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Preface
Amazon SageMaker is a fully managed AWS service that provides the ability to build, 
train, deploy, and monitor machine learning models. The book begins with a high-
level overview of Amazon SageMaker capabilities that map to the various phases of the 
machine learning process to help set the right foundation. You'll learn efficient tactics 
to address data science challenges such as processing data at scale, data preparation, 
connecting to big data pipelines, identifying data bias, running A/B tests, and model 
explainability using Amazon SageMaker. 

As you advance, you'll understand how you can tackle the challenge of training at scale, 
including how to use large datasets while saving costs, monitoring training resources 
to identify bottlenecks, speeding up long training jobs, and tracking multiple models 
trained for a common goal. Moving ahead, you'll find out how you can integrate Amazon 
SageMaker with other AWS services to build reliable, cost-optimized, and automated 
machine learning applications. In addition to this, you'll build ML pipelines integrated 
with MLOps principles and apply best practices to build secure and performant solutions.

By the end of the book, you'll confidently be able to apply Amazon SageMaker's wide 
range of capabilities to the full spectrum of machine learning workflows.

Who this book is for
This book is for expert data scientists responsible for building machine learning 
applications using Amazon SageMaker. Working knowledge of Amazon SageMaker, 
machine learning, deep learning, and experience using Jupyter Notebooks and Python is 
expected. Basic knowledge of AWS services related to data, security, and monitoring will 
help you make the most out of the book.

What this book covers
Chapter 1, Amazon SageMaker Overview, provides a high-level overview of the Amazon 
SageMaker capabilities that map to the various phases of the machine learning process. 
This sets a foundation for a best practice discussion of using SageMaker capabilities to 
handle data science challenges.
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Chapter 2, Data Science Environments, provides a brief overview of technical requirements 
along with a discussion on setting up the necessary data science environments using 
Amazon SageMaker. This sets the foundation for building and automating ML solutions 
throughout the rest of the book.

Chapter 3, Data Labeling with Amazon SageMaker Ground Truth, kicks off with a review 
of challenges involved in labeling data at scale – costs, time, unique labeling needs, 
inaccuracies, and bias. Best practices to use Amazon SageMaker Ground Truth to address 
the challenges identified are discussed.

Chapter 4, Data Preparation at Scale Using Amazon SageMaker Data Wrangler and 
Processing, kicks off with a review of challenges involved in data preparation at scale – 
compute/memory resource constraints, long processing times, along with the challenges 
of the duplication of feature engineering efforts, bias detection, and understanding feature 
importance. A discussion on Amazon SageMaker capabilities to address these challenges 
along with best practices to apply follows.

Chapter 5, Centralized Feature Repository with Amazon SageMaker Feature Store, provides 
best practices for using a centralized repository for features built with Amazon SageMaker 
Feature Store. Techniques to ingest features and provide access to features to satisfy access 
time requirements are discussed.

Chapter 6, Training and Tuning at Scale, provides best practices for training and tuning 
machine learning models with large datasets using Amazon SageMaker. Techniques such 
as distributed training with data and model parallelism, automated model tuning, and 
grouping multiple training jobs to identify the best performing job are discussed.

Chapter 7, Profile Training Jobs with Amazon SageMaker Debugger, discusses best practices 
to debug, monitor, and profile training jobs to detect long-running non-converging jobs 
and eliminate resource bottlenecks. The monitoring and profiling capabilities offered by 
Amazon SageMaker Debugger help improve training time and reduce training costs.

Chapter 8, Managing Models at Scale Using a Model Registry, introduces SageMaker 
Model Registry as a centralized catalog of trained models. Models can be deployed from 
the registry and the metadata maintained in the registry is useful to understand the 
deployment history of an individual model. Model Registry is an important component of 
addressing the challenge of model deployment automation  
with CI/CD.
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Chapter 9, Updating Production Models Using Amazon SageMaker Endpoint Production 
Variants, addresses the challenge of updating models in production with minimal 
disruption to the model consumers using Amazon SageMaker Endpoint production 
variants. The same production variants will be used to showcase advanced strategies 
such as canary deployments, A/B testing, blue/green deployments that balance cost with 
downtime, and ease of rollbacks.

Chapter 10, Optimizing Model Hosting and Inference Costs, introduces best practices 
to optimize hosting and inference costs on Amazon SageMaker. Multiple deployment 
strategies are discussed to meet the computation needs and response time requirements 
under varying inference traffic demands.

Chapter 11, Monitoring Production Models with Amazon SageMaker Model Monitor and 
Clarify, introduces best practices to monitor the quality of production models and receive 
proactive alerts on model quality degradation. You will learn how to monitor for data 
bias, model bias, bias drift, and feature attribution drift using Amazon SageMaker Model 
Monitor and SageMaker Clarify.

Chapter 12, Machine Learning Automated Workflows, brings together data processing, 
training, deployment, and model management into automated workflows that can be 
orchestrated and integrated into end-to-end solutions.

Chapter 13, Well-Architected Machine Learning with Amazon SageMaker, applies best 
practices provided by the AWS Well-Architected Framework to building ML solutions on 
Amazon SageMaker.

Chapter 14, Managing SageMaker Features across Accounts, discusses best practices for 
using Amazon SageMaker capabilities in a cross-account setup involving multiple AWS 
accounts, which allows you to better govern and manage machine learning activities 
across the machine learning development lifecycle.

To get the most out of this book
You should have an AWS account and working knowledge of AWS and Amazon 
SageMaker. You should also be familiar with basic machine learning concepts. The code 
samples are written in Python and normally executed in a Jupyter notebook. You will not 
need Python or other software installed on your computer.
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To set up your data science environment, you should also have familiarity with the 
concepts of Infrastructure-as-Code and Configuration-as-Code. It's helpful if you are also 
familiar with AWS CloudFormation but it is not required. 

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code from the book's GitHub repository (a link is available in the next 
section). Doing so will help you avoid any potential errors related to the copying and 
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Amazon-SageMaker-Best-Practices.  
If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in 
this book. You can download it here:

https://static.packt-cdn.com/downloads/9781801070522_
ColorImages.pdf 

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "To use Amazon SageMaker Debugger, you must enhance 
Estimator with three additional configuration parameters: DebuggerHookConfig, 
Rules, and ProfilerConfig."

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801070522_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801070522_ColorImages.pdf
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A block of code is set as follows:

#Feature group name

weather_feature_group_name_offline = 'weather-feature-group-
offline' + strftime('%d-%H-%M-%S', gmtime())

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

@smp.step

def train_step(model, data, target):

       output = model(data)

       long_target = target.long()

       loss = F.nll_loss(output, long_target, reduction="mean")

       model.backward(loss)

       return output, loss

    return output, loss 

Any command-line input or output is written as follows:

$ mkdir css

$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
instance, words in menus or dialog boxes appear in bold. Here is an example: "Keep in 
mind that when you use multiple instances in the training cluster, all instances should be 
in the same Availability Zone."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at 
customercare@packtpub.com and mention the book title in the subject of  
your message.
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Errata: Although we have taken every care to ensure the accuracy of our content,  
mistakes do happen. If you have found a mistake in this book, we would be grateful if  
you would report this to us. Please visit www.packtpub.com/support/errata  
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share your thoughts
Once you've read Amazon SageMaker Best Practices, we'd love to hear your thoughts! 
Please https://packt.link/r/1-801-07052-0 for this book and share your 
feedback.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-07052-0


Section 1:  
Processing Data  

at Scale

This section sets the foundation for the rest of the book with an overview of Amazon 
SageMaker capabilities, a review of technical requirements, and insights on setting up the 
data science environment on AWS. This section then addresses the challenges involved 
in labeling and preparing large volumes of data. You will learn how to apply appropriate 
Amazon SageMaker capabilities and related services to derive features from raw data 
and persist features for reuse. Further, you will also learn how to persist features in a 
centralized repository to share across multiple ML projects.

This section comprises the following chapters:

• Chapter 1, Amazon SageMaker Overview

• Chapter 2, Data Science Environments

• Chapter 3, Data Labeling with Amazon SageMaker Ground Truth

• Chapter 4, Data Preparation at Scale Using Amazon SageMaker Data Wrangler  
and Processing

• Chapter 5, Centralized Feature Repository with Amazon SageMaker Feature Store





1
Amazon SageMaker 

Overview
This chapter will provide a high-level overview of the Amazon SageMaker capabilities 
that map to the various phases of the machine learning (ML) process. This will set a 
foundation for the best practices discussion of using SageMaker capabilities in order to 
handle various data science challenges. 

In this chapter, we're going to cover the following main topics:

• Preparing, building, training and tuning, deploying, and managing ML models

• Discussion of data preparation capabilities

• Feature tour of model-building capabilities

• Feature tour of training and tuning capabilities

• Feature tour of model management and deployment capabilities 

Technical requirements
All notebooks with coding exercises will be available at the following GitHub link:

https://github.com/PacktPublishing/Amazon-SageMaker-Best-
Practices

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices
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Preparing, building, training and tuning, 
deploying, and managing ML models
First, let's review the ML life cycle. By the end of this section, you should understand how 
SageMaker's capabilities map to the key phases of the ML life cycle. The following diagram 
shows you what the ML life cycle looks like:

Figure 1.1 – Machine learning life cycle

As you can see, there are three phases of the ML life cycle at a high level:

• In the Data Preparation phase, you collect and explore data, label a ground truth 
dataset, and prepare your features. Feature engineering, in turn, has several steps, 
including data normalization, encoding, and calculating embeddings, depending on 
the ML algorithm you choose. 

• In the Model Training phase, you build your model and tune it until you achieve a 
reasonable validation score that aligns with your business objective. 

• In the Operations phase, you test how well your model performs against real-world 
data, deploy it, and monitor how well it performs. We will cover model monitoring 
in more detail in Chapter 11, Monitoring Production Models with Amazon 
SageMaker Model Monitor and Clarify.

This diagram is purposely simplified; in reality, each phase may have multiple smaller 
steps, and the whole life cycle is iterative. You're never really done with ML; as you 
gather data on how your model performs in production, you'll likely try to improve it by 
collecting more data, changing your features, or tuning the model.

So how do SageMaker capabilities map to the ML life cycle? Before we answer that 
question, let's take a look at the SageMaker console (Figure 1.2):
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Figure 1.2 – Navigation pane in the SageMaker console

The appearance of the console changes frequently and the preceding screenshot shows the 
current appearance of the console at the time of writing.
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These capability groups align to the ML life cycle, shown as follows:

Figure 1.3 – Mapping of SageMaker capabilities to the ML life cycle

SageMaker Studio is not shown here, as it is an integrated workbench that provides a 
user interface for many SageMaker capabilities. The marketplace provides both data and 
algorithms that can be used across the life cycle.

Now that we have had a look at the console, let's dive deeper into the individual 
capabilities of SageMaker in each life cycle phase.

Discussion of data preparation capabilities
In this section, we'll dive into SageMaker's data preparation and feature engineering 
capabilities. By the end of this section, you should understand when to use SageMaker 
Ground Truth, Data Wrangler, Processing, Feature Store, and Clarify.

SageMaker Ground Truth
Obtaining labeled data for classification, regression, and other tasks is often the biggest 
barrier to ML projects, as many companies have a lot of data but have not explicitly 
labeled it according to business properties such as anomalous and high lifetime value. 
SageMaker Ground Truth helps you systematically label data by defining a labeling 
workflow and assigning labeling tasks to a human workforce. 
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Over time, Ground Truth can learn how to label data automatically, while still sending 
low-confidence results to humans for review. For advanced datasets such as 3D point 
clouds, which represent data points like shape coordinates, Ground Truth offers assistive 
labeling features, such as adding bounding boxes to the middle frames of a sequence once 
you label the start and end frames. The following diagram shows an example of labels 
applied to a dataset:

Figure 1.4 – SageMaker Ground Truth showing the labels applied to sentiment reviews

The data is sourced from the UCI Machine Learning Repository (https://archive.
ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences). To 
counteract individual worker bias or error, a data object can be sent to multiple workers. 
In this example, we only have one worker, so the confidence score is not used.

Note that you can also use Ground Truth in other phases of the ML life cycle; for example, 
you may use it to check the labels generated by a production model.

https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
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SageMaker Data Wrangler
Data Wrangler helps you understand your data and perform feature engineering. Data 
Wrangler works with data stored in S3 (optionally accessed via Athena) and Redshift 
and performs typical visualization and transformations, such as correlation plots and 
categorical encoding. You can combine a series of transformations into a data flow and 
export that flow into an MLOps pipeline. The following screenshot shows an example of 
Data Wrangler information for a dataset:

Figure 1.5 – Data Wrangler displaying summary table information regarding a dataset

You may also use Data Wrangler in the operations phase of the ML life cycle if you want to 
analyze the data coming into an ML model for production inference.

SageMaker Processing
SageMaker Processing jobs help you run data processing and feature engineering tasks 
on your datasets. By providing your own Docker image containing your code, or using a 
pre-built Spark or sklearn container, you can normalize and transform data to prepare your 
features. The following diagram shows the logical flow of a SageMaker Processing job:
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Figure 1.6 – Conceptual overview of a Spark processing job. Spark jobs are particularly handy for 
processing larger datasets

You may also use processing jobs to evaluate the performance of ML models during the 
Model Training phase and to check data and model quality in the Model Operations 
phase.
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SageMaker Feature Store
SageMaker Feature Store helps you organize and share your prepared features. Using 
a feature store improves quality and saves time by letting you reuse features rather than 
duplicate complex feature engineering code and computations that have already been 
done. Feature Store supports both batch and stream storage and retrieval. The following 
screenshot shows an example of feature group information:

Figure 1.7 – Feature Store showing a feature group with a set of related features

Feature Store also helps during the Model Operations phase, as you can quickly look up 
complex feature vectors to help obtain real-time predictions.

SageMaker Clarify
SageMaker Clarify helps you understand model behavior and calculate bias metrics 
from your model. It checks for imbalance in the dataset, models that give different results 
based on certain attributes, and bias that appears due to data drift. It can also use leading 
explainability algorithms such as SHAP to help you explain individual predictions to get 
a sense of which features drive model behavior. The following figure shows an example of 
class imbalance scores for a dataset, where we have many more samples from the Gift Card 
category than the other categories:
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Figure 1.8 – Clarify showing class imbalance scores in a dataset. Class imbalance can lead to biased 
results in an ML model

Clarify can be used throughout the entire ML life cycle, but consider using it early in the 
life cycle to detect imbalanced data (datasets that have many examples of one class but few 
of another).

Now that we've introduced several SageMaker capabilities for data preparation, let's move 
on to model-building capabilities.

Feature tour of model-building capabilities
In this section, we'll dive into SageMaker's model-building capabilities. By the end of this 
section, you should understand when to use SageMaker Studio or SageMaker notebook 
instances, and how to choose between SageMaker's built-in algorithms, frameworks, and 
libraries, versus a bring your own (BYO) approach.
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SageMaker Studio
SageMaker Studio is an integrated development environment (IDE) for ML. It brings 
together Jupyter notebooks, experiment management, and other tools into a unified 
user interface. You can easily share notebooks and notebook snapshots with other team 
members using Git or a shared filesystem. The following screenshot shows an example of 
one of SageMaker Studio's built-in visualizations:

Figure 1.9 – SageMaker Studio showing an experiment graph

SageMaker Studio can be used in all phases of the ML life cycle.

SageMaker notebook instances
If you prefer a more traditional Jupyter or JupyterLab experience, and you don't need the 
additional integrations and collaboration tools that Studio provides, you can use a regular 
SageMaker notebook instance. You choose the notebook instance compute capacity (that 
is, whether you want GPUs and how much storage you need), and SageMaker provisions 
the environment with the Jupyter Notebook and JupyterLab and several of the common 
ML frameworks and libraries installed. 
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The notebook instance also supports Docker in case you want to build and test containers 
with ML code locally. Best of all, the notebook instances come bundled with over 100 
example notebooks. The following figure shows an example of the JupyterLab interface in 
a notebook:

Figure 1.10 – JupyterLab interface in a SageMaker notebook, showing a list of example notebooks

Similar to SageMaker Studio, you can perform almost any part of the ML life cycle in a 
notebook instance.
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SageMaker algorithms
SageMaker bundles open source and proprietary algorithms for many common ML use 
cases. These algorithms are a good starting point as they are tuned for performance, 
often supporting distributed training. The following table lists the SageMaker algorithms 
provided for different types of ML problems:

Figure 1.11 – SageMaker algorithms for various ML scenarios
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BYO algorithms and scripts
If you prefer to write your own training and inference code, you can work with a 
supported ML, graph, or RL framework, or bundle your own code into a Docker 
image. The BYO approach works well if you already have a library of model code, or if 
you need to build a model for a use case where a pre-built algorithm doesn't work well. 
Data scientists who use R like to use this approach. SageMaker supports the following 
frameworks:

• Supported machine learning frameworks: XGBoost, sklearn

• Supported deep learning frameworks: TensorFlow, PyTorch, MXNet, Chainer

• Supported reinforcement learning frameworks: Ray RLLib, Coach

• Supporting graph frameworks: Deep Graph Library

Now that we've introduced several SageMaker capabilities for model building, let's move 
on to training and tuning capabilities.

Feature tour of training and tuning 
capabilities
In this section, we'll dive into SageMaker's model training capabilities. By the end of 
this section, you should understand the basics of SageMaker training jobs, Autopilot 
and Hyperparameter Optimization (HPO), SageMaker Debugger, and SageMaker 
Experiments.
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SageMaker training jobs
When you launch a model training job, SageMaker manages a series of steps for you. 
It launches one or more training instances, transfers training data from S3 or other 
supported storage systems to the instances, gets your training code from a Docker image 
repository, and starts the job. It monitors job progress and collects model artifacts and 
metrics from the job. The following screenshot shows an example of the hyperparameters 
tracked in a training job:

Figure 1.12 – SageMaker training jobs capture data such as input hyperparameter values

For larger training datasets, SageMaker manages distributed training. It will distribute 
subsets of data from storage to different training instances and manage the inter-node 
communication during the training job. The specifics vary based on the ML framework 
you're using, but note that most of the supported frameworks and several of the 
SageMaker built-in algorithms support distributed training.
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Autopilot
If you are working with tabular data and solving regression or classification problems, 
you may find that you're performing a lot of repetitive work. You may have settled on 
XGBoost as a high-performing algorithm, always one-hot encoding for low-cardinality 
categorical features, normalizing numeric features, and so on. Autopilot performs many of 
these routine steps for you. In the following diagram, you can see the logical steps for an 
Autopilot job:

Figure 1.13 – Autopilot process

Autopilot saves you time by automating a lot of that routine process. It will run normal 
feature preparation tasks, try the three supported algorithms (Linear Learner, XGBoost, 
and a multilayer perceptron), and run hyperparameter tuning. Autopilot is a great place to 
start even if you end up needing to refine the output, as it generates a notebook with the 
code used for the entire process. 
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HPO
Some ML algorithms accept tens of hyperparameters as inputs. Tuning these by hand is 
time-consuming. Hyperparameter Optimization (HPO) simplifies that process by letting 
you define the hyperparameters you want to experiment with, the ranges to work over, 
and the metric you want to optimize. The following screenshot shows example output for 
an HPO job:

Figure 1.14 – Hyperparameter tuning jobs showing the objective metric of interest
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SageMaker Debugger
SageMaker Debugger helps you debug and, depending on your ML framework, profile 
your training jobs. While making training jobs run faster is always helpful, debugging is 
particularly useful if you are writing your own deep learning code with neural networks. 
Problems such as exploding gradients or mysterious NaN in your tensors are quite tough 
to track down, particularly in distributed training jobs. Debugger can effectively help 
you set breakpoints to see where things are going wrong. The following figure shows an 
example of the training and validation loss captured by SageMaker Debugger:

Figure 1.15 – Visualization of tensors captured by SageMaker Debugger
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SageMaker Experiments
ML is an iterative process. When you're tuning a model, you may try several variations 
of hyperparameters, features, and even algorithms. It's important to track that work 
systematically so you can reproduce your results later on. That's where SageMaker 
Experiments comes into the picture. It helps you track, organize, and compare 
different trials. The following screenshot shows an example of SageMaker Experiments 
information:

Figure 1.16 – Trial results in SageMaker Experiments

Now that we've introduced several SageMaker capabilities for training and tuning, let's 
move on to model management and deployment capabilities.

Feature tour of model management and 
deployment capabilities
In this section, we'll dive into SageMaker's model hosting and monitoring capabilities. By 
the end of this section, you should understand the basics of SageMaker model endpoints 
along with the use of SageMaker Model Monitor. You'll also learn about deploying 
models on edge devices with SageMaker Edge Manager.
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Model Monitor 
In some organizations, the gap between the ML team and the operations team causes 
real problems. Operations teams may not understand how to monitor an ML system in 
production, and ML teams don't always have deep operational expertise. 

Model Monitor tries to solve that problem: it will instrument a model endpoint and 
collect data about the inputs to, and outputs from, an ML model used for inference. It can 
then analyze that data for data drift and other quality problems, as well as model accuracy 
or quality problems. The following diagram shows an example of model monitoring data 
captured for an inference endpoint:

Figure 1.17 – Model Monitor checking data quality on inference inputs

Model endpoints
In some cases, you need to get a large number of inferences at once, in which case 
SageMaker provides a batch inference capability. But if you need to get inferences closer 
to real time, you can host your model in a SageMaker managed endpoint. SageMaker 
handles the deployment and scaling of your endpoints. Just as important, SageMaker lets 
you host multiple models in a single endpoint. That's useful both for A/B testing (that 
is, you can direct some percentage of traffic to a newer model) and for hosting multiple 
models that are tuned for different traffic segments. 
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You can also host an inference pipeline with multiple containers chained together, which 
is convenient if you need to preprocess inputs before performing inference. The following 
screenshot shows a model endpoint with two models serving different percentages of 
traffic:

Figure 1.18 – Multiple models configured behind a single inference endpoint

Edge Manager
In some cases, you need to get model inferences on a device rather than from the cloud. 
You may need a lower response time that doesn't allow for an API call to the cloud, or you 
may have intermittent network connectivity. In video use cases, it's not always feasible to 
stream data to the cloud for inference. In such cases, Edge Manager and related tools such 
as SageMaker Neo help you compile models optimized to run on devices, deploy them, 
manage them, and get operational metrics back to the cloud. The following screenshot 
shows an example of a virtual device managed by Edge Manager:

Figure 1.19 – A device registered to an Edge Manager device fleet
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Before we conclude with the summary, let's have a recap of the SageMaker capabilities 
provided for the following primary ML phases:

• For data preparation:

Figure 1.20 – SageMaker capabilities for data preparation

• For operations:

Figure 1.21 – SageMaker capabilities for operations



24     Amazon SageMaker Overview

• For model training:

Figure 1.22 – SageMaker capabilities for model training

With this, we have come to the end of this chapter.

Summary
In this chapter, you saw how to map SageMaker capabilities to different phases of the 
ML life cycle. You got a quick look at important SageMaker capabilities. In the next 
chapter, you will learn about the technical requirements and the use case that will be used 
throughout. You'll also learn about setting up managed data science environments for 
scaling model-building activities. 



2
Data Science 

Environments
In this chapter, we will get an overview of how to create managed data science 
environments to scale and create repeatable environments for your model-building 
activities. In this chapter, you will get a brief overview of the machine learning (ML) use 
case, including the dataset that will be used throughout the chapters in this book. 

The topics that will be covered in this chapter are as follows: 

• Machine learning use case and dataset 

• Creating data science environments 

Technical requirements
You will need an AWS account to run the examples included in this chapter. Full code 
examples included in the book are available on GitHub at https://github.com/
PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter02. You will need to install a Git client to access them (https://git-scm.
com/). Portions of the code are included within the chapter to call out specific technical 
concepts; however, please refer to the GitHub repository for the full code required to 
complete the hands-on activities that go along with this chapter.

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter02
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter02
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter02
https://git-scm.com/
https://git-scm.com/
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Machine learning use case and dataset
Throughout this book, we will be using examples to demonstrate the best practices that 
apply across the ML life cycle. For this, we'll focus on a single ML use case and use an 
open dataset with data relating to the ML use case.

The primary use case we'll explore in this book is predicting air quality readings. Given a 
location (weather station) and date, we'll try to predict a value for a particular type of air 
quality measurement (for example, pm25 or o3). We'll treat this as a regression problem 
and explore XGBoost and neural network-based model approaches.

For this, we'll use a dataset from OpenAQ (https://registry.opendata.aws/
openaq/) that includes air quality data from public data sources. The dataset that we will 
use is the realtime dataset (https://openaq-fetches.s3.amazonaws.com/
index.html) and the realtime-parquet-gzipped dataset (https://openaq-
fetches.s3.amazonaws.com/index.html), which includes daily reports from 
multiple stations. 

The daily reports are in JSON format. Each record contains the following:

• A timestamp (both UTC and local)

• Parameter ID (pm25)

• Location (station ID)

• Value (numeric)

• Units for value

• City

• Attribution (link to station website)

• Averaging period (for example, 1 hour)

• Coordinates (lat/lon)

• Country code

• Source name (short version of station name)

• Source type

• Mobile (true/false)

Let's now look at how to create data science environments.

https://registry.opendata.aws/openaq/
https://registry.opendata.aws/openaq/
https://openaq-fetches.s3.amazonaws.com/index.html
https://openaq-fetches.s3.amazonaws.com/index.html
https://openaq-fetches.s3.amazonaws.com/index.html
https://openaq-fetches.s3.amazonaws.com/index.html
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Creating data science environment
In the previous section, we introduced high-level Amazon SageMaker features that can 
often be used in isolation or together for end-to-end capabilities. In this section, we will 
focus on creating consistent and repeatable governed data science environments that can 
take advantage of the features discussed in the first section.

To build, train, and deploy models using Amazon SageMaker, ML builders need access 
to select AWS resources spanning the ML development life cycle. Because many different 
personas may be responsible for building ML models, the term ML builder refers to any 
individual tasked with model building. This could include data scientists, ML engineers, 
or data analysts. 

Data science development environments provide ML builders with the AWS resources 
they need to build and train models. A data science environment could be as simple as an 
AWS account with access to Amazon SageMaker as well as AWS services commonly used 
with Amazon SageMaker, such as Amazon S3, AWS Glue, or Amazon EMR. While this 
may work for small teams, it does not scale well to larger teams or provide repeatability as 
new projects get created or new team members join the team. 

Amazon SageMaker offers three core options in building, training, and tuning models, 
including the following: 

• API/SDK: Training and tuning jobs can be started with the SageMaker API, which 
can be accessed through the high-level SageMaker Python SDK, lower-level AWS 
SDKs such as boto3 for Python, or the AWS CLI.

• Amazon SageMaker Studio: Amazon SageMaker Studio has built-in notebooks 
as part of an integrated workbench that includes native integrations with other 
Amazon SageMaker features and feature visualizations. 

• Amazon SageMaker notebook instances: SageMaker notebook instances provide 
a compute instance with attached storage hosting the Jupyter Notebook application. 
These notebooks come preinstalled with packages, libraries, and kernels. 

This section will focus only on Amazon SageMaker Studio and Amazon SageMaker 
notebook instances for setting up data science environments. Similar approaches 
can be applied in using the SageMaker API or SDK from a data science environment 
hosted outside of SageMaker. We'll first highlight the two common approaches using 
Infrastructure-as-Code (IaC)/Configuration-as-Code (CaC) as well as building a 
common catalog of data science environments. We will expand on each option in more 
detail in later sections. 
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To build a repeatable mechanism for creating data science sandbox environments, it is 
recommended to utilize IaC/CaC to define the intended configuration and controls to 
implement for your sandbox environments. Let's see what the two processes refer to:

• IaC refers to the process of provisioning and managing infrastructure using code 
instead of relying on manual setup, which is not only slow but also prone to error 
and inconsistencies across environments. 

• Cac refers to the process of managing the configuration of resources through code. 
Because this is all defined via code, it can be managed as source code and reused for 
consistency across environments. 

Using Iac/CaC can be taken a step further by providing data science environments 
through a service, such as AWS Service Catalog, that is purposely built for centrally 
creating and managing catalogs of IT services that are approved for use on AWS. 

Figure 2.1 illustrates the most common approaches for setting up governed data science 
environments. Each of these options will be discussed in detail in this section. At a 
minimum, it's recommended to adopt an automated approach, which would include 
options 2 and 3 in the following diagram: 

Figure 2.1 – Approaches for creating data science sandbox environments

A manual approach to provisioning and providing access to AWS services for ML builders 
creates challenges when scaling multiple ML builders and managing governance beyond a 
small team. 
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With the introduction of AWS CloudFormation, or an equivalent service providing IaC/
CaC capabilities, data science environments can be repeatedly created as well as provide 
additional capabilities such as the following: 

• Environment governance: AWS CloudFormation allows you to define the intended 
state of your data science environment in terms of which resources get provisioned 
as well as how they get provisioned. This allows you to enforce configurations 
such as cost allocation tags, encrypted storage, or control access to pre-approved 
resources such as specific instance types for notebook instance compute. 

• Consistency: As ML builder teams grow, there is a need to gain operational 
efficiencies by provisioning environments with reduced manual effort and increased 
consistency. IaC/CaC allows for data science environments to be automatically 
provisioned and provides consistency through code and automation. 

• Improved management capabilities: AWS CloudFormation not only allows you 
to automatically build a data science environment, but it also allows you to quickly 
deprovision a data science environment that is no longer in use. This capability 
reduces environment sprawl and ensures that you are not paying for resources that 
are no longer in use. 

Using IaC/CaC to provision and manage data science environments is often sufficient 
in being able to consistently enable ML builders. However, providing these data science 
environments through a central catalog of IT services adds an additional layer of 
operational efficiencies, such as reducing manual approvals, reducing hand-offs in siloed 
teams, and providing centralized governance by ensuring environments are provisioned 
across teams using only approved configurations. 

AWS Service Catalog allows administrators to centrally define and manage a portfolio of 
approved products or configurations defined through AWS CloudFormation templates. 
The addition of AWS Service Catalog for managing a portfolio of products used to create 
data science environments enables additional capabilities over standalone IaC/CaC, 
including the following:

• Self-service capabilities: Using only IaC/CaC to provision and configure 
AWS resources can often result in delays while requests are approved, tracked, 
and, ultimately, the environment is provisioned by the AWS Admin. AWS 
Service Catalog allows ML builders, or approved designated project resources, 
to automatically request and provision a data science environment that is 
preconfigured according to standards that you define. 

• Applying constraints and access controls: With AWS Service Catalog, constraints 
and access controls can be centrally defined and applied consistently across teams. 
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• Service management: While AWS Service Catalog utilizes AWS CloudFormation, 
it also includes capabilities to manage the life cycle of these templates or products 
across versions. 

AWS Service Catalog allows ML builders, or an approved resource, to request and 
instantiate a data science environment using approved products contained in an AWS 
Service Catalog portfolio. An AWS Service Catalog portfolio can exist in a separate AWS 
account and be shared across AWS accounts to establish a company or business unit 
standard for governing the configuration and provisioning of products. Products within 
a portfolio contain the pre-configured templates, using IaC/CaC, that should be used to 
provision or instantiate the data science environment for an ML builder:

Figure 2.2 – AWS Service Catalog – anatomy of a portfolio

In the rest of this chapter, we'll cover considerations to consistently create data science 
environments through IaC/CaC, as well as advanced capabilities allowing you to provide 
those environments across multiple teams through a governed catalog of IT services. 
Each of these will be covered for both Amazon SageMaker notebook instances as well as 
Amazon SageMaker Studio. First, we'll cover the use of IaC/CaC to create repeatable data 
science environments.

Creating repeatability through IaC/CaC
Using AWS CloudFormation to provision and configure the AWS resources and access 
required for SageMaker model-building activities allows teams to create a repeatable pattern 
that can be shared across teams and used to consistently create data science environments. 
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A CloudFormation template lets you programmatically describe the desired AWS 
resources, configurations, and dependencies that should be provisioned when that 
template is launched as a stack. Key considerations when building AWS CloudFormation 
templates for data science environments include what resources should be provisioned, 
how they should be configured, and what permissions ML builders need for model-
building activities. 

What resources are required?
AWS CloudFormation lets you define the AWS services to automatically provision via a 
template using supported resources and resource types. As an example, Amazon SageMaker 
is a supported resource, and a SageMaker notebook instance is a supported resource type. A 
CloudFormation resource type is represented in a consistent format, as shown in Figure 2.3, 
whether you are building your CloudFormation template as JSON or YAML: 

Figure 2.3 – AWS CloudFormation resource type for an Amazon SageMaker notebook instance

This means teams can automatically provision and configure a notebook instance through 
a CloudFormation template. However, a notebook instance alone is typically not enough 
for a data science environment. For a basic environment, you typically need a notebook 
instance, an S3 bucket, and an AWS IAM SageMaker execution role to execute API calls 
from within your notebook environment. 

In addition to a basic environment, there may be a need to provision other resources  
as part of a data science environment. Additional resources to provision fall into a few  
key categories: 

• Data preparation resources: This category includes AWS resources commonly 
used for data preparation activities such as Amazon Elastic MapReduce (EMR). 
For this, you can create an EMR cluster to process and analyze vast amounts of data 
using the AWS::EMR::Cluster resource type.

• Machine learning pipeline resources: This category includes AWS resources 
commonly used in creating machine learning pipelines, such as the following:

a. AWS CodeCommit: Create a source code repository for model training code in 
AWS CodeCommit using the AWS::CodeCommit::Repository resource type. 
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b. Amazon Elastic Container Registry (ECR): Create a new container image 
repository in ECR that can be used for your training and inference container images 
in the case of using SageMaker's capability to bring your own container image. A 
new repository can be created using the AWS::ECR::Repository resource type.

• Identity resources: This category includes any additional policies or service 
roles that need to be created to use AWS resources. For example, to utilize AWS 
Step Functions, or the Data Science Python SDK, for creating ML workflows, a 
service-level IAM execution role needs to be created. The creation of this role 
can be specified in your CloudFormation template. The role should also include 
permissions that allow access to AWS services and actions that will be used in your 
ML workflow, such as AWS Glue for data preparation and Amazon SageMaker for 
training jobs. 

How should the resources be configured?
Each resource that gets provisioned through a CloudFormation template includes a set 
of properties that define how a resource should be configured. Defining these properties 
through code allows you to consistently provision resources that are configured according 
to pre-defined specifications. Properties include important configuration options, such as 
launching environments with a VPC attached or enforcing controls such as encryption at 
rest. CloudFormation also allows for parameters that can be defined in the template and 
passed in when launching a CloudFormation stack.

What permissions are needed? 
After you've identified the AWS resources and resource types that need to be provisioned 
for your data science environment, you need to identify the permissions that are also 
required to be able to access the notebook environment and the underlying APIs required 
for model building. 

There is some variance between Amazon SageMaker notebook instances and Amazon 
SageMaker Studio discussed in the sections below; however, in both cases, a basic 
environment requires an IAM SageMaker execution role. Depending on the intent of the 
CloudFormation template, you need to consider the additional allowed AWS API calls and 
actions that the SageMaker execution role will need access to. For example, if your data 
science team uses AWS Glue for data preparation activities, the IAM SageMaker execution 
role needs to allow access to the corresponding AWS Glue API actions. 
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To build the AWS CloudFormation templates that will be used to create and consistently 
enforce controls in your data science environment, a few planning tasks should be 
considered before building those templates:

1. First, you should identify the patterns for the resources that should be provisioned 
together. 

2. Second, you should identify how those resources should be configured. 
3. Finally, you need to identify the minimum permissions that need to be in place for 

the provisioned resources to integrate seamlessly as well as the permissions required 
for an ML builder to operate within those provisioned environments. 

Typically, several patterns are built supporting different environment patterns that 
may be needed for varying use cases or multiple teams. The following sections include 
detailed sample scenarios for both Amazon SageMaker notebook instances and Amazon 
SageMaker Studio. For either scenario, the sections can be read independently of one 
another and contain some duplicated information so that they can exist independently. 

Amazon SageMaker notebook instances
Building data science environments that utilize Amazon SageMaker notebook instances 
typically includes the provisioning of the following: 

• A notebook instance (required)

• An S3 bucket (optional)

• An IAM execution role (optional if using an existing one)

• Any other resources identified as needed by ML builder teams
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An Amazon S3 bucket is noted as optional above because many organizations have 
existing S3 buckets that are used for data science model-building activities. In these cases, 
the data science environment may instead include permissions to access an existing S3 
bucket. Figure 2.2 shows a basic data science environment template that provisions a 
SageMaker notebook instance, an Amazon S3 bucket, and creates a SageMaker execution 
role that is attached to the notebook instance. The template can be used to instantiate 
multiple environments:

Figure 2.4 – Notebook instance-based data science environment

The following code snippets from a CloudFormation template show a pattern that can 
be used to quickly provision a data science environment using controls pre-approved by 
security and administrative teams and implemented through code. In the first section of 
the template, we identify parameters that are configurable each time a new template is 
launched. Parameters allow you to pass in data used in the provisioning and configuration 
of resources: 

AWSTemplateFormatVersion: '2010-09-09'

Metadata:
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License: Apache-2.0

Description: 'Example data science environment creating a 
new SageMaker Notebook Instance using an existing VPC.  This 
template also includes the creation of an Amazon S3 Bucket and 
IAM Role.  A lifecycle policy is also included to pull the 
dataset that will be used in future book chapters.'

Parameters: #These are configuration parameters that are passed 
in as input on stack creation

  NotebookInstanceName:

            AllowedPattern: '[A-Za-z0-9-]{1,63}'

            ConstraintDescription: Maximum of 63 alphanumeric 
characters. Can include hyphens but not spaces.

            Description: SageMaker Notebook instance name

            MaxLength: '63'

            MinLength: '1'

            Type: String

            Default: 'myNotebook'

NotebookInstanceType:

  VPCSubnetIds:

  VPCSecurityGroupIds:

  KMSKeyId:

  NotebookVolumeSize:

In the next section of the template, we identify the resources to provision and configure 
for your data science environment. The Properties of each resource identify the 
configuration and controls to provision. These controls can include configuration such as 
ensuring the storage volume attached to the notebook instance is encrypted and that the 
notebook instance is provisioned with a VPC attached:

Resources:

  SageMakerRole:

           Type: AWS::IAM::Role

           Properties:

            AssumeRolePolicyDocument:

            Version: 2012-10-17

             Statement:

            - Effect: Allow

             Principal:

             Service:
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                       - "sagemaker.amazonaws.com"

            Action:

            - "sts:AssumeRole"

           ManagedPolicyArns:

          - "arn:aws:iam::aws:policy/AmazonSageMakerFullAccess"

          - ...

  SageMakerLifecycleConfig:   

        ... 

  SageMakerNotebookInstance:

        ... 

 S3Bucket:

...

In the template snippets here, we are asking for a pre-configured VPC as a parameter 
on input; however, you could also include the creation of a new VPC within your 
CloudFormation template depending on your needs. We also include the notebook 
instance type and storage size as parameters that are configurable with each new launched 
template. Configurations that are likely to change for different ML use cases are good 
candidates that convert into configurable parameters that can be defined while launching 
a stack.

Once the template is uploaded to Amazon S3 and validated, it can be launched repeatedly 
for each new data science environment needed. Launching the stack can be done through 
the AWS console, AWS CLI, or the AWS SDK. This is most frequently done from an 
administrative account using cross-account privileges to ensure control in the roles 
that can define and provision environments versus the users who use the provisioned 
environments. 

After the CloudFormation stack is completed, an ML builder can then access 
their environment through the provisioned Amazon SageMaker notebook 
instances via the AWS console. To access the notebook instance, the sign-in 
credentials for the ML builder must have the IAM permissions to send a 
CreatePresignedNotebookInstanceUrl API request. 
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Amazon SageMaker Studio
Building data science environments that utilize Amazon SageMaker Studio includes the 
provisioning of the following:

• A new user within an existing Studio domain (required)

• An S3 bucket (optional) 

• An IAM execution role (optional if using an existing one)

• Any other resources or configurations identified as needed by ML builder teams

An Amazon S3 bucket is noted as optional above because many organizations have 
existing S3 buckets that are used for data science model-building activities. In these cases, 
the data science environment may instead include permissions to access an existing S3 
bucket. Figure 2.5 shows a basic data science environment template that provisions a new 
user in SageMaker Studio, an Amazon S3 bucket, and creates a SageMaker execution 
role that is attached to the Studio domain user. The template can be used to instantiate 
multiple user environments:

Figure 2.5 – Amazon SageMaker Studio-based data science environment
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The CloudFormation template below shows a pattern that can be used to quickly provision 
an integrated data science workbench environment using Amazon SageMaker Studio, 
giving ML builders access to Studio notebooks as well as other integrated features inside 
SageMaker Studio. Again, the first section contains the parameters that allow you to define 
how to provision and configure the environment:

AWSTemplateFormatVersion: '2010-09-09'

Metadata:

  License: Apache-2.0

Description: 'Example data science environment creating a new 
SageMaker Studio User in an existing Studio Domain using an 
existing VPC.  This template also includes the creation of an 
Amazon S3 Bucket and IAM Role.'

Parameters:

  StudioDomainID:

            AllowedPattern: '[A-Za-z0-9-]{1,63}'

           Description: ID of the Studio Domain where user 
should be created (ex. d-xxxnxxnxxnxn)

           Default: d-xxxnxxnxxnxn

           Type: String

  Team:

             AllowedValues:

            - weatherproduct

            - weatherresearch  

            Description: Team name for user working in 
associated environment

            Default: weatherproduct

            Type: String

  UserProfileName:

           Description: User profile name

           AllowedPattern: '^[a-zA-Z0-9](-*[a-zA-Z0-9]){0,62}'

           Type: String

            Default: 'UserName'

  VPCSecurityGroupIds:

 ... 
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In the next section of the template, we identify the resources to provision and configure 
for your data science environment. Again, the properties of each resource identify the 
configuration and controls to provision as follows:

Resources:

  StudioUser:

            Type: AWS::SageMaker::UserProfile

            Properties:

           DomainId: !Ref StudioDomainID

            Tags:

            - Key: "Environment"

             Value: "Development"

            - Key: "Team"

            Value: !Ref Team

            UserProfileName: !Ref UserProfileName

           UserSettings:

            ExecutionRole: !GetAtt SageMakerRole.Arn

           SecurityGroups: !Ref VPCSecurityGroupIds

 

  SageMakerRole:

          ... 

  S3Bucket:

      ... 

In the CloudFormation template, we are adding a new user to an existing Studio domain. 
A Studio domain exists at the AWS account level and there is only one domain per 
AWS region. You can optionally include the creation of a new Studio domain within 
your CloudFormation template using the AWS:SageMaker:Domain resource type. 
Creating a Studio domain is a one-time activity per AWS account and per AWS region, 
so this would be considered a prerequisite to creating users within your Studio domain. 
In addition, some regulated workloads enforce account-level isolation per ML builder, so 
in these cases, your CloudFormation template may include the setup of a Studio domain. 
However, the most common pattern is multiple users per Studio domain. 
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Once the template is built and validated, it is ready to be deployed after uploading the 
template to Amazon S3 and launching the stack through the AWS console, AWS CLI, 
or the AWS SDK. Again, this is most frequently done from an administrative account 
using cross-account privileges to ensure control in the roles that can define and provision 
environments versus the users who use the provisioned environments. 

After the CloudFormation stack is completed, an ML builder can access the Studio 
environment and create notebooks through the Studio IDE with AWS IAM sign-in 
credentials or through AWS SSO credentials and the generated Studio URL. 

Providing and creating data science environments as 
IT services
Creating a governed catalog of IT services that includes data science environments is 
a way to build on the concepts of using IaC/CaC for repeatability by adding a central 
catalog of approved IT services across teams. This is especially useful for large companies 
or enterprises that rely on central IT or infrastructure teams to provision AWS resources. 
Creating a central catalog using AWS Service Catalog allows the added benefits of 
ensuring compliance with corporate standards, accelerating the ability of ML builders to 
quickly gain access to data science environments, managing versions of products offered 
through the catalog, and integrating with third-party IT Service Management (ITSM) 
software for change control. 

For model building using Amazon SageMaker, AWS Service Catalog allows teams to take 
the AWS CloudFormation templates discussed in the previous section and offer those 
templates as versioned products inside a central portfolio of products. The approved 
configurations for those products can be centrally managed and governed. AWS Service 
Catalog lets teams control the users who have access to launch a product, which means 
admins can also provide self-service capabilities to ML builders to ensure that they have 
quick access to governed data science environments: 
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Figure 2.6 – Centrally managed data science environments using AWS Service Catalog

When products are added to a portfolio, you can optionally add product constraints. 
Product constraints allow you to add controls in terms of how an ML builder uses 
products. Several constraint types are allowed, including launch, notification, template, 
stack set, and tag update constraints. Each of these constraint types can be applied to any 
product; however, launch and template constraints have unique considerations for data 
science environments. 

A launch constraint allows you to specify the IAM role that AWS Service Catalog 
assumes for provisioning AWS resources for a product within a portfolio. This follows the 
recommended practice of granting least privilege by providing ML builders with access 
to the resources that get provisioned, but not allowing ML builders access to provision 
resources outside of AWS Service Catalog. 

For data science environments, a launch constraint can be added to a product in the 
portfolio using a pre-defined IAM role that is assumed for provisioning resources. This 
means you do not need to grant privileges for actions such as creating a new IAM role or 
working with AWS CloudFormation to the ML builder directly. 

A template constraint is a JSON-formatted text file that defines rules describing when an 
ML builder can use the templates, and which values they can specify for the parameters 
defined in the AWS CloudFormation template. Each rule has two properties: a rule 
condition (optional) and assertions (required). 
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The rule condition determines when the rule takes effect, and the assertion describes the 
values a user can specify for a specific parameter. For data science environments, template 
constraints can be used for defining allowable configurations such as instance types via 
assertions. You can also add a rule condition to that assertion that limits the allowed 
instances within specific environments. 

AWS Service Catalog provides added benefits over using AWS CloudFormation by 
creating a centralized portfolio for data science environments that contains managed 
products for provisioning data science environments. The first step is to create a portfolio, 
which can be done through the AWS CLI, AWS SDK, or AWS console, as shown below.

Creating a portfolio in AWS Service Catalog 
To create a portfolio, perform the following steps:

1. From AWS Service Catalog service, select Create portfolio: 

Figure 2.7 – AWS Service Catalog – creating a new portfolio

2. Define your portfolio by entering the following under Create portfolio: 

 � Portfolio name: Data Science Environments

 � Description: Service catalog portfolio of approved products 
for provisioning data science environments for ML 
builders

 �  Owner: Your name



Creating data science environment     43

3. Click the Create button to create the portfolio. You will then see a Success message, 
indicating the portfolio is available to add products.

As products are added to the portfolio and provisioned, AWS Service Catalog provides 
visibility for admins to view all provisioned products and perform administrative tasks, 
such as identifying user resource allocation. ML builders also have a central view of all the 
provisioned products they have requested: 

 

Figure 2.8 – List of all provisioned products

The unique aspects of products for SageMaker notebook instances and SageMaker Studio 
are largely handled within the CloudFormation templates. The high-level steps to create a 
product are consistent between the two types of data science environments. The following 
sections include detailed sample scenarios extending the CloudFormation templates 
previously created for both Amazon SageMaker notebook instances and Amazon 
SageMaker Studio. 
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Amazon SageMaker notebook instances
A new product can be added to an AWS Service Catalog portfolio using the AWS CLI, AWS 
SDK, or the AWS console. When a new product is added to a portfolio, the CloudFormation 
template that defines that environment must be uploaded to an S3 bucket and provided as 
input. In this example, the previous CloudFormation template will be used in addition to 
several other parameters required on input, as shown in the following: 

1. From within the portfolio created, select Upload new product:

Figure 2.9 – AWS Service Catalog – uploading a new product to the portfolio

2. Under Enter product details, there are three sections of information to fill out, 
including Product details, Version details, and Support details.

 � For Product details, this section contains information about the product. Enter 
the following information in the fields on input and then leave any field not 
specified blank: 

 � Product name: Basic SageMaker notebook instance environment.

 � Description: Basic data science environment using Amazon SageMaker 
notebook instances, including (1) New Notebook Instance (2) SageMaker 
Execution IAM Service Role (3) S3 Bucket.

 � Owner: Your name.
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 � The Version details section includes the S3 location of the CloudFormation 
template combined with version and release details. Enter the following in the 
fields matching on input, leaving any field not specified blank:

 � Choose a method: Select the radio button for Use a CloudFormation 
template.

 � Use a CloudFormation template: Enter the S3 URL for the CloudFormation 
template in the format https://….

Important note
The default location for templates used on launched stacks is https://
s3.<region>.amazonaws.com/cf-templates-<hash>-
region/notebook-instance-environment.yaml, or you can 
upload the CloudFormation template provided for this chapter directly to an S3 
bucket you choose.

 � Version name: release-1.0.

 � Description: Initial product release.

 � The Support details section includes the information about the support contacts 
and support information. Enter the following for each field specified and leave any 
field not specified blank:

 � Email contact: Your email@mail.com.

3. After filling in the information as described in the preceding steps, scroll to the 
bottom, select Review, and then Create Product.

4. The product will now be visible within the product list for the Data Science 
Environments portfolio. 

After adding the product to the portfolio, constraints can be added to the product. 
Constraints are optional but offer additional recommended enforcement of practices, 
such as least privilege, and additional controls to enforce best practices such as cost 
optimization. To enforce minimum privileges, a launch constraint can be added to the 
product by first creating a launch IAM role that will be assumed when provisioning a 
product as documented in AWS Service Catalog product documentation: https://
docs.aws.amazon.com/servicecatalog/latest/adminguide/
constraints-launch.html.

https://docs.aws.amazon.com/servicecatalog/latest/adminguide/constraints-launch.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/constraints-launch.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/constraints-launch.html
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In this IAM policy for this role, you'll need to add each service that the product provisions 
to the action list. Therefore, in this case, the following IAM policy may be overly 
permissive for your needs, in which case you can scope the role down to specific actions, 
conditions, and resources for your use case:

{

 

{

            "Version": "2012-10-17",

            "Statement": [

            {

            "Effect": "Allow",

             "Action": [

                         "s3:*"

            ],

           "Resource": "*",

            "Condition": {

                      "StringEquals": {

                     "s3:ExistingObjectTag/
servicecatalog:provisioning": "true"

                     }

          }

          },

          {

          "Effect": "Allow",

           "Action": [

                        "...",

             ],

          "Resource": "*"

           }

           ]

}
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After creating the launch role and the policy to dictate permissions, the role needs to 
be applied to the product as a launch constraint, as shown in the following screenshot. 
The detailed instructions to apply a launch constraint are included in the existing AWS 
product documentation, https://docs.aws.amazon.com/servicecatalog/
latest/adminguide/constraints-launch.html, under Applying a Launch 
Constraint -> To assign the role to a product. After applying the IAM role to the 
product launch constraint, you'll see the constraint listed for the product, as shown in the 
following screenshot: 

Figure 2.10 – AWS Constraints

The launch constraint tells Service Catalog to assume the ServiceCatalog-
DataScienceProducts role when an end user launches the product. This role 
contains the policy we created with the privileges needed to provision and configure all 
the resources in the CloudFormation template for that product. 

Finally, we will add a template constraint to limit the options for instance type size that 
is available to end users. This allows the implementation of cost controls on the type of 
instance that can be provisioned. You can optionally implement multiple constraints 
such as storage size. Template constraints are added as documented in the AWS product 
documentation: https://docs.aws.amazon.com/servicecatalog/latest/
adminguide/catalogs_constraints_template-constraints.html. The 
specific template constraint JSON is listed in the following code block, where we are 
identifying that only the noted instance types are approved and available for use:

{

  "Rules": {

            "Rule1": {

            "Assertions": [

            {

            "Assert": {

https://docs.aws.amazon.com/servicecatalog/latest/adminguide/constraints-launch.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/constraints-launch.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/catalogs_constraints_template-constraints.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/catalogs_constraints_template-constraints.html
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             "Fn::Contains": [

             [

                        "ml.t2.large",

                       "ml.t2.xlarge",

                         "ml.t3.large",

                         "ml.t3.xlarge"

           ],

            {

                      "Ref": "NotebookInstanceType"

             }

           ]

          },

          "AssertDescription": "Instance type should have 
approved types"

             }

            ]

           }

  }

}

After creating the preceding template constraint, you'll now see two constraints for this 
product in the console:

Figure 2.11 – AWS Service Catalog – applied constraint
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The product is then available, with the constraints we identified, within the Data Science 
Environment portfolio and can be made available for self-service provisioning by ML 
builders. 

Amazon SageMaker Studio 
In this section, the CloudFormation template to create a data science environment in 
SageMaker Studio will be used to create a new product inside the data science environment 
portfolio. Again, a new product can be added to an AWS Service Catalog portfolio using 
the AWS CLI, AWS SDK, or the AWS console. When a new product is added to a portfolio, 
the CloudFormation template that defines that environment must be uploaded to an S3 
bucket and provided as input. The steps to add a product require administrative privileges in 
Service Catalog and are performed in the Administration view:

1. From within the Data Science Environments portfolio, click on  Upload 
new product.

2. Under Enter product details, there are three sections of information to fill out, 
including Product details, Version details, and Support details.

For Product details, this section contains information about the product. Enter the 
following, leaving any field not specified blank: 

a) Product name: Basic SageMaker Studio Environment

b) Description: Basic data science environment using Amazon SageMaker Studio, 
including (1) New User in Existing Studio Domain (2) SageMaker Execution 
IAM Service Role (3) S3 Bucket

c) Owner: Your name

For Version details, this section includes the S3 location of the CloudFormation 
template combined with version and release details. Enter the following, leaving any 
field not specified blank:

d) Choose a method: Select the radio button for Use a CloudFormation template.
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e) Use a CloudFormation template: Enter the S3 URL for the CloudFormation 
template in the format https://… Note: The default location for templates 
used on launched stacks is https://s3.<region>.amazonaws.com/
cf-templates-<hash>-region/studio-environment.yaml, or you 
can upload the CloudFormation template provided for this chapter directly to an S3 
bucket of your choosing.

f) Version name: release-1.0.

g) Description: Initial product release.

For Support details, this section includes information about the support contacts 
and support information. Enter the following, leaving any field not specified blank:

Email contact: Your email@mail.com
3. After filling in the information as described in the preceding steps, scroll to the 

bottom, select Review, and then Create Product. 
4. The product will now be visible within the product list for the Data Science 

Environments portfolio.

After adding the product to the portfolio, constraints can be added to the product. 
You can then add a launch constraint, to enforce minimum privileges, and template 
constraints based on your use case using the same steps performed under your notebook 
instance product steps. 

After configuring the products, they can be made available for self-service provisioning 
by ML builders. ML builders must be granted access to the AWS Service Catalog end 
user view in the AWS console. Please refer to the following documentation for details 
on sharing your portfolio and granting access to end users: https://docs.aws.
amazon.com/servicecatalog/latest/adminguide/getstarted-deploy.
html.

This section covered the advantages of using IaC/CaC (AWS CloudFormation) and a 
centrally managed catalog of IT services (AWS Service Catalog) to create data science 
environments at scale. 

Please head over to the References section to find additional reference links that you may 
find useful after reading this section.

https://docs.aws.amazon.com/servicecatalog/latest/adminguide/getstarted-deploy.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/getstarted-deploy.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/getstarted-deploy.html
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Summary
In this chapter, you saw how to map SageMaker capabilities to different phases of the ML 
life cycle. You got a quick look at important SageMaker capabilities and saw how to set up 
your own SageMaker environment.

This chapter further covered the advantages of using IaC/CaC (AWS CloudFormation) 
as well as a centrally managed catalog of IT services (AWS Service Catalog) to create data 
science environments at scale. The approaches discussed provide the guidance needed to 
reduce manual effort, provide consistency, accelerate access to model-building services, 
and enforce governance controls within model-building environments.

In the next chapter, you will learn more about labeling data for ML projects.

References 
The following are some of the references that you might find useful after reading this section:

• Amazon SageMaker notebook instances:  
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html

• Amazon SageMaker Studio Onboarding:

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-
onboard.html 

• Amazon SageMaker Studio:

https://aws.amazon.com/sagemaker/studio/ https://docs.aws.
amazon.com/sagemaker/latest/dg/notebooks.html

• Notebook Comparison:

https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-
comparison.html

• AWS Service Catalog:

https://aws.amazon.com/servicecatalog/

• AWS CloudFormation: 

https://aws.amazon.com/cloudformation/

https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html
https://aws.amazon.com/sagemaker/studio/
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-comparison.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-comparison.html
https://aws.amazon.com/servicecatalog/
https://aws.amazon.com/cloudformation/
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Data Labeling with 

Amazon SageMaker 
Ground Truth

One of the biggest barriers to ML projects in most companies is access to labeled training 
data. At one company we worked with, we were trying to identify consumer-impacting 
outages. The customer had a lot of data from each layer of their application stack, but 
they couldn't agree on how to define an outage. Is an outage when a load balancer is 
down? Probably not – we have redundancy in the infrastructure layer. Is an outage when 
a customer can't access the service for over 10 minutes? That's probably too granular; a 
single customer might have problems due to local network connectivity issues. So, what 
exactly do we mean by an outage? How can we automatically label our training data as 
outage or not an outage?

In this chapter, we'll review labeling data using SageMaker Ground Truth. We'll cover 
common challenges associated with large datasets and potentially biased data.
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The following topics will be covered in this chapter:

• Challenges with labeling data at scale

• Addressing unique labeling requirements with custom labeling workflows

• Using active learning to reduce labeling time

• Security and permissions

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have 
not set up the data science environment yet, please refer to Chapter 2, Data Science 
Environments, which provides a walk-through of the setup process.

Code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter03. You will need to install a Git client to access them (https://git-scm.
com/).

The code for this chapter is in the CH03 folder of the GitHub repository.

Challenges with labeling data at scale
Besides the conceptual challenges with agreeing on how to label data, we need to consider 
the logistics. SageMaker Ground Truth lets you assign data labeling jobs to a human 
workforce. But you may face additional challenges such as the following:

• Unique labeling logic: If our labeling case requires a custom workflow, we need to 
model that in Ground Truth.

• Annotation quality: The labels applied by workers may be subject to implicit bias 
that affects the results.

• Cost and time: Labeling data requires people for a period of time. If you have a very 
large dataset, you'll consume a lot of person-hours.

• Security: Given that your data may be sensitive, you need to make sure that access 
to the data is restricted to an authorized workforce.

Additional information
If you need an introduction to Ground Truth, please review Chapter 2 of Learn 
Amazon SageMaker, written by Julien Simon.

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter03
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter03
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter03
https://git-scm.com/
https://git-scm.com/
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To put these concerns into focus, let's consider our weather data introduced in the 
previous chapter. Ground Truth doesn't have a built-in workflow that lets us prompt 
workers to label weather data according to our logic for describing air as good or bad. The 
dataset for the entire time span is approximately 499 GB; labeling each entry by hand as 
good or bad weather quality will take some time. Finally, our workers may have their own 
implicit or unconscious bias. 

A worker who grew up in a city with severe smog may have a much different perception of 
air quality than someone who grew up in a rural area with very clean air. In the following 
sections, we'll discuss how to address these challenges.

Addressing unique labeling requirements with 
custom labeling workflows
Let's get started with a labeling job for our weather data. We want to label each weather 
report as good or bad. In order to help our workers do that, we'll make a nice frontend 
that shows the location of the weather station on a map and displays the reading from the 
weather station. We need a custom workflow because this scenario doesn't fall neatly into 
any of the existing Ground Truth templates.

We will have to set up the following:

• A private workforce backed by a Cognito user pool 

• A manifest file that lists the items we want to label

• A custom Ground Truth labeling workflow, consisting of two Lambda functions and 
a UI template

The notebook LabelData.ipynb in the CH02 folder of our repository walks through 
these steps.

A private labeling workforce
Although you can use a public workforce, most companies will want to use a private 
workforce to label their own data. Setting up a private workforce starts by defining a 
Cognito user pool, which, for real use cases, could link to another identity provider such 
as Active Directory.

We'll create a user group in Cognito; you could use groups to create teams for different 
types of labeling jobs. Finally, we'll define a SageMaker work team linked to the Cognito 
user group. Note that SageMaker creates a labeling domain that we have to set as the 
callback URL in the Cognito user pool client. 
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Once the work team is set up, the notebook will add an example worker.

The Create a private workforce part of the notebook executes all of these steps for you:

• Creating a Cognito user pool

• Creating a Cognito client for the user pool

• Creating an identity pool for the client

• Creating a user group

• Assigning a domain to the user pool

• Creating a SageMaker work team that uses the Cognito user pool and group

• Adding a sample user

Once you execute the Create a private workforce part of the notebook, you should see a 
private workforce defined, along with the login URL that the workers would use. If you 
scroll further down this part of the console, you'll also see information about the work 
team and any workers assigned to the team, as shown in Figure 3.1:

Figure 3.1 – Labeling workforce shown in the SageMaker console

Listing the data to label
We need to create a manifest file that tells Ground Truth how to find the data we want to 
label. In the manifest, we can list references to files in S3 or we can provide text data directly.
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Recall that our source data is in JSON format. Each source file contains multiple entries 
that look like this:

{"date":{"utc":"2021-03-20T19:00:00.000Z","local": 
"2021-03-20T23:00:00+04:00"},"parameter":"pm25", 
"value":32,"unit":"µg/m³","averagingPeriod":{"val

ue":1,"unit":"hours"},"location":"US Diplomatic Post: 
Dubai","city":"Dubai","country":"AE","coordinates":{"latitude": 
25.25848,"longitude":55.309166

},"attribution":[{"name":"EPA AirNow DOS","url":"http://airnow. 
gov/index.cfm?action=airnow.global_summary"}],"sourceName": 
"StateAir_Dubai","sourceT

ype":"government","mobile":false}

We cannot pass in links to individual files, as each file contains multiple records to label. 
Rather, we will summarize each record directly in the manifest file. Each line in the 
manifest will contain the air quality metric and location:

{"source": "pm25,35.8,µg/m³,40.01,116.333"}

The Create a manifest file notebook section will write out a manifest for a set of 
records. Since you are the only worker you have, we limit the number of records to 20 by 
default (more on this in the next section).

Creating the workflow
In order to create a custom workflow, we need the following:

• A Lambda function that can take one entry from the manifest and inject variables into 
the UI. In this case, we will simply map the items in the manifest text entries into a 
metric label to display along with a geolocation.

• A UI template that displays the data sensibly for a worker. In this case, we have a 
simple UI template that presents the metric along with a map showing the location 
where the metric was collected. 
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Note
For the purposes of this book, we are using map tiles from OpenStreetMap. Do 
not use these tiles for production use cases. Instead, use a commercial provider 
such as Google Maps or Here.

• A Lambda function that consolidates annotations from multiple workers. We simply 
do a pass-through here since we only have one worker in our sample workforce.

The notebook section Create a custom workflow walks you through these steps:

• Defining IAM roles for the workflow and the Lambda function

• Uploading the user interface template and the Lambda processing code to S3

• Creating the pre- and post-processing Lambda functions

• Defining the labeling job

Once the labeling job is created, you can log in to the labeling portal URL (see Figure 1.1), 
using the username and password you specified in the notebook. Once you open the job, 
you'll see a UI like Figure 3.2:

Figure 3.2 – Labeling UI showing the location of a weather station. The locations are shown in the local 
language
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You'll see a map showing the location of the measurement and the actual measurement. 
You can pick good or bad to specify whether you think the measurement represents a 
good or bad air quality day. After you have labeled all of the metrics, your job will show as 
complete, and you'll see the label for each data point, as shown in Figure 3.3:

Figure 3.3 – Completed labeling job

We'll describe how to use the labeling output in the next chapter. You'll see examples of 
the labeling output in the notebook that goes with this chapter.
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Improving labeling quality using multiple 
workers
Relying on a single opinion for a subjective evaluation is risky. In some cases, labeling seems 
straightforward; telling a car from an airplane when labeling transportation pictures is pretty 
simple. But let's go back to our weather data. If we're labeling air quality as good or bad 
based on a measurement that's not intuitive, such as the level of particulate matter (PM25), 
we may find that a worker's opinion depends greatly on the advice we give them and their 
preconceptions. If a worker believes that a certain city or country has dirty air, they are likely 
to favor a bad label in ambiguous cases. And these biases have real consequences – some 
governments are very sensitive to the idea that their air quality is bad!

One way to combat this problem is to use multiple workers to label each item and 
somehow combine the scores. In the notebook section called Add another worker, 
we'll add a second worker to our private workforce. Then in the Launch labeling 
job for multiple workers section, we'll create a new labeling job. Once the new 
job is ready, log in as both workers and label the small set of data we've selected. 

What happens now? We'll need to adjust our post-processing Lambda to consolidate the 
annotations. We could use a variety of strategies for the consolidation. For example, we 
could use a majority voting scheme, with ties being assigned to a mixed category. In this 
chapter, we'll simply use the latest annotation as the winner since we only have two workers.

Using active learning to reduce labeling time 
Now that we've set up a labeling workflow, we need to think about scale. If our dataset has 
more than 5,000 records, it's likely that Ground Truth can learn how to label for us. (You 
need at least 1,250 labeled records for automatic labeling, but at least 5,000 is a good rule 
of thumb.) This happens in an iterative process, as shown in the following diagram:
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Figure 3.4 – Auto-labeling workflow
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When you create a labeling job using automatic labeling, Ground Truth will select a 
random sample of input data for manual labeling. If at least 90% of these items are labeled 
without error, Ground Truth will split the labeled data into a training and validation set. 
It will train a model and compute a confidence score, then attempt to label the remaining 
data. If the automatically generated labels are beneath the confidence threshold, it will 
refer them to workers for human review. This process repeats until the entire dataset 
is labeled. While this process is difficult to simulate, it provides an iterative method to 
improve automatic labeling with human input.

As a concluding note to this section, you may wonder what the difference is between a 
model that can automatically label data and a more general-purpose ML model. There's a 
fine line here. Keep in mind that the data we use for Ground Truth may not be completely 
representative of the data we see in production. Our goal for a generic ML model is a 
model that can produce accurate inferences without any human input.

Security and permissions
While some data is not sensitive, most companies would not want to expose their data 
to the public during the labeling process. In this section, we'll cover data access control, 
encryption, and workforce management for data labeling.

You should follow the principle of least-privileged access when using Ground Truth (or 
any other cloud service). Restrict the users who are allowed to create labeling jobs, and 
restrict users allowed to create labeling jobs using non-private workforces. In a custom 
labeling job, explicitly provide invoke permissions to your Lambda functions. Restrict 
labeling job access to only the appropriate S3 buckets and prefixes. 

When you run a labeling job, Ground Truth will always encrypt the output in S3. You can 
use the S3-managed key or provide your own KMS key. For non-sensitive data, the default 
S3 managed key is adequate. If you have sensitive data, consider using separate KMS keys 
for different datasets, as that provides another layer of security. You can also use a KMS 
key to encrypt the storage volumes on instances used for automatic labeling.

When managing your workforce, you should restrict access to a known-good IP address 
range (CIDR block). You should also use the worker tracking features to log which 
workers are accessing data. When using Cognito for authentication, make use of strong 
password policies and multi-factor authentication. In most cases, large companies will 
prefer to use their own identity provider for workforce management.

Finally, note that you'll need to add CORS (cross-origin resource sharing) configuration 
to your S3 buckets involved in labeling jobs, as described in the documentation 
(https://docs.aws.amazon.com/sagemaker/latest/dg/sms-cors-
update.html).

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-cors-update.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-cors-update.html
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Before we head toward the summary, do have a look at the following table as it 
summarizes some of the best practices for  
data labeling:

Figure 3.5 – Summary of data labeling best practices

With this, we now come to the end of the chapter.

Summary
In this chapter, we started digging into our weather dataset, focusing on the problem of 
data labeling. We learned how to use SageMaker Ground Truth to label large datasets 
using a combination of human review and automation, how to use custom workflows to 
aid the labeling process, and how to fight labeling bias by using multiple opinions. We 
ended with some advice on making sure that the labeling process is secure. 

In the next chapter, we'll explore data preparation. We'll run a feature engineering 
processing job on the full dataset.





4
Data Preparation 

at Scale Using 
Amazon SageMaker 
Data Wrangler and 

Processing
So far, we've identified our dataset and explored both manual and automated labeling. 
Now it's time to turn our attention to preparing the data for training. Data scientists are 
familiar with the steps of feature engineering, such as scaling numeric features, encoding 
categorical features, and dimensionality reduction. 
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As motivation, let's consider our weather dataset. What if our input dataset is imbalanced 
or not really representative of the data we'll encounter in production? Our model will 
not be as accurate as we'd like, and the consequences can be profound. Some facial 
recognition systems have been trained on datasets weighted toward white faces, with 
distressing consequences (https://sitn.hms.harvard.edu/flash/2020/
racial-discrimination-in-face-recognition-technology/?web=1&wd
LOR=cB09A9880-DF39-442C-A728-B00E70AF1CA9). 

We need to understand what input features are affecting the model. That's important 
from a business standpoint as well as a legal or regulatory standpoint. Consider a model 
that predicts operational outages for an application. Understanding why outages happen 
is perhaps more valuable than predicting when an outage will occur – is the problem 
in our application or due to some external factor such as a network hiccup? Then, in 
some industries such as financial services, we cannot use a model without being able to 
demonstrate that it doesn't violate regulations against discriminatory lending, say. 

The smaller version of our dataset (covering 1 month) is about 5 GB of data. We can 
analyze that dataset on a modern workstation without too much difficulty. But what about 
the full dataset, which is closer to 500 GB? If we want to prepare the full dataset, we need 
to work with horizontally scalable cluster computing frameworks. Furthermore, activities 
such as encoding categorical variables can take quite some time if we use inefficient 
processing frameworks. 

In this chapter, we'll look at the challenges involved in data preparation when processing  
a large dataset and examining the SageMaker features that help us with large-scale  
feature engineering.

In this chapter, we will cover the following topics:

• Visual data preparation with Data Wrangler

• Bias detection and explainability with Data Wrangler

• Data preparation at scale with SageMaker Processing

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have 
not set up the data science environment yet, please refer to Chapter 2, Data Science 
Environments, which walks you through the setup process.

https://sitn.hms.harvard.edu/flash/2020/racial-discrimination-in-face-recognition-technology/?web=1&wdLOR=cB09A9880-DF39-442C-A728-B00E70AF1CA9
https://sitn.hms.harvard.edu/flash/2020/racial-discrimination-in-face-recognition-technology/?web=1&wdLOR=cB09A9880-DF39-442C-A728-B00E70AF1CA9
https://sitn.hms.harvard.edu/flash/2020/racial-discrimination-in-face-recognition-technology/?web=1&wdLOR=cB09A9880-DF39-442C-A728-B00E70AF1CA9
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The code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter04. You will need to install a Git client to access them (https://git-scm.
com/).

The code for this chapter is in the CH04 folder of the GitHub repository.

Visual data preparation with Data Wrangler
Let's start small with our 1-month dataset. Working with a small dataset is a good way to 
get familiar with the data before diving into more scalable techniques. SageMaker Data 
Wrangler gives us an easy way to construct a data flow, a series of data preparation steps 
powered by a visual interface. 

In the rest of this section, we'll use Data Wrangler to inspect and transform data, and then 
export the Data Wrangler steps into a reusable flow.

Data inspection
Let's get started with Data Wrangler for data inspection, where we look at the properties 
of our data and determine how to prepare it for model training. Begin by adding a new 
flow in SageMaker Studio; go to the File menu, then New, then Flow. After the flow starts 
up and connects to Data Wrangler, we need to import our data. The following screenshot 
shows the data import step in Data Wrangler:

Figure 4.1 – Import data source in Data Wrangler

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter04
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter04
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter04
https://git-scm.com/
https://git-scm.com/
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Because our dataset consists of multiple small JSON files scattered in date-partitioned 
folders, we'll use Athena (a managed version of Presto) for the import. The 
PrepareData.ipynb notebook walks you through creating a Glue database and table 
and registering the partitions in the section called Glue Catalog. Once that's done, 
click on Athena to start importing the small dataset. 

On the next screen, specify the database you created in the notebook. Enter the following 
query to import 1 month's worth of data:

select * from openaq where aggdate like '2019-01%'

The following screenshot shows the import step in Data Wrangler:

Figure 4.2 – Athena import into Data Wrangler

Run the query and click on Import dataset. 

Now we're ready to perform some analysis and transformation. Click the + symbol next to 
the last box in the data flow and select Add analysis. You'll now have a screen where you 
can choose one of the available analyses, as you can see in the following screenshot:
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Figure 4.3 – Data analysis configuration

Start with a Table summary step, which shows some statistical properties of numeric 
features, as you can see in the following screenshot:

Figure 4.4 – Table summary
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Next, let's try a scatter plot to help us visualize the distribution of the measurement 
values. Set the y axis to value, the x axis to aggdate, color by country, and facet 
by parameter. We can see in the following preview chart that the value for nitrogen 
dioxide is relatively steady over time, while the value for carbon monoxide shows more 
variability for some countries:

Figure 4.5 – Scatter plot showing measurement values by date, color-coded by country, and faceted  
by parameter

Feel free to add more scatter plots or try a histogram. We'll explore the bias report and 
quick mode in the Bias detection and explainability with Data Wrangler and Clarify 
section.

Now that we've done some basic data inspection, we move on to data transformation.

Data transformation
In this section, we will convert the data from the raw format into a format usable for 
model training. Recall the basic format of our raw data:

{“date”:{“utc”:”2021-03-20T19:00:00.000Z”,”local”:”2021-03-
20T23:00:00+04:00”},”parameter”:”pm25”,”value”:32,”unit”:”µg/
m³”,”averagingPeriod”:{“val

ue”:1,”unit”:”hours”},”location”:”US Diplomatic 
Post:Dubai”,”city”:”Dubai”,”country”:”AE”,”coordinates”: 
{“latitude”:25.25848,”longitude”:55.309166

},”attribution”:[{“name”:”EPA AirNow DOS”,”url”: 
”http://airnow.gov/index.cfm?action=airnow.global_
summary”}],”sourceName”:”StateAir_Dubai”,”sourceT

ype”:”government”,”mobile”:false}



Visual data preparation with Data Wrangler     71

We'll perform the following steps using Data Wrangler:

• Scale numeric values.

• Encode categorical values.

• Add features related to the date (for example, day of the week, day in a month).

• Drop unwanted columns (source name, coordinates, averaging period, 
attribution, units, and location). These columns are either redundant (for 
example, the important part of the location is in the city and country columns) or 
not usable as features.

Back to the Preparation part of the flow, click the + symbol next to the last box in the data 
flow panel and select Add Transform. You'll see a preview of the dataset and a list of the 
available transforms as follows:

Figure 4.6 – Data transformations in Data Wrangler
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For our first transformation, select Encode categorical. In the transformation options 
panel, pick One-hot encode as the transformation, specify sourcetype as the column, 
set Output Style to Columns, and add a prefix for the new column names: 

Figure 4.7 – One-hot encoding in Data Wrangler

When you're done setting up the transformation, click Preview and then Add to add the 
transform. You can now add additional transformations to drop the unwanted columns, 
scale the numeric columns, and featurize the date. You can also provide your own custom 
code if you like.



Bias detection and explainability with Data Wrangler and Clarify     73

Exporting the flow
Data Wrangler is very handy when we want to quickly explore a dataset. But we can also 
export the results of a flow into Amazon SageMaker Feature Store, generate a SageMaker 
pipeline, create a Data Wrangler job, or generate Python code. We will not use these 
capabilities now, but feel free to experiment with them.

Bias detection and explainability with Data 
Wrangler and Clarify
Now that we've done some initial work in exploring and preparing our data, let's do 
a sanity check on our input data. While bias can mean many things, one particular 
symptom is a dataset that has many more samples of one type of data than another, which 
will affect our model's performance. We'll use Data Wrangler to see if our input data is 
imbalanced and understand which features are most important to our model.

To begin, add an analysis to the flow. Choose Bias Report from the list of available 
transformations and use the mobile column as the label, with 1 as the predicted value. 
Choose city as the column to use for bias analysis, then click Check for bias. In this 
scenario, we want to determine whether our dataset is somehow imbalanced with respect 
to the city and whether the data was collected at a mobile station. If the quality of data 
from mobile sources is inferior to non-mobile sources, it'd be good to know if the mobile 
sources are unevenly distributed among cities.

Next, we'll examine feature importance. Feature importance is one aspect of model 
explainability. We want to understand which parts of the dataset are most important to 
model behavior. Another aspect, which we'll visit in Chapter 11, Monitoring Production 
Models with Amazon SageMaker Model Monitor and Clarify, in the Monitor bias drift and 
feature importance drift using Amazon SageMaker Clarify section, is understanding which 
features contributed to a specific inference.
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Add another analysis in the last step of the flow. Select Quick Model for the value 
column (Data Wrangler will infer that this is a regression problem). Preview and create 
the analysis. You should see a screen that looks similar to the following screenshot:

Figure 4.8 – Feature importance generated by Data Wrangler

This analysis generates a random forest model, evaluates performance using a test set with 
30% of the data, and calculates a Gini importance score for each feature. As you can see 
in Figure 4.8, the city and day of the month are the most important features. 

So far we've used Data Wrangler for visual inspection and transformation. Now, we'll look 
at how to handle larger datasets using SageMaker Processing.

Data preparation at scale with SageMaker 
Processing
Now let's turn our attention to preparing the entire dataset. At 500 GB, it's too large to 
process using sklearn on a single EC2 instance. We will write a SageMaker processing 
job that uses Spark ML for data preparation. (Alternatively, you can use Dask, but at the 
time of writing, SageMaker Processing does not provide a Dask container out of the box.)

The Processing Job part of this chapter's notebook walks you through launching the 
processing job. Note that we'll use a cluster of 15 EC2 instances to run the job (if you need 
limits raised, you can contact AWS support). 
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Also note that up until now, we've been working with the uncompressed JSON version 
of the data. This format containing thousands of small JSON files is not ideal for Spark 
processing as the Spark executors will spend a lot of time doing I/O. Luckily, the OpenAQ 
dataset also includes a gzipped Parquet version of the data. Compression will save on 
storage space and is a good idea unless our processing job is CPU-bound rather than 
I/O-bound. Note, however, that gzip is not a preferred compression format as it is not 
splittable; if you have a choice, use the Snappy compression format.

We will use the gzipped Parquet version of our data for the larger data preparation job:

1. First, we will define the processor class, using Spark 3.0. We will set the max 
runtime to 7200 seconds (2 hours). Two hours is more than sufficient to process 
at least one of the 8 tables in the Parquet dataset. If you want to process all eight of 
them, change the timeout to 3 hours and make an adjustment in the preprocess.
py script:

spark_processor = PySparkProcessor(

    base_job_name=”spark-preprocessor”,

    framework_version=”3.0”,

    role=role,

    instance_count=15,

    instance_type=”ml.m5.4xlarge”,

    max_runtime_in_seconds=7200,

)

2. Next, we'll set the Spark configuration, following the formulas defined in an EMR 
blog (https://aws.amazon.com/blogs/big-data/best-practices-
for-successfully-managing-memory-for-apache-spark-
applications-on-amazon-emr/):

configuration = [

    {

    “Classification”: “spark-defaults”,

    “Properties”: {“spark.executor.memory”: “18g”, 

        “spark.yarn.executor.memoryOverhead”: “3g”,

                   “spark.driver.memory”: “18g”,

          “spark.yarn.driver.memoryOverhead”: “3g”,

                   “spark.executor.cores”: “5”, 

                   “spark.driver.cores”: “5”,

                   “spark.executor.instances”: “44”,

https://aws.amazon.com/blogs/big-data/best-practices-for-successfully-managing-memory-for-apache-spark-applications-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/best-practices-for-successfully-managing-memory-for-apache-spark-applications-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/best-practices-for-successfully-managing-memory-for-apache-spark-applications-on-amazon-emr/
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                   “spark.default.parallelism”: “440”,

            “spark.dynamicAllocation.enabled”: “false”

                  },

    },

    {

    “Classification”: “yarn-site”,

    “Properties”: {“yarn.nodemanager.vmem-check-enabled”: 
“false”, 

      “yarn.nodemanager.mmem-check-enabled”: “false”},

    }

]

3. Finally, we'll launch the job. We need to include a JSON serde class:

spark_processor.run(

    submit_app=”scripts/preprocess.py”,

    submit_jars=[“s3://crawler-public/json/serde/json-
serde.jar”],

    arguments=['--s3_input_bucket', s3_bucket,

              '--s3_input_key_prefix', s3_prefix_parquet,

               '--s3_output_bucket', s3_bucket,

             '--s3_output_key_prefix', s3_output_prefix],

    spark_event_logs_s3_uri=”s3://{}/{}/spark_event_
logs”.format(s3_bucket, 'sparklogs'),

    logs=True,

    configuration=configuration

)

The processing script, CH04/scripts/preprocess.py, walks through several steps, 
which we'll explain in the subsequent sections.
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Loading the dataset
We will load one or more of the Parquet table sets from S3. If you want to process more 
than one, modify the get_tables function to return more table names in the list as 
follows:

# the helper function `get_tables` lists the tables we want to 
include

tables = get_tables()

df = spark.read.parquet( 

    f”s3://{args.s3_input_bucket}/” +

    f”{args.s3_input_key_prefix}/{tables[0]}/”)

for t in tables[1:]:

    df_new = spark.read.parquet( 

        f”s3://{args.s3_input_bucket}/” +

        f”{args.s3_input_key_prefix}/{t}/”)

    df = df.union(df_new)

The next step in the processing script is dropping unnecessary columns from the dataset.

Drop columns
We'll repeat most of the steps we did in Data Wrangler using PySpark. We need to drop 
some columns that we don't want, as follows:

df = df.drop('date_local') \     

.drop('unit') \

.drop('attribution') \

.drop('averagingperiod') \

.drop('coordinates')

Converting data types
We'll convert the mobile field to an integer:

df = df.withColumn(“ismobile”,col(“mobile”).
cast(IntegerType())) \

.drop('mobile')
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Scaling numeric fields
We'll use the Spark ML standard scaler to transform the value field:

value_assembler = VectorAssembler(inputCols=[“value”], 
outputCol=”value_vec”)

value_scaler = StandardScaler(inputCol=”value_vec”, 
outputCol=”value_scaled”)

value_pipeline = Pipeline(stages=[value_assembler, value_
scaler])

value_model = value_pipeline.fit(df)

xform_df = value_model.transform(df)

Featurizing the date
The date by itself isn't that useful, so we'll extract several new features from it indicating 
the day, month, quarter, and year:

xform_df = xform_df.withColumn('aggdt', 

               to_date(unix_timestamp(col('date_utc'), 

“yyyy-MM-dd'T'HH:mm:ss.SSSX”).cast(“timestamp”)))

xform_df = xform_df.withColumn('year',year(xform_df.aggdt)) \

        .withColumn('month',month(xform_df.aggdt)) \

        .withColumn('quarter',quarter(xform_df.aggdt))

xform_df = xform_df.withColumn(“day”, date_format(col(“aggdt”), 
“d”))

Simulating labels for air quality
Although we used ground truth in Chapter 3, Data Labeling with Amazon SageMaker 
Ground Truth, for labeling, for the sake of this demonstration we'll use a simple heuristic 
to assign these labels instead:

isBadAirUdf = udf(isBadAir, IntegerType())

xform_df = xform_df.withColumn('isBadAir', isBadAirUdf('value', 
'parameter'))
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Encoding categorical variables
Now we'll encode the categorical features. Most of these features have fairly high 
cardinality, so we'll perform ordinal encoding here and learn embeddings later in our 
training process. We will only use one-hot encoding for the parameter, which only has 
seven possible choices:

parameter_indexer = StringIndexer(inputCol=”parameter”, \

outputCol=”indexed_parameter”, handleInvalid='keep')

location_indexer = StringIndexer(inputCol=”location”, \

outputCol=”indexed_location”, handleInvalid='keep')

city_indexer = StringIndexer(inputCol=”city”, \ 

outputCol=”indexed_city”, handleInvalid='keep')

country_indexer = StringIndexer(inputCol=”country”, \

outputCol=”indexed_country”, handleInvalid='keep')

sourcename_indexer = StringIndexer(inputCol=”sourcename”, \

outputCol=”indexed_sourcename”, handleInvalid='keep')

sourcetype_indexer = StringIndexer(inputCol=”sourcetype”, \

outputCol=”indexed_sourcetype”, handleInvalid='keep')

enc_est = OneHotEncoder(inputCols=[“indexed_parameter”], \

outputCols=[“vec_parameter”])

enc_pipeline = Pipeline(stages=[parameter_indexer, location_
indexer, 

        city_indexer, country_indexer, sourcename_indexer, 

        sourcetype_indexer, enc_est])

enc_model = enc_pipeline.fit(xform_df)

enc_df = enc_model.transform(xform_df)

param_cols = enc_df.schema.fields[17].metadata['ml_attr']
['vals']
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Splitting and saving the dataset
After some final cleanup of the dataset, we can split the dataset into train, validation, and 
test sets, and save them to S3:

(train_df, validation_df, test_df) = final_df.randomSplit([0.7, 
0.2, 0.1])

train_df.write.option(“header”,True).csv('s3://' + \

os.path.join(args.s3_output_bucket, 

      args.s3_output_key_prefix, 'train/'))

validation_df.write.option(“header”,True).csv('s3://' + \

os.path.join(args.s3_output_bucket, 

      args.s3_output_key_prefix, 'validation/'))

test_df.write.option(“header”,True).csv('s3://' + \

os.path.join(args.s3_output_bucket, 

      args.s3_output_key_prefix, 'test/'))

In this section, we saw how to use a SageMaker Processing job to perform data 
preparation on a larger dataset using Apache Spark. In the field, many datasets are large 
enough to require a distributed processing framework, and now you understand how to 
integrate a Spark job into your SageMaker workflow.

Summary
In this chapter, we tackled feature engineering for a large (~ 500 GB) dataset. We looked 
at challenges including scalability, bias, and explainability. We saw how to use SageMaker 
Data Wrangler, Clarify, and Processing jobs to explore and prepare data. 

While there are many ways to use these tools, we recommend using Data Wrangler for 
interactive exploration of small to mid-sized datasets. For processing large datasets in 
their entirety, switch to programmatic use of processing jobs using the Spark framework 
to take advantage of parallel processing. (At the time of writing, Data Wrangler does not 
support running on multiple instances, but you can run a processing job on multiple 
instances.) You can always export a Data Wrangler flow as a starting point.

If your dataset is many terabytes, consider running a Spark job directly in EMR or Glue 
and invoking SageMaker using the SageMaker Spark SDK. EMR and Glue have optimized 
Spark runtimes and more efficient integration with S3 storage.

At this point, we have our data ready for model training. In the next chapter, we'll explore 
using Amazon SageMaker Feature Store to help us manage prepared feature data.
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Centralized Feature 

Repository with 
Amazon SageMaker 

Feature Store
Let's begin with the basic questions – what is a feature store and why is it necessary? 
A feature store is a repository that persists engineered features. A lot of time goes into 
feature engineering, sometimes involving multi-step data processing pipelines executed 
over hours of compute time. ML models depend on these engineered features that often 
come from a variety of data sources. A feature store accelerates this process by reducing 
repetitive data processing that is required to convert raw data into features. A feature store 
not only allows you to share engineered features during model-building activities, but also 
allows consistency in using engineered features for inference. 

Amazon SageMaker Feature Store is a managed repository with capabilities to store, 
update, retrieve, and share features. SageMaker Feature Store provides the ability to 
reuse the engineered features in two different scenarios. First, the features can be shared 
between the training and inference phases of a single ML project resulting in consistent 
model inputs and reduced training-serving skew. Second, features from SageMaker 
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Feature Store can also be shared across multiple ML projects, leading to improved data 
scientist productivity.

By the end of this chapter, you will be able to use Amazon SageMaker Feature Store 
capabilities and apply best practices to implement solutions to address the challenges of 
reducing data processing time and architecting features for near real-time ML inferences.

In this chapter, we are going to cover the following main topics:

• Basic concepts of Amazon SageMaker Feature Store

• Creating reusable features to reduce feature inconsistencies and inference latency

• Designing solutions for near real-time ML predictions

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have 
not set up the data science environment yet, please refer to Chapter 2, Data Science 
Environments, which provides a walk-through of the setup process.

Code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter05. You will need to install a Git client to access them (https://git-scm.
com/). 

Amazon SageMaker Feature Store essentials 
In this section, you will learn the basic terminology and capabilities of Amazon 
SageMaker Feature Store. Amazon SageMaker Feature Store provides a centralized 
repository with capabilities to store, update, retrieve, and share features. Scalable storage 
and near real-time feature retrieval are at the heart of Amazon SageMaker Feature Store. 
Utilizing Amazon SageMaker Feature Store involves three high-level steps, as shown in 
the following diagram:

Figure 5.1 – High-level steps with Amazon SageMaker Feature Store

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter05
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter05
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter05
https://git-scm.com/
https://git-scm.com/
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Let's see what is involved in each of these steps in a bit more detail.

Creating feature groups
In Amazon SageMaker Feature Store, features are stored in a collection called a feature 
group. A feature group, in turn, is composed of records of features and feature values. 
Each record is a collection of feature values, identified by a unique RecordIdentifier 
value. Every record belonging to a feature group will use the same feature as 
RecordIdentifier. For example, the record identifier for the feature store 
created for the weather data could be parameter_id or location_id. Think of 
RecordIdentifier as a primary key for the feature group. Using this primary key, you 
can query feature groups for the fast lookup of features. It's also important to note that 
each record of a feature group must, at a minimum, contain a RecordIdentifier and 
an event time feature. The event time feature is identified by EventTimeFeatureName 
when a feature group is set up. When a feature record is ingested into a feature group, 
SageMaker adds three features – is_deleted, api_invocation time, and write_
time – for each feature record. is_deleted is used to manage the deletion of records, 
api_invocation_time is the time when the API call is invoked to write a record to 
a feature store, and write_time is the time when the feature record is persisted to the 
offline store. 

Figure 5.2 shows a high-level view of how a feature store is structured: 

Figure 5.2 – Amazon SageMaker feature store structure

While each feature group is managed and scaled independently, you can search and 
discover features from multiple feature groups as long as the appropriate access is in place.



84     Centralized Feature Repository with Amazon SageMaker Feature Store

When you create a feature store group with SageMaker, you can choose to enable an 
offline store, online store, or both. When both online and offline stores are enabled, the 
service replicates the online store contents into the offline store maintained in Amazon S3. 

The following code blocks show the process of creating a feature store: 

1. First define the feature group name:

#Feature group name

weather_feature_group_name_offline = 'weather-feature-
group-offline' + strftime('%d-%H-%M-%S', gmtime())

2. Then, create the feature definitions that capture the feature name and the type:

##Create FeatureDefinitions

fd_location=FeatureDefinition(feature_name='location', 
feature_type=FeatureTypeEnum('Integral'))

fd_event_time=FeatureDefinition(feature_name='EventTime', 
feature_type=FeatureTypeEnum('Fractional'))

…

weather_feature_definitions = []

weather_feature_definitions.append(fd_location)

weather_feature_definitions.append(fd_event_time)

…

3. Next, define the record identifier feature:

##Define unique identifier

record_identifier_feature_name = "location"

4. Finally, create the feature group using the create() API, which, by default, creates 
a feature group with an offline store:

#Create offline feature group

weather_feature_group_offline =     \ 

    FeatureGroup(name=weather_feature_group_name_offline,

         feature_definitions=weather_feature_definitions,

                 sagemaker_session=sagemaker_session) 

weather_feature_group_offline.create(

             s3_uri=f"s3://{s3_bucket_name}/{prefix}",

            record_identifier_name="location",
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            event_time_feature_name="EventTime",

            role_arn=role

)

5. To enable an online store in addition to an offline store, use enable_online_
store, as shown in the following code:

weather_feature_group_offline_online.create(

            s3_uri=f"s3://{s3_bucket_name}/{prefix}",

    record_identifier_name="location", 

           event_time_feature_name="EventTime",

           role_arn=role,

          enable_online_store=True

)

6. To create a feature group with only an online store enabled, set s3_uri to False, 
as shown in the following code:

weather_feature_group_online.create(

            s3_uri=False,

            record_identifier_name="location", 

           event_time_feature_name="EventTime",

           role_arn=role,

           enable_online_store=True

)
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Note that you can also create a feature group using SageMaker Studio. Once feature 
groups are created either using the APIs or SageMaker Studio, you can view them 
along with their status in SageMaker Studio. Figure 5.3 shows a list of feature groups in 
SageMaker Studio:

Figure 5.3 – Feature groups list in SageMaker Studio

To wrap up the feature group creation discussion, the following table summarizes the 
differences between the online and offline feature stores:

Figure 5.4 – Comparison of online and offline feature stores
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Now that you can create feature groups in the feature store, let's take a look at how to 
populate them. 

Populating feature groups
After creating the feature groups, you will populate them with features. You can ingest 
features into a feature group using either batch ingestion or streaming ingestion, as 
shown in Figure 5.5: 

Figure 5.5 – Ingesting features into feature groups

To ingest features into the feature store, you create a feature pipeline that can populate 
the feature store. A feature pipeline can include any service or capability that accepts raw 
data and then transforms that raw data into engineered features and puts the features in 
a designated feature group. Features can be ingested either in bulk in batches or streamed 
individually. The PutRecord API call is the core SageMaker API for ingesting features. 
This is used for both online and offline feature stores as well as ingesting through batch or 
streaming methods. 

The following code block shows the usage of the PutRecord API:

##Create a record to ingest into the feature group

record = []

event_time_feature = {'FeatureName': 
'EventTime','ValueAsString': str(int(round(time.time())))}

location_feature =   {'FeatureName': 
'location','ValueAsString': str('200.0')}

ismobile_feature 
=   {'FeatureName':   'ismobile','ValueAsString': str('0')}
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value_feature ={'FeatureName': 'value','ValueAsString': 
str('34234.0')}

 

record.append(event_time_feature)

record.append(location_feature)

record.append(ismobile_feature)

record.append(value_feature)

 

response = sagemaker_fs_runtime_client.put_record(

       FeatureGroupName=weather_feature_group_online,

                                             Record=record)

You can also use a wrapper API, fg.ingest, which takes in a pandas dataframe as 
input and allows you to configure multiple workers and processes to ingest features in 
parallel. The following code block shows how to use the ingest() API:

#Read csv directly from S3 into a dataframe

weather_df = pd.read_csv(s3_path)

 

#Ingest features into the feature group

weather_feature_group_offline.ingest(

          data_frame=weather_df, max_workers=3, wait=True

)

For batch ingestion, you can author features (for example, using Amazon Data Wrangler) 
and ingest features in batches using a SageMaker Processing job. This allows batch 
ingestion into the offline store and the online store. For streaming ingestion, records 
can be pushed synchronously using the PutRecord API call. When ingesting records 
to the online feature store, you maintain only the latest feature values for a given record 
identifier. Historical values are only maintained in the replicated offline store if the feature 
group is configured for both online and offline stores. Figure 5.6 outlines the methods to 
ingest features as they relate to the online and offline feature stores:
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Figure 5.6 – Ingesting feature store records
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With the ingestion APIs in hand, let's take a look at a generic batch ingestion architecture. 
Figure 5.7 shows the architecture for batch ingestion with Amazon SageMaker Processing: 

Figure 5.7 – Batch ingestion with SageMaker Processing

Here are the high-level steps involved in the batch ingestion architecture:

1. Bulk raw data is available in an S3 bucket. 
2. The Amazon SageMaker Processing job takes raw data as input and applies feature 

engineering techniques to the data. The processing job can be configured to run on 
a distributed cluster of instances to process data at scale. 

3. The processing job also ingests the engineered features ingested into the online store 
of the feature group, using the PutRecord API. Features are then automatically 
replicated to the offline store of the feature group.

4. Features from the offline store can then be used for training other models and by 
other data science teams to address a wide variety of other use cases. Features from 
the online store can be used for feature lookup during real-time predictions.

Note that if the feature store used in this architecture is offline only, the processing job can 
directly write into the offline store using the PutRecord API.
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Next, let's take a look at a possible streaming ingestion architecture in Figure 5.8. This 
should look very similar to batch ingestions, except instead of using a processing job, you 
use a single compute instance or an AWS Lambda function:

Figure 5.8 – Streaming ingestion with AWS Lambda 

Here are the high-level steps involved in the streaming ingestion architecture:

1. Raw data lands in an S3 bucket, which triggers an AWS Lambda function.
2. The Lambda function processes data and inserts features into the online store of the 

feature group, using the PutRecord API.
3. Features are then automatically replicated to the offline store of the feature group.
4. Features from the offline store can then be used for training other models and by 

other data science teams to address a wide variety of other use cases. Features from 
the online store can be used for feature lookup during real-time predictions.
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In addition to using the ingestion APIs to populate the offline store, you can populate the 
underlying S3 bucket directly. If you don't have a need for real-time inference and have 
huge volumes of historical feature data (terabytes or even hundreds of gigabytes) that 
you want to migrate to an offline feature store to be used for training models, you can 
directly upload them to the underlying S3 bucket. To do this effectively, it is important to 
understand the S3 folder structure of the offline bucket. Feature groups in the offline store 
are organized in the structure s3:

s3://<bucket-name>/<customer-prefix>/<account-id>/
sagemaker/<aws-region>/offline-store/<feature-group-name>-
<feature-group-creation-time>/data/year=<event-time-year>/
month=<event-time-month>/day=<event-time-day>/hour=<event-
time-hour>/<timestamp_of_latest_event_time_in_file>_<16-random-
alphanumeric-digits>.parquet

Also note that, when you use ingestion APIs, the features isdeleted, api_
invocation_time, and write-time are included automatically in the feature record, 
but when you write directly to the offline store, you are responsible for including them. 

Retrieving features from feature groups
Once feature groups are populated, to retrieve features from the feature store, there are 
two APIs available – get_record and batch_get_record. The following code block 
shows retrieving a single record from a feature group using the get_record API:

record_identifier_value = str('300')

response = sagemaker_fs_runtime_client.get_record

(FeatureGroupName=weather_feature_group_name_online,

RecordIdentifierValueAsString=record_identifier_value)

response

Response from the code block looks similar to the following  
figure:

{'ResponseMetadata': {'RequestId': '195debf2-3b10-4116-98c7-
142dc13e9df3',

  'HTTPStatusCode': 200,

  'HTTPHeaders': {'x-amzn-requestid': '195debf2-3b10-4116-98c7-
142dc13e9df3',

   'content-type': 'application/json',

   'content-length': '214',

   'date': 'Wed, 14 Jul 2021 04:27:11 GMT'},
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  'RetryAttempts': 0},

 'Record': [{'FeatureName': 'value', 'ValueAsString': 
'4534.0'},

  {'FeatureName': 'ismobile', 'ValueAsString': '0'},

  {'FeatureName': 'location', 'ValueAsString': '300'},

  {'FeatureName': 'EventTime', 'ValueAsString': '1626236799'}]}

Similarly, the following code shows retrieving multiple records from one or more feature 
groups using the batch_get_record API:

record_identifier_values = ["200", "250", "300"]

response=sagemaker_fs_runtime_client.batch_get_record(

            Identifiers=[

           {"FeatureGroupName": weather_feature_group_name_
online, "RecordIdentifiersValueAsString": record_identifier_
values}

            ]

)

response

The response from the code block should look similar to the following response:

{'ResponseMetadata': {'RequestId': '3c3e1f5f-3a65-4b54-aa18-
8683c83962c5',

  'HTTPStatusCode': 200,

  'HTTPHeaders': {'x-amzn-requestid': '3c3e1f5f-3a65-4b54-aa18-
8683c83962c5',

   'content-type': 'application/json',

   'content-length': '999',

   'date': 'Wed, 14 Jul 2021 04:29:47 GMT'},

  'RetryAttempts': 0},

 'Records': [{'FeatureGroupName': 'weather-feature-group-
online-13-19-23-46',

   'RecordIdentifierValueAsString': '300',

   'Record': [{'FeatureName': 'value', 'ValueAsString': 
'4534.0'},

           {'FeatureName': 'ismobile', 'ValueAsString': '0'},

           {'FeatureName': 'location', 'ValueAsString': '300'},

          {'FeatureName': 'EventTime', 'ValueAsString': 
'1626236799'}]},
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  {'FeatureGroupName': 'weather-feature-group-
online-13-19-23-46',

   'RecordIdentifierValueAsString': '200',

   'Record': [{'FeatureName': 'value', 'ValueAsString': 
'34234.0'},

            {'FeatureName': 'ismobile', 'ValueAsString': '0'},

           {'FeatureName': 'location', 'ValueAsString': '200'},

          {'FeatureName': 'EventTime', 'ValueAsString': 
'1626236410'}]}],

 'Errors': [],

 'UnprocessedIdentifiers': []}

The get_record and batch_get_record APIs should be used with online stores. 
Additionally, since the underlying storage for an offline store is an S3 bucket, you can 
query the offline store directly using Athena or other ways of accessing S3. The following 
code shows a sample Athena query that retrieves all feature records directly from the S3 
bucket supporting the offline store:

weather_data_query = weather_feature_group.athena_query()

weather_table = weather_data_query.table_name

 

#Query string

query_string = 'SELECT * FROM "'+ weather_table + '"'

print('Running ' + query_string)

 

#run Athena query. The output is loaded to a Pandas dataframe.

weather_data_query.run(query_string=query_string, output_
location='s3://'+s3_bucket_name+'/'+prefix+'/query_results/')

weather_data_query.wait()

dataset = weather_data_query.as_dataframe()

For the dataset used in this book, we will use two feature groups – location and weather data. 
The location feature group will have location_id as the record identifier and capture 
features related to the location such as the city name. The weather data feature group will 
also have location_id as the record identifier and capture weather quality measurements 
such as pm25. This allows us to use the feature groups across multiple ML projects. 
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For example, features from both location and weather data feature groups are used for a 
regression model to predict future weather measurements for a given location. On the 
other hand, features from the weather data feature group can also be used for a clustering 
model to find stations with similar measurements.

Important note
The example notebook provides a walk-through of the key Amazon SageMaker 
Feature Store APIs for creating a feature group, ingesting features into feature 
groups, and retrieving features from a feature group. To see all the feature store 
capabilities in action, we recommend that you execute the sample notebook 
in the data science environment you set up in Chapter 2, Data Science 
Environments:

https://gitlab.com/randydefauw/packt_book/-/blob/
main/CH05/feature_store_apis.ipynb. 

Now that you have learned the capabilities of SageMaker Feature Store, in the next two 
sections, you will learn how to use these capabilities to solve feature design challenges that 
data scientists and organizations face.

Creating reusable features to reduce feature 
inconsistencies and inference latency
One of the challenges data scientists face is the long data processing time – hours 
and sometimes days – necessary for preparing features to be used for ML training. 
Additionally, the data processing steps applied in feature engineering need to be applied 
to the inference requests during prediction time, which increases the inference latency. 
Each data science team will need to spend this data processing time even when they use 
the same raw data for different models. In this section, we will discuss best practices to 
address these challenges by using Amazon SageMaker Feature Store.

For use cases that require low latency features for inference, an online feature store should 
be configured, and it's generally recommended to enable both the online and offline 
feature store. A feature store enabled with both online and offline stores allows you to 
reuse the same feature values for the training and inference phases. This configuration 
reduces the inconsistencies between the two phases and minimizes training and inference 
skew. In this mode, to populate the store, ingest features into the online store either using 
batch or streaming. 

https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/feature_store_apis.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/feature_store_apis.ipynb
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As you ingest features into an online store, SageMaker automatically replicates feature 
values to an offline store, continuously appending the latest values. It's important to note 
that for the online feature store, only the most current feature record is maintained and 
the PutRecord API is always processed as insert/upsert. This is key because if you 
need to update a feature record, the process to do so is to re-insert or overlay the existing 
record. This is to allow the retrieval of features with the minimum possible latency for 
inference use cases. 

Although the online feature store maintains only the latest record, the offline store will 
provide a full history of feature values over time. Records will stay in the offline store 
until they are explicitly removed. As a result, you should establish a process to prune 
unnecessary records in the offline feature store using the standard mechanisms provided 
for S3 archival. 

Important note
The example notebook from the GitHub repository shows the end-to-end flow 
of creating a feature store, ingesting features, retrieving features, and further 
using the features for training the model, deploying the model, and using the 
features from the feature store during inference: https://gitlab.com/
randydefauw/packt_book/-/blob/main/CH04/feature_
store_train_deploy_models.ipynb. 

Another best practice is to set up standards for versioning features. As features evolve, it is 
important to keep track of feature versions. Consider versioning at two levels – versions of 
the feature group itself and versions of features within a feature group. You need to create 
a new version of the feature group for when the schema of the features change, such as 
when feature definitions need to be added or deleted.

At the time of this book's publication, feature groups are immutable. To add or remove 
features, you will need to create a new feature group. To address the requirement of 
multiple versions of a feature group with different numbers of features, establish and stick 
to naming conventions. For example, you could create a weather-conditions-v1 
feature group initially. When that feature group needs to be updated, you can create a new 
weather-conditions-v2 feature group. You can also consider adding descriptive 
labels on data readiness or usage, such as weather-conditions-latest-v2 or 
weather-conditions-stable-v2. You also can tag feature groups to provide 
metadata. Additionally, you should also establish standards for how many concurrent 
versions to support and when to deprecate old versions.

https://gitlab.com/randydefauw/packt_book/-/blob/main/CH04/feature_store_train_deploy_models.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH04/feature_store_train_deploy_models.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH04/feature_store_train_deploy_models.ipynb
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For the versioning of the individual features, the offline store keeps a history of all values 
of the features in a feature group. Each feature record is required to have an eventTime, 
which supports the ability to access feature versions by date. To retrieve previous version 
values of features from the offline store, use an Athena query with a specific timestamp, as 
shown in the following code block: 

#Query string with specific date/time

timestamp = int(round(time.time()))

time_based_query_string = f"""

SELECT *

FROM "{weather_table}"

where eventtime <= {timestamp} and city=1080.0

"""

# Run Athena query. The output is loaded to a Pandas dataframe.

weather_query.run(query_string=time_based_query_string, output_
location='s3://'+s3_bucket_name+'/'+prefix+'/query_results/')

weather_query.wait()

dataset = weather_query.as_dataframe()

Note that you can further fine-tune the Athena query to include write-time and api_
call_time to extract very specific versions of the features. Please see the references section 
for a link to a detailed blog on point-in-time queries with SageMaker Feature Store. 

Additionally, when a record is deleted from the online store, the corresponding record 
in the offline store is only logically deleted, which is typically referred to as a tombstone. 
When you query the offline store, you may see a tombstone in the results. Use the is_
deleted feature of the record to filter these records from the results. 
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Now that you have the feature groups created and populated, how do teams in your 
organization discover and reuse the features? All authorized users of the Amazon 
SageMaker Feature Store can view and browse through a list of feature groups in a feature 
store in a SageMaker Studio environment. You can also search for specific feature groups 
by name, description, record identifier, creation date, and tags, as shown in Figure 5.9:

Figure 5.9 – Search and discover feature groups

You can go a step further, view feature definitions of the feature group, and search for 
specific features as shown in Figure 5.10:

Figure 5.10 – Search and discover features

In the next section, you will learn about designing an ML system that provides near real-
time predictions.



Designing solutions for near real-time ML predictions     99

Designing solutions for near real-time ML 
predictions
Sometimes machine learning applications demand high-throughput updates to features 
and near real-time access to the updated features. Timely access to fast-changing features 
is critical for the accuracy of predictions made by these applications. As an example, 
consider a machine learning application in a call center that predicts how to route the 
incoming customer calls to available agents. This application needs to have knowledge of 
the customer's latest web session clicks to make accurate routing decisions. If you capture 
a customer's web-click behavior as features, the features need to be updated instantly and 
the application needs access to the updated features in near-real time. Similarly, for weather 
prediction problems, you may want to capture the weather measurement features frequently 
for accurate weather predictions and need the ability to look up features in real time.

Let's look at some best practices in designing a reliable solution that meets the requirement 
of high-throughput writes and low-latency reads. At a high level, this solution will couple 
streaming ingestion into a feature group with streaming predictions. We will discuss the best 
practices to apply to ingestion into and serving from a feature store.

For ingesting features, the decision to choose between batch and streaming ingestion 
should be based on how often feature values in the feature store need to be updated for use 
by downstream training or inference. While simple machine models may need features 
from a single feature group, if you are working with data from multiple sources, you will 
find yourself using features from multiple feature groups. Some of these features need 
to be updated on a periodic basis (hourly, daily, weekly) and others must be streamed in 
near-real time. 

Feature update frequency and inference access patterns should also be used as a 
consideration for creating different feature groups and isolating features. By isolating 
features that need to be inserted on different schedules, the ingestion throughput for 
streaming features can be improved independently. However, retrieving values from 
multiple feature groups increases the number of API calls and can increase overall 
retrieval times.
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Your solution needs to balance feature isolation and retrieval performance. If your models 
require features from a large number of different feature groups at inference, design the 
solution to utilize larger feature groups or to retrieve from the feature store in parallel 
to meet the near real-time SLAs for predictions. For example, if your model requires 
features from three feature groups for inference, you can issue three API calls to get the 
feature record data in parallel before merging that data for model inference. This can be 
done through a typical inference workflow executing through an AWS service such as 
AWS Step Functions. Optionally, if that same set of features are always used together for 
inference, you may want to consider combining those into a single feature group. 

Figure 5.11 shows the end-to-end architecture for streaming ingestion and streaming 
inferences to support high-throughput writes and low-latency reads:

Figure 5.11 – End-to-end architecture for real-time feature ingestion and retrieval
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Here are the high-level steps involved in this architecture:

On the ingestion side:

1. The client application collects and processes the live data. For streaming 
applications, one option is to use Kinesis Data Streams. To ingest features, the 
client application calls an ingestion API hosted by an API Gateway.

2. An API Gateway invokes the lambda function that uses the put_record API to 
push features into the online feature store. As necessary, the lambda function can 
also perform additional processing on the raw data before pushing features to the 
feature store. 

On the prediction side:

1. A model-consuming client application calls a prediction API hosted by an API 
Gateway. An API Gateway invokes a lambda function that looks up the features 
related to inference requests from the online feature store and creates an  
enhanced request. 

2. The enhanced request is sent to the SageMaker deployed endpoint. The prediction 
from the endpoint traverses back to the client application.

Using these techniques and best practices, you can design real-time ML systems.

Summary
In this chapter, you reviewed the basic capabilities of Amazon SageMaker Feature Store 
along with the APIs to use. By combining different capabilities, you learned how to reuse 
engineered features across training and inference phases of a single machine learning 
project and across multiple ML projects. Finally, you combined streaming ingestion and 
serving to design near real-time inference solutions. In the next chapter, you will use these 
engineered features to train and tune machine learning models at scale.

References 
For additional reading material, please review these references:

• Using streaming ingestion with Amazon SageMaker Feature Store to make 
ML-backed decisions in near-real time:

https://aws.amazon.com/blogs/machine-learning/using-
streaming-ingestion-with-amazon-sagemaker-feature-store-
to-make-ml-backed-decisions-in-near-real-time/

https://aws.amazon.com/blogs/machine-learning/using-streaming-ingestion-with-amazon-sagemaker-feature-store-to-make-ml-backed-decisions-in-near-real-time/ 
https://aws.amazon.com/blogs/machine-learning/using-streaming-ingestion-with-amazon-sagemaker-feature-store-to-make-ml-backed-decisions-in-near-real-time/ 
https://aws.amazon.com/blogs/machine-learning/using-streaming-ingestion-with-amazon-sagemaker-feature-store-to-make-ml-backed-decisions-in-near-real-time/ 
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• Enable feature reuse across accounts and teams using Amazon SageMaker  
Feature Store: 

https://aws.amazon.com/blogs/machine-learning/enable-
feature-reuse-across-accounts-and-teams-using-amazon-
sagemaker-feature-store/

• Build accurate ML training datasets using point-in-time queries with Amazon 
SageMaker Feature Store and Apache Spark:

https://aws.amazon.com/blogs/machine-learning/build-
accurate-ml-training-datasets-using-point-in-time-queries-
with-amazon-sagemaker-feature-store-and-apache-spark/

• Ingesting historical feature data into Amazon SageMaker Feature Store:

https://towardsdatascience.com/ingesting-historical-
feature-data-into-sagemaker-feature-store-5618e41a11e6

https://aws.amazon.com/blogs/machine-learning/enable-feature-reuse-across-accounts-and-teams-using-amazon-sagemaker-feature-store/ 
https://aws.amazon.com/blogs/machine-learning/enable-feature-reuse-across-accounts-and-teams-using-amazon-sagemaker-feature-store/ 
https://aws.amazon.com/blogs/machine-learning/enable-feature-reuse-across-accounts-and-teams-using-amazon-sagemaker-feature-store/ 
https://aws.amazon.com/blogs/machine-learning/build-accurate-ml-training-datasets-using-point-in-time-queries-with-amazon-sagemaker-feature-store-and-apache-spark/ 
https://aws.amazon.com/blogs/machine-learning/build-accurate-ml-training-datasets-using-point-in-time-queries-with-amazon-sagemaker-feature-store-and-apache-spark/ 
https://aws.amazon.com/blogs/machine-learning/build-accurate-ml-training-datasets-using-point-in-time-queries-with-amazon-sagemaker-feature-store-and-apache-spark/ 
https://towardsdatascience.com/ingesting-historical-feature-data-into-sagemaker-feature-store-5618e41a11e6
https://towardsdatascience.com/ingesting-historical-feature-data-into-sagemaker-feature-store-5618e41a11e6


Section 2:  
Model Training 

Challenges

This section tackles the challenge of training at scale including using large datasets while 
saving costs, monitoring training resources to identify bottlenecks, speeding up long 
training jobs, and tracking multiple models trained for a common goal.

This section comprises the following chapters:

• Chapter 6, Training and Tuning at Scale

• Chapter 7, Profile Training Jobs with Amazon SageMaker Debugger





6
Training and Tuning 

at Scale
Machine learning (ML) practitioners face multiple challenges when training and tuning 
models at scale. Scale challenges come in the form of high volumes of training data and 
increased model size and model architecture complexity. Additional challenges come from 
having to run a large number of tuning jobs to identify the right set of hyperparameters 
and keeping track of multiple experiments conducted with varying algorithms for a 
specific ML objective. Scale challenges lead to long training times, resource constraints, 
and increased costs. This can reduce the productivity of teams, and potentially create a 
bottleneck for ML projects.

Amazon SageMaker provides managed distributed training and tuning capabilities to 
improve training efficiency, and capabilities to organize and track ML experiments at 
scale. SageMaker enables techniques such as streaming data into algorithms by using pipe 
mode for training with data at scale and Managed Spot Training for reduced training 
costs. Pipe mode and managed spot training are discussed in detail in Learn Amazon 
SageMaker: A guide to building, training, and deploying machine learning models for 
developers and data scientists, by Julien Simon. 
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In this chapter, we will discuss advanced topics of distributed training, best practices for 
hyperparameter tuning, and how to organize ML experiments at scale. By the end of this 
chapter, you will be able to use Amazon SageMaker's managed capabilities to train and tune 
at scale in a cost-effective manner and keep track of a large number of training experiments.

In this chapter, we will cover the following main topics:

• ML training at scale with SageMaker distributed libraries

• Automated model tuning with SageMaker hyperparameter tuning 

• Organizing and tracking training jobs with SageMaker Experiments

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have 
not set up the data science environment yet, please refer to Chapter 2, Data Science 
Environments, which walks you through the setup process.

Code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter06. You will need to install a Git client to access them (https://git-scm.
com/). 

ML training at scale with SageMaker 
distributed libraries
Two common scale challenges with ML projects are scaling training data and scaling 
model size. While increased training data volume, model size, and complexity can 
potentially result in a more accurate model, there is a limit to the data volume and the 
model size that you can use with a single compute node, CPU, or GPU. Increased training 
data volumes and model sizes typically result in more computations, and therefore 
training jobs take longer to finish, even when using powerful compute instances such as 
Amazon Elastic Compute Cloud (EC2) p3 and p4 instances. 

Distributed training is a commonly used technique to speed up training when dealing 
with scale challenges. Training load can be distributed either across multiple compute 
instances (nodes), or across multiple CPUs and GPUs (devices) on a single compute 
instance. There are two strategies for distributed training – data parallelism and model 
parallelism. Their names are a good indication of what is involved with each strategy. 
With data parallelism, the training data is split up across multiple nodes (or devices). With 
model parallelism, the model is split up across the nodes (or devices). 

https://git-scm.com/
https://git-scm.com/
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Note
Mixed-precision training is a popular technique to handle training at scale 
and reduce training time. Typically used on compute instances equipped with 
NVIDIA GPUs, mixed-precision training converts network weights from FP32 
representation to FP16, calculates the gradients, converts weights back to FP32, 
multiplies by the learning rate, and finally updates the optimizer weights.

In the data parallelism distribution strategy, the ML algorithm or the neural network-
based model is replicated on all devices, and each device processes a batch of data. Results 
from all devices are then combined. In the model parallelism distribution strategy, the 
model (which is the neural network) is split up across the devices. Batches of training 
data are sent to all devices so that the data can be processed by all parts of the model. The 
following diagram shows an overview of data and model parallelism:

Figure 6.1 – Distribution strategies

Both data and model parallelism distribution strategies come with their own complexities. 
With data parallelism, each node (or device) is trained on a subset of data (called a 
mini-batch), and a mini-gradient is calculated. However, within each node, a mini-
gradient average, with gradients coming from other nodes, should be calculated and 
communicated to all other nodes. This step is called all reduce, which is a communication 
overhead that grows as the training cluster is scaled up.
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While model parallelism addresses the requirements of a model not fitting in a single 
device's memory by splitting it across devices, partitioning the model across multiple 
GPUs may lead to under-utilization. This is because training on GPUs is sequential in 
nature, where only one GPU is actively processing data while the other GPUs are waiting 
to be activated. To be effective, model parallelism should be coupled with a pipeline 
execution schedule to train the model across multiple nodes, and in turn, maximize GPU 
utilization. Now that you know two different distribution strategies, how do you choose 
between data and model parallelism?

Choosing between data and model parallelism
When choosing a distributed strategy to implement, keep in mind the following:

• Training on multiple nodes inherently causes inter-node communication overhead.

• Additionally, to meet security and regulatory requirements, you may choose 
to protect the data transmitted between the nodes by enabling inter-container 
encryption. 

• Enabling inter-container encryption will further increase the training time.

Due to these reasons, use data parallelism if the trained model can fit in the memory of a 
single device or node. In situations where the model does not fit in the memory due to its 
size or complexity, you should experiment further with data parallelism before deciding 
on model parallelism. 

You can experiment with the following to improve data parallelism performance: 

• Tuning the model's hyperparameters: Tuning parameters such as the number  
of layers of a neural network, or the optimizer to use, affects the model's  
size considerably. 

• Reducing the batch size: Experiment by incrementally reducing the batch size 
until the model fits in the memory. This experiment should balance out the model's 
memory needs with optimal batch size. Make sure you do not end up with a 
suboptimal small batch size just because training with a large batch size takes up 
most of the device memory.

• Reducing the model input size: If the model input is tabular, consider embedding 
vectors of reduced dimensions. Similarly, for natural language processing (NLP) 
models, reduce the input NLP sequence length, and if the input is an image, reduce 
image resolution.
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• Using mixed-point precision: Experiment with mixed-precision training,  
which uses FP16 representation of weights during gradient calculation, to reduce 
memory consumption.

The following flowchart shows the sequence of decisions and experiments to follow when 
choosing a distribution strategy to implement:

Figure 6.2 – Choose a distribution strategy
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While data parallelism addresses the challenge of training data scale, model parallelism 
addresses the challenge of increased model size and complexity. A hybrid distribution 
strategy can also be implemented to include both data and model parallelism. Figure 6.3 
walks you through a hybrid distribution strategy with two-way data parallelism and four-
way model parallelism:

Figure 6.3 – Hybrid distribution strategy

Scaling the compute resources
Both the distributed training strategies depend on a cluster of compute resources to 
spread the training load. When scaling the distributed cluster to meet the training 
demands, the recommended best practices are as follows:

• First, scale vertically. That is, scale from a single GPU to multiple GPUs on a single 
instance. For example, let's say you started with the instance type p3.2xlarge, 
which has a single GPU for training your model, and you find yourself needing a 
greater number of GPUs to increase the training time. Change the instance type 
to p3.16xlarge, which has eight GPUs. This will result in a nearly eight-times 
decrease in the training, a near-linear speedup. Keeping the training job on a single 
scaled-up instance results in better performance than using multiple instances while 
keeping the cost low. 
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• Next, scale from a single instance to multiple instances. When you reach limits of 
the instance types offered and still need to scale your training even further, then 
use multiple instances of the same type, that is, scale from a single p3.16xlarge 
to two p3.16xlarge instances. This will give you double the compute capacity, 
going from 8 GPUs on a single instance, to 16 GPUs across two instances. Keep 
in mind that when you use multiple instances in the training cluster, all instances 
should be in the same Availability Zone. For example, instances in us-west-2 
must all be in us-west-2a or all in us-west-2b. Your training data should also 
be in the same region, us-west-2.

When moving from a single instance to multiple instances, it is recommended that you 
observe the model convergence and increase the batch size as necessary. Since the batch 
size you use is split across GPUs, each GPU is processing a lower batch size, which could 
lead to a high error rate and disrupt the model convergence. 

For example, let's say you start with a single GPU on a p3.2xlarge instance using a 
batch size of 64, then scale up to four p3dn.24xlarge, which gives you 32 GPUs. After 
this move, each GPU only processes a batch size of two, which is very likely to break the 
model convergence you observed with the original training.

SageMaker distributed libraries
For easy implementation of data and model parallelism in your training jobs, SageMaker 
provides two different distributed training libraries. The libraries address the issues of 
inter-node and inter-GPU communications overhead using a combination of software and 
hardware technologies. To implement the distributed libraries and take advantage of data 
and model parallelism, you will need to make minor code changes to your training scripts.

Important note
At the time of the book publication, the SageMaker distributed libraries 
support two frameworks—TensorFlow and PyTorch.

While in this chapter we are focusing on the SageMaker native libraries for 
distributed training, you can also choose to use Horovod, the most popular 
open source distributed training framework, or the native distributed training 
strategies in frameworks such as TensorFlow and PyTorch. Please see the blog 
link in the references section for details on using Horovod with TensorFlow  
on SageMaker.



112     Training and Tuning at Scale

SageMaker distributed data parallel library
Let's first dive into the SageMaker distributed data parallel library.

The SageMaker distributed data parallel library provides the capabilities to achieve  
near-linear scaling efficiency and fast training times on deep learning models. The library 
addresses the challenge of communications overhead in a distributed cluster using  
two approaches: 

• It automatically performs the AllReduce operation responsible for the overhead. 

• It optimizes node-to-communication by utilizing AWS's network infrastructure and 
Amazon EC2 instance topology.

SageMaker data parallelism can be used with both single-node, multi-device setup, and 
with multi-node setup. However, its value is more apparent in training clusters with two 
or more nodes. In this multi-node cluster, the AllReduce operation implemented as part 
of the library gives you significant performance improvement.

To use the distributed libraries with the SageMaker training jobs, first enable the strategy 
you want when you construct the estimator object. The following code block shows 
how to create an estimator object using a PyTorch container with the data parallel 
strategy enabled:

from sagemaker.pytorch import PyTorch

 

pt_dist_estimator = PyTorch(

                entry_point="train_pytorch_dist.py",

               … 

              distribution={

                    "smdistributed": {"dataparallel": 
{"enabled": True}}

              }

)

Additionally, there are a few changes that are needed to the training script, train_
pytorch_dist, in this example. The next few code blocks show the changes required to 
the training script:

1. First, import and initialize the SageMaker distributed library:

import smdistributed.dataparallel.torch.distributed as 
dist

from smdistributed.dataparallel.torch.parallel.
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distributed import DistributedDataParallel as DDP

dist.init_process_group()

2. Next, pin each GPU to a single SageMaker data parallel library process with 
local_rank, which is a relative rank of the process within a given node:

torch.cuda.set_device(dist_get_local_rank())

3. Next, resize the batch size to be handled by each worker:

batch_size //= dist.get_world_size()

batch_size = max(batch_size, 1)

4. Next, wrap the trained model artifact with the DDP class from the distributed 
library:

model = DDP(model)

5. Finally, once all of the changes are in place, simply call the fit() method on the 
estimator to kick off training with the training script:

pt_dist_estimator.fit()

To observe the benefits of the distributed training, we ran two different training jobs 
on the same dataset. Both the jobs were run on a single ml.p3.16xlarge, the 
first job without distributed training, and the second job with smdistributed 
dataparallel enabled. In this experiment, the first job was completed in 12041 
seconds, and the second job was completed in 4179 seconds, resulting in a 65.29% 
improvement in the training time. 

Note
Comparison of the two training jobs with and without smdistributed 
dataparallel enabled is captured in the notebook in the GitHub repo: 
https://gitlab.com/randydefauw/packt_book/-/blob/
main/CH05/train-distributed.ipynb. 

https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/train-distributed.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/train-distributed.ipynb
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SageMaker distributed model parallel library
Next, let's look into the SageMaker distributed model parallel library. This provides the 
capability to train large, complex deep learning models that can potentially increase 
prediction accuracy. The library automatically and efficiently splits a model across 
multiple GPUs, providing an option for both manual and automatic partitioning. It 
further coordinates training through a pipelined execution by building an efficient 
computation schedule where different nodes can simultaneously work on forward and 
backward passes for different data samples.

The following code block shows creating an estimator object using a PyTorch 
container with the model parallel strategy enabled:

mpi_options = {

    "enabled": True,

   "processes_per_host": 4

  }

  

dist_options = {

    "modelparallel":{

       "enabled": True,

       "parameters": {

           "partitions": 4,  # we'll partition the model among 
the 4 GPUs 

           "microbatches": 8,  # Mini-batchs are split in 
micro-batch to increase parallelism

           "optimize": "memory" # The automatic model 
partitioning can optimize speed or memory

           }

       }

}

pt_model_dist_estimator = PyTorch(

    entry_point="train_pytorch_model_dist.py",

    ...

    distribution={"mpi": mpi_options, "smdistributed": dist_
options}

)
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As with the data parallel strategy, there are a few code changes necessary to the training 
script. Important changes are discussed in the next few code blocks:

1. First, import and initialize the SageMaker distributed library:

import smdistributed.modelparallel.torch as smp

smp.init()

2. Next, wrap the model artifact in the DistributedModel class from the 
distributed library, and wrap the optimizer in the DistributedOptimizer class:

model = smp.DistributedModel(model)

optimizer = smp.DistributedOptimizer(optimizer)

3. Next, add the forward and backward logic to a function and decorate it with smp.
step:

@smp.step

def train_step(model, data, target):

    output = model(data)

    long_target = target.long()

    loss = F.nll_loss(output, long_target, 
reduction="mean")

    model.backward(loss)

    return output, loss

4. Finally, call the fit() method on the estimator object to kick off training:

pt_dist_estimator.fit()

Important Note
An example notebook that provides a complete walk-through of using the 
ModelParallel distribution strategy with a PyTorch container is provided 
in the GitHub repository: https://gitlab.com/randydefauw/
packt_book/-/blob/main/CH06/train.ipynb.

https://gitlab.com/randydefauw/packt_book/-/blob/main/CH06/train.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH06/train.ipynb
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While the SageMaker distributed model parallel library makes it easy to implement  
model parallel distributed training, for optimal training results consider the following  
best practices:

• Using manual versus auto-partitioning: You can partition the model onto multiple 
nodes (or devices) using either manual or auto-partitioning. While both of the 
options are supported, you should choose auto-partitioning over the manual 
approach. With auto-partitioning, training operations and modules that share the 
same parameters will automatically be placed on the same device for correctness. 
With a manual approach, you will have to take care of the details on how to split up 
the model parts, and which part should be placed on which device. This is a time-
consuming and error-prone process.

• Choosing the batch size: The model parallel library is most efficient with large 
batch sizes. In case you start with a smaller batch size to fit the model into a single 
node, then decide to implement model parallelism across multiple nodes, you 
should increase the batch size accordingly. Model parallelism saves memory for 
large models, allowing training with large batch sizes.

• Choosing the number and size of micro-batches: The model parallel library 
executes each micro-batch sequentially in each node or device. So, the micro-batch 
size should be large enough to fully utilize each GPU. At the same time, pipeline 
efficiency increases with the number of micro-batches, so balancing the two is 
important. 

It is best practice to start with two or four micro-batches and increase the batch size 
according to the available memory of the node/device. Then experiment with larger 
batch sizes and increase the number of micro-batches. As the number of micro-batches is 
increased, larger batch sizes might become feasible if an interleaved pipeline is used.

Incremental training
When huge volumes of data are available upfront before training your model, distributed 
training strategies should be used. But what happens when a trained model is deployed 
and then you collect new data that might improve the model predictions? In this situation, 
you can incrementally train a new model starting with artifacts from an existing model 
and using an expanded dataset.

Incremental training can save training time, resources, and costs in the following situations:

• An existing model is under-performing and new data becomes available that can 
potentially improve model performance.
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• You want to use publicly available models as a starting point for your model without 
having to train from scratch.

• You want to train multiple versions of a model, with either different 
hyperparameters or using different datasets.

• You want to restart a previously stopped training job, without having to start from 
scratch again.

Additionally, to complement or substitute for loading existing model weights and 
incrementally training, you can retrain on a sliding window on the most recent data.

In this section, you learned how to use SageMaker capabilities to train with large 
volumes of data and complex model architectures. Besides the training data and model 
architecture, a critical part of ML training is tuning hyperparameters of the ML algorithm. 
In the next section, you will learn the best practices for using SageMaker to handle model 
tuning at scale.

Automated model tuning with SageMaker 
hyperparameter tuning
Hyperparameter tuning (HPT) helps you find the right parameters to use with your 
ML algorithm or the neural network to find an optimal version of the model. Amazon 
SageMaker supports managed hyperparameter tuning, also called automatic model 
tuning. In this section, we discuss the best practices to consider while configuring 
hyperparameter jobs on Amazon SageMaker. 

To execute a SageMaker hyperparameter tuning job, you specify a set of hyperparameters, 
a range of values to explore for each hyperparameter, and an objective metric to measure 
the model's performance. Automatic tuning executes multiple training jobs on your 
training dataset with the ML algorithm and the hyperparameter values to find the best-
performing model as measured by the objective metric.

In the following code blocks, we will see how to create an HPT job on SageMaker:

1. First, initialize the hyperparameter names and range of values for each 
hyperparameter you want to explore:

from sagemaker.tuner import (

 IntegerParameter,

 CategoricalParameter,

 ContinuousParameter,
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 HyperparameterTuner, 

) 

hyperparameter_ranges = { 

 "eta": ContinuousParameter(0, 1),

 "min_child_weight": ContinuousParameter(1, 10),

 "alpha": ContinuousParameter(0, 2), 

 "max_depth": IntegerParameter(1, 10)

}

2. Next, configure the SageMaker estimator object:

estimator_hpo = \ sagemaker.estimator.Estimator( 

image_uri=xgboost_container, 

hyperparameters=hyperparameters, 

role=sagemaker.get_execution_role(), 

instance_count=1, 

instance_type='ml.m5.12xlarge', 

volume_size=200, # 5 GB 

output_path=output_path 

) 

3. Next, configure the HyperparameterTuner object:

tuner = HyperparameterTuner(

             estimator_hpo, 

     objective_metric_name,

     hyperparameter_ranges, 

     max_jobs=10,

     max_parallel_jobs=2,

     objective_type = 'Minimize'

)

4. Finally, call the fit() method on the tuner object:

tuner.fit({'train': train_input, 

           'validation': validation_input})
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Once the hyperparameter job is completed, you can view the different training jobs 
executed by SageMaker, along with the objective metric for each job, in Figure 6.4:

Figure 6.4 – SageMaker HPT results

You can dive further into each of the training jobs to view the exact values of the 
hyperparameters used, as shown in Figure 6.5:

Figure 6.5 – Hyperparameter values for a specific training job 
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Important Note
An example notebook that provides a complete walk-through of using 
SageMaker HPT, along with analysis of results, is provided in the GitHub 
repository: https://gitlab.com/randydefauw/packt_
book/-/blob/main/CH05/HPO.ipynb. 

Now that you know the basics, let's discuss some of the best practices to consider while 
configuring hyperparameter jobs on Amazon SageMaker:

• Selecting a small number of hyperparameters: HPT is a computationally 
intensive task, the computational complexity being proportional to the number 
of hyperparameters you want to tune. SageMaker allows you to specify up to 20 
hyperparameters to optimize for a tuning job but limiting your search to a smaller 
number is likely to give you better results.

• Selecting a small range for hyperparameters: Along the same lines, the range of 
values for hyperparameters can significantly affect the success of hyperparameter 
optimization. Intuitively, you may want to specify a very large range to explore 
all possible values for a hyperparameter, but you will in fact get better results by 
limiting your search to a small range of values.

• Specifying hyperparameter type: For the hyperparameters you want to explore, 
select the right type from the three types supported—categorical, integer, and 
continuous. Use the categorical type to test different categorical values for a 
hyperparameter, such as different optimizers for a neural network. Additionally, you 
can also use the categorical type when you want to test specific values.

For example, for the train_batch_size hyperparameter, instead of exploring a 
range in a linear fashion, you might want only to evaluate the two values–128 and 256. 
In this case, you treat the parameter as a categorical value. In contrast, if you want to 
explore the values for the train_batch_size hyperparameter in a range from a 
minimum threshold value of 128 to a maximum threshold value of 256, you will use 
the Integer type. The Integer type allows for greater exploration of the range. 

If you search a range that spans several orders of magnitude, you can optimize the 
search by choosing a logarithmic scale for Integer hyperparameters. Finally, 
choose a continuous parameter if the range of all values to explore, from the lowest 
to the highest, is relatively small. For example, exploring the learning_rate 
hyperparameter in the range of 0.0001 and 0.0005 at a linear scale. 

https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/HPO.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/HPO.ipynb
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• Enabling warm start: SageMaker HPT supports warm start, which reuses results 
from one or more prior tuning jobs as a starting point. Configure your HPT job 
to use warm start to limit the combinations of hyperparameters to search over in 
the new tuning job. This results in a faster tuning job. Warm start is particularly 
useful when you want to change the HPT ranges from the previous job or add new 
hyperparameters.

• Enabling early stop to save tuning time and costs: With early stop enabled, the 
individual training jobs launched by the HPT job will terminate early when the 
objective metric is not improving significantly. After each epoch of training, a 
running average of the objective metric for all the previous training jobs up to the 
same epoch is determined and the median of running averages is calculated. If the 
value of the objective metric for the current training job is worse than the median 
value, SageMaker stops the current training job.

Stopping jobs early reduces the overall compute time and thereby the cost of the job. 
An additional benefit is that early stopping helps prevent overfitting.

• Selecting a small number of concurrent training jobs: SageMaker allows you to 
execute multiple training jobs concurrently as part of the overall tuning job using 
the MaxParallelTrainingJobs parameter. On one hand, running more HPT 
jobs concurrently completes the tuning job quickly. On the other, a tuning job can 
only find better combinations of hyperparameters through successive rounds of 
experiments. In the long run, executing a single training job at a time gives the best 
results with minimum computation time.

This is the case when the default Bayesian optimization tuning strategy is used by 
SageMaker HPO. However, if you have experience with your algorithm and dataset, 
you can also use the random search strategy natively supported by SageMaker, since 
it enables concurrency but doesn't require serial rounds of experiments.

While in this section we focused on a single algorithm for best practice. The 
CreateHyperParameterTuningJob API can also be used to tune multiple 
algorithms by providing multiple training job definitions pointing to the different 
algorithms. For a detailed explanation of this API, see the following article: https://
docs.aws.amazon.com/sagemaker/latest/APIReference/API_
CreateHyperParameterTuningJob.html.

In the next section, you will learn how to keep track of all your ML experiments related to 
solving a specific problem.

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
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Organizing and tracking training jobs with 
SageMaker Experiments
A key challenge ML practitioners face is keeping track of the myriad ML experiments that 
need to be executed before a model achieves desired results. For a single ML project, it is 
not uncommon for data scientists to routinely train several different models looking for 
improved accuracy. HPT adds more training jobs to these experiments. Typically, there 
are many details to track for experiments such as hyperparameters, model architectures, 
training algorithms, custom scripts, metrics, result artifacts, and more.

In this section, we will discuss Amazon SageMaker Experiments, which allows you to 
organize, track, visualize, and compare ML models across all phases of the ML lifecycle, 
including feature engineering, model training, model tuning, and model deploying. 
SageMaker Experiments' capability tracks model lineage, allowing you to troubleshoot 
production issues and audit your models to meet compliance requirements.

Basic components that make up Amazon SageMaker Experiments include an experiment, 
a trial, a trial component, and a tracker, as shown in Figure 6.6:

Figure 6.6 – Amazon SageMaker Experiments overview

Let's look at each component:

• Experiment: An experiment encapsulates all related components that represent the 
ML problem you are attempting to solve. Each experiment is a collection of trials, 
with the goal of determining the trial that produces the best model.
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• Trial: A trial represents a single attempt at solving the ML problem that captures the 
end-to-end ML process within an experiment. Each trial is a collection consisting of 
several trial components.

• Trial Component: A trial component represents a specific step within a given trial. 
For example, the data preprocessing step could be one trial component, and model 
training could be another trial component.

• Tracker: A tracker is used to track metadata of individual trial components, 
including all parameters, inputs, outputs, artifacts, and metrics. Since this metadata 
is tracked and persisted, you can link the final model artifact to its origin.

In the following code blocks, we will see how to create a SageMaker experiment:

1. First, create an experiment: 

weather_experiment = Experiment.create(

    experiment_name=f"weather-experiment-{int(time.
time())}",  

    description="Weather Data Prediction", 

    sagemaker_boto_client=sm)

2. Next, create a Tracker instance to track the Training stage:

with Tracker.create(display_name="Training", sagemaker_
boto_client=sm) as tracker:

    # Log the location of the training dataset

    tracker.log_input(name="weather-training-dataset", 

  media_type="s3/uri", 

 value="s3://{}/{}/{}/".format(s3_bucket, s3_prefix, 
'train')) 

Next, define experiment variables to define what you want to change to see how 
your objective is affected. In this example, we will experiment with several values for 
the number of the max_depth hyperparameter of XGBoostmodel. We will create 
a trial to track each training job run.

We will also create a TrialComponent instance from the Tracker instance we 
created earlier and add this to the Trial instance. This will allow you to capture 
metrics from the training step as follows:

for i, max_depth in enumerate([2, 5]):
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    # create trial

    trial_name = f"xgboost-training-job-trial-{max_
depth}-max-depth-{int(time.time())}"

    xgboost_trial = Trial.create(

        trial_name=trial_name, 

        experiment_name=weather_experiment.experiment_
name,

        sagemaker_boto_client=sm,

    )

    max_depth_trial_name_map[max_depth] = trial_name

 

    xgboost_training_job_name = "xgboost-training-
job-{}".format(int(time.time()))

 

3. When running the training job with the fit() method, associate estimator 
with the experiment and trial:

# Now associate the estimator with the Experiment and 
Trial

    estimator.fit(

        inputs={'training': train_input}, 

        job_name=xgboost_training_job_name,

        experiment_config={

            "TrialName": xgboost_trial.trial_name,

            "TrialComponentDisplayName": "Training",

        },

        wait=False,

    )

4. Finally, after the experiment is completed, let's analyze the experiment results:

trial_component_analytics = \ 
ExperimentAnalytics(sagemaker_session=sagemaker_session, 
experiment_name=experiment_name ) 

trial_component_analytics.dataframe()
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Figure 6.7 shows a list of all the trial components that were created as part of the 
experiment:

Figure 6.7 – Trial components from the experiment

As you can see from this section, a SageMaker experiment gives you a way to organize 
your efforts toward an ML goal and allows visibility into several important aspects of 
those efforts. A best practice we recommend is that any time you launch a training or 
tuning job, wrap it in an experiment. This allows you to gain visibility into the training 
and tuning jobs without any additional cost.

Important note
An example notebook that provides a complete walk-through of using 
SageMaker Experiments is provided in the GitHub repository: https://
gitlab.com/randydefauw/packt_book/-/blob/main/
CH05/Experiments.ipynb. 

https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/Experiments.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/Experiments.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/Experiments.ipynb
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Summary
In this chapter, you learned the advanced techniques required to train models at 
scale using different distribution strategies. You further reviewed best practices for 
hyperparameter tuning to find the best version of the model to meet your objectives. 
You learned how to organize and track multiple experiments conducted in a typical ML 
workflow and create comparison reports. 

Using the SageMaker capabilities and best practices discussed in this chapter, you can 
tackle ML at scale, allowing your organization to move out of the experimentation phase. 
You can take advantage of large datasets collected over years, and move toward realizing 
the full benefits of ML. In the next chapter, you will continue to enhance ML training by 
profiling training jobs using Amazon SageMaker Debugger.

References
For additional reading material, please review these references:

• Learn Amazon SageMaker: A guide to building, training, and deploying ML models 
for developers and data scientists:

https://www.amazon.com/Learn-Amazon-SageMaker-developers- 
scientists/dp/180020891X/ref=sr_1_1?dchild=1&keywords 
=Learn+Amazon+SageMaker+%3A+A+guide+to+building% 
2C+training%2C+and+deploying+machine+learning+models+for 
+developers+and+data+scientists&qid=1624801601&sr=8-1

• Multi-GPU and distributed training using Horovod in Amazon SageMaker Pipe mode:

https://aws.amazon.com/blogs/machine-learning/multi-
gpu-and-distributed-training-using-horovod-in-amazon-
sagemaker-pipe-mode/

• Streamline modeling with Amazon SageMaker Studio and the Amazon  
Experiments SDK:

https://aws.amazon.com/blogs/machine-learning/streamline-
modeling-with-amazon-sagemaker-studio-and-amazon-
experiments-sdk

https://www.amazon.com/Learn-Amazon-SageMaker-developers- scientists/dp/180020891X/ref=sr_1_1?dchild=1& keywords=Learn+Amazon+SageMaker+%3A+A+guide+to+building% 2C+training%2C+and+deploying+machine+learning+models+for +developers+and+data+scientists&qid=
https://www.amazon.com/Learn-Amazon-SageMaker-developers- scientists/dp/180020891X/ref=sr_1_1?dchild=1& keywords=Learn+Amazon+SageMaker+%3A+A+guide+to+building% 2C+training%2C+and+deploying+machine+learning+models+for +developers+and+data+scientists&qid=
https://www.amazon.com/Learn-Amazon-SageMaker-developers- scientists/dp/180020891X/ref=sr_1_1?dchild=1& keywords=Learn+Amazon+SageMaker+%3A+A+guide+to+building% 2C+training%2C+and+deploying+machine+learning+models+for +developers+and+data+scientists&qid=
https://www.amazon.com/Learn-Amazon-SageMaker-developers- scientists/dp/180020891X/ref=sr_1_1?dchild=1& keywords=Learn+Amazon+SageMaker+%3A+A+guide+to+building% 2C+training%2C+and+deploying+machine+learning+models+for +developers+and+data+scientists&qid=
https://www.amazon.com/Learn-Amazon-SageMaker-developers- scientists/dp/180020891X/ref=sr_1_1?dchild=1& keywords=Learn+Amazon+SageMaker+%3A+A+guide+to+building% 2C+training%2C+and+deploying+machine+learning+models+for +developers+and+data+scientists&qid=
https://aws.amazon.com/blogs/machine-learning/multi-gpu-and-distributed-training-using-horovod-in-amazon-sagemaker-pipe-mode/
https://aws.amazon.com/blogs/machine-learning/multi-gpu-and-distributed-training-using-horovod-in-amazon-sagemaker-pipe-mode/
https://aws.amazon.com/blogs/machine-learning/multi-gpu-and-distributed-training-using-horovod-in-amazon-sagemaker-pipe-mode/
https://aws.amazon.com/blogs/machine-learning/streamline-modeling-with-amazon-sagemaker-studio-and-amazon-experiments-sdk
https://aws.amazon.com/blogs/machine-learning/streamline-modeling-with-amazon-sagemaker-studio-and-amazon-experiments-sdk
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Profile Training 

Jobs with Amazon 
SageMaker 

Debugger
Training machine learning (ML) models involves experimenting with multiple 
algorithms, with their hyperparameters typically crunching through large volumes of data. 
Training a model that yields optimal results is both a time- and compute-intensive task. 
Improved training time yields improved productivity and reduces overall training costs. 

Distributed training, as we discussed in Chapter 6, Training and Tuning at Scale, goes 
a long way in achieving improved training times by using a scalable compute cluster. 
However, monitoring training infrastructure to identify and debug resource bottlenecks is 
not trivial. Once a training job has been launched, the process becomes non-transparent, 
and you don't have much visibility into the model training process. Equally non-trivial 
is real-time monitoring to detect sub-optimal training jobs and stop them early to avoid 
wasting training time and resources.  
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Amazon SageMaker Debugger provides visibility into training jobs and the infrastructure 
a training job is executing on. Real-time training metrics such as learning gradients and 
network weights captured by SageMaker Debugger provide visibility into a training job in 
progress, so you can act on conditions such as vanishing gradients and overfitting. 

Debugger also monitors and provides reports about the system's resources such as CPU, 
GPU, and memory, providing you with insights into resource utilization and bottlenecks. 
Additionally, if you use TensorFlow or PyTorch for your deep learning training jobs, 
Debugger provides you with a view into framework metrics that can be used to speed up 
your training jobs.  

By the end of this chapter, you will be able to use the capabilities of Amazon SageMaker 
Debugger and apply best practices to address challenges typical to debugging ML training. 
These challenges include identifying and reacting to sub-optimal training, gaining 
visibility into the resource utilization of the training infrastructure, and optimizing 
training framework parameters. You will also learn how to improve the training time and 
costs by applying detailed recommendations provided by SageMaker Debugger.

In this chapter, we are going to cover the following main topics:

• Amazon SageMaker Debugger essentials

• Real-time monitoring of training jobs using built-in and custom rules

• Gain insight into the training infrastructure and training framework

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have not 
set up the data science environment for this book yet, please refer to Chapter 2, Data Science 
Environments, which will walk you through the setup process.

The code examples included in this book are available on GitHub at https://github.
com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter07. You will need to install a Git client to access them (https://git-scm.
com/). 

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter07
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter07
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter07
https://git-scm.com/
https://git-scm.com/
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Amazon SageMaker Debugger essentials
In this section, you will learn about the basic terminology and capabilities of Amazon 
SageMaker Debugger. Using Debugger with your training jobs involves three  
high-level steps:  

1. Configuring the training job to use SageMaker Debugger.
2. Analyzing the collected tensors and metrics.
3. Taking action.

The preceding points are illustrated in the following diagram:

Figure 7.1 – Amazon SageMaker Debugger overview

As we dive into each one of these steps, we will introduce the necessary terminology.
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Configuring a training job to use SageMaker Debugger
The first step is to configure training jobs to use Amazon SageMaker Debugger. By now, 
you are familiar with using the Estimator object from SageMaker SDK to launch 
training jobs. To use Amazon SageMaker Debugger, you must enhance Estimator 
with three additional configuration parameters: DebuggerHookConfig, Rules, and 
ProfilerConfig. 

With DebuggerHookConfig, you can specify which debugging metrics to collect and 
where to store them, as shown in the following code block:

Estimator(

    …

    debugger_hook_config=DebuggerHookConfig(

        s3_output_path=bucket_path,  # Where the debug data is 
stored.

        collection_configs=[ # Organize data to collect into 
collections.

            CollectionConfig(

                name="metrics",

                parameters={

                    "save_interval": str(save_interval)

                }

            )

        ],

    ),

    ….

)

s3_output_path is the location where all the collected data is persisted. If this location 
is not specified, Debugger uses the default path, s3://<output_path>/debug-
output/, where <output_path> is the output path of the SageMaker training job. 
The CollectionConfig list allows you to organize the debug data or tensors into 
collections for easier analysis. A tensor represents the state of a training network at a 
specific time during the training process. Data is collected at intervals, as specified by 
save_interval, which is the number of steps in a training run.
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How do you know which tensors to collect? SageMaker Debugger comes with a set of 
built-in collections to capture common training metrics such as weights, layers, and 
outputs. You can choose to collect all of the available tensors or a subset of them. In the 
preceding code sample, Debugger is gathering the metrics collection.

Note
For a complete list of built-in collections, refer to https://github.com/
awslabs/sagemaker-debugger/blob/master/docs/api.
md#collection.

You can also create a custom collection of metrics to collect. In the following code block, 
Debugger captures all the metrics with relu, tanh, or weight in their names:

# Use Debugger CollectionConfig to create a custom collection

collection_configs=[

        CollectionConfig(

            name="custom_collection",

            parameters={

                "include_regex": ".*relu |.*tanh | *weight ",

        })

]

Note
While it may be tempting to collect all the tensors, this leads to collecting a 
lot of data, which increases training time, training costs, and storage costs. 
In this case, using a ReductionConfig allows you to save reduced 
tensors instead of saving the full tensor (https://github.com/
awslabs/sagemaker-debugger/blob/master/docs/api.
md#collection).

While DebuggerHookConfig allows you to configure and save tensors, a rule analyzes 
the tensors that are captured during the training for specific conditions such as loss not 
decreasing. SageMaker Debugger supports two different types of rules: built-in and 
custom. SageMaker Debugger comes with a set of built-in rules in Python that can detect 
and report common training problems such as overfitting, underfitting, and vanishing 
gradients. With custom rules, you write your own rules in Python for SageMaker 
Debugger to evaluate against the collected tensors.

https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#collection
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#collection
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#collection
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#collection
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#collection
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#collection
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For example, in the following code block, Debugger collects tensors related to the 
metrics collection and evaluates the tensors to detect whether the training loss is 
reduced throughout the training process:

Estimator(

    …

    rules=[

        Rule.sagemaker(

            rule_configs.loss_not_decreasing(),

            rule_parameters={

                "collection_names": "metrics",

                "num_steps": str(save_interval * 2),

            },

        ),

    ],

)

Finally, ProfilerConfig allows you to collect system metrics such as CPU, GPU, 
Memory, I/O, and framework metrics specific to the framework being used in your 
training job. For the system metrics, you must specify the time interval for which you 
want to collect metrics, while for framework metrics, you specify the starting step and the 
number of steps, as shown in the following code block:

Estimator(

    …

    profiler_config = ProfilerConfig(

        ## Monitoring interval in milliseconds

     system_monitor_interval_millis=500,       ## Start 
collecting metrics from step 2 and collect from the next 7 
steps.

      framework_profile_params=FrameworkProfile(

    start_step=2, 

    num_steps=7

)     )
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The following table summarizes the tensors and metrics that are collected by SageMaker. It 
shows the different types of metrics, examples of each type, and how to collect and use them:

Figure 7.2 – Tensors and metrics collected by SageMaker Debugger

Using these configuration parameters, SageMaker Debugger collects quite a lot of 
information about your training jobs. But how do you ensure that the data that's been 
collected is secure?
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A best practice is to encrypt all the data in an S3 bucket, either with a key provided by 
AWS or your own key with customer-managed key (CMK). Additionally, the rules 
that have been configured are executed on isolated Debugger rule containers. The rule 
containers also execute in the same VPC as the training job and use the IAM role that's 
used by the training job.

Once you are satisfied with your Debugger configuration, kick off training using 
estimator.fit(). Next, we will analyze the information that's collected by the 
Debugger during the training job.

Analyzing the collected tensors and metrics
All tensors and metrics that are collected during training are persisted in S3. SageMaker 
Debugger uses a trial object to represent a single training run. A trial object consists of 
multiple steps, where each step represents a single batch of training data. At each step, a 
collected tensor has a specific value.   

To access the tensor values, you get the path to the tensors from the estimator, create a 
trial, get the list of tensors, find out the steps where you have data for a specific tensor you 
are interested in, and view the values of the tensor.

By following this path from the trial to the individual tensor values, you can manually 
query the tensor values, as shown in the following code block:

tensors_path = estimator.latest_job_debugger_artifacts_path()

print('S3 location of tensors is: ', tensors_path)

trial.tensor_names()

trial.tensor("feature_importance/cover/f1").values()

You can visualize the tensor values that have been collected even further by using custom 
plot code in the notebook. The following diagram shows a visualization of the train-rmse 
and validation-rmse training metrics, which were collected during training:
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Figure 7.3 – Training and validation errors

Note that you can also view the visualizations in SageMaker Studio. Additionally, if you 
have rules configured, Debugger automatically analyses the tensors to evaluate training 
conditions and trigger cloud watch alerts. Similarly, when you set the ProfileConfig 
parameter, a detailed profiler report is generated and saved in S3. Next, let's take a look at 
how to act on the rule results.

Taking action
Rules evaluate the collected tensor data. As the rule evaluation's status changes during 
training, a CloudWatch Event is triggered. You can configure a CloudWatch rule to be 
triggered for the CloudWatch Event to automate actions in response to the issues found by 
the rules.  
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Additionally, you can use Debugger's built-in actions to automate the responses. The 
following code block shows how to use a combination of Debugger's built-in rules  
and actions to stop a training job if the loss is not continuously reduced during the 
training process:

built_rules=[

        #Check for loss not decreasing during training and stop 
the training job.

        Rule.sagemaker(

            rule_configs.loss_not_decreasing(),

            actions = (rule_configs.StopTraining())

        )

]

On the other hand, when you have the ProfilerConfig parameter configured, a 
profiler report with a detailed analysis of system metrics and framework metrics is 
generated and persisted in S3. You can download, review, and apply recommendations to 
the profiler report. 

In the next two sections, you will learn how to automate responses to rule evaluations and 
implement recommendations from the profiler report.

Real-time monitoring of training jobs using 
built-in and custom rules
In this section, you will use Debugger capabilities to monitor a job with built-in and 
custom rules to detect sub-optimal training conditions such as LossNotDecreasing 
and ExplodingGradients.

SageMaker provides a set of built-in rules to identify common training issues such as 
class_imbalance, loss_no_decreasing, and overfitting.  

Note
The complete list of SageMaker built-in rules can be accessed here: 
https://docs.aws.amazon.com/sagemaker/latest/dg/
debugger-built-in-rules.html.

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html
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The following code sample shows how to configure built_in rules with SageMaker 
Debugger:

#Specify the rules you want to run

built_in_rules=[

        #Check for loss not decreasing during training and stop 
the training job.

        Rule.sagemaker(

            rule_configs.loss_not_decreasing(),

     

            actions = (rule_configs.StopTraining())

        ),

        #Check for overfit, overtraining and stalled training

        Rule.sagemaker(rule_configs.overfit()),  

   Rule.sagemaker(rule_configs.overtraining()),       

   Rule.sagemaker(rule_configs.stalled_training_rule())     

]

#Create an estimator and pass in the built_in rules.

pt_estimator = PyTorch(

    ...

    rules = built_in_rules

)

After calling fit, SageMaker starts one training job and one processing job for each 
configured built-in rule. The rule evaluation status is visible in the training logs in 
CloudWatch at regular intervals. You can also view the results of the rule execution 
programmatically using the following command: 

pt_estimator.latest_training_job.rule_job_summary()
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The results from the built-in rules that have been configured should be similar to  
the following:

Figure 7.4 – Summary of built-in rule execution

By analyzing the rule summary, you can see that the LossNotDecreasing rule is 
triggered, as indicated by RuleEvaluationStatus – IssuesFound. Since the  
action that's been configured is used to stop the training job, you will notice that the 
training job is stopped before all epochs are executed. You can also see that the other 
built-in rules – Overfit, Overtraining, and StalledTrainingRule – were  
not triggered during training.

Built-in rules are managed by AWS, freeing you from having to manage updates to rules. 
You simply plug them into the estimator. However, you may want to monitor a metric 
that is not included in the built-in rules, in which case you must configure a custom rule. 
A bit more work is involved with custom rules. For example, let's say you want to track if 
the gradients are becoming too large during training. To create a custom rule for this, you 
must extend the Rule interface provided by SageMaker Debugger.  

Note 
SageMaker provides two sets of Docker images for rules: one set for evaluating 
built-in rules and one set for evaluating custom rules. The Elastic container 
registry (ECR) URLs for these Docker images are available at https://
docs.aws.amazon.com/sagemaker/latest/dg/debugger-
docker-images-rules.html.

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-docker-images-rules.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-docker-images-rules.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-docker-images-rules.html
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In the following example, the custom rule will work with the tensors that were collected 
using the gradients collection. The invoke_at_step method provides the logic to 
be executed. At each step, the mean value of the gradient is compared against a threshold. 
If the gradient value is greater than the threshold, the rule is triggered, as shown in the 
following code:

class CustomGradientRule(Rule):

    def __init__(self, base_trial, threshold=10.0):

        super().__init__(base_trial)

        self.threshold = float(threshold)

    def invoke_at_step(self, step):

        for tname in self.base_trial.tensor_
names(collection="gradients"):

            t = self.base_trial.tensor(tname)

            abs_mean = t.reduction_value(step, "mean", 
abs=True)

            if abs_mean > self.threshold:

                return True

        return False

Next, define the custom rule, as follows:

custom_rule = Rule.custom(

    name='CustomRule', # used to identify the rule

    # rule evaluator container image

image_uri='759209512951.dkr.ecr.us-west-2.amazonaws.com/
sagemaker-debugger-rule-evaluator:latest',    instance_
type='ml.t3.medium',     source='rules/my_custom_rule.py', # 
path to the rule source file

    rule_to_invoke='CustomGradientRule', # name of the class to 
invoke in the rule source file

    volume_size_in_gb=30, # EBS volume size required to be 
attached to the rule evaluation instance

    collections_to_save=[CollectionConfig("gradients")],

    # collections to be analyzed by the rule. since this is a 
first party collection we fetch it as above

    rule_parameters={
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       #Threshold to compare the gradient value against

      "threshold": "20.0"     }

)

Configure the custom rule in the estimator and call the fit method, as follows:

pt_estimator_custom = PyTorch(

    ….

    ## New parameter

    rules = [custom_rule]

)

estimator.fit(wait = False)

After calling fit, Amazon SageMaker starts one training job and one processing job for 
each configured customer rule. The rule evaluation status is visible in the training logs in 
CloudWatch at regular intervals. Similar to the rule summary for built_in rules, you 
can view the custom rule summary using the following code:

pt_estimator.latest_training_job.rule_job_summary()

Using a combination of built-in and custom rules, you can gain insight into the training 
process and proactively stop the training jobs, without having to run an ineffective 
training job to completion. 

Important note
An example notebook that provides a complete walkthrough of using 
SageMaker Debugger's built-in and custom rules is provided in the following 
GitHub repository: https://gitlab.com/randydefauw/
packt_book/-/blob/master/CH06/debugger/weather-
prediction-debugger-rules.ipynb.

In this section, you got an inside look at the training process and improved the training 
job based on issues that have been detected by built-in and custom rules. In the next 
section, you will learn how to gain insight into the infrastructure and framework that's 
used for training jobs.

https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/debugger/weather-prediction-debugger-rules.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/debugger/weather-prediction-debugger-rules.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/debugger/weather-prediction-debugger-rules.ipynb
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Gaining insight into the training infrastructure 
and training framework
In this section, you will learn how to gain visibility into the resource utilization of the 
training infrastructure and the training framework. You will also learn how to analyze 
and implement recommendations provided by the deep profiler capability of SageMaker 
Debugger.

Debugger profiler provides you with visibility into the utilization of the infrastructure 
running ML training jobs on SageMaker. Debugger automatically monitors system 
resources such as CPU, GPU, network, I/O, and memory. Additionally, Debugger 
collects metrics specific to the training framework such as step duration, data loading, 
preprocessing, and operator runtime on CPU and GPU. You can decide to profile the 
training job in its entirety or just portions of it to collect the necessary framework metrics. 

In addition to collecting the system and framework metrics, behind the scenes, Debugger 
correlates these metrics automatically, which makes it easy for you to identify possible 
resource bottlenecks and perform root cause analysis. 

Let's explore this in detail with our example use case – predicting weather using PyTorch. 
Here, we will explore the system metrics, the framework metrics that are generated by the 
profiler, and look at implementing recommendations made by the profiler. This kind of 
deep profiling of training jobs includes the following high-level steps:

1. Training a PyTorch model for weather prediction with Debugger enabled.
2. Analyzing and visualizing the system and framework metrics generated by the 

profiler.
3. Analyzing the profiler report generated by SageMaker Debugger.
4. Reviewing and implementing recommendations from the profiler report.
5. Comparing the training jobs.

Let's look at each of these steps in detail.
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Training a PyTorch model for weather prediction 
First, we will train a deep learning model using the PyTorch framework. Because of the 
large volumes of data and the deep learning framework, we'll train on GPU instances. We 
will train on two ml.p3.2xlarge instances. Our infrastructure configuration will look 
as follows:

…

train_instance_type = "ml.p3.2xlarge" 

instance_count = 2

Next, let's define ProfilerConfig so that it can collect system and framework metrics:

profiler_config = ProfilerConfig(

    system_monitor_interval_millis=500,

    framework_profile_params=FrameworkProfile(start_step=2, 
num_steps=7)

)

Now, we must configure the PyTorch estimator by using the infrastructure and profiler 
configuration as parameters: 

pt_estimator = PyTorch(

    entry_point="train_pytorch.py",

    source_dir="code",

    role=sagemaker.get_execution_role(),

    instance_count=instance_count,

    instance_type=train_instance_type,

    framework_version="1.6",

    py_version="py3",

    volume_size=1024,

    # Debugger-specific parameters

    profiler_config=profiler_config,

)

Now, let's start the training job with the fit() method:

estimator.fit(inputs, wait= False)

In the next section, you will analyze and visualize the metrics generated by Debugger.
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Analyzing and visualizing the system and framework 
metrics generated by the profiler
Once the training job starts, Debugger starts collecting system and framework metrics. In 
this section, you will learn how to query, analyze, and visualize the collected metrics. 

First, let's look at how to analyze the collected metrics manually. The following code block 
shows how to query for system metrics:

#All collected metrics are persisted in S3.  Define path to the 
profiler artifacts

path = estimator.latest_job_profiler_artifacts_path()

#Create a reader for the system metrics

system_metrics_reader = S3SystemMetricsReader(path)

#Get the latest event

last_timestamp = system_metrics_reader.get_timestamp_of_latest_
available_file()

events = system_metrics_reader.get_events(0, last_timestamp * 
1000000)  # UTC time in microseconds

#Show the first system metric event collected

print(

    "Event name:",  events[0].name,

    "\nTimestamp:",  timestamp_to_utc(events[0].timestamp),

    "\nValue:", events[0].value,

)

The preceding code block results in the following output, which shows the GPU of one of 
the training instances at a particular time:

Event name: gpu2 

Timestamp: 2021-07-02 18:44:20 

Value: 0.0

The value of 0.0 indicates that this GPU is not being utilized. 

Similar to the system metrics, you can review framework metrics as well. The following 
code block shows how to query for framework metrics:

#Create a reader for the system metrics

framework_metrics_reader = S3AlgorithmMetricsReader(path)

framework_metrics_reader.refresh_event_file_list()
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last_timestamp = framework_metrics_reader.get_timestamp_of_
latest_available_file()

events = framework_metrics_reader.get_events(0, last_timestamp)

#We can inspect one of the recorded events to get the 
following:

print("Event name:", events[0].event_name, 

      "\nStart time:", timestamp_to_utc(events[0].start_
time/1000000000), 

      "\nEnd time:", timestamp_to_utc(events[0].end_
time/1000000000), 

      "\nDuration:", events[0].duration, "nanosecond")

The preceding code block results in the following, showing one of the framework metrics 
at a particular time:

Event name: embeddings.0 

Start time: 1970-01-19 19:27:42 

End time: 1970-01-19 19:27:42 

Duration: 141298 nanosecond

Once the metrics have been collected, you can visualize them using a heat map or custom 
plots in the notebook. 

Important note
For a more colorful visualization of the heat map and a more in-depth analysis 
of system and framework metrics, take a look at the following notebook: 
https://gitlab.com/randydefauw/packt_book/-/blob/
master/CH06/weather-prediction-debugger-profiler.
ipynb.

https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/weather-prediction-debugger-profiler.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/weather-prediction-debugger-profiler.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/weather-prediction-debugger-profiler.ipynb
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Analyzing the profiler report generated by SageMaker 
Debugger
In this section, we will download and review the profiler report that was generated by 
Debugger. SageMaker Debugger creates a detailed profiler report and saves it in an S3 
bucket at s3://<your bucket> /<job-name>/profiler-output/. You can 
download the report directly from S3. In the following list, we will review a few sections of 
the downloaded report: 

• Training job summary

This section of the report provides a detailed summary of the training job, including 
the start and end time of the job and the time that was spent on various phases of 
training. The following screenshot shows a sample of the training job's summary:

Figure 7.5 – Training job summary of the profiler report
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• System metrics summary

This section of the report shows the resource utilization of the training nodes. The 
following screenshot shows CPU, GPU, memory utilization, I/O wait time, and the 
amount of data that was sent and received:

Figure 7.6 – System metrics summary of the profiler report
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• Framework metrics summary

This section of the report starts by showing how much time the training job spent in 
the training and validation phases, as well as the time it spent waiting:

Figure 7.7 – Framework metrics summary of the profiler report
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• Rules summary

As the training job is running, Debugger executes a set of rules to profile the 
training process. This section of the profiler report summarizes all the debugger 
rules that have been evaluated, the description of the rule, the number of times 
each rule was triggered during training, the analysis, and recommendations for 
improving the training job. The following screenshot shows the rule summary in 
table format: 

Figure 7.8 – Rules summary of the profiler report

In addition to directly querying and visualizing the metrics, as well as downloading the 
profiler report in your notebook, you can use SageMaker Studio, which provides built-in 
visualizations for analyzing profiling insights. 

To access Debugger in Studio, follow these steps: 

1. On the navigation pane, choose Components and registries.
2. Choose Experiments and trails.
3. Choose your training job (right-click).
4. Choose Debugger Insights from the Debugger tab that opens.
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In the Debugger tab, you will see multiple sections. One of these sections is called 
Training job summary, as shown in the following screenshot. This built-in visualization 
shows training job details, such as the start time, end time, duration, and time spent in 
individual phases of training. The pie chart visualization shows the relative time spent by 
the training job in the initialization, training, and finalization phases:

Figure 7.9 – Debugger visualization in SageMaker Studio

In this section, we reviewed a few sections of the downloaded profiler report at a high 
level. To explore the profiler report in more detail, please run through the notebook in our 
Git repository.

Analyzing and implementing recommendations from 
the profiler report
Now that we have recommendations from the profiler, let's analyze and implement a 
recommendation to see if it leads to an improved training job. 

From the rules summary table in the preceding section, we can see that the rule triggered 
a maximum number of times during our training is LowGPUUtilization. This rule 
indicates that there is a possibility of bottlenecks occurring due to blocking calls and 
recommends changing the distributed training strategy or increasing the batch size. The 
next rule that was triggered the most times was BatchSize, which indicates that the 
GPU utilization could be low because of the smaller batch size. 
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The recommendation from the profiler, based on this rule's execution, is to consider 
running on a smaller instance type and to increase the batch size. Let's combine the 
profiler recommendations from these two most triggered rules, run two new training jobs 
with different settings, and check the profiler reports for the new training jobs to see if 
there is any improvement.  

We will run the first training job with the same infrastructure, (), but with an increased 
batch size, as shown in the following code block:

train_instance_type='ml.p3.2xlarge'

instance_count = 2

hyperparameters = {"batch_size": 1024}

For the next training job, we will use smaller training instances, (), and increase the  
batch size:

training_job_name=

train_instance_type='ml.p2.8xlarge'

instance_count = 2

hyperparameters = {"batch_size": 1024}

Using these two different configurations, run two different training jobs using 
estimator.fit(). Once the training jobs are complete, download and analyze the two 
profiler reports. 

Comparing the two training jobs
At this point, we have a total of three completed training jobs with different 
configurations. In this section, we'll compare the original training job to the two new 
training jobs we configured based on the recommendations from the profiler. When 
comparing these jobs, we will focus on the training time and the resulting training costs. 
The following table shows the initial and revised training job configurations, along with 
the training time, resource utilization, and cost comparisons:  
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Figure 7.10 – Comparison of training jobs

First, let's compare the original training job with the training job that uses the first 
revised training configuration. In the revised training configuration, the batch size is 
increased from 64 to 1024. This configuration change decreased the training time by 
17637 seconds; that is, from 18262 seconds to 895 seconds. Assuming that the training 
jobs were run in the us-west-2 region, the cost of p3.2xlarge is $3.825 at the time of 
writing. This leads to a cost saving of 26.67%. 

Similarly, if you compare the second revised training configuration, where we updated both 
the batch size and instance type to the original, the training time increased but the overall 
training cost improved by 65.36%. If you can tolerate a slight increase in the training time, 
you can save on training costs by implementing recommendations from the profiler.

Important note
An example notebook that provides a complete walkthrough of using the 
SageMaker Debugger profiler is provided in the following GitHub repository: 
https://gitlab.com/randydefauw/packt_book/-/blob/
master/CH06/weather-prediction-debugger-profiler.
ipynb.

The results that were discussed in this section are from using the full dataset 
for PyTorch training. In the notebook, you will have the chance to explore the 
same functionality but with a smaller dataset. 

In this section, we implemented a couple of recommendations from the profiler and saw 
considerable training improvements. There are still more recommendations that you can 
experiment with.

https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/weather-prediction-debugger-profiler.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/weather-prediction-debugger-profiler.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/weather-prediction-debugger-profiler.ipynb
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Additionally, in this section, we focused on how to kick off an estimator with Debugger 
enabled. You can also attach a profiler to a running training job using estimator.
enable_default_profiling(). Similarly, to enable Debugger's built-in rules, 
system monitoring, and framework profiling with customizable configuration parameters, 
use estimator.update_profiler().

Summary
In this chapter, you learned how to use the capabilities of Amazon SageMaker Debugger 
to gain visibility of the training process, training infrastructure, and training framework. 
This visibility allows you to react to typical training issues such as overfitting, training loss, 
and stopping the training jobs from running to completion, only to result in sub-optimal 
models. Using recommendations from the deep profiler capabilities of Amazon SageMaker, 
you learned how to improve training jobs with respect to training time and costs.

Using the debugger capabilities discussed in this chapter, you can continuously improve 
your training jobs by tweaking the underlying ML framework parameters and the training 
infrastructure configurations for faster and cost-effective ML training. In the next chapter, 
you will learn how to manage trained models at scale.

Further reading
For additional reading material, please review these references:

• Identify bottlenecks, improve resource utilization, and reduce ML training costs 
with the deep profiling feature in Amazon SageMaker Debugger:

https://aws.amazon.com/blogs/machine-learning/identify-
bottlenecks-improve-resource-utilization-and-reduce-ml-
training-costs-with-the-new-profiling-feature-in-amazon-
sagemaker-debugger/

• ML Explainability with Amazon SageMaker Debugger:

https://aws.amazon.com/blogs/machine-learning/
ml-explainability-with-amazon-sagemaker-debugger/

https://aws.amazon.com/blogs/machine-learning/identify-bottlenecks-improve-resource-utilization-and-reduce-ml-training-costs-with-the-new-profiling-feature-in-amazon-sagemaker-debugger/
https://aws.amazon.com/blogs/machine-learning/identify-bottlenecks-improve-resource-utilization-and-reduce-ml-training-costs-with-the-new-profiling-feature-in-amazon-sagemaker-debugger/
https://aws.amazon.com/blogs/machine-learning/identify-bottlenecks-improve-resource-utilization-and-reduce-ml-training-costs-with-the-new-profiling-feature-in-amazon-sagemaker-debugger/
https://aws.amazon.com/blogs/machine-learning/identify-bottlenecks-improve-resource-utilization-and-reduce-ml-training-costs-with-the-new-profiling-feature-in-amazon-sagemaker-debugger/
https://aws.amazon.com/blogs/machine-learning/ml-explainability-with-amazon-sagemaker-debugger/
https://aws.amazon.com/blogs/machine-learning/ml-explainability-with-amazon-sagemaker-debugger/


Section 3:  
Manage and  

Monitor Models

This section addresses the challenges of managing and monitoring a large number of 
models, updating models in production with minimal downtime, and choosing an 
appropriate deployment strategy for a cost-optimized way to satisfy business goals.

This section comprises the following chapters:

• Chapter 8, Managing Models at Scale Using a Model Registry

• Chapter 9, Updating Production Models Using Amazon SageMaker Endpoint 
Production Variants

• Chapter 10, Optimizing Model Hosting and Inference Costs

• Chapter 11, Monitoring Production Models with Amazon SageMaker Model Monitor 
and Clarify
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Managing Models at 
Scale Using a Model 

Registry
As you begin to deploy multiple models and manage multiple model versions, ensuring 
core architectural practices such as governance, traceability, and recoverability are 
followed is challenging without using a model registry. A model registry is a central store 
containing metadata specific to a model version. It includes information on how the 
model was built, the performance of that model, as well as where and how the model  
is deployed. Model registry services or solutions often include additional capabilities,  
such as approval workflows and notifications. 

In this chapter, we'll cover the concept of a model registry and why a model registry is 
important for managing multiple models at scale. We'll also outline considerations you 
need to make when choosing a model registry implementation, in order to best meet the 
needs of your environment and operational requirements. For this, we'll examine two 
example implementations of a model registry. These will be a custom-built model registry 
using AWS services, as well as SageMaker's implementation (called the SageMaker  
model registry). 
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Amazon SageMaker provides a built-in model registry. This is a fully managed model 
registry, optimized for use within Amazon SageMaker. However, if the Amazon 
SageMaker model registry does not meet your needs, there are several common patterns 
utilizing either a custom-built model registry or a third-party solution that also work well 
with Amazon SageMaker. Although there are many third-party model registries available 
that can be used for SageMaker-trained models, we do not cover them specifically in  
this chapter.

In this chapter, we're going to cover the following main topics: 

• Using a model registry

• Choosing a model registry solution

• Managing models using the Amazon SageMaker model registry

Technical requirements 
You will need an AWS account to run the examples included in this chapter. If you have 
not set up the data science environment yet, please refer to Chapter 2, Data Science 
Environments. This provides a walk-through of the setup process.

Code examples included in the book are available on GitHub at the following URL: 
https://github.com/PacktPublishing/Amazon-SageMaker-Best-
Practices/tree/main/Chapter08. You will need to install a Git client to access 
them (https://git-scm.com/).

The code for this chapter is in the CH08 folder of the GitHub repository.

Using a model registry
A model registry allows you to centrally track key metadata for each model version. 
The granularity of metadata tracked is often dependent on the chosen implementation 
(Amazon SageMaker's model registry, a custom solution, or a third-party solution).  

Regardless of the implementation, the key metadata to consider includes model version 
identifiers, and the following information about each model version registered: 

• Model inputs: These include metadata related to the inputs and versions of those 
inputs used to train the model. This can include inputs such as the name of the 
Amazon S3 bucket storing the training data, training hyperparameters, and the 
Amazon Elastic Container Registry (ECR) repository or container image used  
for training.

https://git-scm.com/
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• Model performance: This includes model evaluation data such as training and 
validation metrics.

• Model artifact: This includes metadata about the training model artifact. At  
a minimum, this includes the name of the Amazon S3 bucket storing the model 
artifact, as well as the name of the object (for example, model.tar.gz). 

• Model deployment: This includes metadata relating to the deployment of a model. 
This includes information such as the environment(s) a model version is deployed 
to, or the inference code that can be used for the registered model. 

Amazon SageMaker offers multiple options for training models including built-in 
algorithms, built-in frameworks (that is, script mode), and a bring-your-own container. 
Depending on the option chosen, the number of inputs required to train a model can 
vary. This could impact the metadata you choose to track. As a result, it's important to 
determine the minimum requirements of metadata that you need to track in order to meet 
any regulatory or internal traceability requirements you may have. 

When evaluating levels of granularity, you need to track your use case. Keep in mind the 
way your teams are using Amazon SageMaker to build models. Figure 8.1 illustrates an 
example of the inputs, metrics, and artifacts to consider for tracking across the SageMaker 
options for training models:

Figure 8.1 – Model build metadata across training options
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Similar considerations exist for tracking and storing model deployment data. The 
metadata tracked for model deployments should provide enough information to package 
the model for deployment using Amazon SageMaker, to a real-time endpoint, or using 
batch transform. This should also allow someone to easily identify where a given model 
version is deployed, as well as how it is packaged for deployment and consumption. Figure 
8.2 illustrates an example of the inputs, deployment stages, and artifacts to consider for 
tracking across the SageMaker options for deploying models:

Figure 8.2 – Model deploy metadata across deployment options

If you had a couple of models to manage, you could potentially track the previous 
information using a simple method, such as a spreadsheet. However, as you begin to 
scale to 20, 100, or thousands of models, that mechanism for tracking model metadata no 
longer scales. Centrally storing and tracking the information (shown in Figures 8.1 and 
8.2) for each model version provides the following benefits: 

• Operational efficiencies: A model registry provides tracking and visibility into 
key inputs used to build a specific model version, output artifacts, and information 
about the deployment stages aligned to that version. Having this metadata allows for 
the ability to quickly understand how a model was built, how the model performed, 
information about the trained model artifact, and also provides the ability to track 
the environment(s) a specific version is deployed to. 
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• Recoverability: To be able to recover a deployed model or roll back to a previous 
version, you need to have visibility to the inputs and input versions used to create 
a deployable artifact or a deployed model. In the event of system or human 
error, you can recover to a specific point in time using the metadata stored in the 
model registry, combined with protected versioned inputs. As an example, if an 
administrator were to accidentally delete a model endpoint, it should be easy to 
identify the artifacts needed to recreate that endpoint. This can be identified using 
metadata stored in the model registry that points to the location of the versioned 
model artifact, in combination with the versioned inference container image. 

• Pipeline sources and triggers: Often there is a need to bridge the model build 
and model deployment environments. This is typical in large enterprises that have 
central deployment teams, or in organizations that separate model build and model 
deployment roles. A model registry provides a mechanism to capture the minimum 
metadata needed for visibility into how a model is built. However, it can also be 
used to trigger approval workflows and downstream deployments. 

In the next section, we'll cover three patterns for creating a model registry to centrally 
track and manage machine learning models at scale. The considerations and high-level 
architectures of each will be outlined in order to guide you to the right fit for your specific 
use case. 

Choosing a model registry solution
There are multiple options available for implementing a model registry. While each 
implementation offers different features or capabilities, the concept of providing a central 
repository to track key metadata largely remains the same across implementations. In this 
section, we'll cover a few common patterns for creating a model registry, as well as discuss 
the considerations for each. The patterns covered in this section include the following: 

• Amazon SageMaker model registry 

• Building a custom model registry

• Utilizing a third-party or open source software (OSS) model registry
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Amazon SageMaker model registry
The Amazon SageMaker model registry is a managed service that allows you to centrally 
catalog models, manage model versions, associate metadata with your model versions, and 
manage the approval status of a model version. The service is continuously evolving with 
new features, so the information contained in this section is current as of the publication 
date. It's always recommended to validate the current features and capabilities with the 
official documentation for the Amazon SageMaker model registry (https://docs.
aws.amazon.com/sagemaker/latest/dg/model-registry.html). The 
SageMaker model registry is optimized for use in conjunction with Amazon SageMaker 
Pipelines and projects; however, it can also be used independently as well. 

You can interact with the SageMaker's model registry programmatically, as well as within 
Amazon SageMaker Studio. Studio provides a visual interface and experience for version 
management. The Studio interface also provides additional search capabilities. These can 
be seen in the following screenshot: 

Figure 8.3 – The SageMaker Studio interface for the SageMaker model registry

https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
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The SageMaker model registry also includes an approval status that can be modified when 
a model is approved for production. This could be after a peer or designated deployment 
approver reviews the model metadata and metrics as a final quality gate for deployment. 
In the following screenshot, you can see how the approval status field integrates natively 
with MLOps projects in Amazon SageMaker Pipelines to create automatic triggers based 
on a change in model status:

Figure 8.4 – SageMaker model registry – approval status

The main components of the SageMaker model registry include the following: 

• Model registry: This is the central store containing model groups and it exists at  
the AWS account and AWS region levels. Cross-account privileges can be set up  
to interact with the model registry from other AWS accounts. 

• Model groups: Model groups are a logical grouping. They allow you to track 
different model versions that are related to, or grouped by, the same machine 
learning problem.

• Model packages: Model packages are registered models or specific versions  
of a model.
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Figure 8.5 illustrates the main components, where each model version is a model package 
contained in a model group inside the model registry: 

Figure 8.5 – Amazon SageMaker model registry components and usage

When registering a new model version within a model group, you can use either the AWS 
SDK for Python (boto3) with the create_model_package method (https://
boto3.amazonaws.com/v1/documentation/api/latest/reference/
services/sagemaker.html#SageMaker.Client.create_model_
package), or create a step within a model build pipeline, using the RegisterModel 
step (https://sagemaker.readthedocs.io/en/stable/workflows/
pipelines/sagemaker.workflow.pipelines.html#pipeline) within 
Amazon SageMaker Pipelines. Understanding the ways you can register a model is 
important for understanding how you can use the SageMaker model registry outside of 
SageMaker Pipelines. It is also important for understanding how you can integrate the 
SageMaker model registry into other workflow tooling options you may already be using.

It's possible to register a model as either versioned or unversioned. Model packages that 
are versioned are part of a model group, and unversioned model packages are not part of 
a model group. The benefit of using a model group, or a versioned model, is the ability 
to logically group and manage models that are related, as well as provide the ability to 
automatically version models related to a specific machine learning (ML) problem.  
It's recommended to register your models using model groups with registered models  
that are versioned. This is the default setting. 

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model_package
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model_package
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model_package
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model_package
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#pipeline
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#pipeline
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A registered model has specific metadata that can be associated with that version. The 
metadata is defined and configured by the API request parameters. At high-level, the API 
accepts and associates the following key metadata as input: 

• Inference specification: A series of parameters that provide detailed information 
and guidance on hosting the model for inference. Information passed includes data 
such as the Amazon ECR data. This contains the inference code image, the Amazon 
S3 bucket containing the trained model artifact, and the supported instance types 
when hosting the model for either real-time inference or for batch inference. For 
example, if a model requires GPU for inference, that can be captured in the registry. 

• Model metrics: Model evaluation metrics across evaluated categories, such as 
statistical bias in a model, or model quality.

• Validation specification: Information about the SageMaker batch transform job(s) 
that were used to validate the model package (if applicable). 

• Algorithm specification: Details about the algorithm(s) used to create the model, 
as well as the Amazon S3 bucket containing the trained model artifact.

• Metadata properties: These properties contain metadata for the CodeCommit 
commit ID, author of the source, the SageMaker Pipelines project ID, and the 
name of the CodeCommit repository. While they are not restricted for use outside 
Amazon SageMaker Pipelines, they are direct pointers to SageMaker Pipelines 
project resources. 

• Model approval status: This parameter is used to indicate whether a model is 
approved for deployment. This parameter can be used to manage workflows.  
In the case of SageMaker Pipelines projects, the automated workflow triggers are 
automatically set up based on the status of this field. If a model status is changed  
to approved, a downstream deployment workflow can be triggered. 

Amazon SageMaker's model registry is fully managed, meaning there are no servers 
to manage. It also natively integrates into SageMaker Pipelines, providing the ability to 
integrate directly with the model registry as a native step in your model build pipeline.  
It does this using the RegisterModel step. 

For example, if you build a model build pipeline that contains the automated steps for data 
processing, training, and model evaluation, you can add a conditional step to validate the 
evaluation metric. If the evaluation metric is above a specified threshold (for example, 
accuracy > 90%), the pipeline can then be configured to automatically register your model. 
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SageMaker's model registry also integrates natively with SageMaker Pipelines projects. 
Projects allow you to automatically provision MLOps pipelines and provision patterns that 
take advantage of the model registry. SageMaker projects can be used to automatically set 
up the model package group, as well as the approval workflows that can be used to trigger 
the pre-configured downstream deployment pipeline. 

Important note
Amazon SageMaker Pipelines is covered in more detail in Chapter 12, Machine 
Learning Automated Workflows. The model registry is a component within 
SageMaker Pipelines but can be used independently of SageMaker Pipelines. 

Many of the parameters passed as input to the CreateModelPackage API are tailored 
for Amazon SageMaker use and integrations with other Amazon SageMaker features. 
For example, data that can be associated with model metrics has a direct correlation with 
metrics produced with features such as Amazon SageMaker Clarify, model statistical 
bias metrics, Amazon SageMaker Model Monitor, and data quality constraint metrics. 
In another example, the validation specification relates specifically to a SageMaker batch 
transform job run to evaluate the SageMaker model package. 

In this section, we reviewed the high-level architecture and usage of the Amazon 
SageMaker model registry to provide a basis for comparison against other options that 
will be covered in the next sections. Multiple options are being covered in this chapter. 
This is in order to support a variety of use cases and to help you choose the right option 
for your specific use case.

Building a custom model registry
A model registry can also be built using AWS services. Building a custom registry requires 
more effort to build the solution, set up the integrations between AWS services, set up the 
ML pipeline integrations, and then manage the solution. However, a custom registry also 
offers the ability to completely customize a registry to meet the needs specific to your use 
case. This could include requirements specific to tracking more granular metadata,  
or requirements to support multiple ML services/platforms. In this section, we'll review 
one pattern for creating a custom model registry using AWS services. 

The pattern shown in Figure 8.6 illustrates a simple model registry built using Amazon 
DynamoDB. DynamoDB can be used to store model metadata using a design pattern 
that separates groups of models by partition key. You could also consider a design pattern 
establishing a new table for different teams or business units if table-level isolation is 
preferred. Controls should also be set up using AWS Identity and Access Management 
(IAM) to control access to DynamoDB for specific tables, as well as specific primary keys 
to set up controls on who can access specific model groupings: 
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Figure 8.6 – Custom-built model registry using AWS services

The schema for a model registry based on DynamoDB provides flexibility in the metadata 
that can be stored for each model version. As an example, you may want to track data 
versions that correspond to the object(s) in an Amazon S3 bucket. A custom-built model 
registry provides the flexibility to define and adjust the schema to meet your individual 
requirements for traceability or for more granular metadata tracking.

Interacting with a custom-built model registry can be done through the Amazon 
DynamoDB API (PutItem) or through a custom-built API. Using a simple PutItem, API 
can often work for smaller teams or teams that perform end-to-end tasks, such as model 
building, model deployment, and operating in a production environment. However, 
in many cases, a model registry is built as part of a shared service (or ML platform 
component) that serves multiple teams and use cases. In this case, it's recommended to 
build an API that includes similar controls and validations that are seen in a managed 
service, such as SageMaker's model registry. 

To extend a custom-built model registry to include workflow tasks, such as triggering 
a model deployment pipeline based on a changed attribute, the solution needs to be 
extended to set up the trigger to detect a change and then execute any downstream 
processes you want to invoke. To do this, you can enable DynamoDB Streams and AWS 
Lambda triggers. 

In this section, we covered a high-level implementation pattern for creating a custom 
model registry using AWS services. This example provides complete flexibility in the 
registry schema, data points collected, and in defining the intended usage. 
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As an example, you may have some teams that utilize Amazon SageMaker features, 
but other teams that are utilizing other services or even building models on-premises. 
Building a custom registry also allows the flexibility to place the model registry in the 
AWS account you choose, based on your existing multi-account strategy, and adjust the 
schema based on usage. 

The pattern discussed also utilizes AWS-managed services, DynamoDB and API Gateway, 
meaning there are still no servers to manage. However, this is not a packaged solution. 
Therefore, the services need to be set up and configured. Interfacing code may need to  
be written, integrations between services need to be set up, and the solution needs to  
be managed. 

Utilizing a third-party or OSS model registry
Next, we'll briefly cover using a third-party or OSS implementation of a model registry. 
Because there are a lot of options available, this section will focus on high-level 
considerations, rather than diving deep into any specific implementation. Common 
implementations, such as MLflow, have existing documentation provided for integrating 
with Amazon SageMaker. Those resources should be utilized when implementing  
a third-party/OSS implementation and integrating with Amazon SageMaker.  

When considering a third-party or OSS implementation, there are a few questions to 
consider when evaluating your options:

• Does the implementation require you to manage the underlying servers, meaning 
you need to incur some additional operational overhead to ensure servers are 
patched, monitored, scaled, and set up using a readily available architecture? 

• Does the implementation offer native integrations that make it easy to integrate with 
Amazon SageMaker?

• What additional credentials do you need to set up and manage in order to integrate 
with Amazon SageMaker? 

Using a third-party or OSS option can add some additional overheads in terms of setup, 
integration, and ongoing management. However, many of these implementations offer 
robust capabilities, interfaces, and extensibility that may be preferred depending on your 
ML environments and use cases. 

In this section, we discussed three common patterns for model registry implementations 
for use with Amazon SageMaker models. Each pattern can be a valid choice depending 
on your requirements. As a result, key considerations for each were discussed to provide 
general guidance in order to choose the best implementation. 
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In general, it is recommended to choose the option that provides the capabilities  
you need based on your own requirements, combined with the option that offers the 
lowest development and operational overhead. In the next section, we'll narrow the  
focus to a technical deep dive into the Amazon SageMaker model registry. 

Managing models using the Amazon 
SageMaker model registry
An introduction to the Amazon SageMaker model registry was included in the section 
titled Amazon SageMaker model registry. This was done in order to explain the high-level 
architecture and features that are important to consider when choosing a model registry 
implementation. In this section, we'll dive deeper into the Amazon SageMaker model 
registry by covering the process and best practice guidance when setting up and using 
SageMaker's model registry. 

SageMaker's model registry includes the model registry, as well as model groups and 
model packages. Each model group contains model versions, or model packages, related 
to the same ML problem. Each model package represents a specific version of a model 
and includes metadata associated with that version. The SageMaker model registry APIs 
are used when interacting with the SageMaker model registry, and those APIs can also be 
called through any of the following:

• AWS Command Line Interface (CLI): This uses commands to interact with the 
model registry, such as create-model-package-group or create-model-
package commands. 

• AWS Python SDK (boto3): This uses methods to interact with the model  
registry, such as the create_model_package_group or create_model_
package methods.

• Amazon SageMaker Studio: This uses the click-through interface in SageMaker 
Studio (as shown in Figure 8.7) to create a model package group. 

• Amazon SageMaker Pipelines: This uses the built-in RegisterModelstep.
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Figure 8.7 illustrates creating a model package group using the Studio UI:

Figure 8.7 – Using SageMaker Studio to create a new model group

Although you can interact with the model registry using any of the methods listed, in 
this chapter we'll cover interacting with the model registry using the AWS Python SDK 
(boto3), to showcase a lower level of abstraction that is not dependent on Amazon 
SageMaker Studio or Amazon SageMaker Pipelines. 

In this section, you learned more about the primary components of the SageMaker model 
registry, as well as the different ways you can interact with the model registry either 
programmatically or via the Studio UI. 
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Creating a model package group
A model package group contains a collection of model packages or model versions. 
A model package group is not required for registering a model package; however, it is 
recommended for the manageability of your model versions across ML use cases. A model 
package group can contain one or more model packages. 

Creating a model package group involves a method that accepts only a few parameters on 
input to configure, as follows:

import time

model_package_group_name = "air-quality-" + str(round(time.
time()))

model_package_group_input_dict = {

"ModelPackageGroupName" : model_package_group_name,

"ModelPackageGroupDescription" : "model package group for air 
quality models",

"Tags": [

            {

            "Key": "MLProject",

             "Value": "weather"

              }

]  

}

create_model_pacakge_group_response = sm_client.create_model_
package_group(**model_package_group_input_dict)

print('ModelPackageGroup Arn : {}'.format(create_model_pacakge_
group_response['ModelPackageGroupArn']))

The preceding code is used to create a model package group that can then be used by 
ML builders, as well as with ML pipelines to register model packages (versions) for 
deployment. Configuration for a model package group requires only a model package 
group name and optionally a description and any tags you want to associate with the 
model group. 
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Recommendations when creating model package groups include the following: 

• Establishing naming standards for model package groups: As the number of 
model package groups grows, having clear naming standards can help with easily 
identifying and searching for related model package groups. Some considerations 
may include a team identifier and/or project identifier. Because it's common to 
have more than one team working on models, a team identifier can help easily sort 
and search for models specific to a given team. It's also common to have more than 
one model used in an overall solution. In this case, it is valuable to have a way to 
group models related to a specific project or solution. This can be done through 
established naming conventions, as well as tagging. 

• Utilizing tags for fine-grained access: In the preceding example, a tag of 
MLProject is created with the value of weather. In this case, let's assume  
a weather team is responsible for building weather-related models and only team 
members belonging to the weather team should be able to view model package 
groups with this tag. Resource tags can be used to establish conditional policies  
for access.

Creating a model package
A model package is a model version that can exist outside of a model package group, 
referred to as unversioned, or inside a model package group, referred to as versioned.  
A model package outside of a model package group is referred to as unversioned because 
it's not using the versioning capabilities of a model package group. It's recommended to 
register model packages using model package groups for automatic management of model 
versions, and for added manageability as the number of model versions increases.

Important note
Amazon SageMaker has two concepts called model package. The two are 
independent of each other. The first example is a model package that is created 
to package a model for deployment using the CreateModel API. This is 
required to deploy your model using Amazon SageMaker and is discussed in 
the Amazon SageMaker documentation (https://docs.aws.amazon.
com/sagemaker/latest/dg/sagemaker-mkt-model-pkg-
model.html). The second example, and the one we refer to in this chapter, 
is a model package specifically for Amazon SageMaker's model registry that is 
created using the CreateModelPackage API. 

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-mkt-model-pkg-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-mkt-model-pkg-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-mkt-model-pkg-model.html
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The CreateModelPackage API accepts several parameters on input. The high-level 
parameter categories were already covered in the section titled Amazon SageMaker model 
registry, so in this section, we'll include an example that uses those parameters to then 
register a model using our sample use case. In Chapter 12, Machine Learning Automated 
Workflows, we'll again discuss the model registry in the context of an ML pipeline, to 
demonstrate how a model registry can be integrated into your automated workflows. For 
now, we'll focus on registering a model package as an indication that it has passed initial 
model validation outside of a pipeline workflow. 

In this case, the model has been trained and we've evaluated the training metrics. Once 
our model reaches the minimum threshold identified for our evaluation metric, we are 
ready to register the model package. Using the AWS Python SDK (boto3), we'll register 
the model package, as shown in the following code:

modelpackage_inference_specification =  {

            "InferenceSpecification": {

            "Containers": [

            {

             "Image": xgboost_container,

             "ModelDataUrl": model_url

             }

             ],

             "SupportedContentTypes": [ "text/csv" ],

              "SupportedResponseMIMETypes": [ "text/csv" ],

  }

}

create_model_package_input_dict = {

            "ModelPackageGroupName" : model_package_group_name,

           "ModelPackageDescription" : "Model to predict air 
quality ratings using XGBoost",

            "ModelApprovalStatus" : "PendingManualApproval"

}

create_model_package_input_dict.update(modelpackage_inference_
specification)

create_mode_package_response = sm_client.create_model_
package(**create_model_package_input_dict)

model_package_arn = create_mode_package_
response["ModelPackageArn"]
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print('ModelPackage Version ARN : {}'.format(model_package_
arn))

ModelPackageGroupName is required to associate the model package with a model 
package group. This allows you to take advantage of automatic versioning, as  
previously discussed. 

The model packages can then be viewed using the list_model_packages method,  
as well as within Amazon SageMaker Studio. To list the model package, use the  
following code:

sm_client.list_model_packages(ModelPackageGroupName=model_
package_group_name)

Recommendations when creating model packages include the following:

• Creating versioned packages: Associate model packages with a model group by 
specifying the model package group when you create your model package. This 
allows for automatic versioning and grouping of use cases for easier management. 

• Using model approval status: The optimal use of the model approval status field 
is to allow for peer reviews and trigger downstream deployment workflows using 
Amazon SageMaker projects. However, even without the use of Amazon SageMaker 
projects, the same field can be used to ensure data used to register a model passes 
a minimum set of criteria. For example, if there is a team standard to include 
explainability metrics for a registered model, then that ApprovalStatus can 
optionally be used after a peer review of the registered model to indicate minimum 
standards or criteria have been met for that model. 

• Protecting the inputs/artifacts referred to in the model registry: Details 
contained in the model registry can be used to recreate or roll back deployed 
models; however, those resources need to be protected from unauthorized access  
or accidental deletion. For example, if an administrator accidentally deletes  
a SageMaker endpoint, it can still be easily recreated using the resources identified 
in the model registry. This would include the S3 object containing the model 
artifact, the S3 object with inference code (optional), and the ECR inference image. 
If any of those inputs are not available or cannot be guaranteed, then re-creating 
that endpoint may not be possible. Therefore, the metadata gives the information 
required, but there are still additional steps needed to protect inputs and artifacts. 
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• Considering tags when additional metadata is needed: The metadata within 
SageMaker's model registry is fixed to the input parameters that are defined in the 
API. However, tags can be used to supplement additional metadata. An example of 
the recommended use of tags here would be to capture the S3 version for resources 
such as the model artifact, in order to include more granularity on artifact tracking.

• Utilizing tags for fine-grained access: In the preceding example, a tag of 
MLProject is created with the value of weather. In this case, let's assume  
a weather team is responsible for building weather-related models and only team 
members from this team should be able to register new models to this model 
package group or other model package groups created with this tag. Resource tags 
can be used to establish conditional policies for access, in order to create model 
packages within specific model package groups. Resource tags can be used to 
establish conditional policies for access. 

In this section, we detailed the steps necessary to create a model package group and 
register model packages to that model package group using the sample code provided 
for this chapter. We also outlined recommendations to consider when creating your own 
model package groups and model packages. Chapter 12, Machine Learning Automated 
Workflows, will expand on the information covered in this chapter to include integrating 
Amazon SageMaker's model registry into an MLOps pipeline. 

Summary
In this chapter, we covered model registries and the benefits of utilizing a model registry 
to manage Amazon SageMaker models at scale. Common patterns for model registry 
implementations were covered, including Amazon SageMaker's model registry, building 
a custom model registry using AWS services, and utilizing a third-party or OSS model 
registry implementation. Each option is a valid choice depending on your use case and 
needs. However, we also highlighted some of the considerations when choosing the 
implementation that best fits your requirements. 

Finally, we did a deep dive into Amazon SageMaker's model registry, covering detailed 
recommendations for creating model package groups, as well as registering models by 
creating model packages. 

In the next chapter, we'll cover performing live tests and updates of production models 
using Amazon SageMaker endpoint production variants.
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A deployed production model needs to be updated for a variety of reasons, such as to gain 
access to new training data, to experiment with a new algorithm and hyperparameters, or 
to model predictive performance deteriorating over time. Any time you update a model 
with a new version in production, there is a risk of the model becoming unavailable during 
the update and the model's quality being worse than the previous version. Even after 
careful evaluation in the development and QA environments, new models need additional 
testing, validation, and monitoring to make sure they work properly in production. 
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When deploying new versions of models into production, you should carefully consider 
reducing deployment risks and minimizing downtime for the model consumers. It is also 
important to proactively plan for an unsuccessful model update and roll back to a previous 
working model. Replacing an existing model with a newer model should, ideally, not cause 
any service interruptions to the model's consumers. Model consumers may be applications 
that are internal to your organization or external, customer-facing applications. 

This chapter will address the challenge of updating production models with minimal 
disruption for model consumers using Amazon SageMaker Endpoint Production 
Variants. You will learn how to use SageMaker Endpoint Production Variants to 
implement Standard deployment and advanced model deployment strategies such as A/B 
testing, Blue/Green, Canary, and Shadow deployments, which balance cost with model 
downtime and ease of rollbacks. 

By the end of this chapter, you will be able to implement multiple deployment strategies 
for updating production machine learning models. You will learn when and how to 
use live production traffic to test new model versions. You will also learn about the best 
practices for balancing cost, availability, and reducing risk while choosing the right 
deployment strategy for your use case.

In this chapter, we are going to cover the following main topics:

• Basic concepts of Amazon SageMaker Endpoint Production Variants

• Deployment strategies for updating ML models with Amazon SageMaker Endpoint 
Production Variants

• Selecting an appropriate deployment strategy
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Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have 
not set up the data science environment yet, please refer to Chapter 2, Data Science 
Environments, which provides a walk-through of the setup process.

The code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter09. You will need to install a Git client to access them (https://git-scm.
com/). 

Basic concepts of Amazon SageMaker 
Endpoint Production Variants
In this section, you will review the basics of deploying and updating ML models using 
SageMaker Endpoint Production Variants. There are two ways you can deploy a machine 
learning model using SageMaker: by using a real-time endpoint for low latency live 
predictions or a batch transform for making asynchronous predictions on large numbers 
of inference requests. Production Variants can be applied to real-time endpoints.

Deploying a real-time endpoint involves two steps:

1. Creating an Endpoint Configuration

An endpoint configuration identifies one or more Production Variants. Each 
production variant indicates a model and infrastructure to deploy the model on. 

2. Creating an Endpoint Pointing to the Endpoint Configuration

Endpoint creation results in an HTTPS endpoint that the model consumers can use 
to invoke the model. 

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter09
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter09
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter09
https://git-scm.com/
https://git-scm.com/
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The following diagram shows two different endpoint configurations with Production 
Variants. Endpoint 1 has a single model called model_1 that's deployed on an ml.m4.
xlarge instance; all inference traffic is served by this single model. Endpoint 2 is 
deployed with two models called model_1 and model_2 on ml.m4.xlarge and 
ml.m4.2xlarge, respectively. Both models serve the inference requests equally because 
they have the same initial_weight configuration:

Figure 9.1 – Endpoint configurations with Production Variants

When an endpoint has been configured with multiple Production Variants, how do you 
know which model is serving the inference requests? There are two ways to determine 
this:

• First, the initial_weight parameter of the production variant determines the 
relative percentage of the requests served by the model specified by that variant.

• Second, the inference request may also include the model variant to invoke.



Basic concepts of Amazon SageMaker Endpoint Production Variants     179

The following diagram shows these two ways of invoking the endpoint

Figure 9.2 – Two ways to invoke SageMaker Endpoint

As the SageMaker Endpoints are serving inference traffic, they are monitored using 
Amazon CloudWatch Metrics. Use the EndpointName and VariantName dimensions 
to monitor metrics for each distinct production variant of the same endpoint. The 
Invocations metric captures the number of requests that are sent to a model, as 
indicated by the production variant. You can use this metric to monitor the number of 
requests that are served by different models and deployed with a single endpoint.

The following diagram shows a comparison of the Invocations metrics that have been 
captured for an endpoint that's been configured with two Production Variants. The first 
chart shows the number of invocations per production variant when the initial weights are 
set to 1 and 1. In this case, each variant serves a similar number of requests. The second 
chart shows the same metric with the initial weights of 2 and 1. As you can see, the 
number of requests that are served by variant 1 is double the number of requests that are 
served by variant 2:

Figure 9.3 – Invocations of SageMaker Endpoint Production Variants
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While the Invocations metric is intuitively easy to understand, there are other 
CloudWatch metrics such as Latency and Overhead that you can use to monitor, 
compare, and contrast multiple endpoints and multiple Production Variants of a  
single endpoint.

Note
For a full list of CloudWatch Metrics for Amazon SageMaker, please see 
https://docs.aws.amazon.com/sagemaker/latest/dg/
monitoring-cloudwatch.html#cloudwatch-metrics-
endpoint-invocation.

Similar to Production Variants, SageMaker multi-model endpoints (MME) also allow 
us to host multiple models on a single endpoint. If that is the case, how are Production 
Variants different from multi-model endpoints?

With an MME, all models are hosted on the same compute infrastructure. However, 
not all the models are loaded into the container memory when the endpoint is created. 
Instead, the model is loaded into memory when an inference request is made. Each 
inference request must specify the model to invoke. The invoked model is then loaded 
into memory from the S3 bucket if it is not already in memory. Depending on the 
invocation pattern, a model that hasn't been invoked recently may not be in memory. This 
could result in increased latency when serving the request. When you have a large number 
of similar ML models that are infrequently accessed and can tolerate slightly increased 
latency, then a single MME can serve inference traffic at significantly low costs.

On the other hand, with Production Variants, each model is hosted on a completely 
different compute infrastructure, and all the models are readily available without having 
to be loaded into container memory on demand. Each inference request may or may 
not specify the variant to invoke. If the variant to invoke is not specified, the number of 
inference requests that are served by each variant depends on the initial_weight 
parameter of the production variant. In the context of model deployment, use Production 
Variants to test different versions of ML models that have been trained using different 
datasets, algorithms, and ML frameworks or to test how a model performs on different 
instance types.

In the next section, you will learn how to use Production Variants in various deployment 
strategies. As we discuss these various deployment strategies, we will focus on what it 
takes to update an existing production model deployed as a real-time SageMaker endpoint 
using Production Variants. 

https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-endpoint-invocation
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-endpoint-invocation
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-endpoint-invocation
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Deployment strategies for updating ML 
models with SageMaker Endpoint  
Production Variants
In this section, we will dive into multiple deployment strategies you can adopt to update 
production models using SageMaker Endpoint Production Variants. While some 
deployment strategies are easy to implement and are cost-effective, others add complexity 
while lowering deployment risks. We will dive into five different strategies, including 
Standard, A/B, Blue/Green, Canary, and Shadow deployments, and discuss the various 
steps involved in each approach. 

Standard deployment
This strategy is the most straightforward approach to deploying and updating models in 
production. In a Standard model deployment, there is always a single active SageMaker 
endpoint, and the endpoint is configured with a single production variant, which means 
only a single model is deployed behind the endpoint. All inference traffic is processed 
by a single model. The endpoint configuration is similar to Endpoint Configuration 
1 in Figure 9.1 in the previous section. The following code block shows how to create 
a production variant. The production variant, variant1, hosts model_name_1 
on a single ml.m5.xlarge instance and serves all inference traffic, as indicated by 
initial_weight=1:

### Create production variant

from sagemaker.session import production_variant

variant1 = production_variant(model_name=model_name_1,

                              instance_type="ml.m5.xlarge",

                              initial_instance_count=1,

                              variant_name='VariantA',

                              initial_weight=1)

The following code block shows how to create an endpoint from the production variant. 
endpoint_from_production_variants automatically creates an endpoint_
configuration with the same name as endpoint_name:

### Create the endpoint with a production variants

from sagemaker.session import Session

#Variable for endpoint name

endpoint_name=f"abtest-{datetime.now():%Y-%m-%d-%H-%M-%S}"



182     Updating Production Models Using Amazon SageMaker Endpoint Production Variants

smsession = Session()

smsession.endpoint_from_production_variants(

            name=endpoint_name,

           production_variants=[variant1]

)

To update the endpoint with a newer version of the model, create a new endpoint 
configuration specifying the new model and infrastructure to deploy the model on. Then, 
update the endpoint with a new endpoint configuration. The following code block shows 
the code for updating the endpoint with the new model version:

#Create production variant 2

variant2 = production_variant(model_name=model_name_2,

                              instance_type="ml.m5.xlarge",

                                   initial_instance_count=1,

                                   variant_name='Variant2',

                                   initial_weight=1)

 

#Create a new endpoint configuration

endpoint_config_new =f"abtest-b-config-{datetime.now():%Y-%m-
%d-%H-%M-%S}"

 

smsession.create_endpoint_config_from_existing (

            existing_config_name=endpoint_name,

            new_config_name=endpoint_config_new,

            new_production_variants=[variant2]

)

##Update the endpoint to point to the new endpoint 
configuration

smsession.update_endpoint(

  endpoint_name=endpoint_name, endpoint_config_name=endpoint_
config_new, wait=False)

SageMaker automatically creates and manages the infrastructure necessary for the new 
production variant and routes the traffic to the new model without any downtime. All 
inference traffic is now served by the new model. The following diagram shows the steps 
involved in updating a deployed model:
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Figure 9.4 – Standard deployment with SageMaker Endpoint Production Variants

To roll back, simply update the endpoint with the original endpoint configuration, as 
represented by Step 1. As you can see, inference traffic is served by either the old version of 
the model or the new version at all times.

One benefit of this approach is that it is a simple, straightforward way to update an 
endpoint with a new model. When the endpoint is updated with the new endpoint 
configuration, SageMaker switches the inference requests to the new model while keeping 
the endpoint InService. This means that the model consumer does not experience 
any disruption to the service. This is also a cost-effective strategy for updating a real-time 
endpoint since you only pay for the infrastructure hosting a single model.

On the other hand, model evaluation and testing happen in non-production environments 
such as the QA or staging environments with test data. Since the new model is not tested 
in a production environment, it will face the production data volume and live traffic on 
the new infrastructure for the first time in production. This could lead to unforeseen 
complications, either with the model hosting the infrastructure or the model's quality.

Note
While evaluating the model in staging environments, it is recommended that 
you perform load testing to validate that the model can handle the traffic with 
acceptable latency before moving to production.

Refer to https://aws.amazon.com/blogs/machine-
learning/load-test-and-optimize-an-amazon-
sagemaker-endpoint-using-automatic-scaling/ to learn 
how to load test an endpoint using autoscaling and serverless-artillery.

https://aws.amazon.com/blogs/machine-learning/load-test-and-optimize-an-amazon-sagemaker-endpoint-using-automatic-scaling/
https://aws.amazon.com/blogs/machine-learning/load-test-and-optimize-an-amazon-sagemaker-endpoint-using-automatic-scaling/
https://aws.amazon.com/blogs/machine-learning/load-test-and-optimize-an-amazon-sagemaker-endpoint-using-automatic-scaling/
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Use Standard deployment if the model consumer is risk- and failure-tolerant, such as  
an internal application that can re-execute the predictions in case of failures. For  
example, an internal model that predicts employee turnover is a good candidate for 
Standard deployment.

Since only one model is serving inference requests at a time, this strategy is not suitable 
for comparing different models. If you are experimenting with different features, 
multiple algorithms, or hyperparameters, you want to be able to compare the models in 
production. The next deployment strategy helps with this need.

A/B deployment
In the Standard deployment, you have a single endpoint in the production environment 
with no scope for testing or evaluating the model in production. On the other hand, 
an A/B deployment strategy is focused on experimentation and exploration, such as 
comparing the performance of different versions of the same feature.

In this scenario, the endpoint configuration uses two Production Variants: one for model A 
and one for model B. For a fair comparison of the two models, initial_weight of the 
two production variants should be the same so that both models handle the same amount 
of inference traffic. Additionally, make sure the instance type and instance count are also 
the same. This initial setting is necessary so that neither version of the model is impacted 
by a difference in traffic patterns or a difference in the underlying compute capacity. 

The following code blocks shows how to create and update an endpoint for  
A/B deployments.

First, create production variant A:

#Create production variant A

variantA = production_variant(model_name=model_name_1,

                                  instance_type="ml.m5.xlarge",

                                  initial_instance_count=1,

                                    variant_name='VariantA',

                                    initial_weight=1)

Then, create an endpoint with one production variant, which initially serves  
production traffic:

#Variable for endpoint name

endpoint_name=f"abtest-{datetime.now():%Y-%m-%d-%H-%M-%S}"

#Create an endpoint with a single production variant
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smsession.endpoint_from_production_variants(

            name=endpoint_name,

            production_variants=[variantA]

)

When you are ready to test the next version of the model, create another production 
variant and update the endpoint so that it includes two Production Variants:

#Create production variant B

variantB = production_variant(model_name=model_name_2,

                                  instance_type="ml.m5.xlarge",

                                  initial_instance_count=1,

                                  variant_name='VariantB',

                                  initial_weight=1)

 

##Next update the endpoint to include both production variants

endpoint_config_new =f"abtest-new-config-{datetime.now():%Y-%m-
%d-%H-%M-%S}"

 

smsession.create_endpoint_config_from_existing (

            existing_config_name=endpoint_name,

            new_config_name=endpoint_config_new,

            new_production_variants=[variantA,variantB]  ## Two 
production variants

)

 

##Update the endpoint

smsession.update_endpoint(endpoint_name=endpoint_name, 
endpoint_config_name=endpoint_config_new, wait=False)

To invoke the endpoint, use the invoke_endpoint() API, as shown in the following 
code. The result of using the invoke_endpoint() API consists of the variant name 
that serves each specific request:

result = smrt.invoke_endpoint(EndpointName=endpoint_name,

                                  ContentType="text/csv",

                                 Body=test_string)
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rbody = \ StreamingBody(raw_stream=result['Body'],content_
length=int(result['ResponseMetadata']['HTTPHeaders']['content-
length']))

print(f"Result from {result['InvokedProductionVariant']} = 
{rbody.read().decode('utf-8')}")

The output from the endpoint should look similar to the following:

Result from VariantA = 0.17167794704437256

Result from VariantB = 0.14226064085960388

Result from VariantA = 0.10094326734542847

Result from VariantA = 0.17167794704437256

Result from VariantB = 0.050961822271347046

Result from VariantB = -0.2118145227432251

Result from VariantB = 0.16735368967056274

Result from VariantA = 0.17314249277114868

Result from VariantB = 0.16769883036613464

Result from VariantA = 0.17314249277114868

You can collect and examine results from VariantB. You can explore the CloudWatch 
metrics for VariantB even further as well, as explained in the Basic concepts of 
Amazon SageMaker Endpoint Production Variants section. Once you are happy with the 
performance of VariantB, gradually shift the balance toward the new model (40/60, 
20/80) until your new model is processing all the live traffic. The following code block 
shows how to route 60% of live traffic to VariantB:

#Update the product variant weight to route 60% of traffic to 
VariantB

sm.update_endpoint_weights_and_capacities(

           EndpointName=endpoint_name,

           DesiredWeightsAndCapacities=[

          {"DesiredWeight": 4, "VariantName": 
variantA["VariantName"]},

          {"DesiredWeight": 6, "VariantName": 
variantB["VariantName"]},

          ],

)
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Alternatively, you can choose to update the endpoint to route all live traffic to VariantB 
in a single step, as shown in the following code block:

##Update the endpoint to point to VariantB

endpoint_config_new =f"abtest-b-config-{datetime.now():%Y-%m-
%d-%H-%M-%S}"

 

smsession.create_endpoint_config_from_existing (

            existing_config_name=endpoint_name,

            new_config_name=endpoint_config_new,

            new_production_variants=[variantB]

)

##Update the endpoint

smsession.update_endpoint(endpoint_name=endpoint_name, 
endpoint_config_name=endpoint_config_new, wait=False)

The following diagram shows the steps involved in updating a deployed model. To roll 
back, simply update the endpoint with the original endpoint configuration, as represented 
by Step 1:

Figure 9.5 – A/B deployment with SageMaker Endpoint Production Variants
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The benefits of this strategy are that it is well-understood and that SageMaker makes 
it simple to implement this strategy by managing traffic routing. Since the new model 
is evaluated in production with an increased percentage of live traffic on the new 
infrastructure, the risk of the model becoming unavailable to the model consumer 
during the update, or the model quality being worse than it was in the previous version, 
is reduced. This addresses the typical deployment issue of the model worked perfectly in 
the dev/QA environment, so I'm not sure why it is failing in production. However, since two 
Production Variants are active for a certain period, the cost increases as you are paying for 
two sets of infrastructure resources.

Note
A relatively recent type of A/B testing that's gaining popularity is Multi-Arm 
Bandits (MAB). MAB is a machine learning-based approach that learns from 
the data that's collected during testing. Using a combination of exploration 
and exploitation, MAB dynamically shifts traffic to better-performing model 
variants much sooner than a traditional A/B test.

Refer to https://aws.amazon.com/blogs/machine-
learning/power-contextual-bandits-using-continual-
learning-with-amazon-sagemaker-rl/ to learn how to use 
Amazon SageMaker RL to implement MAB to recommend personalized 
content to users.

While the A/B strategy is helpful with experimentation and exploration, what about 
releasing major changes to your models? Is there a way to reduce the risk further? Blue/
Green deployments can help with this.

Blue/Green deployment
The Blue/Green deployment strategy involves two identical production environments, 
one containing the current model and another containing the next version of the model 
that you want to update to. While one environment, say Blue, is serving live traffic, the 
next version of the model is tested in the Green environment. While model testing is 
happening in production, only test or synthetic data is used. The new model version 
should be tested against functional, business, and traffic load requirements. 

Once you are satisfied with the test results over a certain period, update the live endpoint 
with the new (Green) endpoint configuration. Validate the tests again with the Green 
endpoint configuration using live inference traffic. If you find any issues during this testing 
period, route the traffic back to a Blue endpoint configuration. After a while, if there are no 
issues with the new model, go ahead and delete the Blue endpoint configuration.

https://aws.amazon.com/blogs/machine-learning/power-contextual-bandits-using-continual-learning-with-amazon-sagemaker-rl/
https://aws.amazon.com/blogs/machine-learning/power-contextual-bandits-using-continual-learning-with-amazon-sagemaker-rl/
https://aws.amazon.com/blogs/machine-learning/power-contextual-bandits-using-continual-learning-with-amazon-sagemaker-rl/
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The following diagram shows the steps involved in updating a deployed model:

Figure 9.6 – Blue/Green deployment with SageMaker Endpoint Production Variants

The advantage of this approach is that before serving live traffic, the new model is 
evaluated in the production environment. Both the model itself and the infrastructure 
hosting the model are evaluated and thereby risk is reduced. However, since two identical 
production environments are active for a while, the cost of this option could double 
compared to the strategies we've discussed so far. This option also loses the advantage of 
SageMaker managing the routing logic.

In this strategy, while the model is evaluated in production, testing still involves synthetic 
traffic. Synthetic data can simulate the production volumes, but it is not trivial to reflect 
the live data patterns. What if you want to test the new model with live traffic? Canary 
deployment is the strategy that allows you to do this.
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Canary deployment
In a Canary deployment, the setup is very similar to Blue/Green deployments, with two 
different production environments hosting the old and new models. However, instead of 
using synthetic test data with a new model, you use a portion of the live traffic. Initially, a 
small portion of the inference traffic from the model consumer will be served by the new 
model. The rest of the inference requests continue to use the previous version. During the 
testing phase, the designated set of users using the new model should remain the same, 
and this requires stickiness. When you are satisfied with the new model, gradually increase 
the percentage of requests that are sent to the new model, until all live traffic is served by 
the new model. Finally, the old model can be deleted.

Unlike the other strategies we've discussed so far, switching between the two different 
environments is not implemented by SageMaker. To make the switch between the 
environments completely transparent to the model consumer, a switching component 
must be used between the consumer and the endpoints. Examples of switching 
components include load balancers, DNS routers, and more.

The following diagram shows the steps involved in updating a deployed model using  
this strategy:

Figure 9.7 – Canary deployment with SageMaker Endpoint Production Variants

As with the Blue/Green deployments, the advantage of this approach is that risk to the 
model consumers is reduced as the new model is tested in the production environment. 
Additionally, the model is gradually exposed to live traffic instead of a sudden switch. But 
this strategy does require you to manage the logic of gradually increasing traffic for the 
new model. Additionally, since two identical production environments are active for a 
certain period, the cost of this option is also significantly higher.
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Shadow deployment
In a Shadow deployment, the setup is, once again, very similar to a Canary deployment 
in that two different production environments are hosting the old and new models, and 
inference traffic is sent to both. However, only responses from the old model are sent back 
to the model consumer. 

The traffic that's sent to the old model is collected and also sent to the new model, either 
immediately or after a delay. While the production traffic is sent to the new model as well 
as the old, the output from the new model is only captured and stored for analysis, not 
sent to model consumers. The new model should be tested against functional, business, 
and traffic load with the live traffic. The following diagram shows the steps involved in 
updating a model that's been deployed using this strategy:

Figure 9.8 – Shadow deployment with SageMaker Endpoint Production Variants

As with the Canary deployments, the advantage of this approach is that all risks to the 
model consumers are reduced as the new model is tested in the production environment.

 Note
An example notebook that demonstrates the end-to-end A/B deployment 
strategy is provided in the following GitHub repository. You can use this as 
a starting point for implementing other deployment strategies: https://
gitlab.com/randydefauw/packt_book/-/blob/main/
CH09/a_b_deployment_with_production_variants.ipynb. 

Now that you know about the multiple deployment strategies you can use to update 
production models, in the next section, we will discuss how to select a strategy to meet 
your specific requirements.

https://gitlab.com/randydefauw/packt_book/-/blob/main/CH09/a_b_deployment_with_production_variants.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH09/a_b_deployment_with_production_variants.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH09/a_b_deployment_with_production_variants.ipynb
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Selecting an appropriate deployment strategy
As you have seen so far, the initial deployment of a machine model is only one step of 
making it available to consumers. New versions of models are built regularly. Before 
making the new models available to the consumers, the model quality and infrastructure 
that's needed to host the model should be evaluated carefully. There are multiple factors 
to consider when selecting the deployment strategy to initially deploy and continue to 
update models. For example, not all models can be tested in production due to budget 
and resource constraints. Similarly, some model consumers can tolerate the model being 
unavailable for certain periods.

This section will summarize the deployment strategies you can use to deploy and update 
real-time SageMaker Endpoints. You will get an idea of the pros and cons for each 
strategy, in addition to when should it be used. 

Selecting a standard deployment
Model consumers are not business or revenue critical and are risk-tolerant. For example, a 
company's internal employee attrition prediction models are not time-critical and can be 
re-executed on errors:

Figure 9.9 – Pros and cons of a standard deployment
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Selecting an A/B deployment
You should use A/B deployments to explore the effect different sets of hyperparameters 
have on model quality, new or different slices of the training dataset, and different feature 
engineering techniques:

Figure 9.10 – Pros and cons of A/B deployment

Selecting a Blue/Green deployment
You should use this deployment with mission-critical model consumers, such as 
e-commerce applications, that are sensitive to model downtime:

Figure 9.11 – Pros and cons of Blue/Green deployment
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Selecting a Canary deployment
You should use this deployment with mission-critical model consumers, such as financial 
services models, that are not risk-tolerant:

Figure 9.12 – Pros and cons of a Canary deployment

Selecting a Shadow deployment
You should use this deployment with mission-critical model consumers, such as financial 
services models, that are not risk-tolerant:

Figure 9.13 – Pros and cons of Shadow deployment

You should choose an appropriate model strategy using the trade-offs discussed in the 
preceding subsections for ease of implementation, acceptable model downtime, the risk 
tolerance of the consumers, and the costs that must be taken into account for you to meet 
your needs.

Summary
In this chapter, we reviewed the reasons we should update production ML models. You 
learned how to use Production Variants to host multiple models using a single SageMaker 
Endpoint. You then learned about multiple deployment strategies that balance the cost 
and risk of model updates with ease of implementation and rollbacks. You also learned 
about the various steps involved and the configurations to use for Standard, A/B, Blue/
Green, Canary, and Shadow deployments. 

This chapter concluded with a comparison of the pros and cons and the applicability of 
each deployment strategy to specific use cases. Using this discussion as guidance, you can 
now choose an appropriate strategy to update your production models so that they meet 
your model availability and model quality requirements.

In the next chapter, we will continue our discussion of deploying models and learn about 
optimizing model hosting and infrastructure costs.



10
Optimizing Model 

Hosting and 
Inference Costs

The introduction of more powerful computers (notably with graphical processing units, 
or GPUs) and powerful machine learning (ML) frameworks such as TensorFlow has 
resulted in a generational leap in ML capabilities. As ML practitioners, our purview now 
includes optimizing the use of these new capabilities to maximize the value we get for the 
time and money we spend.

In this chapter, you'll learn how to use multiple deployment strategies to meet your 
training and inference requirements. You'll learn when to get and store inferences 
in advance versus getting them on demand, how to scale inference services to meet 
fluctuating demand, and how to use multiple models for model testing.  

In this chapter, we will cover the following topics:

• Real-time inference versus batch inference

• Deploying multiple models behind a single inference endpoint

• Scaling inference endpoints to meet inference traffic demands
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• Using Elastic Inference for deep learning models

• Optimizing models with SageMaker Neo

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have 
not set up the data science environment yet, please refer to Chapter 2, Data Science 
Environments, which walks you through the setup process.

The code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter10. You will need to install a Git client to access them (https://git-scm.
com/).

The code for this chapter is in the CH10 folder of the GitHub repository.

Real-time inference versus batch inference
SageMaker provides two ways to obtain inferences:

• Real-time inference lets you get a single inference per request, or a small number  
of inferences, with very low latency from a live inference endpoint.

• Batch inference lets you get a large number of inferences from a batch  
processing job.

Batch inference is more efficient and more cost-effective. Use it whenever your inference 
requirements allow. We'll explore batch inference first, and then pivot to real-time inference.

Batch inference
In many cases, we can make inferences in advance and store them for later use. For 
example, if you want to generate product recommendations for users on an e-commerce 
site, those recommendations may be based on the users' prior purchases and which 
products you want to promote the next day. You can generate the recommendations 
nightly and store them for your e-commerce site to call up when the users browse the site.

There are several options for storing batch inferences. Amazon DynamoDB is a common 
choice for several reasons, such as the following:

• It is fast. You can look up single values within a few milliseconds.

• It is scalable. You can store millions of values at a low cost.

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter10
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter10
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter10
https://git-scm.com/
https://git-scm.com/
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• The best access pattern for DynamoDB is looking up values by a high-cardinality 
primary key. This fits well with many inference usage patterns, for example, when 
we want to look up a stored recommendation for an individual user.

You can use other data stores, including DocumentDB and Aurora, depending on your 
access patterns.

In the CH10 folder of the GitHub repository, you'll find the optimize.ipynb 
notebook. The Real-time and Batch Inference section of this repository walks you through 
performing both batch and real-time inference using a simple XGBoost model. The 
following code lets you run a batch inference job:

batch_input = "s3://{}/{}/{}/".format(s3_bucket, s3_prefix, 
'test')

batch_output = "s3://{}/{}/{}/".format(s3_bucket, "xgboost-
sample", 'xform')

transformer = estimator.transformer(instance_count=1, 

instance_type='ml.m5.4xlarge', output_path=batch_output, max_
payload=3)

transformer.transform(data=batch_input, data_type='S3Prefix', 

content_type=content_type, split_type='Line')

This job takes approximately 3 minutes to run.

Real-time inference
When you deploy a SageMaker model to a real-time inference endpoint, SageMaker 
deploys the model artifact and your inference code (packaged in a Docker image) to one 
or more inference instances. You now have a live API endpoint for inference, and you can 
invoke it from other software services on demand.  

You pay for the inference endpoints (instances) as long as they are running. Use real-time 
inference in the following situations:

• The inferences are dependent on context. For example, if you want to recommend 
a video to watch, the inference may depend on the show your user just finished. If 
you have a large video catalog, you can't generate all the possible permutations of 
recommendations in advance.  

• You may need to provide inferences for new events. For example, if you are trying 
to classify a credit card transaction as fraudulent or not, you need to wait until your 
user actually attempts a transaction.
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The following code deploys an inference endpoint:

from sagemaker.deserializers import JSONDeserializer

from sagemaker.serializers import CSVSerializer

predictor = estimator.deploy(initial_instance_count=1,

                            instance_type='ml.m5.2xlarge',

                            serializer=CSVSerializer(),

                            deserializer=JSONDeserializer()

                             )

Once the endpoint is live, we can obtain inferences using the endpoint we just deployed:

result = predictor.predict(csv_payload)

print(result)

Using our simple XGBoost model, an inference takes approximately 30 milliseconds to 
complete.

Cost comparison
Consider a scenario where we want to predict the measurements for the next day for all 
of our weather stations and make them available for lookup on an interactive website. We 
have approximately 11,000 unique stations and 7 different parameters to predict for each 
station.  

With a real-time endpoint using the ml.m5.2xlarge instance type, we pay $0.538 per 
hour, or approximately $387 per month. With batch inference, we pay $1.075 per hour for 
an ml.m5.4xlarge instance. The job takes 3 minutes to run per day, or 90 minutes per 
month. That's about $1.61.

The batch inference approach is typically much more cost-effective if you do not need 
context-sensitive real-time predictions. Serving predictions out of a NoSQL database  
is a better option.

Deploying multiple models behind a single 
inference endpoint
A SageMaker inference endpoint is a logical entity that actually holds a load balancer and 
one or more instances of your inference container. You can deploy either multiple versions 
of the same model or entirely different models behind a single endpoint. In this section, 
we'll look at these two use cases.
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Multiple versions of the same model
A SageMaker endpoint lets you host multiple models that serve different percentages of 
traffic for incoming requests. That capability supports common continuous integration 
(CI)/continuous delivery (CD) practices such as canary and blue/green deployments. 
While these practices are similar, they have slightly different purposes, as explained here:

• A canary deployment means that you let the new version of a model host a small 
percentage of traffic that lets you test a new version of the model on a subset of 
traffic until you are satisfied that it is working well.

• A blue/green deployment means that you run two versions of the model at the 
same time, keeping an older version around for quick failover if a problem occurs in 
the new version.

In practice, these are variations on a theme. In SageMaker, you designate how much traffic 
each model variant handles. For canary deployments, you'd start with a small fraction 
(usually 1-5%) for the new model versions. For blue/green deployments, you'd use 100% 
for the new version but flip back to 0% if a problem occurs.

There are other ways to accomplish these deployment modes. For example, you can use 
two inference endpoints and handle traffic shaping using DNS (Route 53), a load balancer, 
or Global Accelerator. But managing the traffic through SageMaker simplifies your 
operational burden and reduces cost, as you don't have to have two endpoints running.

In the A/B Testing section of the notebook, we'll create another version of the model and 
create a new endpoint that uses both models:

1. We'll start by training another version of the model with a hyperparameter change 
(maximum tree depth of 10 instead of 5), as follows:

hyperparameters_v2 = {

        "max_depth":"10",

        "eta":"0.2",

        "gamma":"4",

        "min_child_weight":"6",

        "subsample":"0.7",

        "objective":"reg:squarederror",

        "num_round":"5"}

estimator_v2 = \ sagemaker.estimator.Estimator(image_
uri=xgboost_container, 

                    hyperparameters=hyperparameters,



200     Optimizing Model Hosting and Inference Costs

                    role=sagemaker.get_execution_role(),

                    instance_count=1, 

                    instance_type='ml.m5.12xlarge', 

                    volume_size=200, # 5 GB 

                    output_path=output_path)

predictor_v2 = estimator_v2.deploy(initial_instance_
count=1,

                           instance_type='ml.m5.2xlarge',

                            serializer=CSVSerializer(),

                          deserializer=JSONDeserializer()

                             )

2. Next, we define endpoint variants for each model version. The most important 
parameter here is initial_weight, which specifies how much traffic should 
go to each model version. By setting both versions to 1, the traffic will split evenly 
between them. For an A/B test, you might start with weights of 20 for the existing 
version and 1 for the new version:

model1 = predictor._model_names[0]

model2 = predictor_v2._model_names[0]

from sagemaker.session import production_variant

variant1 = production_variant(model_name=model1,

                            instance_type="ml.m5.xlarge",

                              initial_instance_count=1,

                              variant_name='Variant1',

                              initial_weight=1)

variant2 = production_variant(model_name=model2,

                            instance_type="ml.m5.xlarge",

                              initial_instance_count=1,

                              variant_name='Variant2',

                              initial_weight=1)
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3. Now, we deploy a new model using the following two model variants:

from sagemaker.session import Session

smsession = Session()

smsession.endpoint_from_production_variants(

    name='mmendpoint',

    production_variants=[variant1, variant2]

)

4. Finally, we can test the new endpoint:

from sagemaker.deserializers import JSONDeserializer

from sagemaker.serializers import CSVSerializer

import boto3

from botocore.response import StreamingBody

smrt = boto3.Session().client("sagemaker-runtime")

for tl in t_lines[0:50]:

    result = smrt.invoke_
endpoint(EndpointName='mmendpoint',

         ContentType="text/csv", Body=tl.strip())

    rbody = StreamingBody( \

raw_stream=result['Body'], \

content_length= \

int(result['ResponseMetadata']['HTTPHeaders']['content-
length']))

    print(f"Result from 
{result['InvokedProductionVariant']} = " + \

f"{rbody.read().decode('utf-8')}")

You'll see output that looks like this:
Result from Variant2 = 0.16384175419807434

Result from Variant1 = 0.16383948922157288

Result from Variant1 = 0.16383948922157288

Result from Variant2 = 0.16384175419807434

Result from Variant1 = 0.16384175419807434
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Result from Variant2 = 0.16384661197662354

Notice that the traffic is flipping between the two versions of the model according to the 
weights we specified. In a production use case, you should automate the model endpoint 
update in your CI/CD or MLOps automation tools.

Multiple models
In other cases, you may need to run entirely different models. For example, perhaps you 
want one model to serve weather inferences for the United States and another model 
to serve weather inferences for Germany. You can build models that are sensitive to 
differences between these two countries. You can host both models behind the same 
endpoint and direct traffic to them based on the incoming request.  

Or, for an A/B test, you might want to control which traffic goes to your new model 
version rather than letting a load balancer perform random weighted distribution. If you 
have an application server that identifies which consumers should use the new model 
version, you can direct that traffic to a specific model behind an inference endpoint.

In the Multiple models in a single endpoint notebook section, we'll walk through an 
example of creating models optimized for different air quality parameters. When we want 
a prediction, we specify which type of parameter we want, and the endpoint directs our 
request to the appropriate model. This use case is quite realistic; it may turn out that it's 
difficult to predict both particulate matter (PM25) and ozone (O3) using the same model:

1. First, we're going to prepare new datasets that only contain data for a single 
parameter by creating a Spark processing job:

spark_processor.run(

    submit_app="scripts/preprocess_param.py",

    submit_jars=["s3://crawler-public/json/serde/json-
serde.jar"],

    arguments=['--s3_input_bucket', s3_bucket,

              '--s3_input_key_prefix', s3_prefix_parquet,

               '--s3_output_bucket', s3_bucket,

               '--s3_output_key_prefix', f"{s3_output_
prefix}/o3",

               '--parameter', 'o3',],

    spark_event_logs_s3_uri="s3://{}/{}/spark_event_
logs".format(s3_bucket, 'sparklogs'),

    logs=True,

    configuration=configuration
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)

We'll repeat the preceding step for PM25 and O3.
2. Now, we will train new XGBoost models against the single-parameter training sets, 

as follows:

estimator_o3 = sagemaker.estimator.Estimator(image_
uri=xgboost_container, 

                    hyperparameters=hyperparameters,

                    role=sagemaker.get_execution_role(),

                    instance_count=1, 

                    instance_type='ml.m5.12xlarge', 

                    volume_size=200,  

                    output_path=output_path)

content_type = "csv"

train_input = TrainingInput("s3://{}/{}/{}/{}/".
format(s3_bucket, s3_output_prefix, 'o3', 'train'), 
content_type=content_type)

validation_input = TrainingInput("s3://{}/{}/{}/{}/".
format(s3_bucket, s3_output_prefix, 'o3', 'validation'), 
content_type=content_type)

# execute the XGBoost training job

estimator_o3.fit({'train': train_input, 'validation': 
validation_input})

3. Next, we define the multi-model class:

model = estimator_o3.create_model(role=sagemaker.get_
execution_role(), image_uri=xgboost_container)

from sagemaker.multidatamodel import MultiDataModel

model_data_prefix = f's3://{s3_bucket}/{m_prefix}/mma/'

model_name = 'xgboost-mma'

mme = MultiDataModel(name=model_name,

                     model_data_prefix=model_data_prefix,

                     model=model) 
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4. Next, we deploy the multi-model endpoint:

predictor = mme.deploy(initial_instance_count=1,

                       instance_type='ml.m5.2xlarge',

                       endpoint_name=model_name,

                      serializer=CSVSerializer(),

                    deserializer=JSONDeserializer())

5. At this point, the endpoint does not actually have any models behind it. We need to 
add them next:

for est in [estimator_o3, estimator_pm25]:

    artifact_path = \ est.latest_training_job.describe()
['ModelArtifacts']['S3ModelArtifacts']

    m_name = artifact_path.split('/')[4]+'.tar.gz'

    

    # This is copying over the model artifact to the S3 
location for the MME.

    mme.add_model(model_data_source=artifact_path, model_
data_path=m_name)

    

list(mme.list_models())

6. We're ready to test the endpoint. Download two test files, one for each parameter:

s3.download_file(s3_bucket, f"{s3_output_prefix}/
pm25/test/part-00120-81a51ddd-c8b5-47d0-9431-
0a5da6158754-c000.csv", 'pm25.csv')

s3.download_file(s3_bucket, f"{s3_output_prefix}/o3/test/
part-00214-ae1a5b74-e187-4b62-ae4a-385afcbaa766-c000.
csv", 'o3.csv')

7. Read the files and get inferences, specifying which model we want to use:

with open('pm25.csv', 'r') as TF:

    pm_lines = TF.readlines()

with open('o3.csv', 'r') as TF:

    o_lines = TF.readlines()

for tl in pm_lines[0:5]:

    result = predictor.predict(data = tl.strip(), target_
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model='pm25.tar.gz')

    print(result)

for tl in o_lines[0:5]:

    result = predictor.predict(data = tl.strip(), target_
model='o3.tar.gz')

    print(result)

Now that we've seen how to deploy multiple models for testing or other purposes, let's 
turn to handling fluctuating traffic demands.

Scaling inference endpoints to meet inference 
traffic demands
When we need a real-time inference endpoint, the processing power requirements may 
vary based on incoming traffic. For example, if we are providing air quality inferences 
for a mobile application, usage will likely fluctuate based on time of day. If we provision 
the inference endpoint for peak load, we will pay too much during off-peak times. If we 
provision the inference endpoint for a smaller load, we may hit performance bottlenecks 
during peak times. We can use inference endpoint auto-scaling to adjust capacity to 
demand.

There are two types of scaling, vertical and horizontal. Vertical scaling means that we 
adjust the size of an individual endpoint instance. Horizontal scaling means that we 
adjust the number of endpoint instances. We prefer horizontal scaling as it results in less 
disruption for end users; a load balancer can redistribute traffic without having an impact 
on end users.

There are four steps to configure autoscaling for a SageMaker inference endpoint:

• Set the minimum and maximum number of instances.

• Choose a scaling metric.

• Set the scaling policy.

• Set the cooldown period.
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Although you can set up autoscaling automatically using the API, in this section, we'll go 
through the steps in the console. To begin, go to the Endpoints section of the SageMaker 
console, as shown in the following screenshot:

Figure 10.1 – Endpoints listed in the SageMaker console

Select one of your endpoints, and in the section called Endpoint runtime settings, choose 
Configure auto scaling:

Figure 10.2 – Endpoint runtime settings

Now, let's walk through the more detailed inference endpoint settings.
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Setting the minimum and maximum capacity
You can set boundaries on the minimum and maximum number of instances an endpoint 
can use. These boundaries let you protect against surges in demand that will result in 
unexpected costs. If you anticipate periodic spikes, build a circuit breaker into your 
application to shed load before it hits the inference endpoint. The following screenshot 
shows these settings in the console:

Figure 10.3 – Setting minimum and maximum capacity

If your load is highly variable, you can start with a small instance type and scale up 
aggressively. This prevents you from paying for a larger instance type that you don't  
always need.

Choosing a scaling metric
We need to decide when to trigger a scaling action. We do that by specifying  
a CloudWatch metric. By default, SageMaker provides two useful metrics:

• InvocationsPerInstance reports the number of inference requests sent to 
each endpoint instance over some time period.

• ModelLatency is the time in microseconds to respond to inference requests.
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We recommend ModelLatency as a metric for autoscaling, as it reports on the end user 
experience. Setting the actual value for the metric will depend on your requirements and 
some observation of endpoint performance over time. For example, you may find that 
latency over 100 milliseconds results in a degraded user experience if the inference result 
passes through several other services that add their own latency before the result reaches 
the end user.

Setting the scaling policy
You can choose between target tracking and step scaling. Target tracking policies are 
more useful and try to adjust capacity to keep some target metric within a given boundary. 
Step scaling policies are more advanced and increase capacity in incremental steps.

Setting the cooldown period 
The cooldown period is how long the endpoint will wait after one scaling action before 
starting another scaling action. If you let the endpoint respond instantaneously, you'd end 
up scaling too often. As a general rule, scale up aggressively and scale down conservatively.  

The following screenshot shows how to configure the target metric value and cooldown 
period if you use the default scaling policy:

Figure 10.4 – Setting a target metric value and cooldown period

Next, let's look at another optimization technique for deep learning models.
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Using Elastic Inference for deep learning 
models
If you examine the overall cost of ML, you may be surprised to see that the bulk of your 
monthly cost comes from real-time inference endpoints. Training jobs, while potentially 
resource-intensive, run for some time and then terminate. Managed notebook instances 
can be shut down during off hours. But inference endpoints run 24 hours a day, 7 days 
a week. If you are using a deep learning model, inference endpoint costs become more 
pronounced, as instances with dedicated GPU capacity are more expensive than other 
comparable instances.

When you obtain inferences from a deep learning model, you do not need as much GPU 
capacity as you need during training. Elastic Inference lets you attach fractional GPU 
capacity to regular EC2 instances or Elastic Container Service (ECS) containers. As a 
result, you can get deep learning inferences quickly at a reduced cost. 

The Elastic Inference section in the notebook shows how to attach an Elastic Inference 
accelerator to an endpoint, as you can see in the following code block:

predictor_ei = predictor.deploy(initial_instance_count = 1, 
instance_type = 'ml.m5.xlarge', 

                    serializer=CSVSerializer(),

                    deserializer=JSONDeserializer(),

                    accelerator_type='ml.eia2.medium')

Consider a case where we need some GPU capacity for inference. Let's consider three 
options for the instance type and compare the cost. Assume that we run the endpoint for 
720 hours per month. The next table compares the monthly cost for different inference 
options, using published prices at the time of writing:

Figure 10.5 – Inference cost comparison



210     Optimizing Model Hosting and Inference Costs

You'll need to look at your specific use case and figure out the best combination of RAM, 
CPU, network throughput, and GPU capacity that meets your performance requirements 
at the lowest cost. If your inferences are entirely GPU-bound, the Inferentia instance 
will probably give you the best price-performance balance. If you need more traditional 
compute resources with some GPU, the P2/P3 family will work well. If you need very little 
overall capacity, Elastic Inference provides the cheapest GPU option.

In the next section, we'll cover one more optimization technique for models deployed to 
specific hardware.

Optimizing models with SageMaker Neo
In the previous section, we saw how Elastic Inference can reduce inference costs for deep 
learning models. Similarly, SageMaker Neo lets you improve inference performance 
and reduce costs by compiling trained ML models for better performance on specific 
platforms. While that will help in general, it's particularly effective when you are trying  
to run inference on low-powered edge devices.  

In order to use SageMaker Neo, you simply start a compilation job with a trained model in 
a supported framework. When the compilation job completes, you can deploy the artifact 
to a SageMaker endpoint or to an edge device using the Greengrass IoT platform.

The Model optimization with SageMaker Neo section in the notebook demonstrates how  
to compile our XGBoost model for use on a hosted endpoint:

1. First, we need to get the length (number of features) of an input record:

ncols = len(t_lines[0].split(','))

2. Now, we'll compile one of our trained models. We need to specify the target 
platform, which in this case is just a standard ml_m5 family:

import sagemaker

from sagemaker.model import Model

n_prefix = 'xgboost-sample-neo'

n_output_path = 's3://{}/{}/{}/output'.format(s3_bucket, 
n_prefix, 'xgboost-neo')

m1 = Model(xgboost_container,model_data=estimator\    .
latest_training_job.describe()['ModelArtifacts']
['S3ModelArtifacts'], 

           role=sagemaker.get_execution_role())
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neo_model = m1.compile('ml_m5', 

           {'data':[1, ncols]}, 

           n_output_path, 

           sagemaker.get_execution_role(), 

           framework='xgboost', 

           framework_version='latest',

           job_name = 'neojob')

3. Once the compilation job finishes, we can deploy the compiled model as follows:

neo_predictor = neo_model.deploy(initial_instance_count = 
1, instance_type = 'ml.m5.xlarge', 

                    serializer=CSVSerializer(),

                    deserializer=JSONDeserializer(),

                    endpoint_name='neo_endpoint')

4. Let's test the endpoint to see whether we see a speed-up:

for tl in t_lines[0:5]:

    result = smrt.invoke_endpoint(EndpointName='neo_
endpoint',

                    ContentType="text/csv",

                    Body=tl.strip())

    rbody = \ StreamingBody(raw_
stream=result['Body'],content_
length=int(result['ResponseMetadata']['HTTPHeaders']
['content-length']))

    print(f"Result from 
{result['InvokedProductionVariant']} = {rbody.read().
decode('utf-8')}")
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After sending in a few invocation requests, let's check the CloudWatch metrics. Back in 
the console page for the compiled endpoint, click on View invocation metrics in the 
Monitor section, as shown in the following screenshot:

Figure 10.6 – The Monitor section of the endpoint console

You'll now see the CloudWatch metrics console, as seen in the following screenshot. Here, 
choose the ModelLatency and OverheadLatency metrics:

Figure 10.7 – CloudWatch metrics console

The model latency in my simple tests showed 10 milliseconds for a regular XGBoost 
endpoint and went down to 9 milliseconds after compiling with Neo. The impact of  
a compiled model will be much more significant if you are using a deep learning model  
on a lower-powered device.
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Summary
In this chapter, we looked at several ways to improve inference performance and reduce 
inference cost. These methods include using batch inference where possible, deploying 
several models behind a single inference endpoint to reduce costs and help with advanced 
canary or blue/green deployments, scaling inference endpoints to meet demand, and 
using Elastic Inference and SageMaker Neo to provide better inference performance at  
a lower cost.

In the next chapter, we'll discuss monitoring and other important operational aspects  
of ML.





11
Monitoring 

Production Models 
with Amazon 

SageMaker Model 
Monitor and Clarify

Monitoring production machine learning (ML) models is a critical step to ensure that the 
models continue to meet business needs. Besides the infrastructure hosting the model, 
there are other important aspects of ML models that should be monitored regularly. As 
models age over a period of time, the real-world inference data distribution may change 
as compared to the data used for training the model. For example, consumer purchase 
patterns may change in the retail industry and economic conditions such as mortgage 
rates may change in the financial industry.
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This gradual misalignment between the training and the live inference datasets can have 
a big impact on model predictions. Model quality metrics such as accuracy may degrade 
over time as well. Degraded model quality has a negative impact on business outcomes. 
Regulatory requirements, such as ensuring that ML models are unbiased and explainable, 
add another angle to model monitoring. Comprehensive monitoring of production 
models for these aspects allows you to proactively identify if and when a production 
model needs to be updated. Updating a production model needs both retraining and 
deployment resources. The costs involved in updating a production model should be 
weighed against the opportunity costs of effectively serving the model consumers.

This chapter addresses the challenge of monitoring production models using two 
managed services – Amazon SageMaker Model Monitor and Amazon SageMaker 
Clarify. These managed services eliminate the need to build custom tooling to monitor 
models and detect when corrective actions need to be taken. By the end of this chapter, 
you will be able to monitor production models for data drift, model quality, model bias, 
and model explainability. You will further learn how to automate remediation actions for 
the issues detected during monitoring.

In this chapter, we are going to cover the following main topics:

• Basic concepts of Amazon SageMaker Model Monitor and Amazon  
SageMaker Clarify

• End-to-end architectures for monitoring ML models

• Best practices for monitoring ML models

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have 
not set up the data science environment yet, please refer to Chapter 2, Data Science 
Environments, which walks you through the setup process.

The code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter11. You will need to install a Git client to access them (https://git-scm.
com/).

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter11
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter11
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter11
https://git-scm.com/
https://git-scm.com/
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Basic concepts of Amazon SageMaker Model 
Monitor and Amazon SageMaker Clarify
In this section, let's review the capabilities provided by two SageMaker features: Model 
Monitor and Clarify.

Amazon SageMaker Model Monitor provides capabilities to monitor data drift and the 
model quality of models deployed as SageMaker real-time endpoints. Amazon SageMaker 
Clarify provides capabilities to monitor the deployed model for bias and feature 
attribution drift. Using a combination of these two features, you can monitor the following 
four different aspects of ML models deployed on SageMaker:

• Data drift: If the live inference traffic data served by the deployed model is 
statistically different from the training data the model was trained on, the model 
prediction accuracy will start to deteriorate. Using a combination of a training data 
baseline and periodic monitoring to compare the incoming inference requests with 
the baseline data, SageMaker Model Monitor detects data drift. Model Monitor 
further generates data drift metrics that are integrated with Amazon CloudWatch. 
Using these CloudWatch alerts, you can generate data drift detection alerts.

• Model quality: Monitoring model quality involves comparing labels predicted by 
a model to the actual labels, also called the ground truth inference labels. Model 
Monitor periodically merges data captured from real-time inferences with the 
ground truth labels to compare model quality drift against a baseline generated with 
training data. Similar to data drift metrics, model quality metrics are integrated with 
CloudWatch, so alerts can be generated if the model quality falls below a threshold.

• Bias drift: Statistically, significant drift between the live inference traffic data and the 
training data could also result in bias in the model over a period of time. This could 
happen even after detecting and addressing bias in the training data before training 
and deploying the model. SageMaker Clarify continuously monitors a deployed model 
for bias and generates bias metrics that are integrated with CloudWatch metrics.
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• Feature attribution drift: Along with introducing bias in deployed models, drift 
in live inference data distribution can also cause drift in feature attribution values. 
Feature attribution ranks the individual features of a dataset according to their relative 
importance to a model trained using that dataset using an importance score. The 
feature importance score provides one way of explaining the model predictions by 
providing insight into which features played a role in making predictions. SageMaker 
Clarify compares the feature attribution or feature rankings in the training data to the 
feature attribution or feature rankings in live inference traffic data. Similar to other 
types of monitoring, feature attribution drift metrics are generated and integrated with 
CloudWatch.

Monitoring an ML model with SageMaker Model Monitor or SageMaker Clarify involves 
four high-level steps, as shown in the following diagram:

Figure 11.1 – High-level steps for model monitoring

Let's see what is involved in each of these steps in a bit more detail:

1. Enable data capture: The first step is to enable data capture on the real-time endpoint. 
On enabling data capture, input to and output from the SageMaker endpoint is 
captured and saved in Amazon Simple Storage Service (S3). Input captured includes 
the live inference traffic requests and output captured includes predictions from the 
deployed model. This is a common step for all four types of monitoring: data drift, 
model quality, bias drift, and feature attribution drift monitoring.

2. Generate baseline: In this step, the training or validation data is analyzed to 
generate a baseline. The baseline generated will be further used in the next step to 
compare against the live inference traffic. The baseline generation process computes 
metrics about the data analyzed and suggests constraints for the metrics. The 
baseline generated is unique to the type of monitoring.
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3. Schedule and execute monitoring job: To continuously monitor the real-time 
endpoint, the next step is to create a monitoring schedule to execute at a predefined 
interval. Once the monitoring schedule is in place, SageMaker Processing jobs are 
automatically kicked off to analyze the data captured from the endpoint in a specific 
interval. For each execution of the monitoring job, the processing job compares live 
traffic data captured with the baseline. If the metrics generated on the live traffic data 
captured in a period are outside the range of constraints suggested by the baseline, 
a violation is generated. The scheduled monitoring jobs also generate monitoring 
reports for each execution, which are saved in an S3 bucket. Additionally, CloudWatch 
metrics are also generated, the exact metrics being unique to the type of monitoring.

4. Analyze and act on results: Reports generated by the monitoring job can either be 
downloaded directly from S3 or visualized in a SageMaker Studio environment. In 
the Studio environment, you can also visualize the details of the monitoring jobs 
and create charts that compare the baseline metrics with the metrics calculated by 
the monitoring job.

To remediate issues discovered, you can use the CloudWatch metrics emitted from the 
monitoring job. The specific metrics depend on the type of the monitoring job. You can 
configure CloudWatch alerts for these metrics, based on the threshold values suggested 
by the baseline job. CloudWatch alerts allow you to automate responses to violations and 
metrics generated by monitoring jobs.

Now that you know what aspects of an ML model can be monitored, what the steps involved 
in monitoring are, and how you can respond to the issues discovered, you can build a 
monitoring solution that meets your business needs. In the next section, you will learn how 
to build end-to-end model monitoring architectures for the different types of monitoring.

End-to-end architectures for monitoring  
ML models
In this section, you will put together the four high-level steps of monitoring to build 
end-to-end architectures for data drift, model quality, bias drift, and feature attribution 
drift monitoring. Along with the architecture, you will dive into the unique aspects of the 
individual steps as applicable to each type of monitoring.

For all four types of monitoring, the first and last steps – enabling data capture and 
analyzing monitoring results – remain the same. We will discuss these two steps in detail 
for the first type of monitoring – data drift monitoring. For the other three types of 
monitoring, we will only briefly mention them.
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Data drift monitoring
You monitor a production model for data drift to ensure that the distribution of the live 
inference traffic the deployed model is serving does not drift away from the distribution 
of the dataset used for training the model. The end-to-end architecture for the monitoring 
model for data drift is shown in the following diagram:

Figure 11.2 – Data drift monitoring: end-to-end architecture

Let's dive into the four high-level steps involved in this end-to-end architecture:

1. Enable data capture for the deployed endpoint: The first step is to deploy a 
SageMaker endpoint with data capture enabled. As you can see from the following 
sample code, configuring data capture includes specifying the percentage of 
inference traffic to capture and the S3 location to save the captured traffic: 

from sagemaker.model_monitor import DataCaptureConfig

data_capture_config = DataCaptureConfig(

enable_capture=True, 
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sampling_percentage=100,  destination_s3_uri=s3_capture_
upload_path

)

To deploy the model, create the endpoint by passing in the data capture 
configuration as follows:

predictor = model.deploy(initial_instance_count=1,

                instance_type='ml.m4.xlarge',

                endpoint_name=endpoint_name,

               data_capture_config = data_capture_config)

The following code shows a sample of the data captured. As you can see, both the 
request to and response from the endpoint along with event metadata are captured:

{

  "captureData": {

    "endpointInput": {

      "observedContentType": "text/csv",

      "mode": "INPUT",

     "data": "0,2020,12,4,31,0,19.0,0.0,6.0,0.0,0.0,0.0,0
.0,0.0,0.0,1.0\n",

      "encoding": "CSV"

    },

    "endpointOutput": {

      "observedContentType": "text/csv; charset=utf-8",

      "mode": "OUTPUT",

      "data": "-4.902510643005371",

      "encoding": "CSV"

    }

  },

  "eventMetadata": {

    "eventId": "e68592ca-948c-44dd-a764-608934e49534",

    "inferenceTime": "2021-06-28T18:41:16Z"

  },

  "eventVersion": "0"

}
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2. Generate baseline: The second step is to configure and execute a data baseline 
job. This baseline job uses SageMaker Processing to analyze the training data at 
scale. For data drift monitoring, use DefaultModelMonitor to configure the 
infrastructure to execute the processing job on and the maximum runtime. Sample 
code is shown as follows:

from sagemaker.model_monitor import DefaultModelMonitor

from sagemaker.model_monitor.dataset_format import 
DatasetFormat

my_default_monitor = DefaultModelMonitor(

    role=role,

    instance_count=1,

    instance_type="ml.m5.xlarge",

    volume_size_in_gb=20,

    max_runtime_in_seconds=3600,

)

Use the suggest_baseline method on DefaultModelMonitor to configure 
and kick off the baseline job. To configure the baseline job, specify where the 
baseline data is and where you want the baseline results to be saved in S3, as follows:

my_default_monitor.suggest_baseline(

    baseline_dataset=baseline_data_uri + "/training-
dataset-with-header.csv",

    dataset_format=DatasetFormat.csv(header=True),

    output_s3_uri=baseline_results_uri,

    wait=True

)

The baseline job results in two files – statistics.json and constraints.
json – saved in the S3 location you specified. The statistics.json file 
includes metadata analysis of the training data – such as sum, mean, min, and max 
values for numerical features and distinct counts for text features.
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Note
This baseline job uses a SageMaker-provided container called sagemaker-
model-monitor-analyzer to analyze the training dataset. This  
Spark-based container uses the open source Deequ framework to analyze 
datasets at scale.

The following figure shows a sample of statistics for string features generated by  
the baseline job:

 Figure 11.3 – Statistics for string features generated by the data drift baseline job

Similarly, the following figure shows a sample of statistics for numerical features 
generated by the baseline job:

Figure 11.4 – Statistics for numerical features generated by the data drift baseline job
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The constraints.json file captures the thresholds for the statistics for 
monitoring purposes. The constraints also include conditions such as whether  
a particular feature should be considered a string, not an integer or whether  
a specific field should be not-null. The following screenshot shows a sample of 
constraints generated by the baseline job, which indicates that the value feature 
should always be treated as a string:

Figure 11.5 – Constraints generated by the data drift baseline job
The generated constraints also suggest completeness for each feature, which 
represents the percentage of values that can be non-null in the inference traffic.  
In this example, since completeness for all features is at 1.0, there cannot be any 
null values of these features in the inference traffic. Additionally, as suggested by 
num_constraints.is_non_negative, none of the integral and fractional 
features can be null.

The constraints generated are suggestions provided by the baseline job after 
analyzing the training data. You can choose to override the constraint file based 
on the domain knowledge you have about your specific use case. You can override 
the suggested constraint at the individual field level or override the entire file. In 
the constraints.json file, you will also see an emit_metrics : Enabled 
entry. This suggests that CloudWatch metrics will be emitted during monitoring.
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3. Schedule and execute a data drift monitoring job: The third step is to configure 
and schedule a data drift monitoring job. To configure the data drift monitoring 
job, specify the endpoint to monitor, the location to store the monitoring results, 
the baseline statistics and constraints, and the schedule to execute the job on. The 
following sample code configures a monitoring job to be executed every hour:

my_default_monitor.create_monitoring_schedule(

    monitor_schedule_name=mon_schedule_name,

    endpoint_input=predictor.endpoint,

    output_s3_uri=s3_report_path,

    statistics=my_default_monitor.baseline_statistics(),

    constraints=my_default_monitor.suggested_
constraints(),

    schedule_cron_expression=CronExpressionGenerator.
hourly(),

    enable_cloudwatch_metrics=True

)

SageMaker executes the data drift monitoring job using SageMaker Processing 
periodically according to the schedule you specify. The monitoring job compares 
the captured inference requests to the baseline. For each execution of the 
monitoring job, generated results include a violations report and a statistics report 
saved in S3 and metrics emitted to CloudWatch.

The following table shows possible violations the monitoring job can generate:

Figure 11.6 – Data drift monitoring violations
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The monitoring job emits CloudWatch metrics for all features included in the 
training data. Common metrics generated for all features are Completeness and 
BaselineDrift. The Completeness metric indicates the percentage of values 
that can be null for a given feature in a specific interval. The BaselineDrift 
metric indicates how much a feature has drifted in a specific interval from the 
baseline. Additionally, for numerical features, a few other metrics emitted are Max, 
Min, Sum, SampleCount, and AverageCount, as observed during the interval.

For any of these metrics, you can configure a CloudWatch alert to be triggered 
based on threshold values suggested in the constraints file. If the feature values in 
the inference traffic observed during a given interval violate the threshold values, an 
alert is raised.

4. Analyze and act on results: The final step is to analyze and act on the monitoring 
results. As mentioned in the high-level monitoring steps discussion earlier, 
you can download the monitoring reports from S3 and analyze them in your 
notebook environment or use Studio to view the monitoring details. For example, 
downloading the violation report to a notebook environment and viewing the 
report contents shows results similar to the following screenshot:

Figure 11.7 – Violations generated by the data drift monitoring job 

You can decide what actions you want to take on these alerts according to your business 
and operational requirements. You can automate actions such as updating the model, 
updating your training data, and retraining and updating the model as a response to the 
CloudWatch alert triggered.

Important note
An example notebook that provides a complete walk-through of using 
SageMaker Model Monitor for data drift monitoring is provided in the 
GitHub repo https://gitlab.com/randydefauw/packt_
book/-/blob/main/CH10/data_drift_monitoring/
WeatherPredictionDataDriftModelMonitoring.ipynb.

https://gitlab.com/randydefauw/packt_book/-/blob/main/CH10/data_drift_monitoring/WeatherPredictionDataDriftModelMonitoring.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH10/data_drift_monitoring/WeatherPredictionDataDriftModelMonitoring.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH10/data_drift_monitoring/WeatherPredictionDataDriftModelMonitoring.ipynb
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Model quality drift monitoring
You monitor the quality of a production model to ensure that the performance of the 
production model continues to meet your requirements. Model quality is measured by 
different metrics depending on the type of the underlying ML problem. For example, for 
classification problems, accuracy or recall are good metrics and root mean square error 
(RMSE) is a metric to use with regression problems. 

The end-to-end architecture for monitoring a model for model quality drift is shown in 
the following diagram:

Figure 11.8 – Model quality monitoring: end-to-end architecture

The architecture is very similar to data drift monitoring with an additional step for merging 
the actual inference ground truth labels in an S3 bucket with the model predictions. Let's 
dive into the four high-level steps involved in this end-to-end architecture:

1. Enable data capture for the deployed endpoint: The first step is to deploy a 
SageMaker endpoint with data capture enabled and capture predictions made by the 
model in an S3 bucket.
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2. Generate baseline: The second step is baseline generation. While the baseline job 
for data drift directly analyzes the training dataset for data distribution statistics, 
the model quality baseline job compares the labels in a baseline dataset with the 
predictions made by the model. So, instead of using the training data directly, you 
have to first generate a baseline dataset consisting of labels by running predictions 
against the model. You use the validation dataset to run predictions against the 
model and use the results as input to the baseline generation job.

The following sample code shows this process for a regression problem. Here, the 
baseline dataset is generated by running predictions against the model using the 
validation dataset. This baseline dataset has three different columns – probability, 
prediction, and label. While probability is the values returned by the 
model, prediction is inferred from the probability based on a threshold value. 
label represents the ground truth label from the validation set:

with open(f"test_data/{validate_dataset}", "w") as 
baseline_file:

    baseline_file.
write("probability,prediction,label\n")  # Header of the 
file

    for tl in t_lines[1:300]:

        #Remove the first column since it is the label

        test_list = tl.split(",")

        label = test_list.pop(0)

        test_string = ','.join([str(elem) for elem in 
test_list])

    

        result = smrt.invoke_
endpoint(EndpointName=endpoint_name,

         ContentType="text/csv", Body=test_string)   

        rbody = StreamingBody(raw_
stream=result['Body'],content_
length=int(result['ResponseMetadata']['HTTPHeaders']
['content-length']))

        prediction = rbody.read().decode('utf-8')

        baseline_file.
write(f"{prediction},{prediction},{label}\n")
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        #print(f"label {label} ; prediction {prediction} 
")

        print(".", end="", flush=True)

        sleep(0.5)

For model quality monitoring, you use ModelQualityMonitor to configure the 
infrastructure to execute the processing jobs and the maximum runtime, as shown 
in the following code:

# Create the model quality monitoring object

model_quality_monitor = ModelQualityMonitor(

    role=role,

    instance_count=1,

    instance_type="ml.m5.xlarge",

    volume_size_in_gb=20,

    max_runtime_in_seconds=1800,

    sagemaker_session=session,

)

Use the suggest_baseline method to configure and kick off the baseline job. 
To configure the baseline job, specify where the baseline data is and where you want 
the baseline results to be saved in S3, as follows:

cut the baseline suggestion job.

# You will specify problem type, in this case Binary 
Classification, and provide other requirtributes.

job = model_quality_monitor.suggest_baseline(

    job_name=baseline_job_name,

    baseline_dataset=baseline_dataset_uri,

    dataset_format=DatasetFormat.csv(header=True),

    output_s3_uri=baseline_results_uri,

    problem_type="Regression",

    inference_attribute="prediction",

    probability_attribute="probability",

    ground_truth_attribute="label",

)

job.wait(logs=False)

The baseline job results in two files – statistics.json and constraints.
json – saved in the S3 location you specified.
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The following figure shows the statistics generated by the baseline job:

Figure 11.9 – Statistics generated by the model quality baseline job
Similarly, the following figure also shows the statistics generated by the baseline job:

Figure 11.10 – Constraints generated by the model quality baseline job
As you can see in Figure 11.10, one of the constraints generated is for the rmse 
model. It suggests that if the rmse value of the production model is greater than 
3.87145 in any interval, it is an indication that the model quality is degrading. If 
any of the constraints suggested by the baseline job are either too restrictive or too 
lenient for your requirements, you can modify the constraints file.

3. Schedule and execute the model quality monitoring job: The third step is to 
schedule the model quality monitoring job. To monitor model quality, predictions 
of the model are first merged with the ground truth inference labels and then 
compared to the baseline to detect degraded accuracy. Predictions made by the 
model are already in S3 since data capture is enabled on the endpoint. But how 
about the ground truth inference labels?
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The ground truth inference labels would depend on what the model is predicting 
and what the business use case is. For example, let's say you have a movie 
recommendation model that you are monitoring. A possible ground truth inference 
label in this case is whether the user actually watched the recommended movie or 
not. Maybe the user just clicked on the video but didn't watch it. So, your model-
consuming application should have logic to create the ground truth inference labels 
and upload to an S3 bucket periodically.

With the predictions captured and the ground truth inferences provided by your 
model-consuming application, SageMaker executes a merge job, which is again 
a periodic job. While scheduling the merge job, take into consideration that the 
ground truth labels are only available after a certain delay. Once you have the 
merged data, it's time to monitor the model quality.

Here, you create a model quality monitoring job, a job that is executed periodically  
by SageMaker at a schedule you specify. The code is similar to the scheduling of 
the data monitoring job, so it is not repeated here. The monitoring job generates 
statistics and violations and emits CloudWatch metrics. The metrics generated are 
based on the type of the ML model. Example metrics for regression models include 
mean absolute error, mean square error, and RMSE. Similarly, for classification 
models, the metrics generated include confusion_matrix, recall, and 
precision.

Note
For a complete list of metrics generated, please review the SageMaker 
documentation at https://docs.aws.amazon.com/sagemaker/
latest/dg/model-monitor-model-quality-metrics.html.

For any of these metrics, you can configure a CloudWatch alert to be triggered 
based on threshold values suggested in the constraints file. If model predictions for 
the inference traffic observed during a given interval violate the threshold values,  
a CloudWatch alert is raised.

4. Analyze and act on results: Finally, to analyze and act on the monitoring results, 
similar to the draft drift monitoring results, you can access the monitoring reports 
directly from S3, visualize them in your notebook or Studio environment, and 
finally, automate responses to the CloudWatch alerts raised.

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-metrics.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-metrics.html
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Important note
An example notebook that provides a complete walk-through of using 
SageMaker Model Monitor for quality model monitoring is provided in the 
GitHub repo https://gitlab.com/randydefauw/packt_
book/-/blob/master/CH10/model_quality_monitoring/
WeatherPredictionModelQualityMonitoring.ipynb.

Bias drift monitoring
The concept of bias relates to the individual features of a dataset. Bias is typically measured 
for sensitive features called facets to identify whether any particular feature or a set of 
feature values are disproportionately represented in the dataset. Amazon Clarify provides 
capabilities to detect and monitor bias in a pre-training dataset and deployed models. 
The end-to-end architecture to monitor deployed models for bias drift is shown in the 
following diagram:

Figure 11.11 – Bias drift and feature attribution monitoring: end-to-end architecture

https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/model_quality_monitoring/WeatherPredictionModelQualityMonitoring.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/model_quality_monitoring/WeatherPredictionModelQualityMonitoring.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/model_quality_monitoring/WeatherPredictionModelQualityMonitoring.ipynb
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Let's dive into the four high-level steps involved in this end-to-end architecture:

1. Enable data capture for the deployed endpoint: The first step for bias drift 
monitoring remains the same as other types of monitoring – enabling data capture 
while deploying a SageMaker endpoint.

2. Generate baseline: The second step is creating a baseline to measure the bias 
metrics of the training data. A bias drift baseline job needs multiple inputs – the 
data to use for baselining, the sensitive features, or facets to check for bias, a 
model to give predictions, and finally, a threshold value to indicate when a model 
prediction is biased. Let's look at the various configuration objects that capture 
these details.  

Details of the data, such as the location of the validation dataset in the S3 bucket, 
the type of the dataset (CSV or JSON), and the headers and label of the data, 
along with the output location of the baseline job results, are captured using 
DataConfig. Sample code is as follows:

model_bias_data_config = DataConfig(

    s3_data_input_path=validation_dataset,

    s3_output_path=model_bias_baselining_job_result_uri,

    label=label_header,

    headers=all_headers,

    dataset_type='CSV'

)

Details of sensitive features along with threshold values considered as bias are 
captured by BiasConfig. In the following code, we are monitoring for bias drift in 
the "City" feature: 

model_bias_config = BiasConfig(

    label_values_or_threshold=[1],

    facet_name="City",

    facet_values_or_threshold=[100],

)

To calculate the bias metrics, a deployed model to execute inferences is necessary. 
ModelConfig captures this model's related information as follows:

model_config = ModelConfig(

    model_name=model_name,

    instance_count=endpoint_instance_count,

    instance_type=endpoint_instance_type,
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    content_type=dataset_type,

    accept_type=dataset_type,

)

Finally, ModelPredictedLabelConfig indicates how to extract a predicted 
label from the model output. For example, the following sample code indicates a 
prediction of 1 if the probability returned by the model is above 0.8:

model_predicted_label_config = ModelPredictedLabelConfig(

    probability_threshold=0.8,

)

With DataConfig, BiasConfig, ModelConfig, and 
ModelPredictedLabelConfig in hand, you are ready to create and kick off a 
baseline job. Sample code is as follows:

model_bias_monitor = ModelBiasMonitor(

    role=role,

    sagemaker_session=sagemaker_session,

    max_runtime_in_seconds=1800,

)

model_bias_monitor.suggest_baseline(

    model_config=model_config,

    data_config=model_bias_data_config,

    bias_config=model_bias_config,

    model_predicted_label_config=model_predicted_label_
config,

)

During the baseline job execution, SageMaker creates a temporary endpoint called 
a shadow endpoint. A baselining job runs predictions on the validation dataset, 
calculates bias metrics, and suggests constraints on these metrics. Once the bias 
metrics are computed, the shadow endpoint is deleted. 

Baseline job execution results in a constraints file that shows the bias metric 
values computed along with the suggested thresholds. A sample of the constraints 
generated is shown here:

{

    "version": "1.0",

    "post_training_bias_metrics": {
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        "label": "value",

        "facets": {

            "city": [

                {

                 "value_or_threshold": "(100.0, 2278.0]",

                    "metrics": [

                        {

                            "name": "AD",

               "description": "Accuracy Difference (AD)",

                            "value": 0.008775168751768203

                        },

                       ...

            ]

 },

        "label_value_or_threshold": "(1.0, 
130.24536736711912]"

    }

3. Schedule and execute a model quality monitoring job: The next step is to schedule 
a bias drift monitoring job. In this step, the monitored bias of the model will be 
compared against the baseline generated in the previous step. SageMaker executes 
the bias drift monitoring job using SageMaker Processing periodically according 
to the schedule you specify. The bias drift monitoring job generates a monitoring 
report and constraint violations along with CloudWatch metrics. 

4. Analyze and act on results: Finally, analyzing the monitoring results and taking 
remedial actions is similar to the previous monitoring types.

Implementation of the end-to-end flow of this architecture is provided in the notebook. 
Review the notebook and the results of the execution to view the bias metrics generated.

Important note
An example notebook that provides a complete walk-through of using 
SageMaker Model Monitor for quality model monitoring is provided in the 
GitHub repo https://gitlab.com/randydefauw/packt_
book/-/blob/master/CH10/bias_drift_monitoring/
WeatherPredictionBiasDriftMonitoring.ipynb.

https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/bias_drift_monitoring/WeatherPredictionBiasDriftMonitoring.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/bias_drift_monitoring/WeatherPredictionBiasDriftMonitoring.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/bias_drift_monitoring/WeatherPredictionBiasDriftMonitoring.ipynb
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Feature attribution drift monitoring
Feature attribution ranks the individual features of a dataset according to their relative 
importance to a model trained using that dataset using an importance score. The feature 
importance score provides one way of explaining the model predictions by providing 
insight into which features played a role in making predictions. With continuous 
monitoring of the model, you can identify when the feature attribution of the live 
inference traffic starts to drift away from the feature attribution of the training dataset.

The end-to-end flow for monitoring feature attribution drift is the same as the flow  
for bias drift monitoring as previously shown in Figure 11.11. Let's dive into the four  
high-level steps involved in this end-to-end architecture:

1. Enable data capture for the deployed endpoint: The first step for feature 
attribution drift monitoring remains the same as other types of monitoring – 
enabling data capture while deploying a SageMaker endpoint.

2. Generate baseline: The second step is baseline generation. To generate a baseline 
for feature attribution drift monitoring, you rely on the SageMaker Clarify capability 
of providing local and global explanations. Clarify provides these explanations using 
a scalable implementation of SHAP (SHapley Additive exPlanations), an open 
source framework.

A baseline job needs multiple inputs – the data to use for baselining, a model to 
give predictions, and a configuration to specify how to calculate feature attribution 
ranks. These details are captured by different config objects. DataConfig and 
ModelConfig, which capture the data and model details, are the same as for bias 
drift monitoring.

However, instead of using BiasConfig to capture sensitive features, you will need 
to configure SHAPConfig, which captures a baseline dataset to use, a number of 
samples to use in the Kernel SHAP algorithm, and a method for determining global 
SHAP values. Sample code is as follows:

# Here use the mean value of test dataset as SHAP 
baseline

test_dataframe = pd.read_csv(test_dataset, header=None)

shap_baseline = [list(test_dataframe.mean())]

shap_config = SHAPConfig(

    baseline=shap_baseline,

    num_samples=100,
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    agg_method="mean_abs",

    save_local_shap_values=False,

)

For feature attribution drift monitoring, you use 
ModelExplainabilityMonitor to configure the infrastructure to execute 
the processing jobs and the maximum runtime, as shown in the following code. 
ModelExplainabilityMonitor explains model predictions using the feature 
importance score and detects feature attribution drift:

model_explainability_monitor = ModelExplainabilityMonitor(

    role=role,

    sagemaker_session=sagemaker_session,

    max_runtime_in_seconds=1800,

)

With the different config objects in hand, you can now kick off the baseline job  
as follows:

model_explainability_monitor.suggest_baseline(

    data_config=model_explainability_data_config,

    model_config=model_config,

    explainability_config=shap_config,

Baseline job execution results in a constraints file that shows the feature importance 
values computed along with the suggested thresholds. A sample of the constraints 
generated is shown here:

{

    "version": "1.0",

    "explanations": {

        "kernel_shap": {

            "label0": {

                "global_shap_values": {

                    "ismobile": 0.00404293281766823,

                    "year": 0.006527703849451637,

                     ...

                     "co": 0.03389338421306029

                },

                "expected_value": 0.17167794704437256
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            }

        }

    }

}

3. Schedule and execute the model quality monitoring job: The next step to 
schedule a feature attribution monitoring job is similar to scheduling the bias drift 
monitoring job.

4. Analyze and act on results: The final step of analyzing the monitoring results and 
taking remedial actions is similar to the previous monitoring types.

Important note
An example notebook that provides a complete walk-through of using 
SageMaker Model Monitor for quality model monitoring is provided in the 
GitHub repo https://gitlab.com/randydefauw/packt_
book/-/blob/master/CH10/bias_drift_monitoring/
WeatherPredictionFeatureAttributionDriftMonitoring 
.ipynb.

Let's now summarize the details of the four different monitoring types. The following table 
shows a summary of the monitoring types discussed so far and brings focus to the unique 
aspects of each monitoring type:

Figure 11.12 – Summary of model monitoring

Now that you can put together end-to-end architecture for monitoring different aspects 
of deployed models using SageMaker Clarify and Model Monitor, in the next section, you 
will learn the best practices of using these capabilities along with some limitations.

https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/bias_drift_monitoring/WeatherPredictionFeatureAttributionDriftMonitoring .ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/bias_drift_monitoring/WeatherPredictionFeatureAttributionDriftMonitoring .ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/bias_drift_monitoring/WeatherPredictionFeatureAttributionDriftMonitoring .ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/bias_drift_monitoring/WeatherPredictionFeatureAttributionDriftMonitoring .ipynb
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Best practices for monitoring ML models
This section discusses best practices for monitoring models using SageMaker Model 
Monitor and SageMaker Clarify, taking into consideration the under-the-hood operation 
of these features and a few limitations as they stand at the time of publication of this book:

• Choosing the correct data format: Model Monitor and Clarify can only monitor for 
drift in tabular data. Therefore, ensure that your training data is in tabular format. 
For other data formats, you will have to build custom monitoring containers.

• Choosing real-time endpoints as the mode of model deployment: Model Monitor 
and Clarify support monitoring for a single-model real-time endpoint. Monitoring 
a model used with batch transform or multi-model endpoints is not supported. So, 
ensure that the model you want to monitor is deployed as a single-model real-time 
endpoint. Additionally, if the model is part of an inference pipeline, the entire 
pipeline is monitored, not the individual models that make up the pipeline.

• Choosing sampling data capture – sampling percentage: When you enable 
data capture on a real-time endpoint, a configuration parameter to pay attention 
to is sampling percentage, which indicates what percentage of the live traffic is 
captured. Choosing the values for this metric depends on your use case. It is a 
trade-off between the amount of inference traffic saved and the effectiveness of the 
model monitoring. If the value of this parameter is close to 100, you have more 
information stored, leading to more storage costs, and more data for the monitoring 
job to analyze, leading to a long execution time. On the other hand, a higher 
sampling percentage leads to capturing more inference traffic patterns to compare 
against the baseline.

If your production model is operating in dynamic environments such as retail 
or financial services, where the consumer behavior or environment factors often 
change, impacting the model predictions, the best practice is to use a sampling 
percentage of 100.

• Choosing a dataset for baseline generation: For generating the baseline, the 
training dataset is typically a good dataset to use. For baseline generation, keep 
in mind that the first column in the training dataset is considered to be the label. 
Besides the label, ensure that the number and order of the features in the inference 
traffic match the training dataset.
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Additionally, for bias drift and feature attribution drift, the baseline generation 
process stands up a shadow endpoint to collect predictions from. So, consider the 
limit of the number of active endpoints in your AWS account when executing a 
baseline job.

• Choosing the monitoring schedule execution frequency: Monitoring jobs, as 
you have seen so far, are executed on a periodic basis where the minimum interval 
length is 1 hour. This minimum interval is necessary because enough inference 
traffic needs to be collected to be compared against the baseline. When determining 
the monitoring execution frequency, you should select this interval based on the 
inference traffic your model is serving. For example, a model deployed as part of a 
busy e-commerce website may serve higher traffic volumes, so running a monitoring 
job every few hours will give you the chance to detect data and model quality issues 
quickly. However, every time a monitoring job is executed, it adds to your model 
monitoring costs. The monitoring job schedule should therefore consider the trade-
off between the ability to robustly detect model issues and monitoring costs.

Note 
There could be a delay of 0-20 minutes between the scheduled time and 
execution of the monitoring job.

• Scheduling merge and monitoring jobs for model quality monitoring: Model 
quality monitoring is unique among the four types of monitoring we have discussed 
in this chapter, in that the model-consuming application should provide ground 
truth inference labels to be used as part of monitoring. Due to this, you have to 
consider an additional fact that the model-consuming application may upload the 
ground truth inference labels using its own schedule. Without the ground truth 
inference labels in the S3 bucket, the merge job will fail.

To address this issue, use the StartOffset and EndOffset fields of the 
ModelQualityJobInput parameter. StartOffset specifies the time 
subtracted from the start time and EndOffset specifies the time subtracted from 
the end time of the monitoring job. Offsets are in the format of -P#D, -P#M, or 
-P#H, where D, M, and H represent days, minutes, and hours, respectively, and 
# is the number. For example, a -P7H value of StartOffset will cause the 
monitoring job to start 7 hours after the scheduled time.
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Additionally, ensure that the monitoring schedule cadence is such that any given 
execution should be completed before the subsequent execution starts, allowing both 
the ground truth merge job and the monitoring job to complete for each interval.

• Automating remediation actions: While a monitoring solution proactively detects 
the data and model issues, without a proper plan to act on the issues, you cannot 
ensure the model's continued ability to meet your business needs. To reap the 
benefits of the model monitoring alerts generated, as much as possible, automate 
actions that you need to perform as a result. For example, automate notifications 
sent to operations and data science teams about possible data and model issues. 
Similarly, automate collecting or importing new training data and triggering 
re-training and testing of the models in non-production environments such as dev/
QA and staging.

• Choosing built-in versus custom monitoring: SageMaker provides a built-in 
container called sagemaker-model-monitor-analyzer that provides the 
capabilities we have reviewed in this chapter so far. This Spark-based container 
built on the open source Deequ framework provides a range of capabilities, such as 
generating statistics, suggesting constraints, validating constraints against a baseline, 
and emitting CloudWatch metrics. 

Whenever possible, choose to use this built-in container since SageMaker takes 
on the burden of securing, managing, and updating this container with new 
capabilities. You can extend the capabilities of this container by providing your 
own preprocessing and postprocessing scripts. For example, you can use a custom 
preprocessing script to make small changes to data, such as converting from an 
array to flattened JSON as required by the baseline job. Similarly, you can perform 
postprocessing to make changes to monitoring results.

In addition to using the SageMaker-provided container, you can also use your own 
containers for custom monitoring. Custom containers allow you to build your own 
monitoring schedules as well as your own logic for generating custom statistics, 
constraints, and violations, along with custom CloudWatch metrics. When creating 
a custom container, you should follow the input and output contracts published 
by SageMaker. Additionally, you will be responsible for registering, managing, and 
updating this custom container.
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• Including human reviews in the monitoring workflow: For some critical ML 
applications, say, for example, a financial loan approval application, it will often  
be necessary to include human reviewers in the monitoring loop. Especially  
when the ML model returns predictions with low confidence, human experts  
need to ensure that the predictions are valid. Amazon A2I allows you to configure 
custom monitoring workflows to include human experts to review predictions  
from SageMaker models. Please see the References section for a link to a detailed 
blog on configuring custom human-in-the-loop workflows using SageMaker and 
Amazon A2I.

Use the best practices discussed in this section to create model monitoring configurations 
that best meet your business and organizational requirements.

Summary
In this chapter, you learned the importance of monitoring ML models deployed in 
production and the different aspects of models to monitor. You dove deep into multiple 
end-to-end architectures to build continuous monitoring, automate responses to detected 
data, and model issues using SageMaker Model Monitor and SageMaker Clarify. You 
learned how to use the various metrics and reports generated to gain insight into your 
data and model.

Finally, we concluded with a discussion on the best practices for configuring model 
monitoring. Using the concepts discussed in this chapter, you can build a comprehensive 
monitoring solution to meet your performance and regulatory requirements, without having 
to use various different third-party tools for monitoring various aspects of your model.

In the next chapter, we will introduce end-to-end ML workflows that stitch all the 
individual steps involved in the ML process together. 

References
For additional reading material, please review the following reference:

• Automated monitoring of your ML models with Amazon SageMaker Model 
Monitor and sending predictions to human review workflows using Amazon A2I:

https://aws.amazon.com/blogs/machine-learning/automated-
monitoring-of-your-machine-learning-models-with-amazon-
sagemaker-model-monitor-and-sending-predictions-to-human-
review-workflows-using-amazon-a2i

https://aws.amazon.com/blogs/machine-learning/automated-monitoring-of-your-machine-learning-models-with-amazon-sagemaker-model-monitor-and-sending-predictions-to-human-review-workflows-using-amazon-a2i
https://aws.amazon.com/blogs/machine-learning/automated-monitoring-of-your-machine-learning-models-with-amazon-sagemaker-model-monitor-and-sending-predictions-to-human-review-workflows-using-amazon-a2i
https://aws.amazon.com/blogs/machine-learning/automated-monitoring-of-your-machine-learning-models-with-amazon-sagemaker-model-monitor-and-sending-predictions-to-human-review-workflows-using-amazon-a2i
https://aws.amazon.com/blogs/machine-learning/automated-monitoring-of-your-machine-learning-models-with-amazon-sagemaker-model-monitor-and-sending-predictions-to-human-review-workflows-using-amazon-a2i
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In this section, we will build automated workflows and MLOps pipelines for  
end-to-end ML solutions following best practices for security, reliability, performance,  
and cost optimization.

This section comprises the following chapters:

• Chapter 12, Machine Learning Automated Workflows

• Chapter 13, Well-Architected Machine Learning with Amazon SageMaker

• Chapter 14, Managing SageMaker Features across Accounts
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Workflows

For machine learning (ML) models that are deployed to production environments, it's 
important to establish a consistent and repeatable process to retrain, deploy, and operate 
these models. This becomes increasingly important as you scale the number of ML models 
running in production. The machine learning development lifecycle (ML Lifecycle) 
brings with it some unique challenges in operationalizing ML workflows. This will be 
discussed in this chapter. We will also discuss common patterns to not only automate 
your ML workflows, but also implement continuous integration (CI) and continuous 
delivery/deployment (CD) practices for your ML pipelines. 

Although we will cover various options for automating your ML workflows and 
building CI/CD pipelines for ML in this chapter, we will focus particularly on detailed 
implementation patterns using Amazon SageMaker Pipelines and Amazon SageMaker 
projects. SageMaker Pipelines is purpose-built for activities that include the automation of 
the steps needed to build a model, such as data preparation, model training, and model 
evaluation tasks. SageMaker projects build on SageMaker Pipelines by incorporating CI/
CD practices into your ML pipelines. SageMaker projects utilize SageMaker Pipelines in 
combination with the SageMaker model registry to build out end-to-end ML pipelines 
that also incorporate CI/CD practices such as source control, version management,  
and automated deployments. 
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 In this chapter, we'll cover the following topics:

• Considerations for automating your SageMaker ML workflows

• Building ML workflows with Amazon SageMaker Pipelines

• Creating CI/CD ML pipelines using Amazon SageMaker projects

Considerations for automating your 
SageMaker ML workflows
In this section, we'll review a typical ML workflow that includes the basic steps for model 
building and deploy activities. Understanding the key SageMaker inputs and artifacts for 
each step is important in building automated workflows, regardless of the automation or 
workflow tooling you choose to employ. 

This information was covered in Chapter 8, Manage Models at Scale Using a Model 
Registry. Therefore, if you have not yet read that chapter it's recommended to do so prior 
to continuing with this chapter. We'll build on that information and cover high-level 
considerations and guidance for building out automated workflows and CI/CD pipelines 
for SageMaker workflows. We'll also briefly cover the common AWS native service options 
when building automated workflows and CI/CD ML pipelines. 

Typical ML workflows
An ML workflow contains all the steps required to build an ML model for an ML use case, 
followed by the steps needed to deploy and operate the model in production. Figure 12.1 
shows a typical ML workflow that includes model build and model deploy steps. Each 
step within the workflow often has a number of associated tasks. As an example, data 
preparation can include multiple tasks needed to transform data into a format that  
is consistent with your ML algorithm. 

When we look at automating the end-to-end ML workflow, we look to automate the tasks 
included within a step, as well as how to orchestrate the sequence and timing of steps into 
an end-to-end pipeline. As a result, knowing the key inputs for each step, as well as the 
expected output or artifact of a step, is key in building end-to-end pipelines. 

Additionally, model development is an iterative process. It may therefore take many 
experiments until you're able to find a candidate model that meets your model 
performance criteria. As a result, it's common to continue to experiment in a data science 
sandbox environment until you find a candidate model to register into a model registry. 
This would indicate that the model is ready to deploy to one or more target environments 
for additional testing, followed by deployment to a production environment. 
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Refer to the following figure for an example of a typical workflow: 

Figure 12.1 – Typical ML workflow

After the model is deployed, there may also be additional tasks required to integrate  
the model with existing client applications. There may also be tasks required to create  
a more complex inference workflow that includes multiple models and tasks required for 
inference. Finally, there would still be tasks required to operate that model. Although the 
Operate step comes at the end, the activities that need to be performed for the ongoing 
operation of that model need to be considered early on in the process. This is in order to 
include all necessary tasks within your automated workflow, as well as ensure key metrics 
are captured, and available for key personas. In addition, this allows you to set up alerts as 
needed. This includes activities such as the following: 

• Model monitoring: This includes the tasks required to ensure your model 
performance does not degrade over time. This topic is covered in detail in Chapter 
11, Monitoring Production Models with Amazon SageMaker Model Monitor and 
Clarify. However, when building your automated deployment workflows, it's 
important to consider the additional tasks that may need to be included and 
automated within your pipeline. As an example, SageMaker Model Monitor for data 
drift requires tasks such as baselining of your training data, enabling data capture 
on your endpoints, and scheduling a SageMaker monitoring job. All of these tasks 
should be automated and included in your automated workflow. You can also utilize 
Human in the Loop reviews with Amazon Augmented AI (Amazon A2I) to check 
low-confidence predictions that can be implemented along with, or complementary 
to, SageMaker Model Monitor.
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• System monitoring: System monitoring includes capturing and alerting on metrics 
that are key to the resources hosting your model, as well as the other resources 
supporting the deployed ML solution. As an example, Amazon SageMaker will 
automatically capture key metrics about an endpoint, such as CPU/GPU utilization 
or the number of invocations. Setting thresholds and creating alerts in Amazon 
CloudWatch helps ensure the overall health of resources hosting models, as well  
as other solution components. 

• Model retraining: To set up automatic model retraining, the tasks that are 
performed across your model build steps should be captured as code that can be 
executed as part of a model build pipeline. This pipeline would include automation 
of all of the tasks within each step, as well as orchestration of those steps. 

• Pipeline monitoring: If you have automated pipelines set up for your model build 
and model deploy activities, it's key to also have monitoring in place on your 
pipeline to ensure you are notified in the event of a step failure in your pipeline. 

We have covered the general steps in an ML workflow. However, each automated 
workflow and CI/CD pipeline can vary due to a number of factors. In the next section, 
we'll cover some of the considerations that are common across ML use cases. 

Considerations and guidance for building SageMaker 
workflows and CI/CD pipelines
The steps and tasks performed as part of an ML workflow can vary depending on the use 
case; however, the following high-level practices are recommended when building an 
automated workflow for your ML use case:

• Implement a model registry: A model registry helps bridge the steps between 
the phases of model building experimentation and deploying your models to 
higher-level environments. A model registry captures key metadata, such as model 
metrics. It also ensures you're able to track key inputs and artifacts for traceability, 
as well as manage multiple model versions across environments.

• Version inputs and artifacts: The ability to roll back or recreate a specific model 
version or deployable artifact is dependent on knowing the specific versions of 
inputs and artifacts used to create that resource. As an example, to recreate  
a SageMaker endpoint, you need to know key version information, such as the 
model artifact and the inference container image. These inputs and artifacts should 
be protected from inadvertent deletion. They should also be tracked through 
an end-to-end pipeline to be able to confidently recreate resources as part of an 
automated workflow.
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AWS-native options for automated workflow and CI/
CD pipelines
In this chapter, we focus primarily on the SageMaker-native options for creating 
automated workflows, as well as layering on CI/CD practices in end-to-end pipelines. 
However, there are other options that can also be used for creating automated workflows 
that contain SageMaker tasks for model building and model deployment. There are also 
third-party options that contain operators or integrations with SageMaker. However,  
they are not covered in this book. 

First, we'll cover a few of the AWS services and features that can be used to build 
automated workflows that include SageMaker tasks: 

• AWS Step Functions: AWS Step Functions (https://aws.amazon.
com/step-functions/?step-functions.sort-by=item.
additionalFields.postDateTime&step-functions.sort-
order=desc) allows you to create automated serverless workflows that include 
integration with a number of AWS services, as well as giving you the capability 
to integrate third-party tasks into your workflows. AWS Step Functions also has 
native support for SageMaker tasks, such as SageMaker processing jobs, SageMaker 
training jobs, and SageMaker hosting options. 

In addition, ML builders can choose to take advantage of the AWS Step Functions 
Data Science SDK (https://docs.aws.amazon.com/step-functions/
latest/dg/concepts-python-sdk.html) to create ML workflows using 
Python instead of through Amazon States Language. Amazon States Language 
is the native pipeline syntax for AWS Step Functions. AWS Step Functions offers 
extensibility across AWS services with native integrations for the AWS services  
most commonly used in ML workflows, such as AWS Lambda, Amazon EMR,  
or AWS Glue. 

• Amazon Managed Workflows for Apache Airflow: Amazon Managed Workflows 
for Apache Airflow (https://aws.amazon.com/managed-workflows-
for-apache-airflow/) allows you to create automated ML workflows by using 
native integration with SageMaker among other AWS services that are commonly 
used. Many organizations and teams already use or have invested in Airflow, so 
this service provides a way to take advantage of those existing investments using 
a managed service that includes native integrations with SageMaker for model 
building and deployment steps. 

https://aws.amazon.com/step-functions/?step-functions.sort-by=item.additionalFields.postDateTime&step-functions.sort-order=desc
https://aws.amazon.com/step-functions/?step-functions.sort-by=item.additionalFields.postDateTime&step-functions.sort-order=desc
https://aws.amazon.com/step-functions/?step-functions.sort-by=item.additionalFields.postDateTime&step-functions.sort-order=desc
https://aws.amazon.com/step-functions/?step-functions.sort-by=item.additionalFields.postDateTime&step-functions.sort-order=desc
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-python-sdk.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-python-sdk.html
https://aws.amazon.com/managed-workflows-for-apache-airflow/
https://aws.amazon.com/managed-workflows-for-apache-airflow/
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• Amazon SageMaker Operators for Kubernetes: SageMaker Operators for 
Kubernetes (https://docs.aws.amazon.com/sagemaker/latest/dg/
amazon-sagemaker-operators-for-kubernetes.html) allows teams 
to create SageMaker tasks natively using the Kubernetes API and command-line 
Kubernetes tools, such as kubectl. 

• Amazon SageMaker Components for Kubeflow Pipelines: SageMaker 
Components for Kubeflow Pipelines allows teams to still utilize Kubeflow for 
workflow orchestration, while providing integrations with SageMaker so that you 
can create and run SageMaker jobs in managed environments without running 
them directly on your Kubernetes clusters. This is useful for taking advantage of 
end-to-end managed SageMaker features, but also for cases where you do not want 
to perform those tasks directly on your cluster. 

Next, we'll cover a few of the AWS services and features that can be used to incorporate 
CI/CD practices into your ML pipelines. These services are not unique to ML and can also 
be substituted for third-party tools offering similar capabilities: 

• AWS CodeCommit: AWS CodeCommit (https://aws.amazon.com/
codecommit/) is a private Git-based source code repository. For ML pipelines, 
AWS CodeCommit can store any related source code, such as infrastructure as 
code (IaC)/configuration as code (CaC), data processing code, training code, 
model evaluation code, pipeline code, and model deployment code. The structure 
of your repositories may vary, but in general, it's recommended to at least separate 
your model build and model deploy code. 

• AWS CodeBuild: AWS CodeBuild (https://aws.amazon.com/
codebuild/) is a fully managed build service that can be used for multiple 
purposes. These include compiling source code, running tests, and running custom 
scripts as part of a pipeline. For ML pipelines, AWS CodeBuild can be used for 
tasks such as testing through custom scripts and packaging AWS CloudFormation 
templates. 

• AWS CodePipeline: AWS CodePipeline (https://aws.amazon.com/
codepipeline/) is a fully managed CD service that can be used to orchestrate 
the steps of your ML pipeline. AWS CodePipeline can be used to orchestrate the 
steps for model build tasks, as well as model deploy tasks. 

https://docs.aws.amazon.com/sagemaker/latest/dg/amazon-sagemaker-operators-for-kubernetes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/amazon-sagemaker-operators-for-kubernetes.html
https://aws.amazon.com/codecommit/
https://aws.amazon.com/codecommit/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
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The preceding list of AWS services can be used to incorporate CI/CD practices for your 
ML pipelines. You can also optionally substitute the services above for third-party options, 
such as GitHub, BitBucket, or Jenkins. 

In this section, we covered a high-level ML workflow in the context of automating the 
tasks within key steps, as well as providing overall orchestration to automate those steps. 
We also discussed some of the key considerations when building your ML workflows.  
We reviewed the AWS-native options for creating automated ML workflows. We then 
looked at the AWS services that can be used to incorporate CI/CD practices. 

All of these, as well as many third-party options, are valid options when selecting the 
right tooling for automating your SageMaker workflows. The decision to custom build 
workflows using the services mentioned in the preceding list, or the decision to substitute 
the services above with third-party options, typically comes from either personal 
preference or having organizational standards or requirements to utilize existing tooling. 

For the remainder of this chapter, we'll focus on the SageMaker-native capabilities for 
automating your ML workflows and incorporating CI/CD practices. 

Building ML workflows with Amazon 
SageMaker Pipelines
Model build workflows cover all of the steps performed when developing your model, 
including data preparation, model training, model tuning, and model deployment. In this 
case, model deployment can include the tasks necessary to evaluate your model, as well 
as batch use cases that do not need to be deployed to higher environments. SageMaker 
Pipelines is a fully managed service that allows you to create automated model build 
workflows using the SageMaker Python SDK. 

SageMaker Pipelines includes built-in step types (https://docs.aws.amazon.
com/sagemaker/latest/dg/build-and-manage-steps.html) for executing 
SageMaker tasks, such as SageMaker Processing for data pre-processing, and SageMaker 
Training for model training. Pipelines also include steps for controlling how your pipeline 
works. For example, the pipeline could include conditional steps that could be used to 
evaluate the output of a previous step to determine whether to proceed to the next step in 
the pipeline. 

https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html
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To include steps that perform tasks using other AWS services or non-AWS tasks, you 
must use the callback step. This is useful if you are using another AWS service for a task 
in your pipeline. One example could be if you are using AWS Glue for data preprocessing. 
Figure 12.2 builds on the previous workflow illustration to indicate where SageMaker 
Pipelines fits into the end-to-end workflow, as well as providing examples of the supported 
SageMaker features for each model build workflow step:

Figure 12.2 – SageMaker Pipelines model building workflows

In this section, you'll build out a SageMaker pipeline for your ML use case. The pipeline 
will include all of the steps necessary for data preparation, model training, and model 
evaluation. Because we don't need every SageMaker feature to build our pipeline, you'll 
only be using the features noted in the following diagram: 
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Figure 12.3 – SageMaker Pipelines example pipeline 

For each step in your SageMaker pipeline, you first need to configure the task that you 
will execute (for example, a training job) and then configure the SageMaker Pipelines step 
for that task. After all, steps have been configured, you chain the steps together and then 
execute the pipeline. The following sections will walk you through the steps in building 
your SageMaker pipeline for your example use case.

Building your SageMaker pipeline 
In this section, we'll walk through the steps needed to configure each step in your 
SageMaker pipeline, as well as how to chain those steps together and finally execute your 
model build pipeline. For each step in your pipeline, there are two steps to follow: 

1. Configure the SageMaker job. 
2. Configure the SageMaker Pipelines step. 
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Figure 12.4 illustrates the steps that we will use to build the pipeline:

Figure 12.4 – Pipeline use case with SageMaker steps

We'll start with the data preparation step, where we'll use SageMaker Processing to 
transform our raw data into the format expected by the algorithm. 

Data preparation step
In this step, you'll configure the SageMaker processing job that will be used to transform 
your data into a format expected by the algorithm. For this, we'll use the same 
configuration from Chapter 4, Data Preparation at Scale Using Amazon SageMaker Data 
Wrangler and Processing: 

1. First, we'll configure the SageMaker processing job, as follows: 

from sagemaker.spark.processing import PySparkProcessor 

spark_processor = PySparkProcessor( 

    base_job_name="spark-preprocessor", 

    framework_version="3.0", 

    role=role, 
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    instance_count=15, 

    instance_type="ml.m5.4xlarge", 

    max_runtime_in_seconds=7200, ) 

configuration = [ 

    { 

    "Classification": "spark-defaults", 

    "Properties": {"spark.executor.memory": "18g",

              "spark.yarn.executor.memoryOverhead": "3g", 

                   "spark.driver.memory": "18g", 

                "spark.yarn.driver.memoryOverhead": "3g", 

                   "spark.executor.cores": "5", 

                   "spark.driver.cores": "5", 

                 "spark.executor.instances": "44",      

                 "spark.default.parallelism": "440", 

               "spark.dynamicAllocation.enabled": "false" 

                }, 

     }, 

     { 

     "Classification": "yarn-site", 

      "Properties": {"yarn.nodemanager.vmem-check-
enabled": "false", 

      "yarn.nodemanager.mmem-check-enabled": "false"}, 

      } 

]
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2. Next, we'll configure the SageMaker Pipelines step that will be used to execute your 
data preparation tasks. For this, we'll use the built-in processing step (https://
docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-
steps.html#step-type-processing) that tells Pipelines this step will be 
a SageMaker processing job. Figure 12.5 shows the high-level inputs and outputs/
artifacts that ProcessingStep used for data preprocessing will expect: 

Figure 12.5 – Data preparation pipeline step

We previously configured the processor, so we will now use that processor (combined 
with the other inputs shown in Figure 12.4) to set up our Pipelines step, as follows: 

1. First, we'll enable step caching. Step caching tells SageMaker to check for a previous 
execution of a step that was called with the same arguments. This is so that it 
can use the previous step values of a successful run instead of re-executing a step 
with the exact same arguments. You should consider using step caching to avoid 
unnecessary tasks and costs. As an example, if the second step (model training)  
in your pipeline fails, you can start the pipeline again without re-executing the data 
preparation step if that step has not changed, as follows: 

from sagemaker.workflow.steps import CacheConfig

cache_config = CacheConfig(enable_caching=True, expire_
after="T360m")

https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-processing
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-processing
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-processing


Building ML workflows with Amazon SageMaker Pipelines     257

2. Next, we'll define the runtime arguments using the get_run_args method.  
In this case, we are passing the Spark processor that was previously configured,  
in combination with the parameters identifying the inputs (raw weather data), the 
outputs (train, test, and validation datasets), and additional arguments the data 
processing script accepts as input. The data processing script, preprocess.
py, is a slightly modified version of the processing script used in Chapter 4, Data 
Preparation at Scale Using Amazon SageMaker Data Wrangler and Processing. Refer 
to the following script: 

from sagemaker.processing import ProcessingInput, 
ProcessingOutput

run_args = pyspark_processor.get_run_args(

    "preprocess.py",

    submit_jars=["s3://crawler-public/json/serde/json-
serde.jar"],

    spark_event_logs_s3_uri=spark_event_logs_s3_uri,

    configuration=configuration,

    outputs=[ \ 

        ProcessingOutput(output_name="validation", 
destination=validation_data_out, source="/opt/ml/
processing/validation"),

        ProcessingOutput(output_name="train", 
destination=train_data_out, source="/opt/ml/processing/
train"),

        ProcessingOutput(output_name="test", 
destination=test_data_out, source="/opt/ml/processing/
test"),

     ],

    arguments=[

        '--s3_input_bucket', s3_bucket,

        '--s3_input_key_prefix', s3_prefix_parquet,

        '--s3_output_bucket', s3_bucket,

        '--s3_output_key_prefix', s3_output_prefix+'/
prepared-data/'+timestamp

    ]

)



258     Machine Learning Automated Workflows

3. Next, we'll use the runtime parameters to configure the actual SageMaker Pipelines 
step for our data preprocessing tasks. You'll notice we're using all of the parameters 
we configured previously to build the step that will execute as part of the pipeline: 

from sagemaker.workflow.steps import ProcessingStep

step_process = ProcessingStep(

    name="DataPreparation",

    processor=pyspark_processor,

    inputs=run_args.inputs,

    outputs=run_args.outputs,

    job_arguments=run_args.arguments,

    code="modelbuild/pipelines/preprocess.py",

)

Model build step
In this step, you'll configure the SageMaker training job that will be used to train  
your model. You'll use the training data produced from the data preparation step,  
in combination with your training code and configuration parameters. 

Important note
Although we do not cover it in this chapter specifically, it is important to 
note that SageMaker Pipelines now integrates with SageMaker Experiments, 
allowing you to capture extra metrics, as well as view corresponding plots in 
SageMaker Pipelines.

For this, we'll use the same configuration from Chapter 6, Training and Tuning at Scale. 
Refer to the following steps: 

1. First, we'll configure the SageMaker training job, as follows: 

# initialize hyperparameters

hyperparameters = {

        "max_depth":"5",

        "eta":"0.2",

        "gamma":"4",

        "min_child_weight":"6",
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        "subsample":"0.7",

        "objective":"reg:squarederror",

        "num_round":"5"}

# set an output path where the trained model will be 
saved

m_prefix = 'pipeline/model'

output_path = 's3://{}/{}/{}/output'.format(s3_bucket, m_
prefix, 'xgboost')

# this line automatically looks for the XGBoost image URI 
and builds an XGBoost container.

# specify the repo_version depending on your preference.

image_uri = sagemaker.image_uris.retrieve("xgboost", 
region, "1.2-1")

# construct a SageMaker estimator that calls the xgboost-
container

xgb_estimator = sagemaker.estimator.Estimator(image_
uri=image_uri, 

                         hyperparameters=hyperparameters,

                     role=sagemaker.get_execution_role(),

                         instance_count=1, 

                         instance_type='ml.m5.12xlarge', 

                         volume_size=200, # 5 GB 

                         output_path=output_path)
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2. Next, we'll configure the SageMaker Pipelines step that will be used to execute your 
model training task. For this, we'll use the built-in training step (https://
docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-
steps.html#step-type-training). This tells Pipelines this step will be 
a SageMaker training job. Figure 12.6 shows the high-level inputs and outputs/
artifacts that a Training step will expect:

Figure 12.6 – Model build pipeline step

We previously configured the estimator, so we will now use that estimator combined with 
the other inputs shown in Figure 12.6 to set up our Pipelines step: 

from sagemaker.inputs import TrainingInput

from sagemaker.workflow.steps import TrainingStep

step_train = TrainingStep(

    name="ModelTrain",

    estimator=xgb_estimator,

    cache_config=cache_config,

    inputs={

        "train": TrainingInput(

https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-training
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-training
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-training
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            s3_data=step_process.properties.
ProcessingOutputConfig.Outputs["train"].S3Output.S3Uri,

            content_type="text/csv",

        ),

        "validation": TrainingInput(

            s3_data=step_process.properties.
ProcessingOutputConfig.Outputs["validation"].S3Output.S3Uri,

            content_type="text/csv",

        ),

    },

)

Model evaluation step
In this step, you'll configure a SageMaker processing job that will be used to evaluate your 
trained model using the model artifact produced from the training step in combination 
with your processing code and configuration: 

1. First, we'll configure the SageMaker processing job starting with 
ScriptProcessor. We will use this to execute a simple evaluation script,  
as follows:

from sagemaker.processing import ScriptProcessor

script_eval = ScriptProcessor(

    image_uri=image_uri,

    command=["python3"],

    instance_type=processing_instance_type,

    instance_count=1,

    base_job_name="script-weather-eval",

    role=role,

)
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2. Next, we'll configure the SageMaker Pipelines step that will be used to execute your 
model evaluation tasks. For this, we'll use the built-in Processing step (https://
docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-
steps.html#step-type-processing). This tells Pipelines this step will be 
a SageMaker processing job. Figure 12.7 shows the high-level inputs and outputs/
artifacts that a Processing step used for model evaluation will expect: 

Figure 12.7 – Model evaluation pipeline step

https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-processing
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-processing
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-processing
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We previously configured the processor, so we will now use that processor combined with 
the other inputs shown in Figure 12.7 to set up our Pipelines step. To do this, we'll first 
set up the property file that will be used to store the output, in this case, model evaluation 
metrics, of our processing job. Then, we'll configure the ProcessingStep definition  
as follows:

from sagemaker.workflow.properties import PropertyFile

evaluation_report = PropertyFile(

    name="EvaluationReport", output_name="evaluation", 
path="evaluation.json"

)

step_eval = ProcessingStep(

    name="WeatherEval",

    processor=script_eval,

    cache_config = cache_config,

    inputs=[

        ProcessingInput(

            source=step_train.properties.ModelArtifacts.
S3ModelArtifacts,

            destination="/opt/ml/processing/model",

        ),

        ProcessingInput(

          source=step_process.properties.
ProcessingOutputConfig.Outputs["test"].S3Output.
S3Uri,  destination="/opt/ml/processing/test",

        ),

    ],

    outputs=[

        ProcessingOutput(output_name="evaluation", source="/
opt/ml/processing/evaluation"),

    ],

    code="modelbuild/pipelines/evaluation.py",

    property_files=[evaluation_report],

)
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Conditional step
In this step, you'll configure a built-in conditional step that will determine whether to 
proceed to the next step in the pipeline based on the results of your previous model 
evaluation step. Setting up a conditional step requires a list of conditions or items that 
must be true. This is in combination with instructions on the list of steps to execute  
based on that condition. Figure 12.8 illustrates the inputs and outputs required for  
a conditional step:

Figure 12.8 – Conditional pipeline step
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In this case, we're going to set up a condition using the mean squared error (MSE) 
metric. If the metric is less than or equal to nn, then we will indicate the steps to proceed 
with using the if_steps parameter. In this case, the next steps if the condition were 
true would be to register the model and then create the model that packages your model 
for deployment. You can optionally specify else_steps to indicate the next steps to 
perform if the condition is not true. In this case, we will simply terminate the pipeline  
if the condition is not true:

from sagemaker.workflow.conditions import 
ConditionLessThanOrEqualTo

from sagemaker.workflow.condition_step import (

    ConditionStep,

    JsonGet

)

cond_lte = ConditionLessThanOrEqualTo(

    left=JsonGet(

        step=step_eval,

        property_file=evaluation_report,

        json_path="regression_metrics.mse.value"

    ),

    right=6.0

)

step_cond = ConditionStep(

    name="MSECondition",

    conditions=[cond_lte],

    if_steps=[step_register, step_create_model],

    else_steps=[]

)
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Register model step(s)
In this final step, you'll package the model and configure a built-in register model 
(https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-
manage-steps.html#step-type-register-model) step that will register your 
model to a model package group in SageMaker model registry. As seen in Figure 12.9, the 
inputs we'll use to register the model contain information about the packaged model, such 
as the model version, estimator, and S3 location of the model artifact. This information, 
when combined with additional information such as model metrics and inference 
specifications, is used to register the model version:

Figure 12.9 – Conditional pipeline step

This step will use data from the prior steps in the pipeline to register the model and 
centrally store key metadata about this specific model version. In addition, you'll see an 
approval_status parameter. This parameter can be used to trigger downstream 
deployment processes (these will be discussed in more detail under SageMaker Projects):

from sagemaker.model_metrics import MetricsSource, ModelMetrics

from sagemaker.workflow.step_collections import RegisterModel

model_metrics = ModelMetrics(

    model_statistics=MetricsSource(

https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-register-model
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-register-model
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        s3_uri="{}/evaluation.json".format(

step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]
["S3Output"]["S3Uri"]

        ),

        content_type="application/json",

    )

)

step_register = RegisterModel(

    name="RegisterModel",

    estimator=xgb_train,

    model_data=step_train.properties.ModelArtifacts.
S3ModelArtifacts,

    content_types=["text/csv"],

    response_types=["text/csv"],

    inference_instances=["ml.t2.medium", "ml.m5.xlarge"],

    transform_instances=["ml.m5.xlarge"],

    model_package_group_name=model_package_group_name,

    approval_status=model_approval_status,

    model_metrics=model_metrics,

)

Creating the pipeline
In the preceding steps, we configured the tasks and steps that will be used as part  
of the model build pipeline. We now need to chain those steps together to create the 
SageMaker Pipeline. 

When configuring pipeline steps and creating a SageMaker pipeline, it is important to 
identify the parameters that could vary per pipeline execution and may be more dynamic. 
For example, the instance type for processing or training may be something you want to 
be able to change with each execution of your pipeline without directly modifying your 
pipeline code. This is where parameters become important in being able to dynamically 
pass in parameters at execution time. This allows you to change configurations (such as 
changing the instance type parameters) with each execution of your pipeline, based on 
different environments or as your data grows. 
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The following code shows the chaining together of our previously configured  
pipeline steps, as well as identifying the parameters we want to be able to pass in on  
each execution: 

from sagemaker.workflow.pipeline import Pipeline

pipeline_name = f"WeatherPipeline"

pipeline = Pipeline(

    name=pipeline_name,

    parameters=[

        processing_instance_type,

        processing_instance_count,

        training_instance_type,

        model_approval_status,

        input_data

    ],

    steps=[step_process, step_train, step_eval, step_cond],

)

Executing the pipeline
Now that we've defined and configured our steps and the pipeline itself, we want to be able 
to execute the pipeline. To do this, you'll need to perform a few steps. These steps need to 
be performed for each pipeline execution. A pipeline can be started in multiple ways: 

• Programmatically within a notebook (as shown in the example notebook  
for this chapter)

• Under Pipelines in the SageMaker Studio UI

• Programmatically via another resource

• Through an EventBridge source triggered by an event or schedule
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In this section, we'll focus on the steps required to execute your pipeline from your 
example notebook. First, you need to submit the pipeline definition to the SageMaker 
Pipelines service. This is done through an upsert that passes in the IAM role as an 
argument. Keep in mind that an upsert will create a pipeline definition if it doesn't 
exist or update the pipeline if it does. Also, the role that is passed is used by SageMaker 
Pipelines to create and launch all of the tasks defined in the steps. Therefore, you need to 
ensure that the role is scoped to the API permissions you need for your pipeline. It's a best 
practice to only include the API permissions that are actually needed so as to avoid overly 
permissive roles.

In the following code, you need to load the pipeline definition and then submit that 
definition through upsert:

import json

json.loads(pipeline.definition())

pipeline.upsert(role_arn=role)

Once your pipeline definition is submitted, you're ready to start the pipeline using the 
following code: 

execution = pipeline.start()

There are multiple ways to check the status and progress of your pipeline steps. You can 
view your pipeline in the Studio console and click on each step to get metadata about each 
step, including the step logs. In addition, you can programmatically check the status of 
your pipeline execution. To do this, you can run execution.describe() to view the 
pipeline execution status, or execution.list_steps() to view the execution status 
and each step.

Running your pipelines ad hoc from a notebook is often acceptable during your model-
building activities. However, when you're ready to move your models to production, 
it's common at that stage to find the most consistent and repeatable ways to trigger or 
schedule your model-building pipelines for model retraining. 

To do this, you can utilize the integration between SageMaker Pipelines and Amazon 
EventBridge (https://docs.aws.amazon.com/sagemaker/latest/dg/
pipeline-eventbridge.html). This integration allows you to trigger the execution 
of your SageMaker pipeline through event rules. These rules can be based on an event, 
such as the completion of an AWS Glue job, or they can be scheduled. 

https://docs.aws.amazon.com/sagemaker/latest/dg/pipeline-eventbridge.html
https://docs.aws.amazon.com/sagemaker/latest/dg/pipeline-eventbridge.html
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Pipeline recommended practices
In this section, we covered how to set up a SageMaker pipeline using your example 
weather use case. As you build your own pipelines, they will likely vary in terms of the 
configuration required and the steps that should be included. However, the following 
general recommendations apply across use cases (unique considerations are highlighted 
where applicable):

1. SageMaker Pipelines has built-in steps supporting a variety of SageMaker jobs 
and the ability to utilize callback for custom steps. The built-in integrations with 
SageMaker steps simplify building and managing the pipeline. It is therefore 
recommended to utilize SageMaker-native steps for the tasks in your pipeline 
when possible. 

2. Utilize runtime parameters for job arguments that are more likely to change 
between executions or environments, such as the size or number of ML instances 
running your training or processing jobs. This allows you to pass values in when 
you start the execution of the pipeline, as opposed to modifying your pipeline code 
every time. 

3. Enable step caching to take advantage of eliminating unnecessary execution  
of steps in your pipeline. This will reduce costs, as well as reducing pipeline time 
when a previous pipeline step has already been successfully executed with the  
same parameters. 

In this section, we covered automating your model build ML workflows using SageMaker 
Pipelines. In the next section, we'll cover creating an end-to-end ML pipeline that goes 
beyond automation and incorporates CI/CD practices.

Creating CI/CD pipelines using Amazon 
SageMaker Projects
In this section, we'll discuss using Amazon SageMaker Projects to incorporate CI/CD 
practices into your ML pipelines. SageMaker Projects is a service that uses SageMaker 
Pipelines and the SageMaker model registry, in combination with CI/CD tools, to 
automatically provision and configure CI/CD pipelines for ML. Figure 12.10 illustrates  
the core components of SageMaker Projects. With Projects, you have the advantage  
of a CD pipeline, source code versioning, and automatic triggers for pipeline execution: 
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 Figure 12.10 – SageMaker Projects

Projects are made available through built-in SageMaker MLOps project templates or by 
creating your own organization's MLOps templates. The underlying templates are offered 
through AWS Service Catalog, via SageMaker Studio, and contain CloudFormation 
templates that preconfigure CI/CD pipelines for the selected template. Because projects 
rely on CloudFormation to provision pipelines, this ensures the practice of IaC/CaC to be 
able to consistently and reliably create CI/CD ML pipelines. 

There are three core types of built-in SageMaker MLOps project templates. Figure 12.11 
shows the three primary types: 1. Build and Train Pipeline, 2. Deploy Pipeline, 3. Build, 
Train, and Deploy Pipeline.
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Refer to the following figure:

Figure 12.11 – SageMaker Projects

First, there is a build and train template. This covers the tasks required in data 
preparation, feature engineering, model training, and evaluation. This template is useful 
when you are performing model build activities on SageMaker but deploying your model 
somewhere else. It is also useful if you have batch-only use cases. In this case, Projects will 
automatically provision and seed a source code repository for a model build pipeline, set 
up pipeline triggers for changes to that code repository, and create a model group in the 
model registry. You are then responsible for going in and modifying that pipeline code to 
match your use case.

Second, there is a model deployment template. This template is useful when you are 
looking to standardize SageMaker for hosting. In this case, Projects will automatically 
provision and seed a source code repository for a model deploy pipeline that deploys to  
a SageMaker endpoint based on triggers and information pulled from the model registry. 
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Finally, there are end-to-end templates that cover all phases, including build, train, 
and deploy. These templates cover AWS Developer Services (AWS CodePipeline, AWS 
CodeCommit, AWS CodeBuild), or allow the option to utilize third-party source code 
repositories (GitHub, GitHub Enterprise, BitBucket, or Jenkins) for orchestration. In this 
case, Projects will automatically provision and seed source code for both model build and 
model deploy activities. Projects will also set up the triggers for both model build, and 
model deploy activities. Again, you are then responsible for going in and modifying seed 
code to meet your use case. 

In this section, we examined SageMaker projects. We concluded that it is a service that 
can be used to incorporate CI/CD practices into your ML pipelines. We'll now cover some 
of the recommended practices when using SageMaker projects.

SageMaker projects recommended practices
In the preceding section, we covered SageMaker projects as a way to incorporate CI/CD 
practices into your ML pipelines by using a managed AWS service that will automatically 
provision and configure the integrations that are required. We'll now cover some of the 
general recommended practices when using SageMaker projects. 

As you use SageMaker projects, the customizations for your use case can vary between 
customizing the code within the built-in MLOps project templates or creating your own 
fully custom MLOps project templates. As a result, there can be a lot of variance between 
pipelines in order to meet the requirements of your organization and use case. However, 
there are some general recommendations that apply across use cases, as follows:

• Utilize built-in MLOps project templates when they meet your requirements. 

• When you have unique requirements, such as additional deployment quality gates, 
create custom MLOps project templates. 

• When creating custom MLOps project templates, it is often easier to use the AWS 
CloudFormation templates used for the built-in MLOps project templates as  
a starting point and then modify accordingly. All of the built-in MLOps project 
templates are available and visible in AWS Service Catalog. 

In this section, we covered adding CI/CD practices to your automated workflows using 
SageMaker projects. We also discussed the MLOps project template options that are 
available. Finally, we discussed additional considerations and best practices when using 
SageMaker projects. 
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Summary
In this chapter, we first covered general considerations for automating your SageMaker 
workflows. We then discussed automating your SageMaker model build workflows, 
specifically through using SageMaker Pipelines. The steps required to build out a pipeline 
for your weather use case were highlighted in order to illustrate SageMaker Pipeline usage. 
Finally, we discussed how you can enhance that automated model build workflow by using 
SageMaker projects to incorporate CI/CD practices, in addition to the automation offered 
by SageMaker Pipelines. 

In the next chapter, we'll discuss the AWS Well-Architected Framework, specifically 
looking at how best practices across each Well-Architected pillar map to SageMaker 
workloads. 



13
Well-Architected 

Machine Learning 
with Amazon 

SageMaker
When running workloads in the cloud, you want to make sure that the workload 
is architected correctly to take advantage of all that the cloud can offer. AWS Well-
Architected Framework helps you with this, by providing a formal approach for learning 
best practices across five critical pillars applicable to any workload deployed to AWS.  
The pillars are operational excellence, security, reliability, performance efficiency, and  
cost optimization. 

The framework provides guidance on how to improve your architecture and make trade-
offs between the pillars both during the initial development and continued updates 
of the workload. While you can use Well-Architected Framework to evaluate your 
workload from a general technology perspective, while building machine learning (ML) 
applications, it would be great to have focused guidance across the five pillars specific to 
ML. AWS Machine Learning Lens provides this focused guidance, which you can use to 
compare and measure your ML workload on AWS against best practices. 
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Important Note
For an in-depth review of the Well-Architected Framework and Machine 
Learning Lens, please review these two white papers from AWS: https://
docs.aws.amazon.com/wellarchitected/latest/
framework/wellarchitected-framework.pdf and https://
docs.aws.amazon.com/wellarchitected/latest/
machine-learning-lens/wellarchitected-machine-
learning-lens.pdf.

So far in this book, we have discussed how to use different Amazon SageMaker 
capabilities across all phases of ML workloads. In this chapter, we will learn how to 
combine guidance from both the generic Well-Architected Framework and Machine 
Learning Lens and apply it to the end-to-end ML workloads built on SageMaker.

Please note that this chapter does not introduce any new SageMaker features, but rather 
dives into how you can apply the capabilities you already know to build a well-architected 
ML workload. You will learn how SageMaker's specific capabilities are combined with 
other AWS services across the five pillars, with some of the capabilities playing a key role 
in multiple pillars. 

In this chapter, we are going to cover the following main topics:

• Best practices for operationalizing ML workloads

• Best practices for securing ML workloads

• Best practices for building reliable ML workloads

• Best practices for building performant ML workloads

• Best practices for building cost-optimized ML workloads

Best practices for operationalizing ML 
workloads
Many organizations start their ML journey with a few experiments of building models 
to solve one or more business problems. Cloud platforms, in general, and ML platforms 
such as SageMaker make this experimentation easy by providing seamless access to elastic 
compute infrastructure and built-in support for various ML frameworks and algorithms. 
Once these experiments have proven successful, the next natural step is to move the 
models into production. Typically, at this time, organizations want to move out of the 
research-and-development phase and into operationalizing ML. 

https://docs.aws.amazon.com/wellarchitected/latest/framework/wellarchitected-framework.pdf
https://docs.aws.amazon.com/wellarchitected/latest/framework/wellarchitected-framework.pdf
https://docs.aws.amazon.com/wellarchitected/latest/framework/wellarchitected-framework.pdf
https://docs.aws.amazon.com/wellarchitected/latest/machine-learning-lens/wellarchitected-machine-learning-lens.pdf
https://docs.aws.amazon.com/wellarchitected/latest/machine-learning-lens/wellarchitected-machine-learning-lens.pdf
https://docs.aws.amazon.com/wellarchitected/latest/machine-learning-lens/wellarchitected-machine-learning-lens.pdf
https://docs.aws.amazon.com/wellarchitected/latest/machine-learning-lens/wellarchitected-machine-learning-lens.pdf
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The idea of MLOps is gaining popularity these days. MLOps, at a very high level, 
involves bringing together people, processes, and technology to integrate ML workloads 
into release management, CI/CD, and operations. Without diving into all the details of 
MLOps, in this section, we will discuss best practices for operationalizing ML workloads 
using technology. We will also discuss which SageMaker features play a role in various 
aspects of operationalizing ML workloads.

Let's now look at best practices for operationalizing ML workloads on AWS in the 
following sections. 

Ensuring reproducibility 
To successfully operationalize the end-to-end ML system, you must first ensure its 
reproducibility through versioned data, code, and artifacts. Best practice is to version all 
inputs used to create models, including training data, data preparation code, algorithm 
implementation code, parameters, and hyperparameters, in addition to all trained model 
artifacts. A versioning strategy is also about helping in the model-update phase and 
allowing for easy rollback to a specific known working version if a model update fails or if 
the updated model does not meet your requirements.

Tracking ML artifacts
Iterative development of ML models using different algorithms and hyperparameters 
for each algorithm results in many training experiments and multiple model versions. 
Keeping track of these experiments and resulting models along with each model's lineage 
is important to meet auditing and compliance requirements. Model lineage also helps with 
root-cause analysis in case of degrading model performance.  

While you can certainly build a custom tracking solution, best practice is to use a 
managed service such as SageMaker Experiments. Experiments allows you to track, 
organize, visualize, and compare ML models across all phases of the ML lifecycle 
including feature engineering, model training, model tuning, and model deployment. 
With SageMaker Experiments, you can easily choose to deploy or update the model with 
a specific version. Experiments also provides you with the model lineage capability. For 
a detailed discussion of SageMaker Experiments' capabilities, please refer to the Amazon 
SageMaker Experiments section of Chapter 6, Training and Tuning at Scale.

Additionally, you can also use the Amazon SageMaker ML Lineage Tracking capability, 
which keeps track of information about the individual steps of an ML workflow from data 
preparation to model deployment. With the information tracked, you can reproduce the 
workflow steps, track model and dataset lineage, and establish model governance and 
audit standards.
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Automating deployment pipelines
Automated pipelines minimize human intervention in moving a trained ML model 
from lower-level environments such as development and staging into a production 
environment. The aim is to have a codified deployment pipeline created with 
Infrastructure-as-Code and Configuration-as-Code, with manual and automated quality 
gates incorporated into the pipeline. Manual quality gates can ensure that models are 
promoted to the production environment only after ensuring that there are no operational 
concerns such as security exposure. Automated quality gates, on the other hand, can be 
used to evaluate model metrics such as precision, recall, or accuracy. Pipelines result 
in consistent deployment as well as providing the ability to reliably recreate ML-related 
resources across multiple environments with minimal human intervention. 

Using Amazon SageMaker Pipelines, you can build automated model workflows. You 
can build every step of the ML lifecycle as a pipeline step to develop and deploy models 
and monitor the pipelines. You can further manage dependencies between each step, 
build the correct sequence, and execute the steps automatically. A service that brings in 
CI/CD practices to ML workloads is SageMaker Projects. This service helps you move 
models from concept to production. Additionally, you can easily meet governance and 
audit standards using a combination of SageMaker Projects and SageMaker Pipelines, by 
automatically tracking code, datasets, and model versions through each step of the ML 
lifecycle. This enables you to go back and replay model-generation steps, troubleshoot 
problems, and reliably track the lineage of models at scale. For a detailed discussion 
of automated workflows and MLOps, please refer to Chapter 12, Machine Learning 
Automated Workflows.

Monitoring production models 
Continued monitoring of deployed models is a critical step in operationalizing ML 
workloads, since a model's performance and effectiveness may degrade over time. 
Ensuring that the model continues to meet your business needs starts with the 
identification of the metrics that measure both model-related metrics and business 
metrics. Ensure that all metrics critical to model evaluation against your business KPIs are 
defined early on and collected during monitoring.

Once the metrics are identified, to ensure the continued high quality of the deployed 
model, use the Amazon SageMaker Model Monitor capabilities and its integration with 
CloudWatch to proactively detect issues, raise alerts, and automate remediation actions.  
In addition to detecting model-quality degradation, you can monitor data drift, bias  
drift, and feature attribution drift to meet your reliability, regulatory, and model 
explainability requirements. 
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CloudWatch alerts that have been triggered because of model monitoring can be used to 
automate activities such as invalidating the current model, reverting to an older model 
version, or retraining a new model based on new ground truth data. Updates to production 
models should consider trade-offs between the risk of introducing changes, the cost of 
retraining, and the potential value of having a newer model in production. For a detailed 
discussion of model monitoring, please refer to Chapter 11, Monitoring Production Models 
with Amazon SageMaker Model Monitor and Clarify.

Important note
While this section has focused on SageMaker-native approaches for 
operationalizing ML workloads, please note that similar automated pipelines 
can be built using a combination of SageMaker APIs and other AWS services 
such as CodePipeline, Step Functions, Lambda, and SageMaker Data Science 
SDK. Multiple MLOps architectures are documented along with sample code 
at https://github.com/aws-samples/mlops-amazon-
sagemaker-devops-with-ml.

The following table summarizes the various AWS services and features applicable to 
operationalizing ML workloads:

Figure 13.1 – AWS Services used for operationalizing ML workloads

In the next section, you will learn how SageMaker integrates with other AWS services to 
enable secure ML workloads.

https://github.com/aws-samples/mlops-amazon-sagemaker-devops-with-ml
https://github.com/aws-samples/mlops-amazon-sagemaker-devops-with-ml
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Best practices for securing ML workloads
When securing an ML workload, you should take into consideration infrastructure and 
network security, authentication and authorization, encrypting data and model artifacts, 
logging and auditing, and meeting regulatory requirements. In this section, we will 
discuss best practices for security ML workloads using a combination of SageMaker and 
related AWS services.

Let's now look at best practices for securing ML workloads on AWS in the following 
sections.

Isolating the ML environment
To build secure ML workloads, you need an isolated compute and network environment. 
To achieve this for ML on SageMaker, deploy all resources such as notebooks, studio 
domain, training jobs, processing jobs, and endpoints within a Virtual Private Cloud 
(VPC). A VPC provides an isolated environment where all traffic between various 
SageMaker components flows within the network. You can add another layer of isolation 
by using security groups that include rules for both inbound and outbound traffic allowed 
by subnets within the VPC, thereby isolating your ML resources further. 

Even if you use SageMaker without a VPC, all resources run in an environment managed 
by AWS on single-tenancy EC2 instances, which ensures that your ML environments 
are isolated from other customers. However, deploying ML resources, such as training 
containers, in a VPC allows you to monitor all network traffic in and out of these 
resources using VPC Flow Logs. Additionally, you can use VPC endpoints and AWS 
PrivateLink to enable communication between SageMaker and other AWS services such 
as S3 or CloudWatch. This keeps all traffic flowing between the various services within the 
AWS network without exposing the traffic to the public internet. 

Disabling internet and root access 
By default, SageMaker notebook instances are internet-enabled to allow you to download 
external libraries and customize your working environment. Additionally, root access is 
enabled on these notebooks, giving you the flexibility to leverage external libraries. 

Only use these default settings in a lower-level sandbox and development environments 
to figure out the optimal working notebook environment. In all other non-production 
and production environments, launch SageMaker resources in your own VPC and turn 
off root access to prevent downloading and installing unauthorized software. Import all 
necessary libraries into a private repository such as AWS CodeArtifact before you isolate 
your environment. This allows you to seamlessly download specific versions of libraries 
without having to reach out to the internet. 
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Additionally, use codified lifecycle configurations to automate setting up the notebook 
environment. Similarly, training and deployed inference containers managed by 
SageMaker are internet-enabled by default. When launching training and inference 
resources, use VPCConfig and EnableNetworkIsolation flags to protect these 
resources from external network traffic. In this case, all downloads and uploads of data 
and model artifacts are routed through your VPC. At the same time, the training and 
inference containers remain isolated from the network and do not have access to any 
resource within your VPC or on the internet.

Enforcing authentication and authorization 
Implement a strong mechanism to determine who can access the ML resources 
(authentication) and what resources authenticated users can access (authorization). 
SageMaker is natively integrated with AWS IAM, a service used to manage access to all 
AWS services and resources. IAM allows you to define fine-grained access controls using 
IAM users, groups, roles, and policies. You can implement least-privilege access using a 
combination of identity-based policies to specify what an IAM user, role, or group can do 
and resource-based policies to specify who has access to the resource and what actions 
they can perform on it.

When designing these IAM policies, it is tempting to start with wide-open IAM policies 
with good intentions of tightening them as you go. However, best practice is to start 
with tight policies that grant minimal required access and add additional permissions 
when required. Periodically review and refine policies to ensure that no unnecessary 
permissions are granted. The IAM service provides the Access Advisor capability, which 
shows you when various AWS services are last accessed by different entities such as IAM 
groups, users, roles, and policies. Use this information to refine the policies. All the 
service API calls are also logged by CloudTrail, and you can use the CloudTrail history to 
determine which permissions can be removed based on the usage patterns.

Securing data and model artifacts 
IAM policies can also be used for access-control of data and models in S3. Additionally, 
you can use a security service called Amazon Macie to protect and classify data in S3. 
Macie internally uses ML to automatically discover, classify, and protect sensitive data. It 
automatically recognizes sensitive data such as personally identifiable information (PII) 
or intellectual property (IP), providing visibility into data access and movement patterns. 
Macie continuously monitors for anomalies in data-access patterns and proactively 
generates alerts on unauthorized access and data leaks. 
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The next important aspects to secure are data and model artifacts of an ML system, both at 
rest and in transit. To secure data in transit within a VPC, use Transport Layer Security 
(TLS). To secure data at rest, best practice is to use encryption to block malicious actors 
from reading your data and model artifacts. You can use either client-side or server-side 
encryption. SageMaker comes with built-in encryption capabilities to protect training data 
and model artifacts both at rest and in transit. For example, when launching a training job, 
you can specify the encryption key to be used. You have the flexibility of using SageMaker-
managed keys, AWS-managed keys, or your own customer-managed keys.

Logging, monitoring, and auditing 
SageMaker is natively integrated with CloudWatch and CloudTrail. You can capture logs 
from SageMaker training, processing, and inference in CloudWatch, which can further be 
used for troubleshooting. All SageMaker (and other AWS services) API calls are logged 
by CloudTrail, allowing you to track down which IAM user, AWS account, or source IP 
address made the API call along with when the call occurred. 

Meeting regulatory requirements 
For many organizations, ML solutions need to comply with regulatory standards and pass 
compliance certifications that vary significantly across countries and industries. Amazon 
SageMaker complies with a wide range of compliance programs, including PCI, HIPAA, 
SOC 1/2/3, FedRAMP, and ISO 9001/27001/27017/27018.

The following table summarizes the various AWS services applicable to securing  
ML workloads:

Figure 13.2 – AWS services used for securing ML workloads
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In the next section, you will learn how SageMaker integrates with other AWS services to 
build reliable ML workloads.

Best practices for reliable ML workloads
For a reliable system, there are two considerations at the core: 

• First, the ability to recover from planned and unplanned disruptions 

• Second, the ability to meet unpredictable increases in traffic demands

Ideally, the system should achieve both without affecting downstream applications and 
end consumers. In this section, we will discuss best practices for building reliable ML 
workloads using a combination of SageMaker and related AWS services.

Let's now look at some best practices for securing ML workloads on AWS in the  
following sections.

Recovering from failure 
For an ML workload, the ability to recover gracefully should be part of all the steps that 
make up the iterative ML process. A failure can occur with data storage, data processing, 
model training, or model hosting, which may result from a variety of events ranging from 
system failure to human error. 

For ML on SageMaker, all data (and model artifacts) is typically saved in S3. This ensures 
decoupling between ML data and the computation processing. To prevent an inadvertent 
loss of data, best practice is to use a combination of IAM and S3 policies to ensure least 
privilege-based access to data. Additionally, use S3 versioning and object tagging to enable 
versioning and traceability of data (and model artifacts) for easy recovery or recreation in 
the event of failure. 

Next, consider the reliability of ML training, which is often a long, time-consuming 
process. It is not uncommon to see training jobs that run over multiple hours and 
even multiple days. If these long-running training jobs are disrupted due to a power 
outage, OS fault, or other unexpected error, having the ability to reliably resume from 
where the job stopped is critical. ML checkpointing should be used in this situation. On 
SageMaker, a few built-in algorithms and all supported deep learning frameworks provide 
the capability of turning on checkpointing when a training job is launched. When you 
enable checkpointing, SageMaker automatically saves snapshots of the model state during 
training. This enables you to reliably restart a training job from the last saved checkpoint.
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Tracking model origin 
Let's say your training goes off without a hitch and you have a trained model artifact saved 
in an S3 bucket. What happens if you lose this model artifact due to human error, such 
as someone in your team deleting it by mistake? In a reliable ML system, you need to be 
able to recreate this model using the same data, version of the code, and parameters as the 
original model. Hence, it is important to keep track of all these aspects during training. 
Using SageMaker Experiments, you can keep track of all the steps and artifacts that went 
into creating a model so you can easily recreate the model as necessary. Another benefit of 
tracking with SageMaker Experiments is the ability to troubleshoot issues in production 
for reliable operation. 

In addition to relying on Experiments to be able to recreate a specific version of a model 
artifact, use a combination of IAM and S3 policies to ensure least privilege-based access 
to minimize the risk of accidental model-artifact deletion. Implement measures such as 
requiring MFA for model artifact deletion and storing a secondary copy of the artifact as 
required by your organization's disaster recovery strategy.

Automating deployment pipelines 
To ensure that all steps leading up to model deployment are executed consistently, use a 
CI/CD pipeline with access controls to enforce least privilege-based access. Deployment 
automation combined with manual and automated quality gates ensures that all changes 
can be effectively validated with dependent systems prior to deployment. Amazon 
SageMaker Pipelines has the capability to bring CI/CD practices to ML workloads for 
improved reliability. Codifying the CI/CD pipelines using SageMaker Pipelines provides 
you with an additional capability of dealing with the model endpoint itself being deleted 
inadvertently. Using the Infrastructure-as-Code approach, the endpoint can be recreated. 
This requires a well-defined versioning strategy in place for your data, code, algorithms, 
hyperparameters, model artifacts, container images, and more. Version everything and 
document your versioning strategy. For a detailed discussion of SageMaker Pipelines 
capabilities, please refer to the Amazon SageMaker Pipelines section of Chapter 12, 
Machine Learning Automated Workflows.

Additionally, follow the train once and deploy everywhere strategy. Because of the 
decoupled nature of the training process and results, you can share the trained model 
artifact across multiple environments. This prevents retraining in multiple environments 
and introducing unexpected changes to the model.
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Handling unexpected traffic patterns
Once the model is deployed, you must ensure the reliability of the deployed model in 
serving the inference requests. The model should be able to handle spikes in inference 
traffic and continue to operate at the quality necessary to meet the business requirements. 

To handle traffic spikes, deploy the model with the Autoscaling-enabled SageMaker 
real-time endpoint. With Autoscaling enabled, SageMaker automatically increases (and 
decreases) the computation capacity behind the hosted model in response to the dynamic 
shifts in the inference traffic. Autoscaling provided by SageMaker is horizontal scaling, 
meaning it adds new instances or removes existing instances to handle the inference  
traffic variations. 

Continuous monitoring of deployed model 
To ensure the continued high quality of the deployed model, use the Amazon SageMaker 
Model Monitor capabilities and its integration with CloudWatch to proactively detect 
issues, raise alerts, and automate remediation actions when a production model is 
not performing as expected. In addition to model quality, you can monitor data drift, 
bias drift, and feature-attribution drift to meet your reliability, regulatory, and model 
explainability requirements. Ensure that all metrics critical to model evaluation against 
your business KPIs are defined and monitored. For a detailed discussion of model 
monitoring, please refer to Chapter 11, Monitoring Production Models with Amazon 
SageMaker Model Monitor and Clarify.

Updating model with new versions 
Finally, you must consider how to update a production model reliably. SageMaker 
endpoint production variants can be used to implement multiple deployment strategies 
such as A/B, Blue/Green, Canary, and Shadow deployments. The advanced deployment 
strategies along with detailed implementation are discussed in Chapter 9, Updating 
Production Models Using Amazon SageMaker Endpoint Production Variants. Depending  
on the model consumer's tolerance for risk and downtime, choose an appropriate 
deployment strategy. 
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The following table summarizes the various AWS services applicable to building reliable 
ML workloads:

Figure 13.3 – AWS service capabilities used for reliable ML workloads

In the next section, you will learn how SageMaker integrates with other AWS services to 
build reliable, performance-efficient workloads.

Best practices for building performant ML 
workloads
Given the compute- and time-intensive nature of ML workloads, it is important to choose 
the most performant resources appropriate for each individual phase of the workload. 
Computation, memory, and network bandwidth requirements are unique to each phase 
of the ML process. Besides the performance of the infrastructure, the performance of the 
model as measured by metrics such as accuracy is also important. In this section, we will 
discuss best practices to apply in selecting the most performant resources for building ML 
workloads on SageMaker. 

Let's now look at best practices for building performant ML workloads on AWS in the 
following sections.
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Rightsizing ML resources 
SageMaker supports a variety of ML instance types with a varying combination of CPU, 
GPU, FPGA, memory, storage, and networking capacity. Each instance type, in turn, 
supports multiple instance sizes. So, you have a range of choices to choose from to 
suit your specific workload. The best practice is to choose different compute resource 
configurations for data processing, building, training, and hosting your ML model. This 
is made possible by the decoupled nature of SageMaker, which allows you to choose 
different instance types and sizes for different APIs. For example, you can choose 
ml.c5.medium for a notebook instance as your working environment, use a cluster 
of four ml.p3.large GPU instances for training, and finally host the trained model 
on two ml.m5.4xlarge instances with Elastic Inference attached. Additionally, in the 
SageMaker Studio environment, you can change the notebook instance type seamlessly 
without any interruption to your work. 

While you have the flexibility of choosing different compute options for different ML 
phases, how do you choose the specific instance types and sizes to use? This comes down 
to understanding your workload and experimentation. For example, if you know that 
the training framework and algorithm of your choice will need GPU support, choose a 
GPU cluster to train on. While it may be tempting to use GPUs for all training, traditional 
algorithms may not work well on GPUs due to the communication overheads involved. 
Some built-in algorithms, such as XGBoost, implement an open source algorithm that 
has been optimized for CPU computations. SageMaker also provides optimized versions 
of frameworks, such as TensorFlow and PyTorch, which include optimizations for high-
performance training across Amazon EC2 instance families.

Monitoring resource utilization 
Once you make your initial choice of instances and kick off training, SageMaker training 
jobs emit CloudWatch metrics for resource utilization that you can use to improve your 
training runs the next time. Additionally, when you enable Debugger with your training 
jobs, SageMaker Debugger provides visibility into training jobs and the infrastructure a 
training job is executing on. Debugger also monitors and reports on the system resources 
such as CPU, GPU, and memory, providing you with insights into resource underutilization 
and bottlenecks. If you use TensorFlow or PyTorch for your deep learning training jobs, 
Debugger provides you with a view into framework metrics that can be used to speed 
up your training jobs. For a detailed discussion of Debugger's capabilities, please refer to 
Chapter 7, Profile Training Jobs with Amazon SageMaker Debugger.
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Rightsizing hosting infrastructure 
Once the model is trained and ready to be deployed to choose instances for real-time 
endpoints, consider what your target performance is. Target performance is a combination 
of how many requests to serve in each period and the desired latency for each request, for 
example, 10,000 requests per minute with a maximum of a 1 millisecond response time. 
Once you have the target performance in mind, perform load testing in a non-production 
environment to figure out the instance type, instance size, and number of instances to 
host the model on. Recommended best practice is to deploy the endpoint with at least two 
instances across two availability zones for high availability.

Once you decide on the instance type to use, start with the minimum number of instances 
necessary to meet your steady-state traffic and take advantage of the Autoscaling 
capability of SageMaker hosting. Using Autoscaling, SageMaker can automatically scale 
the inference capacity depending on the utilization and request traffic thresholds you 
configure. Capacity adjustments to meet your performance requirements are done by 
updating the endpoint configuration without any downtime.

Additionally, you can scale up the hosting infrastructure for deep learning models 
using Amazon Elastic Inference (EI). While training a deep learning model may need 
a full-fledged GPU, hosting a training deep learning model may need only a slice of 
GPU to function. EI allows you to accelerate deep learning inferences using SageMaker 
ML instances. Alternatively, if you have a large-scale ML inference application, you can 
run inferences on Inf1 instances, which are best suited to applications such as search, 
recommendation engines, and computer vision, at a low cost.

While real-time endpoints provide access to models deployed on SageMaker, some 
workloads may warrant inference at the edge due to latency requirements, for example, 
models used to determine defective product parts in a manufacturing plant. In such cases, 
the model needs to be deployed on cameras within the manufacturing plant. For such use 
cases, use SageMaker Neo and SageMaker Edge Manager to optimize, deploy, and manage 
models at the edge.

Important note
While real-time endpoints and models deployed at the edge provide 
synchronous predictions, batch transform is used for asynchronous inferences 
with more tolerance for longer response times. Use experimentation to 
determine the right instance type, size, and number of instances to be used for 
batch transform with job completion time in mind.



Best practices for cost-optimized ML workloads     289

Continuous monitoring of deployed model
Once the model is actively serving inference traffic, use SageMaker Model Monitor to 
continuously monitor ML models for data drift, model-quality performance, feature-
importance drift, and bias drift. Behind the scenes, Model Monitor uses distributed 
processing jobs. As with batch processing, use experimentation and load testing to 
determine the processing job resources necessary to complete each scheduled monitoring 
job execution. For a detailed discussion of Model Monitor, please refer to Chapter 11, 
Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify.

The following table summarizes the various SageMaker features and how they are 
applicable for building performant ML workloads:

Figure 13.4 – AWS service capabilities for building performant ML workloads.

In the next section, you will learn how SageMaker integrates with other AWS services to 
build cost-optimized workloads.

Best practices for cost-optimized ML 
workloads
For many organizations, the lost opportunity cost of not embracing disruptive  
technologies such as ML outweighs the ML costs. By implementing a few best practices, 
these organizations can get the best possible returns on their ML investment. In this section,  
we will discuss best practices to apply for cost-optimized ML workloads on SageMaker.
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Let's now look at best practices for building cost-optimized ML workloads on AWS in the 
following sections.

Optimizing data labeling costs 
Labeling of data used for ML training, typically done at the very beginning of the ML 
process, can be tedious, error-prone, and time-consuming. Labeling at scale consumes 
many working hours, making this an expensive task, too. To optimize cost for data 
labeling, use SageMaker Ground Truth. Ground Truth provides capabilities for data 
labeling at scale using a combination of human workforce and active learning. When 
active learning is enabled, a labeling task is routed to humans only if a model cannot 
confidently finish the task. The human-labeled data is then used to train the model to 
improve accuracy. Therefore, as the labeling job progresses, less and less data needs to 
be labeled by humans. This results in faster completion of the job at reduced costs. For a 
detailed discussion of Ground Truth capabilities, please refer to Chapter 3, Data Labeling 
with Amazon SageMaker Ground Truth.

Reducing experimentation costs with models from 
AWS Marketplace 
ML is inherently iterative and experimental. Having to run multiple algorithms with 
different sets of hyperparameters each time leads to several training jobs before you can 
determine a model that meets your needs. All this training adds up in terms of time  
and costs. 

A big part of experimentation is the research and reuse of readily available pre-trained 
models that may suit your needs. AWS Marketplace for ML gives you a catalog of datasets 
and models made available by vendors vetted by AWS. You can subscribe to models that 
meet your needs and potentially save the time and costs involved in developing your 
own models. If you do, however, end up developing your own models, you can use the 
marketplace to monetize your models by making them available to others.
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Using AutoML to reduce experimentation time 
If the marketplace models don't meet your needs or if your organization has the build 
rather than buy policy, first check whether your dataset and use case are suitable 
for AutoPilot. At the time of writing this book, AutoPilot supports tabular data and 
classification and regression problems. AutoPilot automatically analyzes datasets and 
builds multiple models with different combinations of algorithms and hyperparameters 
and finally selects the best algorithm for the list. This saves both time and cost. 
Additionally, the service provides transparency through two notebooks – a data 
preparation notebook and a model candidate selection notebook, which details all the 
behind-the-scenes steps performed by AutoPilot. So, even if you don't end up using the 
model built and recommended by AutoPilot, you can use these notebooks as a starting 
point for your own experimentation and modify them using your business domain 
knowledge.

However, at the time of publication of this book, AutoPilot only supports regression and 
classification using tabular data. For other data types and problems, you will have to build 
and train your model. 

Iterating locally with small datasets 
During ML experimentation, iterate with a smaller dataset in the SageMaker notebook's 
local environment first. Once you iron out details such as code bugs and data issues, you 
can scale up with the full dataset and distributed training clusters managed by SageMaker. 
This phased approach will let you iterate faster at lower costs. SageMaker SDK makes this 
easy by supporting instance-type = "local" for the training API so that you can 
reuse the same code in the local environment or on the distributed cluster. Note that at the 
time of publication, local mode only works in SageMaker notebook instances, not in the 
Studio environment.

Rightsizing training infrastructure 
When you are ready to launch a distributed training cluster, it is important to choose the 
right number and type of instances in the cluster. For built-in or custom algorithms that 
do not support distributed training, your cluster will always have a single instance. For 
algorithms and frameworks that do support distributed training, take advantage of data 
parallelism and model parallelism as discussed in Chapter 6, Training and Tuning at Scale, 
to complete training faster, thereby reducing the overall training costs. 
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While there are various instance types with different capacity configurations available, 
it is important to rightsize the training instances based on the ML algorithm used. For 
example, simple algorithms may not train faster on the larger instance types since they 
cannot take advantage of hardware parallelism. Even worse, they may even train slower 
due to high GPU communication overhead. Best practice for cost optimization is to start 
with a smaller instance, scale out first by adding more instances to the training cluster, 
and then scale up to more powerful instances. However, if you are using a deep learning 
framework and distributed training, best practice would be to scale up to more GPUs/
CPUs on a single instance before scaling out because the network I/O involved may 
negatively impact the training performance.

In addition to selecting the right infrastructure, you can also use optimized versions of 
ML frameworks that result in faster training. SageMaker provides optimized versions of 
multiple open source ML frameworks including TensorFlow, Chainer, Keras, and Theano. 
SageMaker versions of these popular frameworks are optimized for high performance on 
all SageMaker ML instances.

Optimizing hyperparameter-tuning costs 
Hyperparameter tuning is also an expensive task, using sophisticated search and 
algorithms. Best practice is to rely on the automated model tuning capability provided by 
managed SageMaker Automatic Model Tuning, also known as hyperparameter tuning 
(HPT). Automatic model tuning finds the best version of a model by running multiple 
training jobs using the algorithm and hyperparameter ranges specified by you. HPT 
then chooses the hyperparameter values that result in the best model as measured by 
the objective metric you specify. Behind the scenes, HPT uses ML techniques that can 
determine optimal hyperparameters with a limited number of training jobs. 

You can further speed up the HPT jobs using warm start mode. With warm start, you 
no longer must start an HPT job from scratch; instead, you can create a new HPT job 
based on one or more parent jobs. This allows you to reuse the training jobs conducted 
in the parent jobs as prior knowledge. Warm start allows you to reduce the time and cost 
associated with model tuning.

Saving training costs with Managed Spot Training
SageMaker Managed Spot Training applies the cost-saving construct of Spot Instances and 
applies it to hyperparameter tuning and training. The Managed Spot Training capability 
takes advantage of checkpointing, to resume training jobs easily. Since you don't have to 
run the training from the start again, this reduces your overall training costs.
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Using insights and recommendations from Debugger 
When it comes to deep learning on SageMaker, training with GPU is very powerful, 
but training costs can add up quickly. SageMaker Debugger provides insight into deep 
learning training both into the ML framework in use and the underlying compute 
resources. The deep profiler capability provides you with recommendations that you can 
implement to improve training performance and reduce resource wastage. For a detailed 
discussion of Debugger's capabilities, please refer to Chapter 7, Profile Training Jobs with 
Amazon SageMaker Debugger.

Saving ML infrastructure costs with SavingsPlan 
Once you enable SavingsPlan in your AWS account, it analyzes your ML resource 
usage within a time of your choice – the past 7, 30, or up to 60 days. The service then 
recommends the right plan to use to optimize costs. You can also select a pre-payment 
option from three different options: no upfront costs, partial upfront (50% or more), or 
all upfront. Once you configure these options, SavingsPlan provides you with details of 
how your monthly spend can be optimized. Additionally, it also suggests an hourly usage 
commitment that maximizes your savings. The plans cover all ML instance families, 
notebook instances, Studio instances, training instances, batch transform instances, real-
time endpoint instances, Data Wrangler instances, and SageMaker Processing instances, 
thereby helping to optimize costs across various phases of ML workloads.

While Managed Spot Training and SavingsPlan are both cost-saving approaches, they 
are not meant to be combined. With SavingsPlan, you are billed every hour of the 
commitment regardless of whether it is fully used. Best practice is to use SavingsPlan and 
Managed Spot Training usages separately. For example, use SavingsPlan for predictable 
steady-state recurring training workloads and Managed Spot Training for new training 
workloads and prototyping where you do not have a clear idea of monthly costs yet.

Optimizing inference costs
Inference costs typically make up most ML costs. Inference costs are discussed in detail 
in Chapter 10, Optimizing Model Hosting and Inference Costs, which details several ways 
to improve inference performance while reducing inference costs. These methods include 
using batch inference where possible, deploying several models behind a single inference 
endpoint to reduce cost and help with advanced canary or blue/green deployments, 
scaling inference endpoints to meet demand, and using EI and SageMaker Neo to provide 
better inference performance at a lower cost.
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Stopping or terminating resources 
Ensure that you terminate or at least stop the ML resources once you are done. While the 
instances for training, hyperparameter tuning, batch inferences, and processing jobs will 
be managed and automatically deleted by SageMaker, you are responsible for notebook 
instances, endpoint, and monitoring schedules. Stop or delete these resources to avoid 
unnecessary costs using automation with scripts that stop resources based on idle time or 
a schedule.

The following table summarizes the various SageMaker features and how they are 
applicable for building cost-optimized ML workloads:

Figure 13.5 – AWS service capabilities for cost-optimized ML workloads

This section concludes the discussion on applying best practices to build well-architected 
ML workloads on AWS. 

Summary
In this chapter, you reviewed the five pillars – operational excellence, security, reliability, 
performance, and cost optimization – that make up the Well-Architected Framework. You 
then dove into the best practices for each of these pillars, with an eye to applying these 
best practices to ML workloads. You learned how to use the SageMaker capabilities with 
related AWS services to build well-architected ML workloads on AWS. 
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As you architect your ML applications, you typically must make trade-offs between the 
pillars depending on your organization's priorities. For example, when getting started with 
ML, cost-optimization may not be at the top of your mind but establishing operational 
standards may be important. However, as the number of ML workloads scale, cost-
optimization could become an important consideration. By applying the best practices you 
learned in this chapter, you can architect and implement ML applications that meet your 
organization's needs and periodically evaluate your applications against the best practices.

In the next chapter, you will apply all these best practices and see how to operate in 
multiple AWS environments that reflect the real world. 
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SageMaker Features 
across Accounts

AWS publishes best practices around the management and governance of workloads. 
These practices touch on many areas, such as cost optimization, security, compliance, and 
ensuring the operational efficiency of workloads scaled on AWS. Multi-account patterns 
are one common architectural consideration when building, deploying, and operating 
workloads that utilize the features of Amazon SageMaker. 

In this section, we won't cover the well-established recommendations and considerations 
around the governance of AWS workloads across AWS accounts. Rather, we will 
specifically focus on some of the considerations around the usage of AWS features across 
AWS accounts. For more information about general recommendations for choosing 
the right account strategy, please refer to AWS Management and Governance services 
(https://aws.amazon.com/products/management-and-governance/)  
and the AWS Multi-Account Landing Zone strategy – AWS Control Tower (https://
docs.aws.amazon.com/controltower/latest/userguide/aws-multi-
account-landing-zone.html).

https://aws.amazon.com/products/management-and-governance/
https://docs.aws.amazon.com/controltower/latest/userguide/aws-multi-account-landing-zone.html
https://docs.aws.amazon.com/controltower/latest/userguide/aws-multi-account-landing-zone.html
https://docs.aws.amazon.com/controltower/latest/userguide/aws-multi-account-landing-zone.html
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The concept of a multi-account strategy is built on the AWS Well-Architected 
Framework, where having multiple AWS accounts allows you to better govern and 
manage machine learning activities on Amazon SageMaker across the Machine Learning 
Development Lifecycle (ML Lifecycle). The benefits of using multiple AWS accounts are 
documented for general workloads. 

In this chapter, we'll discuss the following topics as they relate to managing SageMaker 
features across multiple AWS accounts:

• Examining an overview of the AWS multi-account environment

• Understanding the benefits of using multiple AWS accounts with Amazon 
SageMaker

• Examining multi-account considerations with Amazon SageMaker

Examining an overview of the AWS multi-
account environment
There are many variations of multi-account strategies that are valid. Multi-account 
implementations can vary based on the organizational and technical needs of a 
customer. For the purposes of this chapter, we will focus on a basic multi-account 
strategy, focusing on only the accounts that are most relevant to a machine learning 
workload using Amazon SageMaker. We don't explicitly call out accounts (such as 
security or logging) because they are already well defined in the context of AWS 
governance practices. Figure 14.1 illustrates the general, high-level accounts we will use 
to discuss the concepts in this chapter.

Figure 14.1 – Example of AWS accounts and SageMaker features
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Using Figure 14.1 as an example, the following AWS accounts may be used as part of 
an end-to-end ML Lifecycle. Please keep in mind that account naming and resource 
placement may vary considerably across implementations. Each account is described at 
a high level, in order to focus more on the account purpose versus the naming standard 
itself: 

1. Shared Services account: This account can be named many things, and is also 
referred to as a DevOps or application management account. For the purposes of 
this chapter, we refer to this account as the one that can often include the services 
and tooling used for the management of end-to-end pipelines and the ongoing 
management of workloads.

2. Data platform/data lake: This account acts as the central repository for datasets, 
both raw and curated, used for model-building activities.

3. Data science account: This account (or accounts) represents the environments 
where model development activities are performed.

4. Test account: This account represents the environment where a model will be 
tested. This account typically includes integration and performance testing.

5. Production account: This account represents the environment hosting models 
supporting live applications and workloads. This account typically has the highest 
levels of controls and restrictions. 

6. Service Catalog master account: The purpose of this account is to maintain a 
central hub of products that can be offered through the AWS Service Catalog 
and used to consistently provision resources in spoke accounts, such as the data 
science account. A spoke account is an AWS account that has been given access to 
portfolios managed from the master account.

Again, these accounts are high-level representations of a potential account structure 
and are not inclusive of every variation that is valid given the requirements of your 
own environments. In the next section, we'll discuss the benefits of using multiple AWS 
accounts specifically as they relate to using Amazon SageMaker across the ML Lifecycle
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Understanding the benefits of using multiple 
AWS accounts with Amazon SageMaker
In this section, we'll cover the general, high-level benefits of using multiple AWS accounts. 
We'll also discuss the considerations that are specific to using Amazon SageMaker across 
the ML Lifecycle:

• Benefit #1: Implementing specific security controls 

Using multiple AWS accounts allows customers to implement security controls that 
are specific to the workload, environment, or data. As an example, some workloads 
may have unique security requirements (such as PCI compliance) and require 
additional controls. Using multiple accounts allows you to maintain fine-grained 
controls that are isolated and auditable at the AWS account level.

For the model-building activities included in the ML Lifecycle, using multiple AWS 
accounts allows you to create and manage data science environments that include the 
controls that are specific to machine learning, as well as to your security requirements. 
With machine learning, data scientists need access to live production data. Typically, 
that data should be scrubbed of any sensitive data before a data scientist gains access. 
However, there are use cases where a data scientist may need access to that sensitive 
data. By separating data science environments that have access to sensitive data and 
those that do not have access to sensitive data, you're able to implement controls at the 
account level, as well as to audit at the account level. 

For model deployment activities included in the ML Lifecycle, you will want 
to ensure your models serving live traffic or providing critical inference data 
are managed and controlled. This would be the case with any other production 
application. You wish to ensure availability. Just as you would not implement a live 
web application in the same account where developers have broad access, the same 
is true for machine learning workloads serving live production workloads. 
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As an example, a SageMaker endpoint serving a production application should be 
hosted in an AWS account that has all of the controls and restricted access in place 
(you would want this to be the case as with any other production workload). This 
ensures the endpoint isn't inadvertently deleted in a lower-level account that may 
have fewer controls and broader access permissions granted. 

• Benefit #2: Supporting the needs of multiple teams

Large organizations and enterprises are often looking for scalable mechanisms to 
support the resource needs and responsibilities of different teams. Across lines of 
business, it's common to have separate AWS accounts. The same is true for machine 
learning workloads. An example here includes data science environments (as 
discussed in Chapter 2, Data Science Environments), where each team may have 
different requirements for an environment in which to build machine learning 
models. In this case, it's common to have multiple data science environments 
supporting multiple teams, as well as supporting the requirements across and within 
teams. 

Examining multi-account considerations with 
Amazon SageMaker
In this section, we'll cover multi-account considerations with Amazon SageMaker. We'll 
first look at a general reference architecture, then discuss some of the considerations for 
specific SageMaker features across the ML Lifecycle. 
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Figure 14.2 shows an example of a multi-account structure mapping key SageMaker 
features and other common AWS services to the accounts they are typically used in. This 
is not a one-size-fits-all view, as there may be other AWS services or third-party tools 
that are performing one or more of the functions performed by the AWS services shown. 
As an example, your model registry may be the SageMaker model registry, or it could 
alternatively be Amazon DynamoDB or a tool such as MLflow:

Figure 14.2 – Example of service use across AWS accounts

The placement of the AWS, or equivalent, supporting the ML Lifecycle map to the 
phase, model build, or model deploy. This is in combination with the benefits addressed 
earlier in being able to implement security controls by accounts, as well as to support 
the requirements of the different roles and personas that operate within each account. 
The naming and structure of accounts may vary across multi-account implementations. 
Therefore, in the following list, we describe the purpose of each account, knowing these 
may vary across implementations:

• A Shared Services account, or DevOps account, is often used to centralize 
the tooling that is used to manage workloads across multiple accounts and 
environments. In this case, you see a few common services, such as the Amazon 
Elastic Container Registry for managing SageMaker compatible images for 
training and inference. You also often find developer tools that enable continuous 
integration (CI)/ continuous delivery or deployment (CD) practices.
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• There are the tools that are needed to automate and orchestrate the steps of the 
machine learning workflow across accounts. These can include native AWS 
Developer Tools or third-party tooling such as GitHub or Jenkins. The tools 
and services used in this account require cross-account identity and access 
management (IAM) permission policies. Finally, you need to create centralized 
dashboards for monitoring the health of your machine learning workloads. 
These shared dashboards are often placed in the Shared Services account, an 
infrastructure account, or one of the environment- or workload-specific accounts, 
such as production. 

• The data platform, or data lake account, contains a data lake using a native service, 
such as AWS Lake Formation or a custom data lake. This account is also a common 
option for placing the centralized feature store that is used to store features for use 
across teams. 

• The data science account is primarily used for model building activities so this 
includes all of the activities required to perform data understanding, feature 
engineering, model training across experiments, and model evaluation. This 
account requires access to SageMaker features needed for those model-building 
activities including features such as Amazon SageMaker Studio, SageMaker 
training jobs, SageMaker Pocessing jobs, and SageMaker Data Wrangler.

• In addition to the common features needed for model building, there are additional 
AWS services that get provisioned in this account when you are using SageMaker 
projects. By default, SageMaker projects automatically provision and configure 
AWS Developer Tools and the AWS Service Catalog products for built-in MLOps 
project templates in the account you are using for your model-building activities. 

• Workload or environment-specific accounts, such as test and production, are used 
to host live models. These accounts also commonly host the broader solution where 
your model is used. From a SageMaker perspective, the features used in these 
accounts typically focus on model deploy and operate activities. 

• Finally, you may also have an AWS Service Catalog master or infrastructure 
account that contains the portfolios of products that can be shared across multiple 
teams. This is known as the hub account. This can be used to create and manage 
a central catalog of products for data science environments or for custom MLOps 
project templates with SageMaker projects. 
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Some AWS features are very specific to the persona and phase in the ML Lifecycle where 
they are needed. As an example, SageMaker training jobs are typically needed by data 
scientists for model-building activities or are needed as part of an automated model 
retraining workflow. However, there are several AWS services that span phases of the ML 
Lifecycle that require some unique considerations. These will be explored further in the 
next section. 

Considerations for SageMaker features
There are several SageMaker features that require additional considerations when 
attempting to implement them in a multi-account strategy, specifically because these 
features are used across the ML Lifecycle. Considerations for features, such as SageMaker 
Processing, SageMaker training jobs, and SageMaker hosting, are generally specific to a 
phase in the lifecycle. Therefore, their placement across accounts is covered in Figure 14.3. 
In this section, we'll cover a few of the SageMaker features that span the ML Lifecycle and 
require additional consideration as part of your multi-account strategy. 

Amazon SageMaker Pipelines
SageMaker Pipelines allows you to code your machine learning pipelines using the 
Amazon SageMaker Python SDK. Pipelines includes SageMaker native steps focused on 
data preparation (via SageMaker Processing), model training (via SageMaker training 
jobs), and model deployment (via SageMaker batch transform). Pipelines also includes 
CallbackStep to integrate with other AWS services or third-party tasks. Finally, 
Pipelines has built-in steps for pipeline functionality, such as a conditional step. All of 
the current capabilities within SageMaker Pipelines focus on model building and model 
deployment for batch inference. As a result, we'll look at two common patterns that have 
cross-account considerations when using SageMaker Pipelines.

In the first pattern, we'll discuss an end-to-end pipeline scenario where you are deploying 
a model for real-time inference using SageMaker hosting. In this case, you can use 
SageMaker Pipelines in your data science account to create a pipeline that can be used to 
automate the model-building activities. These activities include data preparation, model 
training, model evaluation, and a conditional step for model registration. Once a model 
passes evaluation and is registered, it can be used as a trigger for downstream deployment 
to your accounts (such as testing or production) that will host and integrate deployed 
endpoints. This same pipeline can be used for your retraining workflows. 
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In this case, model deployment to higher environments can be done using a cross-account 
resource policy, as shown in Figure 14.3. The cross-account resource policy is created for 
the model group in the SageMaker model registry. That model group contains the  
model versions, the Amazon ECR repository for the inference image, and the S3 location 
of the model artifacts. A cross-account resource policy can be created with all three of 
these resources that then allows you to deploy a model that was created in your data 
science environment into your application or workload environments (such as testing  
or production).

Refer to the following figure:

Figure 14.3 – Cross-account resource policy to deploy a model trained in a data science account
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In the second pattern, we'll discuss an end-to-end pipeline scenario where you are 
deploying a model for batch inference using SageMaker hosting. In this case, you can use 
SageMaker Pipelines in your data science account to create a pipeline that can be used to 
automate the model-building activities. These include data preparation, model training, 
model evaluation, a conditional step for model registration, and a batch transform step. In 
this case, there are two options depending on your use case and requirements:

• Run your end-to-end pipeline in your data science account: This option is valid if 
you are using batch transform to validate your models or you're running batch jobs 
that don't have production-level availability requirements.

• Run your end-to-end pipeline in workload accounts: This option is valid if you 
are using batch transform to deploy models that have production-level availability 
requirements and/or require integration with systems in higher-level environments.

Amazon SageMaker projects
Amazon SageMaker projects build on SageMaker Pipelines by incorporating CI/CD 
practices (such as source and version control) combined with automated deployment 
pipelines into one or more target environments. When considering integrating SageMaker 
projects with multiple AWS accounts, the following are key points to understand: 

• When you enable project templates for your Studio domain or domain users, the 
account where projects are enabled is the one that will be used for the built-in 
MLOps project templates offered through AWS Service Catalog. If you build custom 
MLOps project templates, you can still use the hub-and-spoke model to manage 
your portfolio and products in a Service Catalog master account.

• All built-in MLOps project templates will provision and configure the following 
resources in the same account where projects are enabled: AWS CodePipeline, 
AWS CodeBuild, AWS CodeCommit, and Amazon EventBridge. This is 
important as some organizations assume or require these services to be centrally 
configured and managed through a shared services account (or equivalent). 
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• The built-in MLOps project templates will deploy your SageMaker endpoints to the 
same account where projects are enabled. This behavior can be modified. However, 
the model registry still exists in the data science account. 

Amazon SageMaker Feature Store
Amazon SageMaker Feature Store allows creating and sharing features, both for 
model-building activities and model inference. Because a feature store can be used 
for both model-building activities as well as a dependency for model inference, it's 
important to ensure features remain consistent across teams and are consistently 
available when needed.

When you create a feature store, it gets instantiated in the account that you created it 
in. However, that may not be the optimal choice when centralizing features for sharing 
across teams, or when using the feature store for real-time inference. If you create the 
feature store in your data science account, that account may have fewer controls and more 
access permissions in place for a broader set of roles. This creates risk when supporting 
production applications.

There are two common cross-account patterns related to Feature Store that facilitate 
feature sharing and consistency across teams, as well as allowing the flexibility for team- 
or organization-specific feature stores when needed. 



308     Managing SageMaker Features across Accounts

In the first pattern, shown in Figure 14.4, a central feature store is created in a separate 
AWS account that is accessible via an IAM cross-account role for both the population and 
consumption of features. For the population of features, this is typically done through a 
feature pipeline that is automated and collecting data at regular frequencies. However, 
it can also be done from the data science environment for more static features. Features 
can then be consumed for both inference as well as for model-building activities. Model-
building activities often consume features from the offline feature store using cross-
account permissions:

Figure 14.4 – Central Feature Store pattern

In the second pattern, similar to Figure 14.4, there is a central feature store that is used 
for sharing features that may be common or useful across teams, but there is also the 
flexibility for individual teams to create their own feature stores in separate AWS accounts. 
This pattern is useful to facilitate the ability to share common features in a central store, 
while also allowing workload- or application-specific features to be secured in an account 
that only requires access by the specific teams or applications that need those features. 
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Amazon SageMaker Data Wrangler 
Amazon SageMaker Data Wrangler allows data scientists to explore and prepare data 
for machine learning during the model build phases of the ML Lifecycle. Because Data 
Wrangler is purpose-built for feature engineering and data preparation, the most common 
persona that will work with Data Wrangler are ML builders. Most model-building 
activities are going to happen inside one or more data science accounts; however, you 
typically need a way to securely access data from a data platform or data lake account for 
those model-building activities.

Figure 14.5 illustrates a common pattern for enabling cross-account access from a data 
science account, where Data Wrangler is being used, to a data platform/data lake account, 
where the data typically resides. In this case, we are using AWS Lake Formation for our 
secure data lake. The same concepts apply when utilizing other technologies for your data 
lake; however, the implementation may differ:

Figure 14.5 – Cross-account access for SageMaker Data Wrangler

With Data Wrangler, you're able to enable cross-account permissions using AWS IAM. 
To do this, you need to set up cross-account permissions for Data Wrangler in the data 
science account that allows access to the data tables stored in your data platform/data lake 
account. This is accomplished through Lake Formation permissions. This setup allows 
you to still provide access to datasets for your data scientists, but also allows you to take 
advantage of the security controls that Lake Formation offers. 
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For example, you can choose to share only specific tables or even to share only specific 
columns of tables stored in your data lake. Tables are shared using AWS Resource Access 
Manager. This provides a way to share Lake Formation tables across AWS accounts. 
This allows users to access shared tables in secondary accounts. These shared tables are 
accessible directly in Lake Formation, but they are also available as a data source, via 
Amazon Athena, in your Data Wrangler UI.

Summary
In this chapter, we discussed the benefits of using multiple accounts to manage and 
operate machine learning workloads that use Amazon SageMaker across the ML Lifecycle. 
We also looked at common patterns for account isolation across the ML Lifecycle. 
Finally, we focused specifically on the SageMaker features that are most often used across 
accounts, and the considerations you should be aware of when architecting and building 
end-to-end machine learning solutions.

This chapter wraps up the book where we covered best practices for SageMaker across 
features spanning the machine learning lifecycle of data preparation, model training, 
and operations. In this book, we discussed best practices, as well as considerations, that 
you can draw on when creating your own projects. We used an example use case, using 
open weather data to demonstrate the concepts throughout the chapters of the book. This 
was done so you can get hands-on with the concepts and practices discussed. We hope 
you're able to apply these practices to your own projects while benefiting from the overall 
capabilities and features offered by Amazon SageMaker. 
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