQe8y+BSHNmdEXmWfQalRQH60pobsgwws=

Decrypted payload: SecretText-1755604178

A couple of other things to point out are that the signature of decrypt matches that of
the method signature for decrypt in our function code, including its input types and
return type. Though again, you'll notice that the types are VARCHAR versus String,
which we have in Java – that's Apache Arrow and ArrowValueProjectors at work.
And then, the Lambda function's name is just the name that we gave to the Lambda we
created in the last step.

And that's it! Congratulations – you've just written your first UDF!

https://bit.ly/2XCBgFu

374 Athena UDFs and ML

Maintaining Your UDF
Now that you've gotten your UDF running, let's talk briefly about how we're
going to maintain the function. As we mentioned previously, there are two
ways to deploy it; we chose the simpler way to get started, which was just to
call the Lambda APIs from our Terminal, but that's not a maintainable way
of doing that long term. For regular maintenance of your UDF, a very good
place to turn to is AWS SAM. SAM is an open source framework provided by
AWS that includes a ton of super handy functionality for building serverless
applications. As an optional exercise, I recommend that you run through
the documentation SAM provides on getting set up with SAM and a CI/CD
tool of your choice: https://amzn.to/3kfQVlW. Alternatively, the
walkthrough in Chapter 12, Athena Query Federation, also shows you how to
utilize SAM to deploy an Athena Federation Connector.

Using built-in ML UDFs
In the previous section, we learned how we can create UDFs using Lambda. In this
section, we're going to learn how to use Athena's built-in functionality to create UDFs
that delegate down to a ML model. We're not going to delve too deeply into the ML
aspects of things, though we will cover some basics just so you know what's happening.
If you read Chapter 7, Ad Hoc Analytics, then some of this should be familiar.

Before you get started, note that you may incur some SageMaker charges during this.
Particularly for the portion where we are training our models, we don't want to be waiting
around forever, so we are leveraging the recommended cost/power instance type of
ml.c5.xlarge. Total charges should be no more than a few dollars.

Pre-setup requirements
Before we are ready to head on over to SageMaker, there's a couple of things we need
to put in place. First up is our favorite resource, an IAM role. By now, you're probably
a pro at creating IAM roles, but in case you skipped directly to this chapter, we'll cover
the creation process again. You can do this by navigating to the IAM Console, selecting
the Roles section, and clicking the Create role button. Once you've done that, you'll
be presented with the dialog shown in the following screenshot. Be sure to select AWS
Service as the type of trusted entity and SageMaker as the entity:

https://amzn.to/3kfQVlW

Using built-in ML UDFs 375

Figure 13.4 – Create role dialog

The settings shown in the preceding screenshot indicate that we are creating a role that
can be assumed by SageMaker, allowing SageMaker to perform the actions associated
with the role inside your account. This helps scope down both the types of activities the
IAM role can perform and the contexts from which it can be assumed. In the next step,
you'll have the opportunity to add the specific policies for the activities we plan to perform
using this IAM role. We recommend adding the packt_serverless_analytics
policy that we have been enhancing throughout this book and used earlier in this chapter.
As a reminder, you can find the suggested IAM policy in this book's accompanying
GitHub repository, listed as chapter_13/iam_policy_chapter_13.json, here:
https://bit.ly/3gnwCSm.

https://bit.ly/3gnwCSm

376 Athena UDFs and ML

Once you've added the policy, you can move on to the Add Tags step. Adding tags is
optional, so you can skip that for now and go to the final step of giving your new IAM
role a name. We recommend naming your new IAM role packet-serverless-
analytics-sagemaker since this chapter's IAM policy already includes permissions
that will allow you to create and modify roles that match that name without added access.
If everything went as expected, your IAM role summary should match what's shown in
the following screenshot. If you forgot to attach the packt_serverless_analytics
policy, you can do so now using the Attach Policies button:

Figure 13.5 – IAM role Summary dialog

Using built-in ML UDFs 377

Next, go ahead and copy the following CSV file into an S3 bucket of your choosing. Make
sure to note where you put it for later:

wget -O taxi_ridership.csv https://bit.ly/3kblw45

aws s3 cp taxi_ridership.csv s3://<S3_BUCKET>/packt-serverless-
analytics-chapter-13/ml-example/input/

Setting up your SageMaker notebook
Now, it's time to create our SageMaker Jupyter notebook; we're almost ready to start
training! Head on over to the SageMaker console, find the Notebook > Notebook
Instances section and select it. From there, you can click Create notebook instance
to open the dialog shown in Figure 13.6 and Figure 13.7.

Using our notebook to train a model
Your notebook instance should be ready to use at this point. We're going to cover what
we're doing in depth, but first, we will provide a quick overview of the steps we're going
to take:

1. Connect our notebook instance to Athena.
2. Create a table in Athena using the CSV file we copied into our S3 bucket earlier.
3. Read the contents of the table.
4. Run a training job on our table data using the Random Cut Forest algorithm.
5. Deploy our trained model to an endpoint.

If you'd like to skip ahead or need added guidance on writing the code snippets we'll be
using to train our model, you can find a prepopulated notebook file in this book's GitHub
repository at chapter_13/packt_serverless_analytics_chatper_13.
ipynb, here: https://bit.ly/3sAErZV. GitHub nicely renders the notebook file so
that you can see it right from the link. Unfortunately, that makes downloading it so that
you can upload it to your SageMaker notebook instance later a bit tricky. To get around
that, click on the Raw view, and then click Save As from your browser.

https://bit.ly/3sAErZV

378 Athena UDFs and ML

Connecting our notebook instance to Athena
From the SageMaker Console, go ahead and click the Open Jupyter link, as shown in
the following screenshot. This will open a new browser tab or window connected to your
Jupyter Notebook instances. Behind the scenes, SageMaker is handling all the connectivity
between your browser and what is your Jupyter Notebook server:

Figure 13.6 – Open Jupyter Notebook

As shown in the preceding screenshot, you'll want to click on New and select
conda_python3 for the notebook type. The value may appear at a different position
in the dropdown than it does in the preceding screenshot, so don't be afraid to scroll
to find it. This setting determines how our notebook will run the data exploration
tasks we are about to write. By selecting conda_python3, we are telling Jupyter that it
can run our code snippets using Python. Once you pick the notebook type, yet another
browser tab will open that contains your new notebook. The new notebook file will be
named Untitled.ipynb, so our first step will be to give it a helpful name by clicking
on File and then Rename:

Figure 13.7 – Creating a new Notebook file

Using built-in ML UDFs 379

Now that your notebook is ready to use, we'll connect it to Amazon Athena by installing
the Athena Python driver. To do this, we'll write the following code snippet in the first
cell of the notebook. Cells are represented as free-form text boxes and can be executed
independently, with subsequent cells having access to variables, data, and other states
produced by earlier cells. After executing a cell, its output is shown immediately below it.
You can edit, run, edit, and rerun a cell as often as you'd like. You can also add new cells
at any time. Let's put this to practice by running our first cell. Once you've typed the code
into the cell, you can either click Run or press Shift + Enter to run the cell and add a new
cell directly below it:

import sys

!{sys.executable} -m pip install PyAthena

This particular cell will take a couple of minutes to execute, with the result containing a
few dozen log lines detailing which software packages and dependencies were installed.
Now, add another cell and paste the following code into it, make sure to replace
<OUTPUT_S3_BUCKET> with the bucket you want the output data to be placed in, as
well as <OUTPUT_S3_BUCKET_REGION>:

from pyathena import connect

import pandas as pd

import sagemaker

#TODO: Change the bucket to point to an s3 bucket to use for
model output and training data

bucket = <OUTPUT_S3_BUCKET>

output_location = 's3://' + bucket + '/chapter_13/ml_output/'

Connect to Athena

connection = connect(s3_staging_dir=output_location, region_
name=<OUTPUT_S3_BUCKET_REGION>)

Now, we're connected to Athena!

380 Athena UDFs and ML

Preparing our training data
Next, we are going to take the data that we copied into our <S3_BUCKET> in the
pre-setup steps and create a table for it in Athena. Go ahead and add another cell and
insert the following code into it:

create_table = \

"""

CREATE EXTERNAL TABLE 'packt_serverless_analytics'.'chapter_13_
taxi_ridership_data'(

 'time' string ,

 'number' int)

ROW FORMAT SERDE

 'org.apache.hadoop.hive.serde2.OpenCSVSerde'

WITH SERDEPROPERTIES (

 'separatorChar'=',')

STORED AS INPUTFORMAT

 'org.apache.hadoop.mapred.TextInputFormat'

OUTPUTFORMAT

 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

LOCATION

 's3://<S3_BUCKET>/packt-serverless-analytics-chapter-13/ml_
input/'

"""

Now, add one more cell to execute the CREATE statement:

Create a new Athena table holding data we will use to
predict anomalies

pd.read_sql(create_table, connection)

Finally, let's go ahead and read the contents of the table into an object so that we can use it
later to train our model. And… you guessed it, add another cell!

results = pd.read_sql("SELECT * FROM default.taxi_ridership_
data", connection)

Using built-in ML UDFs 381

Time to train!
This is the last step for our SageMaker notebook: training our model. So, we need one
more of our favorite things, a cell!

from sagemaker import RandomCutForest

prefix = 'athena-ml/anomalydetection'

execution_role = sagemaker.get_execution_role()

session = sagemaker.Session()

specify general training job information

rcf = RandomCutForest(role=execution_role,

 instance_count=1,

 instance_type='ml.c5.xlarge',

 data_location='s3://{}/{}/'.
format(bucket, prefix),

 output_path='s3://{}/{}/output'.
format(bucket, prefix),

 num_samples_per_tree=512,

 num_trees=50,

 framework_version="2.54.0",

 py_version="py3")

Run the training job using the results we got from the Athena
query earlier

rcf.fit(rcf.record_set(results.number.values.reshape(-1,1)))

print('Training job name: {}'.format(rcf.latest_training_job.
job_name))

rcf_inference = rcf.deploy(

 initial_instance_count=1,

 instance_type='ml.c5.xlarge',

)

print('\nEndpoint name (used by Athena): {}'.format(rcf_
inference.endpoint_name))

382 Athena UDFs and ML

You should see a whole bunch of output for this last cell, but if you scroll to the bottom,
you should see the following output. The value we are particularly interested in is the
endpoint name, so make sure that you save that for later:

Figure 13.8 – Training output

The Random Cut Forest model
In this section, we trained a model in SageMaker using the Random Cut Forest (RCF)
algorithm. Since it's a neat algorithm, we'll briefly cover how it works. RCF is what's
known as an unsupervised algorithm. These are often used to detect anomalous data
points within a dataset. An unsupervised algorithm means that it does not require
additional assistance (sometimes referred to as data labeling) from a human to train the
model. If you ever saw the tech talk of the engineer who trained his cat door to be able to
detect when his cat brought in a "gift" from outside, that is what's known as a supervised
algorithm. In that case, the engineer would physically indicate to the model whether a
given image contained a "gift" or not. RCF works by taking in a target value (known as a
tree) – in our case, that's the number of riders for a given period – and then comparing
it against all of the other values (known as the forest) using random "cuts" through the
forest, until it identifies a section containing only the single tree we are looking for. The
fewer cuts that are required, the more anomalous the value is determined to be. If you
visualize what it would be like to take a literal forest and create slices until you find a
specific tree, it's going to take way fewer slices to find the lonesome tree away from all
other trees, as opposed to one that is in a very tight cluster of trees.

Using our trained model in an Athena UDF
With our fancy taxi ridership model all trained and ready to do some work, let's find some
unexpected ridership amounts! Just like in the walkthrough regarding custom UDFs, we
are going to use the USING EXTERNAL FUNCTION clause and then a SELECT statement
to utilize the new function. The syntax looks very similar for the ML-based UDFs:

USING EXTERNAL FUNCTION ml_function_name (variable1 data_type[,
variable2 data_type][,...])

RETURNS data_type

SAGEMAKER 'sagemaker_endpoint'

SELECT ml_function_name()

Using built-in ML UDFs 383

There are a few main differences. The biggest difference is that unlike in the Lambda-
based UDFs, where the function name was mapped to something in our UDF code, the
ml_function_name value is just any random identifier that we want to create – it
doesn't correspond to anything that we did in our SageMaker Notebook. Then, instead
of the type being LAMBDA plus a Lambda function name, it's now SAGEMAKER plus the
endpoint name that was output at the end of our Notebook's execution. So, our final query
ends up looking something like the following. Notice that we are querying against the
same data we used to train our model, which makes sense since we are comparing a single
value within our dataset against the entire dataset as a whole:

USING EXTERNAL FUNCTION detect_anomaly(b INT) RETURNS DOUBLE
SAGEMAKER 'randomcutforest-2021-08-22-03-10-43-029'

SELECT time, number as number_of_rides, detect_anomaly(number)
as score

FROM "packt_serverless_analytics"."chapter_13_taxi_ridership_
data"

ORDER BY score desc

LIMIT 5

You should get the following results:

Figure 13.9 – Top 5 most anomalous half hour periods for NYC taxi ridership

Thus, we have used SageMaker notebooks to train a ML UDF model.

384 Athena UDFs and ML

Summary
In this chapter, we walked through a couple of different examples of how Athena allows
you to inject custom functionality, known as user-defined functions, into your queries.
We started by looking at fully custom UDF behavior through Lambdas. We created and
deployed our own Lambda, and then took a closer look at how we can keep a healthy,
well-maintained Lambda-based UDF. After that, we took a look at the built-in UDF
functionality that Athena provides for integrating your queries with SageMaker ML
models. We used this to determine if taxi ridership was anomalous during a specific time.

We've only scratched the surface of the power of UDFs, but this should serve as a solid
reminder for when you encounter a business use case that you can't solve perfectly with
the functionality provided out of the box. In the next and final chapter, we will summarize
some advanced functions that Athena provides and conclude our book!

14
Lake Formation –
Advanced Topics

You've reached the final chapter in our journey through Serverless Analytics with Amazon
Athena. Some authors like to start each chapter with a thought-provoking quote. The
pressure to find good, relevant quotes from well-known people was too much for us, so we
opted not to employ that pattern until now. I recently came across a quote from Stephen
King that does a great job distilling this chapter:

"Sooner or later, everything old is new."

– Stephen King
You see, many of Lake Formation's "new" features are a reimagining of well-known
database technologies from the 70s and 80s but scaled up for modern data lakes. As a Lake
Formation launch partner, Athena is often one of the first services to support new Lake
Formation features. In this chapter, we will learn about Lake Formation's newest features,
including row-level security and a new Amazon S3 table type that supports ACID
transactions. AWS Lake Formation transactions provide for atomic, consistent, isolated,
and durable queries via snapshot isolation, regardless of how many tables your query
uses or how many concurrent queries you run. To complement this new table type, Lake
Formation also introduced an automatic storage optimizer that continually monitors your
tables and reorganizes the underlying storage for optimal performance.

386 Lake Formation – Advanced Topics

Each of these features has been available in most traditional databases systems for
decades. However, these capabilities frequently reduced performance or scalability. The
early days of data lakes and their accompanying query engines, such as Athena, shed many
of these auxiliary features in the name of scaling. As these systems and their usage evolved
beyond solving scaling problems in traditional databases, the need for advanced features
such as ACID transactions and row-level security have reemerged.

As many of these features are not generally available yet and should "just work" for your
existing queries by toggling a setting, this chapter will focus less on exercises and more
on what use cases these capabilities enable. Depending on your AWS Region of choice,
these features may not be available to you yet or may still be in preview. Lastly, you may
be wondering why we have repeatedly discussed Lake Formation in a book about Athena.
Regardless of the analytics engine you choose, AWS looks to Lake Formation as the tide
that raises all ships. Put another way, Lake Formation is increasingly where new and
foundational data lake features are being built so that customers can seamlessly transition
between any of the AWS analytics offerings that support Lake Formation.

In this chapter, we will cover the following topics:

• Reinforcing your data perimeter with Lake Formation

• Understanding the benefits of governed tables

Reinforcing your data perimeter with Lake
Formation
We were first introduced to AWS Lake Formation in Chapter 3, Key Features, Query
Types, and Functions, where we explored Lake Formation's ability to go beyond S3
object-level IAM policies to offer fine-grained access control for tables. While security
is a focal point for the Lake Formation product, you may not realize that its ambitions
extend far beyond this one essential element of data lakes. As we will see later in this
chapter, Lake Formation's mandate is to make every aspect of building and managing data
lakes simpler, faster, and cheaper. This has led the Lake Formation team to focus on the
most frustrating parts of operating a data lake, such as access control.

Before discussing the most significant changes to Lake Formation since it went GA in
2019, let's make sure we genuinely understand how things worked before these new
features. The following diagram illustrates the high-level interactions between Athena,
Lake Formation, Glue Data Catalog, and S3 during the execution of a simple query:

Reinforcing your data perimeter with Lake Formation 387

Figure 14.1 – Lake Formation

As with all Athena queries, the process begins with Athena's engine parsing the query
and forming a logical plan. This logical plan contains a list of tables and columns that
need to be read and a sequence of operators to apply to the resulting data. During the
planning process, Athena calls Lake Formation to obtain policy metadata for each
referenced table. This metadata, along with column projections from the query, is used
to affect access control. Assuming the access check passes, Athena moves on to forming
a physical query plan, where it gathers partitioning information for each table from
Glue Data Catalog. Before starting the actual query execution, Athena needs to call Lake
Formation to obtain scoped-down temporary credentials for reading the required S3
objects. The Lake Formation API calls to get temporary credentials are the second place
where an access enforcement check occurs. At this point, Athena has everything it needs
to execute the query.

388 Lake Formation – Advanced Topics

Much of the control flow shown in the preceding diagram is unsurprising, but a couple
of nuances may have snuck by if you weren't looking closely. Firstly, Lake Formation is
involved in both temporary credential vending and metadata operations, such as getting
the list of columns in a table. The initial iteration of Lake Formation's fine-grained
access control mechanisms enabled fully managed engines such as Athena and Redshift
Spectrum to improve permission management. While this was a marked improvement
over the previously available solutions, many customers still found themselves contorting
their data models to create effective data perimeters.

Establishing a data perimeter
You've undoubtedly heard many vendors talk about democratizing access to data across
your organization. We explored this topic by looking at some hands-on exercises as part
of Chapter 7, Ad Hoc Analytics, but we avoid a pervasive issue by increasing access to your
data. As we improve the accessibility of data, so too must we elevate our understanding
of data perimeters. The word perimeter has historically referred to the outer edges of a
company's physical assets, such as office buildings. When the internet and e-commerce
revolutionized how business was conducted, companies erected virtual perimeters using
firewalls. These concepts work well if your assets can be easily compartmentalized from
those who should and shouldn't have access to them. In practice, the threats to your data
are not always clear and certainly not always external to your company. There are different
classes of data and times where you will need to control access at a department level and
even down to individual employees. For example, has the data left your perimeter if an
HR employee runs a payroll report and leaves intermediate data on storage, which is later
accessed by someone outside HR? What if that same HR employee is working from home
and downloads that payroll report to their laptop? At this point, you don't even have the
protection of your company's physical security.

In these cases, data lake security is more important than ever. Lake Formation can help
companies balance security and compliance needs with their growing desire to share data
across departments, groups, and individuals. In many cases, safely sharing data across
individuals with different job functions requires making redacted copies of the data. Aside
from the additional storage and compute costs to ETL these copies, the organization had
to manage consistency and correctness across a web of dependencies. We routinely help
customers who have dozens of important datasets but somehow find themselves with
thousands of derivative datasets, simply for accommodating different levels of access.
Until recently, this was the state-of-the-art approach to creating a robust data perimeter
because you get fine-grained control over which use cases and entities need access to
specific slices of your data. Paradoxically, this approach created so many subtle variations
of the original data that customers feared making mistakes that could lead to unintended
information disclosure.

Reinforcing your data perimeter with Lake Formation 389

It's probably already pretty clear that security is far from easy to define, let alone build.
It can be even more challenging when basic computational building blocks we all
depend on seemingly stop playing by the rules. We'll dig deeper into this topic as part of
understanding how customers often overlook their part in shared responsibility models.

Shared responsibility security model
Simply put, a shared responsibility security model refers to the basic idea that the
customer and the service must work together to ensure any given workload is secure.
We're using the word secure a bit tongue in cheek here because most security-conscious
individuals will recoil at the thought of distilling all the complex nuances of security into
one word. Security is rarely binary, meaning it's uncommon for any application to be
described as secure or not secure. It's more common to think of these things as a gradient
or, even better, in terms of specific threats and mitigations.

For example, one use case may require that data be encrypted when stored at rest. The
reasons vary, but a typical example is that the underlying storage does not encrypt data
replication traffic that's generated when the storage nodes failover. Another application
may run workloads from multiple internal teams on shared infrastructure to improve
costs. Since these workloads are all internal, the business valued utilization above
protecting internal workloads from one another. If that same application started running
workloads from external entities on that same, shared infrastructure, the definition of
secure might change.

We've already called out that fully managed engines such as Athena and Redshift
Spectrum avoid the disclaimer of a shared security model. Still, the reason has less to do
with being fully managed and more to do with the level of control or abstraction these
services offer. Both Athena and Redshift Spectrum essentially operate over SQL, whereas
EMR and Glue ETL offer far more customer control. An EMR or Glue ETL customer can
choose to run arbitrary code in their jobs. If you've ever used spark-submit or a Jupyter
notebook with EMR, then you've executed arbitrary code on your EMR cluster. So, why
the big fuss over arbitrary code? Well, the ability to run arbitrary code provides fairly
low-level access to the machines that run your workloads.

390 Lake Formation – Advanced Topics

Suppose you are running your analytics applications in a shared Spark cluster. During a
Spark job, the state of any given node is represented as shown in the following diagram,
with your arbitrary Spark code running side by side with the arbitrary code from some
other workload:

Figure 14.2 – Process-level isolation of Spark workloads

Running each workload in separate processes that run as a different user improves the
security posture by limiting how neighboring workloads can interact. If your organization
is mainly concerned with avoiding accidental data leakage from bugs or typos, this level
of isolation may be sufficient. But how do you know whether you've set it up correctly?
If you depend on process-level isolation, it becomes increasingly important to ensure
your customers cannot tamper with the operating system or Spark itself. Ensuring only
administrators have root access to the host is a good start, but it isn't always easy to know
whether that is enough.

Reinforcing your data perimeter with Lake Formation 391

Now, let's suppose that you'd like to go a step further and ensure customers can only
access data they are authorized for. You might choose a tool such as Apache Ranger
for access control. With Apache Ranger, policy enforcement takes place within
Spark, alongside your workload. This pluggability makes it easy to get started with
Apache Ranger for Spark, but what level of protection does it provide? For example,
what prevents someone from running a Spark job that hijacks the Java classpath
and injecting their copy of the RangerHiverAuthorizerFactory class? The
RangerHiverAuthorizerFactory class plays a central role in data access policy
enforcement. If an attacker can replace this class with one they control, the workload can
bypass access control policies. Because their workload includes arbitrary code and has
access to the Java class loader, such attacks become possible.

An analogy may be helpful here. This mitigation is akin to the lock on the front door of a
house. It will keep most people from entering your home without permission, but it won't
stop a determined adversary. There is a steep difference between keeping honest people
honest and mitigating attacks from sophisticated attackers such as nation states. If you
aren't using a managed service, your organization must play a more significant role in
deciding where to draw the line.

This is one of the big distinctions between a service such as Athena and Glue ETL, which
offers fully managed runtimes and lets you run highly customizable environments using
your own Spark cluster or EMR. The attack surface is much different, so the customer
shares responsibility in the security model.

It may be hard to believe, but we've only discussed the obvious examples that feed into
the shared security model so far. Next, we will discuss the more insidious examples that
have contributed, in part, to Lake Formation's release of governed tables. In recent years,
the computing world as a whole has learned that processor design is not immune from
security flaws. While we've seen exploits in software for decades, many of us had been
spoiled by the reliability of hardware security controls. When Spectre and Meltdown
were announced to the world on January 3, 2018, our ability to depend on previously
trusted operating system process-level isolations was shaken. Researchers had managed
to use timing variations in memory cache reads to extract information from mispredicted
code branches. There is a lot to unpack in that one statement, and while this is not a
book on security or processor design, this is a topic worth understanding a bit more
deeply. Recognizing the fundamental issues at play here will also help you understand the
motivation for several of the new Lake Formation features we'll be discussing shortly.

392 Lake Formation – Advanced Topics

The following diagram shows two possible ways an x86 process could order the
instructions your query engine may need to perform while enforcing column-level access
policies. As you read this, please keep in mind that we have greatly simplified what your
processor and an attacker would do during an exploit. We recommend reading online to
learn more about side-channel exploits such as Spectre and Meltdown:

Figure 14.3 – Speculative execution example

On the left-hand side of the preceding diagram, we can see the instruction ordering that's
been requested by our query engine. Naturally, it begins with checking whether the caller
has access to read the column. Assuming that conditional passes, the query engine then
attempts to read the data and compute a result. The right-hand side of the diagram shows
how your CPU likely executed these instructions. Notice that the order changed! Some
of these pseudo instructions take more time, often measured in clock cycles compared to
others. Modern x86 CPUs can work on multiple instructions each clock cycle. While one
instruction is fetching its operands from the cache, another instruction might be using
a floating-point unit to calculate the result of a division operation. Coordinating which
instructions are utilizing each part of the CPU is often referred to as pipelining.

Reinforcing your data perimeter with Lake Formation 393

The deeper the pipeline, the more efficient a CPU can be, and the faster customers will
perceive the CPU. The trick is keeping all the parts of the CPU busy by guessing what
instructions might be run in the future when earlier instructions take too long and stall
execution. Your CPU is making a bet. It can remain idle while waiting for the earlier
instruction to finish, or it can guess at what it will be asked to do next. Naively waiting
has a 100% probability of wasting CPU cycles. Guessing is highly likely to perform better
than waiting. Chasing this opportunity is what has driven modern x86 CPUs to reorder
instructions and, at times, speculatively execute instructions.

In our access check example shown in the preceding diagram, the memory read and
compute result steps have to wait for the access check branch to decide which path to take.
While that branch is being evaluated, the memory dispatcher is idle, despite having an
impending memory read. Your CPU has a surprisingly large surface area of the physical
chip that's dedicated to branch prediction so that it can guess whether read operations will
be required. So, your CPU will start reading and maybe even calculating the result while
waiting to find out whether the branch will need those instructions to be carried out. This
might seem like a bad idea, especially when instructions have side effects such as writing
to memory. Luckily, your CPU can unwind mispredicted branches so that they have no
materialized side effects.

Unfortunately, Spectre and Meltdown highlighted subtle side effects in the form of
changing the cache's state. Imagine that I can fool your CPU into speculatively executing
a conditional read of a memory address I don't own – maybe even the address where you
are storing an encryption key. Later, I can run a similar operation and use the timing of
when the instruction was completed to tell me whether the value was already in the CPU
cache. If the value was in the cache, I can infer the result of the conditional check and
thus learn about the value that was stored at an address I don't have access to – all because
the CPU cache state wasn't rolled back. In this example, the cache created a side channel
between the erased world of the failed branch prediction and the resumed execution path.

With this primitive memory gadget, an attacker can steal a few bits of memory from
a neighboring process at a time. In practice, this class of vulnerability has been used
to crack cryptographic keys that are used for SSH, SSL, and credential storage. Many
organizations lack the deep security expertise to identify or worry about these kinds of
vulnerabilities. Luckily, Lake Formation can help you stay a step ahead in the race to
securing your data lake.

394 Lake Formation – Advanced Topics

What Is a Gadget?
In the context of malicious code exploits, a gadget is a utility that can be used
to exploit a known vulnerability. Most gadgets are small, typically comprised
of a few dozen code lines, and appear pretty innocuous on their own. When a
malicious actor initially accesses a system that intends to compromise, either
through legitimate means or via an initial vulnerability, they often begin
constructing gadgets that allow them to elevate their privilege or extract
information from the target system.

How Lake Formation can help
At re:Invent 2020, the AWS Lake Formation team announced a preview release of Lake
Formation's next-generation security features. Among these new features were a set of
APIs for reading and writing data to Lake Formation-managed tables, with the ability
to enforce row-level access. The following screenshot shows how to grant access to US
customer data in a table containing data from customers around the globe:

Figure 14.4 – Row-level access control

Understanding the benefits of governed tables 395

These two features can be combined to address many of the challenges we discussed
earlier as part of the shared responsibility security model and data perimeters. The new
APIs essentially offload the TableScan operation from your analytics engine into Lake
Formation's secure filtering fleet. By doing so, Lake Formation can make strong security
guarantees, regardless of the analytics engine you are using. Since Lake Formation's
read and write APIs apply policy enforcement remotely to any arbitrary and potentially
untrusted code within your workload, the attack surface is much smaller. You no longer
need to worry about side channels or admin access to the underlying host. This model
also makes it easier to build multi-tenant analytics applications. Its built-in filtering
capability also allows Lake Formation to enforce previously impossible row-level access
control policies without the need to ETL redacted copies of your dataset.

This functionality is slated to become generally available in late 2021, alongside Lake
Formation's new ACID-compliant governed table type.

Understanding the benefits of governed tables
The entire AWS analytics suite of services, including Athena, EMR, Glue, Redshift, and
Lake Formation, continually makes building and managing data lakes on S3 easier. What
used to take months with traditional data warehouses can be accomplished in days using
these tools with S3. Despite all the advances in these services, customers still face difficult
choices when it comes to the following:

• Ingesting streaming data such as Change-Data-Capture (CDC), click data, or
application logs

• Complying with new regulations such as GDPR and CCPA

• Understanding how your data changes over time

• Adapting table storage to meet evolving usage and access patterns

In addition to the security-oriented features we discussed earlier in this chapter, Lake
Formation's new governed table type takes several steps toward addressing these common
sources of data lake frustration. Governed tables are a new Amazon S3 table type that
supports atomic, consistent, isolated, and durable (ACID) transactions and automatic
storage optimization. To the uninitiated, this may seem like a home run of marketing
buzzwords, but governed tables are poised to change how we build everything, from ETL
pipelines to interactive analytics applications. Next, we'll look at a common problem that
governed tables and their ACID transactions can help us overcome.

396 Lake Formation – Advanced Topics

ACID transactions on S3-backed tables
Have you ever queried multiples data lake tables in the same query, perhaps via a join
clause? If different source systems or ETL jobs populated those tables, there is a significant
probability that any query against them reads inconsistent data. The picture becomes even
bleaker when you factor in partial failures, which can be just as challenging to identify as
they are to repair. This might be a good time for an example.

Suppose we work for an advertising company and routinely track the performance of
different advertising campaigns by joining three tables. The first table contains details
about all the campaigns, including their total budget, start date, end date, and sponsor.
This table is relatively stable, changing only when new campaigns are booked. Next, the
impressions table contains a row representing every time we served an ad placement from
this campaign. This table changes rapidly, with new entries appearing in near-real time.
The final table contains conversion data that identifies which impressions resulted in an
ad click or, better still, a purchase! This table doesn't change as often as we like, but it is far
from static and mostly populated with data from third-party systems.

When you open your Athena console and run your company's conversion rate reporting
query in preparation for a client meeting, you are rolling the dice that the result you get is
an accurate representation of the world. Suppose the impression table has fallen behind
because of a traffic surge leading up to the holiday season. The conversion table has a
much lower flow and doesn't encounter any issues. Even if your query uses set date ranges,
you may still find yourself pulling more conversion data than impression data, resulting
in an overly optimistic view of how well the campaign is doing. The opposite can also be
true when an unexpected issue causes the third-party source data to be late or incomplete.
In that case, you may be scrambling to make up for an inexplicably underperforming
campaign and give unnecessary concessions to an important client.

In our experience, all data lake use cases fall into one of three buckets concerning
consistency:

• Consistency is irrelevant: The data is typically historical (backward-looking),
immutable, or consistency is inherent due to the records containing correlation
IDs that self-identify consistency issues.

• Consistency is unknown: The producers and consumers do not know or
understand the implications of datasets being used together. The organization
spends many hours chasing phantom data quality heisenbugs that seem to resolve
themselves when investigated.

Understanding the benefits of governed tables 397

• Consistency is required and designed for: Producers and consumers take steps
to ensure that the data in the lake is consistent. This often includes publishing
metadata alongside the data that describes its currency. Many organizations also
produce snapshot datasets that simplify consumers by treating data as immutable
at the expense of increased ETL compute and storage costs.

Heisenbug
This is one of our favorite pieces of computer science jargon that plays on
the famous observer effect of quantum mechanics that Werner Heisenberg
first described as the Heisenberg Uncertainty Principle. The theory asserts
that the act of observing a quantum particle changes its behavior and reduces
the reliability of multi-variable measurements. Naturally, frustrated software
engineers rallied behind this theory, which accurately describes a class of
bugs that are usually timing-related. In such cases, a new log line is added or a
debugger is attached to observe how the bug changes how the system behaves
and causes the bug to disappear. In practice, the typical mechanisms that are
used to observe a bug also change the speed or timing of program execution,
which has a real effect on timing bugs resulting from race conditions.

Now that we have a better understanding of data lake consistency, we can look at an
example of how to use transactions against Lake Formation governed tables to simplify
how we produce and consume data. At the time of writing, Athena can read governed
tables but has not released its specification for writes to governed tables yet. Since most
of the interesting consistency work is taken on by the producer or writer, we'll use an
Apache Spark example from Glue ETL instead.

In the following code block, we are creating a Glue Spark context and then calling Lake
Formation's new begin_transaction API. This API returns a transaction identifier
that represents a specific point in time within our data lake, commonly called an epoch.
With this single API call, we've established a point of observation that will be applied to
all reads and writes that are performed within this script. This is important enough that
it warrants repeating. No matter what any other reader or writer does to any table in our
data lake, we are guaranteed a view of the world as soon as we start the transaction, thanks
to the snapshot isolation mechanism offered by governed tables.

398 Lake Formation – Advanced Topics

The script then uses the transaction ID to configure a Spark sink that points to our
impressions table in the ads database. This is primarily boilerplate and is no different
from non-governed table use cases, except for passing the transaction ID to the creation
function:

glueContext = GlueContext(SparkContext.getOrCreate())

txid1 = glueContext.begin_transaction(read_only=False)

sink = glueContext.getSink(connection_type="s3",

 path="s3://my_bucket/ads/impressions/",

 enableUpdateCatalog=True,

 updateBehavior="UPDATE_IN_DATABASE",

 transactionId=txid1)

sink.setFormat("glueparquet")

sink.setCatalogInfo(catalogDatabase=ads,

 catalogTableName=impressions)

Once the sink has been created, the script uses it to write new and updated impression
data into the data lake via a DataFrame that we loaded offscreen from a third-party
source. In the following code block, the script uses a try-except block to ensure that it
either commits or aborts the transaction, depending on the success of the write operation.
As the developer of the script, you can choose when to call commit_transaction or
abort_transaction. For extra protection, you may choose to query the newly written
data to ensure it's available before declaring the write successful and committing the
transaction. Since governed tables support read-your-own-write semantics, you can easily
add this quality check and simplify operations by automatically rolling back the errant or
partial data without human intervention:

try:

 sink.writeFrame(new_and_updated_impressions_dataframe)

 glueContext.commit_transaction(txid1)

except:

 glueContext.abort_transaction(txid1)

There are many other use cases where having transactional capabilities is helpful.
Combining Lake Formation's new data read and write APIs with ACID transactions
enables compliance with data protection laws such as GPDR, which were previously
hampered by the immutable nature of S3 objects.

Understanding the benefits of governed tables 399

Despite S3 objects being inherently immutable, organizations have been modifying data in
their data lakes for years. Most customers are familiar with adding new data as it arrives,
but some must also apply backfills or restate past values by rewriting entire files or tables.
With all these modifications flying around, we often find ourselves wondering, "what
did that table contain when this job ran?". Your compliance officer might even mandate
that specific tables be versioned, even though few, if any, tools exist to automate reading
past versions of essentially random S3 objects. The same machinery that Lake Formation
uses to create ACID transactions enables reading your data lake through any committed
transaction. This is the basic building block of time-travel capabilities, which we will
discuss in the next section.

Time-traveling queries
To resolve transaction conflicts and support rollbacks, more ACID-compliant transaction
managers maintain a transaction log of some kind. The ledger records every change,
addition, or deletion that occurred as part of each transaction. With this information,
the system can rebuild the system's state before or after each transaction. Normally, this
aids in error recovery or transaction rollback when you call the abort_transaction
API. Lake Formation extends the utility of the transaction log to offer time-traveling
capabilities.

When activated, time travel allows queries against one or more governed tables to read
from a consistent snapshot of the data lake, as of the specified time or transaction ID.
The following code block shows how to run an Athena query against the advertising
impression table from the previous section. Despite what 80s movies may have taught
you, you won't need a Delorean or 1.21 Gigawatts of power to calculate the number of
impressions for our advertising campaign as of 30 days ago. We can simply specify a
SYSTEM_TIME value that Athena will use to set the read point in the transaction log:

SELECT campaign_id,

 count(*) as total_impressions,

 avg(linger_time_ms) as avg_impression_duration

FROM

 lakeformation.ads.impressions

WHERE

 campaign_id = 87348519457

FOR SYSTEM_TIME AS OF datesub(day, 30, now())

GROUP BY campaign_id

400 Lake Formation – Advanced Topics

We can use such queries to debug updates to a dataset, observing when and how data
changed. If an update was done incorrectly, then the transaction that caused the data
quality issue can be rolled back. For example, if you have impression data that gets
updated regularly and a customer suggests that the data is incorrect, using time-travel
queries can pinpoint the time when the inaccurate data was updated.

As you might imagine, the underlying storage for transaction tables is more complex than
a basic list of S3 objects. Luckily, governed tables are supported by Lake Formation's new
storage optimizer.

Automated compaction of data
We first covered the role of the physical table layouts as part of Chapter 2, Introduction to
Amazon Athena, and Built-In Functions. This subject resurfaced in Chapter 11, Operational
Excellence – Maintenance, Optimization, and Troubleshooting, where partitioning and
file formats became a focal point of operating Athena workloads at scale. The size and
arranging S3 objects into partitions and tables dictates both the performance and cost of
your analytics queries. When customers ask why their queries are not running as quickly
as expected, file size is one of the first things we must check. Most of the time, the files
being read are tiny, 10 KB to 10 MB. Small files can be detrimental to query performance
because there is overhead associated with each object in the form of metadata, connection
time, and data roundtrips from the underlying storage. This overhead can account for as
much as 80% of the overall time taken to read the data for small objects.

When enabled for your governed tables, Lake Formation monitors the file sizes and
read performance to identify opportunities where reorganizing the data would improve
performance. The first such optimization comes in the form of small file compaction. If
you've ever processed a data stream from the likes of Kinesis or Kafka, you'll likely have
dealt with an accumulation of thousands or millions of small files. Lake Formation will
automatically rewrite the small files into more appropriately sized ones, according to the
given format's recommended file size. Since these compaction operations happen as part
of an ACID transaction, they all occur seamlessly, without your producers or consumers
needing to be aware of the activity.

While this is the final Lake Formation feature we'll cover, it is far from the least, given the
proliferation of self-managed compaction jobs that many customers run.

Summary 401

Summary
In this chapter, we concluded our exploration of Athena by looking at upcoming Lake
Formation features. AWS is increasingly positioning Lake Formation as their one-stop
shop for data lake creation and management. If they succeed in making Lake Formation
a foundational component of AWS data lakes, customers could expect increased
interoperability across the various AWS analytics engines.

It may not be the flashiest feature, but we expect to see many applications mimic Lake
Formation's new security features. Using dedicated data access APIs to decouple policy
enforcement from workload execution is like an easy button for reducing your attack
surface. The addition of ACID transactions with the new governed table type will open
a host of new possibilities such as time travel. Look for these features to reach general
availability in late 2021.

If you'd like to learn more, consult the Further reading section and consider signing up
for the public preview of these features.

Further reading
In this section, we've gathered links to additional materials that you may find helpful in
diving deeper into some of the primary sources for topics mentioned in this chapter:

• AWS Big Data Blog: Getting Started with Governed Tables: https://amzn.
to/3AsSjYX

• AWS Big Data Blog: Creating Governed Tables: https://amzn.to/3s9pJJ1

• AWS Big Data Blog: Using ACID Transactions on Governed Tables: https://
amzn.to/2VtEV87

• AWS Big Data Blog: Implementing Cell-Level and Row-Level Security: https://
amzn.to/3CtrkhB

• AWS Big Data Blog: Securing Data Lakes: https://amzn.to/2X9QGkv

• Side-channel a-ttacks: Spectre and Meltdown: https://bit.ly/3Cu0pSR

https://amzn.to/3AsSjYX
https://amzn.to/3AsSjYX
https://amzn.to/3s9pJJ1
https://amzn.to/2VtEV87

https://amzn.to/2VtEV87

https://amzn.to/3CtrkhB
https://amzn.to/3CtrkhB
https://amzn.to/2X9QGkv
https://bit.ly/3Cu0pSR

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://Packt.com

https://packt.com
https://customercare@packtpub.com
https://www.packt.com

404 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learn Amazon SageMaker

Julien Simon

ISBN: 9781800208919

• Create and automate end-to-end machine learning workflows on Amazon Web
Services (AWS)

• Become well-versed with data annotation and preparation techniques

• Use AutoML features to build and train machine learning models with AutoPilot

• Create models using built-in algorithms and frameworks and your own code

• Train computer vision and NLP models using real-world examples

https://packt.link/9781800208919

Other Books You May Enjoy 405

• Cover training techniques for scaling, model optimization, model debugging, and
cost optimization

• Automate deployment tasks in a variety of configurations using SDK and several
automation tools

Scalable Data Streaming with Amazon Kinesis

Tarik Makota, Brian Maguire, Danny Gagne, Rajeev Chakrabarti

ISBN: 9781800565401

• Get to grips with data streams, decoupled design, and real-time stream processing

• Understand the properties of KFH that differentiate it from other Kinesis services

• Monitor and scale KDS using CloudWatch metrics

• Secure KDA with identity and access management (IAM)

• Deploy KVS as infrastructure as code (IaC)

• Integrate services such as Redshift, Dynamo Database, and Splunk into Kinesis

https://packt.link/9781800565401

406

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Serverless Analytics with Amazon Athena, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/r/1-800-56234-9
https://packt.link/r/1-800-56234-9

Index

A
Abstract Syntax Tree (AST) 35
ACID transactions

about 30
on S3-backed tables 396-398

ad hoc analytics hype 176-179
ad hoc analytics strategy

building 180
data sharing 181
deploying, to customers 182
query engines, selecting 182
storage, selecting 180, 181

aggregate function 361
Amazon Athena

about 6, 22
ad hoc analytics 50, 51
analytics features, adding

to application 52
authentication 50
connectivity 50
metastore 8
need for 50
separation, of storage and compute 7
serverless ETL pipeline 53
use cases 7, 54

Amazon Athena, key features
about 27
ACID transactions 30, 31
auto-upgrades 31
built-in functions 33
federation and extensibility 32
file formats 29
Hive-compliant metastore 29
self-tuning 31
semi-structured data 33
SQL dialect 28
statement types 27
unstructured data 33

Amazon Athena pricing
reference link 6

Amazon DocumentDB 32
Amazon DynamoDB 32
Amazon Kinesis 30
Amazon Neptune 32
Amazon Resource Name (ARN) 128
Amazon S3 pricing

reference link 8
Amazon SageMaker 52
Amazon Timestream 32

408 Index

analytics queries
example 219, 220
running 16-19

Apache Airflow 242
Apache Arrow 324
Apache Hive metastore 101-103
Apache ORC 29, 98
Apache Parquet 29, 98
Apache Ranger 137
Apache Sentry 137
Apache Spark 24
application

securing 280
application log data

reading 224-226
application monitoring 286-290
application programming

interface (API) 254
approximate queries

running 71-74
arbitrary log data

querying 222
ArrowValueProjector's performance 368
asymmetric encryption 125
Athena

AWS Glue Crawlers, best practices 111
connecting to 265
costs, controlling 298-300
costs, monitoring 297
emitted query metrics, monitoring 295
Jupyter Notebooks, using with 189-194
query queue time, monitoring 296, 297
usage, monitoring 295
usage, optimizing for performance

and cost 285
used, for transforming data 114-117

Athena CMDB Connector
about 332, 333
querying 336
reference link 333

Athena Connectors
about 326
functions 326
working 326-328

Athena CREATE TABLE statements
using 104

Athena Create Table wizard
using 105

Athena Federation SDK 339
Athena JDBC

migrating to 268
Athena ODBC

migrating to 268
Athena Query Federation 32
Athena results

writing 43
Athena's APIs

using 80-85
atomic, consistent, isolated, and

durable (ACID) 96, 144, 170
AWS CloudShell

reference link 60
AWS CloudTrail

about 286
auditing with 137-140

AWS CMDB 33
AWS DynamoDB 52
AWS EventBridge 274
AWS Fargate 24
AWS Glue

about 143
features 145
using, for data cleansing 145

Index 409

using, for data normalization 145
using, for data transformation 145

AWS Glue console
using 106

AWS Glue Crawlers
about 154
best practices, for Athena 111
running 107
used, for discovering S3 datasets 107
using 106, 154
wizard, obtaining 108-111
working 107

AWS Glue DataBrew
about 150
using 150, 151

AWS Glue Data Catalog 100, 101
AWS Glue ETL

about 146
using 146-148

AWS Glue Studio
about 148
Monitoring tab 149
using 148, 149

AWS Glue Workflows
using 152, 153

AWS IAM 143
AWS Key Management Service (KMS) 45
AWS Lake Formation

about 137, 143
benefits of using, for authorization 155
features 145
governed tables 169
used, for securing data lake 155

AWS Lake Formation blueprints
about 153
using 154

AWS Lambda 23, 328
AWS Lambda function 242

AWS Managed WorkFlows 242
AWS Organizations 286
AWS PrivateLink 284
AWS Quicksight

about 183
customization 189
dashboard 186
sample data, obtaining 184
setting up 184-189
using, with Athena 183

AWS Serverless Application Repository 32

B
best practices, for connecting to Athena

idempotency tokens 270-273
query tracking 274

big data
Lambda, using for 329

BI Tools 7
blueprints 153
bucketing

about 305
example 306
limitations 306

built-in machine learning UDFs
pre-setup requirements 374-377
using 374

business intelligence (BI) 231

C
catalogs 93
cell 379
central processing unit (CPU) 60
client-side encryption

enabling, with customers KMS
keys (CSE-KMS) 129

410 Index

CloudTrail 143
Cloudwatch Logs 32
Cloudwatch Metrics 32
coarse-grained access control (CGAC)

about 132
enabling, with IAM resource policies

for data on S3 bucket 132
through S3 bucket policies 133-136

comma-separated value (CSV) data
querying 216
reading, with OpenCSVSerDe 220-222

Comma-Separated Values
(CSV) 63, 98, 233

common file formats
columnar formats 303, 304
row formats 303

connector 93
connector code

writing 339
Cost-Based Optimizations (CBO) 98
CREATE-TABLE-AS-SELECT

(CTAS) statement
about 63
using 63-66

credential management 280-282
credential stores 281
CSE-KMS encryption 158
CTAS

for large result sets 291
custom connector

building 337
deploying 353-357
development environment,

setting up 338
testing 353-357

customers KMS keys (CSE-KMS)
used, for enabling client-

side encryption 129

customers KMS keys (SSE-KMS)
used, for enabling server-

side encryption 128

D
Dashboarding tool 189
data

about 209
automated compaction 400
encrypting, in Glue Data Catalog 125
transforming, with Athena 114-117
types 210

databases 93, 94
Data Definition Language

(DDL) 12, 27, 81, 93
data encryption

about 125, 126
client-side encryption, enabling with

customers KMS keys (CSE-KMS) 129
encryption methods, comparing 130
mandating, with S3 bucket 130
server-side encryption, enabling with

customers KMS keys (SSE-KMS) 128
server-side encryption, enabling

with S3 keys (SSE-S3) 126
DataFrame 194, 198
data in transit

encrypting 132
data lake

securing, with Lake Formation 155
data lake architecture

data, transforming, with
Athena 114-117

designing 112, 113
stages of data 113

Data lake model 321

Index 411

data lake use cases
buckets concerning consistency 396

Data Manipulation Language
(DML) 12, 27

data, on AWS
auditing, enabling 125
best practices 121, 122
data encryption, enabling 124
IAM even account least privilege 123
IAM even account permissions 122
IAM role least privilege 123
IAM role permissions 122
IAM user credentials, rotating 123
IAM user least privilege 123
IAM user permissions 122
mechanism 125
metadata encryption, enabling 124
public access, blocking on

S3 buckets 123, 124
data perimeter

establishing 388, 389
reinforcing, with Lake

Formation 386-388
datasets

about 185
obtaining 9-11
preparing 9-11

data source 93, 99, 103, 104
data storage optimization

bucketing 305
compression, using 302
file formats 303
file sizes and count 301, 302
partitioning 304
performing 301

data structure 209
decryption keys 125
DeepAR 52

E
elastic network interface (ENI) 109
ElasticSearch 32
emitted query metrics, Athena

EngineExecutionTime 295
ProcessedBytes 296
QueryPlanningTime 295
QueryQueueTime 295
ServiceProcessingTime 296
TotalExecutionTime 295

encryption key 125
end-to-end (E2E) latency 239
entity-relationship diagram

(ERD) 234, 235
Environmental Systems Research

Institute (Esri) 81
ETL

for aggregation 234, 235
for integration 231-233
for modularization 235, 236
for performance 237
uses 231
versus query in place 238

ETL function
coding 246-255
creating 243, 244
testing 256, 257

ETL queries
running 59-62
triggering, with S3 notifications 257-260

ETL queries, for Athena
designing 238
integration points 241
orchestrator, using 242
performance 239, 240

EventBridge rule
setting up 277, 278

412 Index

ExampleMetadataHandler
editing 340-348

ExampleRecordHandler
editing 348-353

external functions 361

F
file formats 29
fine-grained access control (FGAC)

about 132
enabling, with Lake Formation

for data on S3 bucket 137
full log scans

creating, on S3 222-224
fully managed service

about 25
using, in serverless 25, 26

G
gadget 394
General Data Protect Regulation

(GDPR) 30
Glue Data Catalog

data, encrypting 125
metadata, encrypting 125, 131, 132

Glue Triggers 152
governed tables

about 169
automated compaction, of data 170
benefits 395
row-level filtering 171
time-traveling queries 171
transactions, on tables in S3 170

Grantable checkbox 162
Grok SerDe 225

H
HBase 32
Heisenberg Uncertainty Principle 397
Hive-compliant metastore 29

I
IAM resource policies for data

used, for enabling CGAC
on S3 bucket 132

idempotency tokens 271, 273
INSERT-INTO statement

using 67-70
integrated development

environment (IDE) 246

J
Java Database Connectivity

(JDBC) 32, 265
JavaScript Object Notation (JSON)

about 29, 85, 210
schema updates 214

Java versions 363
JDBC Driver 265
JSON data

customer's dataset, reading 211, 212
querying 210
reading 214

JSON fields
parsing 213, 214

JSON SerDe comparison 215
Jupyter Notebooks

about 189
cell 197
correlation analysis, running 201-205

Index 413

erroneous data, pruning
with SciPy 199-201

notebook instance, connecting
to Athena 196, 197

results, printing with pandas 197, 198
results, visualizing with Seaborn 198
simple Athena query, running 197, 198
using 195
using, with Athena 189-194

K
Kafka 30
Key Management Service (KMS) 126
Key Performance Indicators (KPIs) 177

L
Lake Formation

row-level access control 394, 395
used, for reinforcing data

perimeter 386-388
Lake Formation access control

enabling 159
Lake Formation authorization

considerations 158
consistent security, across

AWS accounts 157
finer grained data access controls 156
limitations 158
permissions, separating with

credentials 156
policies, applying at column level 156
policies, applying at database 156
policies, applying at table 156
scalability 156
security policies, applying consistently

across AWS services 157

Lake Formation for access control
database, configuring 163, 164
database, creating 163
data lake administrators, creating 160
data lake administrators, registering 160
permissions, granting to S3 location 162
permissions, granting to user 165-169
production accounts, upgrading for 159
S3 location, registering 160, 161
S3 location, registering with

Encryption Enabled 161
Lake Formation for data

used, for enabling FGAC
on S3 bucket 137

Lambda
using, for big data 329

Lambda, as orchestrator
about 243
ETL function, coding 246-255
ETL function, creating 243, 244
ETL function, testing 256, 257

Lambda function timeout 245
latency 39, 40
least privilege 281
Levenshtein distance 33
Looker 7

M
Matplotlib 194
Maven project

setting up 364, 365
Maven Shading 371
mdates module 202
memory-bound operations 42

414 Index

metadata
about 92
encrypting, in Glue Data

Catalog 125, 131, 132
metastore

about 8, 91-93
S3 datasets, registering 104

metering and billing
about 43, 44
additional costs 45, 46
control costs 49
file format 46-48

monitoring, Athena 295

N
Network Address Translation (NAT) 330
network safety 282, 283
NumPy 195
NYC Taxi & Limousine

Commission's (TLC's) 9

O
ODBC Driver 265
Online Analytics Processing (OLAP) 180
OODA (observe-orient-decide-

act) loop 178, 234
OpenCSVSerDe

reference link 222
used, for reading CSV data 220-222
used, for reading TSV data 220-222

Open Database Connectivity (ODBC) 265
OpenX JSON SerDe properties

case insensitivity 216
field names, with periods 216
mapping 215

optimization techniques, queries
about 307
columns, selecting 311
execution plan 307-309
join operation 309, 310
ORDER BY operation 310, 311
query results, parallelizing 311

P
pandas 194
partitioning 304, 305
performance

data storage, optimizing 301
optimizing 300
queries, optimizing 307

Personally Identifiable Information
(PII) 114, 181, 351

physical plan 324
POM file

updating 365, 366
pre-built connectors

using 332-337
Presto

about 24, 34, 35
architecture 35-39
reference link 6

Q
queries

federating, across VPCs 330, 331
running 12, 13, 278, 279
tracking 274
troubleshooting 311, 312

Query Federation
about 321-324
features 324, 325

Index 415

R
Random Cut Forest model 382
Redis 32
regular expressions 224
relational database management

system (RDBMS) 241
Remote Procedure Call (RPC) 244
row-level filtering 171
run-length encoding (RLE) 48

S
S3

full log scans, creating on 222-224
S3 access logs

auditing with 137-141
S3 backed tables

ACID transactions 396-398
S3 bucket

used, for mandating data encryption 130
S3 datasets

Athena CREATE TABLE
statements, using 104

Athena Create Table wizard, using 105
AWS Glue console, using 106
discovering, with AWS

Glue Crawlers 107
registering, in metastore 104

S3 data sources
about 100
AWS Glue Crawlers, using 106

S3 keys (SSE-S3)
used, for enabling

server-side encryption 126
S3 notifications

ETL queries, triggering with 257-260
S3 objects table schema 336

Sagemaker Notebook
Notebook Instance, connecting

to Athena 378, 379
setting up 377
trained model, using in

Athena UDF 382, 383
training data, preparing 380
used, for training model 377, 381, 382

sample JDBC code 266, 267
sample ODBC code 267, 268
saved queries

workloads, organizing 75-80
scalar function 361
scale 39, 40
schema 93, 94
schema updates

with JSON 214
SciPy

about 195
using 199

Seaborn 194
security pillars

administration 122
auditing 122
authentication 121
authorization 121
data protection 121

sell-through rate (STR) 236
serverless

about 23-25
with fully managed service 25, 26

Serverless Application Model (SAM) 374
server-side encryption

enabling, with customers KMS
keys (SSE-KMS) 128

enabling, with S3 keys 126
Service Linked Role 160

416 Index

shared responsibility security
model 389-393

Simple Notification Service (SNS) 257
Simple Queue Service (SQS) 257
SNS topic

setting up 275, 276
software development kit (SDK) 80
Spark workloads

process-level isolation 390
Spice 183
SQL dialect 28
stages of data

about 113
Application-Specific Format 114
processed data 114
raw data 113
transformed data 114

stats module 199
Structured Query Language (SQL) 59, 237
SymlinkTextInputFormat 31
symmetric encryption 125

T
table

about 94
creating 14-16

Tableau 7
table, components

external table 95
file formats 98
partition 96, 97
schema 96
serialization and deserialization

(SerDe) 98
table properties 98
table statistics 98

TableScan performance 41
tab-separated value (TSV) data

querying 216
reading, with OpenCSVSerDe 220-222

Textfile format 29
ticker module 202
time traveling 144
time-traveling queries 171, 399
TPC-DS 33
troubleshooting, queries

performing 311, 312
query failing 313, 314
query running slow 312, 313

typical CSV dataset
reading 217, 218

typical TSV dataset
reading 218

U
UDF code

building 370
calls, directing to AWS Lambda

APIs 371, 372
deploying 371
maintaining 374
using 372, 373
writing 364, 368-370

Uniform Resource Identifier (URI) 247
UserDefinedFunctionHandler 367
user-defined functions (UDFs)

about 182, 360
development environment,

setting up 362, 363
writing 362

Index 417

V
Virtual Private Clouds (VPCs) 283, 284
Vladimir Levenshtein 33
VPC endpoints 284

W
WorkGroup queries

workloads, organizing 75-80
workload isolation 285, 286
WYSIWYG (What Ya See Is

What Ya Get) 183

Z
zscore 199

	Cover
	Title Page
	Foreword
	Contributors
	Table of Contents
	Preface
	Copyright and Credits
	Section 1:
Fundamentals Of Amazon Athena
	Chapter 1: Your First Query
	Technical requirements
	What is Amazon Athena?
	Use cases
	Separation of storage and compute

	Obtaining and preparing sample data
	Running your first query
	Creating your first table
	Running your first analytics queries

	Summary

	Chapter 2: Introduction to Amazon Athena
	Technical requirements
	Getting to know Amazon Athena
	Understanding the "serverless" trend
	Beyond "serverless" with 'fully managed' offerings
	Key features

	What is Presto?
	Understanding scale and latency
	TableScan performance
	Memory-bound operations
	Writing results

	Metering and billing
	Additional costs
	File formats affect cost and performance
	Cost controls

	Connecting and securing
	Determining when to use Amazon Athena
	Ad hoc analytics
	Adding analytics features to your application
	Serverless ETL pipeline
	Other use cases

	Summary
	Further reading

	Chapter 3: Key Features, Query Types, and Functions
	Technical requirements
	Running ETL queries
	Using CREATE-TABLE-AS-SELECT
	Using INSERT-INTO

	Running approximate queries
	Organizing workloads with WorkGroups and saved queries
	Using Athena's APIs
	Summary

	Section 2:
Building and Connecting to Your Data Lake
	Chapter 4: Metastores,
Data Sources, and Data Lakes
	Technical requirements
	What is a metastore?
	Data sources, connectors, and catalogs
	Databases and schemas
	Tables/datasets

	What is a data source?
	S3 data sources
	Other data sources

	Registering S3 datasets in your metastore
	Using Athena CREATE TABLE statements
	Using Athena's Create Table wizard
	Using the AWS Glue console
	Using AWS Glue Crawlers

	Discovering your datasets on S3 using AWS Glue Crawlers
	How do AWS Glue Crawlers work?
	AWS Glue Crawler best practices for Athena

	Designing a data lake architecture
	Stages of data
	Transforming data using Athena

	Summary
	Further reading

	Chapter 5: Securing Your Data
	Technical requirements
	General best practices to protect your data
on AWS
	Separating permissions based on IAM users, roles,
or even accounts
	Least privilege for IAM users, roles, and accounts
	Rotating IAM user credentials frequently
	Blocking public access on S3 buckets
	Enabling data and metadata encryption and
enforcing it
	Ensuring that auditing is enabled
	Good intentions cannot replace good mechanisms

	Encrypting your data and metadata in Glue Data Catalog
	Encrypting your data
	Encrypting your metadata in Glue Data Catalog

	Enabling coarse-grained access controls with IAM resource policies for data on S3
	Enabling FGACs with Lake Formation for data on S3
	Auditing with CloudTrail and S3 access logs
	Auditing with AWS CloudTrail
	Auditing with S3 server access logs

	Summary
	Further reading

	Chapter 6: AWS Glue and AWS Lake Formation
	Technical requirements
	What AWS Glue and AWS Lake Formation can
do for you
	Securing your data lake with Lake Formation
	What AWS Lake Formation governed tables
can do for you

	Summary
	Further reading

	Section 3:
Using Amazon Athena
	Chapter 7: Ad Hoc Analytics
	Technical requirements
	Understanding the ad hoc analytics hype
	Building an ad hoc analytics strategy
	Choosing your storage
	Sharing data
	Selecting query engines
	Deploying to customers

	Using QuickSight with Athena
	Getting sample data
	Setting up QuickSight

	Using Jupyter Notebooks with Athena
	pandas
	Matplotlib and Seaborn
	SciPy and NumPy
	Using our notebook to explore

	Summary

	Chapter 8: Querying Unstructured and Semi-Structured Data
	Technical requirements
	Why isn't all data structured to begin with?
	Querying JSON data
	Reading our customer's dataset
	Parsing JSON fields
	Other considerations when reading JSON
	Querying comma-separated value and tab-separated value data

	Querying arbitrary log data
	Doing full log scans on S3
	Reading application log data

	Summary
	Further reading

	Chapter 9: Serverless ETL Pipelines
	Technical requirements
	Understanding the uses of ETL
	ETL for integration
	ETL for aggregation
	ETL for modularization
	ETL for performance

	Deciding whether to ETL or query in place
	Designing ETL queries for Athena
	Don't forget about performance
	Begin with integration points
	Use an orchestrator

	Using Lambda as an orchestrator
	Creating an ETL function
	Coding the ETL function
	Testing your ETL function

	Triggering ETL queries with S3 notifications
	Summary

	Chapter 10: Building Applications with Amazon Athena
	Technical requirements
	Connecting to Athena
	JDBC and ODBC
	Which one should I use?

	Best practices for connecting to Athena
	Idempotency tokens
	Query tracking

	Securing your application
	Credential management
	Network safety

	Optimizing for performance and cost
	Workload isolation
	Application monitoring
	CTAS for large result sets

	Summary

	Chapter 11: Operational Excellence – Monitoring, Optimization, and Troubleshooting
	Technical requirements
	Monitoring Athena to ensure queries run smoothly
	Optimizing for cost and performance
	Troubleshooting failing queries
	Summary
	Further reading

	Section 4:
Advanced Topics
	Athena Query Chapter 12: Federation
	Technical requirements
	What is Query Federation?
	Athena Query Federation features

	How Athena Connectors work
	Using Lambda for big data
	Federating queries across VPCs

	Using pre-built Connectors
	Building a custom connector
	Setting up your development environment
	Writing your connector code

	Summary

	Chapter 13: Athena UDFs and ML
	Technical requirements
	What are UDFs?
	Writing a new UDF
	Setting up your development environment
	Writing your UDF code
	Building your UDF code
	Deploying your UDF code
	Using your UDF

	Using built-in ML UDFs
	Pre-setup requirements
	Setting up your SageMaker notebook
	Using our notebook to train a model
	Using our trained model in an Athena UDF

	Summary

	Chapter 14: Lake Formation – Advanced Topics
	Reinforcing your data perimeter with Lake Formation
	Establishing a data perimeter
	Shared responsibility security model
	How Lake Formation can help

	Understanding the benefits of governed tables
	ACID transactions on S3-backed tables

	Summary
	Further reading

	About Packt
	Other Books You May Enjoy
	Index

