

Amazon SageMaker
Best Practices

Proven tips and tricks to build successful machine
learning solutions on Amazon SageMaker

Sireesha Muppala, PhD

Randy DeFauw

Shelbee Eigenbrode

BIRMINGHAM—MUMBAI

Amazon SageMaker Best Practices
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have been
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Kunal Parikh
Publishing Product Manager: Devika Battike
Senior Editor: Roshan Kumar
Content Development Editor: Tazeen Shaikh
Technical Editor: Arjun Varma
Copy Editor: Safis Editing
Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Joshua Misquitta

First published: September 2021
Production reference: 1190821

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-80107-052-2
www.packt.com

http://www.packt.com

To my dad, for showing me the value of hard work and perseverance.

– Sireesha Muppala, PhD

To my wife and boys, who tolerate my curiosity for all things data; and to
my AWS colleagues, who provide a great home for builders.

– Randy DeFauw

To my husband, Steve, and daughter, Emily, for their continuous support
and understanding when I take on a new challenge – more importantly, for
always being "my why." To my colleagues and friends, for always raising the

bar and making me a better builder.

– Shelbee Eigenbrode

Contributors

About the authors
Sireesha Muppala, PhD is a Principal Enterprise Solutions Architect, AI/ML at Amazon
Web Services (AWS). Sireesha holds a PhD in computer science and post-doctorate
from the University of Colorado. She is a prolific content creator in the ML space with
multiple journal articles, blogs, and public speaking engagements. Sireesha is a co-creator
and instructor of the Practical Data Science specialization on Coursera. Sireesha is a
co-creator and instructor of the Practical Data Science specialization on Coursera. She is
a co-director of Women In Big Data (WiBD), Denver chapter. Sireesha enjoys helping
organizations design, architect, and implement ML solutions at scale.

I would like to thank my advisor, Dr Xiaobo Zhou, Professor and Associate
Dean at UCCS, for getting me started on statistical learning.

Randy DeFauw is a Principal Solutions Architect at AWS. He holds an MSEE from
the University of Michigan, where his graduate thesis focused on computer vision for
autonomous vehicles. He also holds an MBA from Colorado State University. Randy has
held a variety of positions in the technology space, ranging from software engineering to
product management. He entered the big data space in 2013 and continues to explore that
area. He is actively working on projects in the ML space, including reinforcement learning.
He has presented at numerous conferences, including GlueCon and Strata, published several
blogs and white papers, and contributed many open source projects to GitHub.

I'd like to thank Professor Sridhar Lakshmanan, who started my journey in
computer vision and ML at the University of Michigan.

Shelbee Eigenbrode is a Principal AI and ML Specialist Solutions Architect at AWS. She
holds six AWS certifications and has been in technology for 23 years, spanning multiple
industries, technologies, and roles. She is currently focusing on combining her DevOps
and ML background to deliver and manage ML workloads at scale. With over 35 patents
granted across various technology domains, she has a passion for continuous innovation
and using data to drive business outcomes. Shelbee co-founded the Denver chapter of
Women in Big Data.

About the reviewers
Brent Rabowsky is a data science consultant with over 10 years' experience in the field
of ML. At AWS, he uses his expertise to help AWS customers with their data science
projects. He joined Amazon.com on a ML and algorithms team and previously worked
on conversational AI agents for government contractors and a research institute. He also
served as a technical reviewer of the book Data Science on AWS by Chris Fregly and Antje
Barth, published by O'Reilly.

Antje Barth is a senior developer advocate for AI and ML at AWS, based in Düsseldorf,
Germany. Antje is co-author of the O'Reilly book Data Science on AWS, co-founder
of the Düsseldorf chapter of Women in Big Data, and frequently speaks at AI and ML
conferences and meetups around the world. She also chairs and curates content for
O'Reilly AI Superstream events. Previously, Antje was an engineer at Cisco and MapR,
focused on data center technologies, cloud computing, big data, and AI applications.

Table of Contents

Preface

Section 1: Processing Data at Scale

1
Amazon SageMaker Overview

Technical requirements 3
Preparing, building, training
and tuning, deploying, and
managing ML models 4
Discussion of data
preparation capabilities 6
SageMaker Ground Truth 6
SageMaker Data Wrangler 8
SageMaker Processing 8
SageMaker Feature Store 10
SageMaker Clarify 10

Feature tour of model-building
capabilities 11
SageMaker Studio 12
SageMaker notebook instances 12
SageMaker algorithms 14

BYO algorithms and scripts 15

Feature tour of training
and tuning capabilities 15
SageMaker training jobs 16
Autopilot 17
HPO 18
SageMaker Debugger 19
SageMaker Experiments 20

Feature tour of model
management and
deployment capabilities 20
Model Monitor 21
Model endpoints 21
Edge Manager 22

Summary 24

2
Data Science Environments

Technical requirements 25 Machine learning use case
and dataset 26

viii Table of Contents

Creating data science
environment 27
Creating repeatability through
IaC/CaC 30
Amazon SageMaker notebook
instances 33
Amazon SageMaker Studio 37
Providing and creating data science
environments as IT services 40

Creating a portfolio in AWS
Service Catalog 42
Amazon SageMaker
notebook
instances 44
Amazon SageMaker Studio 49

Summary 51
References 51

3
Data Labeling with Amazon SageMaker Ground Truth

Technical requirements 54
Challenges with labeling data
at scale 54
Addressing unique labeling
requirements with custom
labeling workflows 55
A private labeling workforce 55
Listing the data to label 56

Creating the workflow 57

Improving labeling quality
using multiple workers 60
Using active learning to
reduce labeling time 60
Security and permissions 62
Summary 63

4
Data Preparation at Scale Using Amazon SageMaker
Data Wrangler and Processing

Technical requirements 66
Visual data preparation
with Data Wrangler 67
Data inspection 67
Data transformation 70
Exporting the flow 73

Bias detection and
explainability with Data
Wrangler and Clarify 73

Data preparation at scale
with SageMaker
Processing 74
Loading the dataset 77
Drop columns 77
Converting data types 77
Scaling numeric fields 78
Featurizing the date 78
Simulating labels for
air quality 78

Table of Contents ix

Encoding categorical variables 79
Splitting and saving the dataset 80

Summary 80

5
Centralized Feature Repository with Amazon SageMaker
Feature Store

Technical requirements 82
Amazon SageMaker Feature
Store essentials 82
Creating feature groups 83
Populating feature groups 87
Retrieving features from
feature groups 92

Creating reusable features
to reduce feature
inconsistencies and
inference latency 95
Designing solutions for near
real-time ML predictions 99
Summary 101
References 101

Section 2: Model Training Challenges

6
Training and Tuning at Scale

Technical requirements 106
ML training at scale with
SageMaker distributed
libraries 106
Choosing between data and model
parallelism 108
Scaling the compute resources 110
SageMaker distributed libraries 111

Automated model tuning
with SageMaker
hyperparameter tuning 117
Organizing and tracking
training jobs with SageMaker
Experiments 122
Summary 126
References 126

7
Profile Training Jobs with Amazon SageMaker Debugger

Technical requirements 128
Amazon SageMaker
Debugger essentials 129

Configuring a training job to use
SageMaker Debugger 130

x Table of Contents

Analyzing the collected tensors
and metrics 134
Taking action 135

Real-time monitoring of
training jobs using built-in
and custom rules 136
Gaining insight into the training
infrastructure and training
framework 141
Training a PyTorch model for
weather prediction 142

Analyzing and visualizing the system
and framework metrics generated
by the profiler 143
Analyzing the profiler report
generated by SageMaker
Debugger 145
Analyzing and implementing
recommendations from the
profiler report 149
Comparing the two training
jobs 150

Summary 152
Further reading 152

Section 3: Manage and Monitor Models

8
Managing Models at Scale Using a Model Registry

Technical requirements 156
Using a model registry 156
Choosing a model registry
solution 159
Amazon SageMaker model registry 160
Building a custom model registry 164
Utilizing a third-party or OSS
model registry 166

Managing models using
the Amazon SageMaker
model registry 167
Creating a model package group 169
Creating a model package 170

Summary 173

9
Updating Production Models Using Amazon SageMaker
Endpoint Production Variants

Technical requirements 177
Basic concepts of Amazon
SageMaker Endpoint
Production Variants 177

Deployment strategies
for updating ML models
with SageMaker Endpoint
Production Variants 181

Table of Contents xi

Standard deployment 181
A/B deployment 184
Blue/Green deployment 188
Canary deployment 190
Shadow deployment 191

Selecting an appropriate
deployment strategy 192

Selecting a standard
deployment 192
Selecting an A/B deployment 193
Selecting a Blue/Green
deployment 193
Selecting a Canary
deployment 194
Selecting a Shadow
deployment 194

Summary 194

10
Optimizing Model Hosting and Inference Costs

Technical requirements 196
Real-time inference versus
batch inference 196
Batch inference 196
Real-time inference 197
Cost comparison 198

Deploying multiple models
behind a single inference
endpoint 198
Multiple versions of the same
model 199
Multiple models 202

Scaling inference endpoints
to meet inference traffic
demands 205
Setting the minimum and
maximum capacity 207
Choosing a scaling metric 207
Setting the scaling policy 208
Setting the cooldown period 208

Using Elastic Inference for
deep learning models 209
Optimizing models with
SageMaker Neo 210
Summary 213

11
Monitoring Production Models with Amazon SageMaker
Model Monitor and Clarify

Technical requirements 216
Basic concepts of Amazon
SageMaker Model Monitor
and Amazon SageMaker
Clarify 217

End-to-end architectures for
monitoring
ML models 219
Data drift monitoring 220

xii Table of Contents

Model quality drift monitoring 227
Bias drift monitoring 232
Feature attribution drift
monitoring 236

Best practices for
monitoring ML models 239
Summary 242
References 242

Section 4: Automate and Operationalize
Machine Learning

12
Machine Learning Automated Workflows

Considerations for automating
your SageMaker ML
workflows 246
Typical ML workflows 246
Considerations and guidance for
building SageMaker workflows and
CI/CD pipelines 248
AWS-native options for automated
workflow and CI/CD pipelines 249

Building ML workflows with
Amazon SageMaker Pipelines 251
Building your SageMaker pipeline 253
Data preparation step 254

Model build step 258
Model evaluation step 261
Conditional step 264
Register model step(s) 266
Creating the pipeline 267
Executing the pipeline 268
Pipeline recommended practices 270

Creating CI/CD pipelines
using Amazon SageMaker
Projects 270
SageMaker projects recommended
practices 273

Summary 274

13
Well-Architected Machine Learning with Amazon SageMaker

Best practices for
operationalizing ML
workloads 276
Ensuring reproducibility 277
Tracking ML artifacts 277
Automating deployment pipelines 278
Monitoring production models 278

Best practices for securing
ML workloads 280
Isolating the ML environment 280
Disabling internet and root access 280
Enforcing authentication
and authorization 281
Securing data and model
artifacts 281

Table of Contents xiii

Logging, monitoring, and
auditing 282
Meeting regulatory
requirements 282

Best practices for reliable
ML workloads 283
Recovering from failure 283
Tracking model origin 284
Automating deployment pipelines 284
Handling unexpected traffic patterns 285
Continuous monitoring of
deployed model 285
Updating model with new versions 285

Best practices for building
performant ML workloads 286
Rightsizing ML resources 287
Monitoring resource utilization 287
Rightsizing hosting infrastructure 288
Continuous monitoring of
deployed model 289

Best practices for cost-
optimized ML workloads 289

Optimizing data labeling costs 290
Reducing experimentation
costs with models from
AWS Marketplace 290
Using AutoML to reduce
experimentation time 291
Iterating locally with small
datasets 291
Rightsizing training
infrastructure 291
Optimizing hyperparameter-
tuning costs 292
Saving training costs with
Managed Spot Training 292
Using insights and
recommendations from
Debugger 293
Saving ML infrastructure costs
with SavingsPlan 293
Optimizing inference costs 293
Stopping or terminating
resources 294

Summary 294

14
Managing SageMaker Features across Accounts

Examining an overview
of the AWS multi-account
environment 298
Understanding the benefits
of using multiple AWS
accounts with Amazon
SageMaker 300

Examining multi-account
considerations with
Amazon SageMaker 301
Considerations for SageMaker
features 304

Summary 310
References 310

Other Books You May Enjoy
Index

Preface
Amazon SageMaker is a fully managed AWS service that provides the ability to build,
train, deploy, and monitor machine learning models. The book begins with a high-
level overview of Amazon SageMaker capabilities that map to the various phases of the
machine learning process to help set the right foundation. You'll learn efficient tactics
to address data science challenges such as processing data at scale, data preparation,
connecting to big data pipelines, identifying data bias, running A/B tests, and model
explainability using Amazon SageMaker.

As you advance, you'll understand how you can tackle the challenge of training at scale,
including how to use large datasets while saving costs, monitoring training resources
to identify bottlenecks, speeding up long training jobs, and tracking multiple models
trained for a common goal. Moving ahead, you'll find out how you can integrate Amazon
SageMaker with other AWS services to build reliable, cost-optimized, and automated
machine learning applications. In addition to this, you'll build ML pipelines integrated
with MLOps principles and apply best practices to build secure and performant solutions.

By the end of the book, you'll confidently be able to apply Amazon SageMaker's wide
range of capabilities to the full spectrum of machine learning workflows.

Who this book is for
This book is for expert data scientists responsible for building machine learning
applications using Amazon SageMaker. Working knowledge of Amazon SageMaker,
machine learning, deep learning, and experience using Jupyter Notebooks and Python is
expected. Basic knowledge of AWS services related to data, security, and monitoring will
help you make the most out of the book.

What this book covers
Chapter 1, Amazon SageMaker Overview, provides a high-level overview of the Amazon
SageMaker capabilities that map to the various phases of the machine learning process.
This sets a foundation for a best practice discussion of using SageMaker capabilities to
handle data science challenges.

xvi Preface

Chapter 2, Data Science Environments, provides a brief overview of technical requirements
along with a discussion on setting up the necessary data science environments using
Amazon SageMaker. This sets the foundation for building and automating ML solutions
throughout the rest of the book.

Chapter 3, Data Labeling with Amazon SageMaker Ground Truth, kicks off with a review
of challenges involved in labeling data at scale – costs, time, unique labeling needs,
inaccuracies, and bias. Best practices to use Amazon SageMaker Ground Truth to address
the challenges identified are discussed.

Chapter 4, Data Preparation at Scale Using Amazon SageMaker Data Wrangler and
Processing, kicks off with a review of challenges involved in data preparation at scale –
compute/memory resource constraints, long processing times, along with the challenges
of the duplication of feature engineering efforts, bias detection, and understanding feature
importance. A discussion on Amazon SageMaker capabilities to address these challenges
along with best practices to apply follows.

Chapter 5, Centralized Feature Repository with Amazon SageMaker Feature Store, provides
best practices for using a centralized repository for features built with Amazon SageMaker
Feature Store. Techniques to ingest features and provide access to features to satisfy access
time requirements are discussed.

Chapter 6, Training and Tuning at Scale, provides best practices for training and tuning
machine learning models with large datasets using Amazon SageMaker. Techniques such
as distributed training with data and model parallelism, automated model tuning, and
grouping multiple training jobs to identify the best performing job are discussed.

Chapter 7, Profile Training Jobs with Amazon SageMaker Debugger, discusses best practices
to debug, monitor, and profile training jobs to detect long-running non-converging jobs
and eliminate resource bottlenecks. The monitoring and profiling capabilities offered by
Amazon SageMaker Debugger help improve training time and reduce training costs.

Chapter 8, Managing Models at Scale Using a Model Registry, introduces SageMaker
Model Registry as a centralized catalog of trained models. Models can be deployed from
the registry and the metadata maintained in the registry is useful to understand the
deployment history of an individual model. Model Registry is an important component of
addressing the challenge of model deployment automation
with CI/CD.

Preface xvii

Chapter 9, Updating Production Models Using Amazon SageMaker Endpoint Production
Variants, addresses the challenge of updating models in production with minimal
disruption to the model consumers using Amazon SageMaker Endpoint production
variants. The same production variants will be used to showcase advanced strategies
such as canary deployments, A/B testing, blue/green deployments that balance cost with
downtime, and ease of rollbacks.

Chapter 10, Optimizing Model Hosting and Inference Costs, introduces best practices
to optimize hosting and inference costs on Amazon SageMaker. Multiple deployment
strategies are discussed to meet the computation needs and response time requirements
under varying inference traffic demands.

Chapter 11, Monitoring Production Models with Amazon SageMaker Model Monitor and
Clarify, introduces best practices to monitor the quality of production models and receive
proactive alerts on model quality degradation. You will learn how to monitor for data
bias, model bias, bias drift, and feature attribution drift using Amazon SageMaker Model
Monitor and SageMaker Clarify.

Chapter 12, Machine Learning Automated Workflows, brings together data processing,
training, deployment, and model management into automated workflows that can be
orchestrated and integrated into end-to-end solutions.

Chapter 13, Well-Architected Machine Learning with Amazon SageMaker, applies best
practices provided by the AWS Well-Architected Framework to building ML solutions on
Amazon SageMaker.

Chapter 14, Managing SageMaker Features across Accounts, discusses best practices for
using Amazon SageMaker capabilities in a cross-account setup involving multiple AWS
accounts, which allows you to better govern and manage machine learning activities
across the machine learning development lifecycle.

To get the most out of this book
You should have an AWS account and working knowledge of AWS and Amazon
SageMaker. You should also be familiar with basic machine learning concepts. The code
samples are written in Python and normally executed in a Jupyter notebook. You will not
need Python or other software installed on your computer.

xviii Preface

To set up your data science environment, you should also have familiarity with the
concepts of Infrastructure-as-Code and Configuration-as-Code. It's helpful if you are also
familiar with AWS CloudFormation but it is not required.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Amazon-SageMaker-Best-Practices.
If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in
this book. You can download it here:

https://static.packt-cdn.com/downloads/9781801070522_
ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "To use Amazon SageMaker Debugger, you must enhance
Estimator with three additional configuration parameters: DebuggerHookConfig,
Rules, and ProfilerConfig."

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801070522_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801070522_ColorImages.pdf

Preface xix

A block of code is set as follows:

#Feature group name

weather_feature_group_name_offline = 'weather-feature-group-
offline' + strftime('%d-%H-%M-%S', gmtime())

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

@smp.step

def train_step(model, data, target):

 output = model(data)

 long_target = target.long()

 loss = F.nll_loss(output, long_target, reduction="mean")

 model.backward(loss)

 return output, loss

 return output, loss

Any command-line input or output is written as follows:

$ mkdir css

$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Keep in
mind that when you use multiple instances in the training cluster, all instances should be
in the same Availability Zone."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

xx Preface

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share your thoughts
Once you've read Amazon SageMaker Best Practices, we'd love to hear your thoughts!
Please https://packt.link/r/1-801-07052-0 for this book and share your
feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-07052-0

Section 1:
Processing Data

at Scale

This section sets the foundation for the rest of the book with an overview of Amazon
SageMaker capabilities, a review of technical requirements, and insights on setting up the
data science environment on AWS. This section then addresses the challenges involved
in labeling and preparing large volumes of data. You will learn how to apply appropriate
Amazon SageMaker capabilities and related services to derive features from raw data
and persist features for reuse. Further, you will also learn how to persist features in a
centralized repository to share across multiple ML projects.

This section comprises the following chapters:

• Chapter 1, Amazon SageMaker Overview

• Chapter 2, Data Science Environments

• Chapter 3, Data Labeling with Amazon SageMaker Ground Truth

• Chapter 4, Data Preparation at Scale Using Amazon SageMaker Data Wrangler
and Processing

• Chapter 5, Centralized Feature Repository with Amazon SageMaker Feature Store

1
Amazon SageMaker

Overview
This chapter will provide a high-level overview of the Amazon SageMaker capabilities
that map to the various phases of the machine learning (ML) process. This will set a
foundation for the best practices discussion of using SageMaker capabilities in order to
handle various data science challenges.

In this chapter, we're going to cover the following main topics:

• Preparing, building, training and tuning, deploying, and managing ML models

• Discussion of data preparation capabilities

• Feature tour of model-building capabilities

• Feature tour of training and tuning capabilities

• Feature tour of model management and deployment capabilities

Technical requirements
All notebooks with coding exercises will be available at the following GitHub link:

https://github.com/PacktPublishing/Amazon-SageMaker-Best-
Practices

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices

4 Amazon SageMaker Overview

Preparing, building, training and tuning,
deploying, and managing ML models
First, let's review the ML life cycle. By the end of this section, you should understand how
SageMaker's capabilities map to the key phases of the ML life cycle. The following diagram
shows you what the ML life cycle looks like:

Figure 1.1 – Machine learning life cycle

As you can see, there are three phases of the ML life cycle at a high level:

• In the Data Preparation phase, you collect and explore data, label a ground truth
dataset, and prepare your features. Feature engineering, in turn, has several steps,
including data normalization, encoding, and calculating embeddings, depending on
the ML algorithm you choose.

• In the Model Training phase, you build your model and tune it until you achieve a
reasonable validation score that aligns with your business objective.

• In the Operations phase, you test how well your model performs against real-world
data, deploy it, and monitor how well it performs. We will cover model monitoring
in more detail in Chapter 11, Monitoring Production Models with Amazon
SageMaker Model Monitor and Clarify.

This diagram is purposely simplified; in reality, each phase may have multiple smaller
steps, and the whole life cycle is iterative. You're never really done with ML; as you
gather data on how your model performs in production, you'll likely try to improve it by
collecting more data, changing your features, or tuning the model.

So how do SageMaker capabilities map to the ML life cycle? Before we answer that
question, let's take a look at the SageMaker console (Figure 1.2):

Preparing, building, training and tuning, deploying, and managing ML models 5

Figure 1.2 – Navigation pane in the SageMaker console

The appearance of the console changes frequently and the preceding screenshot shows the
current appearance of the console at the time of writing.

6 Amazon SageMaker Overview

These capability groups align to the ML life cycle, shown as follows:

Figure 1.3 – Mapping of SageMaker capabilities to the ML life cycle

SageMaker Studio is not shown here, as it is an integrated workbench that provides a
user interface for many SageMaker capabilities. The marketplace provides both data and
algorithms that can be used across the life cycle.

Now that we have had a look at the console, let's dive deeper into the individual
capabilities of SageMaker in each life cycle phase.

Discussion of data preparation capabilities
In this section, we'll dive into SageMaker's data preparation and feature engineering
capabilities. By the end of this section, you should understand when to use SageMaker
Ground Truth, Data Wrangler, Processing, Feature Store, and Clarify.

SageMaker Ground Truth
Obtaining labeled data for classification, regression, and other tasks is often the biggest
barrier to ML projects, as many companies have a lot of data but have not explicitly
labeled it according to business properties such as anomalous and high lifetime value.
SageMaker Ground Truth helps you systematically label data by defining a labeling
workflow and assigning labeling tasks to a human workforce.

Discussion of data preparation capabilities 7

Over time, Ground Truth can learn how to label data automatically, while still sending
low-confidence results to humans for review. For advanced datasets such as 3D point
clouds, which represent data points like shape coordinates, Ground Truth offers assistive
labeling features, such as adding bounding boxes to the middle frames of a sequence once
you label the start and end frames. The following diagram shows an example of labels
applied to a dataset:

Figure 1.4 – SageMaker Ground Truth showing the labels applied to sentiment reviews

The data is sourced from the UCI Machine Learning Repository (https://archive.
ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences). To
counteract individual worker bias or error, a data object can be sent to multiple workers.
In this example, we only have one worker, so the confidence score is not used.

Note that you can also use Ground Truth in other phases of the ML life cycle; for example,
you may use it to check the labels generated by a production model.

https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences

8 Amazon SageMaker Overview

SageMaker Data Wrangler
Data Wrangler helps you understand your data and perform feature engineering. Data
Wrangler works with data stored in S3 (optionally accessed via Athena) and Redshift
and performs typical visualization and transformations, such as correlation plots and
categorical encoding. You can combine a series of transformations into a data flow and
export that flow into an MLOps pipeline. The following screenshot shows an example of
Data Wrangler information for a dataset:

Figure 1.5 – Data Wrangler displaying summary table information regarding a dataset

You may also use Data Wrangler in the operations phase of the ML life cycle if you want to
analyze the data coming into an ML model for production inference.

SageMaker Processing
SageMaker Processing jobs help you run data processing and feature engineering tasks
on your datasets. By providing your own Docker image containing your code, or using a
pre-built Spark or sklearn container, you can normalize and transform data to prepare your
features. The following diagram shows the logical flow of a SageMaker Processing job:

Discussion of data preparation capabilities 9

Figure 1.6 – Conceptual overview of a Spark processing job. Spark jobs are particularly handy for
processing larger datasets

You may also use processing jobs to evaluate the performance of ML models during the
Model Training phase and to check data and model quality in the Model Operations
phase.

10 Amazon SageMaker Overview

SageMaker Feature Store
SageMaker Feature Store helps you organize and share your prepared features. Using
a feature store improves quality and saves time by letting you reuse features rather than
duplicate complex feature engineering code and computations that have already been
done. Feature Store supports both batch and stream storage and retrieval. The following
screenshot shows an example of feature group information:

Figure 1.7 – Feature Store showing a feature group with a set of related features

Feature Store also helps during the Model Operations phase, as you can quickly look up
complex feature vectors to help obtain real-time predictions.

SageMaker Clarify
SageMaker Clarify helps you understand model behavior and calculate bias metrics
from your model. It checks for imbalance in the dataset, models that give different results
based on certain attributes, and bias that appears due to data drift. It can also use leading
explainability algorithms such as SHAP to help you explain individual predictions to get
a sense of which features drive model behavior. The following figure shows an example of
class imbalance scores for a dataset, where we have many more samples from the Gift Card
category than the other categories:

Feature tour of model-building capabilities 11

Figure 1.8 – Clarify showing class imbalance scores in a dataset. Class imbalance can lead to biased
results in an ML model

Clarify can be used throughout the entire ML life cycle, but consider using it early in the
life cycle to detect imbalanced data (datasets that have many examples of one class but few
of another).

Now that we've introduced several SageMaker capabilities for data preparation, let's move
on to model-building capabilities.

Feature tour of model-building capabilities
In this section, we'll dive into SageMaker's model-building capabilities. By the end of this
section, you should understand when to use SageMaker Studio or SageMaker notebook
instances, and how to choose between SageMaker's built-in algorithms, frameworks, and
libraries, versus a bring your own (BYO) approach.

12 Amazon SageMaker Overview

SageMaker Studio
SageMaker Studio is an integrated development environment (IDE) for ML. It brings
together Jupyter notebooks, experiment management, and other tools into a unified
user interface. You can easily share notebooks and notebook snapshots with other team
members using Git or a shared filesystem. The following screenshot shows an example of
one of SageMaker Studio's built-in visualizations:

Figure 1.9 – SageMaker Studio showing an experiment graph

SageMaker Studio can be used in all phases of the ML life cycle.

SageMaker notebook instances
If you prefer a more traditional Jupyter or JupyterLab experience, and you don't need the
additional integrations and collaboration tools that Studio provides, you can use a regular
SageMaker notebook instance. You choose the notebook instance compute capacity (that
is, whether you want GPUs and how much storage you need), and SageMaker provisions
the environment with the Jupyter Notebook and JupyterLab and several of the common
ML frameworks and libraries installed.

Feature tour of model-building capabilities 13

The notebook instance also supports Docker in case you want to build and test containers
with ML code locally. Best of all, the notebook instances come bundled with over 100
example notebooks. The following figure shows an example of the JupyterLab interface in
a notebook:

Figure 1.10 – JupyterLab interface in a SageMaker notebook, showing a list of example notebooks

Similar to SageMaker Studio, you can perform almost any part of the ML life cycle in a
notebook instance.

14 Amazon SageMaker Overview

SageMaker algorithms
SageMaker bundles open source and proprietary algorithms for many common ML use
cases. These algorithms are a good starting point as they are tuned for performance,
often supporting distributed training. The following table lists the SageMaker algorithms
provided for different types of ML problems:

Figure 1.11 – SageMaker algorithms for various ML scenarios

Feature tour of training and tuning capabilities 15

BYO algorithms and scripts
If you prefer to write your own training and inference code, you can work with a
supported ML, graph, or RL framework, or bundle your own code into a Docker
image. The BYO approach works well if you already have a library of model code, or if
you need to build a model for a use case where a pre-built algorithm doesn't work well.
Data scientists who use R like to use this approach. SageMaker supports the following
frameworks:

• Supported machine learning frameworks: XGBoost, sklearn

• Supported deep learning frameworks: TensorFlow, PyTorch, MXNet, Chainer

• Supported reinforcement learning frameworks: Ray RLLib, Coach

• Supporting graph frameworks: Deep Graph Library

Now that we've introduced several SageMaker capabilities for model building, let's move
on to training and tuning capabilities.

Feature tour of training and tuning
capabilities
In this section, we'll dive into SageMaker's model training capabilities. By the end of
this section, you should understand the basics of SageMaker training jobs, Autopilot
and Hyperparameter Optimization (HPO), SageMaker Debugger, and SageMaker
Experiments.

16 Amazon SageMaker Overview

SageMaker training jobs
When you launch a model training job, SageMaker manages a series of steps for you.
It launches one or more training instances, transfers training data from S3 or other
supported storage systems to the instances, gets your training code from a Docker image
repository, and starts the job. It monitors job progress and collects model artifacts and
metrics from the job. The following screenshot shows an example of the hyperparameters
tracked in a training job:

Figure 1.12 – SageMaker training jobs capture data such as input hyperparameter values

For larger training datasets, SageMaker manages distributed training. It will distribute
subsets of data from storage to different training instances and manage the inter-node
communication during the training job. The specifics vary based on the ML framework
you're using, but note that most of the supported frameworks and several of the
SageMaker built-in algorithms support distributed training.

Feature tour of training and tuning capabilities 17

Autopilot
If you are working with tabular data and solving regression or classification problems,
you may find that you're performing a lot of repetitive work. You may have settled on
XGBoost as a high-performing algorithm, always one-hot encoding for low-cardinality
categorical features, normalizing numeric features, and so on. Autopilot performs many of
these routine steps for you. In the following diagram, you can see the logical steps for an
Autopilot job:

Figure 1.13 – Autopilot process

Autopilot saves you time by automating a lot of that routine process. It will run normal
feature preparation tasks, try the three supported algorithms (Linear Learner, XGBoost,
and a multilayer perceptron), and run hyperparameter tuning. Autopilot is a great place to
start even if you end up needing to refine the output, as it generates a notebook with the
code used for the entire process.

18 Amazon SageMaker Overview

HPO
Some ML algorithms accept tens of hyperparameters as inputs. Tuning these by hand is
time-consuming. Hyperparameter Optimization (HPO) simplifies that process by letting
you define the hyperparameters you want to experiment with, the ranges to work over,
and the metric you want to optimize. The following screenshot shows example output for
an HPO job:

Figure 1.14 – Hyperparameter tuning jobs showing the objective metric of interest

Feature tour of training and tuning capabilities 19

SageMaker Debugger
SageMaker Debugger helps you debug and, depending on your ML framework, profile
your training jobs. While making training jobs run faster is always helpful, debugging is
particularly useful if you are writing your own deep learning code with neural networks.
Problems such as exploding gradients or mysterious NaN in your tensors are quite tough
to track down, particularly in distributed training jobs. Debugger can effectively help
you set breakpoints to see where things are going wrong. The following figure shows an
example of the training and validation loss captured by SageMaker Debugger:

Figure 1.15 – Visualization of tensors captured by SageMaker Debugger

20 Amazon SageMaker Overview

SageMaker Experiments
ML is an iterative process. When you're tuning a model, you may try several variations
of hyperparameters, features, and even algorithms. It's important to track that work
systematically so you can reproduce your results later on. That's where SageMaker
Experiments comes into the picture. It helps you track, organize, and compare
different trials. The following screenshot shows an example of SageMaker Experiments
information:

Figure 1.16 – Trial results in SageMaker Experiments

Now that we've introduced several SageMaker capabilities for training and tuning, let's
move on to model management and deployment capabilities.

Feature tour of model management and
deployment capabilities
In this section, we'll dive into SageMaker's model hosting and monitoring capabilities. By
the end of this section, you should understand the basics of SageMaker model endpoints
along with the use of SageMaker Model Monitor. You'll also learn about deploying
models on edge devices with SageMaker Edge Manager.

Feature tour of model management and deployment capabilities 21

Model Monitor
In some organizations, the gap between the ML team and the operations team causes
real problems. Operations teams may not understand how to monitor an ML system in
production, and ML teams don't always have deep operational expertise.

Model Monitor tries to solve that problem: it will instrument a model endpoint and
collect data about the inputs to, and outputs from, an ML model used for inference. It can
then analyze that data for data drift and other quality problems, as well as model accuracy
or quality problems. The following diagram shows an example of model monitoring data
captured for an inference endpoint:

Figure 1.17 – Model Monitor checking data quality on inference inputs

Model endpoints
In some cases, you need to get a large number of inferences at once, in which case
SageMaker provides a batch inference capability. But if you need to get inferences closer
to real time, you can host your model in a SageMaker managed endpoint. SageMaker
handles the deployment and scaling of your endpoints. Just as important, SageMaker lets
you host multiple models in a single endpoint. That's useful both for A/B testing (that
is, you can direct some percentage of traffic to a newer model) and for hosting multiple
models that are tuned for different traffic segments.

22 Amazon SageMaker Overview

You can also host an inference pipeline with multiple containers chained together, which
is convenient if you need to preprocess inputs before performing inference. The following
screenshot shows a model endpoint with two models serving different percentages of
traffic:

Figure 1.18 – Multiple models configured behind a single inference endpoint

Edge Manager
In some cases, you need to get model inferences on a device rather than from the cloud.
You may need a lower response time that doesn't allow for an API call to the cloud, or you
may have intermittent network connectivity. In video use cases, it's not always feasible to
stream data to the cloud for inference. In such cases, Edge Manager and related tools such
as SageMaker Neo help you compile models optimized to run on devices, deploy them,
manage them, and get operational metrics back to the cloud. The following screenshot
shows an example of a virtual device managed by Edge Manager:

Figure 1.19 – A device registered to an Edge Manager device fleet

Feature tour of model management and deployment capabilities 23

Before we conclude with the summary, let's have a recap of the SageMaker capabilities
provided for the following primary ML phases:

• For data preparation:

Figure 1.20 – SageMaker capabilities for data preparation

• For operations:

Figure 1.21 – SageMaker capabilities for operations

24 Amazon SageMaker Overview

• For model training:

Figure 1.22 – SageMaker capabilities for model training

With this, we have come to the end of this chapter.

Summary
In this chapter, you saw how to map SageMaker capabilities to different phases of the
ML life cycle. You got a quick look at important SageMaker capabilities. In the next
chapter, you will learn about the technical requirements and the use case that will be used
throughout. You'll also learn about setting up managed data science environments for
scaling model-building activities.

2
Data Science

Environments
In this chapter, we will get an overview of how to create managed data science
environments to scale and create repeatable environments for your model-building
activities. In this chapter, you will get a brief overview of the machine learning (ML) use
case, including the dataset that will be used throughout the chapters in this book.

The topics that will be covered in this chapter are as follows:

• Machine learning use case and dataset

• Creating data science environments

Technical requirements
You will need an AWS account to run the examples included in this chapter. Full code
examples included in the book are available on GitHub at https://github.com/
PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter02. You will need to install a Git client to access them (https://git-scm.
com/). Portions of the code are included within the chapter to call out specific technical
concepts; however, please refer to the GitHub repository for the full code required to
complete the hands-on activities that go along with this chapter.

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter02
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter02
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter02
https://git-scm.com/
https://git-scm.com/

26 Data Science Environments

Machine learning use case and dataset
Throughout this book, we will be using examples to demonstrate the best practices that
apply across the ML life cycle. For this, we'll focus on a single ML use case and use an
open dataset with data relating to the ML use case.

The primary use case we'll explore in this book is predicting air quality readings. Given a
location (weather station) and date, we'll try to predict a value for a particular type of air
quality measurement (for example, pm25 or o3). We'll treat this as a regression problem
and explore XGBoost and neural network-based model approaches.

For this, we'll use a dataset from OpenAQ (https://registry.opendata.aws/
openaq/) that includes air quality data from public data sources. The dataset that we will
use is the realtime dataset (https://openaq-fetches.s3.amazonaws.com/
index.html) and the realtime-parquet-gzipped dataset (https://openaq-
fetches.s3.amazonaws.com/index.html), which includes daily reports from
multiple stations.

The daily reports are in JSON format. Each record contains the following:

• A timestamp (both UTC and local)

• Parameter ID (pm25)

• Location (station ID)

• Value (numeric)

• Units for value

• City

• Attribution (link to station website)

• Averaging period (for example, 1 hour)

• Coordinates (lat/lon)

• Country code

• Source name (short version of station name)

• Source type

• Mobile (true/false)

Let's now look at how to create data science environments.

https://registry.opendata.aws/openaq/
https://registry.opendata.aws/openaq/
https://openaq-fetches.s3.amazonaws.com/index.html
https://openaq-fetches.s3.amazonaws.com/index.html
https://openaq-fetches.s3.amazonaws.com/index.html
https://openaq-fetches.s3.amazonaws.com/index.html

Creating data science environment 27

Creating data science environment
In the previous section, we introduced high-level Amazon SageMaker features that can
often be used in isolation or together for end-to-end capabilities. In this section, we will
focus on creating consistent and repeatable governed data science environments that can
take advantage of the features discussed in the first section.

To build, train, and deploy models using Amazon SageMaker, ML builders need access
to select AWS resources spanning the ML development life cycle. Because many different
personas may be responsible for building ML models, the term ML builder refers to any
individual tasked with model building. This could include data scientists, ML engineers,
or data analysts.

Data science development environments provide ML builders with the AWS resources
they need to build and train models. A data science environment could be as simple as an
AWS account with access to Amazon SageMaker as well as AWS services commonly used
with Amazon SageMaker, such as Amazon S3, AWS Glue, or Amazon EMR. While this
may work for small teams, it does not scale well to larger teams or provide repeatability as
new projects get created or new team members join the team.

Amazon SageMaker offers three core options in building, training, and tuning models,
including the following:

• API/SDK: Training and tuning jobs can be started with the SageMaker API, which
can be accessed through the high-level SageMaker Python SDK, lower-level AWS
SDKs such as boto3 for Python, or the AWS CLI.

• Amazon SageMaker Studio: Amazon SageMaker Studio has built-in notebooks
as part of an integrated workbench that includes native integrations with other
Amazon SageMaker features and feature visualizations.

• Amazon SageMaker notebook instances: SageMaker notebook instances provide
a compute instance with attached storage hosting the Jupyter Notebook application.
These notebooks come preinstalled with packages, libraries, and kernels.

This section will focus only on Amazon SageMaker Studio and Amazon SageMaker
notebook instances for setting up data science environments. Similar approaches
can be applied in using the SageMaker API or SDK from a data science environment
hosted outside of SageMaker. We'll first highlight the two common approaches using
Infrastructure-as-Code (IaC)/Configuration-as-Code (CaC) as well as building a
common catalog of data science environments. We will expand on each option in more
detail in later sections.

28 Data Science Environments

To build a repeatable mechanism for creating data science sandbox environments, it is
recommended to utilize IaC/CaC to define the intended configuration and controls to
implement for your sandbox environments. Let's see what the two processes refer to:

• IaC refers to the process of provisioning and managing infrastructure using code
instead of relying on manual setup, which is not only slow but also prone to error
and inconsistencies across environments.

• Cac refers to the process of managing the configuration of resources through code.
Because this is all defined via code, it can be managed as source code and reused for
consistency across environments.

Using Iac/CaC can be taken a step further by providing data science environments
through a service, such as AWS Service Catalog, that is purposely built for centrally
creating and managing catalogs of IT services that are approved for use on AWS.

Figure 2.1 illustrates the most common approaches for setting up governed data science
environments. Each of these options will be discussed in detail in this section. At a
minimum, it's recommended to adopt an automated approach, which would include
options 2 and 3 in the following diagram:

Figure 2.1 – Approaches for creating data science sandbox environments

A manual approach to provisioning and providing access to AWS services for ML builders
creates challenges when scaling multiple ML builders and managing governance beyond a
small team.

Creating data science environment 29

With the introduction of AWS CloudFormation, or an equivalent service providing IaC/
CaC capabilities, data science environments can be repeatedly created as well as provide
additional capabilities such as the following:

• Environment governance: AWS CloudFormation allows you to define the intended
state of your data science environment in terms of which resources get provisioned
as well as how they get provisioned. This allows you to enforce configurations
such as cost allocation tags, encrypted storage, or control access to pre-approved
resources such as specific instance types for notebook instance compute.

• Consistency: As ML builder teams grow, there is a need to gain operational
efficiencies by provisioning environments with reduced manual effort and increased
consistency. IaC/CaC allows for data science environments to be automatically
provisioned and provides consistency through code and automation.

• Improved management capabilities: AWS CloudFormation not only allows you
to automatically build a data science environment, but it also allows you to quickly
deprovision a data science environment that is no longer in use. This capability
reduces environment sprawl and ensures that you are not paying for resources that
are no longer in use.

Using IaC/CaC to provision and manage data science environments is often sufficient
in being able to consistently enable ML builders. However, providing these data science
environments through a central catalog of IT services adds an additional layer of
operational efficiencies, such as reducing manual approvals, reducing hand-offs in siloed
teams, and providing centralized governance by ensuring environments are provisioned
across teams using only approved configurations.

AWS Service Catalog allows administrators to centrally define and manage a portfolio of
approved products or configurations defined through AWS CloudFormation templates.
The addition of AWS Service Catalog for managing a portfolio of products used to create
data science environments enables additional capabilities over standalone IaC/CaC,
including the following:

• Self-service capabilities: Using only IaC/CaC to provision and configure
AWS resources can often result in delays while requests are approved, tracked,
and, ultimately, the environment is provisioned by the AWS Admin. AWS
Service Catalog allows ML builders, or approved designated project resources,
to automatically request and provision a data science environment that is
preconfigured according to standards that you define.

• Applying constraints and access controls: With AWS Service Catalog, constraints
and access controls can be centrally defined and applied consistently across teams.

30 Data Science Environments

• Service management: While AWS Service Catalog utilizes AWS CloudFormation,
it also includes capabilities to manage the life cycle of these templates or products
across versions.

AWS Service Catalog allows ML builders, or an approved resource, to request and
instantiate a data science environment using approved products contained in an AWS
Service Catalog portfolio. An AWS Service Catalog portfolio can exist in a separate AWS
account and be shared across AWS accounts to establish a company or business unit
standard for governing the configuration and provisioning of products. Products within
a portfolio contain the pre-configured templates, using IaC/CaC, that should be used to
provision or instantiate the data science environment for an ML builder:

Figure 2.2 – AWS Service Catalog – anatomy of a portfolio

In the rest of this chapter, we'll cover considerations to consistently create data science
environments through IaC/CaC, as well as advanced capabilities allowing you to provide
those environments across multiple teams through a governed catalog of IT services.
Each of these will be covered for both Amazon SageMaker notebook instances as well as
Amazon SageMaker Studio. First, we'll cover the use of IaC/CaC to create repeatable data
science environments.

Creating repeatability through IaC/CaC
Using AWS CloudFormation to provision and configure the AWS resources and access
required for SageMaker model-building activities allows teams to create a repeatable pattern
that can be shared across teams and used to consistently create data science environments.

Creating data science environment 31

A CloudFormation template lets you programmatically describe the desired AWS
resources, configurations, and dependencies that should be provisioned when that
template is launched as a stack. Key considerations when building AWS CloudFormation
templates for data science environments include what resources should be provisioned,
how they should be configured, and what permissions ML builders need for model-
building activities.

What resources are required?
AWS CloudFormation lets you define the AWS services to automatically provision via a
template using supported resources and resource types. As an example, Amazon SageMaker
is a supported resource, and a SageMaker notebook instance is a supported resource type. A
CloudFormation resource type is represented in a consistent format, as shown in Figure 2.3,
whether you are building your CloudFormation template as JSON or YAML:

Figure 2.3 – AWS CloudFormation resource type for an Amazon SageMaker notebook instance

This means teams can automatically provision and configure a notebook instance through
a CloudFormation template. However, a notebook instance alone is typically not enough
for a data science environment. For a basic environment, you typically need a notebook
instance, an S3 bucket, and an AWS IAM SageMaker execution role to execute API calls
from within your notebook environment.

In addition to a basic environment, there may be a need to provision other resources
as part of a data science environment. Additional resources to provision fall into a few
key categories:

• Data preparation resources: This category includes AWS resources commonly
used for data preparation activities such as Amazon Elastic MapReduce (EMR).
For this, you can create an EMR cluster to process and analyze vast amounts of data
using the AWS::EMR::Cluster resource type.

• Machine learning pipeline resources: This category includes AWS resources
commonly used in creating machine learning pipelines, such as the following:

a. AWS CodeCommit: Create a source code repository for model training code in
AWS CodeCommit using the AWS::CodeCommit::Repository resource type.

32 Data Science Environments

b. Amazon Elastic Container Registry (ECR): Create a new container image
repository in ECR that can be used for your training and inference container images
in the case of using SageMaker's capability to bring your own container image. A
new repository can be created using the AWS::ECR::Repository resource type.

• Identity resources: This category includes any additional policies or service
roles that need to be created to use AWS resources. For example, to utilize AWS
Step Functions, or the Data Science Python SDK, for creating ML workflows, a
service-level IAM execution role needs to be created. The creation of this role
can be specified in your CloudFormation template. The role should also include
permissions that allow access to AWS services and actions that will be used in your
ML workflow, such as AWS Glue for data preparation and Amazon SageMaker for
training jobs.

How should the resources be configured?
Each resource that gets provisioned through a CloudFormation template includes a set
of properties that define how a resource should be configured. Defining these properties
through code allows you to consistently provision resources that are configured according
to pre-defined specifications. Properties include important configuration options, such as
launching environments with a VPC attached or enforcing controls such as encryption at
rest. CloudFormation also allows for parameters that can be defined in the template and
passed in when launching a CloudFormation stack.

What permissions are needed?
After you've identified the AWS resources and resource types that need to be provisioned
for your data science environment, you need to identify the permissions that are also
required to be able to access the notebook environment and the underlying APIs required
for model building.

There is some variance between Amazon SageMaker notebook instances and Amazon
SageMaker Studio discussed in the sections below; however, in both cases, a basic
environment requires an IAM SageMaker execution role. Depending on the intent of the
CloudFormation template, you need to consider the additional allowed AWS API calls and
actions that the SageMaker execution role will need access to. For example, if your data
science team uses AWS Glue for data preparation activities, the IAM SageMaker execution
role needs to allow access to the corresponding AWS Glue API actions.

Creating data science environment 33

To build the AWS CloudFormation templates that will be used to create and consistently
enforce controls in your data science environment, a few planning tasks should be
considered before building those templates:

1. First, you should identify the patterns for the resources that should be provisioned
together.

2. Second, you should identify how those resources should be configured.
3. Finally, you need to identify the minimum permissions that need to be in place for

the provisioned resources to integrate seamlessly as well as the permissions required
for an ML builder to operate within those provisioned environments.

Typically, several patterns are built supporting different environment patterns that
may be needed for varying use cases or multiple teams. The following sections include
detailed sample scenarios for both Amazon SageMaker notebook instances and Amazon
SageMaker Studio. For either scenario, the sections can be read independently of one
another and contain some duplicated information so that they can exist independently.

Amazon SageMaker notebook instances
Building data science environments that utilize Amazon SageMaker notebook instances
typically includes the provisioning of the following:

• A notebook instance (required)

• An S3 bucket (optional)

• An IAM execution role (optional if using an existing one)

• Any other resources identified as needed by ML builder teams

34 Data Science Environments

An Amazon S3 bucket is noted as optional above because many organizations have
existing S3 buckets that are used for data science model-building activities. In these cases,
the data science environment may instead include permissions to access an existing S3
bucket. Figure 2.2 shows a basic data science environment template that provisions a
SageMaker notebook instance, an Amazon S3 bucket, and creates a SageMaker execution
role that is attached to the notebook instance. The template can be used to instantiate
multiple environments:

Figure 2.4 – Notebook instance-based data science environment

The following code snippets from a CloudFormation template show a pattern that can
be used to quickly provision a data science environment using controls pre-approved by
security and administrative teams and implemented through code. In the first section of
the template, we identify parameters that are configurable each time a new template is
launched. Parameters allow you to pass in data used in the provisioning and configuration
of resources:

AWSTemplateFormatVersion: '2010-09-09'

Metadata:

Creating data science environment 35

License: Apache-2.0

Description: 'Example data science environment creating a
new SageMaker Notebook Instance using an existing VPC. This
template also includes the creation of an Amazon S3 Bucket and
IAM Role. A lifecycle policy is also included to pull the
dataset that will be used in future book chapters.'

Parameters: #These are configuration parameters that are passed
in as input on stack creation

 NotebookInstanceName:

 AllowedPattern: '[A-Za-z0-9-]{1,63}'

 ConstraintDescription: Maximum of 63 alphanumeric
characters. Can include hyphens but not spaces.

 Description: SageMaker Notebook instance name

 MaxLength: '63'

 MinLength: '1'

 Type: String

 Default: 'myNotebook'

NotebookInstanceType:

 VPCSubnetIds:

 VPCSecurityGroupIds:

 KMSKeyId:

 NotebookVolumeSize:

In the next section of the template, we identify the resources to provision and configure
for your data science environment. The Properties of each resource identify the
configuration and controls to provision. These controls can include configuration such as
ensuring the storage volume attached to the notebook instance is encrypted and that the
notebook instance is provisioned with a VPC attached:

Resources:

 SageMakerRole:

 Type: AWS::IAM::Role

 Properties:

 AssumeRolePolicyDocument:

 Version: 2012-10-17

 Statement:

 - Effect: Allow

 Principal:

 Service:

36 Data Science Environments

 - "sagemaker.amazonaws.com"

 Action:

 - "sts:AssumeRole"

 ManagedPolicyArns:

 - "arn:aws:iam::aws:policy/AmazonSageMakerFullAccess"

 - ...

 SageMakerLifecycleConfig:

 ...

 SageMakerNotebookInstance:

 ...

 S3Bucket:

...

In the template snippets here, we are asking for a pre-configured VPC as a parameter
on input; however, you could also include the creation of a new VPC within your
CloudFormation template depending on your needs. We also include the notebook
instance type and storage size as parameters that are configurable with each new launched
template. Configurations that are likely to change for different ML use cases are good
candidates that convert into configurable parameters that can be defined while launching
a stack.

Once the template is uploaded to Amazon S3 and validated, it can be launched repeatedly
for each new data science environment needed. Launching the stack can be done through
the AWS console, AWS CLI, or the AWS SDK. This is most frequently done from an
administrative account using cross-account privileges to ensure control in the roles
that can define and provision environments versus the users who use the provisioned
environments.

After the CloudFormation stack is completed, an ML builder can then access
their environment through the provisioned Amazon SageMaker notebook
instances via the AWS console. To access the notebook instance, the sign-in
credentials for the ML builder must have the IAM permissions to send a
CreatePresignedNotebookInstanceUrl API request.

Creating data science environment 37

Amazon SageMaker Studio
Building data science environments that utilize Amazon SageMaker Studio includes the
provisioning of the following:

• A new user within an existing Studio domain (required)

• An S3 bucket (optional)

• An IAM execution role (optional if using an existing one)

• Any other resources or configurations identified as needed by ML builder teams

An Amazon S3 bucket is noted as optional above because many organizations have
existing S3 buckets that are used for data science model-building activities. In these cases,
the data science environment may instead include permissions to access an existing S3
bucket. Figure 2.5 shows a basic data science environment template that provisions a new
user in SageMaker Studio, an Amazon S3 bucket, and creates a SageMaker execution
role that is attached to the Studio domain user. The template can be used to instantiate
multiple user environments:

Figure 2.5 – Amazon SageMaker Studio-based data science environment

38 Data Science Environments

The CloudFormation template below shows a pattern that can be used to quickly provision
an integrated data science workbench environment using Amazon SageMaker Studio,
giving ML builders access to Studio notebooks as well as other integrated features inside
SageMaker Studio. Again, the first section contains the parameters that allow you to define
how to provision and configure the environment:

AWSTemplateFormatVersion: '2010-09-09'

Metadata:

 License: Apache-2.0

Description: 'Example data science environment creating a new
SageMaker Studio User in an existing Studio Domain using an
existing VPC. This template also includes the creation of an
Amazon S3 Bucket and IAM Role.'

Parameters:

 StudioDomainID:

 AllowedPattern: '[A-Za-z0-9-]{1,63}'

 Description: ID of the Studio Domain where user
should be created (ex. d-xxxnxxnxxnxn)

 Default: d-xxxnxxnxxnxn

 Type: String

 Team:

 AllowedValues:

 - weatherproduct

 - weatherresearch

 Description: Team name for user working in
associated environment

 Default: weatherproduct

 Type: String

 UserProfileName:

 Description: User profile name

 AllowedPattern: '^[a-zA-Z0-9](-*[a-zA-Z0-9]){0,62}'

 Type: String

 Default: 'UserName'

 VPCSecurityGroupIds:

 ...

Creating data science environment 39

In the next section of the template, we identify the resources to provision and configure
for your data science environment. Again, the properties of each resource identify the
configuration and controls to provision as follows:

Resources:

 StudioUser:

 Type: AWS::SageMaker::UserProfile

 Properties:

 DomainId: !Ref StudioDomainID

 Tags:

 - Key: "Environment"

 Value: "Development"

 - Key: "Team"

 Value: !Ref Team

 UserProfileName: !Ref UserProfileName

 UserSettings:

 ExecutionRole: !GetAtt SageMakerRole.Arn

 SecurityGroups: !Ref VPCSecurityGroupIds

 SageMakerRole:

 ...

 S3Bucket:

 ...

In the CloudFormation template, we are adding a new user to an existing Studio domain.
A Studio domain exists at the AWS account level and there is only one domain per
AWS region. You can optionally include the creation of a new Studio domain within
your CloudFormation template using the AWS:SageMaker:Domain resource type.
Creating a Studio domain is a one-time activity per AWS account and per AWS region,
so this would be considered a prerequisite to creating users within your Studio domain.
In addition, some regulated workloads enforce account-level isolation per ML builder, so
in these cases, your CloudFormation template may include the setup of a Studio domain.
However, the most common pattern is multiple users per Studio domain.

40 Data Science Environments

Once the template is built and validated, it is ready to be deployed after uploading the
template to Amazon S3 and launching the stack through the AWS console, AWS CLI,
or the AWS SDK. Again, this is most frequently done from an administrative account
using cross-account privileges to ensure control in the roles that can define and provision
environments versus the users who use the provisioned environments.

After the CloudFormation stack is completed, an ML builder can access the Studio
environment and create notebooks through the Studio IDE with AWS IAM sign-in
credentials or through AWS SSO credentials and the generated Studio URL.

Providing and creating data science environments as
IT services
Creating a governed catalog of IT services that includes data science environments is
a way to build on the concepts of using IaC/CaC for repeatability by adding a central
catalog of approved IT services across teams. This is especially useful for large companies
or enterprises that rely on central IT or infrastructure teams to provision AWS resources.
Creating a central catalog using AWS Service Catalog allows the added benefits of
ensuring compliance with corporate standards, accelerating the ability of ML builders to
quickly gain access to data science environments, managing versions of products offered
through the catalog, and integrating with third-party IT Service Management (ITSM)
software for change control.

For model building using Amazon SageMaker, AWS Service Catalog allows teams to take
the AWS CloudFormation templates discussed in the previous section and offer those
templates as versioned products inside a central portfolio of products. The approved
configurations for those products can be centrally managed and governed. AWS Service
Catalog lets teams control the users who have access to launch a product, which means
admins can also provide self-service capabilities to ML builders to ensure that they have
quick access to governed data science environments:

Creating data science environment 41

Figure 2.6 – Centrally managed data science environments using AWS Service Catalog

When products are added to a portfolio, you can optionally add product constraints.
Product constraints allow you to add controls in terms of how an ML builder uses
products. Several constraint types are allowed, including launch, notification, template,
stack set, and tag update constraints. Each of these constraint types can be applied to any
product; however, launch and template constraints have unique considerations for data
science environments.

A launch constraint allows you to specify the IAM role that AWS Service Catalog
assumes for provisioning AWS resources for a product within a portfolio. This follows the
recommended practice of granting least privilege by providing ML builders with access
to the resources that get provisioned, but not allowing ML builders access to provision
resources outside of AWS Service Catalog.

For data science environments, a launch constraint can be added to a product in the
portfolio using a pre-defined IAM role that is assumed for provisioning resources. This
means you do not need to grant privileges for actions such as creating a new IAM role or
working with AWS CloudFormation to the ML builder directly.

A template constraint is a JSON-formatted text file that defines rules describing when an
ML builder can use the templates, and which values they can specify for the parameters
defined in the AWS CloudFormation template. Each rule has two properties: a rule
condition (optional) and assertions (required).

42 Data Science Environments

The rule condition determines when the rule takes effect, and the assertion describes the
values a user can specify for a specific parameter. For data science environments, template
constraints can be used for defining allowable configurations such as instance types via
assertions. You can also add a rule condition to that assertion that limits the allowed
instances within specific environments.

AWS Service Catalog provides added benefits over using AWS CloudFormation by
creating a centralized portfolio for data science environments that contains managed
products for provisioning data science environments. The first step is to create a portfolio,
which can be done through the AWS CLI, AWS SDK, or AWS console, as shown below.

Creating a portfolio in AWS Service Catalog
To create a portfolio, perform the following steps:

1. From AWS Service Catalog service, select Create portfolio:

Figure 2.7 – AWS Service Catalog – creating a new portfolio

2. Define your portfolio by entering the following under Create portfolio:

 � Portfolio name: Data Science Environments

 � Description: Service catalog portfolio of approved products
for provisioning data science environments for ML
builders

 � Owner: Your name

Creating data science environment 43

3. Click the Create button to create the portfolio. You will then see a Success message,
indicating the portfolio is available to add products.

As products are added to the portfolio and provisioned, AWS Service Catalog provides
visibility for admins to view all provisioned products and perform administrative tasks,
such as identifying user resource allocation. ML builders also have a central view of all the
provisioned products they have requested:

Figure 2.8 – List of all provisioned products

The unique aspects of products for SageMaker notebook instances and SageMaker Studio
are largely handled within the CloudFormation templates. The high-level steps to create a
product are consistent between the two types of data science environments. The following
sections include detailed sample scenarios extending the CloudFormation templates
previously created for both Amazon SageMaker notebook instances and Amazon
SageMaker Studio.

44 Data Science Environments

Amazon SageMaker notebook instances
A new product can be added to an AWS Service Catalog portfolio using the AWS CLI, AWS
SDK, or the AWS console. When a new product is added to a portfolio, the CloudFormation
template that defines that environment must be uploaded to an S3 bucket and provided as
input. In this example, the previous CloudFormation template will be used in addition to
several other parameters required on input, as shown in the following:

1. From within the portfolio created, select Upload new product:

Figure 2.9 – AWS Service Catalog – uploading a new product to the portfolio

2. Under Enter product details, there are three sections of information to fill out,
including Product details, Version details, and Support details.

 � For Product details, this section contains information about the product. Enter
the following information in the fields on input and then leave any field not
specified blank:

 � Product name: Basic SageMaker notebook instance environment.

 � Description: Basic data science environment using Amazon SageMaker
notebook instances, including (1) New Notebook Instance (2) SageMaker
Execution IAM Service Role (3) S3 Bucket.

 � Owner: Your name.

Creating data science environment 45

 � The Version details section includes the S3 location of the CloudFormation
template combined with version and release details. Enter the following in the
fields matching on input, leaving any field not specified blank:

 � Choose a method: Select the radio button for Use a CloudFormation
template.

 � Use a CloudFormation template: Enter the S3 URL for the CloudFormation
template in the format https://….

Important note
The default location for templates used on launched stacks is https://
s3.<region>.amazonaws.com/cf-templates-<hash>-
region/notebook-instance-environment.yaml, or you can
upload the CloudFormation template provided for this chapter directly to an S3
bucket you choose.

 � Version name: release-1.0.

 � Description: Initial product release.

 � The Support details section includes the information about the support contacts
and support information. Enter the following for each field specified and leave any
field not specified blank:

 � Email contact: Your email@mail.com.

3. After filling in the information as described in the preceding steps, scroll to the
bottom, select Review, and then Create Product.

4. The product will now be visible within the product list for the Data Science
Environments portfolio.

After adding the product to the portfolio, constraints can be added to the product.
Constraints are optional but offer additional recommended enforcement of practices,
such as least privilege, and additional controls to enforce best practices such as cost
optimization. To enforce minimum privileges, a launch constraint can be added to the
product by first creating a launch IAM role that will be assumed when provisioning a
product as documented in AWS Service Catalog product documentation: https://
docs.aws.amazon.com/servicecatalog/latest/adminguide/
constraints-launch.html.

https://docs.aws.amazon.com/servicecatalog/latest/adminguide/constraints-launch.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/constraints-launch.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/constraints-launch.html

46 Data Science Environments

In this IAM policy for this role, you'll need to add each service that the product provisions
to the action list. Therefore, in this case, the following IAM policy may be overly
permissive for your needs, in which case you can scope the role down to specific actions,
conditions, and resources for your use case:

{

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "s3:*"

],

 "Resource": "*",

 "Condition": {

 "StringEquals": {

 "s3:ExistingObjectTag/
servicecatalog:provisioning": "true"

 }

 }

 },

 {

 "Effect": "Allow",

 "Action": [

 "...",

],

 "Resource": "*"

 }

]

}

Creating data science environment 47

After creating the launch role and the policy to dictate permissions, the role needs to
be applied to the product as a launch constraint, as shown in the following screenshot.
The detailed instructions to apply a launch constraint are included in the existing AWS
product documentation, https://docs.aws.amazon.com/servicecatalog/
latest/adminguide/constraints-launch.html, under Applying a Launch
Constraint -> To assign the role to a product. After applying the IAM role to the
product launch constraint, you'll see the constraint listed for the product, as shown in the
following screenshot:

Figure 2.10 – AWS Constraints

The launch constraint tells Service Catalog to assume the ServiceCatalog-
DataScienceProducts role when an end user launches the product. This role
contains the policy we created with the privileges needed to provision and configure all
the resources in the CloudFormation template for that product.

Finally, we will add a template constraint to limit the options for instance type size that
is available to end users. This allows the implementation of cost controls on the type of
instance that can be provisioned. You can optionally implement multiple constraints
such as storage size. Template constraints are added as documented in the AWS product
documentation: https://docs.aws.amazon.com/servicecatalog/latest/
adminguide/catalogs_constraints_template-constraints.html. The
specific template constraint JSON is listed in the following code block, where we are
identifying that only the noted instance types are approved and available for use:

{

 "Rules": {

 "Rule1": {

 "Assertions": [

 {

 "Assert": {

https://docs.aws.amazon.com/servicecatalog/latest/adminguide/constraints-launch.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/constraints-launch.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/catalogs_constraints_template-constraints.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/catalogs_constraints_template-constraints.html

48 Data Science Environments

 "Fn::Contains": [

 [

 "ml.t2.large",

 "ml.t2.xlarge",

 "ml.t3.large",

 "ml.t3.xlarge"

],

 {

 "Ref": "NotebookInstanceType"

 }

]

 },

 "AssertDescription": "Instance type should have
approved types"

 }

]

 }

 }

}

After creating the preceding template constraint, you'll now see two constraints for this
product in the console:

Figure 2.11 – AWS Service Catalog – applied constraint

Creating data science environment 49

The product is then available, with the constraints we identified, within the Data Science
Environment portfolio and can be made available for self-service provisioning by ML
builders.

Amazon SageMaker Studio
In this section, the CloudFormation template to create a data science environment in
SageMaker Studio will be used to create a new product inside the data science environment
portfolio. Again, a new product can be added to an AWS Service Catalog portfolio using
the AWS CLI, AWS SDK, or the AWS console. When a new product is added to a portfolio,
the CloudFormation template that defines that environment must be uploaded to an S3
bucket and provided as input. The steps to add a product require administrative privileges in
Service Catalog and are performed in the Administration view:

1. From within the Data Science Environments portfolio, click on Upload
new product.

2. Under Enter product details, there are three sections of information to fill out,
including Product details, Version details, and Support details.

For Product details, this section contains information about the product. Enter the
following, leaving any field not specified blank:

a) Product name: Basic SageMaker Studio Environment

b) Description: Basic data science environment using Amazon SageMaker Studio,
including (1) New User in Existing Studio Domain (2) SageMaker Execution
IAM Service Role (3) S3 Bucket

c) Owner: Your name

For Version details, this section includes the S3 location of the CloudFormation
template combined with version and release details. Enter the following, leaving any
field not specified blank:

d) Choose a method: Select the radio button for Use a CloudFormation template.

50 Data Science Environments

e) Use a CloudFormation template: Enter the S3 URL for the CloudFormation
template in the format https://… Note: The default location for templates
used on launched stacks is https://s3.<region>.amazonaws.com/
cf-templates-<hash>-region/studio-environment.yaml, or you
can upload the CloudFormation template provided for this chapter directly to an S3
bucket of your choosing.

f) Version name: release-1.0.

g) Description: Initial product release.

For Support details, this section includes information about the support contacts
and support information. Enter the following, leaving any field not specified blank:

Email contact: Your email@mail.com
3. After filling in the information as described in the preceding steps, scroll to the

bottom, select Review, and then Create Product.
4. The product will now be visible within the product list for the Data Science

Environments portfolio.

After adding the product to the portfolio, constraints can be added to the product.
You can then add a launch constraint, to enforce minimum privileges, and template
constraints based on your use case using the same steps performed under your notebook
instance product steps.

After configuring the products, they can be made available for self-service provisioning
by ML builders. ML builders must be granted access to the AWS Service Catalog end
user view in the AWS console. Please refer to the following documentation for details
on sharing your portfolio and granting access to end users: https://docs.aws.
amazon.com/servicecatalog/latest/adminguide/getstarted-deploy.
html.

This section covered the advantages of using IaC/CaC (AWS CloudFormation) and a
centrally managed catalog of IT services (AWS Service Catalog) to create data science
environments at scale.

Please head over to the References section to find additional reference links that you may
find useful after reading this section.

https://docs.aws.amazon.com/servicecatalog/latest/adminguide/getstarted-deploy.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/getstarted-deploy.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/getstarted-deploy.html

Summary 51

Summary
In this chapter, you saw how to map SageMaker capabilities to different phases of the ML
life cycle. You got a quick look at important SageMaker capabilities and saw how to set up
your own SageMaker environment.

This chapter further covered the advantages of using IaC/CaC (AWS CloudFormation)
as well as a centrally managed catalog of IT services (AWS Service Catalog) to create data
science environments at scale. The approaches discussed provide the guidance needed to
reduce manual effort, provide consistency, accelerate access to model-building services,
and enforce governance controls within model-building environments.

In the next chapter, you will learn more about labeling data for ML projects.

References
The following are some of the references that you might find useful after reading this section:

• Amazon SageMaker notebook instances:
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html

• Amazon SageMaker Studio Onboarding:

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-
onboard.html

• Amazon SageMaker Studio:

https://aws.amazon.com/sagemaker/studio/ https://docs.aws.
amazon.com/sagemaker/latest/dg/notebooks.html

• Notebook Comparison:

https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-
comparison.html

• AWS Service Catalog:

https://aws.amazon.com/servicecatalog/

• AWS CloudFormation:

https://aws.amazon.com/cloudformation/

https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html
https://aws.amazon.com/sagemaker/studio/
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-comparison.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-comparison.html
https://aws.amazon.com/servicecatalog/
https://aws.amazon.com/cloudformation/

3
Data Labeling with

Amazon SageMaker
Ground Truth

One of the biggest barriers to ML projects in most companies is access to labeled training
data. At one company we worked with, we were trying to identify consumer-impacting
outages. The customer had a lot of data from each layer of their application stack, but
they couldn't agree on how to define an outage. Is an outage when a load balancer is
down? Probably not – we have redundancy in the infrastructure layer. Is an outage when
a customer can't access the service for over 10 minutes? That's probably too granular; a
single customer might have problems due to local network connectivity issues. So, what
exactly do we mean by an outage? How can we automatically label our training data as
outage or not an outage?

In this chapter, we'll review labeling data using SageMaker Ground Truth. We'll cover
common challenges associated with large datasets and potentially biased data.

54 Data Labeling with Amazon SageMaker Ground Truth

The following topics will be covered in this chapter:

• Challenges with labeling data at scale

• Addressing unique labeling requirements with custom labeling workflows

• Using active learning to reduce labeling time

• Security and permissions

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have
not set up the data science environment yet, please refer to Chapter 2, Data Science
Environments, which provides a walk-through of the setup process.

Code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter03. You will need to install a Git client to access them (https://git-scm.
com/).

The code for this chapter is in the CH03 folder of the GitHub repository.

Challenges with labeling data at scale
Besides the conceptual challenges with agreeing on how to label data, we need to consider
the logistics. SageMaker Ground Truth lets you assign data labeling jobs to a human
workforce. But you may face additional challenges such as the following:

• Unique labeling logic: If our labeling case requires a custom workflow, we need to
model that in Ground Truth.

• Annotation quality: The labels applied by workers may be subject to implicit bias
that affects the results.

• Cost and time: Labeling data requires people for a period of time. If you have a very
large dataset, you'll consume a lot of person-hours.

• Security: Given that your data may be sensitive, you need to make sure that access
to the data is restricted to an authorized workforce.

Additional information
If you need an introduction to Ground Truth, please review Chapter 2 of Learn
Amazon SageMaker, written by Julien Simon.

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter03
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter03
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter03
https://git-scm.com/
https://git-scm.com/

Addressing unique labeling requirements with custom labeling workflows 55

To put these concerns into focus, let's consider our weather data introduced in the
previous chapter. Ground Truth doesn't have a built-in workflow that lets us prompt
workers to label weather data according to our logic for describing air as good or bad. The
dataset for the entire time span is approximately 499 GB; labeling each entry by hand as
good or bad weather quality will take some time. Finally, our workers may have their own
implicit or unconscious bias.

A worker who grew up in a city with severe smog may have a much different perception of
air quality than someone who grew up in a rural area with very clean air. In the following
sections, we'll discuss how to address these challenges.

Addressing unique labeling requirements with
custom labeling workflows
Let's get started with a labeling job for our weather data. We want to label each weather
report as good or bad. In order to help our workers do that, we'll make a nice frontend
that shows the location of the weather station on a map and displays the reading from the
weather station. We need a custom workflow because this scenario doesn't fall neatly into
any of the existing Ground Truth templates.

We will have to set up the following:

• A private workforce backed by a Cognito user pool

• A manifest file that lists the items we want to label

• A custom Ground Truth labeling workflow, consisting of two Lambda functions and
a UI template

The notebook LabelData.ipynb in the CH02 folder of our repository walks through
these steps.

A private labeling workforce
Although you can use a public workforce, most companies will want to use a private
workforce to label their own data. Setting up a private workforce starts by defining a
Cognito user pool, which, for real use cases, could link to another identity provider such
as Active Directory.

We'll create a user group in Cognito; you could use groups to create teams for different
types of labeling jobs. Finally, we'll define a SageMaker work team linked to the Cognito
user group. Note that SageMaker creates a labeling domain that we have to set as the
callback URL in the Cognito user pool client.

56 Data Labeling with Amazon SageMaker Ground Truth

Once the work team is set up, the notebook will add an example worker.

The Create a private workforce part of the notebook executes all of these steps for you:

• Creating a Cognito user pool

• Creating a Cognito client for the user pool

• Creating an identity pool for the client

• Creating a user group

• Assigning a domain to the user pool

• Creating a SageMaker work team that uses the Cognito user pool and group

• Adding a sample user

Once you execute the Create a private workforce part of the notebook, you should see a
private workforce defined, along with the login URL that the workers would use. If you
scroll further down this part of the console, you'll also see information about the work
team and any workers assigned to the team, as shown in Figure 3.1:

Figure 3.1 – Labeling workforce shown in the SageMaker console

Listing the data to label
We need to create a manifest file that tells Ground Truth how to find the data we want to
label. In the manifest, we can list references to files in S3 or we can provide text data directly.

Addressing unique labeling requirements with custom labeling workflows 57

Recall that our source data is in JSON format. Each source file contains multiple entries
that look like this:

{"date":{"utc":"2021-03-20T19:00:00.000Z","local":
"2021-03-20T23:00:00+04:00"},"parameter":"pm25",
"value":32,"unit":"µg/m³","averagingPeriod":{"val

ue":1,"unit":"hours"},"location":"US Diplomatic Post:
Dubai","city":"Dubai","country":"AE","coordinates":{"latitude":
25.25848,"longitude":55.309166

},"attribution":[{"name":"EPA AirNow DOS","url":"http://airnow.
gov/index.cfm?action=airnow.global_summary"}],"sourceName":
"StateAir_Dubai","sourceT

ype":"government","mobile":false}

We cannot pass in links to individual files, as each file contains multiple records to label.
Rather, we will summarize each record directly in the manifest file. Each line in the
manifest will contain the air quality metric and location:

{"source": "pm25,35.8,µg/m³,40.01,116.333"}

The Create a manifest file notebook section will write out a manifest for a set of
records. Since you are the only worker you have, we limit the number of records to 20 by
default (more on this in the next section).

Creating the workflow
In order to create a custom workflow, we need the following:

• A Lambda function that can take one entry from the manifest and inject variables into
the UI. In this case, we will simply map the items in the manifest text entries into a
metric label to display along with a geolocation.

• A UI template that displays the data sensibly for a worker. In this case, we have a
simple UI template that presents the metric along with a map showing the location
where the metric was collected.

58 Data Labeling with Amazon SageMaker Ground Truth

Note
For the purposes of this book, we are using map tiles from OpenStreetMap. Do
not use these tiles for production use cases. Instead, use a commercial provider
such as Google Maps or Here.

• A Lambda function that consolidates annotations from multiple workers. We simply
do a pass-through here since we only have one worker in our sample workforce.

The notebook section Create a custom workflow walks you through these steps:

• Defining IAM roles for the workflow and the Lambda function

• Uploading the user interface template and the Lambda processing code to S3

• Creating the pre- and post-processing Lambda functions

• Defining the labeling job

Once the labeling job is created, you can log in to the labeling portal URL (see Figure 1.1),
using the username and password you specified in the notebook. Once you open the job,
you'll see a UI like Figure 3.2:

Figure 3.2 – Labeling UI showing the location of a weather station. The locations are shown in the local
language

Addressing unique labeling requirements with custom labeling workflows 59

You'll see a map showing the location of the measurement and the actual measurement.
You can pick good or bad to specify whether you think the measurement represents a
good or bad air quality day. After you have labeled all of the metrics, your job will show as
complete, and you'll see the label for each data point, as shown in Figure 3.3:

Figure 3.3 – Completed labeling job

We'll describe how to use the labeling output in the next chapter. You'll see examples of
the labeling output in the notebook that goes with this chapter.

60 Data Labeling with Amazon SageMaker Ground Truth

Improving labeling quality using multiple
workers
Relying on a single opinion for a subjective evaluation is risky. In some cases, labeling seems
straightforward; telling a car from an airplane when labeling transportation pictures is pretty
simple. But let's go back to our weather data. If we're labeling air quality as good or bad
based on a measurement that's not intuitive, such as the level of particulate matter (PM25),
we may find that a worker's opinion depends greatly on the advice we give them and their
preconceptions. If a worker believes that a certain city or country has dirty air, they are likely
to favor a bad label in ambiguous cases. And these biases have real consequences – some
governments are very sensitive to the idea that their air quality is bad!

One way to combat this problem is to use multiple workers to label each item and
somehow combine the scores. In the notebook section called Add another worker,
we'll add a second worker to our private workforce. Then in the Launch labeling
job for multiple workers section, we'll create a new labeling job. Once the new
job is ready, log in as both workers and label the small set of data we've selected.

What happens now? We'll need to adjust our post-processing Lambda to consolidate the
annotations. We could use a variety of strategies for the consolidation. For example, we
could use a majority voting scheme, with ties being assigned to a mixed category. In this
chapter, we'll simply use the latest annotation as the winner since we only have two workers.

Using active learning to reduce labeling time
Now that we've set up a labeling workflow, we need to think about scale. If our dataset has
more than 5,000 records, it's likely that Ground Truth can learn how to label for us. (You
need at least 1,250 labeled records for automatic labeling, but at least 5,000 is a good rule
of thumb.) This happens in an iterative process, as shown in the following diagram:

Using active learning to reduce labeling time 61

Figure 3.4 – Auto-labeling workflow

62 Data Labeling with Amazon SageMaker Ground Truth

When you create a labeling job using automatic labeling, Ground Truth will select a
random sample of input data for manual labeling. If at least 90% of these items are labeled
without error, Ground Truth will split the labeled data into a training and validation set.
It will train a model and compute a confidence score, then attempt to label the remaining
data. If the automatically generated labels are beneath the confidence threshold, it will
refer them to workers for human review. This process repeats until the entire dataset
is labeled. While this process is difficult to simulate, it provides an iterative method to
improve automatic labeling with human input.

As a concluding note to this section, you may wonder what the difference is between a
model that can automatically label data and a more general-purpose ML model. There's a
fine line here. Keep in mind that the data we use for Ground Truth may not be completely
representative of the data we see in production. Our goal for a generic ML model is a
model that can produce accurate inferences without any human input.

Security and permissions
While some data is not sensitive, most companies would not want to expose their data
to the public during the labeling process. In this section, we'll cover data access control,
encryption, and workforce management for data labeling.

You should follow the principle of least-privileged access when using Ground Truth (or
any other cloud service). Restrict the users who are allowed to create labeling jobs, and
restrict users allowed to create labeling jobs using non-private workforces. In a custom
labeling job, explicitly provide invoke permissions to your Lambda functions. Restrict
labeling job access to only the appropriate S3 buckets and prefixes.

When you run a labeling job, Ground Truth will always encrypt the output in S3. You can
use the S3-managed key or provide your own KMS key. For non-sensitive data, the default
S3 managed key is adequate. If you have sensitive data, consider using separate KMS keys
for different datasets, as that provides another layer of security. You can also use a KMS
key to encrypt the storage volumes on instances used for automatic labeling.

When managing your workforce, you should restrict access to a known-good IP address
range (CIDR block). You should also use the worker tracking features to log which
workers are accessing data. When using Cognito for authentication, make use of strong
password policies and multi-factor authentication. In most cases, large companies will
prefer to use their own identity provider for workforce management.

Finally, note that you'll need to add CORS (cross-origin resource sharing) configuration
to your S3 buckets involved in labeling jobs, as described in the documentation
(https://docs.aws.amazon.com/sagemaker/latest/dg/sms-cors-
update.html).

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-cors-update.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-cors-update.html

Summary 63

Before we head toward the summary, do have a look at the following table as it
summarizes some of the best practices for
data labeling:

Figure 3.5 – Summary of data labeling best practices

With this, we now come to the end of the chapter.

Summary
In this chapter, we started digging into our weather dataset, focusing on the problem of
data labeling. We learned how to use SageMaker Ground Truth to label large datasets
using a combination of human review and automation, how to use custom workflows to
aid the labeling process, and how to fight labeling bias by using multiple opinions. We
ended with some advice on making sure that the labeling process is secure.

In the next chapter, we'll explore data preparation. We'll run a feature engineering
processing job on the full dataset.

4
Data Preparation

at Scale Using
Amazon SageMaker
Data Wrangler and

Processing
So far, we've identified our dataset and explored both manual and automated labeling.
Now it's time to turn our attention to preparing the data for training. Data scientists are
familiar with the steps of feature engineering, such as scaling numeric features, encoding
categorical features, and dimensionality reduction.

66 Data Preparation at Scale Using Amazon SageMaker Data Wrangler and Processing

As motivation, let's consider our weather dataset. What if our input dataset is imbalanced
or not really representative of the data we'll encounter in production? Our model will
not be as accurate as we'd like, and the consequences can be profound. Some facial
recognition systems have been trained on datasets weighted toward white faces, with
distressing consequences (https://sitn.hms.harvard.edu/flash/2020/
racial-discrimination-in-face-recognition-technology/?web=1&wd
LOR=cB09A9880-DF39-442C-A728-B00E70AF1CA9).

We need to understand what input features are affecting the model. That's important
from a business standpoint as well as a legal or regulatory standpoint. Consider a model
that predicts operational outages for an application. Understanding why outages happen
is perhaps more valuable than predicting when an outage will occur – is the problem
in our application or due to some external factor such as a network hiccup? Then, in
some industries such as financial services, we cannot use a model without being able to
demonstrate that it doesn't violate regulations against discriminatory lending, say.

The smaller version of our dataset (covering 1 month) is about 5 GB of data. We can
analyze that dataset on a modern workstation without too much difficulty. But what about
the full dataset, which is closer to 500 GB? If we want to prepare the full dataset, we need
to work with horizontally scalable cluster computing frameworks. Furthermore, activities
such as encoding categorical variables can take quite some time if we use inefficient
processing frameworks.

In this chapter, we'll look at the challenges involved in data preparation when processing
a large dataset and examining the SageMaker features that help us with large-scale
feature engineering.

In this chapter, we will cover the following topics:

• Visual data preparation with Data Wrangler

• Bias detection and explainability with Data Wrangler

• Data preparation at scale with SageMaker Processing

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have
not set up the data science environment yet, please refer to Chapter 2, Data Science
Environments, which walks you through the setup process.

https://sitn.hms.harvard.edu/flash/2020/racial-discrimination-in-face-recognition-technology/?web=1&wdLOR=cB09A9880-DF39-442C-A728-B00E70AF1CA9
https://sitn.hms.harvard.edu/flash/2020/racial-discrimination-in-face-recognition-technology/?web=1&wdLOR=cB09A9880-DF39-442C-A728-B00E70AF1CA9
https://sitn.hms.harvard.edu/flash/2020/racial-discrimination-in-face-recognition-technology/?web=1&wdLOR=cB09A9880-DF39-442C-A728-B00E70AF1CA9

Visual data preparation with Data Wrangler 67

The code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter04. You will need to install a Git client to access them (https://git-scm.
com/).

The code for this chapter is in the CH04 folder of the GitHub repository.

Visual data preparation with Data Wrangler
Let's start small with our 1-month dataset. Working with a small dataset is a good way to
get familiar with the data before diving into more scalable techniques. SageMaker Data
Wrangler gives us an easy way to construct a data flow, a series of data preparation steps
powered by a visual interface.

In the rest of this section, we'll use Data Wrangler to inspect and transform data, and then
export the Data Wrangler steps into a reusable flow.

Data inspection
Let's get started with Data Wrangler for data inspection, where we look at the properties
of our data and determine how to prepare it for model training. Begin by adding a new
flow in SageMaker Studio; go to the File menu, then New, then Flow. After the flow starts
up and connects to Data Wrangler, we need to import our data. The following screenshot
shows the data import step in Data Wrangler:

Figure 4.1 – Import data source in Data Wrangler

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter04
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter04
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter04
https://git-scm.com/
https://git-scm.com/

68 Data Preparation at Scale Using Amazon SageMaker Data Wrangler and Processing

Because our dataset consists of multiple small JSON files scattered in date-partitioned
folders, we'll use Athena (a managed version of Presto) for the import. The
PrepareData.ipynb notebook walks you through creating a Glue database and table
and registering the partitions in the section called Glue Catalog. Once that's done,
click on Athena to start importing the small dataset.

On the next screen, specify the database you created in the notebook. Enter the following
query to import 1 month's worth of data:

select * from openaq where aggdate like '2019-01%'

The following screenshot shows the import step in Data Wrangler:

Figure 4.2 – Athena import into Data Wrangler

Run the query and click on Import dataset.

Now we're ready to perform some analysis and transformation. Click the + symbol next to
the last box in the data flow and select Add analysis. You'll now have a screen where you
can choose one of the available analyses, as you can see in the following screenshot:

Visual data preparation with Data Wrangler 69

Figure 4.3 – Data analysis configuration

Start with a Table summary step, which shows some statistical properties of numeric
features, as you can see in the following screenshot:

Figure 4.4 – Table summary

70 Data Preparation at Scale Using Amazon SageMaker Data Wrangler and Processing

Next, let's try a scatter plot to help us visualize the distribution of the measurement
values. Set the y axis to value, the x axis to aggdate, color by country, and facet
by parameter. We can see in the following preview chart that the value for nitrogen
dioxide is relatively steady over time, while the value for carbon monoxide shows more
variability for some countries:

Figure 4.5 – Scatter plot showing measurement values by date, color-coded by country, and faceted
by parameter

Feel free to add more scatter plots or try a histogram. We'll explore the bias report and
quick mode in the Bias detection and explainability with Data Wrangler and Clarify
section.

Now that we've done some basic data inspection, we move on to data transformation.

Data transformation
In this section, we will convert the data from the raw format into a format usable for
model training. Recall the basic format of our raw data:

{“date”:{“utc”:”2021-03-20T19:00:00.000Z”,”local”:”2021-03-
20T23:00:00+04:00”},”parameter”:”pm25”,”value”:32,”unit”:”µg/
m³”,”averagingPeriod”:{“val

ue”:1,”unit”:”hours”},”location”:”US Diplomatic
Post:Dubai”,”city”:”Dubai”,”country”:”AE”,”coordinates”:
{“latitude”:25.25848,”longitude”:55.309166

},”attribution”:[{“name”:”EPA AirNow DOS”,”url”:
”http://airnow.gov/index.cfm?action=airnow.global_
summary”}],”sourceName”:”StateAir_Dubai”,”sourceT

ype”:”government”,”mobile”:false}

Visual data preparation with Data Wrangler 71

We'll perform the following steps using Data Wrangler:

• Scale numeric values.

• Encode categorical values.

• Add features related to the date (for example, day of the week, day in a month).

• Drop unwanted columns (source name, coordinates, averaging period,
attribution, units, and location). These columns are either redundant (for
example, the important part of the location is in the city and country columns) or
not usable as features.

Back to the Preparation part of the flow, click the + symbol next to the last box in the data
flow panel and select Add Transform. You'll see a preview of the dataset and a list of the
available transforms as follows:

Figure 4.6 – Data transformations in Data Wrangler

72 Data Preparation at Scale Using Amazon SageMaker Data Wrangler and Processing

For our first transformation, select Encode categorical. In the transformation options
panel, pick One-hot encode as the transformation, specify sourcetype as the column,
set Output Style to Columns, and add a prefix for the new column names:

Figure 4.7 – One-hot encoding in Data Wrangler

When you're done setting up the transformation, click Preview and then Add to add the
transform. You can now add additional transformations to drop the unwanted columns,
scale the numeric columns, and featurize the date. You can also provide your own custom
code if you like.

Bias detection and explainability with Data Wrangler and Clarify 73

Exporting the flow
Data Wrangler is very handy when we want to quickly explore a dataset. But we can also
export the results of a flow into Amazon SageMaker Feature Store, generate a SageMaker
pipeline, create a Data Wrangler job, or generate Python code. We will not use these
capabilities now, but feel free to experiment with them.

Bias detection and explainability with Data
Wrangler and Clarify
Now that we've done some initial work in exploring and preparing our data, let's do
a sanity check on our input data. While bias can mean many things, one particular
symptom is a dataset that has many more samples of one type of data than another, which
will affect our model's performance. We'll use Data Wrangler to see if our input data is
imbalanced and understand which features are most important to our model.

To begin, add an analysis to the flow. Choose Bias Report from the list of available
transformations and use the mobile column as the label, with 1 as the predicted value.
Choose city as the column to use for bias analysis, then click Check for bias. In this
scenario, we want to determine whether our dataset is somehow imbalanced with respect
to the city and whether the data was collected at a mobile station. If the quality of data
from mobile sources is inferior to non-mobile sources, it'd be good to know if the mobile
sources are unevenly distributed among cities.

Next, we'll examine feature importance. Feature importance is one aspect of model
explainability. We want to understand which parts of the dataset are most important to
model behavior. Another aspect, which we'll visit in Chapter 11, Monitoring Production
Models with Amazon SageMaker Model Monitor and Clarify, in the Monitor bias drift and
feature importance drift using Amazon SageMaker Clarify section, is understanding which
features contributed to a specific inference.

74 Data Preparation at Scale Using Amazon SageMaker Data Wrangler and Processing

Add another analysis in the last step of the flow. Select Quick Model for the value
column (Data Wrangler will infer that this is a regression problem). Preview and create
the analysis. You should see a screen that looks similar to the following screenshot:

Figure 4.8 – Feature importance generated by Data Wrangler

This analysis generates a random forest model, evaluates performance using a test set with
30% of the data, and calculates a Gini importance score for each feature. As you can see
in Figure 4.8, the city and day of the month are the most important features.

So far we've used Data Wrangler for visual inspection and transformation. Now, we'll look
at how to handle larger datasets using SageMaker Processing.

Data preparation at scale with SageMaker
Processing
Now let's turn our attention to preparing the entire dataset. At 500 GB, it's too large to
process using sklearn on a single EC2 instance. We will write a SageMaker processing
job that uses Spark ML for data preparation. (Alternatively, you can use Dask, but at the
time of writing, SageMaker Processing does not provide a Dask container out of the box.)

The Processing Job part of this chapter's notebook walks you through launching the
processing job. Note that we'll use a cluster of 15 EC2 instances to run the job (if you need
limits raised, you can contact AWS support).

Data preparation at scale with SageMaker Processing 75

Also note that up until now, we've been working with the uncompressed JSON version
of the data. This format containing thousands of small JSON files is not ideal for Spark
processing as the Spark executors will spend a lot of time doing I/O. Luckily, the OpenAQ
dataset also includes a gzipped Parquet version of the data. Compression will save on
storage space and is a good idea unless our processing job is CPU-bound rather than
I/O-bound. Note, however, that gzip is not a preferred compression format as it is not
splittable; if you have a choice, use the Snappy compression format.

We will use the gzipped Parquet version of our data for the larger data preparation job:

1. First, we will define the processor class, using Spark 3.0. We will set the max
runtime to 7200 seconds (2 hours). Two hours is more than sufficient to process
at least one of the 8 tables in the Parquet dataset. If you want to process all eight of
them, change the timeout to 3 hours and make an adjustment in the preprocess.
py script:

spark_processor = PySparkProcessor(

 base_job_name=”spark-preprocessor”,

 framework_version=”3.0”,

 role=role,

 instance_count=15,

 instance_type=”ml.m5.4xlarge”,

 max_runtime_in_seconds=7200,

)

2. Next, we'll set the Spark configuration, following the formulas defined in an EMR
blog (https://aws.amazon.com/blogs/big-data/best-practices-
for-successfully-managing-memory-for-apache-spark-
applications-on-amazon-emr/):

configuration = [

 {

 “Classification”: “spark-defaults”,

 “Properties”: {“spark.executor.memory”: “18g”,

 “spark.yarn.executor.memoryOverhead”: “3g”,

 “spark.driver.memory”: “18g”,

 “spark.yarn.driver.memoryOverhead”: “3g”,

 “spark.executor.cores”: “5”,

 “spark.driver.cores”: “5”,

 “spark.executor.instances”: “44”,

https://aws.amazon.com/blogs/big-data/best-practices-for-successfully-managing-memory-for-apache-spark-applications-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/best-practices-for-successfully-managing-memory-for-apache-spark-applications-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/best-practices-for-successfully-managing-memory-for-apache-spark-applications-on-amazon-emr/

76 Data Preparation at Scale Using Amazon SageMaker Data Wrangler and Processing

 “spark.default.parallelism”: “440”,

 “spark.dynamicAllocation.enabled”: “false”

 },

 },

 {

 “Classification”: “yarn-site”,

 “Properties”: {“yarn.nodemanager.vmem-check-enabled”:
“false”,

 “yarn.nodemanager.mmem-check-enabled”: “false”},

 }

]

3. Finally, we'll launch the job. We need to include a JSON serde class:

spark_processor.run(

 submit_app=”scripts/preprocess.py”,

 submit_jars=[“s3://crawler-public/json/serde/json-
serde.jar”],

 arguments=['--s3_input_bucket', s3_bucket,

 '--s3_input_key_prefix', s3_prefix_parquet,

 '--s3_output_bucket', s3_bucket,

 '--s3_output_key_prefix', s3_output_prefix],

 spark_event_logs_s3_uri=”s3://{}/{}/spark_event_
logs”.format(s3_bucket, 'sparklogs'),

 logs=True,

 configuration=configuration

)

The processing script, CH04/scripts/preprocess.py, walks through several steps,
which we'll explain in the subsequent sections.

Data preparation at scale with SageMaker Processing 77

Loading the dataset
We will load one or more of the Parquet table sets from S3. If you want to process more
than one, modify the get_tables function to return more table names in the list as
follows:

the helper function `get_tables` lists the tables we want to
include

tables = get_tables()

df = spark.read.parquet(

 f”s3://{args.s3_input_bucket}/” +

 f”{args.s3_input_key_prefix}/{tables[0]}/”)

for t in tables[1:]:

 df_new = spark.read.parquet(

 f”s3://{args.s3_input_bucket}/” +

 f”{args.s3_input_key_prefix}/{t}/”)

 df = df.union(df_new)

The next step in the processing script is dropping unnecessary columns from the dataset.

Drop columns
We'll repeat most of the steps we did in Data Wrangler using PySpark. We need to drop
some columns that we don't want, as follows:

df = df.drop('date_local') \

.drop('unit') \

.drop('attribution') \

.drop('averagingperiod') \

.drop('coordinates')

Converting data types
We'll convert the mobile field to an integer:

df = df.withColumn(“ismobile”,col(“mobile”).
cast(IntegerType())) \

.drop('mobile')

78 Data Preparation at Scale Using Amazon SageMaker Data Wrangler and Processing

Scaling numeric fields
We'll use the Spark ML standard scaler to transform the value field:

value_assembler = VectorAssembler(inputCols=[“value”],
outputCol=”value_vec”)

value_scaler = StandardScaler(inputCol=”value_vec”,
outputCol=”value_scaled”)

value_pipeline = Pipeline(stages=[value_assembler, value_
scaler])

value_model = value_pipeline.fit(df)

xform_df = value_model.transform(df)

Featurizing the date
The date by itself isn't that useful, so we'll extract several new features from it indicating
the day, month, quarter, and year:

xform_df = xform_df.withColumn('aggdt',

 to_date(unix_timestamp(col('date_utc'),

“yyyy-MM-dd'T'HH:mm:ss.SSSX”).cast(“timestamp”)))

xform_df = xform_df.withColumn('year',year(xform_df.aggdt)) \

 .withColumn('month',month(xform_df.aggdt)) \

 .withColumn('quarter',quarter(xform_df.aggdt))

xform_df = xform_df.withColumn(“day”, date_format(col(“aggdt”),
“d”))

Simulating labels for air quality
Although we used ground truth in Chapter 3, Data Labeling with Amazon SageMaker
Ground Truth, for labeling, for the sake of this demonstration we'll use a simple heuristic
to assign these labels instead:

isBadAirUdf = udf(isBadAir, IntegerType())

xform_df = xform_df.withColumn('isBadAir', isBadAirUdf('value',
'parameter'))

Data preparation at scale with SageMaker Processing 79

Encoding categorical variables
Now we'll encode the categorical features. Most of these features have fairly high
cardinality, so we'll perform ordinal encoding here and learn embeddings later in our
training process. We will only use one-hot encoding for the parameter, which only has
seven possible choices:

parameter_indexer = StringIndexer(inputCol=”parameter”, \

outputCol=”indexed_parameter”, handleInvalid='keep')

location_indexer = StringIndexer(inputCol=”location”, \

outputCol=”indexed_location”, handleInvalid='keep')

city_indexer = StringIndexer(inputCol=”city”, \

outputCol=”indexed_city”, handleInvalid='keep')

country_indexer = StringIndexer(inputCol=”country”, \

outputCol=”indexed_country”, handleInvalid='keep')

sourcename_indexer = StringIndexer(inputCol=”sourcename”, \

outputCol=”indexed_sourcename”, handleInvalid='keep')

sourcetype_indexer = StringIndexer(inputCol=”sourcetype”, \

outputCol=”indexed_sourcetype”, handleInvalid='keep')

enc_est = OneHotEncoder(inputCols=[“indexed_parameter”], \

outputCols=[“vec_parameter”])

enc_pipeline = Pipeline(stages=[parameter_indexer, location_
indexer,

 city_indexer, country_indexer, sourcename_indexer,

 sourcetype_indexer, enc_est])

enc_model = enc_pipeline.fit(xform_df)

enc_df = enc_model.transform(xform_df)

param_cols = enc_df.schema.fields[17].metadata['ml_attr']
['vals']

80 Data Preparation at Scale Using Amazon SageMaker Data Wrangler and Processing

Splitting and saving the dataset
After some final cleanup of the dataset, we can split the dataset into train, validation, and
test sets, and save them to S3:

(train_df, validation_df, test_df) = final_df.randomSplit([0.7,
0.2, 0.1])

train_df.write.option(“header”,True).csv('s3://' + \

os.path.join(args.s3_output_bucket,

 args.s3_output_key_prefix, 'train/'))

validation_df.write.option(“header”,True).csv('s3://' + \

os.path.join(args.s3_output_bucket,

 args.s3_output_key_prefix, 'validation/'))

test_df.write.option(“header”,True).csv('s3://' + \

os.path.join(args.s3_output_bucket,

 args.s3_output_key_prefix, 'test/'))

In this section, we saw how to use a SageMaker Processing job to perform data
preparation on a larger dataset using Apache Spark. In the field, many datasets are large
enough to require a distributed processing framework, and now you understand how to
integrate a Spark job into your SageMaker workflow.

Summary
In this chapter, we tackled feature engineering for a large (~ 500 GB) dataset. We looked
at challenges including scalability, bias, and explainability. We saw how to use SageMaker
Data Wrangler, Clarify, and Processing jobs to explore and prepare data.

While there are many ways to use these tools, we recommend using Data Wrangler for
interactive exploration of small to mid-sized datasets. For processing large datasets in
their entirety, switch to programmatic use of processing jobs using the Spark framework
to take advantage of parallel processing. (At the time of writing, Data Wrangler does not
support running on multiple instances, but you can run a processing job on multiple
instances.) You can always export a Data Wrangler flow as a starting point.

If your dataset is many terabytes, consider running a Spark job directly in EMR or Glue
and invoking SageMaker using the SageMaker Spark SDK. EMR and Glue have optimized
Spark runtimes and more efficient integration with S3 storage.

At this point, we have our data ready for model training. In the next chapter, we'll explore
using Amazon SageMaker Feature Store to help us manage prepared feature data.

5
Centralized Feature

Repository with
Amazon SageMaker

Feature Store
Let's begin with the basic questions – what is a feature store and why is it necessary?
A feature store is a repository that persists engineered features. A lot of time goes into
feature engineering, sometimes involving multi-step data processing pipelines executed
over hours of compute time. ML models depend on these engineered features that often
come from a variety of data sources. A feature store accelerates this process by reducing
repetitive data processing that is required to convert raw data into features. A feature store
not only allows you to share engineered features during model-building activities, but also
allows consistency in using engineered features for inference.

Amazon SageMaker Feature Store is a managed repository with capabilities to store,
update, retrieve, and share features. SageMaker Feature Store provides the ability to
reuse the engineered features in two different scenarios. First, the features can be shared
between the training and inference phases of a single ML project resulting in consistent
model inputs and reduced training-serving skew. Second, features from SageMaker

82 Centralized Feature Repository with Amazon SageMaker Feature Store

Feature Store can also be shared across multiple ML projects, leading to improved data
scientist productivity.

By the end of this chapter, you will be able to use Amazon SageMaker Feature Store
capabilities and apply best practices to implement solutions to address the challenges of
reducing data processing time and architecting features for near real-time ML inferences.

In this chapter, we are going to cover the following main topics:

• Basic concepts of Amazon SageMaker Feature Store

• Creating reusable features to reduce feature inconsistencies and inference latency

• Designing solutions for near real-time ML predictions

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have
not set up the data science environment yet, please refer to Chapter 2, Data Science
Environments, which provides a walk-through of the setup process.

Code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter05. You will need to install a Git client to access them (https://git-scm.
com/).

Amazon SageMaker Feature Store essentials
In this section, you will learn the basic terminology and capabilities of Amazon
SageMaker Feature Store. Amazon SageMaker Feature Store provides a centralized
repository with capabilities to store, update, retrieve, and share features. Scalable storage
and near real-time feature retrieval are at the heart of Amazon SageMaker Feature Store.
Utilizing Amazon SageMaker Feature Store involves three high-level steps, as shown in
the following diagram:

Figure 5.1 – High-level steps with Amazon SageMaker Feature Store

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter05
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter05
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter05
https://git-scm.com/
https://git-scm.com/

Creating feature groups 83

Let's see what is involved in each of these steps in a bit more detail.

Creating feature groups
In Amazon SageMaker Feature Store, features are stored in a collection called a feature
group. A feature group, in turn, is composed of records of features and feature values.
Each record is a collection of feature values, identified by a unique RecordIdentifier
value. Every record belonging to a feature group will use the same feature as
RecordIdentifier. For example, the record identifier for the feature store
created for the weather data could be parameter_id or location_id. Think of
RecordIdentifier as a primary key for the feature group. Using this primary key, you
can query feature groups for the fast lookup of features. It's also important to note that
each record of a feature group must, at a minimum, contain a RecordIdentifier and
an event time feature. The event time feature is identified by EventTimeFeatureName
when a feature group is set up. When a feature record is ingested into a feature group,
SageMaker adds three features – is_deleted, api_invocation time, and write_
time – for each feature record. is_deleted is used to manage the deletion of records,
api_invocation_time is the time when the API call is invoked to write a record to
a feature store, and write_time is the time when the feature record is persisted to the
offline store.

Figure 5.2 shows a high-level view of how a feature store is structured:

Figure 5.2 – Amazon SageMaker feature store structure

While each feature group is managed and scaled independently, you can search and
discover features from multiple feature groups as long as the appropriate access is in place.

84 Centralized Feature Repository with Amazon SageMaker Feature Store

When you create a feature store group with SageMaker, you can choose to enable an
offline store, online store, or both. When both online and offline stores are enabled, the
service replicates the online store contents into the offline store maintained in Amazon S3.

The following code blocks show the process of creating a feature store:

1. First define the feature group name:

#Feature group name

weather_feature_group_name_offline = 'weather-feature-
group-offline' + strftime('%d-%H-%M-%S', gmtime())

2. Then, create the feature definitions that capture the feature name and the type:

##Create FeatureDefinitions

fd_location=FeatureDefinition(feature_name='location',
feature_type=FeatureTypeEnum('Integral'))

fd_event_time=FeatureDefinition(feature_name='EventTime',
feature_type=FeatureTypeEnum('Fractional'))

…

weather_feature_definitions = []

weather_feature_definitions.append(fd_location)

weather_feature_definitions.append(fd_event_time)

…

3. Next, define the record identifier feature:

##Define unique identifier

record_identifier_feature_name = "location"

4. Finally, create the feature group using the create() API, which, by default, creates
a feature group with an offline store:

#Create offline feature group

weather_feature_group_offline = \

 FeatureGroup(name=weather_feature_group_name_offline,

 feature_definitions=weather_feature_definitions,

 sagemaker_session=sagemaker_session)

weather_feature_group_offline.create(

 s3_uri=f"s3://{s3_bucket_name}/{prefix}",

 record_identifier_name="location",

Creating feature groups 85

 event_time_feature_name="EventTime",

 role_arn=role

)

5. To enable an online store in addition to an offline store, use enable_online_
store, as shown in the following code:

weather_feature_group_offline_online.create(

 s3_uri=f"s3://{s3_bucket_name}/{prefix}",

 record_identifier_name="location",

 event_time_feature_name="EventTime",

 role_arn=role,

 enable_online_store=True

)

6. To create a feature group with only an online store enabled, set s3_uri to False,
as shown in the following code:

weather_feature_group_online.create(

 s3_uri=False,

 record_identifier_name="location",

 event_time_feature_name="EventTime",

 role_arn=role,

 enable_online_store=True

)

86 Centralized Feature Repository with Amazon SageMaker Feature Store

Note that you can also create a feature group using SageMaker Studio. Once feature
groups are created either using the APIs or SageMaker Studio, you can view them
along with their status in SageMaker Studio. Figure 5.3 shows a list of feature groups in
SageMaker Studio:

Figure 5.3 – Feature groups list in SageMaker Studio

To wrap up the feature group creation discussion, the following table summarizes the
differences between the online and offline feature stores:

Figure 5.4 – Comparison of online and offline feature stores

Populating feature groups 87

Now that you can create feature groups in the feature store, let's take a look at how to
populate them.

Populating feature groups
After creating the feature groups, you will populate them with features. You can ingest
features into a feature group using either batch ingestion or streaming ingestion, as
shown in Figure 5.5:

Figure 5.5 – Ingesting features into feature groups

To ingest features into the feature store, you create a feature pipeline that can populate
the feature store. A feature pipeline can include any service or capability that accepts raw
data and then transforms that raw data into engineered features and puts the features in
a designated feature group. Features can be ingested either in bulk in batches or streamed
individually. The PutRecord API call is the core SageMaker API for ingesting features.
This is used for both online and offline feature stores as well as ingesting through batch or
streaming methods.

The following code block shows the usage of the PutRecord API:

##Create a record to ingest into the feature group

record = []

event_time_feature = {'FeatureName':
'EventTime','ValueAsString': str(int(round(time.time())))}

location_feature = {'FeatureName':
'location','ValueAsString': str('200.0')}

ismobile_feature
= {'FeatureName': 'ismobile','ValueAsString': str('0')}

88 Centralized Feature Repository with Amazon SageMaker Feature Store

value_feature ={'FeatureName': 'value','ValueAsString':
str('34234.0')}

record.append(event_time_feature)

record.append(location_feature)

record.append(ismobile_feature)

record.append(value_feature)

response = sagemaker_fs_runtime_client.put_record(

 FeatureGroupName=weather_feature_group_online,

 Record=record)

You can also use a wrapper API, fg.ingest, which takes in a pandas dataframe as
input and allows you to configure multiple workers and processes to ingest features in
parallel. The following code block shows how to use the ingest() API:

#Read csv directly from S3 into a dataframe

weather_df = pd.read_csv(s3_path)

#Ingest features into the feature group

weather_feature_group_offline.ingest(

 data_frame=weather_df, max_workers=3, wait=True

)

For batch ingestion, you can author features (for example, using Amazon Data Wrangler)
and ingest features in batches using a SageMaker Processing job. This allows batch
ingestion into the offline store and the online store. For streaming ingestion, records
can be pushed synchronously using the PutRecord API call. When ingesting records
to the online feature store, you maintain only the latest feature values for a given record
identifier. Historical values are only maintained in the replicated offline store if the feature
group is configured for both online and offline stores. Figure 5.6 outlines the methods to
ingest features as they relate to the online and offline feature stores:

Populating feature groups 89

Figure 5.6 – Ingesting feature store records

90 Centralized Feature Repository with Amazon SageMaker Feature Store

With the ingestion APIs in hand, let's take a look at a generic batch ingestion architecture.
Figure 5.7 shows the architecture for batch ingestion with Amazon SageMaker Processing:

Figure 5.7 – Batch ingestion with SageMaker Processing

Here are the high-level steps involved in the batch ingestion architecture:

1. Bulk raw data is available in an S3 bucket.
2. The Amazon SageMaker Processing job takes raw data as input and applies feature

engineering techniques to the data. The processing job can be configured to run on
a distributed cluster of instances to process data at scale.

3. The processing job also ingests the engineered features ingested into the online store
of the feature group, using the PutRecord API. Features are then automatically
replicated to the offline store of the feature group.

4. Features from the offline store can then be used for training other models and by
other data science teams to address a wide variety of other use cases. Features from
the online store can be used for feature lookup during real-time predictions.

Note that if the feature store used in this architecture is offline only, the processing job can
directly write into the offline store using the PutRecord API.

Populating feature groups 91

Next, let's take a look at a possible streaming ingestion architecture in Figure 5.8. This
should look very similar to batch ingestions, except instead of using a processing job, you
use a single compute instance or an AWS Lambda function:

Figure 5.8 – Streaming ingestion with AWS Lambda

Here are the high-level steps involved in the streaming ingestion architecture:

1. Raw data lands in an S3 bucket, which triggers an AWS Lambda function.
2. The Lambda function processes data and inserts features into the online store of the

feature group, using the PutRecord API.
3. Features are then automatically replicated to the offline store of the feature group.
4. Features from the offline store can then be used for training other models and by

other data science teams to address a wide variety of other use cases. Features from
the online store can be used for feature lookup during real-time predictions.

92 Centralized Feature Repository with Amazon SageMaker Feature Store

In addition to using the ingestion APIs to populate the offline store, you can populate the
underlying S3 bucket directly. If you don't have a need for real-time inference and have
huge volumes of historical feature data (terabytes or even hundreds of gigabytes) that
you want to migrate to an offline feature store to be used for training models, you can
directly upload them to the underlying S3 bucket. To do this effectively, it is important to
understand the S3 folder structure of the offline bucket. Feature groups in the offline store
are organized in the structure s3:

s3://<bucket-name>/<customer-prefix>/<account-id>/
sagemaker/<aws-region>/offline-store/<feature-group-name>-
<feature-group-creation-time>/data/year=<event-time-year>/
month=<event-time-month>/day=<event-time-day>/hour=<event-
time-hour>/<timestamp_of_latest_event_time_in_file>_<16-random-
alphanumeric-digits>.parquet

Also note that, when you use ingestion APIs, the features isdeleted, api_
invocation_time, and write-time are included automatically in the feature record,
but when you write directly to the offline store, you are responsible for including them.

Retrieving features from feature groups
Once feature groups are populated, to retrieve features from the feature store, there are
two APIs available – get_record and batch_get_record. The following code block
shows retrieving a single record from a feature group using the get_record API:

record_identifier_value = str('300')

response = sagemaker_fs_runtime_client.get_record

(FeatureGroupName=weather_feature_group_name_online,

RecordIdentifierValueAsString=record_identifier_value)

response

Response from the code block looks similar to the following
figure:

{'ResponseMetadata': {'RequestId': '195debf2-3b10-4116-98c7-
142dc13e9df3',

 'HTTPStatusCode': 200,

 'HTTPHeaders': {'x-amzn-requestid': '195debf2-3b10-4116-98c7-
142dc13e9df3',

 'content-type': 'application/json',

 'content-length': '214',

 'date': 'Wed, 14 Jul 2021 04:27:11 GMT'},

Retrieving features from feature groups 93

 'RetryAttempts': 0},

 'Record': [{'FeatureName': 'value', 'ValueAsString':
'4534.0'},

 {'FeatureName': 'ismobile', 'ValueAsString': '0'},

 {'FeatureName': 'location', 'ValueAsString': '300'},

 {'FeatureName': 'EventTime', 'ValueAsString': '1626236799'}]}

Similarly, the following code shows retrieving multiple records from one or more feature
groups using the batch_get_record API:

record_identifier_values = ["200", "250", "300"]

response=sagemaker_fs_runtime_client.batch_get_record(

 Identifiers=[

 {"FeatureGroupName": weather_feature_group_name_
online, "RecordIdentifiersValueAsString": record_identifier_
values}

]

)

response

The response from the code block should look similar to the following response:

{'ResponseMetadata': {'RequestId': '3c3e1f5f-3a65-4b54-aa18-
8683c83962c5',

 'HTTPStatusCode': 200,

 'HTTPHeaders': {'x-amzn-requestid': '3c3e1f5f-3a65-4b54-aa18-
8683c83962c5',

 'content-type': 'application/json',

 'content-length': '999',

 'date': 'Wed, 14 Jul 2021 04:29:47 GMT'},

 'RetryAttempts': 0},

 'Records': [{'FeatureGroupName': 'weather-feature-group-
online-13-19-23-46',

 'RecordIdentifierValueAsString': '300',

 'Record': [{'FeatureName': 'value', 'ValueAsString':
'4534.0'},

 {'FeatureName': 'ismobile', 'ValueAsString': '0'},

 {'FeatureName': 'location', 'ValueAsString': '300'},

 {'FeatureName': 'EventTime', 'ValueAsString':
'1626236799'}]},

94 Centralized Feature Repository with Amazon SageMaker Feature Store

 {'FeatureGroupName': 'weather-feature-group-
online-13-19-23-46',

 'RecordIdentifierValueAsString': '200',

 'Record': [{'FeatureName': 'value', 'ValueAsString':
'34234.0'},

 {'FeatureName': 'ismobile', 'ValueAsString': '0'},

 {'FeatureName': 'location', 'ValueAsString': '200'},

 {'FeatureName': 'EventTime', 'ValueAsString':
'1626236410'}]}],

 'Errors': [],

 'UnprocessedIdentifiers': []}

The get_record and batch_get_record APIs should be used with online stores.
Additionally, since the underlying storage for an offline store is an S3 bucket, you can
query the offline store directly using Athena or other ways of accessing S3. The following
code shows a sample Athena query that retrieves all feature records directly from the S3
bucket supporting the offline store:

weather_data_query = weather_feature_group.athena_query()

weather_table = weather_data_query.table_name

#Query string

query_string = 'SELECT * FROM "'+ weather_table + '"'

print('Running ' + query_string)

#run Athena query. The output is loaded to a Pandas dataframe.

weather_data_query.run(query_string=query_string, output_
location='s3://'+s3_bucket_name+'/'+prefix+'/query_results/')

weather_data_query.wait()

dataset = weather_data_query.as_dataframe()

For the dataset used in this book, we will use two feature groups – location and weather data.
The location feature group will have location_id as the record identifier and capture
features related to the location such as the city name. The weather data feature group will
also have location_id as the record identifier and capture weather quality measurements
such as pm25. This allows us to use the feature groups across multiple ML projects.

Creating reusable features to reduce feature inconsistencies and inference latency 95

For example, features from both location and weather data feature groups are used for a
regression model to predict future weather measurements for a given location. On the
other hand, features from the weather data feature group can also be used for a clustering
model to find stations with similar measurements.

Important note
The example notebook provides a walk-through of the key Amazon SageMaker
Feature Store APIs for creating a feature group, ingesting features into feature
groups, and retrieving features from a feature group. To see all the feature store
capabilities in action, we recommend that you execute the sample notebook
in the data science environment you set up in Chapter 2, Data Science
Environments:

https://gitlab.com/randydefauw/packt_book/-/blob/
main/CH05/feature_store_apis.ipynb.

Now that you have learned the capabilities of SageMaker Feature Store, in the next two
sections, you will learn how to use these capabilities to solve feature design challenges that
data scientists and organizations face.

Creating reusable features to reduce feature
inconsistencies and inference latency
One of the challenges data scientists face is the long data processing time – hours
and sometimes days – necessary for preparing features to be used for ML training.
Additionally, the data processing steps applied in feature engineering need to be applied
to the inference requests during prediction time, which increases the inference latency.
Each data science team will need to spend this data processing time even when they use
the same raw data for different models. In this section, we will discuss best practices to
address these challenges by using Amazon SageMaker Feature Store.

For use cases that require low latency features for inference, an online feature store should
be configured, and it's generally recommended to enable both the online and offline
feature store. A feature store enabled with both online and offline stores allows you to
reuse the same feature values for the training and inference phases. This configuration
reduces the inconsistencies between the two phases and minimizes training and inference
skew. In this mode, to populate the store, ingest features into the online store either using
batch or streaming.

https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/feature_store_apis.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/feature_store_apis.ipynb

96 Centralized Feature Repository with Amazon SageMaker Feature Store

As you ingest features into an online store, SageMaker automatically replicates feature
values to an offline store, continuously appending the latest values. It's important to note
that for the online feature store, only the most current feature record is maintained and
the PutRecord API is always processed as insert/upsert. This is key because if you
need to update a feature record, the process to do so is to re-insert or overlay the existing
record. This is to allow the retrieval of features with the minimum possible latency for
inference use cases.

Although the online feature store maintains only the latest record, the offline store will
provide a full history of feature values over time. Records will stay in the offline store
until they are explicitly removed. As a result, you should establish a process to prune
unnecessary records in the offline feature store using the standard mechanisms provided
for S3 archival.

Important note
The example notebook from the GitHub repository shows the end-to-end flow
of creating a feature store, ingesting features, retrieving features, and further
using the features for training the model, deploying the model, and using the
features from the feature store during inference: https://gitlab.com/
randydefauw/packt_book/-/blob/main/CH04/feature_
store_train_deploy_models.ipynb.

Another best practice is to set up standards for versioning features. As features evolve, it is
important to keep track of feature versions. Consider versioning at two levels – versions of
the feature group itself and versions of features within a feature group. You need to create
a new version of the feature group for when the schema of the features change, such as
when feature definitions need to be added or deleted.

At the time of this book's publication, feature groups are immutable. To add or remove
features, you will need to create a new feature group. To address the requirement of
multiple versions of a feature group with different numbers of features, establish and stick
to naming conventions. For example, you could create a weather-conditions-v1
feature group initially. When that feature group needs to be updated, you can create a new
weather-conditions-v2 feature group. You can also consider adding descriptive
labels on data readiness or usage, such as weather-conditions-latest-v2 or
weather-conditions-stable-v2. You also can tag feature groups to provide
metadata. Additionally, you should also establish standards for how many concurrent
versions to support and when to deprecate old versions.

https://gitlab.com/randydefauw/packt_book/-/blob/main/CH04/feature_store_train_deploy_models.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH04/feature_store_train_deploy_models.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH04/feature_store_train_deploy_models.ipynb

Creating reusable features to reduce feature inconsistencies and inference latency 97

For the versioning of the individual features, the offline store keeps a history of all values
of the features in a feature group. Each feature record is required to have an eventTime,
which supports the ability to access feature versions by date. To retrieve previous version
values of features from the offline store, use an Athena query with a specific timestamp, as
shown in the following code block:

#Query string with specific date/time

timestamp = int(round(time.time()))

time_based_query_string = f"""

SELECT *

FROM "{weather_table}"

where eventtime <= {timestamp} and city=1080.0

"""

Run Athena query. The output is loaded to a Pandas dataframe.

weather_query.run(query_string=time_based_query_string, output_
location='s3://'+s3_bucket_name+'/'+prefix+'/query_results/')

weather_query.wait()

dataset = weather_query.as_dataframe()

Note that you can further fine-tune the Athena query to include write-time and api_
call_time to extract very specific versions of the features. Please see the references section
for a link to a detailed blog on point-in-time queries with SageMaker Feature Store.

Additionally, when a record is deleted from the online store, the corresponding record
in the offline store is only logically deleted, which is typically referred to as a tombstone.
When you query the offline store, you may see a tombstone in the results. Use the is_
deleted feature of the record to filter these records from the results.

98 Centralized Feature Repository with Amazon SageMaker Feature Store

Now that you have the feature groups created and populated, how do teams in your
organization discover and reuse the features? All authorized users of the Amazon
SageMaker Feature Store can view and browse through a list of feature groups in a feature
store in a SageMaker Studio environment. You can also search for specific feature groups
by name, description, record identifier, creation date, and tags, as shown in Figure 5.9:

Figure 5.9 – Search and discover feature groups

You can go a step further, view feature definitions of the feature group, and search for
specific features as shown in Figure 5.10:

Figure 5.10 – Search and discover features

In the next section, you will learn about designing an ML system that provides near real-
time predictions.

Designing solutions for near real-time ML predictions 99

Designing solutions for near real-time ML
predictions
Sometimes machine learning applications demand high-throughput updates to features
and near real-time access to the updated features. Timely access to fast-changing features
is critical for the accuracy of predictions made by these applications. As an example,
consider a machine learning application in a call center that predicts how to route the
incoming customer calls to available agents. This application needs to have knowledge of
the customer's latest web session clicks to make accurate routing decisions. If you capture
a customer's web-click behavior as features, the features need to be updated instantly and
the application needs access to the updated features in near-real time. Similarly, for weather
prediction problems, you may want to capture the weather measurement features frequently
for accurate weather predictions and need the ability to look up features in real time.

Let's look at some best practices in designing a reliable solution that meets the requirement
of high-throughput writes and low-latency reads. At a high level, this solution will couple
streaming ingestion into a feature group with streaming predictions. We will discuss the best
practices to apply to ingestion into and serving from a feature store.

For ingesting features, the decision to choose between batch and streaming ingestion
should be based on how often feature values in the feature store need to be updated for use
by downstream training or inference. While simple machine models may need features
from a single feature group, if you are working with data from multiple sources, you will
find yourself using features from multiple feature groups. Some of these features need
to be updated on a periodic basis (hourly, daily, weekly) and others must be streamed in
near-real time.

Feature update frequency and inference access patterns should also be used as a
consideration for creating different feature groups and isolating features. By isolating
features that need to be inserted on different schedules, the ingestion throughput for
streaming features can be improved independently. However, retrieving values from
multiple feature groups increases the number of API calls and can increase overall
retrieval times.

100 Centralized Feature Repository with Amazon SageMaker Feature Store

Your solution needs to balance feature isolation and retrieval performance. If your models
require features from a large number of different feature groups at inference, design the
solution to utilize larger feature groups or to retrieve from the feature store in parallel
to meet the near real-time SLAs for predictions. For example, if your model requires
features from three feature groups for inference, you can issue three API calls to get the
feature record data in parallel before merging that data for model inference. This can be
done through a typical inference workflow executing through an AWS service such as
AWS Step Functions. Optionally, if that same set of features are always used together for
inference, you may want to consider combining those into a single feature group.

Figure 5.11 shows the end-to-end architecture for streaming ingestion and streaming
inferences to support high-throughput writes and low-latency reads:

Figure 5.11 – End-to-end architecture for real-time feature ingestion and retrieval

Summary 101

Here are the high-level steps involved in this architecture:

On the ingestion side:

1. The client application collects and processes the live data. For streaming
applications, one option is to use Kinesis Data Streams. To ingest features, the
client application calls an ingestion API hosted by an API Gateway.

2. An API Gateway invokes the lambda function that uses the put_record API to
push features into the online feature store. As necessary, the lambda function can
also perform additional processing on the raw data before pushing features to the
feature store.

On the prediction side:

1. A model-consuming client application calls a prediction API hosted by an API
Gateway. An API Gateway invokes a lambda function that looks up the features
related to inference requests from the online feature store and creates an
enhanced request.

2. The enhanced request is sent to the SageMaker deployed endpoint. The prediction
from the endpoint traverses back to the client application.

Using these techniques and best practices, you can design real-time ML systems.

Summary
In this chapter, you reviewed the basic capabilities of Amazon SageMaker Feature Store
along with the APIs to use. By combining different capabilities, you learned how to reuse
engineered features across training and inference phases of a single machine learning
project and across multiple ML projects. Finally, you combined streaming ingestion and
serving to design near real-time inference solutions. In the next chapter, you will use these
engineered features to train and tune machine learning models at scale.

References
For additional reading material, please review these references:

• Using streaming ingestion with Amazon SageMaker Feature Store to make
ML-backed decisions in near-real time:

https://aws.amazon.com/blogs/machine-learning/using-
streaming-ingestion-with-amazon-sagemaker-feature-store-
to-make-ml-backed-decisions-in-near-real-time/

https://aws.amazon.com/blogs/machine-learning/using-streaming-ingestion-with-amazon-sagemaker-feature-store-to-make-ml-backed-decisions-in-near-real-time/
https://aws.amazon.com/blogs/machine-learning/using-streaming-ingestion-with-amazon-sagemaker-feature-store-to-make-ml-backed-decisions-in-near-real-time/
https://aws.amazon.com/blogs/machine-learning/using-streaming-ingestion-with-amazon-sagemaker-feature-store-to-make-ml-backed-decisions-in-near-real-time/

102 Centralized Feature Repository with Amazon SageMaker Feature Store

• Enable feature reuse across accounts and teams using Amazon SageMaker
Feature Store:

https://aws.amazon.com/blogs/machine-learning/enable-
feature-reuse-across-accounts-and-teams-using-amazon-
sagemaker-feature-store/

• Build accurate ML training datasets using point-in-time queries with Amazon
SageMaker Feature Store and Apache Spark:

https://aws.amazon.com/blogs/machine-learning/build-
accurate-ml-training-datasets-using-point-in-time-queries-
with-amazon-sagemaker-feature-store-and-apache-spark/

• Ingesting historical feature data into Amazon SageMaker Feature Store:

https://towardsdatascience.com/ingesting-historical-
feature-data-into-sagemaker-feature-store-5618e41a11e6

https://aws.amazon.com/blogs/machine-learning/enable-feature-reuse-across-accounts-and-teams-using-amazon-sagemaker-feature-store/
https://aws.amazon.com/blogs/machine-learning/enable-feature-reuse-across-accounts-and-teams-using-amazon-sagemaker-feature-store/
https://aws.amazon.com/blogs/machine-learning/enable-feature-reuse-across-accounts-and-teams-using-amazon-sagemaker-feature-store/
https://aws.amazon.com/blogs/machine-learning/build-accurate-ml-training-datasets-using-point-in-time-queries-with-amazon-sagemaker-feature-store-and-apache-spark/
https://aws.amazon.com/blogs/machine-learning/build-accurate-ml-training-datasets-using-point-in-time-queries-with-amazon-sagemaker-feature-store-and-apache-spark/
https://aws.amazon.com/blogs/machine-learning/build-accurate-ml-training-datasets-using-point-in-time-queries-with-amazon-sagemaker-feature-store-and-apache-spark/
https://towardsdatascience.com/ingesting-historical-feature-data-into-sagemaker-feature-store-5618e41a11e6
https://towardsdatascience.com/ingesting-historical-feature-data-into-sagemaker-feature-store-5618e41a11e6

Section 2:
Model Training

Challenges

This section tackles the challenge of training at scale including using large datasets while
saving costs, monitoring training resources to identify bottlenecks, speeding up long
training jobs, and tracking multiple models trained for a common goal.

This section comprises the following chapters:

• Chapter 6, Training and Tuning at Scale

• Chapter 7, Profile Training Jobs with Amazon SageMaker Debugger

6
Training and Tuning

at Scale
Machine learning (ML) practitioners face multiple challenges when training and tuning
models at scale. Scale challenges come in the form of high volumes of training data and
increased model size and model architecture complexity. Additional challenges come from
having to run a large number of tuning jobs to identify the right set of hyperparameters
and keeping track of multiple experiments conducted with varying algorithms for a
specific ML objective. Scale challenges lead to long training times, resource constraints,
and increased costs. This can reduce the productivity of teams, and potentially create a
bottleneck for ML projects.

Amazon SageMaker provides managed distributed training and tuning capabilities to
improve training efficiency, and capabilities to organize and track ML experiments at
scale. SageMaker enables techniques such as streaming data into algorithms by using pipe
mode for training with data at scale and Managed Spot Training for reduced training
costs. Pipe mode and managed spot training are discussed in detail in Learn Amazon
SageMaker: A guide to building, training, and deploying machine learning models for
developers and data scientists, by Julien Simon.

106 Training and Tuning at Scale

In this chapter, we will discuss advanced topics of distributed training, best practices for
hyperparameter tuning, and how to organize ML experiments at scale. By the end of this
chapter, you will be able to use Amazon SageMaker's managed capabilities to train and tune
at scale in a cost-effective manner and keep track of a large number of training experiments.

In this chapter, we will cover the following main topics:

• ML training at scale with SageMaker distributed libraries

• Automated model tuning with SageMaker hyperparameter tuning

• Organizing and tracking training jobs with SageMaker Experiments

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have
not set up the data science environment yet, please refer to Chapter 2, Data Science
Environments, which walks you through the setup process.

Code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter06. You will need to install a Git client to access them (https://git-scm.
com/).

ML training at scale with SageMaker
distributed libraries
Two common scale challenges with ML projects are scaling training data and scaling
model size. While increased training data volume, model size, and complexity can
potentially result in a more accurate model, there is a limit to the data volume and the
model size that you can use with a single compute node, CPU, or GPU. Increased training
data volumes and model sizes typically result in more computations, and therefore
training jobs take longer to finish, even when using powerful compute instances such as
Amazon Elastic Compute Cloud (EC2) p3 and p4 instances.

Distributed training is a commonly used technique to speed up training when dealing
with scale challenges. Training load can be distributed either across multiple compute
instances (nodes), or across multiple CPUs and GPUs (devices) on a single compute
instance. There are two strategies for distributed training – data parallelism and model
parallelism. Their names are a good indication of what is involved with each strategy.
With data parallelism, the training data is split up across multiple nodes (or devices). With
model parallelism, the model is split up across the nodes (or devices).

https://git-scm.com/
https://git-scm.com/

ML training at scale with SageMaker distributed libraries 107

Note
Mixed-precision training is a popular technique to handle training at scale
and reduce training time. Typically used on compute instances equipped with
NVIDIA GPUs, mixed-precision training converts network weights from FP32
representation to FP16, calculates the gradients, converts weights back to FP32,
multiplies by the learning rate, and finally updates the optimizer weights.

In the data parallelism distribution strategy, the ML algorithm or the neural network-
based model is replicated on all devices, and each device processes a batch of data. Results
from all devices are then combined. In the model parallelism distribution strategy, the
model (which is the neural network) is split up across the devices. Batches of training
data are sent to all devices so that the data can be processed by all parts of the model. The
following diagram shows an overview of data and model parallelism:

Figure 6.1 – Distribution strategies

Both data and model parallelism distribution strategies come with their own complexities.
With data parallelism, each node (or device) is trained on a subset of data (called a
mini-batch), and a mini-gradient is calculated. However, within each node, a mini-
gradient average, with gradients coming from other nodes, should be calculated and
communicated to all other nodes. This step is called all reduce, which is a communication
overhead that grows as the training cluster is scaled up.

108 Training and Tuning at Scale

While model parallelism addresses the requirements of a model not fitting in a single
device's memory by splitting it across devices, partitioning the model across multiple
GPUs may lead to under-utilization. This is because training on GPUs is sequential in
nature, where only one GPU is actively processing data while the other GPUs are waiting
to be activated. To be effective, model parallelism should be coupled with a pipeline
execution schedule to train the model across multiple nodes, and in turn, maximize GPU
utilization. Now that you know two different distribution strategies, how do you choose
between data and model parallelism?

Choosing between data and model parallelism
When choosing a distributed strategy to implement, keep in mind the following:

• Training on multiple nodes inherently causes inter-node communication overhead.

• Additionally, to meet security and regulatory requirements, you may choose
to protect the data transmitted between the nodes by enabling inter-container
encryption.

• Enabling inter-container encryption will further increase the training time.

Due to these reasons, use data parallelism if the trained model can fit in the memory of a
single device or node. In situations where the model does not fit in the memory due to its
size or complexity, you should experiment further with data parallelism before deciding
on model parallelism.

You can experiment with the following to improve data parallelism performance:

• Tuning the model's hyperparameters: Tuning parameters such as the number
of layers of a neural network, or the optimizer to use, affects the model's
size considerably.

• Reducing the batch size: Experiment by incrementally reducing the batch size
until the model fits in the memory. This experiment should balance out the model's
memory needs with optimal batch size. Make sure you do not end up with a
suboptimal small batch size just because training with a large batch size takes up
most of the device memory.

• Reducing the model input size: If the model input is tabular, consider embedding
vectors of reduced dimensions. Similarly, for natural language processing (NLP)
models, reduce the input NLP sequence length, and if the input is an image, reduce
image resolution.

ML training at scale with SageMaker distributed libraries 109

• Using mixed-point precision: Experiment with mixed-precision training,
which uses FP16 representation of weights during gradient calculation, to reduce
memory consumption.

The following flowchart shows the sequence of decisions and experiments to follow when
choosing a distribution strategy to implement:

Figure 6.2 – Choose a distribution strategy

110 Training and Tuning at Scale

While data parallelism addresses the challenge of training data scale, model parallelism
addresses the challenge of increased model size and complexity. A hybrid distribution
strategy can also be implemented to include both data and model parallelism. Figure 6.3
walks you through a hybrid distribution strategy with two-way data parallelism and four-
way model parallelism:

Figure 6.3 – Hybrid distribution strategy

Scaling the compute resources
Both the distributed training strategies depend on a cluster of compute resources to
spread the training load. When scaling the distributed cluster to meet the training
demands, the recommended best practices are as follows:

• First, scale vertically. That is, scale from a single GPU to multiple GPUs on a single
instance. For example, let's say you started with the instance type p3.2xlarge,
which has a single GPU for training your model, and you find yourself needing a
greater number of GPUs to increase the training time. Change the instance type
to p3.16xlarge, which has eight GPUs. This will result in a nearly eight-times
decrease in the training, a near-linear speedup. Keeping the training job on a single
scaled-up instance results in better performance than using multiple instances while
keeping the cost low.

ML training at scale with SageMaker distributed libraries 111

• Next, scale from a single instance to multiple instances. When you reach limits of
the instance types offered and still need to scale your training even further, then
use multiple instances of the same type, that is, scale from a single p3.16xlarge
to two p3.16xlarge instances. This will give you double the compute capacity,
going from 8 GPUs on a single instance, to 16 GPUs across two instances. Keep
in mind that when you use multiple instances in the training cluster, all instances
should be in the same Availability Zone. For example, instances in us-west-2
must all be in us-west-2a or all in us-west-2b. Your training data should also
be in the same region, us-west-2.

When moving from a single instance to multiple instances, it is recommended that you
observe the model convergence and increase the batch size as necessary. Since the batch
size you use is split across GPUs, each GPU is processing a lower batch size, which could
lead to a high error rate and disrupt the model convergence.

For example, let's say you start with a single GPU on a p3.2xlarge instance using a
batch size of 64, then scale up to four p3dn.24xlarge, which gives you 32 GPUs. After
this move, each GPU only processes a batch size of two, which is very likely to break the
model convergence you observed with the original training.

SageMaker distributed libraries
For easy implementation of data and model parallelism in your training jobs, SageMaker
provides two different distributed training libraries. The libraries address the issues of
inter-node and inter-GPU communications overhead using a combination of software and
hardware technologies. To implement the distributed libraries and take advantage of data
and model parallelism, you will need to make minor code changes to your training scripts.

Important note
At the time of the book publication, the SageMaker distributed libraries
support two frameworks—TensorFlow and PyTorch.

While in this chapter we are focusing on the SageMaker native libraries for
distributed training, you can also choose to use Horovod, the most popular
open source distributed training framework, or the native distributed training
strategies in frameworks such as TensorFlow and PyTorch. Please see the blog
link in the references section for details on using Horovod with TensorFlow
on SageMaker.

112 Training and Tuning at Scale

SageMaker distributed data parallel library
Let's first dive into the SageMaker distributed data parallel library.

The SageMaker distributed data parallel library provides the capabilities to achieve
near-linear scaling efficiency and fast training times on deep learning models. The library
addresses the challenge of communications overhead in a distributed cluster using
two approaches:

• It automatically performs the AllReduce operation responsible for the overhead.

• It optimizes node-to-communication by utilizing AWS's network infrastructure and
Amazon EC2 instance topology.

SageMaker data parallelism can be used with both single-node, multi-device setup, and
with multi-node setup. However, its value is more apparent in training clusters with two
or more nodes. In this multi-node cluster, the AllReduce operation implemented as part
of the library gives you significant performance improvement.

To use the distributed libraries with the SageMaker training jobs, first enable the strategy
you want when you construct the estimator object. The following code block shows
how to create an estimator object using a PyTorch container with the data parallel
strategy enabled:

from sagemaker.pytorch import PyTorch

pt_dist_estimator = PyTorch(

 entry_point="train_pytorch_dist.py",

 …

 distribution={

 "smdistributed": {"dataparallel":
{"enabled": True}}

 }

)

Additionally, there are a few changes that are needed to the training script, train_
pytorch_dist, in this example. The next few code blocks show the changes required to
the training script:

1. First, import and initialize the SageMaker distributed library:

import smdistributed.dataparallel.torch.distributed as
dist

from smdistributed.dataparallel.torch.parallel.

ML training at scale with SageMaker distributed libraries 113

distributed import DistributedDataParallel as DDP

dist.init_process_group()

2. Next, pin each GPU to a single SageMaker data parallel library process with
local_rank, which is a relative rank of the process within a given node:

torch.cuda.set_device(dist_get_local_rank())

3. Next, resize the batch size to be handled by each worker:

batch_size //= dist.get_world_size()

batch_size = max(batch_size, 1)

4. Next, wrap the trained model artifact with the DDP class from the distributed
library:

model = DDP(model)

5. Finally, once all of the changes are in place, simply call the fit() method on the
estimator to kick off training with the training script:

pt_dist_estimator.fit()

To observe the benefits of the distributed training, we ran two different training jobs
on the same dataset. Both the jobs were run on a single ml.p3.16xlarge, the
first job without distributed training, and the second job with smdistributed
dataparallel enabled. In this experiment, the first job was completed in 12041
seconds, and the second job was completed in 4179 seconds, resulting in a 65.29%
improvement in the training time.

Note
Comparison of the two training jobs with and without smdistributed
dataparallel enabled is captured in the notebook in the GitHub repo:
https://gitlab.com/randydefauw/packt_book/-/blob/
main/CH05/train-distributed.ipynb.

https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/train-distributed.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/train-distributed.ipynb

114 Training and Tuning at Scale

SageMaker distributed model parallel library
Next, let's look into the SageMaker distributed model parallel library. This provides the
capability to train large, complex deep learning models that can potentially increase
prediction accuracy. The library automatically and efficiently splits a model across
multiple GPUs, providing an option for both manual and automatic partitioning. It
further coordinates training through a pipelined execution by building an efficient
computation schedule where different nodes can simultaneously work on forward and
backward passes for different data samples.

The following code block shows creating an estimator object using a PyTorch
container with the model parallel strategy enabled:

mpi_options = {

 "enabled": True,

 "processes_per_host": 4

 }

dist_options = {

 "modelparallel":{

 "enabled": True,

 "parameters": {

 "partitions": 4, # we'll partition the model among
the 4 GPUs

 "microbatches": 8, # Mini-batchs are split in
micro-batch to increase parallelism

 "optimize": "memory" # The automatic model
partitioning can optimize speed or memory

 }

 }

}

pt_model_dist_estimator = PyTorch(

 entry_point="train_pytorch_model_dist.py",

 ...

 distribution={"mpi": mpi_options, "smdistributed": dist_
options}

)

ML training at scale with SageMaker distributed libraries 115

As with the data parallel strategy, there are a few code changes necessary to the training
script. Important changes are discussed in the next few code blocks:

1. First, import and initialize the SageMaker distributed library:

import smdistributed.modelparallel.torch as smp

smp.init()

2. Next, wrap the model artifact in the DistributedModel class from the
distributed library, and wrap the optimizer in the DistributedOptimizer class:

model = smp.DistributedModel(model)

optimizer = smp.DistributedOptimizer(optimizer)

3. Next, add the forward and backward logic to a function and decorate it with smp.
step:

@smp.step

def train_step(model, data, target):

 output = model(data)

 long_target = target.long()

 loss = F.nll_loss(output, long_target,
reduction="mean")

 model.backward(loss)

 return output, loss

4. Finally, call the fit() method on the estimator object to kick off training:

pt_dist_estimator.fit()

Important Note
An example notebook that provides a complete walk-through of using the
ModelParallel distribution strategy with a PyTorch container is provided
in the GitHub repository: https://gitlab.com/randydefauw/
packt_book/-/blob/main/CH06/train.ipynb.

https://gitlab.com/randydefauw/packt_book/-/blob/main/CH06/train.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH06/train.ipynb

116 Training and Tuning at Scale

While the SageMaker distributed model parallel library makes it easy to implement
model parallel distributed training, for optimal training results consider the following
best practices:

• Using manual versus auto-partitioning: You can partition the model onto multiple
nodes (or devices) using either manual or auto-partitioning. While both of the
options are supported, you should choose auto-partitioning over the manual
approach. With auto-partitioning, training operations and modules that share the
same parameters will automatically be placed on the same device for correctness.
With a manual approach, you will have to take care of the details on how to split up
the model parts, and which part should be placed on which device. This is a time-
consuming and error-prone process.

• Choosing the batch size: The model parallel library is most efficient with large
batch sizes. In case you start with a smaller batch size to fit the model into a single
node, then decide to implement model parallelism across multiple nodes, you
should increase the batch size accordingly. Model parallelism saves memory for
large models, allowing training with large batch sizes.

• Choosing the number and size of micro-batches: The model parallel library
executes each micro-batch sequentially in each node or device. So, the micro-batch
size should be large enough to fully utilize each GPU. At the same time, pipeline
efficiency increases with the number of micro-batches, so balancing the two is
important.

It is best practice to start with two or four micro-batches and increase the batch size
according to the available memory of the node/device. Then experiment with larger
batch sizes and increase the number of micro-batches. As the number of micro-batches is
increased, larger batch sizes might become feasible if an interleaved pipeline is used.

Incremental training
When huge volumes of data are available upfront before training your model, distributed
training strategies should be used. But what happens when a trained model is deployed
and then you collect new data that might improve the model predictions? In this situation,
you can incrementally train a new model starting with artifacts from an existing model
and using an expanded dataset.

Incremental training can save training time, resources, and costs in the following situations:

• An existing model is under-performing and new data becomes available that can
potentially improve model performance.

Automated model tuning with SageMaker hyperparameter tuning 117

• You want to use publicly available models as a starting point for your model without
having to train from scratch.

• You want to train multiple versions of a model, with either different
hyperparameters or using different datasets.

• You want to restart a previously stopped training job, without having to start from
scratch again.

Additionally, to complement or substitute for loading existing model weights and
incrementally training, you can retrain on a sliding window on the most recent data.

In this section, you learned how to use SageMaker capabilities to train with large
volumes of data and complex model architectures. Besides the training data and model
architecture, a critical part of ML training is tuning hyperparameters of the ML algorithm.
In the next section, you will learn the best practices for using SageMaker to handle model
tuning at scale.

Automated model tuning with SageMaker
hyperparameter tuning
Hyperparameter tuning (HPT) helps you find the right parameters to use with your
ML algorithm or the neural network to find an optimal version of the model. Amazon
SageMaker supports managed hyperparameter tuning, also called automatic model
tuning. In this section, we discuss the best practices to consider while configuring
hyperparameter jobs on Amazon SageMaker.

To execute a SageMaker hyperparameter tuning job, you specify a set of hyperparameters,
a range of values to explore for each hyperparameter, and an objective metric to measure
the model's performance. Automatic tuning executes multiple training jobs on your
training dataset with the ML algorithm and the hyperparameter values to find the best-
performing model as measured by the objective metric.

In the following code blocks, we will see how to create an HPT job on SageMaker:

1. First, initialize the hyperparameter names and range of values for each
hyperparameter you want to explore:

from sagemaker.tuner import (

 IntegerParameter,

 CategoricalParameter,

 ContinuousParameter,

118 Training and Tuning at Scale

 HyperparameterTuner,

)

hyperparameter_ranges = {

 "eta": ContinuousParameter(0, 1),

 "min_child_weight": ContinuousParameter(1, 10),

 "alpha": ContinuousParameter(0, 2),

 "max_depth": IntegerParameter(1, 10)

}

2. Next, configure the SageMaker estimator object:

estimator_hpo = \ sagemaker.estimator.Estimator(

image_uri=xgboost_container,

hyperparameters=hyperparameters,

role=sagemaker.get_execution_role(),

instance_count=1,

instance_type='ml.m5.12xlarge',

volume_size=200, # 5 GB

output_path=output_path

)

3. Next, configure the HyperparameterTuner object:

tuner = HyperparameterTuner(

 estimator_hpo,

 objective_metric_name,

 hyperparameter_ranges,

 max_jobs=10,

 max_parallel_jobs=2,

 objective_type = 'Minimize'

)

4. Finally, call the fit() method on the tuner object:

tuner.fit({'train': train_input,

 'validation': validation_input})

Automated model tuning with SageMaker hyperparameter tuning 119

Once the hyperparameter job is completed, you can view the different training jobs
executed by SageMaker, along with the objective metric for each job, in Figure 6.4:

Figure 6.4 – SageMaker HPT results

You can dive further into each of the training jobs to view the exact values of the
hyperparameters used, as shown in Figure 6.5:

Figure 6.5 – Hyperparameter values for a specific training job

120 Training and Tuning at Scale

Important Note
An example notebook that provides a complete walk-through of using
SageMaker HPT, along with analysis of results, is provided in the GitHub
repository: https://gitlab.com/randydefauw/packt_
book/-/blob/main/CH05/HPO.ipynb.

Now that you know the basics, let's discuss some of the best practices to consider while
configuring hyperparameter jobs on Amazon SageMaker:

• Selecting a small number of hyperparameters: HPT is a computationally
intensive task, the computational complexity being proportional to the number
of hyperparameters you want to tune. SageMaker allows you to specify up to 20
hyperparameters to optimize for a tuning job but limiting your search to a smaller
number is likely to give you better results.

• Selecting a small range for hyperparameters: Along the same lines, the range of
values for hyperparameters can significantly affect the success of hyperparameter
optimization. Intuitively, you may want to specify a very large range to explore
all possible values for a hyperparameter, but you will in fact get better results by
limiting your search to a small range of values.

• Specifying hyperparameter type: For the hyperparameters you want to explore,
select the right type from the three types supported—categorical, integer, and
continuous. Use the categorical type to test different categorical values for a
hyperparameter, such as different optimizers for a neural network. Additionally, you
can also use the categorical type when you want to test specific values.

For example, for the train_batch_size hyperparameter, instead of exploring a
range in a linear fashion, you might want only to evaluate the two values–128 and 256.
In this case, you treat the parameter as a categorical value. In contrast, if you want to
explore the values for the train_batch_size hyperparameter in a range from a
minimum threshold value of 128 to a maximum threshold value of 256, you will use
the Integer type. The Integer type allows for greater exploration of the range.

If you search a range that spans several orders of magnitude, you can optimize the
search by choosing a logarithmic scale for Integer hyperparameters. Finally,
choose a continuous parameter if the range of all values to explore, from the lowest
to the highest, is relatively small. For example, exploring the learning_rate
hyperparameter in the range of 0.0001 and 0.0005 at a linear scale.

https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/HPO.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/HPO.ipynb

Automated model tuning with SageMaker hyperparameter tuning 121

• Enabling warm start: SageMaker HPT supports warm start, which reuses results
from one or more prior tuning jobs as a starting point. Configure your HPT job
to use warm start to limit the combinations of hyperparameters to search over in
the new tuning job. This results in a faster tuning job. Warm start is particularly
useful when you want to change the HPT ranges from the previous job or add new
hyperparameters.

• Enabling early stop to save tuning time and costs: With early stop enabled, the
individual training jobs launched by the HPT job will terminate early when the
objective metric is not improving significantly. After each epoch of training, a
running average of the objective metric for all the previous training jobs up to the
same epoch is determined and the median of running averages is calculated. If the
value of the objective metric for the current training job is worse than the median
value, SageMaker stops the current training job.

Stopping jobs early reduces the overall compute time and thereby the cost of the job.
An additional benefit is that early stopping helps prevent overfitting.

• Selecting a small number of concurrent training jobs: SageMaker allows you to
execute multiple training jobs concurrently as part of the overall tuning job using
the MaxParallelTrainingJobs parameter. On one hand, running more HPT
jobs concurrently completes the tuning job quickly. On the other, a tuning job can
only find better combinations of hyperparameters through successive rounds of
experiments. In the long run, executing a single training job at a time gives the best
results with minimum computation time.

This is the case when the default Bayesian optimization tuning strategy is used by
SageMaker HPO. However, if you have experience with your algorithm and dataset,
you can also use the random search strategy natively supported by SageMaker, since
it enables concurrency but doesn't require serial rounds of experiments.

While in this section we focused on a single algorithm for best practice. The
CreateHyperParameterTuningJob API can also be used to tune multiple
algorithms by providing multiple training job definitions pointing to the different
algorithms. For a detailed explanation of this API, see the following article: https://
docs.aws.amazon.com/sagemaker/latest/APIReference/API_
CreateHyperParameterTuningJob.html.

In the next section, you will learn how to keep track of all your ML experiments related to
solving a specific problem.

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html

122 Training and Tuning at Scale

Organizing and tracking training jobs with
SageMaker Experiments
A key challenge ML practitioners face is keeping track of the myriad ML experiments that
need to be executed before a model achieves desired results. For a single ML project, it is
not uncommon for data scientists to routinely train several different models looking for
improved accuracy. HPT adds more training jobs to these experiments. Typically, there
are many details to track for experiments such as hyperparameters, model architectures,
training algorithms, custom scripts, metrics, result artifacts, and more.

In this section, we will discuss Amazon SageMaker Experiments, which allows you to
organize, track, visualize, and compare ML models across all phases of the ML lifecycle,
including feature engineering, model training, model tuning, and model deploying.
SageMaker Experiments' capability tracks model lineage, allowing you to troubleshoot
production issues and audit your models to meet compliance requirements.

Basic components that make up Amazon SageMaker Experiments include an experiment,
a trial, a trial component, and a tracker, as shown in Figure 6.6:

Figure 6.6 – Amazon SageMaker Experiments overview

Let's look at each component:

• Experiment: An experiment encapsulates all related components that represent the
ML problem you are attempting to solve. Each experiment is a collection of trials,
with the goal of determining the trial that produces the best model.

Organizing and tracking training jobs with SageMaker Experiments 123

• Trial: A trial represents a single attempt at solving the ML problem that captures the
end-to-end ML process within an experiment. Each trial is a collection consisting of
several trial components.

• Trial Component: A trial component represents a specific step within a given trial.
For example, the data preprocessing step could be one trial component, and model
training could be another trial component.

• Tracker: A tracker is used to track metadata of individual trial components,
including all parameters, inputs, outputs, artifacts, and metrics. Since this metadata
is tracked and persisted, you can link the final model artifact to its origin.

In the following code blocks, we will see how to create a SageMaker experiment:

1. First, create an experiment:

weather_experiment = Experiment.create(

 experiment_name=f"weather-experiment-{int(time.
time())}",

 description="Weather Data Prediction",

 sagemaker_boto_client=sm)

2. Next, create a Tracker instance to track the Training stage:

with Tracker.create(display_name="Training", sagemaker_
boto_client=sm) as tracker:

 # Log the location of the training dataset

 tracker.log_input(name="weather-training-dataset",

 media_type="s3/uri",

 value="s3://{}/{}/{}/".format(s3_bucket, s3_prefix,
'train'))

Next, define experiment variables to define what you want to change to see how
your objective is affected. In this example, we will experiment with several values for
the number of the max_depth hyperparameter of XGBoostmodel. We will create
a trial to track each training job run.

We will also create a TrialComponent instance from the Tracker instance we
created earlier and add this to the Trial instance. This will allow you to capture
metrics from the training step as follows:

for i, max_depth in enumerate([2, 5]):

124 Training and Tuning at Scale

 # create trial

 trial_name = f"xgboost-training-job-trial-{max_
depth}-max-depth-{int(time.time())}"

 xgboost_trial = Trial.create(

 trial_name=trial_name,

 experiment_name=weather_experiment.experiment_
name,

 sagemaker_boto_client=sm,

)

 max_depth_trial_name_map[max_depth] = trial_name

 xgboost_training_job_name = "xgboost-training-
job-{}".format(int(time.time()))

3. When running the training job with the fit() method, associate estimator
with the experiment and trial:

Now associate the estimator with the Experiment and
Trial

 estimator.fit(

 inputs={'training': train_input},

 job_name=xgboost_training_job_name,

 experiment_config={

 "TrialName": xgboost_trial.trial_name,

 "TrialComponentDisplayName": "Training",

 },

 wait=False,

)

4. Finally, after the experiment is completed, let's analyze the experiment results:

trial_component_analytics = \
ExperimentAnalytics(sagemaker_session=sagemaker_session,
experiment_name=experiment_name)

trial_component_analytics.dataframe()

Organizing and tracking training jobs with SageMaker Experiments 125

Figure 6.7 shows a list of all the trial components that were created as part of the
experiment:

Figure 6.7 – Trial components from the experiment

As you can see from this section, a SageMaker experiment gives you a way to organize
your efforts toward an ML goal and allows visibility into several important aspects of
those efforts. A best practice we recommend is that any time you launch a training or
tuning job, wrap it in an experiment. This allows you to gain visibility into the training
and tuning jobs without any additional cost.

Important note
An example notebook that provides a complete walk-through of using
SageMaker Experiments is provided in the GitHub repository: https://
gitlab.com/randydefauw/packt_book/-/blob/main/
CH05/Experiments.ipynb.

https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/Experiments.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/Experiments.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH05/Experiments.ipynb

126 Training and Tuning at Scale

Summary
In this chapter, you learned the advanced techniques required to train models at
scale using different distribution strategies. You further reviewed best practices for
hyperparameter tuning to find the best version of the model to meet your objectives.
You learned how to organize and track multiple experiments conducted in a typical ML
workflow and create comparison reports.

Using the SageMaker capabilities and best practices discussed in this chapter, you can
tackle ML at scale, allowing your organization to move out of the experimentation phase.
You can take advantage of large datasets collected over years, and move toward realizing
the full benefits of ML. In the next chapter, you will continue to enhance ML training by
profiling training jobs using Amazon SageMaker Debugger.

References
For additional reading material, please review these references:

• Learn Amazon SageMaker: A guide to building, training, and deploying ML models
for developers and data scientists:

https://www.amazon.com/Learn-Amazon-SageMaker-developers-
scientists/dp/180020891X/ref=sr_1_1?dchild=1&keywords
=Learn+Amazon+SageMaker+%3A+A+guide+to+building%
2C+training%2C+and+deploying+machine+learning+models+for
+developers+and+data+scientists&qid=1624801601&sr=8-1

• Multi-GPU and distributed training using Horovod in Amazon SageMaker Pipe mode:

https://aws.amazon.com/blogs/machine-learning/multi-
gpu-and-distributed-training-using-horovod-in-amazon-
sagemaker-pipe-mode/

• Streamline modeling with Amazon SageMaker Studio and the Amazon
Experiments SDK:

https://aws.amazon.com/blogs/machine-learning/streamline-
modeling-with-amazon-sagemaker-studio-and-amazon-
experiments-sdk

https://www.amazon.com/Learn-Amazon-SageMaker-developers- scientists/dp/180020891X/ref=sr_1_1?dchild=1& keywords=Learn+Amazon+SageMaker+%3A+A+guide+to+building% 2C+training%2C+and+deploying+machine+learning+models+for +developers+and+data+scientists&qid=
https://www.amazon.com/Learn-Amazon-SageMaker-developers- scientists/dp/180020891X/ref=sr_1_1?dchild=1& keywords=Learn+Amazon+SageMaker+%3A+A+guide+to+building% 2C+training%2C+and+deploying+machine+learning+models+for +developers+and+data+scientists&qid=
https://www.amazon.com/Learn-Amazon-SageMaker-developers- scientists/dp/180020891X/ref=sr_1_1?dchild=1& keywords=Learn+Amazon+SageMaker+%3A+A+guide+to+building% 2C+training%2C+and+deploying+machine+learning+models+for +developers+and+data+scientists&qid=
https://www.amazon.com/Learn-Amazon-SageMaker-developers- scientists/dp/180020891X/ref=sr_1_1?dchild=1& keywords=Learn+Amazon+SageMaker+%3A+A+guide+to+building% 2C+training%2C+and+deploying+machine+learning+models+for +developers+and+data+scientists&qid=
https://www.amazon.com/Learn-Amazon-SageMaker-developers- scientists/dp/180020891X/ref=sr_1_1?dchild=1& keywords=Learn+Amazon+SageMaker+%3A+A+guide+to+building% 2C+training%2C+and+deploying+machine+learning+models+for +developers+and+data+scientists&qid=
https://aws.amazon.com/blogs/machine-learning/multi-gpu-and-distributed-training-using-horovod-in-amazon-sagemaker-pipe-mode/
https://aws.amazon.com/blogs/machine-learning/multi-gpu-and-distributed-training-using-horovod-in-amazon-sagemaker-pipe-mode/
https://aws.amazon.com/blogs/machine-learning/multi-gpu-and-distributed-training-using-horovod-in-amazon-sagemaker-pipe-mode/
https://aws.amazon.com/blogs/machine-learning/streamline-modeling-with-amazon-sagemaker-studio-and-amazon-experiments-sdk
https://aws.amazon.com/blogs/machine-learning/streamline-modeling-with-amazon-sagemaker-studio-and-amazon-experiments-sdk
https://aws.amazon.com/blogs/machine-learning/streamline-modeling-with-amazon-sagemaker-studio-and-amazon-experiments-sdk

7
Profile Training

Jobs with Amazon
SageMaker

Debugger
Training machine learning (ML) models involves experimenting with multiple
algorithms, with their hyperparameters typically crunching through large volumes of data.
Training a model that yields optimal results is both a time- and compute-intensive task.
Improved training time yields improved productivity and reduces overall training costs.

Distributed training, as we discussed in Chapter 6, Training and Tuning at Scale, goes
a long way in achieving improved training times by using a scalable compute cluster.
However, monitoring training infrastructure to identify and debug resource bottlenecks is
not trivial. Once a training job has been launched, the process becomes non-transparent,
and you don't have much visibility into the model training process. Equally non-trivial
is real-time monitoring to detect sub-optimal training jobs and stop them early to avoid
wasting training time and resources.

128 Profile Training Jobs with Amazon SageMaker Debugger

Amazon SageMaker Debugger provides visibility into training jobs and the infrastructure
a training job is executing on. Real-time training metrics such as learning gradients and
network weights captured by SageMaker Debugger provide visibility into a training job in
progress, so you can act on conditions such as vanishing gradients and overfitting.

Debugger also monitors and provides reports about the system's resources such as CPU,
GPU, and memory, providing you with insights into resource utilization and bottlenecks.
Additionally, if you use TensorFlow or PyTorch for your deep learning training jobs,
Debugger provides you with a view into framework metrics that can be used to speed up
your training jobs.

By the end of this chapter, you will be able to use the capabilities of Amazon SageMaker
Debugger and apply best practices to address challenges typical to debugging ML training.
These challenges include identifying and reacting to sub-optimal training, gaining
visibility into the resource utilization of the training infrastructure, and optimizing
training framework parameters. You will also learn how to improve the training time and
costs by applying detailed recommendations provided by SageMaker Debugger.

In this chapter, we are going to cover the following main topics:

• Amazon SageMaker Debugger essentials

• Real-time monitoring of training jobs using built-in and custom rules

• Gain insight into the training infrastructure and training framework

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have not
set up the data science environment for this book yet, please refer to Chapter 2, Data Science
Environments, which will walk you through the setup process.

The code examples included in this book are available on GitHub at https://github.
com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter07. You will need to install a Git client to access them (https://git-scm.
com/).

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter07
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter07
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter07
https://git-scm.com/
https://git-scm.com/

Amazon SageMaker Debugger essentials 129

Amazon SageMaker Debugger essentials
In this section, you will learn about the basic terminology and capabilities of Amazon
SageMaker Debugger. Using Debugger with your training jobs involves three
high-level steps:

1. Configuring the training job to use SageMaker Debugger.
2. Analyzing the collected tensors and metrics.
3. Taking action.

The preceding points are illustrated in the following diagram:

Figure 7.1 – Amazon SageMaker Debugger overview

As we dive into each one of these steps, we will introduce the necessary terminology.

130 Profile Training Jobs with Amazon SageMaker Debugger

Configuring a training job to use SageMaker Debugger
The first step is to configure training jobs to use Amazon SageMaker Debugger. By now,
you are familiar with using the Estimator object from SageMaker SDK to launch
training jobs. To use Amazon SageMaker Debugger, you must enhance Estimator
with three additional configuration parameters: DebuggerHookConfig, Rules, and
ProfilerConfig.

With DebuggerHookConfig, you can specify which debugging metrics to collect and
where to store them, as shown in the following code block:

Estimator(

 …

 debugger_hook_config=DebuggerHookConfig(

 s3_output_path=bucket_path, # Where the debug data is
stored.

 collection_configs=[# Organize data to collect into
collections.

 CollectionConfig(

 name="metrics",

 parameters={

 "save_interval": str(save_interval)

 }

)

],

),

 ….

)

s3_output_path is the location where all the collected data is persisted. If this location
is not specified, Debugger uses the default path, s3://<output_path>/debug-
output/, where <output_path> is the output path of the SageMaker training job.
The CollectionConfig list allows you to organize the debug data or tensors into
collections for easier analysis. A tensor represents the state of a training network at a
specific time during the training process. Data is collected at intervals, as specified by
save_interval, which is the number of steps in a training run.

Amazon SageMaker Debugger essentials 131

How do you know which tensors to collect? SageMaker Debugger comes with a set of
built-in collections to capture common training metrics such as weights, layers, and
outputs. You can choose to collect all of the available tensors or a subset of them. In the
preceding code sample, Debugger is gathering the metrics collection.

Note
For a complete list of built-in collections, refer to https://github.com/
awslabs/sagemaker-debugger/blob/master/docs/api.
md#collection.

You can also create a custom collection of metrics to collect. In the following code block,
Debugger captures all the metrics with relu, tanh, or weight in their names:

Use Debugger CollectionConfig to create a custom collection

collection_configs=[

 CollectionConfig(

 name="custom_collection",

 parameters={

 "include_regex": ".*relu |.*tanh | *weight ",

 })

]

Note
While it may be tempting to collect all the tensors, this leads to collecting a
lot of data, which increases training time, training costs, and storage costs.
In this case, using a ReductionConfig allows you to save reduced
tensors instead of saving the full tensor (https://github.com/
awslabs/sagemaker-debugger/blob/master/docs/api.
md#collection).

While DebuggerHookConfig allows you to configure and save tensors, a rule analyzes
the tensors that are captured during the training for specific conditions such as loss not
decreasing. SageMaker Debugger supports two different types of rules: built-in and
custom. SageMaker Debugger comes with a set of built-in rules in Python that can detect
and report common training problems such as overfitting, underfitting, and vanishing
gradients. With custom rules, you write your own rules in Python for SageMaker
Debugger to evaluate against the collected tensors.

https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#collection
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#collection
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#collection
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#collection
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#collection
https://github.com/awslabs/sagemaker-debugger/blob/master/docs/api.md#collection

132 Profile Training Jobs with Amazon SageMaker Debugger

For example, in the following code block, Debugger collects tensors related to the
metrics collection and evaluates the tensors to detect whether the training loss is
reduced throughout the training process:

Estimator(

 …

 rules=[

 Rule.sagemaker(

 rule_configs.loss_not_decreasing(),

 rule_parameters={

 "collection_names": "metrics",

 "num_steps": str(save_interval * 2),

 },

),

],

)

Finally, ProfilerConfig allows you to collect system metrics such as CPU, GPU,
Memory, I/O, and framework metrics specific to the framework being used in your
training job. For the system metrics, you must specify the time interval for which you
want to collect metrics, while for framework metrics, you specify the starting step and the
number of steps, as shown in the following code block:

Estimator(

 …

 profiler_config = ProfilerConfig(

 ## Monitoring interval in milliseconds

 system_monitor_interval_millis=500, ## Start
collecting metrics from step 2 and collect from the next 7
steps.

 framework_profile_params=FrameworkProfile(

 start_step=2,

 num_steps=7

))

Amazon SageMaker Debugger essentials 133

The following table summarizes the tensors and metrics that are collected by SageMaker. It
shows the different types of metrics, examples of each type, and how to collect and use them:

Figure 7.2 – Tensors and metrics collected by SageMaker Debugger

Using these configuration parameters, SageMaker Debugger collects quite a lot of
information about your training jobs. But how do you ensure that the data that's been
collected is secure?

134 Profile Training Jobs with Amazon SageMaker Debugger

A best practice is to encrypt all the data in an S3 bucket, either with a key provided by
AWS or your own key with customer-managed key (CMK). Additionally, the rules
that have been configured are executed on isolated Debugger rule containers. The rule
containers also execute in the same VPC as the training job and use the IAM role that's
used by the training job.

Once you are satisfied with your Debugger configuration, kick off training using
estimator.fit(). Next, we will analyze the information that's collected by the
Debugger during the training job.

Analyzing the collected tensors and metrics
All tensors and metrics that are collected during training are persisted in S3. SageMaker
Debugger uses a trial object to represent a single training run. A trial object consists of
multiple steps, where each step represents a single batch of training data. At each step, a
collected tensor has a specific value.

To access the tensor values, you get the path to the tensors from the estimator, create a
trial, get the list of tensors, find out the steps where you have data for a specific tensor you
are interested in, and view the values of the tensor.

By following this path from the trial to the individual tensor values, you can manually
query the tensor values, as shown in the following code block:

tensors_path = estimator.latest_job_debugger_artifacts_path()

print('S3 location of tensors is: ', tensors_path)

trial.tensor_names()

trial.tensor("feature_importance/cover/f1").values()

You can visualize the tensor values that have been collected even further by using custom
plot code in the notebook. The following diagram shows a visualization of the train-rmse
and validation-rmse training metrics, which were collected during training:

Amazon SageMaker Debugger essentials 135

Figure 7.3 – Training and validation errors

Note that you can also view the visualizations in SageMaker Studio. Additionally, if you
have rules configured, Debugger automatically analyses the tensors to evaluate training
conditions and trigger cloud watch alerts. Similarly, when you set the ProfileConfig
parameter, a detailed profiler report is generated and saved in S3. Next, let's take a look at
how to act on the rule results.

Taking action
Rules evaluate the collected tensor data. As the rule evaluation's status changes during
training, a CloudWatch Event is triggered. You can configure a CloudWatch rule to be
triggered for the CloudWatch Event to automate actions in response to the issues found by
the rules.

136 Profile Training Jobs with Amazon SageMaker Debugger

Additionally, you can use Debugger's built-in actions to automate the responses. The
following code block shows how to use a combination of Debugger's built-in rules
and actions to stop a training job if the loss is not continuously reduced during the
training process:

built_rules=[

 #Check for loss not decreasing during training and stop
the training job.

 Rule.sagemaker(

 rule_configs.loss_not_decreasing(),

 actions = (rule_configs.StopTraining())

)

]

On the other hand, when you have the ProfilerConfig parameter configured, a
profiler report with a detailed analysis of system metrics and framework metrics is
generated and persisted in S3. You can download, review, and apply recommendations to
the profiler report.

In the next two sections, you will learn how to automate responses to rule evaluations and
implement recommendations from the profiler report.

Real-time monitoring of training jobs using
built-in and custom rules
In this section, you will use Debugger capabilities to monitor a job with built-in and
custom rules to detect sub-optimal training conditions such as LossNotDecreasing
and ExplodingGradients.

SageMaker provides a set of built-in rules to identify common training issues such as
class_imbalance, loss_no_decreasing, and overfitting.

Note
The complete list of SageMaker built-in rules can be accessed here:
https://docs.aws.amazon.com/sagemaker/latest/dg/
debugger-built-in-rules.html.

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-built-in-rules.html

Real-time monitoring of training jobs using built-in and custom rules 137

The following code sample shows how to configure built_in rules with SageMaker
Debugger:

#Specify the rules you want to run

built_in_rules=[

 #Check for loss not decreasing during training and stop
the training job.

 Rule.sagemaker(

 rule_configs.loss_not_decreasing(),

 actions = (rule_configs.StopTraining())

),

 #Check for overfit, overtraining and stalled training

 Rule.sagemaker(rule_configs.overfit()),

 Rule.sagemaker(rule_configs.overtraining()),

 Rule.sagemaker(rule_configs.stalled_training_rule())

]

#Create an estimator and pass in the built_in rules.

pt_estimator = PyTorch(

 ...

 rules = built_in_rules

)

After calling fit, SageMaker starts one training job and one processing job for each
configured built-in rule. The rule evaluation status is visible in the training logs in
CloudWatch at regular intervals. You can also view the results of the rule execution
programmatically using the following command:

pt_estimator.latest_training_job.rule_job_summary()

138 Profile Training Jobs with Amazon SageMaker Debugger

The results from the built-in rules that have been configured should be similar to
the following:

Figure 7.4 – Summary of built-in rule execution

By analyzing the rule summary, you can see that the LossNotDecreasing rule is
triggered, as indicated by RuleEvaluationStatus – IssuesFound. Since the
action that's been configured is used to stop the training job, you will notice that the
training job is stopped before all epochs are executed. You can also see that the other
built-in rules – Overfit, Overtraining, and StalledTrainingRule – were
not triggered during training.

Built-in rules are managed by AWS, freeing you from having to manage updates to rules.
You simply plug them into the estimator. However, you may want to monitor a metric
that is not included in the built-in rules, in which case you must configure a custom rule.
A bit more work is involved with custom rules. For example, let's say you want to track if
the gradients are becoming too large during training. To create a custom rule for this, you
must extend the Rule interface provided by SageMaker Debugger.

Note
SageMaker provides two sets of Docker images for rules: one set for evaluating
built-in rules and one set for evaluating custom rules. The Elastic container
registry (ECR) URLs for these Docker images are available at https://
docs.aws.amazon.com/sagemaker/latest/dg/debugger-
docker-images-rules.html.

https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-docker-images-rules.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-docker-images-rules.html
https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-docker-images-rules.html

Real-time monitoring of training jobs using built-in and custom rules 139

In the following example, the custom rule will work with the tensors that were collected
using the gradients collection. The invoke_at_step method provides the logic to
be executed. At each step, the mean value of the gradient is compared against a threshold.
If the gradient value is greater than the threshold, the rule is triggered, as shown in the
following code:

class CustomGradientRule(Rule):

 def __init__(self, base_trial, threshold=10.0):

 super().__init__(base_trial)

 self.threshold = float(threshold)

 def invoke_at_step(self, step):

 for tname in self.base_trial.tensor_
names(collection="gradients"):

 t = self.base_trial.tensor(tname)

 abs_mean = t.reduction_value(step, "mean",
abs=True)

 if abs_mean > self.threshold:

 return True

 return False

Next, define the custom rule, as follows:

custom_rule = Rule.custom(

 name='CustomRule', # used to identify the rule

 # rule evaluator container image

image_uri='759209512951.dkr.ecr.us-west-2.amazonaws.com/
sagemaker-debugger-rule-evaluator:latest', instance_
type='ml.t3.medium', source='rules/my_custom_rule.py', #
path to the rule source file

 rule_to_invoke='CustomGradientRule', # name of the class to
invoke in the rule source file

 volume_size_in_gb=30, # EBS volume size required to be
attached to the rule evaluation instance

 collections_to_save=[CollectionConfig("gradients")],

 # collections to be analyzed by the rule. since this is a
first party collection we fetch it as above

 rule_parameters={

140 Profile Training Jobs with Amazon SageMaker Debugger

 #Threshold to compare the gradient value against

 "threshold": "20.0" }

)

Configure the custom rule in the estimator and call the fit method, as follows:

pt_estimator_custom = PyTorch(

 ….

 ## New parameter

 rules = [custom_rule]

)

estimator.fit(wait = False)

After calling fit, Amazon SageMaker starts one training job and one processing job for
each configured customer rule. The rule evaluation status is visible in the training logs in
CloudWatch at regular intervals. Similar to the rule summary for built_in rules, you
can view the custom rule summary using the following code:

pt_estimator.latest_training_job.rule_job_summary()

Using a combination of built-in and custom rules, you can gain insight into the training
process and proactively stop the training jobs, without having to run an ineffective
training job to completion.

Important note
An example notebook that provides a complete walkthrough of using
SageMaker Debugger's built-in and custom rules is provided in the following
GitHub repository: https://gitlab.com/randydefauw/
packt_book/-/blob/master/CH06/debugger/weather-
prediction-debugger-rules.ipynb.

In this section, you got an inside look at the training process and improved the training
job based on issues that have been detected by built-in and custom rules. In the next
section, you will learn how to gain insight into the infrastructure and framework that's
used for training jobs.

https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/debugger/weather-prediction-debugger-rules.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/debugger/weather-prediction-debugger-rules.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/debugger/weather-prediction-debugger-rules.ipynb

Gaining insight into the training infrastructure and training framework 141

Gaining insight into the training infrastructure
and training framework
In this section, you will learn how to gain visibility into the resource utilization of the
training infrastructure and the training framework. You will also learn how to analyze
and implement recommendations provided by the deep profiler capability of SageMaker
Debugger.

Debugger profiler provides you with visibility into the utilization of the infrastructure
running ML training jobs on SageMaker. Debugger automatically monitors system
resources such as CPU, GPU, network, I/O, and memory. Additionally, Debugger
collects metrics specific to the training framework such as step duration, data loading,
preprocessing, and operator runtime on CPU and GPU. You can decide to profile the
training job in its entirety or just portions of it to collect the necessary framework metrics.

In addition to collecting the system and framework metrics, behind the scenes, Debugger
correlates these metrics automatically, which makes it easy for you to identify possible
resource bottlenecks and perform root cause analysis.

Let's explore this in detail with our example use case – predicting weather using PyTorch.
Here, we will explore the system metrics, the framework metrics that are generated by the
profiler, and look at implementing recommendations made by the profiler. This kind of
deep profiling of training jobs includes the following high-level steps:

1. Training a PyTorch model for weather prediction with Debugger enabled.
2. Analyzing and visualizing the system and framework metrics generated by the

profiler.
3. Analyzing the profiler report generated by SageMaker Debugger.
4. Reviewing and implementing recommendations from the profiler report.
5. Comparing the training jobs.

Let's look at each of these steps in detail.

142 Profile Training Jobs with Amazon SageMaker Debugger

Training a PyTorch model for weather prediction
First, we will train a deep learning model using the PyTorch framework. Because of the
large volumes of data and the deep learning framework, we'll train on GPU instances. We
will train on two ml.p3.2xlarge instances. Our infrastructure configuration will look
as follows:

…

train_instance_type = "ml.p3.2xlarge"

instance_count = 2

Next, let's define ProfilerConfig so that it can collect system and framework metrics:

profiler_config = ProfilerConfig(

 system_monitor_interval_millis=500,

 framework_profile_params=FrameworkProfile(start_step=2,
num_steps=7)

)

Now, we must configure the PyTorch estimator by using the infrastructure and profiler
configuration as parameters:

pt_estimator = PyTorch(

 entry_point="train_pytorch.py",

 source_dir="code",

 role=sagemaker.get_execution_role(),

 instance_count=instance_count,

 instance_type=train_instance_type,

 framework_version="1.6",

 py_version="py3",

 volume_size=1024,

 # Debugger-specific parameters

 profiler_config=profiler_config,

)

Now, let's start the training job with the fit() method:

estimator.fit(inputs, wait= False)

In the next section, you will analyze and visualize the metrics generated by Debugger.

Gaining insight into the training infrastructure and training framework 143

Analyzing and visualizing the system and framework
metrics generated by the profiler
Once the training job starts, Debugger starts collecting system and framework metrics. In
this section, you will learn how to query, analyze, and visualize the collected metrics.

First, let's look at how to analyze the collected metrics manually. The following code block
shows how to query for system metrics:

#All collected metrics are persisted in S3. Define path to the
profiler artifacts

path = estimator.latest_job_profiler_artifacts_path()

#Create a reader for the system metrics

system_metrics_reader = S3SystemMetricsReader(path)

#Get the latest event

last_timestamp = system_metrics_reader.get_timestamp_of_latest_
available_file()

events = system_metrics_reader.get_events(0, last_timestamp *
1000000) # UTC time in microseconds

#Show the first system metric event collected

print(

 "Event name:", events[0].name,

 "\nTimestamp:", timestamp_to_utc(events[0].timestamp),

 "\nValue:", events[0].value,

)

The preceding code block results in the following output, which shows the GPU of one of
the training instances at a particular time:

Event name: gpu2

Timestamp: 2021-07-02 18:44:20

Value: 0.0

The value of 0.0 indicates that this GPU is not being utilized.

Similar to the system metrics, you can review framework metrics as well. The following
code block shows how to query for framework metrics:

#Create a reader for the system metrics

framework_metrics_reader = S3AlgorithmMetricsReader(path)

framework_metrics_reader.refresh_event_file_list()

144 Profile Training Jobs with Amazon SageMaker Debugger

last_timestamp = framework_metrics_reader.get_timestamp_of_
latest_available_file()

events = framework_metrics_reader.get_events(0, last_timestamp)

#We can inspect one of the recorded events to get the
following:

print("Event name:", events[0].event_name,

 "\nStart time:", timestamp_to_utc(events[0].start_
time/1000000000),

 "\nEnd time:", timestamp_to_utc(events[0].end_
time/1000000000),

 "\nDuration:", events[0].duration, "nanosecond")

The preceding code block results in the following, showing one of the framework metrics
at a particular time:

Event name: embeddings.0

Start time: 1970-01-19 19:27:42

End time: 1970-01-19 19:27:42

Duration: 141298 nanosecond

Once the metrics have been collected, you can visualize them using a heat map or custom
plots in the notebook.

Important note
For a more colorful visualization of the heat map and a more in-depth analysis
of system and framework metrics, take a look at the following notebook:
https://gitlab.com/randydefauw/packt_book/-/blob/
master/CH06/weather-prediction-debugger-profiler.
ipynb.

https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/weather-prediction-debugger-profiler.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/weather-prediction-debugger-profiler.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/weather-prediction-debugger-profiler.ipynb

Gaining insight into the training infrastructure and training framework 145

Analyzing the profiler report generated by SageMaker
Debugger
In this section, we will download and review the profiler report that was generated by
Debugger. SageMaker Debugger creates a detailed profiler report and saves it in an S3
bucket at s3://<your bucket> /<job-name>/profiler-output/. You can
download the report directly from S3. In the following list, we will review a few sections of
the downloaded report:

• Training job summary

This section of the report provides a detailed summary of the training job, including
the start and end time of the job and the time that was spent on various phases of
training. The following screenshot shows a sample of the training job's summary:

Figure 7.5 – Training job summary of the profiler report

146 Profile Training Jobs with Amazon SageMaker Debugger

• System metrics summary

This section of the report shows the resource utilization of the training nodes. The
following screenshot shows CPU, GPU, memory utilization, I/O wait time, and the
amount of data that was sent and received:

Figure 7.6 – System metrics summary of the profiler report

Gaining insight into the training infrastructure and training framework 147

• Framework metrics summary

This section of the report starts by showing how much time the training job spent in
the training and validation phases, as well as the time it spent waiting:

Figure 7.7 – Framework metrics summary of the profiler report

148 Profile Training Jobs with Amazon SageMaker Debugger

• Rules summary

As the training job is running, Debugger executes a set of rules to profile the
training process. This section of the profiler report summarizes all the debugger
rules that have been evaluated, the description of the rule, the number of times
each rule was triggered during training, the analysis, and recommendations for
improving the training job. The following screenshot shows the rule summary in
table format:

Figure 7.8 – Rules summary of the profiler report

In addition to directly querying and visualizing the metrics, as well as downloading the
profiler report in your notebook, you can use SageMaker Studio, which provides built-in
visualizations for analyzing profiling insights.

To access Debugger in Studio, follow these steps:

1. On the navigation pane, choose Components and registries.
2. Choose Experiments and trails.
3. Choose your training job (right-click).
4. Choose Debugger Insights from the Debugger tab that opens.

Gaining insight into the training infrastructure and training framework 149

In the Debugger tab, you will see multiple sections. One of these sections is called
Training job summary, as shown in the following screenshot. This built-in visualization
shows training job details, such as the start time, end time, duration, and time spent in
individual phases of training. The pie chart visualization shows the relative time spent by
the training job in the initialization, training, and finalization phases:

Figure 7.9 – Debugger visualization in SageMaker Studio

In this section, we reviewed a few sections of the downloaded profiler report at a high
level. To explore the profiler report in more detail, please run through the notebook in our
Git repository.

Analyzing and implementing recommendations from
the profiler report
Now that we have recommendations from the profiler, let's analyze and implement a
recommendation to see if it leads to an improved training job.

From the rules summary table in the preceding section, we can see that the rule triggered
a maximum number of times during our training is LowGPUUtilization. This rule
indicates that there is a possibility of bottlenecks occurring due to blocking calls and
recommends changing the distributed training strategy or increasing the batch size. The
next rule that was triggered the most times was BatchSize, which indicates that the
GPU utilization could be low because of the smaller batch size.

150 Profile Training Jobs with Amazon SageMaker Debugger

The recommendation from the profiler, based on this rule's execution, is to consider
running on a smaller instance type and to increase the batch size. Let's combine the
profiler recommendations from these two most triggered rules, run two new training jobs
with different settings, and check the profiler reports for the new training jobs to see if
there is any improvement.

We will run the first training job with the same infrastructure, (), but with an increased
batch size, as shown in the following code block:

train_instance_type='ml.p3.2xlarge'

instance_count = 2

hyperparameters = {"batch_size": 1024}

For the next training job, we will use smaller training instances, (), and increase the
batch size:

training_job_name=

train_instance_type='ml.p2.8xlarge'

instance_count = 2

hyperparameters = {"batch_size": 1024}

Using these two different configurations, run two different training jobs using
estimator.fit(). Once the training jobs are complete, download and analyze the two
profiler reports.

Comparing the two training jobs
At this point, we have a total of three completed training jobs with different
configurations. In this section, we'll compare the original training job to the two new
training jobs we configured based on the recommendations from the profiler. When
comparing these jobs, we will focus on the training time and the resulting training costs.
The following table shows the initial and revised training job configurations, along with
the training time, resource utilization, and cost comparisons:

Gaining insight into the training infrastructure and training framework 151

Figure 7.10 – Comparison of training jobs

First, let's compare the original training job with the training job that uses the first
revised training configuration. In the revised training configuration, the batch size is
increased from 64 to 1024. This configuration change decreased the training time by
17637 seconds; that is, from 18262 seconds to 895 seconds. Assuming that the training
jobs were run in the us-west-2 region, the cost of p3.2xlarge is $3.825 at the time of
writing. This leads to a cost saving of 26.67%.

Similarly, if you compare the second revised training configuration, where we updated both
the batch size and instance type to the original, the training time increased but the overall
training cost improved by 65.36%. If you can tolerate a slight increase in the training time,
you can save on training costs by implementing recommendations from the profiler.

Important note
An example notebook that provides a complete walkthrough of using the
SageMaker Debugger profiler is provided in the following GitHub repository:
https://gitlab.com/randydefauw/packt_book/-/blob/
master/CH06/weather-prediction-debugger-profiler.
ipynb.

The results that were discussed in this section are from using the full dataset
for PyTorch training. In the notebook, you will have the chance to explore the
same functionality but with a smaller dataset.

In this section, we implemented a couple of recommendations from the profiler and saw
considerable training improvements. There are still more recommendations that you can
experiment with.

https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/weather-prediction-debugger-profiler.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/weather-prediction-debugger-profiler.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH06/weather-prediction-debugger-profiler.ipynb

152 Profile Training Jobs with Amazon SageMaker Debugger

Additionally, in this section, we focused on how to kick off an estimator with Debugger
enabled. You can also attach a profiler to a running training job using estimator.
enable_default_profiling(). Similarly, to enable Debugger's built-in rules,
system monitoring, and framework profiling with customizable configuration parameters,
use estimator.update_profiler().

Summary
In this chapter, you learned how to use the capabilities of Amazon SageMaker Debugger
to gain visibility of the training process, training infrastructure, and training framework.
This visibility allows you to react to typical training issues such as overfitting, training loss,
and stopping the training jobs from running to completion, only to result in sub-optimal
models. Using recommendations from the deep profiler capabilities of Amazon SageMaker,
you learned how to improve training jobs with respect to training time and costs.

Using the debugger capabilities discussed in this chapter, you can continuously improve
your training jobs by tweaking the underlying ML framework parameters and the training
infrastructure configurations for faster and cost-effective ML training. In the next chapter,
you will learn how to manage trained models at scale.

Further reading
For additional reading material, please review these references:

• Identify bottlenecks, improve resource utilization, and reduce ML training costs
with the deep profiling feature in Amazon SageMaker Debugger:

https://aws.amazon.com/blogs/machine-learning/identify-
bottlenecks-improve-resource-utilization-and-reduce-ml-
training-costs-with-the-new-profiling-feature-in-amazon-
sagemaker-debugger/

• ML Explainability with Amazon SageMaker Debugger:

https://aws.amazon.com/blogs/machine-learning/
ml-explainability-with-amazon-sagemaker-debugger/

https://aws.amazon.com/blogs/machine-learning/identify-bottlenecks-improve-resource-utilization-and-reduce-ml-training-costs-with-the-new-profiling-feature-in-amazon-sagemaker-debugger/
https://aws.amazon.com/blogs/machine-learning/identify-bottlenecks-improve-resource-utilization-and-reduce-ml-training-costs-with-the-new-profiling-feature-in-amazon-sagemaker-debugger/
https://aws.amazon.com/blogs/machine-learning/identify-bottlenecks-improve-resource-utilization-and-reduce-ml-training-costs-with-the-new-profiling-feature-in-amazon-sagemaker-debugger/
https://aws.amazon.com/blogs/machine-learning/identify-bottlenecks-improve-resource-utilization-and-reduce-ml-training-costs-with-the-new-profiling-feature-in-amazon-sagemaker-debugger/
https://aws.amazon.com/blogs/machine-learning/ml-explainability-with-amazon-sagemaker-debugger/
https://aws.amazon.com/blogs/machine-learning/ml-explainability-with-amazon-sagemaker-debugger/

Section 3:
Manage and

Monitor Models

This section addresses the challenges of managing and monitoring a large number of
models, updating models in production with minimal downtime, and choosing an
appropriate deployment strategy for a cost-optimized way to satisfy business goals.

This section comprises the following chapters:

• Chapter 8, Managing Models at Scale Using a Model Registry

• Chapter 9, Updating Production Models Using Amazon SageMaker Endpoint
Production Variants

• Chapter 10, Optimizing Model Hosting and Inference Costs

• Chapter 11, Monitoring Production Models with Amazon SageMaker Model Monitor
and Clarify

8
Managing Models at
Scale Using a Model

Registry
As you begin to deploy multiple models and manage multiple model versions, ensuring
core architectural practices such as governance, traceability, and recoverability are
followed is challenging without using a model registry. A model registry is a central store
containing metadata specific to a model version. It includes information on how the
model was built, the performance of that model, as well as where and how the model
is deployed. Model registry services or solutions often include additional capabilities,
such as approval workflows and notifications.

In this chapter, we'll cover the concept of a model registry and why a model registry is
important for managing multiple models at scale. We'll also outline considerations you
need to make when choosing a model registry implementation, in order to best meet the
needs of your environment and operational requirements. For this, we'll examine two
example implementations of a model registry. These will be a custom-built model registry
using AWS services, as well as SageMaker's implementation (called the SageMaker
model registry).

156 Managing Models at Scale Using a Model Registry

Amazon SageMaker provides a built-in model registry. This is a fully managed model
registry, optimized for use within Amazon SageMaker. However, if the Amazon
SageMaker model registry does not meet your needs, there are several common patterns
utilizing either a custom-built model registry or a third-party solution that also work well
with Amazon SageMaker. Although there are many third-party model registries available
that can be used for SageMaker-trained models, we do not cover them specifically in
this chapter.

In this chapter, we're going to cover the following main topics:

• Using a model registry

• Choosing a model registry solution

• Managing models using the Amazon SageMaker model registry

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have
not set up the data science environment yet, please refer to Chapter 2, Data Science
Environments. This provides a walk-through of the setup process.

Code examples included in the book are available on GitHub at the following URL:
https://github.com/PacktPublishing/Amazon-SageMaker-Best-
Practices/tree/main/Chapter08. You will need to install a Git client to access
them (https://git-scm.com/).

The code for this chapter is in the CH08 folder of the GitHub repository.

Using a model registry
A model registry allows you to centrally track key metadata for each model version.
The granularity of metadata tracked is often dependent on the chosen implementation
(Amazon SageMaker's model registry, a custom solution, or a third-party solution).

Regardless of the implementation, the key metadata to consider includes model version
identifiers, and the following information about each model version registered:

• Model inputs: These include metadata related to the inputs and versions of those
inputs used to train the model. This can include inputs such as the name of the
Amazon S3 bucket storing the training data, training hyperparameters, and the
Amazon Elastic Container Registry (ECR) repository or container image used
for training.

https://git-scm.com/

Using a model registry 157

• Model performance: This includes model evaluation data such as training and
validation metrics.

• Model artifact: This includes metadata about the training model artifact. At
a minimum, this includes the name of the Amazon S3 bucket storing the model
artifact, as well as the name of the object (for example, model.tar.gz).

• Model deployment: This includes metadata relating to the deployment of a model.
This includes information such as the environment(s) a model version is deployed
to, or the inference code that can be used for the registered model.

Amazon SageMaker offers multiple options for training models including built-in
algorithms, built-in frameworks (that is, script mode), and a bring-your-own container.
Depending on the option chosen, the number of inputs required to train a model can
vary. This could impact the metadata you choose to track. As a result, it's important to
determine the minimum requirements of metadata that you need to track in order to meet
any regulatory or internal traceability requirements you may have.

When evaluating levels of granularity, you need to track your use case. Keep in mind the
way your teams are using Amazon SageMaker to build models. Figure 8.1 illustrates an
example of the inputs, metrics, and artifacts to consider for tracking across the SageMaker
options for training models:

Figure 8.1 – Model build metadata across training options

158 Managing Models at Scale Using a Model Registry

Similar considerations exist for tracking and storing model deployment data. The
metadata tracked for model deployments should provide enough information to package
the model for deployment using Amazon SageMaker, to a real-time endpoint, or using
batch transform. This should also allow someone to easily identify where a given model
version is deployed, as well as how it is packaged for deployment and consumption. Figure
8.2 illustrates an example of the inputs, deployment stages, and artifacts to consider for
tracking across the SageMaker options for deploying models:

Figure 8.2 – Model deploy metadata across deployment options

If you had a couple of models to manage, you could potentially track the previous
information using a simple method, such as a spreadsheet. However, as you begin to
scale to 20, 100, or thousands of models, that mechanism for tracking model metadata no
longer scales. Centrally storing and tracking the information (shown in Figures 8.1 and
8.2) for each model version provides the following benefits:

• Operational efficiencies: A model registry provides tracking and visibility into
key inputs used to build a specific model version, output artifacts, and information
about the deployment stages aligned to that version. Having this metadata allows for
the ability to quickly understand how a model was built, how the model performed,
information about the trained model artifact, and also provides the ability to track
the environment(s) a specific version is deployed to.

Choosing a model registry solution 159

• Recoverability: To be able to recover a deployed model or roll back to a previous
version, you need to have visibility to the inputs and input versions used to create
a deployable artifact or a deployed model. In the event of system or human
error, you can recover to a specific point in time using the metadata stored in the
model registry, combined with protected versioned inputs. As an example, if an
administrator were to accidentally delete a model endpoint, it should be easy to
identify the artifacts needed to recreate that endpoint. This can be identified using
metadata stored in the model registry that points to the location of the versioned
model artifact, in combination with the versioned inference container image.

• Pipeline sources and triggers: Often there is a need to bridge the model build
and model deployment environments. This is typical in large enterprises that have
central deployment teams, or in organizations that separate model build and model
deployment roles. A model registry provides a mechanism to capture the minimum
metadata needed for visibility into how a model is built. However, it can also be
used to trigger approval workflows and downstream deployments.

In the next section, we'll cover three patterns for creating a model registry to centrally
track and manage machine learning models at scale. The considerations and high-level
architectures of each will be outlined in order to guide you to the right fit for your specific
use case.

Choosing a model registry solution
There are multiple options available for implementing a model registry. While each
implementation offers different features or capabilities, the concept of providing a central
repository to track key metadata largely remains the same across implementations. In this
section, we'll cover a few common patterns for creating a model registry, as well as discuss
the considerations for each. The patterns covered in this section include the following:

• Amazon SageMaker model registry

• Building a custom model registry

• Utilizing a third-party or open source software (OSS) model registry

160 Managing Models at Scale Using a Model Registry

Amazon SageMaker model registry
The Amazon SageMaker model registry is a managed service that allows you to centrally
catalog models, manage model versions, associate metadata with your model versions, and
manage the approval status of a model version. The service is continuously evolving with
new features, so the information contained in this section is current as of the publication
date. It's always recommended to validate the current features and capabilities with the
official documentation for the Amazon SageMaker model registry (https://docs.
aws.amazon.com/sagemaker/latest/dg/model-registry.html). The
SageMaker model registry is optimized for use in conjunction with Amazon SageMaker
Pipelines and projects; however, it can also be used independently as well.

You can interact with the SageMaker's model registry programmatically, as well as within
Amazon SageMaker Studio. Studio provides a visual interface and experience for version
management. The Studio interface also provides additional search capabilities. These can
be seen in the following screenshot:

Figure 8.3 – The SageMaker Studio interface for the SageMaker model registry

https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-registry.html

Choosing a model registry solution 161

The SageMaker model registry also includes an approval status that can be modified when
a model is approved for production. This could be after a peer or designated deployment
approver reviews the model metadata and metrics as a final quality gate for deployment.
In the following screenshot, you can see how the approval status field integrates natively
with MLOps projects in Amazon SageMaker Pipelines to create automatic triggers based
on a change in model status:

Figure 8.4 – SageMaker model registry – approval status

The main components of the SageMaker model registry include the following:

• Model registry: This is the central store containing model groups and it exists at
the AWS account and AWS region levels. Cross-account privileges can be set up
to interact with the model registry from other AWS accounts.

• Model groups: Model groups are a logical grouping. They allow you to track
different model versions that are related to, or grouped by, the same machine
learning problem.

• Model packages: Model packages are registered models or specific versions
of a model.

162 Managing Models at Scale Using a Model Registry

Figure 8.5 illustrates the main components, where each model version is a model package
contained in a model group inside the model registry:

Figure 8.5 – Amazon SageMaker model registry components and usage

When registering a new model version within a model group, you can use either the AWS
SDK for Python (boto3) with the create_model_package method (https://
boto3.amazonaws.com/v1/documentation/api/latest/reference/
services/sagemaker.html#SageMaker.Client.create_model_
package), or create a step within a model build pipeline, using the RegisterModel
step (https://sagemaker.readthedocs.io/en/stable/workflows/
pipelines/sagemaker.workflow.pipelines.html#pipeline) within
Amazon SageMaker Pipelines. Understanding the ways you can register a model is
important for understanding how you can use the SageMaker model registry outside of
SageMaker Pipelines. It is also important for understanding how you can integrate the
SageMaker model registry into other workflow tooling options you may already be using.

It's possible to register a model as either versioned or unversioned. Model packages that
are versioned are part of a model group, and unversioned model packages are not part of
a model group. The benefit of using a model group, or a versioned model, is the ability
to logically group and manage models that are related, as well as provide the ability to
automatically version models related to a specific machine learning (ML) problem.
It's recommended to register your models using model groups with registered models
that are versioned. This is the default setting.

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model_package
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model_package
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model_package
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sagemaker.html#SageMaker.Client.create_model_package
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#pipeline
https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#pipeline

Choosing a model registry solution 163

A registered model has specific metadata that can be associated with that version. The
metadata is defined and configured by the API request parameters. At high-level, the API
accepts and associates the following key metadata as input:

• Inference specification: A series of parameters that provide detailed information
and guidance on hosting the model for inference. Information passed includes data
such as the Amazon ECR data. This contains the inference code image, the Amazon
S3 bucket containing the trained model artifact, and the supported instance types
when hosting the model for either real-time inference or for batch inference. For
example, if a model requires GPU for inference, that can be captured in the registry.

• Model metrics: Model evaluation metrics across evaluated categories, such as
statistical bias in a model, or model quality.

• Validation specification: Information about the SageMaker batch transform job(s)
that were used to validate the model package (if applicable).

• Algorithm specification: Details about the algorithm(s) used to create the model,
as well as the Amazon S3 bucket containing the trained model artifact.

• Metadata properties: These properties contain metadata for the CodeCommit
commit ID, author of the source, the SageMaker Pipelines project ID, and the
name of the CodeCommit repository. While they are not restricted for use outside
Amazon SageMaker Pipelines, they are direct pointers to SageMaker Pipelines
project resources.

• Model approval status: This parameter is used to indicate whether a model is
approved for deployment. This parameter can be used to manage workflows.
In the case of SageMaker Pipelines projects, the automated workflow triggers are
automatically set up based on the status of this field. If a model status is changed
to approved, a downstream deployment workflow can be triggered.

Amazon SageMaker's model registry is fully managed, meaning there are no servers
to manage. It also natively integrates into SageMaker Pipelines, providing the ability to
integrate directly with the model registry as a native step in your model build pipeline.
It does this using the RegisterModel step.

For example, if you build a model build pipeline that contains the automated steps for data
processing, training, and model evaluation, you can add a conditional step to validate the
evaluation metric. If the evaluation metric is above a specified threshold (for example,
accuracy > 90%), the pipeline can then be configured to automatically register your model.

164 Managing Models at Scale Using a Model Registry

SageMaker's model registry also integrates natively with SageMaker Pipelines projects.
Projects allow you to automatically provision MLOps pipelines and provision patterns that
take advantage of the model registry. SageMaker projects can be used to automatically set
up the model package group, as well as the approval workflows that can be used to trigger
the pre-configured downstream deployment pipeline.

Important note
Amazon SageMaker Pipelines is covered in more detail in Chapter 12, Machine
Learning Automated Workflows. The model registry is a component within
SageMaker Pipelines but can be used independently of SageMaker Pipelines.

Many of the parameters passed as input to the CreateModelPackage API are tailored
for Amazon SageMaker use and integrations with other Amazon SageMaker features.
For example, data that can be associated with model metrics has a direct correlation with
metrics produced with features such as Amazon SageMaker Clarify, model statistical
bias metrics, Amazon SageMaker Model Monitor, and data quality constraint metrics.
In another example, the validation specification relates specifically to a SageMaker batch
transform job run to evaluate the SageMaker model package.

In this section, we reviewed the high-level architecture and usage of the Amazon
SageMaker model registry to provide a basis for comparison against other options that
will be covered in the next sections. Multiple options are being covered in this chapter.
This is in order to support a variety of use cases and to help you choose the right option
for your specific use case.

Building a custom model registry
A model registry can also be built using AWS services. Building a custom registry requires
more effort to build the solution, set up the integrations between AWS services, set up the
ML pipeline integrations, and then manage the solution. However, a custom registry also
offers the ability to completely customize a registry to meet the needs specific to your use
case. This could include requirements specific to tracking more granular metadata,
or requirements to support multiple ML services/platforms. In this section, we'll review
one pattern for creating a custom model registry using AWS services.

The pattern shown in Figure 8.6 illustrates a simple model registry built using Amazon
DynamoDB. DynamoDB can be used to store model metadata using a design pattern
that separates groups of models by partition key. You could also consider a design pattern
establishing a new table for different teams or business units if table-level isolation is
preferred. Controls should also be set up using AWS Identity and Access Management
(IAM) to control access to DynamoDB for specific tables, as well as specific primary keys
to set up controls on who can access specific model groupings:

Choosing a model registry solution 165

Figure 8.6 – Custom-built model registry using AWS services

The schema for a model registry based on DynamoDB provides flexibility in the metadata
that can be stored for each model version. As an example, you may want to track data
versions that correspond to the object(s) in an Amazon S3 bucket. A custom-built model
registry provides the flexibility to define and adjust the schema to meet your individual
requirements for traceability or for more granular metadata tracking.

Interacting with a custom-built model registry can be done through the Amazon
DynamoDB API (PutItem) or through a custom-built API. Using a simple PutItem, API
can often work for smaller teams or teams that perform end-to-end tasks, such as model
building, model deployment, and operating in a production environment. However,
in many cases, a model registry is built as part of a shared service (or ML platform
component) that serves multiple teams and use cases. In this case, it's recommended to
build an API that includes similar controls and validations that are seen in a managed
service, such as SageMaker's model registry.

To extend a custom-built model registry to include workflow tasks, such as triggering
a model deployment pipeline based on a changed attribute, the solution needs to be
extended to set up the trigger to detect a change and then execute any downstream
processes you want to invoke. To do this, you can enable DynamoDB Streams and AWS
Lambda triggers.

In this section, we covered a high-level implementation pattern for creating a custom
model registry using AWS services. This example provides complete flexibility in the
registry schema, data points collected, and in defining the intended usage.

166 Managing Models at Scale Using a Model Registry

As an example, you may have some teams that utilize Amazon SageMaker features,
but other teams that are utilizing other services or even building models on-premises.
Building a custom registry also allows the flexibility to place the model registry in the
AWS account you choose, based on your existing multi-account strategy, and adjust the
schema based on usage.

The pattern discussed also utilizes AWS-managed services, DynamoDB and API Gateway,
meaning there are still no servers to manage. However, this is not a packaged solution.
Therefore, the services need to be set up and configured. Interfacing code may need to
be written, integrations between services need to be set up, and the solution needs to
be managed.

Utilizing a third-party or OSS model registry
Next, we'll briefly cover using a third-party or OSS implementation of a model registry.
Because there are a lot of options available, this section will focus on high-level
considerations, rather than diving deep into any specific implementation. Common
implementations, such as MLflow, have existing documentation provided for integrating
with Amazon SageMaker. Those resources should be utilized when implementing
a third-party/OSS implementation and integrating with Amazon SageMaker.

When considering a third-party or OSS implementation, there are a few questions to
consider when evaluating your options:

• Does the implementation require you to manage the underlying servers, meaning
you need to incur some additional operational overhead to ensure servers are
patched, monitored, scaled, and set up using a readily available architecture?

• Does the implementation offer native integrations that make it easy to integrate with
Amazon SageMaker?

• What additional credentials do you need to set up and manage in order to integrate
with Amazon SageMaker?

Using a third-party or OSS option can add some additional overheads in terms of setup,
integration, and ongoing management. However, many of these implementations offer
robust capabilities, interfaces, and extensibility that may be preferred depending on your
ML environments and use cases.

In this section, we discussed three common patterns for model registry implementations
for use with Amazon SageMaker models. Each pattern can be a valid choice depending
on your requirements. As a result, key considerations for each were discussed to provide
general guidance in order to choose the best implementation.

Managing models using the Amazon SageMaker model registry 167

In general, it is recommended to choose the option that provides the capabilities
you need based on your own requirements, combined with the option that offers the
lowest development and operational overhead. In the next section, we'll narrow the
focus to a technical deep dive into the Amazon SageMaker model registry.

Managing models using the Amazon
SageMaker model registry
An introduction to the Amazon SageMaker model registry was included in the section
titled Amazon SageMaker model registry. This was done in order to explain the high-level
architecture and features that are important to consider when choosing a model registry
implementation. In this section, we'll dive deeper into the Amazon SageMaker model
registry by covering the process and best practice guidance when setting up and using
SageMaker's model registry.

SageMaker's model registry includes the model registry, as well as model groups and
model packages. Each model group contains model versions, or model packages, related
to the same ML problem. Each model package represents a specific version of a model
and includes metadata associated with that version. The SageMaker model registry APIs
are used when interacting with the SageMaker model registry, and those APIs can also be
called through any of the following:

• AWS Command Line Interface (CLI): This uses commands to interact with the
model registry, such as create-model-package-group or create-model-
package commands.

• AWS Python SDK (boto3): This uses methods to interact with the model
registry, such as the create_model_package_group or create_model_
package methods.

• Amazon SageMaker Studio: This uses the click-through interface in SageMaker
Studio (as shown in Figure 8.7) to create a model package group.

• Amazon SageMaker Pipelines: This uses the built-in RegisterModelstep.

168 Managing Models at Scale Using a Model Registry

Figure 8.7 illustrates creating a model package group using the Studio UI:

Figure 8.7 – Using SageMaker Studio to create a new model group

Although you can interact with the model registry using any of the methods listed, in
this chapter we'll cover interacting with the model registry using the AWS Python SDK
(boto3), to showcase a lower level of abstraction that is not dependent on Amazon
SageMaker Studio or Amazon SageMaker Pipelines.

In this section, you learned more about the primary components of the SageMaker model
registry, as well as the different ways you can interact with the model registry either
programmatically or via the Studio UI.

Managing models using the Amazon SageMaker model registry 169

Creating a model package group
A model package group contains a collection of model packages or model versions.
A model package group is not required for registering a model package; however, it is
recommended for the manageability of your model versions across ML use cases. A model
package group can contain one or more model packages.

Creating a model package group involves a method that accepts only a few parameters on
input to configure, as follows:

import time

model_package_group_name = "air-quality-" + str(round(time.
time()))

model_package_group_input_dict = {

"ModelPackageGroupName" : model_package_group_name,

"ModelPackageGroupDescription" : "model package group for air
quality models",

"Tags": [

 {

 "Key": "MLProject",

 "Value": "weather"

 }

]

}

create_model_pacakge_group_response = sm_client.create_model_
package_group(**model_package_group_input_dict)

print('ModelPackageGroup Arn : {}'.format(create_model_pacakge_
group_response['ModelPackageGroupArn']))

The preceding code is used to create a model package group that can then be used by
ML builders, as well as with ML pipelines to register model packages (versions) for
deployment. Configuration for a model package group requires only a model package
group name and optionally a description and any tags you want to associate with the
model group.

170 Managing Models at Scale Using a Model Registry

Recommendations when creating model package groups include the following:

• Establishing naming standards for model package groups: As the number of
model package groups grows, having clear naming standards can help with easily
identifying and searching for related model package groups. Some considerations
may include a team identifier and/or project identifier. Because it's common to
have more than one team working on models, a team identifier can help easily sort
and search for models specific to a given team. It's also common to have more than
one model used in an overall solution. In this case, it is valuable to have a way to
group models related to a specific project or solution. This can be done through
established naming conventions, as well as tagging.

• Utilizing tags for fine-grained access: In the preceding example, a tag of
MLProject is created with the value of weather. In this case, let's assume
a weather team is responsible for building weather-related models and only team
members belonging to the weather team should be able to view model package
groups with this tag. Resource tags can be used to establish conditional policies
for access.

Creating a model package
A model package is a model version that can exist outside of a model package group,
referred to as unversioned, or inside a model package group, referred to as versioned.
A model package outside of a model package group is referred to as unversioned because
it's not using the versioning capabilities of a model package group. It's recommended to
register model packages using model package groups for automatic management of model
versions, and for added manageability as the number of model versions increases.

Important note
Amazon SageMaker has two concepts called model package. The two are
independent of each other. The first example is a model package that is created
to package a model for deployment using the CreateModel API. This is
required to deploy your model using Amazon SageMaker and is discussed in
the Amazon SageMaker documentation (https://docs.aws.amazon.
com/sagemaker/latest/dg/sagemaker-mkt-model-pkg-
model.html). The second example, and the one we refer to in this chapter,
is a model package specifically for Amazon SageMaker's model registry that is
created using the CreateModelPackage API.

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-mkt-model-pkg-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-mkt-model-pkg-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-mkt-model-pkg-model.html

Managing models using the Amazon SageMaker model registry 171

The CreateModelPackage API accepts several parameters on input. The high-level
parameter categories were already covered in the section titled Amazon SageMaker model
registry, so in this section, we'll include an example that uses those parameters to then
register a model using our sample use case. In Chapter 12, Machine Learning Automated
Workflows, we'll again discuss the model registry in the context of an ML pipeline, to
demonstrate how a model registry can be integrated into your automated workflows. For
now, we'll focus on registering a model package as an indication that it has passed initial
model validation outside of a pipeline workflow.

In this case, the model has been trained and we've evaluated the training metrics. Once
our model reaches the minimum threshold identified for our evaluation metric, we are
ready to register the model package. Using the AWS Python SDK (boto3), we'll register
the model package, as shown in the following code:

modelpackage_inference_specification = {

 "InferenceSpecification": {

 "Containers": [

 {

 "Image": xgboost_container,

 "ModelDataUrl": model_url

 }

],

 "SupportedContentTypes": ["text/csv"],

 "SupportedResponseMIMETypes": ["text/csv"],

 }

}

create_model_package_input_dict = {

 "ModelPackageGroupName" : model_package_group_name,

 "ModelPackageDescription" : "Model to predict air
quality ratings using XGBoost",

 "ModelApprovalStatus" : "PendingManualApproval"

}

create_model_package_input_dict.update(modelpackage_inference_
specification)

create_mode_package_response = sm_client.create_model_
package(**create_model_package_input_dict)

model_package_arn = create_mode_package_
response["ModelPackageArn"]

172 Managing Models at Scale Using a Model Registry

print('ModelPackage Version ARN : {}'.format(model_package_
arn))

ModelPackageGroupName is required to associate the model package with a model
package group. This allows you to take advantage of automatic versioning, as
previously discussed.

The model packages can then be viewed using the list_model_packages method,
as well as within Amazon SageMaker Studio. To list the model package, use the
following code:

sm_client.list_model_packages(ModelPackageGroupName=model_
package_group_name)

Recommendations when creating model packages include the following:

• Creating versioned packages: Associate model packages with a model group by
specifying the model package group when you create your model package. This
allows for automatic versioning and grouping of use cases for easier management.

• Using model approval status: The optimal use of the model approval status field
is to allow for peer reviews and trigger downstream deployment workflows using
Amazon SageMaker projects. However, even without the use of Amazon SageMaker
projects, the same field can be used to ensure data used to register a model passes
a minimum set of criteria. For example, if there is a team standard to include
explainability metrics for a registered model, then that ApprovalStatus can
optionally be used after a peer review of the registered model to indicate minimum
standards or criteria have been met for that model.

• Protecting the inputs/artifacts referred to in the model registry: Details
contained in the model registry can be used to recreate or roll back deployed
models; however, those resources need to be protected from unauthorized access
or accidental deletion. For example, if an administrator accidentally deletes
a SageMaker endpoint, it can still be easily recreated using the resources identified
in the model registry. This would include the S3 object containing the model
artifact, the S3 object with inference code (optional), and the ECR inference image.
If any of those inputs are not available or cannot be guaranteed, then re-creating
that endpoint may not be possible. Therefore, the metadata gives the information
required, but there are still additional steps needed to protect inputs and artifacts.

Summary 173

• Considering tags when additional metadata is needed: The metadata within
SageMaker's model registry is fixed to the input parameters that are defined in the
API. However, tags can be used to supplement additional metadata. An example of
the recommended use of tags here would be to capture the S3 version for resources
such as the model artifact, in order to include more granularity on artifact tracking.

• Utilizing tags for fine-grained access: In the preceding example, a tag of
MLProject is created with the value of weather. In this case, let's assume
a weather team is responsible for building weather-related models and only team
members from this team should be able to register new models to this model
package group or other model package groups created with this tag. Resource tags
can be used to establish conditional policies for access, in order to create model
packages within specific model package groups. Resource tags can be used to
establish conditional policies for access.

In this section, we detailed the steps necessary to create a model package group and
register model packages to that model package group using the sample code provided
for this chapter. We also outlined recommendations to consider when creating your own
model package groups and model packages. Chapter 12, Machine Learning Automated
Workflows, will expand on the information covered in this chapter to include integrating
Amazon SageMaker's model registry into an MLOps pipeline.

Summary
In this chapter, we covered model registries and the benefits of utilizing a model registry
to manage Amazon SageMaker models at scale. Common patterns for model registry
implementations were covered, including Amazon SageMaker's model registry, building
a custom model registry using AWS services, and utilizing a third-party or OSS model
registry implementation. Each option is a valid choice depending on your use case and
needs. However, we also highlighted some of the considerations when choosing the
implementation that best fits your requirements.

Finally, we did a deep dive into Amazon SageMaker's model registry, covering detailed
recommendations for creating model package groups, as well as registering models by
creating model packages.

In the next chapter, we'll cover performing live tests and updates of production models
using Amazon SageMaker endpoint production variants.

9
Updating Production

Models Using
Amazon SageMaker

Endpoint Production
Variants

A deployed production model needs to be updated for a variety of reasons, such as to gain
access to new training data, to experiment with a new algorithm and hyperparameters, or
to model predictive performance deteriorating over time. Any time you update a model
with a new version in production, there is a risk of the model becoming unavailable during
the update and the model's quality being worse than the previous version. Even after
careful evaluation in the development and QA environments, new models need additional
testing, validation, and monitoring to make sure they work properly in production.

176 Updating Production Models Using Amazon SageMaker Endpoint Production Variants

When deploying new versions of models into production, you should carefully consider
reducing deployment risks and minimizing downtime for the model consumers. It is also
important to proactively plan for an unsuccessful model update and roll back to a previous
working model. Replacing an existing model with a newer model should, ideally, not cause
any service interruptions to the model's consumers. Model consumers may be applications
that are internal to your organization or external, customer-facing applications.

This chapter will address the challenge of updating production models with minimal
disruption for model consumers using Amazon SageMaker Endpoint Production
Variants. You will learn how to use SageMaker Endpoint Production Variants to
implement Standard deployment and advanced model deployment strategies such as A/B
testing, Blue/Green, Canary, and Shadow deployments, which balance cost with model
downtime and ease of rollbacks.

By the end of this chapter, you will be able to implement multiple deployment strategies
for updating production machine learning models. You will learn when and how to
use live production traffic to test new model versions. You will also learn about the best
practices for balancing cost, availability, and reducing risk while choosing the right
deployment strategy for your use case.

In this chapter, we are going to cover the following main topics:

• Basic concepts of Amazon SageMaker Endpoint Production Variants

• Deployment strategies for updating ML models with Amazon SageMaker Endpoint
Production Variants

• Selecting an appropriate deployment strategy

Technical requirements 177

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have
not set up the data science environment yet, please refer to Chapter 2, Data Science
Environments, which provides a walk-through of the setup process.

The code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter09. You will need to install a Git client to access them (https://git-scm.
com/).

Basic concepts of Amazon SageMaker
Endpoint Production Variants
In this section, you will review the basics of deploying and updating ML models using
SageMaker Endpoint Production Variants. There are two ways you can deploy a machine
learning model using SageMaker: by using a real-time endpoint for low latency live
predictions or a batch transform for making asynchronous predictions on large numbers
of inference requests. Production Variants can be applied to real-time endpoints.

Deploying a real-time endpoint involves two steps:

1. Creating an Endpoint Configuration

An endpoint configuration identifies one or more Production Variants. Each
production variant indicates a model and infrastructure to deploy the model on.

2. Creating an Endpoint Pointing to the Endpoint Configuration

Endpoint creation results in an HTTPS endpoint that the model consumers can use
to invoke the model.

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter09
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter09
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter09
https://git-scm.com/
https://git-scm.com/

178 Updating Production Models Using Amazon SageMaker Endpoint Production Variants

The following diagram shows two different endpoint configurations with Production
Variants. Endpoint 1 has a single model called model_1 that's deployed on an ml.m4.
xlarge instance; all inference traffic is served by this single model. Endpoint 2 is
deployed with two models called model_1 and model_2 on ml.m4.xlarge and
ml.m4.2xlarge, respectively. Both models serve the inference requests equally because
they have the same initial_weight configuration:

Figure 9.1 – Endpoint configurations with Production Variants

When an endpoint has been configured with multiple Production Variants, how do you
know which model is serving the inference requests? There are two ways to determine
this:

• First, the initial_weight parameter of the production variant determines the
relative percentage of the requests served by the model specified by that variant.

• Second, the inference request may also include the model variant to invoke.

Basic concepts of Amazon SageMaker Endpoint Production Variants 179

The following diagram shows these two ways of invoking the endpoint

Figure 9.2 – Two ways to invoke SageMaker Endpoint

As the SageMaker Endpoints are serving inference traffic, they are monitored using
Amazon CloudWatch Metrics. Use the EndpointName and VariantName dimensions
to monitor metrics for each distinct production variant of the same endpoint. The
Invocations metric captures the number of requests that are sent to a model, as
indicated by the production variant. You can use this metric to monitor the number of
requests that are served by different models and deployed with a single endpoint.

The following diagram shows a comparison of the Invocations metrics that have been
captured for an endpoint that's been configured with two Production Variants. The first
chart shows the number of invocations per production variant when the initial weights are
set to 1 and 1. In this case, each variant serves a similar number of requests. The second
chart shows the same metric with the initial weights of 2 and 1. As you can see, the
number of requests that are served by variant 1 is double the number of requests that are
served by variant 2:

Figure 9.3 – Invocations of SageMaker Endpoint Production Variants

180 Updating Production Models Using Amazon SageMaker Endpoint Production Variants

While the Invocations metric is intuitively easy to understand, there are other
CloudWatch metrics such as Latency and Overhead that you can use to monitor,
compare, and contrast multiple endpoints and multiple Production Variants of a
single endpoint.

Note
For a full list of CloudWatch Metrics for Amazon SageMaker, please see
https://docs.aws.amazon.com/sagemaker/latest/dg/
monitoring-cloudwatch.html#cloudwatch-metrics-
endpoint-invocation.

Similar to Production Variants, SageMaker multi-model endpoints (MME) also allow
us to host multiple models on a single endpoint. If that is the case, how are Production
Variants different from multi-model endpoints?

With an MME, all models are hosted on the same compute infrastructure. However,
not all the models are loaded into the container memory when the endpoint is created.
Instead, the model is loaded into memory when an inference request is made. Each
inference request must specify the model to invoke. The invoked model is then loaded
into memory from the S3 bucket if it is not already in memory. Depending on the
invocation pattern, a model that hasn't been invoked recently may not be in memory. This
could result in increased latency when serving the request. When you have a large number
of similar ML models that are infrequently accessed and can tolerate slightly increased
latency, then a single MME can serve inference traffic at significantly low costs.

On the other hand, with Production Variants, each model is hosted on a completely
different compute infrastructure, and all the models are readily available without having
to be loaded into container memory on demand. Each inference request may or may
not specify the variant to invoke. If the variant to invoke is not specified, the number of
inference requests that are served by each variant depends on the initial_weight
parameter of the production variant. In the context of model deployment, use Production
Variants to test different versions of ML models that have been trained using different
datasets, algorithms, and ML frameworks or to test how a model performs on different
instance types.

In the next section, you will learn how to use Production Variants in various deployment
strategies. As we discuss these various deployment strategies, we will focus on what it
takes to update an existing production model deployed as a real-time SageMaker endpoint
using Production Variants.

https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-endpoint-invocation
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-endpoint-invocation
https://docs.aws.amazon.com/sagemaker/latest/dg/monitoring-cloudwatch.html#cloudwatch-metrics-endpoint-invocation

Deployment strategies for updating ML models with SageMaker Endpoint Production Variants 181

Deployment strategies for updating ML
models with SageMaker Endpoint
Production Variants
In this section, we will dive into multiple deployment strategies you can adopt to update
production models using SageMaker Endpoint Production Variants. While some
deployment strategies are easy to implement and are cost-effective, others add complexity
while lowering deployment risks. We will dive into five different strategies, including
Standard, A/B, Blue/Green, Canary, and Shadow deployments, and discuss the various
steps involved in each approach.

Standard deployment
This strategy is the most straightforward approach to deploying and updating models in
production. In a Standard model deployment, there is always a single active SageMaker
endpoint, and the endpoint is configured with a single production variant, which means
only a single model is deployed behind the endpoint. All inference traffic is processed
by a single model. The endpoint configuration is similar to Endpoint Configuration
1 in Figure 9.1 in the previous section. The following code block shows how to create
a production variant. The production variant, variant1, hosts model_name_1
on a single ml.m5.xlarge instance and serves all inference traffic, as indicated by
initial_weight=1:

Create production variant

from sagemaker.session import production_variant

variant1 = production_variant(model_name=model_name_1,

 instance_type="ml.m5.xlarge",

 initial_instance_count=1,

 variant_name='VariantA',

 initial_weight=1)

The following code block shows how to create an endpoint from the production variant.
endpoint_from_production_variants automatically creates an endpoint_
configuration with the same name as endpoint_name:

Create the endpoint with a production variants

from sagemaker.session import Session

#Variable for endpoint name

endpoint_name=f"abtest-{datetime.now():%Y-%m-%d-%H-%M-%S}"

182 Updating Production Models Using Amazon SageMaker Endpoint Production Variants

smsession = Session()

smsession.endpoint_from_production_variants(

 name=endpoint_name,

 production_variants=[variant1]

)

To update the endpoint with a newer version of the model, create a new endpoint
configuration specifying the new model and infrastructure to deploy the model on. Then,
update the endpoint with a new endpoint configuration. The following code block shows
the code for updating the endpoint with the new model version:

#Create production variant 2

variant2 = production_variant(model_name=model_name_2,

 instance_type="ml.m5.xlarge",

 initial_instance_count=1,

 variant_name='Variant2',

 initial_weight=1)

#Create a new endpoint configuration

endpoint_config_new =f"abtest-b-config-{datetime.now():%Y-%m-
%d-%H-%M-%S}"

smsession.create_endpoint_config_from_existing (

 existing_config_name=endpoint_name,

 new_config_name=endpoint_config_new,

 new_production_variants=[variant2]

)

##Update the endpoint to point to the new endpoint
configuration

smsession.update_endpoint(

 endpoint_name=endpoint_name, endpoint_config_name=endpoint_
config_new, wait=False)

SageMaker automatically creates and manages the infrastructure necessary for the new
production variant and routes the traffic to the new model without any downtime. All
inference traffic is now served by the new model. The following diagram shows the steps
involved in updating a deployed model:

Deployment strategies for updating ML models with SageMaker Endpoint Production Variants 183

Figure 9.4 – Standard deployment with SageMaker Endpoint Production Variants

To roll back, simply update the endpoint with the original endpoint configuration, as
represented by Step 1. As you can see, inference traffic is served by either the old version of
the model or the new version at all times.

One benefit of this approach is that it is a simple, straightforward way to update an
endpoint with a new model. When the endpoint is updated with the new endpoint
configuration, SageMaker switches the inference requests to the new model while keeping
the endpoint InService. This means that the model consumer does not experience
any disruption to the service. This is also a cost-effective strategy for updating a real-time
endpoint since you only pay for the infrastructure hosting a single model.

On the other hand, model evaluation and testing happen in non-production environments
such as the QA or staging environments with test data. Since the new model is not tested
in a production environment, it will face the production data volume and live traffic on
the new infrastructure for the first time in production. This could lead to unforeseen
complications, either with the model hosting the infrastructure or the model's quality.

Note
While evaluating the model in staging environments, it is recommended that
you perform load testing to validate that the model can handle the traffic with
acceptable latency before moving to production.

Refer to https://aws.amazon.com/blogs/machine-
learning/load-test-and-optimize-an-amazon-
sagemaker-endpoint-using-automatic-scaling/ to learn
how to load test an endpoint using autoscaling and serverless-artillery.

https://aws.amazon.com/blogs/machine-learning/load-test-and-optimize-an-amazon-sagemaker-endpoint-using-automatic-scaling/
https://aws.amazon.com/blogs/machine-learning/load-test-and-optimize-an-amazon-sagemaker-endpoint-using-automatic-scaling/
https://aws.amazon.com/blogs/machine-learning/load-test-and-optimize-an-amazon-sagemaker-endpoint-using-automatic-scaling/

184 Updating Production Models Using Amazon SageMaker Endpoint Production Variants

Use Standard deployment if the model consumer is risk- and failure-tolerant, such as
an internal application that can re-execute the predictions in case of failures. For
example, an internal model that predicts employee turnover is a good candidate for
Standard deployment.

Since only one model is serving inference requests at a time, this strategy is not suitable
for comparing different models. If you are experimenting with different features,
multiple algorithms, or hyperparameters, you want to be able to compare the models in
production. The next deployment strategy helps with this need.

A/B deployment
In the Standard deployment, you have a single endpoint in the production environment
with no scope for testing or evaluating the model in production. On the other hand,
an A/B deployment strategy is focused on experimentation and exploration, such as
comparing the performance of different versions of the same feature.

In this scenario, the endpoint configuration uses two Production Variants: one for model A
and one for model B. For a fair comparison of the two models, initial_weight of the
two production variants should be the same so that both models handle the same amount
of inference traffic. Additionally, make sure the instance type and instance count are also
the same. This initial setting is necessary so that neither version of the model is impacted
by a difference in traffic patterns or a difference in the underlying compute capacity.

The following code blocks shows how to create and update an endpoint for
A/B deployments.

First, create production variant A:

#Create production variant A

variantA = production_variant(model_name=model_name_1,

 instance_type="ml.m5.xlarge",

 initial_instance_count=1,

 variant_name='VariantA',

 initial_weight=1)

Then, create an endpoint with one production variant, which initially serves
production traffic:

#Variable for endpoint name

endpoint_name=f"abtest-{datetime.now():%Y-%m-%d-%H-%M-%S}"

#Create an endpoint with a single production variant

Deployment strategies for updating ML models with SageMaker Endpoint Production Variants 185

smsession.endpoint_from_production_variants(

 name=endpoint_name,

 production_variants=[variantA]

)

When you are ready to test the next version of the model, create another production
variant and update the endpoint so that it includes two Production Variants:

#Create production variant B

variantB = production_variant(model_name=model_name_2,

 instance_type="ml.m5.xlarge",

 initial_instance_count=1,

 variant_name='VariantB',

 initial_weight=1)

##Next update the endpoint to include both production variants

endpoint_config_new =f"abtest-new-config-{datetime.now():%Y-%m-
%d-%H-%M-%S}"

smsession.create_endpoint_config_from_existing (

 existing_config_name=endpoint_name,

 new_config_name=endpoint_config_new,

 new_production_variants=[variantA,variantB] ## Two
production variants

)

##Update the endpoint

smsession.update_endpoint(endpoint_name=endpoint_name,
endpoint_config_name=endpoint_config_new, wait=False)

To invoke the endpoint, use the invoke_endpoint() API, as shown in the following
code. The result of using the invoke_endpoint() API consists of the variant name
that serves each specific request:

result = smrt.invoke_endpoint(EndpointName=endpoint_name,

 ContentType="text/csv",

 Body=test_string)

186 Updating Production Models Using Amazon SageMaker Endpoint Production Variants

rbody = \ StreamingBody(raw_stream=result['Body'],content_
length=int(result['ResponseMetadata']['HTTPHeaders']['content-
length']))

print(f"Result from {result['InvokedProductionVariant']} =
{rbody.read().decode('utf-8')}")

The output from the endpoint should look similar to the following:

Result from VariantA = 0.17167794704437256

Result from VariantB = 0.14226064085960388

Result from VariantA = 0.10094326734542847

Result from VariantA = 0.17167794704437256

Result from VariantB = 0.050961822271347046

Result from VariantB = -0.2118145227432251

Result from VariantB = 0.16735368967056274

Result from VariantA = 0.17314249277114868

Result from VariantB = 0.16769883036613464

Result from VariantA = 0.17314249277114868

You can collect and examine results from VariantB. You can explore the CloudWatch
metrics for VariantB even further as well, as explained in the Basic concepts of
Amazon SageMaker Endpoint Production Variants section. Once you are happy with the
performance of VariantB, gradually shift the balance toward the new model (40/60,
20/80) until your new model is processing all the live traffic. The following code block
shows how to route 60% of live traffic to VariantB:

#Update the product variant weight to route 60% of traffic to
VariantB

sm.update_endpoint_weights_and_capacities(

 EndpointName=endpoint_name,

 DesiredWeightsAndCapacities=[

 {"DesiredWeight": 4, "VariantName":
variantA["VariantName"]},

 {"DesiredWeight": 6, "VariantName":
variantB["VariantName"]},

],

)

Deployment strategies for updating ML models with SageMaker Endpoint Production Variants 187

Alternatively, you can choose to update the endpoint to route all live traffic to VariantB
in a single step, as shown in the following code block:

##Update the endpoint to point to VariantB

endpoint_config_new =f"abtest-b-config-{datetime.now():%Y-%m-
%d-%H-%M-%S}"

smsession.create_endpoint_config_from_existing (

 existing_config_name=endpoint_name,

 new_config_name=endpoint_config_new,

 new_production_variants=[variantB]

)

##Update the endpoint

smsession.update_endpoint(endpoint_name=endpoint_name,
endpoint_config_name=endpoint_config_new, wait=False)

The following diagram shows the steps involved in updating a deployed model. To roll
back, simply update the endpoint with the original endpoint configuration, as represented
by Step 1:

Figure 9.5 – A/B deployment with SageMaker Endpoint Production Variants

188 Updating Production Models Using Amazon SageMaker Endpoint Production Variants

The benefits of this strategy are that it is well-understood and that SageMaker makes
it simple to implement this strategy by managing traffic routing. Since the new model
is evaluated in production with an increased percentage of live traffic on the new
infrastructure, the risk of the model becoming unavailable to the model consumer
during the update, or the model quality being worse than it was in the previous version,
is reduced. This addresses the typical deployment issue of the model worked perfectly in
the dev/QA environment, so I'm not sure why it is failing in production. However, since two
Production Variants are active for a certain period, the cost increases as you are paying for
two sets of infrastructure resources.

Note
A relatively recent type of A/B testing that's gaining popularity is Multi-Arm
Bandits (MAB). MAB is a machine learning-based approach that learns from
the data that's collected during testing. Using a combination of exploration
and exploitation, MAB dynamically shifts traffic to better-performing model
variants much sooner than a traditional A/B test.

Refer to https://aws.amazon.com/blogs/machine-
learning/power-contextual-bandits-using-continual-
learning-with-amazon-sagemaker-rl/ to learn how to use
Amazon SageMaker RL to implement MAB to recommend personalized
content to users.

While the A/B strategy is helpful with experimentation and exploration, what about
releasing major changes to your models? Is there a way to reduce the risk further? Blue/
Green deployments can help with this.

Blue/Green deployment
The Blue/Green deployment strategy involves two identical production environments,
one containing the current model and another containing the next version of the model
that you want to update to. While one environment, say Blue, is serving live traffic, the
next version of the model is tested in the Green environment. While model testing is
happening in production, only test or synthetic data is used. The new model version
should be tested against functional, business, and traffic load requirements.

Once you are satisfied with the test results over a certain period, update the live endpoint
with the new (Green) endpoint configuration. Validate the tests again with the Green
endpoint configuration using live inference traffic. If you find any issues during this testing
period, route the traffic back to a Blue endpoint configuration. After a while, if there are no
issues with the new model, go ahead and delete the Blue endpoint configuration.

https://aws.amazon.com/blogs/machine-learning/power-contextual-bandits-using-continual-learning-with-amazon-sagemaker-rl/
https://aws.amazon.com/blogs/machine-learning/power-contextual-bandits-using-continual-learning-with-amazon-sagemaker-rl/
https://aws.amazon.com/blogs/machine-learning/power-contextual-bandits-using-continual-learning-with-amazon-sagemaker-rl/

Deployment strategies for updating ML models with SageMaker Endpoint Production Variants 189

The following diagram shows the steps involved in updating a deployed model:

Figure 9.6 – Blue/Green deployment with SageMaker Endpoint Production Variants

The advantage of this approach is that before serving live traffic, the new model is
evaluated in the production environment. Both the model itself and the infrastructure
hosting the model are evaluated and thereby risk is reduced. However, since two identical
production environments are active for a while, the cost of this option could double
compared to the strategies we've discussed so far. This option also loses the advantage of
SageMaker managing the routing logic.

In this strategy, while the model is evaluated in production, testing still involves synthetic
traffic. Synthetic data can simulate the production volumes, but it is not trivial to reflect
the live data patterns. What if you want to test the new model with live traffic? Canary
deployment is the strategy that allows you to do this.

190 Updating Production Models Using Amazon SageMaker Endpoint Production Variants

Canary deployment
In a Canary deployment, the setup is very similar to Blue/Green deployments, with two
different production environments hosting the old and new models. However, instead of
using synthetic test data with a new model, you use a portion of the live traffic. Initially, a
small portion of the inference traffic from the model consumer will be served by the new
model. The rest of the inference requests continue to use the previous version. During the
testing phase, the designated set of users using the new model should remain the same,
and this requires stickiness. When you are satisfied with the new model, gradually increase
the percentage of requests that are sent to the new model, until all live traffic is served by
the new model. Finally, the old model can be deleted.

Unlike the other strategies we've discussed so far, switching between the two different
environments is not implemented by SageMaker. To make the switch between the
environments completely transparent to the model consumer, a switching component
must be used between the consumer and the endpoints. Examples of switching
components include load balancers, DNS routers, and more.

The following diagram shows the steps involved in updating a deployed model using
this strategy:

Figure 9.7 – Canary deployment with SageMaker Endpoint Production Variants

As with the Blue/Green deployments, the advantage of this approach is that risk to the
model consumers is reduced as the new model is tested in the production environment.
Additionally, the model is gradually exposed to live traffic instead of a sudden switch. But
this strategy does require you to manage the logic of gradually increasing traffic for the
new model. Additionally, since two identical production environments are active for a
certain period, the cost of this option is also significantly higher.

Deployment strategies for updating ML models with SageMaker Endpoint Production Variants 191

Shadow deployment
In a Shadow deployment, the setup is, once again, very similar to a Canary deployment
in that two different production environments are hosting the old and new models, and
inference traffic is sent to both. However, only responses from the old model are sent back
to the model consumer.

The traffic that's sent to the old model is collected and also sent to the new model, either
immediately or after a delay. While the production traffic is sent to the new model as well
as the old, the output from the new model is only captured and stored for analysis, not
sent to model consumers. The new model should be tested against functional, business,
and traffic load with the live traffic. The following diagram shows the steps involved in
updating a model that's been deployed using this strategy:

Figure 9.8 – Shadow deployment with SageMaker Endpoint Production Variants

As with the Canary deployments, the advantage of this approach is that all risks to the
model consumers are reduced as the new model is tested in the production environment.

 Note
An example notebook that demonstrates the end-to-end A/B deployment
strategy is provided in the following GitHub repository. You can use this as
a starting point for implementing other deployment strategies: https://
gitlab.com/randydefauw/packt_book/-/blob/main/
CH09/a_b_deployment_with_production_variants.ipynb.

Now that you know about the multiple deployment strategies you can use to update
production models, in the next section, we will discuss how to select a strategy to meet
your specific requirements.

https://gitlab.com/randydefauw/packt_book/-/blob/main/CH09/a_b_deployment_with_production_variants.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH09/a_b_deployment_with_production_variants.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH09/a_b_deployment_with_production_variants.ipynb

192 Updating Production Models Using Amazon SageMaker Endpoint Production Variants

Selecting an appropriate deployment strategy
As you have seen so far, the initial deployment of a machine model is only one step of
making it available to consumers. New versions of models are built regularly. Before
making the new models available to the consumers, the model quality and infrastructure
that's needed to host the model should be evaluated carefully. There are multiple factors
to consider when selecting the deployment strategy to initially deploy and continue to
update models. For example, not all models can be tested in production due to budget
and resource constraints. Similarly, some model consumers can tolerate the model being
unavailable for certain periods.

This section will summarize the deployment strategies you can use to deploy and update
real-time SageMaker Endpoints. You will get an idea of the pros and cons for each
strategy, in addition to when should it be used.

Selecting a standard deployment
Model consumers are not business or revenue critical and are risk-tolerant. For example, a
company's internal employee attrition prediction models are not time-critical and can be
re-executed on errors:

Figure 9.9 – Pros and cons of a standard deployment

Selecting an appropriate deployment strategy 193

Selecting an A/B deployment
You should use A/B deployments to explore the effect different sets of hyperparameters
have on model quality, new or different slices of the training dataset, and different feature
engineering techniques:

Figure 9.10 – Pros and cons of A/B deployment

Selecting a Blue/Green deployment
You should use this deployment with mission-critical model consumers, such as
e-commerce applications, that are sensitive to model downtime:

Figure 9.11 – Pros and cons of Blue/Green deployment

194 Updating Production Models Using Amazon SageMaker Endpoint Production Variants

Selecting a Canary deployment
You should use this deployment with mission-critical model consumers, such as financial
services models, that are not risk-tolerant:

Figure 9.12 – Pros and cons of a Canary deployment

Selecting a Shadow deployment
You should use this deployment with mission-critical model consumers, such as financial
services models, that are not risk-tolerant:

Figure 9.13 – Pros and cons of Shadow deployment

You should choose an appropriate model strategy using the trade-offs discussed in the
preceding subsections for ease of implementation, acceptable model downtime, the risk
tolerance of the consumers, and the costs that must be taken into account for you to meet
your needs.

Summary
In this chapter, we reviewed the reasons we should update production ML models. You
learned how to use Production Variants to host multiple models using a single SageMaker
Endpoint. You then learned about multiple deployment strategies that balance the cost
and risk of model updates with ease of implementation and rollbacks. You also learned
about the various steps involved and the configurations to use for Standard, A/B, Blue/
Green, Canary, and Shadow deployments.

This chapter concluded with a comparison of the pros and cons and the applicability of
each deployment strategy to specific use cases. Using this discussion as guidance, you can
now choose an appropriate strategy to update your production models so that they meet
your model availability and model quality requirements.

In the next chapter, we will continue our discussion of deploying models and learn about
optimizing model hosting and infrastructure costs.

10
Optimizing Model

Hosting and
Inference Costs

The introduction of more powerful computers (notably with graphical processing units,
or GPUs) and powerful machine learning (ML) frameworks such as TensorFlow has
resulted in a generational leap in ML capabilities. As ML practitioners, our purview now
includes optimizing the use of these new capabilities to maximize the value we get for the
time and money we spend.

In this chapter, you'll learn how to use multiple deployment strategies to meet your
training and inference requirements. You'll learn when to get and store inferences
in advance versus getting them on demand, how to scale inference services to meet
fluctuating demand, and how to use multiple models for model testing.

In this chapter, we will cover the following topics:

• Real-time inference versus batch inference

• Deploying multiple models behind a single inference endpoint

• Scaling inference endpoints to meet inference traffic demands

196 Optimizing Model Hosting and Inference Costs

• Using Elastic Inference for deep learning models

• Optimizing models with SageMaker Neo

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have
not set up the data science environment yet, please refer to Chapter 2, Data Science
Environments, which walks you through the setup process.

The code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter10. You will need to install a Git client to access them (https://git-scm.
com/).

The code for this chapter is in the CH10 folder of the GitHub repository.

Real-time inference versus batch inference
SageMaker provides two ways to obtain inferences:

• Real-time inference lets you get a single inference per request, or a small number
of inferences, with very low latency from a live inference endpoint.

• Batch inference lets you get a large number of inferences from a batch
processing job.

Batch inference is more efficient and more cost-effective. Use it whenever your inference
requirements allow. We'll explore batch inference first, and then pivot to real-time inference.

Batch inference
In many cases, we can make inferences in advance and store them for later use. For
example, if you want to generate product recommendations for users on an e-commerce
site, those recommendations may be based on the users' prior purchases and which
products you want to promote the next day. You can generate the recommendations
nightly and store them for your e-commerce site to call up when the users browse the site.

There are several options for storing batch inferences. Amazon DynamoDB is a common
choice for several reasons, such as the following:

• It is fast. You can look up single values within a few milliseconds.

• It is scalable. You can store millions of values at a low cost.

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter10
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter10
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter10
https://git-scm.com/
https://git-scm.com/

Real-time inference versus batch inference 197

• The best access pattern for DynamoDB is looking up values by a high-cardinality
primary key. This fits well with many inference usage patterns, for example, when
we want to look up a stored recommendation for an individual user.

You can use other data stores, including DocumentDB and Aurora, depending on your
access patterns.

In the CH10 folder of the GitHub repository, you'll find the optimize.ipynb
notebook. The Real-time and Batch Inference section of this repository walks you through
performing both batch and real-time inference using a simple XGBoost model. The
following code lets you run a batch inference job:

batch_input = "s3://{}/{}/{}/".format(s3_bucket, s3_prefix,
'test')

batch_output = "s3://{}/{}/{}/".format(s3_bucket, "xgboost-
sample", 'xform')

transformer = estimator.transformer(instance_count=1,

instance_type='ml.m5.4xlarge', output_path=batch_output, max_
payload=3)

transformer.transform(data=batch_input, data_type='S3Prefix',

content_type=content_type, split_type='Line')

This job takes approximately 3 minutes to run.

Real-time inference
When you deploy a SageMaker model to a real-time inference endpoint, SageMaker
deploys the model artifact and your inference code (packaged in a Docker image) to one
or more inference instances. You now have a live API endpoint for inference, and you can
invoke it from other software services on demand.

You pay for the inference endpoints (instances) as long as they are running. Use real-time
inference in the following situations:

• The inferences are dependent on context. For example, if you want to recommend
a video to watch, the inference may depend on the show your user just finished. If
you have a large video catalog, you can't generate all the possible permutations of
recommendations in advance.

• You may need to provide inferences for new events. For example, if you are trying
to classify a credit card transaction as fraudulent or not, you need to wait until your
user actually attempts a transaction.

198 Optimizing Model Hosting and Inference Costs

The following code deploys an inference endpoint:

from sagemaker.deserializers import JSONDeserializer

from sagemaker.serializers import CSVSerializer

predictor = estimator.deploy(initial_instance_count=1,

 instance_type='ml.m5.2xlarge',

 serializer=CSVSerializer(),

 deserializer=JSONDeserializer()

)

Once the endpoint is live, we can obtain inferences using the endpoint we just deployed:

result = predictor.predict(csv_payload)

print(result)

Using our simple XGBoost model, an inference takes approximately 30 milliseconds to
complete.

Cost comparison
Consider a scenario where we want to predict the measurements for the next day for all
of our weather stations and make them available for lookup on an interactive website. We
have approximately 11,000 unique stations and 7 different parameters to predict for each
station.

With a real-time endpoint using the ml.m5.2xlarge instance type, we pay $0.538 per
hour, or approximately $387 per month. With batch inference, we pay $1.075 per hour for
an ml.m5.4xlarge instance. The job takes 3 minutes to run per day, or 90 minutes per
month. That's about $1.61.

The batch inference approach is typically much more cost-effective if you do not need
context-sensitive real-time predictions. Serving predictions out of a NoSQL database
is a better option.

Deploying multiple models behind a single
inference endpoint
A SageMaker inference endpoint is a logical entity that actually holds a load balancer and
one or more instances of your inference container. You can deploy either multiple versions
of the same model or entirely different models behind a single endpoint. In this section,
we'll look at these two use cases.

Deploying multiple models behind a single inference endpoint 199

Multiple versions of the same model
A SageMaker endpoint lets you host multiple models that serve different percentages of
traffic for incoming requests. That capability supports common continuous integration
(CI)/continuous delivery (CD) practices such as canary and blue/green deployments.
While these practices are similar, they have slightly different purposes, as explained here:

• A canary deployment means that you let the new version of a model host a small
percentage of traffic that lets you test a new version of the model on a subset of
traffic until you are satisfied that it is working well.

• A blue/green deployment means that you run two versions of the model at the
same time, keeping an older version around for quick failover if a problem occurs in
the new version.

In practice, these are variations on a theme. In SageMaker, you designate how much traffic
each model variant handles. For canary deployments, you'd start with a small fraction
(usually 1-5%) for the new model versions. For blue/green deployments, you'd use 100%
for the new version but flip back to 0% if a problem occurs.

There are other ways to accomplish these deployment modes. For example, you can use
two inference endpoints and handle traffic shaping using DNS (Route 53), a load balancer,
or Global Accelerator. But managing the traffic through SageMaker simplifies your
operational burden and reduces cost, as you don't have to have two endpoints running.

In the A/B Testing section of the notebook, we'll create another version of the model and
create a new endpoint that uses both models:

1. We'll start by training another version of the model with a hyperparameter change
(maximum tree depth of 10 instead of 5), as follows:

hyperparameters_v2 = {

 "max_depth":"10",

 "eta":"0.2",

 "gamma":"4",

 "min_child_weight":"6",

 "subsample":"0.7",

 "objective":"reg:squarederror",

 "num_round":"5"}

estimator_v2 = \ sagemaker.estimator.Estimator(image_
uri=xgboost_container,

 hyperparameters=hyperparameters,

200 Optimizing Model Hosting and Inference Costs

 role=sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.m5.12xlarge',

 volume_size=200, # 5 GB

 output_path=output_path)

predictor_v2 = estimator_v2.deploy(initial_instance_
count=1,

 instance_type='ml.m5.2xlarge',

 serializer=CSVSerializer(),

 deserializer=JSONDeserializer()

)

2. Next, we define endpoint variants for each model version. The most important
parameter here is initial_weight, which specifies how much traffic should
go to each model version. By setting both versions to 1, the traffic will split evenly
between them. For an A/B test, you might start with weights of 20 for the existing
version and 1 for the new version:

model1 = predictor._model_names[0]

model2 = predictor_v2._model_names[0]

from sagemaker.session import production_variant

variant1 = production_variant(model_name=model1,

 instance_type="ml.m5.xlarge",

 initial_instance_count=1,

 variant_name='Variant1',

 initial_weight=1)

variant2 = production_variant(model_name=model2,

 instance_type="ml.m5.xlarge",

 initial_instance_count=1,

 variant_name='Variant2',

 initial_weight=1)

Deploying multiple models behind a single inference endpoint 201

3. Now, we deploy a new model using the following two model variants:

from sagemaker.session import Session

smsession = Session()

smsession.endpoint_from_production_variants(

 name='mmendpoint',

 production_variants=[variant1, variant2]

)

4. Finally, we can test the new endpoint:

from sagemaker.deserializers import JSONDeserializer

from sagemaker.serializers import CSVSerializer

import boto3

from botocore.response import StreamingBody

smrt = boto3.Session().client("sagemaker-runtime")

for tl in t_lines[0:50]:

 result = smrt.invoke_
endpoint(EndpointName='mmendpoint',

 ContentType="text/csv", Body=tl.strip())

 rbody = StreamingBody(\

raw_stream=result['Body'], \

content_length= \

int(result['ResponseMetadata']['HTTPHeaders']['content-
length']))

 print(f"Result from
{result['InvokedProductionVariant']} = " + \

f"{rbody.read().decode('utf-8')}")

You'll see output that looks like this:
Result from Variant2 = 0.16384175419807434

Result from Variant1 = 0.16383948922157288

Result from Variant1 = 0.16383948922157288

Result from Variant2 = 0.16384175419807434

Result from Variant1 = 0.16384175419807434

202 Optimizing Model Hosting and Inference Costs

Result from Variant2 = 0.16384661197662354

Notice that the traffic is flipping between the two versions of the model according to the
weights we specified. In a production use case, you should automate the model endpoint
update in your CI/CD or MLOps automation tools.

Multiple models
In other cases, you may need to run entirely different models. For example, perhaps you
want one model to serve weather inferences for the United States and another model
to serve weather inferences for Germany. You can build models that are sensitive to
differences between these two countries. You can host both models behind the same
endpoint and direct traffic to them based on the incoming request.

Or, for an A/B test, you might want to control which traffic goes to your new model
version rather than letting a load balancer perform random weighted distribution. If you
have an application server that identifies which consumers should use the new model
version, you can direct that traffic to a specific model behind an inference endpoint.

In the Multiple models in a single endpoint notebook section, we'll walk through an
example of creating models optimized for different air quality parameters. When we want
a prediction, we specify which type of parameter we want, and the endpoint directs our
request to the appropriate model. This use case is quite realistic; it may turn out that it's
difficult to predict both particulate matter (PM25) and ozone (O3) using the same model:

1. First, we're going to prepare new datasets that only contain data for a single
parameter by creating a Spark processing job:

spark_processor.run(

 submit_app="scripts/preprocess_param.py",

 submit_jars=["s3://crawler-public/json/serde/json-
serde.jar"],

 arguments=['--s3_input_bucket', s3_bucket,

 '--s3_input_key_prefix', s3_prefix_parquet,

 '--s3_output_bucket', s3_bucket,

 '--s3_output_key_prefix', f"{s3_output_
prefix}/o3",

 '--parameter', 'o3',],

 spark_event_logs_s3_uri="s3://{}/{}/spark_event_
logs".format(s3_bucket, 'sparklogs'),

 logs=True,

 configuration=configuration

Deploying multiple models behind a single inference endpoint 203

)

We'll repeat the preceding step for PM25 and O3.
2. Now, we will train new XGBoost models against the single-parameter training sets,

as follows:

estimator_o3 = sagemaker.estimator.Estimator(image_
uri=xgboost_container,

 hyperparameters=hyperparameters,

 role=sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.m5.12xlarge',

 volume_size=200,

 output_path=output_path)

content_type = "csv"

train_input = TrainingInput("s3://{}/{}/{}/{}/".
format(s3_bucket, s3_output_prefix, 'o3', 'train'),
content_type=content_type)

validation_input = TrainingInput("s3://{}/{}/{}/{}/".
format(s3_bucket, s3_output_prefix, 'o3', 'validation'),
content_type=content_type)

execute the XGBoost training job

estimator_o3.fit({'train': train_input, 'validation':
validation_input})

3. Next, we define the multi-model class:

model = estimator_o3.create_model(role=sagemaker.get_
execution_role(), image_uri=xgboost_container)

from sagemaker.multidatamodel import MultiDataModel

model_data_prefix = f's3://{s3_bucket}/{m_prefix}/mma/'

model_name = 'xgboost-mma'

mme = MultiDataModel(name=model_name,

 model_data_prefix=model_data_prefix,

 model=model)

204 Optimizing Model Hosting and Inference Costs

4. Next, we deploy the multi-model endpoint:

predictor = mme.deploy(initial_instance_count=1,

 instance_type='ml.m5.2xlarge',

 endpoint_name=model_name,

 serializer=CSVSerializer(),

 deserializer=JSONDeserializer())

5. At this point, the endpoint does not actually have any models behind it. We need to
add them next:

for est in [estimator_o3, estimator_pm25]:

 artifact_path = \ est.latest_training_job.describe()
['ModelArtifacts']['S3ModelArtifacts']

 m_name = artifact_path.split('/')[4]+'.tar.gz'

 # This is copying over the model artifact to the S3
location for the MME.

 mme.add_model(model_data_source=artifact_path, model_
data_path=m_name)

list(mme.list_models())

6. We're ready to test the endpoint. Download two test files, one for each parameter:

s3.download_file(s3_bucket, f"{s3_output_prefix}/
pm25/test/part-00120-81a51ddd-c8b5-47d0-9431-
0a5da6158754-c000.csv", 'pm25.csv')

s3.download_file(s3_bucket, f"{s3_output_prefix}/o3/test/
part-00214-ae1a5b74-e187-4b62-ae4a-385afcbaa766-c000.
csv", 'o3.csv')

7. Read the files and get inferences, specifying which model we want to use:

with open('pm25.csv', 'r') as TF:

 pm_lines = TF.readlines()

with open('o3.csv', 'r') as TF:

 o_lines = TF.readlines()

for tl in pm_lines[0:5]:

 result = predictor.predict(data = tl.strip(), target_

Scaling inference endpoints to meet inference traffic demands 205

model='pm25.tar.gz')

 print(result)

for tl in o_lines[0:5]:

 result = predictor.predict(data = tl.strip(), target_
model='o3.tar.gz')

 print(result)

Now that we've seen how to deploy multiple models for testing or other purposes, let's
turn to handling fluctuating traffic demands.

Scaling inference endpoints to meet inference
traffic demands
When we need a real-time inference endpoint, the processing power requirements may
vary based on incoming traffic. For example, if we are providing air quality inferences
for a mobile application, usage will likely fluctuate based on time of day. If we provision
the inference endpoint for peak load, we will pay too much during off-peak times. If we
provision the inference endpoint for a smaller load, we may hit performance bottlenecks
during peak times. We can use inference endpoint auto-scaling to adjust capacity to
demand.

There are two types of scaling, vertical and horizontal. Vertical scaling means that we
adjust the size of an individual endpoint instance. Horizontal scaling means that we
adjust the number of endpoint instances. We prefer horizontal scaling as it results in less
disruption for end users; a load balancer can redistribute traffic without having an impact
on end users.

There are four steps to configure autoscaling for a SageMaker inference endpoint:

• Set the minimum and maximum number of instances.

• Choose a scaling metric.

• Set the scaling policy.

• Set the cooldown period.

206 Optimizing Model Hosting and Inference Costs

Although you can set up autoscaling automatically using the API, in this section, we'll go
through the steps in the console. To begin, go to the Endpoints section of the SageMaker
console, as shown in the following screenshot:

Figure 10.1 – Endpoints listed in the SageMaker console

Select one of your endpoints, and in the section called Endpoint runtime settings, choose
Configure auto scaling:

Figure 10.2 – Endpoint runtime settings

Now, let's walk through the more detailed inference endpoint settings.

Scaling inference endpoints to meet inference traffic demands 207

Setting the minimum and maximum capacity
You can set boundaries on the minimum and maximum number of instances an endpoint
can use. These boundaries let you protect against surges in demand that will result in
unexpected costs. If you anticipate periodic spikes, build a circuit breaker into your
application to shed load before it hits the inference endpoint. The following screenshot
shows these settings in the console:

Figure 10.3 – Setting minimum and maximum capacity

If your load is highly variable, you can start with a small instance type and scale up
aggressively. This prevents you from paying for a larger instance type that you don't
always need.

Choosing a scaling metric
We need to decide when to trigger a scaling action. We do that by specifying
a CloudWatch metric. By default, SageMaker provides two useful metrics:

• InvocationsPerInstance reports the number of inference requests sent to
each endpoint instance over some time period.

• ModelLatency is the time in microseconds to respond to inference requests.

208 Optimizing Model Hosting and Inference Costs

We recommend ModelLatency as a metric for autoscaling, as it reports on the end user
experience. Setting the actual value for the metric will depend on your requirements and
some observation of endpoint performance over time. For example, you may find that
latency over 100 milliseconds results in a degraded user experience if the inference result
passes through several other services that add their own latency before the result reaches
the end user.

Setting the scaling policy
You can choose between target tracking and step scaling. Target tracking policies are
more useful and try to adjust capacity to keep some target metric within a given boundary.
Step scaling policies are more advanced and increase capacity in incremental steps.

Setting the cooldown period
The cooldown period is how long the endpoint will wait after one scaling action before
starting another scaling action. If you let the endpoint respond instantaneously, you'd end
up scaling too often. As a general rule, scale up aggressively and scale down conservatively.

The following screenshot shows how to configure the target metric value and cooldown
period if you use the default scaling policy:

Figure 10.4 – Setting a target metric value and cooldown period

Next, let's look at another optimization technique for deep learning models.

Using Elastic Inference for deep learning models 209

Using Elastic Inference for deep learning
models
If you examine the overall cost of ML, you may be surprised to see that the bulk of your
monthly cost comes from real-time inference endpoints. Training jobs, while potentially
resource-intensive, run for some time and then terminate. Managed notebook instances
can be shut down during off hours. But inference endpoints run 24 hours a day, 7 days
a week. If you are using a deep learning model, inference endpoint costs become more
pronounced, as instances with dedicated GPU capacity are more expensive than other
comparable instances.

When you obtain inferences from a deep learning model, you do not need as much GPU
capacity as you need during training. Elastic Inference lets you attach fractional GPU
capacity to regular EC2 instances or Elastic Container Service (ECS) containers. As a
result, you can get deep learning inferences quickly at a reduced cost.

The Elastic Inference section in the notebook shows how to attach an Elastic Inference
accelerator to an endpoint, as you can see in the following code block:

predictor_ei = predictor.deploy(initial_instance_count = 1,
instance_type = 'ml.m5.xlarge',

 serializer=CSVSerializer(),

 deserializer=JSONDeserializer(),

 accelerator_type='ml.eia2.medium')

Consider a case where we need some GPU capacity for inference. Let's consider three
options for the instance type and compare the cost. Assume that we run the endpoint for
720 hours per month. The next table compares the monthly cost for different inference
options, using published prices at the time of writing:

Figure 10.5 – Inference cost comparison

210 Optimizing Model Hosting and Inference Costs

You'll need to look at your specific use case and figure out the best combination of RAM,
CPU, network throughput, and GPU capacity that meets your performance requirements
at the lowest cost. If your inferences are entirely GPU-bound, the Inferentia instance
will probably give you the best price-performance balance. If you need more traditional
compute resources with some GPU, the P2/P3 family will work well. If you need very little
overall capacity, Elastic Inference provides the cheapest GPU option.

In the next section, we'll cover one more optimization technique for models deployed to
specific hardware.

Optimizing models with SageMaker Neo
In the previous section, we saw how Elastic Inference can reduce inference costs for deep
learning models. Similarly, SageMaker Neo lets you improve inference performance
and reduce costs by compiling trained ML models for better performance on specific
platforms. While that will help in general, it's particularly effective when you are trying
to run inference on low-powered edge devices.

In order to use SageMaker Neo, you simply start a compilation job with a trained model in
a supported framework. When the compilation job completes, you can deploy the artifact
to a SageMaker endpoint or to an edge device using the Greengrass IoT platform.

The Model optimization with SageMaker Neo section in the notebook demonstrates how
to compile our XGBoost model for use on a hosted endpoint:

1. First, we need to get the length (number of features) of an input record:

ncols = len(t_lines[0].split(','))

2. Now, we'll compile one of our trained models. We need to specify the target
platform, which in this case is just a standard ml_m5 family:

import sagemaker

from sagemaker.model import Model

n_prefix = 'xgboost-sample-neo'

n_output_path = 's3://{}/{}/{}/output'.format(s3_bucket,
n_prefix, 'xgboost-neo')

m1 = Model(xgboost_container,model_data=estimator\ .
latest_training_job.describe()['ModelArtifacts']
['S3ModelArtifacts'],

 role=sagemaker.get_execution_role())

Optimizing models with SageMaker Neo 211

neo_model = m1.compile('ml_m5',

 {'data':[1, ncols]},

 n_output_path,

 sagemaker.get_execution_role(),

 framework='xgboost',

 framework_version='latest',

 job_name = 'neojob')

3. Once the compilation job finishes, we can deploy the compiled model as follows:

neo_predictor = neo_model.deploy(initial_instance_count =
1, instance_type = 'ml.m5.xlarge',

 serializer=CSVSerializer(),

 deserializer=JSONDeserializer(),

 endpoint_name='neo_endpoint')

4. Let's test the endpoint to see whether we see a speed-up:

for tl in t_lines[0:5]:

 result = smrt.invoke_endpoint(EndpointName='neo_
endpoint',

 ContentType="text/csv",

 Body=tl.strip())

 rbody = \ StreamingBody(raw_
stream=result['Body'],content_
length=int(result['ResponseMetadata']['HTTPHeaders']
['content-length']))

 print(f"Result from
{result['InvokedProductionVariant']} = {rbody.read().
decode('utf-8')}")

212 Optimizing Model Hosting and Inference Costs

After sending in a few invocation requests, let's check the CloudWatch metrics. Back in
the console page for the compiled endpoint, click on View invocation metrics in the
Monitor section, as shown in the following screenshot:

Figure 10.6 – The Monitor section of the endpoint console

You'll now see the CloudWatch metrics console, as seen in the following screenshot. Here,
choose the ModelLatency and OverheadLatency metrics:

Figure 10.7 – CloudWatch metrics console

The model latency in my simple tests showed 10 milliseconds for a regular XGBoost
endpoint and went down to 9 milliseconds after compiling with Neo. The impact of
a compiled model will be much more significant if you are using a deep learning model
on a lower-powered device.

Summary 213

Summary
In this chapter, we looked at several ways to improve inference performance and reduce
inference cost. These methods include using batch inference where possible, deploying
several models behind a single inference endpoint to reduce costs and help with advanced
canary or blue/green deployments, scaling inference endpoints to meet demand, and
using Elastic Inference and SageMaker Neo to provide better inference performance at
a lower cost.

In the next chapter, we'll discuss monitoring and other important operational aspects
of ML.

11
Monitoring

Production Models
with Amazon

SageMaker Model
Monitor and Clarify

Monitoring production machine learning (ML) models is a critical step to ensure that the
models continue to meet business needs. Besides the infrastructure hosting the model,
there are other important aspects of ML models that should be monitored regularly. As
models age over a period of time, the real-world inference data distribution may change
as compared to the data used for training the model. For example, consumer purchase
patterns may change in the retail industry and economic conditions such as mortgage
rates may change in the financial industry.

216 Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify

This gradual misalignment between the training and the live inference datasets can have
a big impact on model predictions. Model quality metrics such as accuracy may degrade
over time as well. Degraded model quality has a negative impact on business outcomes.
Regulatory requirements, such as ensuring that ML models are unbiased and explainable,
add another angle to model monitoring. Comprehensive monitoring of production
models for these aspects allows you to proactively identify if and when a production
model needs to be updated. Updating a production model needs both retraining and
deployment resources. The costs involved in updating a production model should be
weighed against the opportunity costs of effectively serving the model consumers.

This chapter addresses the challenge of monitoring production models using two
managed services – Amazon SageMaker Model Monitor and Amazon SageMaker
Clarify. These managed services eliminate the need to build custom tooling to monitor
models and detect when corrective actions need to be taken. By the end of this chapter,
you will be able to monitor production models for data drift, model quality, model bias,
and model explainability. You will further learn how to automate remediation actions for
the issues detected during monitoring.

In this chapter, we are going to cover the following main topics:

• Basic concepts of Amazon SageMaker Model Monitor and Amazon
SageMaker Clarify

• End-to-end architectures for monitoring ML models

• Best practices for monitoring ML models

Technical requirements
You will need an AWS account to run the examples included in this chapter. If you have
not set up the data science environment yet, please refer to Chapter 2, Data Science
Environments, which walks you through the setup process.

The code examples included in the book are available on GitHub at https://github.
com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/
Chapter11. You will need to install a Git client to access them (https://git-scm.
com/).

https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter11
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter11
https://github.com/PacktPublishing/Amazon-SageMaker-Best-Practices/tree/main/Chapter11
https://git-scm.com/
https://git-scm.com/

Basic concepts of Amazon SageMaker Model Monitor and Amazon SageMaker Clarify 217

Basic concepts of Amazon SageMaker Model
Monitor and Amazon SageMaker Clarify
In this section, let's review the capabilities provided by two SageMaker features: Model
Monitor and Clarify.

Amazon SageMaker Model Monitor provides capabilities to monitor data drift and the
model quality of models deployed as SageMaker real-time endpoints. Amazon SageMaker
Clarify provides capabilities to monitor the deployed model for bias and feature
attribution drift. Using a combination of these two features, you can monitor the following
four different aspects of ML models deployed on SageMaker:

• Data drift: If the live inference traffic data served by the deployed model is
statistically different from the training data the model was trained on, the model
prediction accuracy will start to deteriorate. Using a combination of a training data
baseline and periodic monitoring to compare the incoming inference requests with
the baseline data, SageMaker Model Monitor detects data drift. Model Monitor
further generates data drift metrics that are integrated with Amazon CloudWatch.
Using these CloudWatch alerts, you can generate data drift detection alerts.

• Model quality: Monitoring model quality involves comparing labels predicted by
a model to the actual labels, also called the ground truth inference labels. Model
Monitor periodically merges data captured from real-time inferences with the
ground truth labels to compare model quality drift against a baseline generated with
training data. Similar to data drift metrics, model quality metrics are integrated with
CloudWatch, so alerts can be generated if the model quality falls below a threshold.

• Bias drift: Statistically, significant drift between the live inference traffic data and the
training data could also result in bias in the model over a period of time. This could
happen even after detecting and addressing bias in the training data before training
and deploying the model. SageMaker Clarify continuously monitors a deployed model
for bias and generates bias metrics that are integrated with CloudWatch metrics.

218 Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify

• Feature attribution drift: Along with introducing bias in deployed models, drift
in live inference data distribution can also cause drift in feature attribution values.
Feature attribution ranks the individual features of a dataset according to their relative
importance to a model trained using that dataset using an importance score. The
feature importance score provides one way of explaining the model predictions by
providing insight into which features played a role in making predictions. SageMaker
Clarify compares the feature attribution or feature rankings in the training data to the
feature attribution or feature rankings in live inference traffic data. Similar to other
types of monitoring, feature attribution drift metrics are generated and integrated with
CloudWatch.

Monitoring an ML model with SageMaker Model Monitor or SageMaker Clarify involves
four high-level steps, as shown in the following diagram:

Figure 11.1 – High-level steps for model monitoring

Let's see what is involved in each of these steps in a bit more detail:

1. Enable data capture: The first step is to enable data capture on the real-time endpoint.
On enabling data capture, input to and output from the SageMaker endpoint is
captured and saved in Amazon Simple Storage Service (S3). Input captured includes
the live inference traffic requests and output captured includes predictions from the
deployed model. This is a common step for all four types of monitoring: data drift,
model quality, bias drift, and feature attribution drift monitoring.

2. Generate baseline: In this step, the training or validation data is analyzed to
generate a baseline. The baseline generated will be further used in the next step to
compare against the live inference traffic. The baseline generation process computes
metrics about the data analyzed and suggests constraints for the metrics. The
baseline generated is unique to the type of monitoring.

End-to-end architectures for monitoring ML models 219

3. Schedule and execute monitoring job: To continuously monitor the real-time
endpoint, the next step is to create a monitoring schedule to execute at a predefined
interval. Once the monitoring schedule is in place, SageMaker Processing jobs are
automatically kicked off to analyze the data captured from the endpoint in a specific
interval. For each execution of the monitoring job, the processing job compares live
traffic data captured with the baseline. If the metrics generated on the live traffic data
captured in a period are outside the range of constraints suggested by the baseline,
a violation is generated. The scheduled monitoring jobs also generate monitoring
reports for each execution, which are saved in an S3 bucket. Additionally, CloudWatch
metrics are also generated, the exact metrics being unique to the type of monitoring.

4. Analyze and act on results: Reports generated by the monitoring job can either be
downloaded directly from S3 or visualized in a SageMaker Studio environment. In
the Studio environment, you can also visualize the details of the monitoring jobs
and create charts that compare the baseline metrics with the metrics calculated by
the monitoring job.

To remediate issues discovered, you can use the CloudWatch metrics emitted from the
monitoring job. The specific metrics depend on the type of the monitoring job. You can
configure CloudWatch alerts for these metrics, based on the threshold values suggested
by the baseline job. CloudWatch alerts allow you to automate responses to violations and
metrics generated by monitoring jobs.

Now that you know what aspects of an ML model can be monitored, what the steps involved
in monitoring are, and how you can respond to the issues discovered, you can build a
monitoring solution that meets your business needs. In the next section, you will learn how
to build end-to-end model monitoring architectures for the different types of monitoring.

End-to-end architectures for monitoring
ML models
In this section, you will put together the four high-level steps of monitoring to build
end-to-end architectures for data drift, model quality, bias drift, and feature attribution
drift monitoring. Along with the architecture, you will dive into the unique aspects of the
individual steps as applicable to each type of monitoring.

For all four types of monitoring, the first and last steps – enabling data capture and
analyzing monitoring results – remain the same. We will discuss these two steps in detail
for the first type of monitoring – data drift monitoring. For the other three types of
monitoring, we will only briefly mention them.

220 Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify

Data drift monitoring
You monitor a production model for data drift to ensure that the distribution of the live
inference traffic the deployed model is serving does not drift away from the distribution
of the dataset used for training the model. The end-to-end architecture for the monitoring
model for data drift is shown in the following diagram:

Figure 11.2 – Data drift monitoring: end-to-end architecture

Let's dive into the four high-level steps involved in this end-to-end architecture:

1. Enable data capture for the deployed endpoint: The first step is to deploy a
SageMaker endpoint with data capture enabled. As you can see from the following
sample code, configuring data capture includes specifying the percentage of
inference traffic to capture and the S3 location to save the captured traffic:

from sagemaker.model_monitor import DataCaptureConfig

data_capture_config = DataCaptureConfig(

enable_capture=True,

End-to-end architectures for monitoring ML models 221

sampling_percentage=100, destination_s3_uri=s3_capture_
upload_path

)

To deploy the model, create the endpoint by passing in the data capture
configuration as follows:

predictor = model.deploy(initial_instance_count=1,

 instance_type='ml.m4.xlarge',

 endpoint_name=endpoint_name,

 data_capture_config = data_capture_config)

The following code shows a sample of the data captured. As you can see, both the
request to and response from the endpoint along with event metadata are captured:

{

 "captureData": {

 "endpointInput": {

 "observedContentType": "text/csv",

 "mode": "INPUT",

 "data": "0,2020,12,4,31,0,19.0,0.0,6.0,0.0,0.0,0.0,0
.0,0.0,0.0,1.0\n",

 "encoding": "CSV"

 },

 "endpointOutput": {

 "observedContentType": "text/csv; charset=utf-8",

 "mode": "OUTPUT",

 "data": "-4.902510643005371",

 "encoding": "CSV"

 }

 },

 "eventMetadata": {

 "eventId": "e68592ca-948c-44dd-a764-608934e49534",

 "inferenceTime": "2021-06-28T18:41:16Z"

 },

 "eventVersion": "0"

}

222 Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify

2. Generate baseline: The second step is to configure and execute a data baseline
job. This baseline job uses SageMaker Processing to analyze the training data at
scale. For data drift monitoring, use DefaultModelMonitor to configure the
infrastructure to execute the processing job on and the maximum runtime. Sample
code is shown as follows:

from sagemaker.model_monitor import DefaultModelMonitor

from sagemaker.model_monitor.dataset_format import
DatasetFormat

my_default_monitor = DefaultModelMonitor(

 role=role,

 instance_count=1,

 instance_type="ml.m5.xlarge",

 volume_size_in_gb=20,

 max_runtime_in_seconds=3600,

)

Use the suggest_baseline method on DefaultModelMonitor to configure
and kick off the baseline job. To configure the baseline job, specify where the
baseline data is and where you want the baseline results to be saved in S3, as follows:

my_default_monitor.suggest_baseline(

 baseline_dataset=baseline_data_uri + "/training-
dataset-with-header.csv",

 dataset_format=DatasetFormat.csv(header=True),

 output_s3_uri=baseline_results_uri,

 wait=True

)

The baseline job results in two files – statistics.json and constraints.
json – saved in the S3 location you specified. The statistics.json file
includes metadata analysis of the training data – such as sum, mean, min, and max
values for numerical features and distinct counts for text features.

End-to-end architectures for monitoring ML models 223

Note
This baseline job uses a SageMaker-provided container called sagemaker-
model-monitor-analyzer to analyze the training dataset. This
Spark-based container uses the open source Deequ framework to analyze
datasets at scale.

The following figure shows a sample of statistics for string features generated by
the baseline job:

 Figure 11.3 – Statistics for string features generated by the data drift baseline job

Similarly, the following figure shows a sample of statistics for numerical features
generated by the baseline job:

Figure 11.4 – Statistics for numerical features generated by the data drift baseline job

224 Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify

The constraints.json file captures the thresholds for the statistics for
monitoring purposes. The constraints also include conditions such as whether
a particular feature should be considered a string, not an integer or whether
a specific field should be not-null. The following screenshot shows a sample of
constraints generated by the baseline job, which indicates that the value feature
should always be treated as a string:

Figure 11.5 – Constraints generated by the data drift baseline job
The generated constraints also suggest completeness for each feature, which
represents the percentage of values that can be non-null in the inference traffic.
In this example, since completeness for all features is at 1.0, there cannot be any
null values of these features in the inference traffic. Additionally, as suggested by
num_constraints.is_non_negative, none of the integral and fractional
features can be null.

The constraints generated are suggestions provided by the baseline job after
analyzing the training data. You can choose to override the constraint file based
on the domain knowledge you have about your specific use case. You can override
the suggested constraint at the individual field level or override the entire file. In
the constraints.json file, you will also see an emit_metrics : Enabled
entry. This suggests that CloudWatch metrics will be emitted during monitoring.

End-to-end architectures for monitoring ML models 225

3. Schedule and execute a data drift monitoring job: The third step is to configure
and schedule a data drift monitoring job. To configure the data drift monitoring
job, specify the endpoint to monitor, the location to store the monitoring results,
the baseline statistics and constraints, and the schedule to execute the job on. The
following sample code configures a monitoring job to be executed every hour:

my_default_monitor.create_monitoring_schedule(

 monitor_schedule_name=mon_schedule_name,

 endpoint_input=predictor.endpoint,

 output_s3_uri=s3_report_path,

 statistics=my_default_monitor.baseline_statistics(),

 constraints=my_default_monitor.suggested_
constraints(),

 schedule_cron_expression=CronExpressionGenerator.
hourly(),

 enable_cloudwatch_metrics=True

)

SageMaker executes the data drift monitoring job using SageMaker Processing
periodically according to the schedule you specify. The monitoring job compares
the captured inference requests to the baseline. For each execution of the
monitoring job, generated results include a violations report and a statistics report
saved in S3 and metrics emitted to CloudWatch.

The following table shows possible violations the monitoring job can generate:

Figure 11.6 – Data drift monitoring violations

226 Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify

The monitoring job emits CloudWatch metrics for all features included in the
training data. Common metrics generated for all features are Completeness and
BaselineDrift. The Completeness metric indicates the percentage of values
that can be null for a given feature in a specific interval. The BaselineDrift
metric indicates how much a feature has drifted in a specific interval from the
baseline. Additionally, for numerical features, a few other metrics emitted are Max,
Min, Sum, SampleCount, and AverageCount, as observed during the interval.

For any of these metrics, you can configure a CloudWatch alert to be triggered
based on threshold values suggested in the constraints file. If the feature values in
the inference traffic observed during a given interval violate the threshold values, an
alert is raised.

4. Analyze and act on results: The final step is to analyze and act on the monitoring
results. As mentioned in the high-level monitoring steps discussion earlier,
you can download the monitoring reports from S3 and analyze them in your
notebook environment or use Studio to view the monitoring details. For example,
downloading the violation report to a notebook environment and viewing the
report contents shows results similar to the following screenshot:

Figure 11.7 – Violations generated by the data drift monitoring job

You can decide what actions you want to take on these alerts according to your business
and operational requirements. You can automate actions such as updating the model,
updating your training data, and retraining and updating the model as a response to the
CloudWatch alert triggered.

Important note
An example notebook that provides a complete walk-through of using
SageMaker Model Monitor for data drift monitoring is provided in the
GitHub repo https://gitlab.com/randydefauw/packt_
book/-/blob/main/CH10/data_drift_monitoring/
WeatherPredictionDataDriftModelMonitoring.ipynb.

https://gitlab.com/randydefauw/packt_book/-/blob/main/CH10/data_drift_monitoring/WeatherPredictionDataDriftModelMonitoring.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH10/data_drift_monitoring/WeatherPredictionDataDriftModelMonitoring.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/main/CH10/data_drift_monitoring/WeatherPredictionDataDriftModelMonitoring.ipynb

End-to-end architectures for monitoring ML models 227

Model quality drift monitoring
You monitor the quality of a production model to ensure that the performance of the
production model continues to meet your requirements. Model quality is measured by
different metrics depending on the type of the underlying ML problem. For example, for
classification problems, accuracy or recall are good metrics and root mean square error
(RMSE) is a metric to use with regression problems.

The end-to-end architecture for monitoring a model for model quality drift is shown in
the following diagram:

Figure 11.8 – Model quality monitoring: end-to-end architecture

The architecture is very similar to data drift monitoring with an additional step for merging
the actual inference ground truth labels in an S3 bucket with the model predictions. Let's
dive into the four high-level steps involved in this end-to-end architecture:

1. Enable data capture for the deployed endpoint: The first step is to deploy a
SageMaker endpoint with data capture enabled and capture predictions made by the
model in an S3 bucket.

228 Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify

2. Generate baseline: The second step is baseline generation. While the baseline job
for data drift directly analyzes the training dataset for data distribution statistics,
the model quality baseline job compares the labels in a baseline dataset with the
predictions made by the model. So, instead of using the training data directly, you
have to first generate a baseline dataset consisting of labels by running predictions
against the model. You use the validation dataset to run predictions against the
model and use the results as input to the baseline generation job.

The following sample code shows this process for a regression problem. Here, the
baseline dataset is generated by running predictions against the model using the
validation dataset. This baseline dataset has three different columns – probability,
prediction, and label. While probability is the values returned by the
model, prediction is inferred from the probability based on a threshold value.
label represents the ground truth label from the validation set:

with open(f"test_data/{validate_dataset}", "w") as
baseline_file:

 baseline_file.
write("probability,prediction,label\n") # Header of the
file

 for tl in t_lines[1:300]:

 #Remove the first column since it is the label

 test_list = tl.split(",")

 label = test_list.pop(0)

 test_string = ','.join([str(elem) for elem in
test_list])

 result = smrt.invoke_
endpoint(EndpointName=endpoint_name,

 ContentType="text/csv", Body=test_string)

 rbody = StreamingBody(raw_
stream=result['Body'],content_
length=int(result['ResponseMetadata']['HTTPHeaders']
['content-length']))

 prediction = rbody.read().decode('utf-8')

 baseline_file.
write(f"{prediction},{prediction},{label}\n")

End-to-end architectures for monitoring ML models 229

 #print(f"label {label} ; prediction {prediction}
")

 print(".", end="", flush=True)

 sleep(0.5)

For model quality monitoring, you use ModelQualityMonitor to configure the
infrastructure to execute the processing jobs and the maximum runtime, as shown
in the following code:

Create the model quality monitoring object

model_quality_monitor = ModelQualityMonitor(

 role=role,

 instance_count=1,

 instance_type="ml.m5.xlarge",

 volume_size_in_gb=20,

 max_runtime_in_seconds=1800,

 sagemaker_session=session,

)

Use the suggest_baseline method to configure and kick off the baseline job.
To configure the baseline job, specify where the baseline data is and where you want
the baseline results to be saved in S3, as follows:

cut the baseline suggestion job.

You will specify problem type, in this case Binary
Classification, and provide other requirtributes.

job = model_quality_monitor.suggest_baseline(

 job_name=baseline_job_name,

 baseline_dataset=baseline_dataset_uri,

 dataset_format=DatasetFormat.csv(header=True),

 output_s3_uri=baseline_results_uri,

 problem_type="Regression",

 inference_attribute="prediction",

 probability_attribute="probability",

 ground_truth_attribute="label",

)

job.wait(logs=False)

The baseline job results in two files – statistics.json and constraints.
json – saved in the S3 location you specified.

230 Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify

The following figure shows the statistics generated by the baseline job:

Figure 11.9 – Statistics generated by the model quality baseline job
Similarly, the following figure also shows the statistics generated by the baseline job:

Figure 11.10 – Constraints generated by the model quality baseline job
As you can see in Figure 11.10, one of the constraints generated is for the rmse
model. It suggests that if the rmse value of the production model is greater than
3.87145 in any interval, it is an indication that the model quality is degrading. If
any of the constraints suggested by the baseline job are either too restrictive or too
lenient for your requirements, you can modify the constraints file.

3. Schedule and execute the model quality monitoring job: The third step is to
schedule the model quality monitoring job. To monitor model quality, predictions
of the model are first merged with the ground truth inference labels and then
compared to the baseline to detect degraded accuracy. Predictions made by the
model are already in S3 since data capture is enabled on the endpoint. But how
about the ground truth inference labels?

End-to-end architectures for monitoring ML models 231

The ground truth inference labels would depend on what the model is predicting
and what the business use case is. For example, let's say you have a movie
recommendation model that you are monitoring. A possible ground truth inference
label in this case is whether the user actually watched the recommended movie or
not. Maybe the user just clicked on the video but didn't watch it. So, your model-
consuming application should have logic to create the ground truth inference labels
and upload to an S3 bucket periodically.

With the predictions captured and the ground truth inferences provided by your
model-consuming application, SageMaker executes a merge job, which is again
a periodic job. While scheduling the merge job, take into consideration that the
ground truth labels are only available after a certain delay. Once you have the
merged data, it's time to monitor the model quality.

Here, you create a model quality monitoring job, a job that is executed periodically
by SageMaker at a schedule you specify. The code is similar to the scheduling of
the data monitoring job, so it is not repeated here. The monitoring job generates
statistics and violations and emits CloudWatch metrics. The metrics generated are
based on the type of the ML model. Example metrics for regression models include
mean absolute error, mean square error, and RMSE. Similarly, for classification
models, the metrics generated include confusion_matrix, recall, and
precision.

Note
For a complete list of metrics generated, please review the SageMaker
documentation at https://docs.aws.amazon.com/sagemaker/
latest/dg/model-monitor-model-quality-metrics.html.

For any of these metrics, you can configure a CloudWatch alert to be triggered
based on threshold values suggested in the constraints file. If model predictions for
the inference traffic observed during a given interval violate the threshold values,
a CloudWatch alert is raised.

4. Analyze and act on results: Finally, to analyze and act on the monitoring results,
similar to the draft drift monitoring results, you can access the monitoring reports
directly from S3, visualize them in your notebook or Studio environment, and
finally, automate responses to the CloudWatch alerts raised.

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-metrics.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-metrics.html

232 Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify

Important note
An example notebook that provides a complete walk-through of using
SageMaker Model Monitor for quality model monitoring is provided in the
GitHub repo https://gitlab.com/randydefauw/packt_
book/-/blob/master/CH10/model_quality_monitoring/
WeatherPredictionModelQualityMonitoring.ipynb.

Bias drift monitoring
The concept of bias relates to the individual features of a dataset. Bias is typically measured
for sensitive features called facets to identify whether any particular feature or a set of
feature values are disproportionately represented in the dataset. Amazon Clarify provides
capabilities to detect and monitor bias in a pre-training dataset and deployed models.
The end-to-end architecture to monitor deployed models for bias drift is shown in the
following diagram:

Figure 11.11 – Bias drift and feature attribution monitoring: end-to-end architecture

https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/model_quality_monitoring/WeatherPredictionModelQualityMonitoring.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/model_quality_monitoring/WeatherPredictionModelQualityMonitoring.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/model_quality_monitoring/WeatherPredictionModelQualityMonitoring.ipynb

End-to-end architectures for monitoring ML models 233

Let's dive into the four high-level steps involved in this end-to-end architecture:

1. Enable data capture for the deployed endpoint: The first step for bias drift
monitoring remains the same as other types of monitoring – enabling data capture
while deploying a SageMaker endpoint.

2. Generate baseline: The second step is creating a baseline to measure the bias
metrics of the training data. A bias drift baseline job needs multiple inputs – the
data to use for baselining, the sensitive features, or facets to check for bias, a
model to give predictions, and finally, a threshold value to indicate when a model
prediction is biased. Let's look at the various configuration objects that capture
these details.

Details of the data, such as the location of the validation dataset in the S3 bucket,
the type of the dataset (CSV or JSON), and the headers and label of the data,
along with the output location of the baseline job results, are captured using
DataConfig. Sample code is as follows:

model_bias_data_config = DataConfig(

 s3_data_input_path=validation_dataset,

 s3_output_path=model_bias_baselining_job_result_uri,

 label=label_header,

 headers=all_headers,

 dataset_type='CSV'

)

Details of sensitive features along with threshold values considered as bias are
captured by BiasConfig. In the following code, we are monitoring for bias drift in
the "City" feature:

model_bias_config = BiasConfig(

 label_values_or_threshold=[1],

 facet_name="City",

 facet_values_or_threshold=[100],

)

To calculate the bias metrics, a deployed model to execute inferences is necessary.
ModelConfig captures this model's related information as follows:

model_config = ModelConfig(

 model_name=model_name,

 instance_count=endpoint_instance_count,

 instance_type=endpoint_instance_type,

234 Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify

 content_type=dataset_type,

 accept_type=dataset_type,

)

Finally, ModelPredictedLabelConfig indicates how to extract a predicted
label from the model output. For example, the following sample code indicates a
prediction of 1 if the probability returned by the model is above 0.8:

model_predicted_label_config = ModelPredictedLabelConfig(

 probability_threshold=0.8,

)

With DataConfig, BiasConfig, ModelConfig, and
ModelPredictedLabelConfig in hand, you are ready to create and kick off a
baseline job. Sample code is as follows:

model_bias_monitor = ModelBiasMonitor(

 role=role,

 sagemaker_session=sagemaker_session,

 max_runtime_in_seconds=1800,

)

model_bias_monitor.suggest_baseline(

 model_config=model_config,

 data_config=model_bias_data_config,

 bias_config=model_bias_config,

 model_predicted_label_config=model_predicted_label_
config,

)

During the baseline job execution, SageMaker creates a temporary endpoint called
a shadow endpoint. A baselining job runs predictions on the validation dataset,
calculates bias metrics, and suggests constraints on these metrics. Once the bias
metrics are computed, the shadow endpoint is deleted.

Baseline job execution results in a constraints file that shows the bias metric
values computed along with the suggested thresholds. A sample of the constraints
generated is shown here:

{

 "version": "1.0",

 "post_training_bias_metrics": {

End-to-end architectures for monitoring ML models 235

 "label": "value",

 "facets": {

 "city": [

 {

 "value_or_threshold": "(100.0, 2278.0]",

 "metrics": [

 {

 "name": "AD",

 "description": "Accuracy Difference (AD)",

 "value": 0.008775168751768203

 },

 ...

]

 },

 "label_value_or_threshold": "(1.0,
130.24536736711912]"

 }

3. Schedule and execute a model quality monitoring job: The next step is to schedule
a bias drift monitoring job. In this step, the monitored bias of the model will be
compared against the baseline generated in the previous step. SageMaker executes
the bias drift monitoring job using SageMaker Processing periodically according
to the schedule you specify. The bias drift monitoring job generates a monitoring
report and constraint violations along with CloudWatch metrics.

4. Analyze and act on results: Finally, analyzing the monitoring results and taking
remedial actions is similar to the previous monitoring types.

Implementation of the end-to-end flow of this architecture is provided in the notebook.
Review the notebook and the results of the execution to view the bias metrics generated.

Important note
An example notebook that provides a complete walk-through of using
SageMaker Model Monitor for quality model monitoring is provided in the
GitHub repo https://gitlab.com/randydefauw/packt_
book/-/blob/master/CH10/bias_drift_monitoring/
WeatherPredictionBiasDriftMonitoring.ipynb.

https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/bias_drift_monitoring/WeatherPredictionBiasDriftMonitoring.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/bias_drift_monitoring/WeatherPredictionBiasDriftMonitoring.ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/bias_drift_monitoring/WeatherPredictionBiasDriftMonitoring.ipynb

236 Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify

Feature attribution drift monitoring
Feature attribution ranks the individual features of a dataset according to their relative
importance to a model trained using that dataset using an importance score. The feature
importance score provides one way of explaining the model predictions by providing
insight into which features played a role in making predictions. With continuous
monitoring of the model, you can identify when the feature attribution of the live
inference traffic starts to drift away from the feature attribution of the training dataset.

The end-to-end flow for monitoring feature attribution drift is the same as the flow
for bias drift monitoring as previously shown in Figure 11.11. Let's dive into the four
high-level steps involved in this end-to-end architecture:

1. Enable data capture for the deployed endpoint: The first step for feature
attribution drift monitoring remains the same as other types of monitoring –
enabling data capture while deploying a SageMaker endpoint.

2. Generate baseline: The second step is baseline generation. To generate a baseline
for feature attribution drift monitoring, you rely on the SageMaker Clarify capability
of providing local and global explanations. Clarify provides these explanations using
a scalable implementation of SHAP (SHapley Additive exPlanations), an open
source framework.

A baseline job needs multiple inputs – the data to use for baselining, a model to
give predictions, and a configuration to specify how to calculate feature attribution
ranks. These details are captured by different config objects. DataConfig and
ModelConfig, which capture the data and model details, are the same as for bias
drift monitoring.

However, instead of using BiasConfig to capture sensitive features, you will need
to configure SHAPConfig, which captures a baseline dataset to use, a number of
samples to use in the Kernel SHAP algorithm, and a method for determining global
SHAP values. Sample code is as follows:

Here use the mean value of test dataset as SHAP
baseline

test_dataframe = pd.read_csv(test_dataset, header=None)

shap_baseline = [list(test_dataframe.mean())]

shap_config = SHAPConfig(

 baseline=shap_baseline,

 num_samples=100,

End-to-end architectures for monitoring ML models 237

 agg_method="mean_abs",

 save_local_shap_values=False,

)

For feature attribution drift monitoring, you use
ModelExplainabilityMonitor to configure the infrastructure to execute
the processing jobs and the maximum runtime, as shown in the following code.
ModelExplainabilityMonitor explains model predictions using the feature
importance score and detects feature attribution drift:

model_explainability_monitor = ModelExplainabilityMonitor(

 role=role,

 sagemaker_session=sagemaker_session,

 max_runtime_in_seconds=1800,

)

With the different config objects in hand, you can now kick off the baseline job
as follows:

model_explainability_monitor.suggest_baseline(

 data_config=model_explainability_data_config,

 model_config=model_config,

 explainability_config=shap_config,

Baseline job execution results in a constraints file that shows the feature importance
values computed along with the suggested thresholds. A sample of the constraints
generated is shown here:

{

 "version": "1.0",

 "explanations": {

 "kernel_shap": {

 "label0": {

 "global_shap_values": {

 "ismobile": 0.00404293281766823,

 "year": 0.006527703849451637,

 ...

 "co": 0.03389338421306029

 },

 "expected_value": 0.17167794704437256

238 Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify

 }

 }

 }

}

3. Schedule and execute the model quality monitoring job: The next step to
schedule a feature attribution monitoring job is similar to scheduling the bias drift
monitoring job.

4. Analyze and act on results: The final step of analyzing the monitoring results and
taking remedial actions is similar to the previous monitoring types.

Important note
An example notebook that provides a complete walk-through of using
SageMaker Model Monitor for quality model monitoring is provided in the
GitHub repo https://gitlab.com/randydefauw/packt_
book/-/blob/master/CH10/bias_drift_monitoring/
WeatherPredictionFeatureAttributionDriftMonitoring
.ipynb.

Let's now summarize the details of the four different monitoring types. The following table
shows a summary of the monitoring types discussed so far and brings focus to the unique
aspects of each monitoring type:

Figure 11.12 – Summary of model monitoring

Now that you can put together end-to-end architecture for monitoring different aspects
of deployed models using SageMaker Clarify and Model Monitor, in the next section, you
will learn the best practices of using these capabilities along with some limitations.

https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/bias_drift_monitoring/WeatherPredictionFeatureAttributionDriftMonitoring .ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/bias_drift_monitoring/WeatherPredictionFeatureAttributionDriftMonitoring .ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/bias_drift_monitoring/WeatherPredictionFeatureAttributionDriftMonitoring .ipynb
https://gitlab.com/randydefauw/packt_book/-/blob/master/CH10/bias_drift_monitoring/WeatherPredictionFeatureAttributionDriftMonitoring .ipynb

Best practices for monitoring ML models 239

Best practices for monitoring ML models
This section discusses best practices for monitoring models using SageMaker Model
Monitor and SageMaker Clarify, taking into consideration the under-the-hood operation
of these features and a few limitations as they stand at the time of publication of this book:

• Choosing the correct data format: Model Monitor and Clarify can only monitor for
drift in tabular data. Therefore, ensure that your training data is in tabular format.
For other data formats, you will have to build custom monitoring containers.

• Choosing real-time endpoints as the mode of model deployment: Model Monitor
and Clarify support monitoring for a single-model real-time endpoint. Monitoring
a model used with batch transform or multi-model endpoints is not supported. So,
ensure that the model you want to monitor is deployed as a single-model real-time
endpoint. Additionally, if the model is part of an inference pipeline, the entire
pipeline is monitored, not the individual models that make up the pipeline.

• Choosing sampling data capture – sampling percentage: When you enable
data capture on a real-time endpoint, a configuration parameter to pay attention
to is sampling percentage, which indicates what percentage of the live traffic is
captured. Choosing the values for this metric depends on your use case. It is a
trade-off between the amount of inference traffic saved and the effectiveness of the
model monitoring. If the value of this parameter is close to 100, you have more
information stored, leading to more storage costs, and more data for the monitoring
job to analyze, leading to a long execution time. On the other hand, a higher
sampling percentage leads to capturing more inference traffic patterns to compare
against the baseline.

If your production model is operating in dynamic environments such as retail
or financial services, where the consumer behavior or environment factors often
change, impacting the model predictions, the best practice is to use a sampling
percentage of 100.

• Choosing a dataset for baseline generation: For generating the baseline, the
training dataset is typically a good dataset to use. For baseline generation, keep
in mind that the first column in the training dataset is considered to be the label.
Besides the label, ensure that the number and order of the features in the inference
traffic match the training dataset.

240 Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify

Additionally, for bias drift and feature attribution drift, the baseline generation
process stands up a shadow endpoint to collect predictions from. So, consider the
limit of the number of active endpoints in your AWS account when executing a
baseline job.

• Choosing the monitoring schedule execution frequency: Monitoring jobs, as
you have seen so far, are executed on a periodic basis where the minimum interval
length is 1 hour. This minimum interval is necessary because enough inference
traffic needs to be collected to be compared against the baseline. When determining
the monitoring execution frequency, you should select this interval based on the
inference traffic your model is serving. For example, a model deployed as part of a
busy e-commerce website may serve higher traffic volumes, so running a monitoring
job every few hours will give you the chance to detect data and model quality issues
quickly. However, every time a monitoring job is executed, it adds to your model
monitoring costs. The monitoring job schedule should therefore consider the trade-
off between the ability to robustly detect model issues and monitoring costs.

Note
There could be a delay of 0-20 minutes between the scheduled time and
execution of the monitoring job.

• Scheduling merge and monitoring jobs for model quality monitoring: Model
quality monitoring is unique among the four types of monitoring we have discussed
in this chapter, in that the model-consuming application should provide ground
truth inference labels to be used as part of monitoring. Due to this, you have to
consider an additional fact that the model-consuming application may upload the
ground truth inference labels using its own schedule. Without the ground truth
inference labels in the S3 bucket, the merge job will fail.

To address this issue, use the StartOffset and EndOffset fields of the
ModelQualityJobInput parameter. StartOffset specifies the time
subtracted from the start time and EndOffset specifies the time subtracted from
the end time of the monitoring job. Offsets are in the format of -P#D, -P#M, or
-P#H, where D, M, and H represent days, minutes, and hours, respectively, and
is the number. For example, a -P7H value of StartOffset will cause the
monitoring job to start 7 hours after the scheduled time.

Best practices for monitoring ML models 241

Additionally, ensure that the monitoring schedule cadence is such that any given
execution should be completed before the subsequent execution starts, allowing both
the ground truth merge job and the monitoring job to complete for each interval.

• Automating remediation actions: While a monitoring solution proactively detects
the data and model issues, without a proper plan to act on the issues, you cannot
ensure the model's continued ability to meet your business needs. To reap the
benefits of the model monitoring alerts generated, as much as possible, automate
actions that you need to perform as a result. For example, automate notifications
sent to operations and data science teams about possible data and model issues.
Similarly, automate collecting or importing new training data and triggering
re-training and testing of the models in non-production environments such as dev/
QA and staging.

• Choosing built-in versus custom monitoring: SageMaker provides a built-in
container called sagemaker-model-monitor-analyzer that provides the
capabilities we have reviewed in this chapter so far. This Spark-based container
built on the open source Deequ framework provides a range of capabilities, such as
generating statistics, suggesting constraints, validating constraints against a baseline,
and emitting CloudWatch metrics.

Whenever possible, choose to use this built-in container since SageMaker takes
on the burden of securing, managing, and updating this container with new
capabilities. You can extend the capabilities of this container by providing your
own preprocessing and postprocessing scripts. For example, you can use a custom
preprocessing script to make small changes to data, such as converting from an
array to flattened JSON as required by the baseline job. Similarly, you can perform
postprocessing to make changes to monitoring results.

In addition to using the SageMaker-provided container, you can also use your own
containers for custom monitoring. Custom containers allow you to build your own
monitoring schedules as well as your own logic for generating custom statistics,
constraints, and violations, along with custom CloudWatch metrics. When creating
a custom container, you should follow the input and output contracts published
by SageMaker. Additionally, you will be responsible for registering, managing, and
updating this custom container.

242 Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify

• Including human reviews in the monitoring workflow: For some critical ML
applications, say, for example, a financial loan approval application, it will often
be necessary to include human reviewers in the monitoring loop. Especially
when the ML model returns predictions with low confidence, human experts
need to ensure that the predictions are valid. Amazon A2I allows you to configure
custom monitoring workflows to include human experts to review predictions
from SageMaker models. Please see the References section for a link to a detailed
blog on configuring custom human-in-the-loop workflows using SageMaker and
Amazon A2I.

Use the best practices discussed in this section to create model monitoring configurations
that best meet your business and organizational requirements.

Summary
In this chapter, you learned the importance of monitoring ML models deployed in
production and the different aspects of models to monitor. You dove deep into multiple
end-to-end architectures to build continuous monitoring, automate responses to detected
data, and model issues using SageMaker Model Monitor and SageMaker Clarify. You
learned how to use the various metrics and reports generated to gain insight into your
data and model.

Finally, we concluded with a discussion on the best practices for configuring model
monitoring. Using the concepts discussed in this chapter, you can build a comprehensive
monitoring solution to meet your performance and regulatory requirements, without having
to use various different third-party tools for monitoring various aspects of your model.

In the next chapter, we will introduce end-to-end ML workflows that stitch all the
individual steps involved in the ML process together.

References
For additional reading material, please review the following reference:

• Automated monitoring of your ML models with Amazon SageMaker Model
Monitor and sending predictions to human review workflows using Amazon A2I:

https://aws.amazon.com/blogs/machine-learning/automated-
monitoring-of-your-machine-learning-models-with-amazon-
sagemaker-model-monitor-and-sending-predictions-to-human-
review-workflows-using-amazon-a2i

https://aws.amazon.com/blogs/machine-learning/automated-monitoring-of-your-machine-learning-models-with-amazon-sagemaker-model-monitor-and-sending-predictions-to-human-review-workflows-using-amazon-a2i
https://aws.amazon.com/blogs/machine-learning/automated-monitoring-of-your-machine-learning-models-with-amazon-sagemaker-model-monitor-and-sending-predictions-to-human-review-workflows-using-amazon-a2i
https://aws.amazon.com/blogs/machine-learning/automated-monitoring-of-your-machine-learning-models-with-amazon-sagemaker-model-monitor-and-sending-predictions-to-human-review-workflows-using-amazon-a2i
https://aws.amazon.com/blogs/machine-learning/automated-monitoring-of-your-machine-learning-models-with-amazon-sagemaker-model-monitor-and-sending-predictions-to-human-review-workflows-using-amazon-a2i

Section 4:
Automate and
Operationalize

Machine Learning

In this section, we will build automated workflows and MLOps pipelines for
end-to-end ML solutions following best practices for security, reliability, performance,
and cost optimization.

This section comprises the following chapters:

• Chapter 12, Machine Learning Automated Workflows

• Chapter 13, Well-Architected Machine Learning with Amazon SageMaker

• Chapter 14, Managing SageMaker Features across Accounts

12
Machine Learning

Automated
Workflows

For machine learning (ML) models that are deployed to production environments, it's
important to establish a consistent and repeatable process to retrain, deploy, and operate
these models. This becomes increasingly important as you scale the number of ML models
running in production. The machine learning development lifecycle (ML Lifecycle)
brings with it some unique challenges in operationalizing ML workflows. This will be
discussed in this chapter. We will also discuss common patterns to not only automate
your ML workflows, but also implement continuous integration (CI) and continuous
delivery/deployment (CD) practices for your ML pipelines.

Although we will cover various options for automating your ML workflows and
building CI/CD pipelines for ML in this chapter, we will focus particularly on detailed
implementation patterns using Amazon SageMaker Pipelines and Amazon SageMaker
projects. SageMaker Pipelines is purpose-built for activities that include the automation of
the steps needed to build a model, such as data preparation, model training, and model
evaluation tasks. SageMaker projects build on SageMaker Pipelines by incorporating CI/
CD practices into your ML pipelines. SageMaker projects utilize SageMaker Pipelines in
combination with the SageMaker model registry to build out end-to-end ML pipelines
that also incorporate CI/CD practices such as source control, version management,
and automated deployments.

246 Machine Learning Automated Workflows

 In this chapter, we'll cover the following topics:

• Considerations for automating your SageMaker ML workflows

• Building ML workflows with Amazon SageMaker Pipelines

• Creating CI/CD ML pipelines using Amazon SageMaker projects

Considerations for automating your
SageMaker ML workflows
In this section, we'll review a typical ML workflow that includes the basic steps for model
building and deploy activities. Understanding the key SageMaker inputs and artifacts for
each step is important in building automated workflows, regardless of the automation or
workflow tooling you choose to employ.

This information was covered in Chapter 8, Manage Models at Scale Using a Model
Registry. Therefore, if you have not yet read that chapter it's recommended to do so prior
to continuing with this chapter. We'll build on that information and cover high-level
considerations and guidance for building out automated workflows and CI/CD pipelines
for SageMaker workflows. We'll also briefly cover the common AWS native service options
when building automated workflows and CI/CD ML pipelines.

Typical ML workflows
An ML workflow contains all the steps required to build an ML model for an ML use case,
followed by the steps needed to deploy and operate the model in production. Figure 12.1
shows a typical ML workflow that includes model build and model deploy steps. Each
step within the workflow often has a number of associated tasks. As an example, data
preparation can include multiple tasks needed to transform data into a format that
is consistent with your ML algorithm.

When we look at automating the end-to-end ML workflow, we look to automate the tasks
included within a step, as well as how to orchestrate the sequence and timing of steps into
an end-to-end pipeline. As a result, knowing the key inputs for each step, as well as the
expected output or artifact of a step, is key in building end-to-end pipelines.

Additionally, model development is an iterative process. It may therefore take many
experiments until you're able to find a candidate model that meets your model
performance criteria. As a result, it's common to continue to experiment in a data science
sandbox environment until you find a candidate model to register into a model registry.
This would indicate that the model is ready to deploy to one or more target environments
for additional testing, followed by deployment to a production environment.

Considerations for automating your SageMaker ML workflows 247

Refer to the following figure for an example of a typical workflow:

Figure 12.1 – Typical ML workflow

After the model is deployed, there may also be additional tasks required to integrate
the model with existing client applications. There may also be tasks required to create
a more complex inference workflow that includes multiple models and tasks required for
inference. Finally, there would still be tasks required to operate that model. Although the
Operate step comes at the end, the activities that need to be performed for the ongoing
operation of that model need to be considered early on in the process. This is in order to
include all necessary tasks within your automated workflow, as well as ensure key metrics
are captured, and available for key personas. In addition, this allows you to set up alerts as
needed. This includes activities such as the following:

• Model monitoring: This includes the tasks required to ensure your model
performance does not degrade over time. This topic is covered in detail in Chapter
11, Monitoring Production Models with Amazon SageMaker Model Monitor and
Clarify. However, when building your automated deployment workflows, it's
important to consider the additional tasks that may need to be included and
automated within your pipeline. As an example, SageMaker Model Monitor for data
drift requires tasks such as baselining of your training data, enabling data capture
on your endpoints, and scheduling a SageMaker monitoring job. All of these tasks
should be automated and included in your automated workflow. You can also utilize
Human in the Loop reviews with Amazon Augmented AI (Amazon A2I) to check
low-confidence predictions that can be implemented along with, or complementary
to, SageMaker Model Monitor.

248 Machine Learning Automated Workflows

• System monitoring: System monitoring includes capturing and alerting on metrics
that are key to the resources hosting your model, as well as the other resources
supporting the deployed ML solution. As an example, Amazon SageMaker will
automatically capture key metrics about an endpoint, such as CPU/GPU utilization
or the number of invocations. Setting thresholds and creating alerts in Amazon
CloudWatch helps ensure the overall health of resources hosting models, as well
as other solution components.

• Model retraining: To set up automatic model retraining, the tasks that are
performed across your model build steps should be captured as code that can be
executed as part of a model build pipeline. This pipeline would include automation
of all of the tasks within each step, as well as orchestration of those steps.

• Pipeline monitoring: If you have automated pipelines set up for your model build
and model deploy activities, it's key to also have monitoring in place on your
pipeline to ensure you are notified in the event of a step failure in your pipeline.

We have covered the general steps in an ML workflow. However, each automated
workflow and CI/CD pipeline can vary due to a number of factors. In the next section,
we'll cover some of the considerations that are common across ML use cases.

Considerations and guidance for building SageMaker
workflows and CI/CD pipelines
The steps and tasks performed as part of an ML workflow can vary depending on the use
case; however, the following high-level practices are recommended when building an
automated workflow for your ML use case:

• Implement a model registry: A model registry helps bridge the steps between
the phases of model building experimentation and deploying your models to
higher-level environments. A model registry captures key metadata, such as model
metrics. It also ensures you're able to track key inputs and artifacts for traceability,
as well as manage multiple model versions across environments.

• Version inputs and artifacts: The ability to roll back or recreate a specific model
version or deployable artifact is dependent on knowing the specific versions of
inputs and artifacts used to create that resource. As an example, to recreate
a SageMaker endpoint, you need to know key version information, such as the
model artifact and the inference container image. These inputs and artifacts should
be protected from inadvertent deletion. They should also be tracked through
an end-to-end pipeline to be able to confidently recreate resources as part of an
automated workflow.

Considerations for automating your SageMaker ML workflows 249

AWS-native options for automated workflow and CI/
CD pipelines
In this chapter, we focus primarily on the SageMaker-native options for creating
automated workflows, as well as layering on CI/CD practices in end-to-end pipelines.
However, there are other options that can also be used for creating automated workflows
that contain SageMaker tasks for model building and model deployment. There are also
third-party options that contain operators or integrations with SageMaker. However,
they are not covered in this book.

First, we'll cover a few of the AWS services and features that can be used to build
automated workflows that include SageMaker tasks:

• AWS Step Functions: AWS Step Functions (https://aws.amazon.
com/step-functions/?step-functions.sort-by=item.
additionalFields.postDateTime&step-functions.sort-
order=desc) allows you to create automated serverless workflows that include
integration with a number of AWS services, as well as giving you the capability
to integrate third-party tasks into your workflows. AWS Step Functions also has
native support for SageMaker tasks, such as SageMaker processing jobs, SageMaker
training jobs, and SageMaker hosting options.

In addition, ML builders can choose to take advantage of the AWS Step Functions
Data Science SDK (https://docs.aws.amazon.com/step-functions/
latest/dg/concepts-python-sdk.html) to create ML workflows using
Python instead of through Amazon States Language. Amazon States Language
is the native pipeline syntax for AWS Step Functions. AWS Step Functions offers
extensibility across AWS services with native integrations for the AWS services
most commonly used in ML workflows, such as AWS Lambda, Amazon EMR,
or AWS Glue.

• Amazon Managed Workflows for Apache Airflow: Amazon Managed Workflows
for Apache Airflow (https://aws.amazon.com/managed-workflows-
for-apache-airflow/) allows you to create automated ML workflows by using
native integration with SageMaker among other AWS services that are commonly
used. Many organizations and teams already use or have invested in Airflow, so
this service provides a way to take advantage of those existing investments using
a managed service that includes native integrations with SageMaker for model
building and deployment steps.

https://aws.amazon.com/step-functions/?step-functions.sort-by=item.additionalFields.postDateTime&step-functions.sort-order=desc
https://aws.amazon.com/step-functions/?step-functions.sort-by=item.additionalFields.postDateTime&step-functions.sort-order=desc
https://aws.amazon.com/step-functions/?step-functions.sort-by=item.additionalFields.postDateTime&step-functions.sort-order=desc
https://aws.amazon.com/step-functions/?step-functions.sort-by=item.additionalFields.postDateTime&step-functions.sort-order=desc
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-python-sdk.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-python-sdk.html
https://aws.amazon.com/managed-workflows-for-apache-airflow/
https://aws.amazon.com/managed-workflows-for-apache-airflow/

250 Machine Learning Automated Workflows

• Amazon SageMaker Operators for Kubernetes: SageMaker Operators for
Kubernetes (https://docs.aws.amazon.com/sagemaker/latest/dg/
amazon-sagemaker-operators-for-kubernetes.html) allows teams
to create SageMaker tasks natively using the Kubernetes API and command-line
Kubernetes tools, such as kubectl.

• Amazon SageMaker Components for Kubeflow Pipelines: SageMaker
Components for Kubeflow Pipelines allows teams to still utilize Kubeflow for
workflow orchestration, while providing integrations with SageMaker so that you
can create and run SageMaker jobs in managed environments without running
them directly on your Kubernetes clusters. This is useful for taking advantage of
end-to-end managed SageMaker features, but also for cases where you do not want
to perform those tasks directly on your cluster.

Next, we'll cover a few of the AWS services and features that can be used to incorporate
CI/CD practices into your ML pipelines. These services are not unique to ML and can also
be substituted for third-party tools offering similar capabilities:

• AWS CodeCommit: AWS CodeCommit (https://aws.amazon.com/
codecommit/) is a private Git-based source code repository. For ML pipelines,
AWS CodeCommit can store any related source code, such as infrastructure as
code (IaC)/configuration as code (CaC), data processing code, training code,
model evaluation code, pipeline code, and model deployment code. The structure
of your repositories may vary, but in general, it's recommended to at least separate
your model build and model deploy code.

• AWS CodeBuild: AWS CodeBuild (https://aws.amazon.com/
codebuild/) is a fully managed build service that can be used for multiple
purposes. These include compiling source code, running tests, and running custom
scripts as part of a pipeline. For ML pipelines, AWS CodeBuild can be used for
tasks such as testing through custom scripts and packaging AWS CloudFormation
templates.

• AWS CodePipeline: AWS CodePipeline (https://aws.amazon.com/
codepipeline/) is a fully managed CD service that can be used to orchestrate
the steps of your ML pipeline. AWS CodePipeline can be used to orchestrate the
steps for model build tasks, as well as model deploy tasks.

https://docs.aws.amazon.com/sagemaker/latest/dg/amazon-sagemaker-operators-for-kubernetes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/amazon-sagemaker-operators-for-kubernetes.html
https://aws.amazon.com/codecommit/
https://aws.amazon.com/codecommit/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/

Building ML workflows with Amazon SageMaker Pipelines 251

The preceding list of AWS services can be used to incorporate CI/CD practices for your
ML pipelines. You can also optionally substitute the services above for third-party options,
such as GitHub, BitBucket, or Jenkins.

In this section, we covered a high-level ML workflow in the context of automating the
tasks within key steps, as well as providing overall orchestration to automate those steps.
We also discussed some of the key considerations when building your ML workflows.
We reviewed the AWS-native options for creating automated ML workflows. We then
looked at the AWS services that can be used to incorporate CI/CD practices.

All of these, as well as many third-party options, are valid options when selecting the
right tooling for automating your SageMaker workflows. The decision to custom build
workflows using the services mentioned in the preceding list, or the decision to substitute
the services above with third-party options, typically comes from either personal
preference or having organizational standards or requirements to utilize existing tooling.

For the remainder of this chapter, we'll focus on the SageMaker-native capabilities for
automating your ML workflows and incorporating CI/CD practices.

Building ML workflows with Amazon
SageMaker Pipelines
Model build workflows cover all of the steps performed when developing your model,
including data preparation, model training, model tuning, and model deployment. In this
case, model deployment can include the tasks necessary to evaluate your model, as well
as batch use cases that do not need to be deployed to higher environments. SageMaker
Pipelines is a fully managed service that allows you to create automated model build
workflows using the SageMaker Python SDK.

SageMaker Pipelines includes built-in step types (https://docs.aws.amazon.
com/sagemaker/latest/dg/build-and-manage-steps.html) for executing
SageMaker tasks, such as SageMaker Processing for data pre-processing, and SageMaker
Training for model training. Pipelines also include steps for controlling how your pipeline
works. For example, the pipeline could include conditional steps that could be used to
evaluate the output of a previous step to determine whether to proceed to the next step in
the pipeline.

https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html

252 Machine Learning Automated Workflows

To include steps that perform tasks using other AWS services or non-AWS tasks, you
must use the callback step. This is useful if you are using another AWS service for a task
in your pipeline. One example could be if you are using AWS Glue for data preprocessing.
Figure 12.2 builds on the previous workflow illustration to indicate where SageMaker
Pipelines fits into the end-to-end workflow, as well as providing examples of the supported
SageMaker features for each model build workflow step:

Figure 12.2 – SageMaker Pipelines model building workflows

In this section, you'll build out a SageMaker pipeline for your ML use case. The pipeline
will include all of the steps necessary for data preparation, model training, and model
evaluation. Because we don't need every SageMaker feature to build our pipeline, you'll
only be using the features noted in the following diagram:

Building ML workflows with Amazon SageMaker Pipelines 253

Figure 12.3 – SageMaker Pipelines example pipeline

For each step in your SageMaker pipeline, you first need to configure the task that you
will execute (for example, a training job) and then configure the SageMaker Pipelines step
for that task. After all, steps have been configured, you chain the steps together and then
execute the pipeline. The following sections will walk you through the steps in building
your SageMaker pipeline for your example use case.

Building your SageMaker pipeline
In this section, we'll walk through the steps needed to configure each step in your
SageMaker pipeline, as well as how to chain those steps together and finally execute your
model build pipeline. For each step in your pipeline, there are two steps to follow:

1. Configure the SageMaker job.
2. Configure the SageMaker Pipelines step.

254 Machine Learning Automated Workflows

Figure 12.4 illustrates the steps that we will use to build the pipeline:

Figure 12.4 – Pipeline use case with SageMaker steps

We'll start with the data preparation step, where we'll use SageMaker Processing to
transform our raw data into the format expected by the algorithm.

Data preparation step
In this step, you'll configure the SageMaker processing job that will be used to transform
your data into a format expected by the algorithm. For this, we'll use the same
configuration from Chapter 4, Data Preparation at Scale Using Amazon SageMaker Data
Wrangler and Processing:

1. First, we'll configure the SageMaker processing job, as follows:

from sagemaker.spark.processing import PySparkProcessor

spark_processor = PySparkProcessor(

 base_job_name="spark-preprocessor",

 framework_version="3.0",

 role=role,

Building ML workflows with Amazon SageMaker Pipelines 255

 instance_count=15,

 instance_type="ml.m5.4xlarge",

 max_runtime_in_seconds=7200,)

configuration = [

 {

 "Classification": "spark-defaults",

 "Properties": {"spark.executor.memory": "18g",

 "spark.yarn.executor.memoryOverhead": "3g",

 "spark.driver.memory": "18g",

 "spark.yarn.driver.memoryOverhead": "3g",

 "spark.executor.cores": "5",

 "spark.driver.cores": "5",

 "spark.executor.instances": "44",

 "spark.default.parallelism": "440",

 "spark.dynamicAllocation.enabled": "false"

 },

 },

 {

 "Classification": "yarn-site",

 "Properties": {"yarn.nodemanager.vmem-check-
enabled": "false",

 "yarn.nodemanager.mmem-check-enabled": "false"},

 }

]

256 Machine Learning Automated Workflows

2. Next, we'll configure the SageMaker Pipelines step that will be used to execute your
data preparation tasks. For this, we'll use the built-in processing step (https://
docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-
steps.html#step-type-processing) that tells Pipelines this step will be
a SageMaker processing job. Figure 12.5 shows the high-level inputs and outputs/
artifacts that ProcessingStep used for data preprocessing will expect:

Figure 12.5 – Data preparation pipeline step

We previously configured the processor, so we will now use that processor (combined
with the other inputs shown in Figure 12.4) to set up our Pipelines step, as follows:

1. First, we'll enable step caching. Step caching tells SageMaker to check for a previous
execution of a step that was called with the same arguments. This is so that it
can use the previous step values of a successful run instead of re-executing a step
with the exact same arguments. You should consider using step caching to avoid
unnecessary tasks and costs. As an example, if the second step (model training)
in your pipeline fails, you can start the pipeline again without re-executing the data
preparation step if that step has not changed, as follows:

from sagemaker.workflow.steps import CacheConfig

cache_config = CacheConfig(enable_caching=True, expire_
after="T360m")

https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-processing
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-processing
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-processing

Building ML workflows with Amazon SageMaker Pipelines 257

2. Next, we'll define the runtime arguments using the get_run_args method.
In this case, we are passing the Spark processor that was previously configured,
in combination with the parameters identifying the inputs (raw weather data), the
outputs (train, test, and validation datasets), and additional arguments the data
processing script accepts as input. The data processing script, preprocess.
py, is a slightly modified version of the processing script used in Chapter 4, Data
Preparation at Scale Using Amazon SageMaker Data Wrangler and Processing. Refer
to the following script:

from sagemaker.processing import ProcessingInput,
ProcessingOutput

run_args = pyspark_processor.get_run_args(

 "preprocess.py",

 submit_jars=["s3://crawler-public/json/serde/json-
serde.jar"],

 spark_event_logs_s3_uri=spark_event_logs_s3_uri,

 configuration=configuration,

 outputs=[\

 ProcessingOutput(output_name="validation",
destination=validation_data_out, source="/opt/ml/
processing/validation"),

 ProcessingOutput(output_name="train",
destination=train_data_out, source="/opt/ml/processing/
train"),

 ProcessingOutput(output_name="test",
destination=test_data_out, source="/opt/ml/processing/
test"),

],

 arguments=[

 '--s3_input_bucket', s3_bucket,

 '--s3_input_key_prefix', s3_prefix_parquet,

 '--s3_output_bucket', s3_bucket,

 '--s3_output_key_prefix', s3_output_prefix+'/
prepared-data/'+timestamp

]

)

258 Machine Learning Automated Workflows

3. Next, we'll use the runtime parameters to configure the actual SageMaker Pipelines
step for our data preprocessing tasks. You'll notice we're using all of the parameters
we configured previously to build the step that will execute as part of the pipeline:

from sagemaker.workflow.steps import ProcessingStep

step_process = ProcessingStep(

 name="DataPreparation",

 processor=pyspark_processor,

 inputs=run_args.inputs,

 outputs=run_args.outputs,

 job_arguments=run_args.arguments,

 code="modelbuild/pipelines/preprocess.py",

)

Model build step
In this step, you'll configure the SageMaker training job that will be used to train
your model. You'll use the training data produced from the data preparation step,
in combination with your training code and configuration parameters.

Important note
Although we do not cover it in this chapter specifically, it is important to
note that SageMaker Pipelines now integrates with SageMaker Experiments,
allowing you to capture extra metrics, as well as view corresponding plots in
SageMaker Pipelines.

For this, we'll use the same configuration from Chapter 6, Training and Tuning at Scale.
Refer to the following steps:

1. First, we'll configure the SageMaker training job, as follows:

initialize hyperparameters

hyperparameters = {

 "max_depth":"5",

 "eta":"0.2",

 "gamma":"4",

 "min_child_weight":"6",

Building ML workflows with Amazon SageMaker Pipelines 259

 "subsample":"0.7",

 "objective":"reg:squarederror",

 "num_round":"5"}

set an output path where the trained model will be
saved

m_prefix = 'pipeline/model'

output_path = 's3://{}/{}/{}/output'.format(s3_bucket, m_
prefix, 'xgboost')

this line automatically looks for the XGBoost image URI
and builds an XGBoost container.

specify the repo_version depending on your preference.

image_uri = sagemaker.image_uris.retrieve("xgboost",
region, "1.2-1")

construct a SageMaker estimator that calls the xgboost-
container

xgb_estimator = sagemaker.estimator.Estimator(image_
uri=image_uri,

 hyperparameters=hyperparameters,

 role=sagemaker.get_execution_role(),

 instance_count=1,

 instance_type='ml.m5.12xlarge',

 volume_size=200, # 5 GB

 output_path=output_path)

260 Machine Learning Automated Workflows

2. Next, we'll configure the SageMaker Pipelines step that will be used to execute your
model training task. For this, we'll use the built-in training step (https://
docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-
steps.html#step-type-training). This tells Pipelines this step will be
a SageMaker training job. Figure 12.6 shows the high-level inputs and outputs/
artifacts that a Training step will expect:

Figure 12.6 – Model build pipeline step

We previously configured the estimator, so we will now use that estimator combined with
the other inputs shown in Figure 12.6 to set up our Pipelines step:

from sagemaker.inputs import TrainingInput

from sagemaker.workflow.steps import TrainingStep

step_train = TrainingStep(

 name="ModelTrain",

 estimator=xgb_estimator,

 cache_config=cache_config,

 inputs={

 "train": TrainingInput(

https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-training
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-training
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-training

Building ML workflows with Amazon SageMaker Pipelines 261

 s3_data=step_process.properties.
ProcessingOutputConfig.Outputs["train"].S3Output.S3Uri,

 content_type="text/csv",

),

 "validation": TrainingInput(

 s3_data=step_process.properties.
ProcessingOutputConfig.Outputs["validation"].S3Output.S3Uri,

 content_type="text/csv",

),

 },

)

Model evaluation step
In this step, you'll configure a SageMaker processing job that will be used to evaluate your
trained model using the model artifact produced from the training step in combination
with your processing code and configuration:

1. First, we'll configure the SageMaker processing job starting with
ScriptProcessor. We will use this to execute a simple evaluation script,
as follows:

from sagemaker.processing import ScriptProcessor

script_eval = ScriptProcessor(

 image_uri=image_uri,

 command=["python3"],

 instance_type=processing_instance_type,

 instance_count=1,

 base_job_name="script-weather-eval",

 role=role,

)

262 Machine Learning Automated Workflows

2. Next, we'll configure the SageMaker Pipelines step that will be used to execute your
model evaluation tasks. For this, we'll use the built-in Processing step (https://
docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-
steps.html#step-type-processing). This tells Pipelines this step will be
a SageMaker processing job. Figure 12.7 shows the high-level inputs and outputs/
artifacts that a Processing step used for model evaluation will expect:

Figure 12.7 – Model evaluation pipeline step

https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-processing
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-processing
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-processing

Building ML workflows with Amazon SageMaker Pipelines 263

We previously configured the processor, so we will now use that processor combined with
the other inputs shown in Figure 12.7 to set up our Pipelines step. To do this, we'll first
set up the property file that will be used to store the output, in this case, model evaluation
metrics, of our processing job. Then, we'll configure the ProcessingStep definition
as follows:

from sagemaker.workflow.properties import PropertyFile

evaluation_report = PropertyFile(

 name="EvaluationReport", output_name="evaluation",
path="evaluation.json"

)

step_eval = ProcessingStep(

 name="WeatherEval",

 processor=script_eval,

 cache_config = cache_config,

 inputs=[

 ProcessingInput(

 source=step_train.properties.ModelArtifacts.
S3ModelArtifacts,

 destination="/opt/ml/processing/model",

),

 ProcessingInput(

 source=step_process.properties.
ProcessingOutputConfig.Outputs["test"].S3Output.
S3Uri, destination="/opt/ml/processing/test",

),

],

 outputs=[

 ProcessingOutput(output_name="evaluation", source="/
opt/ml/processing/evaluation"),

],

 code="modelbuild/pipelines/evaluation.py",

 property_files=[evaluation_report],

)

264 Machine Learning Automated Workflows

Conditional step
In this step, you'll configure a built-in conditional step that will determine whether to
proceed to the next step in the pipeline based on the results of your previous model
evaluation step. Setting up a conditional step requires a list of conditions or items that
must be true. This is in combination with instructions on the list of steps to execute
based on that condition. Figure 12.8 illustrates the inputs and outputs required for
a conditional step:

Figure 12.8 – Conditional pipeline step

Building ML workflows with Amazon SageMaker Pipelines 265

In this case, we're going to set up a condition using the mean squared error (MSE)
metric. If the metric is less than or equal to nn, then we will indicate the steps to proceed
with using the if_steps parameter. In this case, the next steps if the condition were
true would be to register the model and then create the model that packages your model
for deployment. You can optionally specify else_steps to indicate the next steps to
perform if the condition is not true. In this case, we will simply terminate the pipeline
if the condition is not true:

from sagemaker.workflow.conditions import
ConditionLessThanOrEqualTo

from sagemaker.workflow.condition_step import (

 ConditionStep,

 JsonGet

)

cond_lte = ConditionLessThanOrEqualTo(

 left=JsonGet(

 step=step_eval,

 property_file=evaluation_report,

 json_path="regression_metrics.mse.value"

),

 right=6.0

)

step_cond = ConditionStep(

 name="MSECondition",

 conditions=[cond_lte],

 if_steps=[step_register, step_create_model],

 else_steps=[]

)

266 Machine Learning Automated Workflows

Register model step(s)
In this final step, you'll package the model and configure a built-in register model
(https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-
manage-steps.html#step-type-register-model) step that will register your
model to a model package group in SageMaker model registry. As seen in Figure 12.9, the
inputs we'll use to register the model contain information about the packaged model, such
as the model version, estimator, and S3 location of the model artifact. This information,
when combined with additional information such as model metrics and inference
specifications, is used to register the model version:

Figure 12.9 – Conditional pipeline step

This step will use data from the prior steps in the pipeline to register the model and
centrally store key metadata about this specific model version. In addition, you'll see an
approval_status parameter. This parameter can be used to trigger downstream
deployment processes (these will be discussed in more detail under SageMaker Projects):

from sagemaker.model_metrics import MetricsSource, ModelMetrics

from sagemaker.workflow.step_collections import RegisterModel

model_metrics = ModelMetrics(

 model_statistics=MetricsSource(

https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-register-model
https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-register-model

Building ML workflows with Amazon SageMaker Pipelines 267

 s3_uri="{}/evaluation.json".format(

step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]
["S3Output"]["S3Uri"]

),

 content_type="application/json",

)

)

step_register = RegisterModel(

 name="RegisterModel",

 estimator=xgb_train,

 model_data=step_train.properties.ModelArtifacts.
S3ModelArtifacts,

 content_types=["text/csv"],

 response_types=["text/csv"],

 inference_instances=["ml.t2.medium", "ml.m5.xlarge"],

 transform_instances=["ml.m5.xlarge"],

 model_package_group_name=model_package_group_name,

 approval_status=model_approval_status,

 model_metrics=model_metrics,

)

Creating the pipeline
In the preceding steps, we configured the tasks and steps that will be used as part
of the model build pipeline. We now need to chain those steps together to create the
SageMaker Pipeline.

When configuring pipeline steps and creating a SageMaker pipeline, it is important to
identify the parameters that could vary per pipeline execution and may be more dynamic.
For example, the instance type for processing or training may be something you want to
be able to change with each execution of your pipeline without directly modifying your
pipeline code. This is where parameters become important in being able to dynamically
pass in parameters at execution time. This allows you to change configurations (such as
changing the instance type parameters) with each execution of your pipeline, based on
different environments or as your data grows.

268 Machine Learning Automated Workflows

The following code shows the chaining together of our previously configured
pipeline steps, as well as identifying the parameters we want to be able to pass in on
each execution:

from sagemaker.workflow.pipeline import Pipeline

pipeline_name = f"WeatherPipeline"

pipeline = Pipeline(

 name=pipeline_name,

 parameters=[

 processing_instance_type,

 processing_instance_count,

 training_instance_type,

 model_approval_status,

 input_data

],

 steps=[step_process, step_train, step_eval, step_cond],

)

Executing the pipeline
Now that we've defined and configured our steps and the pipeline itself, we want to be able
to execute the pipeline. To do this, you'll need to perform a few steps. These steps need to
be performed for each pipeline execution. A pipeline can be started in multiple ways:

• Programmatically within a notebook (as shown in the example notebook
for this chapter)

• Under Pipelines in the SageMaker Studio UI

• Programmatically via another resource

• Through an EventBridge source triggered by an event or schedule

Building ML workflows with Amazon SageMaker Pipelines 269

In this section, we'll focus on the steps required to execute your pipeline from your
example notebook. First, you need to submit the pipeline definition to the SageMaker
Pipelines service. This is done through an upsert that passes in the IAM role as an
argument. Keep in mind that an upsert will create a pipeline definition if it doesn't
exist or update the pipeline if it does. Also, the role that is passed is used by SageMaker
Pipelines to create and launch all of the tasks defined in the steps. Therefore, you need to
ensure that the role is scoped to the API permissions you need for your pipeline. It's a best
practice to only include the API permissions that are actually needed so as to avoid overly
permissive roles.

In the following code, you need to load the pipeline definition and then submit that
definition through upsert:

import json

json.loads(pipeline.definition())

pipeline.upsert(role_arn=role)

Once your pipeline definition is submitted, you're ready to start the pipeline using the
following code:

execution = pipeline.start()

There are multiple ways to check the status and progress of your pipeline steps. You can
view your pipeline in the Studio console and click on each step to get metadata about each
step, including the step logs. In addition, you can programmatically check the status of
your pipeline execution. To do this, you can run execution.describe() to view the
pipeline execution status, or execution.list_steps() to view the execution status
and each step.

Running your pipelines ad hoc from a notebook is often acceptable during your model-
building activities. However, when you're ready to move your models to production,
it's common at that stage to find the most consistent and repeatable ways to trigger or
schedule your model-building pipelines for model retraining.

To do this, you can utilize the integration between SageMaker Pipelines and Amazon
EventBridge (https://docs.aws.amazon.com/sagemaker/latest/dg/
pipeline-eventbridge.html). This integration allows you to trigger the execution
of your SageMaker pipeline through event rules. These rules can be based on an event,
such as the completion of an AWS Glue job, or they can be scheduled.

https://docs.aws.amazon.com/sagemaker/latest/dg/pipeline-eventbridge.html
https://docs.aws.amazon.com/sagemaker/latest/dg/pipeline-eventbridge.html

270 Machine Learning Automated Workflows

Pipeline recommended practices
In this section, we covered how to set up a SageMaker pipeline using your example
weather use case. As you build your own pipelines, they will likely vary in terms of the
configuration required and the steps that should be included. However, the following
general recommendations apply across use cases (unique considerations are highlighted
where applicable):

1. SageMaker Pipelines has built-in steps supporting a variety of SageMaker jobs
and the ability to utilize callback for custom steps. The built-in integrations with
SageMaker steps simplify building and managing the pipeline. It is therefore
recommended to utilize SageMaker-native steps for the tasks in your pipeline
when possible.

2. Utilize runtime parameters for job arguments that are more likely to change
between executions or environments, such as the size or number of ML instances
running your training or processing jobs. This allows you to pass values in when
you start the execution of the pipeline, as opposed to modifying your pipeline code
every time.

3. Enable step caching to take advantage of eliminating unnecessary execution
of steps in your pipeline. This will reduce costs, as well as reducing pipeline time
when a previous pipeline step has already been successfully executed with the
same parameters.

In this section, we covered automating your model build ML workflows using SageMaker
Pipelines. In the next section, we'll cover creating an end-to-end ML pipeline that goes
beyond automation and incorporates CI/CD practices.

Creating CI/CD pipelines using Amazon
SageMaker Projects
In this section, we'll discuss using Amazon SageMaker Projects to incorporate CI/CD
practices into your ML pipelines. SageMaker Projects is a service that uses SageMaker
Pipelines and the SageMaker model registry, in combination with CI/CD tools, to
automatically provision and configure CI/CD pipelines for ML. Figure 12.10 illustrates
the core components of SageMaker Projects. With Projects, you have the advantage
of a CD pipeline, source code versioning, and automatic triggers for pipeline execution:

Creating CI/CD pipelines using Amazon SageMaker Projects 271

 Figure 12.10 – SageMaker Projects

Projects are made available through built-in SageMaker MLOps project templates or by
creating your own organization's MLOps templates. The underlying templates are offered
through AWS Service Catalog, via SageMaker Studio, and contain CloudFormation
templates that preconfigure CI/CD pipelines for the selected template. Because projects
rely on CloudFormation to provision pipelines, this ensures the practice of IaC/CaC to be
able to consistently and reliably create CI/CD ML pipelines.

There are three core types of built-in SageMaker MLOps project templates. Figure 12.11
shows the three primary types: 1. Build and Train Pipeline, 2. Deploy Pipeline, 3. Build,
Train, and Deploy Pipeline.

272 Machine Learning Automated Workflows

Refer to the following figure:

Figure 12.11 – SageMaker Projects

First, there is a build and train template. This covers the tasks required in data
preparation, feature engineering, model training, and evaluation. This template is useful
when you are performing model build activities on SageMaker but deploying your model
somewhere else. It is also useful if you have batch-only use cases. In this case, Projects will
automatically provision and seed a source code repository for a model build pipeline, set
up pipeline triggers for changes to that code repository, and create a model group in the
model registry. You are then responsible for going in and modifying that pipeline code to
match your use case.

Second, there is a model deployment template. This template is useful when you are
looking to standardize SageMaker for hosting. In this case, Projects will automatically
provision and seed a source code repository for a model deploy pipeline that deploys to
a SageMaker endpoint based on triggers and information pulled from the model registry.

Creating CI/CD pipelines using Amazon SageMaker Projects 273

Finally, there are end-to-end templates that cover all phases, including build, train,
and deploy. These templates cover AWS Developer Services (AWS CodePipeline, AWS
CodeCommit, AWS CodeBuild), or allow the option to utilize third-party source code
repositories (GitHub, GitHub Enterprise, BitBucket, or Jenkins) for orchestration. In this
case, Projects will automatically provision and seed source code for both model build and
model deploy activities. Projects will also set up the triggers for both model build, and
model deploy activities. Again, you are then responsible for going in and modifying seed
code to meet your use case.

In this section, we examined SageMaker projects. We concluded that it is a service that
can be used to incorporate CI/CD practices into your ML pipelines. We'll now cover some
of the recommended practices when using SageMaker projects.

SageMaker projects recommended practices
In the preceding section, we covered SageMaker projects as a way to incorporate CI/CD
practices into your ML pipelines by using a managed AWS service that will automatically
provision and configure the integrations that are required. We'll now cover some of the
general recommended practices when using SageMaker projects.

As you use SageMaker projects, the customizations for your use case can vary between
customizing the code within the built-in MLOps project templates or creating your own
fully custom MLOps project templates. As a result, there can be a lot of variance between
pipelines in order to meet the requirements of your organization and use case. However,
there are some general recommendations that apply across use cases, as follows:

• Utilize built-in MLOps project templates when they meet your requirements.

• When you have unique requirements, such as additional deployment quality gates,
create custom MLOps project templates.

• When creating custom MLOps project templates, it is often easier to use the AWS
CloudFormation templates used for the built-in MLOps project templates as
a starting point and then modify accordingly. All of the built-in MLOps project
templates are available and visible in AWS Service Catalog.

In this section, we covered adding CI/CD practices to your automated workflows using
SageMaker projects. We also discussed the MLOps project template options that are
available. Finally, we discussed additional considerations and best practices when using
SageMaker projects.

274 Machine Learning Automated Workflows

Summary
In this chapter, we first covered general considerations for automating your SageMaker
workflows. We then discussed automating your SageMaker model build workflows,
specifically through using SageMaker Pipelines. The steps required to build out a pipeline
for your weather use case were highlighted in order to illustrate SageMaker Pipeline usage.
Finally, we discussed how you can enhance that automated model build workflow by using
SageMaker projects to incorporate CI/CD practices, in addition to the automation offered
by SageMaker Pipelines.

In the next chapter, we'll discuss the AWS Well-Architected Framework, specifically
looking at how best practices across each Well-Architected pillar map to SageMaker
workloads.

13
Well-Architected

Machine Learning
with Amazon

SageMaker
When running workloads in the cloud, you want to make sure that the workload
is architected correctly to take advantage of all that the cloud can offer. AWS Well-
Architected Framework helps you with this, by providing a formal approach for learning
best practices across five critical pillars applicable to any workload deployed to AWS.
The pillars are operational excellence, security, reliability, performance efficiency, and
cost optimization.

The framework provides guidance on how to improve your architecture and make trade-
offs between the pillars both during the initial development and continued updates
of the workload. While you can use Well-Architected Framework to evaluate your
workload from a general technology perspective, while building machine learning (ML)
applications, it would be great to have focused guidance across the five pillars specific to
ML. AWS Machine Learning Lens provides this focused guidance, which you can use to
compare and measure your ML workload on AWS against best practices.

276 Well-Architected Machine Learning with Amazon SageMaker

Important Note
For an in-depth review of the Well-Architected Framework and Machine
Learning Lens, please review these two white papers from AWS: https://
docs.aws.amazon.com/wellarchitected/latest/
framework/wellarchitected-framework.pdf and https://
docs.aws.amazon.com/wellarchitected/latest/
machine-learning-lens/wellarchitected-machine-
learning-lens.pdf.

So far in this book, we have discussed how to use different Amazon SageMaker
capabilities across all phases of ML workloads. In this chapter, we will learn how to
combine guidance from both the generic Well-Architected Framework and Machine
Learning Lens and apply it to the end-to-end ML workloads built on SageMaker.

Please note that this chapter does not introduce any new SageMaker features, but rather
dives into how you can apply the capabilities you already know to build a well-architected
ML workload. You will learn how SageMaker's specific capabilities are combined with
other AWS services across the five pillars, with some of the capabilities playing a key role
in multiple pillars.

In this chapter, we are going to cover the following main topics:

• Best practices for operationalizing ML workloads

• Best practices for securing ML workloads

• Best practices for building reliable ML workloads

• Best practices for building performant ML workloads

• Best practices for building cost-optimized ML workloads

Best practices for operationalizing ML
workloads
Many organizations start their ML journey with a few experiments of building models
to solve one or more business problems. Cloud platforms, in general, and ML platforms
such as SageMaker make this experimentation easy by providing seamless access to elastic
compute infrastructure and built-in support for various ML frameworks and algorithms.
Once these experiments have proven successful, the next natural step is to move the
models into production. Typically, at this time, organizations want to move out of the
research-and-development phase and into operationalizing ML.

https://docs.aws.amazon.com/wellarchitected/latest/framework/wellarchitected-framework.pdf
https://docs.aws.amazon.com/wellarchitected/latest/framework/wellarchitected-framework.pdf
https://docs.aws.amazon.com/wellarchitected/latest/framework/wellarchitected-framework.pdf
https://docs.aws.amazon.com/wellarchitected/latest/machine-learning-lens/wellarchitected-machine-learning-lens.pdf
https://docs.aws.amazon.com/wellarchitected/latest/machine-learning-lens/wellarchitected-machine-learning-lens.pdf
https://docs.aws.amazon.com/wellarchitected/latest/machine-learning-lens/wellarchitected-machine-learning-lens.pdf
https://docs.aws.amazon.com/wellarchitected/latest/machine-learning-lens/wellarchitected-machine-learning-lens.pdf

Best practices for operationalizing ML workloads 277

The idea of MLOps is gaining popularity these days. MLOps, at a very high level,
involves bringing together people, processes, and technology to integrate ML workloads
into release management, CI/CD, and operations. Without diving into all the details of
MLOps, in this section, we will discuss best practices for operationalizing ML workloads
using technology. We will also discuss which SageMaker features play a role in various
aspects of operationalizing ML workloads.

Let's now look at best practices for operationalizing ML workloads on AWS in the
following sections.

Ensuring reproducibility
To successfully operationalize the end-to-end ML system, you must first ensure its
reproducibility through versioned data, code, and artifacts. Best practice is to version all
inputs used to create models, including training data, data preparation code, algorithm
implementation code, parameters, and hyperparameters, in addition to all trained model
artifacts. A versioning strategy is also about helping in the model-update phase and
allowing for easy rollback to a specific known working version if a model update fails or if
the updated model does not meet your requirements.

Tracking ML artifacts
Iterative development of ML models using different algorithms and hyperparameters
for each algorithm results in many training experiments and multiple model versions.
Keeping track of these experiments and resulting models along with each model's lineage
is important to meet auditing and compliance requirements. Model lineage also helps with
root-cause analysis in case of degrading model performance.

While you can certainly build a custom tracking solution, best practice is to use a
managed service such as SageMaker Experiments. Experiments allows you to track,
organize, visualize, and compare ML models across all phases of the ML lifecycle
including feature engineering, model training, model tuning, and model deployment.
With SageMaker Experiments, you can easily choose to deploy or update the model with
a specific version. Experiments also provides you with the model lineage capability. For
a detailed discussion of SageMaker Experiments' capabilities, please refer to the Amazon
SageMaker Experiments section of Chapter 6, Training and Tuning at Scale.

Additionally, you can also use the Amazon SageMaker ML Lineage Tracking capability,
which keeps track of information about the individual steps of an ML workflow from data
preparation to model deployment. With the information tracked, you can reproduce the
workflow steps, track model and dataset lineage, and establish model governance and
audit standards.

278 Well-Architected Machine Learning with Amazon SageMaker

Automating deployment pipelines
Automated pipelines minimize human intervention in moving a trained ML model
from lower-level environments such as development and staging into a production
environment. The aim is to have a codified deployment pipeline created with
Infrastructure-as-Code and Configuration-as-Code, with manual and automated quality
gates incorporated into the pipeline. Manual quality gates can ensure that models are
promoted to the production environment only after ensuring that there are no operational
concerns such as security exposure. Automated quality gates, on the other hand, can be
used to evaluate model metrics such as precision, recall, or accuracy. Pipelines result
in consistent deployment as well as providing the ability to reliably recreate ML-related
resources across multiple environments with minimal human intervention.

Using Amazon SageMaker Pipelines, you can build automated model workflows. You
can build every step of the ML lifecycle as a pipeline step to develop and deploy models
and monitor the pipelines. You can further manage dependencies between each step,
build the correct sequence, and execute the steps automatically. A service that brings in
CI/CD practices to ML workloads is SageMaker Projects. This service helps you move
models from concept to production. Additionally, you can easily meet governance and
audit standards using a combination of SageMaker Projects and SageMaker Pipelines, by
automatically tracking code, datasets, and model versions through each step of the ML
lifecycle. This enables you to go back and replay model-generation steps, troubleshoot
problems, and reliably track the lineage of models at scale. For a detailed discussion
of automated workflows and MLOps, please refer to Chapter 12, Machine Learning
Automated Workflows.

Monitoring production models
Continued monitoring of deployed models is a critical step in operationalizing ML
workloads, since a model's performance and effectiveness may degrade over time.
Ensuring that the model continues to meet your business needs starts with the
identification of the metrics that measure both model-related metrics and business
metrics. Ensure that all metrics critical to model evaluation against your business KPIs are
defined early on and collected during monitoring.

Once the metrics are identified, to ensure the continued high quality of the deployed
model, use the Amazon SageMaker Model Monitor capabilities and its integration with
CloudWatch to proactively detect issues, raise alerts, and automate remediation actions.
In addition to detecting model-quality degradation, you can monitor data drift, bias
drift, and feature attribution drift to meet your reliability, regulatory, and model
explainability requirements.

Best practices for operationalizing ML workloads 279

CloudWatch alerts that have been triggered because of model monitoring can be used to
automate activities such as invalidating the current model, reverting to an older model
version, or retraining a new model based on new ground truth data. Updates to production
models should consider trade-offs between the risk of introducing changes, the cost of
retraining, and the potential value of having a newer model in production. For a detailed
discussion of model monitoring, please refer to Chapter 11, Monitoring Production Models
with Amazon SageMaker Model Monitor and Clarify.

Important note
While this section has focused on SageMaker-native approaches for
operationalizing ML workloads, please note that similar automated pipelines
can be built using a combination of SageMaker APIs and other AWS services
such as CodePipeline, Step Functions, Lambda, and SageMaker Data Science
SDK. Multiple MLOps architectures are documented along with sample code
at https://github.com/aws-samples/mlops-amazon-
sagemaker-devops-with-ml.

The following table summarizes the various AWS services and features applicable to
operationalizing ML workloads:

Figure 13.1 – AWS Services used for operationalizing ML workloads

In the next section, you will learn how SageMaker integrates with other AWS services to
enable secure ML workloads.

https://github.com/aws-samples/mlops-amazon-sagemaker-devops-with-ml
https://github.com/aws-samples/mlops-amazon-sagemaker-devops-with-ml

280 Well-Architected Machine Learning with Amazon SageMaker

Best practices for securing ML workloads
When securing an ML workload, you should take into consideration infrastructure and
network security, authentication and authorization, encrypting data and model artifacts,
logging and auditing, and meeting regulatory requirements. In this section, we will
discuss best practices for security ML workloads using a combination of SageMaker and
related AWS services.

Let's now look at best practices for securing ML workloads on AWS in the following
sections.

Isolating the ML environment
To build secure ML workloads, you need an isolated compute and network environment.
To achieve this for ML on SageMaker, deploy all resources such as notebooks, studio
domain, training jobs, processing jobs, and endpoints within a Virtual Private Cloud
(VPC). A VPC provides an isolated environment where all traffic between various
SageMaker components flows within the network. You can add another layer of isolation
by using security groups that include rules for both inbound and outbound traffic allowed
by subnets within the VPC, thereby isolating your ML resources further.

Even if you use SageMaker without a VPC, all resources run in an environment managed
by AWS on single-tenancy EC2 instances, which ensures that your ML environments
are isolated from other customers. However, deploying ML resources, such as training
containers, in a VPC allows you to monitor all network traffic in and out of these
resources using VPC Flow Logs. Additionally, you can use VPC endpoints and AWS
PrivateLink to enable communication between SageMaker and other AWS services such
as S3 or CloudWatch. This keeps all traffic flowing between the various services within the
AWS network without exposing the traffic to the public internet.

Disabling internet and root access
By default, SageMaker notebook instances are internet-enabled to allow you to download
external libraries and customize your working environment. Additionally, root access is
enabled on these notebooks, giving you the flexibility to leverage external libraries.

Only use these default settings in a lower-level sandbox and development environments
to figure out the optimal working notebook environment. In all other non-production
and production environments, launch SageMaker resources in your own VPC and turn
off root access to prevent downloading and installing unauthorized software. Import all
necessary libraries into a private repository such as AWS CodeArtifact before you isolate
your environment. This allows you to seamlessly download specific versions of libraries
without having to reach out to the internet.

Best practices for securing ML workloads 281

Additionally, use codified lifecycle configurations to automate setting up the notebook
environment. Similarly, training and deployed inference containers managed by
SageMaker are internet-enabled by default. When launching training and inference
resources, use VPCConfig and EnableNetworkIsolation flags to protect these
resources from external network traffic. In this case, all downloads and uploads of data
and model artifacts are routed through your VPC. At the same time, the training and
inference containers remain isolated from the network and do not have access to any
resource within your VPC or on the internet.

Enforcing authentication and authorization
Implement a strong mechanism to determine who can access the ML resources
(authentication) and what resources authenticated users can access (authorization).
SageMaker is natively integrated with AWS IAM, a service used to manage access to all
AWS services and resources. IAM allows you to define fine-grained access controls using
IAM users, groups, roles, and policies. You can implement least-privilege access using a
combination of identity-based policies to specify what an IAM user, role, or group can do
and resource-based policies to specify who has access to the resource and what actions
they can perform on it.

When designing these IAM policies, it is tempting to start with wide-open IAM policies
with good intentions of tightening them as you go. However, best practice is to start
with tight policies that grant minimal required access and add additional permissions
when required. Periodically review and refine policies to ensure that no unnecessary
permissions are granted. The IAM service provides the Access Advisor capability, which
shows you when various AWS services are last accessed by different entities such as IAM
groups, users, roles, and policies. Use this information to refine the policies. All the
service API calls are also logged by CloudTrail, and you can use the CloudTrail history to
determine which permissions can be removed based on the usage patterns.

Securing data and model artifacts
IAM policies can also be used for access-control of data and models in S3. Additionally,
you can use a security service called Amazon Macie to protect and classify data in S3.
Macie internally uses ML to automatically discover, classify, and protect sensitive data. It
automatically recognizes sensitive data such as personally identifiable information (PII)
or intellectual property (IP), providing visibility into data access and movement patterns.
Macie continuously monitors for anomalies in data-access patterns and proactively
generates alerts on unauthorized access and data leaks.

282 Well-Architected Machine Learning with Amazon SageMaker

The next important aspects to secure are data and model artifacts of an ML system, both at
rest and in transit. To secure data in transit within a VPC, use Transport Layer Security
(TLS). To secure data at rest, best practice is to use encryption to block malicious actors
from reading your data and model artifacts. You can use either client-side or server-side
encryption. SageMaker comes with built-in encryption capabilities to protect training data
and model artifacts both at rest and in transit. For example, when launching a training job,
you can specify the encryption key to be used. You have the flexibility of using SageMaker-
managed keys, AWS-managed keys, or your own customer-managed keys.

Logging, monitoring, and auditing
SageMaker is natively integrated with CloudWatch and CloudTrail. You can capture logs
from SageMaker training, processing, and inference in CloudWatch, which can further be
used for troubleshooting. All SageMaker (and other AWS services) API calls are logged
by CloudTrail, allowing you to track down which IAM user, AWS account, or source IP
address made the API call along with when the call occurred.

Meeting regulatory requirements
For many organizations, ML solutions need to comply with regulatory standards and pass
compliance certifications that vary significantly across countries and industries. Amazon
SageMaker complies with a wide range of compliance programs, including PCI, HIPAA,
SOC 1/2/3, FedRAMP, and ISO 9001/27001/27017/27018.

The following table summarizes the various AWS services applicable to securing
ML workloads:

Figure 13.2 – AWS services used for securing ML workloads

Best practices for reliable ML workloads 283

In the next section, you will learn how SageMaker integrates with other AWS services to
build reliable ML workloads.

Best practices for reliable ML workloads
For a reliable system, there are two considerations at the core:

• First, the ability to recover from planned and unplanned disruptions

• Second, the ability to meet unpredictable increases in traffic demands

Ideally, the system should achieve both without affecting downstream applications and
end consumers. In this section, we will discuss best practices for building reliable ML
workloads using a combination of SageMaker and related AWS services.

Let's now look at some best practices for securing ML workloads on AWS in the
following sections.

Recovering from failure
For an ML workload, the ability to recover gracefully should be part of all the steps that
make up the iterative ML process. A failure can occur with data storage, data processing,
model training, or model hosting, which may result from a variety of events ranging from
system failure to human error.

For ML on SageMaker, all data (and model artifacts) is typically saved in S3. This ensures
decoupling between ML data and the computation processing. To prevent an inadvertent
loss of data, best practice is to use a combination of IAM and S3 policies to ensure least
privilege-based access to data. Additionally, use S3 versioning and object tagging to enable
versioning and traceability of data (and model artifacts) for easy recovery or recreation in
the event of failure.

Next, consider the reliability of ML training, which is often a long, time-consuming
process. It is not uncommon to see training jobs that run over multiple hours and
even multiple days. If these long-running training jobs are disrupted due to a power
outage, OS fault, or other unexpected error, having the ability to reliably resume from
where the job stopped is critical. ML checkpointing should be used in this situation. On
SageMaker, a few built-in algorithms and all supported deep learning frameworks provide
the capability of turning on checkpointing when a training job is launched. When you
enable checkpointing, SageMaker automatically saves snapshots of the model state during
training. This enables you to reliably restart a training job from the last saved checkpoint.

284 Well-Architected Machine Learning with Amazon SageMaker

Tracking model origin
Let's say your training goes off without a hitch and you have a trained model artifact saved
in an S3 bucket. What happens if you lose this model artifact due to human error, such
as someone in your team deleting it by mistake? In a reliable ML system, you need to be
able to recreate this model using the same data, version of the code, and parameters as the
original model. Hence, it is important to keep track of all these aspects during training.
Using SageMaker Experiments, you can keep track of all the steps and artifacts that went
into creating a model so you can easily recreate the model as necessary. Another benefit of
tracking with SageMaker Experiments is the ability to troubleshoot issues in production
for reliable operation.

In addition to relying on Experiments to be able to recreate a specific version of a model
artifact, use a combination of IAM and S3 policies to ensure least privilege-based access
to minimize the risk of accidental model-artifact deletion. Implement measures such as
requiring MFA for model artifact deletion and storing a secondary copy of the artifact as
required by your organization's disaster recovery strategy.

Automating deployment pipelines
To ensure that all steps leading up to model deployment are executed consistently, use a
CI/CD pipeline with access controls to enforce least privilege-based access. Deployment
automation combined with manual and automated quality gates ensures that all changes
can be effectively validated with dependent systems prior to deployment. Amazon
SageMaker Pipelines has the capability to bring CI/CD practices to ML workloads for
improved reliability. Codifying the CI/CD pipelines using SageMaker Pipelines provides
you with an additional capability of dealing with the model endpoint itself being deleted
inadvertently. Using the Infrastructure-as-Code approach, the endpoint can be recreated.
This requires a well-defined versioning strategy in place for your data, code, algorithms,
hyperparameters, model artifacts, container images, and more. Version everything and
document your versioning strategy. For a detailed discussion of SageMaker Pipelines
capabilities, please refer to the Amazon SageMaker Pipelines section of Chapter 12,
Machine Learning Automated Workflows.

Additionally, follow the train once and deploy everywhere strategy. Because of the
decoupled nature of the training process and results, you can share the trained model
artifact across multiple environments. This prevents retraining in multiple environments
and introducing unexpected changes to the model.

Best practices for reliable ML workloads 285

Handling unexpected traffic patterns
Once the model is deployed, you must ensure the reliability of the deployed model in
serving the inference requests. The model should be able to handle spikes in inference
traffic and continue to operate at the quality necessary to meet the business requirements.

To handle traffic spikes, deploy the model with the Autoscaling-enabled SageMaker
real-time endpoint. With Autoscaling enabled, SageMaker automatically increases (and
decreases) the computation capacity behind the hosted model in response to the dynamic
shifts in the inference traffic. Autoscaling provided by SageMaker is horizontal scaling,
meaning it adds new instances or removes existing instances to handle the inference
traffic variations.

Continuous monitoring of deployed model
To ensure the continued high quality of the deployed model, use the Amazon SageMaker
Model Monitor capabilities and its integration with CloudWatch to proactively detect
issues, raise alerts, and automate remediation actions when a production model is
not performing as expected. In addition to model quality, you can monitor data drift,
bias drift, and feature-attribution drift to meet your reliability, regulatory, and model
explainability requirements. Ensure that all metrics critical to model evaluation against
your business KPIs are defined and monitored. For a detailed discussion of model
monitoring, please refer to Chapter 11, Monitoring Production Models with Amazon
SageMaker Model Monitor and Clarify.

Updating model with new versions
Finally, you must consider how to update a production model reliably. SageMaker
endpoint production variants can be used to implement multiple deployment strategies
such as A/B, Blue/Green, Canary, and Shadow deployments. The advanced deployment
strategies along with detailed implementation are discussed in Chapter 9, Updating
Production Models Using Amazon SageMaker Endpoint Production Variants. Depending
on the model consumer's tolerance for risk and downtime, choose an appropriate
deployment strategy.

286 Well-Architected Machine Learning with Amazon SageMaker

The following table summarizes the various AWS services applicable to building reliable
ML workloads:

Figure 13.3 – AWS service capabilities used for reliable ML workloads

In the next section, you will learn how SageMaker integrates with other AWS services to
build reliable, performance-efficient workloads.

Best practices for building performant ML
workloads
Given the compute- and time-intensive nature of ML workloads, it is important to choose
the most performant resources appropriate for each individual phase of the workload.
Computation, memory, and network bandwidth requirements are unique to each phase
of the ML process. Besides the performance of the infrastructure, the performance of the
model as measured by metrics such as accuracy is also important. In this section, we will
discuss best practices to apply in selecting the most performant resources for building ML
workloads on SageMaker.

Let's now look at best practices for building performant ML workloads on AWS in the
following sections.

Best practices for building performant ML workloads 287

Rightsizing ML resources
SageMaker supports a variety of ML instance types with a varying combination of CPU,
GPU, FPGA, memory, storage, and networking capacity. Each instance type, in turn,
supports multiple instance sizes. So, you have a range of choices to choose from to
suit your specific workload. The best practice is to choose different compute resource
configurations for data processing, building, training, and hosting your ML model. This
is made possible by the decoupled nature of SageMaker, which allows you to choose
different instance types and sizes for different APIs. For example, you can choose
ml.c5.medium for a notebook instance as your working environment, use a cluster
of four ml.p3.large GPU instances for training, and finally host the trained model
on two ml.m5.4xlarge instances with Elastic Inference attached. Additionally, in the
SageMaker Studio environment, you can change the notebook instance type seamlessly
without any interruption to your work.

While you have the flexibility of choosing different compute options for different ML
phases, how do you choose the specific instance types and sizes to use? This comes down
to understanding your workload and experimentation. For example, if you know that
the training framework and algorithm of your choice will need GPU support, choose a
GPU cluster to train on. While it may be tempting to use GPUs for all training, traditional
algorithms may not work well on GPUs due to the communication overheads involved.
Some built-in algorithms, such as XGBoost, implement an open source algorithm that
has been optimized for CPU computations. SageMaker also provides optimized versions
of frameworks, such as TensorFlow and PyTorch, which include optimizations for high-
performance training across Amazon EC2 instance families.

Monitoring resource utilization
Once you make your initial choice of instances and kick off training, SageMaker training
jobs emit CloudWatch metrics for resource utilization that you can use to improve your
training runs the next time. Additionally, when you enable Debugger with your training
jobs, SageMaker Debugger provides visibility into training jobs and the infrastructure a
training job is executing on. Debugger also monitors and reports on the system resources
such as CPU, GPU, and memory, providing you with insights into resource underutilization
and bottlenecks. If you use TensorFlow or PyTorch for your deep learning training jobs,
Debugger provides you with a view into framework metrics that can be used to speed
up your training jobs. For a detailed discussion of Debugger's capabilities, please refer to
Chapter 7, Profile Training Jobs with Amazon SageMaker Debugger.

288 Well-Architected Machine Learning with Amazon SageMaker

Rightsizing hosting infrastructure
Once the model is trained and ready to be deployed to choose instances for real-time
endpoints, consider what your target performance is. Target performance is a combination
of how many requests to serve in each period and the desired latency for each request, for
example, 10,000 requests per minute with a maximum of a 1 millisecond response time.
Once you have the target performance in mind, perform load testing in a non-production
environment to figure out the instance type, instance size, and number of instances to
host the model on. Recommended best practice is to deploy the endpoint with at least two
instances across two availability zones for high availability.

Once you decide on the instance type to use, start with the minimum number of instances
necessary to meet your steady-state traffic and take advantage of the Autoscaling
capability of SageMaker hosting. Using Autoscaling, SageMaker can automatically scale
the inference capacity depending on the utilization and request traffic thresholds you
configure. Capacity adjustments to meet your performance requirements are done by
updating the endpoint configuration without any downtime.

Additionally, you can scale up the hosting infrastructure for deep learning models
using Amazon Elastic Inference (EI). While training a deep learning model may need
a full-fledged GPU, hosting a training deep learning model may need only a slice of
GPU to function. EI allows you to accelerate deep learning inferences using SageMaker
ML instances. Alternatively, if you have a large-scale ML inference application, you can
run inferences on Inf1 instances, which are best suited to applications such as search,
recommendation engines, and computer vision, at a low cost.

While real-time endpoints provide access to models deployed on SageMaker, some
workloads may warrant inference at the edge due to latency requirements, for example,
models used to determine defective product parts in a manufacturing plant. In such cases,
the model needs to be deployed on cameras within the manufacturing plant. For such use
cases, use SageMaker Neo and SageMaker Edge Manager to optimize, deploy, and manage
models at the edge.

Important note
While real-time endpoints and models deployed at the edge provide
synchronous predictions, batch transform is used for asynchronous inferences
with more tolerance for longer response times. Use experimentation to
determine the right instance type, size, and number of instances to be used for
batch transform with job completion time in mind.

Best practices for cost-optimized ML workloads 289

Continuous monitoring of deployed model
Once the model is actively serving inference traffic, use SageMaker Model Monitor to
continuously monitor ML models for data drift, model-quality performance, feature-
importance drift, and bias drift. Behind the scenes, Model Monitor uses distributed
processing jobs. As with batch processing, use experimentation and load testing to
determine the processing job resources necessary to complete each scheduled monitoring
job execution. For a detailed discussion of Model Monitor, please refer to Chapter 11,
Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify.

The following table summarizes the various SageMaker features and how they are
applicable for building performant ML workloads:

Figure 13.4 – AWS service capabilities for building performant ML workloads.

In the next section, you will learn how SageMaker integrates with other AWS services to
build cost-optimized workloads.

Best practices for cost-optimized ML
workloads
For many organizations, the lost opportunity cost of not embracing disruptive
technologies such as ML outweighs the ML costs. By implementing a few best practices,
these organizations can get the best possible returns on their ML investment. In this section,
we will discuss best practices to apply for cost-optimized ML workloads on SageMaker.

290 Well-Architected Machine Learning with Amazon SageMaker

Let's now look at best practices for building cost-optimized ML workloads on AWS in the
following sections.

Optimizing data labeling costs
Labeling of data used for ML training, typically done at the very beginning of the ML
process, can be tedious, error-prone, and time-consuming. Labeling at scale consumes
many working hours, making this an expensive task, too. To optimize cost for data
labeling, use SageMaker Ground Truth. Ground Truth provides capabilities for data
labeling at scale using a combination of human workforce and active learning. When
active learning is enabled, a labeling task is routed to humans only if a model cannot
confidently finish the task. The human-labeled data is then used to train the model to
improve accuracy. Therefore, as the labeling job progresses, less and less data needs to
be labeled by humans. This results in faster completion of the job at reduced costs. For a
detailed discussion of Ground Truth capabilities, please refer to Chapter 3, Data Labeling
with Amazon SageMaker Ground Truth.

Reducing experimentation costs with models from
AWS Marketplace
ML is inherently iterative and experimental. Having to run multiple algorithms with
different sets of hyperparameters each time leads to several training jobs before you can
determine a model that meets your needs. All this training adds up in terms of time
and costs.

A big part of experimentation is the research and reuse of readily available pre-trained
models that may suit your needs. AWS Marketplace for ML gives you a catalog of datasets
and models made available by vendors vetted by AWS. You can subscribe to models that
meet your needs and potentially save the time and costs involved in developing your
own models. If you do, however, end up developing your own models, you can use the
marketplace to monetize your models by making them available to others.

Best practices for cost-optimized ML workloads 291

Using AutoML to reduce experimentation time
If the marketplace models don't meet your needs or if your organization has the build
rather than buy policy, first check whether your dataset and use case are suitable
for AutoPilot. At the time of writing this book, AutoPilot supports tabular data and
classification and regression problems. AutoPilot automatically analyzes datasets and
builds multiple models with different combinations of algorithms and hyperparameters
and finally selects the best algorithm for the list. This saves both time and cost.
Additionally, the service provides transparency through two notebooks – a data
preparation notebook and a model candidate selection notebook, which details all the
behind-the-scenes steps performed by AutoPilot. So, even if you don't end up using the
model built and recommended by AutoPilot, you can use these notebooks as a starting
point for your own experimentation and modify them using your business domain
knowledge.

However, at the time of publication of this book, AutoPilot only supports regression and
classification using tabular data. For other data types and problems, you will have to build
and train your model.

Iterating locally with small datasets
During ML experimentation, iterate with a smaller dataset in the SageMaker notebook's
local environment first. Once you iron out details such as code bugs and data issues, you
can scale up with the full dataset and distributed training clusters managed by SageMaker.
This phased approach will let you iterate faster at lower costs. SageMaker SDK makes this
easy by supporting instance-type = "local" for the training API so that you can
reuse the same code in the local environment or on the distributed cluster. Note that at the
time of publication, local mode only works in SageMaker notebook instances, not in the
Studio environment.

Rightsizing training infrastructure
When you are ready to launch a distributed training cluster, it is important to choose the
right number and type of instances in the cluster. For built-in or custom algorithms that
do not support distributed training, your cluster will always have a single instance. For
algorithms and frameworks that do support distributed training, take advantage of data
parallelism and model parallelism as discussed in Chapter 6, Training and Tuning at Scale,
to complete training faster, thereby reducing the overall training costs.

292 Well-Architected Machine Learning with Amazon SageMaker

While there are various instance types with different capacity configurations available,
it is important to rightsize the training instances based on the ML algorithm used. For
example, simple algorithms may not train faster on the larger instance types since they
cannot take advantage of hardware parallelism. Even worse, they may even train slower
due to high GPU communication overhead. Best practice for cost optimization is to start
with a smaller instance, scale out first by adding more instances to the training cluster,
and then scale up to more powerful instances. However, if you are using a deep learning
framework and distributed training, best practice would be to scale up to more GPUs/
CPUs on a single instance before scaling out because the network I/O involved may
negatively impact the training performance.

In addition to selecting the right infrastructure, you can also use optimized versions of
ML frameworks that result in faster training. SageMaker provides optimized versions of
multiple open source ML frameworks including TensorFlow, Chainer, Keras, and Theano.
SageMaker versions of these popular frameworks are optimized for high performance on
all SageMaker ML instances.

Optimizing hyperparameter-tuning costs
Hyperparameter tuning is also an expensive task, using sophisticated search and
algorithms. Best practice is to rely on the automated model tuning capability provided by
managed SageMaker Automatic Model Tuning, also known as hyperparameter tuning
(HPT). Automatic model tuning finds the best version of a model by running multiple
training jobs using the algorithm and hyperparameter ranges specified by you. HPT
then chooses the hyperparameter values that result in the best model as measured by
the objective metric you specify. Behind the scenes, HPT uses ML techniques that can
determine optimal hyperparameters with a limited number of training jobs.

You can further speed up the HPT jobs using warm start mode. With warm start, you
no longer must start an HPT job from scratch; instead, you can create a new HPT job
based on one or more parent jobs. This allows you to reuse the training jobs conducted
in the parent jobs as prior knowledge. Warm start allows you to reduce the time and cost
associated with model tuning.

Saving training costs with Managed Spot Training
SageMaker Managed Spot Training applies the cost-saving construct of Spot Instances and
applies it to hyperparameter tuning and training. The Managed Spot Training capability
takes advantage of checkpointing, to resume training jobs easily. Since you don't have to
run the training from the start again, this reduces your overall training costs.

Best practices for cost-optimized ML workloads 293

Using insights and recommendations from Debugger
When it comes to deep learning on SageMaker, training with GPU is very powerful,
but training costs can add up quickly. SageMaker Debugger provides insight into deep
learning training both into the ML framework in use and the underlying compute
resources. The deep profiler capability provides you with recommendations that you can
implement to improve training performance and reduce resource wastage. For a detailed
discussion of Debugger's capabilities, please refer to Chapter 7, Profile Training Jobs with
Amazon SageMaker Debugger.

Saving ML infrastructure costs with SavingsPlan
Once you enable SavingsPlan in your AWS account, it analyzes your ML resource
usage within a time of your choice – the past 7, 30, or up to 60 days. The service then
recommends the right plan to use to optimize costs. You can also select a pre-payment
option from three different options: no upfront costs, partial upfront (50% or more), or
all upfront. Once you configure these options, SavingsPlan provides you with details of
how your monthly spend can be optimized. Additionally, it also suggests an hourly usage
commitment that maximizes your savings. The plans cover all ML instance families,
notebook instances, Studio instances, training instances, batch transform instances, real-
time endpoint instances, Data Wrangler instances, and SageMaker Processing instances,
thereby helping to optimize costs across various phases of ML workloads.

While Managed Spot Training and SavingsPlan are both cost-saving approaches, they
are not meant to be combined. With SavingsPlan, you are billed every hour of the
commitment regardless of whether it is fully used. Best practice is to use SavingsPlan and
Managed Spot Training usages separately. For example, use SavingsPlan for predictable
steady-state recurring training workloads and Managed Spot Training for new training
workloads and prototyping where you do not have a clear idea of monthly costs yet.

Optimizing inference costs
Inference costs typically make up most ML costs. Inference costs are discussed in detail
in Chapter 10, Optimizing Model Hosting and Inference Costs, which details several ways
to improve inference performance while reducing inference costs. These methods include
using batch inference where possible, deploying several models behind a single inference
endpoint to reduce cost and help with advanced canary or blue/green deployments,
scaling inference endpoints to meet demand, and using EI and SageMaker Neo to provide
better inference performance at a lower cost.

294 Well-Architected Machine Learning with Amazon SageMaker

Stopping or terminating resources
Ensure that you terminate or at least stop the ML resources once you are done. While the
instances for training, hyperparameter tuning, batch inferences, and processing jobs will
be managed and automatically deleted by SageMaker, you are responsible for notebook
instances, endpoint, and monitoring schedules. Stop or delete these resources to avoid
unnecessary costs using automation with scripts that stop resources based on idle time or
a schedule.

The following table summarizes the various SageMaker features and how they are
applicable for building cost-optimized ML workloads:

Figure 13.5 – AWS service capabilities for cost-optimized ML workloads

This section concludes the discussion on applying best practices to build well-architected
ML workloads on AWS.

Summary
In this chapter, you reviewed the five pillars – operational excellence, security, reliability,
performance, and cost optimization – that make up the Well-Architected Framework. You
then dove into the best practices for each of these pillars, with an eye to applying these
best practices to ML workloads. You learned how to use the SageMaker capabilities with
related AWS services to build well-architected ML workloads on AWS.

Summary 295

As you architect your ML applications, you typically must make trade-offs between the
pillars depending on your organization's priorities. For example, when getting started with
ML, cost-optimization may not be at the top of your mind but establishing operational
standards may be important. However, as the number of ML workloads scale, cost-
optimization could become an important consideration. By applying the best practices you
learned in this chapter, you can architect and implement ML applications that meet your
organization's needs and periodically evaluate your applications against the best practices.

In the next chapter, you will apply all these best practices and see how to operate in
multiple AWS environments that reflect the real world.

14
Managing

SageMaker Features
across Accounts

AWS publishes best practices around the management and governance of workloads.
These practices touch on many areas, such as cost optimization, security, compliance, and
ensuring the operational efficiency of workloads scaled on AWS. Multi-account patterns
are one common architectural consideration when building, deploying, and operating
workloads that utilize the features of Amazon SageMaker.

In this section, we won't cover the well-established recommendations and considerations
around the governance of AWS workloads across AWS accounts. Rather, we will
specifically focus on some of the considerations around the usage of AWS features across
AWS accounts. For more information about general recommendations for choosing
the right account strategy, please refer to AWS Management and Governance services
(https://aws.amazon.com/products/management-and-governance/)
and the AWS Multi-Account Landing Zone strategy – AWS Control Tower (https://
docs.aws.amazon.com/controltower/latest/userguide/aws-multi-
account-landing-zone.html).

https://aws.amazon.com/products/management-and-governance/
https://docs.aws.amazon.com/controltower/latest/userguide/aws-multi-account-landing-zone.html
https://docs.aws.amazon.com/controltower/latest/userguide/aws-multi-account-landing-zone.html
https://docs.aws.amazon.com/controltower/latest/userguide/aws-multi-account-landing-zone.html

298 Managing SageMaker Features across Accounts

The concept of a multi-account strategy is built on the AWS Well-Architected
Framework, where having multiple AWS accounts allows you to better govern and
manage machine learning activities on Amazon SageMaker across the Machine Learning
Development Lifecycle (ML Lifecycle). The benefits of using multiple AWS accounts are
documented for general workloads.

In this chapter, we'll discuss the following topics as they relate to managing SageMaker
features across multiple AWS accounts:

• Examining an overview of the AWS multi-account environment

• Understanding the benefits of using multiple AWS accounts with Amazon
SageMaker

• Examining multi-account considerations with Amazon SageMaker

Examining an overview of the AWS multi-
account environment
There are many variations of multi-account strategies that are valid. Multi-account
implementations can vary based on the organizational and technical needs of a
customer. For the purposes of this chapter, we will focus on a basic multi-account
strategy, focusing on only the accounts that are most relevant to a machine learning
workload using Amazon SageMaker. We don't explicitly call out accounts (such as
security or logging) because they are already well defined in the context of AWS
governance practices. Figure 14.1 illustrates the general, high-level accounts we will use
to discuss the concepts in this chapter.

Figure 14.1 – Example of AWS accounts and SageMaker features

Examining an overview of the AWS multi-account environment 299

Using Figure 14.1 as an example, the following AWS accounts may be used as part of
an end-to-end ML Lifecycle. Please keep in mind that account naming and resource
placement may vary considerably across implementations. Each account is described at
a high level, in order to focus more on the account purpose versus the naming standard
itself:

1. Shared Services account: This account can be named many things, and is also
referred to as a DevOps or application management account. For the purposes of
this chapter, we refer to this account as the one that can often include the services
and tooling used for the management of end-to-end pipelines and the ongoing
management of workloads.

2. Data platform/data lake: This account acts as the central repository for datasets,
both raw and curated, used for model-building activities.

3. Data science account: This account (or accounts) represents the environments
where model development activities are performed.

4. Test account: This account represents the environment where a model will be
tested. This account typically includes integration and performance testing.

5. Production account: This account represents the environment hosting models
supporting live applications and workloads. This account typically has the highest
levels of controls and restrictions.

6. Service Catalog master account: The purpose of this account is to maintain a
central hub of products that can be offered through the AWS Service Catalog
and used to consistently provision resources in spoke accounts, such as the data
science account. A spoke account is an AWS account that has been given access to
portfolios managed from the master account.

Again, these accounts are high-level representations of a potential account structure
and are not inclusive of every variation that is valid given the requirements of your
own environments. In the next section, we'll discuss the benefits of using multiple AWS
accounts specifically as they relate to using Amazon SageMaker across the ML Lifecycle

300 Managing SageMaker Features across Accounts

Understanding the benefits of using multiple
AWS accounts with Amazon SageMaker
In this section, we'll cover the general, high-level benefits of using multiple AWS accounts.
We'll also discuss the considerations that are specific to using Amazon SageMaker across
the ML Lifecycle:

• Benefit #1: Implementing specific security controls

Using multiple AWS accounts allows customers to implement security controls that
are specific to the workload, environment, or data. As an example, some workloads
may have unique security requirements (such as PCI compliance) and require
additional controls. Using multiple accounts allows you to maintain fine-grained
controls that are isolated and auditable at the AWS account level.

For the model-building activities included in the ML Lifecycle, using multiple AWS
accounts allows you to create and manage data science environments that include the
controls that are specific to machine learning, as well as to your security requirements.
With machine learning, data scientists need access to live production data. Typically,
that data should be scrubbed of any sensitive data before a data scientist gains access.
However, there are use cases where a data scientist may need access to that sensitive
data. By separating data science environments that have access to sensitive data and
those that do not have access to sensitive data, you're able to implement controls at the
account level, as well as to audit at the account level.

For model deployment activities included in the ML Lifecycle, you will want
to ensure your models serving live traffic or providing critical inference data
are managed and controlled. This would be the case with any other production
application. You wish to ensure availability. Just as you would not implement a live
web application in the same account where developers have broad access, the same
is true for machine learning workloads serving live production workloads.

Examining multi-account considerations with Amazon SageMaker 301

As an example, a SageMaker endpoint serving a production application should be
hosted in an AWS account that has all of the controls and restricted access in place
(you would want this to be the case as with any other production workload). This
ensures the endpoint isn't inadvertently deleted in a lower-level account that may
have fewer controls and broader access permissions granted.

• Benefit #2: Supporting the needs of multiple teams

Large organizations and enterprises are often looking for scalable mechanisms to
support the resource needs and responsibilities of different teams. Across lines of
business, it's common to have separate AWS accounts. The same is true for machine
learning workloads. An example here includes data science environments (as
discussed in Chapter 2, Data Science Environments), where each team may have
different requirements for an environment in which to build machine learning
models. In this case, it's common to have multiple data science environments
supporting multiple teams, as well as supporting the requirements across and within
teams.

Examining multi-account considerations with
Amazon SageMaker
In this section, we'll cover multi-account considerations with Amazon SageMaker. We'll
first look at a general reference architecture, then discuss some of the considerations for
specific SageMaker features across the ML Lifecycle.

302 Managing SageMaker Features across Accounts

Figure 14.2 shows an example of a multi-account structure mapping key SageMaker
features and other common AWS services to the accounts they are typically used in. This
is not a one-size-fits-all view, as there may be other AWS services or third-party tools
that are performing one or more of the functions performed by the AWS services shown.
As an example, your model registry may be the SageMaker model registry, or it could
alternatively be Amazon DynamoDB or a tool such as MLflow:

Figure 14.2 – Example of service use across AWS accounts

The placement of the AWS, or equivalent, supporting the ML Lifecycle map to the
phase, model build, or model deploy. This is in combination with the benefits addressed
earlier in being able to implement security controls by accounts, as well as to support
the requirements of the different roles and personas that operate within each account.
The naming and structure of accounts may vary across multi-account implementations.
Therefore, in the following list, we describe the purpose of each account, knowing these
may vary across implementations:

• A Shared Services account, or DevOps account, is often used to centralize
the tooling that is used to manage workloads across multiple accounts and
environments. In this case, you see a few common services, such as the Amazon
Elastic Container Registry for managing SageMaker compatible images for
training and inference. You also often find developer tools that enable continuous
integration (CI)/ continuous delivery or deployment (CD) practices.

Examining multi-account considerations with Amazon SageMaker 303

• There are the tools that are needed to automate and orchestrate the steps of the
machine learning workflow across accounts. These can include native AWS
Developer Tools or third-party tooling such as GitHub or Jenkins. The tools
and services used in this account require cross-account identity and access
management (IAM) permission policies. Finally, you need to create centralized
dashboards for monitoring the health of your machine learning workloads.
These shared dashboards are often placed in the Shared Services account, an
infrastructure account, or one of the environment- or workload-specific accounts,
such as production.

• The data platform, or data lake account, contains a data lake using a native service,
such as AWS Lake Formation or a custom data lake. This account is also a common
option for placing the centralized feature store that is used to store features for use
across teams.

• The data science account is primarily used for model building activities so this
includes all of the activities required to perform data understanding, feature
engineering, model training across experiments, and model evaluation. This
account requires access to SageMaker features needed for those model-building
activities including features such as Amazon SageMaker Studio, SageMaker
training jobs, SageMaker Pocessing jobs, and SageMaker Data Wrangler.

• In addition to the common features needed for model building, there are additional
AWS services that get provisioned in this account when you are using SageMaker
projects. By default, SageMaker projects automatically provision and configure
AWS Developer Tools and the AWS Service Catalog products for built-in MLOps
project templates in the account you are using for your model-building activities.

• Workload or environment-specific accounts, such as test and production, are used
to host live models. These accounts also commonly host the broader solution where
your model is used. From a SageMaker perspective, the features used in these
accounts typically focus on model deploy and operate activities.

• Finally, you may also have an AWS Service Catalog master or infrastructure
account that contains the portfolios of products that can be shared across multiple
teams. This is known as the hub account. This can be used to create and manage
a central catalog of products for data science environments or for custom MLOps
project templates with SageMaker projects.

304 Managing SageMaker Features across Accounts

Some AWS features are very specific to the persona and phase in the ML Lifecycle where
they are needed. As an example, SageMaker training jobs are typically needed by data
scientists for model-building activities or are needed as part of an automated model
retraining workflow. However, there are several AWS services that span phases of the ML
Lifecycle that require some unique considerations. These will be explored further in the
next section.

Considerations for SageMaker features
There are several SageMaker features that require additional considerations when
attempting to implement them in a multi-account strategy, specifically because these
features are used across the ML Lifecycle. Considerations for features, such as SageMaker
Processing, SageMaker training jobs, and SageMaker hosting, are generally specific to a
phase in the lifecycle. Therefore, their placement across accounts is covered in Figure 14.3.
In this section, we'll cover a few of the SageMaker features that span the ML Lifecycle and
require additional consideration as part of your multi-account strategy.

Amazon SageMaker Pipelines
SageMaker Pipelines allows you to code your machine learning pipelines using the
Amazon SageMaker Python SDK. Pipelines includes SageMaker native steps focused on
data preparation (via SageMaker Processing), model training (via SageMaker training
jobs), and model deployment (via SageMaker batch transform). Pipelines also includes
CallbackStep to integrate with other AWS services or third-party tasks. Finally,
Pipelines has built-in steps for pipeline functionality, such as a conditional step. All of
the current capabilities within SageMaker Pipelines focus on model building and model
deployment for batch inference. As a result, we'll look at two common patterns that have
cross-account considerations when using SageMaker Pipelines.

In the first pattern, we'll discuss an end-to-end pipeline scenario where you are deploying
a model for real-time inference using SageMaker hosting. In this case, you can use
SageMaker Pipelines in your data science account to create a pipeline that can be used to
automate the model-building activities. These activities include data preparation, model
training, model evaluation, and a conditional step for model registration. Once a model
passes evaluation and is registered, it can be used as a trigger for downstream deployment
to your accounts (such as testing or production) that will host and integrate deployed
endpoints. This same pipeline can be used for your retraining workflows.

Examining multi-account considerations with Amazon SageMaker 305

In this case, model deployment to higher environments can be done using a cross-account
resource policy, as shown in Figure 14.3. The cross-account resource policy is created for
the model group in the SageMaker model registry. That model group contains the
model versions, the Amazon ECR repository for the inference image, and the S3 location
of the model artifacts. A cross-account resource policy can be created with all three of
these resources that then allows you to deploy a model that was created in your data
science environment into your application or workload environments (such as testing
or production).

Refer to the following figure:

Figure 14.3 – Cross-account resource policy to deploy a model trained in a data science account

306 Managing SageMaker Features across Accounts

In the second pattern, we'll discuss an end-to-end pipeline scenario where you are
deploying a model for batch inference using SageMaker hosting. In this case, you can use
SageMaker Pipelines in your data science account to create a pipeline that can be used to
automate the model-building activities. These include data preparation, model training,
model evaluation, a conditional step for model registration, and a batch transform step. In
this case, there are two options depending on your use case and requirements:

• Run your end-to-end pipeline in your data science account: This option is valid if
you are using batch transform to validate your models or you're running batch jobs
that don't have production-level availability requirements.

• Run your end-to-end pipeline in workload accounts: This option is valid if you
are using batch transform to deploy models that have production-level availability
requirements and/or require integration with systems in higher-level environments.

Amazon SageMaker projects
Amazon SageMaker projects build on SageMaker Pipelines by incorporating CI/CD
practices (such as source and version control) combined with automated deployment
pipelines into one or more target environments. When considering integrating SageMaker
projects with multiple AWS accounts, the following are key points to understand:

• When you enable project templates for your Studio domain or domain users, the
account where projects are enabled is the one that will be used for the built-in
MLOps project templates offered through AWS Service Catalog. If you build custom
MLOps project templates, you can still use the hub-and-spoke model to manage
your portfolio and products in a Service Catalog master account.

• All built-in MLOps project templates will provision and configure the following
resources in the same account where projects are enabled: AWS CodePipeline,
AWS CodeBuild, AWS CodeCommit, and Amazon EventBridge. This is
important as some organizations assume or require these services to be centrally
configured and managed through a shared services account (or equivalent).

Examining multi-account considerations with Amazon SageMaker 307

• The built-in MLOps project templates will deploy your SageMaker endpoints to the
same account where projects are enabled. This behavior can be modified. However,
the model registry still exists in the data science account.

Amazon SageMaker Feature Store
Amazon SageMaker Feature Store allows creating and sharing features, both for
model-building activities and model inference. Because a feature store can be used
for both model-building activities as well as a dependency for model inference, it's
important to ensure features remain consistent across teams and are consistently
available when needed.

When you create a feature store, it gets instantiated in the account that you created it
in. However, that may not be the optimal choice when centralizing features for sharing
across teams, or when using the feature store for real-time inference. If you create the
feature store in your data science account, that account may have fewer controls and more
access permissions in place for a broader set of roles. This creates risk when supporting
production applications.

There are two common cross-account patterns related to Feature Store that facilitate
feature sharing and consistency across teams, as well as allowing the flexibility for team-
or organization-specific feature stores when needed.

308 Managing SageMaker Features across Accounts

In the first pattern, shown in Figure 14.4, a central feature store is created in a separate
AWS account that is accessible via an IAM cross-account role for both the population and
consumption of features. For the population of features, this is typically done through a
feature pipeline that is automated and collecting data at regular frequencies. However,
it can also be done from the data science environment for more static features. Features
can then be consumed for both inference as well as for model-building activities. Model-
building activities often consume features from the offline feature store using cross-
account permissions:

Figure 14.4 – Central Feature Store pattern

In the second pattern, similar to Figure 14.4, there is a central feature store that is used
for sharing features that may be common or useful across teams, but there is also the
flexibility for individual teams to create their own feature stores in separate AWS accounts.
This pattern is useful to facilitate the ability to share common features in a central store,
while also allowing workload- or application-specific features to be secured in an account
that only requires access by the specific teams or applications that need those features.

Examining multi-account considerations with Amazon SageMaker 309

Amazon SageMaker Data Wrangler
Amazon SageMaker Data Wrangler allows data scientists to explore and prepare data
for machine learning during the model build phases of the ML Lifecycle. Because Data
Wrangler is purpose-built for feature engineering and data preparation, the most common
persona that will work with Data Wrangler are ML builders. Most model-building
activities are going to happen inside one or more data science accounts; however, you
typically need a way to securely access data from a data platform or data lake account for
those model-building activities.

Figure 14.5 illustrates a common pattern for enabling cross-account access from a data
science account, where Data Wrangler is being used, to a data platform/data lake account,
where the data typically resides. In this case, we are using AWS Lake Formation for our
secure data lake. The same concepts apply when utilizing other technologies for your data
lake; however, the implementation may differ:

Figure 14.5 – Cross-account access for SageMaker Data Wrangler

With Data Wrangler, you're able to enable cross-account permissions using AWS IAM.
To do this, you need to set up cross-account permissions for Data Wrangler in the data
science account that allows access to the data tables stored in your data platform/data lake
account. This is accomplished through Lake Formation permissions. This setup allows
you to still provide access to datasets for your data scientists, but also allows you to take
advantage of the security controls that Lake Formation offers.

310 Managing SageMaker Features across Accounts

For example, you can choose to share only specific tables or even to share only specific
columns of tables stored in your data lake. Tables are shared using AWS Resource Access
Manager. This provides a way to share Lake Formation tables across AWS accounts.
This allows users to access shared tables in secondary accounts. These shared tables are
accessible directly in Lake Formation, but they are also available as a data source, via
Amazon Athena, in your Data Wrangler UI.

Summary
In this chapter, we discussed the benefits of using multiple accounts to manage and
operate machine learning workloads that use Amazon SageMaker across the ML Lifecycle.
We also looked at common patterns for account isolation across the ML Lifecycle.
Finally, we focused specifically on the SageMaker features that are most often used across
accounts, and the considerations you should be aware of when architecting and building
end-to-end machine learning solutions.

This chapter wraps up the book where we covered best practices for SageMaker across
features spanning the machine learning lifecycle of data preparation, model training,
and operations. In this book, we discussed best practices, as well as considerations, that
you can draw on when creating your own projects. We used an example use case, using
open weather data to demonstrate the concepts throughout the chapters of the book. This
was done so you can get hands-on with the concepts and practices discussed. We hope
you're able to apply these practices to your own projects while benefiting from the overall
capabilities and features offered by Amazon SageMaker.

References
Please see the following references for general AWS best practices on governance and
multi-account strategies, as well as information specific to SageMaker features:

• Establishing best practices in your AWS environment : https://aws.amazon.
com/organizations/getting-started/best-practices/

• AWS Control Tower – AWS services to establish and manage multiple AWS
accounts: https://aws.amazon.com/controltower/

• SageMaker – Deploying a model to a different AWS account: https://aws.
amazon.com/premiumsupport/knowledge-center/sagemaker-
cross-account-model/

https://aws.amazon.com/organizations/getting-started/best-practices/
https://aws.amazon.com/organizations/getting-started/best-practices/
https://aws.amazon.com/controltower/
https://aws.amazon.com/premiumsupport/knowledge-center/sagemaker-cross-account-model/
https://aws.amazon.com/premiumsupport/knowledge-center/sagemaker-cross-account-model/
https://aws.amazon.com/premiumsupport/knowledge-center/sagemaker-cross-account-model/

References 311

• SageMaker Data Wrangler – Enable cross-account access: https://aws.
amazon.com/blogs/machine-learning/enable-cross-account-
access-for-amazon-sagemaker-data-wrangler-using-aws-lake-
formation/

• SageMaker Pipelines – Multi-account deployments: https://aws.amazon.
com/blogs/machine-learning/multi-account-model-deployment-
with-amazon-sagemaker-pipelines/

• SageMaker Feature Store: https://aws.amazon.com/blogs/machine-
learning/enable-feature-reuse-across-accounts-and-teams-
using-amazon-sagemaker-feature-store/

https://aws.amazon.com/blogs/machine-learning/enable-cross-account-access-for-amazon-sagemaker-data-wrangler-using-aws-lake-formation/
https://aws.amazon.com/blogs/machine-learning/enable-cross-account-access-for-amazon-sagemaker-data-wrangler-using-aws-lake-formation/
https://aws.amazon.com/blogs/machine-learning/enable-cross-account-access-for-amazon-sagemaker-data-wrangler-using-aws-lake-formation/
https://aws.amazon.com/blogs/machine-learning/enable-cross-account-access-for-amazon-sagemaker-data-wrangler-using-aws-lake-formation/
https://aws.amazon.com/blogs/machine-learning/multi-account-model-deployment-with-amazon-sagemaker-pipelines/
https://aws.amazon.com/blogs/machine-learning/multi-account-model-deployment-with-amazon-sagemaker-pipelines/
https://aws.amazon.com/blogs/machine-learning/multi-account-model-deployment-with-amazon-sagemaker-pipelines/
https://aws.amazon.com/blogs/machine-learning/enable-feature-reuse-across-accounts-and-teams-using-amazon-sagemaker-feature-store/
https://aws.amazon.com/blogs/machine-learning/enable-feature-reuse-across-accounts-and-teams-using-amazon-sagemaker-feature-store/
https://aws.amazon.com/blogs/machine-learning/enable-feature-reuse-across-accounts-and-teams-using-amazon-sagemaker-feature-store/

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

314 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learn Amazon SageMaker

Julien Simon

ISBN: 978-1-80020-891-9

• Create and automate end-to-end machine learning workflows on Amazon Web
Services (AWS)

• Become well-versed with data annotation and preparation techniques

• Use AutoML features to build and train machine learning models with AutoPilot

• Create models using built-in algorithms and frameworks and your own code

• Train computer vision and NLP models using real-world examples

• Cover training techniques for scaling, model optimization, model debugging, and
cost optimization

https://www.packtpub.com/product/learn-amazon-sagemaker/9781800208919

Packt is searching for authors like you 315

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share your thoughts
Now you've finished Amazon SageMaker Best Practices, we'd love to hear your thoughts!
If you purchased the book from Amazon, please https://packt.link/r/1-801-
07052-0 for this book and share your feedback or leave a review on the site that you
purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-07052-0
https://packt.link/r/1-801-07052-0

Index

A
A/B deployment

about 184-188
selecting 193

A/B testing 21
active learning

using, to reduce labeling time 60-62
all reduce step 107
Amazon Augmented AI

(Amazon A2I) 247
Amazon CloudWatch Metrics 179
Amazon DynamoDB 302
Amazon Elastic Compute

Cloud (EC2) 106
Amazon Elastic Container Registry

(ECR) 32, 156, 302
Amazon EventBridge 306
Amazon Managed Workflows

for Apache Airflow
reference link 249

Amazon SageMaker
multi-account considerations,

examining 301-303
Amazon SageMaker Clarify

basic concepts 217

Amazon SageMaker Components
for Kubeflow Pipelines 250

Amazon SageMaker Debugger
collected tensors and metrics,

analyzing 134, 135
essentials 129
profiler report, analyzing 145-148
PyTorch model, training for

weather prediction 142
real-time monitoring, of training

jobs with built-in and
custom rules 136-140

recommendations, analyzing from
profiler report 149, 150

recommendations, implementing
from profiler report 149, 150

rules and actions, using 135, 136
system and framework metrics,

analyzing 143, 144
system and framework metrics,

visualizing 143, 144
training framework 141
training infrastructure 141
training job, configuring to use 130-133
two training jobs, comparing 150, 151

318

Amazon SageMaker Endpoint
Production Variants

concepts 177-180
deployment strategies, for

updating ML models 181
Amazon SageMaker Feature Store

about 81
essentials 82
structure 83

Amazon SageMaker Model Monitor
basic concepts 217

Amazon SageMaker model registry
about 160, 164
components 161, 162
metadata, as input 163
model groups 161
model packages 161
model registry 161
models, managing 167, 168
reference link 160

Amazon SageMaker Operators
for Kubernetes

reference link 250
Amazon SageMaker Pipelines

reference link 251
used, for building ML

workflows 251-253
Amazon SageMaker Projects

used, for creating CI/CD
pipelines 270-273

Amazon SageMaker Studio 303
Amazon SageMaker Studio-based data

science environment 37-40
API/SDK 27
Athena 68
automated model tuning

with SageMaker hyperparameter
tuning 117-119

automatic model tuning 117
AutoML

using, to reduce experimentation
time 291

Autopilot process 17
autoscaling, configuring for

SageMaker inference endpoint
cooldown period, setting 208
minimum and maximum

capacity, setting 207
scaling metric, selecting 207, 208
scaling policy, setting 208
steps 205

AWS
features 249, 250

AWS accounts
data platform/data lake 299
data science account 299
examples 299
production account 299
Service Catalog master account 299
Shared Services account 299
test account 299

AWS CloudFormation, data
science environments

consistency 29
environment governance 29
improved management capabilities 29

AWS CodeBuild
about 306
reference link 250

AWS CodeCommit
about 31, 306
reference link 250

AWS CodePipeline
about 306
reference link 250

AWS constraints 47

 319

AWS Developer Tools 303
AWS Identity and Access

Management (IAM) 164
AWS Lake Formation 303
AWS multi-account environment

overview, examining 298, 299
AWS-native options

used, for creating automated
workflows 249

AWS Service Catalog
applied constraint 49
constraints, adding to product 45
launch constraints, applying 47
portfolio, creating 42, 43
product, uploading to portfolio 44, 45

AWS Service Catalog data
science environments

access controls 29
constraints, applying 29
self-service capabilities 29
service management 30

AWS Service Catalog master 303
AWS Service Catalog portfolio 30
AWS services

using, to incorporate CI/CD practices
into ML pipelines 250

AWS Step Functions
about 100
reference link 249

AWS Step Functions Data Science SDK
reference link 249

B
batch inference 196, 197
batch ingestion

features, ingesting into feature groups 88

batch ingestion architecture
high-level steps 90

Bayesian optimization tuning strategy 121
bias detection

with Data Wrangler 73
bias drift 217
bias drift monitoring

about 232
end-to-end architecture 233-235

Blue/Green deployment
about 188, 189, 199
selecting 193

bring your own (BYO) approach 11
built-in collections, SageMaker

reference link 131
built-in rules, SageMaker

reference link 136
BYO algorithms 15
BYO scripts 15

C
CaC 28
callback step 252
Canary deployment

about 190, 199, 281
selecting 194

CI/CD pipelines
building, considerations 248
creating, with Amazon SageMaker

Projects 270-273
CI/CD practices

incorporating, into ML pipelines
with AWS services 250

CloudWatch Metrics, for
Amazon SageMaker

reference link 180

320

compute resources
scaling 110, 111

constraints 45
continuous integration (CI)/

continuous delivery (CD) 199
CORS (cross-origin resource sharing) 62
cost comparison 198
cost-optimized ML workloads

AutoML, using to reduce
experimentation time 291

best practices 289
data labeling costs, optimizing 290
experimentation costs, reducing with

models from AWS Marketplace 290
hyperparameter-tuning costs,

optimizing 292
inference costs, optimizing 293
insights and recommendations,

using from Debugger 293
ML infrastructure costs, saving

with SavingsPlan 293
resources, stopping 294
resources, terminating 294
small datasets, used for

iterating locally 291
training costs, saving with

Managed Spot Training 292
training infrastructure, rightsizing 291

customer-managed key (CMK) 134
custom labeling workflows

used for addressing unique
labeling requirements 55

custom model registry
building 164, 165

D
data

listing, to label 56
data drift 217
data drift monitoring

about 220
end-to-end architecture 220-226

data labeling
best practices 63
challenges 54
permissions 62
security 62

data parallelism
about 106, 110
performance, improving 108, 109

data platform/data lake 299, 303
data preparation, with

SageMaker Processing
about 74
categorical variables, encoding 79
columns, dropping 77
dataset, loading 77
dataset, saving 80
dataset, splitting 80
data types, converting 77
date, featurizing 78
labels, simulating for air quality 78
numeric fields, scaling 78

data science account 299, 303
data science development

environments 27
data science environments

about 301
creating 27
creating, as IT services 40
providing, as IT services 40

 321

data science sandbox environments
creating, approaches 28

Data Wrangler
about 309
bias detection 73
explainability 73
flow, exporting 73
for data inspection 67-70
for data transformation 70-72
visual data representation 67

Debugger
insights and recommendations,

using from 293
deep learning models

Elastic Inference, using for 209, 210
Deequ framework 223
deployment strategies

reference link 191
deployment strategy

selecting 192
DevOps account 299
distributed strategy

implementations, considerations 108
selecting 109, 110

distributed training 106

E
Elastic container registry (ECR)

URLs, for docker images
reference link 138

Elastic Container Service (ECS)
containers 209

Elastic Inference
using, for deep learning models 209, 210

Elastic Inference (EI) 288

end-to-end architectures, for
monitoring ML models

about 219
bias drift monitoring 232-235
data drift monitoring 220-226
feature attribution drift

monitoring 236-238
model quality drift monitoring 227-231

experiment 122

F
feature attribution drift 218
feature attribution drift monitoring

about 236
end-to-end architecture 236-238

feature groups
creating 83-85
creating, with SageMaker Studio 86
features, retrieving from 92-94
populating 87-90

feature importance 73
feature pipeline 87
features

ingesting, into feature groups 87
feature store 81
framework metrics summary 147

G
Gini importance score 74
GitHub 303
gzipped Parquet version

using 75, 76

H
horizontal scaling 205

322

Horovod 111
hybrid distribution strategy 110
hyperparameter jobs, configuring

on Amazon SageMaker
best practices 120, 121

Hyperparameter Optimization (HPO) 18
hyperparameter tuning (HPT) 117, 292

I
IaC 28
incremental training 116
inference endpoints

scaling, to meet inference
traffic demands 205

inferences
batch inference 196, 197
real-time inference 196-198

infrastructure account 303
infrastructure as code (IaC)/

configuration as code (CaC)
about 27, 28, 250
using 28

IT Service Management (ITSM) 40

J
Jenkins 303

K
Kinesis Data Streams 101
kubectl 250

L
label

data, listing to 56

labeling quality
improving, with multiple workers 60

labeling time
reducing, with active learning 60-62

labeling workflow
creating 57-59

launch constraint 41

M
Managed Spot Training

training costs, saving with 292
mixed-precision training 107
ML artifacts

tracking 277
ML builders 309
ML dataset 26
MLflow 302
ML life cycle

about 4
Data Preparation phase 4
Model Training phase 4
Operations phase 4
phases 4
SageMaker capabilities, mapping to 6

ML models
monitoring, best practices 239-242
monitoring, end-to-end

architectures 219
ML models, deployment strategies

A/B deployment 184-188
Blue/Green deployment 188, 189
Canary deployment 190
Shadow deployment 191
standard deployment 181-183

ML training
with SageMaker distributed

libraries 106-108

 323

ML use case 26
ML workflow

about 246, 247
building, with Amazon SageMaker

Pipelines 251-253
model monitoring 247
model retraining 248
pipeline retraining 248
system monitoring 248

ML workloads
operationalizing, best practices 276
securing, best practices 280

ML workloads, operationalizing
deployment pipelines, automating 278
ML artifacts, tracking 277
production models, monitoring 278, 279
reproducibility, ensuring 277

ML workloads, securing
auditing 282
authentication, enforcing 281
authorization, enforcing 281
data, securing 281, 282
internet and root access, disabling 280
logging 282
ML environment, isolating 280
model artifacts, securing 281, 282
monitoring 282
regulatory requirements,

meeting 282, 283
model artifact 157
model deployment 157
model endpoints 21, 22
model inputs 156
model metrics 248
model monitoring

high-level steps 218, 219

model package
creating 170-173

model package group
creating 169

model parallelism 106, 110
model performance 157
model quality 217
model quality drift monitoring

about 227
end-to-end architecture 227-231

model registry
about 156, 248
using 157, 158

model registry solution
selecting 159

models
managing, with Amazon SageMaker

model registry 167, 168
optimizing, with SageMaker

Neo 210-212
Multi-Arm Bandits (MAB) 188
multi-model endpoints (MME) 180
multiple AWS accounts, using

with Amazon SageMaker
benefits 301

multiple models, deploying behind
single inference endpoint

about 198
use cases 199-205

multiple workers
labeling quality, improving 60

N
Notebook instance-based data

science environment 33-36

324

O
online feature store

versus offline feature store 86

P
performant ML workloads

building, best practices 286
deployed model, continuous

monitoring 289
hosting infrastructure, rightsizing 288
ML resources, rightsizing 287
resource utilization, monitoring 287

personally identifiable
information (PII) 281

portfolio
creating, in AWS Service Catalog 42, 43

private labeling workforce 55, 56
product constraints 41
production account 299
PyTorch 111

R
real-time inference 196-198
reliable ML workloads

best practices 283
deployed model, continuous

monitoring 285
deployment pipelines, automating 284
failure, recovering 283
model origin, tracking 284
model, updating with new

versions 285, 286
unexpected traffic patterns,

handling 285

repeatability, through IaC/CaC
about 30
data preparation resources 31
identity resources 32
machine learning pipeline resources 31
permissions requisites 32, 33
resources, configuring 32
resources requisites 31

reusable features
creating, to reduce feature

inconsistencies and
inference latency 95-98

root mean square error (RMSE) 227
rules summary 148

S
S3 bucket 34
SageMaker

data preparation capabilities 6
model-building capabilities 11
model management and

deployment capabilities 20
supported frameworks 15
training and tuning capabilities 15
training jobs 16

SageMaker algorithms 14
SageMaker capabilities

for data preparation 23
for model training 24
for operations 23
for primary ML phases 23
mapping, to ML life cycle 6

SageMaker Clarify 10, 11
SageMaker console 4
SageMaker Data Wrangler 8, 303
SageMaker Debugger 19

 325

SageMaker distributed data
parallel library 112, 113

SageMaker distributed libraries
about 111
ML training 106-108

SageMaker distributed model
parallel library

about 114, 115
best practices 116

SageMaker Edge Manager 20, 22
SageMaker endpoint 301
SageMaker Experiments

about 20
experiment 122
tracker 123
training jobs, organizing 122-125
training jobs, tracking 122-125
trial 123
trial component 123

SageMaker features
considerations 304

SageMaker Feature Store 10, 307, 308
SageMaker Ground Truth 6, 54
SageMaker hyperparameter tuning

automated model tuning 117-119
SageMaker ML workflows, automating

considerations 246
SageMaker Model Monitor 20, 21
SageMaker model registry 302
SageMaker Neo

about 22
models, optimizing 210-212

SageMaker notebook instances 12, 13, 27
SageMaker pipeline

building 253
conditional step 264, 265
creating 267
data preparation step 254-258

executing 269
model build step 258, 260
model evaluation step 261-263
recommended practices 270
register model, steps 266

SageMaker pipeline projects
recommended practices 273

SageMaker Pipelines 304-306
SageMaker Processing

about 8, 9
for data preparation 74

SageMaker Processing jobs 303
SageMaker projects 303, 306, 307
SageMaker Studio

about 12, 27
CloudFormation template, to create

data science environment 49, 50
feature groups, creating 86

SageMaker training jobs 303
SageMaker workflows

building, considerations 248
SavingsPlan

ML infrastructure costs, saving with 293
Service Catalog master account 299
Shadow deployment

about 191
selecting 194

Shared Services account 299, 302
solutions

designing, for near real-time
ML predictions 99-101

Spark 3.0 75
Spark executors 75
Spark ML 74
spoke account 299
standard deployment

about 181-183
selecting 192

326

streaming ingestion architecture
high-level steps 91

system metrics summary 146

T
template constraint 41, 47
TensorFlow 111
test account 299
third-party/OSS model registry

utilizing 166
tracker 123
training job

configuring, to use SageMaker
Debugger 130-133

training job summary 145
Transport Layer Security (TLS) 282
trial 123
trial component 123

V
vertical scaling 205
Virtual Private Cloud (VPC) 280
visual data representation

with Data Wrangler 67

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Section 1:
Processing Data
at Scale
	Chapter 1: Amazon SageMaker Overview
	Technical requirements
	Preparing, building, training and tuning, deploying, and managing ML models
	Discussion of data preparation capabilities
	SageMaker Ground Truth
	SageMaker Data Wrangler
	SageMaker Processing
	SageMaker Feature Store
	SageMaker Clarify

	Feature tour of model-building capabilities
	SageMaker Studio
	SageMaker notebook instances
	SageMaker algorithms
	BYO algorithms and scripts

	Feature tour of training and tuning capabilities
	SageMaker training jobs
	Autopilot
	HPO
	SageMaker Debugger
	SageMaker Experiments

	Feature tour of model management and deployment capabilities
	Model Monitor
	Model endpoints
	Edge Manager

	Summary

	Chapter 2: Data Science Environments
	Technical requirements
	Machine learning use case and dataset
	Creating data science environments
	Creating repeatability through IaC/CaC
	Amazon SageMaker notebook instances
	Amazon SageMaker Studio
	Providing and creating data science environments as IT services
	Creating a portfolio in AWS Service Catalog
	Amazon SageMaker notebook instances
	Amazon SageMaker Studio

	Summary
	References

	Chapter 3: Data Labeling with Amazon SageMaker Ground Truth
	Technical requirements
	Challenges with labeling data at scale
	Addressing unique labeling requirements with custom labeling workflows
	A private labeling workforce
	Listing the data to label
	Creating the workflow

	Improving labeling quality using multiple workers
	Using active learning to reduce labeling time
	Security and permissions
	Summary

	Chapter 4: Data Preparation at Scale Using Amazon SageMaker Data Wrangler and Processing
	Technical requirements
	Visual data preparation with Data Wrangler
	Bias detection and explainability with Data Wrangler and Clarify
	Data preparation at scale with SageMaker Processing
	Loading the dataset
	Drop columns
	Converting data types
	Scaling numeric fields
	Featurizing the date
	Simulating labels for air quality
	Encoding categorical variables
	Splitting and saving the dataset

	Summary

	Chapter 5: Centralized Feature Repository with Amazon SageMaker Feature Store
	Technical requirements
	Amazon SageMaker Feature Store essentials
	Creating feature groups
	Populating feature groups
	Retrieving features from feature groups
	Creating reusable features to reduce feature inconsistencies and inference latency
	Designing solutions for near real-time ML predictions
	Summary
	References

	Section 2:
Model Training Challenges
	Chapter 6: Training and Tuning at Scale
	Technical requirements
	ML training at scale with SageMaker distributed libraries
	Choosing between data and model parallelism
	Scaling the compute resources
	SageMaker distributed libraries

	Automated model tuning with SageMaker hyperparameter tuning
	Organizing and tracking training jobs with SageMaker Experiments
	Summary
	References

	Chapter 7: Profile Training Jobs with Amazon SageMaker Debugger
	Technical requirements
	Amazon SageMaker Debugger essentials
	Configuring a training job to use SageMaker Debugger
	Analyzing the collected tensors and metrics
	Taking action

	Real-time monitoring of training jobs using built-in and custom rules
	Gaining insight into the training infrastructure and training framework
	Training a PyTorch model for weather prediction
	Analyzing and visualizing the system and framework metrics generated by the profiler
	Analyzing the profiler report generated by SageMaker Debugger
	Analyzing and implementing recommendations from the profiler report
	Comparing the two training jobs

	Summary
	Further reading

	Section 3:
Manage and
Monitor Models
	Chapter 8: Managing Models at Scale Using a Model Registry
	Technical requirements
	Using a model registry
	Choosing a model registry solution
	Amazon SageMaker model registry
	Building a custom model registry
	Utilizing a third-party or OSS model registry

	Managing models using the Amazon SageMaker model registry
	Creating a model package group
	Creating a model package

	Summary

	Chapter 9: Updating Production Models Using Amazon SageMaker Endpoint Production Variants
	Technical requirements
	Basic concepts of Amazon SageMaker Endpoint Production Variants
	Deployment strategies for updating ML models with Amazon SageMaker Endpoint Production Variants
	Standard deployment
	A/B deployment
	Blue/Green deployment
	Canary deployment
	Shadow deployment

	Selecting an appropriate deployment strategy
	Selecting a standard deployment
	Selecting an A/B deployment
	Selecting a Blue/Green deployment
	Selecting a Canary deployment
	Selecting a Shadow deployment

	Summary

	Chapter10: Optimizing Model Hosting and Inference Costs
	Technical requirements
	Real-time inference versus batch inference
	Batch inference
	Real-time inference
	Cost comparison

	Deploying multiple models behind a single inference endpoint
	Multiple versions of the same model
	Multiple models

	Scaling inference endpoints to meet inference traffic demands
	Setting the minimum and maximum capacity
	Choosing a scaling metric
	Setting the scaling policy
	Setting the cooldown period

	Using Elastic Inference for deep learning models
	Optimizing models with SageMaker Neo
	Summary

	Chapter 11: Monitoring Production Models with Amazon SageMaker Model Monitor and Clarify
	End-to-end architectures for monitoring
ML models
	Data drift monitoring
	Model quality drift monitoring
	Bias drift monitoring
	Feature attribution drift monitoring

	Technical requirements
	Basic concepts of Amazon SageMaker Model Monitor and Amazon SageMaker Clarify
	Best practices for monitoring ML models
	Summary
	References

	Section 4:
Automate and Operationalize Machine Learning
	Chapter 12: Machine Learning Automated Workflows
	Considerations for automating your SageMaker ML workflows
	Typical ML workflows
	Considerations and guidance for building SageMaker workflows and CI/CD pipelines
	AWS-native options for automated workflow and CI/CD pipelines

	Building ML workflows with Amazon SageMaker Pipelines
	Building your SageMaker pipeline
	Data preparation step
	Model build step
	Model evaluation step
	Conditional step
	Register model step(s)
	Creating the pipeline
	Executing the pipeline
	Pipeline recommended practices

	Creating CI/CD pipelines using Amazon SageMaker Projects
	SageMaker projects recommended practices

	Summary

	Chapter 13: Well-Architected Machine Learning with Amazon SageMaker
	Best practices for operationalizing ML workloads
	Ensuring reproducibility
	Tracking ML artifacts
	Automating deployment pipelines
	Monitoring production models

	Best practices for securing ML workloads
	Isolating the ML environment
	Disabling internet and root access
	Enforcing authentication and authorization
	Securing data and model artifacts
	Logging, monitoring, and auditing
	Meeting regulatory requirements

	Best practices for reliable ML workloads
	Recovering from failure
	Tracking model origin
	Automating deployment pipelines
	Handling unexpected traffic patterns
	Continuous monitoring of deployed model
	Updating model with new versions

	Best practices for building performant ML workloads
	Rightsizing ML resources
	Monitoring resource utilization
	Rightsizing hosting infrastructure
	Continuous monitoring of deployed model

	Best practices for cost-optimized ML workloads
	Optimizing data labeling costs
	Reducing experimentation costs with models from AWS Marketplace
	Using AutoML to reduce experimentation time
	Iterating locally with small datasets
	Rightsizing training infrastructure
	Optimizing hyperparameter-tuning costs
	Saving training costs with Managed Spot Training
	Using insights and recommendations from Debugger
	Saving ML infrastructure costs with SavingsPlan
	Optimizing inference costs
	Stopping or terminating resources

	Summary

	Chapter 14: Managing SageMaker Features across Accounts
	Examining an overview of the AWS multi-account environment
	Understanding the benefits of using multiple AWS accounts with Amazon SageMaker
	Examining multi-account considerations with Amazon SageMaker
	Considerations for SageMaker features

	Summary
	References

	About PACKT
	Other Books You May Enjoy
	Index

