

Amazon Redshift
Cookbook

Recipes for building modern data warehousing
solutions

Shruti Worlikar

Thiyagarajan Arumugam

Harshida Patel

BIRMINGHAM—MUMBAI

Amazon Redshift Cookbook
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Kunal Parikh
Publishing Product Manager: Sunith Shetty
Senior Editor: Mohammed Yusuf Imaratwale
Content Development Editor: Nazia Shaikh
Technical Editor: Arjun Varma
Copy Editor: Safis Editing
Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing
Indexer: Vinayak Purushotham
Production Designer: Vijay Kamble

First published: July 2021

Production reference: 1240621

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-968-3

www.packt.com

http://www.packt.com

Foreword
Amazon Redshift is a fully managed cloud data warehouse house service that enables
you to analyze all your data. Tens of thousands of customers use Amazon Redshift today
to analyze exabytes of structured and semi-structured data across their data warehouse,
operational databases, and data lake using standard SQL.

Our Analytics Specialist Solutions Architecture team at AWS work closely with customers
to help use Amazon Redshift to meet their unique analytics needs. In particular, the
authors of this book, Shruti, Thiyagu, and Harshida have worked hands-on with
hundreds of customers of all types, from startups to multinational enterprises. They’ve
helped projects ranging from migrations from other data warehouses to Amazon Redshift,
to delivering new analytics use cases such as building a predictive analytics solution using
Redshift ML. They’ve also helped our Amazon Redshift service team to better understand
customer needs and prioritize new feature development.

I am super excited that Shruti, Thiyagu, and Harshida have authored this book, based
on their deep expertise and knowledge of Amazon Redshift, to help customers quickly
perform the most common tasks. This book is designed as a cookbook to provide step-by-
step instructions across these different tasks. It has clear instructions on prerequisites and
steps required to meet different objectives such as creating an Amazon Redshift cluster,
loading data in Amazon Redshift from Amazon S3, or querying data across OLTP sources
like Amazon Aurora directly from Amazon Redshift.

I recommend this book to any new or existing Amazon Redshift customer who wants
to learn not only what features Amazon Redshift provides, but also how to quickly take
advantage of them.

Eugene Kawamoto

Director, Product Management

Amazon Redshift, AWS

Contributors

About the authors
Shruti Worlikar is a cloud professional with technical expertise in data lakes and
analytics across cloud platforms. Her background has led her to become an expert in
on-premises-to-cloud migrations and building cloud-based scalable analytics applications.
Shruti earned her bachelor's degree in electronics and telecommunications from Mumbai
University in 2009 and later earned her masters' degree in telecommunications and
network management from Syracuse University in 2011. Her work history includes work
at J.P. Morgan Chase, MicroStrategy, and Amazon Web Services (AWS). She is currently
working in the role of Manager, Analytics Specialist SA at AWS, helping customers to
solve real-world analytics business challenges with cloud solutions and working with
service teams to deliver real value. Shruti is the DC Chapter Director for the non-profit
Women in Big Data (WiBD) and engages with chapter members to build technical and
business skills to support their career advancements. Originally from Mumbai, India,
Shruti currently resides in Aldie, VA, with her husband and two kids.

Thiyagarajan Arumugam (Thiyagu) is a principal big data solution architect at AWS,
architecting and building solutions at scale using big data to enable data-driven decisions.
Prior to AWS, Thiyagu as a data engineer built big data solutions at Amazon, operating
some of the largest data warehouses and migrating to and managing them. He has
worked on automated data pipelines and built data lake-based platforms to manage
data at scale for the customers of his data science and business analyst teams. Thiyagu
is a certified AWS Solution Architect (Professional), earned his master's degree in
mechanical engineering at the Indian Institute of Technology, Delhi, and is the author
of several blog posts at AWS on big data. Thiyagu enjoys everything outdoors – running,
cycling, ultimate frisbee – and is currently learning to play the Indian classical drum the
mrudangam. Thiyagu currently resides in Austin, TX, with his wife and two kids.

Harshida Patel is a senior analytics specialist solution architect at AWS, enabling
customers to build scalable data lake and data warehousing applications using AWS
analytical services. She has presented Amazon Redshift deep-dive sessions at re:Invent.
Harshida has a bachelor's degree in electronics engineering and a master's in electrical
and telecommunication engineering. She has over 15 years of experience architecting and
building end-to-end data pipelines in the data management space. In the past, Harshida
has worked in the insurance and telecommunication industries. She enjoys traveling and
spending quality time with friends and family, and she lives in Virginia with her husband
and son.

About the reviewers
Anusha Challa is a senior analytics specialist solution architect at AWS with over 10 years
of experience in data warehousing both on-premises and in the cloud. She has worked
on multiple large-scale data projects throughout her career at Tata Consultancy Services
(TCS), EY, and AWS. She has worked with hundreds of Amazon Redshift customers and
has built end-to-end scalable, reliable, and robust data pipelines.

Vaidy Krishnan leads business development for AWS, helping customers successfully
adopt and be successful with AWS analytics services. Prior to AWS, Vaidy spent close
to 15 years building, marketing, and launching analytics products to customers in
market-leading companies such as Tableau and GE across industries ranging from
healthcare to manufacturing. When not at work, Vaidy likes to travel and golf.

Table of Contents

Preface

1
Getting Started with Amazon Redshift

Technical requirements 2
Creating an Amazon Redshift
cluster using the AWS Console 2
Getting ready 3
How to do it… 3

Creating an Amazon Redshift
cluster using the AWS CLI 4
Getting ready 4
How to do it… 5
How it works… 7

Creating an Amazon Redshift
cluster using an AWS
CloudFormation template 8
Getting ready 8
How to do it… 8
How it works… 10

Connecting to an Amazon
Redshift cluster using the
Query Editor 13
Getting ready 13
How to do it… 13

Connecting to an Amazon
Redshift cluster using the
SQL Workbench/J client 15
Getting ready 15
How to do it… 16

Connecting to an Amazon
Redshift Cluster using
a Jupyter Notebook 19
Getting ready 20
How to do it… 20

Connecting to an Amazon
Redshift cluster using Python 24
Getting ready 24
How to do it… 25

Connecting to an
Amazon Redshift cluster
programmatically using Java 27
Getting ready 27
How to do it… 27

Connecting to an
Amazon Redshift cluster
programmatically using .NET 29

viii Table of Contents

Getting ready 30
How to do it… 30

Connecting to an Amazon

Redshift cluster using the
command line 33
Getting ready 33
How to do it… 33

2
Data Management

Technical requirements 36
Managing a database in an
Amazon Redshift cluster 36
Getting ready 36
How to do it… 36

Managing a schema in a
database 38
Getting ready 38
How to do it… 38

Managing tables 40
Getting ready 41
How to do it… 41
How it works… 44

Managing views 44

Getting ready 44
How to do it… 45

Managing materialized views 46
Getting ready 46
How to do it… 47
How it works… 49

Managing stored procedures 49
Getting ready 49
How to do it… 49
How it works… 52

Managing UDFs 53
Getting ready 53
How to do it… 53
How it works… 57

3
Loading and Unloading Data

Technical requirements 60
Loading data from
Amazon S3 using COPY 61
Getting ready 61
How to do it… 62
How it works… 66

Loading data from
Amazon EMR 67
Getting ready 67

How to do it… 67

Loading data from
Amazon DynamoDB 70
Getting ready 70
How to do it… 71
How it works… 73

Loading data from
remote hosts 73
Getting ready 73

Table of Contents ix

How to do it… 74

Updating and inserting data 77
Getting ready 77
How to do it… 77

Unloading data
to Amazon S3 83
Getting ready 83
How to do it… 84

4
Data Pipelines

Technical requirements 87
Ingesting data from
transactional sources using
AWS DMS 89
Getting ready 89
How to do it… 90
How it works… 99

Streaming data to Amazon
Redshift via Amazon Kinesis

Firehose 99
Getting ready 100
How to do it… 100
How it works… 104

Cataloging and ingesting
data using AWS Glue 104
How to do it… 105
How it works… 110

5
Scalable Data Orchestration for Automation

Technical requirements 112
Scheduling queries using the
Amazon Redshift query editor 113
Getting ready 113
How to do it… 114
How it works… 118

Event-driven applications
using Amazon EventBridge
and the Amazon Redshift
Data API 118
Getting ready 119
How to do it… 119
How it works… 128

Event-driven applications using
AWS Lambda 129
Getting ready 129
How to do it… 130
How it works… 134

Orchestrating using
AWS Step Functions 134
Getting ready 135
How to do it… 135
How it works… 140

Orchestrating using
Amazon MWAA 141
Getting ready 141
How to do it… 141
How it works… 149

x Table of Contents

6
Data Authorization and Security

Technical requirements 152
Managing infrastructure
security 153
Getting ready 153
How to do it 153

Data encryption at rest 158
Getting ready 158
How to do it 159

Data encryption in transit 162
Getting ready 163
How to do it 163

Column-level security 166
Getting ready 166
How to do it 166
How it works 168

Loading and unloading
encrypted data 168
Getting ready 168
How to do it 169

Managing superusers 173
Getting ready 173

How to do it 173

Managing users and groups 175
Getting ready 175
How to do it 175

Managing federated
authentication 177
Getting ready 177
How to do it 177
How it works 182

Using IAM authentication
to generate database user
credentials 184
Getting ready 184
How to do it 184

Managing audit logs 185
Getting ready 185
How to do it 186
How it works 189

Monitoring Amazon Redshift 189
Getting ready 190
How to do it 190
How it works 192

7
Performance Optimization

Technical requirements 194
Amazon Redshift Advisor 195
Getting ready 195
How to do it… 196
How it works… 198

Managing column
compression 198
Getting ready 198
How to do it… 199
How it works… 202

Table of Contents xi

Managing data distribution 202
Getting ready 203
How to do it… 204
How it works… 206

Managing sort keys 207
Getting ready 207
How to do it… 208
How it works… 212

Analyzing and improving
queries 212
Getting ready 213
How to do it… 213
How it works… 217

Configuring workload
management (WLM) 218
Getting ready 218
How to do it… 218
How it works… 223

Utilizing Concurrency Scaling 224
Getting ready 224
How to do it… 224
How it works… 227

Optimizing Spectrum queries 227
Getting ready 228
How to do it… 228
How it works… 231

8
Cost Optimization

Technical requirements 234
AWS Trusted Advisor 234
Getting ready 234
How to do it… 235
How it works… 236

Amazon Redshift Reserved
Instance pricing 237
Getting ready 237
How to do it… 238

Configuring pause and resume
for an Amazon Redshift cluster 240
Getting ready 241
How to do it… 241

Scheduling pause and resume 244
Getting ready 244
How to do it… 245
How it works… 246

Configuring Elastic Resize for an
Amazon Redshift cluster 247
Getting ready 247
How to do it… 247

Scheduling Elastic Resizing 250
Getting ready 250
How to do it… 250
How it works… 253

Using cost controls to set
actions for Redshift Spectrum 253
Getting ready 253
How to do it… 254

Using cost controls
to set actions for
Concurrency Scaling 259
Getting ready 259
How to do it… 259

xii Table of Contents

9
Lake House Architecture

Technical requirements 264
Building a data lake catalog
using AWS Lake Formation 265
Getting ready 266
How to do it… 267
How it works… 282

Exporting a data lake from
Amazon Redshift 282
Getting ready 282
How to do it… 283

Extending a data warehouse
using Amazon Redshift

Spectrum 286
Getting ready 286
How to do it… 287

Data sharing across multiple
Amazon Redshift clusters 290
Getting ready 290
How to do it… 291
How it works… 293

Querying operational sources
using Federated Query 293
Getting ready 294
How to do it… 294

10
Extending Redshift's Capabilities

Technical requirements 302
Managing Amazon Redshift ML 303
Getting ready 304
How to do it… 304
How it works… 307

Visualizing data using Amazon
QuickSight 308
Getting ready 308
How to do it… 309
How it works… 314

AppFlow for ingesting
SaaS data in Redshift 314
Getting ready 315
How to do it… 315
How it works… 326

Data wrangling using
DataBrew 326
Getting ready 327
How to do it… 327
How it works… 333

Utilizing ElastiCache
for sub-second latency 333
Getting ready 334
How to do it… 334
How it works… 342

Subscribing to third-party data
using AWS Data Exchange 342
Getting ready 343
How to do it… 343
How it works… 347

Table of Contents xiii

Appendix

Recipe 1 – Creating an
IAM user 349
Recipe 2 – Storing database
credentials using Amazon
Secrets Manager 350
Recipe 3 – Creating an IAM role

for an AWS service 350
Recipe 4 – Attaching an
IAM role to the Amazon
Redshift cluster 351
Why subscribe? 353

Other Books You May Enjoy
Index

 Preface
Amazon Redshift is a fully managed, petabyte-scale AWS cloud data warehousing service.
It enables you to build new data warehouse workloads on AWS and migrate on-premises
traditional data warehousing platforms to Redshift.

This book on Amazon Redshift starts by focusing on the Redshift architecture, showing
you how to perform database administration tasks on Redshift. You'll then learn how to
optimize your data warehouse to quickly execute complex analytic queries against very
large datasets. Because of the massive amount of data involved in data warehousing,
designing your database for analytical processing lets you take full advantage of Redshift's
columnar architecture and managed services. As you advance, you'll discover how to
deploy fully automated and highly scalable extract, transform, and load (ETL) processes,
which help minimize the operational efforts that you have to invest in managing regular
ETL pipelines and ensure the timely and accurate refreshing of your data warehouse.
Finally, you'll gain a clear understanding of Redshift use cases, data ingestion, data
management, security, and scaling so that you can build a scalable data warehouse
platform.

By the end of this Redshift book, you'll be able to implement a Redshift-based data
analytics solution and will have understood the best practice solutions to commonly faced
problems.

Who this book is for
This book is for anyone involved in architecting, implementing, and optimizing an
Amazon Redshift data warehouse, such as data warehouse developers, data analysts,
database administrators, data engineers, and data scientists. Basic knowledge of data
warehousing, database systems, and cloud concepts and familiarity with Redshift would
be beneficial.

xvi Preface

What this book covers
Chapter 1, Getting Started with Amazon Redshift, discusses how Amazon Redshift is a fully
managed, petabyte-scale data warehouse service in the cloud. An Amazon Redshift data
warehouse is a collection of computing resources called nodes, which are organized into
a group called a cluster. Each cluster runs an Amazon Redshift engine and contains one
or more databases. This chapter walks you through the process of creating a sample
Amazon Redshift cluster to set up the necessary access and security controls to easily get
started with a data warehouse on AWS. Most operations are click-of-a-button operations;
you should be able to launch a cluster in under 15 minutes.

Chapter 2, Data Management, discusses how a data warehouse system has very different
design goals compared to a typical transaction-oriented relational database system for
online transaction processing (OLTP). Amazon Redshift is optimized for the very fast
execution of complex analytic queries against very large datasets. Because of the massive
amounts of data involved in data warehousing, designing your database for analytical
processing lets you take full advantage of the columnar architecture and managed service.
This chapter delves into the different data structure options to set up an analytical schema
for the easy querying of your end users.

Chapter 3, Loading and Unloading Data, looks at how Amazon Redshift has in-built
integrations with data lakes and other analytical services and how it is easy to move and
analyze data across different services. This chapter discusses scalable options to move
large datasets from a data lake based out of Amazon S3 storage as well as AWS analytical
services such as Amazon EMR and Amazon DynamoDB.

Chapter 4, Data Pipelines, discusses how modern data warehouses depend on ETL
operations to convert bulk information into usable data. An ETL process refreshes your
data warehouse from source systems, organizing the raw data into a format you can more
readily use. Most organizations run ETL as a batch or as part of a real-time ingest process
to keep the data warehouse current and provide timely analytics. A fully automated and
highly scalable ETL process helps minimize the operational effort that you must invest in
managing regular ETL pipelines. It also ensures the timely and accurate refresh of your
data warehouse. Here we will discuss recipes to implement real-time and batch-based
AWS native options to implement data pipelines for orchestrating data workflows.

Chapter 5, Scalable Data Orchestration for Automation, looks at how for large-scale
production pipelines, a common use case is to read complex data originating from
a variety of sources. This data must be transformed to make it useful to downstream
applications such as machine learning pipelines, analytics dashboards, and business
reports. This chapter discusses building scalable data orchestration for automation using
native AWS services.

 Preface xvii

Chapter 6, Data Authorization and Security, discusses how Amazon Redshift security is
one of the key pillars of a modern data warehouse for data at rest as well as in transit. In
this chapter, we will discuss the industry-leading security controls provided in the form of
built-in AWS IAM integration, identity federation for single sign-on (SSO), multi-factor
authentication, column-level access control, Amazon Virtual Private Cloud (VPC), and
AWS KMS integration to protect your data. Amazon Redshift encrypts and keeps your
data secure in transit and at rest using industry-standard encryption techniques. We will
also elaborate on how you can authorize data access through fine-grained access controls
for the underlying data structures in Amazon Redshift.

Chapter 7, Performance Optimization, examines how Amazon Redshift being a fully
managed service provides great performance out of the box for most workloads. Amazon
Redshift also provides you with levers that help you maximize the throughputs when data
access patterns are already established. Performance tuning on Amazon Redshift helps
you manage critical SLAs for workloads and easily scale up your data warehouse to meet/
exceed business needs.

Chapter 8, Cost Optimization, discusses how Amazon Redshift is one of the best price-
performant data warehouse platforms on the cloud. Amazon Redshift also provides you
with scalability and different options to optimize the pricing, such as elastic resizing,
pause and resume, reserved instances, and using cost controls. These options allow you to
create the best price-performant data warehouse solution.

Chapter 9, Lake House Architecture, looks at how AWS provides purpose-built solutions to
meet the scalability and agility needs of the data architecture. With its in-built integration
and governance, it is possible to easily move data across the data stores. You might have
all the data centralized in a data lake, but use Amazon Redshift to get quick results for
complex queries on structured data for business intelligence queries. The curated data
can now be exported into an Amazon S3 data lake and classified to build a machine
learning algorithm. In this chapter, we will discuss in-built integrations that allow easy
data movement to integrate a data lake, data warehouse, and purpose-built data stores and
enable unified governance.

Chapter 10, Extending Redshift Capabilities, looks at how Amazon Redshift allows you to
analyze all your data using standard SQL, using your existing business intelligence tools.
Organizations are looking for more ways to extract valuable insights from data, such as
big data analytics, machine learning applications, and a range of analytical tools to drive
new use cases and business processes. Building an entire solution from data sourcing,
transforming data, reporting, and machine learning can be easily accomplished by taking
advantage of the capabilities provided by AWS's analytical services. Amazon Redshift
natively integrates with other AWS services, such as Amazon QuickSight, AWS Glue
DataBrew, Amazon AppFlow, Amazon ElastiCache, Amazon Data Exchange, and Amazon
SageMaker, to meet your varying business needs.

xviii Preface

To get the most out of this book
You will need access to an AWS account to perform all the recipes in this book. You will
need either administrator access to the AWS account or to work with an administrator to
help create the IAM user, roles, and policies as listed in the different chapters. All the data
needed in the setup is provided as steps in recipes, and the Amazon S3 bucket is hosted in
the Europe (Ireland) (eu-west-1) AWS region. It is preferable to use the Europe (Ireland)
AWS region to execute all the recipes. If you need to run the recipes in a different region,
you will need to copy the data from the source bucket (s3://packt-redshift-cookbook/) to
an Amazon S3 bucket in the desired AWS region, and use that in your recipes instead.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Amazon-Redshift-Cookbook. In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800569683_ColorImages.pdf.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800569683_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800569683_ColorImages.pdf

 Preface xix

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "To create the Amazon Redshift cluster, we used the redshift
command and the create-cluster subcommand."

A block of code is set as follows:

SELECT 'hello world';

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

 "NodeType": "dc2.large",

 "ElasticResizeNumberOfNodeOptions": "[4]",

 …

 "ClusterStatus": "available"

Any command-line input or output is written as follows:

!pip install psycopg2-binary

boto3 is optional, but recommended to leverage the AWS
Secrets Manager storing the credentials Establishing a
Redshift Connection

!pip install boto3

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Navigate to your notebook instance and open JupyterLab."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

mailto:customercare@packtpub.com

xx Preface

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Amazon Redshift Cookbook, we'd love to hear your thoughts! Please click
here https://packt.link/r/1800569688 for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1800569688

1
Getting Started with

Amazon Redshift
Amazon Redshift is a fully managed data warehouse service in Amazon Web Services
(AWS). You can query all your data, which can scale from gigabytes to petabytes, using
SQL. Amazon Redshift integrates into the data lake solution though the lake house
architecture, allowing you access all the structured and semi-structured data in one place.
Each Amazon Redshift data warehouse is hosted as a cluster (a group of servers or nodes)
that consists of one leader node and a collection of one or more compute nodes. Each
cluster is a single tenant environment (which can be scaled to a multi-tenant architecture
using data sharing), and every node has its own dedicated CPU, memory, and attached
disk storage that varies based on the node's type.

This chapter will walk you through the process of creating a sample Amazon Redshift
cluster and connecting to it from different clients.

The following recipes will be discussed in this chapter:

• Creating an Amazon Redshift cluster using the AWS console

• Creating an Amazon Redshift cluster using the AWS CLI

• Creating an Amazon Redshift cluster using an AWS CloudFormation template

• Connecting to an Amazon Redshift cluster using the Query Editor

• Connecting to an Amazon Redshift cluster using the SQL Workbench/J client

2 Getting Started with Amazon Redshift

• Connecting to an Amazon Redshift cluster using a Jupyter Notebook

• Connecting to an Amazon Redshift cluster programmatically using Python

• Connecting to an Amazon Redshift cluster programmatically using Java

• Connecting to an Amazon Redshift cluster programmatically using .NET

• Connecting to an Amazon Redshift cluster using the command line (psql)

Technical requirements
The following are the technical requirements for this chapter:

• An AWS account.

• An AWS administrator should create an IAM user by following Recipe 1 – Creating
an IAM user in the Appendix. This IAM user will be used to execute all the recipes
in this chapter.

• An AWS administrator should deploy the AWS CloudFormation template to
attach the IAM policy to the IAM user, which will give them access to Amazon
Redshift, Amazon SageMaker, Amazon EC2, AWS CloudFormation, and AWS
Secrets Manager. The template is available here: https://github.com/
PacktPublishing/Amazon-Redshift-Cookbook/blob/master/
Chapter01/chapter_1_CFN.yaml.

• Client tools such as SQL Workbench/J, an IDE, and a command-line tool.

• You will need to authorize network access from servers or clients to access the
Amazon Redshift cluster: https://docs.aws.amazon.com/redshift/
latest/gsg/rs-gsg-authorize-cluster-access.html.

• The code files for this chapter can be found here: https://github.com/
PacktPublishing/Amazon-Redshift-Cookbook/tree/master/
Chapter01.

Creating an Amazon Redshift cluster using the
AWS Console
The AWS Management Console allows you to interactively create an Amazon Redshift
cluster via a browser-based user interface. It also recommends the right cluster
configuration based on the size of your workload. Once the cluster has been created, you
can use the Console to monitor the health of the cluster and diagnose query performance
issues from a unified dashboard.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/chapter_1_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/chapter_1_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/chapter_1_CFN.yaml
https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-authorize-cluster-access.html
https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-authorize-cluster-access.html
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter01
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter01

Creating an Amazon Redshift cluster using the AWS Console 3

Getting ready
To complete this recipe, you will need the following:

• A new or existing AWS Account. If new AWS accounts need to be created, go to
https://portal.aws.amazon.com/billing/signup, enter the necessary
information, and follow the steps on the site.

• An IAM user with access to Amazon Redshift.

How to do it…
Follow these steps to create a cluster with minimal parameters:

1. Navigate to the AWS Management Console and select Amazon Redshift:
https://console.aws.amazon.com/redshiftv2/.

2. Choose the AWS region (eu-west-1) or corresponding region from the top-right
of the screen. Then, click Next.

3. On the Amazon Redshift Dashboard, select CLUSTERS, and then click Create
cluster.

4. In the Cluster configuration section, type in any meaningful Cluster identifier,
such as myredshiftcluster.

5. Choose either Production or Free trial, depending on what you plan to use this
cluster for.

6. Select the Help me choose option for sizing your cluster for the steady state
workload. Alternatively, if you know the required size of your cluster (that is, the
node type and number of nodes), select I'll choose. For example, you can choose
Node type: dc2.large with Nodes: 2.

7. In the Database configurations section, specify values for Database name
(optional), Database port (optional), Master user name, and Master user
password; for example:

• Database name (optional): Enter dev

• Database port (optional): Enter 5439

• Master user name: Enter awsuser

• Master user password: Enter a value for the password

https://portal.aws.amazon.com/billing/signup
https://console.aws.amazon.com/redshiftv2/

4 Getting Started with Amazon Redshift

8. Optionally, configure the Cluster permissions and Additional configurations
sections when you want to pick a specific network and security configurations. The
console defaults to the preset configuration otherwise.

9. Choose Create cluster.

10. The cluster creation takes a few minutes to complete. Once this has happened,
navigate to Amazon Redshift | Clusters | myredshiftcluster | General information
to find the JDBC/ODBC URL to connect to the Amazon Redshift cluster.

Creating an Amazon Redshift cluster using the
AWS CLI
The AWS command-line interface (CLI) is a unified tool for managing your AWS
services. You can use this tool on the command-line Terminal to invoke the creation of an
Amazon Redshift cluster.

The command-line tool automates cluster creation and modification. For example, you
can create a shell script that can create manual point in time snapshots for the cluster.

Getting ready
To complete this recipe, you will need to do the following:

• Install and configure the AWS CLI based on your specific operating system at
https://docs.aws.amazon.com/cli/latest/userguide/install-
cliv2.html and use the aws configure command to set up your AWS CLI
installation, as explained here: https://docs.aws.amazon.com/cli/
latest/userguide/cli-configure-quickstart.html.

• Verify that the AWS CLI has been configured using the following command, which
will list the configured values:

$ aws configure list

Name Value Type Location

access_key ****************PA4J iam-role

secret_key ****************928H iam-role

 region eu-west-1 config-file

• Create an IAM user with access to Amazon Redshift.

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html

Creating an Amazon Redshift cluster using the AWS CLI 5

How to do it…
Follow these steps to create an Amazon Redshift cluster using the command-line tool:

1. Depending on the operation system the AWS CLI has been installed on, open a shell
program such as bash or zsh in Linux-based systems or the Windows command line.

2. Use the following command to create a two-node dc2.large cluster with the
minimal set of parameters of cluster-identifier (any unique identifier for the
cluster), node-type/number-of-nodes and the master user credentials. Replace
<MasterUserPassword> in the following command with a password of your
choice. The password must be 8-64 characters long and must contain at least one
uppercase letter, one lowercase letter, and one number. You can use any printable
ASCII character except /, "", or, or @:

$ aws redshift create-cluster --node-type dc2.large --number-
of-nodes 2 --master-username adminuser --master-user-password
<MasterUserPassword> --cluster-identifier myredshiftcluster

Here is the expected sample output:

{

 "Cluster": {

 "PubliclyAccessible": true,

 "MasterUsername": "adminuser",

 "VpcSecurityGroups": [

 {

 "Status": "active",

 "VpcSecurityGroupId": "sg-abcdef7"

 }

],

 "NumberOfNodes": 2,

 "PendingModifiedValues": {

 "MasterUserPassword": "****"

 },

 "VpcId": "vpc-abcdef99",

 "ClusterParameterGroups": [

 {

 "ParameterGroupName": "default.redshift-1.0",

6 Getting Started with Amazon Redshift

 "ParameterApplyStatus": "in-sync"

 }

],

 "DBName": "dev",

 "ClusterSubnetGroupName": "default",

 "EnhancedVpcRouting": false,

 "ClusterIdentifier": "myredshiftcluster",

 "NodeType": "dc2.large",

 "Encrypted": false,

 "ClusterStatus": "creating"

 }

}

3. It will take a few minutes to create the cluster. You can monitor the status of the
cluster creation process using the following command:

$ aws redshift describe-clusters --cluster-identifier
myredshiftcluster

Here is the expected sample output:

myredshiftcluster

{

 "Clusters": [

 "NumberOfNodes": 2,

 "DBName": "dev",

 "Endpoint": {

 "Port": 5439,

 "Address": "myredshiftcluster.abcdefghijk.eu-
west-1.redshift.amazonaws.com"

 },

 "NodeType": "dc2.large",

 "ElasticResizeNumberOfNodeOptions": "[4]",

…

 "ClusterStatus": "available"

 }

]

Creating an Amazon Redshift cluster using the AWS CLI 7

}

Note that "ClusterStatus": "available" indicates that the cluster is ready for
use and that you can connect to it using the "Address": "myredshiftcluster.
abcdefghijk.eu-west-1.redshift.amazonaws.com" endpoint.

The cluster is now ready. Now, you use an ODBC/JDBC to connect to the Amazon
Redshift cluster.

How it works…
The AWS CLI uses a hierarchical structure in the command line that is specified in the
following order:

$aws <command> <subcommand> [options and parameters]

These parameters can take different types of input values, such as strings, numbers,
maps, lists, and JSON structures. What is supported depends on the command and
subcommand that you specify. The AWS CLI also support help text for conveniently
scripting the command. To see the help text, you can run any of the following commands:

$aws help

$aws <command> help

$aws <command> <subcommand> help

To create the Amazon Redshift cluster, we used the redshift command and the
create-cluster subcommand.

You can refer to https://docs.aws.amazon.com/cli/latest/reference/
redshift/create-cluster.html for the full set of parameters we used or by using
the following command on the AWS CLI:

$aws redshift create-cluster help

https://docs.aws.amazon.com/cli/latest/reference/redshift/create-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/redshift/create-cluster.html

8 Getting Started with Amazon Redshift

Creating an Amazon Redshift cluster using an
AWS CloudFormation template
With an AWS CloudFormation template, you treat your infrastructure as code,
which enables you to create an Amazon Redshift cluster using a json/yaml file. The
declarative code in the file contains the steps to create the AWS resources, and it also
enables easy automation and distribution. This template allows you to standardize the
Amazon Redshift Cluster's creation to meet your organizational infrastructure and
security standards. Furthermore, you can distribute them to different teams within your
organization using the AWS service catalog for easy setup.

Getting ready
To complete this recipe, you will need to do the following:

• Create an IAM user with access to AWS CloudFormation, Amazon EC2, and
Amazon Redshift.

How to do it…
We will create a CloudFormation template to author the Amazon Redshift cluster
infrastructure as code using the JSON-based template. Follow these steps to create an
Amazon Redshift cluster using the CloudFormation template:

1. Download the AWS CloudFormation template from https://github.com/
PacktPublishing/Amazon-Redshift-Cookbook/blob/master/
Chapter01/Creating_Amazon_Redshift_Cluster.json.

2. Navigate to the AWS Console, choose CloudFormation, and then choose Create
stack, as shown in the following screenshot:

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/Creating_Amazon_Redshift_Cluster.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/Creating_Amazon_Redshift_Cluster.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/Creating_Amazon_Redshift_Cluster.json

Creating an Amazon Redshift cluster using an AWS CloudFormation template 9

Figure 1.1 – Create stack

3. Click on the Template is ready and Upload a template file options and choose the
file that was downloaded (Creating_Amazon_Redshift_Cluster.json)
from your local computer. Then, click Next.

4. Enter the following input parameters:

a. Stack name: Enter a name for the stack; for example, myredshiftcluster.

b. ClusterType: A single-node or a multi-node cluster.

c. DatabaseName: Enter a database name; for example, dev.

d. InboundTraffic: Restrict the CIDR ranges of IPs that can access the cluster.
0.0.0.0/0 opens the cluster so that it's globally accessible.

e. MasterUserName: Enter a database master username; for example, awsuser.

f. MasterUserPassword: Enter a master user password. The password must be 8-64
characters long and must contain at least one uppercase letter, one lowercase
letter, and one number. It can contain any printable ASCII character except /, "",
or, or @.

g. NodeType: Enter the node type; for example, dc2.large.

h. NumberofNodes: Enter the number of compute nodes; for example, 2.

i. Redshift cluster port: Choose any TCP/IP port; for example, 5439.

10 Getting Started with Amazon Redshift

5. Click Next and Create Stack.

6. The AWS CloudFormation template has deployed all the infrastructure
and configuration listed in the template. It will wait until the status changes to
CREATE_COMPLETE.

7. Now, you can check the output section of the CloudFormation stack and look for
the cluster endpoint or navigate to Amazon Redshift | Clusters | myredshiftcluster
| General information to find the JDBC/ODBC URL to connect to the Amazon
Redshift cluster.

How it works…
Let's see how this CloudFormation template works. The CloudFormation template
is organized into three broad sections; that is, input parameters, resources, and outputs.
Let's discuss them one by one.

The Parameters section is used to allow user input choices and can also be used to
apply constraints against its value. To create the Amazon Redshift resource, we must
collect parameters such as database name, master username/password, and cluster type.
These parameters will later be substituted when you create the necessary resources. Here is
an illustration of the Parameters section from the template:

"Parameters": {

 "DatabaseName": {

 "Description": "The name of the first database to
be created when the cluster is created",

 "Type": "String",

 "Default": "dev",

 "AllowedPattern": "([a-z]|[0-9])+"

 },

 "NodeType": {

 "Description": "The type of node to be
provisioned",

 "Type": "String",

 "Default": "dc2.large",

 "AllowedValues": [

 "ra3.16xlarge",

 "ra3.4xlarge",

 "ra3.xlplus",

 "dc2.large",

Creating an Amazon Redshift cluster using an AWS CloudFormation template 11

 "dc2.8xlarge"

]

 }

In the preceding input section, DatabaseName is a string value that defaults to dev and
also enforces alphanumeric validation when specified using the AllowedPattern:
"([a-z]|[0-9])+ condition check. Similarly, NodeType defaults to dc2.large and
is allowed a valid NodeType from a list of values.

The Resources section contains a list of resource objects, and the Amazon Resource
is invoked using AWS::Redshift::Cluster, along with references to the input
parameters, such as DatabaseName, ClusterType, NumberOfNodes, NodeType,
MasterUsername, MasterUserPassword, and so on:

"Resources": {

 "RedshiftCluster": {

 "Type": "AWS::Redshift::Cluster",

 "DependsOn": "AttachGateway",

 "Properties": {

 "ClusterType": {

 "Ref": "ClusterType"

 },

 "NumberOfNodes": {

…

 },

 "NodeType": {

 "Ref": "NodeType"

 },

 "DBName": {

 "Ref": "DatabaseName"

 },

..

The Resources section references the input section for values such as
NumberOfNodes, NodeType, and DatabaseName, all of which will be used when the
resource is created.

12 Getting Started with Amazon Redshift

The output section is a handy way to capture essential information about the resources
or input parameters that you want to be available once the stack has been created. This
allows you to easily identify the resource object names that have been created. For
example, you can capture an output such as ClusterEndpoint, which will be used to
connect to the cluster, as follows:

"Outputs": {

 "ClusterEndpoint": {

 "Description": "Cluster endpoint",

 "Value": {

 "Fn::Join": [

 ":",

 [

 {

 "Fn::GetAtt": [

 "RedshiftCluster",

 "Endpoint.Address"

]

 },

 {

 "Fn::GetAtt": [

 "RedshiftCluster",

 "Endpoint.Port"

]

 }

]

]

 }

 }

When authoring the template from scratch, you can take advantage of the AWS
CloudFormation Designer – an integrated development environment for authoring
and validating code. Once the template is ready, you can launch the resources by creating
a stack (collection of resources) using the AWS CloudFormation console, API, or AWS
CLI. You can also update or delete it afterward.

Connecting to an Amazon Redshift cluster using the Query Editor 13

Connecting to an Amazon Redshift cluster
using the Query Editor
The Query Editor is a thin client browser-based interface available on the AWS
Management Console for running SQL queries on Amazon Redshift clusters directly.
Once you have created the cluster, you can use the Query Editor to jumpstart querying the
cluster without needing to set up the JDBC/ODBC driver. This recipe will show you how
get started with the Query Editor so that you can access your Redshift clusters.

The Query Editor allows you to do the following:

• Explore the schema

• Run multiple DDL and DML SQL commands

• Run single/multiple select statements

• View query execution details

• Save a query

• Download a query result set that's up to 100 MB in size in a .CSV, text,
or HTML file

Getting ready
To complete this recipe, you will need do the following:

• Create an IAM user with access to Amazon Redshift and AWS Secrets Manager.

• Store the database credentials in Amazon Secrets Manager using Recipe 2 – Storing
database credentials using Amazon Secrets Manager in the Appendix.

How to do it…
Follow these steps to query an Amazon Redshift cluster using the Amazon Redshift
Query Editor:

1. Connect to the Amazon Redshift cluster using the secrets that you've stored.
Navigate to the Amazon Redshift console and choose Editor.

14 Getting Started with Amazon Redshift

2. Choose Connect to database and select the AWS secrets Manager option. Choose
the secret we created earlier and click Connect:

Figure 1.2 – Setting up Amazon Redshift credentials using Amazon Secrets Manager

3. Now that you have successfully connected to the Redshift database, type the
following query into the Query Editor:

SELECT 'hello world';

Connecting to an Amazon Redshift cluster using the SQL Workbench/J client 15

4. Then, you can click on Run to execute the query:

Figure 1.3 – Amazon Redshift Query Editor for a sample query

The results of the query will appear in the Query Results section. You are now connected
to the Amazon Redshift cluster and ready to execute more queries.

Connecting to an Amazon Redshift cluster
using the SQL Workbench/J client
There are multiple ways to connect to an Amazon Redshift cluster, but one of the most
popular options is to connect using a UI-based tool. SQL Workbench/J is a free cross-
platform SQL query tool that you can use to connect to your own local client.

Getting ready
To complete this recipe, you will need to do the following:

• Create an Amazon Redshift cluster and the necessary login credentials (username
and password).

• Install SQL Workbench/J (https://www.sql-workbench.eu/manual/
install.html).

• Download Amazon Redshift Driver. Please check out Configuring a JDBC
connection to download the latest driver version.

https://www.sql-workbench.eu/manual/install.html
https://www.sql-workbench.eu/manual/install.html

16 Getting Started with Amazon Redshift

• Modify the security group attached to the Amazon Redshift cluster to allow
a connection from a local client.

• Navigate to Amazon Redshift | Clusters | myredshiftcluster | General
information to find the JDBC/ODBC URL for connecting to the Amazon Redshift
cluster.

How to do it…
Follow these steps to connect to your cluster using the SQL Workbench/J client tool from
your computer:

1. Open SQL Workbench/J by double-clicking on the SQLWorkbench.exe file (on
Windows) or the SQLWorkbenchJ application (on Mac).

2. From the SQL Workbench/J menu, select File, and then select Connect window.

3. Select Create a new connection profile.

4. In the New profile box, enter any profile name; for example, examplecluster_
jdbc.

5. Select Manage Drivers. The Manage Drivers dialog will open. Select Amazon
Redshift:

Figure 1.4 – SQL Workbench/J – Manage drivers

Connecting to an Amazon Redshift cluster using the SQL Workbench/J client 17

6. Select the folder icon adjacent to the Library box, browse and point it to the
Amazon Redshift driver location, and then select Choose:

Figure 1.5 – SQL Workbench/J – selecting your Amazon Redshift driver

7. To set up the profile for the Amazon Redshift connection, enter the following
details:

• In the Driver box, select the Amazon Redshift drive.

• For URL, copy and paste the Amazon Redshift cluster JDBC URL you obtained
previously.

• For Username, enter the username (or the master username) associated with the
cluster.

• For Password, provide the password associated with the username.

• Checkmark the Autocommit box.

18 Getting Started with Amazon Redshift

8. Select the Save profile list icon, as shown in the following screenshot:

Figure 1.6 – Choosing an Amazon Redshift connection profile

9. Select OK:

Figure 1.7 – Amazon Redshift connection profile

Connecting to an Amazon Redshift Cluster using a Jupyter Notebook 19

10. After setting up the JDBC connection, you can use the query to ensure you are
connected to the Amazon Redshift cluster:

select * from information_schema.tables;

A list of records will appear in the Results tab if the connection is successful:

Figure 1.8 – Sample query output from SQL Workbench/J

Connecting to an Amazon Redshift Cluster
using a Jupyter Notebook
Jupyter Notebooks is an interactive web application that enables you to analyze clusters
interactively. Jupyter Notebooks applications are widely used by users such as business
analysts, data scientists, and so on to perform data wrangling and exploration. Using
a Jupyter Notebook, you can access all the historical data available in Amazon Redshift
and combine it with the data that's available in the other sources, such as Amazon
S3-based data lake. For example, you might want to build a forecasting model based on
the historical sales data in Amazon Redshift, which will be combined with the clickstream
data available in the data lake. Jupyter Notebooks are the tool of choice here due to the
versatility they provide in terms of exploration tasks and the strong support from the open
source community.

20 Getting Started with Amazon Redshift

Getting ready
To complete this recipe, you will need to do the following:

• Create an IAM user with access to Amazon Redshift, Amazon EC2, and Amazon
Secrets Manager.

• Create an Amazon Redshift cluster in a VPC. For more information, see Creating
a Cluster in a VPC.

• Create a notebook instance (such as Amazon SageMaker) running the Jupyter
Notebook in the same VPC as Amazon Redshift (https://docs.aws.amazon.
com/sagemaker/latest/dg/howitworks-create-ws.html).

• Modify the security group attached to the Amazon Redshift cluster to allow
connections from the Amazon SageMaker notebook instance.

• Store the database credentials in Amazon Secrets Manager using Recipe 2 – Storing
database credentials using Amazon Secrets Manger in the Appendix.

How to do it…
Follow these steps to connect to the Amazon Redshift cluster using a Jupyter Notebook:

1. Open the AWS Console and navigate to the Amazon SageMaker Service.

2. Navigate to your notebook instance and open JupyterLab. When using the Amazon
SageMaker notebook, find the notebook instance that was launched and click on the
Open JupyterLab link, as shown in the following screenshot:

1.9 – Navigating to JupyterLab using the AWS Console

3. Now, let's install the Python driver libraries to connect to Amazon Redshift by
using the following code in the Jupyter Notebook. Then, set the kernel to conda_
python3:

!pip install psycopg2-binary

boto3 is optional, but recommended to leverage the AWS

https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-create-ws.html
https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-create-ws.html

Connecting to an Amazon Redshift Cluster using a Jupyter Notebook 21

Secrets Manager storing the credentials Establishing a
Redshift Connection

!pip install boto3

Important Note
You can connect to the Amazon Redshift cluster using Python libraries such as
Psycopg (https://pypi.org/project/psycopg2-binary/) or
use pg (https://www.postgresql.org/docs/7.3/pygresql.
html) to connect to the Jupyter Notebook. Alternatively, you can also use a
JDBC, but for the ease of scripting with Python, the following illustrations will
use either of the preceding libraries.

4. Grant the Amazon SageMaker instance permission to use the stored secret. In
the AWS Secrets Manager console, click on your secret and find the Secret ARN.
Replace the ARN information in the resource section with the following JSON code:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "secretsmanager:GetResourcePolicy",

 "secretsmanager:GetSecretValue",

 "secretsmanager:DescribeSecret",

 "secretsmanager:ListSecretVersionIds"

],

 "Resource": [

 "arn:aws:secretsmanager:eu-west-
1:123456789012:secret:aes128-1a2b3c"

]

 }

]

}

https://pypi.org/project/psycopg2-binary/
https://www.postgresql.org/docs/7.3/pygresql.html
https://www.postgresql.org/docs/7.3/pygresql.html

22 Getting Started with Amazon Redshift

5. Now, you must attach this policy as an inline policy to the execution role for your
SageMaker notebook instance. To do so, follow these steps:

a) Navigate to the Amazon SageMaker console.

b) Select Notebook Instances.

c) Click on your notebook instance (the one running this notebook, most likely).

d) Under Permissions and Encryption, click on the IAM role link.

e) You should now be on an IAM console, where you can select Add inline policy.
Click on the link that appears.

f) On the Create Policy page that appears, click JSON and replace the JSON lines
that appear with the preceding code block.

g) Click Review Policy.

h) On the next page, select a human-friendly name for the policy and click Create
policy.

6. Finally, paste the ARN for your secret into the following code block of your Jupyter
Notebook to connect to the Amazon Redshift cluster:

Put the ARN of your AWS Secrets Manager secret for your
redshift cluster here:

secret_arn="arn:aws:secretsmanager:eu-west-
1:123456789012:secret:aes128-1a2b3c"

This will get the secret from AWS Secrets Manager.

import boto3

import json

session = boto3.session.Session()

client = session.client(

 service_name='secretsmanager'

)

get_secret_value_response = client.get_secret_value(

 SecretId=secret_arn

)

if 'SecretString' in get_secret_value_response:

 connection_info = json.loads(get_secret_value_
response['SecretString'])

else:

Connecting to an Amazon Redshift Cluster using a Jupyter Notebook 23

 print("ERROR: no secret data found")

Sanity check for credentials

expected_keys = set(['user', 'password', 'host', 'database',
'port'])

if not expected_keys.issubset(connection_info.keys()):

 print("Expected values for ",expected_keys)

 print("Received values for ",set(connection_info.keys()))

 print("Please adjust query or assignment as required!")

jdbc:redshift://HOST:PORT/DBNAME

import time

import psycopg2

database = "dev"

con=psycopg2.connect(

 dbname = database,

 host = connection_info["host"],

 port = connection_info["port"],

 user = connection_info["username"],

 password = connection_info["password"]

)

7. Run basic queries against the database. These queries make use of the cursor class
to execute a basic query in Amazon Redshift:

cur = con.cursor()

cur.execute("SELECT sysdate")

res = cur.fetchall()

print(res)

cur.close()

8. Optionally, you can use the following code to connect to Amazon Redshift
using your Amazon SageMaker notebook: https://github.com/
PacktPublishing/Amazon-Redshift-Cookbook/blob/
master/Chapter01/Connecting_to_AmazonRedshift_using_
JupyterNotebook.ipynb.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/Connecting_to_AmazonRedshift_using_JupyterNotebook.ipynb
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/Connecting_to_AmazonRedshift_using_JupyterNotebook.ipynb
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/Connecting_to_AmazonRedshift_using_JupyterNotebook.ipynb
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/Connecting_to_AmazonRedshift_using_JupyterNotebook.ipynb

24 Getting Started with Amazon Redshift

Connecting to an Amazon Redshift cluster
using Python
Python is widely used for data analytics due to its simplicity and ease of use. In this recipe,
we will use Python programming to connect using the Amazon Redshift Data API.

The Data API allows you to access Amazon Redshift without the need to use the JDBC
or ODBC drivers. You can execute SQL commands on an Amazon Redshift cluster by
invoking a secure API endpoint provided by the Data API. The Data API ensures that
your SQL queries will be submitted asynchronously. You can now monitor the status
of the query and retrieve your results later. The Data API is supported on all major
programming languages, including Python, Go, Java, Node.js, PHP, Ruby, and C++, along
with the AWS SDK.

Getting ready
To complete this recipe, you will need to do the following:

• Create an IAM user with access to Amazon Redshift, Amazon Secrets Manager, and
Amazon EC2.

• Store the database credentials in Amazon Secrets Manager using Recipe 2 – Storing
database credentials using Amazon Secrets Manager in the Appendix.

• Open a Linux machine Terminal such as Amazon EC2, deployed in the same VPC
as the Amazon Redshift cluster.

• Install Python 3.6 or higher on the Linux instance where you will write and execute
the code. If you have not installed Python, you can download it from https://
www.python.org/downloads/.

• Install the AWS SDK for Python (Boto3) on the Linux instance. You can reference
the getting started guide at https://aws.amazon.com/sdk-for-python/.

• Modify the security group attached to the Amazon Redshift cluster to allow
connections from the Amazon EC2 Linux instance, which will allow access to
execute the Python code.

• Create a VPC endpoint for Amazon Secrets Manager and allow security groups to
allow the Linux instance to access the Secrets Manager VPC endpoint.

https://www.python.org/downloads/
https://www.python.org/downloads/
https://aws.amazon.com/sdk-for-python/

Connecting to an Amazon Redshift cluster using Python 25

How to do it…
Follow these steps to use a Linux Terminal to connect to Amazon Redshift using Python:

1. Open the Linux Terminal and install the latest AWS SDK for Python (Boto3) using
the following command:

pip install boto3

2. Next, we will write the Python code. Type python on the Linux Terminal and start
typing the following code. First, we will import the boto3 package and establish
a session:

import boto3

import json

redshift_cluster_id = "myredshiftcluster"

redshift_database = "dev"

aws_region_name = "eu-west-1"

secret_arn="arn:aws:secretsmanager:eu-west-
1:123456789012:secret:aes128-1a2b3c"

def get_client(service, aws_region_name):

 import botocore.session as bc

 session = bc.get_session()

 s = boto3.Session(botocore_session=session, region_
name=region)

 return s.client(service)

3. Now, you can create a client object from the boto3.Session object using
RedshiftData:

rsd = get_client('redshift-data')

4. Next, we will execute a SQL statement. We will use the secrets ARN key to
run a statement. You can execute DDL or DML statements here. The query's
execution is asynchronous in nature. When the statement is executed, it returns
ExecuteStatementOutput, which includes the statement ID:

resp = rsd.execute_statement(

 SecretArn= secret_arn

 ClusterIdentifier=redshift_cluster_id,

26 Getting Started with Amazon Redshift

 Database= redshift_database,

 Sql="SELECT sysdate;"

)

queryId = resp['Id']

print(f"asynchronous query execution: query id {queryId}")

5. Check the status of the query using describe_statement, as well as the number
of records that have been retrieved:

stmt = rsd.describe_statement(Id=queryId)

desc = None

while True:

 desc = rsd.describe_statement(Id=queryId)

 if desc["Status"] == "FINISHED":

 break

 print(desc["ResultRows"])

6. Now, you can retrieve the results of the preceding query using get_statement_
result. This returns JSON-based metadata and results that can be verified using
the following statement:

if desc and desc["ResultRows"] > 0:

 result = rsd.get_statement_result(Id=queryId)

 print("results JSON" + "\n")

 print(json.dumps(result, indent = 3))

Note
The query results can only be retrieved for 24 hours.

The complete script for the preceding Python code is also available at https://
github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/
master/Chapter01/Python_Connect_to_AmazonRedshift.py. It can be
executed as python Python_Connect_to_AmazonRedshift.py.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/Python_Connect_to_AmazonRedshift.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/Python_Connect_to_AmazonRedshift.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/Python_Connect_to_AmazonRedshift.py

Connecting to an Amazon Redshift cluster programmatically using Java 27

Connecting to an Amazon Redshift cluster
programmatically using Java
Java has been used for decades to build and orchestrate data pipeline tasks, ranging from
cleaning and processing to data analysis. Java can programmatically access Amazon
Redshift to build automated applications. In this recipe, we will use an AWS-provided
Redshift JDBC driver in Java to connect to an Amazon Redshift cluster.

Getting ready
To complete this recipe, you will need to do the following:

• Create an Amazon Redshift cluster and login credentials.

• Install Java 8 and have an IDE to develop and run the code in. Alternatively, you can
use AWS Cloud9. The AWS Cloud9 IDE offers a rich code editing experience and
a runtime debugger with support for several programming languages. It also
provides a built-in terminal. You can set up AWS Cloud9 for Java using the
instructions provided at https://docs.aws.amazon.com/cloud9/
latest/user-guide/sample-java.html.

• Modify the security group that's attached to the Amazon Redshift cluster to allow
a connection from the server or client running the Java application, which will allow
you to execute the Java code.

• Navigate to Amazon Redshift | Clusters | myredshiftcluster | General
information and capture the JDBC/ODBC URL to connect to the Amazon Redshift
cluster.

How to do it…
Follow these steps to connect to Amazon Redshift using Java:

1. Let's get started by downloading the Amazon Redshift JDBC driver:

wget https://s3.amazonaws.com/redshift-downloads/drivers/
jdbc/1.2.47.1071/RedshiftJDBC42-no-awssdk-1.2.47.1071.jar --no-
check-certificate

2. Include java home in your path:

PATH=$PATH:$HOME/.local/bin:$HOME/bin:/usr/lib/jvm/java

https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-java.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-java.html

28 Getting Started with Amazon Redshift

3. Set a classpath for the driver:

export CLASSPATH=.:/home/ec2-user/environment/RedshiftJDBC42-
no-awssdk-1.2.47.1071.jar

4. We will use the following Java code to connect to our Amazon Redshift database
and query the tables. The entire code, which is available in java_connect_
toRedshift.java, can be referenced on GitHub.

5. First, we must import the Java sql package, which provides an API for connecting
to and accessing the datastore:

import java.sql.*;

import java.util.Properties;

6. Let's construct the JDBC URL string and store the database user and credentials
in variables. Replace the variable values in <> with the appropriate values for your
Amazon Redshift cluster:

 static final String dbURL = "<Amazon Redshift Cluster JDBC
URL>";

 static final String MasterUsername = "<dbuser>";

 static final String MasterUserPassword = "<yourPassword>"

Refer to https://docs.aws.amazon.com/redshift/latest/mgmt/jdbc20-
obtain-url.html for instructions on how to construct the JDBC URL.

7. To dynamically load the driver at runtime, you must specify the driver class. This
will be used by the driver manager to load the driver:

Class.forName("com.amazon.redshift.jdbc.Driver");

8. Use the driver manager's getConnection property to establish a connection to
your Amazon Redshift database using the JDBC driver:

Connection conn = null;

Class.forName("com.amazon.redshift.jdbc.Driver");

Properties props = new Properties();

props.setProperty("user", MasterUsername);

props.setProperty("password", MasterUserPassword);

conn = DriverManager.getConnection(dbURL, props);

https://docs.aws.amazon.com/redshift/latest/mgmt/jdbc20-obtain-url.html
https://docs.aws.amazon.com/redshift/latest/mgmt/jdbc20-obtain-url.html

Connecting to an Amazon Redshift cluster programmatically using .NET 29

9. We are now ready to execute the query and retrieve results from the database. For
this, we will use the Statement class. The query we will be using will retrieve the
pg_catalog tables and views. The executeQuery property will execute the
query against the Redshift database and return resultset:

 stmt = conn.createStatement();

 String sql = "select * from information_schema.tables

where table_schema = 'pg_catalog';";

 ResultSet rs = stmt.executeQuery(sql);

10. To retrieve the result set, we will loop through using rs.next() to progress the
cursor until the end of the returned records:

 while(rs.next()){

 //Retrieve two columns.

 String catalog = rs.getString("table_catalog");

 String name = rs.getString("table_name");

 //Display values.

 System.out.print("Catalog: " + catalog);

 System.out.println(", Name: " + name);

 }

11. Remember to close the connection:

 conn.close();

Optionally, you can download the code for connecting to the Amazon Redshift cluster
using Java directly from https://github.com/PacktPublishing/Amazon-
Redshift-Cookbook/blob/master/Chapter01/ConnectToCluster.java.

Connecting to an Amazon Redshift cluster
programmatically using .NET
.NET can connect to Amazon Redshift programmatically to build data-enabled
applications such as business intelligence portals, share the data through an application
interface, and more. In this recipe, we will install an AWS provided Amazon Redshift
ODBC driver and connect to the database using .NET.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/ConnectToCluster.java
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/ConnectToCluster.java

30 Getting Started with Amazon Redshift

Getting ready
To complete this recipe, you will need to do the following:

• Download and configure an Amazon Redshift ODBC driver for Windows using
the details provided here: https://docs.aws.amazon.com/redshift/
latest/mgmt/configure-odbc-connection.html#install-odbc-
driver-windows.

• Utilize Visual Studio IDE for .NET. You can do this from the AWS Cloud9 IDE,
which offers a rich code editing experience and a runtime debugger that supports
several programming languages. It also provides a built-in terminal. You can set up
AWS Cloud9 for .NET core at https://docs.aws.amazon.com/cloud9/
latest/user-guide/sample-dotnetcore.html.

• Modify the security group attached to the Amazon Redshift cluster to allow
connections from the server or client running the .NET application, which will
allow to execute the .NET code.

• Capture your Amazon Redshift cluster's hostname and login credentials.

How to do it…
Follow these steps to learn how to use Visual Studio Code to create an application that can
connect to Amazon Redshift:

1. Open Visual Studio Code and create a Windows console project called
ConnectToRedshift.

2. The following is some sample .NET code for connecting to your Amazon Redshift
cluster and executing a query to list the pg_catalog tables. The entire code in
dotNet_connect_toRedshift.cs can be found on GitHub.

3. We will import the System.Data collection of classes to connect to the Redshift
database using the ODBC driver and retrieve results:

using System;

using System.Data;

using System.Data.Odbc;

4. Capture the cluster's endpoint, port, dbuser, and password in variables. The
database is dev. Replace the variable values in <> with the appropriate values for
your Amazon Redshift cluster:

 string server = "<Amazon Redshift Cluster HostName>"; // Eg:
cookbookcluster-2ee55abd.cvqfeilxsadl.eu-west-1.redshift.

https://docs.aws.amazon.com/redshift/latest/mgmt/configure-odbc-connection.html#install-odbc-driver-windows
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-odbc-connection.html#install-odbc-driver-windows
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-odbc-connection.html#install-odbc-driver-windows
https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-dotnetcore.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-dotnetcore.html

Connecting to an Amazon Redshift cluster programmatically using .NET 31

amazonaws.com

 string port = "5439";

 string masterUsername = "<dbuser>";

string masterUserPassword = "<yourPassword>";

string DBName = "dev";

5. Construct the ODBC connection string for your Amazon Redshift database. For
64-bit and 32-bit systems, the connection string is as follows. Use the connection
string that's specific to your driver. Here, we will use the 32-bit driver connection
string:

 /* string connString = "Driver={Amazon Redshift (x64)};" +

 String.Format("Server={0};Database={1};" +

"UID={2};PWD={3};Port={4};SSL=true;Sslmode=Require",

 server, DBName, masterUsername,

 masterUserPassword, port);

 */

 //Redshift ODBC Driver - 32 bits

 string connString = "Driver={Amazon Redshift (x86)};" +

 String.Format("Server={0};Database={1};" +

"UID={2};PWD={3};Port={4};SSL=true;Sslmode=Require",

server, DBName, masterUsername,

 masterUserPassword, port);

6. Frame the SQL to get the list of pg_catalog tables and views:

 string query = "select * from information_schema.tables where
table_schema = 'pg_catalog';";

7. Now, connect to the Redshift database using the ODBC provider:

 OdbcConnection conn = new OdbcConnection(connString);

 conn.Open();

32 Getting Started with Amazon Redshift

8. Execute the query and retrieve the results using your data provider
OdbcDataApapter object. The results will be displayed on system.out:

 string sql = query;

 OdbcDataAdapter da = new OdbcDataAdapter(sql, conn);

 da.Fill(ds);

 dt = ds.Tables[0];

 foreach (DataRow row in dt.Rows)

 {

 Console.WriteLine(row["table_catalog"] + ",
" + row["table_name"]);

 }

9. Remember to close the connection:
 conn.Close();

10. Build and then run the solution. The console output will display the pg_catalog
objects, as follows (tables, views, and so on):

Figure 1.10 – .NET code output after execution

Connecting to an Amazon Redshift cluster using the command line 33

11. Optionally, you can use this code to allow Visual Studio Code to access your
Amazon Redshift cluster (https://github.com/PacktPublishing/
Amazon-Redshift-Cookbook/blob/master/Chapter01/DotNet_
connect_toRedshift.cs).

Connecting to an Amazon Redshift cluster
using the command line
PSQL is a command-line frontend to PostgreSQL. It allows you to query the data
interactively. In this recipe, we will learn how to install psql and run interactive queries.

Getting ready
To complete this recipe, you will need to do the following:

• Install psql (this comes with PostgreSQL). To learn more about using psql, you can
refer to https://www.postgresql.org/docs/8.4/static/app-psql.
html. Based on your operating system, you can download the corresponding
PostgreSQL binary from https://www.postgresql.org/download/.

• If you are using a Windows OS, before running psql, you must set the
PGCLIENTENCODING environment variable to UTF-8:

 set PGCLIENTENCODING=UTF8

• Capture your Amazon Redshift cluster and login credentials.

• Modify the security group attached to the Amazon Redshift cluster to allow
connections from the server or client running the psql application, which will allow
you to execute the psql code.

How to do it…
Follow these steps to connect to Amazon Redshift through a command-line interface:

1. Open the command-line interface and type in psql to make sure it is installed.

2. Provide the connection credentials shown in the following command line to
connect to Amazon Redshift:

C:\Program Files\PostgreSQL\10\bin> .\psql -h cookbookcluster-
2ee55abd.cvqfeilxsadl.eu-west-1.redshift.amazonaws.com -d dev
-p 5439 -U dbuser

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/DotNet_connect_toRedshift.cs
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/DotNet_connect_toRedshift.cs
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter01/DotNet_connect_toRedshift.cs
https://www.postgresql.org/docs/8.4/static/app-psql.html
https://www.postgresql.org/docs/8.4/static/app-psql.html
https://www.postgresql.org/download/

34 Getting Started with Amazon Redshift

Password for user dbuser:

Type "help" for help.

dev=# help

You are using psql, the command-line interface to PostgreSQL.

Type: \copyright for distribution terms

 \h for help with SQL commands

 \? for help with psql commands

 \g or terminate with semicolon to execute query

 \q to quit

To connect to Amazon Redshift using the psql command line, you will need the
cluster's endpoint, the database's username, and the necessary port. You can use the
following command to connect to the Redshift cluster:

psql -h <clusterendpoint> -U <dbuser> -d <databasename> -p
<port>

3. To check the database connection, you can use a sample query, as shown in the
following command:

dev=# select sysdate;

With that, you have successfully connected to the Amazon Redshift cluster and are ready
to run SQL queries!

2
Data Management

Amazon Redshift is a data warehousing service optimized for online analytical
processing (OLAP) applications. You can start with just a few hundred gigabytes (GB)
of data and scale to a petabyte (PB) or more. Designing your database for analytical
processing lets you take full advantage of Amazon Redshift's columnar architecture.

An analytical schema forms the foundation of your data model. This chapter explores how
you can set up this schema, thus enabling convenient querying using standard Structured
Query Language (SQL) and easy administration of access controls.

The following recipes are discussed in this chapter:

• Managing a database in an Amazon Redshift cluster

• Managing a schema in a database

• Managing tables

• Managing views

• Managing materialized views

• Managing stored procedures

• Managing user-defined functions (UDFs)

36 Data Management

Technical requirements
In order to complete the recipes in this chapter, you will need a SQL client of your choice
to access the Amazon Redshift cluster (for example, MySQL Workbench).

Managing a database in an Amazon Redshift
cluster
Amazon Redshift consists of at least one database, and it is the highest level in the
namespace hierarchy for the objects in the cluster. This recipe will guide you through the
steps needed to create and manage a database in Amazon Redshift.

Getting ready
To complete this recipe, you will need the following:

• Access to any SQL interface such as a SQL client or query editor

• An Amazon Redshift cluster endpoint

How to do it…
Let's now set up and configure a database on the Amazon Redshift cluster. Use the SQL
client to connect to the cluster and execute the following commands:

1. We will create a new database called qa in the Amazon Redshift cluster. To do this,
use the following code:

CREATE DATABASE qa

WITH

OWNER awsuser

CONNECTION LIMIT 50;

2. To view the details of the database, you will query the PG_DATABASE_INFO, as
shown in the following code snippet:

SELECT datname, datdba, datconnlimit

FROM pg_database_info

WHERE datdba > 1;

Managing a database in an Amazon Redshift cluster 37

This is the expected output:
datname datdba datconnlimit

qa 100 UNLIMITED

This query will list the databases that exist in the cluster. If a database is successfully
created, it will show up in the query result.

3. To make changes to the database—such as database name, owner, and connection
limit—use the following command, replacing <qauser> with the respective
Amazon Redshift username:

/* Change database owner */

ALTER DATABASE qa owner to <qauser>;

/* Change database connection limit */

ALTER DATABASE qa CONNECTION LIMIT 100;

/* Change database name */

ALTER DATABASE qa RENAME TO prod;

4. To verify that the changes have been successfully completed, you will query the
system table pg_database_info, as shown in the following code snippet, to list
all the databases in the cluster:

SELECT datname, datdba, datconnlimit

FROM pg_database_info

WHERE datdba > 1;

This is the expected output:
datname datdba datconnlimit

prod 100 100

5. You can connect to the prod database using the connection endpoint, as follows:

<RedshiftClusterHostname>:<Port>/prod

Here, prod refers to the database you would like to connect to.

6. To delete the previously created database, execute the following query:

DROP DATABASE prod;

38 Data Management

Important note
It is best practice to have only one database in production per Amazon Redshift
cluster. Multiple databases could be created in a development environment
to enable separation of functions such a development/unit testing/quality
assurance (QA). Within the same session, it is not possible to access objects
across multiple databases, even though they are present in the same cluster. The
only exception to this rule is database users and groups that are available across
the databases.

Managing a schema in a database
In Amazon Redshift, a schema is a namespace that groups database objects such as tables,
views, stored procedures, and so on. Organizing database objects in a schema is good for
security monitoring and also logically groups the objects within a cluster. In this recipe,
we will create a sample schema that will be used to hold all the database objects.

Getting ready
To complete this recipe, you will need access to any SQL interface such as a SQL client
or query editor.

How to do it…
1. Users can create a schema using the CREATE SCHEMA command. The following

steps will enable you to set up a schema with the name finance and add the
necessary access to the groups.

2. Create finance_grp, audit_grp, and finance_admin_user groups using
the following command:

create group finance_grp;

create group audit_grp;

create user finance_admin_usr with password
'<PasswordOfYourChoice>';

3. Create a schema named finance with a space quota of 2 terabytes (TB), with a
finance_admin_usr schema owner:

CREATE schema finance authorization finance_admin_usr
QUOTA 2 TB;

You can also modify an existing schema using ALTER SCHEMA or DROP SCHEMA.

Managing a schema in a database 39

4. For the finance schema, grant access privileges of USAGE and ALL to the
finance_grp group. Further, grant read access to the tables in the schema using
a SELECT privilege for the audit_grp group:

GRANT USAGE on SCHEMA finance TO GROUP finance_grp;

GRANT USAGE on SCHEMA finance TO GROUP audit_grp;

GRANT ALL ON schema finance to GROUP finance_grp;

GRANT SELECT ON ALL TABLES IN SCHEMA finance TO GROUP
audit_grp;

5. You can verify that the schema and owner group have been created by using the
following code:

select nspname as schema, usename as owner

from pg_namespace, pg_user

where pg_namespace.nspowner = pg_user.usesysid

and pg_namespace.nspname ='finance';

6. Create a foo table (or view/database object) within the schema by prefixing
the schema name along with the table name, as shown in the following command:

CREATE TABLE finance.foo (bar int);

7. Now, in order to select the foo table from the finance schema, you will have
to prefix the schema name along with the table name, as shown in the following
command:

select * from finance.foo;

The preceding SQL code will not return any rows.

8. Assign a search path to conveniently reference the database objects directly, without
requiring the complete namespace of the schema qualifier. The following command
sets the search path as finance so that you don't need to qualify the schema name
every time when working with database objects:

set search_path to '$user', finance, public;

40 Data Management

Important note
The search path allows a convenient way to access the database objects without
having to specify the target schema in the namespace when authoring the SQL
code. The search path can be configured using the search_path parameter
with a comma-separated list of schema names. When referencing the database
object in a SQL when no target schema is provided, the database object that is
in the first available schema list is picked up. You can configure the search path
by using the SET search_path command at the current session level or at
the user level.

9. Now, executing the following SELECT query without the schema qualifier
automatically locates the foo table in the finance schema:

select * from foo;

The preceding SQL code will not return any rows.
Now, the new finance schema is ready for use and you can keep creating new database
objects in this schema.

Important note
A database is automatically created by default with a PUBLIC schema.
Identical database object names can be used in different schemas of the
database. For example, finance.customer and marketing.
customer are valid table definitions that can be created without any conflict,
where finance and marketing are schema names and customer is the
table name. Schemas serve the key purpose of easy management through this
logical grouping—for example, you can grant SELECT access to all the objects
at a schema level instead of individual tables.

Managing tables
In Amazon Redshift, you can create a collection of tables within a schema with related
entities and attributes. Working backward from your business requirements, you can use
different modeling techniques to create tables in Amazon Redshift. You can choose a star
or snowflake schema by using Normalized, Denormalized, or Data Vault data modeling
techniques.

In this recipe, we will create tables in the finance schema, insert data into those tables
and cover the key concepts to leverage the massively parallel processing (MPP) and
columnar architecture.

Managing tables 41

Getting ready
To complete this recipe you will need a SQL client, or you can use the Amazon Redshift
query editor.

How to do it…
Let's explore how to create tables in Amazon Redshift.

1. Let's create a customer table in the finance schema with customer_number,
first_name, last_name, and date_of_birth related attributes:

CREATE TABLE finance.customer

(

 customer_number INTEGER,

 first_name VARCHAR(50),

 last_name VARCHAR(50),

 date_of_birth DATE

);

Note
The key ingredient when creating a customer table is to define columns and
their corresponding data types. Amazon Redshift supports data types such
as numeric, character, date, datetime with time zone, boolean, geometry,
HyperLogLog, and super.

2. We will now insert 10 records into the customer table using a multi-value insert
statement:

insert into finance.customer values

(1, 'foo', 'bar', '1980-01-01'),

(2, 'john', 'smith', '1990-12-01'),

 (3, 'spock', 'spock', '1970-12-01'),

 (4, 'scotty', 'scotty', '1975-02-01'),

 (5, 'seven', 'of nine', '1990-04-01'),

 (6, 'kathryn', 'janeway', '1995-07-01'),

 (7, 'tuvok', 'tuvok', '1960-06-10'),

 (8, 'john', 'smith', '1965-12-01'),

 (9, 'The Doctor', 'The Doctor', '1979-12-01'),

 (10, 'B Elana', 'Torres', '2000-08-01');

42 Data Management

3. You can now review the information on the customer table using the svv_table_
info system view. Execute the following query:

select "schema", table_id, "table", encoded, diststyle,
sortkey1, size, tbl_rows

from svv_Table_info

where "table" = 'customer'

and "schema" = 'finance';

This is the expected output:
schema table_id table encoded diststyle sortkey1 size
tbl_rows

finance 167482 customer Y AUTO(ALL) AUTO(SORTKEY) 14 10

Table_id is the object ID and the number of records in the table is 10 rows. The
encoded column indicates the table is compressed. Amazon Redshift stores columns
in 1 megabyte (MB) immutable blocks. The size of the table is 14 MB. Let's dive
into the terminology and concept of diststyle and sortkey. The customer
table is created with default sort key of AUTO, where Amazon Redshift handles the
distribution style of the table on the computer nodes.

• diststyle is a table property that dictates how that table's data is distributed
throughout the cluster.

• KEY: The value is hashed, and the same value goes to same location (slice) on the
compute node.

• ALL: The full table data goes to the first slice of every compute node.

• EVEN: Round-robin across all the compute nodes.

• AUTO: When the table is small, it starts with an AUTO style, and when it becomes
larger in size, Amazon Redshift converts it to an EVEN style.

Further information about distribution styles can be found at the following link:

https://docs.aws.amazon.com/redshift/latest/dg/c_choosing_
dist_sort.html

1. Let's run a query against the customer table to list customers who were born
before 1980:

select *

from finance.customer

where extract(year from date_of_birth) < 1980;

https://docs.aws.amazon.com/redshift/latest/dg/c_choosing_dist_sort.html
https://docs.aws.amazon.com/redshift/latest/dg/c_choosing_dist_sort.html

Managing tables 43

2. You can also create a copy of the permanent table using create table as (CTAS).
Let's execute the following query to create another table for a customer born
in 1980:

create table finance.customer_dob_1980 as

select *

from finance.customer

where extract(year from date_of_birth) = 1980 ;

3. You can also create temporary tables—for example, to generate IDs in a data loading
operation. The temporary tables can only be queried during the current session and
are automatically dropped when the session ends. The temporary tables are created
in the session-specific schema and are not visible to any other user. You can use a
create temporary table command to do this. Execute the following three
queries in single session:

create temporary table #customer(custid integer
IDENTITY(1,1), customer_number integer IDENTITY(1,1));

insert into #customer (customer_number) values(1);

select * from #customer;

This is the expected output:
custid customer_number

1 1

4. Reconnect to the Amazon Redshift cluster using the SQL client. Reconnecting
will create a new session. Now, try to execute the following query against
the #customer temporary table. You will get an ERROR: 42P01: relation
"#customer" does not exist error message as the temporary tables are only visible to
the current session:

select * from #customer;

44 Data Management

How it works…
When you create a table in Amazon Redshift, it stores the data on disk, column by
column, on 1 MB blocks. Amazon Redshift by default compresses the columns, which
reduces the storage footprint and the input/output (I/O) when you execute a query
against the table. Amazon Redshift provides different distribution styles to spread the data
across all the compute nodes, to leverage the MPP architecture for your workload. The
metadata and the table summary information can be queried using the catalog table and
summary view.

Amazon Redshift stores metadata about the customer table. You can query the pg_
table_def catalog table to retrieve this information. You can execute the following
query to view the table/column structure:

select * from pg_table_def where schemaname = 'finance';.

Important note
When data is inserted into a table, Amazon Redshift automatically builds, in
memory, the metadata of the minimum and maximum values of each block.
This metadata, known as a zone map, is accessed before a disk scan in order to
identify which blocks are relevant to a query. Amazon Redshift does not have
indexes; it does, however, have sort keys. Sort key columns govern how data is
physically sorted for a table on disk and can be used as a lever to improve query
performance. Sort keys will be covered in depth in the performance-tuning
best practices chapter.

Managing views
View database objects allow the result of a query to be stored. In Amazon Redshift, views
run each time a view is mentioned in a query. The advantage of using a view instead of
a table is that it can allow access to only a subset of data on a table, join more than one
table in a single virtual table, and act as an aggregated table, and it takes up no space on
the database since only the definition is saved, hence making it convenient to abstract
complicated queries. In this recipe, we will create views to store queries for the underlying
tables.

Getting ready
To complete this recipe, you will need access to any SQL interface such as a SQL client
or query editor.

Managing views 45

How to do it…
Let's create a view using the CREATE VIEW command. We will use the following steps to
create a view:

1. Create a finance.customer_vw view based on the results of the query on
finance.customer:

CREATE VIEW finance.customer_vw

AS

SELECT customer_number,

 first_name,

 last_name,

 EXTRACT(year FROM date_of_birth) AS year_of_birth

FROM finance.customer;

2. To verify that a view has been created, you can use the following command:

SELECT table_schema as schema_name,

 table_name as view_name,

 view_definition

FROM information_schema.views

WHERE table_schema not in ('information_schema', 'pg_
catalog')

ORDER by schema_name,

 view_name;

Note
This script will provide an output of the views created under a particular
schema and the SQL script for the view.

3. We can now select directly from the finance.customer_vw view, just like with
any another database object, like so:

SELECT * from finance.customer_vw limit 5;

46 Data Management

Note
Here, the finance.customer_vw view abstracts the date_of_birth
personally identifiable information (PII) from the underlying table and
provides the user an abstracted view of only the essential data for that year to
determine the age group.

This is the expected output:
outputcustomer_number,first_name,last_name,year_of_birth

1 foo bar 1980

2 john smith 1990

3 spock spock 1970

4 scotty scotty 1975

5 seven of nine 1990

4. To delete the previously created view, you can use the following command:

DROP VIEW finance.customer_vw ;

Managing materialized views
A materialized view is a database object that persists the results of a query to disk. In
Amazon Redshift, materialized views allow frequently used complex queries to be stored
as separate database objects, allowing you to access these database objects directly, and
enabling faster query responses.

Employing materialized views is a common approach to powering repeatable queries in
a business intelligence (BI) dashboard, and avoids expensive computation each time.
Furthermore, materialized views allow an incremental refresh of the results, using the
underlying table data. In this recipe, we will create a materialized view to query the tables
and also to persist the results to fetch the data more quickly.

Getting ready
To complete this recipe, you will need access to any SQL interface such as a SQL client
or a query editor.

Managing materialized views 47

How to do it…
Let's create a materialized view using the CREATE MATERIALIZED VIEW command.
We will use the following steps to create a materialized view, in order to store the
precomputed results of an analytical query and also see how to refresh it:

1. Create a finance.customer_agg_mv materialized view using the results of the
query based on finance.customer:

CREATE MATERIALIZED VIEW finance.customer_agg_mv

AS

SELECT

 EXTRACT(year FROM date_of_birth) AS year_of_birth,

 count(1) customer_cnt

FROM finance.customer

group by EXTRACT(year FROM date_of_birth);

2. We can now select directly from finance.customer, just like with any another
database object, like so:

select * from finance.customer limit 5;

This is the expected output:
outputyear_of_birth,customer_cnt

1975 1

1979 1

1995 1

1970 1

1965 1

3. You can verify the state of a materialized view by using a STV_MV_INFO system
table (https://docs.aws.amazon.com/redshift/latest/dg/r_STV_
MV_INFO.html):

select * from STV_MV_INFO where name='customer_agg_mv';

This is the expected output:
outputdb_name,schema,name,updated_upto_xid,is_
stale,owner_user_name,state,autorefresh, autorewrite

vdwpoc finance customer_agg_mv 24642401 f vdwadmin 1 f t

https://docs.aws.amazon.com/redshift/latest/dg/r_STV_MV_INFO.html
https://docs.aws.amazon.com/redshift/latest/dg/r_STV_MV_INFO.html

48 Data Management

Here, stale='f' indicates the data is current, reflecting the daily_
product_reviews underlying base table. This column can be used to refresh
the materialized view when needed. Another key column in the STV_MV_INFO
table is the state column, which indicates if an incremental refresh is possible
(state=1) or not (state=0). In the materialized view we created a state=1
state, which indicates a faster incremental refresh is possible.

4. Now, let's load more data into the underlying table finance.customer, using
the following command, and check the STV_MV_INFO table:

insert into finance.customer values

(11, 'mark', 'bar', '1980-02-01'),

(12, 'pete', 'smith', '1990-2-01'),

 (13, 'woofy', 'spock', '1980-11-01'),

 (14, 'woofy jr', 'scotty', '1975-03-01'),

 (15, 'eleven', 'of nine', '1990-07-01');

5. Query the STV_MV_INFO table again to check the status of the materialized view:

select name,is_stale,state from STV_MV_INFO where
name='customer_agg_mv';

This is the expected output:
name,is_stale,state

customer_agg_mv
t 1

Note that stale = 't' indicates that the underlying data for the materialized
view has changed, but it is possible to refresh it incrementally.

6. Refresh the materialized view using the REFRESH MATERIALIZED VIEW
command and check the status again:

REFRESH MATERIALIZED VIEW finance.customer_agg_mv;

select name,is_stale, state from STV_MV_INFO where
name='customer_agg_mv';

This is the expected output:
name,is_stale,state

customer_agg_mv f 1

As we can see from the preceding code snippet, customer_agg_mv is now
updated to reflect the underlying table data.

Managing stored procedures 49

How it works…
A materialized view can be updated with the latest data from the underlying tables by
using the REFRESH MATERIALIZED VIEW command. When the materialized view is
being refreshed, it executes a separate transaction to update the dataset. Amazon Redshift
also supports an autorefresh option to keep the materialized view up to date as soon as
possible after base tables change.

Managing stored procedures
Stored procedures in Amazon Redshift are user-created objects using a Procedural
Language/PostgreSQL (PL/pgSQL) procedural programming language. Stored
procedures support both data definition language (DDL) and data manipulation
language (DML). Stored procedures can take in input arguments but do not necessarily
need to return results. PL/pgSQL also supports conditional logic, loops, and case
statements. Stored procedures are commonly used to build reusable extract, transform,
load (ETL) data pipelines and enable the database administrator (DBA) to automate
routine administrative activities—for example, periodically dropping unused tables.

The SECURITY attribute controls who has privileges to access certain database objects.

Stored procedures can be created with security definer controls to allow execution of
a procedure without giving access to underlying tables—for example, they can drop a table
created by another user and enable the DBA to automate administrative activities.

Getting ready
To complete this recipe, you will need the following:

• Access to the Amazon Web Services (AWS) Management Console

• Access to any SQL interface such as a SQL client or query editor

How to do it…
In this recipe, we will start with creating a scalar Python-based UDF that will be used to
parse an Extensible Markup Language (XML) input:

1. Connect to Amazon Redshift using the SQL client, and copy and paste the following
code to create a sp_cookbook stored procedure:

Create schema cookbook;

create or replace procedure sp_cookbook(indate in date,
records_out INOUT refcursor) as

50 Data Management

$$

declare

 integer_var int;

begin

 RAISE INFO 'running first cookbook storedprocedure on
date %', indate;

 drop table if exists cookbook.cookbook_tbl;

 create table cookbook.cookbook_tbl

 (recipe_name varchar(50),

 recipe_date date

);

 insert into cookbook.cookbook_tbl values('stored
procedure', indate);

 GET DIAGNOSTICS integer_var := ROW_COUNT;

 RAISE INFO 'rows inserted into cookbook_tbl = %',
integer_var;

 OPEN records_out FOR SELECT * FROM cookbook.cookbook_
tbl;

END;

$$ LANGUAGE plpgsql;

This stored procedure is taking two parameters: indate is the input, and
records_out serves as both an input and output parameter. This stored
procedure uses DDL and DML statements. The current user is the owner of the
stored procedure and is also the owner of the cookbook.cookbook_tbl table.

Note
Some older versions of SQL client tools may produce an "unterminated
dollar-quoted string at or near "$$"error. Ensure that you
have the latest version of the SQL client—for example, ensure you are using
version 124 or higher for the SQL Workbench/J client.

2. Now, let's execute the sp_cookbook stored procedure using the following
statements:

call sp_cookbook(current_date, 'inputcursor');

fetch all from inputcursor;

Managing stored procedures 51

This is the expected output:
Message

running first cookbook storedprocedure on date 2020-12-13

rows inserted into cookbook_tbl = 1

recipe_name recipe_date

stored procedure 2020-12-13 00:00:00

3. To view a definition of the previously created stored procedure, you can run the
following statement:

SHOW PROCEDURE sp_cookbook(indate in date, records_out
INOUT refcursor);

4. We will now create another stored procedure with a security definer privilege:

create or replace procedure public.sp_self_
service(tblName in varchar(60)) as

 $$

begin

 RAISE INFO 'running sp_self_service to drop table %',
tblName;

 execute 'drop table if exists cookbook.' || tblName;

 RAISE INFO 'table dropped %', tblName;

END;

$$ LANGUAGE plpgsql

SECURITY DEFINER;

5. Let's create a user and check whether they have a permission to drop the
cookbook.cookbook_tbl table. The user1 user does not have a permission to
drop the table:

create user user1 with password 'Cookbook1';

grant execute on procedure public.sp_self_service(tblName
in varchar(60)) to user1;

set SESSION authorization user1;

select current_user;

drop table cookbook.cookbook_tbl;

52 Data Management

This is the expected output:
ERROR: 42501: permission denied for schema cookbook

6. When user1 executes the sp_self_service stored procedure, the procedure
runs with the security context of the owner of the procedure:

set SESSION authorization user1;

select current_user;

call public.sp_self_service('cookbook_tbl');

This is the expected output:
running sp_self_service to drop table cookbook_tbl

table

This allows the user to drop the table without providing the full permissions for the
tables in the cookbook schema.

How it works…
Amazon Redshift uses the PL/pgSQL procedural language for authoring the stored
procedures. PL/pgSQL provides programmatic access that can be used to author control
structures to the SQL language and allow complex computations. For example, you have
a stored procedure that can create users and set up necessary access that meets your
organizational needs—hence, rather than invoking several commands, this can now be
done in a single step. You can find the complete reference to the PL/pgSQL procedural
language at https://www.postgresql.org/docs/8.0/plpgsql.html and
ready-to-use stored useful procedures at https://github.com/awslabs/amazon-
redshift-utils/tree/master/src/StoredProcedures. The SECURITY
access attribute of a stored procedure defines the privileges to access underlying database
objects used. By default, an INVOKER is used to access the user privileges and the
SECURITY DEFINER allows the procedure user to inherit the privileges of the owner.

https://www.postgresql.org/docs/8.0/plpgsql.html

Managing UDFs 53

Managing UDFs
Scalar UDF functions in Amazon Redshift are routines that are able to take parameters,
perform calculations, and return the results. UDFs are handy when performing complex
calculations that can be stored and reused in a SQL statement. Amazon Redshift supports
UDFs that can be authored using either Python or SQL. In addition, Amazon Redshift
also supports AWS Lambda UDFs that open up further possibilities to invoke other
AWS services. For example, let's say the latest customer address information is stored in
AWS DynamoDB—you can invoke an AWS Lambda UDF to retrieve this using a SQL
statement in Amazon Redshift.

Getting ready
To complete this recipe, you will need the following:

• Access to the AWS console

• Access to any SQL interface such as a SQL client or query editor

• Access to create an AWS Lambda function

• Access to create an Identity and Access Management (IAM) role that can invoke
AWS Lambda and attach it to Amazon Redshift

How to do it…
In this recipe, we will start with a scalar Python-based UDF that will be used to parse an
XML input:

1. Connect to Amazon Redshift using the SQL client, and copy and paste the following
code to create an f_parse_xml function:

CREATE OR REPLACE FUNCTION f_parse_xml

(xml VARCHAR(MAX), input_rank int)

RETURNS varchar(max)

STABLE

AS $$

 import xml.etree.ElementTree as ET

 root = ET.fromstring(xml)

 res = ''

 for country in root.findall('country'):

 rank = country.find('rank').text

 if rank == input_rank:

54 Data Management

 res = name = country.get('name') + ':' + rank

 break

 return res

$$ LANGUAGE plpythonu;

Important note
The preceding Python-based UDF takes in the XML data and uses the xml.
etree.ElementTree library to parse it to locate an element, using the
input rank. See https://docs.python.org/3/library/xml.
etree.elementtree.html for more options that are available with this
XML library.

2. Now, let's validate the f_parse_xml function using the following statement,
by locating the country name that has the rank 2:

select

f_parse_xml('<data> <country name="Liechtenstein">
<rank>2</rank> <year>2008</year>
<gdppc>141100</gdppc> <neighbor name="Austria"
direction="E"/> <neighbor name="Switzerland"
direction="W"/> </country></data>', '2') as col1

This is the expected output:
col1

Liechtenstein:2

3. We will now create another AWS Lambda-based UDF. Navigate to the AWS
Management Console and pick the AWS Lambda service and click on Create
function, as shown in the following screenshot:

https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html

Managing UDFs 55

Figure 2.1 – Creating a Lambda function using the AWS Management Console

4. In the Create function screen, enter rs_lambda under Function name, choose
a Python 3.6 runtime, and click on Create function.

5. Under the Function code textbox, copy and paste the following code and press the
Deploy button:

import json

def lambda_handler(event, context):

 ret = dict()

 ret['success'] = True

 ret['results'] = ["bar"]

 ret['error_msg'] = "none"

 ret['num_records'] = 1

 return json.dumps(ret)

In the preceding Python-based Lambda function, a sample result is returned. This
function can further be integrated to call any other AWS service—for example, you
can invoke AWS Key Management Service (KMS) to encrypt input data.

56 Data Management

6. Navigate to AWS IAM in the AWS Management Console and create a new role,
RSInvokeLambda, using the following policy statement by replacing [Your_
AWS_Account_Number], [Your_AWS_Region] with your AWS account
number/region and attaching the role to the Amazon Redshift cluster:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": "lambda:InvokeFunction",

 "Resource": "arn:aws:lambda:[Your_AWS_
Region]: [Your_AWS_Account_Number]:function:rs_lambda"

 }

]

}

7. Connect to Amazon Redshift using the SQL client, and copy and paste the following
code to create a f_redshift_lambda function that links the AWS Lambda rs_
lambda function:

CREATE OR REPLACE EXTERNAL FUNCTION f_redshift_lambda
(bar varchar)

RETURNS varchar STABLE

LAMBDA 'rs_lambda'

IAM_ROLE 'arn:aws:iam::[Your_AWS_Account_Number]:role/
RSInvokeLambda';

8. You can validate the f_redshift_lambda function by using the following SQL
statement:

select f_redshift_lambda ('input_str') as col1

--output

col1

bar

Amazon Redshift is now able to invoke the AWS Lambda function using a SQL statement.

Managing UDFs 57

How it works…
Amazon Redshift allows you to create a scalar UDF using either a SQL SELECT clause
or a Python program in addition to the AWS Lambda UDF illustrated in this recipe. The
scalar UDFs are stored with Amazon Redshift and are available to any user when granted
the required access. You can find a collection of several ready-to-use UDFs that can be
used to implement some of the complex reusable logic within a SQL statement at the
following link: https://github.com/aws-samples/amazon-redshift-udfs.

https://github.com/aws-samples/amazon-redshift-udfs

3
Loading and

Unloading Data
In this chapter, we will delve into the data loading process, which allows us to put
transformed data from source systems into a target data warehouse table structure.
While data can be loaded into Amazon Redshift using an INSERT statement (as in the
case of other relational databases), it is more efficient to bulk load the data, given the
volumes that a data warehouse handles. For example, in an ordering system-based data
warehouse table, usually, the entire previous day's worth of data needs to be loaded rather
than individual orders. Similarly, data from the data warehouse can be exported to other
applications in bulk using the unload feature.

There are multiple ways of loading data into an Amazon Redshift cluster. The most
common way is using the COPY command to load data from Amazon S3. This chapter will
cover all the different ways you can load data into a Redshift cluster from different sources.

The following recipes will be covered in this chapter:

• Loading data from Amazon S3 using COPY

• Loading data from Amazon EMR

• Loading data from Amazon DynamoDB

60 Loading and Unloading Data

• Loading data from remote hosts

• Updating and inserting data

• Unloading data to S3

Technical requirements
You will need the following technical requirements to complete the recipes in this chapter:

• Access to the AWS Console.

• An AWS administrator should create an IAM user by following Recipe 1 – Creating
an IAM user in the Appendix. This IAM user will be used in some of the recipes in
this chapter.

• An AWS administrator should create an IAM role by following Recipe 3 – Creating
an IAM role for an AWS service in the Appendix. This IAM role will be used in some
of the recipes in this chapter.

• An AWS administrator should deploy the AWS CloudFormation template
(https://github.com/PacktPublishing/Amazon-Redshift-
Cookbook/blob/master/Chapter03/chapter_3_CFN.yaml) and create
two IAM policies:

a. An IAM policy attached to the IAM user, which will give them access to Amazon
Redshift, Amazon RDS, Amazon DynamoDB, Amazon S3, and Amazon EMR.

b. An IAM policy attached to the IAM role, which will allow the Amazon Redshift
cluster to access Amazon S3 and Amazon DynamoDB.

• Attach an IAM role to the Amazon Redshift cluster by following Recipe 4 –
Attaching an IAM role to the Amazon Redshift cluster in the Appendix. Take note of
the IAM role name as we will reference it in the recipes in this chapter as [Your-
Redshift_Role].

• An Amazon Redshift cluster deployed in AWS region eu-west-1.

• Amazon Redshift cluster master user credentials.

• Access to any SQL interface, such as a SQL client or Amazon Redshift query editor.

• Create an Amazon S3 bucket for staging and unloading the data in specific recipes.
We will reference it in the recipes in this chapter as [Your-Amazon_S3_Bucket].

• An AWS account number. We will reference it in the recipes in this chapter as
[Your-AWS_Account_Id].

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter03/chapter_3_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter03/chapter_3_CFN.yaml

Loading data from Amazon S3 using COPY 61

Loading data from Amazon S3 using COPY
Amazon Redshift is a relational database management system (RDBMS) that supports
a number of data model structures, including dimensional, denormalized, and aggregate
(rollup) structures. This makes it optimal for analytics.

In this recipe, we will set up two separate sample datasets in Amazon Redshift that are
publicly available:

• A dimensional model by using a Star Schema Benchmark (SSB) (https://www.
cs.umb.edu/~poneil/StarSchemaB.pdf), a retail system-based dataset.

• A denormalized model by using the Amazon.com customer product reviews
dataset.

For loading the datasets, we will use the COPY command, which allows data to be copied
from Amazon S3 to Amazon Redshift. This is the recommend approach for loading large
amounts of data.

Getting ready
To complete this recipe, you will need to do the following:

• Deploy an Amazon Redshift cluster in AWS region eu-west-1.

• Create Amazon Redshift cluster master user credentials.

• Access any SQL interface, such as a SQL client or the Amazon Redshift
Query Editor.

• Attach an IAM role to your Amazon Redshift cluster that can access Amazon S3.

https://www.cs.umb.edu/~poneil/StarSchemaB.pdf
https://www.cs.umb.edu/~poneil/StarSchemaB.pdf

62 Loading and Unloading Data

How to do it…
We must create and load the following dimensional model, which is based on the SSB, to
create an illustrative retail system:

Figure 3.1 – SSB data model

Now, let's create some tables that mimic the preceding data model, as well as populate the
data in the tables:

1. We will start by setting up the data in our Amazon S3 bucket. Download the Ssb_
Table_Ddl.sql file from https://github.com/PacktPublishing/
Amazon-Redshift-Cookbook/blob/master/Chapter03/Ssb_Table_
Ddl.sql and copy and paste it into any SQL client tool. Then, execute it to create
a dimensional model for the retail system dataset:

DROP TABLE IF EXISTS lineitem;

DROP TABLE IF EXISTS supplier;

DROP TABLE IF EXISTS part;

DROP TABLE IF EXISTS orders;

DROP TABLE IF EXISTS customer;

DROP TABLE IF EXISTS dwdate;

CREATE TABLE customer

(

 C_CUSTKEY BIGINT NOT NULL,

 C_NAME VARCHAR(25),

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter03/Ssb_Table_Ddl.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter03/Ssb_Table_Ddl.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter03/Ssb_Table_Ddl.sql

Loading data from Amazon S3 using COPY 63

 C_ADDRESS VARCHAR(40),

 C_NATIONKEY BIGINT,

 C_PHONE VARCHAR(15),

 C_ACCTBAL DECIMAL(18,4),

 C_MKTSEGMENT VARCHAR(10),

 C_COMMENT VARCHAR(117)

…

CREATE TABLE dwdate

(

 d_datekey INTEGER NOT NULL,

 d_date VARCHAR(19) NOT NULL,

 d_dayofweek VARCHAR(10) NOT NULL,

 d_month VARCHAR(10) NOT NULL,

 d_year INTEGER NOT NULL,

 d_lastdayinweekfl VARCHAR(1) NOT NULL,

 d_lastdayinmonthfl VARCHAR(1) NOT NULL,

 d_holidayfl VARCHAR(1) NOT NULL,

 d_weekdayfl VARCHAR(1) NOT NULL

);

2. Now, load the data from the public S3 bucket into the preceding tables. Use any
SQL client tool and execute the following command by replacing the [Your-AWS_
Account_Id] and [Your-Redshift_Role] values shown in the Technical
requirements section:

COPY customer from 's3://packt-redshift-cookbook/
customer/' iam_role 'arn:aws:iam::[Your-AWS_Account_
Id]:role/[Your-Redshift_Role]' CSV gzip COMPUPDATE
PRESET;

COPY orders from 's3://packt-redshift-cookbook/orders/'
iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-
Redshift_Role]' CSV gzip COMPUPDATE PRESET;

COPY part from 's3://packt-redshift-cookbook/part/'
iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-
Redshift_Role]' CSV gzip COMPUPDATE PRESET;

COPY supplier from 's3://packt-redshift-cookbook/
supplier/' iam_role 'arn:aws:iam::[Your-AWS_Account_
Id]:role/[Your-Redshift_Role]' CSV gzip COMPUPDATE
PRESET;

64 Loading and Unloading Data

COPY lineitem from 's3://packt-redshift-cookbook/
lineitem/' iam_role 'arn:aws:iam::[Your-AWS_Account_
Id]:role/[Your-Redshift_Role]' CSV gzip COMPUPDATE
PRESET;

COPY dwdate from 's3://packt-redshift-cookbook/dwdate/'
iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-
Redshift_Role]' CSV gzip COMPUPDATE PRESET dateformat
'auto';

 Note
The script will take around 10 minutes to complete. Each table load will
output Load into table *** completed, *** record(s)
loaded successfully to acknowledge a successful execution.

3. Verify that all the tables have been loaded with the correct number of rows using
the following command:

select count(1) from lineitem; -- expected rows:
599037902

select count(1) from supplier; -- expected rows: 1100000

select count(1) from part; -- expected rows:20000000

select count(1) from orders; -- expected rows: 76000000

select count(1) from customer; -- expected rows:
15000000

select count(1) from dwdate; -- expected rows: 2556

4. Now, the dimensional model is ready for querying. We can run an analytical query
similar to the following to join the different tables of the dimensional model:

SELECT c_mktsegment,

 COUNT(o_orderkey) AS orders_count,

 SUM(l_quantity) AS quantity,

 SUM(l_extendedprice) AS extendedprice,

 COUNT(DISTINCT P_PARTKEY) AS parts_count,

 COUNT(DISTINCT L_SUPPKEY) AS supplier_count,

 COUNT(DISTINCT o_custkey) AS customer_count

FROM lineitem

 JOIN orders ON l_orderkey = o_orderkey

 JOIN customer c ON o_custkey = c_custkey

 JOIN dwdate

Loading data from Amazon S3 using COPY 65

 ON d_date = l_commitdate

 AND d_year = 1992

 JOIN part ON P_PARTKEY = l_PARTKEY

 JOIN supplier ON L_SUPPKEY = S_SUPPKEY

GROUP BY c_mktsegment;

5. In addition to the dimensional model, let's also create a denormalized table using
the Amazon product review data. Create the product review data table using the
following code:

CREATE TABLE product_reviews(

 marketplace varchar(2),

 customer_id varchar(32),

 review_id varchar(24),

 product_id varchar(24),

 product_parent varchar(32),

 product_title varchar(512),

 star_rating int,

 helpful_votes int,

 total_votes int,

 vine char(1),

 verified_purchase char(1),

 review_headline varchar(256),

 review_body varchar(max),

 review_date date,

 year int,

 product_category varchar(32),

 insert_ts datetime default current_timestamp)

DISTSTYLE KEY

DISTKEY (customer_id)

SORTKEY (

 marketplace,

 product_category,

 review_date);

66 Loading and Unloading Data

6. Now, let's load the review data into the product_reviews table by executing the
following command in the SQL client:

COPY product_reviews

FROM 's3://packt-redshift-cookbook/reviews_parquet/'
iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-
Redshift_Role]' PARQUET;

7. Now, the product_reviews table is ready for querying. Execute the following
query to get the top 10 most voted products:

SELECT product_title,

 SUM(total_votes)

FROM product_reviews

WHERE product_category = 'Apparel'

GROUP BY product_title

ORDER BY SUM(total_votes) DESC LIMIT 10;

With that, we have used Amazon S3 to move the data into Amazon Redshift using the
COPY command and set up a dimensional and denormalized dataset.

How it works…
The Amazon Redshift COPY command is used to load large datasets into Amazon
Redshift from Amazon S3. This is the recommended approach as the COPY command
takes advantage of the massively parallel processing (MPP) capabilities of the Amazon
Redshift cluster to ingest the data into the Amazon Redshift table efficiently. The COPY
command also provides several options for ingesting incoming files. This includes support
for multiple files formats (CSV, Parquet, JSON, and so on) with error handling and
the flexibility to ingest all kinds of structured data. Please see https://docs.aws.
amazon.com/redshift/latest/dg/copy-parameters-data-source-s3.
html for more details.

Please also see the best practices of the COPY command at https://docs.aws.
amazon.com/redshift/latest/dg/c_loading-data-best-practices.
html.

https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-source-s3.html
https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-source-s3.html
https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-source-s3.html
https://docs.aws.amazon.com/redshift/latest/dg/c_loading-data-best-practices.html
https://docs.aws.amazon.com/redshift/latest/dg/c_loading-data-best-practices.html
https://docs.aws.amazon.com/redshift/latest/dg/c_loading-data-best-practices.html

Loading data from Amazon EMR 67

Loading data from Amazon EMR
Amazon Elastic Map Reduce (EMR) allows you to execute big data frameworks such as
Apache Hadoop and Apache Spark on AWS managed infrastructure. Amazon EMR is
used for both batch and near-real-time processing as part of an analytical data pipeline.

In this recipe, we will see how to leverage Amazon EMR to load data into the customer
table on Amazon Redshift using the COPY command.

Getting ready
To complete this recipe, you will need to do the following:

• Ensure you have access to the AWS Console.

• Deploy an Amazon Redshift cluster in AWS region eu-west-1.

• Create Amazon Redshift cluster master user credentials.

• Gain access to any SQL interface, such as a SQL client or the Amazon Redshift
Query Editor.

• Deploy an Amazon EMR cluster in AWS region eu-west-1. Refer to https://
docs.aws.amazon.com/emr/latest/ManagementGuide/emr-gs.html
to set up an EMR cluster.

• Ensure you have open connectivity between the Amazon EMR cluster and the
Amazon Redshift cluster.

How to do it…
In this recipe, we will allow Amazon EMR to directly ingest data into Amazon Redshift.
The following steps will guide you through the process of connecting to the Amazon EMR
cluster to initiate data loading.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-gs.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-gs.html

68 Loading and Unloading Data

First, you must capture the Amazon Redshift public key and cluster IP addresses. To
connect to the ingested data from the remote host (Amazon EMR), you will need to SSH
information for the target Amazon Redshift cluster. You can obtain this by logging into
the AWS Console, navigating to your Amazon Redshift cluster, selecting Properties, and
clicking on Connection Details, as shown here:

Figure 3.2 – Capturing an Amazon Redshift cluster's public key and IP addresses

Now, follow these steps:

1. Add all the IP addresses for Amazon Redshift to the inbound rule in the security
group of the Amazon EMR cluster for SSH with the TCP protocol on Port 22.

Loading data from Amazon EMR 69

2. On each EMR node, add the Amazon Redshift public key to the following file while
using SSH to connect to the host. You will need to use your key pair to connect:

/home/<ssh_username>/.ssh/authorized_keys

3. On the EMR cluster, download the data for the customer table from the S3 bucket.
SSH into the EMR master node using the Hadoop user. Once you've logged in, run
the following code to create hdfs and s3-dist-cp to copy the files from s3 to
hdfs:

hadoop fs -mkdir /output/cust

s3-dist-cp --src s3://packt-redshift-cookbook/customer/
--dest hdfs:///output/customer/

4. Log into the Amazon Redshift cookbook cluster using the SQL client or Query
Editor and create the customer table:

DROP TABLE IF EXISTS customer;

CREATE TABLE customer

(

C_CUSTKEYBIGINT NOT NULL,

C_NAMEVARCHAR(25),

C_ADDRESSVARCHAR(40),

C_NATIONKEYBIGINT,

C_PHONEVARCHAR(15),

C_ACCTBALDECIMAL(18,4),

C_MKTSEGMENT VARCHAR(10),

C_COMMENTVARCHAR(117)

)

diststyle ALL;

5. Frame the COPY command to load data into the Redshift customer table. In the
COPY command, we are providing the Amazon EMR cluster ID and the HDFS path
with *, which will load all the files on that path. The COPY command loads data in
parallel into the Redshift table:

COPY customer from 'emr://[YOUR-EMR-CLUSTERID]/output/
cust/*' '

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-
Redshift_Role]'

CSV

70 Loading and Unloading Data

gzip

COMPUPDATE PRESET;

6. Execute the COPY command using the Redshift Query Editor.

7. Verify the record count of the data that was loaded into the part table:

Select count(*) from customer;

15000000 records have been loaded into the customer table.

Loading data from Amazon DynamoDB
Amazon DynamoDB is a NoSQL serverless, fully managed service. Amazon DynamoDB
provides single-digit milliseconds performance at any scale. DynamoDB is designed to
be used as an operational database in OLTP use cases where you know access patterns
and can design your data model for them. When you want to perform analytics, you can
complement Amazon DynamoDB using Amazon Redshift OLAP capabilities.

In this recipe, we will learn how data from the Amazon DynamoDB parts table can be
copied to the Amazon Redshift table using the COPY command. We will use the full table
copy approach in this recipe.

Amazon DynamoDB can also capture changes to the tables in DynamoDB streams. This
can be leveraged to copy near-real-time data into Amazon Redshift tables via Amazon
Lambda and the Amazon Kinesis Firehose service. This will be covered later in this book.

Getting ready
To complete this recipe, you will need to do the following:

• Ensure you have access to the AWS Console.

• Deploy an Amazon Redshift cluster in AWS region eu-west-1.

• Create Amazon Redshift cluster master user credentials.

• Access any SQL interface, such as a SQL client or the Amazon Redshift query editor.

• Deploy an Amazon DynamoDB table in AWS region eu-west-1. Please refer
to https://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/GettingStarted.Python.html to set up the
necessary AWS SDK for Python (Boto3). Then, use https://github.com/
PacktPublishing/Amazon-Redshift-Cookbook/blob/master/
Chapter03/CreateAndLoad_dynamodb.py to set up the sample part table.

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Python.htm
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Python.htm
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter03/CreateAndLoad_dynamodb.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter03/CreateAndLoad_dynamodb.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter03/CreateAndLoad_dynamodb.py

Loading data from Amazon DynamoDB 71

• Attach an IAM role to an Amazon Redshift cluster that can access Amazon
DynamoDB.

• Access the AWS CLI to get a record count from an Amazon DynamoDB table.

How to do it…
In this recipe, we will load data directly from Amazon DynamoDB into Amazon Redshift:

1. Let's start by making a CLI call to the DynamoDB table to verify the total number
of items. Execute the following code on the command line. You will see a count of
20000 in the part table:

 aws dynamodb scan --table-name part --select "COUNT"

 output:

 {

 "Count": 20000,

 "ScannedCount": 20000,

 "ConsumedCapacity": null }

2. Log into the Amazon Redshift cookbook cluster using a SQL client or the Query
Editor and create the part table:

DROP TABLE IF EXISTS part;

CREATE TABLE part

(

 P_PARTKEY BIGINT NOT NULL,

 P_NAME VARCHAR(55),

 P_MFGR VARCHAR(25),

 P_BRAND VARCHAR(10),

 P_TYPE VARCHAR(25),

 P_SIZE INTEGER,

 P_CONTAINER VARCHAR(10),

 P_RETAILPRICE DECIMAL(18,4),

 P_COMMENT VARCHAR(23)

)

diststyle ALL;

72 Loading and Unloading Data

3. Frame the COPY command to load into the Amazon Redshift table part from the
Amazon DynamoDB table part. In the COPY command, we are providing the name
of the dynamodb table part:

COPY part from 'dynamodb://part'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-
Redshift_Role]'

readratio 50;

4. Execute the preceding COPY command using the Amazon Redshift Query Editor.

5. Verify the record count of the data that was loaded into the part table. 20000
records have been loaded into the part table:

Select count(*) from part;

--expected sample output

count(*)

20000

6. Let's review the columns values for the part table on Amazon Redshift:

Select p_partkey,p_name,p_mfgr from part limit 5;

--expected sample output

p_partkey p_name p_mfgr

800213 chartreuse steel indian burlywood

Manufacturer#2

1101041 red lemon khaki frosted blush Manufacturer#1

2500838 tan cream cyan lemon olive Manufacturer#2

12669574 bisque salmon honeydew violet steel
Manufacturer#2

12579584 pale linen thistle firebrick orange
Manufacturer#3

Loading data from remote hosts 73

How it works…
In the COPY command, which is used to load data from Amazon DynamoDB, the column
names in the Amazon Redshift table should match the attribute names in the DynamoDB
part table. If the column name is not present in DynamoDB, then those columns are
loaded as empty or NULL, based on the COPY command's emptyasnull option. If the
attributes in DynamodDB are not present in the Amazon Redshift table, those attributes
are discarded. Also, notice that you can specify the Amazon DynoamoDB readratio
(in the preceding readratio of 50), which regulates the percentage of provisioned
throughput that is consumed by the COPY command for the DynamoDB table part.

Loading data from remote hosts
The local datasets in a processing server can be loaded into an Amazon Redshift table
using the COPY command and the ssh parameter. You can specify the command that
Amazon Redshift can execute on the remote server, which will write to standard output.
The COPY command will use this to load the data into the table in parallel.

In this recipe, we will learn how to connect to remote hosts to load the data present on the
remote host in the part table.

Getting ready
To complete this recipe, you will need to do the following:

• Gain access to the AWS Console.

• Deploy an Amazon Redshift cluster in AWS region eu-west-1.

• Create Amazon Redshift cluster master user credentials.

• Gain access to any SQL interface, such as a SQL client or the Amazon Redshift
Query Editor.

• Gain access to an Amazon EC2 Linux instance or any Unix or Linux server. You
will need open connectivity between Amazon EC2 Linux or your local Linux/Unix
server to Amazon Redshift cluster.

• Gain access to the AWS CLI to copy the data from S3 to a local server.

• Create an Amazon S3 bucket in eu-west-1. We will reference it as [Your-Amazon_
S3_Bucket].

• Attach an IAM role to the Amazon Redshift cluster that can access Amazon S3.

74 Loading and Unloading Data

How to do it…
In this recipe, we will let a remote host (such as Amazon EC2) directly ingest data into
Amazon Redshift:

1. To connect to the ingest data from Amazon EMR, you will need SSH information
for the target Amazon Redshift cluster. You can obtain this by logging into the AWS
Console, navigating to your Amazon Redshift cluster, selecting Properties, and
clicking on Connection Details, as shown here:

Figure 3.3 – Capturing an Amazon Redshift cluster's public key and IP addresses

Loading data from remote hosts 75

2. Add all the IP addresses for Amazon Redshift to the security group of Amazon EC2
Linux for port 22. If you are using local Unix or Linux, open the firewall for all the
Redshift cluster IP addresses.

3. On the Linux host, add the Amazon Redshift public key:

 /home/<ssh_username>/.ssh/authorized_keys

4. On the Linux host, create a directory to download the data for the part table from
the S3 bucket:

 mkdir /home/ec2-user/input/part

 cd /home/ec2-user/input/part

 aws s3 cp s3://packt-redshift-cookbook/part/ . --recursive

5. Capture the public key of your host from /etc/ssh/<ssh_host_rsa_key_
name>.pub. Amazon Redshift supports RSA keys.

6. Now, let's create the manifest file that will be referenced in the COPY command to
load the value into Redshift. The manifest file is in JSON format; this file will be
used by Amazon Redshift to connect to the ssh host:

{

 "entries": [

 {"endpoint":"<sh_endpoint_or_IP>",

 "command": "zcat /home/ec2-user/input/part/*.gz",

 "mandatory":true,

 "publickey": "<public_key> ",

 "username": "<host_user_name> "}

]

}

7. Save the manifest file as load_from_remote_host_manifest. Upload this file
to your S3 bucket; that is, [Your-Amazon_S3_Bucket]. Use the same bucket
where the sample data resides in the same region as your Redshift cluster.

8. Log into your Amazon Redshift cookbook cluster using a SQL client or the Query
Editor and create the part table:

DROP TABLE IF EXISTS PART;

CREATE TABLE part

(

76 Loading and Unloading Data

 P_PARTKEY BIGINT NOT NULL,

 P_NAME VARCHAR(55),

 P_MFGR VARCHAR(25),

 P_BRAND VARCHAR(10),

 P_TYPE VARCHAR(25),

 P_SIZE INTEGER,

 P_CONTAINER VARCHAR(10),

 P_RETAILPRICE DECIMAL(18,4),

 P_COMMENT VARCHAR(23)

)

diststyle ALL;

9. Frame the copy command to load into the Redshift part table. In the copy
command, we are providing the manifest file on the S3 path. COPY will execute the
zcat command through the host connection, and then load the output from the
commands in parallel into the part table. The COPY command shown here is using
the SSH option:

copy part

from 's3://[Your-Amazon_S3_Bucket]/load_from_remote_host_
manifest'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-
Redshift_Role]'

CSV

ssh;

10. Execute the copy command.

11. Verify the record count of the data that's been loaded into the part table:

Select count(*) from part;

12. 20000000 records have been loaded into the part table.

Updating and inserting data 77

Updating and inserting data
An Extract Transform Load (ETL) process is a common technique for refreshing the
data warehouse of the source system. The ETL process can be executed as a batch/near-
real-time process that allows us to stage the data from the source system and perform bulk
refreshes of the Amazon Redshift data warehouse. Amazon Redshift, being an RDBMS-
based system, allows data refreshes to occur in the form of UPDATE/INSERT/DELETE
operations, broadly known as Data Manipulation Language (DML).

In this recipe, we will delve into some of the common ETL strategies for refreshing
a dimensional model.

Getting ready
To complete this recipe, you will need to do the following:

• Gain access to the AWS Console.

• Deploy an Amazon Redshift cluster in AWS region eu-west-1.

• Create Amazon Redshift cluster master user credentials.

• Gain access to any SQL interface, such as a SQL client or the Amazon Redshift
Query Editor.

• Set up a sample dimensional model.

How to do it…
This recipe will illustrate refreshing the part dimension, followed by the lineitem
fact table. The dimensional tables will be refreshed first, followed by the fact table,
to maintain the data's integrity. The complete script for this recipe is also available
at https://github.com/PacktPublishing/Amazon-Redshift-
Cookbook/blob/master/Chapter03/part.sql and https://github.
com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/
Chapter03/Insert_Update_Lineitem.sql. Let's start with the data refresh for
the part dimension:

1. Open any SQL client tool and start the transaction for the part dimension table's
refresh:

BEGIN TRANSACTION;

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter03/part.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter03/part.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter03/Insert_Update_Lineitem.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter03/Insert_Update_Lineitem.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter03/Insert_Update_Lineitem.sql

78 Loading and Unloading Data

Tip
Using the transaction to update the data allows rollbacks if there is an error.
End users do not see the intermediate state of the data change.

2. Create the staging table and load the incoming incremental data from the source:

/* Create a staging table to hold the input data. Staging
table is created with BACKUP NO option for faster inserts
and also since data is temporary */

DROP TABLE IF EXISTS stg_part;

CREATE TABLE stg_part

(

 NAME VARCHAR(55),

 MFGR VARCHAR(25),

 BRAND VARCHAR(10),

 TYPE VARCHAR(25),

 SIZE INTEGER,

 CONTAINER VARCHAR(10),

 RETAILPRICE DECIMAL(18,4),

 COMMENT VARCHAR(23)

)

BACKUP NO

;

COPY stg_part

FROM 's3://packt-redshift-cookbook/etl/part/dt=2020-08-
15/' iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/
[Your-Redshift_Role]'csv gzip compupdate preset;

Tip
Notice that the incremental data for 2020-08-15 is loaded into the stg_
part table.

3. Data can be merged into the part dimension table by performing an update
(for existing matching records) and insert for the new records. An update can be
performed using the natural key of the name attribute:

--Update all attributes for the existing parts

Updating and inserting data 79

UPDATE part

SET p_mfgr = mfgr,

 p_brand = brand,

 p_type = TYPE,

 p_size = SIZE,

 p_container = container,

 p_retailprice = retailprice,

 p_comment = COMMENT

FROM stg_part

WHERE part.p_name = stg_part.name;

4. An insert will be performed for the new incoming records. When you're performing
inserts, the referential key column is autogenerated:

-- Insert new parts, by auto-generating the p_partkey

INSERT INTO part (p_partkey, p_name, p_mfgr, p_brand, p_
type, p_size, p_container, p_retailprice, p_comment)

WITH max_partkey AS

 (SELECT max(p_partkey) max_partkey

 FROM part)

SELECT row_number() OVER (

 ORDER BY stg_part.name) + max_partkey AS p_partkey,

 name,

 mfgr,

 brand,

 TYPE,

 SIZE,

 container,

 retailprice,

 COMMENT

FROM stg_part

LEFT JOIN part ON (stg_part.name = part.p_name)

JOIN max_partkey ON (1=1)

WHERE part.p_name IS NULL ;

80 Loading and Unloading Data

5. The data refresh is now complete on the target part dimension, so we can commit
the transaction using the following command:

-- commit and End transaction

END TRANSACTION;

Note
Similarly, you can repeat the preceding steps for other dimensional tables
before starting the fact table.

6. Now, let's refresh the lineitem fact table using the following script. Start the
transaction for the lineitem fact table:

-- Start a new transaction

BEGIN TRANSACTION;

7. Create the staging table so that it can hold the incoming incremental data, as shown
in the following code:

-- Drop stg_lineitem if exists

DROP TABLE IF EXISTS stg_lineitem;

-- Create a stg_lineitem staging table and COPY data from
input S3 location with the refreshed incremental data

CREATE TABLE stg_lineitem

(

 orderkey BIGINT,

 LINENUMBER INTEGER NOT NULL,

 QUANTITY DECIMAL(18,4),

 EXTENDEDPRICE DECIMAL(18,4),

 DISCOUNT DECIMAL(18,4),

 TAX DECIMAL(18,4),

 RETURNFLAG VARCHAR(1),

 LINESTATUS VARCHAR(1),

 SHIPDATE DATE,

 COMMITDATE DATE,

 RECEIPTDATE DATE,

 SHIPINSTRUCT VARCHAR(25),

 SHIPMODE VARCHAR(10),

Updating and inserting data 81

 COMMENT VARCHAR(44),

 p_name VARCHAR(55),

 s_name VARCHAR(25)

)

BACKUP NO sortkey (RECEIPTDATE);

s_name varchar(25)) BACKUP NO sortkey (receiptdate);

COPY stg_lineitem FROM 's3://packt-redshift-cookbook/
etl/lineitem/shipdate_dt=2020-08-15/' iam_role
'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_
Role]' csv gzip compupdate preset;

Tip
Notice that the incremental data for 2020-08-15 is loaded into the stg_
lineitem table.

8. Now, let's delete any existing data (if any) for 2020-08-15 and refresh it with the
current data for this date:

-- Delete any rows from target store_sales for the input
date for idempotency

DELETE FROM lineitem WHERE l_shipdate = '2020-10-15';

9. Insert the new incoming data for 2020-18-15 using the following --Insert
statement:

--Insert data from staging table to the target TABLE

INSERT INTO lineitem (l_orderkey, l_partkey, l_suppkey,
l_linenumber, l_quantity, l_extendedprice, l_discount,
l_tax, l_returnflag, l_linestatus, l_shipdate, l_
commitdate, l_receiptdate, l_shipinstruct, l_shipmode,
l_comment)

WITH supplier_dim AS

 (SELECT DISTINCT s_name,s_suppkey FROM supplier),

part_dim AS

 (SELECT DISTINCT p_name, p_partkey FROM part)

SELECT orderkey AS l_orderkey,

 p_partkey AS l_partkey,

 s_suppkey AS l_suppkey,

82 Loading and Unloading Data

 linenumber AS l_linenumber,

 quantity AS l_quantity,

 extendedprice AS l_extendedprice,

 discount AS l_discount,

 tax AS l_tax,

 returnflag AS l_returnflag,

 linestatus AS l_linestatus,

 shipdate AS l_shipdate,

 commitdate AS l_commitdate,

 receiptdate AS l_receiptdate,

 shipinstruct AS l_shipinstruct,

 shipmode AS l_shipmode,

 COMMENT AS l_comment

FROM stg_lineitem stg

LEFT OUTER JOIN part_dim prt ON prt.p_name = stg.p_name

LEFT OUTER JOIN supplier_dim sup ON sup.s_name = stg.s_
name;

Important note
Note that dimensional keys are derived from the dimensional table using the
natural keys.

10. The data refresh is now complete on the target lineitem fact, so we can commit
the transaction using the following code:

-- commit and End transaction

COMMIT;

Important note
Notice that all the data in both the dimension and fact tables is handled in bulk
to update/insert all the incoming data in one go. This is a best practice since the
effort to perform DML on a few rows versus several rows is almost the same.

Unloading data to Amazon S3 83

11. At this point, you have a refreshed dimensional model that contains the latest data.
This can be verified by executing the following JOIN query:

SELECT c_mktsegment,

 COUNT(o_orderkey) AS orders_count,

 SUM(l_quantity) AS quantity,

 SUM(l_extendedprice) AS extendedprice,

 COUNT(DISTINCT P_PARTKEY) AS parts_count,

 COUNT(DISTINCT L_SUPPKEY) AS supplier_count,

 COUNT(DISTINCT o_custkey) AS customer_count

FROM lineitem

 JOIN orders ON l_orderkey = o_orderkey

 JOIN customer c ON o_custkey = c_custkey

 JOIN part ON P_PARTKEY = l_PARTKEY

 JOIN supplier ON L_SUPPKEY = S_SUPPKEY

WHERE l_shipdate = '2020-10-15'

GROUP BY c_mktsegment;

The preceding ETL strategy can now be integrated with any workflow tool so that you can
automatically refresh the data warehouse.

Unloading data to Amazon S3
Amazon Redshift can create a copy of the data on Amazon S3 using the UNLOAD
command. The UNLOAD command splits the data across multiple files based on the node
slices across the Redshift cluster.

This recipe will show you how to use UNLOAD data from an Amazon Redshift cluster in an
Amazon S3 bucket.

Getting ready
To complete this recipe, you will need to do the following:

• Gain access to the AWS Console.

• Deploy an Amazon Redshift deployed in AWS region eu-west-1. Load the data, as
referenced in the Loading data from Amazon S3 recipe.

• Create Amazon Redshift cluster master user credentials.

84 Loading and Unloading Data

• Gain access to any SQL interface, such as a SQL client or the Amazon Redshift
Query Editor.

• Create an Amazon S3 bucket in eu-west-1. We will reference it as [Your-Amazon_
S3_Bucket].

• Attach an IAM role to an Amazon Redshift cluster that can access Amazon S3.

How to do it…
To unload the data from Amazon Redshift into an Amazon S3 bucket, follow these steps:

1. Connect to the Redshift cluster using the SQL client of your choice.

2. Use the following command to unload the data from your Amazon Redshift cluster.
Replace the values in [] with the corresponding values in your environment:

unload ('select * from orders')

to 's3://[Your-Amazon_S3_Bucket]/unload/orders_'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-
Redshift_Role]'

PARQUET;

Based on the number of slices in the cluster, the UNLOAD command will write data
in Parquet format to multiple files in parallel. You can review the https://docs.
aws.amazon.com/redshift/latest/dg/r_UNLOAD.html documentation
for other parameters.

3. To validate the path for the unloaded data, you can use the following command,
which looks at STL_UNLOAD_LOG:

select query, substring(path,0,100) as path

from stl_unload_log

where query=pg_last_query_id()

order by path limit 10;

https://docs.aws.amazon.com/redshift/latest/dg/r_UNLOAD.html
https://docs.aws.amazon.com/redshift/latest/dg/r_UNLOAD.html

Unloading data to Amazon S3 85

--expected sample output

query path

21585117 s3://[Your-Amazon_S3_Bucket]/unload/
orders_000_part_000.parquet

21585117 s3://[Your-Amazon_S3_Bucket]/unload/
orders_001_part_000.parquet

21585117 s3://[Your-Amazon_S3_Bucket]/unload/
orders_002_part_000.parquet

..

4. To confirm that the data is available in Amazon S3, you can browse the Amazon S3
bucket and list the Parquet files that are provided in the output.

4
Data Pipelines

Companies build modern cloud-based data warehouses to either migrate from their
on-premises data warehouses or to build new workloads. To hydrate data in these modern
data warehouses, users can build data pipelines based on the source data. In this chapter,
we will cover the different types of data pipelines that we can design on Amazon Web
Services (AWS) with Amazon Redshift as a destination data warehouse.

The following recipes are discussed in this chapter:

• Ingesting data from transactional sources using AWS Database Migration Service
(AWS DMS)

• Streaming data to Amazon Redshift via Amazon Kinesis Firehose

• Cataloging and ingesting data using AWS Glue

Technical requirements
Here are the technical requirements in order to complete the recipes in this chapter:

• Access to the AWS Management Console.

• AWS administrators should create an Identity and Access Management (IAM) user
by following Recipe 1 – Creating an IAM user in the Appendix section. This IAM
user will be deployed to perform some of the recipes in this chapter.

88 Data Pipelines

• AWS administrators should create an IAM role by following Recipe 3 – Creating
an IAM role for an AWS service in the Appendix. This IAM role will be deployed to
perform some of the recipes in this chapter.

• AWS administrators should deploy the AWS CloudFormation template (https://
github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/
master/Chapter04/chapter_4_CFN.yaml) to create two IAM policies:

a. An IAM policy attached to the IAM user that will give the user access to Amazon
Redshift, Amazon Relational Database Service (Amazon RDS), Amazon
Kinesis, Amazon Kinesis Data Firehose, Amazon CloudWatch Logs, AWS
CloudFormation, AWS Secrets Manager, Amazon Cognito, Amazon Simple
Storage Service (Amazon S3), AWS DMS, and AWS Glue.

b. An IAM policy attached to the IAM role that will allow an Amazon Redshift
cluster to access Amazon S3.

• Attach the IAM role to an Amazon Redshift cluster by following Recipe 4 – Attaching
an IAM Role to the Amazon Redshift cluster in the Appendix section. Take a note of
the IAM role name, which we will refer to in the recipes as [Your-Redshift_
Role].

• An Amazon Redshift cluster deployed in the eu-west-1 AWS region.

• Amazon Redshift cluster master user credentials.

• Access to any Structured Query Language (SQL) interface such as a SQL client or
the Amazon Redshift query editor.

• An Amazon RDS MySQL cluster deployed in the eu-west-1 AWS region in
the same virtual private cloud (VPC) as the Amazon Redshift cluster (refer to
https://aws.amazon.com/getting-started/hands-on/create-
mysql-db/ for more information).

• An AWS DMS replication instance deployed in the eu-west-1 AWS region in
the same VPC as the Amazon Redshift cluster (refer to https://docs.aws.
amazon.com/dms/latest/sbs/CHAP_RDSOracle2Aurora.Steps.
CreateReplicationInstance.html for more information).

• A command line to connect to Amazon RDS MySQL (refer to https://
docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_
ConnectToInstance.html for more information).

• Access to the Kinesis Data Generator (KDG), which is a user interface (UI) that
helps to send test data to Amazon Kinesis. Use this blog post to configure the open
source KDG: https://aws.amazon.com/blogs/big-data/test-your-
streaming-data-solution-with-the-new-amazon-kinesis-data-
generator/.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter04/chapter_4_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter04/chapter_4_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter04/chapter_4_CFN.yaml
https://aws.amazon.com/getting-started/hands-on/create-mysql-db/
https://aws.amazon.com/getting-started/hands-on/create-mysql-db/
https://docs.aws.amazon.com/dms/latest/sbs/CHAP_RDSOracle2Aurora.Steps.CreateReplicationInstance.html
https://docs.aws.amazon.com/dms/latest/sbs/CHAP_RDSOracle2Aurora.Steps.CreateReplicationInstance.html
https://docs.aws.amazon.com/dms/latest/sbs/CHAP_RDSOracle2Aurora.Steps.CreateReplicationInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/
https://aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/
https://aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/

Ingesting data from transactional sources using AWS DMS 89

• An AWS account number, which we will refer to in the recipes as [Your-AWS_
Account_Id].

• An Amazon S3 bucket created in the eu-west-1 region, which we will refer to in
the recipes as [Your-Amazon_S3_Bucket].

• The code files are referenced in the GitHub repository at https://github.
com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/
Chapter04.

Ingesting data from transactional sources
using AWS DMS
When you have transactional data sources—either on-premises or on AWS RDS—and
you want to replicate or migrate that data to your data warehouse in Amazon Redshift
for consolidation or reporting, you can use AWS DMS. AWS DMS is a fully managed
service that helps you to do full loading from your transactional source to the target data
warehouse as well as near-real-time change data capture (CDC) from source to target.

In this recipe, we will do full replication of the parts table from Amazon RDS MySQL,
serving as a transactional source to the Amazon Redshift database warehouse.

Getting ready
To complete this recipe, you will need the following:

• An Amazon Redshift cluster deployed in the eu-west-1 AWS region.

• Amazon Redshift cluster master user credentials.

• An IAM user with access to Amazon Redshift, Amazon RDS, and AWS DMS.

• An Amazon RDS MySQL cluster deployed in the eu-west-1 AWS region in
the same VPC as the Amazon Redshift cluster (refer to https://aws.amazon.
com/getting-started/hands-on/create-mysql-db/ for more
information).

• An AWS DMS replication instance deployed in the eu-west-1 AWS region in
the same VPC as the Amazon Redshift cluster (refer to https://docs.aws.
amazon.com/dms/latest/sbs/CHAP_RDSOracle2Aurora.Steps.
CreateReplicationInstance.html for more information).

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter04
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter04
https://aws.amazon.com/getting-started/hands-on/create-mysql-db/
https://aws.amazon.com/getting-started/hands-on/create-mysql-db/
https://docs.aws.amazon.com/dms/latest/sbs/CHAP_RDSOracle2Aurora.Steps.CreateReplicationInstance.html
https://docs.aws.amazon.com/dms/latest/sbs/CHAP_RDSOracle2Aurora.Steps.CreateReplicationInstance.html
https://docs.aws.amazon.com/dms/latest/sbs/CHAP_RDSOracle2Aurora.Steps.CreateReplicationInstance.html

90 Data Pipelines

• A command line to connect to Amazon RDS MySQL (refer to https://
docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_
ConnectToInstance.html for more information). Open connectivity between
your local client, such as Amazon Elastic Compute Cloud (Amazon EC2) Linux,
to the Amazon RDS MySQL database.

• Open connectivity between Amazon RDS MySQL and AWS DMS instances.

• Note the VPC ID where Amazon Redshift and Amazon RDS are deployed.

How to do it…
This recipe will illustrate full replication of the parts table from Amazon RDS MySQL
to the Amazon Redshift cluster using AWS DMS as the replication engine:

1. Let's connect to the Amazon RDS MySQL database using the command line
installed on the AWS EC2 instance. Enter the password to connect to the database:

mysql -h [yourMySQLRDSEndPoint] -u admin -p;

2. We will create an ods database on MySQL and a parts table in the ods database:

create database ods;

CREATE TABLE ods.part

(

 P_PARTKEY BIGINT NOT NULL,

 P_NAME VARCHAR(55),

 P_MFGR VARCHAR(25),

 P_BRAND VARCHAR(10),

 P_TYPE VARCHAR(25),

 P_SIZE INTEGER,

 P_CONTAINER VARCHAR(10),

 P_RETAILPRICE DECIMAL(18,4),

 P_COMMENT VARCHAR(23)

)

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html

Ingesting data from transactional sources using AWS DMS 91

3. On your client server, download the part.tbl file from GitHub at https://
github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/
master/Chapter04/part.tbl.

4. We will now load this file into the ods.part table on the MySQL database. This
will load 20000 records into the parts table:

LOAD DATA LOCAL INFILE 'part.tbl'

 INTO TABLE ods.part

 FIELDS TERMINATED BY '|'

 LINES TERMINATED BY '\n';

5. Let's verify the record count loaded into the ods.part table:

MySQL [(none)]> select count(*) from ods.part;

+----------+

| count(*) |

+----------+

| 20000 |

+----------+

1 row in set (0.00 sec)

6. Turn on binary logging on the RDS MySQL database by executing the following
command:

call mysql.rds_set_configuration('binlog retention
hours', 24);

In your MySQL database instance in parameter group

Set the binlog_format parameter to ROW

Binary logging enables CDC for the AWS DMS service. You can get more details
about turning on binary logging at this link: https://docs.aws.amazon.
com/dms/latest/userguide/CHAP_Source.MySQL.html#CHAP_
Source.MySQL.AmazonManag.

7. Now, we will go to the AWS DMS landing page to create a source and target for the
replication instance. Refer to https://console.aws.amazon.com/dms/v2/
home? for more information on this.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter04/part.tbl
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter04/part.tbl
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter04/part.tbl
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.MySQL.html#CHAP_Source.MySQL.AmazonManag
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.MySQL.html#CHAP_Source.MySQL.AmazonManag
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.MySQL.html#CHAP_Source.MySQL.AmazonManag
https://console.aws.amazon.com/dms/v2/home?
https://console.aws.amazon.com/dms/v2/home?

92 Data Pipelines

8. First, we will create a source endpoint for RDS MySQL. Navigate to Endpoints
and click on Create endpoint. Select Source endpoint and check Select RDS DB
instance. From the drop-down menu, select your RDS instance:

Figure 4.1 – Creating an AWS DMS source endpoint for MySQL database

9. Enter the password for your RDS MySQL database:

Figure 4.2 – AWS DMS source endpoint for MySQL database

Ingesting data from transactional sources using AWS DMS 93

10. Test your endpoint connection from the AWS DMS replication you created earlier
on. Select a VPC and replication instance and click Run test. On completion, you
will receive a successful connection message:

Figure 4.3 – AWS DMS source endpoint for MySQL database test connection

94 Data Pipelines

11. Secondly, we will create a target endpoint for the Amazon Redshift cluster. Click on
Create endpoint and select Target endpoint. Populate the details of your Amazon
Redshift cluster endpoint, including user ID, password, and database name. Test the
connection using the pre-created database replication instance:

Figure 4.4 – AWS DMS target endpoint for Amazon Redshift

12. Now, we will create a database migration task. Navigate to Database migration
tasks and click on Create task. Select a replication instance. For Source database
endpoint, select mysqldb, and for Target database endpoint, select the
cookbooktarget Amazon Redshift endpoint you created. For Migration type,
select Migrate existing data and replicate ongoing changes. This will do a full load
followed by ongoing CDC:

Ingesting data from transactional sources using AWS DMS 95

Figure 4.5 – AWS DMS migration task

13. For Target table preparation mode, select Do nothing. AWS DMS assumes that
the target tables have been pre-created by Amazon Redshift.

96 Data Pipelines

14. For Table Mappings, add the following rule. Enter ods as the schema name and a %
character as a wildcard table name:

Figure 4.6 – AWS DMS migration task source table mapping rules

Ingesting data from transactional sources using AWS DMS 97

15. For transformation rules for the target, select the ods schema and table wildcard
name and select an action to add a stg_ prefix to the table name on Amazon
Redshift. In the DMS task, you can apply some transformation rules (for example,
convert to lowercase or remove columns):

Figure 4.7 – AWS DMS migration task target transformation rule

16. In the Migration task startup configuration, select the Manually later option and
click on Create task.

17. Once the task has a Ready status, click on the task. Then, under Action, select
Restart and resume. With this, the replication instance has connected to the
source and has replicated data to Amazon Redshift.

98 Data Pipelines

18. To view the status of the replication, click on Table statistics. The load state on
completion will show Table completed. The total rows on the ods.part target
Amazon Redshift table are 20,000:

Figure 4.8 – AWS DMS migration task status and full mode replicated record count

19. Let's insert the following records into the source MySQL database part table to
see the CDC scenario:

insert into ods.part values

(20001,'royal red metallic
dim','Manufacturer#2','Brand#25','STANDARD BURNISHED
NICKEL',48,'SM JAR',920.00,'sts-1');

insert into ods.part values

(20002,'royal red metallic
dim','Manufacturer#2','Brand#26','STANDARD BURNISHED
NICKEL',48,'SM JAR',921.00,'sts-2');

insert into ods.part values

(20003,'royal red metallic
dim','Manufacturer#2','Brand#27','STANDARD BURNISHED
NICKEL',48,'SM JAR',922.00,'sts-3');

insert into ods.part values

(20004,'royal red metallic
dim','Manufacturer#2','Brand#28','STANDARD BURNISHED
NICKEL',48,'SM JAR',923.00,'sts-4');

insert into ods.part values

(20005,'royal red metallic
dim','Manufacturer#2','Brand#29','STANDARD BURNISHED
NICKEL',48,'SM JAR',924.00,'sts-5');

Streaming data to Amazon Redshift via Amazon Kinesis Firehose 99

20. On the database migration task, let's check the CDC of the five newly inserted five
records. The Inserts column shows 5, and the Total rows column on the target now
has 20,005 records:

Figure 4.9 – AWS DMS migration task status and CDC replicated record count

21. Let's confirm the record count on the ods.stg_part Amazon Redshift table.
Execute the following query in the SQL client, and the output will be 20,005 records:

select count(*) from ods.stg_part;

22. You can choose to stop the database migration task by navigating to Database
migration tasks > Actions > Stop.

How it works…
AWS DMS provides the capability to do homogenous (same database platform—for
example, on-premises MySQL to Amazon RDS MySQL) and heterogeneous (different
database platform) replication. In this recipe, we saw the scenario of heterogeneous
replication, whereby the source is MySQL and the target is Amazon Redshift. Using an
AWS DMS task, it first fully migrated the data to Amazon Redshift, and the task captured
changes from the source transactional logs that got replicated to Amazon Redshift in near
real time.

Streaming data to Amazon Redshift via
Amazon Kinesis Firehose
Streaming datasets are continuous datasets that can originate from sources such as
internet of things (IoT) devices, log files, gaming systems, and so on. Ingesting streamed
data into Amazon Redshift allows the running of near-real-time analytics that can be
combined with the historical/operational data to produce actionable reporting—for
example, in a manufacturing shop, analyzing the data from several IoT sensors can help
predict the failure of machinery and enable you to take preventive action.

100 Data Pipelines

In this recipe, we will simulate a streaming dataset using the www.amazon.com product
review data to be ingested into Amazon Redshift using Amazon Kinesis Firehose. Amazon
Kinesis Firehose provides out-of-the-box integration to capture the streaming dataset and
land it into an Amazon Redshift table.

Getting ready
To complete this recipe, you will need the following:

• An Amazon Redshift cluster deployed in the eu-west-1 AWS region.

• Amazon Redshift cluster master user credentials.

• An IAM user with access to Amazon Redshift, Amazon Kinesis, Amazon Cognito,
and Amazon S3.

• Access to any SQL interface such as a SQL client or the Amazon Redshift query
editor.

• An Amazon S3 bucket created in the eu-west-1 region, which we will refer to
 as [Your-Amazon_S3_Bucket].

• An IAM role attached to an Amazon Redshift cluster that can access Amazon S3,
which will refer to in the recipes as [Your-Redshift_Role].

• Access to the KDG, which is a UI that helps to send test data to Amazon Kinesis.
Use this blog post to configure the open source KDG: https://aws.amazon.
com/blogs/big-data/test-your-streaming-data-solution-with-
the-new-amazon-kinesis-data-generator/.

• An AWS account number, which we will refer to in the recipes as [Your-AWS_
Account_Id].

How to do it…
This recipe will stream the www.amazon.com customer product review dataset and
ingest it into Amazon Redshift using Amazon Kinesis Firehose.

1. Navigate to the AWS Management Console and pick the AWS Kinesis service.
In the left menu, choose Data Firehose and click on the Create delivery stream
button, as shown in the following screenshot:

http://www.amazon.com
https://aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/
https://aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/
https://aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/
http://www.amazon.com

Streaming data to Amazon Redshift via Amazon Kinesis Firehose 101

Figure 4.10 – Creating a Kinesis Data Firehose stream

2. Provide a delivery stream name (such as product_reviews_stream) and click
Next until you get to the Choose a destination option.

3. Choose Amazon Redshift as the destination and configure the Amazon Redshift
destination parameters, as shown in the following screenshot:

Figure 4.11 – Configuring destination Amazon Redshift cluster

102 Data Pipelines

Here, provide the following respective parameters:

• Cluster—Choose an Amazon Redshift cluster to land the streaming dataset

• User name—Type the username that you chose when you set up the Amazon
Redshift cluster

• Password—Type the password that you chose when you set up the Amazon
Redshift cluster

• Database—Type the database name

• Table—Type product_reviews_stg

• Columns - optional—Leave this field empty

• Intermediate S3 bucket—Choose an existing S3 bucket or create a new one where
data will be staged before being copied into Amazon Redshift ([Your-Amazon_
S3_Bucket])

• Backup S3 bucket prefix – optional—Type /product_review_stg/

• In the COPY options – optional section, type the following script:

COPY product_reviews_stg (marketplace,customer_id,review_
id,product_id,product_parent,product_title,star_rating,helpful_
votes,total_votes,vine,verified_purchase,review_
headline,review_body,review_date,year) FROM 's3://
[Your-Amazon_S3_Bucket/product_review_stg/manifest'
CREDENTIALS 'aws_iam_role=arn:aws:iam::[Your-AWS_Account_
Id]:role/[Your-Redshift_Role]' MANIFEST JSON 'auto';

4. Navigate to the Review option and create an Amazon Kinesis Firehose stream.

5. Log in to the Amazon Redshift cluster using the SQL client tool and create
a product_reviews_stg table that will hold the incoming streaming data:

CREATE TABLE product_reviews_stg

(

 marketplace VARCHAR(2),

 customer_id VARCHAR(32),

 review_id VARCHAR(24),

 product_id VARCHAR(24),

 product_parent VARCHAR(32),

 product_title VARCHAR(512),

 star_rating INT,

Streaming data to Amazon Redshift via Amazon Kinesis Firehose 103

 helpful_votes INT,

 total_votes INT,

 vine CHAR(1),

 verified_purchase CHAR(1),

 review_headline VARCHAR(256),

 review_body VARCHAR(MAX),

 review_date DATE,

 YEAR INT

)

DISTSTYLE KEY DISTKEY (customer_id) SORTKEY (review_date);

6. Now, let's use the Amazon KDG to produce streaming data and send it to the
product_reviews_stream Kinesis Firehose stream, as follows:

Figure 4.12 – Amazon KDG

104 Data Pipelines

Here, you will use the product_review_stream stream/delivery stream to send
the streaming data and copy and paste the template from https://github.
com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/
Chapter04/kinesis_data_generator_template.json to generate the
product review data:

{

 "marketplace": "{{random.arrayElement(

 ["US","UK","JP"]

)}}",

 "review_headline": "{{commerce.productAdjective}}",

 "review_body": "{{commerce.productAdjective}}",

 "review_date": "{{date.now("YYYY-MM-DD")}}",

 "year":{{date.now("YYYY")}}

}

7. After a while, the streamed data should start landing into Amazon Redshift and can
be verified by using the following code:

SELECT *

FROM product_reviews_stage;

How it works…
Amazon KDF allows data to be sourced and streamed into multiple destinations. It can
capture, transform, and loadstreaming data into Amazon S3, Amazon Redshift, Amazon
Elasticsearch Service, and Splunk destinations. KDF, being a fully managed service, can
automatically scale to meet the growth of the data.

Cataloging and ingesting data using AWS Glue
Data that is staged in Amazon S3 can be cataloged using the AWS Glue service. Cataloging
the data allows metadata to be attached and the AWS Glue Data Catalog to be populated.
This process enriches the raw data, which can be queried as tables using many of the AWS
analytical services—such as Amazon Redshift, Amazon Elastic MapReduce (Amazon
EMR), and so on—for analytical processing. It is easy to perform this data discovery using
the AWS Glue crawlers that can create and update the metadata automatically.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter04/kinesis_data_generator_template.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter04/kinesis_data_generator_template.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter04/kinesis_data_generator_template.json

Cataloging and ingesting data using AWS Glue 105

In this recipe, we will enrich the data to catalog and enable ingestion into Amazon Redshift.

Getting ready
To complete this recipe, you will need the following:

• An Amazon Redshift cluster deployed in the eu-west-1 AWS region

• Amazon Redshift cluster master user credentials

• An IAM user with access to Amazon Redshift, Amazon S3, and AWS Glue

• An IAM role attached to an Amazon Redshift cluster that can access Amazon S3,
which we will refer to in the recipes as [Your-Redshift_Role]

• Access to any SQL interface such as a SQL client or the Amazon Redshift query
editor

• An Amazon S3 bucket for staging and unloading the data in specific recipes, which
we will refer to in the recipes as [Your-Amazon_S3_Bucket]

• An AWS account number, which we will refer to in the recipes as [Your-AWS_
Account_Id]

How to do it…
This recipe will use the Amazon.com customer product review dataset to be cataloged and
ingested into Amazon Redshift:

1. Navigate to the AWS Management Console and pick the AWS Glue option,
verifying you are in the same AWS region as the Amazon Redshift cluster. In the
left menu on AWS Glue, choose Add crawler and type any crawler name, such as
product reviews dataset crawl, and click Next.

106 Data Pipelines

2. In the data source, copy and paste the s3://packt-redshift-cookbook/
amazon-reviews-pds/parquet/ path into the Include path option, as shown
in the following screenshot, and click Next:

Figure 4.13 – Add crawler screen

3. Choose an IAM role to allow AWS Glue access to crawl and update the AWS Glue
Data Catalog, and click on the Next button.

Cataloging and ingesting data using AWS Glue 107

4. In the Output option, add a reviews database and a product_reviews_src
prefix for the Prefix added to tables option, and then click Next and Submit to
create a product reviews dataset crawl crawler:

Figure 4.14 – Configuring the crawler output

108 Data Pipelines

5. Navigate to the Crawlers menu and pick the product reviews dataset
crawl crawler and click Run crawler, as shown in the following screenshot, and
wait until the status changes to Success:

Figure 4.15 – Monitoring the crawler status

6. Now, AWS Glue has crawled the product review dataset and discovered the table
automatically. You can verify the table by navigating to the Tables option to view the
product_reviews_srcparquet table in the list:

Figure 4.16 – Viewing the table created by crawler

7. Open any SQL client tool and connect to Amazon Redshift, and create a schema to
point to the reviews AWS Glue catalog database using the following command, by
replacing the [Your-AWS_Account_Id] and [Your-Redshift_Role] values:

CREATE external SCHEMA review_ext_sch FROM data catalog
DATABASE 'reviews' iam_role 'arn:aws:iam::[Your-AWS_
Account_Id]:role/[Your-Redshift-Role]' CREATE external
DATABASE if not exists;

8. Create a product_reviews_stage table that will hold the incoming crawled data:

CREATE TABLE product_reviews_stage

(

 marketplace VARCHAR(2),

 customer_id VARCHAR(32),

 review_id VARCHAR(24),

 product_id VARCHAR(24),

 product_parent VARCHAR(32),

 product_title VARCHAR(512),

Cataloging and ingesting data using AWS Glue 109

 star_rating INT,

 helpful_votes INT,

 total_votes INT,

 vine CHAR(1),

 verified_purchase CHAR(1),

 review_headline VARCHAR(256),

 review_body VARCHAR(MAX),

 review_date DATE,

 YEAR INT

)

DISTSTYLE KEY DISTKEY (customer_id) SORTKEY (review_
date);

9. Now, let's insert Automotive data from the crawled data into the product_
reviews_stage table:

INSERT INTO product_reviews_stage

(

 marketplace,

 customer_id,

 review_id,

 product_id,

 product_parent,

 product_title,

 star_rating,

 helpful_votes,

 total_votes,

 vine,

 verified_purchase,

 review_headline,

 review_body,

 review_date,

 year

)

SELECT marketplace,

 customer_id,

110 Data Pipelines

 review_id,

 product_id,

 product_parent,

 product_title,

 star_rating,

 helpful_votes,

 total_votes,

 vine,

 verified_purchase,

 review_headline,

 review_body,

 review_date,

 year

FROM review_ext_sch.reviewparquet

WHERE product_category = 'Automotive';

10. The public.product_reviews_stage table is now ready to hold the
incoming Automotive dataset, which can be verified by using the following
command:

SELECT *

FROM product_reviews_stage;

How it works…
AWS Glue provides a crawler that can automatically figure out the structure of data in
Amazon S3. AWS Glue maintains the metadata catalog that can be accessed across other
AWS analytical services, such as Amazon Redshift. Amazon Redshift can query the data in
Amazon S3 directly using the Amazon Redshift Spectrum feature, which allows data to be
ingested into local Redshift tables.

5
Scalable Data

Orchestration for
Automation

Amazon Web Services (AWS) provides a rich set of native services to integrate
a workflow. These workflows may involve multiple tasks that can be managed
independently, thereby taking advantage of purpose-built services and decoupling them.

In this chapter, we will primarily focus on workflows such as extract, transform, load
(ETL) processes that are used to refresh a data warehouse. We will illustrate different
options that are available using the individual recipes, but these are interchangeable
depending on your use case. For example, in your workflow, you can call an AWS Python
shell (https://docs.aws.amazon.com/glue/latest/dg/add-job-python.
html) instead of the Amazon Redshift Data application programming interface (API)
in cases where you might want to reuse your existing Python code base.

The following recipes are discussed in this chapter:

• Scheduling queries using the Amazon Redshift query editor

• Event-driven applications using EventBridge and the Amazon Redshift Data API

• Event-driven applications using AWS Lambda

https://docs.aws.amazon.com/glue/latest/dg/add-job-python.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-python.html

112 Scalable Data Orchestration for Automation

• Orchestrating using AWS Step Functions

• Orchestrating using Amazon Managed Workflows for Apache Airflow
(Amazon MWAA)

Technical requirements
Here are the technical requirements to complete the recipes in this chapter:

• Access to the AWS Management Console.

• AWS administrators should create an Identity and Access Management (IAM)
user by following Recipe 1– Creating an IAM User, in the Appendix. This IAM user
will be deployed to perform some of the recipes in this chapter.

• AWS administrators should create an IAM role by following Recipe 3 – Creating an
IAM Role for an AWS service in the Appendix. This IAM role will be deployed to
perform some of the recipes in this chapter.

• AWS administrators should deploy the AWS CloudFormation template (https://
github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/
master/Chapter05/chapter_5_CFN.yaml) to create two IAM policies:

a. An IAM policy attached to the IAM user that will give the user access to
Amazon Redshift, Amazon Elastic Compute Cloud (Amazon EC2), AWS
CloudFormation, Amazon Simple Storage Service (Amazon S3), Amazon
Simple Notification Service (Amazon SNS), Amazon MWAA, Amazon
EventBridge, AWS CloudWatch, AWS CloudWatch Logs, AWS Glue, AWS
Lambda, and AWS State Functions.

b. An IAM policy attached to the IAM role that will allow an Amazon Redshift
cluster to access Amazon S3, AWS Lambda, and Amazon EventBridge.

• Attach an IAM role to an Amazon Redshift cluster by following Recipe 4 – Attaching
an IAM Role to the Amazon Redshift cluster in the Appendix. Make a note of the
IAM role name, as we will refer to this in the recipes as [Your-Redshift_
Role].

• An Amazon Redshift cluster deployed in the eu-west-1 AWS region.

• Amazon Redshift cluster master user credentials.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/chapter_5_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/chapter_5_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/chapter_5_CFN.yaml

Scheduling queries using the Amazon Redshift query editor 113

• Access to any Structured Query Language (SQL) interface such as a SQL client
or the Amazon Redshift query editor.

• An AWS account number, which we will refer to in the recipes as [Your-AWS_
Account_Id].

• An Amazon S3 bucket created in the eu-west-1 region, which we will refer to as
[Your-Amazon_S3_Bucket].

• The code files are referenced in the GitHub repository at https://github.
com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/
Chapter05.

Scheduling queries using the Amazon Redshift
query editor
The Amazon Redshift console allows users to schedule queries on a Redshift cluster. Users
can schedule long-running or time-sensitive queries, refresh materialized views at regular
intervals, and load or unload data.

In this recipe, we will look at the steps required to schedule a query using the query editor.

Getting ready
To complete this recipe, you will need the following:

• An Amazon Redshift cluster deployed in the eu-west-1 AWS region.

• An IAM user with access to Amazon Redshift, the Amazon Redshift query editor,
and Amazon EventBridge.

• An IAM role attached to the Amazon Redshift cluster that can access Amazon
EventBridge, which we will refer to in the recipes as [Your-Redshift_Role].

• We will reuse the product_review_mv materialized view that was set up using
the Managing materialized views recipe in Chapter 2, Data Management.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter05
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter05

114 Scalable Data Orchestration for Automation

How to do it…
In this recipe, we will automate a refresh of the product_review_mv materialized view
so that the data is up to date when the base tables change:

1. Connect to the Amazon Redshift cluster using the query editor on the AWS
Management Console. You will notice that the Schedule button is not clickable in
this instance:

Figure 5.1 – Connecting to Amazon Redshift cluster using the query editor

2. In Command Prompt under Query 1, type the name of the query that you want
to schedule:

REFRESH MATERIALIZED VIEW product_review_mv;

3. After entering the query, click on the Schedule button, as follows:

Scheduling queries using the Amazon Redshift query editor 115

Figure 5.2 – Scheduling materialized view refresh using the query editor

4. Click on the Schedule button to open the Schedule query window. In the
Schedule query window, there are four sections: Scheduler permissions,
Query information, Scheduling options, and Monitoring.

5. In the Scheduler permissions section, enter the following details:

• IAM role—Select the role created that has access to the scheduled query
[Your-Redshift_Role].

• Authentication—There are two modes of authentication: Temporary credentials
and AWS Secrets Manager. By default, Temporary credentials is selected; this uses
the GetClusterCredentials IAM permission and the db user to generate the
temporary credentials. You can also select AWS Secrets Manager, where you can
use secrets stored in AWS Secrets Manager.

• Cluster—Select the Amazon Redshift cluster.

• Database name—Enter the database name.

116 Scalable Data Orchestration for Automation

• Database user—Enter the database user if you're selecting Temporary credentials:

Figure 5.3 – Setting up the schedule options for refresh

6. In the Query information section, enter the following details:

• Scheduled query name—Enter a recognizable name for the query.

• SQL query—You can type the query in Command Prompt or use the Upload query
button to ingest a SQL statement from the local client:

Scheduling queries using the Amazon Redshift query editor 117

Figure 5.4 – Setting up the schedule name and query

7. In the Scheduling options section, you can schedule a query by selecting Run
frequency or Cron format:

Figure 5.5 – Setting up the schedule interval

118 Scalable Data Orchestration for Automation

8. In the Monitoring section, you can optionally configure SNS notifications.

9. Click on Save changes to save the schedule.

How it works…
The Schedule option in the Amazon Redshift query editor is a convenient way to run
a SQL statement using the Amazon Redshift console. You can create a schedule to run
your SQL statement at time intervals that match your business needs. When it's time
for a scheduled query to run, Amazon EventBridge (https://aws.amazon.com/
eventbridge/) invokes the query.

Event-driven applications using Amazon
EventBridge and the Amazon Redshift
Data API
Event-driven data pipelines are increasingly used by organizations, whereby applications
run in response to events. Event-driven architectures are loosely coupled and distributed.
This provides the benefit of decoupling producer and consumer processes, allowing
greater flexibility in application design.

An example of an event-driven application is an automated workflow being triggered
on delivery of the data from the source system, which creates a completion event that is
captured by the event bus and triggers the processing of data in downstream applications.
At the end of this workflow, another event gets initiated to notify end users about the
completion of those transformations and that they can start analyzing the transformed
dataset.

In this recipe, you will see the use of Amazon EventBridge serving as an event bus.
Amazon EventBridge is a fully managed serverless event bus service that simplifies
connecting with a variety of your sources. EventBridge delivers a stream of real-time
data from your own applications, Software-as-a-Service (SaaS) applications, and AWS
services, and routes that data to targets such as AWS Lambda. You can set up routing rules
to determine where to send your data to build application architectures that react in real
time to all of your data sources.

https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/

Event-driven applications using Amazon EventBridge and the Amazon Redshift Data API 119

Getting ready
To complete this recipe, you will need the following:

• An Amazon Redshift cluster deployed in the eu-west-1 AWS region. Note the
cluster ID—we will refer to this as [Your-Redshift_Cluster].

• Amazon Redshift cluster master user credentials. Note the username—we will refer
to this as [Your-Redshift_User].

• Access to any SQL interface such as a SQL client or the Amazon Redshift query
editor.

• An IAM user with access to Amazon SNS, Amazon EventBridge, and AWS Lambda.

• An IAM role with access to AWS Lambda—we will refer to this in the recipes as
[Your-Redshift_Role].

• An AWS account number—we will refer to this in the recipes as [Your-AWS_
Account_Id].

How to do it…
This recipe will use EventBridge to schedule the running of a Redshift data pipeline for
the parts table. Lambda functions will use the Amazon Redshift Data API to make
an asynchronous call. On completion of the code execution, the pipeline will send an
Amazon SNS notification.

1. Create a product review table in the Amazon Redshift database using the
SQL client:

CREATE TABLE daily_product_reviews

(

 marketplace VARCHAR(2),

 customer_id VARCHAR(32),

 review_id VARCHAR(24),

 product_id VARCHAR(24),

 product_parent VARCHAR(32),

 product_title VARCHAR(512),

 star_rating INT,

 helpful_votes INT,

 total_votes INT,

 vine CHAR(1),

120 Scalable Data Orchestration for Automation

 verified_purchase CHAR(1),

 review_headline VARCHAR(256),

 review_body VARCHAR(MAX),

 review_date DATE,

 YEAR INT

)

DISTSTYLE KEY DISTKEY (customer_id) SORTKEY (review_date);

2. Create a daily_product_review_fact_mv materialized view using the results
of the query based on daily_product_reviews:

CREATE MATERIALIZED VIEW public.daily_product_review_fact_mv

AS

SELECT marketplace,

 product_id,

 COUNT(1) as count_rating,

 SUM(star_rating) as sum_rating,

 SUM(helpful_votes) AS total_helpful_votes,

 SUM(total_votes) AS total_votes,

 review_date

FROM public.daily_product_reviews

GROUP BY marketplace,

 product_id,

 review_date;

3. Let's create a stored procedure that will enable us to build the ETL pipeline:

CREATE OR REPLACE PROCEDURE products_review_etl()

 AS $$

 BEGIN

 truncate public.product_reviews_daily;

 COPY public.product_reviews_daily FROM 's3://
packt-redshift-cookbook/amazon-reviews-pds/parquet/product_
category=Home/'

 iam_role 'arn:aws:iam::055122512284:role/redshift-spectrum'

 PARQUET ;

Event-driven applications using Amazon EventBridge and the Amazon Redshift Data API 121

 REFRESH MATERIALIZED VIEW public.daily_product_
review_fact_mv;

 END;

 $$ LANGUAGE plpgsql;

4. Navigate to the AWS Management Console and pick Amazon SNS. From the
menu on the left-hand side, click on Topics and choose Standard. Name the
topic products-review-communication. This SNS topic will be used for
communication on the status of the data pipeline. Also, note down the Amazon
Resource Name (ARN) value—let's call this [Your-SNS_ARN], as follows:

Figure 5.6 – Creating an Amazon SNS subscription

122 Scalable Data Orchestration for Automation

5. To subscribe to the products-review-communication topic, create a
subscription. Select the ARN for the products-review-confirmation topic.
Use the protocol email and give it your email ID. Select Create subscription:

Figure 5.7 – Creating an Amazon SNS subscription

6. You will receive an email to confirm the subscription for the product-review-
communication topic. Select Subscription confirmed.

7. Next, in the pipeline, we will create a lambda function that will execute the stored
procedure using the Redshift Data API. This function also checks the status of the
query execution and sends a notification on the status of the execution.

8. Navigate to the AWS Management Console, pick AWS Lambda, choose Functions
from the left-hand menu, and create a function, as follows:

Event-driven applications using Amazon EventBridge and the Amazon Redshift Data API 123

Figure 5.8 – Creating an AWS Lambda function

Here is some basic information as shown in the preceding screenshot:

• Function name: product-reviews-etl-using-dataapi.

• Runtime: Python 3.8.

• Change default execution role: Choose the lambda role you created in the Getting
ready section of the recipe .

Function code: Copy the code for the function from https://github.com/
PacktPublishing/Amazon-Redshift-Cookbook/blob/master/
Chapter05/src/event-bridge-lambda-function.py.

• Choose Deploy.

• Change basic settings: Set the lambda timeout to 30 seconds.

Let's now create a scheduler event rule to trigger the product-reviews-etl-using-
dataapi lambda function. Navigate to AWS Management Console, pick Amazon
EventBridge, and choose Rules from the left-hand menu, then select Default from the
Event bus dropdown and click on Create rule. Then, select the following options in the
Rules section:

• Name: schedule-productsreview-etl-execution

• Define pattern: Schedule

• Cron expression: 0 20 ? * MON-FRI *

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/event-bridge-lambda-function.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/event-bridge-lambda-function.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/event-bridge-lambda-function.py

124 Scalable Data Orchestration for Automation

Note
This rule will trigger at 3 A.M. Coordinated Universal Time (UTC) from
Monday to Friday.

9. For Select targets, choose Lambda function and pick product-reviews-
executesql from the drop-down menu, as follows:

 Figure 5.9 – Selecting targets for the Amazon EventBridge rules

• Under Configure input, select Constant (JSON text) and provide the following,
replacing [Your-Redshift_Cluster], [Your-Redshift_User],
and [Your-SNS_ARN] with the respective values, and then click Create:

{"Input":{"redshift_cluster_id":"[Your-Redshift_
Cluster]","redshift_database":"dev","redshift_user":"[Your-
Redshift_User]","action":"execute_sql","sql_text":"call
products_review_etl();","sns_topic_arn":"[Your-SNS_ARN]"}}

Event-driven applications using Amazon EventBridge and the Amazon Redshift Data API 125

10. Let's create another rule to check the status of the stored procedure execution
completion. Click on Rules from the left-hand menu and select the following
options:

Figure 5.10 – Creating a notify-productreview-execution-status rule

• Name: notify-productreview-execution-status

• Define Pattern: Event pattern

• Event matching pattern: Custom pattern

• Event Pattern: Provide the following, replacing [Your-AWS_Account_Id]
and [Your-Redshift_Role] with the respective value, and choose Save:

{

 "source": [

 "aws.redshift-data"

126 Scalable Data Orchestration for Automation

],

 "detail": {

 "principal": [

 "arn:aws:sts::[Your-AWS_Account_Id]:assumed-role/[Your-
Redshift_Role]/product-reviews-executesql"

]

 }

}

11. Set the target as the product-reviews-executesql lambda function,
as follows:

Figure 5.11 – Configuring targets for the notify-productreview-execution-status rule

• Choose Input transformer and enter {"body":"$.detail"} in the Input
path field.

Event-driven applications using Amazon EventBridge and the Amazon Redshift Data API 127

• In the Input template field, provide the following value. In the next textbox, enter
the following by replacing [Your-Redshift_Cluster], [Your-Redshift_
User], and [Your-SNS_ARN] with the respective values, and then click on
Create:

{"Input":{"redshift_cluster_id":"[Your-Redshift_
Cluster]","redshift_database":"dev","redshift_user":"[Your-
Redshift_User]","action":"notify","subject":"Extract
Load Transform process completed in Amazon
Redshift","body":[body],"sns_topic_arn":"[Your-SNS_ARN]"}}

12. When the set schedule is met, the Lambda function will trigger. To validate that the
event pipeline is working correctly, navigate to the AWS Management Console and
select CloudWatch. From the left-hand menu, choose Log Groups and filter for the
product-reviews-executesql lambda function:

Figure 5.12 – Verifying the Lambda function trigger using Cloudwatch

13. On completion of the query, you will receive an email notification on the
completion status:

Figure 5.13 – Email notification on completion of the event

128 Scalable Data Orchestration for Automation

14. Let's also validate the query execution on Amazon Redshift. In the AWS
Management Console, navigate to Amazon Redshift and click on Query
monitoring—notice the product_review_etl call in the list to confirm
successful execution:

Figure 5.14 – Verifying query execution using the Amazon Redshift console

How it works…
Amazon EventBridge is used to orchestrate the product review data pipeline. Here is the
architecture of this setup:

Figure 5.15 – Architecture of Amazon EventBridge setup

This workflow uses Amazon EventBridge to invoke the AWS Lambda function based on
a schedule. AWS Lambda executes the data pipeline queries through the Amazon Redshift
Data API. Amazon Redshift publishes custom notifications through Amazon SNS for
their completion, and notifies the users. You are able to integrate a serverless decoupled
pipeline that is scalable.

Event-driven applications using AWS Lambda 129

EventBridge allows you to connect applications using events. An event is a trigger when
the system state changes that can be used to drive a workflow such as an ETL process.
This also allows you to integrate your own AWS applications with microservices, SaaS
applications, and custom applications as event sources that publish events to an event bus.

Event-driven applications using AWS Lambda
AWS Lambda helps you to build event-driven microservices. This serverless process can
be invoked using a variety of events such as when a file arrives, when a notification is
received, and so on. This helps build a decoupled data workflow that can be invoked
as soon as the upstream dependencies are met, instead of a schedule-based workflow.

For example, let's say we have a website that is continuously sending the clickstream logs
every 15 minutes into Amazon S3. Instead of accumulating all the log files and processing
them at midnight in a typical ETL process, Amazon S3 can send an event to a Lambda
function when an object is created and processed immediately. This provides several
advantages, such as processing in smaller batch sizes to meet a service-level agreement
(SLA) and also to have the data current within the data warehouse.

There are several ways to invoke an AWS Lambda function using an event—you can
find more information about this at https://docs.aws.amazon.com/lambda/
latest/dg/lambda-invocation.html.

Getting ready
To complete this recipe, you will need the following:

• An Amazon Redshift cluster deployed in the eu-west-1 AWS region—note that
we will refer to the cluster ID as [Your-Redshift_Cluster]

• Amazon Redshift cluster master user credentials—note that we will refer to the
username as [Your-Redshift_User]

• Access to any SQL interface such as a SQL client or the Amazon Redshift
query editor

• An IAM user with access to Amazon Redshift, Amazon S3, and AWS Lambda

• An Amazon S3 bucket created in the eu-west-1 region—we will refer to this
as [Your-Amazon_S3_Bucket]

• An AWS account number—we will refer to this in the recipes as [Your-AWS_
Account_Id]

https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html

130 Scalable Data Orchestration for Automation

How to do it…
In this recipe, we will use Python-based AWS Lambda to COPY data into Amazon
Redshift as soon as the file arrives at the Amazon S3 location.

1. The AWS Lambda package is already available at https://github.com/
PacktPublishing/Amazon-Redshift-Cookbook/blob/master/
Chapter05/src/my-lambda-deployment-package.zip. Download this
deployment package to your local folder.

2. Navigate to the AWS Management Console and pick the AWS Lambda service,
and click on Create function, as follows:

Figure 5.16 – Creating an AWS Lambda function using the AWS Management Console

3. In the Create function screen, enter lambda_function under Function name
and set the Runtime option to Python 3.6, and then click on Create function:

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/my-lambda-deployment-package.zip
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/my-lambda-deployment-package.zip
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/my-lambda-deployment-package.zip

Event-driven applications using AWS Lambda 131

Figure 5.17 – Creating an AWS Lambda lambda_function function

4. Click on the Actions button and choose the Upload a .zip file option. Select the
my-lambda-deployment-package.zip file from your local folder and
click on Save. Now, the lambda code and the Python package will be successfully
imported.

5. Click on the lambda_function.py file and edit the values for the following
parameters to point to your Amazon Redshift cluster:

 db_database = "[database]"

 db_user = "[user]"

 db_password = "[password]"

 db_port = "[port]"

 db_host = "[host]"

 iam_role = "'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-
Redshift-Role]"

Click on Deploy to save the changes.

6. You can now test the lambda_function function by clicking on the Test option.
In the Test option, choose Create new test event, and in the Event template, choose
hello-world and provide an event name of myevent, and then copy and paste
the following test stub event value:

{

 "Records": [

 {

 "eventVersion": "2.1",

 "eventTime": "2030-12-06T18:43:42.795Z",

132 Scalable Data Orchestration for Automation

 "s3": {

 "s3SchemaVersion": "1.0",

 "configurationId": "test",

 "bucket": {

 "name": "packt-redshift-cookbook"

 },

 "object": {

 "key": "part/000.gz",

 "size": 540

 }

 }

 }

]

}

Note
This test event will output the bucket name and key and will also perform
a COPY operation into Amazon Redshift to create a stg_part table and
ingest data from s3://packt-redshift-cookbook/part/000.gz

7. Now, let's create an Amazon S3 triggered event so that files can be automatically
copied into Amazon Redshift as they get put into your S3 location. Navigate to
the Amazon S3 service in the AWS Management Console, click on the [Your-
Amazon_S3_Bucket] bucket, select Properties, and then click on Event
notifications, as follows:

Figure 5.18 – Creating event notifications from Amazon S3

Event-driven applications using AWS Lambda 133

8. On the Create event notification screen, set up the event details as follows:

Figure 5.19 – Configuring the event notification

Here are the event details as shown in the preceding screenshot;

• Event name: Any event name of your choice

• Prefix: Your S3 folder location where you plan to put the files to be copied—for
example, events/

• Suffix: .csv

• Event types: Check Put

• Destination: Lambda Function

• Specify Lambda function: Choose the lambda_function function from the list

Now, click on Save changes.

9. Download the s3://packt-redshift-cookbook/part/000.gz and
s3://packt-redshift-cookbook/part/001.gz public S3 files to your
location folder.

10. Navigate to your [Your-Amazon_S3_Bucket] Amazon S3 bucket and upload
000.gz from your local folder, followed by 001.gz.

134 Scalable Data Orchestration for Automation

11. From the AWS Management Console, navigate to AWS Lambda and select the
lambda_function function. Click on Monitoring, and you will notice that
there are two invocations of the Lambda function that copied the uploaded files
automatically to Amazon Redshift.

12. To verify the execution of the lambda_function function, click on View logs
in CloudWatch to show the execution logs.

How it works…
The AWS Lambda deployment package bundles the Python function code and the
dependent psycopg2 library (https://www.psycopg.org/) that is used to connect
to Amazon Redshift. You can build this deployment package from scratch using the
instructions in https://docs.aws.amazon.com/lambda/latest/dg/python-
package.html and https://pypi.org/project/aws-psycopg2/. You can
include any other dependent packages that you may need to meet your organizational
requirements when creating this deployment package.

Also, as a best practice, you can enhance the lambda_function code to retrieve the
Amazon Redshift credentials using AWS Secrets Manager, as illustrated at https://
docs.aws.amazon.com/code-samples/latest/catalog/python-
secretsmanager-secrets_manager.py.html.

Orchestrating using AWS Step Functions
AWS Step Functions allows you to author a workflow where each step is decoupled but the
application state can be maintained. AWS Step Functions is integrated with multiple AWS
services to allow flexibility to call the specific service in each of the tasks.

You can see a list of natively supported integrations here: https://docs.aws.
amazon.com/step-functions/latest/dg/concepts-service-
integrations.html. AWS Step Functions supports the Amazon States Language,
which allows a workflow to be authored and maintained like a JavaScript Object
Notation (JSON) file. You can harness AWS Step Functions to execute any complex ETL
workflow in Amazon Redshift.

https://www.psycopg.org/
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html
https://pypi.org/project/aws-psycopg2/
https://docs.aws.amazon.com/code-samples/latest/catalog/python-secretsmanager-secrets_manager.py.html
https://docs.aws.amazon.com/code-samples/latest/catalog/python-secretsmanager-secrets_manager.py.html
https://docs.aws.amazon.com/code-samples/latest/catalog/python-secretsmanager-secrets_manager.py.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-service-integrations.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-service-integrations.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-service-integrations.html

Orchestrating using AWS Step Functions 135

Getting ready
To complete this recipe, you will need the following:

• An Amazon Redshift cluster deployed in the eu-west-1 AWS region—note that
we will refer to the cluster ID as [Your-Redshift_Cluster]

• Amazon Redshift cluster master user credentials—note that we will refer to
the username as [Your-Redshift_User]

• Access to any SQL interface such as a SQL client or the Amazon Redshift
query editor

• An IAM user with access to Amazon Redshift and AWS Lambda

How to do it…
In this recipe, we will use AWS Step Functions to orchestrate a simple ETL workflow that
will submit queries to Amazon Redshift asynchronously using the Amazon Redshift Data
API. We will start by creating an AWS Lambda function that will be used to submit
a status poll for the queries.

1. Navigate to the AWS Management Console and pick the AWS Lambda service,
and then click on Create function, as follows:

Figure 5.20 – Creating an AWS Lambda function using the AWS Management Console

2. In the Create function screen, enter submit_redshift_query under Function
name and choose Python 3.6 as the Runtime option, and then click on Create
function.

3. In the function code for lambda_function.py, copy and paste the code
from https://github.com/PacktPublishing/Amazon-Redshift-
Cookbook/blob/master/Chapter05/src/stepfunction/lambda_
submit_redshift_query.py, and click on Deploy to save the function.

136 Scalable Data Orchestration for Automation

4. In the Permissions tab of the AWS Lambda function, click on the auto- created
submit_redshift_query-role-*** role name, as follows:

Figure 5.21 – Configuring the permissions for the AWS Lambda function

5. In IAM, which opens in a different tab, copy and paste the policy available
at https://github.com/PacktPublishing/Amazon-Redshift-
Cookbook/blob/master/Chapter05/src/stepfunction/lambda_
execute_policy.json by clicking on Add inline policy.

6. Click on Test and press Configure events, choose Create new test event, and pick
the hello-world event template:

Figure 5.22 – Setting up a test event for the AWS Lambda function

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/lambda_execute_policy.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/lambda_execute_policy.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/lambda_execute_policy.json

Orchestrating using AWS Step Functions 137

7. In the Event name field, copy the following sample input, replacing the [Your-
Redshift_Cluster],[Your-Redshift_DB], and [Your-Redshift_
User] parameter values with your Amazon Redshift cluster, and then press the
Create button:

{

 "input": {

 "redshift_cluster_id": "[Your-Redshift_Cluster]",

 "redshift_database": "[Your-Redshift_DB]",

 "redshift_user": "[Your-Redshift_User]",

 "sql_text": "select sysdate"

 }

}

8. Press the Test button, and you should be able to see the sample query was submitted
in the execution results, as per the following code snippet shown for a successful
submission:

START RequestId: 43df694d-3716-474f-b279-cd7b976ef05c Version:
$LATEST

{'input': {'redshift_cluster_id': 'democluster-71f3476d',
'redshift_database': 'dev', 'redshift_user': 'demo', 'sql_
text': 'select sysdate'}}

{'ClusterIdentifier': 'democluster-71f3476d', 'CreatedAt':
datetime.datetime(2020, 12, 9, 0, 47, 2, 353000,
tzinfo=tzlocal()), 'Database': 'dev', 'DbUser': 'demo', 'Id':
'0ce38431-be55-4c4b-97c8-230624a01c76', 'ResponseMetadata':
{'RequestId': 'dbabb5dc-8de8-4f59-80f9-367319eeaecb',
'HTTPStatusCode': 200, 'HTTPHeaders': {'x-amzn-requestid':
'dbabb5dc-8de8-4f59-80f9-367319eeaecb', 'content-type':
'application/x-amz-json-1.1', 'content-length': '150', 'date':
'Wed, 09 Dec 2020 00:47:02 GMT'}, 'RetryAttempts': 0}}

END RequestId: 43df694d-3716-474f-b279-cd7b976ef05c

138 Scalable Data Orchestration for Automation

9. Repeat Steps 1-8 to create another AWS Lambda function named poll_
redshift_query using the following code:

AWS Lambda code—https://github.com/PacktPublishing/Amazon-
Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/
lambda_poll_redshift_query.py

AWS Lambda test event—https://github.com/PacktPublishing/
Amazon-Redshift-Cookbook/blob/master/Chapter05/src/
stepfunction/lambda_poll_redshift_query_test.json

10. Let's now start creating an AWS step function to orchestrate a simple workflow
to submit and monitor the job using the AWS Lambda functions we have created.
Navigate to the AWS Management Console and pick the Step Functions service.
Click on Create state machine, as follows:

Figure 5.23 – Creating a Step Functions state machine

11. Pick Author code snippet and Standard to copy and paste the following code in
the Definition field available at https://github.com/PacktPublishing/
Amazon-Redshift-Cookbook/blob/master/Chapter05/src/
stepfunction/stepfunction_job_redshift.json and then click Next:

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/lambda_poll_redshift_query.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/lambda_poll_redshift_query.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/lambda_poll_redshift_query.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/lambda_poll_redshift_query_test.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/lambda_poll_redshift_query_test.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/lambda_poll_redshift_query_test.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/stepfunction_job_redshift.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/stepfunction_job_redshift.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/stepfunction_job_redshift.json

Orchestrating using AWS Step Functions 139

Figure 5.24 – Setting up the step function workflow definition

12. Under the Permissions tab, click on Create new role and click Next to create an
AWS Step Functions state machine.

13. Click on Start execution, and under the input provide the following details, which
are also available at https://github.com/PacktPublishing/Amazon-
Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/
stepfunction_job_redshift_test.json:

{

 "input": {

 "redshift_cluster_id": "[Your-Redshift_Cluster]",

 "redshift_database": "[Your-Redshift_DB]",

 "redshift_user": "[Your-Redshift_User]",

 "sql_text": "select sysdate"

 },

 "wait_time": "3"

}

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/stepfunction_job_redshift_test.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/stepfunction_job_redshift_test.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/stepfunction/stepfunction_job_redshift_test.json

140 Scalable Data Orchestration for Automation

14. Now, you can monitor the execution of this workflow on the Details tab,
as follows:

Figure 5.25 – Monitoring the event function workflow

How it works…
AWS Step Functions uses the Amazon States Language, which is JSON-based. You can
author most kinds of ETL process and drive a workflow that can wait for dependency
between each task and also allow for parallelism when needed. An AWS state machine
can either be triggered through an event or be scheduled for automation.

For more information, see the Amazon States Language specification at https://
docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-
states-language.html.

https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html

Orchestrating using Amazon MWAA 141

Orchestrating using Amazon MWAA
Amazon MWAA is a managed service that allows you to build an end-to-end automated
data pipeline using Apache Airflow. Apache Airflow is used to programmatically create
workflows, to schedule, and to monitor. An entire data pipeline can be decomposed into
a series of smaller tasks with the required dependencies to coordinate the execution of the
tasks as part of a workflow. Workflows in Airflow are authored as directed acyclic graphs
(DAGs) using the Python programming language. The workflow's functionality can be
extended through a set of powerful plugins. The monitoring of the workflow is done
through the user interface (UI), and the workflow's functionality is extended through
a set of powerful plugins.

In this recipe, we will build the underlying infrastructure used for Apache Airflow, using
Amazon MWAA. After the infrastructure is built, we will build a data pipeline for the
parts table.

Getting ready
To complete this recipe, you will need the following:

• An Amazon Redshift cluster deployed in the eu-west-1 AWS region—note that
we will refer to the cluster ID as [Your-Redshift_Cluster]

• Amazon Redshift cluster master user credentials—note that we will refer to the
username as [Your-Redshift_User]

• Access to any SQL interface such as a SQL client or the Amazon Redshift
query editor

• An IAM user with access to Amazon Redshift and MWAA

• An Amazon S3 bucket created in the eu-west-1 region—we will refer to this
as [Your-Amazon_S3_Bucket]

How to do it…
In this recipe, we will set up a data pipeline using Apache Airflow that will connect to
Amazon Redshift to orchestrate a workflow.

1. Browse to the Amazon S3 console and select [Your-Amazon_S3_Bucket].
Create a folder called airflow within the bucket. We will use this folder to store
the Airflow DAGs and requirements file providing a list of dependencies needed to
run the Python DAG.

142 Scalable Data Orchestration for Automation

2. You can use the command-line interface (CLI) or the S3 console to upload the
files. Upload the https://github.com/PacktPublishing/Amazon-
Redshift-Cookbook/blob/master/Chapter05/src/requirements.
txt requirements file to the s3:// [Your-Amazon_S3_Bucket]/airflow
bucket location.

3. Download the DAG script from https://github.com/PacktPublishing/
Amazon-Redshift-Cookbook/blob/master/Chapter05/src/
redshift_parts_airflow_dag.py. For load_sql, replace the name of the
S3 bucket and the IAM role in the script. Save it and upload the workflow Python
script (DAG) to the newly created dags folder in your airflow bucket:

Figure 5.26 – Setting up Apache Airflow DAG

4. We are now ready to build the infrastructure and setup needed for Apache Airflow.
Navigate to the AWS Management Console in the eu-west-1 AWS region and
pick MWAA. Choose Create environment.

Name the environment MyAirflowEnvironment.

Choose the latest version of MWAA.

5. For the S3 bucket, specify the s3://[Your-Amazon_S3_Bucket bucket. The
bucket would need to be in the same region in which you are creating the MWAA.

DAGs folder: s3://[Your-Amazon_S3_Bucket]/airflow/dags

Requirements file: s3://[Your-Amazon_S3_Bucket]/airflow/
requirements.txt

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/requirements.txt
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/requirements.txt
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/requirements.txt
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/redshift_parts_airflow_dag.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/redshift_parts_airflow_dag.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter05/src/redshift_parts_airflow_dag.py

Orchestrating using Amazon MWAA 143

You can see these settings in the following screenshot:

Figure 5.27 – Configuring the source Amazon S3 bucket

6. Choose Next. If you have an existing VPC, choose from the drop-down menu.
If you do not have an existing VPC, choose Create MWAA VPC. This will launch
a CloudFormation template, create a stack, and on completion, navigate back to the
MWAA setup step.

144 Scalable Data Orchestration for Automation

From the drop-down menu, select the VPC and the subnets. Make the web server
have Public network access:

Figure 5.28 – Setting up the network access to connect to Amazon Redshift

7. Select the mw1.small instance type. Keep the rest at their default settings for the
IAM role:

Figure 5.29 – Configuring the Amazon EC2 instance for the Airflow environment

Orchestrating using Amazon MWAA 145

8. Choose Create environment. On completion of the setup, it will make the
environment available with Apache Airflow. We are now ready to execute the
workflow.

9. Select Open Airflow UI from the environment:

Figure 5.30 – Setting up the Airflow environment

10. From the UI, click on Admin and choose Connections. We will configure the
connection for the Amazon Redshift cluster that will be used in the workflow tasks:

Figure 5.31 – Setting up the Amazon Redshift connection

11. Navigate to the conn_id Postgres and click Edit.

146 Scalable Data Orchestration for Automation

12. Specify your Redshift cluster endpoint, username, password, and port number.
Click Save:

Figure 5.32 – Configuring the Amazon Redshift connection properties

13. Now that the setup is complete, from the UI click on DAGs—this will list the
parts-redshift-datapipeline-dag DAG that you had uploaded to the S3
bucket:

Figure 5.33 – Configuring the Airflow DAG

14. Let's check the DAG. Firstly, click on the DAG name. This workflow has three
tasks—the first will create a parts_stg table using PostgresOperator,
the second will use the COPY command to load the parts sample data from S3,
and in the final step, it will check the record count in the parts_stg table using
PythonOperator:

Orchestrating using Amazon MWAA 147

Figure 5.34 – Verifying the DAG setup on Airflow

15. Click on DAGs in the UI and toggle the DAG to an On state—this will put the DAG
in schedule:

Figure 5.35 – Scheduling the workflow execution

16. This will start the execution. Click on the green number under DAG runs.

17. The workflow will execute as per the set dependency. It will run redshift_
parts_stg_create first and when that's finished, it will run the second task.
When redshift_parts_stg_load has completed successfully, it will execute
redshift_parts_stg_recordcount. This is the monitoring step:

Figure 5.36 – Verifying the execution of the workflow

148 Scalable Data Orchestration for Automation

18. Let's validate the logs for the copy and record count step. Click on redshift_
parts_stg_load. Then, select Task Instance Details:

Figure 5.37 – Viewing the task execution details

19. Capture the log_url, open a new browser window, and paste the Uniform
Resource Locator (URL). The copy task completed successfully—this is logged
in the logs and you can verify how many records got loaded:

Figure 5.38 – Verifying the task execution detailed logs

Orchestrating using Amazon MWAA 149

20. Similarly, capture the log for the final task and verify the log as a data quality check.
This record count of the parts_stg table is 20000000 records:

Figure 5.39 – Verifying the task execution for the parts_stg table

How it works…
Amazon MWAA simplifies the setup needed to build and orchestrate a data pipeline using
Apache Airflow. Apache Airflow provides the means to build a reusable data pipeline
programmatically.

6
Data Authorization

and Security
Amazon Redshift provides out-of-the-box features that enable you to build data
warehouses to meet the requirements of the most security-sensitive organizations.
In AWS, security is the highest priority and is a shared responsibility (https://aws.
amazon.com/compliance/shared-responsibility-model/) between AWS
and you. Using an Amazon Redshift managed service, the data center and network
architecture come out of the box to meet the requirements of security-sensitive
organizations. You can now configure the data and cluster management controls to meet
your organization's requirements. Data can be encrypted to keep your data secure in
transit and at rest using industry-standard encryption techniques. Amazon Redshift
resources are controlled in the four different levels of cluster management (creating and
configuring the cluster), cluster connectivity, database access to objects, and temporary/
single sign-on.

Specifically, the following topics are covered in this chapter:

• Managing infrastructure security
• Data encryption at rest
• Data encryption in transit
• Column-level security
• Loading and unloading encrypted data

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/

152 Data Authorization and Security

• Managing superusers
• Managing users and groups
• Managing federated authentication
• Using IAM authentication to generate database user credentials
• Managing audit logs
• Monitoring Amazon Redshift

Technical requirements
Here are the technical requirements in order to complete the recipes in this chapter:

• Access to the AWS Console.
• The AWS Administrator should create an IAM user by following Recipe 1 – Creating

an IAM user in the Appendix. This IAM user will be used for some of the recipes in
this chapter.

• The AWS administrator should create an IAM role by following Recipe 3 – Creating
an IAM role for an AWS service in the Appendix. This IAM role will be used for
some of the recipes in this chapter.

• The AWS administrator should deploy the AWS CloudFormation template
(https://github.com/PacktPublishing/Amazon-Redshift-
Cookbook/blob/master/Chapter06/chapter_6_CFN.yaml) to create
two IAM policies:

a. An IAM policy attached to the IAM user that will give them access to Amazon
Redshift, Amazon S3, AWS Secrets Manager, Amazon CloudWatch, Amazon
CloudWatch Logs, Amazon EC2, Amazon Simple Notification Service (SNS)
AWS Identity and Access Management (IAM), AWS Key Management Service
(KMS), AWS Glue, and Amazon Virtual Private Cloud (Amazon VPC)

b. An IAM policy attached to the IAM role that will allow the Amazon Redshift
cluster to access Amazon S3.

• Attach the IAM role to the Amazon Redshift cluster by following Recipe 4 – Attaching
an IAM role to the Amazon Redshift cluster in the Appendix. Take note of the IAM role
name; we will reference it in the recipes as [Your-Redshift_Role].

• An Amazon Redshift cluster deployed in AWS Region eu-west-1.
• Amazon Redshift cluster masteruser credentials.
• Access to any SQL interface such as a SQL client or the Amazon Redshift Query

Editor.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter06/chapter_6_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter06/chapter_6_CFN.yaml

Managing infrastructure security 153

• Your AWS account number; we will reference it in recipes as [Your-AWS_
Account_Id].

• An Amazon S3 bucket created in eu-west-1; we will reference it as [Your-
Amazon_S3_Bucket].

• The code files referenced in the GitHub repository at https://github.com/
PacktPublishing/Amazon-Redshift-Cookbook/tree/master/
Chapter06.

Managing infrastructure security
Amazon VPC allows you to launch Amazon Redshift clusters in a logically isolated
virtual network in which you define the IP address range and subnets and configure the
infrastructure security. When you provision an Amazon Redshift cluster, it is locked down
by default, so nobody has access to it. To grant inbound access to an Amazon Redshift
cluster, you associate the cluster using the security group. Having your Amazon Redshift
cluster by following the least access security principle is
a best practice.

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon VPC, Amazon EC2, and Amazon Redshift
• Access to any SQL interface such as a SQL client or the Amazon Redshift Query

Editor

How to do it
In this recipe, you will launch an Amazon Redshift cluster inside a custom VPC and
subnet using the following steps:

1. Navigate to the AWS Console and select the VPC service. Click on Launch VPC
Wizard and choose the default VPC with a Single Public Subnet option. Enter the
following values and click on the Create VPC button:

• IPv6 CIDR block – Amazon provided IPv6 CIDR block
• VPC name – vpc-redshift
• Subnet name – subnet-redshift
• Service endpoints – com.amazonaws.eu-west-1.s3

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter06
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter06

154 Data Authorization and Security

Choosing the service endpoints from Amazon S3 allows the traffic to and from
Amazon Redshift to be within the VPC, rather than the default of transcending
the internet:

Figure 6.1 – Creating a VPC and subnet for Amazon Redshift

Managing infrastructure security 155

2. Navigate to Your VPCs on the left-hand menu and note the VPC ID associated
with vpc-redshift. Click on the Security Group in the left-hand menu and
click on the security group associated with the VPC ID. Click on the Edit inbound
Rules, remove the default rules selection, and choose My IP as shown in the
following screenshot:

Figure 6.2 – Editing the inbound rules for the security group
In the list of inbound Rules, instead of an individual IP's address, configuring
the CIDR IP's ranges provides flexibility for allowing connections within your
organization.

Note
You can learn more about setting up a VPC by using this working with
VPC guide: https://docs.aws.amazon.com/vpc/latest/
userguide/working-with-vpcs.html#add-ipv4-cidr.

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#add-ipv4-cidr
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#add-ipv4-cidr

156 Data Authorization and Security

3. Navigate to the Amazon redshift console, click on the CONFIG menu and choose
Subnet groups. Click on Create subnet group, choose vpc-redshift and Add
all the subnets for this VPC, provide any friendly description, and click on Create
cluster subnet group as shown in the following screenshot:

Figure 6.3 – Creating a subnet group for Amazon Redshift

Managing infrastructure security 157

4. Click on the CLUSTERS menu and navigate to Amazon Redshift > Clusters >
Create cluster. Navigate to the Additional configurations section and toggle off
the Use default option. Choose vpc-redshift in the Virtual private cloud (VPC)
dropdown as shown in the following screenshot and click on Create cluster:

Figure 6.4 – Configuring the network and security when creating the Amazon Redshift cluster

158 Data Authorization and Security

5. Connect to the SQL client using the masteruser credentials to verify the
connection. You can refer to the Connecting using SQL client section in Chapter 1,
Getting Started with Amazon Redshift, for step-by-step instructions.

Data encryption at rest
Amazon Redshift by default provides you with the option to encrypt the cluster at rest,
using an AES algorithm with 256-bit key. Key management can be performed by AWS
KMS or your hardware security module. When an Amazon Redshift cluster is encrypted
at rest, it provides block-level encryption. When the cluster is encrypted, the metadata
and snapshots are also encrypted. This enables you to meet your security requirements
to comply with PCI, SOX, HIPAA, and GDPR, depending on your needs.

Amazon Redshift uses envelope encryption using a robust four-tier hierarchy of
encryption keys: the master key, cluster encryption key (CEK), database encryption key
(DEK), and data encryption keys:

Figure 6.5 – Amazon Redshift envelope encryption

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon KMS and Amazon Redshift

• Reference to encryption at rest in AWS documentation: https://docs.
aws.amazon.com/redshift/latest/mgmt/working-with-db-
encryption.html

• Reference to AWS CLI for Redshift: https://docs.aws.amazon.com/cli/
latest/reference/redshift/index.html

• Reference to Amazon Redshift API: https://docs.aws.amazon.com/
redshift/latest/APIReference/Welcome.html

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
https://docs.aws.amazon.com/cli/latest/reference/redshift/index.html
https://docs.aws.amazon.com/cli/latest/reference/redshift/index.html
https://docs.aws.amazon.com/redshift/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/redshift/latest/APIReference/Welcome.html

Data encryption at rest 159

How to do it
In this recipe, we will see options to encrypt a new and an existing Amazon Redshift
cluster.

Let's see the option to turn on encryption while creating an Amazon Redshift cluster:

1. Navigate to the Amazon redshift console and choose Create cluster. Scroll to
Additional configurations and toggle the defaults. This will allow you to expand
Database configurations. You have two options to choose from: AWS KMS or
HSM. When you choose AWS KMS, you have the option to use the default Redshift
key or use the key from an existing AWS account or a different AWS account:

Figure 6.6 – Enabling AWS KMS encryption in Amazon Redshift

2. You can also create a cluster with encryption using the AWS CLI or Amazon
Redshift API call.

Let's see the option to turn on encryption for an existing Amazon Redshift cluster.

160 Data Authorization and Security

3. Navigate to the Amazon redshift console. Click on the existing cluster. Choose the
Modify action:

Figure 6.7 – Modifying encryption for an existing Amazon Redshift cluster

4. Expand Data configurations. You can enable encryption using KMS with this
one-click option. One-click conversion to HSM is not supported. To convert to
HSM, you will need to create a new Amazon Redshift cluster with HSM encryption
and unload and load data from the old to the new cluster:

Figure 6.8 – Enabling AWS KMS encryption in Amazon Redshift

Data encryption at rest 161

5. When you modify a cluster, Amazon Redshift will provision a new cluster in the
background and change the main cluster to read-only mode. Amazon Redshift will
then do a binary transfer of the data from the main cluster to the newly provisioned
cluster. When the transfer of the data is completed, Amazon Redshift will change
the existing Domain Name Service (DNS) to point to the endpoint of the new
cluster. The old cluster is then deleted. The duration of this process is dependent on
the amount of data in the main cluster.

6. The AWS CLI and Amazon Redshift API support conversion to a KMS-encrypted
cluster.

Using the Amazon redshift console, navigate to the existing Amazon Redshift
cluster. Choose Actions and select Rotate encryption:

Figure 6.9 – Clusters

162 Data Authorization and Security

7. You will see the following dialog box. Amazon Redshift will rotate the Cluster
Encryption Key for the cluster and the snapshot. The data encryption key (DEK)
for the cluster is changed, but the DEK cannot be changed for the snapshots that
are on S3. During key rotation, the cluster is put in ROTATING_KEY state until
Amazon Redshift decrypts and re-encrypts the data. You can set the frequency of
rotation to meet your organizational needs. You can balance the plan of rotating the
keys along with availability considerations for your cluster:

Figure 6.10 – Amazon Redshift rotating the AWS KMS keys

8. You can rotate the encryption keys using the AWS CLI and Amazon Redshift API.

Data encryption in transit
With Amazon Redshift, you can encrypt your data in transit. Enabling the SSL allows SQL
clients to encrypt the data in transit using the certificates. In addition, the AWS CLI, SDK,
and the API client can communicate using the HTTS endpoints. For communication
between AWS services such as Amazon S3, DynamoDB, and so on, Amazon Redshift uses
hardware-accelerated SSL.

Data encryption in transit 163

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift.

• Download the JDBC driver from https://docs.aws.amazon.com/
redshift/latest/mgmt/configure-jdbc-connection.html.

• SQL client using JDBC or ODBC connection; this recipe uses SQL Workbench/J:
http://www.sql-workbench.net/.

• Create a new parameter group for your Amazon Redshift cluster: https://docs.
aws.amazon.com/redshift/latest/mgmt/managing-parameter-
groups-console.html.

How to do it
In this recipe, we will enable the SSL connection in Amazon Redshift and the SQL
Workbench client to establish an SSL connection:

1. To configure the Amazon Redshift cluster to require an SSL connection, navigate to
the Amazon redshift console. Choose your Amazon Redshift cluster and select the
Properties tab. Scroll to the database configuration and select the parameter group:

Figure 6.11 – Picking the parameter group associated with your Amazon Redshift cluster

https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html
http://www.sql-workbench.net/
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html

164 Data Authorization and Security

2. Clicking on the parameter group will bring you to the workload management
configuration page. Set require_ssl to true. Choose Save. Navigate to the Redshift
cluster, when the cluster is in the pending-reboot state, and reboot the cluster by
selecting Reboot under action:

Figure 6.12 – Enabling the require_sql parameter in the parameter group

3. When require_ssl is set to true, Amazon Redshift accepts connections that are TLS
encrypted. When sslMode is set to verify-ca, then the server is verified by checking
the certificate chain up to the root certificate bundled with the Amazon Redshift
JDBC/ODBC driver. When sslMode is set to verify-full, the server hostname
provided in the connection will be compared to the name stored in the server
certificate. If the hostname matches, the connection is successful, else it will be
rejected.

Data encryption in transit 165

4. Connect to the Amazon Redshift cluster using your SQL client; this recipe is using
SQLWorkbench/J. Get the cluster connection jdbc URL from the cluster's properties
tab, connection details. We are using sslMode=verify-full:

Figure 6.13 – Connecting to Amazon Redshift with SQL Workbench using SSL

5. Let's validate whether the connection is using sslMode. Run the following code:

select * from stl_connection_log

order by recordtime desc

limit 2;

Here is the output of the preceding code:

Figure 6.14 – Verifying the SSL connection using the STL_CONNECTION_LOG

We have now successfully connected to Amazon Redshift using a TLS-encrypted
connection.

166 Data Authorization and Security

Column-level security
Amazon Redshift supports fine-grained data security with column-level controls.
Column-level security can be applied to local tables, views, and materialized views.
Applying column-level security allows you to restrict access to personally identifiable
information (PII) or payment card information (PCI) to selected people. For instance,
you can grant the finance or human resources team access to sensitive information but
restrict access to the sales and marketing team.

Getting ready
To complete this recipe, you will need the following:

• An Amazon Redshift cluster deployed in AWS Region eu-west-1

• Amazon Redshift cluster masteruser credentials

• Access to any SQL interface such as a SQL client or the Amazon Redshift
Query Editor

How to do it
In this recipe, we will use a customer table. Using column-level access control, a sales
user will be restricted from accessing the phone number column:

1. Connect to the Amazon Redshift cluster using the SQL client or Query Editor.
Create a customer table using the following code:

CREATE TABLE public.customer

(

 C_CUSTKEY BIGINT NOT NULL,

 C_NAME VARCHAR(25),

 C_NATIONKEY BIGINT,

 C_PHONE VARCHAR(15),

 C_ACCTBAL DECIMAL(18,4),

 C_MKTSEGMENT VARCHAR(10),

 C_COMMENT VARCHAR(117)

);

2. Insert the following records into the customer table:

Insert into public.customer values

(1, 'customer-0001', 1, '123-123-1234', 111.11,

Column-level security 167

'MACHINERY', 'FIRST ORDER'),

(2, 'customer-0002', 2, '122-122-1234', 222.11,
'HOUSEHOLD', 'SECOND ORDER');

3. Let's create the sales user:

CREATE user sales with password 'Sales1234';

4. Grant access to the sales users on all the columns in the customer table except
the C_PHONE column:

GRANT SELECT (C_CUSTKEY, C_NAME, C_NATIONKEY, C_ACCTBAL,
C_MKTSEGMENT, C_COMMENT) ON public.customer TO sales;

5. Let's verify the column-level access for sales users. Run the following code. You will
receive the error message permission denied, as sales users do not have access to the
C_PHONE column:

SET SESSION AUTHORIZATION 'sales';

SELECT CURRENT_USER;

SELECT * FROM public.customer;

--output

ERROR: 42501: permission denied for relation customer

6. Let's select the columns in the SELECT statement the sales users have access to:

SET SESSION AUTHORIZATION 'sales';

SELECT CURRENT_USER;

SELECT C_CUSTKEY, C_NAME, C_NATIONKEY, C_ACCTBAL, C_
MKTSEGMENT, C_COMMENT FROM public.customer;

Here is the output of the preceding code:

Figure 6.15 – Verifying the successful selection of the PII columns

168 Data Authorization and Security

How it works
Using the GRANT and REVOKE statements, you can enable or disable column-level access
control to Amazon Redshift users or groups on tables, views, or materialized views.
You can learn about the GRANT and REVOKE syntax for fine-grained access control at
https://docs.aws.amazon.com/redshift/latest/dg/r_GRANT.html and
https://docs.aws.amazon.com/redshift/latest/dg/r_REVOKE.html.

Loading and unloading encrypted data
Amazon S3 allows to have your data (for example, your source data files) to be encrypted
using server-side encryption with Amazon S3-managed keys (SSE-S3) or AWS
KMS-managed keys (SSE-KMS). In addition, you can perform client-side encryption
using a client-side symmetric master key. Amazon Redshift supports loading the
encrypted data into the local table. Similarly, you can unload Amazon Redshift data to
Amazon S3 as encrypted files using a customer-managed symmetric master key.

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon Redshift and AWS KMS.

• An Amazon Redshift cluster deployed in AWS Region eu-west-1.

• Amazon Redshift cluster masteruser credentials.

• Access to any SQL interface such as a SQL client or the Amazon Redshift
Query Editor.

• An IAM role attached to the Amazon Redshift cluster that can access Amazon S3;
we will reference it in the recipes as [Your-Redshift_Role].

• The AWS CLI configured on local client.

• An AWS account number; we will reference it in recipes as [Your-AWS_Account_
Id].

• An Amazon S3 bucket created in eu-west-1; we will reference it as [Your-
Amazon_S3_Bucket].

• Copy the customer table data to your Amazon S3 bucket using the following
command, replacing [Your-Amazon_S3_Bucket] with your bucket name:

aws s3 cp s3://packt-redshift-cookbook/customer/ s3://
[Your-Amazon_S3_Bucket]/Chapter6/customer/

https://docs.aws.amazon.com/redshift/latest/dg/r_GRANT.html
https://docs.aws.amazon.com/redshift/latest/dg/r_REVOKE.html

Loading and unloading encrypted data 169

How to do it
In this recipe, we will COPY encrypted data from Amazon S3 and also load
as encrypted files:

1. Let's start by creating a master encryption key using AWS KMS that will be used to
encrypt and decrypt the data by Amazon S3. Navigate to AWS KMS from the AWS
Console and select Configure key as shown:

Figure 6.16 – Creating an AWS KMS symmetric key

Note
AWS KMS allows you to manage the encryption key. You can create, store,
rotate, and control access to them.

170 Data Authorization and Security

2. Enter the name of the alias as cookbook-kms:

Figure 6.17 – Creating an alias for the AWS KMS encryption key

3. Select the user and the Redshift customizable role that will have access to the key.
Review the policy and click Finish.

4. Make a note of the ARN of the KMS key and Key ID:

Figure 6.18 – Capturing the ARN for the AWS KMS key

5. Navigate to Amazon S3 path s3://[Your_AmazonS3_Bucket]/Chapter6/
customer/ and click on the Edit server-side encryption action:

Loading and unloading encrypted data 171

Figure 6.19 – Verifying the server-side encryption

6. Click Enable server-side encryption. For Encryption key type, select SSE-KMS.
Select the ARN of the cookbook-kms key. Choose Save changes. This will encrypt
the customer files on S3:

 Figrue 6.20 – Encrypting the customer data using a KMS key

172 Data Authorization and Security

7. Now let's connect to the Amazon Redshift cluster using a SQL client or the Query
Editor and create the customer table:

CREATE TABLE public.customer

(

 C_CUSTKEY BIGINT NOT NULL,

 C_NAME VARCHAR(25),

 C_ADDRESS VARCHAR(40),

 C_NATIONKEY BIGINT,

 C_PHONE VARCHAR(15),

 C_ACCTBAL DECIMAL(18,4),

 C_MKTSEGMENT VARCHAR(10),

 C_COMMENT VARCHAR(117)

)

diststyle ALL;

8. Let's now load the encrypted customer data using the COPY command using the
following command:

COPY customer from 's3:// s3://[Your-Amazon_S3_Bucket]/
Chapter6/customer/' iam_role 'arn:aws:iam::[Your-
AWS_Account_Id]:role/[Your-Redshift_Role]' CSV gzip
COMPUPDATE PRESET;

Note
Observe in the COPY command that Amazon Redshift is automatically able to
identify that the file is encrypted and communicates with KMS automatically
to retrieve the correct master key. This KMS key is used to decrypt the data key
and is used by the COPY command for loading.

9. Now let's unload the encrypted data to Amazon S3 using a user-provided master
key. Execute the following command to unload the data:

unload ('select * from customer') TO 's3:// [Your-
Amazon_S3_Bucket]/Chapter6/customer_encrypted/' iam_role
'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_Role]'
master_symmetric_key 'EXAMPLEMASTERKEYtkbjk/OpCwtYSx/M4/
t7DMCDIK722' encrypted;

Managing superusers 173

Note
Similar to the UNLOAD command, you can also copy the data that was
encrypted using a master key. Please see https://docs.aws.amazon.
com/redshift/latest/dg/c_loading-encrypted-files.
html.

The preceding command unloads the customer table to a set of encrypted files using the
specified master symmetric key.

Managing superusers
A superuser allows you to get all the access on Amazon Redshift, independent of all
permission checks, and is used for administrative tasks. For example, you can create other
users, execute diagnostic queries on system tables, and take action as needed. Superuser
access has to be granted sparingly; do not use this for day-to-day work.

The masteruser is a special type of superuser that you set up when launching the
cluster.

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift cluster deployed in AWS Region eu-west-1

• Amazon Redshift cluster masteruser credentials

• Access to any SQL interface such as a SQL client or the Amazon Redshift
Query Editor

How to do it
In this recipe, we will illustrate how to create a superuser and use it to list all the active
SQL statements, and demonstrate how to terminate a particular statement:

1. Connect to Amazon Redshift using the SQL client using the masteruser credentials
and execute the following statement to create another superuser, replacing
[masteruser_password] with the password of your choice:

create user myadmin createuser password '[masteruser_
password]';

https://docs.aws.amazon.com/redshift/latest/dg/c_loading-encrypted-files.html
https://docs.aws.amazon.com/redshift/latest/dg/c_loading-encrypted-files.html
https://docs.aws.amazon.com/redshift/latest/dg/c_loading-encrypted-files.html

174 Data Authorization and Security

If you have forgotten the masteruser credentials, you can navigate to the Amazon
Redshift AWS Console and click on your cluster-id (Amazon Redshift →
Clusters → YOUR_CLUSTER) and click on the Actions dropdown and click on
Change masteruser password to reset it to a new value.

2. Now, use the preceding superuser myadmin to reconnect to Amazon Redshift using
the SQL Workbench/J client. Execute the following statement to see the list of all the
Running SQL statements:

SELECT pid,

 TRIM(user_name),

 starttime,

 duration,

 SUBSTRING(query,1,50) AS stmt

FROM stv_recents

WHERE status = 'Running';

Here is the expected sample output:
Pid btrim starttime duration stmt

18764 user_a 2021-03-28 18:39:49.355918 3000 select
part_id, seller_id

18790 user_b 2021-03-28 18:39:49.355918 60 Insert
into parts(

The query from user_a is taking up over 3,000 seconds to execute and is likely to
consume resources (that can be confirmed using the AWS Console), so we assume
you would like to terminate this query.

3. Execute the following statement to terminate the query with pid = 18764:

set query_group to 'superuser';

cancel 18764;

Using the optional query_group to 'superuser' allows access to the special
superuser queue and has the query execute immediately. Please also refer to https://
docs.aws.amazon.com/redshift/latest/dg/cm-c-wlm-queue-
assignment-rules.html.

https://docs.aws.amazon.com/redshift/latest/dg/cm-c-wlm-queue-assignment-rules.html
https://docs.aws.amazon.com/redshift/latest/dg/cm-c-wlm-queue-assignment-rules.html
https://docs.aws.amazon.com/redshift/latest/dg/cm-c-wlm-queue-assignment-rules.html

Managing users and groups 175

Managing users and groups
Users and groups are the building blocks for access management of the objects in the
Amazon Redshift cluster. Users get authenticated into the Amazon Redshift cluster and
privileges for objects can be managed at the group level for managing access in a scalable
manner. Users can be members of one of multiple groups and inherit the access privileges
granted to the groups. Users can also be individually granted privileges.

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift cluster deployed in AWS Region eu-west-1

• Amazon Redshift cluster masteruser credentials

• Access to any SQL interface such as a SQL client or the Amazon Redshift
Query Editor

How to do it
In this recipe, we will illustrate how to create users and groups for the schema set up in
Chapter 2, Data Management. There are two groups – finance_grp and audit_grp –
that will be created and users will be added to those groups:

1. Connect to Amazon Redshift using the SQL client using the masteruser or the
superuser credentials and execute the following statement to create the following
users, replacing [financeuser_password] and [audituser_password] with
the passwords of your choice:

create user financeuser1 with password '[financeuser_
password]' createdb connection limit 30;

create user audituser1 with password '[audituser_
password]'syslog unrestricted;

The audituser1 user is provided syslog unrestricted access that allows visibility
to system tables to list queries and transactions performed by other users, which
is restricted by default.

176 Data Authorization and Security

2. Create the finance schema and finance and audit groups so that object privileges can
be managed separately:

create schema if not exists finance;

create group finance_grp with user financeuser1;

create group audit_grp with user audituser1;

3. Grant access to objects in the finance schema to the preceding groups:

GRANT USAGE on SCHEMA finance TO GROUP finance_grp, GROUP
audit_grp;

GRANT ALL ON schema finance to GROUP finance_grp;

ALTER DEFAULT PRIVILEGES IN SCHEMA finance GRANT ALL

 ON tables

 TO group finance_grp;

GRANT SELECT ON ALL TABLES IN SCHEMA finance TO GROUP
audit_grp;

ALTER DEFAULT PRIVILEGES IN SCHEMA finance GRANT SELECT

 ON tables

 TO group audit_grp;

4. Execute the following statement to verify the user membership to the groups:

SELECT

pg_group.groname

g,pg_group.grosysid

,pg_user.*

FROM pg_group, pg_user

WHERE pg_user.usesysid = ANY(pg_group.grolist)

ORDER BY 1,2

;

Here is the expected sample output:
groname,grosysid,usename,usesysid,usecreatedb,
usesuper,usecatupd,passwd,valuntil,useconfig

finance_grp 106 financeuser1 127 false *******
audit_grp 107

audituser1127 false ********

Managing federated authentication 177

Hence, in the preceding setup, the users in finance_grp are able to perform all the
DDL/DML (SELECT/INSERT/UPDATE/DELETE) operations, the audit_grp users
are able to perform only the SELECT operations to isolate the access control managed
through the individual groups. You can learn more about the GRANT access options at
https://docs.aws.amazon.com/redshift/latest/dg/r_GRANT.html.

Managing federated authentication
Amazon Redshift allows easy integration of multiple Identity Providers (IdPs) such as
Microsoft Azure Active Directory, Active Directory Federation Services (ADFS), Okta,
Ping Identity, AWS SSO, and any SAML v2. You can manage the authentication and
authorization of the users and objects using the IdPs without the need to maintain local
database users. This provides seamless extension of your corporate policies to Amazon
Redshift and a convenient way to govern them centrally. For example, users just use their
corporate credentials to get into Amazon Redshift. In addition, Amazon Redshift also
supports multi-factor authentication using the federation to provide additional security
when authenticating.

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon Redshift and AWS IAM
• An Amazon Redshift cluster deployed in AWS Region eu-west-1
• Amazon Redshift cluster masteruser credentials
• Access to any SQL interface such as a SQL client or the Amazon Redshift

Query Editor
• The latest JDBC driver AWS SDK that can be downloaded from https://

docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-
connection.html#jdbc-previous-versions-with-sdk

• Your AWS account number; we will reference it in recipes as [Your-AWS_
Account_Id]

How to do it
In this recipe, we will integrate the Okta idP with Amazon Redshift:

1. Navigate to the Okta portal at https://www.okta.com/free-trial/ and
create a 30-day free trial, by specifying a domain name of your choice. Let's call this
[your-okta-domain].

https://docs.aws.amazon.com/redshift/latest/dg/r_GRANT.html
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html#jdbc-previous-versions-with-sdk
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html#jdbc-previous-versions-with-sdk
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html#jdbc-previous-versions-with-sdk
https://www.okta.com/free-trial/

178 Data Authorization and Security

2. Create the following sample user and group by navigating to the Directory tab at
https://mailpackt-cookbook-admin.okta.com/admin/users as
follows:

• User: bob west (bob@mail.com)

• Group: dwgroup

Add user bob west to the group dwgroup:

Figure 6.21 – Creating users and groups in Okta

3. Log in to Okta using the user bob west, reset the one-time password and note
down the new password.

4. Navigate to the Applications tab, click on Add application and select Amazon
Web Services Redshift as shown in the following screenshot:

Managing federated authentication 179

Figure 6.22 – Adding an Amazon Redshift application

5. Click on Amazon Web Services Redshift in Applications and navigate to the
Sign on tab. Right-click on IdP metadata and save the file as metadata.xml.

6. Navigate to the AWS Management Console, navigate to the AWS Identity and
Access Management (IAM) Console, and click on idPs.

7. Click on Add provider and type the provider's name as okta (or any meaningful
name) and in the metadata document select the saved file metadata.xml as
shown in the following screenshot:

Figure 6.23 – Creating an IdP in the AWS Console

180 Data Authorization and Security

8. Navigate to the IAM Console, click on Roles, and choose a new SAML 2.0
federation role. Choose the okta IdP that you created in the previous step, select
Allow programmatic and AWS Management Console access and click Next:
Permissions as shown in the following screenshot:

Figure 6.24 – Creating a SAML 2.0 federation role

9. Locate the IdP you just created by the Provider Name in the list of IdPs. Click on
the name and make a copy of the Provider ARN value. This will be in the form
arn:aws:iam:[Your-AWS_Account_Id] :saml-provider/okta.

10. Click on Create policy, create a policy with the name redshiftaccess (or any
meaningful name), and copy and paste the following policy statement in the JSON
table to allow access to the Amazon Redshift cluster replacing the [Your-AWS_
Region] and [Your-AWS_Account_Id] with the values corresponding to your
AWS account:

{

 "Version": "2012-10-17",

 "Statement": [{

Managing federated authentication 181

 "Effect": "Allow",

 "Action": [

 "redshift:CreateClusterUser",

 "redshift:JoinGroup",

 "redshift:GetClusterCredentials",

 "redshift:DescribeClusters"

],

 "Resource": [

"arn:aws:redshift:[Your-AWS_Region]:[Your-AWS_Account_
Id]:cluster:*",

"arn:aws:redshift:[Your-AWS_Region]:[Your-AWS_Account_
Id]:dbuser:[cluster]/*",

"arn:aws:redshift: [Your-AWS_Region]:[Your-AWS_Account_
Id]:dbgroup:[cluster]/*"

}]

}

Note
In the preceding policy statement, the permissions allow connection to any
Amazon Redshift cluster, dbuser, and dbgroups. Ideally, you can create
different IAM policies to make them restrictive to the specific cluster/groups
and users that you want to allow access to.

11. Once the Role is created, note down the Role ARN that will be in the form
arn:aws:iam:[YOUR-AWS_ACCOUNT_Id]:role/redshiftacess.

12. Navigate back to Okta using the admin user and click on Applications -> Amazon
Webservices Redshift → Sign on and then click Edit.

13. Paste the Provider ARN and Role ARN that you made a copy of earlier in
this configuration, as comma-separated values, into corresponding fields
as arn:aws:iam:[Your-AWS_Account_Id]:saml-provider/
okta,arn:aws:iam:[Your-AWS_Account_Id]:role/redshiftacess.

14. Session Duration: Set the desired session duration for users in seconds, such
as 3600.

182 Data Authorization and Security

15. In Provide Redshift related configuration, do the following:

• DB User Format: ${user.username} (this is the default value).

• Auto Create: AutoCreate Redshift property (create a new database user if one does
not exist) checked.

• Allowed DB Groups: This configuration determines which Okta groups (names)
should be provided access to Redshift, for example db_sales_grp.

Click Save/Next.

16. Now navigate to the SQL Workbench/J tool and choose the Amazon Redshift driver
with AWS SDK. Use the following JDBC URL to connect to Amazon Redshift, by
replacing the corresponding attributes that were set up in the Okta IDP:

jdbc:redshift:iam://[your-redshift-cluster-
connection-string]?plugin_name=com.amazon.redshift.
plugin.OktaCredentialsProvider&idp_host=[okta-
hostname]&preferred_role=[role-arn]&user=[okta-
user]&password=[okta-user-password]&app_id=[okta-
redhshift-app-id]

For [okta-redhshift-app-id] and [okta-hostname], refer to the URL
for the application in your web browser:

https://[okta-hostname]-admin.okta.com/admin/app/amazon_
aws_redshift/instance/[okta-redhshift-app-id]

17. Click the Test button to verify whether Amazon Redshift is able to federate through
the Okta IdP.

How it works
The following diagram shows how Amazon Redshift is able to authenticate the user
through the IdP:

Managing federated authentication 183

Figure 6.25 – Overall architecture for the integrated IdP
Here is the workflow for the federation with the IdP once integrated with Amazon
Redshift:

1. Set up the JDBC/ODBC.

2. Authenticate using a corporate username/password.

3. The % IdP sends SAML assertion.

4. Call STS to assume role with SAML.

5. STS returns temporary credentials.

6. Use the temporary credentials to get the temporary cluster credentials.

7. Connect to Amazon Redshift using the temporary credentials.

184 Data Authorization and Security

Using IAM authentication to generate
database user credentials
Amazon Redshift allows you to programmatically generate temporary database user
credentials that can be used for automated scripts connect to the cluster. Using the
get-cluster-credentials command in the AWS Command Line Interface (AWS
CLI) and the GetClusterCredentials in the API, you can generate the temporary
credentials that can then be used in the JDBC and ODBC options.

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon Redshift and AWS IAM

• An Amazon Redshift cluster deployed in AWS Region eu-west-1; we will
reference the cluster ID as [Your-Redshift_Cluster]

• Amazon Redshift cluster masteruser credentials

• Access to any SQL interface such as a SQL client or the Amazon Redshift
Query Editor

• The AWS CLI configured on your local client

How to do it
In this recipe, we will generate temporary credentials to connect to the Amazon Redshift
cluster:

1. Open the command-line interface where the AWS CLI is installed. Type the
following command to verify the AWS CLI installation; that should show the help
manual:

aws help

2. Execute the following command that will generate the temporary credentials for
your Amazon Redshift cluster, replacing [Your-Redshift_Cluster] and
[Your-Redshift_DB] with the respective values:

aws redshift get-cluster-credentials --cluster-identifier
[Your-Redshift_Cluster] --db-user temp_creds_user --db-
name [Your-Redshift_DB] --duration-seconds 3600

Managing audit logs 185

The result of the preceding command will produce an output like the following:
{

 "DbUser": "IAM:temp_creds_user",

 "Expiration": "2020-12-08T21:12:53Z",

 "DbPassword":
"EXAMPLEjArE3hcnQj8zt4XQj9Xtma8oxYEM8OyxpDHwXVPyJYBDm/
gqX2Eeaq6P3DgTzgPg=="

}

3. Connect to the SQL client with the username and password credentials, using the
preceding values to verify the connection.

Note
The credentials generated using the preceding command are temporary and
will expire in 3,600 seconds.

Managing audit logs
Amazon Redshift allows you to log connection and user activities by using the audit logs.
Audit logs are published into Amazon S3 asynchronously and provide a mechanism to
allow you to monitor the requests to the cluster, which can be used to implement security
requirements as well as for troubleshooting. For example, let's say on a particular day in
the past, you want to find the user who might have truncated a particular table. The audit
logs can query to uncover this information.

Getting ready
To complete this recipe, you will need the following setup:

• The IAM user with access to Amazon Redshift and AWS Glue
• An Amazon Redshift cluster deployed in AWS Region eu-west-1; we will

reference the cluster ID as [Your-Redshift_Cluster]
• Amazon Redshift cluster masteruser credentials
• Access to any SQL interface such as a SQL client or the Amazon Redshift

Query Editor
• An IAM role that can access Amazon S3; we will reference it in the recipes as

[Your-Redshift_Role]

• Your AWS account number; we will reference it in recipes as [Your-AWS_
Account_Id]

186 Data Authorization and Security

How to do it
In this recipe, we will illustrate how to turn on the audit logging in Amazon S3 (which is
turned off by default) and easily query it:

1. Connect to the Amazon redshift console and navigate to Amazon Redshift >
Clusters > [YOUR_CLUSTER]. Click on the Maintenance and monitoring tab
and scroll down to the Audit logging option as shown in the following screenshot:

Figure 6.26 – Enabling Amazon Redshift audit logging

2. Click on the Edit button in Audit logging and set Enable audit logging to Yes and
select (or create) an Amazon S3 bucket as shown in the following screenshot:

Figure 6.27 – Configuring the target S3 buckets for logging

Managing audit logs 187

The previous option turns on the connection logging that will start capturing
the connection information such as client host IP, username, and so on, as
detailed in https://docs.aws.amazon.com/redshift/latest/
mgmt/db-auditing.html#db-auditing-logs. Logs will be delivered
asynchronously, organized into hourly S3 prefix locations.

3. Once the user connections are made in the Amazon Redshift cluster, connection
logs are delivered into previously specified target Amazon S3 location that can be
verified used the AWS Console for Amazon S3 or the AWS CLI using the aws s3
ls [AWS S3 Target bucket] command.

The log files are organized as <AWS Account #>/
redshift/<Region>/<Year>/<Month>/<Day>/<Hour>.

4. Create a new crawler called audit_crawl with the database name audit_logs_
db and the table name auditawslogs using the Amazon S3 location configured
in the preceding step and choosing Add crawler under Tutorials. See Chapter 9,
Lake House Architecture, for step-by-step instructions to configure the AWS Glue
crawler.

5. Run audit_crawl and after the crawler has run, you should have a new table,
auditawslogs, under Data catalog > Databases > Tables as shown in the
following screenshot:

Figure 6.28 – AWS Glue

https://docs.aws.amazon.com/redshift/latest/mgmt/db-auditing.html#db-auditing-logs
https://docs.aws.amazon.com/redshift/latest/mgmt/db-auditing.html#db-auditing-logs

188 Data Authorization and Security

6. Connect to the SQL client using the superuser credentials and the create audit_
logs schema pointing to the AWS Glue audit_logs_db database created
previously:

create external schema audit_logs

from data catalog

database 'audit_logs_db'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-
Redshift_Role]'

create external database if not exists;

7. Use the following query to retrieve the audit information:

SELECT col0 AS event,

 col1 AS recordtime,

 col2 AS remotehost,

 col3 AS remoteport,

 col4 AS pid,

 col5 AS dbname,

 col6 AS username,

 col7 AS authmethod,

 col8 AS duration,

 col9 AS sslversion,

 col10 AS sslcipher,

 col11 AS mtu,

 col12 AS sslcompression,

 col13 AS sslexpansion,

 col14 AS iamauthguid,

 col15 AS application_name,

 col16 AS driver_version,

 col17 AS os_version,

 col18 AS plugin_name

FROM audit_logs.auditawslogs

WHERE partition_5 = 25

AND partition_4 = 12

AND partition_3 = 2020 LIMIT 10;

Monitoring Amazon Redshift 189

Here is the output of the preceding code:
event,recordtime,remotehost,remoteport,pid,dbname,
username,authmethod,duration,sslversion,sslcipher,
mtu,sslcompression,sslexpansion,iamauthguid,
application_name,driver_version,os_version,plugin_name

authenticated Fri, 25 Dec 2020 09:02:04:228

[local] 49050 dev rdsdb Ident 0 0

initiating session Fri, 25 Dec 2020 09:02:04:228[local]
49050 dev rdsdb Ident 0 0

disconnecting session Fri, 25 Dec 2020 09:02:04:346
[local] 49050 dev rdsdb Ident 118856 0

authenticated Fri, 25 Dec 2020 09:02:40:156 [local]
49238 dev rdsdb Ident 0 0

As observed in the preceding output, all the session activity is logged as part of the audit
trail and can be easily queried using a SQL query.

How it works
Audit logs are also available in system log tables, STL_USERLOG and STL_
CONNECTION_LOG, but retention is limited in the system tables.

For longer retention and convenient sharing of the audit information, Amazon Redshift
logs can be enabled that asynchronously send the logs into Amazon S3. The user activity
log can be enabled by setting the enable_user_activity_logging parameter to
true in the database parameter group in addition to the connection logs.

Monitoring Amazon Redshift
Monitoring the cluster performance metrics allows you to ensure the cluster is operating
healthily. Amazon Redshift publishes metrics such as CPU, disk utilization, query
workloads, and so on continuously. These metrics can be automatically monitored
for anomalies to trigger notification events. Amazon Redshift publishes the cluster
performance metrics to AWS CloudWatch as well, which allows you to monitor all your
AWS services in a centralized location.

190 Data Authorization and Security

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon Redshift and Amazon SNS.

• An Amazon Redshift cluster deployed in AWS Region eu-west-1.

• Create an Amazon SNS topic (called AmazonRedshiftHealthNotification)
to receive the alarm notifications using https://docs.aws.amazon.com/
sns/latest/dg/sns-create-topic.html.

How to do it
In this recipe, we will illustrate how to watch the cluster and query monitoring metrics
and also set up a health check alarm:

1. Connect to the Amazon redshift console and navigate to Amazon Redshift >
Clusters > [YOUR_CLUSTER]. Click on Cluster performance to view the metrics
such as CPU, disk utilization, and so on, as shown in the following screenshot:

Figure 6.29 – Monitoring cluster performance

https://docs.aws.amazon.com/sns/latest/dg/sns-create-topic.html
https://docs.aws.amazon.com/sns/latest/dg/sns-create-topic.html

Monitoring Amazon Redshift 191

2. Click on the Query monitoring tab, which shows the list of queries that have
executing/completed queries, as shown in the following screenshot:

Figure 6.30 – Monitoring query execution history
Query monitoring also provides the ability to get insights into the overall workload
in the cluster using the Database performance tab and also break down the time
query spends into queue versus execution using the Workload concurrency tab.

3. Click on Amazon Redshift > Alarms > Create alarm and choose the following
options to set up a health check alarm for the cluster:

• Cluster identifier: Choose the Amazon Redshift cluster for which you want to set
up the alarm.

• Alarm for metric: Choose maximum for all nodes.

• When metric value is: Less than (<) 1.

• If the alarm state is maintained for: 10 consecutive periods of 5 minutes.

4. In the alarm details, choose the following options:

a. Alarm name: Any meaningful name for the health alarm

b. Notification: Enabled

c. Notify SNS topic: Select AmazonRedshiftHealthNotification
Click on Create alarm to complete the setup for the health check alarm.

192 Data Authorization and Security

How it works
The health check alarm is a binary value where 1 indicates a healthy cluster node, while
0 indicates an unhealthy node. The health check alarm is monitoring for any value that
is less than 1 for 10 consecutive times for a duration of 5 minutes to notify through the
SNS topic. Similarly, other performance metrics can be configured and notified when the
thresholds are breached.

7
Performance
Optimization

Amazon Redshift provides out-of-the-box capabilities for most workloads. Amazon
Redshift defaults the table design choices, such as sort and distribution key, to AUTO and
can learn from the query workloads to automatically set up the right structure. For more
information, see Working with automatic table optimization (https://docs.aws.
amazon.com/redshift/latest/dg/t_Creating_tables.html).

As a user of Amazon Redshift, it provides the necessary levers so that you can further
optimize/pick a different choice when needed. The sort, distribution key, and table
encoding choices have influential effects on the performance of queries, and in this
chapter, we will discuss the optimization techniques we can use to improve these
throughputs. Also, we will take a deep dive into analyzing queries to understand the
rationale behind the tuning exercise.

In this chapter, we will cover the following recipes:

• Amazon Redshift Advisor

• Managing column compression

• Managing data distribution

• Managing sort keys

https://docs.aws.amazon.com/redshift/latest/dg/t_Creating_tables.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Creating_tables.html

194 Performance Optimization

• Analyzing and improving queries

• Configuring workload management (WLM)

• Utilizing Concurrency Scaling

• Optimizing Spectrum queries

Technical requirements
You will need the following technical requirements to complete the recipes in this chapter:

• Access to the AWS Console.

• The AWS administrator should create an IAM user by following Recipe 1 – Creating
an IAM User, in the Appendix. This IAM user will be used in some of the recipes in
this chapter.

• The AWS administrator should create an IAM role by following Recipe 3: Creating
IAM Role for an AWS service, in the Appendix. This IAM role will be used in some of
the recipes in this chapter.

• The AWS administrator should deploy the AWS CloudFormation template
(https://github.com/PacktPublishing/Amazon-Redshift-
Cookbook/blob/master/Chapter07/chapter_7_CFN.yaml) and create
two IAM policies:

a. An IAM policy that's attached to the IAM user, which will give them access
to Amazon Redshift, Amazon EC2, AWS Secrets Manager, AWS IAM, AWS
CloudFormation, AWS KMS, AWS Glue, and Amazon S3.

b. An IAM policy that's attached to the IAM role, which will allow the Amazon
Redshift cluster to access Amazon S3.

• Attach the IAM role to the Amazon Redshift cluster by following Recipe 4 –
Attaching an IAM Role to the Amazon Redshift cluster, in the Appendix. Take note
of the IAM's role name. We will reference it in this chapter's recipes as [Your-
Redshift_Role].

• An Amazon Redshift cluster deployed in AWS region eu-west-1.

• Amazon Redshift cluster master user credentials.

• Access to any SQL interface, such as a SQL client or the Amazon Redshift
Query Editor.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter07/chapter_7_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter07/chapter_7_CFN.yaml

Amazon Redshift Advisor 195

• An AWS account number. We will reference it in this chapter's recipes as
[Your-AWS_Account_Id].

• This chapter's code files, which can be found in this book's GitHub repository:
https://github.com/PacktPublishing/Amazon-Redshift-
Cookbook/tree/master/Chapter07.

Amazon Redshift Advisor
Amazon Redshift Advisor was launched in mid 2018. It runs daily and continuously
observes the workload's operational statistics on the cluster with its lens of best practices.
Amazon Redshift Advisor uses sophisticated algorithms to provide tailored best practice
recommendations, which allows us to get the best possible performance and cost savings.
The recommendations are provided which is ranked by order of impact. Amazon Redshift
Advisor eases administration. Some of the recommendations include the following:

• Optimization for the COPY command for optimal data ingestion

• Optimization for physical table design

• Optimization for manual workload management

• Cost optimization with a recommendation to delete a cluster after taking
a snapshot, if the cluster is not being utilized

Along with the Advisor recommendation, the Automatic Table Optimization feature
allows you to apply these recommendations via an auto-requiring administrator
intervention, thereby creating a fully self-tuning system.

In this recipe, you will learn where to find Amazon Redshift Advisor so that you can view
these recommendations.

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift cluster deployed in AWS region eu-west-1

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter07
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter07

196 Performance Optimization

How to do it…
In this recipe, we will use the Amazon Redshift console to access the Advisor
recommendation for your cluster. Let's get started:

1. Navigate to the AWS Management Console and select Amazon Redshift.

2. On the left-hand side, you will see ADVISOR. Click on it:

Figure 7.1 – Accessing the Advisor from the AWS Redshift console

3. If you have multiple clusters in a region, you can view the recommendations for all
the clusters. You can group the recommendations by cluster or by category – cost,
performance, security, or other:

Amazon Redshift Advisor 197

Figure 7.2 – Accessing Amazon Redshift Advisor

4. You can distribute the recommendations by exporting the recommendations
from the console to a file. To export the recommendations from the Advisor page,
select Export:

Figure 7.3 – Amazon Redshift Advisor recommendations

198 Performance Optimization

How it works…
Amazon Redshift builds recommendations by continuously analyzing the operational data
of your cluster. The Advisor provides recommendations that have a significant impact on
the performance of your cluster. The Advisor, alongside the Automatic Table Optimization
feature, collects the query access patterns and analyzes them using a machine learning
service to predict recommendations about the sort and distribution keys. These
recommendations are then applied automatically to the target tables in the cluster. Advisor
and Automatic Table Optimization execute during low workload intensity so that user
queries are affected.

Managing column compression
Amazon Redshift's columnar architecture stores data columns upon columns on disk.
Analytical queries select a subset of the columns and perform aggregation on millions to
billions of records. The columnar architecture reduces the I/O by selecting a subset of the
columns, thus improving query performance. When data is ingested into the Amazon
Redshift table, it provides three to four times compression. This further reduces the
storage footprint, which, in turn, reduces I/O and hence improves query performance.
Reducing the storage footprint also saves you money. Amazon Redshift Advisor provides
recommendations for compressing any uncompressed tables.

In this recipe, you will learn how Amazon Redshift automatically applies compression
to new and existing tables. You will also learn how column-level compression can be
modified for existing columns.

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift.

• An Amazon Redshift cluster deployed in AWS region eu-west-1.

• Amazon Redshift cluster master user credentials.

• Access to any SQL interface, such as a SQL client or the Amazon Redshift Query
Editor.

• An IAM role attached to an Amazon Redshift cluster that can access Amazon S3.
We will reference it in this recipe as [Your-Redshift_Role].

• An AWS account number. We will reference it in this recipe as [Your-AWS_
Account_Id].

Managing column compression 199

How to do it…
In this recipe, we will be analyzing the table-level compression that's applied by Amazon
Redshift automatically. Let's get started:

1. Connect to the Amazon Redshift cluster using a SQL client or the Query Editor.
Then, create the customer table using the following command:

drop table if exists customer;

CREATE TABLE customer

(

 C_CUSTKEY BIGINT NOT NULL,

 C_NAME VARCHAR(25),

 C_ADDRESS VARCHAR(40),

 C_NATIONKEY BIGINT,

 C_PHONE VARCHAR(15),

 C_ACCTBAL DECIMAL(18,4),

 C_MKTSEGMENT VARCHAR(10),

 C_COMMENT VARCHAR(117)

)

diststyle AUTO;

2. Now, let's analyze the compression types that have been applied to the columns.
Execute the following command:

SELECT "column", type, encoding FROM pg_table_def

WHERE tablename = 'customer';

Here is the expected output:

 column | type | encoding

--------------+------------------------+----------

 c_custkey | bigint | az64

 c_name | character varying(25) | lzo

 c_address | character varying(40) | lzo

 c_nationkey | bigint | az64

 c_phone | character varying(15) | lzo

 c_acctbal | numeric(18,4) | az64

 c_mktsegment | character varying(10) | lzo

 c_comment | character varying(117) | lzo

200 Performance Optimization

Amazon Redshift automatically applies a compression type of az64 for AZ64 for the INT,
SMALLINT, BIGINT, TIMESTAMP, TIMESTAMPTZ, DATE, and NUMERIC column types.
Az64 is Amazon's proprietary compression encoding algorithm, and it's designed to
achieve a high compression ratio and improved query processing. The default encoding
of lzo is applied to the varchar and character columns.

Reference to Different Encoding Types in Amazon Redshift
 https://docs.aws.amazon.com/redshift/latest/dg/c_
Compression_encodings.html

3. Now, let's recreate the customer table by encoding C_CUSTKEY as raw using
the following SQL:

drop table if exists customer ;

CREATE TABLE customer

(

 C_CUSTKEY BIGINT NOT NULL encode raw,

 C_NAME VARCHAR(25),

 C_ADDRESS VARCHAR(40),

 C_NATIONKEY BIGINT,

 C_PHONE VARCHAR(15),

 C_ACCTBAL DECIMAL(18,4),

 C_MKTSEGMENT VARCHAR(10),

 C_COMMENT VARCHAR(117)

)

diststyle AUTO;

SELECT "column", type, encoding FROM pg_table_def

WHERE tablename = 'customer';

Here is the expected output:

https://docs.aws.amazon.com/redshift/latest/dg/c_Compression_encodings.html
https://docs.aws.amazon.com/redshift/latest/dg/c_Compression_encodings.html

Managing column compression 201

Figure 7.4 – Output of the preceding query
Notice that the c_custkey column has been encoded with a raw encoding (none).

4. Now, let's use COPY to load data from Amazon S3 using the following command,
replacing [Your-AWS_Account_Id] and [Your-Redshift_Role] with
their respective values:

COPY customer from 's3://packt-redshift-cookbook/
RetailSampleData/customer/' iam_role 'arn:aws:iam::[Your-AWS_
Account_Id]:role/[Your-Redshift_Role]' CSV gzip COMPUPDATE
PRESET;

SELECT "column", type, encoding FROM pg_table_def

WHERE tablename = 'customer';

Here is the expected output:

Figure 7.5 – Output of the preceding query

202 Performance Optimization

Note
Amazon Redshift command with compupdate on determines the encoding
for the columns for an empty table, even for columns set to raw; that is, no
compression. Create the table with the c_custkey column set to encode
raw. Then, run the COPY command with the compupdate preset option,
which determines how the columns for empty tables are encoded. Then,
we must verify the encodings of the columns and that the c_custkey
column has an encoding type of az64.

How it works…
Amazon Redshift, by default, applies compression, which helps reduce the storage
footprint and hence query performance due to a decrease in I/O. Each column can have
different encoding types and columns that can grow and shrink independently. For an
existing table, you can use the ANALYZE COMPRESSION command to determine the
encoding type that results in storage savings. It is a built-in command that will find the
optimal compression for each column. You can then apply the recommended compression
to the table using the alter statement or by creating a new table with the new encoding
types. Then, you can copy the data from the old table to the new table.

Managing data distribution
Distribution style is a table property that dictates how that table's data is distributed
throughout the compute nodes. The goal of data distribution is to leverage the massively
parallel processing of Amazon Redshift and reduce the I/O during query processing to
improve performance. Amazon Redshift Advisor provides actionable recommendations
on distribution style for the table via the alter statement. Using automatic table
optimization allows you to self-manage the table distribution style based on workload
patterns:

• KEY: The value is hashed. The same value goes to the same location (slice).

• ALL: The entirety of the table data goes to the first slice of every compute node.

• EVEN: Round robin data distribution is performed across the compute nodes
and slices.

• AUTO: Combines the EVEN, ALL, and KEY distributions:

Managing data distribution 203

Figure 7.6 – Data distribution styles

In this recipe, you will learn how Amazon Redshift's automatic table style works and the
benefits of different distribution styles.

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift.

• An Amazon Redshift cluster deployed in AWS region eu-west-1.

• Amazon Redshift cluster master user credentials.

• Access to any SQL interface, such as a SQL client or the Amazon Redshift
Query Editor.

204 Performance Optimization

• An IAM role attached to an Amazon Redshift cluster that can access Amazon S3.
We will reference it in this recipe as [Your-Redshift_Role].

• An AWS account number. We will reference it in this recipe as [Your-AWS_
Account_Id].

How to do it…
In this recipe, we will create a customer table with different distribution keys and analyze
their join effectiveness and data distribution:

1. Connect to the Amazon Redshift cluster using a SQL client or the Query Editor.

2. Create the dwdate table with the default auto-distribution style. Then, run the
copy command, replacing [Your-AWS_Account_Id] and [Your-Redshift_
Role] with the respective values:

DROP TABLE IF EXISTS dwdate;

CREATE TABLE dwdate

(

 d_datekey INTEGER NOT NULL,

 d_date VARCHAR(19) NOT NULL,

 d_dayofweek VARCHAR(10) NOT NULL,

 d_month VARCHAR(10) NOT NULL,

 d_year INTEGER NOT NULL,

 d_yearmonthnum INTEGER NOT NULL,

 d_yearmonth VARCHAR(8) NOT NULL,

 d_daynuminweek INTEGER NOT NULL,

 d_daynuminmonth INTEGER NOT NULL,

 d_daynuminyear INTEGER NOT NULL,

 d_monthnuminyear INTEGER NOT NULL,

 d_weeknuminyear INTEGER NOT NULL,

 d_sellingseason VARCHAR(13) NOT NULL,

 d_lastdayinweekfl VARCHAR(1) NOT NULL,

 d_lastdayinmonthfl VARCHAR(1) NOT NULL,

 d_holidayfl VARCHAR(1) NOT NULL,

 d_weekdayfl VARCHAR(1) NOT NULL

);

COPY public.dwdate from 's3://packt-redshift-cookbook/
dwdate/' iam_role 'arn:aws:iam::[Your-AWS_Account_

Managing data distribution 205

Id]:role/[Your-Redshift_Role]' CSV gzip COMPUPDATE
PRESET dateformat 'auto';

To verify the distribution style of the dwdate table, execute the preceding
command.

Here is the expected output:

Figure 7.7 – Output of the preceding query
Amazon Redshift, by default, sets the distribution style to AUTO(ALL). Amazon
Redshift automatically manages the distribution style for the table, and for small
tables, it creates a distribution style of ALL. With the ALL distribution style, the
data for this table is stored on every compute node slice as 0. The distribution style
of ALL is well-suited for small dimension tables, which enables join performance
optimization for large tables with smaller dimension tables.

Let's create the customer table with the default auto-distribution style using the
following code, replacing [Your-AWS_Account_Id] and [Your-Redshift_
Role].

3. Now, let's modify the distribution style of the customer table using the c_
nationkey column by executing the following query:

 alter table customer alter distkey C_NATIONKEY;

4. Now, let's verify the distribution style of the customer table by executing the
following query:

select "schema", "table", "diststyle", skew_rows

from svv_table_info

where "table" = 'customer';

Here is the expected output:

Figure 7.8 – Output of the preceding query

206 Performance Optimization

c_nationkey causes the skewness in the distribution, as shown by the skew_row
column, since it has less distinct values (low cardinality). Ideally, skew_row should
be less than 5. When data is skewed, some compute nodes will do more work
compared to others. The performance of the query is affected by the compute node
that contains more data.

5. Now, let's alter the distribution key for the customer table using the high
cardinality column; that is, c_custkey. Execute the following query and verify the
table skew:

alter table customer alter distkey c_custkey;

select "schema", "table", "diststyle", skew_rows

from svv_table_info

where "table" = 'customer';

---output----

Now, the customer table has low skew_rows, which will ensure all the compute nodes
can perform equal work when processing the query.

How it works…
Amazon Redshift data distribution is a physical table property. It determines how the data
is distributed across the compute nodes. The purpose of data distribution is to have every
compute node work in parallel to execute the workload and reduce the I/O during join
performance, to optimize performance. Amazon Redshift's automatic table optimizations
enable you to achieve this. You also have the option to select your distribution style to
fine-tune your most demanding workloads to achieve significant performance. Creating
a Redshift table with auto-table optimization will automatically change the distribution
style based on your workload pattern. You can review the alter table recommendations
in the svv_alter_table_recommendations view, and the actions that have been
applied by automatic table optimization in the svl_auto_worker_action view.

Managing sort keys 207

Managing sort keys
Data sorting in Amazon Redshift is a concept regarding how data is physically sorted
on the disk. Data sorting is determined by the sortkey property defined in the
table. Amazon Redshift automatically creates in-memory metadata called zone maps.
Zone maps contain the minimum and maximum values for each block. Zone maps
automatically enable you to eliminate I/O from scanning blocks that do not contain data
for queries. Sort keys make zone maps more efficient.

sortkey can be defined on one or more columns. The columns that are defined in the
sort keys are based on your query pattern. Most frequently, filtered columns are good
candidates for the sort key. The sort key column's order is defined from low to high
cardinality. Sort keys enable range-restricted scans to prune blocks, eliminating I/O and
hence optimizing query performance. Redshift Advisor provides recommendations on
optimal sort keys, and automatic table optimization handles the sort key changes based
on our query pattern.

In this recipe, you will learn how Amazon Redshift compound sort keys work.

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift.

• An Amazon Redshift cluster deployed in AWS region eu-west-1.

• Amazon Redshift cluster master user credentials.

• Access to any SQL interface, such as a SQL client or the Amazon Redshift
Query Editor.

• An IAM role attached to an Amazon Redshift cluster that can access Amazon S3.
We will reference it in this recipe as [Your-Redshift_Role].

• An AWS account number. We will reference it in this recipe as [Your-AWS_
Account_Id].

208 Performance Optimization

How to do it…
In this recipe, we will use the lineitem table with sort keys and analyze the performance
queries. Let's get started:

1. Connect to the Amazon Redshift cluster using a SQL client or the Query Editor.

2. Let's create the lineitem table with the default auto sortkey using the
following code. Remember to replace [Your-AWS_Account_Id] and
[Your-Redshift_Role] with their respective values:

drop table if exists lineitem;

CREATE TABLE lineitem

(

 L_ORDERKEY BIGINT NOT NULL,

 L_PARTKEY BIGINT,

 L_SUPPKEY BIGINT,

 L_LINENUMBER INTEGER NOT NULL,

 L_QUANTITY DECIMAL(18,4),

 L_EXTENDEDPRICE DECIMAL(18,4),

 L_DISCOUNT DECIMAL(18,4),

 L_TAX DECIMAL(18,4),

 L_RETURNFLAG VARCHAR(1),

 L_LINESTATUS VARCHAR(1),

 L_SHIPDATE DATE,

 L_COMMITDATE DATE,

 L_RECEIPTDATE DATE,

 L_SHIPINSTRUCT VARCHAR(25),

 L_SHIPMODE VARCHAR(10),

 L_COMMENT VARCHAR(44)

)

distkey (L_ORDERKEY) ;

COPY lineitem from 's3://packt-redshift-cookbook/
lineitem/' iam_role 'arn:aws:iam::[Your-AWS_Account_
Id]:role/[Your- Redshift_Role]' CSV gzip COMPUPDATE
PRESET;

Note
Depending on the size of the cluster, the COPY command will take around 15
minutes to complete due to the size of the data.

Managing sort keys 209

3. Let's verify the sort key of the lineitem table with the default auto sortkey
using the following query:

select "schema", "table", "diststyle", skew_rows,
sortkey1, unsorted

from svv_table_info

where "table" = 'lineitem';

Here is the expected output:

Figure 7.9 – Output of the preceding query
As shown in the preceding output, the lineitem table has been set with
AUTO(sortkey). Amazon Redshift Advisor, based on your workload pattern,
will make recommendations and the automatic table optimization will alter the
table with an optimal sort key.

4. To see the effectiveness of block pruning using the sort key, execute the following
query and take note of query_id:

SELECT

 l_returnflag,

 l_linestatus,

 sum(l_quantity) as sum_qty,

 sum(l_extendedprice) as sum_base_price,

 sum(l_extendedprice * (1 - l_discount)) as sum_disc_
price,

 count(*) as count_order

FROM

 lineitem

WHERE

 l_shipdate = '1992-01-10'

GROUP BY

 l_returnflag,

 l_linestatus

ORDER BY

 l_returnflag,

 l_linestatus;

select PG_LAST_QUERY_ID() as query_id;

210 Performance Optimization

Here is the expected output:
query_id

1240454

Note
Amazon Redshift captures the operational statistics of each query step in
system tables. Details about Svl_query_summary can be found at
https://docs.aws.amazon.com/redshift/latest/dg/r_
SVL_QUERY_SUMMARY.html.

5. Execute the following query to measure the effectiveness of the sort key for the
preceding query, replacing [query_id] with the output from the preceding step:

SELECT query, step, label, is_rrscan, rows, rows_pre_
filter, is_diskbased

from svl_query_summary where query in ([query_id])

and label like '%lineitem%'

order by query,step;

Here is the expected output:

rows_pre_filter indicates that Amazon Redshift was effectively able to use the
sort key to rows_pre_filtered 4,066,288 down to 18,385. is_rrscan is true
for these range scans. Amazon Redshift automatically leverages zone maps to prune
out the blocks that do not match the filter criteria of the query.

6. Let's alter the lineitem table and add the l_shipdate column as our sortkey.
Most of the queries we will run will use l_shipdate as the filter. L_shipdate is
a low cardinality column:

alter table lineitem alter sortkey (L_SHIPDATE);

Note
Depending on the size of the cluster, the ALTER statement will take at around
15 minutes to complete due to the size of the data.

To see the effectiveness of sortkey, execute the following query and capture the
query ID:

query_id_1

Managing sort keys 211

Here is the expected output:
1240216

7. Now, let's modify the query so that it purposely casts the l_shipdate column as
a varchar data type and then applies the filter. Execute the following modified
query and capture the output of query_id:

set enable_result_cache_for_session = off;

SELECT

 l_returnflag,

 l_linestatus,

 sum(l_quantity) as sum_qty,

 sum(l_extendedprice) as sum_base_price,

 sum(l_extendedprice * (1 - l_discount)) as sum_disc_
price,

 count(*) as count_order

FROM

 lineitem

WHERE

 cast(l_shipdate as varchar(10)) = '1992-01-10'

GROUP BY

 l_returnflag,

 l_linestatus

ORDER BY

 l_returnflag,

 l_linestatus;

select PG_LAST_QUERY_ID() as query_id_2;

---expected sample output--—

query_id_2

1240218

8. Now, let's execute the following query to analyze the effectiveness of the sort
key columns, replacing [query_id_1] and [query_id_2] shown in the
preceding steps:

SELECT query, step, label, is_rrscan, rows, rows_pre_
filter, is_diskbased

212 Performance Optimization

from svl_query_summary where query in ([query_id_1],[
query_id_2])

and label like '%lineitem%'

order by query,step;

Here is the expected output:

Figure 7.10 – Output of the preceding query
[query_id_1], which used l_shipdate to filter rows_pre_filter, is
4066288 versus [query_id_2], which was cast to rows_pre_filter and is
599037902. This means that a full table scan was performed. As a best practice,
to make your sort keys effective, avoid applying functions or casting to sort key
columns.

How it works…
Using sort keys when creating a table allows you to perform efficient range-restricted
scans of the data, when the sort key is referenced in the where conditions. Amazon
Redshift automatically leverages the in-memory metadata to prune out the blocks. The
sort keys make the zone maps more pristine. Applying sort keys to the most commonly
used columns as filters in a query can significantly reduce the I/O, and hence optimize
query performance for any workload. You can learn more about sort keys at https://
docs.aws.amazon.com/redshift/latest/dg/t_Sorting_data.html.

Analyzing and improving queries
Amazon Redshift defaults the table sort key and distribution key to AUTO. Amazon
Redshift can learn from the workloads and automatically set the right sort and
distribution style, the two big levers that dictate the table's design and optimization.
Amazon Redshift also provides insights into the query plan, which helps optimize the
queries when authoring them. This plan contains detailed steps about how to fetch
the data.

https://docs.aws.amazon.com/redshift/latest/dg/t_Sorting_data.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Sorting_data.html

Analyzing and improving queries 213

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift.

• An Amazon Redshift cluster deployed in AWS region eu-west-1.

• Amazon Redshift cluster master user credentials.

• Access to any SQL interface, such as a SQL client or the Amazon Redshift
Query Editor.

• An IAM role attached to an Amazon Redshift cluster that can access Amazon S3.
We will reference it in this recipe as [Your-Redshift_Role].

• An AWS account number. We will reference it in this recipe as [Your-AWS_
Account_Id].

How to do it…
In the recipe, we will use the Retail System Dataset from Chapter 3, Loading and
Unloading Data, to perform analytical queries and optimize them:

1. Connect to the Amazon Redshift cluster using any SQL interface, such as a SQL
client or the Query Editor, and execute EXPLAIN on a query:

explain

SELECT o_orderstatus,

 COUNT(o_orderkey) AS orders_count,

 SUM(l_quantity) AS quantity,

 MAX(l_extendedprice) AS extendedprice

FROM lineitem

 JOIN orders ON l_orderkey = o_orderkey

WHERE

 L_SHIPDATE = '1992-01-29'

GROUP BY o_orderstatus;

Here is the expected output:
QUERY PLAN

 XN HashAggregate (cost=97529596065.20..97529596065.22
rows=3 width=36)

214 Performance Optimization

 -> XN Hash Join DS_BCAST_INNER
(cost=3657.20..97529594861.20 rows=120400 width=36)

 Hash Cond: ("outer".o_orderkey = "inner".l_
orderkey)

 -> XN Seq Scan on orders (cost=0.00..760000.00
rows=76000000 width=13)

 -> XN Hash (cost=3047.67..3047.67 rows=243814
width=31)

 -> XN Seq Scan on lineitem
(cost=0.00..3047.67 rows=243814 width=31)

 Filter: (l_shipdate = '1992-01-
29'::date)

As shown in the preceding output, the explain command provides insights
into the steps that were performed by the query. As we can see, lineitem and
the orders table have been joined using a hash join. Each step also provides
the relative cost of comparing the expensive steps in the query for optimization
purposes.

Note
Please also see https://docs.aws.amazon.com/redshift/
latest/dg/c-query-planning.html for a step-by-step illustration
of the query planning and execution steps.

2. Now, execute the analytical query using the following command to capture query_
id for analysis:

SELECT o_orderstatus,

 COUNT(o_orderkey) AS orders_count,

 SUM(l_quantity) AS quantity,

 MAX(l_extendedprice) AS extendedprice

FROM lineitem

 JOIN orders ON l_orderkey = o_orderkey

WHERE L_SHIPDATE = '1992-01-29'

GROUP BY o_orderstatus;

select

PG_LAST_QUERY_ID() as query_id;

https://docs.aws.amazon.com/redshift/latest/dg/c-query-planning.html
https://docs.aws.amazon.com/redshift/latest/dg/c-query-planning.html

Analyzing and improving queries 215

Here is the expected output:
query_id

24580051

Note that this query_id that will be used later to analyze the query.

3. Execute the following command to analyze the effectiveness of the sort key column
on the lineitem table by replacing [query_id] from the preceding step:

SELECT step, label, is_rrscan, rows, rows_pre_filter, is_
diskbased

from svl_query_summary where query = [query_id]

order by step;

Here is the expected output:
step | label | is_
rrscan | rows | rows_pre_filter | is_diskbased

------+---+------
-----+--------+-----------------+-------------

 0 | scan tbl=1450056 name=lineitem | t
| 57856 | 599037902 | f

 0 | scan tbl=361382 name=Internal Worktable | f
| 1 | 0 | f

 0 | scan tbl=1449979 name=orders | t
| 79119 | 76000000 | f

 0 | scan tbl=361380 name=Internal Worktable | f
| 173568 | 0 | f

 0 | scan tbl=361381 name=Internal Worktable | f
| 32 | 0 | f

As we can see, the query optimizer can effectively make use of the range restricted
scan (is_rrscan) on the l_shipdate column in the lineitem table, to
filter out the rows from 599037902 rows to 57856. This can be compared to the
rows_pre_filter and rows columns in the preceding output. Also, none of the
steps spill to disk, as indicated by is_diskbased = f.

216 Performance Optimization

4. Now, let's execute the following command to analyze the effectiveness of our data
distribution:

SELECT step,

 label,

 slice,

 ROWS,

 bytes

FROM SVL_QUERY_REPORT

WHERE query IN (24580051)

ORDER BY step;

Here is the expected output:
| label | slice
| rows | bytes

------+---+------
-+-------+---------

 0 | scan tbl=1450056 name=lineitem | 2
| 1780 | 56960

 0 | scan tbl=1450056 name=lineitem | 27
| 1859 | 59488

 0 | scan tbl=1450056 name=lineitem | 5
| 1778 | 56896

 0 | scan tbl=1450056 name=lineitem | 12
| 1755 | 56160

 0 | scan tbl=1450056 name=lineitem | 6
| 1833 | 58656

 0 | scan tbl=1450056 name=lineitem | 28
| 1874 | 59968

Notice that all the slices are processing approximately the same number of rows.
That indicates good data distribution.

5. Amazon Redshift provides consolidated alerts from the query execution to
prioritize the analysis effort. You can execute the following query to view the alerts
from the query's execution:

select event, solution

from stl_alert_event_log

where query in (24580051);

Analyzing and improving queries 217

Here is the expected output:
Very selective query filter:ratio=rows(2470)/rows_pre_
user_filter(2375000)=0.001040

Review the choice of sort key to enable range restricted
scans, or run the VACUUM command to ensure the table is
sorted

In the preceding query output, since we've already confirmed that the sort keys are
effectively being used, using VACUUM will ensure that the data is sorted and that
range restricted scans can be more effective.

6. Another alert that you can view from stl_alert_event_log is "Statistics for the
tables in the query are missing or out of date." To fix this issue, you can execute the
Analyze query, as follows:

analyze lineitem;

Here is the expected output:
ANALYZE executed successfully

Here, lineitem has been updated with the current statistics, which will enable the
optimizer to pick an optimal plan.

How it works…
Amazon Redshift automates performance tuning as part of its managed service. This
includes automatic vacuum delete, automatic table sort, automatic analyze, and Amazon
Redshift Advisor for actionable insights into optimizing cost and performance. These
capabilities are enabled through a machine learning (ML) model that can learn from
your workloads to generate and apply precise, high-value optimizations. You can read
more about automatic table optimization here: https://aws.amazon.com/blogs/
big-data/optimizing-tables-in-amazon-redshift-using-automatic-
table-optimization/.

https://aws.amazon.com/blogs/big-data/optimizing-tables-in-amazon-redshift-using-automatic-table-optimization/
https://aws.amazon.com/blogs/big-data/optimizing-tables-in-amazon-redshift-using-automatic-table-optimization/
https://aws.amazon.com/blogs/big-data/optimizing-tables-in-amazon-redshift-using-automatic-table-optimization/

218 Performance Optimization

Configuring workload management (WLM)
Amazon Redshift workload management (WLM) enables you to set up query priorities
in a cluster. WLM helps you create query queues that can be defined based on different
parameters such as memory allotment, priority, user groups, query groups, and query
monitoring rules. Users generally use WLM to set priorities for different query types, such
as long-running versus short running or ETL versus Reporting, and so on. In this recipe,
we will demonstrate how to configure WLM within a Redshift cluster. By doing this, you
can manage multiple workloads running on the same cluster, and each of them can be
assigned different priorities based on your business needs.

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift cluster deployed in AWS region eu-west-1

How to do it…
In this recipe, we will configure WLM for your cluster using the AWS Console:

1. Open the Amazon Redshift console at https://console.aws.amazon.com/
redshiftv2/home.

2. From the left-hand tool bar, browse to CONFIG and select Workload
Management:

Configuring workload management (WLM) 219

Figure 7.11 – Navigating Workload Management on the AWS Redshift Console

220 Performance Optimization

3. On the Workload management page, we will need to create a new parameter group
by clicking the Create button:

Figure 7.12 – Configuring a new parameter group

4. A Create parameter group pop-up will open. Enter a Parameter group name
and Description. Click on Create to finish creating a new parameter group:

Configuring workload management (WLM) 221

Figure 7.13 – Creating a new parameter group called custom-parameter-group

5. By default, Automatic WLM is configured under Workload Management.
Automatic WLM is recommended, and it calculates the optimal memory and
concurrency for query queues.

6. To create a new queue, click on Edit workload queues in the Workload queues
section. On the Modify workload queues: custom-parameter-group page, click on
Add queue.

7. You can configure the queue name by replacing the Queue 1 string and configuring
other settings, such as Concurrency scaling mode between auto and off and Query
priority between 5 levels ranging from lowest to highest. Additionally, you can
include User groups or Query groups that need to be routed to this specific queue.

222 Performance Optimization

For example, we created an ETL queue with concurrency scaling disabled and query
priority set to Normal. The user groups for data_engineers and query groups
for load and transform will be routed to this queue:

Figure 7.14 – Configuring the ETL queue on the parameter group

8. You can repeat step 7 to create a total of 8 queues.

9. You can create Query monitoring rules by either selecting Add rule from template
or Add custom rule. This allows you to perform the log, abort, or change query
priority action based on the predicates for the given query monitoring metrics.

For example, here, we created a rule to abort the query if it returns more than 100
million rows:

Figure 7.15 – Configuring a query monitoring rule

10. To finish configuring the WLM settings, browse to the bottom of the page and
click Save.

Configuring workload management (WLM) 223

11. To apply the new WLM settings to the cluster, browse to CLUSTERS and click the
checkbox besides the Amazon Redshift cluster that you want to apply the new WLM
settings to. Go to Actions and select Modify:

Figure 7.16 – Applying custom-parameter-group to your cluster

12. Under the Modify cluster page, browse to the second set of Database
configurations. Click the Parameter groups dropdown and select the newly
created parameter group.

13. Go to the bottom of the page and select Modify cluster. The changes are in the
queue and applied once the cluster is rebooted.

14. To reboot the cluster at an appropriate time that suits the business, click the
checkbox besides the Amazon Redshift cluster, go to Actions, and select Reboot.
A pop-up will appear to confirm the reboot. Select Reboot cluster.

How it works…
Amazon WLM's settings allows you to set up workload priorities and the concurrency of
different types of workloads that run on an Amazon Redshift cluster. In addition, we have
Auto WLM (recommended), which manages short query acceleration, memory allotment,
and concurrency automatically. Using manual WLM, you can configure the memory and
concurrency values for your workloads, if needed (not recommended).

224 Performance Optimization

Utilizing Concurrency Scaling
The Concurrency Scaling feature provided by Amazon Redshift allows you to support
concurrent users and queries for steady query performance. Amazon Redshift utilizes
resources that are available in a cluster to maximize throughput for analytical queries.
Hence, when multiple queries are to be executed at the same time, Amazon Redshift will
utilize workload management (WLM) to execute a few queries at a time so that they
complete as soon as possible and don't take up the rest of the queries. This is done instead
of you having to run all the queries for longer.

When the Concurrency Scaling feature is turned on, Amazon Redshift can instantly bring
up additional redundant clusters to execute the queued-up queries and support burst
traffic in the data warehouse. The redundant clusters are automatically shut down once the
queries complete/there are no more queries waiting in the queue.

Getting ready
To complete this recipe, you will need the following:

• An Amazon Redshift cluster deployed in AWS region eu-west-1. You will also need
the retail system dataset from the Loading data from Amazon S3 using COPY recipe
in Chapter 3, Loading and Unloading Data.

• Amazon Redshift cluster master user credentials.

• Access to any SQL interface, such as a SQL client or the Amazon Redshift
Query Editor.

• Install the par_psql client tool (https://github.com/gbb/par_psql)
and psql https://docs.aws.amazon.com/redshift/latest/mgmt/
connecting-from-psql.html on a Linux machine that can connect to an
Amazon Redshift cluster.

How to do it…
In this recipe, we will be using the par_psql (https://github.com/gbb/
par_psql) tool to execute parallel queries on Amazon Redshift to simulate concurrent
workloads. Let's get started:

1. Navigate to the AWS Amazon Redshift console and go to Amazon Redshift >
Clusters > your Amazon Redshift Cluster. Click on the Properties tab and scroll
down to Database configurations, as shown in the following screenshot:

https://github.com/gbb/par_psql
https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-from-psql.html
https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-from-psql.html
https://github.com/gbb/par_psql
https://github.com/gbb/par_psql

Utilizing Concurrency Scaling 225

Figure 7.17 – Database configurations

2. Select the Parameter group property associated with the Amazon Redshift cluster.

3. Click on the Parameter group property associated with the cluster.

4. Verify that max_concurrency_scaling_clusters has been set to > =1 and that
Workload queues has Concurrency scaling mode set to auto, as shown here:

Figure 7.18 – Workload queues

226 Performance Optimization

5. Update Concurrency scaling mode to auto in Workload Queues.

For a step-by-step guide to setting up the Concurrency Scaling feature, please refer
to the Managing workload management (WLM) recipe of this chapter.

6. Download the par_psql script from https://github.com/
PacktPublishing/Amazon-Redshift-Cookbook/blob/master/
Chapter07/conc_scaling.sql and copy it into the path where par_psql
has been installed. This script uses the retail system dataset, which we mentioned in
the Getting started section.

7. Execute the following command using the SQL client to capture the test's
starttime:

select sysdate as starttime

Here is the expected output:
starttime

2020-12-04 16:10:43

8. Execute the following command on the Linux box to simulate 100 concurrent
query runs:

export PGPASSWORD=[PASSWORD]

./par_psql --file=conc_scaling.sql -h [YOUR AMAZON
REDSHIFT HOST] -p [PORT] -d [DATABASE_NAME] -U [USER_
NAME]

9. Wait until all the queries have completed. Execute the following query to analyze the
query execution. Do this by replacing [starttime] with the value corresponding
to the datetime at the start of the script's execution, before the following query:

SELECT w.service_class AS queue

 , case when q.concurrency_scaling_status = 1 then
'Y' else 'N' end as conc_scaled

 , COUNT(*) AS queries

 , SUM(q.aborted) AS aborted

 , SUM(ROUND(total_queue_time::NUMERIC / 1000000,2
)) AS queue_secs

 , SUM(ROUND(total_exec_time::NUMERIC / 1000000,2)
) AS exec_secs

FROM stl_query q

 JOIN stl_wlm_query w

Optimizing Spectrum queries 227

 USING (userid,query)

WHERE q.userid > 1

 AND q.starttime > '[starttime]'

GROUP BY 1,2

ORDER BY 1,2;

Here is the expected output:
queue | conc_scaled | queries | aborted | queue_secs |
exec_secs

-------+-------------+---------+---------+------------+--

 9 | N | 75 | 0 | 3569.83 |
31.24

 9 | Y | 25 | 0 | 0.0|
10.97

As we can see, Amazon Redshift was able to take advantage of the Concurrency
Scaling feature to execute 25% of the queries on the burst cluster.

How it works…
Concurrency Scaling allows users see the most current data, independent of whether the
queries execute the main cluster or a Concurrency Scaling cluster. When Concurrency
Scaling is used for peak workloads, you will be charged additional cluster time, but only
for when they're used. Concurrency Scaling is enabled at a WLM queue, and eligible
queries are sent to perform Concurrency Scaling when the concurrency in the queue
exceeds the defined values, to ensure the queries do not wait. You can find more details
about the queries that are eligible for Concurrency Scaling here: https://docs.aws.
amazon.com/redshift/latest/dg/concurrency-scaling.html.

Optimizing Spectrum queries
Amazon Redshift Spectrum allows you to extend your Amazon Redshift data warehouse
so that it can use SQL queries on data that is stored in Amazon S3. Optimizing Amazon
Redshift Spectrum queries allows you to gain optimal throughput for SQL queries, as well
as saving costs associated with them. In this recipe, we will learn how to gain insights into
the performance of Spectrum-based queries and optimize them.

https://docs.aws.amazon.com/redshift/latest/dg/concurrency-scaling.html
https://docs.aws.amazon.com/redshift/latest/dg/concurrency-scaling.html

228 Performance Optimization

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift and Amazon S3.

• An Amazon Redshift cluster deployed in AWS region eu-west-1.

• Amazon Redshift cluster master user credentials.

• Access to any SQL interface, such as a SQL client or the Amazon Redshift
Query Editor.

• An IAM role attached to an Amazon Redshift cluster that can access Amazon S3.
We will reference it in this recipe as [Your-Redshift_Role].

• An AWS account number. We will reference it in this recipe as [Your-AWS_
Account_Id].

How to do it…
In this recipe, we will use the Amazon.com customer product reviews dataset (refer
to Chapter 3, Loading and Unloading Data) to demonstrate how to gain insight into
Spectrum's SQL performance and tune it:

1. Open any SQL client tool and connect to the Amazon Redshift cluster. Create
a schema that points to the reviews dataset by using the following command,
remembering to replace the [Your-AWS_Account_Id] and [Your-
Redshift_Role] values with your own:

CREATE external SCHEMA reviews_ext_schema

FROM data catalog DATABASE 'reviews_ext_schema'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-
Redshift_Role]'

CREATE external DATABASE if not exists;

2. Using the reviews dataset, create a parquet version of the external tables by using
the following command:

CREATE external TABLE reviews_ext_schema.amazon_product_
reviews_parquet(

 marketplace varchar(2),

 customer_id varchar(32),

 review_id varchar(24),

 product_id varchar(24),

Optimizing Spectrum queries 229

 product_parent varchar(32),

 product_title varchar(512),

 star_rating int,

 helpful_votes int,

 total_votes int,

 vine char(1),

 verified_purchase char(1),

 review_headline varchar(256),

 review_body varchar(max),

 review_date date,

 year int)

stored as parquet

location 's3://packt-redshift-cookbook/reviews_parquet/';

3. Using the reviews dataset, create a plain text file (tab-delimited) version of the
external tables by using the following command:

CREATE external TABLE reviews_ext_schema.amazon_product_
reviews_tsv(

 marketplace varchar(2),

 customer_id varchar(32),

 review_id varchar(24),

 product_id varchar(24),

 product_parent varchar(32),

 product_title varchar(512),

 star_rating int,

 helpful_votes int,

 total_votes int,

 vine char(1),

 verified_purchase char(1),

 review_headline varchar(256),

 review_body varchar(max),

 review_date date,

 year int)

row format delimited

fields terminated by '\t'

stored as textfile

location 's3://packt-redshift-cookbook/reviews_tsv/';

230 Performance Optimization

4. Execute the following analytical queries to calibrate the throughputs. Take note of
the parquet_query_id and tsv_query_id outputs:

SELECT verified_purchase,

 SUM(total_votes) total_votes,

 avg(helpful_votes) avg_helpful_votes,

 count(customer_id) total_customers

FROM reviews_ext_schema.amazon_product_reviews_parquet

WHERE review_headline = 'Y'

GROUP BY verified_purchase;

select PG_LAST_QUERY_ID() as parquet_query_id;

SELECT verified_purchase,

 SUM(total_votes) total_votes,

 avg(helpful_votes) avg_helpful_votes,

 count(customer_id) total_customers

FROM reviews_ext_schema.amazon_product_reviews_tsv

WHERE review_headline = 'Y'

GROUP BY verified_purchase;

select PG_LAST_QUERY_ID() as tsv_query_id;

5. Analyze the performance of both these queries by using the following command,
substituting [parquet_query_id] and [tsv_query_id] from the
previous step:

select query, segment, elapsed as elapsed_ms, s3_scanned_
rows, s3_scanned_bytes, s3query_returned_rows, s3query_
returned_bytes, files

from svl_s3query_summary

where query in ([parquet_query_id], [tsv_query_id])

order by query,segment ;

Here is the expected output:
query,elapsed_ms,s3_scanned_rows,s3_scanned_
bytes,s3query_returned_rows,s3query_returned_bytes,files

parquet_query_id 3000554 5906460 142428017 4
1917 10

Optimizing Spectrum queries 231

tsv_query_id 9182604 5906460 2001945218 4
5222 10

As we can see, the .tsv version of the dataset took 9 seconds versus 3 seconds in
parquet since it has to scan 2 GB of data; only 0.14 MB of the data has to be scanned
when it's in parquet format, even though the content of the files was the same.

Having the data in a columnar format such as parquet improves the query's throughput.
It also reduces the cost that's incurred with the query due to an optimal scan being
performed on the dataset.

How it works…
Optimizing Amazon Redshift Spectrum queries works on the principle of reducing the
Amazon S3 scan and pushed down operations as much as possible into the infinitely
scalable Spectrum engine. This can be achieved by using the following techniques:

• Amazon Redshift Spectrum supports structured and semi-structured data formats
such as AVRO, PARQUET, ORC, TEXTFILE, JSON, and so on, and using
a columnar file format such as parquet or ORC can reduce I/O by reading only
the needed columns.

• Compress the row format file, such as a textfile, with compression file such as
.gzip, snappy or .bzip to save costs and gain faster performance.

• Use an optimal file size:

a. Avoid excessively small files (less than 1 MB).

b. Avoid large files (1 GB or more) if the file format can't be split; for example,
.gzip/snappy compressed text files.

• Organize the files as partitions. Take advantage of partition pruning and saving
costs with the query.

You can read more about optimization techniques here: https://aws.amazon.com/
blogs/big-data/10-best-practices-for-amazon-redshift-spectrum/.

https://aws.amazon.com/blogs/big-data/10-best-practices-for-amazon-redshift-spectrum/
https://aws.amazon.com/blogs/big-data/10-best-practices-for-amazon-redshift-spectrum/

8
Cost Optimization

Amazon Redshift allows you to operate your data warehouse from a few gigabytes to
a petabyte in size so that is simple to manage and is cost-effective. The cost is predictable,
even with unpredictable workloads, and provides up to 3x better price performance than
any other data warehouse with just $1,000 per terabyte per year.

Amazon Redshift provides flexible pricing options, both on-demand and reserved. With
reserved instance pricing, you can save up to 75% by committing to a 1-year or 3-year
term. There are a number of best practices you can follow to ensure you're getting the
best value with Amazon Redshift. This chapter will discuss some of the common cost
optimization methods that you can adopt to get the best cost performance.

The following recipes will be covered in this chapter:

• AWS Trusted Advisor

• Amazon Redshift Reserved Instance pricing

• Configuring pause and resume for an Amazon Redshift cluster

• Scheduling pause and resume

• Configuring elastic resize for an Amazon Redshift cluster

• Scheduling elastic resize

• Using cost controls to set actions for Redshift Spectrum

• Using cost controls to set actions for Concurrency Scaling

234 Cost Optimization

Technical requirements
To complete the recipes in this chapter, you will need to consult the following technical
requirements:

• Access to the AWS Console.

• An AWS administrator should create an IAM user by following Recipe 1 – Creating
an IAM user, in the Appendix. This IAM user will be used to some of the recipes in
this chapter.

• An AWS administrator should deploy the AWS CloudFormation template
(https://github.com/PacktPublishing/Amazon-Redshift-
Cookbook/blob/master/Chapter08/chapter_8_CFN.yaml) and create
one IAM policy and one IAM role:

a. An IAM policy attached to the IAM user, which will give them access to Amazon
Redshift, AWS Secrets Manager, Amazon CloudWatch, Amazon CloudWatch
Logs, AWS KMS, AWS Glue, Amazon EC2, AWS Trusted Advisor, AWS Billing,
AWS Cost Explorer, and Amazon S3.

b. An IAM role with access to schedule pause and resume and
elastic resizing for a Redshift cluster. We will reference this as
Chapter8RedshiftSchedulerRole.

• An Amazon Redshift cluster deployed in AWS Region eu-west-1.

AWS Trusted Advisor
AWS Trusted Advisor provides you with a summarized dashboard and detailed real-
time guidance to help you provision your resources while following AWS best practices.
Trusted Advisor checks help you optimize your AWS infrastructure, reduce your overall
costs, increase security and performance, and monitor your service limits.

AWS Trusted Advisor provides cost optimization checks for unutilized Amazon Redshift
clusters. It also provides cost optimization checks for the on-demand Amazon Redshift
clusters that can benefit from Reserved Instance cost pricing, thus providing you with
significant cost savings.

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift and AWS Trusted Advisor

• An Amazon Redshift cluster deployed in AWS Region eu-west-1

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter08/chapter_8_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter08/chapter_8_CFN.yaml

AWS Trusted Advisor 235

How to do it…
In this recipe, we will use AWS Trusted Advisor to identify opportunities for potential
savings:

1. Navigate to the AWS Management Console and select AWS Trusted Advisor.

2. On the Trusted Advisor Dashboard page, you will see a summary of checks for
cost optimization, along with potential monthly savings:

Figure 8.1 – AWS Trusted Advisor Dashboard

3. To drill down into the details of cost optimization, select Cost Optimization
from the left pane. If the Amazon Redshift clusters are underutilized, it will list
these clusters and their corresponding costs. You can choose to pause or delete the
clusters to reduce costs on on-demand clusters:

Figure 8.2 – Cost optimization recommendations

236 Cost Optimization

4. The cost optimization recommendations show the potential savings you could
make, along with Reserved Instances, for on-demand clusters. This is based on their
usage over the past 30 days:

Figure 8.3 – Amazon Redshift cost optimization opportunities

5. To view these potential cost savings, navigate to Cost Explorer from the
Management Console. Choose recommendations under Reservations. The
recommendations are to use Reserved Instances instead of on-demand ones, which
results in potential savings of 34% compared to on-demand. We will dive deeper
into potential savings with Reserved Instance pricing in the next recipe:

Figure 8.4 – Amazon Redshift cost optimization recommendations

How it works…
AWS Trusted Advisor is an application that infers best practices based on operational
data that's been derived from thousands of AWS customers. These checks are fall into
different categories, such as cost optimization, security, fault tolerance, performance,
and service limits. For a full list of checks, go to https://aws.amazon.com/
premiumsupport/technology/trusted-advisor/best-practice-
checklist/.

https://aws.amazon.com/premiumsupport/technology/trusted-advisor/best-practice-checklist/
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/best-practice-checklist/
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/best-practice-checklist/

Amazon Redshift Reserved Instance pricing 237

Amazon Redshift Reserved Instance pricing
Amazon Redshift Reserved Instance pricing is a billing construct that results in significant
savings for on-demand clusters that are utilized 24x7. To get large discounts on the
clusters for your data warehouse workload, you can reserve your instances. Once you
have determined the size and number of clusters for your workload, you can purchase
Reserved Instances (RIs) for discounts from 34% to 75% compared to on-demand
pricing.

RIs can be purchased using full upfront, partial upfront, or sometimes no upfront
payment plans. RIs can be purchased for up to 1 or 3 years. They are not tied to a
particular cluster; they can be pooled across clusters in your account. The following
representative chart shows the significant cost optimization you can get by using RI
pricing for 1 year or 3 years for different instances:

Figure 8.5 – Representative RI savings

Please see https://aws.amazon.com/redshift/pricing/ for the latest pricing
and savings recommendations.

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift, AWS Billing, and AWS Cost Explorer

• An Amazon Redshift cluster deployed in AWS Region eu-west-1

https://aws.amazon.com/redshift/pricing/

238 Cost Optimization

How to do it…
In this recipe, we will use Cost Explorer to see the significant cost savings we can gain by
using RIs for an existing on-demand cluster. Then, using the Amazon Redshift console,
we will dive into how to purchase reserved nodes. Let's get started:

1. Navigate to the AWS Management Console and select Cost Explorer.

2. On the left-hand side, choose Recommendations under Reservation. By selecting
1 year for RI term with All upfront as your Payment option, the pricing will result
in 34% savings compared to using on-demand clusters:

Figure 8.6 – AWS cost optimization recommendations

3. Now, let's see the benefits of cost savings when setting RI term to 3 years. Here, the
upfront results in significant cost savings of 65% compared to on-demand pricing:

Figure 8.7 – AWS cost optimization benefits

Amazon Redshift Reserved Instance pricing 239

4. To purchase the reserved nodes, navigate to the Amazon Redshift console. Choose
Clusters and then select Reserved nodes:

Figure 8.8 – Purchasing RIs

5. Choose the instance types you want to use and the RI term, which will either be
1 year or 3 years:

Figure 8.9 – RI plans and savings

240 Cost Optimization

6. Enter the number of nodes you need, check the acknowledgement checkbox, and
select Purchase reserved nodes. Once you have purchased these reserved nodes,
your billing will reflect your cost savings:

Figure 8.10 – Purchase reserved nodes

Note
You can refer to the different RI pricing options for Amazon Redshift at the
following links:

https://docs.aws.amazon.com/redshift/latest/mgmt/
purchase-reserved-node-instance.html

https://aws.amazon.com/redshift/pricing/

Configuring pause and resume for an Amazon
Redshift cluster
Customers generally have a set of development, test, and production workloads. Here,
production workloads must be up and running 24x7. The same can't be said for the
development and test workloads. To make cost-conscious decisions, customers can use the
pause and resume feature within Amazon Redshift to only resume for the development
and test clusters when they are in use, and then pause them when they're not in use.
Customers can perform this action on-demand or even schedule this for a specific
interval.

https://docs.aws.amazon.com/redshift/latest/mgmt/purchase-reserved-node-instance.html
https://docs.aws.amazon.com/redshift/latest/mgmt/purchase-reserved-node-instance.html
https://aws.amazon.com/redshift/pricing/

Configuring pause and resume for an Amazon Redshift cluster 241

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift cluster deployed in AWS Region eu-west-1

How to do it…
In this recipe, you will learn how to pause and resume the Amazon Redshift cluster using
the AWS Console. Let's get started:

1. Open the Amazon Redshift console: https://console.aws.amazon.com/
redshiftv2/home.

2. Select the cluster that you would like to pause. Then, click on Actions and select
Pause, as shown in the following screenshot:

Figure 8.11 – Selecting your cluster from the Amazon Redshift console

3. In the Pause cluster window, you have multiple options:

• Pause now: This option allows you to perform the pause operation on-demand.

• Pause later: This option allows you to perform the pause operation at a particular
date and time.

• Pause and resume on schedule: This option allows you to perform the pause and
resume operations on a given schedule.

https://console.aws.amazon.com/redshiftv2/home
https://console.aws.amazon.com/redshiftv2/home

242 Cost Optimization

We will review pausing the cluster on-demand here. Select the Pause now category
and click on the Pause now button to start the pause operation:

Figure 8.12 – Pausing the cluster

4. To verify that the cluster was paused successfully, go to the CLUSTERs tab and
review the Status details provided:

Figure 8.13 – Verifying that the cluster has been paused

Configuring pause and resume for an Amazon Redshift cluster 243

5. Select the cluster that you would like to pause, click on Actions, and select Resume:

Figure 8.14 – Resuming the cluster

6. In the Resume cluster window, you have multiple options:

• Resume now: This option allows you to perform the resume operation on-demand.

• Resume later: This option allows you to perform the resume operation at
a particular date and time.

• Resume and pause on schedule: This option allows you to perform the pause and
resume operations on a given schedule.

We will review resuming the cluster on-demand here. Select the Resume now
category and click on the Resume now button to start the resume operation:

Figure 8.15 – Resuming the cluster

244 Cost Optimization

7. To verify that the cluster is resumed successfully, go to the CLUSTER tab and
review the Status details provided:

Figure 8.16 – Verifying that the cluster has been resumed (available)

Note
The pause and resume operations can also be performed using the Redshift
API or SDK (https://docs.aws.amazon.com/redshift/
latest/APIReference/API_Operations.html). This allows
you to automate your operational tasks easily. For example, you can pause your
development/test cluster when it's not in use during non-business hours.

Scheduling pause and resume
Using the Amazon Redshift console, customers can schedule when the cluster will
be paused and resumed. For example, you can ensure that the cluster is only used for
development during normal business hours.

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift.

• An IAM role, Chapter8RedshiftSchedulerRole, that can schedule the pause
and resume operations for a Redshift cluster.

• An Amazon Redshift cluster deployed in AWS Region eu-west-1.

https://docs.aws.amazon.com/redshift/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/redshift/latest/APIReference/API_Operations.html

Scheduling pause and resume 245

How to do it…
In the recipe, you will learn how to pause and resume the Amazon Redshift cluster on
a schedule. Let's get started:

1. Open the Amazon Redshift console: https://console.aws.amazon.com/
redshiftv2/home.

2. Select the cluster that you would like to pause. Then, click on Actions and select
Pause, as shown in the following screenshot:

Figure 8.17 – Selecting your cluster from the Amazon Redshift console

3. To create a schedule for pause and resume, in the Pause cluster window, select
Pause and resume on schedule. Provide a Schedule name and Description:

Figure 8.18 – Creating a schedule for pause and resume

https://console.aws.amazon.com/redshiftv2/home
https://console.aws.amazon.com/redshiftv2/home

246 Cost Optimization

4. For this schedule, the Starts on and Ends on dates that should be applied. In the
Editor window, you can choose Week, Day, or Month for the pause and resume
schedule:

Figure 8.19 – Picking a time to pause and resume

5. In the Scheduler permissions section, you will need to select the pre-created IAM
role from the dropdown. We can use this to perform the modify operation on
the Redshift cluster and call the Redshift scheduler. Finally, click on the Schedule
recurring pause and resume button to schedule the operation:

Figure 8.20 – Providing permissions to perform the pause and resume operation

How it works…
When you pause a cluster, a snapshot is created, queries are terminated, and the cluster
enters the paused state. From a pricing perspective, on-demand billing is suspended for
that cluster, and only the storage incurs charges. When you resume the cluster, it creates
a cluster from the snapshot that was taken during the pause operation.

Configuring Elastic Resize for an Amazon Redshift cluster 247

Configuring Elastic Resize for an Amazon
Redshift cluster
The analytics workload requirements for enterprises change over time. Resizing makes
it easy to scale the workload up or down, and even change to newer instance classes with
a few clicks. Elastic Resize is a mechanism that's used to add nodes, remove nodes, and
change node types for an existing Amazon Redshift cluster.

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift cluster deployed in AWS Region eu-west-1

How to do it…
In this recipe, you will learn how to scale an existing Redshift cluster on demand. Let's get
started:

1. Open the Amazon Redshift console: https://console.aws.amazon.com/
redshiftv2/home.

2. Select redshift-cluster-1, click Actions, and select Resize:

Figure 8.21 – Cluster management for the Resize option

https://console.aws.amazon.com/redshiftv2/home
https://console.aws.amazon.com/redshiftv2/home

248 Cost Optimization

3. In the Resize cluster window, you can select Elastic Resize or Classic Resize. Here,
we will select Elastic Resize:

Figure 8.22 – Choosing the Elastic resize (recommended) option

4. On the same page, you can view your Current cluster configuration and what your
New cluster configuration will be. Select a new node type from the Node type
dropdown and selecting the number of nodes from the Nodes dropdown.

Here, we are moving from our 2-node dc.large existing cluster to a 2-node ra3.
xlplus cluster:

Figure 8.23 – Verifying the current and target sizing options

Configuring Elastic Resize for an Amazon Redshift cluster 249

5. For the resize options, you can choose Resize the cluster now, Schedule resize at
a later time or Schedule recurring resize events. For on-demand resizing, select
Resize the cluster now and click the Resize cluster now button. This will start the
resize operation immediately:

Figure 8.24 – Initiating the elastic resize operation

6. To monitor the resize operation, go to the EVENTS tab on the Redshift
home screen: https://console.aws.amazon.com/redshiftv2/
home?#events. This page will show the steps that were taken to resize the cluster:

Figure 8.25 – Monitoring the elastic resizing

7. To validate the new configuration, go to the CLUSTER tab and review the cluster
details:

Figure 8.26 – Validating the target's elastic resizing

250 Cost Optimization

Scheduling Elastic Resizing
Although we've reviewed the on-demand resize operations that satisfy most use cases,
there are times when customers are interested in scheduling a resize operation based on
their business requirements. For example, you might want to upsize your cluster before
starting your scheduled extract, transform and load process to satisfy any SLA needs.

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift

• An IAM role, Chapter8RedshiftSchedulerRole, that can schedule elastic
resizing for a Redshift cluster

• An Amazon Redshift cluster deployed in AWS Region eu-west-1

How to do it…
In this recipe, you will learn how to elastic resize the existing Redshift cluster using
a schedule:

1. Open the Amazon Redshift console: https://console.aws.amazon.com/
redshiftv2/home.

2. Select the cluster, click Actions, and select Resize:

Figure 8.27 – Cluster management

3. Select the Schedule recurring resize events option to repeat the upsize/downsize
operation based on a schedule:

https://console.aws.amazon.com/redshiftv2/home
https://console.aws.amazon.com/redshiftv2/home

Scheduling Elastic Resizing 251

Figure 8.28 – Creating a recurring resize event

4. Under the Schedule resize section, enter the name of the schedule under Schedule
name. Then, enter the dates when this schedule needs to start and stop by entering
them into Starts on and Ends on. Now, you can select when and how the cluster
configuration needs to change by selecting a Node type, Number of nodes, and
editing the Increase size every section.

For example, here, we want to scale the workload up to 4 nodes on day of 25 of
every month to manage the end of month reporting workload. Then, we want to
scale it back down to 2 nodes at the start of every month:

Figure 8.29 – Creating an elastic resize (upsize and downsize) schedule

252 Cost Optimization

5. In the Scheduler permissions section, select the pre-created IAM role from the
dropdown. Here, you can resize on the Redshift cluster and call the Redshift
scheduler. Finally, click the Schedule resize button to schedule the elastic resize
operation.

Here, we are selecting an IAM role from the dropdown called
RedshiftSchedulerIAMRole, which was pre-created with the correct access:

Figure 8.30 – Selecting RedshiftSchedularIAMRole for scheduling the elastic resize operation

6. Validate that the resize operation has been created by clicking on your cluster from
the main CLUSTER option and selecting the Schedule tab. The resize operations
will be listed under the Resize schedule section:

Figure 8.31 – Validating the elastic resize schedule

Using cost controls to set actions for Redshift Spectrum 253

How it works…
Amazon Elastic Resize takes around 10-15 minutes to complete. During this time, the
cluster is in read-only mode. When changing the node count but keeping the node type
the same, the data gets redistributed at the backend, the queries are momentarily paused,
and any connections are held open. When changing the node type, the operation creates
a new cluster from a snapshot, and the open connections are terminated.

Using cost controls to set actions for Redshift
Spectrum
Amazon Redshift allows you to extend your data warehouse to a data lake by performing
SQL queries directly on data on Amazon S3. You will be charged based on the number
of bytes that's scanned by Redshift Spectrum, rounded up to the next megabyte,
with a 10 MB minimum per query (https://aws.amazon.com/redshift/
pricing/#Redshift_Spectrum_pricing). There are no charges for Data
Definition Language (DDL) statements such as CREATE/ALTER/DROP TABLE for
managing partitions and failed queries.

In this recipe, you will learn how to use cost controls when using Amazon Redshift
Spectrum.

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift cluster deployed in AWS Region eu-west-1

https://aws.amazon.com/redshift/pricing/#Redshift_Spectrum_pricing
https://aws.amazon.com/redshift/pricing/#Redshift_Spectrum_pricing

254 Cost Optimization

How to do it…
In this recipe, you will set up controls for Amazon Redshift Spectrum usage to prevent any
accidental scans being performed by a monstrous query. Let's get started:

1. Navigate to the AWS Amazon Redshift console and navigate to Amazon Redshift
> Clusters > your Amazon Redshift cluster. Click on the Properties tab and scroll
down to Database configurations, as shown in the following screenshot:

Figure 8.32 – Selecting the parameter group associated with the Amazon Redshift cluster
Click on the parameter group associated with the cluster.

Using cost controls to set actions for Redshift Spectrum 255

2. Click on Edit workload queues and then Add custom rule, as shown in the
following screenshot:

Figure 8.33 – Modifying the workload queues
For a step-by-step guide on setting up workload management, please refer to
the Managing workload management (WLM) recipe in Chapter 7, Performance
Optimization. You cannot edit the default parameter groups, so you must create
a custom parameter group to edit the queues and monitoring rules associated with
your cluster.

256 Cost Optimization

3. Type in any rule names (any user-friendly names) and the dropdown next to the
predicates and select Spectrum scan (MB). Select > from the next dropdown and
100,000,000 as the value. Then, for Actions, select abort and press Save:

Figure 8.34 – Adding a custom query monitoring rule for Spectrum
Amazon Redshift will now abort any query that scans data that's over 100 TB in
size, and you will not be charged for any queries that were aborted. This prevents
any user from accidentally scanning a large amount of data from your data
warehouse.

4. Now, let's create some cost controls at the Amazon Redshift cluster level. Navigate to
Amazon Redshift > Clusters > your cluster, as shown in the following screenshot,
and click on Edit:

Figure 8.35 – Configuring your Redshift Spectrum usage limit

Using cost controls to set actions for Redshift Spectrum 257

5. Click on Configure usage limit. It should correspond with your Redshift Spectrum
usage limit, as shown in the following screenshot:

6.

Figure 8.36 – Configuring your limits and actions for Spectrum

258 Cost Optimization

7. For Time period, select Monthly and for Usage limit (TB), enter 1000, as follows:

Figure 8.37 – Setting up monthly limits for Spectrum usage

Now, the Amazon Redshift Spectrum feature is disabled when the monthly limit of 1,000
TB of data scanned is exceeded.

Using cost controls to set actions for Concurrency Scaling 259

Using cost controls to set actions for
Concurrency Scaling
Amazon Redshift Concurrency Scaling adds transient clusters to support concurrent
user queries. Concurrency Scaling is charged at a per-second, on-demand rate for
a Concurrency Scaling cluster in excess of the free credits that have been applied, but
only when it's serving your queries. It provides a 1-minute minimum charge each time
a Concurrency Scaling cluster is activated. You can accumulate 1 hour of Concurrency
Scaling cluster credits every 24 hours while your main cluster is running, which expires
every month. In this recipe, we will learn how to manage costs for Concurrency Scaling
to avoid any unexpected surprises. Please also see https://aws.amazon.com/
redshift/pricing/#Concurrency_Scaling_pricing for more details.

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift cluster deployed in AWS Region eu-west-1

How to do it…
In the recipe, you will set up controls for Concurrency Scaling usage on your Amazon
Redshift cluster. Let's get started:

1. Navigate to Amazon Redshift > Clusters > your cluster, as shown here. Then, click
on Edit next to Usage limits:

Figure 8.38 – Configuring your Redshift Spectrum usage limit

https://aws.amazon.com/redshift/pricing/#Concurrency_Scaling_pricing
https://aws.amazon.com/redshift/pricing/#Concurrency_Scaling_pricing

260 Cost Optimization

2. Click on Configure usage limit to edit it so that it corresponds to your Concurrent
scaling usage limit, as shown in the following screenshot:

Figure 8.39 – Configuring the limits and actions for Spectrum

3. For Time period, select Monthly and for Usage Limit (hh:mm), enter 30, as
follows:

Using cost controls to set actions for Concurrency Scaling 261

Figure 8.40 – Setting up monthly limits for Concurrency Scaling usage

Now, the Amazon Redshift Concurrency Scaling feature will be disabled when the
monthly limit is in excess of 30 hours.

In addition to disabling Concurrency Scaling when exceeding limits on your cluster,
you can also limit the number of concurrent clusters that are spun up using the max_
concurrency_scaling_clusters parameter, which we covered in Chapter 7,
Performance Optimization.

9
Lake House

Architecture
The lake house is an architectural pattern that makes data easily accessible across
customers' analytics solutions, thereby preventing data silos. Amazon Redshift is the
backbone of the lake house architecture—it allows enterprise customers to query data
across data lakes, operational databases, and multiple data warehouses to build an
analytics solution without having to move data in and out of these different systems. In
this chapter, you will learn how you can leverage the lake house architecture to extend the
data warehouse to services outside Amazon Redshift to build your solution, while taking
advantage of the built-in integration. For example, you can use the Federated Query
capability to join the operational data in your relational systems to historical data in
Amazon Redshift to analyze a promotional trend.

The following recipes are discussed in this chapter:

• Building a data lake catalog using Amazon Web Services (AWS) Lake Formation

• Exporting a data lake from Amazon Redshift

• Extending a data warehouse using Amazon Redshift Spectrum

• Data sharing across multiple Amazon Redshift clusters

• Querying operational sources using Federated Query

264 Lake House Architecture

Technical requirements
Here are the technical requirements in order to complete the recipes in this chapter:

• Access to the AWS Management Console.

• AWS administrators should create an Identity and Access Management (IAM)
user by following Recipe 1 – Creating an IAM user in the Appendix. This IAM user
will be deployed to perform some of the recipes in this chapter.

• AWS administrators should create an IAM role by following Recipe 3 – Creating
an IAM Role for an AWS service in the Appendix. This IAM role will be deployed to
perform some of the recipes in this chapter.

• AWS administrators should deploy the AWS CloudFormation template (https://
github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/
master/Chapter09/chapter_9_CFN.yaml) to create two IAM policies:

a. An IAM policy attached to the IAM user that will give them access to Amazon
Redshift, Amazon Elastic Compute Cloud (Amazon EC2), Amazon Simple
Storage Service (Amazon S3), Amazon Simple Notification Service (Amazon
SNS), Amazon CloudWatch, Amazon CloudWatch Logs, AWS Key Management
Service (AWS KMS), AWS IAM, AWS CloudFormation, AWS CloudTrail, Amazon
Relational Database Service (Amazon RDS), AWS Lake Formation, AWS Secrets
Manager, and AWS Glue

b. An IAM policy attached to the IAM role that will allow the Amazon Redshift
cluster to access Amazon S3, Amazon RDS, and AWS Glue

• Attach an IAM role to the Amazon Redshift cluster by following Recipe 4 – Attaching
an IAM Role to the Amazon Redshift cluster in the Appendix. Make a note of the IAM
role name—we will refer to this in the recipes as [Your-Redshift_Role].

• An Amazon Redshift cluster deployed in the eu-west-1 AWS Region.

• Amazon Redshift cluster masteruser credentials.

• Access to any Structured Query Language (SQL) interface such as a SQL client
or the Amazon Redshift Query Editor.

• An AWS account number—we will refer to this in the recipes as [Your-AWS_
Account_Id].

• An Amazon S3 bucket created in the eu-west-1 Region. We will refer to this in the
recipes as [Your-Amazon_S3_Bucket].

• The code files are referenced in the GitHub repository at https://github.
com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/
Chapter09.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter09/chapter_9_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter09/chapter_9_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter09/chapter_9_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter09
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter09

Building a data lake catalog using AWS Lake Formation 265

Building a data lake catalog using AWS Lake
Formation
The data lake design pattern has been widely adopted in the industry. Data lakes help to
break data silos by allowing you to store all of your data in a single, unified place. You can
collect the data from different sources and data can arrive at different frequencies—for
example, clickstream data. The data format can be structured, unstructured, or semi-
structured. Analyzing a unified view of the data allows you to derive more value and helps
to derive more insight from the data to drive business value.

Your data lake should be secure and should meet your compliance requirements, with
a centralized catalog that allows you to search and easily find data that is stored in the
lake. One of the advantages of data lakes is that you can run a variety of analytical tools
against them. You may also want to do new types of analysis on your data. For example,
you may want to move from answering questions on what happened in the past to
what is happening in real time, and using statistical models and forecasting techniques
to understand and answer what could happen in the future. To do this, you need to
incorporate machine learning (ML), big data processing, and real-time analytics. The
pattern that allows you to integrate your analytics into a data lake is the lake house
architecture. Amazon S3 object storage is used for centralized data lakes due to its
scalability, high availability, and durability.

You can see an overview of the lake house architecture here:

Figure 9.1 – Lake house architecture

266 Lake House Architecture

Typical challenges and steps involved in building a data lake include the following:

• Identifying sources and defining the frequency with which the data lake needs
to be hydrated

• Cleaning and cataloging the data

• Centralizing the configuration and application of security policies

• Integration of the data lake with analytical services that adhere to centralized
security policies

Here is a representation of a lake house workflow moving data from raw format to
analytics:

Figure 9.2 – Data workflow using the lake house architecture

The AWS Lake Formation service allows you to simplify the build, centralize management,
and configure security policies. AWS Lake Formation leverages AWS Glue for cataloging,
data ingestion, and data transformation.

In this recipe, you will learn how to use Lake Formation to hydrate the data lake from
a relational database, catalog the data, and apply security policies.

Getting ready
To complete this recipe, you will need the following to be set up:

• An IAM user with access to Amazon RDS, Amazon S3, and AWS Lake Formation.

• An Amazon RDS MySQL database to create an RDS MySQL cluster (for more
information, see https://aws.amazon.com/getting-started/
hands-on/create-mysql-db/).

In this recipe, the version of the MySQL engine is 5.7.31.
• A command line to connect to RDS MySQL (for more information, see https://

docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_
ConnectToInstance.html).

https://aws.amazon.com/getting-started/hands-on/create-mysql-db/
https://aws.amazon.com/getting-started/hands-on/create-mysql-db/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html

Building a data lake catalog using AWS Lake Formation 267

• This recipe is using an AWS EC2 Linux instance with a MySQL command line.
Open the security group for the RDS MySQL database to allow connectivity from
your client.

How to do it…
In this recipe, we will learn how to set up a data flow MySQL-based transactional database
to be cataloged using a Lake Formation catalog and query it easily using Amazon Redshift:

1. Let's connect to the MySQLRDS database using the following command. Enter the
password and it will connect you to the database:

mysql -h [yourMySQLRDSEndPoint] -u admin -p

2. We will create an ods database on MySQL and create a parts table in the ods
database:

create database ods;

CREATE TABLE ods.part

(

 P_PARTKEY BIGINT NOT NULL,

 P_NAME VARCHAR(55),

 P_MFGR VARCHAR(25),

 P_BRAND VARCHAR(10),

 P_TYPE VARCHAR(25),

 P_SIZE INTEGER,

 P_CONTAINER VARCHAR(10),

 P_RETAILPRICE DECIMAL(18,4),

 P_COMMENT VARCHAR(23)

);

3. On your client server, download the part.tbl file from https://github.
com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/
Chapter09/part.tbl to your local disk.

4. Now, we will load this file into the ods.part table on the MySQL database.
This will load 20000 records into the parts table:

LOAD DATA LOCAL INFILE 'part.tbl'

 INTO TABLE ods.part

 FIELDS TERMINATED BY '|'

 LINES TERMINATED BY '\n';

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter09/part.tbl
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter09/part.tbl
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter09/part.tbl

268 Lake House Architecture

5. Let's verify the record count loaded into the ods.part table:

MySQL [(none)]> select count(*) from ods.part;

+----------+

| count(*) |

+----------+

| 20000 |

+----------+

1 row in set (0.00 sec)

6. Navigate to AWS Lake Formation and click Get started:

Figure 9.3 – Navigating to Lake Formation

7. Now, let's set up the data lake location. Choose a register location:

Figure 9.4 – Data lake setup

8. Enter the location of the S3 bucket or folder in your account. If you do not have
one, create a bucket on S3 in your account. Keep the default IAM role and click on
Register location. With this, Lake Formation will manage the data lake location:

Building a data lake catalog using AWS Lake Formation 269

Figure 9.5 – Registering an Amazon S3 location in the data lake

9. Next, we will create a database that will serve as the catalog for the data in the data
lake. Click on Create database, as shown here:

Figure 9.6 – Creating a database in Lake Formation

270 Lake House Architecture

10. Use cookbook-data-lake as the database name. Select the s3 path that you
registered in AWS Lake Formation. Select the Use only IAM access control for new
tables in this database checkbox. Click on Create database:

Figure 9.7 – Configuring the Lake Formation database

Building a data lake catalog using AWS Lake Formation 271

11. Now, we will hydrate the data lake from MySQL as the source. From the left menu,
select Blueprint, and then click on Create blueprint.

12. Select Database snapshot, then right-click on Create a connection in AWS Glue to
open a new tab:

Figure 9.8 – Using a blueprint to create a database snapshot-based workflow

13. Set the following properties, as shown in Figure 9.9:

• Connection name—datalake-mysql

• Connection type—Amazon RDS

• Database engine—MySQL

272 Lake House Architecture

14. Select Next:

Figure 9.9 – Configuring Amazon RDS connection properties

15. Next, to set up access to your data store, set the following properties:

• Select an Instance name from the drop-down menu.

• Database name—ods.

• Username—admin.

• Enter the password you used to create the database.

16. Select Next and click Finish:

Building a data lake catalog using AWS Lake Formation 273

Figure 9.10 – Configuring the MySQL connection credentials

17. Select the datalake-mysql connection and select TestConnection. For the
IAM role, use AWSGlueServiceRole-cookbook. Select TestConnection.
This will take a few minutes. When it is successful, it will show a connected
successfully to your instance message. If you run into issues with the connection
setup, you can refer to the following Uniform Resource Locator (URL): https://
aws.amazon.com/premiumsupport/knowledge-center/glue-test-
connection-failed/.

Once successfully connected, you will see a connected successfully to your
instance message, as shown here:

Figure 9.11 – Verifying a successful connection to the MySQL database

https://aws.amazon.com/premiumsupport/knowledge-center/glue-test-connection-failed/
https://aws.amazon.com/premiumsupport/knowledge-center/glue-test-connection-failed/
https://aws.amazon.com/premiumsupport/knowledge-center/glue-test-connection-failed/

274 Lake House Architecture

18. In AWS Lake Formation, set the following properties under Create blueprint:

a. For Database connection, from the drop-down menu select datalake-mysql.

b. For Source data path, enter ods/part:

Figure 9.12 – Using a blueprint to create a database snapshot-based workflow

19. For Import target, select cookbook-data-lake for the Target database field. For
Target location, specify your bucket path with mysql as the folder. We will unload
the data from MySQL in Parquet format:

Building a data lake catalog using AWS Lake Formation 275

Figure 9.13 – Setting up the target for the data workflow

20. For Import frequency, select Run on demand:

Figure 9.14 – Configuring the import frequency for the workflow

276 Lake House Architecture

21. For Import options, specify the name of the workflow as hydrate-mysql. Under
IAM role, use AWSGlueServiceRole-cookbook. For Table prefix, use mysql.
Select Create:

Figure 9.15 – Configuring import options for the workflow

22. When the workflow is created, select Workflows. Select Actions and start the
workflow:

a. The workflow will crawl the mysql table metadata, which will catalog it in the
cookbook-data-lake database.

b. It will then unload the data from the mysql ods.part table in Parquet format
on the S3 location you provided.

c. Finally, it will crawl the Parquet data on S3 and create a table in the cookbook-
data-lake database.

Building a data lake catalog using AWS Lake Formation 277

You can see an overview of this here:

Figure 9.16 – Crawling the target S3 Parquet bucket

23. To view the status of the workflow, click on Run Id. Then, select View graph:

Figure 9.17 – Visualizing the data workflow

24. You can view the workflow steps and the corresponding status of the steps:

Figure 9.18 – Data workflow steps

278 Lake House Architecture

25. On successful completion of the workflow, the Last run status field will be marked
as COMPLETED:

Figure 9.19 – Data workflow execution status

26. Let's now view the details of your first data lake. To view the tables created in your
catalog, in the AWS Lake Formation console, from the left select Databases. Then,
select cookbook-data-lake.

27. Select View tables:

Figure 9.20 – Viewing tables created for the target

28. Let's verify the target dataset:

Figure 9.21 – Verifying the target dataset

Building a data lake catalog using AWS Lake Formation 279

29. To view the metadata of the Parquet unloaded data, select the mysql_ods_part
table. This table is the metadata of the data. The crawler identified the column
names and the corresponding data types:

Figure 9.22 – Viewing metadata for the target

30. The classification is PARQUET and the table points to the location of s3, where the
data resides:

Figure 9.23 – Verifying the target table format

280 Lake House Architecture

31. To view the unloaded files on S3, navigate to your S3 location:

Figure 9.24 – Verifying the underlying Parquet files in Amazon S3

32. Going back to AWS Lake Formation, let's see how the permissions can be managed.
In this step, we will use the mysql_ods_part table. Select the mysql_ods_
part table, select Actions, and select Grant:

Figure 9.25 – Setting up permissions for the target dataset

33. AWS Lake Formation enables you to centralize the process of configuring access
permissions to the IAM roles. Table-level and fine-grained access at column level
can be granted and controlled from a centralized place:

Building a data lake catalog using AWS Lake Formation 281

Figure 9.26 – Administering the Lake Formation catalog

Later in the chapter, using the Extending a data warehouse using Amazon Redshift
Spectrum recipe, you will learn how to query this data using Amazon Redshift.

282 Lake House Architecture

How it works…
AWS Lake Formation simplifies the management and configuration of data lakes in a
centralized place. AWS Glue's extract, transform, load (ETL) functionality, leveraging
Python and Spark Shell, ML transform enables you to customize workflows to meet your
needs. The AWS Glue/Lake Formation catalog integrates with Amazon Redshift for your
data warehousing, Amazon Athena for ad hoc analysis, Amazon SageMaker for predictive
analysis, and Amazon Elastic MapReduce (EMR) for big data processing.

Exporting a data lake from Amazon Redshift
Amazon Redshift empowers a lake house architecture, allowing you to query data within
the data warehouse and data lake using Amazon Redshift Spectrum and also to export
your data back to the data lake on Amazon S3, to be used by other analytical and ML
services. You can store data in open file formats in your Amazon S3 data lake when
performing the data lake export to integrate with your existing data lake formats.

Getting ready
To complete this recipe, you will need the following to be set up:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift cluster deployed in the eu-west-1 AWS Region with the retail
dataset created from Chapter 3, Loading and Unloading Data, using the Loading
data from Amazon S3 using COPY recipe

• Amazon Redshift cluster masteruser credentials

• Access to any SQL interface such as a SQL client or the Amazon Redshift Query
Editor

• An AWS account number—we will refer to this in the recipes as [Your-AWS_
Account_Id]

• An Amazon S3 bucket created in the eu-west-1 Region—we will refer to this in the
recipes as [Your-Amazon_S3_Bucket]

• An IAM role attached to the Amazon Redshift cluster that can access Amazon S3—
we will refer to this in the recipes as [Your-Redshift_Role]

Exporting a data lake from Amazon Redshift 283

How to do it…
In this recipe, we will use the sample dataset created from Chapter 3, Loading and
Unloading Data, to write the data back to the Amazon S3 data lake:

1. Connect to the Amazon Redshift cluster using a client tool such as MySQL
Workbench.

2. Execute the following analytical query to verify the sample dataset:

SELECT c_mktsegment,

 COUNT(o_orderkey) AS orders_count,

 SUM(l_quantity) AS quantity,

 COUNT(DISTINCT P_PARTKEY) AS parts_count,

 COUNT(DISTINCT L_SUPPKEY) AS supplier_count,

 COUNT(DISTINCT o_custkey) AS customer_count

FROM lineitem

 JOIN orders ON l_orderkey = o_orderkey

 JOIN customer c ON o_custkey = c_custkey

 JOIN dwdate

 ON d_date = l_commitdate

 AND d_year = 1992

 JOIN part ON P_PARTKEY = l_PARTKEY

 JOIN supplier ON L_SUPPKEY = S_SUPPKEY

GROUP BY c_mktsegment limit 5;

Here's the expected sample output:
c_mktsegment | orders_count | quantity | parts_count
| supplier_count | customer_count

--------------+--------------+--------------+------------
-+----------------+----------------

 MACHINERY | 82647 | 2107972.0000 | 75046
| 72439 | 67404

 AUTOMOBILE | 82692 | 2109248.0000 | 75039
| 72345 | 67306

 HOUSEHOLD | 82521 | 2112594.0000 | 74879
| 72322 | 67035

 BUILDING | 83140 | 2115677.0000 | 75357
| 72740 | 67411

 FURNITURE | 83405 | 2129150.0000 | 75759
| 73048 | 67876

284 Lake House Architecture

3. Create a schema to point to the data lake using the following command, by
replacing the [Your-AWS_Account_Id] and [Your-Redshift_Role]
values:

CREATE external SCHEMA datalake_ext_schema

FROM data catalog DATABASE 'datalake_ext_schema'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-
Redshift_Role] '

CREATE external DATABASE if not exists;

4. Create an external table that will be used to export the dataset:

CREATE external TABLE datalake_ext_schema.order_summary

 (c_mktsegment VARCHAR(10),

 orders_count BIGINT,

 quantity numeric(38,4),

 parts_count BIGINT,

 supplier_count BIGINT,

 customer_count BIGINT

)

STORED

AS

PARQUET LOCATION

's3://[Your-Amazon_S3_Bucket]/order_summary/';

Note
You are able to specify the output data format as PARQUET. You can use any of
the supported data formats—see https://docs.aws.amazon.com/
redshift/latest/dg/c-spectrum-data-files.html for
more information.

5. Use the results of the preceding analytical query to export the data into the external
table that will be stored in Parquet format in Amazon S3 using the following
command:

INSERT INTO datalake_ext_schema.order_summary

SELECT c_mktsegment,

 COUNT(o_orderkey) AS orders_count,

https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-data-files.html
https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-data-files.html

Exporting a data lake from Amazon Redshift 285

 SUM(l_quantity) AS quantity,

 COUNT(DISTINCT P_PARTKEY) AS parts_count,

 COUNT(DISTINCT L_SUPPKEY) AS supplier_count,

 COUNT(DISTINCT o_custkey) AS customer_count

FROM lineitem

 JOIN orders ON l_orderkey = o_orderkey

 JOIN customer c ON o_custkey = c_custkey

 JOIN dwdate

 ON d_date = l_commitdate

 AND d_year = 1992

 JOIN part ON P_PARTKEY = l_PARTKEY

 JOIN supplier ON L_SUPPKEY = S_SUPPKEY

GROUP BY c_mktsegment;

6. You can now verify the results of the export using the following command:

select * from datalake_ext_schema.order_summary limit 5;

Here's the expected sample output:
 c_mktsegment | orders_count | quantity | parts_count
| supplier_count | customer_count

--------------+--------------+--------------+------------
-+----------------+----------------

 HOUSEHOLD | 82521 | 2112594.0000 | 74879
| 72322 | 67035

 MACHINERY | 82647 | 2107972.0000 | 75046
| 72439 | 67404

 FURNITURE | 83405 | 2129150.0000 | 75759
| 73048 | 67876

 BUILDING | 83140 | 2115677.0000 | 75357
| 72740 | 67411

 AUTOMOBILE | 82692 | 2109248.0000 | 75039
| 72345 | 67306

7. In addition, you are also able to inspect the s3://[Your-Amazon_S3_
Bucket]/order_summary/ Amazon S3 location for the presence of Parquet
files, as shown here:

$ aws s3 ls s3://[Your-Amazon_S3_Bucket]/order_summary/

286 Lake House Architecture

Here is the expected output:
2021-03-02 00:00:11 1588 20210302_000002_331241_258
60550_0002_part_00.parquet

2021-03-02 00:00:11 1628 20210302_000002_331241_258
60550_0013_part_00.parquet

2021-03-02 00:00:11 1581 20210302_000002_331241_258
60550_0016_part_00.parquet

2021-03-02 00:00:11 1581 20210302_000002_331241_258
60550_0020_part_00.parquet

The preceding sample output shows a list of all the Parquet files underlying the
external table.

Extending a data warehouse using Amazon
Redshift Spectrum
Amazon Redshift Spectrum allows Amazon Redshift customers to query data directly
from an Amazon S3 data lake. This allows us to combine data warehouse data with data
lake data, which makes use of open source file formats such as Parquet, comma-separated
values (CSV), Sequence, Avro, and so on. Amazon Redshift Spectrum is a serverless
solution, so customers don't have to provision or manage it. It allows customers to
perform unified analytics on data in an Amazon Redshift cluster and data in an Amazon
S3 data lake, and easily create insights from disparate datasets.

Getting ready
To complete this recipe, you will need the following to be set up:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift cluster deployed in the eu-west-1 AWS Region with the retail
dataset created from Chapter 3, Loading and Unloading Data, using the Loading
data from Amazon S3 using COPY recipe

• Amazon Redshift cluster masteruser credentials

• Access to any SQL interface such as a SQL client or the Amazon Redshift
Query Editor

Extending a data warehouse using Amazon Redshift Spectrum 287

• An AWS account number—we will refer to this in the recipes as [Your-AWS_
Account_Id]

• An Amazon S3 bucket created in the eu-west-1 Region—we will refer to this in the
recipes as [Your-Amazon_S3_Bucket]

• An IAM role attached to the Amazon Redshift cluster that can access Amazon S3
and AWS Glue—we will refer to this in the recipes as [Your-Redshift_Role]

How to do it…
In this recipe, we will create external table in an external schema, and query data directly
from Amazon S3 using Amazon Redshift:

1. Connect to the Amazon Redshift cluster using a client tool such as MySQL
Workbench.

2. Execute the following query to create an external schema, by replacing the
[Your-AWS_Account_Id] and [Your-Redshift_Role] values:

create external schema packt_spectrum

from data catalog

database 'packtspectrumdb'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-
Redshift_Role]'

create external database if not exists;

3. Execute the following command to copy data from the Packt S3 bucket to your
S3 bucket using the following command, by replacing [Your-Amazon_S3_
Bucket]:

aws cp s3://packt-redshift-cookbook/spectrum/sales s3://
[Your-Amazon_S3_Bucket]/spectrum/sales --recursive

4. Execute the following query to create an external table, by replacing [Your-
Amazon_S3_Bucket]:

create external table packt_spectrum.sales(

salesid integer,

listid integer,

sellerid integer,

buyerid integer,

eventid integer,

288 Lake House Architecture

dateid smallint,

qtysold smallint,

pricepaid decimal(8,2),

commission decimal(8,2),

saletime timestamp)

row format delimited

fields terminated by '\t'

stored as textfile

location 's3://[Your-Amazon_S3_Bucket]/spectrum/sales/'

table properties ('numRows'='172000');

5. Execute the following command to query data in S3 directly from Amazon Redshift:

select count(*) from packt_spectrum.sales; --

expected sample output –

count

172462

6. Execute the following command to create a table locally in Amazon Redshift:

create table packt_event(

eventid integer not null distkey,

venueid smallint not null,

catid smallint not null,

dateid smallint not null sortkey,

eventname varchar(200),

starttime timestamp);

7. Execute the following command to load data in the event table, by replacing the
[Your-AWS_Account_Id] and [Your-Redshift_Role] values:

copy packt_event from 's3://packt-redshift-cookbook/
spectrum/event/allevents_pipe.txt'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-
Redshift_Role]

delimiter '|' timeformat 'YYYY-MM-DD HH:MI:SS' Region
'us-east-1';

Extending a data warehouse using Amazon Redshift Spectrum 289

8. Execute the following query to join the data across the Redshift local table and the
Spectrum table:

SELECT top 10 packt_spectrum.sales.eventid,

 SUM(packt_spectrum.sales.pricepaid)

FROM packt_spectrum.sales,

 packt_event

WHERE packt_spectrum.sales.eventid = packt_event.eventid

AND packt_spectrum.sales.pricepaid > 30

GROUP BY packt_spectrum.sales.eventid

ORDER BY 2 DESC;

Here's the expected output:
eventid | sum

--------+---------

 289 | 51846.00

 7895 | 51049.00

 1602 | 50301.00

 851 | 49956.00

 7315 | 49823.00

 6471 | 47997.00

 2118 | 47863.00

 984 | 46780.00

 7851 | 46661.00

 5638 | 46280.00

Now, Amazon Redshift is able to join the external and local tables to produce the
desired results.

290 Lake House Architecture

Data sharing across multiple Amazon Redshift
clusters
Amazon Redshift RA3 clusters decouple storage and compute, and provide the ability
to scale either of them independently. The decoupled storage allows for data to be read
by different consumer clusters that allow workload isolation. The data producer cluster
controls access to the data that is shared. This feature opens up the possibility to set up
a flexible multi-tenant system—for example, within an organization, data produced by
a business unit can be shared with any of the different teams such as marketing, finance,
data science, and so on that can be independently consumed using their own Amazon
Redshift clusters.

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift

• Two separate two-node Amazon Redshift ra3.xlplus clusters deployed in the
eu-west-1 AWS Region:

a. The first cluster should be deployed with the retail sample dataset from Chapter
3, Loading and Unloading Data. This cluster will be called the Producer Amazon
Redshift cluster, where data will be shared from (outbound). Note down the
namespace of this cluster—this can be found by running a SELECT current_
namespace command. Let's say this cluster namespace value is [Your_
Redshift_Producer_Namespace].

b. The second cluster can be an empty cluster. This cluster will be called the
Consumer Amazon Redshift cluster, where data will be consumed (inbound).
Note down the namespace of this cluster—this can be found by running
a SELECT current_namespace command. Let's say this cluster namespace
value is [Your_Redshift_Consumer_Namespace].

• Access to any SQL interface such as a SQL client or the Amazon Redshift
Query Editor

Data sharing across multiple Amazon Redshift clusters 291

How to do it…
In the recipe, we will use the Producer Amazon Redshift RA3 cluster, with the sample
dataset to be shared with the consumer cluster:

1. Connect to the Producer Amazon Redshift cluster using a client tool such as
MySQL Workbench.

2. Execute the following analytical query to verify the sample dataset:

SELECT DATE_TRUNC('month',l_shipdate),

 SUM(l_quantity) AS quantity

FROM lineitem

WHERE l_shipdate BETWEEN '1992-01-01' AND '1992-06-30'

GROUP BY DATE_TRUNC('month',l_shipdate);

--Sample output dataset

 date_trunc | quantity

---------------------+----------------

 1992-05-01 00:00:00 | 196639390.0000

 1992-06-01 00:00:00 | 190360957.0000

 1992-03-01 00:00:00 | 122122161.0000

 1992-02-01 00:00:00 | 68482319.0000

 1992-04-01 00:00:00 | 166017166.0000

 1992-01-01 00:00:00 | 24426745.0000

3. Create a datashare and add the lineitem table so that it can be shared with the
consumer cluster using the following command, replacing [Your_Redshift_
Consumer_Namespace] with consume cluster namespace:

CREATE DATASHARE SSBDataShare;

ALTER DATASHARE SSBDataShare ADD TABLE lineitem;

GRANT USAGE ON DATASHARE SSBDataShare TO NAMESPACE '
[Your_Redshift_Consumer_Namespace]';

4. Execute the following command to verify that data sharing is available:

SHOW DATASHARES;

Here's the expected output:
owner_account,owner_namespace,sharename,shareowner,share_
type,createdate,publicaccess

292 Lake House Architecture

123456789012,redshift-cluster-data-share-
1,ssbdatashare,100,outbound,2021-02-26 19:03:16.0,false

5. Connect to the Amazon Redshift Consumer cluster using a client tool such as
MySQL Workbench. Execute the following command:

DESC DATASHARE ssbdatashare OF NAMESPACE [Your_Redshift_
Producer_Namespace];

Here's the expected output:
producer_account | producer_namespace
| share_type | share_name | object_type |
object_name

-------------------+-------------------------------------
-+------------+------------+-------------+---------------

 123456789012 | [Your_Redshift_Producer_Namespace]|
INBOUND | ssbdatashare | table | public.lineitem

6. Create local databases that reference the datashares using the following command:

CREATE DATABASE ssb_db FROM DATASHARE ssbdatashare OF
NAMESPACE [Your_Redshift_Producer_Namespace];

7. Create an external schema that references the ssb_db datashare database
by executing the following command:

CREATE EXTERNAL SCHEMA ssb_schema FROM REDSHIFT DATABASE
'ssb_db' SCHEMA 'public';

8. Verify the datashare access to the linetime table using a full qualification,
as follows:

SELECT DATE_TRUNC('month',l_shipdate),

 SUM(l_quantity) AS quantity

FROM ssb_db.public.lineitem

WHERE l_shipdate BETWEEN '1992-01-01' AND '1992-06-30'

GROUP BY DATE_TRUNC('month',l_shipdate);

Querying operational sources using Federated Query 293

Here's the sample dataset:
 date_trunc | quantity

---------------------+----------------

 1992-05-01 00:00:00 | 196639390.0000

 1992-06-01 00:00:00 | 190360957.0000

 1992-03-01 00:00:00 | 122122161.0000

 1992-02-01 00:00:00 | 68482319.0000

 1992-04-01 00:00:00 | 166017166.0000

 1992-01-01 00:00:00 | 24426745.0000

As you can see from the preceding code snippet, the data that is shared by the producer
cluster is now is available for querying in the consumer cluster.

How it works…
With Amazon Redshift, you can share data at different levels. These levels include
databases, schemas, tables, views (including regular, late-binding, and materialized views),
and SQL user-defined functions (UDFs). You can create multiple datashares for a given
database. A datashare can contain objects from multiple schemas in the database on which
sharing is created.

By having this flexibility in sharing data, you get fine-grained access control. You can
tailor this control for different users and businesses that need access to Amazon Redshift
data. Amazon Redshift provides transactional consistency on all producer and consumer
clusters and shares up-to-date and consistent views of the data with all consumers.
You can also use SVV_DATASHARES, SVV_DATASHARE_CONSUMERS, and SVV_
DATASHARE_OBJECTS to view datashares, the objects within the datashares, and the
datashare consumers.

Querying operational sources using Federated
Query
Amazon Redshift Federated Query enables unified analytics across databases, data
warehouses, and data lakes. With the Federated Query feature in Amazon Redshift,
you can query live data across from Amazon RDS and Aurora PostgreSQL databases. For
example, you might have an up-to-date customer address data that you might want to join
with historical order data to enrich your reports—this can be easily joined up using the
Federated Query feature.

294 Lake House Architecture

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift, AWS Secrets Manager, and
Amazon RDS.

• An Amazon Redshift cluster deployed in the eu-west-1 AWS Region with the retail
sample dataset from Chapter 3, Loading and Unloading Data.

• An Amazon Aurora serverless PostgreSQL database. Create an RDS PostgreSQL
cluster (see https://aws.amazon.com/getting-started/hands-on/
building-serverless-applications-with-amazon-aurora-
serverless/ for more information on this). Launch this in the same virtual
private cloud (VPC) as your Amazon Redshift cluster.

• Access to any SQL interface such as a SQL client or the Amazon Redshift
Query Editor.

• An IAM role attached to the Amazon Redshift cluster that can access Amazon
RDS—we will refer to this in the recipes as [Your-Redshift_Role].

• An AWS account number—we will refer to this in the recipes as [Your-AWS_
Account_Id].

How to do it…
In this recipe, we will use an Amazon Aurora serverless PostgreSQL database as the
operational data store to federate with Amazon Redshift:

1. Let's connect to the Aurora PostgreSQL database using a Query Editor. Navigate
to the Amazon RDS landing page and choose Query Editor.

2. Choose an instance from the RDS instance dropdown. Enter a username and
a password. For the Database field, enter postgres, and then select Connect
to database:

Querying operational sources using Federated Query 295

Figure 9.27 – Configuring the Amazon Aurora PostgreSQL database

3. Copy and paste the SQL script available at https://github.com/
PacktPublishing/Amazon-Redshift-Cookbook/blob/master/
Chapter09/aurora_postgresql_orders_insert.sql into the editor.
Select Run:

Figure 9.28 – Creating the orders tables

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter09/aurora_postgresql_orders_insert.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter09/aurora_postgresql_orders_insert.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter09/aurora_postgresql_orders_insert.sql

296 Lake House Architecture

4. We will now create an Aurora PostgreSQL database secret using AWS Secrets
Manager to store the user ID and password.

5. Navigate to the AWS Secrets Manager console. Choose Store a new secret.

6. Select Credentials for RDS database, then enter the username and password.
Select your database instance and click Next:

Figure 9.29 – Setting up credentials for RDS

7. Enter the the name of aurora-pg/RedshiftCookbook for the secret.
Click Next:

Querying operational sources using Federated Query 297

Figure 9.30 – Creating an Aurora PostgreSQL secret

8. Click Next, keep the defaults, and choose Store.

9. Select the newly created secret and copy the Amazon Resource Name (ARN) of
the secret:

Figure 9.31 – Copying the Secret ARN value for the secret

298 Lake House Architecture

10. To configure Amazon Redshift to federate with the Aurora PostgreSQL database,
we need to attach an inline policy to the IAM role attached to your Amazon
Redshift cluster to provide access to the secret created in the preceding steps. For
this, navigate to the IAM console and select Roles.

11. Search for the correct role. Add the following inline policy. Replace [Your-AWS_
Account_Id] with your AWS account number:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "AccessSecret",

 "Effect": "Allow",

 "Action": [

 "secretsmanager:GetResourcePolicy",

 "secretsmanager:GetSecretValue",

 "secretsmanager:DescribeSecret",

 "secretsmanager:ListSecretVersionIds"

],

 "Resource": "arn:aws:secretsmanager:us-
east-1:[Your-AWS_Account_Id]:secret:aurora-pg/
RedshiftCookbook"

 },

 {

 "Sid": "VisualEditor1",

 "Effect": "Allow",

 "Action": [

 "secretsmanager:GetRandomPassword",

 "secretsmanager:ListSecrets"

],

 "Resource": "*"

 }

]

}

Querying operational sources using Federated Query 299

12. Let's set up Amazon Redshift to federate to the Aurora PostgreSQL database to
query the orders' operational data. For this, connect to your Amazon Redshift
cluster using an SQL client or the Query Editor from Amazon Redshift console.

13. Create an ext_postgres external schema on Amazon Redshift. Replace
[AuroraClusterEndpoint] with the endpoint of the instance from your
account for the Aurora PostgreSQL database. Replace the [Your-AWS_Account_
Id] and [Your-Redshift-Role] values from your account. Also, replace
[AuroraPostgreSQLSecretsManagerARN] with the value of the secret ARN
from Step 9:

DROP SCHEMA IF EXISTS ext_postgres;

CREATE EXTERNAL SCHEMA ext_postgres

FROM POSTGRES

DATABASE 'postgres'

URI '[AuroraClusterEndpoint]'

IAM_ROLE 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-
Redshift-Role]'

SECRET_ARN '[AuroraPostgreSQLSecretsManagerARN]';

14. To list the external schemas, execute the following query:

select *

from svv_external_schemas;

15. To list the external schema tables, execute the following query:

select *

from svv_external_tables

where schemaname = 'ext_postgres';

16. To validate the configuration and setup of Federated Query from Amazon Redshift,
let's execute a count query for the orders table in the Aurora PostgreSQL
database:

select count(*) from ext_postgres.orders;

Here's the expected output:
1000

300 Lake House Architecture

17. With Federated Query, you can join the external table with the Amazon Redshift
local table:

SELECT O_ORDERSTATUS,

 COUNT(o_orderkey) AS orders_count

FROM ext_postgres.orders

 JOIN dwdate

 ON d_date = O_ORDERDATE

 AND d_year = 1992

GROUP BY O_ORDERSTATUS;

Here's the expected output:
o_orderstatus orders_count

F 1000

18. You can also create a materialized view using Federated Query. A materialized view
will be physicalized on Amazon Redshift. You can refresh the materialized view to
get fresher data from your operational data store (ODS):

create materialized view public.live_orders as

SELECT O_ORDERSTATUS,

 COUNT(o_orderkey) AS orders_count

FROM ext_postgres.orders

 JOIN dwdate

 ON d_date = O_ORDERDATE

 AND d_year = 1992

GROUP BY O_ORDERSTATUS;

As observed, the materialized view can federate between the Aurora PostgreSQL and
Amazon Redshift databases.

10
Extending Redshift's

Capabilities
Amazon Redshift allows you to analyze all your data using standard SQL, using your
existing business intelligence tools. Organizations are looking for more ways to extract
valuable insights from the data, such as big data analytics, machine learning (ML)
applications, and a range of analytical tools to drive new use cases and business processes.
Building an entire solution by sourcing data, transforming data, reporting data, and ML
can easily be accomplished by taking advantage of the capabilities provided by AWS'
analytical services. With native integrations between the analytical services already built
in, you don't have to write any additional code while using these capabilities.

The following recipes will be covered in this chapter:

• Managing Amazon Redshift ML

• Visualizing data using QuickSight

• AppFlow for ingesting SaaS data in Redshift

• Data wrangling using Databrew

• Utilizing ElastiCache for sub-second latency

• Subscribing to third-party data using AWS Data Exchange

302 Extending Redshift's Capabilities

Technical requirements
You will need the following technical requirements to complete the recipes in this chapter:

• Access to the AWS Console.

• An AWS Administrator should create an IAM user by following Recipe 1 – Creating
an IAM user, in the Appendix. This IAM user will be used in some of the recipes in
this chapter.

• An AWS Administrator should create an IAM role by following Recipe 3 – Creating
an IAM role for an AWS service, in the Appendix. This IAM role will be used in some
of the recipes in this chapter.

• An AWS Administrator should deploy the AWS CloudFormation template
(https://github.com/PacktPublishing/Amazon-Redshift-
Cookbook/blob/master/Chapter10/chapter_10_CFN.yaml) and create
two IAM policies:

a. An IAM policy attached to the IAM user, which will give them access to Amazon
Redshift, Amazon S3, AWS Glue, AWS Glue DataBrew, AWS IAM, Amazon
QuickSight, Amazon SageMaker, AWS Secrets Manager, Amazon CloudWatch,
Amazon CloudWatch Logs, AWS CloudFormation, AWS KMS, AWS CloudTrail,
Amazon AppFlow, Amazon AppFlow, Amazon ElastiCache, and AWS Data
Exchange.

b. An IAM policy attached to the IAM role, which will allow the Amazon Redshift
cluster to access Amazon S3, AWS Glue, and Amazon SageMaker.

• Attach an IAM role to the Amazon Redshift cluster by following Recipe 4 –
Attaching an IAM Role to the Amazon Redshift cluster in the Appendix. Take note
of the IAM role's name; we will reference it in the recipes as [Your-Redshift_
Role].

• An Amazon Redshift cluster deployed in AWS region eu-west-1.

• Amazon Redshift cluster master user credentials.

• Access to any SQL interface, such as a SQL client or the Amazon Redshift
Query Editor.

• An AWS account number. We will reference it in the recipes as [Your-AWS_
Account_Id].

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter10/chapter_10_CFN.yam
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/blob/master/Chapter10/chapter_10_CFN.yam

Managing Amazon Redshift ML 303

• An Amazon S3 bucket created in eu-west-1. We will reference it in the recipes as
[Your-Amazon_S3_Bucket].

• The code files that will be used in this chapter can be found in this book's
GitHub repository: https://github.com/PacktPublishing/Amazon-
Redshift-Cookbook/tree/master/Chapter10.

Managing Amazon Redshift ML
Amazon Redshift ML enables Amazon Redshift users to create, deploy, and execute ML
models using familiar SQL commands. Amazon Redshift has built-in integration with
Amazon SageMaker Autopilot, which chooses the best ML algorithm based on your data
using its automatic algorithm selection capabilities. It enables users to run ML algorithms
without the need for expert knowledge of ML. On the other hand, ML experts such as
data scientists have the flexibility to select algorithms such as XGBoost and specify the
hyperparameters and preprocessors. Once the ML model has been deployed in Amazon
Redshift, you can run the prediction using SQL at scale. This integration completely
simplifies the pipeline, which is required to create, train, and deploy the model for
prediction. Amazon Redshift ML allows you to create, deploy, and predict using the data
in the data warehouse, as follows:

Figure 10.1 – Amazon Redshift ML capabilities

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter10
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook/tree/master/Chapter10

304 Extending Redshift's Capabilities

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift, Amazon S3, and Amazon
SageMaker.

• An Amazon Redshift cluster deployed in AWS region eu-west-1 with the retail
dataset from Chapter 3, Loading and Unloading Data.

• Amazon Redshift cluster master user credentials.

• Access to any SQL interface, such as a SQL client or the Amazon Redshift
Query Editor.

• An IAM role attached to an Amazon Redshift cluster that can access Amazon S3
and Amazon SageMaker. We will reference it in this recipe as [Your-Redshift_
Role].

• An Amazon S3 bucket created in eu-west-1. We will reference it in this recipe as
[Your-Amazon_S3_Bucket].

How to do it…
In this recipe, we will use the product reviews data that we set up in Chapter 3, the
Loading and Unloading Data recipe. We will build the model to predict the star_
rating property of the products table. Let's get started:

1. Open any SQL client tool and execute the following query. This will create the
training data to train the model. We will do this by using 50000 records from the
apparel product category:

 create table product_reviews.amazon_reviews
_train as

 SELECT *

 FROM product_reviews

 where product_category = 'Apparel'

 limit 50000;

Managing Amazon Redshift ML 305

2. To create the model, execute the following query. This will use Autopilot to
determine the problem type, with a max runtime of 900 seconds. This model will
predict our star_rating. The CREATE MODEL SQL will run asynchronously.
Here, Amazon Redshift will unload the data to the S3 bucket, and AutoPilot will
use that dataset to train the model. Once the mode has been trained, the code will
be compiled using Amazon SageMaker Neo and will be deployed to the Amazon
Redshift cluster. The model can then be accessed using the user-defined func_
product_rating function:

CREATE MODEL product_rating

FROM (

SELECT marketplace

 , customer_id

 , review_id

 , product_id

 , product_parent

 , product_title

 , product_category

 , star_rating

 , helpful_votes

 , total_votes

 , vine

 , verified_purchase

 , review_headline

 , review_body

 FROM product_reviews.amazon_reviews_train

) TARGET star_rating

FUNCTION func_product_rating

IAM_ROLE '[Your-Redshift_Role]'

SETTINGS(S3_BUCKET '[Your-Amazon_S3_Bucket]', MAX_RUNTIME
1800, S3_GARBAGE_COLLECT OFF);

306 Extending Redshift's Capabilities

3. To check the status of the model's creation process, execute the following query.
Check if the model's state is Ready. When the model's state is Ready, it will show
a problem type of MulticlassClassificiation and an accuracy of 0.62940:

show model product_rating;

The preceding query will return an output similar to the following:

Figure 10.2 – Output of the preceding query

4. To predict start_ratings, execute the following query to validate the accuracy
of the ML model. The user-defined func_product_rating function predicts
stars_rating. Here, we are comparing it to the actual value to determine the
accuracy of the model:

WITH infer_data

AS (

 SELECT star_rating AS actual

 ,func_product_rating(marketplace

 , customer_id

 , review_id

 , product_id

 , product_parent

 , product_title

 , product_category

 , helpful_votes

 , total_votes

 , vine

 , verified_purchase

Managing Amazon Redshift ML 307

 , review_headline

 , review_body) AS predicted

,CASE

WHEN star_rating = predicted

 THEN 1::INT

ELSE 0::INT

END AS correct

 FROM product_reviews.amazon_reviews

 where product_category = 'Home'

)

 ,aggr_data

AS (

 SELECT SUM(correct) AS num_correct

 ,COUNT(*) AS total

 FROM infer_data

)

SELECT (num_correct::FLOAT / total::FLOAT) AS accuracy

FROM aggr_data;

The preceding query will return the following output:
accuracy

0.627847778989157

How it works…
Amazon Redshift simplifies the pipeline to create the models and use the model for
prediction using SQL. With Amazon Redshift, you can build models for different use
cases, such as the following:

• Customer churn prediction

• Predicting if a sales lead will close

• Fraud detection

308 Extending Redshift's Capabilities

Here is an illustration of how Amazon Redshift integrates with Amazon SageMaker:

Figure 10.3 – Amazon Redshift and SageMaker integration

In the preceding illustration, the customer_chrun prediction model was created using
SQL, and Amazon Redshift is communicating with SageMaker to create, train, and deploy
the model. Once the model is ready, users can use a SQL query to make predictions for
new datasets.

Visualizing data using Amazon QuickSight
Amazon QuickSight is a scalable, serverless, and embeddable ML powered business
intelligence (BI) service built for the cloud. Visualizing the data warehouse data so that
you can use BI tools such as Amazon QuickSight enables users such as business analysts,
executive leaders, and more to make data-driven decisions faster. QuickSight dashboards
can be accessed from any device and seamlessly embedded into your applications, portals,
and websites.

Getting ready
To complete this recipe, you will need to do the following:

• Create an IAM user with access to Amazon Redshift and Amazon QuickSight.

• Create an Amazon Redshift cluster deployed in AWS region eu-west-1 with the
retail sample dataset we set up in Chapter 3, Loading and Unloading Data.

Visualizing data using Amazon QuickSight 309

• Create Amazon Redshift cluster master user credentials.

• Sign up for Amazon QuickSight Standard Edition using the instructions at
https://docs.aws.amazon.com/quicksight/latest/user/
signing-up.html.

How to do it…
In this recipe, we will use the product reviews data that we set up in Chapter 3, Loading
and Unloading Data, and visualize it using Amazon QuickSight. Let's get started:

1. Navigate to QuickSight by going to https://quicksight.aws.amazon.
com/sn/start. Then, from the menu, choose Datasets and click on New dataset,
as follows:

Figure 10.4 – Creating a new dataset source for Amazon QuickSight

https://docs.aws.amazon.com/quicksight/latest/user/signing-up.html
https://docs.aws.amazon.com/quicksight/latest/user/signing-up.html
https://quicksight.aws.amazon.com/sn/start
https://quicksight.aws.amazon.com/sn/start

310 Extending Redshift's Capabilities

2. Choose the Redshift (manual connect) option from the list of data sources
available, as follows:

Figure 10.5 – Selecting an Amazon Redshift data source

3. In the New Redshift data source, provide a name such as Redshift-Visualization
and provide the connection details shown in the following screenshot. Then,
connect it to your Amazon Redshift cluster:

Visualizing data using Amazon QuickSight 311

Figure 10.6 – Setting up an Amazon Redshift data source's connection details

312 Extending Redshift's Capabilities

4. Select the schema and pick the product_reviews table from the list. Then, press
select to create the dataset, as follows:

Figure 10.7 – Selecting the table for QuickSight analysis

5. From the QuickSight menu, choose Analyses and click on New analysis, as shown
in the following screenshot. Then, select Redshift-Visualization:

Figure 10.8 – Creating a New analysis using Quicksight

Visualizing data using Amazon QuickSight 313

6. QuickSight will import the data and create the visualization, as follows:

Figure 10.9 – QuickSight visualization creation

314 Extending Redshift's Capabilities

7. Click on the review_date and total_votes columns to create a trend showing the
total number of votes on different days, as follows:

Figure 10.10 – QuickSight visualization using Autograph

How it works…
Amazon QuickSight lets you perform data analysis across several different data sources,
such as text and Excel files, SaaS applications such as Salesforce, on-premises databases
such as SQL Server, MySQL, and PostgreSQL, and AWS data sources such as Amazon
Redshift, Amazon RDS, Amazon Aurora, Amazon Athena, and Amazon S3. QuickSight
allows organizations to scale their business analytics capabilities to hundreds of thousands
of users, and delivers fast and responsive query performance by using a robust in-memory
engine known as Super-fast Parallel In-memory Calculation Engine (SPICE). You
can use several analysis samples, all of which can be found at https://docs.aws.
amazon.com/quicksight/latest/user/getting-started.html.

AppFlow for ingesting SaaS data in Redshift
Amazon AppFlow provides flexible ways to ingest data from different Software-as-a-
Service (SaaS) applications, such as Salesforce, Zendesk, Slack, ServiceNow, and so
on, into AWS services such as Amazon S3 and Amazon Redshift. This fully managed
integration service allows you to set up data flows without writing any code. The data
workflows also allow you to perform data transformations, such as mapping and filtering,
and can be automated using a schedule/event.

https://docs.aws.amazon.com/quicksight/latest/user/getting-started.html
https://docs.aws.amazon.com/quicksight/latest/user/getting-started.html

AppFlow for ingesting SaaS data in Redshift 315

Getting ready
To complete this recipe, you will need to do the following:

• Create an IAM user with access to Amazon Redshift and Amazon AppFlow.

• Create an Amazon Redshift cluster deployed in AWS region eu-west-1.

• Create Amazon Redshift cluster master user credentials.

• Gain access to any SQL interface, such as a SQL client or the Amazon Redshift
Query Editor.

• Create an IAM role attached to an Amazon Redshift cluster that can access Amazon
S3. We will reference it in this recipe as [Your-Redshift_Role].

• An Amazon S3 bucket created in eu-west-1. We will reference it in this recipe as
[Your-Amazon_S3_Bucket].

• Create a free Salesforce developer account at https://developer.
salesforce.com/form/signup/freetrial.jsp. Take note of the sign
in information.

How to do it…
In this recipe, we will set up data ingestion from Salesforce to Amazon Redshift using
Amazon AppFlow. Let's get started:

1. Open any SQL client tool and execute the following query to create a table where
the salesforce data will be ingested:

CREATE SCHEMA salesforce;

CREATE TABLE IF NOT EXISTS salesforce.account

(

id VARCHAR(16383) ENCODE lzo

,isdeleted BOOLEAN ENCODE RAW

,masterrecordid VARCHAR(16383) ENCODE lzo

,name VARCHAR(16383) ENCODE lzo

,"type" VARCHAR(16383) ENCODE lzo

,parentid VARCHAR(16383) ENCODE lzo

,billingstreet VARCHAR(16383) ENCODE lzo

,billingcity VARCHAR(16383) ENCODE lzo

,billingstate VARCHAR(16383) ENCODE lzo

https://developer.salesforce.com/form/signup/freetrial.jsp
https://developer.salesforce.com/form/signup/freetrial.jsp

316 Extending Redshift's Capabilities

,billingpostalcode VARCHAR(16383) ENCODE lzo

,billingcountry VARCHAR(16383) ENCODE lzo

,billinglatitude VARCHAR(16383) ENCODE lzo

,billinglongitude VARCHAR(16383) ENCODE lzo

,billinggeocodeaccuracy VARCHAR(16383) ENCODE lzo

,shippingstreet VARCHAR(16383) ENCODE lzo

,shippingcity VARCHAR(16383) ENCODE lzo

,shippingstate VARCHAR(16383) ENCODE lzo

,shippingpostalcode VARCHAR(16383) ENCODE lzo

,shippingcountry VARCHAR(16383) ENCODE lzo

,shippinglatitude VARCHAR(16383) ENCODE lzo

,shippinglongitude VARCHAR(16383) ENCODE lzo

,shippinggeocodeaccuracy VARCHAR(16383) ENCODE lzo

,phone VARCHAR(16383) ENCODE lzo

,fax VARCHAR(16383) ENCODE lzo

,website VARCHAR(16383) ENCODE lzo

,photourl VARCHAR(16383) ENCODE lzo

,industry VARCHAR(16383) ENCODE lzo

,annualrevenue DOUBLE PRECISION ENCODE RAW

,numberofemployees INTEGER ENCODE az64

,description VARCHAR(16383) ENCODE lzo

,ownerid VARCHAR(16383) ENCODE lzo

,createddate VARCHAR(16383) ENCODE lzo

,createdbyid VARCHAR(16383) ENCODE lzo

,lastmodifieddate VARCHAR(16383) ENCODE lzo

,lastmodifiedbyid VARCHAR(16383) ENCODE lzo

,systemmodstamp VARCHAR(16383) ENCODE lzo

,lastactivitydate VARCHAR(16383) ENCODE lzo

,lastvieweddate VARCHAR(16383) ENCODE lzo

,lastreferenceddate VARCHAR(16383) ENCODE lzo

,jigsaw VARCHAR(16383) ENCODE lzo

,jigsawcompanyid VARCHAR(16383) ENCODE lzo

,accountsource VARCHAR(16383) ENCODE lzo

,sicdesc VARCHAR(16383) ENCODE lzo

,partition_0 VARCHAR(16383) ENCODE lzo

)

AppFlow for ingesting SaaS data in Redshift 317

DISTSTYLE EVEN

;

2. Navigate to the AWS Console and pick the Amazon AppFlow service. Then, click
Create flow, as shown in the following screenshot:

Figure 10.11 – Amazon AppFlow – Create flow

3. Set Flow name to appflow_salesforce_to_redshift and provide any
(optional) Flow description, as follows. Then, click Next:

Figure 10.12 – Setting up the Flow details for the new flow

318 Extending Redshift's Capabilities

4. For Source details, set the source name to Salesforce and provide the following
details to set up the connection. Provide the necessary SalesForce credentials after
clicking Continue:

• Salesforce environment: Production

• Connection name: salesforce-source:

Figure 10.13 – Setting up the Salesforce connection

AppFlow for ingesting SaaS data in Redshift 319

5. Choose the Salesforce objects option and then Account from the Choose Sales
object dropdown. This will be the source data to be ingested into Amazon Redshift:

Figure 10.14 – Configuring the Salesforce source details

320 Extending Redshift's Capabilities

6. For Destination details, select Amazon Redshift and click on Choose Amazon
Redshift connection. Then, select Create new connection and provide the
following details. Once you've done that, click on Connect:

Figure 10.15 – Setting up the destination as Amazon Redshift

AppFlow for ingesting SaaS data in Redshift 321

Here are the details of the preceding screenshot:
• JDBC URL: Provide the JDBC URL in the format jdbc:redshift://

[RedshiftClusterEndpoint]:[RedshiftClusterPort]/
[RedshiftClusterDatabase].

• Bucket Details: [Your-Amazon_S3_Bucket].

• Role: [Your-Redshift_Role].

• Username: Redshift username.

• Password: Redshift cluster password.

7. In the Choose Amazon Redshift object section, select salesforce; then, for the
Choose Redshift table section, select account, as follows:

Figure 10.16 – Setting up the destination as Amazon Redshift

322 Extending Redshift's Capabilities

8. Finish creating the workflow by setting Error handling to Stop the current flow
run and Flow trigger to Run on demand. Then, click Next:

Figure 10.17 – Setting up the flow's error handling and trigger

9. In the Mapping method section, choose Upload a .csv file with mapped fields.
Once you've done that, download the app_flow_mapping.csv file and upload
it by clicking Choose file. Then, click Next:

AppFlow for ingesting SaaS data in Redshift 323

Figure 10.18 – Setting up the mapping between the source and target

324 Extending Redshift's Capabilities

10. Continue with the defaults and review the options you've selected. Then, click
Create flow. Once the appflow_salesforce_to_redshift AppFlow has been created,
click on Run flow, as follows:

Figure 10.19 – Completing the setup for AppFlow

11. Once the data ingestion process has completed, you will get a notification stating
appflow_salesforce_to_redshift finished running successfully, as follows:

Figure 10.20 – Verifying the completion of AppFlow

AppFlow for ingesting SaaS data in Redshift 325

12. Open any SQL client tool and execute the following query to verify that the data
ingestion process worked:

SELECT id,

 TYPE,

 industry,

 annualrevenue,

 createddate,

 phone,

 billingstreet,

 shippingstreet

FROM salesforce.account LIMIT 3;

13. Here is the expected output:

id,type,industry,annualrevenue,createddate,

phone,billingstreet,shippingstreet

0015Y00002buihLQAQ 2021-03-12T20:47:50.000+0000

0015Y00002dKileQAC Customer – Channel

Biotechnology 3.0E7 2021-03-12T20:45:57.000+0000

 (650) 867-3450 345 Shoreline Park

Mountain View, CA 94043

USA 345 Shoreline Park

Mountain View, CA 94043

USA

0015Y00002dKilXQAS Customer – Channel Consulting

5.0E7 2021-03-12T20:45:57.000+0000

(785) 241-6200 1301 Hoch Drive

1301 Hoch Drive

As you can see, Amazon Redshift is successfully able to query the data from Salesforce
using AppFlow.

326 Extending Redshift's Capabilities

How it works…
You can use AppFlow to set up secure data flows in minutes, without managing complex
connectors or writing code. Here is an overview of how the architecture works. It allows
you to easily set up workflows from SaaS applications:

Figure 10.21 – Integrating AppFlow with Amazon Redshift

As shown in the preceding diagram, you can easily integrate data from third-party
providers into Amazon Redshift using AppFlow and use SQL to query it conveniently.

Data wrangling using DataBrew
Amazon Redshift data warehouses allow your end users to get new insights from all your
data easily. Ensuring data quality remains one of the core tenants for any data warehouse
for building trust with your business analysts, data scientists, and more. Further, the
decisions that are made due to these datasets are accurate for the intended business
outcome. AWS Glue DataBrew is a data preparation tool that makes it easy to clean and
normalize data before publishing it to Amazon Redshift.

You can choose from over 250 pre-built transformations to automate data preparation
tasks, without the need to write any code. For example, you can de-dupe the dimensional
tables using a DataBrew job before loading it into Amazon Redshift; this will ensure data
integrity. DataBrew comes with out of the box integration with Amazon Redshift, and data
can be prepared with just a few clicks using its visual interface.

Data wrangling using DataBrew 327

Getting ready
To complete this recipe, you will need the following:

• IAM User with access to Amazon Redshift, AWS IAM, and AWS Glue DataBrew.

• An Amazon Redshift cluster deployed in AWS region eu-west-1.

• Amazon Redshift cluster master user credentials.

• Access to any SQL interface, such as a SQL client or the Amazon Redshift Query
Editor.

• An IAM role attached to an Amazon Redshift cluster that can access Amazon S3.
We will reference it in this recipe as [Your-Redshift_Role].

• An Amazon S3 bucket created in eu-west-1. We will reference it in this recipe as
[Your-Amazon_S3_Bucket].

How to do it…
In this recipe, will use the Amazon.com customer product reviews dataset to demonstrate
data cleansing and normalization. Please refer to Chapter 7, Performance Optimization,
to learn how to set up the reviews_ext_schema.amazon_product_reviews_
parquet table. Let's get started:

1. Open any SQL client tool and execute the following query to verify the presence of
the reviews_ext_schema.amazon_product_reviews_parquet table:

SELECT verified_purchase,

 SUM(total_votes) total_votes,

 avg(helpful_votes) avg_helpful_votes,

 count(customer_id) total_customers

FROM reviews_ext_schema.amazon_product_reviews_parquet

WHERE review_headline = 'Y'

GROUP BY verified_purchase;

Here is the expected output:
verified_purchase | total_votes | avg_helpful_votes |
total_customers

-------------------+-------------+-------------------+---

 Y | 5 | 0 |
4

(1 row)

328 Extending Redshift's Capabilities

2. Navigate to AWS Glue DataBrew service from AWS Console and click on Create
project CleanseNormalizeProductReviews, as follows:

Figure 10.22 – Creating a new DataBrew project

3. Scroll down to Create project and click on New dataset in the Select a dataset
option section. Set Dataset name to ProductReviewsCleanse:

Figure 10.23 – Selecting a new dataset

Data wrangling using DataBrew 329

4. On the Connect to new dataset page, locate the reviews_ext_schema.
amazon_product_reviews_parquet table in the All AWS Glue tables
section, as follows:

Figure 10.24 – Selecting the product reviews dataset

5. Choose Create new IAM role and pick a new IAM role suffix, such as databrew.
Then, click on Create Project, as follows:

Figure 10.25 – Creating a new IAM role and the Create project button

330 Extending Redshift's Capabilities

6. DataBrew will sample the data and provision resources to process the data
visually. When it's ready, you will notice a message stating Created project
CleanseNormalizeProductReviews, as shown in the following screenshot:

Figure 10.26 – CleanseNormalizeProductReviews is ready for processing

7. Highlight the review_id column and click on the Duplicates option. Then, set
the source column to review_id and click on Apply, as follows:

Figure 10.27 – Eliminating duplicates from the dataset

Data wrangling using DataBrew 331

DataBrew will use the review_id column to eliminate any duplicates in the data.

8. Highlight the marketplace column and click on the More option. Pick a mapping
for this column with an autogenerated numerical value, as follows:

Figure 10.28 – Mapping the marketplace column to an autogenerated ID

9. You can now view a summary of the changes that were made to the data and click
on Create job:

Figure 10.29 – Verifying the summary of changes that were made to the dataset

332 Extending Redshift's Capabilities

10. Set the job name to CleanseNormalizeReviewDatasetJob, with the job
output file type set to parquet, and specify the S3 location (for example, s3://
[Your-Amazon_S3_Bucket]/data/reviews_parquet_databrew) as the
output. Then, click Create and run job:

Figure 10.30 – Creating and running a DataBrew job

11. Open any SQL client tool and connect to Amazon Redshift. Then, create an
external table using the preceding normalized and cleansed dataset by using the
following command:

CREATE external TABLE reviews_ext_schema.amazon_product_
reviews_parquet_databrew(

 marketplace varchar(2),

 marketplace_id int,

 customer_id varchar(32),

 review_id varchar(24),

 product_id varchar(24),

 product_parent varchar(32),

 product_title varchar(512),

 star_rating int,

s3://[Your-Amazon_S3_Bucket]/data/reviews_parquet_databrew)
s3://[Your-Amazon_S3_Bucket]/data/reviews_parquet_databrew)

Utilizing ElastiCache for sub-second latency 333

 helpful_votes int,

 total_votes int,

 vine char(1),

 verified_purchase char(1),

 review_headline varchar(256),

 review_body varchar(max),

 review_date date,

 year int)

stored as parquet

location 's3://[YOUR_S3_LOCATION]/data/reviews_parquet_
databrew';

Now, a new, cleaned, and normalized table of the amazon_product_reviews_
parquet_databrew reviews table is available to your users.

How it works…
DataBrew has over 250 built-in transformations, all of which can be used to combine,
pivot, and transpose the data without the need to write any code. AWS Glue DataBrew
also automatically recommends transformations such as filtering anomalies; correcting
invalid, incorrectly classified, or duplicate data; normalizing data to standard date and
time values; and generating aggregates for analyses. DataBrew supports most of the open
data formats, such comma-separated values (.csv), JSON and nested JSON, Apache
Parquet and nested Apache Parquet, and Excel sheets. With its out-of-the-box data
integration, DataBrew can be used to prepare data with an interactive interface. Once you
have defined the data transformation, you can create a job using DataBrew that can be
executed on a schedule to pre-process the data with a defined frequency. This can then be
integrated with your existing extract, transform, and load (ETL) pipelines.

Utilizing ElastiCache for sub-second latency
Amazon ElastiCache is a fully managed service that supports both Redis and Memcached
in-memory databases. In-memory databases and caches allow you to build near-real-time
applications that require sub-millisecond latency. ElastiCache allows you to scale both
your write and read capacity for near-real-time applications. In this recipe, we will explore
how ElasticCache can serve as a database cache.

334 Extending Redshift's Capabilities

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift and Amazon ElastiCache.

• An Amazon Redshift cluster deployed in AWS region eu-west-1 with the retail
sample dataset we set up in Chapter 3, Loading and Unloading Data.

• Amazon Redshift cluster master user credentials.

• An EC2 Linux instance. Launch this in the same VPC as Amazon Redshift with
a security group by providing access to your Amazon Redshift cluster by following
the instructions at https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/EC2_GetStarted.html. After creating, the cluster, run the
setup and install script provided in this book's GitHub repository. It will be named
chapter10.

How to do it…
In this recipe, will use the Amazon.com customer product reviews dataset to demonstrate
data caching. Let's get started:

1. Navigate to the Amazon ElastiCache dashboard from the AWS console. Select
Subnet Groups and then choose Create subnet group:

Figure 10.31 – Creating subnet groups in ElastiCache

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

Utilizing ElastiCache for sub-second latency 335

2. Name the subnet group cookbook-elc-subgroup. Select the VPC where you
have the Redshift cluster and EC2 instance. Select the subnets from the dropdown
and choose Add. Then, click Create:

Figure 10.32 – Configuring the Subnet Group

3. Navigate to the Amazon ElasticCache dashboard from the AWS Console. Click on
Redis and select Create:

Figure 10.33 – Creating a Redis cluster

336 Extending Redshift's Capabilities

4. For Cluster engine, choose Redis. For Location, choose Amazon Cloud:

Figure 10.34 – Creating your Amazon ElastiCache cluster

5. Enter cookbook-elcache as the name of the cluster. For the description, enter
elastic cache. For the node type, select cache.t3.micro. Deselect Multi-AZ and
keep the rest of the parameters as-is:

Utilizing ElastiCache for sub-second latency 337

Figure 10.35 – Configuring the Redis settings

6. For Subnet group, select the subnet group we created in step 1:

Figure 10.36 – Configuring the subnet groups for the Redis cluster

338 Extending Redshift's Capabilities

7. Select a security group, which will allow EC2 to access the Redis cluster:

Figure 10.37 – Configuring EC2 access for the Redis cluster

8. Keep the default settings for the rest of the setup and choose Create.

9. Once the cluster has been created, its status will be set to Read:

Figure 10.37 – Creating the Redis cache cluster

10. Click on the checkbox next to the cluster's name. This will provide you with details
about the cluster. Make a note of the primary endpoint. This endpoint will be used
to access the ElasticCache cluster from EC2:

Figure 10.38 – Taking note of the primary endpoint for the Redis cluster

Utilizing ElastiCache for sub-second latency 339

11. Log into your EC2 instance. Execute the following code to change the directory
path where you downloaded the cookbook code from GitHub. Locate the source.
dat file and execute the following:

cat source.dat

export REDIS_URL=redis://[redist-cluster-name]:6379/

export DB_HOST=[your-redshift-cluster-endpoint]

export DB_PORT=[redshift-port]

export DB_USER=[redshift-user]

export DB_PASS=[redshift-password]

export DB_NAME=[redshift-database]

12. Update the source.dat file with the values you captured for the redis cluster
primary endpoint and the details of the Amazon Redshift cluster noted in the
previous step.

13. To validate the connection with the Amazon Redshift cluster, execute the following
code and, when prompted, enter your Redshift cluster password:

psql -h [your-redshift-cluster-endpoint] -U [redshift-
user] -d [redshift-database] -p [redshift-port]

-----------------------on successful connection to Amazon
Redshift you will be brought to the prompt---

psql (9.2.24, server 8.0.2)

WARNING: psql version 9.2, server version 8.0.

 Some psql features might not work.

SSL connection (cipher: ECDHE-RSA-AES256-GCM-SHA384,
bits: 256)

Type "help" for help.

dev=#

14. To validate the connection to the redis cluster, navigate to the redis-stable
directory. Execute the following code. After successfully connecting, you will be
brought to the prompt:

src/redis-cli -c -h [redist-cluster-name] -p 6379

340 Extending Redshift's Capabilities

15. Navigate to the directory where you downloaded the cookbook source code from
GitHub. Review the Python code in elasticcache_redshift.py. The script
will use the environment variables to connect to Amazon Redshift and the Amazon
ElasticCache cluster. On executing this code, the first execution of fetch(sql)
verifies whether the key exists in the cache. If it does not exist, it executes the query
against the Amazon Redshift cluster. The result is then stored in the cache as a
value that corresponds to the hash key of the SQL. During the second execution of
fetch(sql), the result will be returned from the cache for the
same SQL:

def fetch(sql):

 """Retrieve records from the cache, or else from

the database."""

 key = hashlib.sha224(sql).hexdigest()

 res = Cache.get(key)

 print(key)

 if res:

 print('returning from cache')

 return json.loads(res)

 res = Database.query(sql)

 print('setting key in the cache')

 Cache.setex(key, TTL, json.dumps(res))

 Database.closecur()

 print('testing the existence of key in cache')

 test(key)

 return res

def test(key):

 print(' ')

 print('--------------------from cache-------------')

 return (Cache.get(key))

Utilizing ElastiCache for sub-second latency 341

16. Execute the following code:

source source.dat

python elasticcache_redshift.py

401cc7ccb1a2b85f08166e35906b1fa9e312d8c04f7746dd3c3b01b5

setting key in the cache

testing the existence of key in cache

--------------------from cache-------------

[('THREE WOLF MOON SHIRT ADULT SIZE M', 61869L),

('Delicious PhD Darling Costume', 59309L),

('The Mountain Kids 100% Cotton Three Wolf Moon T-Shirt',

42144L), ('The Mountain Three Wolf Moon Short Sleeve

Tee', 26107L), ("Squeem 'Perfect Waist' Contouring

Cincher", 14665L), ("Ann Chery Women's Faja Clasica Waist

Cincher", 9536L), ("Ann Chery Women's Faja Deportiva

Workout Waist Cincher", 8497L), ('F500 American Flag

Pants by Best Form', 7378L), ("MUXXN Women's 1950s Retro

Vintage Cap Sleeve Party Swing Dress", 6728L),

("Levi's Men's 501 Original-Fit Jean", 6619L)]

401cc7ccb1a2b85f08166e35906b1fa9e312d8c04f7746dd3c3b01b5

returning from cache

[[u'THREE WOLF MOON SHIRT ADULT SIZE M', 61869],

[u'Delicious PhD Darling Costume', 59309],

[u'The Mountain Kids 100% Cotton Three Wolf Moon

T-Shirt', 42144], [u'The Mountain Three Wolf Moon Short

Sleeve Tee', 26107], [u"Squeem 'Perfect Waist' Contouring

Cincher", 14665], [u"Ann Chery Women's Faja Clasica Waist

Cincher", 9536], [u"Ann Chery Women's Faja Deportiva

Workout Waist Cincher", 8497], [u'F500 American Flag

Pants by Best Form', 7378], [u"MUXXN Women's 1950s

Retro Vintage Cap Sleeve Party Swing Dress", 6728],

[u"Levi's Men's 501 Original-Fit Jean", 6619]]

342 Extending Redshift's Capabilities

How it works…
The Amazon ElasticCache Redis cluster caches the resultset properties that were
returned from Amazon Redshift. On cache miss, the query will be executed from Amazon
Redshift; otherwise, it will be served from the cache. This significantly reduces the
roundtrips to the Amazon Redshift cluster. The cache in ElastiCache will become stale
based on the time to live (TTL) value:

Figure 10.39 – Amazon Redshift integration with the Redis cluster

As we mentioned previously, Amazon Redshift utilizes the Redis-based cache to
repeat queries.

Subscribing to third-party data using AWS
Data Exchange
AWS Data Exchange makes it easy to find, subscribe to, and use third-party data in the
cloud. Once you've subscribed to the data product, AWS Data Exchange can publish
data into your own Amazon S3 bucket. You can then use this data for analysis with AWS
analytics services, including Amazon Redshift. For example, suppliers, wholesalers,
marketers, and data companies can obtain unique codes for every store in the retail trade
market to target their products. Qualified data providers include category-leading and
up-and-coming brands such as Reuters, Foursquare, TransUnion, Change Healthcare,
Virtusa, Pitney Bowes, TP ICAP, Vortexa, IMDb, Epsilon, Enigma, TruFactor, ADP,
Dun & Bradstreet, Compagnie Financière Tradition, Verisk, Crux Informatics, TSX Inc.,
Acxiom, Rearc, and many more.

Subscribing to third-party data using AWS Data Exchange 343

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift and AWS Data Exchange.

• An Amazon Redshift cluster deployed in AWS region eu-west-1.

• Amazon Redshift cluster master user credentials.

• Access to any SQL interface, such as a SQL client or the Amazon Redshift
Query Editor.

• An IAM role attached to an Amazon Redshift cluster that can access Amazon S3.
We will reference it in this recipe as [Your-Redshift_Role].

• An Amazon S3 bucket created in eu-west-1. We will reference it in this recipe as
[Your-Amazon_S3_Bucket].

For this recipe, we will subscribe to the free trial dataset Coronavirus (COVID-19) Data
Hub from Amazon Data Exchange.

How to do it…
In this recipe, we will subscribe to the free trial Coronavirus (COVID-19) Data Hub
from Amazon Data Exchange and access it through Amazon Redshift for analytics.
Let's get started:

1. Navigate to AWS Data Exchange through the AWS Console and click on Explore
available data products. Then, search for Coronavirus (COVID-19) Data Hub
and subscribe to the $0 for the 1 month option:

Figure 10.40 – AWS Data Exchange – browsing the published datasets

344 Extending Redshift's Capabilities

2. Navigate to My subscriptions and click on Entitled data. Then, select the latest
version of the data:

Figure 10.41 – Selecting .csv entitled data from the AWS Data Exchange

3. Click on Export actions. Select the Amazon S3 bucket folder and pick s3://
[Your-Amazon_S3_Bucket]/data/covid/ location, as follows:

Figure 10.42 – Configuring the export S3 location

s3://[Your-Amazon_S3_Bucket]/data/covid/ location
s3://[Your-Amazon_S3_Bucket]/data/covid/ location

Subscribing to third-party data using AWS Data Exchange 345

4. AWS Data Exchange will be published in [Your-Amazon_S3_Bucket]. You can
verify this by navigating to the AWS S3 console, as follows:

Figure 10.43 – Selecting the AWS Data Exchange data for analysis

5. Open any SQL client tool and execute the following query to create an external table
that will point to the Data Exchange COVID-19 dataset:

CREATE EXTERNAL TABLE reviews_ext_schema.covid_data(

 people_positive_cases_count bigint

, county_name varchar

, province_state_name varchar

, report_date varchar

, continent_name varchar

, data_source_name varchar

, people_death_new_count bigint

, county_fips_number bigint

, country_alpha_3_code varchar

, country_short_name varchar

, country_alpha_2_code varchar

, people_positive_new_cases_count bigint

, people_death_count bigint

)

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.
LazySimpleSerDe'

WITH SERDEPROPERTIES ('field.delim'=',')

346 Extending Redshift's Capabilities

STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.
TextInputFormat'

OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.
HiveIgnoreKeyTextOutputFormat'

LOCATION 's3://[Your-Amazon_S3_Bucket]/published/PUBLIC/
COVID-19-Activity/1616436115/COVID-19 Activity.csv'

;

6. Execute the following query to access the published COVID-19 dataset to verify it:

select people_positive_cases_count,county_
name,province_state_name,report_date from demo_bigdata.
covidanalyzepublished1 limit 10;

Here's the expected output:
people_positive_cases_count | county_name | province_
state_name | report_date

-----------------------------+-------------+-------------
--------+----

 72 | King George | Virginia
| 2020-06-05

 88 | King George | Virginia
| 2020-06-15

 0 | King George | Virginia
| 2020-03-13

 829 | King George | Virginia
| 2021-01-10

 749 | King George | Virginia
| 2021-01-01

 736 | King George | Virginia
| 2020-12-31

 227 | King George | Virginia
| 2020-09-22

 225 | King George | Virginia
| 2020-09-16

 257 | King George | Virginia
| 2020-10-15

As you can see, you can query third-party provided data using Amazon Redshift easily.

Subscribing to third-party data using AWS Data Exchange 347

How it works…
AWS Data Exchange allows data subscribers to easily browse the vast catalog of published
datasets and subscribe to them. This allows subscribers to access datasets and export
them to Amazon S3. They can be then loaded into services such as Amazon Redshift
for analysis.

Appendix

Recipe 1 – Creating an IAM user
You can use the following steps to create an IAM user:

1. Navigate to the IAM console.

2. Select Users and then choose Add user.

3. Type a username for the new user. IAM usernames need to be unique in a single
AWS account. This username will be used by the user to sign in to the AWS console.

4. For the access type, select both Programmatic access and AWS Management
Console access:

• Programmatic access grants users access through the API, AWS CLI, or tools for
Windows PowerShell. An access key and secret key are created for the user and are
available to download on the final page.

• AWS Management Console access grants users access through the AWS
Management Console. A password is created for the user and is available to
download on the final page.

5. For Console password, choose one of the following:

• Autogenerated password: This will randomly generate a password for the user that
meets the account password policy in effect.

• Custom password: You can type a password that satisfies the account password
policy in effect.

• (Optional) You can select Require password reset to ensure that users are forced to
change their password when they log in for the first time.

6. Select Next: Permissions.

7. Skip the Set permissions page and select Next: Tags.

350 Appendix

8. Select Next:Review, and then select Create user.

9. This will generate the user's access keys (access key IDs and secret access keys) and
password. Download the generated credentials by selecting Download .csv and
then save the file to a safe location.

10. Share the credentials with users who need to access AWS services. This is an empty
IAM user with no access to any AWS services. The AWS administrator will need to
execute the CloudFormation template based on the relevant chapter to allow the
appropriate access.

Recipe 2 – Storing database credentials using
Amazon Secrets Manager
You can use the following steps to create an IAM user:

1. To create the secrets, navigate to the AWS Secrets Manager dashboard at https://
console.aws.amazon.com/secretsmanager/.

2. Choose Store a new secret.

3. Then, choose Credentials for Redshift Cluster.

4. Specify the username and password.

5. Set the encryption key to DefaultEncryptionKey.

6. Select the Redshift cluster from the list that this secret will access, and click Next.

7. Specify the name for the secrets, keep the defaults, and click Next.

8. Keep the defaults for the configure automatic rotation, and click Next.

9. Review and choose Store.

10. Capture the secret store ARN.

Recipe 3 – Creating an IAM role for an AWS
service
You can use the following steps to create an IAM user:

1. Navigate to the IAM console.

2. Select Roles, and then choose Create role.

https://console.aws.amazon.com/secretsmanager/
https://console.aws.amazon.com/secretsmanager/

Recipe 4 – Attaching an IAM role to the Amazon Redshift cluster 351

3. For Select type of trusted entity, choose AWS service.

4. For Choose a use case, select Redshift.

5. For Select your use case, choose Redshift – Customizable (allows a Redshift
cluster to call AWS services on your behalf). Click Next: Permissions.

6. Skip Create Policy, click Next: Tags, then click Next: Review.

7. Provide a role name and click Create role. Note the role name to attach it to the
Amazon Redshift cluster.

Recipe 4 – Attaching an IAM role to the
Amazon Redshift cluster
You can use the following steps to attach the IAM role to the Amazon Redshift cluster:

1. Navigate to the Redshift console.

2. Select CLUSTERS in the left navigation pane.

3. Select the checkbox beside the Amazon Redshift cluster and select Actions. From
the dropdown, select Manage IAM roles under Permissions:

Figure A.1 – Managing the IAM role for the Amazon Redshift cluster

4. In the Manage IAM roles section, select the correct IAM role from the dropdown
and click on Associate IAM role. Click on Save changes.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

354 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Azure Data Factory Cookbook

Dmitry Anoshin, Dmitry Foshin, Roman Storchak, Xenia Ireton

ISBN: 978-1-80056-529-6

• Create an orchestration and transformation job in ADF

• Develop, execute, and monitor data flows using Azure Synapse

• Create big data pipelines using Azure Data Lake and ADF

• Build a machine learning app with Apache Spark and ADF

• Migrate on-premises SSIS jobs to ADF

• Integrate ADF with commonly used Azure services such as Azure ML,
Azure Logic Apps, and Azure Functions

• Run big data compute jobs within HDInsight and Azure Databricks

https://www.packtpub.com/product/azure-data-factory-cookbook/9781800565296

Why subscribe? 355

Snowflake Cookbook

Hamid Qureshi, Hammad Sharif

ISBN: 978-1-80056-061-1

• Get to grips with data warehousing techniques aligned with Snowflake's cloud
architecture

• Broaden your skills as a data warehouse designer to cover the Snowflake ecosystem

• Transfer skills from on-premise data warehousing to the Snowflake cloud analytics
platform

• Optimize performance and costs associated with a Snowflake solution

• Stage data on object stores and load it into Snowflake

• Secure data and share it efficiently for access

https://www.packtpub.com/product/snowflake-cookbook/9781800560611

356 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Amazon Redshift Cookbook, we'd love to hear your thoughts!
If you purchased the book from Amazon, please click here https://packt.
link/r/1800569688 for this book and share your feedback or leave a review on the
site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1800569688
https://packt.link/r/1800569688

Index

Symbols
.NET

Amazon Redshift cluster,
connecting with 29-33

A
Active Directory Federation

Services(ADFS) 177
Amazon DynamoDB

data, loading from 70-73
Amazon Elastic MapReduce

(Amazon EMR)
about 104
data, loading from 67-70

Amazon EventBridge
event-driven applications, using 118-129
reference link 118

Amazon Kinesis Firehose
data, streaming to Amazon

Redshift via 99-104
working 104

Amazon MWAA
used, for orchestrating

workflow 141-149

Amazon QuickSight
used, for visualizing data 308-314

Amazon Redshift
data lake, exporting from 282-286
data, streaming via Amazon

Kinesis Firehose 99-104
monitoring 189-192
reserved instance pricing 237-240

Amazon Redshift Advisor
accessing 195-197

Amazon Redshift cluster
connecting, with command line 33, 34
connecting, with Java 27-29
connecting, with Jupyter

Notebook 19-23
connecting, with .NET 29-33
connecting, with Python 24-26
connecting, with Query Editor 13-15
connecting, with SQL

Workbench/J client 15-19
creating, with AWS CLI 4-7
creating, with AWS CloudFormation

template 8-12
creating, with AWS Console 2-4
database, managing 36, 37
Elastic Resize, configuring 247-249

358 Index

pause, scheduling 244-246
pausing, with AWS Console 240-243
resume, scheduling 244-246
resuming, with AWS Console 240-243

Amazon Redshift Data API
event-driven applications, using 118-129

Amazon Redshift ML
managing 303-308

Amazon Redshift pricing
reference link 237

Amazon Redshift query editor
used, for scheduling queries 113-118

Amazon Redshift Spectrum
used, for extending data

warehouse 286-289
Amazon Resource Name (ARN) 121, 297
Amazon S3

data, loading with COPY
command 61-66

data, unloading to 83, 84
Amazon Virtual Private Cloud

(Amazon VPC) 153
AppFlow

used, for ingesting SaaS data
in Redshift 314-326

audit logs
managing 185-189

autorefresh option 49
AWS CloudFormation template

used, for creating Amazon
Redshift cluster 8-12

AWS Command Line Interface (AWS CLI)
about 184
used, for creating Amazon

Redshift cluster 4-7
AWS Console

used, for creating Amazon
Redshift cluster 2-4

AWS Database Migration
Service (AWS DMS)

used, for ingesting data from
transactional sources 89-99

working 99
AWS Data Exchange

used, for subscribing to third-
party data 342-347

AWS EC2 Linux 267
AWS Glue

used, for cataloging data 104-110
used, for ingesting data 104-110

AWS KMS-managed keys (SSE-KMS) 168
AWS Lake Formation

used, for building data lake
catalog 265-282

AWS Lambda
event-driven applications, using 129-134

AWS Step Functions
used, for orchestrating ETL

workflow 134-140
AWS Trusted Advisor

about 234
using 235, 236
working 236

AWS Trusted Advisor, best
practice checklist

reference link 236

C
column compression

managing 198-202
column-level security 166-168
command line

Amazon Redshift cluster,
connecting with 33, 34

command-line interface (CLI) 4, 142

Index 359

comma-separated values (.csv) 286, 333
Concurrency Scaling

actions, setting with cost
controls 259-261

reference link 259
using 224-227

Coordinated Universal Time (UTC) 124
COPY command

used, for loading data from
Amazon S3 61-66

cost controls
used, for setting actions for

Concurrency Scaling 259-261
used, for setting actions for

Redshift Spectrum 253-258

D
data

inserting 77-83
loading, from Amazon

DynamoDB 70-73
loading, from Amazon EMR 67-70
loading, from Amazon S3 with

COPY command 61-66
loading, from remote hosts 73-76
sharing, across multiple Amazon

Redshift clusters 290-293
unloading, to Amazon S3 83, 84
updating 77-83
visualizing, with Amazon

QuickSight 308-314
wrangling, with DataBrew 326-333

database
managing, in Amazon Redshift

cluster 36, 37
schema, managing 38-40

database administrator (DBA) 49

database user credentials
generating, with IAM

authentication 184, 185
DataBrew

used, for wrangling data 326-333
Data Definition Language (DDL) 49, 253
data distribution

managing 202-206
data encryption

at rest 158-162
in transit 162-165

data lake
exporting, from Amazon

Redshift 282-286
data lake catalog

building, with AWS Lake
Formation 265-282

Data Manipulation Language
(DML) 49, 77

data warehouse
extending, with Amazon Redshift

Spectrum 286-289
directed acyclic graphs (DAGs) 141
distribution style 202
domain name service (DNS) 161

E
ElastiCache

utilizing, for sub-second
latency 333-342

Elastic MapReduce (EMR) 67, 282
Elastic Resize

configuring, for Amazon
Redshift cluster 247-249

scheduling 250-252
working 253

360 Index

encrypted data
loading 168-173
unloading 168-173

ETL workflow
orchestrating , with AWS Step

Functions 134-140
event-driven applications

using, Amazon EventBridge 118-129
using, Amazon Redshift

Data API 118-129
using, AWS Lambda 129-134

extract, transform, load (ETL)
49, 77, 282, 333

F
federated authentication

managing 177-183
Federated Query

operational sources, querying
with 293-300

I
IAM authentication

using, to generate database user
credentials 184, 185

infrastructure security
managing 153-158

internet of things (IOT) 99

J
Java

Amazon Redshift cluster,
connecting with 27-29

JavaScript Object Notation (JSON) 134

Jupyter Notebook
Amazon Redshift cluster,

connecting with 19-23

M
machine learning (ML) 217, 265
massively parallel processing (MPP) 66
materialized views

managing 46-49
multiple Amazon Redshift clusters

data, sharing 290-293
MySQL command line 267

O
operational data store (ODS) 300
operational sources

querying, with Federated
Query 293-300

P
payment card information (PCI) 166
personally identifiable information

(PII) 46, 166
Procedural Language/

PostgreSQL (PL/pgSQL)
about 49
reference link 52

Python
Amazon Redshift cluster,

connecting with 24-26

Index 361

Q
queries

analyzing 212-217
improving 212-217
scheduling, with Amazon Redshift

query editor 113-118
Query Editor

Amazon Redshift cluster,
connecting with 13-15

R
RDS MySQL 267
Redshift

AppFlow, used for ingesting
SaaS data in 314-326

Redshift Spectrum
actions, setting with cost

controls 253-258
relational database management

system (RDBMS) 61
remote hosts

data, loading from 73-76
reserved instance pricing,

Amazon Redshift
reference link 240

Reserved Instances (RIs) 237

S
SaaS data

ingesting, in Redshift with
AppFlow 314-326

schema
managing, in database 38-40

server-side encryption with Amazon
S3-managed keys (SSE-S3) 168

service-level agreement (SLA) 129
Software-as-a-Service (SaaS) 118, 314
sort keys

managing 207-212
reference link 212

Spectrum queries
optimizing 227-231

SQL Workbench/J client
Amazon Redshift cluster,

connecting with 15-19
Star Schema Benchmark (SSB) 61
stored procedures

about 49
managing 49-52

sub-second latency
ElastiCache, utilizing for 333-342

Super-fast, Parallel, In-memory,
Calculation, Engine (SPICE) 314

superusers
managing 173, 174

T
tables

managing 40-44
third-party data

AWS Data Exchange, used for
subscribing to 342-347

time to live (TTL) 342
transactional sources

data, ingesting with AWS DMS 89-99

362 Index

U
Uniform Resource Locator

(URL) 148, 273
user-defined functions (UDFs)

about 293
managing 53-57

users and groups
managing 175, 176

V
views

managing 44-46
virtual private cloud (VPC) 294

W
workload management (WLM)

about 224, 226
configuring 218-223

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Amazon Redshift
	Technical requirements
	Creating an Amazon Redshift cluster using the AWS Console
	Getting ready
	How to do it…

	Creating an Amazon Redshift cluster using the AWS CLI
	Getting ready
	How to do it…
	How it works…

	Creating an Amazon Redshift cluster using an AWS CloudFormation template
	Getting ready
	How to do it…
	How it works…

	Connecting to an Amazon Redshift cluster using the Query Editor
	Getting ready
	How to do it…

	Connecting to an Amazon Redshift cluster using the SQL Workbench/J client
	Getting ready
	How to do it…

	Connecting to an Amazon Redshift Cluster using a Jupyter Notebook
	Getting ready
	How to do it…

	Connecting to an Amazon Redshift cluster using Python
	Getting ready
	How to do it…

	Connecting to an Amazon Redshift cluster programmatically using Java
	Getting ready
	How to do it…

	Connecting to an Amazon Redshift cluster programmatically using .NET
	Getting ready
	How to do it…

	Connecting to an Amazon Redshift cluster using the command line
	Getting ready
	How to do it…

	Chapter 2: Data Management
	Technical requirements
	Managing a database in an Amazon Redshift cluster
	Getting ready
	How to do it…

	Managing a schema in a database
	Getting ready
	How to do it…

	Managing tables
	Getting ready
	How to do it…
	How it works…

	Managing views
	Getting ready
	How to do it…

	Managing materialized views
	Getting ready
	How to do it…
	How it works…

	Managing stored procedures
	Getting ready
	How to do it…
	How it works…

	Managing UDFs
	Getting ready
	How to do it…
	How it works…

	Chapter 3: Loading and Unloading Data
	Technical requirements
	Loading data from Amazon S3 using COPY
	Getting ready
	How to do it…
	How it works…

	Loading data from Amazon EMR
	Getting ready
	How to do it…

	Loading data from Amazon DynamoDB
	Getting ready
	How to do it…
	How it works…

	Loading data from remote hosts
	Getting ready
	How to do it…

	Updating and inserting data
	Getting ready
	How to do it…

	Unloading data to Amazon S3
	Getting ready
	How to do it…

	Chapter 4: Data Pipelines
	Technical requirements
	Ingesting data from transactional sources using AWS DMS
	Getting ready
	How to do it…
	How it works…

	Streaming data to Amazon Redshift via Amazon Kinesis Firehose
	Getting ready
	How to do it…
	How it works…

	Cataloging and ingesting data using AWS Glue
	How to do it…
	How it works…

	Chapter 5: Scalable Data Orchestration for Automation
	Technical requirements
	Scheduling queries using the Amazon Redshift query editor
	Getting ready
	How to do it…
	How it works…

	Event-driven applications using Amazon EventBridge and the Amazon Redshift
Data API
	Getting ready
	How to do it…
	How it works…

	Event-driven applications using AWS Lambda
	Getting ready
	How to do it…
	How it works…

	Orchestrating using AWS Step Functions
	Getting ready
	How to do it…
	How it works…

	Orchestrating using Amazon MWAA
	Getting ready
	How to do it…
	How it works…

	Chapter 6: Data Authorization and Security
	Technical requirements
	Managing infrastructure security
	Getting ready
	How to do it

	Data encryption at rest
	Getting ready
	How to do it

	Data encryption in transit
	Getting ready
	How to do it

	Column-level security
	Getting ready
	How to do it
	How it works

	Loading and unloading encrypted data
	Getting ready
	How to do it

	Managing superusers
	Getting ready
	How to do it

	Managing users and groups
	Getting ready
	How to do it

	Managing federated authentication
	Getting ready
	How to do it
	How it works

	Using IAM authentication to generate database user credentials
	Getting ready
	How to do it

	Managing audit logs
	Getting ready
	How to do it
	How it works

	Monitoring Amazon Redshift
	Getting ready
	How to do it
	How it works

	Chapter 7: Performance Optimization
	Technical requirements
	Amazon Redshift Advisor
	Getting ready
	How to do it…
	How it works…

	Managing column compression
	Getting ready
	How to do it…
	How it works…

	Managing data distribution
	Getting ready
	How to do it…
	How it works…

	Managing sort keys
	Getting ready
	How to do it…
	How it works…

	Analyzing and improving queries
	Getting ready
	How to do it…
	How it works…

	Configuring workload management (WLM)
	Getting ready
	How to do it…
	How it works…

	Utilizing Concurrency Scaling
	Getting ready
	How to do it…
	How it works…

	Optimizing Spectrum queries
	Getting ready
	How to do it…
	How it works…

	Chapter 8: Cost Optimization
	Technical requirements
	AWS Trusted Advisor
	Getting ready
	How to do it…
	How it works…

	Amazon Redshift Reserved Instance pricing
	Getting ready
	How to do it…

	Configuring pause and resume for an Amazon Redshift cluster
	Getting ready
	How to do it…

	Scheduling pause and resume
	Getting ready
	How to do it…
	How it works…

	Configuring Elastic Resize for an Amazon Redshift cluster
	Getting ready
	How to do it…

	Scheduling Elastic Resizing
	Getting ready
	How to do it…
	How it works…

	Using cost controls to set actions for Redshift Spectrum
	Getting ready
	How to do it…

	Using cost controls to set actions for Concurrency Scaling
	Getting ready
	How to do it…

	Chapter 9: Lake House Architecture
	Technical requirements
	Building a data lake catalog using AWS Lake Formation
	Getting ready
	How to do it…
	How it works…

	Exporting a data lake from Amazon Redshift
	Getting ready
	How to do it…

	Extending a data warehouse using Amazon Redshift Spectrum
	Getting ready
	How to do it…

	Data sharing across multiple Amazon Redshift clusters
	Getting ready
	How to do it…
	How it works…

	Querying operational sources using Federated Query
	Getting ready
	How to do it…

	Chapter 10: Extending Redshift's Capabilities
	Technical requirements
	Managing Amazon Redshift ML
	Getting ready
	How to do it…
	How it works…

	Visualizing data using Amazon QuickSight
	Getting ready
	How to do it…
	How it works…

	AppFlow for ingesting SaaS data in Redshift
	Getting ready
	How to do it…
	How it works…

	Data wrangling using DataBrew
	Getting ready
	How to do it…
	How it works…

	Utilizing ElastiCache for sub-second latency
	Getting ready
	How to do it…
	How it works…

	Subscribing to third-party data using AWS Data Exchange
	Getting ready
	How to do it…
	How it works…

	Appendix
	Recipe 1 – Creating an IAM user
	Recipe 2 – Storing database credentials using Amazon Secrets Manager
	Recipe 3 – Creating an IAM role for an AWS service
	Recipe 4 – Attaching an IAM role to the Amazon Redshift cluster
	Why subscribe?

	Other Books You May Enjoy
	Index

